Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6 <http://rt2x00.serialmonkey.com>
7
8 */
9
10/*
11 Module: rt2x00
12 Abstract: rt2x00 global information.
13 */
14
15#ifndef RT2X00_H
16#define RT2X00_H
17
18#include <linux/bitops.h>
19#include <linux/interrupt.h>
20#include <linux/skbuff.h>
21#include <linux/workqueue.h>
22#include <linux/firmware.h>
23#include <linux/leds.h>
24#include <linux/mutex.h>
25#include <linux/etherdevice.h>
26#include <linux/kfifo.h>
27#include <linux/hrtimer.h>
28#include <linux/average.h>
29#include <linux/usb.h>
30#include <linux/clk.h>
31
32#include <net/mac80211.h>
33
34#include "rt2x00debug.h"
35#include "rt2x00dump.h"
36#include "rt2x00leds.h"
37#include "rt2x00reg.h"
38#include "rt2x00queue.h"
39
40/*
41 * Module information.
42 */
43#define DRV_VERSION "2.3.0"
44#define DRV_PROJECT "http://rt2x00.serialmonkey.com"
45
46/* Debug definitions.
47 * Debug output has to be enabled during compile time.
48 */
49#ifdef CONFIG_RT2X00_DEBUG
50#define DEBUG
51#endif /* CONFIG_RT2X00_DEBUG */
52
53/* Utility printing macros
54 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
55 */
56#define rt2x00_probe_err(fmt, ...) \
57 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \
58 __func__, ##__VA_ARGS__)
59#define rt2x00_err(dev, fmt, ...) \
60 wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt, \
61 __func__, ##__VA_ARGS__)
62#define rt2x00_warn(dev, fmt, ...) \
63 wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt, \
64 __func__, ##__VA_ARGS__)
65#define rt2x00_info(dev, fmt, ...) \
66 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \
67 __func__, ##__VA_ARGS__)
68
69/* Various debug levels */
70#define rt2x00_dbg(dev, fmt, ...) \
71 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \
72 __func__, ##__VA_ARGS__)
73#define rt2x00_eeprom_dbg(dev, fmt, ...) \
74 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \
75 __func__, ##__VA_ARGS__)
76
77/*
78 * Duration calculations
79 * The rate variable passed is: 100kbs.
80 * To convert from bytes to bits we multiply size with 8,
81 * then the size is multiplied with 10 to make the
82 * real rate -> rate argument correction.
83 */
84#define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate))
85#define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
86
87/*
88 * Determine the number of L2 padding bytes required between the header and
89 * the payload.
90 */
91#define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3)
92
93/*
94 * Determine the alignment requirement,
95 * to make sure the 802.11 payload is padded to a 4-byte boundrary
96 * we must determine the address of the payload and calculate the
97 * amount of bytes needed to move the data.
98 */
99#define ALIGN_SIZE(__skb, __header) \
100 (((unsigned long)((__skb)->data + (__header))) & 3)
101
102/*
103 * Constants for extra TX headroom for alignment purposes.
104 */
105#define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */
106#define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */
107
108/*
109 * Standard timing and size defines.
110 * These values should follow the ieee80211 specifications.
111 */
112#define ACK_SIZE 14
113#define IEEE80211_HEADER 24
114#define PLCP 48
115#define BEACON 100
116#define PREAMBLE 144
117#define SHORT_PREAMBLE 72
118#define SLOT_TIME 20
119#define SHORT_SLOT_TIME 9
120#define SIFS 10
121#define PIFS (SIFS + SLOT_TIME)
122#define SHORT_PIFS (SIFS + SHORT_SLOT_TIME)
123#define DIFS (PIFS + SLOT_TIME)
124#define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME)
125#define EIFS (SIFS + DIFS + \
126 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
127#define SHORT_EIFS (SIFS + SHORT_DIFS + \
128 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
129
130enum rt2x00_chip_intf {
131 RT2X00_CHIP_INTF_PCI,
132 RT2X00_CHIP_INTF_PCIE,
133 RT2X00_CHIP_INTF_USB,
134 RT2X00_CHIP_INTF_SOC,
135};
136
137/*
138 * Chipset identification
139 * The chipset on the device is composed of a RT and RF chip.
140 * The chipset combination is important for determining device capabilities.
141 */
142struct rt2x00_chip {
143 u16 rt;
144#define RT2460 0x2460
145#define RT2560 0x2560
146#define RT2570 0x2570
147#define RT2661 0x2661
148#define RT2573 0x2573
149#define RT2860 0x2860 /* 2.4GHz */
150#define RT2872 0x2872 /* WSOC */
151#define RT2883 0x2883 /* WSOC */
152#define RT3070 0x3070
153#define RT3071 0x3071
154#define RT3090 0x3090 /* 2.4GHz PCIe */
155#define RT3290 0x3290
156#define RT3352 0x3352 /* WSOC */
157#define RT3390 0x3390
158#define RT3572 0x3572
159#define RT3593 0x3593
160#define RT3883 0x3883 /* WSOC */
161#define RT5350 0x5350 /* WSOC 2.4GHz */
162#define RT5390 0x5390 /* 2.4GHz */
163#define RT5392 0x5392 /* 2.4GHz */
164#define RT5592 0x5592
165#define RT6352 0x6352 /* WSOC 2.4GHz */
166
167 u16 rf;
168 u16 rev;
169
170 enum rt2x00_chip_intf intf;
171};
172
173/*
174 * RF register values that belong to a particular channel.
175 */
176struct rf_channel {
177 int channel;
178 u32 rf1;
179 u32 rf2;
180 u32 rf3;
181 u32 rf4;
182};
183
184/*
185 * Information structure for channel survey.
186 */
187struct rt2x00_chan_survey {
188 u64 time_idle;
189 u64 time_busy;
190 u64 time_ext_busy;
191};
192
193/*
194 * Channel information structure
195 */
196struct channel_info {
197 unsigned int flags;
198#define GEOGRAPHY_ALLOWED 0x00000001
199
200 short max_power;
201 short default_power1;
202 short default_power2;
203 short default_power3;
204};
205
206/*
207 * Antenna setup values.
208 */
209struct antenna_setup {
210 enum antenna rx;
211 enum antenna tx;
212 u8 rx_chain_num;
213 u8 tx_chain_num;
214};
215
216/*
217 * Quality statistics about the currently active link.
218 */
219struct link_qual {
220 /*
221 * Statistics required for Link tuning by driver
222 * The rssi value is provided by rt2x00lib during the
223 * link_tuner() callback function.
224 * The false_cca field is filled during the link_stats()
225 * callback function and could be used during the
226 * link_tuner() callback function.
227 */
228 int rssi;
229 int false_cca;
230
231 /*
232 * VGC levels
233 * Hardware driver will tune the VGC level during each call
234 * to the link_tuner() callback function. This vgc_level is
235 * determined based on the link quality statistics like
236 * average RSSI and the false CCA count.
237 *
238 * In some cases the drivers need to differentiate between
239 * the currently "desired" VGC level and the level configured
240 * in the hardware. The latter is important to reduce the
241 * number of BBP register reads to reduce register access
242 * overhead. For this reason we store both values here.
243 */
244 u8 vgc_level;
245 u8 vgc_level_reg;
246
247 /*
248 * Statistics required for Signal quality calculation.
249 * These fields might be changed during the link_stats()
250 * callback function.
251 */
252 int rx_success;
253 int rx_failed;
254 int tx_success;
255 int tx_failed;
256};
257
258DECLARE_EWMA(rssi, 10, 8)
259
260/*
261 * Antenna settings about the currently active link.
262 */
263struct link_ant {
264 /*
265 * Antenna flags
266 */
267 unsigned int flags;
268#define ANTENNA_RX_DIVERSITY 0x00000001
269#define ANTENNA_TX_DIVERSITY 0x00000002
270#define ANTENNA_MODE_SAMPLE 0x00000004
271
272 /*
273 * Currently active TX/RX antenna setup.
274 * When software diversity is used, this will indicate
275 * which antenna is actually used at this time.
276 */
277 struct antenna_setup active;
278
279 /*
280 * RSSI history information for the antenna.
281 * Used to determine when to switch antenna
282 * when using software diversity.
283 */
284 int rssi_history;
285
286 /*
287 * Current RSSI average of the currently active antenna.
288 * Similar to the avg_rssi in the link_qual structure
289 * this value is updated by using the walking average.
290 */
291 struct ewma_rssi rssi_ant;
292};
293
294/*
295 * To optimize the quality of the link we need to store
296 * the quality of received frames and periodically
297 * optimize the link.
298 */
299struct link {
300 /*
301 * Link tuner counter
302 * The number of times the link has been tuned
303 * since the radio has been switched on.
304 */
305 u32 count;
306
307 /*
308 * Quality measurement values.
309 */
310 struct link_qual qual;
311
312 /*
313 * TX/RX antenna setup.
314 */
315 struct link_ant ant;
316
317 /*
318 * Currently active average RSSI value
319 */
320 struct ewma_rssi avg_rssi;
321
322 /*
323 * Work structure for scheduling periodic link tuning.
324 */
325 struct delayed_work work;
326
327 /*
328 * Work structure for scheduling periodic watchdog monitoring.
329 * This work must be scheduled on the kernel workqueue, while
330 * all other work structures must be queued on the mac80211
331 * workqueue. This guarantees that the watchdog can schedule
332 * other work structures and wait for their completion in order
333 * to bring the device/driver back into the desired state.
334 */
335 struct delayed_work watchdog_work;
336 unsigned int watchdog_interval;
337 unsigned int watchdog;
338
339 /*
340 * Work structure for scheduling periodic AGC adjustments.
341 */
342 struct delayed_work agc_work;
343
344 /*
345 * Work structure for scheduling periodic VCO calibration.
346 */
347 struct delayed_work vco_work;
348};
349
350enum rt2x00_delayed_flags {
351 DELAYED_UPDATE_BEACON,
352};
353
354/*
355 * Interface structure
356 * Per interface configuration details, this structure
357 * is allocated as the private data for ieee80211_vif.
358 */
359struct rt2x00_intf {
360 /*
361 * beacon->skb must be protected with the mutex.
362 */
363 struct mutex beacon_skb_mutex;
364
365 /*
366 * Entry in the beacon queue which belongs to
367 * this interface. Each interface has its own
368 * dedicated beacon entry.
369 */
370 struct queue_entry *beacon;
371 bool enable_beacon;
372
373 /*
374 * Actions that needed rescheduling.
375 */
376 unsigned long delayed_flags;
377
378 /*
379 * Software sequence counter, this is only required
380 * for hardware which doesn't support hardware
381 * sequence counting.
382 */
383 atomic_t seqno;
384};
385
386static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
387{
388 return (struct rt2x00_intf *)vif->drv_priv;
389}
390
391/**
392 * struct hw_mode_spec: Hardware specifications structure
393 *
394 * Details about the supported modes, rates and channels
395 * of a particular chipset. This is used by rt2x00lib
396 * to build the ieee80211_hw_mode array for mac80211.
397 *
398 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
399 * @supported_rates: Rate types which are supported (CCK, OFDM).
400 * @num_channels: Number of supported channels. This is used as array size
401 * for @tx_power_a, @tx_power_bg and @channels.
402 * @channels: Device/chipset specific channel values (See &struct rf_channel).
403 * @channels_info: Additional information for channels (See &struct channel_info).
404 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
405 */
406struct hw_mode_spec {
407 unsigned int supported_bands;
408#define SUPPORT_BAND_2GHZ 0x00000001
409#define SUPPORT_BAND_5GHZ 0x00000002
410
411 unsigned int supported_rates;
412#define SUPPORT_RATE_CCK 0x00000001
413#define SUPPORT_RATE_OFDM 0x00000002
414
415 unsigned int num_channels;
416 const struct rf_channel *channels;
417 const struct channel_info *channels_info;
418
419 struct ieee80211_sta_ht_cap ht;
420};
421
422/*
423 * Configuration structure wrapper around the
424 * mac80211 configuration structure.
425 * When mac80211 configures the driver, rt2x00lib
426 * can precalculate values which are equal for all
427 * rt2x00 drivers. Those values can be stored in here.
428 */
429struct rt2x00lib_conf {
430 struct ieee80211_conf *conf;
431
432 struct rf_channel rf;
433 struct channel_info channel;
434};
435
436/*
437 * Configuration structure for erp settings.
438 */
439struct rt2x00lib_erp {
440 int short_preamble;
441 int cts_protection;
442
443 u32 basic_rates;
444
445 int slot_time;
446
447 short sifs;
448 short pifs;
449 short difs;
450 short eifs;
451
452 u16 beacon_int;
453 u16 ht_opmode;
454};
455
456/*
457 * Configuration structure for hardware encryption.
458 */
459struct rt2x00lib_crypto {
460 enum cipher cipher;
461
462 enum set_key_cmd cmd;
463 const u8 *address;
464
465 u32 bssidx;
466
467 u8 key[16];
468 u8 tx_mic[8];
469 u8 rx_mic[8];
470
471 int wcid;
472};
473
474/*
475 * Configuration structure wrapper around the
476 * rt2x00 interface configuration handler.
477 */
478struct rt2x00intf_conf {
479 /*
480 * Interface type
481 */
482 enum nl80211_iftype type;
483
484 /*
485 * TSF sync value, this is dependent on the operation type.
486 */
487 enum tsf_sync sync;
488
489 /*
490 * The MAC and BSSID addresses are simple array of bytes,
491 * these arrays are little endian, so when sending the addresses
492 * to the drivers, copy the it into a endian-signed variable.
493 *
494 * Note that all devices (except rt2500usb) have 32 bits
495 * register word sizes. This means that whatever variable we
496 * pass _must_ be a multiple of 32 bits. Otherwise the device
497 * might not accept what we are sending to it.
498 * This will also make it easier for the driver to write
499 * the data to the device.
500 */
501 __le32 mac[2];
502 __le32 bssid[2];
503};
504
505/*
506 * Private structure for storing STA details
507 * wcid: Wireless Client ID
508 */
509struct rt2x00_sta {
510 int wcid;
511};
512
513static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
514{
515 return (struct rt2x00_sta *)sta->drv_priv;
516}
517
518/*
519 * rt2x00lib callback functions.
520 */
521struct rt2x00lib_ops {
522 /*
523 * Interrupt handlers.
524 */
525 irq_handler_t irq_handler;
526
527 /*
528 * TX status tasklet handler.
529 */
530 void (*txstatus_tasklet) (struct tasklet_struct *t);
531 void (*pretbtt_tasklet) (struct tasklet_struct *t);
532 void (*tbtt_tasklet) (struct tasklet_struct *t);
533 void (*rxdone_tasklet) (struct tasklet_struct *t);
534 void (*autowake_tasklet) (struct tasklet_struct *t);
535
536 /*
537 * Device init handlers.
538 */
539 int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
540 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
541 int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
542 const u8 *data, const size_t len);
543 int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
544 const u8 *data, const size_t len);
545
546 /*
547 * Device initialization/deinitialization handlers.
548 */
549 int (*initialize) (struct rt2x00_dev *rt2x00dev);
550 void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
551
552 /*
553 * queue initialization handlers
554 */
555 bool (*get_entry_state) (struct queue_entry *entry);
556 void (*clear_entry) (struct queue_entry *entry);
557
558 /*
559 * Radio control handlers.
560 */
561 int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
562 enum dev_state state);
563 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
564 void (*link_stats) (struct rt2x00_dev *rt2x00dev,
565 struct link_qual *qual);
566 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
567 struct link_qual *qual);
568 void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
569 struct link_qual *qual, const u32 count);
570 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
571 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
572
573 /*
574 * Data queue handlers.
575 */
576 void (*watchdog) (struct rt2x00_dev *rt2x00dev);
577 void (*start_queue) (struct data_queue *queue);
578 void (*kick_queue) (struct data_queue *queue);
579 void (*stop_queue) (struct data_queue *queue);
580 void (*flush_queue) (struct data_queue *queue, bool drop);
581 void (*tx_dma_done) (struct queue_entry *entry);
582
583 /*
584 * TX control handlers
585 */
586 void (*write_tx_desc) (struct queue_entry *entry,
587 struct txentry_desc *txdesc);
588 void (*write_tx_data) (struct queue_entry *entry,
589 struct txentry_desc *txdesc);
590 void (*write_beacon) (struct queue_entry *entry,
591 struct txentry_desc *txdesc);
592 void (*clear_beacon) (struct queue_entry *entry);
593 int (*get_tx_data_len) (struct queue_entry *entry);
594
595 /*
596 * RX control handlers
597 */
598 void (*fill_rxdone) (struct queue_entry *entry,
599 struct rxdone_entry_desc *rxdesc);
600
601 /*
602 * Configuration handlers.
603 */
604 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
605 struct rt2x00lib_crypto *crypto,
606 struct ieee80211_key_conf *key);
607 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
608 struct rt2x00lib_crypto *crypto,
609 struct ieee80211_key_conf *key);
610 void (*config_filter) (struct rt2x00_dev *rt2x00dev,
611 const unsigned int filter_flags);
612 void (*config_intf) (struct rt2x00_dev *rt2x00dev,
613 struct rt2x00_intf *intf,
614 struct rt2x00intf_conf *conf,
615 const unsigned int flags);
616#define CONFIG_UPDATE_TYPE ( 1 << 1 )
617#define CONFIG_UPDATE_MAC ( 1 << 2 )
618#define CONFIG_UPDATE_BSSID ( 1 << 3 )
619
620 void (*config_erp) (struct rt2x00_dev *rt2x00dev,
621 struct rt2x00lib_erp *erp,
622 u32 changed);
623 void (*config_ant) (struct rt2x00_dev *rt2x00dev,
624 struct antenna_setup *ant);
625 void (*config) (struct rt2x00_dev *rt2x00dev,
626 struct rt2x00lib_conf *libconf,
627 const unsigned int changed_flags);
628 void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev);
629 int (*sta_add) (struct rt2x00_dev *rt2x00dev,
630 struct ieee80211_vif *vif,
631 struct ieee80211_sta *sta);
632 int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
633 struct ieee80211_sta *sta);
634};
635
636/*
637 * rt2x00 driver callback operation structure.
638 */
639struct rt2x00_ops {
640 const char *name;
641 const unsigned int drv_data_size;
642 const unsigned int max_ap_intf;
643 const unsigned int eeprom_size;
644 const unsigned int rf_size;
645 const unsigned int tx_queues;
646 void (*queue_init)(struct data_queue *queue);
647 const struct rt2x00lib_ops *lib;
648 const void *drv;
649 const struct ieee80211_ops *hw;
650#ifdef CONFIG_RT2X00_LIB_DEBUGFS
651 const struct rt2x00debug *debugfs;
652#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
653};
654
655/*
656 * rt2x00 state flags
657 */
658enum rt2x00_state_flags {
659 /*
660 * Device flags
661 */
662 DEVICE_STATE_PRESENT,
663 DEVICE_STATE_REGISTERED_HW,
664 DEVICE_STATE_INITIALIZED,
665 DEVICE_STATE_STARTED,
666 DEVICE_STATE_ENABLED_RADIO,
667 DEVICE_STATE_SCANNING,
668 DEVICE_STATE_FLUSHING,
669 DEVICE_STATE_RESET,
670
671 /*
672 * Driver configuration
673 */
674 CONFIG_CHANNEL_HT40,
675 CONFIG_POWERSAVING,
676 CONFIG_HT_DISABLED,
677 CONFIG_MONITORING,
678
679 /*
680 * Mark we currently are sequentially reading TX_STA_FIFO register
681 * FIXME: this is for only rt2800usb, should go to private data
682 */
683 TX_STATUS_READING,
684};
685
686/*
687 * rt2x00 capability flags
688 */
689enum rt2x00_capability_flags {
690 /*
691 * Requirements
692 */
693 REQUIRE_FIRMWARE,
694 REQUIRE_BEACON_GUARD,
695 REQUIRE_ATIM_QUEUE,
696 REQUIRE_DMA,
697 REQUIRE_COPY_IV,
698 REQUIRE_L2PAD,
699 REQUIRE_TXSTATUS_FIFO,
700 REQUIRE_TASKLET_CONTEXT,
701 REQUIRE_SW_SEQNO,
702 REQUIRE_HT_TX_DESC,
703 REQUIRE_PS_AUTOWAKE,
704 REQUIRE_DELAYED_RFKILL,
705
706 /*
707 * Capabilities
708 */
709 CAPABILITY_HW_BUTTON,
710 CAPABILITY_HW_CRYPTO,
711 CAPABILITY_POWER_LIMIT,
712 CAPABILITY_CONTROL_FILTERS,
713 CAPABILITY_CONTROL_FILTER_PSPOLL,
714 CAPABILITY_PRE_TBTT_INTERRUPT,
715 CAPABILITY_LINK_TUNING,
716 CAPABILITY_FRAME_TYPE,
717 CAPABILITY_RF_SEQUENCE,
718 CAPABILITY_EXTERNAL_LNA_A,
719 CAPABILITY_EXTERNAL_LNA_BG,
720 CAPABILITY_DOUBLE_ANTENNA,
721 CAPABILITY_BT_COEXIST,
722 CAPABILITY_VCO_RECALIBRATION,
723 CAPABILITY_EXTERNAL_PA_TX0,
724 CAPABILITY_EXTERNAL_PA_TX1,
725 CAPABILITY_RESTART_HW,
726};
727
728/*
729 * Interface combinations
730 */
731enum {
732 IF_COMB_AP = 0,
733 NUM_IF_COMB,
734};
735
736/*
737 * rt2x00 device structure.
738 */
739struct rt2x00_dev {
740 /*
741 * Device structure.
742 * The structure stored in here depends on the
743 * system bus (PCI or USB).
744 * When accessing this variable, the rt2x00dev_{pci,usb}
745 * macros should be used for correct typecasting.
746 */
747 struct device *dev;
748
749 /*
750 * Callback functions.
751 */
752 const struct rt2x00_ops *ops;
753
754 /*
755 * Driver data.
756 */
757 void *drv_data;
758
759 /*
760 * IEEE80211 control structure.
761 */
762 struct ieee80211_hw *hw;
763 struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
764 struct rt2x00_chan_survey *chan_survey;
765 enum nl80211_band curr_band;
766 int curr_freq;
767
768 /*
769 * If enabled, the debugfs interface structures
770 * required for deregistration of debugfs.
771 */
772#ifdef CONFIG_RT2X00_LIB_DEBUGFS
773 struct rt2x00debug_intf *debugfs_intf;
774#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
775
776 /*
777 * LED structure for changing the LED status
778 * by mac8011 or the kernel.
779 */
780#ifdef CONFIG_RT2X00_LIB_LEDS
781 struct rt2x00_led led_radio;
782 struct rt2x00_led led_assoc;
783 struct rt2x00_led led_qual;
784 u16 led_mcu_reg;
785#endif /* CONFIG_RT2X00_LIB_LEDS */
786
787 /*
788 * Device state flags.
789 * In these flags the current status is stored.
790 * Access to these flags should occur atomically.
791 */
792 unsigned long flags;
793
794 /*
795 * Device capabiltiy flags.
796 * In these flags the device/driver capabilities are stored.
797 * Access to these flags should occur non-atomically.
798 */
799 unsigned long cap_flags;
800
801 /*
802 * Device information, Bus IRQ and name (PCI, SoC)
803 */
804 int irq;
805 const char *name;
806
807 /*
808 * Chipset identification.
809 */
810 struct rt2x00_chip chip;
811
812 /*
813 * hw capability specifications.
814 */
815 struct hw_mode_spec spec;
816
817 /*
818 * This is the default TX/RX antenna setup as indicated
819 * by the device's EEPROM.
820 */
821 struct antenna_setup default_ant;
822
823 /*
824 * Register pointers
825 * csr.base: CSR base register address. (PCI)
826 * csr.cache: CSR cache for usb_control_msg. (USB)
827 */
828 union csr {
829 void __iomem *base;
830 void *cache;
831 } csr;
832
833 /*
834 * Mutex to protect register accesses.
835 * For PCI and USB devices it protects against concurrent indirect
836 * register access (BBP, RF, MCU) since accessing those
837 * registers require multiple calls to the CSR registers.
838 * For USB devices it also protects the csr_cache since that
839 * field is used for normal CSR access and it cannot support
840 * multiple callers simultaneously.
841 */
842 struct mutex csr_mutex;
843
844 /*
845 * Mutex to synchronize config and link tuner.
846 */
847 struct mutex conf_mutex;
848 /*
849 * Current packet filter configuration for the device.
850 * This contains all currently active FIF_* flags send
851 * to us by mac80211 during configure_filter().
852 */
853 unsigned int packet_filter;
854
855 /*
856 * Interface details:
857 * - Open ap interface count.
858 * - Open sta interface count.
859 * - Association count.
860 * - Beaconing enabled count.
861 */
862 unsigned int intf_ap_count;
863 unsigned int intf_sta_count;
864 unsigned int intf_associated;
865 unsigned int intf_beaconing;
866
867 /*
868 * Interface combinations
869 */
870 struct ieee80211_iface_limit if_limits_ap;
871 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
872
873 /*
874 * Link quality
875 */
876 struct link link;
877
878 /*
879 * EEPROM data.
880 */
881 __le16 *eeprom;
882
883 /*
884 * Active RF register values.
885 * These are stored here so we don't need
886 * to read the rf registers and can directly
887 * use this value instead.
888 * This field should be accessed by using
889 * rt2x00_rf_read() and rt2x00_rf_write().
890 */
891 u32 *rf;
892
893 /*
894 * LNA gain
895 */
896 short lna_gain;
897
898 /*
899 * Current TX power value.
900 */
901 u16 tx_power;
902
903 /*
904 * Current retry values.
905 */
906 u8 short_retry;
907 u8 long_retry;
908
909 /*
910 * Rssi <-> Dbm offset
911 */
912 u8 rssi_offset;
913
914 /*
915 * Frequency offset.
916 */
917 u8 freq_offset;
918
919 /*
920 * Association id.
921 */
922 u16 aid;
923
924 /*
925 * Beacon interval.
926 */
927 u16 beacon_int;
928
929 /* Rx/Tx DMA busy watchdog counter */
930 u16 rxdma_busy, txdma_busy;
931
932 /**
933 * Timestamp of last received beacon
934 */
935 unsigned long last_beacon;
936
937 /*
938 * Low level statistics which will have
939 * to be kept up to date while device is running.
940 */
941 struct ieee80211_low_level_stats low_level_stats;
942
943 /**
944 * Work queue for all work which should not be placed
945 * on the mac80211 workqueue (because of dependencies
946 * between various work structures).
947 */
948 struct workqueue_struct *workqueue;
949
950 /*
951 * Scheduled work.
952 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
953 * which means it cannot be placed on the hw->workqueue
954 * due to RTNL locking requirements.
955 */
956 struct work_struct intf_work;
957
958 /**
959 * Scheduled work for TX/RX done handling (USB devices)
960 */
961 struct work_struct rxdone_work;
962 struct work_struct txdone_work;
963
964 /*
965 * Powersaving work
966 */
967 struct delayed_work autowakeup_work;
968 struct work_struct sleep_work;
969
970 /*
971 * Data queue arrays for RX, TX, Beacon and ATIM.
972 */
973 unsigned int data_queues;
974 struct data_queue *rx;
975 struct data_queue *tx;
976 struct data_queue *bcn;
977 struct data_queue *atim;
978
979 /*
980 * Firmware image.
981 */
982 const struct firmware *fw;
983
984 /*
985 * FIFO for storing tx status reports between isr and tasklet.
986 */
987 DECLARE_KFIFO_PTR(txstatus_fifo, u32);
988
989 /*
990 * Timer to ensure tx status reports are read (rt2800usb).
991 */
992 struct hrtimer txstatus_timer;
993
994 /*
995 * Tasklet for processing tx status reports (rt2800pci).
996 */
997 struct tasklet_struct txstatus_tasklet;
998 struct tasklet_struct pretbtt_tasklet;
999 struct tasklet_struct tbtt_tasklet;
1000 struct tasklet_struct rxdone_tasklet;
1001 struct tasklet_struct autowake_tasklet;
1002
1003 /*
1004 * Used for VCO periodic calibration.
1005 */
1006 int rf_channel;
1007
1008 /*
1009 * Protect the interrupt mask register.
1010 */
1011 spinlock_t irqmask_lock;
1012
1013 /*
1014 * List of BlockAckReq TX entries that need driver BlockAck processing.
1015 */
1016 struct list_head bar_list;
1017 spinlock_t bar_list_lock;
1018
1019 /* Extra TX headroom required for alignment purposes. */
1020 unsigned int extra_tx_headroom;
1021
1022 struct usb_anchor *anchor;
1023 unsigned int num_proto_errs;
1024
1025 /* Clock for System On Chip devices. */
1026 struct clk *clk;
1027};
1028
1029struct rt2x00_bar_list_entry {
1030 struct list_head list;
1031 struct rcu_head head;
1032
1033 struct queue_entry *entry;
1034 int block_acked;
1035
1036 /* Relevant parts of the IEEE80211 BAR header */
1037 __u8 ra[6];
1038 __u8 ta[6];
1039 __le16 control;
1040 __le16 start_seq_num;
1041};
1042
1043/*
1044 * Register defines.
1045 * Some registers require multiple attempts before success,
1046 * in those cases REGISTER_BUSY_COUNT attempts should be
1047 * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1048 * bus delays, we do not have to loop so many times to wait
1049 * for valid register value on that bus.
1050 */
1051#define REGISTER_BUSY_COUNT 100
1052#define REGISTER_USB_BUSY_COUNT 20
1053#define REGISTER_BUSY_DELAY 100
1054
1055/*
1056 * Generic RF access.
1057 * The RF is being accessed by word index.
1058 */
1059static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1060 const unsigned int word)
1061{
1062 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1063 return rt2x00dev->rf[word - 1];
1064}
1065
1066static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1067 const unsigned int word, u32 data)
1068{
1069 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1070 rt2x00dev->rf[word - 1] = data;
1071}
1072
1073/*
1074 * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1075 */
1076static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1077 const unsigned int word)
1078{
1079 return (void *)&rt2x00dev->eeprom[word];
1080}
1081
1082static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1083 const unsigned int word)
1084{
1085 return le16_to_cpu(rt2x00dev->eeprom[word]);
1086}
1087
1088static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1089 const unsigned int word, u16 data)
1090{
1091 rt2x00dev->eeprom[word] = cpu_to_le16(data);
1092}
1093
1094static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1095 const unsigned int byte)
1096{
1097 return *(((u8 *)rt2x00dev->eeprom) + byte);
1098}
1099
1100/*
1101 * Chipset handlers
1102 */
1103static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1104 const u16 rt, const u16 rf, const u16 rev)
1105{
1106 rt2x00dev->chip.rt = rt;
1107 rt2x00dev->chip.rf = rf;
1108 rt2x00dev->chip.rev = rev;
1109
1110 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1111 rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1112 rt2x00dev->chip.rev);
1113}
1114
1115static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1116 const u16 rt, const u16 rev)
1117{
1118 rt2x00dev->chip.rt = rt;
1119 rt2x00dev->chip.rev = rev;
1120
1121 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1122 rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1123}
1124
1125static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1126{
1127 rt2x00dev->chip.rf = rf;
1128
1129 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1130 rt2x00dev->chip.rf);
1131}
1132
1133static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1134{
1135 return (rt2x00dev->chip.rt == rt);
1136}
1137
1138static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1139{
1140 return (rt2x00dev->chip.rf == rf);
1141}
1142
1143static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1144{
1145 return rt2x00dev->chip.rev;
1146}
1147
1148static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1149 const u16 rt, const u16 rev)
1150{
1151 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1152}
1153
1154static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1155 const u16 rt, const u16 rev)
1156{
1157 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1158}
1159
1160static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1161 const u16 rt, const u16 rev)
1162{
1163 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1164}
1165
1166static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1167 enum rt2x00_chip_intf intf)
1168{
1169 rt2x00dev->chip.intf = intf;
1170}
1171
1172static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1173 enum rt2x00_chip_intf intf)
1174{
1175 return (rt2x00dev->chip.intf == intf);
1176}
1177
1178static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1179{
1180 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1181 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1182}
1183
1184static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1185{
1186 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1187}
1188
1189static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1190{
1191 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1192}
1193
1194static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1195{
1196 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1197}
1198
1199/* Helpers for capability flags */
1200
1201static inline bool
1202rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1203 enum rt2x00_capability_flags cap_flag)
1204{
1205 return test_bit(cap_flag, &rt2x00dev->cap_flags);
1206}
1207
1208static inline bool
1209rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1210{
1211 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1212}
1213
1214static inline bool
1215rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1216{
1217 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1218}
1219
1220static inline bool
1221rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1222{
1223 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1224}
1225
1226static inline bool
1227rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1228{
1229 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1230}
1231
1232static inline bool
1233rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1234{
1235 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1236}
1237
1238static inline bool
1239rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1240{
1241 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1242}
1243
1244static inline bool
1245rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1246{
1247 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1248}
1249
1250static inline bool
1251rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1252{
1253 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1254}
1255
1256static inline bool
1257rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1258{
1259 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1260}
1261
1262static inline bool
1263rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1264{
1265 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1266}
1267
1268static inline bool
1269rt2x00_has_cap_external_pa(struct rt2x00_dev *rt2x00dev)
1270{
1271 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_PA_TX0);
1272}
1273
1274static inline bool
1275rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1276{
1277 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1278}
1279
1280static inline bool
1281rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1282{
1283 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1284}
1285
1286static inline bool
1287rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1288{
1289 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1290}
1291
1292static inline bool
1293rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev)
1294{
1295 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW);
1296}
1297
1298/**
1299 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1300 * @entry: Pointer to &struct queue_entry
1301 *
1302 * Returns -ENOMEM if mapping fail, 0 otherwise.
1303 */
1304int rt2x00queue_map_txskb(struct queue_entry *entry);
1305
1306/**
1307 * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1308 * @entry: Pointer to &struct queue_entry
1309 */
1310void rt2x00queue_unmap_skb(struct queue_entry *entry);
1311
1312/**
1313 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1314 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1315 * @queue: rt2x00 queue index (see &enum data_queue_qid).
1316 *
1317 * Returns NULL for non tx queues.
1318 */
1319static inline struct data_queue *
1320rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1321 enum data_queue_qid queue)
1322{
1323 if (queue >= rt2x00dev->ops->tx_queues && queue < IEEE80211_NUM_ACS)
1324 queue = rt2x00dev->ops->tx_queues - 1;
1325
1326 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1327 return &rt2x00dev->tx[queue];
1328
1329 if (queue == QID_ATIM)
1330 return rt2x00dev->atim;
1331
1332 return NULL;
1333}
1334
1335/**
1336 * rt2x00queue_get_entry - Get queue entry where the given index points to.
1337 * @queue: Pointer to &struct data_queue from where we obtain the entry.
1338 * @index: Index identifier for obtaining the correct index.
1339 */
1340struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1341 enum queue_index index);
1342
1343/**
1344 * rt2x00queue_pause_queue - Pause a data queue
1345 * @queue: Pointer to &struct data_queue.
1346 *
1347 * This function will pause the data queue locally, preventing
1348 * new frames to be added to the queue (while the hardware is
1349 * still allowed to run).
1350 */
1351void rt2x00queue_pause_queue(struct data_queue *queue);
1352
1353/**
1354 * rt2x00queue_unpause_queue - unpause a data queue
1355 * @queue: Pointer to &struct data_queue.
1356 *
1357 * This function will unpause the data queue locally, allowing
1358 * new frames to be added to the queue again.
1359 */
1360void rt2x00queue_unpause_queue(struct data_queue *queue);
1361
1362/**
1363 * rt2x00queue_start_queue - Start a data queue
1364 * @queue: Pointer to &struct data_queue.
1365 *
1366 * This function will start handling all pending frames in the queue.
1367 */
1368void rt2x00queue_start_queue(struct data_queue *queue);
1369
1370/**
1371 * rt2x00queue_stop_queue - Halt a data queue
1372 * @queue: Pointer to &struct data_queue.
1373 *
1374 * This function will stop all pending frames in the queue.
1375 */
1376void rt2x00queue_stop_queue(struct data_queue *queue);
1377
1378/**
1379 * rt2x00queue_flush_queue - Flush a data queue
1380 * @queue: Pointer to &struct data_queue.
1381 * @drop: True to drop all pending frames.
1382 *
1383 * This function will flush the queue. After this call
1384 * the queue is guaranteed to be empty.
1385 */
1386void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1387
1388/**
1389 * rt2x00queue_start_queues - Start all data queues
1390 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1391 *
1392 * This function will loop through all available queues to start them
1393 */
1394void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1395
1396/**
1397 * rt2x00queue_stop_queues - Halt all data queues
1398 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1399 *
1400 * This function will loop through all available queues to stop
1401 * any pending frames.
1402 */
1403void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1404
1405/**
1406 * rt2x00queue_flush_queues - Flush all data queues
1407 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1408 * @drop: True to drop all pending frames.
1409 *
1410 * This function will loop through all available queues to flush
1411 * any pending frames.
1412 */
1413void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1414
1415/*
1416 * Debugfs handlers.
1417 */
1418/**
1419 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1420 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1421 * @type: The type of frame that is being dumped.
1422 * @entry: The queue entry containing the frame to be dumped.
1423 */
1424#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1425void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1426 enum rt2x00_dump_type type, struct queue_entry *entry);
1427#else
1428static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1429 enum rt2x00_dump_type type,
1430 struct queue_entry *entry)
1431{
1432}
1433#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1434
1435/*
1436 * Utility functions.
1437 */
1438u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1439 struct ieee80211_vif *vif);
1440void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
1441
1442/*
1443 * Interrupt context handlers.
1444 */
1445void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1446void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1447void rt2x00lib_dmastart(struct queue_entry *entry);
1448void rt2x00lib_dmadone(struct queue_entry *entry);
1449void rt2x00lib_txdone(struct queue_entry *entry,
1450 struct txdone_entry_desc *txdesc);
1451void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
1452 struct txdone_entry_desc *txdesc);
1453void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1454void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1455
1456/*
1457 * mac80211 handlers.
1458 */
1459void rt2x00mac_tx(struct ieee80211_hw *hw,
1460 struct ieee80211_tx_control *control,
1461 struct sk_buff *skb);
1462int rt2x00mac_start(struct ieee80211_hw *hw);
1463void rt2x00mac_stop(struct ieee80211_hw *hw);
1464void rt2x00mac_reconfig_complete(struct ieee80211_hw *hw,
1465 enum ieee80211_reconfig_type reconfig_type);
1466int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1467 struct ieee80211_vif *vif);
1468void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1469 struct ieee80211_vif *vif);
1470int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1471void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1472 unsigned int changed_flags,
1473 unsigned int *total_flags,
1474 u64 multicast);
1475int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1476 bool set);
1477#ifdef CONFIG_RT2X00_LIB_CRYPTO
1478int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1479 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1480 struct ieee80211_key_conf *key);
1481#else
1482#define rt2x00mac_set_key NULL
1483#endif /* CONFIG_RT2X00_LIB_CRYPTO */
1484void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1485 struct ieee80211_vif *vif,
1486 const u8 *mac_addr);
1487void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1488 struct ieee80211_vif *vif);
1489int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1490 struct ieee80211_low_level_stats *stats);
1491void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1492 struct ieee80211_vif *vif,
1493 struct ieee80211_bss_conf *bss_conf,
1494 u64 changes);
1495int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1496 struct ieee80211_vif *vif,
1497 unsigned int link_id, u16 queue,
1498 const struct ieee80211_tx_queue_params *params);
1499void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1500void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1501 u32 queues, bool drop);
1502int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1503int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1504void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1505 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1506bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1507
1508/*
1509 * Driver allocation handlers.
1510 */
1511int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1512void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1513
1514int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev);
1515int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1516
1517#endif /* RT2X00_H */
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
4 Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
5 Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
6 <http://rt2x00.serialmonkey.com>
7
8 */
9
10/*
11 Module: rt2x00
12 Abstract: rt2x00 global information.
13 */
14
15#ifndef RT2X00_H
16#define RT2X00_H
17
18#include <linux/bitops.h>
19#include <linux/interrupt.h>
20#include <linux/skbuff.h>
21#include <linux/workqueue.h>
22#include <linux/firmware.h>
23#include <linux/leds.h>
24#include <linux/mutex.h>
25#include <linux/etherdevice.h>
26#include <linux/kfifo.h>
27#include <linux/hrtimer.h>
28#include <linux/average.h>
29#include <linux/usb.h>
30#include <linux/clk.h>
31
32#include <net/mac80211.h>
33
34#include "rt2x00debug.h"
35#include "rt2x00dump.h"
36#include "rt2x00leds.h"
37#include "rt2x00reg.h"
38#include "rt2x00queue.h"
39
40/*
41 * Module information.
42 */
43#define DRV_VERSION "2.3.0"
44#define DRV_PROJECT "http://rt2x00.serialmonkey.com"
45
46/* Debug definitions.
47 * Debug output has to be enabled during compile time.
48 */
49#ifdef CONFIG_RT2X00_DEBUG
50#define DEBUG
51#endif /* CONFIG_RT2X00_DEBUG */
52
53/* Utility printing macros
54 * rt2x00_probe_err is for messages when rt2x00_dev is uninitialized
55 */
56#define rt2x00_probe_err(fmt, ...) \
57 printk(KERN_ERR KBUILD_MODNAME ": %s: Error - " fmt, \
58 __func__, ##__VA_ARGS__)
59#define rt2x00_err(dev, fmt, ...) \
60 wiphy_err_ratelimited((dev)->hw->wiphy, "%s: Error - " fmt, \
61 __func__, ##__VA_ARGS__)
62#define rt2x00_warn(dev, fmt, ...) \
63 wiphy_warn_ratelimited((dev)->hw->wiphy, "%s: Warning - " fmt, \
64 __func__, ##__VA_ARGS__)
65#define rt2x00_info(dev, fmt, ...) \
66 wiphy_info((dev)->hw->wiphy, "%s: Info - " fmt, \
67 __func__, ##__VA_ARGS__)
68
69/* Various debug levels */
70#define rt2x00_dbg(dev, fmt, ...) \
71 wiphy_dbg((dev)->hw->wiphy, "%s: Debug - " fmt, \
72 __func__, ##__VA_ARGS__)
73#define rt2x00_eeprom_dbg(dev, fmt, ...) \
74 wiphy_dbg((dev)->hw->wiphy, "%s: EEPROM recovery - " fmt, \
75 __func__, ##__VA_ARGS__)
76
77/*
78 * Duration calculations
79 * The rate variable passed is: 100kbs.
80 * To convert from bytes to bits we multiply size with 8,
81 * then the size is multiplied with 10 to make the
82 * real rate -> rate argument correction.
83 */
84#define GET_DURATION(__size, __rate) (((__size) * 8 * 10) / (__rate))
85#define GET_DURATION_RES(__size, __rate)(((__size) * 8 * 10) % (__rate))
86
87/*
88 * Determine the number of L2 padding bytes required between the header and
89 * the payload.
90 */
91#define L2PAD_SIZE(__hdrlen) (-(__hdrlen) & 3)
92
93/*
94 * Determine the alignment requirement,
95 * to make sure the 802.11 payload is padded to a 4-byte boundrary
96 * we must determine the address of the payload and calculate the
97 * amount of bytes needed to move the data.
98 */
99#define ALIGN_SIZE(__skb, __header) \
100 (((unsigned long)((__skb)->data + (__header))) & 3)
101
102/*
103 * Constants for extra TX headroom for alignment purposes.
104 */
105#define RT2X00_ALIGN_SIZE 4 /* Only whole frame needs alignment */
106#define RT2X00_L2PAD_SIZE 8 /* Both header & payload need alignment */
107
108/*
109 * Standard timing and size defines.
110 * These values should follow the ieee80211 specifications.
111 */
112#define ACK_SIZE 14
113#define IEEE80211_HEADER 24
114#define PLCP 48
115#define BEACON 100
116#define PREAMBLE 144
117#define SHORT_PREAMBLE 72
118#define SLOT_TIME 20
119#define SHORT_SLOT_TIME 9
120#define SIFS 10
121#define PIFS (SIFS + SLOT_TIME)
122#define SHORT_PIFS (SIFS + SHORT_SLOT_TIME)
123#define DIFS (PIFS + SLOT_TIME)
124#define SHORT_DIFS (SHORT_PIFS + SHORT_SLOT_TIME)
125#define EIFS (SIFS + DIFS + \
126 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
127#define SHORT_EIFS (SIFS + SHORT_DIFS + \
128 GET_DURATION(IEEE80211_HEADER + ACK_SIZE, 10))
129
130enum rt2x00_chip_intf {
131 RT2X00_CHIP_INTF_PCI,
132 RT2X00_CHIP_INTF_PCIE,
133 RT2X00_CHIP_INTF_USB,
134 RT2X00_CHIP_INTF_SOC,
135};
136
137/*
138 * Chipset identification
139 * The chipset on the device is composed of a RT and RF chip.
140 * The chipset combination is important for determining device capabilities.
141 */
142struct rt2x00_chip {
143 u16 rt;
144#define RT2460 0x2460
145#define RT2560 0x2560
146#define RT2570 0x2570
147#define RT2661 0x2661
148#define RT2573 0x2573
149#define RT2860 0x2860 /* 2.4GHz */
150#define RT2872 0x2872 /* WSOC */
151#define RT2883 0x2883 /* WSOC */
152#define RT3070 0x3070
153#define RT3071 0x3071
154#define RT3090 0x3090 /* 2.4GHz PCIe */
155#define RT3290 0x3290
156#define RT3352 0x3352 /* WSOC */
157#define RT3390 0x3390
158#define RT3572 0x3572
159#define RT3593 0x3593
160#define RT3883 0x3883 /* WSOC */
161#define RT5350 0x5350 /* WSOC 2.4GHz */
162#define RT5390 0x5390 /* 2.4GHz */
163#define RT5392 0x5392 /* 2.4GHz */
164#define RT5592 0x5592
165#define RT6352 0x6352 /* WSOC 2.4GHz */
166
167 u16 rf;
168 u16 rev;
169
170 enum rt2x00_chip_intf intf;
171};
172
173/*
174 * RF register values that belong to a particular channel.
175 */
176struct rf_channel {
177 int channel;
178 u32 rf1;
179 u32 rf2;
180 u32 rf3;
181 u32 rf4;
182};
183
184/*
185 * Channel information structure
186 */
187struct channel_info {
188 unsigned int flags;
189#define GEOGRAPHY_ALLOWED 0x00000001
190
191 short max_power;
192 short default_power1;
193 short default_power2;
194 short default_power3;
195};
196
197/*
198 * Antenna setup values.
199 */
200struct antenna_setup {
201 enum antenna rx;
202 enum antenna tx;
203 u8 rx_chain_num;
204 u8 tx_chain_num;
205};
206
207/*
208 * Quality statistics about the currently active link.
209 */
210struct link_qual {
211 /*
212 * Statistics required for Link tuning by driver
213 * The rssi value is provided by rt2x00lib during the
214 * link_tuner() callback function.
215 * The false_cca field is filled during the link_stats()
216 * callback function and could be used during the
217 * link_tuner() callback function.
218 */
219 int rssi;
220 int false_cca;
221
222 /*
223 * VGC levels
224 * Hardware driver will tune the VGC level during each call
225 * to the link_tuner() callback function. This vgc_level is
226 * is determined based on the link quality statistics like
227 * average RSSI and the false CCA count.
228 *
229 * In some cases the drivers need to differentiate between
230 * the currently "desired" VGC level and the level configured
231 * in the hardware. The latter is important to reduce the
232 * number of BBP register reads to reduce register access
233 * overhead. For this reason we store both values here.
234 */
235 u8 vgc_level;
236 u8 vgc_level_reg;
237
238 /*
239 * Statistics required for Signal quality calculation.
240 * These fields might be changed during the link_stats()
241 * callback function.
242 */
243 int rx_success;
244 int rx_failed;
245 int tx_success;
246 int tx_failed;
247};
248
249DECLARE_EWMA(rssi, 10, 8)
250
251/*
252 * Antenna settings about the currently active link.
253 */
254struct link_ant {
255 /*
256 * Antenna flags
257 */
258 unsigned int flags;
259#define ANTENNA_RX_DIVERSITY 0x00000001
260#define ANTENNA_TX_DIVERSITY 0x00000002
261#define ANTENNA_MODE_SAMPLE 0x00000004
262
263 /*
264 * Currently active TX/RX antenna setup.
265 * When software diversity is used, this will indicate
266 * which antenna is actually used at this time.
267 */
268 struct antenna_setup active;
269
270 /*
271 * RSSI history information for the antenna.
272 * Used to determine when to switch antenna
273 * when using software diversity.
274 */
275 int rssi_history;
276
277 /*
278 * Current RSSI average of the currently active antenna.
279 * Similar to the avg_rssi in the link_qual structure
280 * this value is updated by using the walking average.
281 */
282 struct ewma_rssi rssi_ant;
283};
284
285/*
286 * To optimize the quality of the link we need to store
287 * the quality of received frames and periodically
288 * optimize the link.
289 */
290struct link {
291 /*
292 * Link tuner counter
293 * The number of times the link has been tuned
294 * since the radio has been switched on.
295 */
296 u32 count;
297
298 /*
299 * Quality measurement values.
300 */
301 struct link_qual qual;
302
303 /*
304 * TX/RX antenna setup.
305 */
306 struct link_ant ant;
307
308 /*
309 * Currently active average RSSI value
310 */
311 struct ewma_rssi avg_rssi;
312
313 /*
314 * Work structure for scheduling periodic link tuning.
315 */
316 struct delayed_work work;
317
318 /*
319 * Work structure for scheduling periodic watchdog monitoring.
320 * This work must be scheduled on the kernel workqueue, while
321 * all other work structures must be queued on the mac80211
322 * workqueue. This guarantees that the watchdog can schedule
323 * other work structures and wait for their completion in order
324 * to bring the device/driver back into the desired state.
325 */
326 struct delayed_work watchdog_work;
327 unsigned int watchdog_interval;
328 bool watchdog_disabled;
329
330 /*
331 * Work structure for scheduling periodic AGC adjustments.
332 */
333 struct delayed_work agc_work;
334
335 /*
336 * Work structure for scheduling periodic VCO calibration.
337 */
338 struct delayed_work vco_work;
339};
340
341enum rt2x00_delayed_flags {
342 DELAYED_UPDATE_BEACON,
343};
344
345/*
346 * Interface structure
347 * Per interface configuration details, this structure
348 * is allocated as the private data for ieee80211_vif.
349 */
350struct rt2x00_intf {
351 /*
352 * beacon->skb must be protected with the mutex.
353 */
354 struct mutex beacon_skb_mutex;
355
356 /*
357 * Entry in the beacon queue which belongs to
358 * this interface. Each interface has its own
359 * dedicated beacon entry.
360 */
361 struct queue_entry *beacon;
362 bool enable_beacon;
363
364 /*
365 * Actions that needed rescheduling.
366 */
367 unsigned long delayed_flags;
368
369 /*
370 * Software sequence counter, this is only required
371 * for hardware which doesn't support hardware
372 * sequence counting.
373 */
374 atomic_t seqno;
375};
376
377static inline struct rt2x00_intf* vif_to_intf(struct ieee80211_vif *vif)
378{
379 return (struct rt2x00_intf *)vif->drv_priv;
380}
381
382/**
383 * struct hw_mode_spec: Hardware specifications structure
384 *
385 * Details about the supported modes, rates and channels
386 * of a particular chipset. This is used by rt2x00lib
387 * to build the ieee80211_hw_mode array for mac80211.
388 *
389 * @supported_bands: Bitmask contained the supported bands (2.4GHz, 5.2GHz).
390 * @supported_rates: Rate types which are supported (CCK, OFDM).
391 * @num_channels: Number of supported channels. This is used as array size
392 * for @tx_power_a, @tx_power_bg and @channels.
393 * @channels: Device/chipset specific channel values (See &struct rf_channel).
394 * @channels_info: Additional information for channels (See &struct channel_info).
395 * @ht: Driver HT Capabilities (See &ieee80211_sta_ht_cap).
396 */
397struct hw_mode_spec {
398 unsigned int supported_bands;
399#define SUPPORT_BAND_2GHZ 0x00000001
400#define SUPPORT_BAND_5GHZ 0x00000002
401
402 unsigned int supported_rates;
403#define SUPPORT_RATE_CCK 0x00000001
404#define SUPPORT_RATE_OFDM 0x00000002
405
406 unsigned int num_channels;
407 const struct rf_channel *channels;
408 const struct channel_info *channels_info;
409
410 struct ieee80211_sta_ht_cap ht;
411};
412
413/*
414 * Configuration structure wrapper around the
415 * mac80211 configuration structure.
416 * When mac80211 configures the driver, rt2x00lib
417 * can precalculate values which are equal for all
418 * rt2x00 drivers. Those values can be stored in here.
419 */
420struct rt2x00lib_conf {
421 struct ieee80211_conf *conf;
422
423 struct rf_channel rf;
424 struct channel_info channel;
425};
426
427/*
428 * Configuration structure for erp settings.
429 */
430struct rt2x00lib_erp {
431 int short_preamble;
432 int cts_protection;
433
434 u32 basic_rates;
435
436 int slot_time;
437
438 short sifs;
439 short pifs;
440 short difs;
441 short eifs;
442
443 u16 beacon_int;
444 u16 ht_opmode;
445};
446
447/*
448 * Configuration structure for hardware encryption.
449 */
450struct rt2x00lib_crypto {
451 enum cipher cipher;
452
453 enum set_key_cmd cmd;
454 const u8 *address;
455
456 u32 bssidx;
457
458 u8 key[16];
459 u8 tx_mic[8];
460 u8 rx_mic[8];
461
462 int wcid;
463};
464
465/*
466 * Configuration structure wrapper around the
467 * rt2x00 interface configuration handler.
468 */
469struct rt2x00intf_conf {
470 /*
471 * Interface type
472 */
473 enum nl80211_iftype type;
474
475 /*
476 * TSF sync value, this is dependent on the operation type.
477 */
478 enum tsf_sync sync;
479
480 /*
481 * The MAC and BSSID addresses are simple array of bytes,
482 * these arrays are little endian, so when sending the addresses
483 * to the drivers, copy the it into a endian-signed variable.
484 *
485 * Note that all devices (except rt2500usb) have 32 bits
486 * register word sizes. This means that whatever variable we
487 * pass _must_ be a multiple of 32 bits. Otherwise the device
488 * might not accept what we are sending to it.
489 * This will also make it easier for the driver to write
490 * the data to the device.
491 */
492 __le32 mac[2];
493 __le32 bssid[2];
494};
495
496/*
497 * Private structure for storing STA details
498 * wcid: Wireless Client ID
499 */
500struct rt2x00_sta {
501 int wcid;
502};
503
504static inline struct rt2x00_sta* sta_to_rt2x00_sta(struct ieee80211_sta *sta)
505{
506 return (struct rt2x00_sta *)sta->drv_priv;
507}
508
509/*
510 * rt2x00lib callback functions.
511 */
512struct rt2x00lib_ops {
513 /*
514 * Interrupt handlers.
515 */
516 irq_handler_t irq_handler;
517
518 /*
519 * TX status tasklet handler.
520 */
521 void (*txstatus_tasklet) (unsigned long data);
522 void (*pretbtt_tasklet) (unsigned long data);
523 void (*tbtt_tasklet) (unsigned long data);
524 void (*rxdone_tasklet) (unsigned long data);
525 void (*autowake_tasklet) (unsigned long data);
526
527 /*
528 * Device init handlers.
529 */
530 int (*probe_hw) (struct rt2x00_dev *rt2x00dev);
531 char *(*get_firmware_name) (struct rt2x00_dev *rt2x00dev);
532 int (*check_firmware) (struct rt2x00_dev *rt2x00dev,
533 const u8 *data, const size_t len);
534 int (*load_firmware) (struct rt2x00_dev *rt2x00dev,
535 const u8 *data, const size_t len);
536
537 /*
538 * Device initialization/deinitialization handlers.
539 */
540 int (*initialize) (struct rt2x00_dev *rt2x00dev);
541 void (*uninitialize) (struct rt2x00_dev *rt2x00dev);
542
543 /*
544 * queue initialization handlers
545 */
546 bool (*get_entry_state) (struct queue_entry *entry);
547 void (*clear_entry) (struct queue_entry *entry);
548
549 /*
550 * Radio control handlers.
551 */
552 int (*set_device_state) (struct rt2x00_dev *rt2x00dev,
553 enum dev_state state);
554 int (*rfkill_poll) (struct rt2x00_dev *rt2x00dev);
555 void (*link_stats) (struct rt2x00_dev *rt2x00dev,
556 struct link_qual *qual);
557 void (*reset_tuner) (struct rt2x00_dev *rt2x00dev,
558 struct link_qual *qual);
559 void (*link_tuner) (struct rt2x00_dev *rt2x00dev,
560 struct link_qual *qual, const u32 count);
561 void (*gain_calibration) (struct rt2x00_dev *rt2x00dev);
562 void (*vco_calibration) (struct rt2x00_dev *rt2x00dev);
563
564 /*
565 * Data queue handlers.
566 */
567 void (*watchdog) (struct rt2x00_dev *rt2x00dev);
568 void (*start_queue) (struct data_queue *queue);
569 void (*kick_queue) (struct data_queue *queue);
570 void (*stop_queue) (struct data_queue *queue);
571 void (*flush_queue) (struct data_queue *queue, bool drop);
572 void (*tx_dma_done) (struct queue_entry *entry);
573
574 /*
575 * TX control handlers
576 */
577 void (*write_tx_desc) (struct queue_entry *entry,
578 struct txentry_desc *txdesc);
579 void (*write_tx_data) (struct queue_entry *entry,
580 struct txentry_desc *txdesc);
581 void (*write_beacon) (struct queue_entry *entry,
582 struct txentry_desc *txdesc);
583 void (*clear_beacon) (struct queue_entry *entry);
584 int (*get_tx_data_len) (struct queue_entry *entry);
585
586 /*
587 * RX control handlers
588 */
589 void (*fill_rxdone) (struct queue_entry *entry,
590 struct rxdone_entry_desc *rxdesc);
591
592 /*
593 * Configuration handlers.
594 */
595 int (*config_shared_key) (struct rt2x00_dev *rt2x00dev,
596 struct rt2x00lib_crypto *crypto,
597 struct ieee80211_key_conf *key);
598 int (*config_pairwise_key) (struct rt2x00_dev *rt2x00dev,
599 struct rt2x00lib_crypto *crypto,
600 struct ieee80211_key_conf *key);
601 void (*config_filter) (struct rt2x00_dev *rt2x00dev,
602 const unsigned int filter_flags);
603 void (*config_intf) (struct rt2x00_dev *rt2x00dev,
604 struct rt2x00_intf *intf,
605 struct rt2x00intf_conf *conf,
606 const unsigned int flags);
607#define CONFIG_UPDATE_TYPE ( 1 << 1 )
608#define CONFIG_UPDATE_MAC ( 1 << 2 )
609#define CONFIG_UPDATE_BSSID ( 1 << 3 )
610
611 void (*config_erp) (struct rt2x00_dev *rt2x00dev,
612 struct rt2x00lib_erp *erp,
613 u32 changed);
614 void (*config_ant) (struct rt2x00_dev *rt2x00dev,
615 struct antenna_setup *ant);
616 void (*config) (struct rt2x00_dev *rt2x00dev,
617 struct rt2x00lib_conf *libconf,
618 const unsigned int changed_flags);
619 void (*pre_reset_hw) (struct rt2x00_dev *rt2x00dev);
620 int (*sta_add) (struct rt2x00_dev *rt2x00dev,
621 struct ieee80211_vif *vif,
622 struct ieee80211_sta *sta);
623 int (*sta_remove) (struct rt2x00_dev *rt2x00dev,
624 struct ieee80211_sta *sta);
625};
626
627/*
628 * rt2x00 driver callback operation structure.
629 */
630struct rt2x00_ops {
631 const char *name;
632 const unsigned int drv_data_size;
633 const unsigned int max_ap_intf;
634 const unsigned int eeprom_size;
635 const unsigned int rf_size;
636 const unsigned int tx_queues;
637 void (*queue_init)(struct data_queue *queue);
638 const struct rt2x00lib_ops *lib;
639 const void *drv;
640 const struct ieee80211_ops *hw;
641#ifdef CONFIG_RT2X00_LIB_DEBUGFS
642 const struct rt2x00debug *debugfs;
643#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
644};
645
646/*
647 * rt2x00 state flags
648 */
649enum rt2x00_state_flags {
650 /*
651 * Device flags
652 */
653 DEVICE_STATE_PRESENT,
654 DEVICE_STATE_REGISTERED_HW,
655 DEVICE_STATE_INITIALIZED,
656 DEVICE_STATE_STARTED,
657 DEVICE_STATE_ENABLED_RADIO,
658 DEVICE_STATE_SCANNING,
659 DEVICE_STATE_FLUSHING,
660 DEVICE_STATE_RESET,
661
662 /*
663 * Driver configuration
664 */
665 CONFIG_CHANNEL_HT40,
666 CONFIG_POWERSAVING,
667 CONFIG_HT_DISABLED,
668 CONFIG_MONITORING,
669
670 /*
671 * Mark we currently are sequentially reading TX_STA_FIFO register
672 * FIXME: this is for only rt2800usb, should go to private data
673 */
674 TX_STATUS_READING,
675};
676
677/*
678 * rt2x00 capability flags
679 */
680enum rt2x00_capability_flags {
681 /*
682 * Requirements
683 */
684 REQUIRE_FIRMWARE,
685 REQUIRE_BEACON_GUARD,
686 REQUIRE_ATIM_QUEUE,
687 REQUIRE_DMA,
688 REQUIRE_COPY_IV,
689 REQUIRE_L2PAD,
690 REQUIRE_TXSTATUS_FIFO,
691 REQUIRE_TASKLET_CONTEXT,
692 REQUIRE_SW_SEQNO,
693 REQUIRE_HT_TX_DESC,
694 REQUIRE_PS_AUTOWAKE,
695 REQUIRE_DELAYED_RFKILL,
696
697 /*
698 * Capabilities
699 */
700 CAPABILITY_HW_BUTTON,
701 CAPABILITY_HW_CRYPTO,
702 CAPABILITY_POWER_LIMIT,
703 CAPABILITY_CONTROL_FILTERS,
704 CAPABILITY_CONTROL_FILTER_PSPOLL,
705 CAPABILITY_PRE_TBTT_INTERRUPT,
706 CAPABILITY_LINK_TUNING,
707 CAPABILITY_FRAME_TYPE,
708 CAPABILITY_RF_SEQUENCE,
709 CAPABILITY_EXTERNAL_LNA_A,
710 CAPABILITY_EXTERNAL_LNA_BG,
711 CAPABILITY_DOUBLE_ANTENNA,
712 CAPABILITY_BT_COEXIST,
713 CAPABILITY_VCO_RECALIBRATION,
714 CAPABILITY_EXTERNAL_PA_TX0,
715 CAPABILITY_EXTERNAL_PA_TX1,
716 CAPABILITY_RESTART_HW,
717};
718
719/*
720 * Interface combinations
721 */
722enum {
723 IF_COMB_AP = 0,
724 NUM_IF_COMB,
725};
726
727/*
728 * rt2x00 device structure.
729 */
730struct rt2x00_dev {
731 /*
732 * Device structure.
733 * The structure stored in here depends on the
734 * system bus (PCI or USB).
735 * When accessing this variable, the rt2x00dev_{pci,usb}
736 * macros should be used for correct typecasting.
737 */
738 struct device *dev;
739
740 /*
741 * Callback functions.
742 */
743 const struct rt2x00_ops *ops;
744
745 /*
746 * Driver data.
747 */
748 void *drv_data;
749
750 /*
751 * IEEE80211 control structure.
752 */
753 struct ieee80211_hw *hw;
754 struct ieee80211_supported_band bands[NUM_NL80211_BANDS];
755 enum nl80211_band curr_band;
756 int curr_freq;
757
758 /*
759 * If enabled, the debugfs interface structures
760 * required for deregistration of debugfs.
761 */
762#ifdef CONFIG_RT2X00_LIB_DEBUGFS
763 struct rt2x00debug_intf *debugfs_intf;
764#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
765
766 /*
767 * LED structure for changing the LED status
768 * by mac8011 or the kernel.
769 */
770#ifdef CONFIG_RT2X00_LIB_LEDS
771 struct rt2x00_led led_radio;
772 struct rt2x00_led led_assoc;
773 struct rt2x00_led led_qual;
774 u16 led_mcu_reg;
775#endif /* CONFIG_RT2X00_LIB_LEDS */
776
777 /*
778 * Device state flags.
779 * In these flags the current status is stored.
780 * Access to these flags should occur atomically.
781 */
782 unsigned long flags;
783
784 /*
785 * Device capabiltiy flags.
786 * In these flags the device/driver capabilities are stored.
787 * Access to these flags should occur non-atomically.
788 */
789 unsigned long cap_flags;
790
791 /*
792 * Device information, Bus IRQ and name (PCI, SoC)
793 */
794 int irq;
795 const char *name;
796
797 /*
798 * Chipset identification.
799 */
800 struct rt2x00_chip chip;
801
802 /*
803 * hw capability specifications.
804 */
805 struct hw_mode_spec spec;
806
807 /*
808 * This is the default TX/RX antenna setup as indicated
809 * by the device's EEPROM.
810 */
811 struct antenna_setup default_ant;
812
813 /*
814 * Register pointers
815 * csr.base: CSR base register address. (PCI)
816 * csr.cache: CSR cache for usb_control_msg. (USB)
817 */
818 union csr {
819 void __iomem *base;
820 void *cache;
821 } csr;
822
823 /*
824 * Mutex to protect register accesses.
825 * For PCI and USB devices it protects against concurrent indirect
826 * register access (BBP, RF, MCU) since accessing those
827 * registers require multiple calls to the CSR registers.
828 * For USB devices it also protects the csr_cache since that
829 * field is used for normal CSR access and it cannot support
830 * multiple callers simultaneously.
831 */
832 struct mutex csr_mutex;
833
834 /*
835 * Mutex to synchronize config and link tuner.
836 */
837 struct mutex conf_mutex;
838 /*
839 * Current packet filter configuration for the device.
840 * This contains all currently active FIF_* flags send
841 * to us by mac80211 during configure_filter().
842 */
843 unsigned int packet_filter;
844
845 /*
846 * Interface details:
847 * - Open ap interface count.
848 * - Open sta interface count.
849 * - Association count.
850 * - Beaconing enabled count.
851 */
852 unsigned int intf_ap_count;
853 unsigned int intf_sta_count;
854 unsigned int intf_associated;
855 unsigned int intf_beaconing;
856
857 /*
858 * Interface combinations
859 */
860 struct ieee80211_iface_limit if_limits_ap;
861 struct ieee80211_iface_combination if_combinations[NUM_IF_COMB];
862
863 /*
864 * Link quality
865 */
866 struct link link;
867
868 /*
869 * EEPROM data.
870 */
871 __le16 *eeprom;
872
873 /*
874 * Active RF register values.
875 * These are stored here so we don't need
876 * to read the rf registers and can directly
877 * use this value instead.
878 * This field should be accessed by using
879 * rt2x00_rf_read() and rt2x00_rf_write().
880 */
881 u32 *rf;
882
883 /*
884 * LNA gain
885 */
886 short lna_gain;
887
888 /*
889 * Current TX power value.
890 */
891 u16 tx_power;
892
893 /*
894 * Current retry values.
895 */
896 u8 short_retry;
897 u8 long_retry;
898
899 /*
900 * Rssi <-> Dbm offset
901 */
902 u8 rssi_offset;
903
904 /*
905 * Frequency offset.
906 */
907 u8 freq_offset;
908
909 /*
910 * Association id.
911 */
912 u16 aid;
913
914 /*
915 * Beacon interval.
916 */
917 u16 beacon_int;
918
919 /**
920 * Timestamp of last received beacon
921 */
922 unsigned long last_beacon;
923
924 /*
925 * Low level statistics which will have
926 * to be kept up to date while device is running.
927 */
928 struct ieee80211_low_level_stats low_level_stats;
929
930 /**
931 * Work queue for all work which should not be placed
932 * on the mac80211 workqueue (because of dependencies
933 * between various work structures).
934 */
935 struct workqueue_struct *workqueue;
936
937 /*
938 * Scheduled work.
939 * NOTE: intf_work will use ieee80211_iterate_active_interfaces()
940 * which means it cannot be placed on the hw->workqueue
941 * due to RTNL locking requirements.
942 */
943 struct work_struct intf_work;
944
945 /**
946 * Scheduled work for TX/RX done handling (USB devices)
947 */
948 struct work_struct rxdone_work;
949 struct work_struct txdone_work;
950
951 /*
952 * Powersaving work
953 */
954 struct delayed_work autowakeup_work;
955 struct work_struct sleep_work;
956
957 /*
958 * Data queue arrays for RX, TX, Beacon and ATIM.
959 */
960 unsigned int data_queues;
961 struct data_queue *rx;
962 struct data_queue *tx;
963 struct data_queue *bcn;
964 struct data_queue *atim;
965
966 /*
967 * Firmware image.
968 */
969 const struct firmware *fw;
970
971 /*
972 * FIFO for storing tx status reports between isr and tasklet.
973 */
974 DECLARE_KFIFO_PTR(txstatus_fifo, u32);
975
976 /*
977 * Timer to ensure tx status reports are read (rt2800usb).
978 */
979 struct hrtimer txstatus_timer;
980
981 /*
982 * Tasklet for processing tx status reports (rt2800pci).
983 */
984 struct tasklet_struct txstatus_tasklet;
985 struct tasklet_struct pretbtt_tasklet;
986 struct tasklet_struct tbtt_tasklet;
987 struct tasklet_struct rxdone_tasklet;
988 struct tasklet_struct autowake_tasklet;
989
990 /*
991 * Used for VCO periodic calibration.
992 */
993 int rf_channel;
994
995 /*
996 * Protect the interrupt mask register.
997 */
998 spinlock_t irqmask_lock;
999
1000 /*
1001 * List of BlockAckReq TX entries that need driver BlockAck processing.
1002 */
1003 struct list_head bar_list;
1004 spinlock_t bar_list_lock;
1005
1006 /* Extra TX headroom required for alignment purposes. */
1007 unsigned int extra_tx_headroom;
1008
1009 struct usb_anchor *anchor;
1010 unsigned int num_proto_errs;
1011
1012 /* Clock for System On Chip devices. */
1013 struct clk *clk;
1014};
1015
1016struct rt2x00_bar_list_entry {
1017 struct list_head list;
1018 struct rcu_head head;
1019
1020 struct queue_entry *entry;
1021 int block_acked;
1022
1023 /* Relevant parts of the IEEE80211 BAR header */
1024 __u8 ra[6];
1025 __u8 ta[6];
1026 __le16 control;
1027 __le16 start_seq_num;
1028};
1029
1030/*
1031 * Register defines.
1032 * Some registers require multiple attempts before success,
1033 * in those cases REGISTER_BUSY_COUNT attempts should be
1034 * taken with a REGISTER_BUSY_DELAY interval. Due to USB
1035 * bus delays, we do not have to loop so many times to wait
1036 * for valid register value on that bus.
1037 */
1038#define REGISTER_BUSY_COUNT 100
1039#define REGISTER_USB_BUSY_COUNT 20
1040#define REGISTER_BUSY_DELAY 100
1041
1042/*
1043 * Generic RF access.
1044 * The RF is being accessed by word index.
1045 */
1046static inline u32 rt2x00_rf_read(struct rt2x00_dev *rt2x00dev,
1047 const unsigned int word)
1048{
1049 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1050 return rt2x00dev->rf[word - 1];
1051}
1052
1053static inline void rt2x00_rf_write(struct rt2x00_dev *rt2x00dev,
1054 const unsigned int word, u32 data)
1055{
1056 BUG_ON(word < 1 || word > rt2x00dev->ops->rf_size / sizeof(u32));
1057 rt2x00dev->rf[word - 1] = data;
1058}
1059
1060/*
1061 * Generic EEPROM access. The EEPROM is being accessed by word or byte index.
1062 */
1063static inline void *rt2x00_eeprom_addr(struct rt2x00_dev *rt2x00dev,
1064 const unsigned int word)
1065{
1066 return (void *)&rt2x00dev->eeprom[word];
1067}
1068
1069static inline u16 rt2x00_eeprom_read(struct rt2x00_dev *rt2x00dev,
1070 const unsigned int word)
1071{
1072 return le16_to_cpu(rt2x00dev->eeprom[word]);
1073}
1074
1075static inline void rt2x00_eeprom_write(struct rt2x00_dev *rt2x00dev,
1076 const unsigned int word, u16 data)
1077{
1078 rt2x00dev->eeprom[word] = cpu_to_le16(data);
1079}
1080
1081static inline u8 rt2x00_eeprom_byte(struct rt2x00_dev *rt2x00dev,
1082 const unsigned int byte)
1083{
1084 return *(((u8 *)rt2x00dev->eeprom) + byte);
1085}
1086
1087/*
1088 * Chipset handlers
1089 */
1090static inline void rt2x00_set_chip(struct rt2x00_dev *rt2x00dev,
1091 const u16 rt, const u16 rf, const u16 rev)
1092{
1093 rt2x00dev->chip.rt = rt;
1094 rt2x00dev->chip.rf = rf;
1095 rt2x00dev->chip.rev = rev;
1096
1097 rt2x00_info(rt2x00dev, "Chipset detected - rt: %04x, rf: %04x, rev: %04x\n",
1098 rt2x00dev->chip.rt, rt2x00dev->chip.rf,
1099 rt2x00dev->chip.rev);
1100}
1101
1102static inline void rt2x00_set_rt(struct rt2x00_dev *rt2x00dev,
1103 const u16 rt, const u16 rev)
1104{
1105 rt2x00dev->chip.rt = rt;
1106 rt2x00dev->chip.rev = rev;
1107
1108 rt2x00_info(rt2x00dev, "RT chipset %04x, rev %04x detected\n",
1109 rt2x00dev->chip.rt, rt2x00dev->chip.rev);
1110}
1111
1112static inline void rt2x00_set_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1113{
1114 rt2x00dev->chip.rf = rf;
1115
1116 rt2x00_info(rt2x00dev, "RF chipset %04x detected\n",
1117 rt2x00dev->chip.rf);
1118}
1119
1120static inline bool rt2x00_rt(struct rt2x00_dev *rt2x00dev, const u16 rt)
1121{
1122 return (rt2x00dev->chip.rt == rt);
1123}
1124
1125static inline bool rt2x00_rf(struct rt2x00_dev *rt2x00dev, const u16 rf)
1126{
1127 return (rt2x00dev->chip.rf == rf);
1128}
1129
1130static inline u16 rt2x00_rev(struct rt2x00_dev *rt2x00dev)
1131{
1132 return rt2x00dev->chip.rev;
1133}
1134
1135static inline bool rt2x00_rt_rev(struct rt2x00_dev *rt2x00dev,
1136 const u16 rt, const u16 rev)
1137{
1138 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) == rev);
1139}
1140
1141static inline bool rt2x00_rt_rev_lt(struct rt2x00_dev *rt2x00dev,
1142 const u16 rt, const u16 rev)
1143{
1144 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) < rev);
1145}
1146
1147static inline bool rt2x00_rt_rev_gte(struct rt2x00_dev *rt2x00dev,
1148 const u16 rt, const u16 rev)
1149{
1150 return (rt2x00_rt(rt2x00dev, rt) && rt2x00_rev(rt2x00dev) >= rev);
1151}
1152
1153static inline void rt2x00_set_chip_intf(struct rt2x00_dev *rt2x00dev,
1154 enum rt2x00_chip_intf intf)
1155{
1156 rt2x00dev->chip.intf = intf;
1157}
1158
1159static inline bool rt2x00_intf(struct rt2x00_dev *rt2x00dev,
1160 enum rt2x00_chip_intf intf)
1161{
1162 return (rt2x00dev->chip.intf == intf);
1163}
1164
1165static inline bool rt2x00_is_pci(struct rt2x00_dev *rt2x00dev)
1166{
1167 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCI) ||
1168 rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1169}
1170
1171static inline bool rt2x00_is_pcie(struct rt2x00_dev *rt2x00dev)
1172{
1173 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_PCIE);
1174}
1175
1176static inline bool rt2x00_is_usb(struct rt2x00_dev *rt2x00dev)
1177{
1178 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_USB);
1179}
1180
1181static inline bool rt2x00_is_soc(struct rt2x00_dev *rt2x00dev)
1182{
1183 return rt2x00_intf(rt2x00dev, RT2X00_CHIP_INTF_SOC);
1184}
1185
1186/* Helpers for capability flags */
1187
1188static inline bool
1189rt2x00_has_cap_flag(struct rt2x00_dev *rt2x00dev,
1190 enum rt2x00_capability_flags cap_flag)
1191{
1192 return test_bit(cap_flag, &rt2x00dev->cap_flags);
1193}
1194
1195static inline bool
1196rt2x00_has_cap_hw_crypto(struct rt2x00_dev *rt2x00dev)
1197{
1198 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_HW_CRYPTO);
1199}
1200
1201static inline bool
1202rt2x00_has_cap_power_limit(struct rt2x00_dev *rt2x00dev)
1203{
1204 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_POWER_LIMIT);
1205}
1206
1207static inline bool
1208rt2x00_has_cap_control_filters(struct rt2x00_dev *rt2x00dev)
1209{
1210 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTERS);
1211}
1212
1213static inline bool
1214rt2x00_has_cap_control_filter_pspoll(struct rt2x00_dev *rt2x00dev)
1215{
1216 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_CONTROL_FILTER_PSPOLL);
1217}
1218
1219static inline bool
1220rt2x00_has_cap_pre_tbtt_interrupt(struct rt2x00_dev *rt2x00dev)
1221{
1222 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_PRE_TBTT_INTERRUPT);
1223}
1224
1225static inline bool
1226rt2x00_has_cap_link_tuning(struct rt2x00_dev *rt2x00dev)
1227{
1228 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_LINK_TUNING);
1229}
1230
1231static inline bool
1232rt2x00_has_cap_frame_type(struct rt2x00_dev *rt2x00dev)
1233{
1234 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_FRAME_TYPE);
1235}
1236
1237static inline bool
1238rt2x00_has_cap_rf_sequence(struct rt2x00_dev *rt2x00dev)
1239{
1240 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RF_SEQUENCE);
1241}
1242
1243static inline bool
1244rt2x00_has_cap_external_lna_a(struct rt2x00_dev *rt2x00dev)
1245{
1246 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_A);
1247}
1248
1249static inline bool
1250rt2x00_has_cap_external_lna_bg(struct rt2x00_dev *rt2x00dev)
1251{
1252 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_EXTERNAL_LNA_BG);
1253}
1254
1255static inline bool
1256rt2x00_has_cap_double_antenna(struct rt2x00_dev *rt2x00dev)
1257{
1258 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_DOUBLE_ANTENNA);
1259}
1260
1261static inline bool
1262rt2x00_has_cap_bt_coexist(struct rt2x00_dev *rt2x00dev)
1263{
1264 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_BT_COEXIST);
1265}
1266
1267static inline bool
1268rt2x00_has_cap_vco_recalibration(struct rt2x00_dev *rt2x00dev)
1269{
1270 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_VCO_RECALIBRATION);
1271}
1272
1273static inline bool
1274rt2x00_has_cap_restart_hw(struct rt2x00_dev *rt2x00dev)
1275{
1276 return rt2x00_has_cap_flag(rt2x00dev, CAPABILITY_RESTART_HW);
1277}
1278
1279/**
1280 * rt2x00queue_map_txskb - Map a skb into DMA for TX purposes.
1281 * @entry: Pointer to &struct queue_entry
1282 *
1283 * Returns -ENOMEM if mapping fail, 0 otherwise.
1284 */
1285int rt2x00queue_map_txskb(struct queue_entry *entry);
1286
1287/**
1288 * rt2x00queue_unmap_skb - Unmap a skb from DMA.
1289 * @entry: Pointer to &struct queue_entry
1290 */
1291void rt2x00queue_unmap_skb(struct queue_entry *entry);
1292
1293/**
1294 * rt2x00queue_get_tx_queue - Convert tx queue index to queue pointer
1295 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1296 * @queue: rt2x00 queue index (see &enum data_queue_qid).
1297 *
1298 * Returns NULL for non tx queues.
1299 */
1300static inline struct data_queue *
1301rt2x00queue_get_tx_queue(struct rt2x00_dev *rt2x00dev,
1302 const enum data_queue_qid queue)
1303{
1304 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
1305 return &rt2x00dev->tx[queue];
1306
1307 if (queue == QID_ATIM)
1308 return rt2x00dev->atim;
1309
1310 return NULL;
1311}
1312
1313/**
1314 * rt2x00queue_get_entry - Get queue entry where the given index points to.
1315 * @queue: Pointer to &struct data_queue from where we obtain the entry.
1316 * @index: Index identifier for obtaining the correct index.
1317 */
1318struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
1319 enum queue_index index);
1320
1321/**
1322 * rt2x00queue_pause_queue - Pause a data queue
1323 * @queue: Pointer to &struct data_queue.
1324 *
1325 * This function will pause the data queue locally, preventing
1326 * new frames to be added to the queue (while the hardware is
1327 * still allowed to run).
1328 */
1329void rt2x00queue_pause_queue(struct data_queue *queue);
1330
1331/**
1332 * rt2x00queue_unpause_queue - unpause a data queue
1333 * @queue: Pointer to &struct data_queue.
1334 *
1335 * This function will unpause the data queue locally, allowing
1336 * new frames to be added to the queue again.
1337 */
1338void rt2x00queue_unpause_queue(struct data_queue *queue);
1339
1340/**
1341 * rt2x00queue_start_queue - Start a data queue
1342 * @queue: Pointer to &struct data_queue.
1343 *
1344 * This function will start handling all pending frames in the queue.
1345 */
1346void rt2x00queue_start_queue(struct data_queue *queue);
1347
1348/**
1349 * rt2x00queue_stop_queue - Halt a data queue
1350 * @queue: Pointer to &struct data_queue.
1351 *
1352 * This function will stop all pending frames in the queue.
1353 */
1354void rt2x00queue_stop_queue(struct data_queue *queue);
1355
1356/**
1357 * rt2x00queue_flush_queue - Flush a data queue
1358 * @queue: Pointer to &struct data_queue.
1359 * @drop: True to drop all pending frames.
1360 *
1361 * This function will flush the queue. After this call
1362 * the queue is guaranteed to be empty.
1363 */
1364void rt2x00queue_flush_queue(struct data_queue *queue, bool drop);
1365
1366/**
1367 * rt2x00queue_start_queues - Start all data queues
1368 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1369 *
1370 * This function will loop through all available queues to start them
1371 */
1372void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev);
1373
1374/**
1375 * rt2x00queue_stop_queues - Halt all data queues
1376 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1377 *
1378 * This function will loop through all available queues to stop
1379 * any pending frames.
1380 */
1381void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev);
1382
1383/**
1384 * rt2x00queue_flush_queues - Flush all data queues
1385 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1386 * @drop: True to drop all pending frames.
1387 *
1388 * This function will loop through all available queues to flush
1389 * any pending frames.
1390 */
1391void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop);
1392
1393/*
1394 * Debugfs handlers.
1395 */
1396/**
1397 * rt2x00debug_dump_frame - Dump a frame to userspace through debugfs.
1398 * @rt2x00dev: Pointer to &struct rt2x00_dev.
1399 * @type: The type of frame that is being dumped.
1400 * @entry: The queue entry containing the frame to be dumped.
1401 */
1402#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1403void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1404 enum rt2x00_dump_type type, struct queue_entry *entry);
1405#else
1406static inline void rt2x00debug_dump_frame(struct rt2x00_dev *rt2x00dev,
1407 enum rt2x00_dump_type type,
1408 struct queue_entry *entry)
1409{
1410}
1411#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1412
1413/*
1414 * Utility functions.
1415 */
1416u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
1417 struct ieee80211_vif *vif);
1418void rt2x00lib_set_mac_address(struct rt2x00_dev *rt2x00dev, u8 *eeprom_mac_addr);
1419
1420/*
1421 * Interrupt context handlers.
1422 */
1423void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev);
1424void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev);
1425void rt2x00lib_dmastart(struct queue_entry *entry);
1426void rt2x00lib_dmadone(struct queue_entry *entry);
1427void rt2x00lib_txdone(struct queue_entry *entry,
1428 struct txdone_entry_desc *txdesc);
1429void rt2x00lib_txdone_nomatch(struct queue_entry *entry,
1430 struct txdone_entry_desc *txdesc);
1431void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status);
1432void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp);
1433
1434/*
1435 * mac80211 handlers.
1436 */
1437void rt2x00mac_tx(struct ieee80211_hw *hw,
1438 struct ieee80211_tx_control *control,
1439 struct sk_buff *skb);
1440int rt2x00mac_start(struct ieee80211_hw *hw);
1441void rt2x00mac_stop(struct ieee80211_hw *hw);
1442int rt2x00mac_add_interface(struct ieee80211_hw *hw,
1443 struct ieee80211_vif *vif);
1444void rt2x00mac_remove_interface(struct ieee80211_hw *hw,
1445 struct ieee80211_vif *vif);
1446int rt2x00mac_config(struct ieee80211_hw *hw, u32 changed);
1447void rt2x00mac_configure_filter(struct ieee80211_hw *hw,
1448 unsigned int changed_flags,
1449 unsigned int *total_flags,
1450 u64 multicast);
1451int rt2x00mac_set_tim(struct ieee80211_hw *hw, struct ieee80211_sta *sta,
1452 bool set);
1453#ifdef CONFIG_RT2X00_LIB_CRYPTO
1454int rt2x00mac_set_key(struct ieee80211_hw *hw, enum set_key_cmd cmd,
1455 struct ieee80211_vif *vif, struct ieee80211_sta *sta,
1456 struct ieee80211_key_conf *key);
1457#else
1458#define rt2x00mac_set_key NULL
1459#endif /* CONFIG_RT2X00_LIB_CRYPTO */
1460void rt2x00mac_sw_scan_start(struct ieee80211_hw *hw,
1461 struct ieee80211_vif *vif,
1462 const u8 *mac_addr);
1463void rt2x00mac_sw_scan_complete(struct ieee80211_hw *hw,
1464 struct ieee80211_vif *vif);
1465int rt2x00mac_get_stats(struct ieee80211_hw *hw,
1466 struct ieee80211_low_level_stats *stats);
1467void rt2x00mac_bss_info_changed(struct ieee80211_hw *hw,
1468 struct ieee80211_vif *vif,
1469 struct ieee80211_bss_conf *bss_conf,
1470 u32 changes);
1471int rt2x00mac_conf_tx(struct ieee80211_hw *hw,
1472 struct ieee80211_vif *vif, u16 queue,
1473 const struct ieee80211_tx_queue_params *params);
1474void rt2x00mac_rfkill_poll(struct ieee80211_hw *hw);
1475void rt2x00mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1476 u32 queues, bool drop);
1477int rt2x00mac_set_antenna(struct ieee80211_hw *hw, u32 tx_ant, u32 rx_ant);
1478int rt2x00mac_get_antenna(struct ieee80211_hw *hw, u32 *tx_ant, u32 *rx_ant);
1479void rt2x00mac_get_ringparam(struct ieee80211_hw *hw,
1480 u32 *tx, u32 *tx_max, u32 *rx, u32 *rx_max);
1481bool rt2x00mac_tx_frames_pending(struct ieee80211_hw *hw);
1482
1483/*
1484 * Driver allocation handlers.
1485 */
1486int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev);
1487void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev);
1488#ifdef CONFIG_PM
1489int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state);
1490int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev);
1491#endif /* CONFIG_PM */
1492
1493#endif /* RT2X00_H */