Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.9.4.
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * EFI stub implementation that is shared by arm and arm64 architectures.
  4 * This should be #included by the EFI stub implementation files.
  5 *
  6 * Copyright (C) 2013,2014 Linaro Limited
  7 *     Roy Franz <roy.franz@linaro.org
  8 * Copyright (C) 2013 Red Hat, Inc.
  9 *     Mark Salter <msalter@redhat.com>
 10 */
 11
 12#include <linux/efi.h>
 13#include <linux/sort.h>
 14#include <asm/efi.h>
 15
 16#include "efistub.h"
 17
 18/*
 19 * This is the base address at which to start allocating virtual memory ranges
 20 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
 21 * any allocation we choose, and eliminate the risk of a conflict after kexec.
 22 * The value chosen is the largest non-zero power of 2 suitable for this purpose
 23 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
 24 * be mapped efficiently.
 25 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
 26 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
 27 * entire footprint of the UEFI runtime services memory regions)
 28 */
 29#define EFI_RT_VIRTUAL_BASE	SZ_512M
 30#define EFI_RT_VIRTUAL_SIZE	SZ_512M
 31
 32#ifdef CONFIG_ARM64
 33# define EFI_RT_VIRTUAL_LIMIT	DEFAULT_MAP_WINDOW_64
 34#else
 35# define EFI_RT_VIRTUAL_LIMIT	TASK_SIZE
 36#endif
 37
 38static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
 39
 40void efi_char16_printk(efi_system_table_t *sys_table_arg,
 41			      efi_char16_t *str)
 42{
 43	struct efi_simple_text_output_protocol *out;
 44
 45	out = (struct efi_simple_text_output_protocol *)sys_table_arg->con_out;
 46	out->output_string(out, str);
 47}
 48
 49static struct screen_info *setup_graphics(efi_system_table_t *sys_table_arg)
 50{
 51	efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
 52	efi_status_t status;
 53	unsigned long size;
 54	void **gop_handle = NULL;
 55	struct screen_info *si = NULL;
 56
 57	size = 0;
 58	status = efi_call_early(locate_handle, EFI_LOCATE_BY_PROTOCOL,
 59				&gop_proto, NULL, &size, gop_handle);
 60	if (status == EFI_BUFFER_TOO_SMALL) {
 61		si = alloc_screen_info(sys_table_arg);
 62		if (!si)
 63			return NULL;
 64		efi_setup_gop(sys_table_arg, si, &gop_proto, size);
 65	}
 66	return si;
 67}
 68
 69void install_memreserve_table(efi_system_table_t *sys_table_arg)
 70{
 71	struct linux_efi_memreserve *rsv;
 72	efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
 73	efi_status_t status;
 74
 75	status = efi_call_early(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
 76				(void **)&rsv);
 77	if (status != EFI_SUCCESS) {
 78		pr_efi_err(sys_table_arg, "Failed to allocate memreserve entry!\n");
 79		return;
 80	}
 81
 82	rsv->next = 0;
 83	rsv->size = 0;
 84	atomic_set(&rsv->count, 0);
 85
 86	status = efi_call_early(install_configuration_table,
 87				&memreserve_table_guid,
 88				rsv);
 89	if (status != EFI_SUCCESS)
 90		pr_efi_err(sys_table_arg, "Failed to install memreserve config table!\n");
 91}
 92
 93
 94/*
 95 * This function handles the architcture specific differences between arm and
 96 * arm64 regarding where the kernel image must be loaded and any memory that
 97 * must be reserved. On failure it is required to free all
 98 * all allocations it has made.
 99 */
100efi_status_t handle_kernel_image(efi_system_table_t *sys_table,
101				 unsigned long *image_addr,
102				 unsigned long *image_size,
103				 unsigned long *reserve_addr,
104				 unsigned long *reserve_size,
105				 unsigned long dram_base,
106				 efi_loaded_image_t *image);
107/*
108 * EFI entry point for the arm/arm64 EFI stubs.  This is the entrypoint
109 * that is described in the PE/COFF header.  Most of the code is the same
110 * for both archictectures, with the arch-specific code provided in the
111 * handle_kernel_image() function.
112 */
113unsigned long efi_entry(void *handle, efi_system_table_t *sys_table,
114			       unsigned long *image_addr)
115{
116	efi_loaded_image_t *image;
117	efi_status_t status;
118	unsigned long image_size = 0;
119	unsigned long dram_base;
120	/* addr/point and size pairs for memory management*/
121	unsigned long initrd_addr;
122	u64 initrd_size = 0;
123	unsigned long fdt_addr = 0;  /* Original DTB */
124	unsigned long fdt_size = 0;
125	char *cmdline_ptr = NULL;
126	int cmdline_size = 0;
127	unsigned long new_fdt_addr;
128	efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
129	unsigned long reserve_addr = 0;
130	unsigned long reserve_size = 0;
131	enum efi_secureboot_mode secure_boot;
132	struct screen_info *si;
133
134	/* Check if we were booted by the EFI firmware */
135	if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
136		goto fail;
137
138	status = check_platform_features(sys_table);
139	if (status != EFI_SUCCESS)
140		goto fail;
141
142	/*
143	 * Get a handle to the loaded image protocol.  This is used to get
144	 * information about the running image, such as size and the command
145	 * line.
146	 */
147	status = sys_table->boottime->handle_protocol(handle,
148					&loaded_image_proto, (void *)&image);
149	if (status != EFI_SUCCESS) {
150		pr_efi_err(sys_table, "Failed to get loaded image protocol\n");
151		goto fail;
152	}
153
154	dram_base = get_dram_base(sys_table);
155	if (dram_base == EFI_ERROR) {
156		pr_efi_err(sys_table, "Failed to find DRAM base\n");
157		goto fail;
158	}
159
160	/*
161	 * Get the command line from EFI, using the LOADED_IMAGE
162	 * protocol. We are going to copy the command line into the
163	 * device tree, so this can be allocated anywhere.
164	 */
165	cmdline_ptr = efi_convert_cmdline(sys_table, image, &cmdline_size);
166	if (!cmdline_ptr) {
167		pr_efi_err(sys_table, "getting command line via LOADED_IMAGE_PROTOCOL\n");
168		goto fail;
169	}
170
171	if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
172	    IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
173	    cmdline_size == 0)
174		efi_parse_options(CONFIG_CMDLINE);
175
176	if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
177		efi_parse_options(cmdline_ptr);
178
179	pr_efi(sys_table, "Booting Linux Kernel...\n");
180
181	si = setup_graphics(sys_table);
182
183	status = handle_kernel_image(sys_table, image_addr, &image_size,
184				     &reserve_addr,
185				     &reserve_size,
186				     dram_base, image);
187	if (status != EFI_SUCCESS) {
188		pr_efi_err(sys_table, "Failed to relocate kernel\n");
189		goto fail_free_cmdline;
190	}
191
192	/* Ask the firmware to clear memory on unclean shutdown */
193	efi_enable_reset_attack_mitigation(sys_table);
194
195	secure_boot = efi_get_secureboot(sys_table);
196
197	/*
198	 * Unauthenticated device tree data is a security hazard, so ignore
199	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
200	 * boot is enabled if we can't determine its state.
201	 */
202	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
203	     secure_boot != efi_secureboot_mode_disabled) {
204		if (strstr(cmdline_ptr, "dtb="))
205			pr_efi(sys_table, "Ignoring DTB from command line.\n");
206	} else {
207		status = handle_cmdline_files(sys_table, image, cmdline_ptr,
208					      "dtb=",
209					      ~0UL, &fdt_addr, &fdt_size);
210
211		if (status != EFI_SUCCESS) {
212			pr_efi_err(sys_table, "Failed to load device tree!\n");
213			goto fail_free_image;
214		}
215	}
216
217	if (fdt_addr) {
218		pr_efi(sys_table, "Using DTB from command line\n");
219	} else {
220		/* Look for a device tree configuration table entry. */
221		fdt_addr = (uintptr_t)get_fdt(sys_table, &fdt_size);
222		if (fdt_addr)
223			pr_efi(sys_table, "Using DTB from configuration table\n");
224	}
225
226	if (!fdt_addr)
227		pr_efi(sys_table, "Generating empty DTB\n");
228
229	status = handle_cmdline_files(sys_table, image, cmdline_ptr, "initrd=",
230				      efi_get_max_initrd_addr(dram_base,
231							      *image_addr),
232				      (unsigned long *)&initrd_addr,
233				      (unsigned long *)&initrd_size);
234	if (status != EFI_SUCCESS)
235		pr_efi_err(sys_table, "Failed initrd from command line!\n");
236
237	efi_random_get_seed(sys_table);
238
239	/* hibernation expects the runtime regions to stay in the same place */
240	if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr()) {
241		/*
242		 * Randomize the base of the UEFI runtime services region.
243		 * Preserve the 2 MB alignment of the region by taking a
244		 * shift of 21 bit positions into account when scaling
245		 * the headroom value using a 32-bit random value.
246		 */
247		static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
248					    EFI_RT_VIRTUAL_BASE -
249					    EFI_RT_VIRTUAL_SIZE;
250		u32 rnd;
251
252		status = efi_get_random_bytes(sys_table, sizeof(rnd),
253					      (u8 *)&rnd);
254		if (status == EFI_SUCCESS) {
255			virtmap_base = EFI_RT_VIRTUAL_BASE +
256				       (((headroom >> 21) * rnd) >> (32 - 21));
257		}
258	}
259
260	install_memreserve_table(sys_table);
261
262	new_fdt_addr = fdt_addr;
263	status = allocate_new_fdt_and_exit_boot(sys_table, handle,
264				&new_fdt_addr, efi_get_max_fdt_addr(dram_base),
265				initrd_addr, initrd_size, cmdline_ptr,
266				fdt_addr, fdt_size);
267
268	/*
269	 * If all went well, we need to return the FDT address to the
270	 * calling function so it can be passed to kernel as part of
271	 * the kernel boot protocol.
272	 */
273	if (status == EFI_SUCCESS)
274		return new_fdt_addr;
275
276	pr_efi_err(sys_table, "Failed to update FDT and exit boot services\n");
277
278	efi_free(sys_table, initrd_size, initrd_addr);
279	efi_free(sys_table, fdt_size, fdt_addr);
280
281fail_free_image:
282	efi_free(sys_table, image_size, *image_addr);
283	efi_free(sys_table, reserve_size, reserve_addr);
284fail_free_cmdline:
285	free_screen_info(sys_table, si);
286	efi_free(sys_table, cmdline_size, (unsigned long)cmdline_ptr);
287fail:
288	return EFI_ERROR;
289}
290
291static int cmp_mem_desc(const void *l, const void *r)
292{
293	const efi_memory_desc_t *left = l, *right = r;
294
295	return (left->phys_addr > right->phys_addr) ? 1 : -1;
296}
297
298/*
299 * Returns whether region @left ends exactly where region @right starts,
300 * or false if either argument is NULL.
301 */
302static bool regions_are_adjacent(efi_memory_desc_t *left,
303				 efi_memory_desc_t *right)
304{
305	u64 left_end;
306
307	if (left == NULL || right == NULL)
308		return false;
309
310	left_end = left->phys_addr + left->num_pages * EFI_PAGE_SIZE;
311
312	return left_end == right->phys_addr;
313}
314
315/*
316 * Returns whether region @left and region @right have compatible memory type
317 * mapping attributes, and are both EFI_MEMORY_RUNTIME regions.
318 */
319static bool regions_have_compatible_memory_type_attrs(efi_memory_desc_t *left,
320						      efi_memory_desc_t *right)
321{
322	static const u64 mem_type_mask = EFI_MEMORY_WB | EFI_MEMORY_WT |
323					 EFI_MEMORY_WC | EFI_MEMORY_UC |
324					 EFI_MEMORY_RUNTIME;
325
326	return ((left->attribute ^ right->attribute) & mem_type_mask) == 0;
327}
328
329/*
330 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
331 *
332 * This function populates the virt_addr fields of all memory region descriptors
333 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
334 * are also copied to @runtime_map, and their total count is returned in @count.
335 */
336void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
337		     unsigned long desc_size, efi_memory_desc_t *runtime_map,
338		     int *count)
339{
340	u64 efi_virt_base = virtmap_base;
341	efi_memory_desc_t *in, *prev = NULL, *out = runtime_map;
342	int l;
343
344	/*
345	 * To work around potential issues with the Properties Table feature
346	 * introduced in UEFI 2.5, which may split PE/COFF executable images
347	 * in memory into several RuntimeServicesCode and RuntimeServicesData
348	 * regions, we need to preserve the relative offsets between adjacent
349	 * EFI_MEMORY_RUNTIME regions with the same memory type attributes.
350	 * The easiest way to find adjacent regions is to sort the memory map
351	 * before traversing it.
352	 */
353	if (IS_ENABLED(CONFIG_ARM64))
354		sort(memory_map, map_size / desc_size, desc_size, cmp_mem_desc,
355		     NULL);
356
357	for (l = 0; l < map_size; l += desc_size, prev = in) {
358		u64 paddr, size;
359
360		in = (void *)memory_map + l;
361		if (!(in->attribute & EFI_MEMORY_RUNTIME))
362			continue;
363
364		paddr = in->phys_addr;
365		size = in->num_pages * EFI_PAGE_SIZE;
366
367		if (novamap()) {
368			in->virt_addr = in->phys_addr;
369			continue;
370		}
371
372		/*
373		 * Make the mapping compatible with 64k pages: this allows
374		 * a 4k page size kernel to kexec a 64k page size kernel and
375		 * vice versa.
376		 */
377		if ((IS_ENABLED(CONFIG_ARM64) &&
378		     !regions_are_adjacent(prev, in)) ||
379		    !regions_have_compatible_memory_type_attrs(prev, in)) {
380
381			paddr = round_down(in->phys_addr, SZ_64K);
382			size += in->phys_addr - paddr;
383
384			/*
385			 * Avoid wasting memory on PTEs by choosing a virtual
386			 * base that is compatible with section mappings if this
387			 * region has the appropriate size and physical
388			 * alignment. (Sections are 2 MB on 4k granule kernels)
389			 */
390			if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
391				efi_virt_base = round_up(efi_virt_base, SZ_2M);
392			else
393				efi_virt_base = round_up(efi_virt_base, SZ_64K);
394		}
395
396		in->virt_addr = efi_virt_base + in->phys_addr - paddr;
397		efi_virt_base += size;
398
399		memcpy(out, in, desc_size);
400		out = (void *)out + desc_size;
401		++*count;
402	}
403}