Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.9.4.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  pti.c - PTI driver for cJTAG data extration
  4 *
  5 *  Copyright (C) Intel 2010
  6 *
  7 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  8 *
  9 * The PTI (Parallel Trace Interface) driver directs trace data routed from
 10 * various parts in the system out through the Intel Penwell PTI port and
 11 * out of the mobile device for analysis with a debugging tool
 12 * (Lauterbach, Fido). This is part of a solution for the MIPI P1149.7,
 13 * compact JTAG, standard.
 14 */
 15
 16#include <linux/init.h>
 17#include <linux/sched.h>
 18#include <linux/interrupt.h>
 19#include <linux/console.h>
 20#include <linux/kernel.h>
 21#include <linux/module.h>
 22#include <linux/tty.h>
 23#include <linux/tty_driver.h>
 24#include <linux/pci.h>
 25#include <linux/mutex.h>
 26#include <linux/miscdevice.h>
 27#include <linux/intel-pti.h>
 28#include <linux/slab.h>
 29#include <linux/uaccess.h>
 30
 31#define DRIVERNAME		"pti"
 32#define PCINAME			"pciPTI"
 33#define TTYNAME			"ttyPTI"
 34#define CHARNAME		"pti"
 35#define PTITTY_MINOR_START	0
 36#define PTITTY_MINOR_NUM	2
 37#define MAX_APP_IDS		16   /* 128 channel ids / u8 bit size */
 38#define MAX_OS_IDS		16   /* 128 channel ids / u8 bit size */
 39#define MAX_MODEM_IDS		16   /* 128 channel ids / u8 bit size */
 40#define MODEM_BASE_ID		71   /* modem master ID address    */
 41#define CONTROL_ID		72   /* control master ID address  */
 42#define CONSOLE_ID		73   /* console master ID address  */
 43#define OS_BASE_ID		74   /* base OS master ID address  */
 44#define APP_BASE_ID		80   /* base App master ID address */
 45#define CONTROL_FRAME_LEN	32   /* PTI control frame maximum size */
 46#define USER_COPY_SIZE		8192 /* 8Kb buffer for user space copy */
 47#define APERTURE_14		0x3800000 /* offset to first OS write addr */
 48#define APERTURE_LEN		0x400000  /* address length */
 49
 50struct pti_tty {
 51	struct pti_masterchannel *mc;
 52};
 53
 54struct pti_dev {
 55	struct tty_port port[PTITTY_MINOR_NUM];
 56	unsigned long pti_addr;
 57	unsigned long aperture_base;
 58	void __iomem *pti_ioaddr;
 59	u8 ia_app[MAX_APP_IDS];
 60	u8 ia_os[MAX_OS_IDS];
 61	u8 ia_modem[MAX_MODEM_IDS];
 62};
 63
 64/*
 65 * This protects access to ia_app, ia_os, and ia_modem,
 66 * which keeps track of channels allocated in
 67 * an aperture write id.
 68 */
 69static DEFINE_MUTEX(alloclock);
 70
 71static const struct pci_device_id pci_ids[] = {
 72		{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x82B)},
 73		{0}
 74};
 75
 76static struct tty_driver *pti_tty_driver;
 77static struct pti_dev *drv_data;
 78
 79static unsigned int pti_console_channel;
 80static unsigned int pti_control_channel;
 81
 82/**
 83 *  pti_write_to_aperture()- The private write function to PTI HW.
 84 *
 85 *  @mc: The 'aperture'. It's part of a write address that holds
 86 *       a master and channel ID.
 87 *  @buf: Data being written to the HW that will ultimately be seen
 88 *        in a debugging tool (Fido, Lauterbach).
 89 *  @len: Size of buffer.
 90 *
 91 *  Since each aperture is specified by a unique
 92 *  master/channel ID, no two processes will be writing
 93 *  to the same aperture at the same time so no lock is required. The
 94 *  PTI-Output agent will send these out in the order that they arrived, and
 95 *  thus, it will intermix these messages. The debug tool can then later
 96 *  regroup the appropriate message segments together reconstituting each
 97 *  message.
 98 */
 99static void pti_write_to_aperture(struct pti_masterchannel *mc,
100				  u8 *buf,
101				  int len)
102{
103	int dwordcnt;
104	int final;
105	int i;
106	u32 ptiword;
107	u32 __iomem *aperture;
108	u8 *p = buf;
109
110	/*
111	 * calculate the aperture offset from the base using the master and
112	 * channel id's.
113	 */
114	aperture = drv_data->pti_ioaddr + (mc->master << 15)
115		+ (mc->channel << 8);
116
117	dwordcnt = len >> 2;
118	final = len - (dwordcnt << 2);	    /* final = trailing bytes    */
119	if (final == 0 && dwordcnt != 0) {  /* always need a final dword */
120		final += 4;
121		dwordcnt--;
122	}
123
124	for (i = 0; i < dwordcnt; i++) {
125		ptiword = be32_to_cpu(*(u32 *)p);
126		p += 4;
127		iowrite32(ptiword, aperture);
128	}
129
130	aperture += PTI_LASTDWORD_DTS;	/* adding DTS signals that is EOM */
131
132	ptiword = 0;
133	for (i = 0; i < final; i++)
134		ptiword |= *p++ << (24-(8*i));
135
136	iowrite32(ptiword, aperture);
137	return;
138}
139
140/**
141 *  pti_control_frame_built_and_sent()- control frame build and send function.
142 *
143 *  @mc:          The master / channel structure on which the function
144 *                built a control frame.
145 *  @thread_name: The thread name associated with the master / channel or
146 *                'NULL' if using the 'current' global variable.
147 *
148 *  To be able to post process the PTI contents on host side, a control frame
149 *  is added before sending any PTI content. So the host side knows on
150 *  each PTI frame the name of the thread using a dedicated master / channel.
151 *  The thread name is retrieved from 'current' global variable if 'thread_name'
152 *  is 'NULL', else it is retrieved from 'thread_name' parameter.
153 *  This function builds this frame and sends it to a master ID CONTROL_ID.
154 *  The overhead is only 32 bytes since the driver only writes to HW
155 *  in 32 byte chunks.
156 */
157static void pti_control_frame_built_and_sent(struct pti_masterchannel *mc,
158					     const char *thread_name)
159{
160	/*
161	 * Since we access the comm member in current's task_struct, we only
162	 * need to be as large as what 'comm' in that structure is.
163	 */
164	char comm[TASK_COMM_LEN];
165	struct pti_masterchannel mccontrol = {.master = CONTROL_ID,
166					      .channel = 0};
167	const char *thread_name_p;
168	const char *control_format = "%3d %3d %s";
169	u8 control_frame[CONTROL_FRAME_LEN];
170
171	if (!thread_name) {
172		if (!in_interrupt())
173			get_task_comm(comm, current);
174		else
175			strncpy(comm, "Interrupt", TASK_COMM_LEN);
176
177		/* Absolutely ensure our buffer is zero terminated. */
178		comm[TASK_COMM_LEN-1] = 0;
179		thread_name_p = comm;
180	} else {
181		thread_name_p = thread_name;
182	}
183
184	mccontrol.channel = pti_control_channel;
185	pti_control_channel = (pti_control_channel + 1) & 0x7f;
186
187	snprintf(control_frame, CONTROL_FRAME_LEN, control_format, mc->master,
188		mc->channel, thread_name_p);
189	pti_write_to_aperture(&mccontrol, control_frame, strlen(control_frame));
190}
191
192/**
193 *  pti_write_full_frame_to_aperture()- high level function to
194 *					write to PTI.
195 *
196 *  @mc:  The 'aperture'. It's part of a write address that holds
197 *        a master and channel ID.
198 *  @buf: Data being written to the HW that will ultimately be seen
199 *        in a debugging tool (Fido, Lauterbach).
200 *  @len: Size of buffer.
201 *
202 *  All threads sending data (either console, user space application, ...)
203 *  are calling the high level function to write to PTI meaning that it is
204 *  possible to add a control frame before sending the content.
205 */
206static void pti_write_full_frame_to_aperture(struct pti_masterchannel *mc,
207						const unsigned char *buf,
208						int len)
209{
210	pti_control_frame_built_and_sent(mc, NULL);
211	pti_write_to_aperture(mc, (u8 *)buf, len);
212}
213
214/**
215 * get_id()- Allocate a master and channel ID.
216 *
217 * @id_array:    an array of bits representing what channel
218 *               id's are allocated for writing.
219 * @max_ids:     The max amount of available write IDs to use.
220 * @base_id:     The starting SW channel ID, based on the Intel
221 *               PTI arch.
222 * @thread_name: The thread name associated with the master / channel or
223 *               'NULL' if using the 'current' global variable.
224 *
225 * Returns:
226 *	pti_masterchannel struct with master, channel ID address
227 *	0 for error
228 *
229 * Each bit in the arrays ia_app and ia_os correspond to a master and
230 * channel id. The bit is one if the id is taken and 0 if free. For
231 * every master there are 128 channel id's.
232 */
233static struct pti_masterchannel *get_id(u8 *id_array,
234					int max_ids,
235					int base_id,
236					const char *thread_name)
237{
238	struct pti_masterchannel *mc;
239	int i, j, mask;
240
241	mc = kmalloc(sizeof(struct pti_masterchannel), GFP_KERNEL);
242	if (mc == NULL)
243		return NULL;
244
245	/* look for a byte with a free bit */
246	for (i = 0; i < max_ids; i++)
247		if (id_array[i] != 0xff)
248			break;
249	if (i == max_ids) {
250		kfree(mc);
251		return NULL;
252	}
253	/* find the bit in the 128 possible channel opportunities */
254	mask = 0x80;
255	for (j = 0; j < 8; j++) {
256		if ((id_array[i] & mask) == 0)
257			break;
258		mask >>= 1;
259	}
260
261	/* grab it */
262	id_array[i] |= mask;
263	mc->master  = base_id;
264	mc->channel = ((i & 0xf)<<3) + j;
265	/* write new master Id / channel Id allocation to channel control */
266	pti_control_frame_built_and_sent(mc, thread_name);
267	return mc;
268}
269
270/*
271 * The following three functions:
272 * pti_request_mastercahannel(), mipi_release_masterchannel()
273 * and pti_writedata() are an API for other kernel drivers to
274 * access PTI.
275 */
276
277/**
278 * pti_request_masterchannel()- Kernel API function used to allocate
279 *				a master, channel ID address
280 *				to write to PTI HW.
281 *
282 * @type:        0- request Application  master, channel aperture ID
283 *                  write address.
284 *               1- request OS master, channel aperture ID write
285 *                  address.
286 *               2- request Modem master, channel aperture ID
287 *                  write address.
288 *               Other values, error.
289 * @thread_name: The thread name associated with the master / channel or
290 *               'NULL' if using the 'current' global variable.
291 *
292 * Returns:
293 *	pti_masterchannel struct
294 *	0 for error
295 */
296struct pti_masterchannel *pti_request_masterchannel(u8 type,
297						    const char *thread_name)
298{
299	struct pti_masterchannel *mc;
300
301	mutex_lock(&alloclock);
302
303	switch (type) {
304
305	case 0:
306		mc = get_id(drv_data->ia_app, MAX_APP_IDS,
307			    APP_BASE_ID, thread_name);
308		break;
309
310	case 1:
311		mc = get_id(drv_data->ia_os, MAX_OS_IDS,
312			    OS_BASE_ID, thread_name);
313		break;
314
315	case 2:
316		mc = get_id(drv_data->ia_modem, MAX_MODEM_IDS,
317			    MODEM_BASE_ID, thread_name);
318		break;
319	default:
320		mc = NULL;
321	}
322
323	mutex_unlock(&alloclock);
324	return mc;
325}
326EXPORT_SYMBOL_GPL(pti_request_masterchannel);
327
328/**
329 * pti_release_masterchannel()- Kernel API function used to release
330 *				a master, channel ID address
331 *				used to write to PTI HW.
332 *
333 * @mc: master, channel apeture ID address to be released.  This
334 *      will de-allocate the structure via kfree().
335 */
336void pti_release_masterchannel(struct pti_masterchannel *mc)
337{
338	u8 master, channel, i;
339
340	mutex_lock(&alloclock);
341
342	if (mc) {
343		master = mc->master;
344		channel = mc->channel;
345
346		if (master == APP_BASE_ID) {
347			i = channel >> 3;
348			drv_data->ia_app[i] &=  ~(0x80>>(channel & 0x7));
349		} else if (master == OS_BASE_ID) {
350			i = channel >> 3;
351			drv_data->ia_os[i] &= ~(0x80>>(channel & 0x7));
352		} else {
353			i = channel >> 3;
354			drv_data->ia_modem[i] &= ~(0x80>>(channel & 0x7));
355		}
356
357		kfree(mc);
358	}
359
360	mutex_unlock(&alloclock);
361}
362EXPORT_SYMBOL_GPL(pti_release_masterchannel);
363
364/**
365 * pti_writedata()- Kernel API function used to write trace
366 *                  debugging data to PTI HW.
367 *
368 * @mc:    Master, channel aperture ID address to write to.
369 *         Null value will return with no write occurring.
370 * @buf:   Trace debuging data to write to the PTI HW.
371 *         Null value will return with no write occurring.
372 * @count: Size of buf. Value of 0 or a negative number will
373 *         return with no write occuring.
374 */
375void pti_writedata(struct pti_masterchannel *mc, u8 *buf, int count)
376{
377	/*
378	 * since this function is exported, this is treated like an
379	 * API function, thus, all parameters should
380	 * be checked for validity.
381	 */
382	if ((mc != NULL) && (buf != NULL) && (count > 0))
383		pti_write_to_aperture(mc, buf, count);
384	return;
385}
386EXPORT_SYMBOL_GPL(pti_writedata);
387
388/*
389 * for the tty_driver_*() basic function descriptions, see tty_driver.h.
390 * Specific header comments made for PTI-related specifics.
391 */
392
393/**
394 * pti_tty_driver_open()- Open an Application master, channel aperture
395 * ID to the PTI device via tty device.
396 *
397 * @tty: tty interface.
398 * @filp: filp interface pased to tty_port_open() call.
399 *
400 * Returns:
401 *	int, 0 for success
402 *	otherwise, fail value
403 *
404 * The main purpose of using the tty device interface is for
405 * each tty port to have a unique PTI write aperture.  In an
406 * example use case, ttyPTI0 gets syslogd and an APP aperture
407 * ID and ttyPTI1 is where the n_tracesink ldisc hooks to route
408 * modem messages into PTI.  Modem trace data does not have to
409 * go to ttyPTI1, but ttyPTI0 and ttyPTI1 do need to be distinct
410 * master IDs.  These messages go through the PTI HW and out of
411 * the handheld platform and to the Fido/Lauterbach device.
412 */
413static int pti_tty_driver_open(struct tty_struct *tty, struct file *filp)
414{
415	/*
416	 * we actually want to allocate a new channel per open, per
417	 * system arch.  HW gives more than plenty channels for a single
418	 * system task to have its own channel to write trace data. This
419	 * also removes a locking requirement for the actual write
420	 * procedure.
421	 */
422	return tty_port_open(tty->port, tty, filp);
423}
424
425/**
426 * pti_tty_driver_close()- close tty device and release Application
427 * master, channel aperture ID to the PTI device via tty device.
428 *
429 * @tty: tty interface.
430 * @filp: filp interface pased to tty_port_close() call.
431 *
432 * The main purpose of using the tty device interface is to route
433 * syslog daemon messages to the PTI HW and out of the handheld platform
434 * and to the Fido/Lauterbach device.
435 */
436static void pti_tty_driver_close(struct tty_struct *tty, struct file *filp)
437{
438	tty_port_close(tty->port, tty, filp);
439}
440
441/**
442 * pti_tty_install()- Used to set up specific master-channels
443 *		      to tty ports for organizational purposes when
444 *		      tracing viewed from debuging tools.
445 *
446 * @driver: tty driver information.
447 * @tty: tty struct containing pti information.
448 *
449 * Returns:
450 *	0 for success
451 *	otherwise, error
452 */
453static int pti_tty_install(struct tty_driver *driver, struct tty_struct *tty)
454{
455	int idx = tty->index;
456	struct pti_tty *pti_tty_data;
457	int ret = tty_standard_install(driver, tty);
458
459	if (ret == 0) {
460		pti_tty_data = kmalloc(sizeof(struct pti_tty), GFP_KERNEL);
461		if (pti_tty_data == NULL)
462			return -ENOMEM;
463
464		if (idx == PTITTY_MINOR_START)
465			pti_tty_data->mc = pti_request_masterchannel(0, NULL);
466		else
467			pti_tty_data->mc = pti_request_masterchannel(2, NULL);
468
469		if (pti_tty_data->mc == NULL) {
470			kfree(pti_tty_data);
471			return -ENXIO;
472		}
473		tty->driver_data = pti_tty_data;
474	}
475
476	return ret;
477}
478
479/**
480 * pti_tty_cleanup()- Used to de-allocate master-channel resources
481 *		      tied to tty's of this driver.
482 *
483 * @tty: tty struct containing pti information.
484 */
485static void pti_tty_cleanup(struct tty_struct *tty)
486{
487	struct pti_tty *pti_tty_data = tty->driver_data;
488	if (pti_tty_data == NULL)
489		return;
490	pti_release_masterchannel(pti_tty_data->mc);
491	kfree(pti_tty_data);
492	tty->driver_data = NULL;
493}
494
495/**
496 * pti_tty_driver_write()-  Write trace debugging data through the char
497 * interface to the PTI HW.  Part of the misc device implementation.
498 *
499 * @filp: Contains private data which is used to obtain
500 *        master, channel write ID.
501 * @data: trace data to be written.
502 * @len:  # of byte to write.
503 *
504 * Returns:
505 *	int, # of bytes written
506 *	otherwise, error
507 */
508static int pti_tty_driver_write(struct tty_struct *tty,
509	const unsigned char *buf, int len)
510{
511	struct pti_tty *pti_tty_data = tty->driver_data;
512	if ((pti_tty_data != NULL) && (pti_tty_data->mc != NULL)) {
513		pti_write_to_aperture(pti_tty_data->mc, (u8 *)buf, len);
514		return len;
515	}
516	/*
517	 * we can't write to the pti hardware if the private driver_data
518	 * and the mc address is not there.
519	 */
520	else
521		return -EFAULT;
522}
523
524/**
525 * pti_tty_write_room()- Always returns 2048.
526 *
527 * @tty: contains tty info of the pti driver.
528 */
529static int pti_tty_write_room(struct tty_struct *tty)
530{
531	return 2048;
532}
533
534/**
535 * pti_char_open()- Open an Application master, channel aperture
536 * ID to the PTI device. Part of the misc device implementation.
537 *
538 * @inode: not used.
539 * @filp:  Output- will have a masterchannel struct set containing
540 *                 the allocated application PTI aperture write address.
541 *
542 * Returns:
543 *	int, 0 for success
544 *	otherwise, a fail value
545 */
546static int pti_char_open(struct inode *inode, struct file *filp)
547{
548	struct pti_masterchannel *mc;
549
550	/*
551	 * We really do want to fail immediately if
552	 * pti_request_masterchannel() fails,
553	 * before assigning the value to filp->private_data.
554	 * Slightly easier to debug if this driver needs debugging.
555	 */
556	mc = pti_request_masterchannel(0, NULL);
557	if (mc == NULL)
558		return -ENOMEM;
559	filp->private_data = mc;
560	return 0;
561}
562
563/**
564 * pti_char_release()-  Close a char channel to the PTI device. Part
565 * of the misc device implementation.
566 *
567 * @inode: Not used in this implementaiton.
568 * @filp:  Contains private_data that contains the master, channel
569 *         ID to be released by the PTI device.
570 *
571 * Returns:
572 *	always 0
573 */
574static int pti_char_release(struct inode *inode, struct file *filp)
575{
576	pti_release_masterchannel(filp->private_data);
577	filp->private_data = NULL;
578	return 0;
579}
580
581/**
582 * pti_char_write()-  Write trace debugging data through the char
583 * interface to the PTI HW.  Part of the misc device implementation.
584 *
585 * @filp:  Contains private data which is used to obtain
586 *         master, channel write ID.
587 * @data:  trace data to be written.
588 * @len:   # of byte to write.
589 * @ppose: Not used in this function implementation.
590 *
591 * Returns:
592 *	int, # of bytes written
593 *	otherwise, error value
594 *
595 * Notes: From side discussions with Alan Cox and experimenting
596 * with PTI debug HW like Nokia's Fido box and Lauterbach
597 * devices, 8192 byte write buffer used by USER_COPY_SIZE was
598 * deemed an appropriate size for this type of usage with
599 * debugging HW.
600 */
601static ssize_t pti_char_write(struct file *filp, const char __user *data,
602			      size_t len, loff_t *ppose)
603{
604	struct pti_masterchannel *mc;
605	void *kbuf;
606	const char __user *tmp;
607	size_t size = USER_COPY_SIZE;
608	size_t n = 0;
609
610	tmp = data;
611	mc = filp->private_data;
612
613	kbuf = kmalloc(size, GFP_KERNEL);
614	if (kbuf == NULL)  {
615		pr_err("%s(%d): buf allocation failed\n",
616			__func__, __LINE__);
617		return -ENOMEM;
618	}
619
620	do {
621		if (len - n > USER_COPY_SIZE)
622			size = USER_COPY_SIZE;
623		else
624			size = len - n;
625
626		if (copy_from_user(kbuf, tmp, size)) {
627			kfree(kbuf);
628			return n ? n : -EFAULT;
629		}
630
631		pti_write_to_aperture(mc, kbuf, size);
632		n  += size;
633		tmp += size;
634
635	} while (len > n);
636
637	kfree(kbuf);
638	return len;
639}
640
641static const struct tty_operations pti_tty_driver_ops = {
642	.open		= pti_tty_driver_open,
643	.close		= pti_tty_driver_close,
644	.write		= pti_tty_driver_write,
645	.write_room	= pti_tty_write_room,
646	.install	= pti_tty_install,
647	.cleanup	= pti_tty_cleanup
648};
649
650static const struct file_operations pti_char_driver_ops = {
651	.owner		= THIS_MODULE,
652	.write		= pti_char_write,
653	.open		= pti_char_open,
654	.release	= pti_char_release,
655};
656
657static struct miscdevice pti_char_driver = {
658	.minor		= MISC_DYNAMIC_MINOR,
659	.name		= CHARNAME,
660	.fops		= &pti_char_driver_ops
661};
662
663/**
664 * pti_console_write()-  Write to the console that has been acquired.
665 *
666 * @c:   Not used in this implementaiton.
667 * @buf: Data to be written.
668 * @len: Length of buf.
669 */
670static void pti_console_write(struct console *c, const char *buf, unsigned len)
671{
672	static struct pti_masterchannel mc = {.master  = CONSOLE_ID,
673					      .channel = 0};
674
675	mc.channel = pti_console_channel;
676	pti_console_channel = (pti_console_channel + 1) & 0x7f;
677
678	pti_write_full_frame_to_aperture(&mc, buf, len);
679}
680
681/**
682 * pti_console_device()-  Return the driver tty structure and set the
683 *			  associated index implementation.
684 *
685 * @c:     Console device of the driver.
686 * @index: index associated with c.
687 *
688 * Returns:
689 *	always value of pti_tty_driver structure when this function
690 *	is called.
691 */
692static struct tty_driver *pti_console_device(struct console *c, int *index)
693{
694	*index = c->index;
695	return pti_tty_driver;
696}
697
698/**
699 * pti_console_setup()-  Initialize console variables used by the driver.
700 *
701 * @c:     Not used.
702 * @opts:  Not used.
703 *
704 * Returns:
705 *	always 0.
706 */
707static int pti_console_setup(struct console *c, char *opts)
708{
709	pti_console_channel = 0;
710	pti_control_channel = 0;
711	return 0;
712}
713
714/*
715 * pti_console struct, used to capture OS printk()'s and shift
716 * out to the PTI device for debugging.  This cannot be
717 * enabled upon boot because of the possibility of eating
718 * any serial console printk's (race condition discovered).
719 * The console should be enabled upon when the tty port is
720 * used for the first time.  Since the primary purpose for
721 * the tty port is to hook up syslog to it, the tty port
722 * will be open for a really long time.
723 */
724static struct console pti_console = {
725	.name		= TTYNAME,
726	.write		= pti_console_write,
727	.device		= pti_console_device,
728	.setup		= pti_console_setup,
729	.flags		= CON_PRINTBUFFER,
730	.index		= 0,
731};
732
733/**
734 * pti_port_activate()- Used to start/initialize any items upon
735 * first opening of tty_port().
736 *
737 * @port- The tty port number of the PTI device.
738 * @tty-  The tty struct associated with this device.
739 *
740 * Returns:
741 *	always returns 0
742 *
743 * Notes: The primary purpose of the PTI tty port 0 is to hook
744 * the syslog daemon to it; thus this port will be open for a
745 * very long time.
746 */
747static int pti_port_activate(struct tty_port *port, struct tty_struct *tty)
748{
749	if (port->tty->index == PTITTY_MINOR_START)
750		console_start(&pti_console);
751	return 0;
752}
753
754/**
755 * pti_port_shutdown()- Used to stop/shutdown any items upon the
756 * last tty port close.
757 *
758 * @port- The tty port number of the PTI device.
759 *
760 * Notes: The primary purpose of the PTI tty port 0 is to hook
761 * the syslog daemon to it; thus this port will be open for a
762 * very long time.
763 */
764static void pti_port_shutdown(struct tty_port *port)
765{
766	if (port->tty->index == PTITTY_MINOR_START)
767		console_stop(&pti_console);
768}
769
770static const struct tty_port_operations tty_port_ops = {
771	.activate = pti_port_activate,
772	.shutdown = pti_port_shutdown,
773};
774
775/*
776 * Note the _probe() call sets everything up and ties the char and tty
777 * to successfully detecting the PTI device on the pci bus.
778 */
779
780/**
781 * pti_pci_probe()- Used to detect pti on the pci bus and set
782 *		    things up in the driver.
783 *
784 * @pdev- pci_dev struct values for pti.
785 * @ent-  pci_device_id struct for pti driver.
786 *
787 * Returns:
788 *	0 for success
789 *	otherwise, error
790 */
791static int pti_pci_probe(struct pci_dev *pdev,
792		const struct pci_device_id *ent)
793{
794	unsigned int a;
795	int retval = -EINVAL;
796	int pci_bar = 1;
797
798	dev_dbg(&pdev->dev, "%s %s(%d): PTI PCI ID %04x:%04x\n", __FILE__,
799			__func__, __LINE__, pdev->vendor, pdev->device);
800
801	retval = misc_register(&pti_char_driver);
802	if (retval) {
803		pr_err("%s(%d): CHAR registration failed of pti driver\n",
804			__func__, __LINE__);
805		pr_err("%s(%d): Error value returned: %d\n",
806			__func__, __LINE__, retval);
807		goto err;
808	}
809
810	retval = pci_enable_device(pdev);
811	if (retval != 0) {
812		dev_err(&pdev->dev,
813			"%s: pci_enable_device() returned error %d\n",
814			__func__, retval);
815		goto err_unreg_misc;
816	}
817
818	drv_data = kzalloc(sizeof(*drv_data), GFP_KERNEL);
819	if (drv_data == NULL) {
820		retval = -ENOMEM;
821		dev_err(&pdev->dev,
822			"%s(%d): kmalloc() returned NULL memory.\n",
823			__func__, __LINE__);
824		goto err_disable_pci;
825	}
826	drv_data->pti_addr = pci_resource_start(pdev, pci_bar);
827
828	retval = pci_request_region(pdev, pci_bar, dev_name(&pdev->dev));
829	if (retval != 0) {
830		dev_err(&pdev->dev,
831			"%s(%d): pci_request_region() returned error %d\n",
832			__func__, __LINE__, retval);
833		goto err_free_dd;
834	}
835	drv_data->aperture_base = drv_data->pti_addr+APERTURE_14;
836	drv_data->pti_ioaddr =
837		ioremap_nocache((u32)drv_data->aperture_base,
838		APERTURE_LEN);
839	if (!drv_data->pti_ioaddr) {
840		retval = -ENOMEM;
841		goto err_rel_reg;
842	}
843
844	pci_set_drvdata(pdev, drv_data);
845
846	for (a = 0; a < PTITTY_MINOR_NUM; a++) {
847		struct tty_port *port = &drv_data->port[a];
848		tty_port_init(port);
849		port->ops = &tty_port_ops;
850
851		tty_port_register_device(port, pti_tty_driver, a, &pdev->dev);
852	}
853
854	register_console(&pti_console);
855
856	return 0;
857err_rel_reg:
858	pci_release_region(pdev, pci_bar);
859err_free_dd:
860	kfree(drv_data);
861err_disable_pci:
862	pci_disable_device(pdev);
863err_unreg_misc:
864	misc_deregister(&pti_char_driver);
865err:
866	return retval;
867}
868
869/**
870 * pti_pci_remove()- Driver exit method to remove PTI from
871 *		   PCI bus.
872 * @pdev: variable containing pci info of PTI.
873 */
874static void pti_pci_remove(struct pci_dev *pdev)
875{
876	struct pti_dev *drv_data = pci_get_drvdata(pdev);
877	unsigned int a;
878
879	unregister_console(&pti_console);
880
881	for (a = 0; a < PTITTY_MINOR_NUM; a++) {
882		tty_unregister_device(pti_tty_driver, a);
883		tty_port_destroy(&drv_data->port[a]);
884	}
885
886	iounmap(drv_data->pti_ioaddr);
887	kfree(drv_data);
888	pci_release_region(pdev, 1);
889	pci_disable_device(pdev);
890
891	misc_deregister(&pti_char_driver);
892}
893
894static struct pci_driver pti_pci_driver = {
895	.name		= PCINAME,
896	.id_table	= pci_ids,
897	.probe		= pti_pci_probe,
898	.remove		= pti_pci_remove,
899};
900
901/**
902 *
903 * pti_init()- Overall entry/init call to the pti driver.
904 *             It starts the registration process with the kernel.
905 *
906 * Returns:
907 *	int __init, 0 for success
908 *	otherwise value is an error
909 *
910 */
911static int __init pti_init(void)
912{
913	int retval = -EINVAL;
914
915	/* First register module as tty device */
916
917	pti_tty_driver = alloc_tty_driver(PTITTY_MINOR_NUM);
918	if (pti_tty_driver == NULL) {
919		pr_err("%s(%d): Memory allocation failed for ptiTTY driver\n",
920			__func__, __LINE__);
921		return -ENOMEM;
922	}
923
924	pti_tty_driver->driver_name		= DRIVERNAME;
925	pti_tty_driver->name			= TTYNAME;
926	pti_tty_driver->major			= 0;
927	pti_tty_driver->minor_start		= PTITTY_MINOR_START;
928	pti_tty_driver->type			= TTY_DRIVER_TYPE_SYSTEM;
929	pti_tty_driver->subtype			= SYSTEM_TYPE_SYSCONS;
930	pti_tty_driver->flags			= TTY_DRIVER_REAL_RAW |
931						  TTY_DRIVER_DYNAMIC_DEV;
932	pti_tty_driver->init_termios		= tty_std_termios;
933
934	tty_set_operations(pti_tty_driver, &pti_tty_driver_ops);
935
936	retval = tty_register_driver(pti_tty_driver);
937	if (retval) {
938		pr_err("%s(%d): TTY registration failed of pti driver\n",
939			__func__, __LINE__);
940		pr_err("%s(%d): Error value returned: %d\n",
941			__func__, __LINE__, retval);
942
943		goto put_tty;
944	}
945
946	retval = pci_register_driver(&pti_pci_driver);
947	if (retval) {
948		pr_err("%s(%d): PCI registration failed of pti driver\n",
949			__func__, __LINE__);
950		pr_err("%s(%d): Error value returned: %d\n",
951			__func__, __LINE__, retval);
952		goto unreg_tty;
953	}
954
955	return 0;
956unreg_tty:
957	tty_unregister_driver(pti_tty_driver);
958put_tty:
959	put_tty_driver(pti_tty_driver);
960	pti_tty_driver = NULL;
961	return retval;
962}
963
964/**
965 * pti_exit()- Unregisters this module as a tty and pci driver.
966 */
967static void __exit pti_exit(void)
968{
969	tty_unregister_driver(pti_tty_driver);
970	pci_unregister_driver(&pti_pci_driver);
971	put_tty_driver(pti_tty_driver);
972}
973
974module_init(pti_init);
975module_exit(pti_exit);
976
977MODULE_LICENSE("GPL");
978MODULE_AUTHOR("Ken Mills, Jay Freyensee");
979MODULE_DESCRIPTION("PTI Driver");
980