Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/sched/rt.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/isolation.h>
  22#include <uapi/linux/sched/types.h>
  23#include <linux/task_work.h>
  24
  25#include "internals.h"
  26
  27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
  28DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
 
  29
  30static int __init setup_forced_irqthreads(char *arg)
  31{
  32	static_branch_enable(&force_irqthreads_key);
  33	return 0;
  34}
  35early_param("threadirqs", setup_forced_irqthreads);
  36#endif
  37
  38static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
  39{
  40	struct irq_data *irqd = irq_desc_get_irq_data(desc);
  41	bool inprogress;
  42
  43	do {
  44		unsigned long flags;
  45
  46		/*
  47		 * Wait until we're out of the critical section.  This might
  48		 * give the wrong answer due to the lack of memory barriers.
  49		 */
  50		while (irqd_irq_inprogress(&desc->irq_data))
  51			cpu_relax();
  52
  53		/* Ok, that indicated we're done: double-check carefully. */
  54		raw_spin_lock_irqsave(&desc->lock, flags);
  55		inprogress = irqd_irq_inprogress(&desc->irq_data);
  56
  57		/*
  58		 * If requested and supported, check at the chip whether it
  59		 * is in flight at the hardware level, i.e. already pending
  60		 * in a CPU and waiting for service and acknowledge.
  61		 */
  62		if (!inprogress && sync_chip) {
  63			/*
  64			 * Ignore the return code. inprogress is only updated
  65			 * when the chip supports it.
  66			 */
  67			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
  68						&inprogress);
  69		}
  70		raw_spin_unlock_irqrestore(&desc->lock, flags);
  71
  72		/* Oops, that failed? */
  73	} while (inprogress);
  74}
  75
  76/**
  77 *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  78 *	@irq: interrupt number to wait for
  79 *
  80 *	This function waits for any pending hard IRQ handlers for this
  81 *	interrupt to complete before returning. If you use this
  82 *	function while holding a resource the IRQ handler may need you
  83 *	will deadlock. It does not take associated threaded handlers
  84 *	into account.
  85 *
  86 *	Do not use this for shutdown scenarios where you must be sure
  87 *	that all parts (hardirq and threaded handler) have completed.
  88 *
  89 *	Returns: false if a threaded handler is active.
  90 *
  91 *	This function may be called - with care - from IRQ context.
  92 *
  93 *	It does not check whether there is an interrupt in flight at the
  94 *	hardware level, but not serviced yet, as this might deadlock when
  95 *	called with interrupts disabled and the target CPU of the interrupt
  96 *	is the current CPU.
  97 */
  98bool synchronize_hardirq(unsigned int irq)
  99{
 100	struct irq_desc *desc = irq_to_desc(irq);
 101
 102	if (desc) {
 103		__synchronize_hardirq(desc, false);
 104		return !atomic_read(&desc->threads_active);
 105	}
 106
 107	return true;
 108}
 109EXPORT_SYMBOL(synchronize_hardirq);
 110
 111static void __synchronize_irq(struct irq_desc *desc)
 112{
 113	__synchronize_hardirq(desc, true);
 114	/*
 115	 * We made sure that no hardirq handler is running. Now verify that no
 116	 * threaded handlers are active.
 117	 */
 118	wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
 119}
 120
 121/**
 122 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
 123 *	@irq: interrupt number to wait for
 124 *
 125 *	This function waits for any pending IRQ handlers for this interrupt
 126 *	to complete before returning. If you use this function while
 127 *	holding a resource the IRQ handler may need you will deadlock.
 128 *
 129 *	Can only be called from preemptible code as it might sleep when
 130 *	an interrupt thread is associated to @irq.
 131 *
 132 *	It optionally makes sure (when the irq chip supports that method)
 133 *	that the interrupt is not pending in any CPU and waiting for
 134 *	service.
 135 */
 136void synchronize_irq(unsigned int irq)
 137{
 138	struct irq_desc *desc = irq_to_desc(irq);
 139
 140	if (desc)
 141		__synchronize_irq(desc);
 
 
 
 
 
 
 
 
 142}
 143EXPORT_SYMBOL(synchronize_irq);
 144
 145#ifdef CONFIG_SMP
 146cpumask_var_t irq_default_affinity;
 147
 148static bool __irq_can_set_affinity(struct irq_desc *desc)
 149{
 150	if (!desc || !irqd_can_balance(&desc->irq_data) ||
 151	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 152		return false;
 153	return true;
 154}
 155
 156/**
 157 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
 158 *	@irq:		Interrupt to check
 159 *
 160 */
 161int irq_can_set_affinity(unsigned int irq)
 162{
 163	return __irq_can_set_affinity(irq_to_desc(irq));
 164}
 165
 166/**
 167 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 168 * @irq:	Interrupt to check
 169 *
 170 * Like irq_can_set_affinity() above, but additionally checks for the
 171 * AFFINITY_MANAGED flag.
 172 */
 173bool irq_can_set_affinity_usr(unsigned int irq)
 174{
 175	struct irq_desc *desc = irq_to_desc(irq);
 176
 177	return __irq_can_set_affinity(desc) &&
 178		!irqd_affinity_is_managed(&desc->irq_data);
 179}
 180
 181/**
 182 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
 183 *	@desc:		irq descriptor which has affinity changed
 184 *
 185 *	We just set IRQTF_AFFINITY and delegate the affinity setting
 186 *	to the interrupt thread itself. We can not call
 187 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
 188 *	code can be called from hard interrupt context.
 189 */
 190void irq_set_thread_affinity(struct irq_desc *desc)
 191{
 192	struct irqaction *action;
 193
 194	for_each_action_of_desc(desc, action) {
 195		if (action->thread) {
 196			set_bit(IRQTF_AFFINITY, &action->thread_flags);
 197			wake_up_process(action->thread);
 198		}
 199		if (action->secondary && action->secondary->thread) {
 200			set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
 201			wake_up_process(action->secondary->thread);
 202		}
 203	}
 204}
 205
 206#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 207static void irq_validate_effective_affinity(struct irq_data *data)
 208{
 209	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 210	struct irq_chip *chip = irq_data_get_irq_chip(data);
 211
 212	if (!cpumask_empty(m))
 213		return;
 214	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 215		     chip->name, data->irq);
 216}
 
 
 
 
 
 
 217#else
 218static inline void irq_validate_effective_affinity(struct irq_data *data) { }
 
 
 219#endif
 220
 221int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 222			bool force)
 223{
 224	struct irq_desc *desc = irq_data_to_desc(data);
 225	struct irq_chip *chip = irq_data_get_irq_chip(data);
 226	const struct cpumask  *prog_mask;
 227	int ret;
 228
 229	static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
 230	static struct cpumask tmp_mask;
 231
 232	if (!chip || !chip->irq_set_affinity)
 233		return -EINVAL;
 234
 235	raw_spin_lock(&tmp_mask_lock);
 236	/*
 237	 * If this is a managed interrupt and housekeeping is enabled on
 238	 * it check whether the requested affinity mask intersects with
 239	 * a housekeeping CPU. If so, then remove the isolated CPUs from
 240	 * the mask and just keep the housekeeping CPU(s). This prevents
 241	 * the affinity setter from routing the interrupt to an isolated
 242	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
 243	 * interrupts on an isolated one.
 244	 *
 245	 * If the masks do not intersect or include online CPU(s) then
 246	 * keep the requested mask. The isolated target CPUs are only
 247	 * receiving interrupts when the I/O operation was submitted
 248	 * directly from them.
 249	 *
 250	 * If all housekeeping CPUs in the affinity mask are offline, the
 251	 * interrupt will be migrated by the CPU hotplug code once a
 252	 * housekeeping CPU which belongs to the affinity mask comes
 253	 * online.
 254	 */
 255	if (irqd_affinity_is_managed(data) &&
 256	    housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
 257		const struct cpumask *hk_mask;
 
 
 
 258
 259		hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
 260
 
 261		cpumask_and(&tmp_mask, mask, hk_mask);
 262		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
 263			prog_mask = mask;
 264		else
 265			prog_mask = &tmp_mask;
 
 
 266	} else {
 267		prog_mask = mask;
 268	}
 269
 270	/*
 271	 * Make sure we only provide online CPUs to the irqchip,
 272	 * unless we are being asked to force the affinity (in which
 273	 * case we do as we are told).
 274	 */
 275	cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
 276	if (!force && !cpumask_empty(&tmp_mask))
 277		ret = chip->irq_set_affinity(data, &tmp_mask, force);
 278	else if (force)
 279		ret = chip->irq_set_affinity(data, mask, force);
 280	else
 281		ret = -EINVAL;
 282
 283	raw_spin_unlock(&tmp_mask_lock);
 284
 285	switch (ret) {
 286	case IRQ_SET_MASK_OK:
 287	case IRQ_SET_MASK_OK_DONE:
 288		cpumask_copy(desc->irq_common_data.affinity, mask);
 289		fallthrough;
 290	case IRQ_SET_MASK_OK_NOCOPY:
 291		irq_validate_effective_affinity(data);
 292		irq_set_thread_affinity(desc);
 293		ret = 0;
 294	}
 295
 296	return ret;
 297}
 298
 299#ifdef CONFIG_GENERIC_PENDING_IRQ
 300static inline int irq_set_affinity_pending(struct irq_data *data,
 301					   const struct cpumask *dest)
 302{
 303	struct irq_desc *desc = irq_data_to_desc(data);
 304
 305	irqd_set_move_pending(data);
 306	irq_copy_pending(desc, dest);
 307	return 0;
 308}
 309#else
 310static inline int irq_set_affinity_pending(struct irq_data *data,
 311					   const struct cpumask *dest)
 312{
 313	return -EBUSY;
 314}
 315#endif
 316
 317static int irq_try_set_affinity(struct irq_data *data,
 318				const struct cpumask *dest, bool force)
 319{
 320	int ret = irq_do_set_affinity(data, dest, force);
 321
 322	/*
 323	 * In case that the underlying vector management is busy and the
 324	 * architecture supports the generic pending mechanism then utilize
 325	 * this to avoid returning an error to user space.
 326	 */
 327	if (ret == -EBUSY && !force)
 328		ret = irq_set_affinity_pending(data, dest);
 329	return ret;
 330}
 331
 332static bool irq_set_affinity_deactivated(struct irq_data *data,
 333					 const struct cpumask *mask)
 334{
 335	struct irq_desc *desc = irq_data_to_desc(data);
 336
 337	/*
 338	 * Handle irq chips which can handle affinity only in activated
 339	 * state correctly
 340	 *
 341	 * If the interrupt is not yet activated, just store the affinity
 342	 * mask and do not call the chip driver at all. On activation the
 343	 * driver has to make sure anyway that the interrupt is in a
 344	 * usable state so startup works.
 345	 */
 346	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
 347	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
 348		return false;
 349
 350	cpumask_copy(desc->irq_common_data.affinity, mask);
 351	irq_data_update_effective_affinity(data, mask);
 352	irqd_set(data, IRQD_AFFINITY_SET);
 353	return true;
 354}
 355
 356int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 357			    bool force)
 358{
 359	struct irq_chip *chip = irq_data_get_irq_chip(data);
 360	struct irq_desc *desc = irq_data_to_desc(data);
 361	int ret = 0;
 362
 363	if (!chip || !chip->irq_set_affinity)
 364		return -EINVAL;
 365
 366	if (irq_set_affinity_deactivated(data, mask))
 367		return 0;
 368
 369	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 370		ret = irq_try_set_affinity(data, mask, force);
 371	} else {
 372		irqd_set_move_pending(data);
 373		irq_copy_pending(desc, mask);
 374	}
 375
 376	if (desc->affinity_notify) {
 377		kref_get(&desc->affinity_notify->kref);
 378		if (!schedule_work(&desc->affinity_notify->work)) {
 379			/* Work was already scheduled, drop our extra ref */
 380			kref_put(&desc->affinity_notify->kref,
 381				 desc->affinity_notify->release);
 382		}
 383	}
 384	irqd_set(data, IRQD_AFFINITY_SET);
 385
 386	return ret;
 387}
 388
 389/**
 390 * irq_update_affinity_desc - Update affinity management for an interrupt
 391 * @irq:	The interrupt number to update
 392 * @affinity:	Pointer to the affinity descriptor
 393 *
 394 * This interface can be used to configure the affinity management of
 395 * interrupts which have been allocated already.
 396 *
 397 * There are certain limitations on when it may be used - attempts to use it
 398 * for when the kernel is configured for generic IRQ reservation mode (in
 399 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
 400 * managed/non-managed interrupt accounting. In addition, attempts to use it on
 401 * an interrupt which is already started or which has already been configured
 402 * as managed will also fail, as these mean invalid init state or double init.
 403 */
 404int irq_update_affinity_desc(unsigned int irq,
 405			     struct irq_affinity_desc *affinity)
 406{
 407	struct irq_desc *desc;
 408	unsigned long flags;
 409	bool activated;
 410	int ret = 0;
 411
 412	/*
 413	 * Supporting this with the reservation scheme used by x86 needs
 414	 * some more thought. Fail it for now.
 415	 */
 416	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
 417		return -EOPNOTSUPP;
 418
 419	desc = irq_get_desc_buslock(irq, &flags, 0);
 420	if (!desc)
 421		return -EINVAL;
 422
 423	/* Requires the interrupt to be shut down */
 424	if (irqd_is_started(&desc->irq_data)) {
 425		ret = -EBUSY;
 426		goto out_unlock;
 427	}
 428
 429	/* Interrupts which are already managed cannot be modified */
 430	if (irqd_affinity_is_managed(&desc->irq_data)) {
 431		ret = -EBUSY;
 432		goto out_unlock;
 433	}
 434
 435	/*
 436	 * Deactivate the interrupt. That's required to undo
 437	 * anything an earlier activation has established.
 438	 */
 439	activated = irqd_is_activated(&desc->irq_data);
 440	if (activated)
 441		irq_domain_deactivate_irq(&desc->irq_data);
 442
 443	if (affinity->is_managed) {
 444		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
 445		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
 446	}
 447
 448	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
 449
 450	/* Restore the activation state */
 451	if (activated)
 452		irq_domain_activate_irq(&desc->irq_data, false);
 453
 454out_unlock:
 455	irq_put_desc_busunlock(desc, flags);
 456	return ret;
 457}
 458
 459static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
 460			      bool force)
 461{
 462	struct irq_desc *desc = irq_to_desc(irq);
 463	unsigned long flags;
 464	int ret;
 465
 466	if (!desc)
 467		return -EINVAL;
 468
 469	raw_spin_lock_irqsave(&desc->lock, flags);
 470	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 471	raw_spin_unlock_irqrestore(&desc->lock, flags);
 472	return ret;
 473}
 474
 475/**
 476 * irq_set_affinity - Set the irq affinity of a given irq
 477 * @irq:	Interrupt to set affinity
 478 * @cpumask:	cpumask
 479 *
 480 * Fails if cpumask does not contain an online CPU
 481 */
 482int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
 483{
 484	return __irq_set_affinity(irq, cpumask, false);
 485}
 486EXPORT_SYMBOL_GPL(irq_set_affinity);
 487
 488/**
 489 * irq_force_affinity - Force the irq affinity of a given irq
 490 * @irq:	Interrupt to set affinity
 491 * @cpumask:	cpumask
 492 *
 493 * Same as irq_set_affinity, but without checking the mask against
 494 * online cpus.
 495 *
 496 * Solely for low level cpu hotplug code, where we need to make per
 497 * cpu interrupts affine before the cpu becomes online.
 498 */
 499int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
 500{
 501	return __irq_set_affinity(irq, cpumask, true);
 502}
 503EXPORT_SYMBOL_GPL(irq_force_affinity);
 504
 505int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
 506			      bool setaffinity)
 507{
 508	unsigned long flags;
 509	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 510
 511	if (!desc)
 512		return -EINVAL;
 513	desc->affinity_hint = m;
 514	irq_put_desc_unlock(desc, flags);
 515	if (m && setaffinity)
 
 516		__irq_set_affinity(irq, m, false);
 517	return 0;
 518}
 519EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
 520
 521static void irq_affinity_notify(struct work_struct *work)
 522{
 523	struct irq_affinity_notify *notify =
 524		container_of(work, struct irq_affinity_notify, work);
 525	struct irq_desc *desc = irq_to_desc(notify->irq);
 526	cpumask_var_t cpumask;
 527	unsigned long flags;
 528
 529	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 530		goto out;
 531
 532	raw_spin_lock_irqsave(&desc->lock, flags);
 533	if (irq_move_pending(&desc->irq_data))
 534		irq_get_pending(cpumask, desc);
 535	else
 536		cpumask_copy(cpumask, desc->irq_common_data.affinity);
 537	raw_spin_unlock_irqrestore(&desc->lock, flags);
 538
 539	notify->notify(notify, cpumask);
 540
 541	free_cpumask_var(cpumask);
 542out:
 543	kref_put(&notify->kref, notify->release);
 544}
 545
 546/**
 547 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
 548 *	@irq:		Interrupt for which to enable/disable notification
 549 *	@notify:	Context for notification, or %NULL to disable
 550 *			notification.  Function pointers must be initialised;
 551 *			the other fields will be initialised by this function.
 552 *
 553 *	Must be called in process context.  Notification may only be enabled
 554 *	after the IRQ is allocated and must be disabled before the IRQ is
 555 *	freed using free_irq().
 556 */
 557int
 558irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 559{
 560	struct irq_desc *desc = irq_to_desc(irq);
 561	struct irq_affinity_notify *old_notify;
 562	unsigned long flags;
 563
 564	/* The release function is promised process context */
 565	might_sleep();
 566
 567	if (!desc || desc->istate & IRQS_NMI)
 568		return -EINVAL;
 569
 570	/* Complete initialisation of *notify */
 571	if (notify) {
 572		notify->irq = irq;
 573		kref_init(&notify->kref);
 574		INIT_WORK(&notify->work, irq_affinity_notify);
 575	}
 576
 577	raw_spin_lock_irqsave(&desc->lock, flags);
 578	old_notify = desc->affinity_notify;
 579	desc->affinity_notify = notify;
 580	raw_spin_unlock_irqrestore(&desc->lock, flags);
 581
 582	if (old_notify) {
 583		if (cancel_work_sync(&old_notify->work)) {
 584			/* Pending work had a ref, put that one too */
 585			kref_put(&old_notify->kref, old_notify->release);
 586		}
 587		kref_put(&old_notify->kref, old_notify->release);
 588	}
 589
 590	return 0;
 591}
 592EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 593
 594#ifndef CONFIG_AUTO_IRQ_AFFINITY
 595/*
 596 * Generic version of the affinity autoselector.
 597 */
 598int irq_setup_affinity(struct irq_desc *desc)
 599{
 600	struct cpumask *set = irq_default_affinity;
 601	int ret, node = irq_desc_get_node(desc);
 602	static DEFINE_RAW_SPINLOCK(mask_lock);
 603	static struct cpumask mask;
 604
 605	/* Excludes PER_CPU and NO_BALANCE interrupts */
 606	if (!__irq_can_set_affinity(desc))
 607		return 0;
 608
 609	raw_spin_lock(&mask_lock);
 610	/*
 611	 * Preserve the managed affinity setting and a userspace affinity
 612	 * setup, but make sure that one of the targets is online.
 613	 */
 614	if (irqd_affinity_is_managed(&desc->irq_data) ||
 615	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 616		if (cpumask_intersects(desc->irq_common_data.affinity,
 617				       cpu_online_mask))
 618			set = desc->irq_common_data.affinity;
 619		else
 620			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 621	}
 622
 623	cpumask_and(&mask, cpu_online_mask, set);
 624	if (cpumask_empty(&mask))
 625		cpumask_copy(&mask, cpu_online_mask);
 626
 627	if (node != NUMA_NO_NODE) {
 628		const struct cpumask *nodemask = cpumask_of_node(node);
 629
 630		/* make sure at least one of the cpus in nodemask is online */
 631		if (cpumask_intersects(&mask, nodemask))
 632			cpumask_and(&mask, &mask, nodemask);
 633	}
 634	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 635	raw_spin_unlock(&mask_lock);
 636	return ret;
 637}
 638#else
 639/* Wrapper for ALPHA specific affinity selector magic */
 640int irq_setup_affinity(struct irq_desc *desc)
 641{
 642	return irq_select_affinity(irq_desc_get_irq(desc));
 643}
 644#endif /* CONFIG_AUTO_IRQ_AFFINITY */
 645#endif /* CONFIG_SMP */
 646
 647
 648/**
 649 *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 650 *	@irq: interrupt number to set affinity
 651 *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 652 *	            specific data for percpu_devid interrupts
 653 *
 654 *	This function uses the vCPU specific data to set the vCPU
 655 *	affinity for an irq. The vCPU specific data is passed from
 656 *	outside, such as KVM. One example code path is as below:
 657 *	KVM -> IOMMU -> irq_set_vcpu_affinity().
 658 */
 659int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 660{
 661	unsigned long flags;
 662	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 663	struct irq_data *data;
 664	struct irq_chip *chip;
 665	int ret = -ENOSYS;
 666
 667	if (!desc)
 668		return -EINVAL;
 669
 670	data = irq_desc_get_irq_data(desc);
 671	do {
 672		chip = irq_data_get_irq_chip(data);
 673		if (chip && chip->irq_set_vcpu_affinity)
 674			break;
 675#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 676		data = data->parent_data;
 677#else
 678		data = NULL;
 679#endif
 680	} while (data);
 681
 682	if (data)
 683		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 684	irq_put_desc_unlock(desc, flags);
 685
 686	return ret;
 687}
 688EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 689
 690void __disable_irq(struct irq_desc *desc)
 691{
 692	if (!desc->depth++)
 693		irq_disable(desc);
 694}
 695
 696static int __disable_irq_nosync(unsigned int irq)
 697{
 698	unsigned long flags;
 699	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 700
 701	if (!desc)
 702		return -EINVAL;
 703	__disable_irq(desc);
 704	irq_put_desc_busunlock(desc, flags);
 705	return 0;
 706}
 707
 708/**
 709 *	disable_irq_nosync - disable an irq without waiting
 710 *	@irq: Interrupt to disable
 711 *
 712 *	Disable the selected interrupt line.  Disables and Enables are
 713 *	nested.
 714 *	Unlike disable_irq(), this function does not ensure existing
 715 *	instances of the IRQ handler have completed before returning.
 716 *
 717 *	This function may be called from IRQ context.
 718 */
 719void disable_irq_nosync(unsigned int irq)
 720{
 721	__disable_irq_nosync(irq);
 722}
 723EXPORT_SYMBOL(disable_irq_nosync);
 724
 725/**
 726 *	disable_irq - disable an irq and wait for completion
 727 *	@irq: Interrupt to disable
 728 *
 729 *	Disable the selected interrupt line.  Enables and Disables are
 730 *	nested.
 731 *	This function waits for any pending IRQ handlers for this interrupt
 732 *	to complete before returning. If you use this function while
 733 *	holding a resource the IRQ handler may need you will deadlock.
 734 *
 735 *	Can only be called from preemptible code as it might sleep when
 736 *	an interrupt thread is associated to @irq.
 737 *
 738 */
 739void disable_irq(unsigned int irq)
 740{
 741	might_sleep();
 742	if (!__disable_irq_nosync(irq))
 743		synchronize_irq(irq);
 744}
 745EXPORT_SYMBOL(disable_irq);
 746
 747/**
 748 *	disable_hardirq - disables an irq and waits for hardirq completion
 749 *	@irq: Interrupt to disable
 750 *
 751 *	Disable the selected interrupt line.  Enables and Disables are
 752 *	nested.
 753 *	This function waits for any pending hard IRQ handlers for this
 754 *	interrupt to complete before returning. If you use this function while
 755 *	holding a resource the hard IRQ handler may need you will deadlock.
 756 *
 757 *	When used to optimistically disable an interrupt from atomic context
 758 *	the return value must be checked.
 759 *
 760 *	Returns: false if a threaded handler is active.
 761 *
 762 *	This function may be called - with care - from IRQ context.
 763 */
 764bool disable_hardirq(unsigned int irq)
 765{
 766	if (!__disable_irq_nosync(irq))
 767		return synchronize_hardirq(irq);
 768
 769	return false;
 770}
 771EXPORT_SYMBOL_GPL(disable_hardirq);
 772
 773/**
 774 *	disable_nmi_nosync - disable an nmi without waiting
 775 *	@irq: Interrupt to disable
 776 *
 777 *	Disable the selected interrupt line. Disables and enables are
 778 *	nested.
 779 *	The interrupt to disable must have been requested through request_nmi.
 780 *	Unlike disable_nmi(), this function does not ensure existing
 781 *	instances of the IRQ handler have completed before returning.
 782 */
 783void disable_nmi_nosync(unsigned int irq)
 784{
 785	disable_irq_nosync(irq);
 786}
 787
 788void __enable_irq(struct irq_desc *desc)
 789{
 790	switch (desc->depth) {
 791	case 0:
 792 err_out:
 793		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 794		     irq_desc_get_irq(desc));
 795		break;
 796	case 1: {
 797		if (desc->istate & IRQS_SUSPENDED)
 798			goto err_out;
 799		/* Prevent probing on this irq: */
 800		irq_settings_set_noprobe(desc);
 801		/*
 802		 * Call irq_startup() not irq_enable() here because the
 803		 * interrupt might be marked NOAUTOEN. So irq_startup()
 804		 * needs to be invoked when it gets enabled the first
 805		 * time. If it was already started up, then irq_startup()
 806		 * will invoke irq_enable() under the hood.
 807		 */
 808		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 809		break;
 810	}
 811	default:
 812		desc->depth--;
 813	}
 814}
 815
 816/**
 817 *	enable_irq - enable handling of an irq
 818 *	@irq: Interrupt to enable
 819 *
 820 *	Undoes the effect of one call to disable_irq().  If this
 821 *	matches the last disable, processing of interrupts on this
 822 *	IRQ line is re-enabled.
 823 *
 824 *	This function may be called from IRQ context only when
 825 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 826 */
 827void enable_irq(unsigned int irq)
 828{
 829	unsigned long flags;
 830	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 831
 832	if (!desc)
 833		return;
 834	if (WARN(!desc->irq_data.chip,
 835		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 836		goto out;
 837
 838	__enable_irq(desc);
 839out:
 840	irq_put_desc_busunlock(desc, flags);
 841}
 842EXPORT_SYMBOL(enable_irq);
 843
 844/**
 845 *	enable_nmi - enable handling of an nmi
 846 *	@irq: Interrupt to enable
 847 *
 848 *	The interrupt to enable must have been requested through request_nmi.
 849 *	Undoes the effect of one call to disable_nmi(). If this
 850 *	matches the last disable, processing of interrupts on this
 851 *	IRQ line is re-enabled.
 852 */
 853void enable_nmi(unsigned int irq)
 854{
 855	enable_irq(irq);
 856}
 857
 858static int set_irq_wake_real(unsigned int irq, unsigned int on)
 859{
 860	struct irq_desc *desc = irq_to_desc(irq);
 861	int ret = -ENXIO;
 862
 863	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 864		return 0;
 865
 866	if (desc->irq_data.chip->irq_set_wake)
 867		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 868
 869	return ret;
 870}
 871
 872/**
 873 *	irq_set_irq_wake - control irq power management wakeup
 874 *	@irq:	interrupt to control
 875 *	@on:	enable/disable power management wakeup
 876 *
 877 *	Enable/disable power management wakeup mode, which is
 878 *	disabled by default.  Enables and disables must match,
 879 *	just as they match for non-wakeup mode support.
 880 *
 881 *	Wakeup mode lets this IRQ wake the system from sleep
 882 *	states like "suspend to RAM".
 883 *
 884 *	Note: irq enable/disable state is completely orthogonal
 885 *	to the enable/disable state of irq wake. An irq can be
 886 *	disabled with disable_irq() and still wake the system as
 887 *	long as the irq has wake enabled. If this does not hold,
 888 *	then the underlying irq chip and the related driver need
 889 *	to be investigated.
 890 */
 891int irq_set_irq_wake(unsigned int irq, unsigned int on)
 892{
 893	unsigned long flags;
 894	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 895	int ret = 0;
 896
 897	if (!desc)
 898		return -EINVAL;
 899
 900	/* Don't use NMIs as wake up interrupts please */
 901	if (desc->istate & IRQS_NMI) {
 902		ret = -EINVAL;
 903		goto out_unlock;
 904	}
 905
 906	/* wakeup-capable irqs can be shared between drivers that
 907	 * don't need to have the same sleep mode behaviors.
 908	 */
 909	if (on) {
 910		if (desc->wake_depth++ == 0) {
 911			ret = set_irq_wake_real(irq, on);
 912			if (ret)
 913				desc->wake_depth = 0;
 914			else
 915				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 916		}
 917	} else {
 918		if (desc->wake_depth == 0) {
 919			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 920		} else if (--desc->wake_depth == 0) {
 921			ret = set_irq_wake_real(irq, on);
 922			if (ret)
 923				desc->wake_depth = 1;
 924			else
 925				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 926		}
 927	}
 928
 929out_unlock:
 930	irq_put_desc_busunlock(desc, flags);
 931	return ret;
 932}
 933EXPORT_SYMBOL(irq_set_irq_wake);
 934
 935/*
 936 * Internal function that tells the architecture code whether a
 937 * particular irq has been exclusively allocated or is available
 938 * for driver use.
 939 */
 940int can_request_irq(unsigned int irq, unsigned long irqflags)
 941{
 942	unsigned long flags;
 943	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 944	int canrequest = 0;
 945
 946	if (!desc)
 947		return 0;
 948
 949	if (irq_settings_can_request(desc)) {
 950		if (!desc->action ||
 951		    irqflags & desc->action->flags & IRQF_SHARED)
 952			canrequest = 1;
 953	}
 954	irq_put_desc_unlock(desc, flags);
 955	return canrequest;
 956}
 957
 958int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 959{
 960	struct irq_chip *chip = desc->irq_data.chip;
 961	int ret, unmask = 0;
 962
 963	if (!chip || !chip->irq_set_type) {
 964		/*
 965		 * IRQF_TRIGGER_* but the PIC does not support multiple
 966		 * flow-types?
 967		 */
 968		pr_debug("No set_type function for IRQ %d (%s)\n",
 969			 irq_desc_get_irq(desc),
 970			 chip ? (chip->name ? : "unknown") : "unknown");
 971		return 0;
 972	}
 973
 974	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 975		if (!irqd_irq_masked(&desc->irq_data))
 976			mask_irq(desc);
 977		if (!irqd_irq_disabled(&desc->irq_data))
 978			unmask = 1;
 979	}
 980
 981	/* Mask all flags except trigger mode */
 982	flags &= IRQ_TYPE_SENSE_MASK;
 983	ret = chip->irq_set_type(&desc->irq_data, flags);
 984
 985	switch (ret) {
 986	case IRQ_SET_MASK_OK:
 987	case IRQ_SET_MASK_OK_DONE:
 988		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 989		irqd_set(&desc->irq_data, flags);
 990		fallthrough;
 991
 992	case IRQ_SET_MASK_OK_NOCOPY:
 993		flags = irqd_get_trigger_type(&desc->irq_data);
 994		irq_settings_set_trigger_mask(desc, flags);
 995		irqd_clear(&desc->irq_data, IRQD_LEVEL);
 996		irq_settings_clr_level(desc);
 997		if (flags & IRQ_TYPE_LEVEL_MASK) {
 998			irq_settings_set_level(desc);
 999			irqd_set(&desc->irq_data, IRQD_LEVEL);
1000		}
1001
1002		ret = 0;
1003		break;
1004	default:
1005		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1006		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
1007	}
1008	if (unmask)
1009		unmask_irq(desc);
1010	return ret;
1011}
1012
1013#ifdef CONFIG_HARDIRQS_SW_RESEND
1014int irq_set_parent(int irq, int parent_irq)
1015{
1016	unsigned long flags;
1017	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1018
1019	if (!desc)
1020		return -EINVAL;
1021
1022	desc->parent_irq = parent_irq;
1023
1024	irq_put_desc_unlock(desc, flags);
1025	return 0;
1026}
1027EXPORT_SYMBOL_GPL(irq_set_parent);
1028#endif
1029
1030/*
1031 * Default primary interrupt handler for threaded interrupts. Is
1032 * assigned as primary handler when request_threaded_irq is called
1033 * with handler == NULL. Useful for oneshot interrupts.
1034 */
1035static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1036{
1037	return IRQ_WAKE_THREAD;
1038}
1039
1040/*
1041 * Primary handler for nested threaded interrupts. Should never be
1042 * called.
1043 */
1044static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1045{
1046	WARN(1, "Primary handler called for nested irq %d\n", irq);
1047	return IRQ_NONE;
1048}
1049
1050static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1051{
1052	WARN(1, "Secondary action handler called for irq %d\n", irq);
1053	return IRQ_NONE;
1054}
1055
1056#ifdef CONFIG_SMP
1057/*
1058 * Check whether we need to change the affinity of the interrupt thread.
1059 */
1060static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1061{
1062	cpumask_var_t mask;
1063	bool valid = false;
1064
1065	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1066		return;
1067
1068	__set_current_state(TASK_RUNNING);
1069
1070	/*
1071	 * In case we are out of memory we set IRQTF_AFFINITY again and
1072	 * try again next time
1073	 */
1074	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1075		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1076		return;
1077	}
1078
1079	raw_spin_lock_irq(&desc->lock);
1080	/*
1081	 * This code is triggered unconditionally. Check the affinity
1082	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1083	 */
1084	if (cpumask_available(desc->irq_common_data.affinity)) {
1085		const struct cpumask *m;
1086
1087		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1088		cpumask_copy(mask, m);
1089		valid = true;
1090	}
1091	raw_spin_unlock_irq(&desc->lock);
1092
1093	if (valid)
1094		set_cpus_allowed_ptr(current, mask);
1095	free_cpumask_var(mask);
1096}
1097#else
1098static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1099#endif
1100
1101static int irq_wait_for_interrupt(struct irq_desc *desc,
1102				  struct irqaction *action)
1103{
1104	for (;;) {
1105		set_current_state(TASK_INTERRUPTIBLE);
1106		irq_thread_check_affinity(desc, action);
1107
1108		if (kthread_should_stop()) {
1109			/* may need to run one last time */
1110			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1111					       &action->thread_flags)) {
1112				__set_current_state(TASK_RUNNING);
1113				return 0;
1114			}
1115			__set_current_state(TASK_RUNNING);
1116			return -1;
1117		}
1118
1119		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1120				       &action->thread_flags)) {
1121			__set_current_state(TASK_RUNNING);
1122			return 0;
1123		}
1124		schedule();
1125	}
1126}
1127
1128/*
1129 * Oneshot interrupts keep the irq line masked until the threaded
1130 * handler finished. unmask if the interrupt has not been disabled and
1131 * is marked MASKED.
1132 */
1133static void irq_finalize_oneshot(struct irq_desc *desc,
1134				 struct irqaction *action)
1135{
1136	if (!(desc->istate & IRQS_ONESHOT) ||
1137	    action->handler == irq_forced_secondary_handler)
1138		return;
1139again:
1140	chip_bus_lock(desc);
1141	raw_spin_lock_irq(&desc->lock);
1142
1143	/*
1144	 * Implausible though it may be we need to protect us against
1145	 * the following scenario:
1146	 *
1147	 * The thread is faster done than the hard interrupt handler
1148	 * on the other CPU. If we unmask the irq line then the
1149	 * interrupt can come in again and masks the line, leaves due
1150	 * to IRQS_INPROGRESS and the irq line is masked forever.
1151	 *
1152	 * This also serializes the state of shared oneshot handlers
1153	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1154	 * irq_wake_thread(). See the comment there which explains the
1155	 * serialization.
1156	 */
1157	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1158		raw_spin_unlock_irq(&desc->lock);
1159		chip_bus_sync_unlock(desc);
1160		cpu_relax();
1161		goto again;
1162	}
1163
1164	/*
1165	 * Now check again, whether the thread should run. Otherwise
1166	 * we would clear the threads_oneshot bit of this thread which
1167	 * was just set.
1168	 */
1169	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1170		goto out_unlock;
1171
1172	desc->threads_oneshot &= ~action->thread_mask;
1173
1174	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1175	    irqd_irq_masked(&desc->irq_data))
1176		unmask_threaded_irq(desc);
1177
1178out_unlock:
1179	raw_spin_unlock_irq(&desc->lock);
1180	chip_bus_sync_unlock(desc);
1181}
1182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1183/*
1184 * Interrupts which are not explicitly requested as threaded
1185 * interrupts rely on the implicit bh/preempt disable of the hard irq
1186 * context. So we need to disable bh here to avoid deadlocks and other
1187 * side effects.
1188 */
1189static irqreturn_t
1190irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1191{
1192	irqreturn_t ret;
1193
1194	local_bh_disable();
1195	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1196		local_irq_disable();
1197	ret = action->thread_fn(action->irq, action->dev_id);
1198	if (ret == IRQ_HANDLED)
1199		atomic_inc(&desc->threads_handled);
1200
1201	irq_finalize_oneshot(desc, action);
1202	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1203		local_irq_enable();
1204	local_bh_enable();
1205	return ret;
1206}
1207
1208/*
1209 * Interrupts explicitly requested as threaded interrupts want to be
1210 * preemptible - many of them need to sleep and wait for slow busses to
1211 * complete.
1212 */
1213static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1214		struct irqaction *action)
1215{
1216	irqreturn_t ret;
1217
1218	ret = action->thread_fn(action->irq, action->dev_id);
1219	if (ret == IRQ_HANDLED)
1220		atomic_inc(&desc->threads_handled);
1221
1222	irq_finalize_oneshot(desc, action);
1223	return ret;
1224}
1225
1226void wake_threads_waitq(struct irq_desc *desc)
1227{
1228	if (atomic_dec_and_test(&desc->threads_active))
1229		wake_up(&desc->wait_for_threads);
1230}
1231
1232static void irq_thread_dtor(struct callback_head *unused)
1233{
1234	struct task_struct *tsk = current;
1235	struct irq_desc *desc;
1236	struct irqaction *action;
1237
1238	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1239		return;
1240
1241	action = kthread_data(tsk);
1242
1243	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1244	       tsk->comm, tsk->pid, action->irq);
1245
1246
1247	desc = irq_to_desc(action->irq);
1248	/*
1249	 * If IRQTF_RUNTHREAD is set, we need to decrement
1250	 * desc->threads_active and wake possible waiters.
1251	 */
1252	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1253		wake_threads_waitq(desc);
1254
1255	/* Prevent a stale desc->threads_oneshot */
1256	irq_finalize_oneshot(desc, action);
1257}
1258
1259static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1260{
1261	struct irqaction *secondary = action->secondary;
1262
1263	if (WARN_ON_ONCE(!secondary))
1264		return;
1265
1266	raw_spin_lock_irq(&desc->lock);
1267	__irq_wake_thread(desc, secondary);
1268	raw_spin_unlock_irq(&desc->lock);
1269}
1270
1271/*
1272 * Internal function to notify that a interrupt thread is ready.
1273 */
1274static void irq_thread_set_ready(struct irq_desc *desc,
1275				 struct irqaction *action)
1276{
1277	set_bit(IRQTF_READY, &action->thread_flags);
1278	wake_up(&desc->wait_for_threads);
1279}
1280
1281/*
1282 * Internal function to wake up a interrupt thread and wait until it is
1283 * ready.
1284 */
1285static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1286						  struct irqaction *action)
1287{
1288	if (!action || !action->thread)
1289		return;
1290
1291	wake_up_process(action->thread);
1292	wait_event(desc->wait_for_threads,
1293		   test_bit(IRQTF_READY, &action->thread_flags));
1294}
1295
1296/*
1297 * Interrupt handler thread
1298 */
1299static int irq_thread(void *data)
1300{
1301	struct callback_head on_exit_work;
1302	struct irqaction *action = data;
1303	struct irq_desc *desc = irq_to_desc(action->irq);
1304	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1305			struct irqaction *action);
1306
1307	irq_thread_set_ready(desc, action);
1308
1309	sched_set_fifo(current);
1310
1311	if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1312					   &action->thread_flags))
1313		handler_fn = irq_forced_thread_fn;
1314	else
1315		handler_fn = irq_thread_fn;
1316
1317	init_task_work(&on_exit_work, irq_thread_dtor);
1318	task_work_add(current, &on_exit_work, TWA_NONE);
1319
1320	while (!irq_wait_for_interrupt(desc, action)) {
 
 
1321		irqreturn_t action_ret;
1322
 
 
1323		action_ret = handler_fn(desc, action);
1324		if (action_ret == IRQ_WAKE_THREAD)
1325			irq_wake_secondary(desc, action);
1326
1327		wake_threads_waitq(desc);
1328	}
1329
1330	/*
1331	 * This is the regular exit path. __free_irq() is stopping the
1332	 * thread via kthread_stop() after calling
1333	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1334	 * oneshot mask bit can be set.
1335	 */
1336	task_work_cancel(current, irq_thread_dtor);
1337	return 0;
1338}
1339
1340/**
1341 *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1342 *	@irq:		Interrupt line
1343 *	@dev_id:	Device identity for which the thread should be woken
1344 *
1345 */
1346void irq_wake_thread(unsigned int irq, void *dev_id)
1347{
1348	struct irq_desc *desc = irq_to_desc(irq);
1349	struct irqaction *action;
1350	unsigned long flags;
1351
1352	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1353		return;
1354
1355	raw_spin_lock_irqsave(&desc->lock, flags);
1356	for_each_action_of_desc(desc, action) {
1357		if (action->dev_id == dev_id) {
1358			if (action->thread)
1359				__irq_wake_thread(desc, action);
1360			break;
1361		}
1362	}
1363	raw_spin_unlock_irqrestore(&desc->lock, flags);
1364}
1365EXPORT_SYMBOL_GPL(irq_wake_thread);
1366
1367static int irq_setup_forced_threading(struct irqaction *new)
1368{
1369	if (!force_irqthreads())
1370		return 0;
1371	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1372		return 0;
1373
1374	/*
1375	 * No further action required for interrupts which are requested as
1376	 * threaded interrupts already
1377	 */
1378	if (new->handler == irq_default_primary_handler)
1379		return 0;
1380
1381	new->flags |= IRQF_ONESHOT;
1382
1383	/*
1384	 * Handle the case where we have a real primary handler and a
1385	 * thread handler. We force thread them as well by creating a
1386	 * secondary action.
1387	 */
1388	if (new->handler && new->thread_fn) {
1389		/* Allocate the secondary action */
1390		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1391		if (!new->secondary)
1392			return -ENOMEM;
1393		new->secondary->handler = irq_forced_secondary_handler;
1394		new->secondary->thread_fn = new->thread_fn;
1395		new->secondary->dev_id = new->dev_id;
1396		new->secondary->irq = new->irq;
1397		new->secondary->name = new->name;
1398	}
1399	/* Deal with the primary handler */
1400	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1401	new->thread_fn = new->handler;
1402	new->handler = irq_default_primary_handler;
1403	return 0;
1404}
1405
1406static int irq_request_resources(struct irq_desc *desc)
1407{
1408	struct irq_data *d = &desc->irq_data;
1409	struct irq_chip *c = d->chip;
1410
1411	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1412}
1413
1414static void irq_release_resources(struct irq_desc *desc)
1415{
1416	struct irq_data *d = &desc->irq_data;
1417	struct irq_chip *c = d->chip;
1418
1419	if (c->irq_release_resources)
1420		c->irq_release_resources(d);
1421}
1422
1423static bool irq_supports_nmi(struct irq_desc *desc)
1424{
1425	struct irq_data *d = irq_desc_get_irq_data(desc);
1426
1427#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1428	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1429	if (d->parent_data)
1430		return false;
1431#endif
1432	/* Don't support NMIs for chips behind a slow bus */
1433	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1434		return false;
1435
1436	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1437}
1438
1439static int irq_nmi_setup(struct irq_desc *desc)
1440{
1441	struct irq_data *d = irq_desc_get_irq_data(desc);
1442	struct irq_chip *c = d->chip;
1443
1444	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1445}
1446
1447static void irq_nmi_teardown(struct irq_desc *desc)
1448{
1449	struct irq_data *d = irq_desc_get_irq_data(desc);
1450	struct irq_chip *c = d->chip;
1451
1452	if (c->irq_nmi_teardown)
1453		c->irq_nmi_teardown(d);
1454}
1455
1456static int
1457setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1458{
1459	struct task_struct *t;
1460
1461	if (!secondary) {
1462		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1463				   new->name);
1464	} else {
1465		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1466				   new->name);
1467	}
1468
1469	if (IS_ERR(t))
1470		return PTR_ERR(t);
1471
 
 
1472	/*
1473	 * We keep the reference to the task struct even if
1474	 * the thread dies to avoid that the interrupt code
1475	 * references an already freed task_struct.
1476	 */
1477	new->thread = get_task_struct(t);
1478	/*
1479	 * Tell the thread to set its affinity. This is
1480	 * important for shared interrupt handlers as we do
1481	 * not invoke setup_affinity() for the secondary
1482	 * handlers as everything is already set up. Even for
1483	 * interrupts marked with IRQF_NO_BALANCE this is
1484	 * correct as we want the thread to move to the cpu(s)
1485	 * on which the requesting code placed the interrupt.
1486	 */
1487	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1488	return 0;
1489}
1490
1491/*
1492 * Internal function to register an irqaction - typically used to
1493 * allocate special interrupts that are part of the architecture.
1494 *
1495 * Locking rules:
1496 *
1497 * desc->request_mutex	Provides serialization against a concurrent free_irq()
1498 *   chip_bus_lock	Provides serialization for slow bus operations
1499 *     desc->lock	Provides serialization against hard interrupts
1500 *
1501 * chip_bus_lock and desc->lock are sufficient for all other management and
1502 * interrupt related functions. desc->request_mutex solely serializes
1503 * request/free_irq().
1504 */
1505static int
1506__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1507{
1508	struct irqaction *old, **old_ptr;
1509	unsigned long flags, thread_mask = 0;
1510	int ret, nested, shared = 0;
1511
1512	if (!desc)
1513		return -EINVAL;
1514
1515	if (desc->irq_data.chip == &no_irq_chip)
1516		return -ENOSYS;
1517	if (!try_module_get(desc->owner))
1518		return -ENODEV;
1519
1520	new->irq = irq;
1521
1522	/*
1523	 * If the trigger type is not specified by the caller,
1524	 * then use the default for this interrupt.
1525	 */
1526	if (!(new->flags & IRQF_TRIGGER_MASK))
1527		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1528
1529	/*
1530	 * Check whether the interrupt nests into another interrupt
1531	 * thread.
1532	 */
1533	nested = irq_settings_is_nested_thread(desc);
1534	if (nested) {
1535		if (!new->thread_fn) {
1536			ret = -EINVAL;
1537			goto out_mput;
1538		}
1539		/*
1540		 * Replace the primary handler which was provided from
1541		 * the driver for non nested interrupt handling by the
1542		 * dummy function which warns when called.
1543		 */
1544		new->handler = irq_nested_primary_handler;
1545	} else {
1546		if (irq_settings_can_thread(desc)) {
1547			ret = irq_setup_forced_threading(new);
1548			if (ret)
1549				goto out_mput;
1550		}
1551	}
1552
1553	/*
1554	 * Create a handler thread when a thread function is supplied
1555	 * and the interrupt does not nest into another interrupt
1556	 * thread.
1557	 */
1558	if (new->thread_fn && !nested) {
1559		ret = setup_irq_thread(new, irq, false);
1560		if (ret)
1561			goto out_mput;
1562		if (new->secondary) {
1563			ret = setup_irq_thread(new->secondary, irq, true);
1564			if (ret)
1565				goto out_thread;
1566		}
1567	}
1568
1569	/*
1570	 * Drivers are often written to work w/o knowledge about the
1571	 * underlying irq chip implementation, so a request for a
1572	 * threaded irq without a primary hard irq context handler
1573	 * requires the ONESHOT flag to be set. Some irq chips like
1574	 * MSI based interrupts are per se one shot safe. Check the
1575	 * chip flags, so we can avoid the unmask dance at the end of
1576	 * the threaded handler for those.
1577	 */
1578	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1579		new->flags &= ~IRQF_ONESHOT;
1580
1581	/*
1582	 * Protects against a concurrent __free_irq() call which might wait
1583	 * for synchronize_hardirq() to complete without holding the optional
1584	 * chip bus lock and desc->lock. Also protects against handing out
1585	 * a recycled oneshot thread_mask bit while it's still in use by
1586	 * its previous owner.
1587	 */
1588	mutex_lock(&desc->request_mutex);
1589
1590	/*
1591	 * Acquire bus lock as the irq_request_resources() callback below
1592	 * might rely on the serialization or the magic power management
1593	 * functions which are abusing the irq_bus_lock() callback,
1594	 */
1595	chip_bus_lock(desc);
1596
1597	/* First installed action requests resources. */
1598	if (!desc->action) {
1599		ret = irq_request_resources(desc);
1600		if (ret) {
1601			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1602			       new->name, irq, desc->irq_data.chip->name);
1603			goto out_bus_unlock;
1604		}
1605	}
1606
1607	/*
1608	 * The following block of code has to be executed atomically
1609	 * protected against a concurrent interrupt and any of the other
1610	 * management calls which are not serialized via
1611	 * desc->request_mutex or the optional bus lock.
1612	 */
1613	raw_spin_lock_irqsave(&desc->lock, flags);
1614	old_ptr = &desc->action;
1615	old = *old_ptr;
1616	if (old) {
1617		/*
1618		 * Can't share interrupts unless both agree to and are
1619		 * the same type (level, edge, polarity). So both flag
1620		 * fields must have IRQF_SHARED set and the bits which
1621		 * set the trigger type must match. Also all must
1622		 * agree on ONESHOT.
1623		 * Interrupt lines used for NMIs cannot be shared.
1624		 */
1625		unsigned int oldtype;
1626
1627		if (desc->istate & IRQS_NMI) {
1628			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1629				new->name, irq, desc->irq_data.chip->name);
1630			ret = -EINVAL;
1631			goto out_unlock;
1632		}
1633
1634		/*
1635		 * If nobody did set the configuration before, inherit
1636		 * the one provided by the requester.
1637		 */
1638		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1639			oldtype = irqd_get_trigger_type(&desc->irq_data);
1640		} else {
1641			oldtype = new->flags & IRQF_TRIGGER_MASK;
1642			irqd_set_trigger_type(&desc->irq_data, oldtype);
1643		}
1644
1645		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1646		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)))
1647			goto mismatch;
1648
1649		if ((old->flags & IRQF_ONESHOT) &&
1650		    (new->flags & IRQF_COND_ONESHOT))
1651			new->flags |= IRQF_ONESHOT;
1652		else if ((old->flags ^ new->flags) & IRQF_ONESHOT)
1653			goto mismatch;
1654
1655		/* All handlers must agree on per-cpuness */
1656		if ((old->flags & IRQF_PERCPU) !=
1657		    (new->flags & IRQF_PERCPU))
1658			goto mismatch;
1659
1660		/* add new interrupt at end of irq queue */
1661		do {
1662			/*
1663			 * Or all existing action->thread_mask bits,
1664			 * so we can find the next zero bit for this
1665			 * new action.
1666			 */
1667			thread_mask |= old->thread_mask;
1668			old_ptr = &old->next;
1669			old = *old_ptr;
1670		} while (old);
1671		shared = 1;
1672	}
1673
1674	/*
1675	 * Setup the thread mask for this irqaction for ONESHOT. For
1676	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1677	 * conditional in irq_wake_thread().
1678	 */
1679	if (new->flags & IRQF_ONESHOT) {
1680		/*
1681		 * Unlikely to have 32 resp 64 irqs sharing one line,
1682		 * but who knows.
1683		 */
1684		if (thread_mask == ~0UL) {
1685			ret = -EBUSY;
1686			goto out_unlock;
1687		}
1688		/*
1689		 * The thread_mask for the action is or'ed to
1690		 * desc->thread_active to indicate that the
1691		 * IRQF_ONESHOT thread handler has been woken, but not
1692		 * yet finished. The bit is cleared when a thread
1693		 * completes. When all threads of a shared interrupt
1694		 * line have completed desc->threads_active becomes
1695		 * zero and the interrupt line is unmasked. See
1696		 * handle.c:irq_wake_thread() for further information.
1697		 *
1698		 * If no thread is woken by primary (hard irq context)
1699		 * interrupt handlers, then desc->threads_active is
1700		 * also checked for zero to unmask the irq line in the
1701		 * affected hard irq flow handlers
1702		 * (handle_[fasteoi|level]_irq).
1703		 *
1704		 * The new action gets the first zero bit of
1705		 * thread_mask assigned. See the loop above which or's
1706		 * all existing action->thread_mask bits.
1707		 */
1708		new->thread_mask = 1UL << ffz(thread_mask);
1709
1710	} else if (new->handler == irq_default_primary_handler &&
1711		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1712		/*
1713		 * The interrupt was requested with handler = NULL, so
1714		 * we use the default primary handler for it. But it
1715		 * does not have the oneshot flag set. In combination
1716		 * with level interrupts this is deadly, because the
1717		 * default primary handler just wakes the thread, then
1718		 * the irq lines is reenabled, but the device still
1719		 * has the level irq asserted. Rinse and repeat....
1720		 *
1721		 * While this works for edge type interrupts, we play
1722		 * it safe and reject unconditionally because we can't
1723		 * say for sure which type this interrupt really
1724		 * has. The type flags are unreliable as the
1725		 * underlying chip implementation can override them.
1726		 */
1727		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1728		       new->name, irq);
1729		ret = -EINVAL;
1730		goto out_unlock;
1731	}
1732
1733	if (!shared) {
 
 
1734		/* Setup the type (level, edge polarity) if configured: */
1735		if (new->flags & IRQF_TRIGGER_MASK) {
1736			ret = __irq_set_trigger(desc,
1737						new->flags & IRQF_TRIGGER_MASK);
1738
1739			if (ret)
1740				goto out_unlock;
1741		}
1742
1743		/*
1744		 * Activate the interrupt. That activation must happen
1745		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1746		 * and the callers are supposed to handle
1747		 * that. enable_irq() of an interrupt requested with
1748		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1749		 * keeps it in shutdown mode, it merily associates
1750		 * resources if necessary and if that's not possible it
1751		 * fails. Interrupts which are in managed shutdown mode
1752		 * will simply ignore that activation request.
1753		 */
1754		ret = irq_activate(desc);
1755		if (ret)
1756			goto out_unlock;
1757
1758		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1759				  IRQS_ONESHOT | IRQS_WAITING);
1760		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1761
1762		if (new->flags & IRQF_PERCPU) {
1763			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1764			irq_settings_set_per_cpu(desc);
1765			if (new->flags & IRQF_NO_DEBUG)
1766				irq_settings_set_no_debug(desc);
1767		}
1768
1769		if (noirqdebug)
1770			irq_settings_set_no_debug(desc);
1771
1772		if (new->flags & IRQF_ONESHOT)
1773			desc->istate |= IRQS_ONESHOT;
1774
1775		/* Exclude IRQ from balancing if requested */
1776		if (new->flags & IRQF_NOBALANCING) {
1777			irq_settings_set_no_balancing(desc);
1778			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1779		}
1780
1781		if (!(new->flags & IRQF_NO_AUTOEN) &&
1782		    irq_settings_can_autoenable(desc)) {
1783			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1784		} else {
1785			/*
1786			 * Shared interrupts do not go well with disabling
1787			 * auto enable. The sharing interrupt might request
1788			 * it while it's still disabled and then wait for
1789			 * interrupts forever.
1790			 */
1791			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1792			/* Undo nested disables: */
1793			desc->depth = 1;
1794		}
1795
1796	} else if (new->flags & IRQF_TRIGGER_MASK) {
1797		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1798		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1799
1800		if (nmsk != omsk)
1801			/* hope the handler works with current  trigger mode */
1802			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1803				irq, omsk, nmsk);
1804	}
1805
1806	*old_ptr = new;
1807
1808	irq_pm_install_action(desc, new);
1809
1810	/* Reset broken irq detection when installing new handler */
1811	desc->irq_count = 0;
1812	desc->irqs_unhandled = 0;
1813
1814	/*
1815	 * Check whether we disabled the irq via the spurious handler
1816	 * before. Reenable it and give it another chance.
1817	 */
1818	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1819		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1820		__enable_irq(desc);
1821	}
1822
1823	raw_spin_unlock_irqrestore(&desc->lock, flags);
1824	chip_bus_sync_unlock(desc);
1825	mutex_unlock(&desc->request_mutex);
1826
1827	irq_setup_timings(desc, new);
1828
1829	wake_up_and_wait_for_irq_thread_ready(desc, new);
1830	wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
 
 
 
 
 
 
1831
1832	register_irq_proc(irq, desc);
1833	new->dir = NULL;
1834	register_handler_proc(irq, new);
1835	return 0;
1836
1837mismatch:
1838	if (!(new->flags & IRQF_PROBE_SHARED)) {
1839		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1840		       irq, new->flags, new->name, old->flags, old->name);
1841#ifdef CONFIG_DEBUG_SHIRQ
1842		dump_stack();
1843#endif
1844	}
1845	ret = -EBUSY;
1846
1847out_unlock:
1848	raw_spin_unlock_irqrestore(&desc->lock, flags);
1849
1850	if (!desc->action)
1851		irq_release_resources(desc);
1852out_bus_unlock:
1853	chip_bus_sync_unlock(desc);
1854	mutex_unlock(&desc->request_mutex);
1855
1856out_thread:
1857	if (new->thread) {
1858		struct task_struct *t = new->thread;
1859
1860		new->thread = NULL;
1861		kthread_stop_put(t);
 
1862	}
1863	if (new->secondary && new->secondary->thread) {
1864		struct task_struct *t = new->secondary->thread;
1865
1866		new->secondary->thread = NULL;
1867		kthread_stop_put(t);
 
1868	}
1869out_mput:
1870	module_put(desc->owner);
1871	return ret;
1872}
1873
1874/*
1875 * Internal function to unregister an irqaction - used to free
1876 * regular and special interrupts that are part of the architecture.
1877 */
1878static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1879{
1880	unsigned irq = desc->irq_data.irq;
1881	struct irqaction *action, **action_ptr;
1882	unsigned long flags;
1883
1884	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1885
1886	mutex_lock(&desc->request_mutex);
1887	chip_bus_lock(desc);
1888	raw_spin_lock_irqsave(&desc->lock, flags);
1889
1890	/*
1891	 * There can be multiple actions per IRQ descriptor, find the right
1892	 * one based on the dev_id:
1893	 */
1894	action_ptr = &desc->action;
1895	for (;;) {
1896		action = *action_ptr;
1897
1898		if (!action) {
1899			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1900			raw_spin_unlock_irqrestore(&desc->lock, flags);
1901			chip_bus_sync_unlock(desc);
1902			mutex_unlock(&desc->request_mutex);
1903			return NULL;
1904		}
1905
1906		if (action->dev_id == dev_id)
1907			break;
1908		action_ptr = &action->next;
1909	}
1910
1911	/* Found it - now remove it from the list of entries: */
1912	*action_ptr = action->next;
1913
1914	irq_pm_remove_action(desc, action);
1915
1916	/* If this was the last handler, shut down the IRQ line: */
1917	if (!desc->action) {
1918		irq_settings_clr_disable_unlazy(desc);
1919		/* Only shutdown. Deactivate after synchronize_hardirq() */
1920		irq_shutdown(desc);
1921	}
1922
1923#ifdef CONFIG_SMP
1924	/* make sure affinity_hint is cleaned up */
1925	if (WARN_ON_ONCE(desc->affinity_hint))
1926		desc->affinity_hint = NULL;
1927#endif
1928
1929	raw_spin_unlock_irqrestore(&desc->lock, flags);
1930	/*
1931	 * Drop bus_lock here so the changes which were done in the chip
1932	 * callbacks above are synced out to the irq chips which hang
1933	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1934	 *
1935	 * Aside of that the bus_lock can also be taken from the threaded
1936	 * handler in irq_finalize_oneshot() which results in a deadlock
1937	 * because kthread_stop() would wait forever for the thread to
1938	 * complete, which is blocked on the bus lock.
1939	 *
1940	 * The still held desc->request_mutex() protects against a
1941	 * concurrent request_irq() of this irq so the release of resources
1942	 * and timing data is properly serialized.
1943	 */
1944	chip_bus_sync_unlock(desc);
1945
1946	unregister_handler_proc(irq, action);
1947
1948	/*
1949	 * Make sure it's not being used on another CPU and if the chip
1950	 * supports it also make sure that there is no (not yet serviced)
1951	 * interrupt in flight at the hardware level.
1952	 */
1953	__synchronize_irq(desc);
1954
1955#ifdef CONFIG_DEBUG_SHIRQ
1956	/*
1957	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1958	 * event to happen even now it's being freed, so let's make sure that
1959	 * is so by doing an extra call to the handler ....
1960	 *
1961	 * ( We do this after actually deregistering it, to make sure that a
1962	 *   'real' IRQ doesn't run in parallel with our fake. )
1963	 */
1964	if (action->flags & IRQF_SHARED) {
1965		local_irq_save(flags);
1966		action->handler(irq, dev_id);
1967		local_irq_restore(flags);
1968	}
1969#endif
1970
1971	/*
1972	 * The action has already been removed above, but the thread writes
1973	 * its oneshot mask bit when it completes. Though request_mutex is
1974	 * held across this which prevents __setup_irq() from handing out
1975	 * the same bit to a newly requested action.
1976	 */
1977	if (action->thread) {
1978		kthread_stop_put(action->thread);
1979		if (action->secondary && action->secondary->thread)
1980			kthread_stop_put(action->secondary->thread);
 
 
 
1981	}
1982
1983	/* Last action releases resources */
1984	if (!desc->action) {
1985		/*
1986		 * Reacquire bus lock as irq_release_resources() might
1987		 * require it to deallocate resources over the slow bus.
1988		 */
1989		chip_bus_lock(desc);
1990		/*
1991		 * There is no interrupt on the fly anymore. Deactivate it
1992		 * completely.
1993		 */
1994		raw_spin_lock_irqsave(&desc->lock, flags);
1995		irq_domain_deactivate_irq(&desc->irq_data);
1996		raw_spin_unlock_irqrestore(&desc->lock, flags);
1997
1998		irq_release_resources(desc);
1999		chip_bus_sync_unlock(desc);
2000		irq_remove_timings(desc);
2001	}
2002
2003	mutex_unlock(&desc->request_mutex);
2004
2005	irq_chip_pm_put(&desc->irq_data);
2006	module_put(desc->owner);
2007	kfree(action->secondary);
2008	return action;
2009}
2010
2011/**
2012 *	free_irq - free an interrupt allocated with request_irq
2013 *	@irq: Interrupt line to free
2014 *	@dev_id: Device identity to free
2015 *
2016 *	Remove an interrupt handler. The handler is removed and if the
2017 *	interrupt line is no longer in use by any driver it is disabled.
2018 *	On a shared IRQ the caller must ensure the interrupt is disabled
2019 *	on the card it drives before calling this function. The function
2020 *	does not return until any executing interrupts for this IRQ
2021 *	have completed.
2022 *
2023 *	This function must not be called from interrupt context.
2024 *
2025 *	Returns the devname argument passed to request_irq.
2026 */
2027const void *free_irq(unsigned int irq, void *dev_id)
2028{
2029	struct irq_desc *desc = irq_to_desc(irq);
2030	struct irqaction *action;
2031	const char *devname;
2032
2033	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2034		return NULL;
2035
2036#ifdef CONFIG_SMP
2037	if (WARN_ON(desc->affinity_notify))
2038		desc->affinity_notify = NULL;
2039#endif
2040
2041	action = __free_irq(desc, dev_id);
2042
2043	if (!action)
2044		return NULL;
2045
2046	devname = action->name;
2047	kfree(action);
2048	return devname;
2049}
2050EXPORT_SYMBOL(free_irq);
2051
2052/* This function must be called with desc->lock held */
2053static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2054{
2055	const char *devname = NULL;
2056
2057	desc->istate &= ~IRQS_NMI;
2058
2059	if (!WARN_ON(desc->action == NULL)) {
2060		irq_pm_remove_action(desc, desc->action);
2061		devname = desc->action->name;
2062		unregister_handler_proc(irq, desc->action);
2063
2064		kfree(desc->action);
2065		desc->action = NULL;
2066	}
2067
2068	irq_settings_clr_disable_unlazy(desc);
2069	irq_shutdown_and_deactivate(desc);
2070
2071	irq_release_resources(desc);
2072
2073	irq_chip_pm_put(&desc->irq_data);
2074	module_put(desc->owner);
2075
2076	return devname;
2077}
2078
2079const void *free_nmi(unsigned int irq, void *dev_id)
2080{
2081	struct irq_desc *desc = irq_to_desc(irq);
2082	unsigned long flags;
2083	const void *devname;
2084
2085	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2086		return NULL;
2087
2088	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2089		return NULL;
2090
2091	/* NMI still enabled */
2092	if (WARN_ON(desc->depth == 0))
2093		disable_nmi_nosync(irq);
2094
2095	raw_spin_lock_irqsave(&desc->lock, flags);
2096
2097	irq_nmi_teardown(desc);
2098	devname = __cleanup_nmi(irq, desc);
2099
2100	raw_spin_unlock_irqrestore(&desc->lock, flags);
2101
2102	return devname;
2103}
2104
2105/**
2106 *	request_threaded_irq - allocate an interrupt line
2107 *	@irq: Interrupt line to allocate
2108 *	@handler: Function to be called when the IRQ occurs.
2109 *		  Primary handler for threaded interrupts.
2110 *		  If handler is NULL and thread_fn != NULL
2111 *		  the default primary handler is installed.
2112 *	@thread_fn: Function called from the irq handler thread
2113 *		    If NULL, no irq thread is created
2114 *	@irqflags: Interrupt type flags
2115 *	@devname: An ascii name for the claiming device
2116 *	@dev_id: A cookie passed back to the handler function
2117 *
2118 *	This call allocates interrupt resources and enables the
2119 *	interrupt line and IRQ handling. From the point this
2120 *	call is made your handler function may be invoked. Since
2121 *	your handler function must clear any interrupt the board
2122 *	raises, you must take care both to initialise your hardware
2123 *	and to set up the interrupt handler in the right order.
2124 *
2125 *	If you want to set up a threaded irq handler for your device
2126 *	then you need to supply @handler and @thread_fn. @handler is
2127 *	still called in hard interrupt context and has to check
2128 *	whether the interrupt originates from the device. If yes it
2129 *	needs to disable the interrupt on the device and return
2130 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2131 *	@thread_fn. This split handler design is necessary to support
2132 *	shared interrupts.
2133 *
2134 *	Dev_id must be globally unique. Normally the address of the
2135 *	device data structure is used as the cookie. Since the handler
2136 *	receives this value it makes sense to use it.
2137 *
2138 *	If your interrupt is shared you must pass a non NULL dev_id
2139 *	as this is required when freeing the interrupt.
2140 *
2141 *	Flags:
2142 *
2143 *	IRQF_SHARED		Interrupt is shared
2144 *	IRQF_TRIGGER_*		Specify active edge(s) or level
2145 *	IRQF_ONESHOT		Run thread_fn with interrupt line masked
2146 */
2147int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2148			 irq_handler_t thread_fn, unsigned long irqflags,
2149			 const char *devname, void *dev_id)
2150{
2151	struct irqaction *action;
2152	struct irq_desc *desc;
2153	int retval;
2154
2155	if (irq == IRQ_NOTCONNECTED)
2156		return -ENOTCONN;
2157
2158	/*
2159	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2160	 * otherwise we'll have trouble later trying to figure out
2161	 * which interrupt is which (messes up the interrupt freeing
2162	 * logic etc).
2163	 *
2164	 * Also shared interrupts do not go well with disabling auto enable.
2165	 * The sharing interrupt might request it while it's still disabled
2166	 * and then wait for interrupts forever.
2167	 *
2168	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2169	 * it cannot be set along with IRQF_NO_SUSPEND.
2170	 */
2171	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2172	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2173	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2174	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2175		return -EINVAL;
2176
2177	desc = irq_to_desc(irq);
2178	if (!desc)
2179		return -EINVAL;
2180
2181	if (!irq_settings_can_request(desc) ||
2182	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2183		return -EINVAL;
2184
2185	if (!handler) {
2186		if (!thread_fn)
2187			return -EINVAL;
2188		handler = irq_default_primary_handler;
2189	}
2190
2191	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2192	if (!action)
2193		return -ENOMEM;
2194
2195	action->handler = handler;
2196	action->thread_fn = thread_fn;
2197	action->flags = irqflags;
2198	action->name = devname;
2199	action->dev_id = dev_id;
2200
2201	retval = irq_chip_pm_get(&desc->irq_data);
2202	if (retval < 0) {
2203		kfree(action);
2204		return retval;
2205	}
2206
2207	retval = __setup_irq(irq, desc, action);
2208
2209	if (retval) {
2210		irq_chip_pm_put(&desc->irq_data);
2211		kfree(action->secondary);
2212		kfree(action);
2213	}
2214
2215#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2216	if (!retval && (irqflags & IRQF_SHARED)) {
2217		/*
2218		 * It's a shared IRQ -- the driver ought to be prepared for it
2219		 * to happen immediately, so let's make sure....
2220		 * We disable the irq to make sure that a 'real' IRQ doesn't
2221		 * run in parallel with our fake.
2222		 */
2223		unsigned long flags;
2224
2225		disable_irq(irq);
2226		local_irq_save(flags);
2227
2228		handler(irq, dev_id);
2229
2230		local_irq_restore(flags);
2231		enable_irq(irq);
2232	}
2233#endif
2234	return retval;
2235}
2236EXPORT_SYMBOL(request_threaded_irq);
2237
2238/**
2239 *	request_any_context_irq - allocate an interrupt line
2240 *	@irq: Interrupt line to allocate
2241 *	@handler: Function to be called when the IRQ occurs.
2242 *		  Threaded handler for threaded interrupts.
2243 *	@flags: Interrupt type flags
2244 *	@name: An ascii name for the claiming device
2245 *	@dev_id: A cookie passed back to the handler function
2246 *
2247 *	This call allocates interrupt resources and enables the
2248 *	interrupt line and IRQ handling. It selects either a
2249 *	hardirq or threaded handling method depending on the
2250 *	context.
2251 *
2252 *	On failure, it returns a negative value. On success,
2253 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2254 */
2255int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2256			    unsigned long flags, const char *name, void *dev_id)
2257{
2258	struct irq_desc *desc;
2259	int ret;
2260
2261	if (irq == IRQ_NOTCONNECTED)
2262		return -ENOTCONN;
2263
2264	desc = irq_to_desc(irq);
2265	if (!desc)
2266		return -EINVAL;
2267
2268	if (irq_settings_is_nested_thread(desc)) {
2269		ret = request_threaded_irq(irq, NULL, handler,
2270					   flags, name, dev_id);
2271		return !ret ? IRQC_IS_NESTED : ret;
2272	}
2273
2274	ret = request_irq(irq, handler, flags, name, dev_id);
2275	return !ret ? IRQC_IS_HARDIRQ : ret;
2276}
2277EXPORT_SYMBOL_GPL(request_any_context_irq);
2278
2279/**
2280 *	request_nmi - allocate an interrupt line for NMI delivery
2281 *	@irq: Interrupt line to allocate
2282 *	@handler: Function to be called when the IRQ occurs.
2283 *		  Threaded handler for threaded interrupts.
2284 *	@irqflags: Interrupt type flags
2285 *	@name: An ascii name for the claiming device
2286 *	@dev_id: A cookie passed back to the handler function
2287 *
2288 *	This call allocates interrupt resources and enables the
2289 *	interrupt line and IRQ handling. It sets up the IRQ line
2290 *	to be handled as an NMI.
2291 *
2292 *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2293 *	cannot be threaded.
2294 *
2295 *	Interrupt lines requested for NMI delivering must produce per cpu
2296 *	interrupts and have auto enabling setting disabled.
2297 *
2298 *	Dev_id must be globally unique. Normally the address of the
2299 *	device data structure is used as the cookie. Since the handler
2300 *	receives this value it makes sense to use it.
2301 *
2302 *	If the interrupt line cannot be used to deliver NMIs, function
2303 *	will fail and return a negative value.
2304 */
2305int request_nmi(unsigned int irq, irq_handler_t handler,
2306		unsigned long irqflags, const char *name, void *dev_id)
2307{
2308	struct irqaction *action;
2309	struct irq_desc *desc;
2310	unsigned long flags;
2311	int retval;
2312
2313	if (irq == IRQ_NOTCONNECTED)
2314		return -ENOTCONN;
2315
2316	/* NMI cannot be shared, used for Polling */
2317	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2318		return -EINVAL;
2319
2320	if (!(irqflags & IRQF_PERCPU))
2321		return -EINVAL;
2322
2323	if (!handler)
2324		return -EINVAL;
2325
2326	desc = irq_to_desc(irq);
2327
2328	if (!desc || (irq_settings_can_autoenable(desc) &&
2329	    !(irqflags & IRQF_NO_AUTOEN)) ||
2330	    !irq_settings_can_request(desc) ||
2331	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2332	    !irq_supports_nmi(desc))
2333		return -EINVAL;
2334
2335	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2336	if (!action)
2337		return -ENOMEM;
2338
2339	action->handler = handler;
2340	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2341	action->name = name;
2342	action->dev_id = dev_id;
2343
2344	retval = irq_chip_pm_get(&desc->irq_data);
2345	if (retval < 0)
2346		goto err_out;
2347
2348	retval = __setup_irq(irq, desc, action);
2349	if (retval)
2350		goto err_irq_setup;
2351
2352	raw_spin_lock_irqsave(&desc->lock, flags);
2353
2354	/* Setup NMI state */
2355	desc->istate |= IRQS_NMI;
2356	retval = irq_nmi_setup(desc);
2357	if (retval) {
2358		__cleanup_nmi(irq, desc);
2359		raw_spin_unlock_irqrestore(&desc->lock, flags);
2360		return -EINVAL;
2361	}
2362
2363	raw_spin_unlock_irqrestore(&desc->lock, flags);
2364
2365	return 0;
2366
2367err_irq_setup:
2368	irq_chip_pm_put(&desc->irq_data);
2369err_out:
2370	kfree(action);
2371
2372	return retval;
2373}
2374
2375void enable_percpu_irq(unsigned int irq, unsigned int type)
2376{
2377	unsigned int cpu = smp_processor_id();
2378	unsigned long flags;
2379	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2380
2381	if (!desc)
2382		return;
2383
2384	/*
2385	 * If the trigger type is not specified by the caller, then
2386	 * use the default for this interrupt.
2387	 */
2388	type &= IRQ_TYPE_SENSE_MASK;
2389	if (type == IRQ_TYPE_NONE)
2390		type = irqd_get_trigger_type(&desc->irq_data);
2391
2392	if (type != IRQ_TYPE_NONE) {
2393		int ret;
2394
2395		ret = __irq_set_trigger(desc, type);
2396
2397		if (ret) {
2398			WARN(1, "failed to set type for IRQ%d\n", irq);
2399			goto out;
2400		}
2401	}
2402
2403	irq_percpu_enable(desc, cpu);
2404out:
2405	irq_put_desc_unlock(desc, flags);
2406}
2407EXPORT_SYMBOL_GPL(enable_percpu_irq);
2408
2409void enable_percpu_nmi(unsigned int irq, unsigned int type)
2410{
2411	enable_percpu_irq(irq, type);
2412}
2413
2414/**
2415 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2416 * @irq:	Linux irq number to check for
2417 *
2418 * Must be called from a non migratable context. Returns the enable
2419 * state of a per cpu interrupt on the current cpu.
2420 */
2421bool irq_percpu_is_enabled(unsigned int irq)
2422{
2423	unsigned int cpu = smp_processor_id();
2424	struct irq_desc *desc;
2425	unsigned long flags;
2426	bool is_enabled;
2427
2428	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2429	if (!desc)
2430		return false;
2431
2432	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2433	irq_put_desc_unlock(desc, flags);
2434
2435	return is_enabled;
2436}
2437EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2438
2439void disable_percpu_irq(unsigned int irq)
2440{
2441	unsigned int cpu = smp_processor_id();
2442	unsigned long flags;
2443	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2444
2445	if (!desc)
2446		return;
2447
2448	irq_percpu_disable(desc, cpu);
2449	irq_put_desc_unlock(desc, flags);
2450}
2451EXPORT_SYMBOL_GPL(disable_percpu_irq);
2452
2453void disable_percpu_nmi(unsigned int irq)
2454{
2455	disable_percpu_irq(irq);
2456}
2457
2458/*
2459 * Internal function to unregister a percpu irqaction.
2460 */
2461static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2462{
2463	struct irq_desc *desc = irq_to_desc(irq);
2464	struct irqaction *action;
2465	unsigned long flags;
2466
2467	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2468
2469	if (!desc)
2470		return NULL;
2471
2472	raw_spin_lock_irqsave(&desc->lock, flags);
2473
2474	action = desc->action;
2475	if (!action || action->percpu_dev_id != dev_id) {
2476		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2477		goto bad;
2478	}
2479
2480	if (!cpumask_empty(desc->percpu_enabled)) {
2481		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2482		     irq, cpumask_first(desc->percpu_enabled));
2483		goto bad;
2484	}
2485
2486	/* Found it - now remove it from the list of entries: */
2487	desc->action = NULL;
2488
2489	desc->istate &= ~IRQS_NMI;
2490
2491	raw_spin_unlock_irqrestore(&desc->lock, flags);
2492
2493	unregister_handler_proc(irq, action);
2494
2495	irq_chip_pm_put(&desc->irq_data);
2496	module_put(desc->owner);
2497	return action;
2498
2499bad:
2500	raw_spin_unlock_irqrestore(&desc->lock, flags);
2501	return NULL;
2502}
2503
2504/**
2505 *	remove_percpu_irq - free a per-cpu interrupt
2506 *	@irq: Interrupt line to free
2507 *	@act: irqaction for the interrupt
2508 *
2509 * Used to remove interrupts statically setup by the early boot process.
2510 */
2511void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2512{
2513	struct irq_desc *desc = irq_to_desc(irq);
2514
2515	if (desc && irq_settings_is_per_cpu_devid(desc))
2516	    __free_percpu_irq(irq, act->percpu_dev_id);
2517}
2518
2519/**
2520 *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2521 *	@irq: Interrupt line to free
2522 *	@dev_id: Device identity to free
2523 *
2524 *	Remove a percpu interrupt handler. The handler is removed, but
2525 *	the interrupt line is not disabled. This must be done on each
2526 *	CPU before calling this function. The function does not return
2527 *	until any executing interrupts for this IRQ have completed.
2528 *
2529 *	This function must not be called from interrupt context.
2530 */
2531void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2532{
2533	struct irq_desc *desc = irq_to_desc(irq);
2534
2535	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2536		return;
2537
2538	chip_bus_lock(desc);
2539	kfree(__free_percpu_irq(irq, dev_id));
2540	chip_bus_sync_unlock(desc);
2541}
2542EXPORT_SYMBOL_GPL(free_percpu_irq);
2543
2544void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2545{
2546	struct irq_desc *desc = irq_to_desc(irq);
2547
2548	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2549		return;
2550
2551	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2552		return;
2553
2554	kfree(__free_percpu_irq(irq, dev_id));
2555}
2556
2557/**
2558 *	setup_percpu_irq - setup a per-cpu interrupt
2559 *	@irq: Interrupt line to setup
2560 *	@act: irqaction for the interrupt
2561 *
2562 * Used to statically setup per-cpu interrupts in the early boot process.
2563 */
2564int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2565{
2566	struct irq_desc *desc = irq_to_desc(irq);
2567	int retval;
2568
2569	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2570		return -EINVAL;
2571
2572	retval = irq_chip_pm_get(&desc->irq_data);
2573	if (retval < 0)
2574		return retval;
2575
2576	retval = __setup_irq(irq, desc, act);
2577
2578	if (retval)
2579		irq_chip_pm_put(&desc->irq_data);
2580
2581	return retval;
2582}
2583
2584/**
2585 *	__request_percpu_irq - allocate a percpu interrupt line
2586 *	@irq: Interrupt line to allocate
2587 *	@handler: Function to be called when the IRQ occurs.
2588 *	@flags: Interrupt type flags (IRQF_TIMER only)
2589 *	@devname: An ascii name for the claiming device
2590 *	@dev_id: A percpu cookie passed back to the handler function
2591 *
2592 *	This call allocates interrupt resources and enables the
2593 *	interrupt on the local CPU. If the interrupt is supposed to be
2594 *	enabled on other CPUs, it has to be done on each CPU using
2595 *	enable_percpu_irq().
2596 *
2597 *	Dev_id must be globally unique. It is a per-cpu variable, and
2598 *	the handler gets called with the interrupted CPU's instance of
2599 *	that variable.
2600 */
2601int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2602			 unsigned long flags, const char *devname,
2603			 void __percpu *dev_id)
2604{
2605	struct irqaction *action;
2606	struct irq_desc *desc;
2607	int retval;
2608
2609	if (!dev_id)
2610		return -EINVAL;
2611
2612	desc = irq_to_desc(irq);
2613	if (!desc || !irq_settings_can_request(desc) ||
2614	    !irq_settings_is_per_cpu_devid(desc))
2615		return -EINVAL;
2616
2617	if (flags && flags != IRQF_TIMER)
2618		return -EINVAL;
2619
2620	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2621	if (!action)
2622		return -ENOMEM;
2623
2624	action->handler = handler;
2625	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2626	action->name = devname;
2627	action->percpu_dev_id = dev_id;
2628
2629	retval = irq_chip_pm_get(&desc->irq_data);
2630	if (retval < 0) {
2631		kfree(action);
2632		return retval;
2633	}
2634
2635	retval = __setup_irq(irq, desc, action);
2636
2637	if (retval) {
2638		irq_chip_pm_put(&desc->irq_data);
2639		kfree(action);
2640	}
2641
2642	return retval;
2643}
2644EXPORT_SYMBOL_GPL(__request_percpu_irq);
2645
2646/**
2647 *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2648 *	@irq: Interrupt line to allocate
2649 *	@handler: Function to be called when the IRQ occurs.
2650 *	@name: An ascii name for the claiming device
2651 *	@dev_id: A percpu cookie passed back to the handler function
2652 *
2653 *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2654 *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2655 *	being enabled on the same CPU by using enable_percpu_nmi().
2656 *
2657 *	Dev_id must be globally unique. It is a per-cpu variable, and
2658 *	the handler gets called with the interrupted CPU's instance of
2659 *	that variable.
2660 *
2661 *	Interrupt lines requested for NMI delivering should have auto enabling
2662 *	setting disabled.
2663 *
2664 *	If the interrupt line cannot be used to deliver NMIs, function
2665 *	will fail returning a negative value.
2666 */
2667int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2668		       const char *name, void __percpu *dev_id)
2669{
2670	struct irqaction *action;
2671	struct irq_desc *desc;
2672	unsigned long flags;
2673	int retval;
2674
2675	if (!handler)
2676		return -EINVAL;
2677
2678	desc = irq_to_desc(irq);
2679
2680	if (!desc || !irq_settings_can_request(desc) ||
2681	    !irq_settings_is_per_cpu_devid(desc) ||
2682	    irq_settings_can_autoenable(desc) ||
2683	    !irq_supports_nmi(desc))
2684		return -EINVAL;
2685
2686	/* The line cannot already be NMI */
2687	if (desc->istate & IRQS_NMI)
2688		return -EINVAL;
2689
2690	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2691	if (!action)
2692		return -ENOMEM;
2693
2694	action->handler = handler;
2695	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2696		| IRQF_NOBALANCING;
2697	action->name = name;
2698	action->percpu_dev_id = dev_id;
2699
2700	retval = irq_chip_pm_get(&desc->irq_data);
2701	if (retval < 0)
2702		goto err_out;
2703
2704	retval = __setup_irq(irq, desc, action);
2705	if (retval)
2706		goto err_irq_setup;
2707
2708	raw_spin_lock_irqsave(&desc->lock, flags);
2709	desc->istate |= IRQS_NMI;
2710	raw_spin_unlock_irqrestore(&desc->lock, flags);
2711
2712	return 0;
2713
2714err_irq_setup:
2715	irq_chip_pm_put(&desc->irq_data);
2716err_out:
2717	kfree(action);
2718
2719	return retval;
2720}
2721
2722/**
2723 *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2724 *	@irq: Interrupt line to prepare for NMI delivery
2725 *
2726 *	This call prepares an interrupt line to deliver NMI on the current CPU,
2727 *	before that interrupt line gets enabled with enable_percpu_nmi().
2728 *
2729 *	As a CPU local operation, this should be called from non-preemptible
2730 *	context.
2731 *
2732 *	If the interrupt line cannot be used to deliver NMIs, function
2733 *	will fail returning a negative value.
2734 */
2735int prepare_percpu_nmi(unsigned int irq)
2736{
2737	unsigned long flags;
2738	struct irq_desc *desc;
2739	int ret = 0;
2740
2741	WARN_ON(preemptible());
2742
2743	desc = irq_get_desc_lock(irq, &flags,
2744				 IRQ_GET_DESC_CHECK_PERCPU);
2745	if (!desc)
2746		return -EINVAL;
2747
2748	if (WARN(!(desc->istate & IRQS_NMI),
2749		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2750		 irq)) {
2751		ret = -EINVAL;
2752		goto out;
2753	}
2754
2755	ret = irq_nmi_setup(desc);
2756	if (ret) {
2757		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2758		goto out;
2759	}
2760
2761out:
2762	irq_put_desc_unlock(desc, flags);
2763	return ret;
2764}
2765
2766/**
2767 *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2768 *	@irq: Interrupt line from which CPU local NMI configuration should be
2769 *	      removed
2770 *
2771 *	This call undoes the setup done by prepare_percpu_nmi().
2772 *
2773 *	IRQ line should not be enabled for the current CPU.
2774 *
2775 *	As a CPU local operation, this should be called from non-preemptible
2776 *	context.
2777 */
2778void teardown_percpu_nmi(unsigned int irq)
2779{
2780	unsigned long flags;
2781	struct irq_desc *desc;
2782
2783	WARN_ON(preemptible());
2784
2785	desc = irq_get_desc_lock(irq, &flags,
2786				 IRQ_GET_DESC_CHECK_PERCPU);
2787	if (!desc)
2788		return;
2789
2790	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2791		goto out;
2792
2793	irq_nmi_teardown(desc);
2794out:
2795	irq_put_desc_unlock(desc, flags);
2796}
2797
2798int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2799			    bool *state)
2800{
2801	struct irq_chip *chip;
2802	int err = -EINVAL;
2803
2804	do {
2805		chip = irq_data_get_irq_chip(data);
2806		if (WARN_ON_ONCE(!chip))
2807			return -ENODEV;
2808		if (chip->irq_get_irqchip_state)
2809			break;
2810#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2811		data = data->parent_data;
2812#else
2813		data = NULL;
2814#endif
2815	} while (data);
2816
2817	if (data)
2818		err = chip->irq_get_irqchip_state(data, which, state);
2819	return err;
2820}
2821
2822/**
2823 *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2824 *	@irq: Interrupt line that is forwarded to a VM
2825 *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2826 *	@state: a pointer to a boolean where the state is to be stored
2827 *
2828 *	This call snapshots the internal irqchip state of an
2829 *	interrupt, returning into @state the bit corresponding to
2830 *	stage @which
2831 *
2832 *	This function should be called with preemption disabled if the
2833 *	interrupt controller has per-cpu registers.
2834 */
2835int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2836			  bool *state)
2837{
2838	struct irq_desc *desc;
2839	struct irq_data *data;
2840	unsigned long flags;
2841	int err = -EINVAL;
2842
2843	desc = irq_get_desc_buslock(irq, &flags, 0);
2844	if (!desc)
2845		return err;
2846
2847	data = irq_desc_get_irq_data(desc);
2848
2849	err = __irq_get_irqchip_state(data, which, state);
2850
2851	irq_put_desc_busunlock(desc, flags);
2852	return err;
2853}
2854EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2855
2856/**
2857 *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2858 *	@irq: Interrupt line that is forwarded to a VM
2859 *	@which: State to be restored (one of IRQCHIP_STATE_*)
2860 *	@val: Value corresponding to @which
2861 *
2862 *	This call sets the internal irqchip state of an interrupt,
2863 *	depending on the value of @which.
2864 *
2865 *	This function should be called with migration disabled if the
2866 *	interrupt controller has per-cpu registers.
2867 */
2868int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2869			  bool val)
2870{
2871	struct irq_desc *desc;
2872	struct irq_data *data;
2873	struct irq_chip *chip;
2874	unsigned long flags;
2875	int err = -EINVAL;
2876
2877	desc = irq_get_desc_buslock(irq, &flags, 0);
2878	if (!desc)
2879		return err;
2880
2881	data = irq_desc_get_irq_data(desc);
2882
2883	do {
2884		chip = irq_data_get_irq_chip(data);
2885		if (WARN_ON_ONCE(!chip)) {
2886			err = -ENODEV;
2887			goto out_unlock;
2888		}
2889		if (chip->irq_set_irqchip_state)
2890			break;
2891#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2892		data = data->parent_data;
2893#else
2894		data = NULL;
2895#endif
2896	} while (data);
2897
2898	if (data)
2899		err = chip->irq_set_irqchip_state(data, which, val);
2900
2901out_unlock:
2902	irq_put_desc_busunlock(desc, flags);
2903	return err;
2904}
2905EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2906
2907/**
2908 * irq_has_action - Check whether an interrupt is requested
2909 * @irq:	The linux irq number
2910 *
2911 * Returns: A snapshot of the current state
2912 */
2913bool irq_has_action(unsigned int irq)
2914{
2915	bool res;
2916
2917	rcu_read_lock();
2918	res = irq_desc_has_action(irq_to_desc(irq));
2919	rcu_read_unlock();
2920	return res;
2921}
2922EXPORT_SYMBOL_GPL(irq_has_action);
2923
2924/**
2925 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2926 * @irq:	The linux irq number
2927 * @bitmask:	The bitmask to evaluate
2928 *
2929 * Returns: True if one of the bits in @bitmask is set
2930 */
2931bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2932{
2933	struct irq_desc *desc;
2934	bool res = false;
2935
2936	rcu_read_lock();
2937	desc = irq_to_desc(irq);
2938	if (desc)
2939		res = !!(desc->status_use_accessors & bitmask);
2940	rcu_read_unlock();
2941	return res;
2942}
2943EXPORT_SYMBOL_GPL(irq_check_status_bit);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/irqdomain.h>
  17#include <linux/slab.h>
  18#include <linux/sched.h>
  19#include <linux/sched/rt.h>
  20#include <linux/sched/task.h>
  21#include <linux/sched/isolation.h>
  22#include <uapi/linux/sched/types.h>
  23#include <linux/task_work.h>
  24
  25#include "internals.h"
  26
  27#if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
  28__read_mostly bool force_irqthreads;
  29EXPORT_SYMBOL_GPL(force_irqthreads);
  30
  31static int __init setup_forced_irqthreads(char *arg)
  32{
  33	force_irqthreads = true;
  34	return 0;
  35}
  36early_param("threadirqs", setup_forced_irqthreads);
  37#endif
  38
  39static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
  40{
  41	struct irq_data *irqd = irq_desc_get_irq_data(desc);
  42	bool inprogress;
  43
  44	do {
  45		unsigned long flags;
  46
  47		/*
  48		 * Wait until we're out of the critical section.  This might
  49		 * give the wrong answer due to the lack of memory barriers.
  50		 */
  51		while (irqd_irq_inprogress(&desc->irq_data))
  52			cpu_relax();
  53
  54		/* Ok, that indicated we're done: double-check carefully. */
  55		raw_spin_lock_irqsave(&desc->lock, flags);
  56		inprogress = irqd_irq_inprogress(&desc->irq_data);
  57
  58		/*
  59		 * If requested and supported, check at the chip whether it
  60		 * is in flight at the hardware level, i.e. already pending
  61		 * in a CPU and waiting for service and acknowledge.
  62		 */
  63		if (!inprogress && sync_chip) {
  64			/*
  65			 * Ignore the return code. inprogress is only updated
  66			 * when the chip supports it.
  67			 */
  68			__irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
  69						&inprogress);
  70		}
  71		raw_spin_unlock_irqrestore(&desc->lock, flags);
  72
  73		/* Oops, that failed? */
  74	} while (inprogress);
  75}
  76
  77/**
  78 *	synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  79 *	@irq: interrupt number to wait for
  80 *
  81 *	This function waits for any pending hard IRQ handlers for this
  82 *	interrupt to complete before returning. If you use this
  83 *	function while holding a resource the IRQ handler may need you
  84 *	will deadlock. It does not take associated threaded handlers
  85 *	into account.
  86 *
  87 *	Do not use this for shutdown scenarios where you must be sure
  88 *	that all parts (hardirq and threaded handler) have completed.
  89 *
  90 *	Returns: false if a threaded handler is active.
  91 *
  92 *	This function may be called - with care - from IRQ context.
  93 *
  94 *	It does not check whether there is an interrupt in flight at the
  95 *	hardware level, but not serviced yet, as this might deadlock when
  96 *	called with interrupts disabled and the target CPU of the interrupt
  97 *	is the current CPU.
  98 */
  99bool synchronize_hardirq(unsigned int irq)
 100{
 101	struct irq_desc *desc = irq_to_desc(irq);
 102
 103	if (desc) {
 104		__synchronize_hardirq(desc, false);
 105		return !atomic_read(&desc->threads_active);
 106	}
 107
 108	return true;
 109}
 110EXPORT_SYMBOL(synchronize_hardirq);
 111
 
 
 
 
 
 
 
 
 
 
 112/**
 113 *	synchronize_irq - wait for pending IRQ handlers (on other CPUs)
 114 *	@irq: interrupt number to wait for
 115 *
 116 *	This function waits for any pending IRQ handlers for this interrupt
 117 *	to complete before returning. If you use this function while
 118 *	holding a resource the IRQ handler may need you will deadlock.
 119 *
 120 *	Can only be called from preemptible code as it might sleep when
 121 *	an interrupt thread is associated to @irq.
 122 *
 123 *	It optionally makes sure (when the irq chip supports that method)
 124 *	that the interrupt is not pending in any CPU and waiting for
 125 *	service.
 126 */
 127void synchronize_irq(unsigned int irq)
 128{
 129	struct irq_desc *desc = irq_to_desc(irq);
 130
 131	if (desc) {
 132		__synchronize_hardirq(desc, true);
 133		/*
 134		 * We made sure that no hardirq handler is
 135		 * running. Now verify that no threaded handlers are
 136		 * active.
 137		 */
 138		wait_event(desc->wait_for_threads,
 139			   !atomic_read(&desc->threads_active));
 140	}
 141}
 142EXPORT_SYMBOL(synchronize_irq);
 143
 144#ifdef CONFIG_SMP
 145cpumask_var_t irq_default_affinity;
 146
 147static bool __irq_can_set_affinity(struct irq_desc *desc)
 148{
 149	if (!desc || !irqd_can_balance(&desc->irq_data) ||
 150	    !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 151		return false;
 152	return true;
 153}
 154
 155/**
 156 *	irq_can_set_affinity - Check if the affinity of a given irq can be set
 157 *	@irq:		Interrupt to check
 158 *
 159 */
 160int irq_can_set_affinity(unsigned int irq)
 161{
 162	return __irq_can_set_affinity(irq_to_desc(irq));
 163}
 164
 165/**
 166 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 167 * @irq:	Interrupt to check
 168 *
 169 * Like irq_can_set_affinity() above, but additionally checks for the
 170 * AFFINITY_MANAGED flag.
 171 */
 172bool irq_can_set_affinity_usr(unsigned int irq)
 173{
 174	struct irq_desc *desc = irq_to_desc(irq);
 175
 176	return __irq_can_set_affinity(desc) &&
 177		!irqd_affinity_is_managed(&desc->irq_data);
 178}
 179
 180/**
 181 *	irq_set_thread_affinity - Notify irq threads to adjust affinity
 182 *	@desc:		irq descriptor which has affinity changed
 183 *
 184 *	We just set IRQTF_AFFINITY and delegate the affinity setting
 185 *	to the interrupt thread itself. We can not call
 186 *	set_cpus_allowed_ptr() here as we hold desc->lock and this
 187 *	code can be called from hard interrupt context.
 188 */
 189void irq_set_thread_affinity(struct irq_desc *desc)
 190{
 191	struct irqaction *action;
 192
 193	for_each_action_of_desc(desc, action)
 194		if (action->thread)
 195			set_bit(IRQTF_AFFINITY, &action->thread_flags);
 
 
 
 
 
 
 
 196}
 197
 198#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 199static void irq_validate_effective_affinity(struct irq_data *data)
 200{
 201	const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 202	struct irq_chip *chip = irq_data_get_irq_chip(data);
 203
 204	if (!cpumask_empty(m))
 205		return;
 206	pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 207		     chip->name, data->irq);
 208}
 209
 210static inline void irq_init_effective_affinity(struct irq_data *data,
 211					       const struct cpumask *mask)
 212{
 213	cpumask_copy(irq_data_get_effective_affinity_mask(data), mask);
 214}
 215#else
 216static inline void irq_validate_effective_affinity(struct irq_data *data) { }
 217static inline void irq_init_effective_affinity(struct irq_data *data,
 218					       const struct cpumask *mask) { }
 219#endif
 220
 221int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 222			bool force)
 223{
 224	struct irq_desc *desc = irq_data_to_desc(data);
 225	struct irq_chip *chip = irq_data_get_irq_chip(data);
 
 226	int ret;
 227
 
 
 
 228	if (!chip || !chip->irq_set_affinity)
 229		return -EINVAL;
 230
 
 231	/*
 232	 * If this is a managed interrupt and housekeeping is enabled on
 233	 * it check whether the requested affinity mask intersects with
 234	 * a housekeeping CPU. If so, then remove the isolated CPUs from
 235	 * the mask and just keep the housekeeping CPU(s). This prevents
 236	 * the affinity setter from routing the interrupt to an isolated
 237	 * CPU to avoid that I/O submitted from a housekeeping CPU causes
 238	 * interrupts on an isolated one.
 239	 *
 240	 * If the masks do not intersect or include online CPU(s) then
 241	 * keep the requested mask. The isolated target CPUs are only
 242	 * receiving interrupts when the I/O operation was submitted
 243	 * directly from them.
 244	 *
 245	 * If all housekeeping CPUs in the affinity mask are offline, the
 246	 * interrupt will be migrated by the CPU hotplug code once a
 247	 * housekeeping CPU which belongs to the affinity mask comes
 248	 * online.
 249	 */
 250	if (irqd_affinity_is_managed(data) &&
 251	    housekeeping_enabled(HK_FLAG_MANAGED_IRQ)) {
 252		const struct cpumask *hk_mask, *prog_mask;
 253
 254		static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
 255		static struct cpumask tmp_mask;
 256
 257		hk_mask = housekeeping_cpumask(HK_FLAG_MANAGED_IRQ);
 258
 259		raw_spin_lock(&tmp_mask_lock);
 260		cpumask_and(&tmp_mask, mask, hk_mask);
 261		if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
 262			prog_mask = mask;
 263		else
 264			prog_mask = &tmp_mask;
 265		ret = chip->irq_set_affinity(data, prog_mask, force);
 266		raw_spin_unlock(&tmp_mask_lock);
 267	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 268		ret = chip->irq_set_affinity(data, mask, force);
 269	}
 
 
 
 
 270	switch (ret) {
 271	case IRQ_SET_MASK_OK:
 272	case IRQ_SET_MASK_OK_DONE:
 273		cpumask_copy(desc->irq_common_data.affinity, mask);
 274		fallthrough;
 275	case IRQ_SET_MASK_OK_NOCOPY:
 276		irq_validate_effective_affinity(data);
 277		irq_set_thread_affinity(desc);
 278		ret = 0;
 279	}
 280
 281	return ret;
 282}
 283
 284#ifdef CONFIG_GENERIC_PENDING_IRQ
 285static inline int irq_set_affinity_pending(struct irq_data *data,
 286					   const struct cpumask *dest)
 287{
 288	struct irq_desc *desc = irq_data_to_desc(data);
 289
 290	irqd_set_move_pending(data);
 291	irq_copy_pending(desc, dest);
 292	return 0;
 293}
 294#else
 295static inline int irq_set_affinity_pending(struct irq_data *data,
 296					   const struct cpumask *dest)
 297{
 298	return -EBUSY;
 299}
 300#endif
 301
 302static int irq_try_set_affinity(struct irq_data *data,
 303				const struct cpumask *dest, bool force)
 304{
 305	int ret = irq_do_set_affinity(data, dest, force);
 306
 307	/*
 308	 * In case that the underlying vector management is busy and the
 309	 * architecture supports the generic pending mechanism then utilize
 310	 * this to avoid returning an error to user space.
 311	 */
 312	if (ret == -EBUSY && !force)
 313		ret = irq_set_affinity_pending(data, dest);
 314	return ret;
 315}
 316
 317static bool irq_set_affinity_deactivated(struct irq_data *data,
 318					 const struct cpumask *mask, bool force)
 319{
 320	struct irq_desc *desc = irq_data_to_desc(data);
 321
 322	/*
 323	 * Handle irq chips which can handle affinity only in activated
 324	 * state correctly
 325	 *
 326	 * If the interrupt is not yet activated, just store the affinity
 327	 * mask and do not call the chip driver at all. On activation the
 328	 * driver has to make sure anyway that the interrupt is in a
 329	 * usable state so startup works.
 330	 */
 331	if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
 332	    irqd_is_activated(data) || !irqd_affinity_on_activate(data))
 333		return false;
 334
 335	cpumask_copy(desc->irq_common_data.affinity, mask);
 336	irq_init_effective_affinity(data, mask);
 337	irqd_set(data, IRQD_AFFINITY_SET);
 338	return true;
 339}
 340
 341int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 342			    bool force)
 343{
 344	struct irq_chip *chip = irq_data_get_irq_chip(data);
 345	struct irq_desc *desc = irq_data_to_desc(data);
 346	int ret = 0;
 347
 348	if (!chip || !chip->irq_set_affinity)
 349		return -EINVAL;
 350
 351	if (irq_set_affinity_deactivated(data, mask, force))
 352		return 0;
 353
 354	if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 355		ret = irq_try_set_affinity(data, mask, force);
 356	} else {
 357		irqd_set_move_pending(data);
 358		irq_copy_pending(desc, mask);
 359	}
 360
 361	if (desc->affinity_notify) {
 362		kref_get(&desc->affinity_notify->kref);
 363		if (!schedule_work(&desc->affinity_notify->work)) {
 364			/* Work was already scheduled, drop our extra ref */
 365			kref_put(&desc->affinity_notify->kref,
 366				 desc->affinity_notify->release);
 367		}
 368	}
 369	irqd_set(data, IRQD_AFFINITY_SET);
 370
 371	return ret;
 372}
 373
 374/**
 375 * irq_update_affinity_desc - Update affinity management for an interrupt
 376 * @irq:	The interrupt number to update
 377 * @affinity:	Pointer to the affinity descriptor
 378 *
 379 * This interface can be used to configure the affinity management of
 380 * interrupts which have been allocated already.
 381 *
 382 * There are certain limitations on when it may be used - attempts to use it
 383 * for when the kernel is configured for generic IRQ reservation mode (in
 384 * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
 385 * managed/non-managed interrupt accounting. In addition, attempts to use it on
 386 * an interrupt which is already started or which has already been configured
 387 * as managed will also fail, as these mean invalid init state or double init.
 388 */
 389int irq_update_affinity_desc(unsigned int irq,
 390			     struct irq_affinity_desc *affinity)
 391{
 392	struct irq_desc *desc;
 393	unsigned long flags;
 394	bool activated;
 395	int ret = 0;
 396
 397	/*
 398	 * Supporting this with the reservation scheme used by x86 needs
 399	 * some more thought. Fail it for now.
 400	 */
 401	if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
 402		return -EOPNOTSUPP;
 403
 404	desc = irq_get_desc_buslock(irq, &flags, 0);
 405	if (!desc)
 406		return -EINVAL;
 407
 408	/* Requires the interrupt to be shut down */
 409	if (irqd_is_started(&desc->irq_data)) {
 410		ret = -EBUSY;
 411		goto out_unlock;
 412	}
 413
 414	/* Interrupts which are already managed cannot be modified */
 415	if (irqd_affinity_is_managed(&desc->irq_data)) {
 416		ret = -EBUSY;
 417		goto out_unlock;
 418	}
 419
 420	/*
 421	 * Deactivate the interrupt. That's required to undo
 422	 * anything an earlier activation has established.
 423	 */
 424	activated = irqd_is_activated(&desc->irq_data);
 425	if (activated)
 426		irq_domain_deactivate_irq(&desc->irq_data);
 427
 428	if (affinity->is_managed) {
 429		irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
 430		irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
 431	}
 432
 433	cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
 434
 435	/* Restore the activation state */
 436	if (activated)
 437		irq_domain_activate_irq(&desc->irq_data, false);
 438
 439out_unlock:
 440	irq_put_desc_busunlock(desc, flags);
 441	return ret;
 442}
 443
 444static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
 445			      bool force)
 446{
 447	struct irq_desc *desc = irq_to_desc(irq);
 448	unsigned long flags;
 449	int ret;
 450
 451	if (!desc)
 452		return -EINVAL;
 453
 454	raw_spin_lock_irqsave(&desc->lock, flags);
 455	ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 456	raw_spin_unlock_irqrestore(&desc->lock, flags);
 457	return ret;
 458}
 459
 460/**
 461 * irq_set_affinity - Set the irq affinity of a given irq
 462 * @irq:	Interrupt to set affinity
 463 * @cpumask:	cpumask
 464 *
 465 * Fails if cpumask does not contain an online CPU
 466 */
 467int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
 468{
 469	return __irq_set_affinity(irq, cpumask, false);
 470}
 471EXPORT_SYMBOL_GPL(irq_set_affinity);
 472
 473/**
 474 * irq_force_affinity - Force the irq affinity of a given irq
 475 * @irq:	Interrupt to set affinity
 476 * @cpumask:	cpumask
 477 *
 478 * Same as irq_set_affinity, but without checking the mask against
 479 * online cpus.
 480 *
 481 * Solely for low level cpu hotplug code, where we need to make per
 482 * cpu interrupts affine before the cpu becomes online.
 483 */
 484int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
 485{
 486	return __irq_set_affinity(irq, cpumask, true);
 487}
 488EXPORT_SYMBOL_GPL(irq_force_affinity);
 489
 490int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 
 491{
 492	unsigned long flags;
 493	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 494
 495	if (!desc)
 496		return -EINVAL;
 497	desc->affinity_hint = m;
 498	irq_put_desc_unlock(desc, flags);
 499	/* set the initial affinity to prevent every interrupt being on CPU0 */
 500	if (m)
 501		__irq_set_affinity(irq, m, false);
 502	return 0;
 503}
 504EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 505
 506static void irq_affinity_notify(struct work_struct *work)
 507{
 508	struct irq_affinity_notify *notify =
 509		container_of(work, struct irq_affinity_notify, work);
 510	struct irq_desc *desc = irq_to_desc(notify->irq);
 511	cpumask_var_t cpumask;
 512	unsigned long flags;
 513
 514	if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 515		goto out;
 516
 517	raw_spin_lock_irqsave(&desc->lock, flags);
 518	if (irq_move_pending(&desc->irq_data))
 519		irq_get_pending(cpumask, desc);
 520	else
 521		cpumask_copy(cpumask, desc->irq_common_data.affinity);
 522	raw_spin_unlock_irqrestore(&desc->lock, flags);
 523
 524	notify->notify(notify, cpumask);
 525
 526	free_cpumask_var(cpumask);
 527out:
 528	kref_put(&notify->kref, notify->release);
 529}
 530
 531/**
 532 *	irq_set_affinity_notifier - control notification of IRQ affinity changes
 533 *	@irq:		Interrupt for which to enable/disable notification
 534 *	@notify:	Context for notification, or %NULL to disable
 535 *			notification.  Function pointers must be initialised;
 536 *			the other fields will be initialised by this function.
 537 *
 538 *	Must be called in process context.  Notification may only be enabled
 539 *	after the IRQ is allocated and must be disabled before the IRQ is
 540 *	freed using free_irq().
 541 */
 542int
 543irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 544{
 545	struct irq_desc *desc = irq_to_desc(irq);
 546	struct irq_affinity_notify *old_notify;
 547	unsigned long flags;
 548
 549	/* The release function is promised process context */
 550	might_sleep();
 551
 552	if (!desc || desc->istate & IRQS_NMI)
 553		return -EINVAL;
 554
 555	/* Complete initialisation of *notify */
 556	if (notify) {
 557		notify->irq = irq;
 558		kref_init(&notify->kref);
 559		INIT_WORK(&notify->work, irq_affinity_notify);
 560	}
 561
 562	raw_spin_lock_irqsave(&desc->lock, flags);
 563	old_notify = desc->affinity_notify;
 564	desc->affinity_notify = notify;
 565	raw_spin_unlock_irqrestore(&desc->lock, flags);
 566
 567	if (old_notify) {
 568		if (cancel_work_sync(&old_notify->work)) {
 569			/* Pending work had a ref, put that one too */
 570			kref_put(&old_notify->kref, old_notify->release);
 571		}
 572		kref_put(&old_notify->kref, old_notify->release);
 573	}
 574
 575	return 0;
 576}
 577EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 578
 579#ifndef CONFIG_AUTO_IRQ_AFFINITY
 580/*
 581 * Generic version of the affinity autoselector.
 582 */
 583int irq_setup_affinity(struct irq_desc *desc)
 584{
 585	struct cpumask *set = irq_default_affinity;
 586	int ret, node = irq_desc_get_node(desc);
 587	static DEFINE_RAW_SPINLOCK(mask_lock);
 588	static struct cpumask mask;
 589
 590	/* Excludes PER_CPU and NO_BALANCE interrupts */
 591	if (!__irq_can_set_affinity(desc))
 592		return 0;
 593
 594	raw_spin_lock(&mask_lock);
 595	/*
 596	 * Preserve the managed affinity setting and a userspace affinity
 597	 * setup, but make sure that one of the targets is online.
 598	 */
 599	if (irqd_affinity_is_managed(&desc->irq_data) ||
 600	    irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 601		if (cpumask_intersects(desc->irq_common_data.affinity,
 602				       cpu_online_mask))
 603			set = desc->irq_common_data.affinity;
 604		else
 605			irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 606	}
 607
 608	cpumask_and(&mask, cpu_online_mask, set);
 609	if (cpumask_empty(&mask))
 610		cpumask_copy(&mask, cpu_online_mask);
 611
 612	if (node != NUMA_NO_NODE) {
 613		const struct cpumask *nodemask = cpumask_of_node(node);
 614
 615		/* make sure at least one of the cpus in nodemask is online */
 616		if (cpumask_intersects(&mask, nodemask))
 617			cpumask_and(&mask, &mask, nodemask);
 618	}
 619	ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 620	raw_spin_unlock(&mask_lock);
 621	return ret;
 622}
 623#else
 624/* Wrapper for ALPHA specific affinity selector magic */
 625int irq_setup_affinity(struct irq_desc *desc)
 626{
 627	return irq_select_affinity(irq_desc_get_irq(desc));
 628}
 629#endif /* CONFIG_AUTO_IRQ_AFFINITY */
 630#endif /* CONFIG_SMP */
 631
 632
 633/**
 634 *	irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 635 *	@irq: interrupt number to set affinity
 636 *	@vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 637 *	            specific data for percpu_devid interrupts
 638 *
 639 *	This function uses the vCPU specific data to set the vCPU
 640 *	affinity for an irq. The vCPU specific data is passed from
 641 *	outside, such as KVM. One example code path is as below:
 642 *	KVM -> IOMMU -> irq_set_vcpu_affinity().
 643 */
 644int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 645{
 646	unsigned long flags;
 647	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 648	struct irq_data *data;
 649	struct irq_chip *chip;
 650	int ret = -ENOSYS;
 651
 652	if (!desc)
 653		return -EINVAL;
 654
 655	data = irq_desc_get_irq_data(desc);
 656	do {
 657		chip = irq_data_get_irq_chip(data);
 658		if (chip && chip->irq_set_vcpu_affinity)
 659			break;
 660#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 661		data = data->parent_data;
 662#else
 663		data = NULL;
 664#endif
 665	} while (data);
 666
 667	if (data)
 668		ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 669	irq_put_desc_unlock(desc, flags);
 670
 671	return ret;
 672}
 673EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 674
 675void __disable_irq(struct irq_desc *desc)
 676{
 677	if (!desc->depth++)
 678		irq_disable(desc);
 679}
 680
 681static int __disable_irq_nosync(unsigned int irq)
 682{
 683	unsigned long flags;
 684	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 685
 686	if (!desc)
 687		return -EINVAL;
 688	__disable_irq(desc);
 689	irq_put_desc_busunlock(desc, flags);
 690	return 0;
 691}
 692
 693/**
 694 *	disable_irq_nosync - disable an irq without waiting
 695 *	@irq: Interrupt to disable
 696 *
 697 *	Disable the selected interrupt line.  Disables and Enables are
 698 *	nested.
 699 *	Unlike disable_irq(), this function does not ensure existing
 700 *	instances of the IRQ handler have completed before returning.
 701 *
 702 *	This function may be called from IRQ context.
 703 */
 704void disable_irq_nosync(unsigned int irq)
 705{
 706	__disable_irq_nosync(irq);
 707}
 708EXPORT_SYMBOL(disable_irq_nosync);
 709
 710/**
 711 *	disable_irq - disable an irq and wait for completion
 712 *	@irq: Interrupt to disable
 713 *
 714 *	Disable the selected interrupt line.  Enables and Disables are
 715 *	nested.
 716 *	This function waits for any pending IRQ handlers for this interrupt
 717 *	to complete before returning. If you use this function while
 718 *	holding a resource the IRQ handler may need you will deadlock.
 719 *
 720 *	This function may be called - with care - from IRQ context.
 
 
 721 */
 722void disable_irq(unsigned int irq)
 723{
 
 724	if (!__disable_irq_nosync(irq))
 725		synchronize_irq(irq);
 726}
 727EXPORT_SYMBOL(disable_irq);
 728
 729/**
 730 *	disable_hardirq - disables an irq and waits for hardirq completion
 731 *	@irq: Interrupt to disable
 732 *
 733 *	Disable the selected interrupt line.  Enables and Disables are
 734 *	nested.
 735 *	This function waits for any pending hard IRQ handlers for this
 736 *	interrupt to complete before returning. If you use this function while
 737 *	holding a resource the hard IRQ handler may need you will deadlock.
 738 *
 739 *	When used to optimistically disable an interrupt from atomic context
 740 *	the return value must be checked.
 741 *
 742 *	Returns: false if a threaded handler is active.
 743 *
 744 *	This function may be called - with care - from IRQ context.
 745 */
 746bool disable_hardirq(unsigned int irq)
 747{
 748	if (!__disable_irq_nosync(irq))
 749		return synchronize_hardirq(irq);
 750
 751	return false;
 752}
 753EXPORT_SYMBOL_GPL(disable_hardirq);
 754
 755/**
 756 *	disable_nmi_nosync - disable an nmi without waiting
 757 *	@irq: Interrupt to disable
 758 *
 759 *	Disable the selected interrupt line. Disables and enables are
 760 *	nested.
 761 *	The interrupt to disable must have been requested through request_nmi.
 762 *	Unlike disable_nmi(), this function does not ensure existing
 763 *	instances of the IRQ handler have completed before returning.
 764 */
 765void disable_nmi_nosync(unsigned int irq)
 766{
 767	disable_irq_nosync(irq);
 768}
 769
 770void __enable_irq(struct irq_desc *desc)
 771{
 772	switch (desc->depth) {
 773	case 0:
 774 err_out:
 775		WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 776		     irq_desc_get_irq(desc));
 777		break;
 778	case 1: {
 779		if (desc->istate & IRQS_SUSPENDED)
 780			goto err_out;
 781		/* Prevent probing on this irq: */
 782		irq_settings_set_noprobe(desc);
 783		/*
 784		 * Call irq_startup() not irq_enable() here because the
 785		 * interrupt might be marked NOAUTOEN. So irq_startup()
 786		 * needs to be invoked when it gets enabled the first
 787		 * time. If it was already started up, then irq_startup()
 788		 * will invoke irq_enable() under the hood.
 789		 */
 790		irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 791		break;
 792	}
 793	default:
 794		desc->depth--;
 795	}
 796}
 797
 798/**
 799 *	enable_irq - enable handling of an irq
 800 *	@irq: Interrupt to enable
 801 *
 802 *	Undoes the effect of one call to disable_irq().  If this
 803 *	matches the last disable, processing of interrupts on this
 804 *	IRQ line is re-enabled.
 805 *
 806 *	This function may be called from IRQ context only when
 807 *	desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 808 */
 809void enable_irq(unsigned int irq)
 810{
 811	unsigned long flags;
 812	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 813
 814	if (!desc)
 815		return;
 816	if (WARN(!desc->irq_data.chip,
 817		 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 818		goto out;
 819
 820	__enable_irq(desc);
 821out:
 822	irq_put_desc_busunlock(desc, flags);
 823}
 824EXPORT_SYMBOL(enable_irq);
 825
 826/**
 827 *	enable_nmi - enable handling of an nmi
 828 *	@irq: Interrupt to enable
 829 *
 830 *	The interrupt to enable must have been requested through request_nmi.
 831 *	Undoes the effect of one call to disable_nmi(). If this
 832 *	matches the last disable, processing of interrupts on this
 833 *	IRQ line is re-enabled.
 834 */
 835void enable_nmi(unsigned int irq)
 836{
 837	enable_irq(irq);
 838}
 839
 840static int set_irq_wake_real(unsigned int irq, unsigned int on)
 841{
 842	struct irq_desc *desc = irq_to_desc(irq);
 843	int ret = -ENXIO;
 844
 845	if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 846		return 0;
 847
 848	if (desc->irq_data.chip->irq_set_wake)
 849		ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 850
 851	return ret;
 852}
 853
 854/**
 855 *	irq_set_irq_wake - control irq power management wakeup
 856 *	@irq:	interrupt to control
 857 *	@on:	enable/disable power management wakeup
 858 *
 859 *	Enable/disable power management wakeup mode, which is
 860 *	disabled by default.  Enables and disables must match,
 861 *	just as they match for non-wakeup mode support.
 862 *
 863 *	Wakeup mode lets this IRQ wake the system from sleep
 864 *	states like "suspend to RAM".
 865 *
 866 *	Note: irq enable/disable state is completely orthogonal
 867 *	to the enable/disable state of irq wake. An irq can be
 868 *	disabled with disable_irq() and still wake the system as
 869 *	long as the irq has wake enabled. If this does not hold,
 870 *	then the underlying irq chip and the related driver need
 871 *	to be investigated.
 872 */
 873int irq_set_irq_wake(unsigned int irq, unsigned int on)
 874{
 875	unsigned long flags;
 876	struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 877	int ret = 0;
 878
 879	if (!desc)
 880		return -EINVAL;
 881
 882	/* Don't use NMIs as wake up interrupts please */
 883	if (desc->istate & IRQS_NMI) {
 884		ret = -EINVAL;
 885		goto out_unlock;
 886	}
 887
 888	/* wakeup-capable irqs can be shared between drivers that
 889	 * don't need to have the same sleep mode behaviors.
 890	 */
 891	if (on) {
 892		if (desc->wake_depth++ == 0) {
 893			ret = set_irq_wake_real(irq, on);
 894			if (ret)
 895				desc->wake_depth = 0;
 896			else
 897				irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 898		}
 899	} else {
 900		if (desc->wake_depth == 0) {
 901			WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 902		} else if (--desc->wake_depth == 0) {
 903			ret = set_irq_wake_real(irq, on);
 904			if (ret)
 905				desc->wake_depth = 1;
 906			else
 907				irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 908		}
 909	}
 910
 911out_unlock:
 912	irq_put_desc_busunlock(desc, flags);
 913	return ret;
 914}
 915EXPORT_SYMBOL(irq_set_irq_wake);
 916
 917/*
 918 * Internal function that tells the architecture code whether a
 919 * particular irq has been exclusively allocated or is available
 920 * for driver use.
 921 */
 922int can_request_irq(unsigned int irq, unsigned long irqflags)
 923{
 924	unsigned long flags;
 925	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 926	int canrequest = 0;
 927
 928	if (!desc)
 929		return 0;
 930
 931	if (irq_settings_can_request(desc)) {
 932		if (!desc->action ||
 933		    irqflags & desc->action->flags & IRQF_SHARED)
 934			canrequest = 1;
 935	}
 936	irq_put_desc_unlock(desc, flags);
 937	return canrequest;
 938}
 939
 940int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 941{
 942	struct irq_chip *chip = desc->irq_data.chip;
 943	int ret, unmask = 0;
 944
 945	if (!chip || !chip->irq_set_type) {
 946		/*
 947		 * IRQF_TRIGGER_* but the PIC does not support multiple
 948		 * flow-types?
 949		 */
 950		pr_debug("No set_type function for IRQ %d (%s)\n",
 951			 irq_desc_get_irq(desc),
 952			 chip ? (chip->name ? : "unknown") : "unknown");
 953		return 0;
 954	}
 955
 956	if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 957		if (!irqd_irq_masked(&desc->irq_data))
 958			mask_irq(desc);
 959		if (!irqd_irq_disabled(&desc->irq_data))
 960			unmask = 1;
 961	}
 962
 963	/* Mask all flags except trigger mode */
 964	flags &= IRQ_TYPE_SENSE_MASK;
 965	ret = chip->irq_set_type(&desc->irq_data, flags);
 966
 967	switch (ret) {
 968	case IRQ_SET_MASK_OK:
 969	case IRQ_SET_MASK_OK_DONE:
 970		irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 971		irqd_set(&desc->irq_data, flags);
 972		fallthrough;
 973
 974	case IRQ_SET_MASK_OK_NOCOPY:
 975		flags = irqd_get_trigger_type(&desc->irq_data);
 976		irq_settings_set_trigger_mask(desc, flags);
 977		irqd_clear(&desc->irq_data, IRQD_LEVEL);
 978		irq_settings_clr_level(desc);
 979		if (flags & IRQ_TYPE_LEVEL_MASK) {
 980			irq_settings_set_level(desc);
 981			irqd_set(&desc->irq_data, IRQD_LEVEL);
 982		}
 983
 984		ret = 0;
 985		break;
 986	default:
 987		pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
 988		       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 989	}
 990	if (unmask)
 991		unmask_irq(desc);
 992	return ret;
 993}
 994
 995#ifdef CONFIG_HARDIRQS_SW_RESEND
 996int irq_set_parent(int irq, int parent_irq)
 997{
 998	unsigned long flags;
 999	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1000
1001	if (!desc)
1002		return -EINVAL;
1003
1004	desc->parent_irq = parent_irq;
1005
1006	irq_put_desc_unlock(desc, flags);
1007	return 0;
1008}
1009EXPORT_SYMBOL_GPL(irq_set_parent);
1010#endif
1011
1012/*
1013 * Default primary interrupt handler for threaded interrupts. Is
1014 * assigned as primary handler when request_threaded_irq is called
1015 * with handler == NULL. Useful for oneshot interrupts.
1016 */
1017static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1018{
1019	return IRQ_WAKE_THREAD;
1020}
1021
1022/*
1023 * Primary handler for nested threaded interrupts. Should never be
1024 * called.
1025 */
1026static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1027{
1028	WARN(1, "Primary handler called for nested irq %d\n", irq);
1029	return IRQ_NONE;
1030}
1031
1032static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1033{
1034	WARN(1, "Secondary action handler called for irq %d\n", irq);
1035	return IRQ_NONE;
1036}
1037
1038static int irq_wait_for_interrupt(struct irqaction *action)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039{
1040	for (;;) {
1041		set_current_state(TASK_INTERRUPTIBLE);
 
1042
1043		if (kthread_should_stop()) {
1044			/* may need to run one last time */
1045			if (test_and_clear_bit(IRQTF_RUNTHREAD,
1046					       &action->thread_flags)) {
1047				__set_current_state(TASK_RUNNING);
1048				return 0;
1049			}
1050			__set_current_state(TASK_RUNNING);
1051			return -1;
1052		}
1053
1054		if (test_and_clear_bit(IRQTF_RUNTHREAD,
1055				       &action->thread_flags)) {
1056			__set_current_state(TASK_RUNNING);
1057			return 0;
1058		}
1059		schedule();
1060	}
1061}
1062
1063/*
1064 * Oneshot interrupts keep the irq line masked until the threaded
1065 * handler finished. unmask if the interrupt has not been disabled and
1066 * is marked MASKED.
1067 */
1068static void irq_finalize_oneshot(struct irq_desc *desc,
1069				 struct irqaction *action)
1070{
1071	if (!(desc->istate & IRQS_ONESHOT) ||
1072	    action->handler == irq_forced_secondary_handler)
1073		return;
1074again:
1075	chip_bus_lock(desc);
1076	raw_spin_lock_irq(&desc->lock);
1077
1078	/*
1079	 * Implausible though it may be we need to protect us against
1080	 * the following scenario:
1081	 *
1082	 * The thread is faster done than the hard interrupt handler
1083	 * on the other CPU. If we unmask the irq line then the
1084	 * interrupt can come in again and masks the line, leaves due
1085	 * to IRQS_INPROGRESS and the irq line is masked forever.
1086	 *
1087	 * This also serializes the state of shared oneshot handlers
1088	 * versus "desc->threads_oneshot |= action->thread_mask;" in
1089	 * irq_wake_thread(). See the comment there which explains the
1090	 * serialization.
1091	 */
1092	if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1093		raw_spin_unlock_irq(&desc->lock);
1094		chip_bus_sync_unlock(desc);
1095		cpu_relax();
1096		goto again;
1097	}
1098
1099	/*
1100	 * Now check again, whether the thread should run. Otherwise
1101	 * we would clear the threads_oneshot bit of this thread which
1102	 * was just set.
1103	 */
1104	if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1105		goto out_unlock;
1106
1107	desc->threads_oneshot &= ~action->thread_mask;
1108
1109	if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1110	    irqd_irq_masked(&desc->irq_data))
1111		unmask_threaded_irq(desc);
1112
1113out_unlock:
1114	raw_spin_unlock_irq(&desc->lock);
1115	chip_bus_sync_unlock(desc);
1116}
1117
1118#ifdef CONFIG_SMP
1119/*
1120 * Check whether we need to change the affinity of the interrupt thread.
1121 */
1122static void
1123irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1124{
1125	cpumask_var_t mask;
1126	bool valid = true;
1127
1128	if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1129		return;
1130
1131	/*
1132	 * In case we are out of memory we set IRQTF_AFFINITY again and
1133	 * try again next time
1134	 */
1135	if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1136		set_bit(IRQTF_AFFINITY, &action->thread_flags);
1137		return;
1138	}
1139
1140	raw_spin_lock_irq(&desc->lock);
1141	/*
1142	 * This code is triggered unconditionally. Check the affinity
1143	 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1144	 */
1145	if (cpumask_available(desc->irq_common_data.affinity)) {
1146		const struct cpumask *m;
1147
1148		m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1149		cpumask_copy(mask, m);
1150	} else {
1151		valid = false;
1152	}
1153	raw_spin_unlock_irq(&desc->lock);
1154
1155	if (valid)
1156		set_cpus_allowed_ptr(current, mask);
1157	free_cpumask_var(mask);
1158}
1159#else
1160static inline void
1161irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1162#endif
1163
1164/*
1165 * Interrupts which are not explicitly requested as threaded
1166 * interrupts rely on the implicit bh/preempt disable of the hard irq
1167 * context. So we need to disable bh here to avoid deadlocks and other
1168 * side effects.
1169 */
1170static irqreturn_t
1171irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1172{
1173	irqreturn_t ret;
1174
1175	local_bh_disable();
1176	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1177		local_irq_disable();
1178	ret = action->thread_fn(action->irq, action->dev_id);
1179	if (ret == IRQ_HANDLED)
1180		atomic_inc(&desc->threads_handled);
1181
1182	irq_finalize_oneshot(desc, action);
1183	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1184		local_irq_enable();
1185	local_bh_enable();
1186	return ret;
1187}
1188
1189/*
1190 * Interrupts explicitly requested as threaded interrupts want to be
1191 * preemptible - many of them need to sleep and wait for slow busses to
1192 * complete.
1193 */
1194static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1195		struct irqaction *action)
1196{
1197	irqreturn_t ret;
1198
1199	ret = action->thread_fn(action->irq, action->dev_id);
1200	if (ret == IRQ_HANDLED)
1201		atomic_inc(&desc->threads_handled);
1202
1203	irq_finalize_oneshot(desc, action);
1204	return ret;
1205}
1206
1207static void wake_threads_waitq(struct irq_desc *desc)
1208{
1209	if (atomic_dec_and_test(&desc->threads_active))
1210		wake_up(&desc->wait_for_threads);
1211}
1212
1213static void irq_thread_dtor(struct callback_head *unused)
1214{
1215	struct task_struct *tsk = current;
1216	struct irq_desc *desc;
1217	struct irqaction *action;
1218
1219	if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1220		return;
1221
1222	action = kthread_data(tsk);
1223
1224	pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1225	       tsk->comm, tsk->pid, action->irq);
1226
1227
1228	desc = irq_to_desc(action->irq);
1229	/*
1230	 * If IRQTF_RUNTHREAD is set, we need to decrement
1231	 * desc->threads_active and wake possible waiters.
1232	 */
1233	if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1234		wake_threads_waitq(desc);
1235
1236	/* Prevent a stale desc->threads_oneshot */
1237	irq_finalize_oneshot(desc, action);
1238}
1239
1240static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1241{
1242	struct irqaction *secondary = action->secondary;
1243
1244	if (WARN_ON_ONCE(!secondary))
1245		return;
1246
1247	raw_spin_lock_irq(&desc->lock);
1248	__irq_wake_thread(desc, secondary);
1249	raw_spin_unlock_irq(&desc->lock);
1250}
1251
1252/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253 * Interrupt handler thread
1254 */
1255static int irq_thread(void *data)
1256{
1257	struct callback_head on_exit_work;
1258	struct irqaction *action = data;
1259	struct irq_desc *desc = irq_to_desc(action->irq);
1260	irqreturn_t (*handler_fn)(struct irq_desc *desc,
1261			struct irqaction *action);
1262
1263	if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1264					&action->thread_flags))
 
 
 
 
1265		handler_fn = irq_forced_thread_fn;
1266	else
1267		handler_fn = irq_thread_fn;
1268
1269	init_task_work(&on_exit_work, irq_thread_dtor);
1270	task_work_add(current, &on_exit_work, TWA_NONE);
1271
1272	irq_thread_check_affinity(desc, action);
1273
1274	while (!irq_wait_for_interrupt(action)) {
1275		irqreturn_t action_ret;
1276
1277		irq_thread_check_affinity(desc, action);
1278
1279		action_ret = handler_fn(desc, action);
1280		if (action_ret == IRQ_WAKE_THREAD)
1281			irq_wake_secondary(desc, action);
1282
1283		wake_threads_waitq(desc);
1284	}
1285
1286	/*
1287	 * This is the regular exit path. __free_irq() is stopping the
1288	 * thread via kthread_stop() after calling
1289	 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1290	 * oneshot mask bit can be set.
1291	 */
1292	task_work_cancel(current, irq_thread_dtor);
1293	return 0;
1294}
1295
1296/**
1297 *	irq_wake_thread - wake the irq thread for the action identified by dev_id
1298 *	@irq:		Interrupt line
1299 *	@dev_id:	Device identity for which the thread should be woken
1300 *
1301 */
1302void irq_wake_thread(unsigned int irq, void *dev_id)
1303{
1304	struct irq_desc *desc = irq_to_desc(irq);
1305	struct irqaction *action;
1306	unsigned long flags;
1307
1308	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1309		return;
1310
1311	raw_spin_lock_irqsave(&desc->lock, flags);
1312	for_each_action_of_desc(desc, action) {
1313		if (action->dev_id == dev_id) {
1314			if (action->thread)
1315				__irq_wake_thread(desc, action);
1316			break;
1317		}
1318	}
1319	raw_spin_unlock_irqrestore(&desc->lock, flags);
1320}
1321EXPORT_SYMBOL_GPL(irq_wake_thread);
1322
1323static int irq_setup_forced_threading(struct irqaction *new)
1324{
1325	if (!force_irqthreads)
1326		return 0;
1327	if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1328		return 0;
1329
1330	/*
1331	 * No further action required for interrupts which are requested as
1332	 * threaded interrupts already
1333	 */
1334	if (new->handler == irq_default_primary_handler)
1335		return 0;
1336
1337	new->flags |= IRQF_ONESHOT;
1338
1339	/*
1340	 * Handle the case where we have a real primary handler and a
1341	 * thread handler. We force thread them as well by creating a
1342	 * secondary action.
1343	 */
1344	if (new->handler && new->thread_fn) {
1345		/* Allocate the secondary action */
1346		new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1347		if (!new->secondary)
1348			return -ENOMEM;
1349		new->secondary->handler = irq_forced_secondary_handler;
1350		new->secondary->thread_fn = new->thread_fn;
1351		new->secondary->dev_id = new->dev_id;
1352		new->secondary->irq = new->irq;
1353		new->secondary->name = new->name;
1354	}
1355	/* Deal with the primary handler */
1356	set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1357	new->thread_fn = new->handler;
1358	new->handler = irq_default_primary_handler;
1359	return 0;
1360}
1361
1362static int irq_request_resources(struct irq_desc *desc)
1363{
1364	struct irq_data *d = &desc->irq_data;
1365	struct irq_chip *c = d->chip;
1366
1367	return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1368}
1369
1370static void irq_release_resources(struct irq_desc *desc)
1371{
1372	struct irq_data *d = &desc->irq_data;
1373	struct irq_chip *c = d->chip;
1374
1375	if (c->irq_release_resources)
1376		c->irq_release_resources(d);
1377}
1378
1379static bool irq_supports_nmi(struct irq_desc *desc)
1380{
1381	struct irq_data *d = irq_desc_get_irq_data(desc);
1382
1383#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1384	/* Only IRQs directly managed by the root irqchip can be set as NMI */
1385	if (d->parent_data)
1386		return false;
1387#endif
1388	/* Don't support NMIs for chips behind a slow bus */
1389	if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1390		return false;
1391
1392	return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1393}
1394
1395static int irq_nmi_setup(struct irq_desc *desc)
1396{
1397	struct irq_data *d = irq_desc_get_irq_data(desc);
1398	struct irq_chip *c = d->chip;
1399
1400	return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1401}
1402
1403static void irq_nmi_teardown(struct irq_desc *desc)
1404{
1405	struct irq_data *d = irq_desc_get_irq_data(desc);
1406	struct irq_chip *c = d->chip;
1407
1408	if (c->irq_nmi_teardown)
1409		c->irq_nmi_teardown(d);
1410}
1411
1412static int
1413setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1414{
1415	struct task_struct *t;
1416
1417	if (!secondary) {
1418		t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1419				   new->name);
1420	} else {
1421		t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1422				   new->name);
1423	}
1424
1425	if (IS_ERR(t))
1426		return PTR_ERR(t);
1427
1428	sched_set_fifo(t);
1429
1430	/*
1431	 * We keep the reference to the task struct even if
1432	 * the thread dies to avoid that the interrupt code
1433	 * references an already freed task_struct.
1434	 */
1435	new->thread = get_task_struct(t);
1436	/*
1437	 * Tell the thread to set its affinity. This is
1438	 * important for shared interrupt handlers as we do
1439	 * not invoke setup_affinity() for the secondary
1440	 * handlers as everything is already set up. Even for
1441	 * interrupts marked with IRQF_NO_BALANCE this is
1442	 * correct as we want the thread to move to the cpu(s)
1443	 * on which the requesting code placed the interrupt.
1444	 */
1445	set_bit(IRQTF_AFFINITY, &new->thread_flags);
1446	return 0;
1447}
1448
1449/*
1450 * Internal function to register an irqaction - typically used to
1451 * allocate special interrupts that are part of the architecture.
1452 *
1453 * Locking rules:
1454 *
1455 * desc->request_mutex	Provides serialization against a concurrent free_irq()
1456 *   chip_bus_lock	Provides serialization for slow bus operations
1457 *     desc->lock	Provides serialization against hard interrupts
1458 *
1459 * chip_bus_lock and desc->lock are sufficient for all other management and
1460 * interrupt related functions. desc->request_mutex solely serializes
1461 * request/free_irq().
1462 */
1463static int
1464__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1465{
1466	struct irqaction *old, **old_ptr;
1467	unsigned long flags, thread_mask = 0;
1468	int ret, nested, shared = 0;
1469
1470	if (!desc)
1471		return -EINVAL;
1472
1473	if (desc->irq_data.chip == &no_irq_chip)
1474		return -ENOSYS;
1475	if (!try_module_get(desc->owner))
1476		return -ENODEV;
1477
1478	new->irq = irq;
1479
1480	/*
1481	 * If the trigger type is not specified by the caller,
1482	 * then use the default for this interrupt.
1483	 */
1484	if (!(new->flags & IRQF_TRIGGER_MASK))
1485		new->flags |= irqd_get_trigger_type(&desc->irq_data);
1486
1487	/*
1488	 * Check whether the interrupt nests into another interrupt
1489	 * thread.
1490	 */
1491	nested = irq_settings_is_nested_thread(desc);
1492	if (nested) {
1493		if (!new->thread_fn) {
1494			ret = -EINVAL;
1495			goto out_mput;
1496		}
1497		/*
1498		 * Replace the primary handler which was provided from
1499		 * the driver for non nested interrupt handling by the
1500		 * dummy function which warns when called.
1501		 */
1502		new->handler = irq_nested_primary_handler;
1503	} else {
1504		if (irq_settings_can_thread(desc)) {
1505			ret = irq_setup_forced_threading(new);
1506			if (ret)
1507				goto out_mput;
1508		}
1509	}
1510
1511	/*
1512	 * Create a handler thread when a thread function is supplied
1513	 * and the interrupt does not nest into another interrupt
1514	 * thread.
1515	 */
1516	if (new->thread_fn && !nested) {
1517		ret = setup_irq_thread(new, irq, false);
1518		if (ret)
1519			goto out_mput;
1520		if (new->secondary) {
1521			ret = setup_irq_thread(new->secondary, irq, true);
1522			if (ret)
1523				goto out_thread;
1524		}
1525	}
1526
1527	/*
1528	 * Drivers are often written to work w/o knowledge about the
1529	 * underlying irq chip implementation, so a request for a
1530	 * threaded irq without a primary hard irq context handler
1531	 * requires the ONESHOT flag to be set. Some irq chips like
1532	 * MSI based interrupts are per se one shot safe. Check the
1533	 * chip flags, so we can avoid the unmask dance at the end of
1534	 * the threaded handler for those.
1535	 */
1536	if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1537		new->flags &= ~IRQF_ONESHOT;
1538
1539	/*
1540	 * Protects against a concurrent __free_irq() call which might wait
1541	 * for synchronize_hardirq() to complete without holding the optional
1542	 * chip bus lock and desc->lock. Also protects against handing out
1543	 * a recycled oneshot thread_mask bit while it's still in use by
1544	 * its previous owner.
1545	 */
1546	mutex_lock(&desc->request_mutex);
1547
1548	/*
1549	 * Acquire bus lock as the irq_request_resources() callback below
1550	 * might rely on the serialization or the magic power management
1551	 * functions which are abusing the irq_bus_lock() callback,
1552	 */
1553	chip_bus_lock(desc);
1554
1555	/* First installed action requests resources. */
1556	if (!desc->action) {
1557		ret = irq_request_resources(desc);
1558		if (ret) {
1559			pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1560			       new->name, irq, desc->irq_data.chip->name);
1561			goto out_bus_unlock;
1562		}
1563	}
1564
1565	/*
1566	 * The following block of code has to be executed atomically
1567	 * protected against a concurrent interrupt and any of the other
1568	 * management calls which are not serialized via
1569	 * desc->request_mutex or the optional bus lock.
1570	 */
1571	raw_spin_lock_irqsave(&desc->lock, flags);
1572	old_ptr = &desc->action;
1573	old = *old_ptr;
1574	if (old) {
1575		/*
1576		 * Can't share interrupts unless both agree to and are
1577		 * the same type (level, edge, polarity). So both flag
1578		 * fields must have IRQF_SHARED set and the bits which
1579		 * set the trigger type must match. Also all must
1580		 * agree on ONESHOT.
1581		 * Interrupt lines used for NMIs cannot be shared.
1582		 */
1583		unsigned int oldtype;
1584
1585		if (desc->istate & IRQS_NMI) {
1586			pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1587				new->name, irq, desc->irq_data.chip->name);
1588			ret = -EINVAL;
1589			goto out_unlock;
1590		}
1591
1592		/*
1593		 * If nobody did set the configuration before, inherit
1594		 * the one provided by the requester.
1595		 */
1596		if (irqd_trigger_type_was_set(&desc->irq_data)) {
1597			oldtype = irqd_get_trigger_type(&desc->irq_data);
1598		} else {
1599			oldtype = new->flags & IRQF_TRIGGER_MASK;
1600			irqd_set_trigger_type(&desc->irq_data, oldtype);
1601		}
1602
1603		if (!((old->flags & new->flags) & IRQF_SHARED) ||
1604		    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1605		    ((old->flags ^ new->flags) & IRQF_ONESHOT))
 
 
 
 
 
1606			goto mismatch;
1607
1608		/* All handlers must agree on per-cpuness */
1609		if ((old->flags & IRQF_PERCPU) !=
1610		    (new->flags & IRQF_PERCPU))
1611			goto mismatch;
1612
1613		/* add new interrupt at end of irq queue */
1614		do {
1615			/*
1616			 * Or all existing action->thread_mask bits,
1617			 * so we can find the next zero bit for this
1618			 * new action.
1619			 */
1620			thread_mask |= old->thread_mask;
1621			old_ptr = &old->next;
1622			old = *old_ptr;
1623		} while (old);
1624		shared = 1;
1625	}
1626
1627	/*
1628	 * Setup the thread mask for this irqaction for ONESHOT. For
1629	 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1630	 * conditional in irq_wake_thread().
1631	 */
1632	if (new->flags & IRQF_ONESHOT) {
1633		/*
1634		 * Unlikely to have 32 resp 64 irqs sharing one line,
1635		 * but who knows.
1636		 */
1637		if (thread_mask == ~0UL) {
1638			ret = -EBUSY;
1639			goto out_unlock;
1640		}
1641		/*
1642		 * The thread_mask for the action is or'ed to
1643		 * desc->thread_active to indicate that the
1644		 * IRQF_ONESHOT thread handler has been woken, but not
1645		 * yet finished. The bit is cleared when a thread
1646		 * completes. When all threads of a shared interrupt
1647		 * line have completed desc->threads_active becomes
1648		 * zero and the interrupt line is unmasked. See
1649		 * handle.c:irq_wake_thread() for further information.
1650		 *
1651		 * If no thread is woken by primary (hard irq context)
1652		 * interrupt handlers, then desc->threads_active is
1653		 * also checked for zero to unmask the irq line in the
1654		 * affected hard irq flow handlers
1655		 * (handle_[fasteoi|level]_irq).
1656		 *
1657		 * The new action gets the first zero bit of
1658		 * thread_mask assigned. See the loop above which or's
1659		 * all existing action->thread_mask bits.
1660		 */
1661		new->thread_mask = 1UL << ffz(thread_mask);
1662
1663	} else if (new->handler == irq_default_primary_handler &&
1664		   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1665		/*
1666		 * The interrupt was requested with handler = NULL, so
1667		 * we use the default primary handler for it. But it
1668		 * does not have the oneshot flag set. In combination
1669		 * with level interrupts this is deadly, because the
1670		 * default primary handler just wakes the thread, then
1671		 * the irq lines is reenabled, but the device still
1672		 * has the level irq asserted. Rinse and repeat....
1673		 *
1674		 * While this works for edge type interrupts, we play
1675		 * it safe and reject unconditionally because we can't
1676		 * say for sure which type this interrupt really
1677		 * has. The type flags are unreliable as the
1678		 * underlying chip implementation can override them.
1679		 */
1680		pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1681		       new->name, irq);
1682		ret = -EINVAL;
1683		goto out_unlock;
1684	}
1685
1686	if (!shared) {
1687		init_waitqueue_head(&desc->wait_for_threads);
1688
1689		/* Setup the type (level, edge polarity) if configured: */
1690		if (new->flags & IRQF_TRIGGER_MASK) {
1691			ret = __irq_set_trigger(desc,
1692						new->flags & IRQF_TRIGGER_MASK);
1693
1694			if (ret)
1695				goto out_unlock;
1696		}
1697
1698		/*
1699		 * Activate the interrupt. That activation must happen
1700		 * independently of IRQ_NOAUTOEN. request_irq() can fail
1701		 * and the callers are supposed to handle
1702		 * that. enable_irq() of an interrupt requested with
1703		 * IRQ_NOAUTOEN is not supposed to fail. The activation
1704		 * keeps it in shutdown mode, it merily associates
1705		 * resources if necessary and if that's not possible it
1706		 * fails. Interrupts which are in managed shutdown mode
1707		 * will simply ignore that activation request.
1708		 */
1709		ret = irq_activate(desc);
1710		if (ret)
1711			goto out_unlock;
1712
1713		desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1714				  IRQS_ONESHOT | IRQS_WAITING);
1715		irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1716
1717		if (new->flags & IRQF_PERCPU) {
1718			irqd_set(&desc->irq_data, IRQD_PER_CPU);
1719			irq_settings_set_per_cpu(desc);
1720			if (new->flags & IRQF_NO_DEBUG)
1721				irq_settings_set_no_debug(desc);
1722		}
1723
1724		if (noirqdebug)
1725			irq_settings_set_no_debug(desc);
1726
1727		if (new->flags & IRQF_ONESHOT)
1728			desc->istate |= IRQS_ONESHOT;
1729
1730		/* Exclude IRQ from balancing if requested */
1731		if (new->flags & IRQF_NOBALANCING) {
1732			irq_settings_set_no_balancing(desc);
1733			irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1734		}
1735
1736		if (!(new->flags & IRQF_NO_AUTOEN) &&
1737		    irq_settings_can_autoenable(desc)) {
1738			irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1739		} else {
1740			/*
1741			 * Shared interrupts do not go well with disabling
1742			 * auto enable. The sharing interrupt might request
1743			 * it while it's still disabled and then wait for
1744			 * interrupts forever.
1745			 */
1746			WARN_ON_ONCE(new->flags & IRQF_SHARED);
1747			/* Undo nested disables: */
1748			desc->depth = 1;
1749		}
1750
1751	} else if (new->flags & IRQF_TRIGGER_MASK) {
1752		unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1753		unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1754
1755		if (nmsk != omsk)
1756			/* hope the handler works with current  trigger mode */
1757			pr_warn("irq %d uses trigger mode %u; requested %u\n",
1758				irq, omsk, nmsk);
1759	}
1760
1761	*old_ptr = new;
1762
1763	irq_pm_install_action(desc, new);
1764
1765	/* Reset broken irq detection when installing new handler */
1766	desc->irq_count = 0;
1767	desc->irqs_unhandled = 0;
1768
1769	/*
1770	 * Check whether we disabled the irq via the spurious handler
1771	 * before. Reenable it and give it another chance.
1772	 */
1773	if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1774		desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1775		__enable_irq(desc);
1776	}
1777
1778	raw_spin_unlock_irqrestore(&desc->lock, flags);
1779	chip_bus_sync_unlock(desc);
1780	mutex_unlock(&desc->request_mutex);
1781
1782	irq_setup_timings(desc, new);
1783
1784	/*
1785	 * Strictly no need to wake it up, but hung_task complains
1786	 * when no hard interrupt wakes the thread up.
1787	 */
1788	if (new->thread)
1789		wake_up_process(new->thread);
1790	if (new->secondary)
1791		wake_up_process(new->secondary->thread);
1792
1793	register_irq_proc(irq, desc);
1794	new->dir = NULL;
1795	register_handler_proc(irq, new);
1796	return 0;
1797
1798mismatch:
1799	if (!(new->flags & IRQF_PROBE_SHARED)) {
1800		pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1801		       irq, new->flags, new->name, old->flags, old->name);
1802#ifdef CONFIG_DEBUG_SHIRQ
1803		dump_stack();
1804#endif
1805	}
1806	ret = -EBUSY;
1807
1808out_unlock:
1809	raw_spin_unlock_irqrestore(&desc->lock, flags);
1810
1811	if (!desc->action)
1812		irq_release_resources(desc);
1813out_bus_unlock:
1814	chip_bus_sync_unlock(desc);
1815	mutex_unlock(&desc->request_mutex);
1816
1817out_thread:
1818	if (new->thread) {
1819		struct task_struct *t = new->thread;
1820
1821		new->thread = NULL;
1822		kthread_stop(t);
1823		put_task_struct(t);
1824	}
1825	if (new->secondary && new->secondary->thread) {
1826		struct task_struct *t = new->secondary->thread;
1827
1828		new->secondary->thread = NULL;
1829		kthread_stop(t);
1830		put_task_struct(t);
1831	}
1832out_mput:
1833	module_put(desc->owner);
1834	return ret;
1835}
1836
1837/*
1838 * Internal function to unregister an irqaction - used to free
1839 * regular and special interrupts that are part of the architecture.
1840 */
1841static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1842{
1843	unsigned irq = desc->irq_data.irq;
1844	struct irqaction *action, **action_ptr;
1845	unsigned long flags;
1846
1847	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1848
1849	mutex_lock(&desc->request_mutex);
1850	chip_bus_lock(desc);
1851	raw_spin_lock_irqsave(&desc->lock, flags);
1852
1853	/*
1854	 * There can be multiple actions per IRQ descriptor, find the right
1855	 * one based on the dev_id:
1856	 */
1857	action_ptr = &desc->action;
1858	for (;;) {
1859		action = *action_ptr;
1860
1861		if (!action) {
1862			WARN(1, "Trying to free already-free IRQ %d\n", irq);
1863			raw_spin_unlock_irqrestore(&desc->lock, flags);
1864			chip_bus_sync_unlock(desc);
1865			mutex_unlock(&desc->request_mutex);
1866			return NULL;
1867		}
1868
1869		if (action->dev_id == dev_id)
1870			break;
1871		action_ptr = &action->next;
1872	}
1873
1874	/* Found it - now remove it from the list of entries: */
1875	*action_ptr = action->next;
1876
1877	irq_pm_remove_action(desc, action);
1878
1879	/* If this was the last handler, shut down the IRQ line: */
1880	if (!desc->action) {
1881		irq_settings_clr_disable_unlazy(desc);
1882		/* Only shutdown. Deactivate after synchronize_hardirq() */
1883		irq_shutdown(desc);
1884	}
1885
1886#ifdef CONFIG_SMP
1887	/* make sure affinity_hint is cleaned up */
1888	if (WARN_ON_ONCE(desc->affinity_hint))
1889		desc->affinity_hint = NULL;
1890#endif
1891
1892	raw_spin_unlock_irqrestore(&desc->lock, flags);
1893	/*
1894	 * Drop bus_lock here so the changes which were done in the chip
1895	 * callbacks above are synced out to the irq chips which hang
1896	 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1897	 *
1898	 * Aside of that the bus_lock can also be taken from the threaded
1899	 * handler in irq_finalize_oneshot() which results in a deadlock
1900	 * because kthread_stop() would wait forever for the thread to
1901	 * complete, which is blocked on the bus lock.
1902	 *
1903	 * The still held desc->request_mutex() protects against a
1904	 * concurrent request_irq() of this irq so the release of resources
1905	 * and timing data is properly serialized.
1906	 */
1907	chip_bus_sync_unlock(desc);
1908
1909	unregister_handler_proc(irq, action);
1910
1911	/*
1912	 * Make sure it's not being used on another CPU and if the chip
1913	 * supports it also make sure that there is no (not yet serviced)
1914	 * interrupt in flight at the hardware level.
1915	 */
1916	__synchronize_hardirq(desc, true);
1917
1918#ifdef CONFIG_DEBUG_SHIRQ
1919	/*
1920	 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1921	 * event to happen even now it's being freed, so let's make sure that
1922	 * is so by doing an extra call to the handler ....
1923	 *
1924	 * ( We do this after actually deregistering it, to make sure that a
1925	 *   'real' IRQ doesn't run in parallel with our fake. )
1926	 */
1927	if (action->flags & IRQF_SHARED) {
1928		local_irq_save(flags);
1929		action->handler(irq, dev_id);
1930		local_irq_restore(flags);
1931	}
1932#endif
1933
1934	/*
1935	 * The action has already been removed above, but the thread writes
1936	 * its oneshot mask bit when it completes. Though request_mutex is
1937	 * held across this which prevents __setup_irq() from handing out
1938	 * the same bit to a newly requested action.
1939	 */
1940	if (action->thread) {
1941		kthread_stop(action->thread);
1942		put_task_struct(action->thread);
1943		if (action->secondary && action->secondary->thread) {
1944			kthread_stop(action->secondary->thread);
1945			put_task_struct(action->secondary->thread);
1946		}
1947	}
1948
1949	/* Last action releases resources */
1950	if (!desc->action) {
1951		/*
1952		 * Reacquire bus lock as irq_release_resources() might
1953		 * require it to deallocate resources over the slow bus.
1954		 */
1955		chip_bus_lock(desc);
1956		/*
1957		 * There is no interrupt on the fly anymore. Deactivate it
1958		 * completely.
1959		 */
1960		raw_spin_lock_irqsave(&desc->lock, flags);
1961		irq_domain_deactivate_irq(&desc->irq_data);
1962		raw_spin_unlock_irqrestore(&desc->lock, flags);
1963
1964		irq_release_resources(desc);
1965		chip_bus_sync_unlock(desc);
1966		irq_remove_timings(desc);
1967	}
1968
1969	mutex_unlock(&desc->request_mutex);
1970
1971	irq_chip_pm_put(&desc->irq_data);
1972	module_put(desc->owner);
1973	kfree(action->secondary);
1974	return action;
1975}
1976
1977/**
1978 *	free_irq - free an interrupt allocated with request_irq
1979 *	@irq: Interrupt line to free
1980 *	@dev_id: Device identity to free
1981 *
1982 *	Remove an interrupt handler. The handler is removed and if the
1983 *	interrupt line is no longer in use by any driver it is disabled.
1984 *	On a shared IRQ the caller must ensure the interrupt is disabled
1985 *	on the card it drives before calling this function. The function
1986 *	does not return until any executing interrupts for this IRQ
1987 *	have completed.
1988 *
1989 *	This function must not be called from interrupt context.
1990 *
1991 *	Returns the devname argument passed to request_irq.
1992 */
1993const void *free_irq(unsigned int irq, void *dev_id)
1994{
1995	struct irq_desc *desc = irq_to_desc(irq);
1996	struct irqaction *action;
1997	const char *devname;
1998
1999	if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2000		return NULL;
2001
2002#ifdef CONFIG_SMP
2003	if (WARN_ON(desc->affinity_notify))
2004		desc->affinity_notify = NULL;
2005#endif
2006
2007	action = __free_irq(desc, dev_id);
2008
2009	if (!action)
2010		return NULL;
2011
2012	devname = action->name;
2013	kfree(action);
2014	return devname;
2015}
2016EXPORT_SYMBOL(free_irq);
2017
2018/* This function must be called with desc->lock held */
2019static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2020{
2021	const char *devname = NULL;
2022
2023	desc->istate &= ~IRQS_NMI;
2024
2025	if (!WARN_ON(desc->action == NULL)) {
2026		irq_pm_remove_action(desc, desc->action);
2027		devname = desc->action->name;
2028		unregister_handler_proc(irq, desc->action);
2029
2030		kfree(desc->action);
2031		desc->action = NULL;
2032	}
2033
2034	irq_settings_clr_disable_unlazy(desc);
2035	irq_shutdown_and_deactivate(desc);
2036
2037	irq_release_resources(desc);
2038
2039	irq_chip_pm_put(&desc->irq_data);
2040	module_put(desc->owner);
2041
2042	return devname;
2043}
2044
2045const void *free_nmi(unsigned int irq, void *dev_id)
2046{
2047	struct irq_desc *desc = irq_to_desc(irq);
2048	unsigned long flags;
2049	const void *devname;
2050
2051	if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2052		return NULL;
2053
2054	if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2055		return NULL;
2056
2057	/* NMI still enabled */
2058	if (WARN_ON(desc->depth == 0))
2059		disable_nmi_nosync(irq);
2060
2061	raw_spin_lock_irqsave(&desc->lock, flags);
2062
2063	irq_nmi_teardown(desc);
2064	devname = __cleanup_nmi(irq, desc);
2065
2066	raw_spin_unlock_irqrestore(&desc->lock, flags);
2067
2068	return devname;
2069}
2070
2071/**
2072 *	request_threaded_irq - allocate an interrupt line
2073 *	@irq: Interrupt line to allocate
2074 *	@handler: Function to be called when the IRQ occurs.
2075 *		  Primary handler for threaded interrupts
2076 *		  If NULL and thread_fn != NULL the default
2077 *		  primary handler is installed
2078 *	@thread_fn: Function called from the irq handler thread
2079 *		    If NULL, no irq thread is created
2080 *	@irqflags: Interrupt type flags
2081 *	@devname: An ascii name for the claiming device
2082 *	@dev_id: A cookie passed back to the handler function
2083 *
2084 *	This call allocates interrupt resources and enables the
2085 *	interrupt line and IRQ handling. From the point this
2086 *	call is made your handler function may be invoked. Since
2087 *	your handler function must clear any interrupt the board
2088 *	raises, you must take care both to initialise your hardware
2089 *	and to set up the interrupt handler in the right order.
2090 *
2091 *	If you want to set up a threaded irq handler for your device
2092 *	then you need to supply @handler and @thread_fn. @handler is
2093 *	still called in hard interrupt context and has to check
2094 *	whether the interrupt originates from the device. If yes it
2095 *	needs to disable the interrupt on the device and return
2096 *	IRQ_WAKE_THREAD which will wake up the handler thread and run
2097 *	@thread_fn. This split handler design is necessary to support
2098 *	shared interrupts.
2099 *
2100 *	Dev_id must be globally unique. Normally the address of the
2101 *	device data structure is used as the cookie. Since the handler
2102 *	receives this value it makes sense to use it.
2103 *
2104 *	If your interrupt is shared you must pass a non NULL dev_id
2105 *	as this is required when freeing the interrupt.
2106 *
2107 *	Flags:
2108 *
2109 *	IRQF_SHARED		Interrupt is shared
2110 *	IRQF_TRIGGER_*		Specify active edge(s) or level
2111 *
2112 */
2113int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2114			 irq_handler_t thread_fn, unsigned long irqflags,
2115			 const char *devname, void *dev_id)
2116{
2117	struct irqaction *action;
2118	struct irq_desc *desc;
2119	int retval;
2120
2121	if (irq == IRQ_NOTCONNECTED)
2122		return -ENOTCONN;
2123
2124	/*
2125	 * Sanity-check: shared interrupts must pass in a real dev-ID,
2126	 * otherwise we'll have trouble later trying to figure out
2127	 * which interrupt is which (messes up the interrupt freeing
2128	 * logic etc).
2129	 *
2130	 * Also shared interrupts do not go well with disabling auto enable.
2131	 * The sharing interrupt might request it while it's still disabled
2132	 * and then wait for interrupts forever.
2133	 *
2134	 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2135	 * it cannot be set along with IRQF_NO_SUSPEND.
2136	 */
2137	if (((irqflags & IRQF_SHARED) && !dev_id) ||
2138	    ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2139	    (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2140	    ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2141		return -EINVAL;
2142
2143	desc = irq_to_desc(irq);
2144	if (!desc)
2145		return -EINVAL;
2146
2147	if (!irq_settings_can_request(desc) ||
2148	    WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2149		return -EINVAL;
2150
2151	if (!handler) {
2152		if (!thread_fn)
2153			return -EINVAL;
2154		handler = irq_default_primary_handler;
2155	}
2156
2157	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2158	if (!action)
2159		return -ENOMEM;
2160
2161	action->handler = handler;
2162	action->thread_fn = thread_fn;
2163	action->flags = irqflags;
2164	action->name = devname;
2165	action->dev_id = dev_id;
2166
2167	retval = irq_chip_pm_get(&desc->irq_data);
2168	if (retval < 0) {
2169		kfree(action);
2170		return retval;
2171	}
2172
2173	retval = __setup_irq(irq, desc, action);
2174
2175	if (retval) {
2176		irq_chip_pm_put(&desc->irq_data);
2177		kfree(action->secondary);
2178		kfree(action);
2179	}
2180
2181#ifdef CONFIG_DEBUG_SHIRQ_FIXME
2182	if (!retval && (irqflags & IRQF_SHARED)) {
2183		/*
2184		 * It's a shared IRQ -- the driver ought to be prepared for it
2185		 * to happen immediately, so let's make sure....
2186		 * We disable the irq to make sure that a 'real' IRQ doesn't
2187		 * run in parallel with our fake.
2188		 */
2189		unsigned long flags;
2190
2191		disable_irq(irq);
2192		local_irq_save(flags);
2193
2194		handler(irq, dev_id);
2195
2196		local_irq_restore(flags);
2197		enable_irq(irq);
2198	}
2199#endif
2200	return retval;
2201}
2202EXPORT_SYMBOL(request_threaded_irq);
2203
2204/**
2205 *	request_any_context_irq - allocate an interrupt line
2206 *	@irq: Interrupt line to allocate
2207 *	@handler: Function to be called when the IRQ occurs.
2208 *		  Threaded handler for threaded interrupts.
2209 *	@flags: Interrupt type flags
2210 *	@name: An ascii name for the claiming device
2211 *	@dev_id: A cookie passed back to the handler function
2212 *
2213 *	This call allocates interrupt resources and enables the
2214 *	interrupt line and IRQ handling. It selects either a
2215 *	hardirq or threaded handling method depending on the
2216 *	context.
2217 *
2218 *	On failure, it returns a negative value. On success,
2219 *	it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2220 */
2221int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2222			    unsigned long flags, const char *name, void *dev_id)
2223{
2224	struct irq_desc *desc;
2225	int ret;
2226
2227	if (irq == IRQ_NOTCONNECTED)
2228		return -ENOTCONN;
2229
2230	desc = irq_to_desc(irq);
2231	if (!desc)
2232		return -EINVAL;
2233
2234	if (irq_settings_is_nested_thread(desc)) {
2235		ret = request_threaded_irq(irq, NULL, handler,
2236					   flags, name, dev_id);
2237		return !ret ? IRQC_IS_NESTED : ret;
2238	}
2239
2240	ret = request_irq(irq, handler, flags, name, dev_id);
2241	return !ret ? IRQC_IS_HARDIRQ : ret;
2242}
2243EXPORT_SYMBOL_GPL(request_any_context_irq);
2244
2245/**
2246 *	request_nmi - allocate an interrupt line for NMI delivery
2247 *	@irq: Interrupt line to allocate
2248 *	@handler: Function to be called when the IRQ occurs.
2249 *		  Threaded handler for threaded interrupts.
2250 *	@irqflags: Interrupt type flags
2251 *	@name: An ascii name for the claiming device
2252 *	@dev_id: A cookie passed back to the handler function
2253 *
2254 *	This call allocates interrupt resources and enables the
2255 *	interrupt line and IRQ handling. It sets up the IRQ line
2256 *	to be handled as an NMI.
2257 *
2258 *	An interrupt line delivering NMIs cannot be shared and IRQ handling
2259 *	cannot be threaded.
2260 *
2261 *	Interrupt lines requested for NMI delivering must produce per cpu
2262 *	interrupts and have auto enabling setting disabled.
2263 *
2264 *	Dev_id must be globally unique. Normally the address of the
2265 *	device data structure is used as the cookie. Since the handler
2266 *	receives this value it makes sense to use it.
2267 *
2268 *	If the interrupt line cannot be used to deliver NMIs, function
2269 *	will fail and return a negative value.
2270 */
2271int request_nmi(unsigned int irq, irq_handler_t handler,
2272		unsigned long irqflags, const char *name, void *dev_id)
2273{
2274	struct irqaction *action;
2275	struct irq_desc *desc;
2276	unsigned long flags;
2277	int retval;
2278
2279	if (irq == IRQ_NOTCONNECTED)
2280		return -ENOTCONN;
2281
2282	/* NMI cannot be shared, used for Polling */
2283	if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2284		return -EINVAL;
2285
2286	if (!(irqflags & IRQF_PERCPU))
2287		return -EINVAL;
2288
2289	if (!handler)
2290		return -EINVAL;
2291
2292	desc = irq_to_desc(irq);
2293
2294	if (!desc || (irq_settings_can_autoenable(desc) &&
2295	    !(irqflags & IRQF_NO_AUTOEN)) ||
2296	    !irq_settings_can_request(desc) ||
2297	    WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2298	    !irq_supports_nmi(desc))
2299		return -EINVAL;
2300
2301	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2302	if (!action)
2303		return -ENOMEM;
2304
2305	action->handler = handler;
2306	action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2307	action->name = name;
2308	action->dev_id = dev_id;
2309
2310	retval = irq_chip_pm_get(&desc->irq_data);
2311	if (retval < 0)
2312		goto err_out;
2313
2314	retval = __setup_irq(irq, desc, action);
2315	if (retval)
2316		goto err_irq_setup;
2317
2318	raw_spin_lock_irqsave(&desc->lock, flags);
2319
2320	/* Setup NMI state */
2321	desc->istate |= IRQS_NMI;
2322	retval = irq_nmi_setup(desc);
2323	if (retval) {
2324		__cleanup_nmi(irq, desc);
2325		raw_spin_unlock_irqrestore(&desc->lock, flags);
2326		return -EINVAL;
2327	}
2328
2329	raw_spin_unlock_irqrestore(&desc->lock, flags);
2330
2331	return 0;
2332
2333err_irq_setup:
2334	irq_chip_pm_put(&desc->irq_data);
2335err_out:
2336	kfree(action);
2337
2338	return retval;
2339}
2340
2341void enable_percpu_irq(unsigned int irq, unsigned int type)
2342{
2343	unsigned int cpu = smp_processor_id();
2344	unsigned long flags;
2345	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2346
2347	if (!desc)
2348		return;
2349
2350	/*
2351	 * If the trigger type is not specified by the caller, then
2352	 * use the default for this interrupt.
2353	 */
2354	type &= IRQ_TYPE_SENSE_MASK;
2355	if (type == IRQ_TYPE_NONE)
2356		type = irqd_get_trigger_type(&desc->irq_data);
2357
2358	if (type != IRQ_TYPE_NONE) {
2359		int ret;
2360
2361		ret = __irq_set_trigger(desc, type);
2362
2363		if (ret) {
2364			WARN(1, "failed to set type for IRQ%d\n", irq);
2365			goto out;
2366		}
2367	}
2368
2369	irq_percpu_enable(desc, cpu);
2370out:
2371	irq_put_desc_unlock(desc, flags);
2372}
2373EXPORT_SYMBOL_GPL(enable_percpu_irq);
2374
2375void enable_percpu_nmi(unsigned int irq, unsigned int type)
2376{
2377	enable_percpu_irq(irq, type);
2378}
2379
2380/**
2381 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2382 * @irq:	Linux irq number to check for
2383 *
2384 * Must be called from a non migratable context. Returns the enable
2385 * state of a per cpu interrupt on the current cpu.
2386 */
2387bool irq_percpu_is_enabled(unsigned int irq)
2388{
2389	unsigned int cpu = smp_processor_id();
2390	struct irq_desc *desc;
2391	unsigned long flags;
2392	bool is_enabled;
2393
2394	desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2395	if (!desc)
2396		return false;
2397
2398	is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2399	irq_put_desc_unlock(desc, flags);
2400
2401	return is_enabled;
2402}
2403EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2404
2405void disable_percpu_irq(unsigned int irq)
2406{
2407	unsigned int cpu = smp_processor_id();
2408	unsigned long flags;
2409	struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2410
2411	if (!desc)
2412		return;
2413
2414	irq_percpu_disable(desc, cpu);
2415	irq_put_desc_unlock(desc, flags);
2416}
2417EXPORT_SYMBOL_GPL(disable_percpu_irq);
2418
2419void disable_percpu_nmi(unsigned int irq)
2420{
2421	disable_percpu_irq(irq);
2422}
2423
2424/*
2425 * Internal function to unregister a percpu irqaction.
2426 */
2427static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2428{
2429	struct irq_desc *desc = irq_to_desc(irq);
2430	struct irqaction *action;
2431	unsigned long flags;
2432
2433	WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2434
2435	if (!desc)
2436		return NULL;
2437
2438	raw_spin_lock_irqsave(&desc->lock, flags);
2439
2440	action = desc->action;
2441	if (!action || action->percpu_dev_id != dev_id) {
2442		WARN(1, "Trying to free already-free IRQ %d\n", irq);
2443		goto bad;
2444	}
2445
2446	if (!cpumask_empty(desc->percpu_enabled)) {
2447		WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2448		     irq, cpumask_first(desc->percpu_enabled));
2449		goto bad;
2450	}
2451
2452	/* Found it - now remove it from the list of entries: */
2453	desc->action = NULL;
2454
2455	desc->istate &= ~IRQS_NMI;
2456
2457	raw_spin_unlock_irqrestore(&desc->lock, flags);
2458
2459	unregister_handler_proc(irq, action);
2460
2461	irq_chip_pm_put(&desc->irq_data);
2462	module_put(desc->owner);
2463	return action;
2464
2465bad:
2466	raw_spin_unlock_irqrestore(&desc->lock, flags);
2467	return NULL;
2468}
2469
2470/**
2471 *	remove_percpu_irq - free a per-cpu interrupt
2472 *	@irq: Interrupt line to free
2473 *	@act: irqaction for the interrupt
2474 *
2475 * Used to remove interrupts statically setup by the early boot process.
2476 */
2477void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2478{
2479	struct irq_desc *desc = irq_to_desc(irq);
2480
2481	if (desc && irq_settings_is_per_cpu_devid(desc))
2482	    __free_percpu_irq(irq, act->percpu_dev_id);
2483}
2484
2485/**
2486 *	free_percpu_irq - free an interrupt allocated with request_percpu_irq
2487 *	@irq: Interrupt line to free
2488 *	@dev_id: Device identity to free
2489 *
2490 *	Remove a percpu interrupt handler. The handler is removed, but
2491 *	the interrupt line is not disabled. This must be done on each
2492 *	CPU before calling this function. The function does not return
2493 *	until any executing interrupts for this IRQ have completed.
2494 *
2495 *	This function must not be called from interrupt context.
2496 */
2497void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2498{
2499	struct irq_desc *desc = irq_to_desc(irq);
2500
2501	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2502		return;
2503
2504	chip_bus_lock(desc);
2505	kfree(__free_percpu_irq(irq, dev_id));
2506	chip_bus_sync_unlock(desc);
2507}
2508EXPORT_SYMBOL_GPL(free_percpu_irq);
2509
2510void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2511{
2512	struct irq_desc *desc = irq_to_desc(irq);
2513
2514	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2515		return;
2516
2517	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2518		return;
2519
2520	kfree(__free_percpu_irq(irq, dev_id));
2521}
2522
2523/**
2524 *	setup_percpu_irq - setup a per-cpu interrupt
2525 *	@irq: Interrupt line to setup
2526 *	@act: irqaction for the interrupt
2527 *
2528 * Used to statically setup per-cpu interrupts in the early boot process.
2529 */
2530int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2531{
2532	struct irq_desc *desc = irq_to_desc(irq);
2533	int retval;
2534
2535	if (!desc || !irq_settings_is_per_cpu_devid(desc))
2536		return -EINVAL;
2537
2538	retval = irq_chip_pm_get(&desc->irq_data);
2539	if (retval < 0)
2540		return retval;
2541
2542	retval = __setup_irq(irq, desc, act);
2543
2544	if (retval)
2545		irq_chip_pm_put(&desc->irq_data);
2546
2547	return retval;
2548}
2549
2550/**
2551 *	__request_percpu_irq - allocate a percpu interrupt line
2552 *	@irq: Interrupt line to allocate
2553 *	@handler: Function to be called when the IRQ occurs.
2554 *	@flags: Interrupt type flags (IRQF_TIMER only)
2555 *	@devname: An ascii name for the claiming device
2556 *	@dev_id: A percpu cookie passed back to the handler function
2557 *
2558 *	This call allocates interrupt resources and enables the
2559 *	interrupt on the local CPU. If the interrupt is supposed to be
2560 *	enabled on other CPUs, it has to be done on each CPU using
2561 *	enable_percpu_irq().
2562 *
2563 *	Dev_id must be globally unique. It is a per-cpu variable, and
2564 *	the handler gets called with the interrupted CPU's instance of
2565 *	that variable.
2566 */
2567int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2568			 unsigned long flags, const char *devname,
2569			 void __percpu *dev_id)
2570{
2571	struct irqaction *action;
2572	struct irq_desc *desc;
2573	int retval;
2574
2575	if (!dev_id)
2576		return -EINVAL;
2577
2578	desc = irq_to_desc(irq);
2579	if (!desc || !irq_settings_can_request(desc) ||
2580	    !irq_settings_is_per_cpu_devid(desc))
2581		return -EINVAL;
2582
2583	if (flags && flags != IRQF_TIMER)
2584		return -EINVAL;
2585
2586	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2587	if (!action)
2588		return -ENOMEM;
2589
2590	action->handler = handler;
2591	action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2592	action->name = devname;
2593	action->percpu_dev_id = dev_id;
2594
2595	retval = irq_chip_pm_get(&desc->irq_data);
2596	if (retval < 0) {
2597		kfree(action);
2598		return retval;
2599	}
2600
2601	retval = __setup_irq(irq, desc, action);
2602
2603	if (retval) {
2604		irq_chip_pm_put(&desc->irq_data);
2605		kfree(action);
2606	}
2607
2608	return retval;
2609}
2610EXPORT_SYMBOL_GPL(__request_percpu_irq);
2611
2612/**
2613 *	request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2614 *	@irq: Interrupt line to allocate
2615 *	@handler: Function to be called when the IRQ occurs.
2616 *	@name: An ascii name for the claiming device
2617 *	@dev_id: A percpu cookie passed back to the handler function
2618 *
2619 *	This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2620 *	have to be setup on each CPU by calling prepare_percpu_nmi() before
2621 *	being enabled on the same CPU by using enable_percpu_nmi().
2622 *
2623 *	Dev_id must be globally unique. It is a per-cpu variable, and
2624 *	the handler gets called with the interrupted CPU's instance of
2625 *	that variable.
2626 *
2627 *	Interrupt lines requested for NMI delivering should have auto enabling
2628 *	setting disabled.
2629 *
2630 *	If the interrupt line cannot be used to deliver NMIs, function
2631 *	will fail returning a negative value.
2632 */
2633int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2634		       const char *name, void __percpu *dev_id)
2635{
2636	struct irqaction *action;
2637	struct irq_desc *desc;
2638	unsigned long flags;
2639	int retval;
2640
2641	if (!handler)
2642		return -EINVAL;
2643
2644	desc = irq_to_desc(irq);
2645
2646	if (!desc || !irq_settings_can_request(desc) ||
2647	    !irq_settings_is_per_cpu_devid(desc) ||
2648	    irq_settings_can_autoenable(desc) ||
2649	    !irq_supports_nmi(desc))
2650		return -EINVAL;
2651
2652	/* The line cannot already be NMI */
2653	if (desc->istate & IRQS_NMI)
2654		return -EINVAL;
2655
2656	action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2657	if (!action)
2658		return -ENOMEM;
2659
2660	action->handler = handler;
2661	action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2662		| IRQF_NOBALANCING;
2663	action->name = name;
2664	action->percpu_dev_id = dev_id;
2665
2666	retval = irq_chip_pm_get(&desc->irq_data);
2667	if (retval < 0)
2668		goto err_out;
2669
2670	retval = __setup_irq(irq, desc, action);
2671	if (retval)
2672		goto err_irq_setup;
2673
2674	raw_spin_lock_irqsave(&desc->lock, flags);
2675	desc->istate |= IRQS_NMI;
2676	raw_spin_unlock_irqrestore(&desc->lock, flags);
2677
2678	return 0;
2679
2680err_irq_setup:
2681	irq_chip_pm_put(&desc->irq_data);
2682err_out:
2683	kfree(action);
2684
2685	return retval;
2686}
2687
2688/**
2689 *	prepare_percpu_nmi - performs CPU local setup for NMI delivery
2690 *	@irq: Interrupt line to prepare for NMI delivery
2691 *
2692 *	This call prepares an interrupt line to deliver NMI on the current CPU,
2693 *	before that interrupt line gets enabled with enable_percpu_nmi().
2694 *
2695 *	As a CPU local operation, this should be called from non-preemptible
2696 *	context.
2697 *
2698 *	If the interrupt line cannot be used to deliver NMIs, function
2699 *	will fail returning a negative value.
2700 */
2701int prepare_percpu_nmi(unsigned int irq)
2702{
2703	unsigned long flags;
2704	struct irq_desc *desc;
2705	int ret = 0;
2706
2707	WARN_ON(preemptible());
2708
2709	desc = irq_get_desc_lock(irq, &flags,
2710				 IRQ_GET_DESC_CHECK_PERCPU);
2711	if (!desc)
2712		return -EINVAL;
2713
2714	if (WARN(!(desc->istate & IRQS_NMI),
2715		 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2716		 irq)) {
2717		ret = -EINVAL;
2718		goto out;
2719	}
2720
2721	ret = irq_nmi_setup(desc);
2722	if (ret) {
2723		pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2724		goto out;
2725	}
2726
2727out:
2728	irq_put_desc_unlock(desc, flags);
2729	return ret;
2730}
2731
2732/**
2733 *	teardown_percpu_nmi - undoes NMI setup of IRQ line
2734 *	@irq: Interrupt line from which CPU local NMI configuration should be
2735 *	      removed
2736 *
2737 *	This call undoes the setup done by prepare_percpu_nmi().
2738 *
2739 *	IRQ line should not be enabled for the current CPU.
2740 *
2741 *	As a CPU local operation, this should be called from non-preemptible
2742 *	context.
2743 */
2744void teardown_percpu_nmi(unsigned int irq)
2745{
2746	unsigned long flags;
2747	struct irq_desc *desc;
2748
2749	WARN_ON(preemptible());
2750
2751	desc = irq_get_desc_lock(irq, &flags,
2752				 IRQ_GET_DESC_CHECK_PERCPU);
2753	if (!desc)
2754		return;
2755
2756	if (WARN_ON(!(desc->istate & IRQS_NMI)))
2757		goto out;
2758
2759	irq_nmi_teardown(desc);
2760out:
2761	irq_put_desc_unlock(desc, flags);
2762}
2763
2764int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2765			    bool *state)
2766{
2767	struct irq_chip *chip;
2768	int err = -EINVAL;
2769
2770	do {
2771		chip = irq_data_get_irq_chip(data);
2772		if (WARN_ON_ONCE(!chip))
2773			return -ENODEV;
2774		if (chip->irq_get_irqchip_state)
2775			break;
2776#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2777		data = data->parent_data;
2778#else
2779		data = NULL;
2780#endif
2781	} while (data);
2782
2783	if (data)
2784		err = chip->irq_get_irqchip_state(data, which, state);
2785	return err;
2786}
2787
2788/**
2789 *	irq_get_irqchip_state - returns the irqchip state of a interrupt.
2790 *	@irq: Interrupt line that is forwarded to a VM
2791 *	@which: One of IRQCHIP_STATE_* the caller wants to know about
2792 *	@state: a pointer to a boolean where the state is to be stored
2793 *
2794 *	This call snapshots the internal irqchip state of an
2795 *	interrupt, returning into @state the bit corresponding to
2796 *	stage @which
2797 *
2798 *	This function should be called with preemption disabled if the
2799 *	interrupt controller has per-cpu registers.
2800 */
2801int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2802			  bool *state)
2803{
2804	struct irq_desc *desc;
2805	struct irq_data *data;
2806	unsigned long flags;
2807	int err = -EINVAL;
2808
2809	desc = irq_get_desc_buslock(irq, &flags, 0);
2810	if (!desc)
2811		return err;
2812
2813	data = irq_desc_get_irq_data(desc);
2814
2815	err = __irq_get_irqchip_state(data, which, state);
2816
2817	irq_put_desc_busunlock(desc, flags);
2818	return err;
2819}
2820EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2821
2822/**
2823 *	irq_set_irqchip_state - set the state of a forwarded interrupt.
2824 *	@irq: Interrupt line that is forwarded to a VM
2825 *	@which: State to be restored (one of IRQCHIP_STATE_*)
2826 *	@val: Value corresponding to @which
2827 *
2828 *	This call sets the internal irqchip state of an interrupt,
2829 *	depending on the value of @which.
2830 *
2831 *	This function should be called with preemption disabled if the
2832 *	interrupt controller has per-cpu registers.
2833 */
2834int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2835			  bool val)
2836{
2837	struct irq_desc *desc;
2838	struct irq_data *data;
2839	struct irq_chip *chip;
2840	unsigned long flags;
2841	int err = -EINVAL;
2842
2843	desc = irq_get_desc_buslock(irq, &flags, 0);
2844	if (!desc)
2845		return err;
2846
2847	data = irq_desc_get_irq_data(desc);
2848
2849	do {
2850		chip = irq_data_get_irq_chip(data);
2851		if (WARN_ON_ONCE(!chip)) {
2852			err = -ENODEV;
2853			goto out_unlock;
2854		}
2855		if (chip->irq_set_irqchip_state)
2856			break;
2857#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2858		data = data->parent_data;
2859#else
2860		data = NULL;
2861#endif
2862	} while (data);
2863
2864	if (data)
2865		err = chip->irq_set_irqchip_state(data, which, val);
2866
2867out_unlock:
2868	irq_put_desc_busunlock(desc, flags);
2869	return err;
2870}
2871EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2872
2873/**
2874 * irq_has_action - Check whether an interrupt is requested
2875 * @irq:	The linux irq number
2876 *
2877 * Returns: A snapshot of the current state
2878 */
2879bool irq_has_action(unsigned int irq)
2880{
2881	bool res;
2882
2883	rcu_read_lock();
2884	res = irq_desc_has_action(irq_to_desc(irq));
2885	rcu_read_unlock();
2886	return res;
2887}
2888EXPORT_SYMBOL_GPL(irq_has_action);
2889
2890/**
2891 * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2892 * @irq:	The linux irq number
2893 * @bitmask:	The bitmask to evaluate
2894 *
2895 * Returns: True if one of the bits in @bitmask is set
2896 */
2897bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2898{
2899	struct irq_desc *desc;
2900	bool res = false;
2901
2902	rcu_read_lock();
2903	desc = irq_to_desc(irq);
2904	if (desc)
2905		res = !!(desc->status_use_accessors & bitmask);
2906	rcu_read_unlock();
2907	return res;
2908}
2909EXPORT_SYMBOL_GPL(irq_check_status_bit);