Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/device.h>
11#include <linux/clocksource.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15#include <linux/tick.h>
16#include <linux/kthread.h>
17#include <linux/prandom.h>
18#include <linux/cpu.h>
19
20#include "tick-internal.h"
21#include "timekeeping_internal.h"
22
23/**
24 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
25 * @mult: pointer to mult variable
26 * @shift: pointer to shift variable
27 * @from: frequency to convert from
28 * @to: frequency to convert to
29 * @maxsec: guaranteed runtime conversion range in seconds
30 *
31 * The function evaluates the shift/mult pair for the scaled math
32 * operations of clocksources and clockevents.
33 *
34 * @to and @from are frequency values in HZ. For clock sources @to is
35 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
36 * event @to is the counter frequency and @from is NSEC_PER_SEC.
37 *
38 * The @maxsec conversion range argument controls the time frame in
39 * seconds which must be covered by the runtime conversion with the
40 * calculated mult and shift factors. This guarantees that no 64bit
41 * overflow happens when the input value of the conversion is
42 * multiplied with the calculated mult factor. Larger ranges may
43 * reduce the conversion accuracy by choosing smaller mult and shift
44 * factors.
45 */
46void
47clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
48{
49 u64 tmp;
50 u32 sft, sftacc= 32;
51
52 /*
53 * Calculate the shift factor which is limiting the conversion
54 * range:
55 */
56 tmp = ((u64)maxsec * from) >> 32;
57 while (tmp) {
58 tmp >>=1;
59 sftacc--;
60 }
61
62 /*
63 * Find the conversion shift/mult pair which has the best
64 * accuracy and fits the maxsec conversion range:
65 */
66 for (sft = 32; sft > 0; sft--) {
67 tmp = (u64) to << sft;
68 tmp += from / 2;
69 do_div(tmp, from);
70 if ((tmp >> sftacc) == 0)
71 break;
72 }
73 *mult = tmp;
74 *shift = sft;
75}
76EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
77
78/*[Clocksource internal variables]---------
79 * curr_clocksource:
80 * currently selected clocksource.
81 * suspend_clocksource:
82 * used to calculate the suspend time.
83 * clocksource_list:
84 * linked list with the registered clocksources
85 * clocksource_mutex:
86 * protects manipulations to curr_clocksource and the clocksource_list
87 * override_name:
88 * Name of the user-specified clocksource.
89 */
90static struct clocksource *curr_clocksource;
91static struct clocksource *suspend_clocksource;
92static LIST_HEAD(clocksource_list);
93static DEFINE_MUTEX(clocksource_mutex);
94static char override_name[CS_NAME_LEN];
95static int finished_booting;
96static u64 suspend_start;
97
98/*
99 * Interval: 0.5sec.
100 */
101#define WATCHDOG_INTERVAL (HZ >> 1)
102#define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
103
104/*
105 * Threshold: 0.0312s, when doubled: 0.0625s.
106 * Also a default for cs->uncertainty_margin when registering clocks.
107 */
108#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
109
110/*
111 * Maximum permissible delay between two readouts of the watchdog
112 * clocksource surrounding a read of the clocksource being validated.
113 * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as
114 * a lower bound for cs->uncertainty_margin values when registering clocks.
115 *
116 * The default of 500 parts per million is based on NTP's limits.
117 * If a clocksource is good enough for NTP, it is good enough for us!
118 */
119#ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
120#define MAX_SKEW_USEC CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
121#else
122#define MAX_SKEW_USEC (125 * WATCHDOG_INTERVAL / HZ)
123#endif
124
125#define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
126
127#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
128static void clocksource_watchdog_work(struct work_struct *work);
129static void clocksource_select(void);
130
131static LIST_HEAD(watchdog_list);
132static struct clocksource *watchdog;
133static struct timer_list watchdog_timer;
134static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
135static DEFINE_SPINLOCK(watchdog_lock);
136static int watchdog_running;
137static atomic_t watchdog_reset_pending;
138static int64_t watchdog_max_interval;
139
140static inline void clocksource_watchdog_lock(unsigned long *flags)
141{
142 spin_lock_irqsave(&watchdog_lock, *flags);
143}
144
145static inline void clocksource_watchdog_unlock(unsigned long *flags)
146{
147 spin_unlock_irqrestore(&watchdog_lock, *flags);
148}
149
150static int clocksource_watchdog_kthread(void *data);
151static void __clocksource_change_rating(struct clocksource *cs, int rating);
152
153static void clocksource_watchdog_work(struct work_struct *work)
154{
155 /*
156 * We cannot directly run clocksource_watchdog_kthread() here, because
157 * clocksource_select() calls timekeeping_notify() which uses
158 * stop_machine(). One cannot use stop_machine() from a workqueue() due
159 * lock inversions wrt CPU hotplug.
160 *
161 * Also, we only ever run this work once or twice during the lifetime
162 * of the kernel, so there is no point in creating a more permanent
163 * kthread for this.
164 *
165 * If kthread_run fails the next watchdog scan over the
166 * watchdog_list will find the unstable clock again.
167 */
168 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
169}
170
171static void __clocksource_unstable(struct clocksource *cs)
172{
173 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
174 cs->flags |= CLOCK_SOURCE_UNSTABLE;
175
176 /*
177 * If the clocksource is registered clocksource_watchdog_kthread() will
178 * re-rate and re-select.
179 */
180 if (list_empty(&cs->list)) {
181 cs->rating = 0;
182 return;
183 }
184
185 if (cs->mark_unstable)
186 cs->mark_unstable(cs);
187
188 /* kick clocksource_watchdog_kthread() */
189 if (finished_booting)
190 schedule_work(&watchdog_work);
191}
192
193/**
194 * clocksource_mark_unstable - mark clocksource unstable via watchdog
195 * @cs: clocksource to be marked unstable
196 *
197 * This function is called by the x86 TSC code to mark clocksources as unstable;
198 * it defers demotion and re-selection to a kthread.
199 */
200void clocksource_mark_unstable(struct clocksource *cs)
201{
202 unsigned long flags;
203
204 spin_lock_irqsave(&watchdog_lock, flags);
205 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
206 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
207 list_add(&cs->wd_list, &watchdog_list);
208 __clocksource_unstable(cs);
209 }
210 spin_unlock_irqrestore(&watchdog_lock, flags);
211}
212
213static int verify_n_cpus = 8;
214module_param(verify_n_cpus, int, 0644);
215
216enum wd_read_status {
217 WD_READ_SUCCESS,
218 WD_READ_UNSTABLE,
219 WD_READ_SKIP
220};
221
222static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
223{
224 unsigned int nretries, max_retries;
225 u64 wd_end, wd_end2, wd_delta;
226 int64_t wd_delay, wd_seq_delay;
227
228 max_retries = clocksource_get_max_watchdog_retry();
229 for (nretries = 0; nretries <= max_retries; nretries++) {
230 local_irq_disable();
231 *wdnow = watchdog->read(watchdog);
232 *csnow = cs->read(cs);
233 wd_end = watchdog->read(watchdog);
234 wd_end2 = watchdog->read(watchdog);
235 local_irq_enable();
236
237 wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
238 wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
239 watchdog->shift);
240 if (wd_delay <= WATCHDOG_MAX_SKEW) {
241 if (nretries > 1 || nretries >= max_retries) {
242 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
243 smp_processor_id(), watchdog->name, nretries);
244 }
245 return WD_READ_SUCCESS;
246 }
247
248 /*
249 * Now compute delay in consecutive watchdog read to see if
250 * there is too much external interferences that cause
251 * significant delay in reading both clocksource and watchdog.
252 *
253 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
254 * report system busy, reinit the watchdog and skip the current
255 * watchdog test.
256 */
257 wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
258 wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
259 if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
260 goto skip_test;
261 }
262
263 pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
264 smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
265 return WD_READ_UNSTABLE;
266
267skip_test:
268 pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
269 smp_processor_id(), watchdog->name, wd_seq_delay);
270 pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
271 cs->name, wd_delay);
272 return WD_READ_SKIP;
273}
274
275static u64 csnow_mid;
276static cpumask_t cpus_ahead;
277static cpumask_t cpus_behind;
278static cpumask_t cpus_chosen;
279
280static void clocksource_verify_choose_cpus(void)
281{
282 int cpu, i, n = verify_n_cpus;
283
284 if (n < 0) {
285 /* Check all of the CPUs. */
286 cpumask_copy(&cpus_chosen, cpu_online_mask);
287 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
288 return;
289 }
290
291 /* If no checking desired, or no other CPU to check, leave. */
292 cpumask_clear(&cpus_chosen);
293 if (n == 0 || num_online_cpus() <= 1)
294 return;
295
296 /* Make sure to select at least one CPU other than the current CPU. */
297 cpu = cpumask_first(cpu_online_mask);
298 if (cpu == smp_processor_id())
299 cpu = cpumask_next(cpu, cpu_online_mask);
300 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
301 return;
302 cpumask_set_cpu(cpu, &cpus_chosen);
303
304 /* Force a sane value for the boot parameter. */
305 if (n > nr_cpu_ids)
306 n = nr_cpu_ids;
307
308 /*
309 * Randomly select the specified number of CPUs. If the same
310 * CPU is selected multiple times, that CPU is checked only once,
311 * and no replacement CPU is selected. This gracefully handles
312 * situations where verify_n_cpus is greater than the number of
313 * CPUs that are currently online.
314 */
315 for (i = 1; i < n; i++) {
316 cpu = get_random_u32_below(nr_cpu_ids);
317 cpu = cpumask_next(cpu - 1, cpu_online_mask);
318 if (cpu >= nr_cpu_ids)
319 cpu = cpumask_first(cpu_online_mask);
320 if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
321 cpumask_set_cpu(cpu, &cpus_chosen);
322 }
323
324 /* Don't verify ourselves. */
325 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
326}
327
328static void clocksource_verify_one_cpu(void *csin)
329{
330 struct clocksource *cs = (struct clocksource *)csin;
331
332 csnow_mid = cs->read(cs);
333}
334
335void clocksource_verify_percpu(struct clocksource *cs)
336{
337 int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
338 u64 csnow_begin, csnow_end;
339 int cpu, testcpu;
340 s64 delta;
341
342 if (verify_n_cpus == 0)
343 return;
344 cpumask_clear(&cpus_ahead);
345 cpumask_clear(&cpus_behind);
346 cpus_read_lock();
347 preempt_disable();
348 clocksource_verify_choose_cpus();
349 if (cpumask_empty(&cpus_chosen)) {
350 preempt_enable();
351 cpus_read_unlock();
352 pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
353 return;
354 }
355 testcpu = smp_processor_id();
356 pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
357 for_each_cpu(cpu, &cpus_chosen) {
358 if (cpu == testcpu)
359 continue;
360 csnow_begin = cs->read(cs);
361 smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
362 csnow_end = cs->read(cs);
363 delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
364 if (delta < 0)
365 cpumask_set_cpu(cpu, &cpus_behind);
366 delta = (csnow_end - csnow_mid) & cs->mask;
367 if (delta < 0)
368 cpumask_set_cpu(cpu, &cpus_ahead);
369 delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
370 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
371 if (cs_nsec > cs_nsec_max)
372 cs_nsec_max = cs_nsec;
373 if (cs_nsec < cs_nsec_min)
374 cs_nsec_min = cs_nsec;
375 }
376 preempt_enable();
377 cpus_read_unlock();
378 if (!cpumask_empty(&cpus_ahead))
379 pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
380 cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
381 if (!cpumask_empty(&cpus_behind))
382 pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n",
383 cpumask_pr_args(&cpus_behind), testcpu, cs->name);
384 if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
385 pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n",
386 testcpu, cs_nsec_min, cs_nsec_max, cs->name);
387}
388EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
389
390static inline void clocksource_reset_watchdog(void)
391{
392 struct clocksource *cs;
393
394 list_for_each_entry(cs, &watchdog_list, wd_list)
395 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
396}
397
398
399static void clocksource_watchdog(struct timer_list *unused)
400{
401 u64 csnow, wdnow, cslast, wdlast, delta;
402 int64_t wd_nsec, cs_nsec, interval;
403 int next_cpu, reset_pending;
404 struct clocksource *cs;
405 enum wd_read_status read_ret;
406 unsigned long extra_wait = 0;
407 u32 md;
408
409 spin_lock(&watchdog_lock);
410 if (!watchdog_running)
411 goto out;
412
413 reset_pending = atomic_read(&watchdog_reset_pending);
414
415 list_for_each_entry(cs, &watchdog_list, wd_list) {
416
417 /* Clocksource already marked unstable? */
418 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
419 if (finished_booting)
420 schedule_work(&watchdog_work);
421 continue;
422 }
423
424 read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
425
426 if (read_ret == WD_READ_UNSTABLE) {
427 /* Clock readout unreliable, so give it up. */
428 __clocksource_unstable(cs);
429 continue;
430 }
431
432 /*
433 * When WD_READ_SKIP is returned, it means the system is likely
434 * under very heavy load, where the latency of reading
435 * watchdog/clocksource is very big, and affect the accuracy of
436 * watchdog check. So give system some space and suspend the
437 * watchdog check for 5 minutes.
438 */
439 if (read_ret == WD_READ_SKIP) {
440 /*
441 * As the watchdog timer will be suspended, and
442 * cs->last could keep unchanged for 5 minutes, reset
443 * the counters.
444 */
445 clocksource_reset_watchdog();
446 extra_wait = HZ * 300;
447 break;
448 }
449
450 /* Clocksource initialized ? */
451 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
452 atomic_read(&watchdog_reset_pending)) {
453 cs->flags |= CLOCK_SOURCE_WATCHDOG;
454 cs->wd_last = wdnow;
455 cs->cs_last = csnow;
456 continue;
457 }
458
459 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
460 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
461 watchdog->shift);
462
463 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
464 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
465 wdlast = cs->wd_last; /* save these in case we print them */
466 cslast = cs->cs_last;
467 cs->cs_last = csnow;
468 cs->wd_last = wdnow;
469
470 if (atomic_read(&watchdog_reset_pending))
471 continue;
472
473 /*
474 * The processing of timer softirqs can get delayed (usually
475 * on account of ksoftirqd not getting to run in a timely
476 * manner), which causes the watchdog interval to stretch.
477 * Skew detection may fail for longer watchdog intervals
478 * on account of fixed margins being used.
479 * Some clocksources, e.g. acpi_pm, cannot tolerate
480 * watchdog intervals longer than a few seconds.
481 */
482 interval = max(cs_nsec, wd_nsec);
483 if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
484 if (system_state > SYSTEM_SCHEDULING &&
485 interval > 2 * watchdog_max_interval) {
486 watchdog_max_interval = interval;
487 pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
488 cs_nsec, wd_nsec);
489 }
490 watchdog_timer.expires = jiffies;
491 continue;
492 }
493
494 /* Check the deviation from the watchdog clocksource. */
495 md = cs->uncertainty_margin + watchdog->uncertainty_margin;
496 if (abs(cs_nsec - wd_nsec) > md) {
497 s64 cs_wd_msec;
498 s64 wd_msec;
499 u32 wd_rem;
500
501 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
502 smp_processor_id(), cs->name);
503 pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
504 watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
505 pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
506 cs->name, cs_nsec, csnow, cslast, cs->mask);
507 cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
508 wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
509 pr_warn(" Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
510 cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
511 if (curr_clocksource == cs)
512 pr_warn(" '%s' is current clocksource.\n", cs->name);
513 else if (curr_clocksource)
514 pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
515 else
516 pr_warn(" No current clocksource.\n");
517 __clocksource_unstable(cs);
518 continue;
519 }
520
521 if (cs == curr_clocksource && cs->tick_stable)
522 cs->tick_stable(cs);
523
524 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
525 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
526 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
527 /* Mark it valid for high-res. */
528 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
529
530 /*
531 * clocksource_done_booting() will sort it if
532 * finished_booting is not set yet.
533 */
534 if (!finished_booting)
535 continue;
536
537 /*
538 * If this is not the current clocksource let
539 * the watchdog thread reselect it. Due to the
540 * change to high res this clocksource might
541 * be preferred now. If it is the current
542 * clocksource let the tick code know about
543 * that change.
544 */
545 if (cs != curr_clocksource) {
546 cs->flags |= CLOCK_SOURCE_RESELECT;
547 schedule_work(&watchdog_work);
548 } else {
549 tick_clock_notify();
550 }
551 }
552 }
553
554 /*
555 * We only clear the watchdog_reset_pending, when we did a
556 * full cycle through all clocksources.
557 */
558 if (reset_pending)
559 atomic_dec(&watchdog_reset_pending);
560
561 /*
562 * Cycle through CPUs to check if the CPUs stay synchronized
563 * to each other.
564 */
565 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
566 if (next_cpu >= nr_cpu_ids)
567 next_cpu = cpumask_first(cpu_online_mask);
568
569 /*
570 * Arm timer if not already pending: could race with concurrent
571 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
572 */
573 if (!timer_pending(&watchdog_timer)) {
574 watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
575 add_timer_on(&watchdog_timer, next_cpu);
576 }
577out:
578 spin_unlock(&watchdog_lock);
579}
580
581static inline void clocksource_start_watchdog(void)
582{
583 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
584 return;
585 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
586 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
587 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
588 watchdog_running = 1;
589}
590
591static inline void clocksource_stop_watchdog(void)
592{
593 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
594 return;
595 del_timer(&watchdog_timer);
596 watchdog_running = 0;
597}
598
599static void clocksource_resume_watchdog(void)
600{
601 atomic_inc(&watchdog_reset_pending);
602}
603
604static void clocksource_enqueue_watchdog(struct clocksource *cs)
605{
606 INIT_LIST_HEAD(&cs->wd_list);
607
608 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
609 /* cs is a clocksource to be watched. */
610 list_add(&cs->wd_list, &watchdog_list);
611 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
612 } else {
613 /* cs is a watchdog. */
614 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
615 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
616 }
617}
618
619static void clocksource_select_watchdog(bool fallback)
620{
621 struct clocksource *cs, *old_wd;
622 unsigned long flags;
623
624 spin_lock_irqsave(&watchdog_lock, flags);
625 /* save current watchdog */
626 old_wd = watchdog;
627 if (fallback)
628 watchdog = NULL;
629
630 list_for_each_entry(cs, &clocksource_list, list) {
631 /* cs is a clocksource to be watched. */
632 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
633 continue;
634
635 /* Skip current if we were requested for a fallback. */
636 if (fallback && cs == old_wd)
637 continue;
638
639 /* Pick the best watchdog. */
640 if (!watchdog || cs->rating > watchdog->rating)
641 watchdog = cs;
642 }
643 /* If we failed to find a fallback restore the old one. */
644 if (!watchdog)
645 watchdog = old_wd;
646
647 /* If we changed the watchdog we need to reset cycles. */
648 if (watchdog != old_wd)
649 clocksource_reset_watchdog();
650
651 /* Check if the watchdog timer needs to be started. */
652 clocksource_start_watchdog();
653 spin_unlock_irqrestore(&watchdog_lock, flags);
654}
655
656static void clocksource_dequeue_watchdog(struct clocksource *cs)
657{
658 if (cs != watchdog) {
659 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
660 /* cs is a watched clocksource. */
661 list_del_init(&cs->wd_list);
662 /* Check if the watchdog timer needs to be stopped. */
663 clocksource_stop_watchdog();
664 }
665 }
666}
667
668static int __clocksource_watchdog_kthread(void)
669{
670 struct clocksource *cs, *tmp;
671 unsigned long flags;
672 int select = 0;
673
674 /* Do any required per-CPU skew verification. */
675 if (curr_clocksource &&
676 curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
677 curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
678 clocksource_verify_percpu(curr_clocksource);
679
680 spin_lock_irqsave(&watchdog_lock, flags);
681 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
682 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
683 list_del_init(&cs->wd_list);
684 __clocksource_change_rating(cs, 0);
685 select = 1;
686 }
687 if (cs->flags & CLOCK_SOURCE_RESELECT) {
688 cs->flags &= ~CLOCK_SOURCE_RESELECT;
689 select = 1;
690 }
691 }
692 /* Check if the watchdog timer needs to be stopped. */
693 clocksource_stop_watchdog();
694 spin_unlock_irqrestore(&watchdog_lock, flags);
695
696 return select;
697}
698
699static int clocksource_watchdog_kthread(void *data)
700{
701 mutex_lock(&clocksource_mutex);
702 if (__clocksource_watchdog_kthread())
703 clocksource_select();
704 mutex_unlock(&clocksource_mutex);
705 return 0;
706}
707
708static bool clocksource_is_watchdog(struct clocksource *cs)
709{
710 return cs == watchdog;
711}
712
713#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
714
715static void clocksource_enqueue_watchdog(struct clocksource *cs)
716{
717 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
718 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
719}
720
721static void clocksource_select_watchdog(bool fallback) { }
722static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
723static inline void clocksource_resume_watchdog(void) { }
724static inline int __clocksource_watchdog_kthread(void) { return 0; }
725static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
726void clocksource_mark_unstable(struct clocksource *cs) { }
727
728static inline void clocksource_watchdog_lock(unsigned long *flags) { }
729static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
730
731#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
732
733static bool clocksource_is_suspend(struct clocksource *cs)
734{
735 return cs == suspend_clocksource;
736}
737
738static void __clocksource_suspend_select(struct clocksource *cs)
739{
740 /*
741 * Skip the clocksource which will be stopped in suspend state.
742 */
743 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
744 return;
745
746 /*
747 * The nonstop clocksource can be selected as the suspend clocksource to
748 * calculate the suspend time, so it should not supply suspend/resume
749 * interfaces to suspend the nonstop clocksource when system suspends.
750 */
751 if (cs->suspend || cs->resume) {
752 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
753 cs->name);
754 }
755
756 /* Pick the best rating. */
757 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
758 suspend_clocksource = cs;
759}
760
761/**
762 * clocksource_suspend_select - Select the best clocksource for suspend timing
763 * @fallback: if select a fallback clocksource
764 */
765static void clocksource_suspend_select(bool fallback)
766{
767 struct clocksource *cs, *old_suspend;
768
769 old_suspend = suspend_clocksource;
770 if (fallback)
771 suspend_clocksource = NULL;
772
773 list_for_each_entry(cs, &clocksource_list, list) {
774 /* Skip current if we were requested for a fallback. */
775 if (fallback && cs == old_suspend)
776 continue;
777
778 __clocksource_suspend_select(cs);
779 }
780}
781
782/**
783 * clocksource_start_suspend_timing - Start measuring the suspend timing
784 * @cs: current clocksource from timekeeping
785 * @start_cycles: current cycles from timekeeping
786 *
787 * This function will save the start cycle values of suspend timer to calculate
788 * the suspend time when resuming system.
789 *
790 * This function is called late in the suspend process from timekeeping_suspend(),
791 * that means processes are frozen, non-boot cpus and interrupts are disabled
792 * now. It is therefore possible to start the suspend timer without taking the
793 * clocksource mutex.
794 */
795void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
796{
797 if (!suspend_clocksource)
798 return;
799
800 /*
801 * If current clocksource is the suspend timer, we should use the
802 * tkr_mono.cycle_last value as suspend_start to avoid same reading
803 * from suspend timer.
804 */
805 if (clocksource_is_suspend(cs)) {
806 suspend_start = start_cycles;
807 return;
808 }
809
810 if (suspend_clocksource->enable &&
811 suspend_clocksource->enable(suspend_clocksource)) {
812 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
813 return;
814 }
815
816 suspend_start = suspend_clocksource->read(suspend_clocksource);
817}
818
819/**
820 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
821 * @cs: current clocksource from timekeeping
822 * @cycle_now: current cycles from timekeeping
823 *
824 * This function will calculate the suspend time from suspend timer.
825 *
826 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
827 *
828 * This function is called early in the resume process from timekeeping_resume(),
829 * that means there is only one cpu, no processes are running and the interrupts
830 * are disabled. It is therefore possible to stop the suspend timer without
831 * taking the clocksource mutex.
832 */
833u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
834{
835 u64 now, delta, nsec = 0;
836
837 if (!suspend_clocksource)
838 return 0;
839
840 /*
841 * If current clocksource is the suspend timer, we should use the
842 * tkr_mono.cycle_last value from timekeeping as current cycle to
843 * avoid same reading from suspend timer.
844 */
845 if (clocksource_is_suspend(cs))
846 now = cycle_now;
847 else
848 now = suspend_clocksource->read(suspend_clocksource);
849
850 if (now > suspend_start) {
851 delta = clocksource_delta(now, suspend_start,
852 suspend_clocksource->mask);
853 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
854 suspend_clocksource->shift);
855 }
856
857 /*
858 * Disable the suspend timer to save power if current clocksource is
859 * not the suspend timer.
860 */
861 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
862 suspend_clocksource->disable(suspend_clocksource);
863
864 return nsec;
865}
866
867/**
868 * clocksource_suspend - suspend the clocksource(s)
869 */
870void clocksource_suspend(void)
871{
872 struct clocksource *cs;
873
874 list_for_each_entry_reverse(cs, &clocksource_list, list)
875 if (cs->suspend)
876 cs->suspend(cs);
877}
878
879/**
880 * clocksource_resume - resume the clocksource(s)
881 */
882void clocksource_resume(void)
883{
884 struct clocksource *cs;
885
886 list_for_each_entry(cs, &clocksource_list, list)
887 if (cs->resume)
888 cs->resume(cs);
889
890 clocksource_resume_watchdog();
891}
892
893/**
894 * clocksource_touch_watchdog - Update watchdog
895 *
896 * Update the watchdog after exception contexts such as kgdb so as not
897 * to incorrectly trip the watchdog. This might fail when the kernel
898 * was stopped in code which holds watchdog_lock.
899 */
900void clocksource_touch_watchdog(void)
901{
902 clocksource_resume_watchdog();
903}
904
905/**
906 * clocksource_max_adjustment- Returns max adjustment amount
907 * @cs: Pointer to clocksource
908 *
909 */
910static u32 clocksource_max_adjustment(struct clocksource *cs)
911{
912 u64 ret;
913 /*
914 * We won't try to correct for more than 11% adjustments (110,000 ppm),
915 */
916 ret = (u64)cs->mult * 11;
917 do_div(ret,100);
918 return (u32)ret;
919}
920
921/**
922 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
923 * @mult: cycle to nanosecond multiplier
924 * @shift: cycle to nanosecond divisor (power of two)
925 * @maxadj: maximum adjustment value to mult (~11%)
926 * @mask: bitmask for two's complement subtraction of non 64 bit counters
927 * @max_cyc: maximum cycle value before potential overflow (does not include
928 * any safety margin)
929 *
930 * NOTE: This function includes a safety margin of 50%, in other words, we
931 * return half the number of nanoseconds the hardware counter can technically
932 * cover. This is done so that we can potentially detect problems caused by
933 * delayed timers or bad hardware, which might result in time intervals that
934 * are larger than what the math used can handle without overflows.
935 */
936u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
937{
938 u64 max_nsecs, max_cycles;
939
940 /*
941 * Calculate the maximum number of cycles that we can pass to the
942 * cyc2ns() function without overflowing a 64-bit result.
943 */
944 max_cycles = ULLONG_MAX;
945 do_div(max_cycles, mult+maxadj);
946
947 /*
948 * The actual maximum number of cycles we can defer the clocksource is
949 * determined by the minimum of max_cycles and mask.
950 * Note: Here we subtract the maxadj to make sure we don't sleep for
951 * too long if there's a large negative adjustment.
952 */
953 max_cycles = min(max_cycles, mask);
954 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
955
956 /* return the max_cycles value as well if requested */
957 if (max_cyc)
958 *max_cyc = max_cycles;
959
960 /* Return 50% of the actual maximum, so we can detect bad values */
961 max_nsecs >>= 1;
962
963 return max_nsecs;
964}
965
966/**
967 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
968 * @cs: Pointer to clocksource to be updated
969 *
970 */
971static inline void clocksource_update_max_deferment(struct clocksource *cs)
972{
973 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
974 cs->maxadj, cs->mask,
975 &cs->max_cycles);
976}
977
978static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
979{
980 struct clocksource *cs;
981
982 if (!finished_booting || list_empty(&clocksource_list))
983 return NULL;
984
985 /*
986 * We pick the clocksource with the highest rating. If oneshot
987 * mode is active, we pick the highres valid clocksource with
988 * the best rating.
989 */
990 list_for_each_entry(cs, &clocksource_list, list) {
991 if (skipcur && cs == curr_clocksource)
992 continue;
993 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
994 continue;
995 return cs;
996 }
997 return NULL;
998}
999
1000static void __clocksource_select(bool skipcur)
1001{
1002 bool oneshot = tick_oneshot_mode_active();
1003 struct clocksource *best, *cs;
1004
1005 /* Find the best suitable clocksource */
1006 best = clocksource_find_best(oneshot, skipcur);
1007 if (!best)
1008 return;
1009
1010 if (!strlen(override_name))
1011 goto found;
1012
1013 /* Check for the override clocksource. */
1014 list_for_each_entry(cs, &clocksource_list, list) {
1015 if (skipcur && cs == curr_clocksource)
1016 continue;
1017 if (strcmp(cs->name, override_name) != 0)
1018 continue;
1019 /*
1020 * Check to make sure we don't switch to a non-highres
1021 * capable clocksource if the tick code is in oneshot
1022 * mode (highres or nohz)
1023 */
1024 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1025 /* Override clocksource cannot be used. */
1026 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1027 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1028 cs->name);
1029 override_name[0] = 0;
1030 } else {
1031 /*
1032 * The override cannot be currently verified.
1033 * Deferring to let the watchdog check.
1034 */
1035 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1036 cs->name);
1037 }
1038 } else
1039 /* Override clocksource can be used. */
1040 best = cs;
1041 break;
1042 }
1043
1044found:
1045 if (curr_clocksource != best && !timekeeping_notify(best)) {
1046 pr_info("Switched to clocksource %s\n", best->name);
1047 curr_clocksource = best;
1048 }
1049}
1050
1051/**
1052 * clocksource_select - Select the best clocksource available
1053 *
1054 * Private function. Must hold clocksource_mutex when called.
1055 *
1056 * Select the clocksource with the best rating, or the clocksource,
1057 * which is selected by userspace override.
1058 */
1059static void clocksource_select(void)
1060{
1061 __clocksource_select(false);
1062}
1063
1064static void clocksource_select_fallback(void)
1065{
1066 __clocksource_select(true);
1067}
1068
1069/*
1070 * clocksource_done_booting - Called near the end of core bootup
1071 *
1072 * Hack to avoid lots of clocksource churn at boot time.
1073 * We use fs_initcall because we want this to start before
1074 * device_initcall but after subsys_initcall.
1075 */
1076static int __init clocksource_done_booting(void)
1077{
1078 mutex_lock(&clocksource_mutex);
1079 curr_clocksource = clocksource_default_clock();
1080 finished_booting = 1;
1081 /*
1082 * Run the watchdog first to eliminate unstable clock sources
1083 */
1084 __clocksource_watchdog_kthread();
1085 clocksource_select();
1086 mutex_unlock(&clocksource_mutex);
1087 return 0;
1088}
1089fs_initcall(clocksource_done_booting);
1090
1091/*
1092 * Enqueue the clocksource sorted by rating
1093 */
1094static void clocksource_enqueue(struct clocksource *cs)
1095{
1096 struct list_head *entry = &clocksource_list;
1097 struct clocksource *tmp;
1098
1099 list_for_each_entry(tmp, &clocksource_list, list) {
1100 /* Keep track of the place, where to insert */
1101 if (tmp->rating < cs->rating)
1102 break;
1103 entry = &tmp->list;
1104 }
1105 list_add(&cs->list, entry);
1106}
1107
1108/**
1109 * __clocksource_update_freq_scale - Used update clocksource with new freq
1110 * @cs: clocksource to be registered
1111 * @scale: Scale factor multiplied against freq to get clocksource hz
1112 * @freq: clocksource frequency (cycles per second) divided by scale
1113 *
1114 * This should only be called from the clocksource->enable() method.
1115 *
1116 * This *SHOULD NOT* be called directly! Please use the
1117 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1118 * functions.
1119 */
1120void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1121{
1122 u64 sec;
1123
1124 /*
1125 * Default clocksources are *special* and self-define their mult/shift.
1126 * But, you're not special, so you should specify a freq value.
1127 */
1128 if (freq) {
1129 /*
1130 * Calc the maximum number of seconds which we can run before
1131 * wrapping around. For clocksources which have a mask > 32-bit
1132 * we need to limit the max sleep time to have a good
1133 * conversion precision. 10 minutes is still a reasonable
1134 * amount. That results in a shift value of 24 for a
1135 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1136 * ~ 0.06ppm granularity for NTP.
1137 */
1138 sec = cs->mask;
1139 do_div(sec, freq);
1140 do_div(sec, scale);
1141 if (!sec)
1142 sec = 1;
1143 else if (sec > 600 && cs->mask > UINT_MAX)
1144 sec = 600;
1145
1146 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1147 NSEC_PER_SEC / scale, sec * scale);
1148 }
1149
1150 /*
1151 * If the uncertainty margin is not specified, calculate it.
1152 * If both scale and freq are non-zero, calculate the clock
1153 * period, but bound below at 2*WATCHDOG_MAX_SKEW. However,
1154 * if either of scale or freq is zero, be very conservative and
1155 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1156 * uncertainty margin. Allow stupidly small uncertainty margins
1157 * to be specified by the caller for testing purposes, but warn
1158 * to discourage production use of this capability.
1159 */
1160 if (scale && freq && !cs->uncertainty_margin) {
1161 cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1162 if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1163 cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1164 } else if (!cs->uncertainty_margin) {
1165 cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1166 }
1167 WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1168
1169 /*
1170 * Ensure clocksources that have large 'mult' values don't overflow
1171 * when adjusted.
1172 */
1173 cs->maxadj = clocksource_max_adjustment(cs);
1174 while (freq && ((cs->mult + cs->maxadj < cs->mult)
1175 || (cs->mult - cs->maxadj > cs->mult))) {
1176 cs->mult >>= 1;
1177 cs->shift--;
1178 cs->maxadj = clocksource_max_adjustment(cs);
1179 }
1180
1181 /*
1182 * Only warn for *special* clocksources that self-define
1183 * their mult/shift values and don't specify a freq.
1184 */
1185 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1186 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1187 cs->name);
1188
1189 clocksource_update_max_deferment(cs);
1190
1191 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1192 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1193}
1194EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1195
1196/**
1197 * __clocksource_register_scale - Used to install new clocksources
1198 * @cs: clocksource to be registered
1199 * @scale: Scale factor multiplied against freq to get clocksource hz
1200 * @freq: clocksource frequency (cycles per second) divided by scale
1201 *
1202 * Returns -EBUSY if registration fails, zero otherwise.
1203 *
1204 * This *SHOULD NOT* be called directly! Please use the
1205 * clocksource_register_hz() or clocksource_register_khz helper functions.
1206 */
1207int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1208{
1209 unsigned long flags;
1210
1211 clocksource_arch_init(cs);
1212
1213 if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1214 cs->id = CSID_GENERIC;
1215 if (cs->vdso_clock_mode < 0 ||
1216 cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1217 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1218 cs->name, cs->vdso_clock_mode);
1219 cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1220 }
1221
1222 /* Initialize mult/shift and max_idle_ns */
1223 __clocksource_update_freq_scale(cs, scale, freq);
1224
1225 /* Add clocksource to the clocksource list */
1226 mutex_lock(&clocksource_mutex);
1227
1228 clocksource_watchdog_lock(&flags);
1229 clocksource_enqueue(cs);
1230 clocksource_enqueue_watchdog(cs);
1231 clocksource_watchdog_unlock(&flags);
1232
1233 clocksource_select();
1234 clocksource_select_watchdog(false);
1235 __clocksource_suspend_select(cs);
1236 mutex_unlock(&clocksource_mutex);
1237 return 0;
1238}
1239EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1240
1241static void __clocksource_change_rating(struct clocksource *cs, int rating)
1242{
1243 list_del(&cs->list);
1244 cs->rating = rating;
1245 clocksource_enqueue(cs);
1246}
1247
1248/**
1249 * clocksource_change_rating - Change the rating of a registered clocksource
1250 * @cs: clocksource to be changed
1251 * @rating: new rating
1252 */
1253void clocksource_change_rating(struct clocksource *cs, int rating)
1254{
1255 unsigned long flags;
1256
1257 mutex_lock(&clocksource_mutex);
1258 clocksource_watchdog_lock(&flags);
1259 __clocksource_change_rating(cs, rating);
1260 clocksource_watchdog_unlock(&flags);
1261
1262 clocksource_select();
1263 clocksource_select_watchdog(false);
1264 clocksource_suspend_select(false);
1265 mutex_unlock(&clocksource_mutex);
1266}
1267EXPORT_SYMBOL(clocksource_change_rating);
1268
1269/*
1270 * Unbind clocksource @cs. Called with clocksource_mutex held
1271 */
1272static int clocksource_unbind(struct clocksource *cs)
1273{
1274 unsigned long flags;
1275
1276 if (clocksource_is_watchdog(cs)) {
1277 /* Select and try to install a replacement watchdog. */
1278 clocksource_select_watchdog(true);
1279 if (clocksource_is_watchdog(cs))
1280 return -EBUSY;
1281 }
1282
1283 if (cs == curr_clocksource) {
1284 /* Select and try to install a replacement clock source */
1285 clocksource_select_fallback();
1286 if (curr_clocksource == cs)
1287 return -EBUSY;
1288 }
1289
1290 if (clocksource_is_suspend(cs)) {
1291 /*
1292 * Select and try to install a replacement suspend clocksource.
1293 * If no replacement suspend clocksource, we will just let the
1294 * clocksource go and have no suspend clocksource.
1295 */
1296 clocksource_suspend_select(true);
1297 }
1298
1299 clocksource_watchdog_lock(&flags);
1300 clocksource_dequeue_watchdog(cs);
1301 list_del_init(&cs->list);
1302 clocksource_watchdog_unlock(&flags);
1303
1304 return 0;
1305}
1306
1307/**
1308 * clocksource_unregister - remove a registered clocksource
1309 * @cs: clocksource to be unregistered
1310 */
1311int clocksource_unregister(struct clocksource *cs)
1312{
1313 int ret = 0;
1314
1315 mutex_lock(&clocksource_mutex);
1316 if (!list_empty(&cs->list))
1317 ret = clocksource_unbind(cs);
1318 mutex_unlock(&clocksource_mutex);
1319 return ret;
1320}
1321EXPORT_SYMBOL(clocksource_unregister);
1322
1323#ifdef CONFIG_SYSFS
1324/**
1325 * current_clocksource_show - sysfs interface for current clocksource
1326 * @dev: unused
1327 * @attr: unused
1328 * @buf: char buffer to be filled with clocksource list
1329 *
1330 * Provides sysfs interface for listing current clocksource.
1331 */
1332static ssize_t current_clocksource_show(struct device *dev,
1333 struct device_attribute *attr,
1334 char *buf)
1335{
1336 ssize_t count = 0;
1337
1338 mutex_lock(&clocksource_mutex);
1339 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1340 mutex_unlock(&clocksource_mutex);
1341
1342 return count;
1343}
1344
1345ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1346{
1347 size_t ret = cnt;
1348
1349 /* strings from sysfs write are not 0 terminated! */
1350 if (!cnt || cnt >= CS_NAME_LEN)
1351 return -EINVAL;
1352
1353 /* strip of \n: */
1354 if (buf[cnt-1] == '\n')
1355 cnt--;
1356 if (cnt > 0)
1357 memcpy(dst, buf, cnt);
1358 dst[cnt] = 0;
1359 return ret;
1360}
1361
1362/**
1363 * current_clocksource_store - interface for manually overriding clocksource
1364 * @dev: unused
1365 * @attr: unused
1366 * @buf: name of override clocksource
1367 * @count: length of buffer
1368 *
1369 * Takes input from sysfs interface for manually overriding the default
1370 * clocksource selection.
1371 */
1372static ssize_t current_clocksource_store(struct device *dev,
1373 struct device_attribute *attr,
1374 const char *buf, size_t count)
1375{
1376 ssize_t ret;
1377
1378 mutex_lock(&clocksource_mutex);
1379
1380 ret = sysfs_get_uname(buf, override_name, count);
1381 if (ret >= 0)
1382 clocksource_select();
1383
1384 mutex_unlock(&clocksource_mutex);
1385
1386 return ret;
1387}
1388static DEVICE_ATTR_RW(current_clocksource);
1389
1390/**
1391 * unbind_clocksource_store - interface for manually unbinding clocksource
1392 * @dev: unused
1393 * @attr: unused
1394 * @buf: unused
1395 * @count: length of buffer
1396 *
1397 * Takes input from sysfs interface for manually unbinding a clocksource.
1398 */
1399static ssize_t unbind_clocksource_store(struct device *dev,
1400 struct device_attribute *attr,
1401 const char *buf, size_t count)
1402{
1403 struct clocksource *cs;
1404 char name[CS_NAME_LEN];
1405 ssize_t ret;
1406
1407 ret = sysfs_get_uname(buf, name, count);
1408 if (ret < 0)
1409 return ret;
1410
1411 ret = -ENODEV;
1412 mutex_lock(&clocksource_mutex);
1413 list_for_each_entry(cs, &clocksource_list, list) {
1414 if (strcmp(cs->name, name))
1415 continue;
1416 ret = clocksource_unbind(cs);
1417 break;
1418 }
1419 mutex_unlock(&clocksource_mutex);
1420
1421 return ret ? ret : count;
1422}
1423static DEVICE_ATTR_WO(unbind_clocksource);
1424
1425/**
1426 * available_clocksource_show - sysfs interface for listing clocksource
1427 * @dev: unused
1428 * @attr: unused
1429 * @buf: char buffer to be filled with clocksource list
1430 *
1431 * Provides sysfs interface for listing registered clocksources
1432 */
1433static ssize_t available_clocksource_show(struct device *dev,
1434 struct device_attribute *attr,
1435 char *buf)
1436{
1437 struct clocksource *src;
1438 ssize_t count = 0;
1439
1440 mutex_lock(&clocksource_mutex);
1441 list_for_each_entry(src, &clocksource_list, list) {
1442 /*
1443 * Don't show non-HRES clocksource if the tick code is
1444 * in one shot mode (highres=on or nohz=on)
1445 */
1446 if (!tick_oneshot_mode_active() ||
1447 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1448 count += snprintf(buf + count,
1449 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1450 "%s ", src->name);
1451 }
1452 mutex_unlock(&clocksource_mutex);
1453
1454 count += snprintf(buf + count,
1455 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1456
1457 return count;
1458}
1459static DEVICE_ATTR_RO(available_clocksource);
1460
1461static struct attribute *clocksource_attrs[] = {
1462 &dev_attr_current_clocksource.attr,
1463 &dev_attr_unbind_clocksource.attr,
1464 &dev_attr_available_clocksource.attr,
1465 NULL
1466};
1467ATTRIBUTE_GROUPS(clocksource);
1468
1469static const struct bus_type clocksource_subsys = {
1470 .name = "clocksource",
1471 .dev_name = "clocksource",
1472};
1473
1474static struct device device_clocksource = {
1475 .id = 0,
1476 .bus = &clocksource_subsys,
1477 .groups = clocksource_groups,
1478};
1479
1480static int __init init_clocksource_sysfs(void)
1481{
1482 int error = subsys_system_register(&clocksource_subsys, NULL);
1483
1484 if (!error)
1485 error = device_register(&device_clocksource);
1486
1487 return error;
1488}
1489
1490device_initcall(init_clocksource_sysfs);
1491#endif /* CONFIG_SYSFS */
1492
1493/**
1494 * boot_override_clocksource - boot clock override
1495 * @str: override name
1496 *
1497 * Takes a clocksource= boot argument and uses it
1498 * as the clocksource override name.
1499 */
1500static int __init boot_override_clocksource(char* str)
1501{
1502 mutex_lock(&clocksource_mutex);
1503 if (str)
1504 strscpy(override_name, str, sizeof(override_name));
1505 mutex_unlock(&clocksource_mutex);
1506 return 1;
1507}
1508
1509__setup("clocksource=", boot_override_clocksource);
1510
1511/**
1512 * boot_override_clock - Compatibility layer for deprecated boot option
1513 * @str: override name
1514 *
1515 * DEPRECATED! Takes a clock= boot argument and uses it
1516 * as the clocksource override name
1517 */
1518static int __init boot_override_clock(char* str)
1519{
1520 if (!strcmp(str, "pmtmr")) {
1521 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1522 return boot_override_clocksource("acpi_pm");
1523 }
1524 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1525 return boot_override_clocksource(str);
1526}
1527
1528__setup("clock=", boot_override_clock);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/device.h>
11#include <linux/clocksource.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15#include <linux/tick.h>
16#include <linux/kthread.h>
17#include <linux/prandom.h>
18#include <linux/cpu.h>
19
20#include "tick-internal.h"
21#include "timekeeping_internal.h"
22
23/**
24 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
25 * @mult: pointer to mult variable
26 * @shift: pointer to shift variable
27 * @from: frequency to convert from
28 * @to: frequency to convert to
29 * @maxsec: guaranteed runtime conversion range in seconds
30 *
31 * The function evaluates the shift/mult pair for the scaled math
32 * operations of clocksources and clockevents.
33 *
34 * @to and @from are frequency values in HZ. For clock sources @to is
35 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
36 * event @to is the counter frequency and @from is NSEC_PER_SEC.
37 *
38 * The @maxsec conversion range argument controls the time frame in
39 * seconds which must be covered by the runtime conversion with the
40 * calculated mult and shift factors. This guarantees that no 64bit
41 * overflow happens when the input value of the conversion is
42 * multiplied with the calculated mult factor. Larger ranges may
43 * reduce the conversion accuracy by choosing smaller mult and shift
44 * factors.
45 */
46void
47clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
48{
49 u64 tmp;
50 u32 sft, sftacc= 32;
51
52 /*
53 * Calculate the shift factor which is limiting the conversion
54 * range:
55 */
56 tmp = ((u64)maxsec * from) >> 32;
57 while (tmp) {
58 tmp >>=1;
59 sftacc--;
60 }
61
62 /*
63 * Find the conversion shift/mult pair which has the best
64 * accuracy and fits the maxsec conversion range:
65 */
66 for (sft = 32; sft > 0; sft--) {
67 tmp = (u64) to << sft;
68 tmp += from / 2;
69 do_div(tmp, from);
70 if ((tmp >> sftacc) == 0)
71 break;
72 }
73 *mult = tmp;
74 *shift = sft;
75}
76EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
77
78/*[Clocksource internal variables]---------
79 * curr_clocksource:
80 * currently selected clocksource.
81 * suspend_clocksource:
82 * used to calculate the suspend time.
83 * clocksource_list:
84 * linked list with the registered clocksources
85 * clocksource_mutex:
86 * protects manipulations to curr_clocksource and the clocksource_list
87 * override_name:
88 * Name of the user-specified clocksource.
89 */
90static struct clocksource *curr_clocksource;
91static struct clocksource *suspend_clocksource;
92static LIST_HEAD(clocksource_list);
93static DEFINE_MUTEX(clocksource_mutex);
94static char override_name[CS_NAME_LEN];
95static int finished_booting;
96static u64 suspend_start;
97
98/*
99 * Threshold: 0.0312s, when doubled: 0.0625s.
100 * Also a default for cs->uncertainty_margin when registering clocks.
101 */
102#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
103
104/*
105 * Maximum permissible delay between two readouts of the watchdog
106 * clocksource surrounding a read of the clocksource being validated.
107 * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as
108 * a lower bound for cs->uncertainty_margin values when registering clocks.
109 */
110#define WATCHDOG_MAX_SKEW (50 * NSEC_PER_USEC)
111
112#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
113static void clocksource_watchdog_work(struct work_struct *work);
114static void clocksource_select(void);
115
116static LIST_HEAD(watchdog_list);
117static struct clocksource *watchdog;
118static struct timer_list watchdog_timer;
119static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
120static DEFINE_SPINLOCK(watchdog_lock);
121static int watchdog_running;
122static atomic_t watchdog_reset_pending;
123
124static inline void clocksource_watchdog_lock(unsigned long *flags)
125{
126 spin_lock_irqsave(&watchdog_lock, *flags);
127}
128
129static inline void clocksource_watchdog_unlock(unsigned long *flags)
130{
131 spin_unlock_irqrestore(&watchdog_lock, *flags);
132}
133
134static int clocksource_watchdog_kthread(void *data);
135static void __clocksource_change_rating(struct clocksource *cs, int rating);
136
137/*
138 * Interval: 0.5sec.
139 */
140#define WATCHDOG_INTERVAL (HZ >> 1)
141
142static void clocksource_watchdog_work(struct work_struct *work)
143{
144 /*
145 * We cannot directly run clocksource_watchdog_kthread() here, because
146 * clocksource_select() calls timekeeping_notify() which uses
147 * stop_machine(). One cannot use stop_machine() from a workqueue() due
148 * lock inversions wrt CPU hotplug.
149 *
150 * Also, we only ever run this work once or twice during the lifetime
151 * of the kernel, so there is no point in creating a more permanent
152 * kthread for this.
153 *
154 * If kthread_run fails the next watchdog scan over the
155 * watchdog_list will find the unstable clock again.
156 */
157 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
158}
159
160static void __clocksource_unstable(struct clocksource *cs)
161{
162 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
163 cs->flags |= CLOCK_SOURCE_UNSTABLE;
164
165 /*
166 * If the clocksource is registered clocksource_watchdog_kthread() will
167 * re-rate and re-select.
168 */
169 if (list_empty(&cs->list)) {
170 cs->rating = 0;
171 return;
172 }
173
174 if (cs->mark_unstable)
175 cs->mark_unstable(cs);
176
177 /* kick clocksource_watchdog_kthread() */
178 if (finished_booting)
179 schedule_work(&watchdog_work);
180}
181
182/**
183 * clocksource_mark_unstable - mark clocksource unstable via watchdog
184 * @cs: clocksource to be marked unstable
185 *
186 * This function is called by the x86 TSC code to mark clocksources as unstable;
187 * it defers demotion and re-selection to a kthread.
188 */
189void clocksource_mark_unstable(struct clocksource *cs)
190{
191 unsigned long flags;
192
193 spin_lock_irqsave(&watchdog_lock, flags);
194 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
195 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
196 list_add(&cs->wd_list, &watchdog_list);
197 __clocksource_unstable(cs);
198 }
199 spin_unlock_irqrestore(&watchdog_lock, flags);
200}
201
202ulong max_cswd_read_retries = 3;
203module_param(max_cswd_read_retries, ulong, 0644);
204EXPORT_SYMBOL_GPL(max_cswd_read_retries);
205static int verify_n_cpus = 8;
206module_param(verify_n_cpus, int, 0644);
207
208static bool cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
209{
210 unsigned int nretries;
211 u64 wd_end, wd_delta;
212 int64_t wd_delay;
213
214 for (nretries = 0; nretries <= max_cswd_read_retries; nretries++) {
215 local_irq_disable();
216 *wdnow = watchdog->read(watchdog);
217 *csnow = cs->read(cs);
218 wd_end = watchdog->read(watchdog);
219 local_irq_enable();
220
221 wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
222 wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
223 watchdog->shift);
224 if (wd_delay <= WATCHDOG_MAX_SKEW) {
225 if (nretries > 1 || nretries >= max_cswd_read_retries) {
226 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
227 smp_processor_id(), watchdog->name, nretries);
228 }
229 return true;
230 }
231 }
232
233 pr_warn("timekeeping watchdog on CPU%d: %s read-back delay of %lldns, attempt %d, marking unstable\n",
234 smp_processor_id(), watchdog->name, wd_delay, nretries);
235 return false;
236}
237
238static u64 csnow_mid;
239static cpumask_t cpus_ahead;
240static cpumask_t cpus_behind;
241static cpumask_t cpus_chosen;
242
243static void clocksource_verify_choose_cpus(void)
244{
245 int cpu, i, n = verify_n_cpus;
246
247 if (n < 0) {
248 /* Check all of the CPUs. */
249 cpumask_copy(&cpus_chosen, cpu_online_mask);
250 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
251 return;
252 }
253
254 /* If no checking desired, or no other CPU to check, leave. */
255 cpumask_clear(&cpus_chosen);
256 if (n == 0 || num_online_cpus() <= 1)
257 return;
258
259 /* Make sure to select at least one CPU other than the current CPU. */
260 cpu = cpumask_next(-1, cpu_online_mask);
261 if (cpu == smp_processor_id())
262 cpu = cpumask_next(cpu, cpu_online_mask);
263 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
264 return;
265 cpumask_set_cpu(cpu, &cpus_chosen);
266
267 /* Force a sane value for the boot parameter. */
268 if (n > nr_cpu_ids)
269 n = nr_cpu_ids;
270
271 /*
272 * Randomly select the specified number of CPUs. If the same
273 * CPU is selected multiple times, that CPU is checked only once,
274 * and no replacement CPU is selected. This gracefully handles
275 * situations where verify_n_cpus is greater than the number of
276 * CPUs that are currently online.
277 */
278 for (i = 1; i < n; i++) {
279 cpu = prandom_u32() % nr_cpu_ids;
280 cpu = cpumask_next(cpu - 1, cpu_online_mask);
281 if (cpu >= nr_cpu_ids)
282 cpu = cpumask_next(-1, cpu_online_mask);
283 if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
284 cpumask_set_cpu(cpu, &cpus_chosen);
285 }
286
287 /* Don't verify ourselves. */
288 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
289}
290
291static void clocksource_verify_one_cpu(void *csin)
292{
293 struct clocksource *cs = (struct clocksource *)csin;
294
295 csnow_mid = cs->read(cs);
296}
297
298void clocksource_verify_percpu(struct clocksource *cs)
299{
300 int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
301 u64 csnow_begin, csnow_end;
302 int cpu, testcpu;
303 s64 delta;
304
305 if (verify_n_cpus == 0)
306 return;
307 cpumask_clear(&cpus_ahead);
308 cpumask_clear(&cpus_behind);
309 get_online_cpus();
310 preempt_disable();
311 clocksource_verify_choose_cpus();
312 if (cpumask_weight(&cpus_chosen) == 0) {
313 preempt_enable();
314 put_online_cpus();
315 pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
316 return;
317 }
318 testcpu = smp_processor_id();
319 pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
320 for_each_cpu(cpu, &cpus_chosen) {
321 if (cpu == testcpu)
322 continue;
323 csnow_begin = cs->read(cs);
324 smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
325 csnow_end = cs->read(cs);
326 delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
327 if (delta < 0)
328 cpumask_set_cpu(cpu, &cpus_behind);
329 delta = (csnow_end - csnow_mid) & cs->mask;
330 if (delta < 0)
331 cpumask_set_cpu(cpu, &cpus_ahead);
332 delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
333 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
334 if (cs_nsec > cs_nsec_max)
335 cs_nsec_max = cs_nsec;
336 if (cs_nsec < cs_nsec_min)
337 cs_nsec_min = cs_nsec;
338 }
339 preempt_enable();
340 put_online_cpus();
341 if (!cpumask_empty(&cpus_ahead))
342 pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
343 cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
344 if (!cpumask_empty(&cpus_behind))
345 pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n",
346 cpumask_pr_args(&cpus_behind), testcpu, cs->name);
347 if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
348 pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n",
349 testcpu, cs_nsec_min, cs_nsec_max, cs->name);
350}
351EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
352
353static void clocksource_watchdog(struct timer_list *unused)
354{
355 u64 csnow, wdnow, cslast, wdlast, delta;
356 int next_cpu, reset_pending;
357 int64_t wd_nsec, cs_nsec;
358 struct clocksource *cs;
359 u32 md;
360
361 spin_lock(&watchdog_lock);
362 if (!watchdog_running)
363 goto out;
364
365 reset_pending = atomic_read(&watchdog_reset_pending);
366
367 list_for_each_entry(cs, &watchdog_list, wd_list) {
368
369 /* Clocksource already marked unstable? */
370 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
371 if (finished_booting)
372 schedule_work(&watchdog_work);
373 continue;
374 }
375
376 if (!cs_watchdog_read(cs, &csnow, &wdnow)) {
377 /* Clock readout unreliable, so give it up. */
378 __clocksource_unstable(cs);
379 continue;
380 }
381
382 /* Clocksource initialized ? */
383 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
384 atomic_read(&watchdog_reset_pending)) {
385 cs->flags |= CLOCK_SOURCE_WATCHDOG;
386 cs->wd_last = wdnow;
387 cs->cs_last = csnow;
388 continue;
389 }
390
391 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
392 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
393 watchdog->shift);
394
395 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
396 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
397 wdlast = cs->wd_last; /* save these in case we print them */
398 cslast = cs->cs_last;
399 cs->cs_last = csnow;
400 cs->wd_last = wdnow;
401
402 if (atomic_read(&watchdog_reset_pending))
403 continue;
404
405 /* Check the deviation from the watchdog clocksource. */
406 md = cs->uncertainty_margin + watchdog->uncertainty_margin;
407 if (abs(cs_nsec - wd_nsec) > md) {
408 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
409 smp_processor_id(), cs->name);
410 pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
411 watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
412 pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
413 cs->name, cs_nsec, csnow, cslast, cs->mask);
414 if (curr_clocksource == cs)
415 pr_warn(" '%s' is current clocksource.\n", cs->name);
416 else if (curr_clocksource)
417 pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
418 else
419 pr_warn(" No current clocksource.\n");
420 __clocksource_unstable(cs);
421 continue;
422 }
423
424 if (cs == curr_clocksource && cs->tick_stable)
425 cs->tick_stable(cs);
426
427 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
428 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
429 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
430 /* Mark it valid for high-res. */
431 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
432
433 /*
434 * clocksource_done_booting() will sort it if
435 * finished_booting is not set yet.
436 */
437 if (!finished_booting)
438 continue;
439
440 /*
441 * If this is not the current clocksource let
442 * the watchdog thread reselect it. Due to the
443 * change to high res this clocksource might
444 * be preferred now. If it is the current
445 * clocksource let the tick code know about
446 * that change.
447 */
448 if (cs != curr_clocksource) {
449 cs->flags |= CLOCK_SOURCE_RESELECT;
450 schedule_work(&watchdog_work);
451 } else {
452 tick_clock_notify();
453 }
454 }
455 }
456
457 /*
458 * We only clear the watchdog_reset_pending, when we did a
459 * full cycle through all clocksources.
460 */
461 if (reset_pending)
462 atomic_dec(&watchdog_reset_pending);
463
464 /*
465 * Cycle through CPUs to check if the CPUs stay synchronized
466 * to each other.
467 */
468 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
469 if (next_cpu >= nr_cpu_ids)
470 next_cpu = cpumask_first(cpu_online_mask);
471
472 /*
473 * Arm timer if not already pending: could race with concurrent
474 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
475 */
476 if (!timer_pending(&watchdog_timer)) {
477 watchdog_timer.expires += WATCHDOG_INTERVAL;
478 add_timer_on(&watchdog_timer, next_cpu);
479 }
480out:
481 spin_unlock(&watchdog_lock);
482}
483
484static inline void clocksource_start_watchdog(void)
485{
486 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
487 return;
488 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
489 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
490 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
491 watchdog_running = 1;
492}
493
494static inline void clocksource_stop_watchdog(void)
495{
496 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
497 return;
498 del_timer(&watchdog_timer);
499 watchdog_running = 0;
500}
501
502static inline void clocksource_reset_watchdog(void)
503{
504 struct clocksource *cs;
505
506 list_for_each_entry(cs, &watchdog_list, wd_list)
507 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
508}
509
510static void clocksource_resume_watchdog(void)
511{
512 atomic_inc(&watchdog_reset_pending);
513}
514
515static void clocksource_enqueue_watchdog(struct clocksource *cs)
516{
517 INIT_LIST_HEAD(&cs->wd_list);
518
519 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
520 /* cs is a clocksource to be watched. */
521 list_add(&cs->wd_list, &watchdog_list);
522 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
523 } else {
524 /* cs is a watchdog. */
525 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
526 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
527 }
528}
529
530static void clocksource_select_watchdog(bool fallback)
531{
532 struct clocksource *cs, *old_wd;
533 unsigned long flags;
534
535 spin_lock_irqsave(&watchdog_lock, flags);
536 /* save current watchdog */
537 old_wd = watchdog;
538 if (fallback)
539 watchdog = NULL;
540
541 list_for_each_entry(cs, &clocksource_list, list) {
542 /* cs is a clocksource to be watched. */
543 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
544 continue;
545
546 /* Skip current if we were requested for a fallback. */
547 if (fallback && cs == old_wd)
548 continue;
549
550 /* Pick the best watchdog. */
551 if (!watchdog || cs->rating > watchdog->rating)
552 watchdog = cs;
553 }
554 /* If we failed to find a fallback restore the old one. */
555 if (!watchdog)
556 watchdog = old_wd;
557
558 /* If we changed the watchdog we need to reset cycles. */
559 if (watchdog != old_wd)
560 clocksource_reset_watchdog();
561
562 /* Check if the watchdog timer needs to be started. */
563 clocksource_start_watchdog();
564 spin_unlock_irqrestore(&watchdog_lock, flags);
565}
566
567static void clocksource_dequeue_watchdog(struct clocksource *cs)
568{
569 if (cs != watchdog) {
570 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
571 /* cs is a watched clocksource. */
572 list_del_init(&cs->wd_list);
573 /* Check if the watchdog timer needs to be stopped. */
574 clocksource_stop_watchdog();
575 }
576 }
577}
578
579static int __clocksource_watchdog_kthread(void)
580{
581 struct clocksource *cs, *tmp;
582 unsigned long flags;
583 int select = 0;
584
585 /* Do any required per-CPU skew verification. */
586 if (curr_clocksource &&
587 curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
588 curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
589 clocksource_verify_percpu(curr_clocksource);
590
591 spin_lock_irqsave(&watchdog_lock, flags);
592 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
593 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
594 list_del_init(&cs->wd_list);
595 __clocksource_change_rating(cs, 0);
596 select = 1;
597 }
598 if (cs->flags & CLOCK_SOURCE_RESELECT) {
599 cs->flags &= ~CLOCK_SOURCE_RESELECT;
600 select = 1;
601 }
602 }
603 /* Check if the watchdog timer needs to be stopped. */
604 clocksource_stop_watchdog();
605 spin_unlock_irqrestore(&watchdog_lock, flags);
606
607 return select;
608}
609
610static int clocksource_watchdog_kthread(void *data)
611{
612 mutex_lock(&clocksource_mutex);
613 if (__clocksource_watchdog_kthread())
614 clocksource_select();
615 mutex_unlock(&clocksource_mutex);
616 return 0;
617}
618
619static bool clocksource_is_watchdog(struct clocksource *cs)
620{
621 return cs == watchdog;
622}
623
624#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
625
626static void clocksource_enqueue_watchdog(struct clocksource *cs)
627{
628 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
629 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
630}
631
632static void clocksource_select_watchdog(bool fallback) { }
633static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
634static inline void clocksource_resume_watchdog(void) { }
635static inline int __clocksource_watchdog_kthread(void) { return 0; }
636static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
637void clocksource_mark_unstable(struct clocksource *cs) { }
638
639static inline void clocksource_watchdog_lock(unsigned long *flags) { }
640static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
641
642#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
643
644static bool clocksource_is_suspend(struct clocksource *cs)
645{
646 return cs == suspend_clocksource;
647}
648
649static void __clocksource_suspend_select(struct clocksource *cs)
650{
651 /*
652 * Skip the clocksource which will be stopped in suspend state.
653 */
654 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
655 return;
656
657 /*
658 * The nonstop clocksource can be selected as the suspend clocksource to
659 * calculate the suspend time, so it should not supply suspend/resume
660 * interfaces to suspend the nonstop clocksource when system suspends.
661 */
662 if (cs->suspend || cs->resume) {
663 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
664 cs->name);
665 }
666
667 /* Pick the best rating. */
668 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
669 suspend_clocksource = cs;
670}
671
672/**
673 * clocksource_suspend_select - Select the best clocksource for suspend timing
674 * @fallback: if select a fallback clocksource
675 */
676static void clocksource_suspend_select(bool fallback)
677{
678 struct clocksource *cs, *old_suspend;
679
680 old_suspend = suspend_clocksource;
681 if (fallback)
682 suspend_clocksource = NULL;
683
684 list_for_each_entry(cs, &clocksource_list, list) {
685 /* Skip current if we were requested for a fallback. */
686 if (fallback && cs == old_suspend)
687 continue;
688
689 __clocksource_suspend_select(cs);
690 }
691}
692
693/**
694 * clocksource_start_suspend_timing - Start measuring the suspend timing
695 * @cs: current clocksource from timekeeping
696 * @start_cycles: current cycles from timekeeping
697 *
698 * This function will save the start cycle values of suspend timer to calculate
699 * the suspend time when resuming system.
700 *
701 * This function is called late in the suspend process from timekeeping_suspend(),
702 * that means processes are frozen, non-boot cpus and interrupts are disabled
703 * now. It is therefore possible to start the suspend timer without taking the
704 * clocksource mutex.
705 */
706void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
707{
708 if (!suspend_clocksource)
709 return;
710
711 /*
712 * If current clocksource is the suspend timer, we should use the
713 * tkr_mono.cycle_last value as suspend_start to avoid same reading
714 * from suspend timer.
715 */
716 if (clocksource_is_suspend(cs)) {
717 suspend_start = start_cycles;
718 return;
719 }
720
721 if (suspend_clocksource->enable &&
722 suspend_clocksource->enable(suspend_clocksource)) {
723 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
724 return;
725 }
726
727 suspend_start = suspend_clocksource->read(suspend_clocksource);
728}
729
730/**
731 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
732 * @cs: current clocksource from timekeeping
733 * @cycle_now: current cycles from timekeeping
734 *
735 * This function will calculate the suspend time from suspend timer.
736 *
737 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
738 *
739 * This function is called early in the resume process from timekeeping_resume(),
740 * that means there is only one cpu, no processes are running and the interrupts
741 * are disabled. It is therefore possible to stop the suspend timer without
742 * taking the clocksource mutex.
743 */
744u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
745{
746 u64 now, delta, nsec = 0;
747
748 if (!suspend_clocksource)
749 return 0;
750
751 /*
752 * If current clocksource is the suspend timer, we should use the
753 * tkr_mono.cycle_last value from timekeeping as current cycle to
754 * avoid same reading from suspend timer.
755 */
756 if (clocksource_is_suspend(cs))
757 now = cycle_now;
758 else
759 now = suspend_clocksource->read(suspend_clocksource);
760
761 if (now > suspend_start) {
762 delta = clocksource_delta(now, suspend_start,
763 suspend_clocksource->mask);
764 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
765 suspend_clocksource->shift);
766 }
767
768 /*
769 * Disable the suspend timer to save power if current clocksource is
770 * not the suspend timer.
771 */
772 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
773 suspend_clocksource->disable(suspend_clocksource);
774
775 return nsec;
776}
777
778/**
779 * clocksource_suspend - suspend the clocksource(s)
780 */
781void clocksource_suspend(void)
782{
783 struct clocksource *cs;
784
785 list_for_each_entry_reverse(cs, &clocksource_list, list)
786 if (cs->suspend)
787 cs->suspend(cs);
788}
789
790/**
791 * clocksource_resume - resume the clocksource(s)
792 */
793void clocksource_resume(void)
794{
795 struct clocksource *cs;
796
797 list_for_each_entry(cs, &clocksource_list, list)
798 if (cs->resume)
799 cs->resume(cs);
800
801 clocksource_resume_watchdog();
802}
803
804/**
805 * clocksource_touch_watchdog - Update watchdog
806 *
807 * Update the watchdog after exception contexts such as kgdb so as not
808 * to incorrectly trip the watchdog. This might fail when the kernel
809 * was stopped in code which holds watchdog_lock.
810 */
811void clocksource_touch_watchdog(void)
812{
813 clocksource_resume_watchdog();
814}
815
816/**
817 * clocksource_max_adjustment- Returns max adjustment amount
818 * @cs: Pointer to clocksource
819 *
820 */
821static u32 clocksource_max_adjustment(struct clocksource *cs)
822{
823 u64 ret;
824 /*
825 * We won't try to correct for more than 11% adjustments (110,000 ppm),
826 */
827 ret = (u64)cs->mult * 11;
828 do_div(ret,100);
829 return (u32)ret;
830}
831
832/**
833 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
834 * @mult: cycle to nanosecond multiplier
835 * @shift: cycle to nanosecond divisor (power of two)
836 * @maxadj: maximum adjustment value to mult (~11%)
837 * @mask: bitmask for two's complement subtraction of non 64 bit counters
838 * @max_cyc: maximum cycle value before potential overflow (does not include
839 * any safety margin)
840 *
841 * NOTE: This function includes a safety margin of 50%, in other words, we
842 * return half the number of nanoseconds the hardware counter can technically
843 * cover. This is done so that we can potentially detect problems caused by
844 * delayed timers or bad hardware, which might result in time intervals that
845 * are larger than what the math used can handle without overflows.
846 */
847u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
848{
849 u64 max_nsecs, max_cycles;
850
851 /*
852 * Calculate the maximum number of cycles that we can pass to the
853 * cyc2ns() function without overflowing a 64-bit result.
854 */
855 max_cycles = ULLONG_MAX;
856 do_div(max_cycles, mult+maxadj);
857
858 /*
859 * The actual maximum number of cycles we can defer the clocksource is
860 * determined by the minimum of max_cycles and mask.
861 * Note: Here we subtract the maxadj to make sure we don't sleep for
862 * too long if there's a large negative adjustment.
863 */
864 max_cycles = min(max_cycles, mask);
865 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
866
867 /* return the max_cycles value as well if requested */
868 if (max_cyc)
869 *max_cyc = max_cycles;
870
871 /* Return 50% of the actual maximum, so we can detect bad values */
872 max_nsecs >>= 1;
873
874 return max_nsecs;
875}
876
877/**
878 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
879 * @cs: Pointer to clocksource to be updated
880 *
881 */
882static inline void clocksource_update_max_deferment(struct clocksource *cs)
883{
884 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
885 cs->maxadj, cs->mask,
886 &cs->max_cycles);
887}
888
889static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
890{
891 struct clocksource *cs;
892
893 if (!finished_booting || list_empty(&clocksource_list))
894 return NULL;
895
896 /*
897 * We pick the clocksource with the highest rating. If oneshot
898 * mode is active, we pick the highres valid clocksource with
899 * the best rating.
900 */
901 list_for_each_entry(cs, &clocksource_list, list) {
902 if (skipcur && cs == curr_clocksource)
903 continue;
904 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
905 continue;
906 return cs;
907 }
908 return NULL;
909}
910
911static void __clocksource_select(bool skipcur)
912{
913 bool oneshot = tick_oneshot_mode_active();
914 struct clocksource *best, *cs;
915
916 /* Find the best suitable clocksource */
917 best = clocksource_find_best(oneshot, skipcur);
918 if (!best)
919 return;
920
921 if (!strlen(override_name))
922 goto found;
923
924 /* Check for the override clocksource. */
925 list_for_each_entry(cs, &clocksource_list, list) {
926 if (skipcur && cs == curr_clocksource)
927 continue;
928 if (strcmp(cs->name, override_name) != 0)
929 continue;
930 /*
931 * Check to make sure we don't switch to a non-highres
932 * capable clocksource if the tick code is in oneshot
933 * mode (highres or nohz)
934 */
935 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
936 /* Override clocksource cannot be used. */
937 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
938 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
939 cs->name);
940 override_name[0] = 0;
941 } else {
942 /*
943 * The override cannot be currently verified.
944 * Deferring to let the watchdog check.
945 */
946 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
947 cs->name);
948 }
949 } else
950 /* Override clocksource can be used. */
951 best = cs;
952 break;
953 }
954
955found:
956 if (curr_clocksource != best && !timekeeping_notify(best)) {
957 pr_info("Switched to clocksource %s\n", best->name);
958 curr_clocksource = best;
959 }
960}
961
962/**
963 * clocksource_select - Select the best clocksource available
964 *
965 * Private function. Must hold clocksource_mutex when called.
966 *
967 * Select the clocksource with the best rating, or the clocksource,
968 * which is selected by userspace override.
969 */
970static void clocksource_select(void)
971{
972 __clocksource_select(false);
973}
974
975static void clocksource_select_fallback(void)
976{
977 __clocksource_select(true);
978}
979
980/*
981 * clocksource_done_booting - Called near the end of core bootup
982 *
983 * Hack to avoid lots of clocksource churn at boot time.
984 * We use fs_initcall because we want this to start before
985 * device_initcall but after subsys_initcall.
986 */
987static int __init clocksource_done_booting(void)
988{
989 mutex_lock(&clocksource_mutex);
990 curr_clocksource = clocksource_default_clock();
991 finished_booting = 1;
992 /*
993 * Run the watchdog first to eliminate unstable clock sources
994 */
995 __clocksource_watchdog_kthread();
996 clocksource_select();
997 mutex_unlock(&clocksource_mutex);
998 return 0;
999}
1000fs_initcall(clocksource_done_booting);
1001
1002/*
1003 * Enqueue the clocksource sorted by rating
1004 */
1005static void clocksource_enqueue(struct clocksource *cs)
1006{
1007 struct list_head *entry = &clocksource_list;
1008 struct clocksource *tmp;
1009
1010 list_for_each_entry(tmp, &clocksource_list, list) {
1011 /* Keep track of the place, where to insert */
1012 if (tmp->rating < cs->rating)
1013 break;
1014 entry = &tmp->list;
1015 }
1016 list_add(&cs->list, entry);
1017}
1018
1019/**
1020 * __clocksource_update_freq_scale - Used update clocksource with new freq
1021 * @cs: clocksource to be registered
1022 * @scale: Scale factor multiplied against freq to get clocksource hz
1023 * @freq: clocksource frequency (cycles per second) divided by scale
1024 *
1025 * This should only be called from the clocksource->enable() method.
1026 *
1027 * This *SHOULD NOT* be called directly! Please use the
1028 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1029 * functions.
1030 */
1031void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1032{
1033 u64 sec;
1034
1035 /*
1036 * Default clocksources are *special* and self-define their mult/shift.
1037 * But, you're not special, so you should specify a freq value.
1038 */
1039 if (freq) {
1040 /*
1041 * Calc the maximum number of seconds which we can run before
1042 * wrapping around. For clocksources which have a mask > 32-bit
1043 * we need to limit the max sleep time to have a good
1044 * conversion precision. 10 minutes is still a reasonable
1045 * amount. That results in a shift value of 24 for a
1046 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1047 * ~ 0.06ppm granularity for NTP.
1048 */
1049 sec = cs->mask;
1050 do_div(sec, freq);
1051 do_div(sec, scale);
1052 if (!sec)
1053 sec = 1;
1054 else if (sec > 600 && cs->mask > UINT_MAX)
1055 sec = 600;
1056
1057 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1058 NSEC_PER_SEC / scale, sec * scale);
1059 }
1060
1061 /*
1062 * If the uncertainty margin is not specified, calculate it.
1063 * If both scale and freq are non-zero, calculate the clock
1064 * period, but bound below at 2*WATCHDOG_MAX_SKEW. However,
1065 * if either of scale or freq is zero, be very conservative and
1066 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1067 * uncertainty margin. Allow stupidly small uncertainty margins
1068 * to be specified by the caller for testing purposes, but warn
1069 * to discourage production use of this capability.
1070 */
1071 if (scale && freq && !cs->uncertainty_margin) {
1072 cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1073 if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1074 cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1075 } else if (!cs->uncertainty_margin) {
1076 cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1077 }
1078 WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1079
1080 /*
1081 * Ensure clocksources that have large 'mult' values don't overflow
1082 * when adjusted.
1083 */
1084 cs->maxadj = clocksource_max_adjustment(cs);
1085 while (freq && ((cs->mult + cs->maxadj < cs->mult)
1086 || (cs->mult - cs->maxadj > cs->mult))) {
1087 cs->mult >>= 1;
1088 cs->shift--;
1089 cs->maxadj = clocksource_max_adjustment(cs);
1090 }
1091
1092 /*
1093 * Only warn for *special* clocksources that self-define
1094 * their mult/shift values and don't specify a freq.
1095 */
1096 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1097 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1098 cs->name);
1099
1100 clocksource_update_max_deferment(cs);
1101
1102 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1103 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1104}
1105EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1106
1107/**
1108 * __clocksource_register_scale - Used to install new clocksources
1109 * @cs: clocksource to be registered
1110 * @scale: Scale factor multiplied against freq to get clocksource hz
1111 * @freq: clocksource frequency (cycles per second) divided by scale
1112 *
1113 * Returns -EBUSY if registration fails, zero otherwise.
1114 *
1115 * This *SHOULD NOT* be called directly! Please use the
1116 * clocksource_register_hz() or clocksource_register_khz helper functions.
1117 */
1118int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1119{
1120 unsigned long flags;
1121
1122 clocksource_arch_init(cs);
1123
1124 if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1125 cs->id = CSID_GENERIC;
1126 if (cs->vdso_clock_mode < 0 ||
1127 cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1128 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1129 cs->name, cs->vdso_clock_mode);
1130 cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1131 }
1132
1133 /* Initialize mult/shift and max_idle_ns */
1134 __clocksource_update_freq_scale(cs, scale, freq);
1135
1136 /* Add clocksource to the clocksource list */
1137 mutex_lock(&clocksource_mutex);
1138
1139 clocksource_watchdog_lock(&flags);
1140 clocksource_enqueue(cs);
1141 clocksource_enqueue_watchdog(cs);
1142 clocksource_watchdog_unlock(&flags);
1143
1144 clocksource_select();
1145 clocksource_select_watchdog(false);
1146 __clocksource_suspend_select(cs);
1147 mutex_unlock(&clocksource_mutex);
1148 return 0;
1149}
1150EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1151
1152static void __clocksource_change_rating(struct clocksource *cs, int rating)
1153{
1154 list_del(&cs->list);
1155 cs->rating = rating;
1156 clocksource_enqueue(cs);
1157}
1158
1159/**
1160 * clocksource_change_rating - Change the rating of a registered clocksource
1161 * @cs: clocksource to be changed
1162 * @rating: new rating
1163 */
1164void clocksource_change_rating(struct clocksource *cs, int rating)
1165{
1166 unsigned long flags;
1167
1168 mutex_lock(&clocksource_mutex);
1169 clocksource_watchdog_lock(&flags);
1170 __clocksource_change_rating(cs, rating);
1171 clocksource_watchdog_unlock(&flags);
1172
1173 clocksource_select();
1174 clocksource_select_watchdog(false);
1175 clocksource_suspend_select(false);
1176 mutex_unlock(&clocksource_mutex);
1177}
1178EXPORT_SYMBOL(clocksource_change_rating);
1179
1180/*
1181 * Unbind clocksource @cs. Called with clocksource_mutex held
1182 */
1183static int clocksource_unbind(struct clocksource *cs)
1184{
1185 unsigned long flags;
1186
1187 if (clocksource_is_watchdog(cs)) {
1188 /* Select and try to install a replacement watchdog. */
1189 clocksource_select_watchdog(true);
1190 if (clocksource_is_watchdog(cs))
1191 return -EBUSY;
1192 }
1193
1194 if (cs == curr_clocksource) {
1195 /* Select and try to install a replacement clock source */
1196 clocksource_select_fallback();
1197 if (curr_clocksource == cs)
1198 return -EBUSY;
1199 }
1200
1201 if (clocksource_is_suspend(cs)) {
1202 /*
1203 * Select and try to install a replacement suspend clocksource.
1204 * If no replacement suspend clocksource, we will just let the
1205 * clocksource go and have no suspend clocksource.
1206 */
1207 clocksource_suspend_select(true);
1208 }
1209
1210 clocksource_watchdog_lock(&flags);
1211 clocksource_dequeue_watchdog(cs);
1212 list_del_init(&cs->list);
1213 clocksource_watchdog_unlock(&flags);
1214
1215 return 0;
1216}
1217
1218/**
1219 * clocksource_unregister - remove a registered clocksource
1220 * @cs: clocksource to be unregistered
1221 */
1222int clocksource_unregister(struct clocksource *cs)
1223{
1224 int ret = 0;
1225
1226 mutex_lock(&clocksource_mutex);
1227 if (!list_empty(&cs->list))
1228 ret = clocksource_unbind(cs);
1229 mutex_unlock(&clocksource_mutex);
1230 return ret;
1231}
1232EXPORT_SYMBOL(clocksource_unregister);
1233
1234#ifdef CONFIG_SYSFS
1235/**
1236 * current_clocksource_show - sysfs interface for current clocksource
1237 * @dev: unused
1238 * @attr: unused
1239 * @buf: char buffer to be filled with clocksource list
1240 *
1241 * Provides sysfs interface for listing current clocksource.
1242 */
1243static ssize_t current_clocksource_show(struct device *dev,
1244 struct device_attribute *attr,
1245 char *buf)
1246{
1247 ssize_t count = 0;
1248
1249 mutex_lock(&clocksource_mutex);
1250 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1251 mutex_unlock(&clocksource_mutex);
1252
1253 return count;
1254}
1255
1256ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1257{
1258 size_t ret = cnt;
1259
1260 /* strings from sysfs write are not 0 terminated! */
1261 if (!cnt || cnt >= CS_NAME_LEN)
1262 return -EINVAL;
1263
1264 /* strip of \n: */
1265 if (buf[cnt-1] == '\n')
1266 cnt--;
1267 if (cnt > 0)
1268 memcpy(dst, buf, cnt);
1269 dst[cnt] = 0;
1270 return ret;
1271}
1272
1273/**
1274 * current_clocksource_store - interface for manually overriding clocksource
1275 * @dev: unused
1276 * @attr: unused
1277 * @buf: name of override clocksource
1278 * @count: length of buffer
1279 *
1280 * Takes input from sysfs interface for manually overriding the default
1281 * clocksource selection.
1282 */
1283static ssize_t current_clocksource_store(struct device *dev,
1284 struct device_attribute *attr,
1285 const char *buf, size_t count)
1286{
1287 ssize_t ret;
1288
1289 mutex_lock(&clocksource_mutex);
1290
1291 ret = sysfs_get_uname(buf, override_name, count);
1292 if (ret >= 0)
1293 clocksource_select();
1294
1295 mutex_unlock(&clocksource_mutex);
1296
1297 return ret;
1298}
1299static DEVICE_ATTR_RW(current_clocksource);
1300
1301/**
1302 * unbind_clocksource_store - interface for manually unbinding clocksource
1303 * @dev: unused
1304 * @attr: unused
1305 * @buf: unused
1306 * @count: length of buffer
1307 *
1308 * Takes input from sysfs interface for manually unbinding a clocksource.
1309 */
1310static ssize_t unbind_clocksource_store(struct device *dev,
1311 struct device_attribute *attr,
1312 const char *buf, size_t count)
1313{
1314 struct clocksource *cs;
1315 char name[CS_NAME_LEN];
1316 ssize_t ret;
1317
1318 ret = sysfs_get_uname(buf, name, count);
1319 if (ret < 0)
1320 return ret;
1321
1322 ret = -ENODEV;
1323 mutex_lock(&clocksource_mutex);
1324 list_for_each_entry(cs, &clocksource_list, list) {
1325 if (strcmp(cs->name, name))
1326 continue;
1327 ret = clocksource_unbind(cs);
1328 break;
1329 }
1330 mutex_unlock(&clocksource_mutex);
1331
1332 return ret ? ret : count;
1333}
1334static DEVICE_ATTR_WO(unbind_clocksource);
1335
1336/**
1337 * available_clocksource_show - sysfs interface for listing clocksource
1338 * @dev: unused
1339 * @attr: unused
1340 * @buf: char buffer to be filled with clocksource list
1341 *
1342 * Provides sysfs interface for listing registered clocksources
1343 */
1344static ssize_t available_clocksource_show(struct device *dev,
1345 struct device_attribute *attr,
1346 char *buf)
1347{
1348 struct clocksource *src;
1349 ssize_t count = 0;
1350
1351 mutex_lock(&clocksource_mutex);
1352 list_for_each_entry(src, &clocksource_list, list) {
1353 /*
1354 * Don't show non-HRES clocksource if the tick code is
1355 * in one shot mode (highres=on or nohz=on)
1356 */
1357 if (!tick_oneshot_mode_active() ||
1358 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1359 count += snprintf(buf + count,
1360 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1361 "%s ", src->name);
1362 }
1363 mutex_unlock(&clocksource_mutex);
1364
1365 count += snprintf(buf + count,
1366 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1367
1368 return count;
1369}
1370static DEVICE_ATTR_RO(available_clocksource);
1371
1372static struct attribute *clocksource_attrs[] = {
1373 &dev_attr_current_clocksource.attr,
1374 &dev_attr_unbind_clocksource.attr,
1375 &dev_attr_available_clocksource.attr,
1376 NULL
1377};
1378ATTRIBUTE_GROUPS(clocksource);
1379
1380static struct bus_type clocksource_subsys = {
1381 .name = "clocksource",
1382 .dev_name = "clocksource",
1383};
1384
1385static struct device device_clocksource = {
1386 .id = 0,
1387 .bus = &clocksource_subsys,
1388 .groups = clocksource_groups,
1389};
1390
1391static int __init init_clocksource_sysfs(void)
1392{
1393 int error = subsys_system_register(&clocksource_subsys, NULL);
1394
1395 if (!error)
1396 error = device_register(&device_clocksource);
1397
1398 return error;
1399}
1400
1401device_initcall(init_clocksource_sysfs);
1402#endif /* CONFIG_SYSFS */
1403
1404/**
1405 * boot_override_clocksource - boot clock override
1406 * @str: override name
1407 *
1408 * Takes a clocksource= boot argument and uses it
1409 * as the clocksource override name.
1410 */
1411static int __init boot_override_clocksource(char* str)
1412{
1413 mutex_lock(&clocksource_mutex);
1414 if (str)
1415 strlcpy(override_name, str, sizeof(override_name));
1416 mutex_unlock(&clocksource_mutex);
1417 return 1;
1418}
1419
1420__setup("clocksource=", boot_override_clocksource);
1421
1422/**
1423 * boot_override_clock - Compatibility layer for deprecated boot option
1424 * @str: override name
1425 *
1426 * DEPRECATED! Takes a clock= boot argument and uses it
1427 * as the clocksource override name
1428 */
1429static int __init boot_override_clock(char* str)
1430{
1431 if (!strcmp(str, "pmtmr")) {
1432 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1433 return boot_override_clocksource("acpi_pm");
1434 }
1435 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1436 return boot_override_clocksource(str);
1437}
1438
1439__setup("clock=", boot_override_clock);