Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * numa.c
   4 *
   5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6 */
   7
   8#include <inttypes.h>
 
 
   9
  10#include <subcmd/parse-options.h>
  11#include "../util/cloexec.h"
  12
  13#include "bench.h"
  14
  15#include <errno.h>
  16#include <sched.h>
  17#include <stdio.h>
  18#include <assert.h>
  19#include <debug.h>
  20#include <malloc.h>
  21#include <signal.h>
  22#include <stdlib.h>
  23#include <string.h>
  24#include <unistd.h>
  25#include <sys/mman.h>
  26#include <sys/time.h>
  27#include <sys/resource.h>
  28#include <sys/wait.h>
  29#include <sys/prctl.h>
  30#include <sys/types.h>
  31#include <linux/kernel.h>
  32#include <linux/time64.h>
  33#include <linux/numa.h>
  34#include <linux/zalloc.h>
  35
  36#include "../util/header.h"
  37#include "../util/mutex.h"
  38#include <numa.h>
  39#include <numaif.h>
  40
  41#ifndef RUSAGE_THREAD
  42# define RUSAGE_THREAD 1
  43#endif
  44
  45/*
  46 * Regular printout to the terminal, suppressed if -q is specified:
  47 */
  48#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  49
  50/*
  51 * Debug printf:
  52 */
  53#undef dprintf
  54#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  55
  56struct thread_data {
  57	int			curr_cpu;
  58	cpu_set_t		*bind_cpumask;
  59	int			bind_node;
  60	u8			*process_data;
  61	int			process_nr;
  62	int			thread_nr;
  63	int			task_nr;
  64	unsigned int		loops_done;
  65	u64			val;
  66	u64			runtime_ns;
  67	u64			system_time_ns;
  68	u64			user_time_ns;
  69	double			speed_gbs;
  70	struct mutex		*process_lock;
  71};
  72
  73/* Parameters set by options: */
  74
  75struct params {
  76	/* Startup synchronization: */
  77	bool			serialize_startup;
  78
  79	/* Task hierarchy: */
  80	int			nr_proc;
  81	int			nr_threads;
  82
  83	/* Working set sizes: */
  84	const char		*mb_global_str;
  85	const char		*mb_proc_str;
  86	const char		*mb_proc_locked_str;
  87	const char		*mb_thread_str;
  88
  89	double			mb_global;
  90	double			mb_proc;
  91	double			mb_proc_locked;
  92	double			mb_thread;
  93
  94	/* Access patterns to the working set: */
  95	bool			data_reads;
  96	bool			data_writes;
  97	bool			data_backwards;
  98	bool			data_zero_memset;
  99	bool			data_rand_walk;
 100	u32			nr_loops;
 101	u32			nr_secs;
 102	u32			sleep_usecs;
 103
 104	/* Working set initialization: */
 105	bool			init_zero;
 106	bool			init_random;
 107	bool			init_cpu0;
 108
 109	/* Misc options: */
 110	int			show_details;
 111	int			run_all;
 112	int			thp;
 113
 114	long			bytes_global;
 115	long			bytes_process;
 116	long			bytes_process_locked;
 117	long			bytes_thread;
 118
 119	int			nr_tasks;
 
 120
 121	bool			show_convergence;
 122	bool			measure_convergence;
 123
 124	int			perturb_secs;
 125	int			nr_cpus;
 126	int			nr_nodes;
 127
 128	/* Affinity options -C and -N: */
 129	char			*cpu_list_str;
 130	char			*node_list_str;
 131};
 132
 133
 134/* Global, read-writable area, accessible to all processes and threads: */
 135
 136struct global_info {
 137	u8			*data;
 138
 139	struct mutex		startup_mutex;
 140	struct cond		startup_cond;
 141	int			nr_tasks_started;
 142
 143	struct mutex		start_work_mutex;
 144	struct cond		start_work_cond;
 145	int			nr_tasks_working;
 146	bool			start_work;
 147
 148	struct mutex		stop_work_mutex;
 149	u64			bytes_done;
 150
 151	struct thread_data	*threads;
 152
 153	/* Convergence latency measurement: */
 154	bool			all_converged;
 155	bool			stop_work;
 156
 157	int			print_once;
 158
 159	struct params		p;
 160};
 161
 162static struct global_info	*g = NULL;
 163
 164static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 165static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 166
 167struct params p0;
 168
 169static const struct option options[] = {
 170	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 171	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 172
 173	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 174	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 175	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 176	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 177
 178	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
 179	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
 180	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 181
 182	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
 183	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 184	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 185	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 186	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 187
 188
 189	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 190	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 191	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 192	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 193
 194	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 195	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 196	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 197	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 198		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 199	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 200	OPT_BOOLEAN('q', "quiet"	, &quiet,
 201		    "quiet mode (do not show any warnings or messages)"),
 202	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 203
 204	/* Special option string parsing callbacks: */
 205        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 206			"bind the first N tasks to these specific cpus (the rest is unbound)",
 207			parse_cpus_opt),
 208        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 209			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 210			parse_nodes_opt),
 211	OPT_END()
 212};
 213
 214static const char * const bench_numa_usage[] = {
 215	"perf bench numa <options>",
 216	NULL
 217};
 218
 219static const char * const numa_usage[] = {
 220	"perf bench numa mem [<options>]",
 221	NULL
 222};
 223
 224/*
 225 * To get number of numa nodes present.
 226 */
 227static int nr_numa_nodes(void)
 228{
 229	int i, nr_nodes = 0;
 230
 231	for (i = 0; i < g->p.nr_nodes; i++) {
 232		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 233			nr_nodes++;
 234	}
 235
 236	return nr_nodes;
 237}
 238
 239/*
 240 * To check if given numa node is present.
 241 */
 242static int is_node_present(int node)
 243{
 244	return numa_bitmask_isbitset(numa_nodes_ptr, node);
 245}
 246
 247/*
 248 * To check given numa node has cpus.
 249 */
 250static bool node_has_cpus(int node)
 251{
 252	struct bitmask *cpumask = numa_allocate_cpumask();
 253	bool ret = false; /* fall back to nocpus */
 254	int cpu;
 255
 256	BUG_ON(!cpumask);
 257	if (!numa_node_to_cpus(node, cpumask)) {
 258		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 259			if (numa_bitmask_isbitset(cpumask, cpu)) {
 260				ret = true;
 261				break;
 262			}
 263		}
 264	}
 265	numa_free_cpumask(cpumask);
 266
 267	return ret;
 268}
 269
 270static cpu_set_t *bind_to_cpu(int target_cpu)
 271{
 272	int nrcpus = numa_num_possible_cpus();
 273	cpu_set_t *orig_mask, *mask;
 274	size_t size;
 275
 276	orig_mask = CPU_ALLOC(nrcpus);
 277	BUG_ON(!orig_mask);
 278	size = CPU_ALLOC_SIZE(nrcpus);
 279	CPU_ZERO_S(size, orig_mask);
 280
 281	if (sched_getaffinity(0, size, orig_mask))
 282		goto err_out;
 283
 284	mask = CPU_ALLOC(nrcpus);
 285	if (!mask)
 286		goto err_out;
 287
 288	CPU_ZERO_S(size, mask);
 289
 290	if (target_cpu == -1) {
 291		int cpu;
 292
 293		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 294			CPU_SET_S(cpu, size, mask);
 295	} else {
 296		if (target_cpu < 0 || target_cpu >= g->p.nr_cpus)
 297			goto err;
 298
 299		CPU_SET_S(target_cpu, size, mask);
 300	}
 301
 302	if (sched_setaffinity(0, size, mask))
 303		goto err;
 304
 305	return orig_mask;
 306
 307err:
 308	CPU_FREE(mask);
 309err_out:
 310	CPU_FREE(orig_mask);
 311
 312	/* BUG_ON due to failure in allocation of orig_mask/mask */
 313	BUG_ON(-1);
 314	return NULL;
 315}
 316
 317static cpu_set_t *bind_to_node(int target_node)
 318{
 319	int nrcpus = numa_num_possible_cpus();
 320	size_t size;
 321	cpu_set_t *orig_mask, *mask;
 322	int cpu;
 
 323
 324	orig_mask = CPU_ALLOC(nrcpus);
 325	BUG_ON(!orig_mask);
 326	size = CPU_ALLOC_SIZE(nrcpus);
 327	CPU_ZERO_S(size, orig_mask);
 328
 329	if (sched_getaffinity(0, size, orig_mask))
 330		goto err_out;
 331
 332	mask = CPU_ALLOC(nrcpus);
 333	if (!mask)
 334		goto err_out;
 335
 336	CPU_ZERO_S(size, mask);
 337
 338	if (target_node == NUMA_NO_NODE) {
 339		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 340			CPU_SET_S(cpu, size, mask);
 341	} else {
 342		struct bitmask *cpumask = numa_allocate_cpumask();
 343
 344		if (!cpumask)
 345			goto err;
 346
 347		if (!numa_node_to_cpus(target_node, cpumask)) {
 348			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 349				if (numa_bitmask_isbitset(cpumask, cpu))
 350					CPU_SET_S(cpu, size, mask);
 351			}
 352		}
 353		numa_free_cpumask(cpumask);
 354	}
 355
 356	if (sched_setaffinity(0, size, mask))
 357		goto err;
 358
 359	return orig_mask;
 360
 361err:
 362	CPU_FREE(mask);
 363err_out:
 364	CPU_FREE(orig_mask);
 365
 366	/* BUG_ON due to failure in allocation of orig_mask/mask */
 367	BUG_ON(-1);
 368	return NULL;
 369}
 370
 371static void bind_to_cpumask(cpu_set_t *mask)
 372{
 373	int ret;
 374	size_t size = CPU_ALLOC_SIZE(numa_num_possible_cpus());
 375
 376	ret = sched_setaffinity(0, size, mask);
 377	if (ret) {
 378		CPU_FREE(mask);
 379		BUG_ON(ret);
 380	}
 381}
 382
 383static void mempol_restore(void)
 384{
 385	int ret;
 386
 387	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 388
 389	BUG_ON(ret);
 390}
 391
 392static void bind_to_memnode(int node)
 393{
 394	struct bitmask *node_mask;
 395	int ret;
 396
 397	if (node == NUMA_NO_NODE)
 398		return;
 399
 400	node_mask = numa_allocate_nodemask();
 401	BUG_ON(!node_mask);
 402
 403	numa_bitmask_clearall(node_mask);
 404	numa_bitmask_setbit(node_mask, node);
 405
 406	ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
 407	dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
 408
 409	numa_bitmask_free(node_mask);
 410	BUG_ON(ret);
 411}
 412
 413#define HPSIZE (2*1024*1024)
 414
 415#define set_taskname(fmt...)				\
 416do {							\
 417	char name[20];					\
 418							\
 419	snprintf(name, 20, fmt);			\
 420	prctl(PR_SET_NAME, name);			\
 421} while (0)
 422
 423static u8 *alloc_data(ssize_t bytes0, int map_flags,
 424		      int init_zero, int init_cpu0, int thp, int init_random)
 425{
 426	cpu_set_t *orig_mask = NULL;
 427	ssize_t bytes;
 428	u8 *buf;
 429	int ret;
 430
 431	if (!bytes0)
 432		return NULL;
 433
 434	/* Allocate and initialize all memory on CPU#0: */
 435	if (init_cpu0) {
 436		int node = numa_node_of_cpu(0);
 437
 438		orig_mask = bind_to_node(node);
 439		bind_to_memnode(node);
 440	}
 441
 442	bytes = bytes0 + HPSIZE;
 443
 444	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 445	BUG_ON(buf == (void *)-1);
 446
 447	if (map_flags == MAP_PRIVATE) {
 448		if (thp > 0) {
 449			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 450			if (ret && !g->print_once) {
 451				g->print_once = 1;
 452				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 453			}
 454		}
 455		if (thp < 0) {
 456			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 457			if (ret && !g->print_once) {
 458				g->print_once = 1;
 459				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 460			}
 461		}
 462	}
 463
 464	if (init_zero) {
 465		bzero(buf, bytes);
 466	} else {
 467		/* Initialize random contents, different in each word: */
 468		if (init_random) {
 469			u64 *wbuf = (void *)buf;
 470			long off = rand();
 471			long i;
 472
 473			for (i = 0; i < bytes/8; i++)
 474				wbuf[i] = i + off;
 475		}
 476	}
 477
 478	/* Align to 2MB boundary: */
 479	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 480
 481	/* Restore affinity: */
 482	if (init_cpu0) {
 483		bind_to_cpumask(orig_mask);
 484		CPU_FREE(orig_mask);
 485		mempol_restore();
 486	}
 487
 488	return buf;
 489}
 490
 491static void free_data(void *data, ssize_t bytes)
 492{
 493	int ret;
 494
 495	if (!data)
 496		return;
 497
 498	ret = munmap(data, bytes);
 499	BUG_ON(ret);
 500}
 501
 502/*
 503 * Create a shared memory buffer that can be shared between processes, zeroed:
 504 */
 505static void * zalloc_shared_data(ssize_t bytes)
 506{
 507	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 508}
 509
 510/*
 511 * Create a shared memory buffer that can be shared between processes:
 512 */
 513static void * setup_shared_data(ssize_t bytes)
 514{
 515	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 516}
 517
 518/*
 519 * Allocate process-local memory - this will either be shared between
 520 * threads of this process, or only be accessed by this thread:
 521 */
 522static void * setup_private_data(ssize_t bytes)
 523{
 524	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 525}
 526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 527static int parse_cpu_list(const char *arg)
 528{
 529	p0.cpu_list_str = strdup(arg);
 530
 531	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 532
 533	return 0;
 534}
 535
 536static int parse_setup_cpu_list(void)
 537{
 538	struct thread_data *td;
 539	char *str0, *str;
 540	int t;
 541
 542	if (!g->p.cpu_list_str)
 543		return 0;
 544
 545	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 546
 547	str0 = str = strdup(g->p.cpu_list_str);
 548	t = 0;
 549
 550	BUG_ON(!str);
 551
 552	tprintf("# binding tasks to CPUs:\n");
 553	tprintf("#  ");
 554
 555	while (true) {
 556		int bind_cpu, bind_cpu_0, bind_cpu_1;
 557		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 558		int bind_len;
 559		int step;
 560		int mul;
 561
 562		tok = strsep(&str, ",");
 563		if (!tok)
 564			break;
 565
 566		tok_end = strstr(tok, "-");
 567
 568		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 569		if (!tok_end) {
 570			/* Single CPU specified: */
 571			bind_cpu_0 = bind_cpu_1 = atol(tok);
 572		} else {
 573			/* CPU range specified (for example: "5-11"): */
 574			bind_cpu_0 = atol(tok);
 575			bind_cpu_1 = atol(tok_end + 1);
 576		}
 577
 578		step = 1;
 579		tok_step = strstr(tok, "#");
 580		if (tok_step) {
 581			step = atol(tok_step + 1);
 582			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 583		}
 584
 585		/*
 586		 * Mask length.
 587		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 588		 * where the _4 means the next 4 CPUs are allowed.
 589		 */
 590		bind_len = 1;
 591		tok_len = strstr(tok, "_");
 592		if (tok_len) {
 593			bind_len = atol(tok_len + 1);
 594			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 595		}
 596
 597		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 598		mul = 1;
 599		tok_mul = strstr(tok, "x");
 600		if (tok_mul) {
 601			mul = atol(tok_mul + 1);
 602			BUG_ON(mul <= 0);
 603		}
 604
 605		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 606
 607		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 608			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 609			return -1;
 610		}
 611
 612		if (is_cpu_online(bind_cpu_0) != 1 || is_cpu_online(bind_cpu_1) != 1) {
 613			printf("\nTest not applicable, bind_cpu_0 or bind_cpu_1 is offline\n");
 614			return -1;
 615		}
 616
 617		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 618		BUG_ON(bind_cpu_0 > bind_cpu_1);
 619
 620		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 621			size_t size = CPU_ALLOC_SIZE(g->p.nr_cpus);
 622			int i;
 623
 624			for (i = 0; i < mul; i++) {
 625				int cpu;
 626
 627				if (t >= g->p.nr_tasks) {
 628					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 629					goto out;
 630				}
 631				td = g->threads + t;
 632
 633				if (t)
 634					tprintf(",");
 635				if (bind_len > 1) {
 636					tprintf("%2d/%d", bind_cpu, bind_len);
 637				} else {
 638					tprintf("%2d", bind_cpu);
 639				}
 640
 641				td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
 642				BUG_ON(!td->bind_cpumask);
 643				CPU_ZERO_S(size, td->bind_cpumask);
 644				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 645					if (cpu < 0 || cpu >= g->p.nr_cpus) {
 646						CPU_FREE(td->bind_cpumask);
 647						BUG_ON(-1);
 648					}
 649					CPU_SET_S(cpu, size, td->bind_cpumask);
 650				}
 651				t++;
 652			}
 653		}
 654	}
 655out:
 656
 657	tprintf("\n");
 658
 659	if (t < g->p.nr_tasks)
 660		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 661
 662	free(str0);
 663	return 0;
 664}
 665
 666static int parse_cpus_opt(const struct option *opt __maybe_unused,
 667			  const char *arg, int unset __maybe_unused)
 668{
 669	if (!arg)
 670		return -1;
 671
 672	return parse_cpu_list(arg);
 673}
 674
 675static int parse_node_list(const char *arg)
 676{
 677	p0.node_list_str = strdup(arg);
 678
 679	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 680
 681	return 0;
 682}
 683
 684static int parse_setup_node_list(void)
 685{
 686	struct thread_data *td;
 687	char *str0, *str;
 688	int t;
 689
 690	if (!g->p.node_list_str)
 691		return 0;
 692
 693	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 694
 695	str0 = str = strdup(g->p.node_list_str);
 696	t = 0;
 697
 698	BUG_ON(!str);
 699
 700	tprintf("# binding tasks to NODEs:\n");
 701	tprintf("# ");
 702
 703	while (true) {
 704		int bind_node, bind_node_0, bind_node_1;
 705		char *tok, *tok_end, *tok_step, *tok_mul;
 706		int step;
 707		int mul;
 708
 709		tok = strsep(&str, ",");
 710		if (!tok)
 711			break;
 712
 713		tok_end = strstr(tok, "-");
 714
 715		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 716		if (!tok_end) {
 717			/* Single NODE specified: */
 718			bind_node_0 = bind_node_1 = atol(tok);
 719		} else {
 720			/* NODE range specified (for example: "5-11"): */
 721			bind_node_0 = atol(tok);
 722			bind_node_1 = atol(tok_end + 1);
 723		}
 724
 725		step = 1;
 726		tok_step = strstr(tok, "#");
 727		if (tok_step) {
 728			step = atol(tok_step + 1);
 729			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 730		}
 731
 732		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 733		mul = 1;
 734		tok_mul = strstr(tok, "x");
 735		if (tok_mul) {
 736			mul = atol(tok_mul + 1);
 737			BUG_ON(mul <= 0);
 738		}
 739
 740		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 741
 742		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 743			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 744			return -1;
 745		}
 746
 747		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 748		BUG_ON(bind_node_0 > bind_node_1);
 749
 750		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 751			int i;
 752
 753			for (i = 0; i < mul; i++) {
 754				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 755					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 756					goto out;
 757				}
 758				td = g->threads + t;
 759
 760				if (!t)
 761					tprintf(" %2d", bind_node);
 762				else
 763					tprintf(",%2d", bind_node);
 764
 765				td->bind_node = bind_node;
 766				t++;
 767			}
 768		}
 769	}
 770out:
 771
 772	tprintf("\n");
 773
 774	if (t < g->p.nr_tasks)
 775		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 776
 777	free(str0);
 778	return 0;
 779}
 780
 781static int parse_nodes_opt(const struct option *opt __maybe_unused,
 782			  const char *arg, int unset __maybe_unused)
 783{
 784	if (!arg)
 785		return -1;
 786
 787	return parse_node_list(arg);
 788}
 789
 
 
 790static inline uint32_t lfsr_32(uint32_t lfsr)
 791{
 792	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 793	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 794}
 795
 796/*
 797 * Make sure there's real data dependency to RAM (when read
 798 * accesses are enabled), so the compiler, the CPU and the
 799 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 800 * accesses:
 801 */
 802static inline u64 access_data(u64 *data, u64 val)
 803{
 804	if (g->p.data_reads)
 805		val += *data;
 806	if (g->p.data_writes)
 807		*data = val + 1;
 808	return val;
 809}
 810
 811/*
 812 * The worker process does two types of work, a forwards going
 813 * loop and a backwards going loop.
 814 *
 815 * We do this so that on multiprocessor systems we do not create
 816 * a 'train' of processing, with highly synchronized processes,
 817 * skewing the whole benchmark.
 818 */
 819static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 820{
 821	long words = bytes/sizeof(u64);
 822	u64 *data = (void *)__data;
 823	long chunk_0, chunk_1;
 824	u64 *d0, *d, *d1;
 825	long off;
 826	long i;
 827
 828	BUG_ON(!data && words);
 829	BUG_ON(data && !words);
 830
 831	if (!data)
 832		return val;
 833
 834	/* Very simple memset() work variant: */
 835	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 836		bzero(data, bytes);
 837		return val;
 838	}
 839
 840	/* Spread out by PID/TID nr and by loop nr: */
 841	chunk_0 = words/nr_max;
 842	chunk_1 = words/g->p.nr_loops;
 843	off = nr*chunk_0 + loop*chunk_1;
 844
 845	while (off >= words)
 846		off -= words;
 847
 848	if (g->p.data_rand_walk) {
 849		u32 lfsr = nr + loop + val;
 850		long j;
 851
 852		for (i = 0; i < words/1024; i++) {
 853			long start, end;
 854
 855			lfsr = lfsr_32(lfsr);
 856
 857			start = lfsr % words;
 858			end = min(start + 1024, words-1);
 859
 860			if (g->p.data_zero_memset) {
 861				bzero(data + start, (end-start) * sizeof(u64));
 862			} else {
 863				for (j = start; j < end; j++)
 864					val = access_data(data + j, val);
 865			}
 866		}
 867	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 868		/* Process data forwards: */
 869
 870		d0 = data + off;
 871		d  = data + off + 1;
 872		d1 = data + words;
 873
 874		for (;;) {
 875			if (unlikely(d >= d1))
 876				d = data;
 877			if (unlikely(d == d0))
 878				break;
 879
 880			val = access_data(d, val);
 881
 882			d++;
 883		}
 884	} else {
 885		/* Process data backwards: */
 886
 887		d0 = data + off;
 888		d  = data + off - 1;
 889		d1 = data + words;
 890
 891		for (;;) {
 892			if (unlikely(d < data))
 893				d = data + words-1;
 894			if (unlikely(d == d0))
 895				break;
 896
 897			val = access_data(d, val);
 898
 899			d--;
 900		}
 901	}
 902
 903	return val;
 904}
 905
 906static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 907{
 908	unsigned int cpu;
 909
 910	cpu = sched_getcpu();
 911
 912	g->threads[task_nr].curr_cpu = cpu;
 913	prctl(0, bytes_worked);
 914}
 915
 916/*
 917 * Count the number of nodes a process's threads
 918 * are spread out on.
 919 *
 920 * A count of 1 means that the process is compressed
 921 * to a single node. A count of g->p.nr_nodes means it's
 922 * spread out on the whole system.
 923 */
 924static int count_process_nodes(int process_nr)
 925{
 926	char *node_present;
 927	int nodes;
 928	int n, t;
 929
 930	node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
 931	BUG_ON(!node_present);
 932	for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
 933		node_present[nodes] = 0;
 934
 935	for (t = 0; t < g->p.nr_threads; t++) {
 936		struct thread_data *td;
 937		int task_nr;
 938		int node;
 939
 940		task_nr = process_nr*g->p.nr_threads + t;
 941		td = g->threads + task_nr;
 942
 943		node = numa_node_of_cpu(td->curr_cpu);
 944		if (node < 0) /* curr_cpu was likely still -1 */ {
 945			free(node_present);
 946			return 0;
 947		}
 948
 949		node_present[node] = 1;
 950	}
 951
 952	nodes = 0;
 953
 954	for (n = 0; n < g->p.nr_nodes; n++)
 955		nodes += node_present[n];
 956
 957	free(node_present);
 958	return nodes;
 959}
 960
 961/*
 962 * Count the number of distinct process-threads a node contains.
 963 *
 964 * A count of 1 means that the node contains only a single
 965 * process. If all nodes on the system contain at most one
 966 * process then we are well-converged.
 967 */
 968static int count_node_processes(int node)
 969{
 970	int processes = 0;
 971	int t, p;
 972
 973	for (p = 0; p < g->p.nr_proc; p++) {
 974		for (t = 0; t < g->p.nr_threads; t++) {
 975			struct thread_data *td;
 976			int task_nr;
 977			int n;
 978
 979			task_nr = p*g->p.nr_threads + t;
 980			td = g->threads + task_nr;
 981
 982			n = numa_node_of_cpu(td->curr_cpu);
 983			if (n == node) {
 984				processes++;
 985				break;
 986			}
 987		}
 988	}
 989
 990	return processes;
 991}
 992
 993static void calc_convergence_compression(int *strong)
 994{
 995	unsigned int nodes_min, nodes_max;
 996	int p;
 997
 998	nodes_min = -1;
 999	nodes_max =  0;
1000
1001	for (p = 0; p < g->p.nr_proc; p++) {
1002		unsigned int nodes = count_process_nodes(p);
1003
1004		if (!nodes) {
1005			*strong = 0;
1006			return;
1007		}
1008
1009		nodes_min = min(nodes, nodes_min);
1010		nodes_max = max(nodes, nodes_max);
1011	}
1012
1013	/* Strong convergence: all threads compress on a single node: */
1014	if (nodes_min == 1 && nodes_max == 1) {
1015		*strong = 1;
1016	} else {
1017		*strong = 0;
1018		tprintf(" {%d-%d}", nodes_min, nodes_max);
1019	}
1020}
1021
1022static void calc_convergence(double runtime_ns_max, double *convergence)
1023{
1024	unsigned int loops_done_min, loops_done_max;
1025	int process_groups;
1026	int *nodes;
1027	int distance;
1028	int nr_min;
1029	int nr_max;
1030	int strong;
1031	int sum;
1032	int nr;
1033	int node;
1034	int cpu;
1035	int t;
1036
1037	if (!g->p.show_convergence && !g->p.measure_convergence)
1038		return;
1039
1040	nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1041	BUG_ON(!nodes);
1042	for (node = 0; node < g->p.nr_nodes; node++)
1043		nodes[node] = 0;
1044
1045	loops_done_min = -1;
1046	loops_done_max = 0;
1047
1048	for (t = 0; t < g->p.nr_tasks; t++) {
1049		struct thread_data *td = g->threads + t;
1050		unsigned int loops_done;
1051
1052		cpu = td->curr_cpu;
1053
1054		/* Not all threads have written it yet: */
1055		if (cpu < 0)
1056			continue;
1057
1058		node = numa_node_of_cpu(cpu);
1059
1060		nodes[node]++;
1061
1062		loops_done = td->loops_done;
1063		loops_done_min = min(loops_done, loops_done_min);
1064		loops_done_max = max(loops_done, loops_done_max);
1065	}
1066
1067	nr_max = 0;
1068	nr_min = g->p.nr_tasks;
1069	sum = 0;
1070
1071	for (node = 0; node < g->p.nr_nodes; node++) {
1072		if (!is_node_present(node))
1073			continue;
1074		nr = nodes[node];
1075		nr_min = min(nr, nr_min);
1076		nr_max = max(nr, nr_max);
1077		sum += nr;
1078	}
1079	BUG_ON(nr_min > nr_max);
1080
1081	BUG_ON(sum > g->p.nr_tasks);
1082
1083	if (0 && (sum < g->p.nr_tasks)) {
1084		free(nodes);
1085		return;
1086	}
1087
1088	/*
1089	 * Count the number of distinct process groups present
1090	 * on nodes - when we are converged this will decrease
1091	 * to g->p.nr_proc:
1092	 */
1093	process_groups = 0;
1094
1095	for (node = 0; node < g->p.nr_nodes; node++) {
1096		int processes;
1097
1098		if (!is_node_present(node))
1099			continue;
1100		processes = count_node_processes(node);
1101		nr = nodes[node];
1102		tprintf(" %2d/%-2d", nr, processes);
1103
1104		process_groups += processes;
1105	}
1106
1107	distance = nr_max - nr_min;
1108
1109	tprintf(" [%2d/%-2d]", distance, process_groups);
1110
1111	tprintf(" l:%3d-%-3d (%3d)",
1112		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1113
1114	if (loops_done_min && loops_done_max) {
1115		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1116
1117		tprintf(" [%4.1f%%]", skew * 100.0);
1118	}
1119
1120	calc_convergence_compression(&strong);
1121
1122	if (strong && process_groups == g->p.nr_proc) {
1123		if (!*convergence) {
1124			*convergence = runtime_ns_max;
1125			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1126			if (g->p.measure_convergence) {
1127				g->all_converged = true;
1128				g->stop_work = true;
1129			}
1130		}
1131	} else {
1132		if (*convergence) {
1133			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1134			*convergence = 0;
1135		}
1136		tprintf("\n");
1137	}
1138
1139	free(nodes);
1140}
1141
1142static void show_summary(double runtime_ns_max, int l, double *convergence)
1143{
1144	tprintf("\r #  %5.1f%%  [%.1f mins]",
1145		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1146
1147	calc_convergence(runtime_ns_max, convergence);
1148
1149	if (g->p.show_details >= 0)
1150		fflush(stdout);
1151}
1152
1153static void *worker_thread(void *__tdata)
1154{
1155	struct thread_data *td = __tdata;
1156	struct timeval start0, start, stop, diff;
1157	int process_nr = td->process_nr;
1158	int thread_nr = td->thread_nr;
1159	unsigned long last_perturbance;
1160	int task_nr = td->task_nr;
1161	int details = g->p.show_details;
1162	int first_task, last_task;
1163	double convergence = 0;
1164	u64 val = td->val;
1165	double runtime_ns_max;
1166	u8 *global_data;
1167	u8 *process_data;
1168	u8 *thread_data;
1169	u64 bytes_done, secs;
1170	long work_done;
1171	u32 l;
1172	struct rusage rusage;
1173
1174	bind_to_cpumask(td->bind_cpumask);
1175	bind_to_memnode(td->bind_node);
1176
1177	set_taskname("thread %d/%d", process_nr, thread_nr);
1178
1179	global_data = g->data;
1180	process_data = td->process_data;
1181	thread_data = setup_private_data(g->p.bytes_thread);
1182
1183	bytes_done = 0;
1184
1185	last_task = 0;
1186	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1187		last_task = 1;
1188
1189	first_task = 0;
1190	if (process_nr == 0 && thread_nr == 0)
1191		first_task = 1;
1192
1193	if (details >= 2) {
1194		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1195			process_nr, thread_nr, global_data, process_data, thread_data);
1196	}
1197
1198	if (g->p.serialize_startup) {
1199		mutex_lock(&g->startup_mutex);
1200		g->nr_tasks_started++;
1201		/* The last thread wakes the main process. */
1202		if (g->nr_tasks_started == g->p.nr_tasks)
1203			cond_signal(&g->startup_cond);
1204
1205		mutex_unlock(&g->startup_mutex);
1206
1207		/* Here we will wait for the main process to start us all at once: */
1208		mutex_lock(&g->start_work_mutex);
1209		g->start_work = false;
1210		g->nr_tasks_working++;
1211		while (!g->start_work)
1212			cond_wait(&g->start_work_cond, &g->start_work_mutex);
1213
1214		mutex_unlock(&g->start_work_mutex);
1215	}
1216
1217	gettimeofday(&start0, NULL);
1218
1219	start = stop = start0;
1220	last_perturbance = start.tv_sec;
1221
1222	for (l = 0; l < g->p.nr_loops; l++) {
1223		start = stop;
1224
1225		if (g->stop_work)
1226			break;
1227
1228		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1229		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1230		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1231
1232		if (g->p.sleep_usecs) {
1233			mutex_lock(td->process_lock);
1234			usleep(g->p.sleep_usecs);
1235			mutex_unlock(td->process_lock);
1236		}
1237		/*
1238		 * Amount of work to be done under a process-global lock:
1239		 */
1240		if (g->p.bytes_process_locked) {
1241			mutex_lock(td->process_lock);
1242			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1243			mutex_unlock(td->process_lock);
1244		}
1245
1246		work_done = g->p.bytes_global + g->p.bytes_process +
1247			    g->p.bytes_process_locked + g->p.bytes_thread;
1248
1249		update_curr_cpu(task_nr, work_done);
1250		bytes_done += work_done;
1251
1252		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1253			continue;
1254
1255		td->loops_done = l;
1256
1257		gettimeofday(&stop, NULL);
1258
1259		/* Check whether our max runtime timed out: */
1260		if (g->p.nr_secs) {
1261			timersub(&stop, &start0, &diff);
1262			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1263				g->stop_work = true;
1264				break;
1265			}
1266		}
1267
1268		/* Update the summary at most once per second: */
1269		if (start.tv_sec == stop.tv_sec)
1270			continue;
1271
1272		/*
1273		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1274		 * by migrating to CPU#0:
1275		 */
1276		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1277			cpu_set_t *orig_mask;
1278			int target_cpu;
1279			int this_cpu;
1280
1281			last_perturbance = stop.tv_sec;
1282
1283			/*
1284			 * Depending on where we are running, move into
1285			 * the other half of the system, to create some
1286			 * real disturbance:
1287			 */
1288			this_cpu = g->threads[task_nr].curr_cpu;
1289			if (this_cpu < g->p.nr_cpus/2)
1290				target_cpu = g->p.nr_cpus-1;
1291			else
1292				target_cpu = 0;
1293
1294			orig_mask = bind_to_cpu(target_cpu);
1295
1296			/* Here we are running on the target CPU already */
1297			if (details >= 1)
1298				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1299
1300			bind_to_cpumask(orig_mask);
1301			CPU_FREE(orig_mask);
1302		}
1303
1304		if (details >= 3) {
1305			timersub(&stop, &start, &diff);
1306			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1307			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1308
1309			if (details >= 0) {
1310				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1311					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1312			}
1313			fflush(stdout);
1314		}
1315		if (!last_task)
1316			continue;
1317
1318		timersub(&stop, &start0, &diff);
1319		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1320		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1321
1322		show_summary(runtime_ns_max, l, &convergence);
1323	}
1324
1325	gettimeofday(&stop, NULL);
1326	timersub(&stop, &start0, &diff);
1327	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1328	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1329	secs = td->runtime_ns / NSEC_PER_SEC;
1330	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1331
1332	getrusage(RUSAGE_THREAD, &rusage);
1333	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1334	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1335	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1336	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1337
1338	free_data(thread_data, g->p.bytes_thread);
1339
1340	mutex_lock(&g->stop_work_mutex);
1341	g->bytes_done += bytes_done;
1342	mutex_unlock(&g->stop_work_mutex);
1343
1344	return NULL;
1345}
1346
1347/*
1348 * A worker process starts a couple of threads:
1349 */
1350static void worker_process(int process_nr)
1351{
1352	struct mutex process_lock;
1353	struct thread_data *td;
1354	pthread_t *pthreads;
1355	u8 *process_data;
1356	int task_nr;
1357	int ret;
1358	int t;
1359
1360	mutex_init(&process_lock);
1361	set_taskname("process %d", process_nr);
1362
1363	/*
1364	 * Pick up the memory policy and the CPU binding of our first thread,
1365	 * so that we initialize memory accordingly:
1366	 */
1367	task_nr = process_nr*g->p.nr_threads;
1368	td = g->threads + task_nr;
1369
1370	bind_to_memnode(td->bind_node);
1371	bind_to_cpumask(td->bind_cpumask);
1372
1373	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1374	process_data = setup_private_data(g->p.bytes_process);
1375
1376	if (g->p.show_details >= 3) {
1377		printf(" # process %2d global mem: %p, process mem: %p\n",
1378			process_nr, g->data, process_data);
1379	}
1380
1381	for (t = 0; t < g->p.nr_threads; t++) {
1382		task_nr = process_nr*g->p.nr_threads + t;
1383		td = g->threads + task_nr;
1384
1385		td->process_data = process_data;
1386		td->process_nr   = process_nr;
1387		td->thread_nr    = t;
1388		td->task_nr	 = task_nr;
1389		td->val          = rand();
1390		td->curr_cpu	 = -1;
1391		td->process_lock = &process_lock;
1392
1393		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1394		BUG_ON(ret);
1395	}
1396
1397	for (t = 0; t < g->p.nr_threads; t++) {
1398                ret = pthread_join(pthreads[t], NULL);
1399		BUG_ON(ret);
1400	}
1401
1402	free_data(process_data, g->p.bytes_process);
1403	free(pthreads);
1404}
1405
1406static void print_summary(void)
1407{
1408	if (g->p.show_details < 0)
1409		return;
1410
1411	printf("\n ###\n");
1412	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1413		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1414	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1415			g->p.nr_loops, g->p.bytes_global/1024/1024);
1416	printf(" #      %5dx %5ldMB process shared mem operations\n",
1417			g->p.nr_loops, g->p.bytes_process/1024/1024);
1418	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1419			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1420
1421	printf(" ###\n");
1422
1423	printf("\n ###\n"); fflush(stdout);
1424}
1425
1426static void init_thread_data(void)
1427{
1428	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1429	int t;
1430
1431	g->threads = zalloc_shared_data(size);
1432
1433	for (t = 0; t < g->p.nr_tasks; t++) {
1434		struct thread_data *td = g->threads + t;
1435		size_t cpuset_size = CPU_ALLOC_SIZE(g->p.nr_cpus);
1436		int cpu;
1437
1438		/* Allow all nodes by default: */
1439		td->bind_node = NUMA_NO_NODE;
1440
1441		/* Allow all CPUs by default: */
1442		td->bind_cpumask = CPU_ALLOC(g->p.nr_cpus);
1443		BUG_ON(!td->bind_cpumask);
1444		CPU_ZERO_S(cpuset_size, td->bind_cpumask);
1445		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1446			CPU_SET_S(cpu, cpuset_size, td->bind_cpumask);
1447	}
1448}
1449
1450static void deinit_thread_data(void)
1451{
1452	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1453	int t;
1454
1455	/* Free the bind_cpumask allocated for thread_data */
1456	for (t = 0; t < g->p.nr_tasks; t++) {
1457		struct thread_data *td = g->threads + t;
1458		CPU_FREE(td->bind_cpumask);
1459	}
1460
1461	free_data(g->threads, size);
1462}
1463
1464static int init(void)
1465{
1466	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1467
1468	/* Copy over options: */
1469	g->p = p0;
1470
1471	g->p.nr_cpus = numa_num_configured_cpus();
1472
1473	g->p.nr_nodes = numa_max_node() + 1;
1474
1475	/* char array in count_process_nodes(): */
1476	BUG_ON(g->p.nr_nodes < 0);
1477
1478	if (quiet && !g->p.show_details)
1479		g->p.show_details = -1;
1480
1481	/* Some memory should be specified: */
1482	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1483		return -1;
1484
1485	if (g->p.mb_global_str) {
1486		g->p.mb_global = atof(g->p.mb_global_str);
1487		BUG_ON(g->p.mb_global < 0);
1488	}
1489
1490	if (g->p.mb_proc_str) {
1491		g->p.mb_proc = atof(g->p.mb_proc_str);
1492		BUG_ON(g->p.mb_proc < 0);
1493	}
1494
1495	if (g->p.mb_proc_locked_str) {
1496		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1497		BUG_ON(g->p.mb_proc_locked < 0);
1498		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1499	}
1500
1501	if (g->p.mb_thread_str) {
1502		g->p.mb_thread = atof(g->p.mb_thread_str);
1503		BUG_ON(g->p.mb_thread < 0);
1504	}
1505
1506	BUG_ON(g->p.nr_threads <= 0);
1507	BUG_ON(g->p.nr_proc <= 0);
1508
1509	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1510
1511	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1512	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1513	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1514	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1515
1516	g->data = setup_shared_data(g->p.bytes_global);
1517
1518	/* Startup serialization: */
1519	mutex_init_pshared(&g->start_work_mutex);
1520	cond_init_pshared(&g->start_work_cond);
1521	mutex_init_pshared(&g->startup_mutex);
1522	cond_init_pshared(&g->startup_cond);
1523	mutex_init_pshared(&g->stop_work_mutex);
1524
1525	init_thread_data();
1526
1527	tprintf("#\n");
1528	if (parse_setup_cpu_list() || parse_setup_node_list())
1529		return -1;
1530	tprintf("#\n");
1531
1532	print_summary();
1533
1534	return 0;
1535}
1536
1537static void deinit(void)
1538{
1539	free_data(g->data, g->p.bytes_global);
1540	g->data = NULL;
1541
1542	deinit_thread_data();
1543
1544	free_data(g, sizeof(*g));
1545	g = NULL;
1546}
1547
1548/*
1549 * Print a short or long result, depending on the verbosity setting:
1550 */
1551static void print_res(const char *name, double val,
1552		      const char *txt_unit, const char *txt_short, const char *txt_long)
1553{
1554	if (!name)
1555		name = "main,";
1556
1557	if (!quiet)
1558		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1559	else
1560		printf(" %14.3f %s\n", val, txt_long);
1561}
1562
1563static int __bench_numa(const char *name)
1564{
1565	struct timeval start, stop, diff;
1566	u64 runtime_ns_min, runtime_ns_sum;
1567	pid_t *pids, pid, wpid;
1568	double delta_runtime;
1569	double runtime_avg;
1570	double runtime_sec_max;
1571	double runtime_sec_min;
1572	int wait_stat;
1573	double bytes;
1574	int i, t, p;
1575
1576	if (init())
1577		return -1;
1578
1579	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1580	pid = -1;
1581
1582	if (g->p.serialize_startup) {
1583		tprintf(" #\n");
1584		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1585	}
1586
1587	gettimeofday(&start, NULL);
1588
1589	for (i = 0; i < g->p.nr_proc; i++) {
1590		pid = fork();
1591		dprintf(" # process %2d: PID %d\n", i, pid);
1592
1593		BUG_ON(pid < 0);
1594		if (!pid) {
1595			/* Child process: */
1596			worker_process(i);
1597
1598			exit(0);
1599		}
1600		pids[i] = pid;
1601
1602	}
1603
1604	if (g->p.serialize_startup) {
1605		bool threads_ready = false;
1606		double startup_sec;
1607
1608		/*
1609		 * Wait for all the threads to start up. The last thread will
1610		 * signal this process.
1611		 */
1612		mutex_lock(&g->startup_mutex);
1613		while (g->nr_tasks_started != g->p.nr_tasks)
1614			cond_wait(&g->startup_cond, &g->startup_mutex);
1615
1616		mutex_unlock(&g->startup_mutex);
1617
1618		/* Wait for all threads to be at the start_work_cond. */
1619		while (!threads_ready) {
1620			mutex_lock(&g->start_work_mutex);
1621			threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1622			mutex_unlock(&g->start_work_mutex);
1623			if (!threads_ready)
1624				usleep(1);
1625		}
1626
1627		gettimeofday(&stop, NULL);
1628
1629		timersub(&stop, &start, &diff);
1630
1631		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1632		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1633		startup_sec /= NSEC_PER_SEC;
1634
1635		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1636		tprintf(" #\n");
1637
1638		start = stop;
1639		/* Start all threads running. */
1640		mutex_lock(&g->start_work_mutex);
1641		g->start_work = true;
1642		mutex_unlock(&g->start_work_mutex);
1643		cond_broadcast(&g->start_work_cond);
1644	} else {
1645		gettimeofday(&start, NULL);
1646	}
1647
1648	/* Parent process: */
1649
1650
1651	for (i = 0; i < g->p.nr_proc; i++) {
1652		wpid = waitpid(pids[i], &wait_stat, 0);
1653		BUG_ON(wpid < 0);
1654		BUG_ON(!WIFEXITED(wait_stat));
1655
1656	}
1657
1658	runtime_ns_sum = 0;
1659	runtime_ns_min = -1LL;
1660
1661	for (t = 0; t < g->p.nr_tasks; t++) {
1662		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1663
1664		runtime_ns_sum += thread_runtime_ns;
1665		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1666	}
1667
1668	gettimeofday(&stop, NULL);
1669	timersub(&stop, &start, &diff);
1670
1671	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1672
1673	tprintf("\n ###\n");
1674	tprintf("\n");
1675
1676	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1677	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1678	runtime_sec_max /= NSEC_PER_SEC;
1679
1680	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1681
1682	bytes = g->bytes_done;
1683	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1684
1685	if (g->p.measure_convergence) {
1686		print_res(name, runtime_sec_max,
1687			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1688	}
1689
1690	print_res(name, runtime_sec_max,
1691		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1692
1693	print_res(name, runtime_sec_min,
1694		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1695
1696	print_res(name, runtime_avg,
1697		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1698
1699	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1700	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1701		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1702
1703	print_res(name, bytes / g->p.nr_tasks / 1e9,
1704		"GB,", "data/thread",		"GB data processed, per thread");
1705
1706	print_res(name, bytes / 1e9,
1707		"GB,", "data-total",		"GB data processed, total");
1708
1709	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1710		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1711
1712	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1713		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1714
1715	print_res(name, bytes / runtime_sec_max / 1e9,
1716		"GB/sec,", "total-speed",	"GB/sec total speed");
1717
1718	if (g->p.show_details >= 2) {
1719		char tname[14 + 2 * 11 + 1];
1720		struct thread_data *td;
1721		for (p = 0; p < g->p.nr_proc; p++) {
1722			for (t = 0; t < g->p.nr_threads; t++) {
1723				memset(tname, 0, sizeof(tname));
1724				td = g->threads + p*g->p.nr_threads + t;
1725				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1726				print_res(tname, td->speed_gbs,
1727					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1728				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1729					"secs",	"thread-system-time", "system CPU time/thread");
1730				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1731					"secs",	"thread-user-time", "user CPU time/thread");
1732			}
1733		}
1734	}
1735
1736	free(pids);
1737
1738	deinit();
1739
1740	return 0;
1741}
1742
1743#define MAX_ARGS 50
1744
1745static int command_size(const char **argv)
1746{
1747	int size = 0;
1748
1749	while (*argv) {
1750		size++;
1751		argv++;
1752	}
1753
1754	BUG_ON(size >= MAX_ARGS);
1755
1756	return size;
1757}
1758
1759static void init_params(struct params *p, const char *name, int argc, const char **argv)
1760{
1761	int i;
1762
1763	printf("\n # Running %s \"perf bench numa", name);
1764
1765	for (i = 0; i < argc; i++)
1766		printf(" %s", argv[i]);
1767
1768	printf("\"\n");
1769
1770	memset(p, 0, sizeof(*p));
1771
1772	/* Initialize nonzero defaults: */
1773
1774	p->serialize_startup		= 1;
1775	p->data_reads			= true;
1776	p->data_writes			= true;
1777	p->data_backwards		= true;
1778	p->data_rand_walk		= true;
1779	p->nr_loops			= -1;
1780	p->init_random			= true;
1781	p->mb_global_str		= "1";
1782	p->nr_proc			= 1;
1783	p->nr_threads			= 1;
1784	p->nr_secs			= 5;
1785	p->run_all			= argc == 1;
1786}
1787
1788static int run_bench_numa(const char *name, const char **argv)
1789{
1790	int argc = command_size(argv);
1791
1792	init_params(&p0, name, argc, argv);
1793	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1794	if (argc)
1795		goto err;
1796
1797	if (__bench_numa(name))
1798		goto err;
1799
1800	return 0;
1801
1802err:
1803	return -1;
1804}
1805
1806#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1807#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1808
1809#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1810#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1811
1812#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1813#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1814
1815/*
1816 * The built-in test-suite executed by "perf bench numa -a".
1817 *
1818 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1819 */
1820static const char *tests[][MAX_ARGS] = {
1821   /* Basic single-stream NUMA bandwidth measurements: */
1822   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1823			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1824   { "RAM-bw-local-NOTHP,",
1825			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1826			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1827   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1828			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1829
1830   /* 2-stream NUMA bandwidth measurements: */
1831   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1832			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1833   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1834		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1835
1836   /* Cross-stream NUMA bandwidth measurement: */
1837   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1838		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1839
1840   /* Convergence latency measurements: */
1841   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1842   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1843   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1844   { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1845   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1846   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1847   { " 4x4-convergence-NOTHP,",
1848			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1849   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1850   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1851   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1852   { " 8x4-convergence-NOTHP,",
1853			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1854   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1855   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1856   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1857   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1858   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1859
1860   /* Various NUMA process/thread layout bandwidth measurements: */
1861   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1862   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1863   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1864   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1865   { " 8x1-bw-process-NOTHP,",
1866			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1867   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1868
1869   { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1870   { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1871   { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1872   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1873
1874   { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1875   { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1876   { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1877   { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1878   { " 4x8-bw-process-NOTHP,",
1879			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1880   { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1881   { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1882
1883   { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1884   { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1885
1886   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1887   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1888   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1889   { "numa01-bw-thread-NOTHP,",
1890			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1891};
1892
1893static int bench_all(void)
1894{
1895	int nr = ARRAY_SIZE(tests);
1896	int ret;
1897	int i;
1898
1899	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1900	BUG_ON(ret < 0);
1901
1902	for (i = 0; i < nr; i++) {
1903		run_bench_numa(tests[i][0], tests[i] + 1);
1904	}
1905
1906	printf("\n");
1907
1908	return 0;
1909}
1910
1911int bench_numa(int argc, const char **argv)
1912{
1913	init_params(&p0, "main,", argc, argv);
1914	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1915	if (argc)
1916		goto err;
1917
1918	if (p0.run_all)
1919		return bench_all();
1920
1921	if (__bench_numa(NULL))
1922		goto err;
1923
1924	return 0;
1925
1926err:
1927	usage_with_options(numa_usage, options);
1928	return -1;
1929}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * numa.c
   4 *
   5 * numa: Simulate NUMA-sensitive workload and measure their NUMA performance
   6 */
   7
   8#include <inttypes.h>
   9/* For the CLR_() macros */
  10#include <pthread.h>
  11
  12#include <subcmd/parse-options.h>
  13#include "../util/cloexec.h"
  14
  15#include "bench.h"
  16
  17#include <errno.h>
  18#include <sched.h>
  19#include <stdio.h>
  20#include <assert.h>
 
  21#include <malloc.h>
  22#include <signal.h>
  23#include <stdlib.h>
  24#include <string.h>
  25#include <unistd.h>
  26#include <sys/mman.h>
  27#include <sys/time.h>
  28#include <sys/resource.h>
  29#include <sys/wait.h>
  30#include <sys/prctl.h>
  31#include <sys/types.h>
  32#include <linux/kernel.h>
  33#include <linux/time64.h>
  34#include <linux/numa.h>
  35#include <linux/zalloc.h>
  36
 
 
  37#include <numa.h>
  38#include <numaif.h>
  39
  40#ifndef RUSAGE_THREAD
  41# define RUSAGE_THREAD 1
  42#endif
  43
  44/*
  45 * Regular printout to the terminal, suppressed if -q is specified:
  46 */
  47#define tprintf(x...) do { if (g && g->p.show_details >= 0) printf(x); } while (0)
  48
  49/*
  50 * Debug printf:
  51 */
  52#undef dprintf
  53#define dprintf(x...) do { if (g && g->p.show_details >= 1) printf(x); } while (0)
  54
  55struct thread_data {
  56	int			curr_cpu;
  57	cpu_set_t		bind_cpumask;
  58	int			bind_node;
  59	u8			*process_data;
  60	int			process_nr;
  61	int			thread_nr;
  62	int			task_nr;
  63	unsigned int		loops_done;
  64	u64			val;
  65	u64			runtime_ns;
  66	u64			system_time_ns;
  67	u64			user_time_ns;
  68	double			speed_gbs;
  69	pthread_mutex_t		*process_lock;
  70};
  71
  72/* Parameters set by options: */
  73
  74struct params {
  75	/* Startup synchronization: */
  76	bool			serialize_startup;
  77
  78	/* Task hierarchy: */
  79	int			nr_proc;
  80	int			nr_threads;
  81
  82	/* Working set sizes: */
  83	const char		*mb_global_str;
  84	const char		*mb_proc_str;
  85	const char		*mb_proc_locked_str;
  86	const char		*mb_thread_str;
  87
  88	double			mb_global;
  89	double			mb_proc;
  90	double			mb_proc_locked;
  91	double			mb_thread;
  92
  93	/* Access patterns to the working set: */
  94	bool			data_reads;
  95	bool			data_writes;
  96	bool			data_backwards;
  97	bool			data_zero_memset;
  98	bool			data_rand_walk;
  99	u32			nr_loops;
 100	u32			nr_secs;
 101	u32			sleep_usecs;
 102
 103	/* Working set initialization: */
 104	bool			init_zero;
 105	bool			init_random;
 106	bool			init_cpu0;
 107
 108	/* Misc options: */
 109	int			show_details;
 110	int			run_all;
 111	int			thp;
 112
 113	long			bytes_global;
 114	long			bytes_process;
 115	long			bytes_process_locked;
 116	long			bytes_thread;
 117
 118	int			nr_tasks;
 119	bool			show_quiet;
 120
 121	bool			show_convergence;
 122	bool			measure_convergence;
 123
 124	int			perturb_secs;
 125	int			nr_cpus;
 126	int			nr_nodes;
 127
 128	/* Affinity options -C and -N: */
 129	char			*cpu_list_str;
 130	char			*node_list_str;
 131};
 132
 133
 134/* Global, read-writable area, accessible to all processes and threads: */
 135
 136struct global_info {
 137	u8			*data;
 138
 139	pthread_mutex_t		startup_mutex;
 140	pthread_cond_t		startup_cond;
 141	int			nr_tasks_started;
 142
 143	pthread_mutex_t		start_work_mutex;
 144	pthread_cond_t		start_work_cond;
 145	int			nr_tasks_working;
 146	bool			start_work;
 147
 148	pthread_mutex_t		stop_work_mutex;
 149	u64			bytes_done;
 150
 151	struct thread_data	*threads;
 152
 153	/* Convergence latency measurement: */
 154	bool			all_converged;
 155	bool			stop_work;
 156
 157	int			print_once;
 158
 159	struct params		p;
 160};
 161
 162static struct global_info	*g = NULL;
 163
 164static int parse_cpus_opt(const struct option *opt, const char *arg, int unset);
 165static int parse_nodes_opt(const struct option *opt, const char *arg, int unset);
 166
 167struct params p0;
 168
 169static const struct option options[] = {
 170	OPT_INTEGER('p', "nr_proc"	, &p0.nr_proc,		"number of processes"),
 171	OPT_INTEGER('t', "nr_threads"	, &p0.nr_threads,	"number of threads per process"),
 172
 173	OPT_STRING('G', "mb_global"	, &p0.mb_global_str,	"MB", "global  memory (MBs)"),
 174	OPT_STRING('P', "mb_proc"	, &p0.mb_proc_str,	"MB", "process memory (MBs)"),
 175	OPT_STRING('L', "mb_proc_locked", &p0.mb_proc_locked_str,"MB", "process serialized/locked memory access (MBs), <= process_memory"),
 176	OPT_STRING('T', "mb_thread"	, &p0.mb_thread_str,	"MB", "thread  memory (MBs)"),
 177
 178	OPT_UINTEGER('l', "nr_loops"	, &p0.nr_loops,		"max number of loops to run (default: unlimited)"),
 179	OPT_UINTEGER('s', "nr_secs"	, &p0.nr_secs,		"max number of seconds to run (default: 5 secs)"),
 180	OPT_UINTEGER('u', "usleep"	, &p0.sleep_usecs,	"usecs to sleep per loop iteration"),
 181
 182	OPT_BOOLEAN('R', "data_reads"	, &p0.data_reads,	"access the data via reads (can be mixed with -W)"),
 183	OPT_BOOLEAN('W', "data_writes"	, &p0.data_writes,	"access the data via writes (can be mixed with -R)"),
 184	OPT_BOOLEAN('B', "data_backwards", &p0.data_backwards,	"access the data backwards as well"),
 185	OPT_BOOLEAN('Z', "data_zero_memset", &p0.data_zero_memset,"access the data via glibc bzero only"),
 186	OPT_BOOLEAN('r', "data_rand_walk", &p0.data_rand_walk,	"access the data with random (32bit LFSR) walk"),
 187
 188
 189	OPT_BOOLEAN('z', "init_zero"	, &p0.init_zero,	"bzero the initial allocations"),
 190	OPT_BOOLEAN('I', "init_random"	, &p0.init_random,	"randomize the contents of the initial allocations"),
 191	OPT_BOOLEAN('0', "init_cpu0"	, &p0.init_cpu0,	"do the initial allocations on CPU#0"),
 192	OPT_INTEGER('x', "perturb_secs", &p0.perturb_secs,	"perturb thread 0/0 every X secs, to test convergence stability"),
 193
 194	OPT_INCR   ('d', "show_details"	, &p0.show_details,	"Show details"),
 195	OPT_INCR   ('a', "all"		, &p0.run_all,		"Run all tests in the suite"),
 196	OPT_INTEGER('H', "thp"		, &p0.thp,		"MADV_NOHUGEPAGE < 0 < MADV_HUGEPAGE"),
 197	OPT_BOOLEAN('c', "show_convergence", &p0.show_convergence, "show convergence details, "
 198		    "convergence is reached when each process (all its threads) is running on a single NUMA node."),
 199	OPT_BOOLEAN('m', "measure_convergence",	&p0.measure_convergence, "measure convergence latency"),
 200	OPT_BOOLEAN('q', "quiet"	, &p0.show_quiet,	"quiet mode"),
 
 201	OPT_BOOLEAN('S', "serialize-startup", &p0.serialize_startup,"serialize thread startup"),
 202
 203	/* Special option string parsing callbacks: */
 204        OPT_CALLBACK('C', "cpus", NULL, "cpu[,cpu2,...cpuN]",
 205			"bind the first N tasks to these specific cpus (the rest is unbound)",
 206			parse_cpus_opt),
 207        OPT_CALLBACK('M', "memnodes", NULL, "node[,node2,...nodeN]",
 208			"bind the first N tasks to these specific memory nodes (the rest is unbound)",
 209			parse_nodes_opt),
 210	OPT_END()
 211};
 212
 213static const char * const bench_numa_usage[] = {
 214	"perf bench numa <options>",
 215	NULL
 216};
 217
 218static const char * const numa_usage[] = {
 219	"perf bench numa mem [<options>]",
 220	NULL
 221};
 222
 223/*
 224 * To get number of numa nodes present.
 225 */
 226static int nr_numa_nodes(void)
 227{
 228	int i, nr_nodes = 0;
 229
 230	for (i = 0; i < g->p.nr_nodes; i++) {
 231		if (numa_bitmask_isbitset(numa_nodes_ptr, i))
 232			nr_nodes++;
 233	}
 234
 235	return nr_nodes;
 236}
 237
 238/*
 239 * To check if given numa node is present.
 240 */
 241static int is_node_present(int node)
 242{
 243	return numa_bitmask_isbitset(numa_nodes_ptr, node);
 244}
 245
 246/*
 247 * To check given numa node has cpus.
 248 */
 249static bool node_has_cpus(int node)
 250{
 251	struct bitmask *cpumask = numa_allocate_cpumask();
 252	bool ret = false; /* fall back to nocpus */
 253	int cpu;
 254
 255	BUG_ON(!cpumask);
 256	if (!numa_node_to_cpus(node, cpumask)) {
 257		for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 258			if (numa_bitmask_isbitset(cpumask, cpu)) {
 259				ret = true;
 260				break;
 261			}
 262		}
 263	}
 264	numa_free_cpumask(cpumask);
 265
 266	return ret;
 267}
 268
 269static cpu_set_t bind_to_cpu(int target_cpu)
 270{
 271	cpu_set_t orig_mask, mask;
 272	int ret;
 
 
 
 
 
 
 
 
 
 273
 274	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 275	BUG_ON(ret);
 
 276
 277	CPU_ZERO(&mask);
 278
 279	if (target_cpu == -1) {
 280		int cpu;
 281
 282		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 283			CPU_SET(cpu, &mask);
 284	} else {
 285		BUG_ON(target_cpu < 0 || target_cpu >= g->p.nr_cpus);
 286		CPU_SET(target_cpu, &mask);
 
 
 287	}
 288
 289	ret = sched_setaffinity(0, sizeof(mask), &mask);
 290	BUG_ON(ret);
 291
 292	return orig_mask;
 
 
 
 
 
 
 
 
 
 293}
 294
 295static cpu_set_t bind_to_node(int target_node)
 296{
 297	cpu_set_t orig_mask, mask;
 
 
 298	int cpu;
 299	int ret;
 300
 301	ret = sched_getaffinity(0, sizeof(orig_mask), &orig_mask);
 302	BUG_ON(ret);
 
 
 
 
 
 
 
 
 
 303
 304	CPU_ZERO(&mask);
 305
 306	if (target_node == NUMA_NO_NODE) {
 307		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
 308			CPU_SET(cpu, &mask);
 309	} else {
 310		struct bitmask *cpumask = numa_allocate_cpumask();
 311
 312		BUG_ON(!cpumask);
 
 
 313		if (!numa_node_to_cpus(target_node, cpumask)) {
 314			for (cpu = 0; cpu < (int)cpumask->size; cpu++) {
 315				if (numa_bitmask_isbitset(cpumask, cpu))
 316					CPU_SET(cpu, &mask);
 317			}
 318		}
 319		numa_free_cpumask(cpumask);
 320	}
 321
 322	ret = sched_setaffinity(0, sizeof(mask), &mask);
 323	BUG_ON(ret);
 324
 325	return orig_mask;
 
 
 
 
 
 
 
 
 
 326}
 327
 328static void bind_to_cpumask(cpu_set_t mask)
 329{
 330	int ret;
 
 331
 332	ret = sched_setaffinity(0, sizeof(mask), &mask);
 333	BUG_ON(ret);
 
 
 
 334}
 335
 336static void mempol_restore(void)
 337{
 338	int ret;
 339
 340	ret = set_mempolicy(MPOL_DEFAULT, NULL, g->p.nr_nodes-1);
 341
 342	BUG_ON(ret);
 343}
 344
 345static void bind_to_memnode(int node)
 346{
 347	struct bitmask *node_mask;
 348	int ret;
 349
 350	if (node == NUMA_NO_NODE)
 351		return;
 352
 353	node_mask = numa_allocate_nodemask();
 354	BUG_ON(!node_mask);
 355
 356	numa_bitmask_clearall(node_mask);
 357	numa_bitmask_setbit(node_mask, node);
 358
 359	ret = set_mempolicy(MPOL_BIND, node_mask->maskp, node_mask->size + 1);
 360	dprintf("binding to node %d, mask: %016lx => %d\n", node, *node_mask->maskp, ret);
 361
 362	numa_bitmask_free(node_mask);
 363	BUG_ON(ret);
 364}
 365
 366#define HPSIZE (2*1024*1024)
 367
 368#define set_taskname(fmt...)				\
 369do {							\
 370	char name[20];					\
 371							\
 372	snprintf(name, 20, fmt);			\
 373	prctl(PR_SET_NAME, name);			\
 374} while (0)
 375
 376static u8 *alloc_data(ssize_t bytes0, int map_flags,
 377		      int init_zero, int init_cpu0, int thp, int init_random)
 378{
 379	cpu_set_t orig_mask;
 380	ssize_t bytes;
 381	u8 *buf;
 382	int ret;
 383
 384	if (!bytes0)
 385		return NULL;
 386
 387	/* Allocate and initialize all memory on CPU#0: */
 388	if (init_cpu0) {
 389		int node = numa_node_of_cpu(0);
 390
 391		orig_mask = bind_to_node(node);
 392		bind_to_memnode(node);
 393	}
 394
 395	bytes = bytes0 + HPSIZE;
 396
 397	buf = (void *)mmap(0, bytes, PROT_READ|PROT_WRITE, MAP_ANON|map_flags, -1, 0);
 398	BUG_ON(buf == (void *)-1);
 399
 400	if (map_flags == MAP_PRIVATE) {
 401		if (thp > 0) {
 402			ret = madvise(buf, bytes, MADV_HUGEPAGE);
 403			if (ret && !g->print_once) {
 404				g->print_once = 1;
 405				printf("WARNING: Could not enable THP - do: 'echo madvise > /sys/kernel/mm/transparent_hugepage/enabled'\n");
 406			}
 407		}
 408		if (thp < 0) {
 409			ret = madvise(buf, bytes, MADV_NOHUGEPAGE);
 410			if (ret && !g->print_once) {
 411				g->print_once = 1;
 412				printf("WARNING: Could not disable THP: run a CONFIG_TRANSPARENT_HUGEPAGE kernel?\n");
 413			}
 414		}
 415	}
 416
 417	if (init_zero) {
 418		bzero(buf, bytes);
 419	} else {
 420		/* Initialize random contents, different in each word: */
 421		if (init_random) {
 422			u64 *wbuf = (void *)buf;
 423			long off = rand();
 424			long i;
 425
 426			for (i = 0; i < bytes/8; i++)
 427				wbuf[i] = i + off;
 428		}
 429	}
 430
 431	/* Align to 2MB boundary: */
 432	buf = (void *)(((unsigned long)buf + HPSIZE-1) & ~(HPSIZE-1));
 433
 434	/* Restore affinity: */
 435	if (init_cpu0) {
 436		bind_to_cpumask(orig_mask);
 
 437		mempol_restore();
 438	}
 439
 440	return buf;
 441}
 442
 443static void free_data(void *data, ssize_t bytes)
 444{
 445	int ret;
 446
 447	if (!data)
 448		return;
 449
 450	ret = munmap(data, bytes);
 451	BUG_ON(ret);
 452}
 453
 454/*
 455 * Create a shared memory buffer that can be shared between processes, zeroed:
 456 */
 457static void * zalloc_shared_data(ssize_t bytes)
 458{
 459	return alloc_data(bytes, MAP_SHARED, 1, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 460}
 461
 462/*
 463 * Create a shared memory buffer that can be shared between processes:
 464 */
 465static void * setup_shared_data(ssize_t bytes)
 466{
 467	return alloc_data(bytes, MAP_SHARED, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 468}
 469
 470/*
 471 * Allocate process-local memory - this will either be shared between
 472 * threads of this process, or only be accessed by this thread:
 473 */
 474static void * setup_private_data(ssize_t bytes)
 475{
 476	return alloc_data(bytes, MAP_PRIVATE, 0, g->p.init_cpu0,  g->p.thp, g->p.init_random);
 477}
 478
 479/*
 480 * Return a process-shared (global) mutex:
 481 */
 482static void init_global_mutex(pthread_mutex_t *mutex)
 483{
 484	pthread_mutexattr_t attr;
 485
 486	pthread_mutexattr_init(&attr);
 487	pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 488	pthread_mutex_init(mutex, &attr);
 489}
 490
 491/*
 492 * Return a process-shared (global) condition variable:
 493 */
 494static void init_global_cond(pthread_cond_t *cond)
 495{
 496	pthread_condattr_t attr;
 497
 498	pthread_condattr_init(&attr);
 499	pthread_condattr_setpshared(&attr, PTHREAD_PROCESS_SHARED);
 500	pthread_cond_init(cond, &attr);
 501}
 502
 503static int parse_cpu_list(const char *arg)
 504{
 505	p0.cpu_list_str = strdup(arg);
 506
 507	dprintf("got CPU list: {%s}\n", p0.cpu_list_str);
 508
 509	return 0;
 510}
 511
 512static int parse_setup_cpu_list(void)
 513{
 514	struct thread_data *td;
 515	char *str0, *str;
 516	int t;
 517
 518	if (!g->p.cpu_list_str)
 519		return 0;
 520
 521	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 522
 523	str0 = str = strdup(g->p.cpu_list_str);
 524	t = 0;
 525
 526	BUG_ON(!str);
 527
 528	tprintf("# binding tasks to CPUs:\n");
 529	tprintf("#  ");
 530
 531	while (true) {
 532		int bind_cpu, bind_cpu_0, bind_cpu_1;
 533		char *tok, *tok_end, *tok_step, *tok_len, *tok_mul;
 534		int bind_len;
 535		int step;
 536		int mul;
 537
 538		tok = strsep(&str, ",");
 539		if (!tok)
 540			break;
 541
 542		tok_end = strstr(tok, "-");
 543
 544		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 545		if (!tok_end) {
 546			/* Single CPU specified: */
 547			bind_cpu_0 = bind_cpu_1 = atol(tok);
 548		} else {
 549			/* CPU range specified (for example: "5-11"): */
 550			bind_cpu_0 = atol(tok);
 551			bind_cpu_1 = atol(tok_end + 1);
 552		}
 553
 554		step = 1;
 555		tok_step = strstr(tok, "#");
 556		if (tok_step) {
 557			step = atol(tok_step + 1);
 558			BUG_ON(step <= 0 || step >= g->p.nr_cpus);
 559		}
 560
 561		/*
 562		 * Mask length.
 563		 * Eg: "--cpus 8_4-16#4" means: '--cpus 8_4,12_4,16_4',
 564		 * where the _4 means the next 4 CPUs are allowed.
 565		 */
 566		bind_len = 1;
 567		tok_len = strstr(tok, "_");
 568		if (tok_len) {
 569			bind_len = atol(tok_len + 1);
 570			BUG_ON(bind_len <= 0 || bind_len > g->p.nr_cpus);
 571		}
 572
 573		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 574		mul = 1;
 575		tok_mul = strstr(tok, "x");
 576		if (tok_mul) {
 577			mul = atol(tok_mul + 1);
 578			BUG_ON(mul <= 0);
 579		}
 580
 581		dprintf("CPUs: %d_%d-%d#%dx%d\n", bind_cpu_0, bind_len, bind_cpu_1, step, mul);
 582
 583		if (bind_cpu_0 >= g->p.nr_cpus || bind_cpu_1 >= g->p.nr_cpus) {
 584			printf("\nTest not applicable, system has only %d CPUs.\n", g->p.nr_cpus);
 585			return -1;
 586		}
 587
 
 
 
 
 
 588		BUG_ON(bind_cpu_0 < 0 || bind_cpu_1 < 0);
 589		BUG_ON(bind_cpu_0 > bind_cpu_1);
 590
 591		for (bind_cpu = bind_cpu_0; bind_cpu <= bind_cpu_1; bind_cpu += step) {
 
 592			int i;
 593
 594			for (i = 0; i < mul; i++) {
 595				int cpu;
 596
 597				if (t >= g->p.nr_tasks) {
 598					printf("\n# NOTE: ignoring bind CPUs starting at CPU#%d\n #", bind_cpu);
 599					goto out;
 600				}
 601				td = g->threads + t;
 602
 603				if (t)
 604					tprintf(",");
 605				if (bind_len > 1) {
 606					tprintf("%2d/%d", bind_cpu, bind_len);
 607				} else {
 608					tprintf("%2d", bind_cpu);
 609				}
 610
 611				CPU_ZERO(&td->bind_cpumask);
 
 
 612				for (cpu = bind_cpu; cpu < bind_cpu+bind_len; cpu++) {
 613					BUG_ON(cpu < 0 || cpu >= g->p.nr_cpus);
 614					CPU_SET(cpu, &td->bind_cpumask);
 
 
 
 615				}
 616				t++;
 617			}
 618		}
 619	}
 620out:
 621
 622	tprintf("\n");
 623
 624	if (t < g->p.nr_tasks)
 625		printf("# NOTE: %d tasks bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 626
 627	free(str0);
 628	return 0;
 629}
 630
 631static int parse_cpus_opt(const struct option *opt __maybe_unused,
 632			  const char *arg, int unset __maybe_unused)
 633{
 634	if (!arg)
 635		return -1;
 636
 637	return parse_cpu_list(arg);
 638}
 639
 640static int parse_node_list(const char *arg)
 641{
 642	p0.node_list_str = strdup(arg);
 643
 644	dprintf("got NODE list: {%s}\n", p0.node_list_str);
 645
 646	return 0;
 647}
 648
 649static int parse_setup_node_list(void)
 650{
 651	struct thread_data *td;
 652	char *str0, *str;
 653	int t;
 654
 655	if (!g->p.node_list_str)
 656		return 0;
 657
 658	dprintf("g->p.nr_tasks: %d\n", g->p.nr_tasks);
 659
 660	str0 = str = strdup(g->p.node_list_str);
 661	t = 0;
 662
 663	BUG_ON(!str);
 664
 665	tprintf("# binding tasks to NODEs:\n");
 666	tprintf("# ");
 667
 668	while (true) {
 669		int bind_node, bind_node_0, bind_node_1;
 670		char *tok, *tok_end, *tok_step, *tok_mul;
 671		int step;
 672		int mul;
 673
 674		tok = strsep(&str, ",");
 675		if (!tok)
 676			break;
 677
 678		tok_end = strstr(tok, "-");
 679
 680		dprintf("\ntoken: {%s}, end: {%s}\n", tok, tok_end);
 681		if (!tok_end) {
 682			/* Single NODE specified: */
 683			bind_node_0 = bind_node_1 = atol(tok);
 684		} else {
 685			/* NODE range specified (for example: "5-11"): */
 686			bind_node_0 = atol(tok);
 687			bind_node_1 = atol(tok_end + 1);
 688		}
 689
 690		step = 1;
 691		tok_step = strstr(tok, "#");
 692		if (tok_step) {
 693			step = atol(tok_step + 1);
 694			BUG_ON(step <= 0 || step >= g->p.nr_nodes);
 695		}
 696
 697		/* Multiplicator shortcut, "0x8" is a shortcut for: "0,0,0,0,0,0,0,0" */
 698		mul = 1;
 699		tok_mul = strstr(tok, "x");
 700		if (tok_mul) {
 701			mul = atol(tok_mul + 1);
 702			BUG_ON(mul <= 0);
 703		}
 704
 705		dprintf("NODEs: %d-%d #%d\n", bind_node_0, bind_node_1, step);
 706
 707		if (bind_node_0 >= g->p.nr_nodes || bind_node_1 >= g->p.nr_nodes) {
 708			printf("\nTest not applicable, system has only %d nodes.\n", g->p.nr_nodes);
 709			return -1;
 710		}
 711
 712		BUG_ON(bind_node_0 < 0 || bind_node_1 < 0);
 713		BUG_ON(bind_node_0 > bind_node_1);
 714
 715		for (bind_node = bind_node_0; bind_node <= bind_node_1; bind_node += step) {
 716			int i;
 717
 718			for (i = 0; i < mul; i++) {
 719				if (t >= g->p.nr_tasks || !node_has_cpus(bind_node)) {
 720					printf("\n# NOTE: ignoring bind NODEs starting at NODE#%d\n", bind_node);
 721					goto out;
 722				}
 723				td = g->threads + t;
 724
 725				if (!t)
 726					tprintf(" %2d", bind_node);
 727				else
 728					tprintf(",%2d", bind_node);
 729
 730				td->bind_node = bind_node;
 731				t++;
 732			}
 733		}
 734	}
 735out:
 736
 737	tprintf("\n");
 738
 739	if (t < g->p.nr_tasks)
 740		printf("# NOTE: %d tasks mem-bound, %d tasks unbound\n", t, g->p.nr_tasks - t);
 741
 742	free(str0);
 743	return 0;
 744}
 745
 746static int parse_nodes_opt(const struct option *opt __maybe_unused,
 747			  const char *arg, int unset __maybe_unused)
 748{
 749	if (!arg)
 750		return -1;
 751
 752	return parse_node_list(arg);
 753}
 754
 755#define BIT(x) (1ul << x)
 756
 757static inline uint32_t lfsr_32(uint32_t lfsr)
 758{
 759	const uint32_t taps = BIT(1) | BIT(5) | BIT(6) | BIT(31);
 760	return (lfsr>>1) ^ ((0x0u - (lfsr & 0x1u)) & taps);
 761}
 762
 763/*
 764 * Make sure there's real data dependency to RAM (when read
 765 * accesses are enabled), so the compiler, the CPU and the
 766 * kernel (KSM, zero page, etc.) cannot optimize away RAM
 767 * accesses:
 768 */
 769static inline u64 access_data(u64 *data, u64 val)
 770{
 771	if (g->p.data_reads)
 772		val += *data;
 773	if (g->p.data_writes)
 774		*data = val + 1;
 775	return val;
 776}
 777
 778/*
 779 * The worker process does two types of work, a forwards going
 780 * loop and a backwards going loop.
 781 *
 782 * We do this so that on multiprocessor systems we do not create
 783 * a 'train' of processing, with highly synchronized processes,
 784 * skewing the whole benchmark.
 785 */
 786static u64 do_work(u8 *__data, long bytes, int nr, int nr_max, int loop, u64 val)
 787{
 788	long words = bytes/sizeof(u64);
 789	u64 *data = (void *)__data;
 790	long chunk_0, chunk_1;
 791	u64 *d0, *d, *d1;
 792	long off;
 793	long i;
 794
 795	BUG_ON(!data && words);
 796	BUG_ON(data && !words);
 797
 798	if (!data)
 799		return val;
 800
 801	/* Very simple memset() work variant: */
 802	if (g->p.data_zero_memset && !g->p.data_rand_walk) {
 803		bzero(data, bytes);
 804		return val;
 805	}
 806
 807	/* Spread out by PID/TID nr and by loop nr: */
 808	chunk_0 = words/nr_max;
 809	chunk_1 = words/g->p.nr_loops;
 810	off = nr*chunk_0 + loop*chunk_1;
 811
 812	while (off >= words)
 813		off -= words;
 814
 815	if (g->p.data_rand_walk) {
 816		u32 lfsr = nr + loop + val;
 817		int j;
 818
 819		for (i = 0; i < words/1024; i++) {
 820			long start, end;
 821
 822			lfsr = lfsr_32(lfsr);
 823
 824			start = lfsr % words;
 825			end = min(start + 1024, words-1);
 826
 827			if (g->p.data_zero_memset) {
 828				bzero(data + start, (end-start) * sizeof(u64));
 829			} else {
 830				for (j = start; j < end; j++)
 831					val = access_data(data + j, val);
 832			}
 833		}
 834	} else if (!g->p.data_backwards || (nr + loop) & 1) {
 835		/* Process data forwards: */
 836
 837		d0 = data + off;
 838		d  = data + off + 1;
 839		d1 = data + words;
 840
 841		for (;;) {
 842			if (unlikely(d >= d1))
 843				d = data;
 844			if (unlikely(d == d0))
 845				break;
 846
 847			val = access_data(d, val);
 848
 849			d++;
 850		}
 851	} else {
 852		/* Process data backwards: */
 853
 854		d0 = data + off;
 855		d  = data + off - 1;
 856		d1 = data + words;
 857
 858		for (;;) {
 859			if (unlikely(d < data))
 860				d = data + words-1;
 861			if (unlikely(d == d0))
 862				break;
 863
 864			val = access_data(d, val);
 865
 866			d--;
 867		}
 868	}
 869
 870	return val;
 871}
 872
 873static void update_curr_cpu(int task_nr, unsigned long bytes_worked)
 874{
 875	unsigned int cpu;
 876
 877	cpu = sched_getcpu();
 878
 879	g->threads[task_nr].curr_cpu = cpu;
 880	prctl(0, bytes_worked);
 881}
 882
 883/*
 884 * Count the number of nodes a process's threads
 885 * are spread out on.
 886 *
 887 * A count of 1 means that the process is compressed
 888 * to a single node. A count of g->p.nr_nodes means it's
 889 * spread out on the whole system.
 890 */
 891static int count_process_nodes(int process_nr)
 892{
 893	char *node_present;
 894	int nodes;
 895	int n, t;
 896
 897	node_present = (char *)malloc(g->p.nr_nodes * sizeof(char));
 898	BUG_ON(!node_present);
 899	for (nodes = 0; nodes < g->p.nr_nodes; nodes++)
 900		node_present[nodes] = 0;
 901
 902	for (t = 0; t < g->p.nr_threads; t++) {
 903		struct thread_data *td;
 904		int task_nr;
 905		int node;
 906
 907		task_nr = process_nr*g->p.nr_threads + t;
 908		td = g->threads + task_nr;
 909
 910		node = numa_node_of_cpu(td->curr_cpu);
 911		if (node < 0) /* curr_cpu was likely still -1 */ {
 912			free(node_present);
 913			return 0;
 914		}
 915
 916		node_present[node] = 1;
 917	}
 918
 919	nodes = 0;
 920
 921	for (n = 0; n < g->p.nr_nodes; n++)
 922		nodes += node_present[n];
 923
 924	free(node_present);
 925	return nodes;
 926}
 927
 928/*
 929 * Count the number of distinct process-threads a node contains.
 930 *
 931 * A count of 1 means that the node contains only a single
 932 * process. If all nodes on the system contain at most one
 933 * process then we are well-converged.
 934 */
 935static int count_node_processes(int node)
 936{
 937	int processes = 0;
 938	int t, p;
 939
 940	for (p = 0; p < g->p.nr_proc; p++) {
 941		for (t = 0; t < g->p.nr_threads; t++) {
 942			struct thread_data *td;
 943			int task_nr;
 944			int n;
 945
 946			task_nr = p*g->p.nr_threads + t;
 947			td = g->threads + task_nr;
 948
 949			n = numa_node_of_cpu(td->curr_cpu);
 950			if (n == node) {
 951				processes++;
 952				break;
 953			}
 954		}
 955	}
 956
 957	return processes;
 958}
 959
 960static void calc_convergence_compression(int *strong)
 961{
 962	unsigned int nodes_min, nodes_max;
 963	int p;
 964
 965	nodes_min = -1;
 966	nodes_max =  0;
 967
 968	for (p = 0; p < g->p.nr_proc; p++) {
 969		unsigned int nodes = count_process_nodes(p);
 970
 971		if (!nodes) {
 972			*strong = 0;
 973			return;
 974		}
 975
 976		nodes_min = min(nodes, nodes_min);
 977		nodes_max = max(nodes, nodes_max);
 978	}
 979
 980	/* Strong convergence: all threads compress on a single node: */
 981	if (nodes_min == 1 && nodes_max == 1) {
 982		*strong = 1;
 983	} else {
 984		*strong = 0;
 985		tprintf(" {%d-%d}", nodes_min, nodes_max);
 986	}
 987}
 988
 989static void calc_convergence(double runtime_ns_max, double *convergence)
 990{
 991	unsigned int loops_done_min, loops_done_max;
 992	int process_groups;
 993	int *nodes;
 994	int distance;
 995	int nr_min;
 996	int nr_max;
 997	int strong;
 998	int sum;
 999	int nr;
1000	int node;
1001	int cpu;
1002	int t;
1003
1004	if (!g->p.show_convergence && !g->p.measure_convergence)
1005		return;
1006
1007	nodes = (int *)malloc(g->p.nr_nodes * sizeof(int));
1008	BUG_ON(!nodes);
1009	for (node = 0; node < g->p.nr_nodes; node++)
1010		nodes[node] = 0;
1011
1012	loops_done_min = -1;
1013	loops_done_max = 0;
1014
1015	for (t = 0; t < g->p.nr_tasks; t++) {
1016		struct thread_data *td = g->threads + t;
1017		unsigned int loops_done;
1018
1019		cpu = td->curr_cpu;
1020
1021		/* Not all threads have written it yet: */
1022		if (cpu < 0)
1023			continue;
1024
1025		node = numa_node_of_cpu(cpu);
1026
1027		nodes[node]++;
1028
1029		loops_done = td->loops_done;
1030		loops_done_min = min(loops_done, loops_done_min);
1031		loops_done_max = max(loops_done, loops_done_max);
1032	}
1033
1034	nr_max = 0;
1035	nr_min = g->p.nr_tasks;
1036	sum = 0;
1037
1038	for (node = 0; node < g->p.nr_nodes; node++) {
1039		if (!is_node_present(node))
1040			continue;
1041		nr = nodes[node];
1042		nr_min = min(nr, nr_min);
1043		nr_max = max(nr, nr_max);
1044		sum += nr;
1045	}
1046	BUG_ON(nr_min > nr_max);
1047
1048	BUG_ON(sum > g->p.nr_tasks);
1049
1050	if (0 && (sum < g->p.nr_tasks)) {
1051		free(nodes);
1052		return;
1053	}
1054
1055	/*
1056	 * Count the number of distinct process groups present
1057	 * on nodes - when we are converged this will decrease
1058	 * to g->p.nr_proc:
1059	 */
1060	process_groups = 0;
1061
1062	for (node = 0; node < g->p.nr_nodes; node++) {
1063		int processes;
1064
1065		if (!is_node_present(node))
1066			continue;
1067		processes = count_node_processes(node);
1068		nr = nodes[node];
1069		tprintf(" %2d/%-2d", nr, processes);
1070
1071		process_groups += processes;
1072	}
1073
1074	distance = nr_max - nr_min;
1075
1076	tprintf(" [%2d/%-2d]", distance, process_groups);
1077
1078	tprintf(" l:%3d-%-3d (%3d)",
1079		loops_done_min, loops_done_max, loops_done_max-loops_done_min);
1080
1081	if (loops_done_min && loops_done_max) {
1082		double skew = 1.0 - (double)loops_done_min/loops_done_max;
1083
1084		tprintf(" [%4.1f%%]", skew * 100.0);
1085	}
1086
1087	calc_convergence_compression(&strong);
1088
1089	if (strong && process_groups == g->p.nr_proc) {
1090		if (!*convergence) {
1091			*convergence = runtime_ns_max;
1092			tprintf(" (%6.1fs converged)\n", *convergence / NSEC_PER_SEC);
1093			if (g->p.measure_convergence) {
1094				g->all_converged = true;
1095				g->stop_work = true;
1096			}
1097		}
1098	} else {
1099		if (*convergence) {
1100			tprintf(" (%6.1fs de-converged)", runtime_ns_max / NSEC_PER_SEC);
1101			*convergence = 0;
1102		}
1103		tprintf("\n");
1104	}
1105
1106	free(nodes);
1107}
1108
1109static void show_summary(double runtime_ns_max, int l, double *convergence)
1110{
1111	tprintf("\r #  %5.1f%%  [%.1f mins]",
1112		(double)(l+1)/g->p.nr_loops*100.0, runtime_ns_max / NSEC_PER_SEC / 60.0);
1113
1114	calc_convergence(runtime_ns_max, convergence);
1115
1116	if (g->p.show_details >= 0)
1117		fflush(stdout);
1118}
1119
1120static void *worker_thread(void *__tdata)
1121{
1122	struct thread_data *td = __tdata;
1123	struct timeval start0, start, stop, diff;
1124	int process_nr = td->process_nr;
1125	int thread_nr = td->thread_nr;
1126	unsigned long last_perturbance;
1127	int task_nr = td->task_nr;
1128	int details = g->p.show_details;
1129	int first_task, last_task;
1130	double convergence = 0;
1131	u64 val = td->val;
1132	double runtime_ns_max;
1133	u8 *global_data;
1134	u8 *process_data;
1135	u8 *thread_data;
1136	u64 bytes_done, secs;
1137	long work_done;
1138	u32 l;
1139	struct rusage rusage;
1140
1141	bind_to_cpumask(td->bind_cpumask);
1142	bind_to_memnode(td->bind_node);
1143
1144	set_taskname("thread %d/%d", process_nr, thread_nr);
1145
1146	global_data = g->data;
1147	process_data = td->process_data;
1148	thread_data = setup_private_data(g->p.bytes_thread);
1149
1150	bytes_done = 0;
1151
1152	last_task = 0;
1153	if (process_nr == g->p.nr_proc-1 && thread_nr == g->p.nr_threads-1)
1154		last_task = 1;
1155
1156	first_task = 0;
1157	if (process_nr == 0 && thread_nr == 0)
1158		first_task = 1;
1159
1160	if (details >= 2) {
1161		printf("#  thread %2d / %2d global mem: %p, process mem: %p, thread mem: %p\n",
1162			process_nr, thread_nr, global_data, process_data, thread_data);
1163	}
1164
1165	if (g->p.serialize_startup) {
1166		pthread_mutex_lock(&g->startup_mutex);
1167		g->nr_tasks_started++;
1168		/* The last thread wakes the main process. */
1169		if (g->nr_tasks_started == g->p.nr_tasks)
1170			pthread_cond_signal(&g->startup_cond);
1171
1172		pthread_mutex_unlock(&g->startup_mutex);
1173
1174		/* Here we will wait for the main process to start us all at once: */
1175		pthread_mutex_lock(&g->start_work_mutex);
1176		g->start_work = false;
1177		g->nr_tasks_working++;
1178		while (!g->start_work)
1179			pthread_cond_wait(&g->start_work_cond, &g->start_work_mutex);
1180
1181		pthread_mutex_unlock(&g->start_work_mutex);
1182	}
1183
1184	gettimeofday(&start0, NULL);
1185
1186	start = stop = start0;
1187	last_perturbance = start.tv_sec;
1188
1189	for (l = 0; l < g->p.nr_loops; l++) {
1190		start = stop;
1191
1192		if (g->stop_work)
1193			break;
1194
1195		val += do_work(global_data,  g->p.bytes_global,  process_nr, g->p.nr_proc,	l, val);
1196		val += do_work(process_data, g->p.bytes_process, thread_nr,  g->p.nr_threads,	l, val);
1197		val += do_work(thread_data,  g->p.bytes_thread,  0,          1,		l, val);
1198
1199		if (g->p.sleep_usecs) {
1200			pthread_mutex_lock(td->process_lock);
1201			usleep(g->p.sleep_usecs);
1202			pthread_mutex_unlock(td->process_lock);
1203		}
1204		/*
1205		 * Amount of work to be done under a process-global lock:
1206		 */
1207		if (g->p.bytes_process_locked) {
1208			pthread_mutex_lock(td->process_lock);
1209			val += do_work(process_data, g->p.bytes_process_locked, thread_nr,  g->p.nr_threads,	l, val);
1210			pthread_mutex_unlock(td->process_lock);
1211		}
1212
1213		work_done = g->p.bytes_global + g->p.bytes_process +
1214			    g->p.bytes_process_locked + g->p.bytes_thread;
1215
1216		update_curr_cpu(task_nr, work_done);
1217		bytes_done += work_done;
1218
1219		if (details < 0 && !g->p.perturb_secs && !g->p.measure_convergence && !g->p.nr_secs)
1220			continue;
1221
1222		td->loops_done = l;
1223
1224		gettimeofday(&stop, NULL);
1225
1226		/* Check whether our max runtime timed out: */
1227		if (g->p.nr_secs) {
1228			timersub(&stop, &start0, &diff);
1229			if ((u32)diff.tv_sec >= g->p.nr_secs) {
1230				g->stop_work = true;
1231				break;
1232			}
1233		}
1234
1235		/* Update the summary at most once per second: */
1236		if (start.tv_sec == stop.tv_sec)
1237			continue;
1238
1239		/*
1240		 * Perturb the first task's equilibrium every g->p.perturb_secs seconds,
1241		 * by migrating to CPU#0:
1242		 */
1243		if (first_task && g->p.perturb_secs && (int)(stop.tv_sec - last_perturbance) >= g->p.perturb_secs) {
1244			cpu_set_t orig_mask;
1245			int target_cpu;
1246			int this_cpu;
1247
1248			last_perturbance = stop.tv_sec;
1249
1250			/*
1251			 * Depending on where we are running, move into
1252			 * the other half of the system, to create some
1253			 * real disturbance:
1254			 */
1255			this_cpu = g->threads[task_nr].curr_cpu;
1256			if (this_cpu < g->p.nr_cpus/2)
1257				target_cpu = g->p.nr_cpus-1;
1258			else
1259				target_cpu = 0;
1260
1261			orig_mask = bind_to_cpu(target_cpu);
1262
1263			/* Here we are running on the target CPU already */
1264			if (details >= 1)
1265				printf(" (injecting perturbalance, moved to CPU#%d)\n", target_cpu);
1266
1267			bind_to_cpumask(orig_mask);
 
1268		}
1269
1270		if (details >= 3) {
1271			timersub(&stop, &start, &diff);
1272			runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1273			runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1274
1275			if (details >= 0) {
1276				printf(" #%2d / %2d: %14.2lf nsecs/op [val: %016"PRIx64"]\n",
1277					process_nr, thread_nr, runtime_ns_max / bytes_done, val);
1278			}
1279			fflush(stdout);
1280		}
1281		if (!last_task)
1282			continue;
1283
1284		timersub(&stop, &start0, &diff);
1285		runtime_ns_max = diff.tv_sec * NSEC_PER_SEC;
1286		runtime_ns_max += diff.tv_usec * NSEC_PER_USEC;
1287
1288		show_summary(runtime_ns_max, l, &convergence);
1289	}
1290
1291	gettimeofday(&stop, NULL);
1292	timersub(&stop, &start0, &diff);
1293	td->runtime_ns = diff.tv_sec * NSEC_PER_SEC;
1294	td->runtime_ns += diff.tv_usec * NSEC_PER_USEC;
1295	secs = td->runtime_ns / NSEC_PER_SEC;
1296	td->speed_gbs = secs ? bytes_done / secs / 1e9 : 0;
1297
1298	getrusage(RUSAGE_THREAD, &rusage);
1299	td->system_time_ns = rusage.ru_stime.tv_sec * NSEC_PER_SEC;
1300	td->system_time_ns += rusage.ru_stime.tv_usec * NSEC_PER_USEC;
1301	td->user_time_ns = rusage.ru_utime.tv_sec * NSEC_PER_SEC;
1302	td->user_time_ns += rusage.ru_utime.tv_usec * NSEC_PER_USEC;
1303
1304	free_data(thread_data, g->p.bytes_thread);
1305
1306	pthread_mutex_lock(&g->stop_work_mutex);
1307	g->bytes_done += bytes_done;
1308	pthread_mutex_unlock(&g->stop_work_mutex);
1309
1310	return NULL;
1311}
1312
1313/*
1314 * A worker process starts a couple of threads:
1315 */
1316static void worker_process(int process_nr)
1317{
1318	pthread_mutex_t process_lock;
1319	struct thread_data *td;
1320	pthread_t *pthreads;
1321	u8 *process_data;
1322	int task_nr;
1323	int ret;
1324	int t;
1325
1326	pthread_mutex_init(&process_lock, NULL);
1327	set_taskname("process %d", process_nr);
1328
1329	/*
1330	 * Pick up the memory policy and the CPU binding of our first thread,
1331	 * so that we initialize memory accordingly:
1332	 */
1333	task_nr = process_nr*g->p.nr_threads;
1334	td = g->threads + task_nr;
1335
1336	bind_to_memnode(td->bind_node);
1337	bind_to_cpumask(td->bind_cpumask);
1338
1339	pthreads = zalloc(g->p.nr_threads * sizeof(pthread_t));
1340	process_data = setup_private_data(g->p.bytes_process);
1341
1342	if (g->p.show_details >= 3) {
1343		printf(" # process %2d global mem: %p, process mem: %p\n",
1344			process_nr, g->data, process_data);
1345	}
1346
1347	for (t = 0; t < g->p.nr_threads; t++) {
1348		task_nr = process_nr*g->p.nr_threads + t;
1349		td = g->threads + task_nr;
1350
1351		td->process_data = process_data;
1352		td->process_nr   = process_nr;
1353		td->thread_nr    = t;
1354		td->task_nr	 = task_nr;
1355		td->val          = rand();
1356		td->curr_cpu	 = -1;
1357		td->process_lock = &process_lock;
1358
1359		ret = pthread_create(pthreads + t, NULL, worker_thread, td);
1360		BUG_ON(ret);
1361	}
1362
1363	for (t = 0; t < g->p.nr_threads; t++) {
1364                ret = pthread_join(pthreads[t], NULL);
1365		BUG_ON(ret);
1366	}
1367
1368	free_data(process_data, g->p.bytes_process);
1369	free(pthreads);
1370}
1371
1372static void print_summary(void)
1373{
1374	if (g->p.show_details < 0)
1375		return;
1376
1377	printf("\n ###\n");
1378	printf(" # %d %s will execute (on %d nodes, %d CPUs):\n",
1379		g->p.nr_tasks, g->p.nr_tasks == 1 ? "task" : "tasks", nr_numa_nodes(), g->p.nr_cpus);
1380	printf(" #      %5dx %5ldMB global  shared mem operations\n",
1381			g->p.nr_loops, g->p.bytes_global/1024/1024);
1382	printf(" #      %5dx %5ldMB process shared mem operations\n",
1383			g->p.nr_loops, g->p.bytes_process/1024/1024);
1384	printf(" #      %5dx %5ldMB thread  local  mem operations\n",
1385			g->p.nr_loops, g->p.bytes_thread/1024/1024);
1386
1387	printf(" ###\n");
1388
1389	printf("\n ###\n"); fflush(stdout);
1390}
1391
1392static void init_thread_data(void)
1393{
1394	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
1395	int t;
1396
1397	g->threads = zalloc_shared_data(size);
1398
1399	for (t = 0; t < g->p.nr_tasks; t++) {
1400		struct thread_data *td = g->threads + t;
 
1401		int cpu;
1402
1403		/* Allow all nodes by default: */
1404		td->bind_node = NUMA_NO_NODE;
1405
1406		/* Allow all CPUs by default: */
1407		CPU_ZERO(&td->bind_cpumask);
 
 
1408		for (cpu = 0; cpu < g->p.nr_cpus; cpu++)
1409			CPU_SET(cpu, &td->bind_cpumask);
1410	}
1411}
1412
1413static void deinit_thread_data(void)
1414{
1415	ssize_t size = sizeof(*g->threads)*g->p.nr_tasks;
 
 
 
 
 
 
 
1416
1417	free_data(g->threads, size);
1418}
1419
1420static int init(void)
1421{
1422	g = (void *)alloc_data(sizeof(*g), MAP_SHARED, 1, 0, 0 /* THP */, 0);
1423
1424	/* Copy over options: */
1425	g->p = p0;
1426
1427	g->p.nr_cpus = numa_num_configured_cpus();
1428
1429	g->p.nr_nodes = numa_max_node() + 1;
1430
1431	/* char array in count_process_nodes(): */
1432	BUG_ON(g->p.nr_nodes < 0);
1433
1434	if (g->p.show_quiet && !g->p.show_details)
1435		g->p.show_details = -1;
1436
1437	/* Some memory should be specified: */
1438	if (!g->p.mb_global_str && !g->p.mb_proc_str && !g->p.mb_thread_str)
1439		return -1;
1440
1441	if (g->p.mb_global_str) {
1442		g->p.mb_global = atof(g->p.mb_global_str);
1443		BUG_ON(g->p.mb_global < 0);
1444	}
1445
1446	if (g->p.mb_proc_str) {
1447		g->p.mb_proc = atof(g->p.mb_proc_str);
1448		BUG_ON(g->p.mb_proc < 0);
1449	}
1450
1451	if (g->p.mb_proc_locked_str) {
1452		g->p.mb_proc_locked = atof(g->p.mb_proc_locked_str);
1453		BUG_ON(g->p.mb_proc_locked < 0);
1454		BUG_ON(g->p.mb_proc_locked > g->p.mb_proc);
1455	}
1456
1457	if (g->p.mb_thread_str) {
1458		g->p.mb_thread = atof(g->p.mb_thread_str);
1459		BUG_ON(g->p.mb_thread < 0);
1460	}
1461
1462	BUG_ON(g->p.nr_threads <= 0);
1463	BUG_ON(g->p.nr_proc <= 0);
1464
1465	g->p.nr_tasks = g->p.nr_proc*g->p.nr_threads;
1466
1467	g->p.bytes_global		= g->p.mb_global	*1024L*1024L;
1468	g->p.bytes_process		= g->p.mb_proc		*1024L*1024L;
1469	g->p.bytes_process_locked	= g->p.mb_proc_locked	*1024L*1024L;
1470	g->p.bytes_thread		= g->p.mb_thread	*1024L*1024L;
1471
1472	g->data = setup_shared_data(g->p.bytes_global);
1473
1474	/* Startup serialization: */
1475	init_global_mutex(&g->start_work_mutex);
1476	init_global_cond(&g->start_work_cond);
1477	init_global_mutex(&g->startup_mutex);
1478	init_global_cond(&g->startup_cond);
1479	init_global_mutex(&g->stop_work_mutex);
1480
1481	init_thread_data();
1482
1483	tprintf("#\n");
1484	if (parse_setup_cpu_list() || parse_setup_node_list())
1485		return -1;
1486	tprintf("#\n");
1487
1488	print_summary();
1489
1490	return 0;
1491}
1492
1493static void deinit(void)
1494{
1495	free_data(g->data, g->p.bytes_global);
1496	g->data = NULL;
1497
1498	deinit_thread_data();
1499
1500	free_data(g, sizeof(*g));
1501	g = NULL;
1502}
1503
1504/*
1505 * Print a short or long result, depending on the verbosity setting:
1506 */
1507static void print_res(const char *name, double val,
1508		      const char *txt_unit, const char *txt_short, const char *txt_long)
1509{
1510	if (!name)
1511		name = "main,";
1512
1513	if (!g->p.show_quiet)
1514		printf(" %-30s %15.3f, %-15s %s\n", name, val, txt_unit, txt_short);
1515	else
1516		printf(" %14.3f %s\n", val, txt_long);
1517}
1518
1519static int __bench_numa(const char *name)
1520{
1521	struct timeval start, stop, diff;
1522	u64 runtime_ns_min, runtime_ns_sum;
1523	pid_t *pids, pid, wpid;
1524	double delta_runtime;
1525	double runtime_avg;
1526	double runtime_sec_max;
1527	double runtime_sec_min;
1528	int wait_stat;
1529	double bytes;
1530	int i, t, p;
1531
1532	if (init())
1533		return -1;
1534
1535	pids = zalloc(g->p.nr_proc * sizeof(*pids));
1536	pid = -1;
1537
1538	if (g->p.serialize_startup) {
1539		tprintf(" #\n");
1540		tprintf(" # Startup synchronization: ..."); fflush(stdout);
1541	}
1542
1543	gettimeofday(&start, NULL);
1544
1545	for (i = 0; i < g->p.nr_proc; i++) {
1546		pid = fork();
1547		dprintf(" # process %2d: PID %d\n", i, pid);
1548
1549		BUG_ON(pid < 0);
1550		if (!pid) {
1551			/* Child process: */
1552			worker_process(i);
1553
1554			exit(0);
1555		}
1556		pids[i] = pid;
1557
1558	}
1559
1560	if (g->p.serialize_startup) {
1561		bool threads_ready = false;
1562		double startup_sec;
1563
1564		/*
1565		 * Wait for all the threads to start up. The last thread will
1566		 * signal this process.
1567		 */
1568		pthread_mutex_lock(&g->startup_mutex);
1569		while (g->nr_tasks_started != g->p.nr_tasks)
1570			pthread_cond_wait(&g->startup_cond, &g->startup_mutex);
1571
1572		pthread_mutex_unlock(&g->startup_mutex);
1573
1574		/* Wait for all threads to be at the start_work_cond. */
1575		while (!threads_ready) {
1576			pthread_mutex_lock(&g->start_work_mutex);
1577			threads_ready = (g->nr_tasks_working == g->p.nr_tasks);
1578			pthread_mutex_unlock(&g->start_work_mutex);
1579			if (!threads_ready)
1580				usleep(1);
1581		}
1582
1583		gettimeofday(&stop, NULL);
1584
1585		timersub(&stop, &start, &diff);
1586
1587		startup_sec = diff.tv_sec * NSEC_PER_SEC;
1588		startup_sec += diff.tv_usec * NSEC_PER_USEC;
1589		startup_sec /= NSEC_PER_SEC;
1590
1591		tprintf(" threads initialized in %.6f seconds.\n", startup_sec);
1592		tprintf(" #\n");
1593
1594		start = stop;
1595		/* Start all threads running. */
1596		pthread_mutex_lock(&g->start_work_mutex);
1597		g->start_work = true;
1598		pthread_mutex_unlock(&g->start_work_mutex);
1599		pthread_cond_broadcast(&g->start_work_cond);
1600	} else {
1601		gettimeofday(&start, NULL);
1602	}
1603
1604	/* Parent process: */
1605
1606
1607	for (i = 0; i < g->p.nr_proc; i++) {
1608		wpid = waitpid(pids[i], &wait_stat, 0);
1609		BUG_ON(wpid < 0);
1610		BUG_ON(!WIFEXITED(wait_stat));
1611
1612	}
1613
1614	runtime_ns_sum = 0;
1615	runtime_ns_min = -1LL;
1616
1617	for (t = 0; t < g->p.nr_tasks; t++) {
1618		u64 thread_runtime_ns = g->threads[t].runtime_ns;
1619
1620		runtime_ns_sum += thread_runtime_ns;
1621		runtime_ns_min = min(thread_runtime_ns, runtime_ns_min);
1622	}
1623
1624	gettimeofday(&stop, NULL);
1625	timersub(&stop, &start, &diff);
1626
1627	BUG_ON(bench_format != BENCH_FORMAT_DEFAULT);
1628
1629	tprintf("\n ###\n");
1630	tprintf("\n");
1631
1632	runtime_sec_max = diff.tv_sec * NSEC_PER_SEC;
1633	runtime_sec_max += diff.tv_usec * NSEC_PER_USEC;
1634	runtime_sec_max /= NSEC_PER_SEC;
1635
1636	runtime_sec_min = runtime_ns_min / NSEC_PER_SEC;
1637
1638	bytes = g->bytes_done;
1639	runtime_avg = (double)runtime_ns_sum / g->p.nr_tasks / NSEC_PER_SEC;
1640
1641	if (g->p.measure_convergence) {
1642		print_res(name, runtime_sec_max,
1643			"secs,", "NUMA-convergence-latency", "secs latency to NUMA-converge");
1644	}
1645
1646	print_res(name, runtime_sec_max,
1647		"secs,", "runtime-max/thread",	"secs slowest (max) thread-runtime");
1648
1649	print_res(name, runtime_sec_min,
1650		"secs,", "runtime-min/thread",	"secs fastest (min) thread-runtime");
1651
1652	print_res(name, runtime_avg,
1653		"secs,", "runtime-avg/thread",	"secs average thread-runtime");
1654
1655	delta_runtime = (runtime_sec_max - runtime_sec_min)/2.0;
1656	print_res(name, delta_runtime / runtime_sec_max * 100.0,
1657		"%,", "spread-runtime/thread",	"% difference between max/avg runtime");
1658
1659	print_res(name, bytes / g->p.nr_tasks / 1e9,
1660		"GB,", "data/thread",		"GB data processed, per thread");
1661
1662	print_res(name, bytes / 1e9,
1663		"GB,", "data-total",		"GB data processed, total");
1664
1665	print_res(name, runtime_sec_max * NSEC_PER_SEC / (bytes / g->p.nr_tasks),
1666		"nsecs,", "runtime/byte/thread","nsecs/byte/thread runtime");
1667
1668	print_res(name, bytes / g->p.nr_tasks / 1e9 / runtime_sec_max,
1669		"GB/sec,", "thread-speed",	"GB/sec/thread speed");
1670
1671	print_res(name, bytes / runtime_sec_max / 1e9,
1672		"GB/sec,", "total-speed",	"GB/sec total speed");
1673
1674	if (g->p.show_details >= 2) {
1675		char tname[14 + 2 * 10 + 1];
1676		struct thread_data *td;
1677		for (p = 0; p < g->p.nr_proc; p++) {
1678			for (t = 0; t < g->p.nr_threads; t++) {
1679				memset(tname, 0, sizeof(tname));
1680				td = g->threads + p*g->p.nr_threads + t;
1681				snprintf(tname, sizeof(tname), "process%d:thread%d", p, t);
1682				print_res(tname, td->speed_gbs,
1683					"GB/sec",	"thread-speed", "GB/sec/thread speed");
1684				print_res(tname, td->system_time_ns / NSEC_PER_SEC,
1685					"secs",	"thread-system-time", "system CPU time/thread");
1686				print_res(tname, td->user_time_ns / NSEC_PER_SEC,
1687					"secs",	"thread-user-time", "user CPU time/thread");
1688			}
1689		}
1690	}
1691
1692	free(pids);
1693
1694	deinit();
1695
1696	return 0;
1697}
1698
1699#define MAX_ARGS 50
1700
1701static int command_size(const char **argv)
1702{
1703	int size = 0;
1704
1705	while (*argv) {
1706		size++;
1707		argv++;
1708	}
1709
1710	BUG_ON(size >= MAX_ARGS);
1711
1712	return size;
1713}
1714
1715static void init_params(struct params *p, const char *name, int argc, const char **argv)
1716{
1717	int i;
1718
1719	printf("\n # Running %s \"perf bench numa", name);
1720
1721	for (i = 0; i < argc; i++)
1722		printf(" %s", argv[i]);
1723
1724	printf("\"\n");
1725
1726	memset(p, 0, sizeof(*p));
1727
1728	/* Initialize nonzero defaults: */
1729
1730	p->serialize_startup		= 1;
1731	p->data_reads			= true;
1732	p->data_writes			= true;
1733	p->data_backwards		= true;
1734	p->data_rand_walk		= true;
1735	p->nr_loops			= -1;
1736	p->init_random			= true;
1737	p->mb_global_str		= "1";
1738	p->nr_proc			= 1;
1739	p->nr_threads			= 1;
1740	p->nr_secs			= 5;
1741	p->run_all			= argc == 1;
1742}
1743
1744static int run_bench_numa(const char *name, const char **argv)
1745{
1746	int argc = command_size(argv);
1747
1748	init_params(&p0, name, argc, argv);
1749	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1750	if (argc)
1751		goto err;
1752
1753	if (__bench_numa(name))
1754		goto err;
1755
1756	return 0;
1757
1758err:
1759	return -1;
1760}
1761
1762#define OPT_BW_RAM		"-s",  "20", "-zZq",    "--thp", " 1", "--no-data_rand_walk"
1763#define OPT_BW_RAM_NOTHP	OPT_BW_RAM,		"--thp", "-1"
1764
1765#define OPT_CONV		"-s", "100", "-zZ0qcm", "--thp", " 1"
1766#define OPT_CONV_NOTHP		OPT_CONV,		"--thp", "-1"
1767
1768#define OPT_BW			"-s",  "20", "-zZ0q",   "--thp", " 1"
1769#define OPT_BW_NOTHP		OPT_BW,			"--thp", "-1"
1770
1771/*
1772 * The built-in test-suite executed by "perf bench numa -a".
1773 *
1774 * (A minimum of 4 nodes and 16 GB of RAM is recommended.)
1775 */
1776static const char *tests[][MAX_ARGS] = {
1777   /* Basic single-stream NUMA bandwidth measurements: */
1778   { "RAM-bw-local,",     "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1779			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM },
1780   { "RAM-bw-local-NOTHP,",
1781			  "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1782			  "-C" ,   "0", "-M",   "0", OPT_BW_RAM_NOTHP },
1783   { "RAM-bw-remote,",    "mem",  "-p",  "1",  "-t",  "1", "-P", "1024",
1784			  "-C" ,   "0", "-M",   "1", OPT_BW_RAM },
1785
1786   /* 2-stream NUMA bandwidth measurements: */
1787   { "RAM-bw-local-2x,",  "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1788			   "-C", "0,2", "-M", "0x2", OPT_BW_RAM },
1789   { "RAM-bw-remote-2x,", "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1790		 	   "-C", "0,2", "-M", "1x2", OPT_BW_RAM },
1791
1792   /* Cross-stream NUMA bandwidth measurement: */
1793   { "RAM-bw-cross,",     "mem",  "-p",  "2",  "-t",  "1", "-P", "1024",
1794		 	   "-C", "0,8", "-M", "1,0", OPT_BW_RAM },
1795
1796   /* Convergence latency measurements: */
1797   { " 1x3-convergence,", "mem",  "-p",  "1", "-t",  "3", "-P",  "512", OPT_CONV },
1798   { " 1x4-convergence,", "mem",  "-p",  "1", "-t",  "4", "-P",  "512", OPT_CONV },
1799   { " 1x6-convergence,", "mem",  "-p",  "1", "-t",  "6", "-P", "1020", OPT_CONV },
1800   { " 2x3-convergence,", "mem",  "-p",  "2", "-t",  "3", "-P", "1020", OPT_CONV },
1801   { " 3x3-convergence,", "mem",  "-p",  "3", "-t",  "3", "-P", "1020", OPT_CONV },
1802   { " 4x4-convergence,", "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV },
1803   { " 4x4-convergence-NOTHP,",
1804			  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1805   { " 4x6-convergence,", "mem",  "-p",  "4", "-t",  "6", "-P", "1020", OPT_CONV },
1806   { " 4x8-convergence,", "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_CONV },
1807   { " 8x4-convergence,", "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV },
1808   { " 8x4-convergence-NOTHP,",
1809			  "mem",  "-p",  "8", "-t",  "4", "-P",  "512", OPT_CONV_NOTHP },
1810   { " 3x1-convergence,", "mem",  "-p",  "3", "-t",  "1", "-P",  "512", OPT_CONV },
1811   { " 4x1-convergence,", "mem",  "-p",  "4", "-t",  "1", "-P",  "512", OPT_CONV },
1812   { " 8x1-convergence,", "mem",  "-p",  "8", "-t",  "1", "-P",  "512", OPT_CONV },
1813   { "16x1-convergence,", "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_CONV },
1814   { "32x1-convergence,", "mem",  "-p", "32", "-t",  "1", "-P",  "128", OPT_CONV },
1815
1816   /* Various NUMA process/thread layout bandwidth measurements: */
1817   { " 2x1-bw-process,",  "mem",  "-p",  "2", "-t",  "1", "-P", "1024", OPT_BW },
1818   { " 3x1-bw-process,",  "mem",  "-p",  "3", "-t",  "1", "-P", "1024", OPT_BW },
1819   { " 4x1-bw-process,",  "mem",  "-p",  "4", "-t",  "1", "-P", "1024", OPT_BW },
1820   { " 8x1-bw-process,",  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW },
1821   { " 8x1-bw-process-NOTHP,",
1822			  "mem",  "-p",  "8", "-t",  "1", "-P", " 512", OPT_BW_NOTHP },
1823   { "16x1-bw-process,",  "mem",  "-p", "16", "-t",  "1", "-P",  "256", OPT_BW },
1824
1825   { " 1x4-bw-thread,",   "mem",  "-p",  "1", "-t",  "4", "-T",  "256", OPT_BW },
1826   { " 1x8-bw-thread,",   "mem",  "-p",  "1", "-t",  "8", "-T",  "256", OPT_BW },
1827   { "1x16-bw-thread,",   "mem",  "-p",  "1", "-t", "16", "-T",  "128", OPT_BW },
1828   { "1x32-bw-thread,",   "mem",  "-p",  "1", "-t", "32", "-T",   "64", OPT_BW },
1829
1830   { " 2x3-bw-process,",  "mem",  "-p",  "2", "-t",  "3", "-P",  "512", OPT_BW },
1831   { " 4x4-bw-process,",  "mem",  "-p",  "4", "-t",  "4", "-P",  "512", OPT_BW },
1832   { " 4x6-bw-process,",  "mem",  "-p",  "4", "-t",  "6", "-P",  "512", OPT_BW },
1833   { " 4x8-bw-process,",  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW },
1834   { " 4x8-bw-process-NOTHP,",
1835			  "mem",  "-p",  "4", "-t",  "8", "-P",  "512", OPT_BW_NOTHP },
1836   { " 3x3-bw-process,",  "mem",  "-p",  "3", "-t",  "3", "-P",  "512", OPT_BW },
1837   { " 5x5-bw-process,",  "mem",  "-p",  "5", "-t",  "5", "-P",  "512", OPT_BW },
1838
1839   { "2x16-bw-process,",  "mem",  "-p",  "2", "-t", "16", "-P",  "512", OPT_BW },
1840   { "1x32-bw-process,",  "mem",  "-p",  "1", "-t", "32", "-P", "2048", OPT_BW },
1841
1842   { "numa02-bw,",        "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW },
1843   { "numa02-bw-NOTHP,",  "mem",  "-p",  "1", "-t", "32", "-T",   "32", OPT_BW_NOTHP },
1844   { "numa01-bw-thread,", "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW },
1845   { "numa01-bw-thread-NOTHP,",
1846			  "mem",  "-p",  "2", "-t", "16", "-T",  "192", OPT_BW_NOTHP },
1847};
1848
1849static int bench_all(void)
1850{
1851	int nr = ARRAY_SIZE(tests);
1852	int ret;
1853	int i;
1854
1855	ret = system("echo ' #'; echo ' # Running test on: '$(uname -a); echo ' #'");
1856	BUG_ON(ret < 0);
1857
1858	for (i = 0; i < nr; i++) {
1859		run_bench_numa(tests[i][0], tests[i] + 1);
1860	}
1861
1862	printf("\n");
1863
1864	return 0;
1865}
1866
1867int bench_numa(int argc, const char **argv)
1868{
1869	init_params(&p0, "main,", argc, argv);
1870	argc = parse_options(argc, argv, options, bench_numa_usage, 0);
1871	if (argc)
1872		goto err;
1873
1874	if (p0.run_all)
1875		return bench_all();
1876
1877	if (__bench_numa(NULL))
1878		goto err;
1879
1880	return 0;
1881
1882err:
1883	usage_with_options(numa_usage, options);
1884	return -1;
1885}