Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_bit.h"
12#include "xfs_shared.h"
13#include "xfs_mount.h"
14#include "xfs_ag.h"
15#include "xfs_defer.h"
16#include "xfs_trans.h"
17#include "xfs_trans_priv.h"
18#include "xfs_extfree_item.h"
19#include "xfs_log.h"
20#include "xfs_btree.h"
21#include "xfs_rmap.h"
22#include "xfs_alloc.h"
23#include "xfs_bmap.h"
24#include "xfs_trace.h"
25#include "xfs_error.h"
26#include "xfs_log_priv.h"
27#include "xfs_log_recover.h"
28
29struct kmem_cache *xfs_efi_cache;
30struct kmem_cache *xfs_efd_cache;
31
32static const struct xfs_item_ops xfs_efi_item_ops;
33
34static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
35{
36 return container_of(lip, struct xfs_efi_log_item, efi_item);
37}
38
39STATIC void
40xfs_efi_item_free(
41 struct xfs_efi_log_item *efip)
42{
43 kvfree(efip->efi_item.li_lv_shadow);
44 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
45 kfree(efip);
46 else
47 kmem_cache_free(xfs_efi_cache, efip);
48}
49
50/*
51 * Freeing the efi requires that we remove it from the AIL if it has already
52 * been placed there. However, the EFI may not yet have been placed in the AIL
53 * when called by xfs_efi_release() from EFD processing due to the ordering of
54 * committed vs unpin operations in bulk insert operations. Hence the reference
55 * count to ensure only the last caller frees the EFI.
56 */
57STATIC void
58xfs_efi_release(
59 struct xfs_efi_log_item *efip)
60{
61 ASSERT(atomic_read(&efip->efi_refcount) > 0);
62 if (!atomic_dec_and_test(&efip->efi_refcount))
63 return;
64
65 xfs_trans_ail_delete(&efip->efi_item, 0);
66 xfs_efi_item_free(efip);
67}
68
69STATIC void
70xfs_efi_item_size(
71 struct xfs_log_item *lip,
72 int *nvecs,
73 int *nbytes)
74{
75 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
76
77 *nvecs += 1;
78 *nbytes += xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents);
79}
80
81/*
82 * This is called to fill in the vector of log iovecs for the
83 * given efi log item. We use only 1 iovec, and we point that
84 * at the efi_log_format structure embedded in the efi item.
85 * It is at this point that we assert that all of the extent
86 * slots in the efi item have been filled.
87 */
88STATIC void
89xfs_efi_item_format(
90 struct xfs_log_item *lip,
91 struct xfs_log_vec *lv)
92{
93 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
94 struct xfs_log_iovec *vecp = NULL;
95
96 ASSERT(atomic_read(&efip->efi_next_extent) ==
97 efip->efi_format.efi_nextents);
98
99 efip->efi_format.efi_type = XFS_LI_EFI;
100 efip->efi_format.efi_size = 1;
101
102 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
103 &efip->efi_format,
104 xfs_efi_log_format_sizeof(efip->efi_format.efi_nextents));
105}
106
107
108/*
109 * The unpin operation is the last place an EFI is manipulated in the log. It is
110 * either inserted in the AIL or aborted in the event of a log I/O error. In
111 * either case, the EFI transaction has been successfully committed to make it
112 * this far. Therefore, we expect whoever committed the EFI to either construct
113 * and commit the EFD or drop the EFD's reference in the event of error. Simply
114 * drop the log's EFI reference now that the log is done with it.
115 */
116STATIC void
117xfs_efi_item_unpin(
118 struct xfs_log_item *lip,
119 int remove)
120{
121 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
122 xfs_efi_release(efip);
123}
124
125/*
126 * The EFI has been either committed or aborted if the transaction has been
127 * cancelled. If the transaction was cancelled, an EFD isn't going to be
128 * constructed and thus we free the EFI here directly.
129 */
130STATIC void
131xfs_efi_item_release(
132 struct xfs_log_item *lip)
133{
134 xfs_efi_release(EFI_ITEM(lip));
135}
136
137/*
138 * Allocate and initialize an efi item with the given number of extents.
139 */
140STATIC struct xfs_efi_log_item *
141xfs_efi_init(
142 struct xfs_mount *mp,
143 uint nextents)
144
145{
146 struct xfs_efi_log_item *efip;
147
148 ASSERT(nextents > 0);
149 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
150 efip = kzalloc(xfs_efi_log_item_sizeof(nextents),
151 GFP_KERNEL | __GFP_NOFAIL);
152 } else {
153 efip = kmem_cache_zalloc(xfs_efi_cache,
154 GFP_KERNEL | __GFP_NOFAIL);
155 }
156
157 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
158 efip->efi_format.efi_nextents = nextents;
159 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
160 atomic_set(&efip->efi_next_extent, 0);
161 atomic_set(&efip->efi_refcount, 2);
162
163 return efip;
164}
165
166/*
167 * Copy an EFI format buffer from the given buf, and into the destination
168 * EFI format structure.
169 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
170 * one of which will be the native format for this kernel.
171 * It will handle the conversion of formats if necessary.
172 */
173STATIC int
174xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
175{
176 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
177 uint i;
178 uint len = xfs_efi_log_format_sizeof(src_efi_fmt->efi_nextents);
179 uint len32 = xfs_efi_log_format32_sizeof(src_efi_fmt->efi_nextents);
180 uint len64 = xfs_efi_log_format64_sizeof(src_efi_fmt->efi_nextents);
181
182 if (buf->i_len == len) {
183 memcpy(dst_efi_fmt, src_efi_fmt,
184 offsetof(struct xfs_efi_log_format, efi_extents));
185 for (i = 0; i < src_efi_fmt->efi_nextents; i++)
186 memcpy(&dst_efi_fmt->efi_extents[i],
187 &src_efi_fmt->efi_extents[i],
188 sizeof(struct xfs_extent));
189 return 0;
190 } else if (buf->i_len == len32) {
191 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
192
193 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
194 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
195 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
196 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
197 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
198 dst_efi_fmt->efi_extents[i].ext_start =
199 src_efi_fmt_32->efi_extents[i].ext_start;
200 dst_efi_fmt->efi_extents[i].ext_len =
201 src_efi_fmt_32->efi_extents[i].ext_len;
202 }
203 return 0;
204 } else if (buf->i_len == len64) {
205 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
206
207 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
208 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
209 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
210 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
211 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
212 dst_efi_fmt->efi_extents[i].ext_start =
213 src_efi_fmt_64->efi_extents[i].ext_start;
214 dst_efi_fmt->efi_extents[i].ext_len =
215 src_efi_fmt_64->efi_extents[i].ext_len;
216 }
217 return 0;
218 }
219 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, NULL, buf->i_addr,
220 buf->i_len);
221 return -EFSCORRUPTED;
222}
223
224static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
225{
226 return container_of(lip, struct xfs_efd_log_item, efd_item);
227}
228
229STATIC void
230xfs_efd_item_free(struct xfs_efd_log_item *efdp)
231{
232 kvfree(efdp->efd_item.li_lv_shadow);
233 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
234 kfree(efdp);
235 else
236 kmem_cache_free(xfs_efd_cache, efdp);
237}
238
239STATIC void
240xfs_efd_item_size(
241 struct xfs_log_item *lip,
242 int *nvecs,
243 int *nbytes)
244{
245 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
246
247 *nvecs += 1;
248 *nbytes += xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents);
249}
250
251/*
252 * This is called to fill in the vector of log iovecs for the
253 * given efd log item. We use only 1 iovec, and we point that
254 * at the efd_log_format structure embedded in the efd item.
255 * It is at this point that we assert that all of the extent
256 * slots in the efd item have been filled.
257 */
258STATIC void
259xfs_efd_item_format(
260 struct xfs_log_item *lip,
261 struct xfs_log_vec *lv)
262{
263 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
264 struct xfs_log_iovec *vecp = NULL;
265
266 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
267
268 efdp->efd_format.efd_type = XFS_LI_EFD;
269 efdp->efd_format.efd_size = 1;
270
271 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
272 &efdp->efd_format,
273 xfs_efd_log_format_sizeof(efdp->efd_format.efd_nextents));
274}
275
276/*
277 * The EFD is either committed or aborted if the transaction is cancelled. If
278 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
279 */
280STATIC void
281xfs_efd_item_release(
282 struct xfs_log_item *lip)
283{
284 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
285
286 xfs_efi_release(efdp->efd_efip);
287 xfs_efd_item_free(efdp);
288}
289
290static struct xfs_log_item *
291xfs_efd_item_intent(
292 struct xfs_log_item *lip)
293{
294 return &EFD_ITEM(lip)->efd_efip->efi_item;
295}
296
297static const struct xfs_item_ops xfs_efd_item_ops = {
298 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED |
299 XFS_ITEM_INTENT_DONE,
300 .iop_size = xfs_efd_item_size,
301 .iop_format = xfs_efd_item_format,
302 .iop_release = xfs_efd_item_release,
303 .iop_intent = xfs_efd_item_intent,
304};
305
306/*
307 * Fill the EFD with all extents from the EFI when we need to roll the
308 * transaction and continue with a new EFI.
309 *
310 * This simply copies all the extents in the EFI to the EFD rather than make
311 * assumptions about which extents in the EFI have already been processed. We
312 * currently keep the xefi list in the same order as the EFI extent list, but
313 * that may not always be the case. Copying everything avoids leaving a landmine
314 * were we fail to cancel all the extents in an EFI if the xefi list is
315 * processed in a different order to the extents in the EFI.
316 */
317static void
318xfs_efd_from_efi(
319 struct xfs_efd_log_item *efdp)
320{
321 struct xfs_efi_log_item *efip = efdp->efd_efip;
322 uint i;
323
324 ASSERT(efip->efi_format.efi_nextents > 0);
325 ASSERT(efdp->efd_next_extent < efip->efi_format.efi_nextents);
326
327 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
328 efdp->efd_format.efd_extents[i] =
329 efip->efi_format.efi_extents[i];
330 }
331 efdp->efd_next_extent = efip->efi_format.efi_nextents;
332}
333
334/* Sort bmap items by AG. */
335static int
336xfs_extent_free_diff_items(
337 void *priv,
338 const struct list_head *a,
339 const struct list_head *b)
340{
341 struct xfs_extent_free_item *ra;
342 struct xfs_extent_free_item *rb;
343
344 ra = container_of(a, struct xfs_extent_free_item, xefi_list);
345 rb = container_of(b, struct xfs_extent_free_item, xefi_list);
346
347 return ra->xefi_pag->pag_agno - rb->xefi_pag->pag_agno;
348}
349
350/* Log a free extent to the intent item. */
351STATIC void
352xfs_extent_free_log_item(
353 struct xfs_trans *tp,
354 struct xfs_efi_log_item *efip,
355 struct xfs_extent_free_item *xefi)
356{
357 uint next_extent;
358 struct xfs_extent *extp;
359
360 /*
361 * atomic_inc_return gives us the value after the increment;
362 * we want to use it as an array index so we need to subtract 1 from
363 * it.
364 */
365 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
366 ASSERT(next_extent < efip->efi_format.efi_nextents);
367 extp = &efip->efi_format.efi_extents[next_extent];
368 extp->ext_start = xefi->xefi_startblock;
369 extp->ext_len = xefi->xefi_blockcount;
370}
371
372static struct xfs_log_item *
373xfs_extent_free_create_intent(
374 struct xfs_trans *tp,
375 struct list_head *items,
376 unsigned int count,
377 bool sort)
378{
379 struct xfs_mount *mp = tp->t_mountp;
380 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count);
381 struct xfs_extent_free_item *xefi;
382
383 ASSERT(count > 0);
384
385 if (sort)
386 list_sort(mp, items, xfs_extent_free_diff_items);
387 list_for_each_entry(xefi, items, xefi_list)
388 xfs_extent_free_log_item(tp, efip, xefi);
389 return &efip->efi_item;
390}
391
392/* Get an EFD so we can process all the free extents. */
393static struct xfs_log_item *
394xfs_extent_free_create_done(
395 struct xfs_trans *tp,
396 struct xfs_log_item *intent,
397 unsigned int count)
398{
399 struct xfs_efi_log_item *efip = EFI_ITEM(intent);
400 struct xfs_efd_log_item *efdp;
401
402 ASSERT(count > 0);
403
404 if (count > XFS_EFD_MAX_FAST_EXTENTS) {
405 efdp = kzalloc(xfs_efd_log_item_sizeof(count),
406 GFP_KERNEL | __GFP_NOFAIL);
407 } else {
408 efdp = kmem_cache_zalloc(xfs_efd_cache,
409 GFP_KERNEL | __GFP_NOFAIL);
410 }
411
412 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
413 &xfs_efd_item_ops);
414 efdp->efd_efip = efip;
415 efdp->efd_format.efd_nextents = count;
416 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
417
418 return &efdp->efd_item;
419}
420
421/* Take a passive ref to the AG containing the space we're freeing. */
422void
423xfs_extent_free_get_group(
424 struct xfs_mount *mp,
425 struct xfs_extent_free_item *xefi)
426{
427 xfs_agnumber_t agno;
428
429 agno = XFS_FSB_TO_AGNO(mp, xefi->xefi_startblock);
430 xefi->xefi_pag = xfs_perag_intent_get(mp, agno);
431}
432
433/* Release a passive AG ref after some freeing work. */
434static inline void
435xfs_extent_free_put_group(
436 struct xfs_extent_free_item *xefi)
437{
438 xfs_perag_intent_put(xefi->xefi_pag);
439}
440
441/* Process a free extent. */
442STATIC int
443xfs_extent_free_finish_item(
444 struct xfs_trans *tp,
445 struct xfs_log_item *done,
446 struct list_head *item,
447 struct xfs_btree_cur **state)
448{
449 struct xfs_owner_info oinfo = { };
450 struct xfs_extent_free_item *xefi;
451 struct xfs_efd_log_item *efdp = EFD_ITEM(done);
452 struct xfs_mount *mp = tp->t_mountp;
453 struct xfs_extent *extp;
454 uint next_extent;
455 xfs_agblock_t agbno;
456 int error = 0;
457
458 xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
459 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
460
461 oinfo.oi_owner = xefi->xefi_owner;
462 if (xefi->xefi_flags & XFS_EFI_ATTR_FORK)
463 oinfo.oi_flags |= XFS_OWNER_INFO_ATTR_FORK;
464 if (xefi->xefi_flags & XFS_EFI_BMBT_BLOCK)
465 oinfo.oi_flags |= XFS_OWNER_INFO_BMBT_BLOCK;
466
467 trace_xfs_bmap_free_deferred(tp->t_mountp, xefi->xefi_pag->pag_agno, 0,
468 agbno, xefi->xefi_blockcount);
469
470 /*
471 * If we need a new transaction to make progress, the caller will log a
472 * new EFI with the current contents. It will also log an EFD to cancel
473 * the existing EFI, and so we need to copy all the unprocessed extents
474 * in this EFI to the EFD so this works correctly.
475 */
476 if (!(xefi->xefi_flags & XFS_EFI_CANCELLED))
477 error = __xfs_free_extent(tp, xefi->xefi_pag, agbno,
478 xefi->xefi_blockcount, &oinfo, xefi->xefi_agresv,
479 xefi->xefi_flags & XFS_EFI_SKIP_DISCARD);
480 if (error == -EAGAIN) {
481 xfs_efd_from_efi(efdp);
482 return error;
483 }
484
485 /* Add the work we finished to the EFD, even though nobody uses that */
486 next_extent = efdp->efd_next_extent;
487 ASSERT(next_extent < efdp->efd_format.efd_nextents);
488 extp = &(efdp->efd_format.efd_extents[next_extent]);
489 extp->ext_start = xefi->xefi_startblock;
490 extp->ext_len = xefi->xefi_blockcount;
491 efdp->efd_next_extent++;
492
493 xfs_extent_free_put_group(xefi);
494 kmem_cache_free(xfs_extfree_item_cache, xefi);
495 return error;
496}
497
498/* Abort all pending EFIs. */
499STATIC void
500xfs_extent_free_abort_intent(
501 struct xfs_log_item *intent)
502{
503 xfs_efi_release(EFI_ITEM(intent));
504}
505
506/* Cancel a free extent. */
507STATIC void
508xfs_extent_free_cancel_item(
509 struct list_head *item)
510{
511 struct xfs_extent_free_item *xefi;
512
513 xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
514
515 xfs_extent_free_put_group(xefi);
516 kmem_cache_free(xfs_extfree_item_cache, xefi);
517}
518
519/*
520 * AGFL blocks are accounted differently in the reserve pools and are not
521 * inserted into the busy extent list.
522 */
523STATIC int
524xfs_agfl_free_finish_item(
525 struct xfs_trans *tp,
526 struct xfs_log_item *done,
527 struct list_head *item,
528 struct xfs_btree_cur **state)
529{
530 struct xfs_owner_info oinfo = { };
531 struct xfs_mount *mp = tp->t_mountp;
532 struct xfs_efd_log_item *efdp = EFD_ITEM(done);
533 struct xfs_extent_free_item *xefi;
534 struct xfs_extent *extp;
535 struct xfs_buf *agbp;
536 int error;
537 xfs_agblock_t agbno;
538 uint next_extent;
539
540 xefi = container_of(item, struct xfs_extent_free_item, xefi_list);
541 ASSERT(xefi->xefi_blockcount == 1);
542 agbno = XFS_FSB_TO_AGBNO(mp, xefi->xefi_startblock);
543 oinfo.oi_owner = xefi->xefi_owner;
544
545 trace_xfs_agfl_free_deferred(mp, xefi->xefi_pag->pag_agno, 0, agbno,
546 xefi->xefi_blockcount);
547
548 error = xfs_alloc_read_agf(xefi->xefi_pag, tp, 0, &agbp);
549 if (!error)
550 error = xfs_free_agfl_block(tp, xefi->xefi_pag->pag_agno,
551 agbno, agbp, &oinfo);
552
553 next_extent = efdp->efd_next_extent;
554 ASSERT(next_extent < efdp->efd_format.efd_nextents);
555 extp = &(efdp->efd_format.efd_extents[next_extent]);
556 extp->ext_start = xefi->xefi_startblock;
557 extp->ext_len = xefi->xefi_blockcount;
558 efdp->efd_next_extent++;
559
560 xfs_extent_free_put_group(xefi);
561 kmem_cache_free(xfs_extfree_item_cache, xefi);
562 return error;
563}
564
565/* Is this recovered EFI ok? */
566static inline bool
567xfs_efi_validate_ext(
568 struct xfs_mount *mp,
569 struct xfs_extent *extp)
570{
571 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
572}
573
574static inline void
575xfs_efi_recover_work(
576 struct xfs_mount *mp,
577 struct xfs_defer_pending *dfp,
578 struct xfs_extent *extp)
579{
580 struct xfs_extent_free_item *xefi;
581
582 xefi = kmem_cache_zalloc(xfs_extfree_item_cache,
583 GFP_KERNEL | __GFP_NOFAIL);
584 xefi->xefi_startblock = extp->ext_start;
585 xefi->xefi_blockcount = extp->ext_len;
586 xefi->xefi_agresv = XFS_AG_RESV_NONE;
587 xefi->xefi_owner = XFS_RMAP_OWN_UNKNOWN;
588 xfs_extent_free_get_group(mp, xefi);
589
590 xfs_defer_add_item(dfp, &xefi->xefi_list);
591}
592
593/*
594 * Process an extent free intent item that was recovered from
595 * the log. We need to free the extents that it describes.
596 */
597STATIC int
598xfs_extent_free_recover_work(
599 struct xfs_defer_pending *dfp,
600 struct list_head *capture_list)
601{
602 struct xfs_trans_res resv;
603 struct xfs_log_item *lip = dfp->dfp_intent;
604 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
605 struct xfs_mount *mp = lip->li_log->l_mp;
606 struct xfs_trans *tp;
607 int i;
608 int error = 0;
609
610 /*
611 * First check the validity of the extents described by the
612 * EFI. If any are bad, then assume that all are bad and
613 * just toss the EFI.
614 */
615 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
616 if (!xfs_efi_validate_ext(mp,
617 &efip->efi_format.efi_extents[i])) {
618 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
619 &efip->efi_format,
620 sizeof(efip->efi_format));
621 return -EFSCORRUPTED;
622 }
623
624 xfs_efi_recover_work(mp, dfp, &efip->efi_format.efi_extents[i]);
625 }
626
627 resv = xlog_recover_resv(&M_RES(mp)->tr_itruncate);
628 error = xfs_trans_alloc(mp, &resv, 0, 0, 0, &tp);
629 if (error)
630 return error;
631
632 error = xlog_recover_finish_intent(tp, dfp);
633 if (error == -EFSCORRUPTED)
634 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
635 &efip->efi_format,
636 sizeof(efip->efi_format));
637 if (error)
638 goto abort_error;
639
640 return xfs_defer_ops_capture_and_commit(tp, capture_list);
641
642abort_error:
643 xfs_trans_cancel(tp);
644 return error;
645}
646
647/* Relog an intent item to push the log tail forward. */
648static struct xfs_log_item *
649xfs_extent_free_relog_intent(
650 struct xfs_trans *tp,
651 struct xfs_log_item *intent,
652 struct xfs_log_item *done_item)
653{
654 struct xfs_efd_log_item *efdp = EFD_ITEM(done_item);
655 struct xfs_efi_log_item *efip;
656 struct xfs_extent *extp;
657 unsigned int count;
658
659 count = EFI_ITEM(intent)->efi_format.efi_nextents;
660 extp = EFI_ITEM(intent)->efi_format.efi_extents;
661
662 efdp->efd_next_extent = count;
663 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
664
665 efip = xfs_efi_init(tp->t_mountp, count);
666 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
667 atomic_set(&efip->efi_next_extent, count);
668
669 return &efip->efi_item;
670}
671
672const struct xfs_defer_op_type xfs_extent_free_defer_type = {
673 .name = "extent_free",
674 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
675 .create_intent = xfs_extent_free_create_intent,
676 .abort_intent = xfs_extent_free_abort_intent,
677 .create_done = xfs_extent_free_create_done,
678 .finish_item = xfs_extent_free_finish_item,
679 .cancel_item = xfs_extent_free_cancel_item,
680 .recover_work = xfs_extent_free_recover_work,
681 .relog_intent = xfs_extent_free_relog_intent,
682};
683
684/* sub-type with special handling for AGFL deferred frees */
685const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
686 .name = "agfl_free",
687 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
688 .create_intent = xfs_extent_free_create_intent,
689 .abort_intent = xfs_extent_free_abort_intent,
690 .create_done = xfs_extent_free_create_done,
691 .finish_item = xfs_agfl_free_finish_item,
692 .cancel_item = xfs_extent_free_cancel_item,
693 .recover_work = xfs_extent_free_recover_work,
694 .relog_intent = xfs_extent_free_relog_intent,
695};
696
697STATIC bool
698xfs_efi_item_match(
699 struct xfs_log_item *lip,
700 uint64_t intent_id)
701{
702 return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
703}
704
705static const struct xfs_item_ops xfs_efi_item_ops = {
706 .flags = XFS_ITEM_INTENT,
707 .iop_size = xfs_efi_item_size,
708 .iop_format = xfs_efi_item_format,
709 .iop_unpin = xfs_efi_item_unpin,
710 .iop_release = xfs_efi_item_release,
711 .iop_match = xfs_efi_item_match,
712};
713
714/*
715 * This routine is called to create an in-core extent free intent
716 * item from the efi format structure which was logged on disk.
717 * It allocates an in-core efi, copies the extents from the format
718 * structure into it, and adds the efi to the AIL with the given
719 * LSN.
720 */
721STATIC int
722xlog_recover_efi_commit_pass2(
723 struct xlog *log,
724 struct list_head *buffer_list,
725 struct xlog_recover_item *item,
726 xfs_lsn_t lsn)
727{
728 struct xfs_mount *mp = log->l_mp;
729 struct xfs_efi_log_item *efip;
730 struct xfs_efi_log_format *efi_formatp;
731 int error;
732
733 efi_formatp = item->ri_buf[0].i_addr;
734
735 if (item->ri_buf[0].i_len < xfs_efi_log_format_sizeof(0)) {
736 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
737 item->ri_buf[0].i_addr, item->ri_buf[0].i_len);
738 return -EFSCORRUPTED;
739 }
740
741 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
742 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
743 if (error) {
744 xfs_efi_item_free(efip);
745 return error;
746 }
747 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
748
749 xlog_recover_intent_item(log, &efip->efi_item, lsn,
750 &xfs_extent_free_defer_type);
751 return 0;
752}
753
754const struct xlog_recover_item_ops xlog_efi_item_ops = {
755 .item_type = XFS_LI_EFI,
756 .commit_pass2 = xlog_recover_efi_commit_pass2,
757};
758
759/*
760 * This routine is called when an EFD format structure is found in a committed
761 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
762 * was still in the log. To do this it searches the AIL for the EFI with an id
763 * equal to that in the EFD format structure. If we find it we drop the EFD
764 * reference, which removes the EFI from the AIL and frees it.
765 */
766STATIC int
767xlog_recover_efd_commit_pass2(
768 struct xlog *log,
769 struct list_head *buffer_list,
770 struct xlog_recover_item *item,
771 xfs_lsn_t lsn)
772{
773 struct xfs_efd_log_format *efd_formatp;
774 int buflen = item->ri_buf[0].i_len;
775
776 efd_formatp = item->ri_buf[0].i_addr;
777
778 if (buflen < sizeof(struct xfs_efd_log_format)) {
779 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
780 efd_formatp, buflen);
781 return -EFSCORRUPTED;
782 }
783
784 if (item->ri_buf[0].i_len != xfs_efd_log_format32_sizeof(
785 efd_formatp->efd_nextents) &&
786 item->ri_buf[0].i_len != xfs_efd_log_format64_sizeof(
787 efd_formatp->efd_nextents)) {
788 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, log->l_mp,
789 efd_formatp, buflen);
790 return -EFSCORRUPTED;
791 }
792
793 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
794 return 0;
795}
796
797const struct xlog_recover_item_ops xlog_efd_item_ops = {
798 .item_type = XFS_LI_EFD,
799 .commit_pass2 = xlog_recover_efd_commit_pass2,
800};
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_bit.h"
12#include "xfs_shared.h"
13#include "xfs_mount.h"
14#include "xfs_defer.h"
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_extfree_item.h"
18#include "xfs_log.h"
19#include "xfs_btree.h"
20#include "xfs_rmap.h"
21#include "xfs_alloc.h"
22#include "xfs_bmap.h"
23#include "xfs_trace.h"
24#include "xfs_error.h"
25#include "xfs_log_priv.h"
26#include "xfs_log_recover.h"
27
28kmem_zone_t *xfs_efi_zone;
29kmem_zone_t *xfs_efd_zone;
30
31static const struct xfs_item_ops xfs_efi_item_ops;
32
33static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
34{
35 return container_of(lip, struct xfs_efi_log_item, efi_item);
36}
37
38STATIC void
39xfs_efi_item_free(
40 struct xfs_efi_log_item *efip)
41{
42 kmem_free(efip->efi_item.li_lv_shadow);
43 if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44 kmem_free(efip);
45 else
46 kmem_cache_free(xfs_efi_zone, efip);
47}
48
49/*
50 * Freeing the efi requires that we remove it from the AIL if it has already
51 * been placed there. However, the EFI may not yet have been placed in the AIL
52 * when called by xfs_efi_release() from EFD processing due to the ordering of
53 * committed vs unpin operations in bulk insert operations. Hence the reference
54 * count to ensure only the last caller frees the EFI.
55 */
56STATIC void
57xfs_efi_release(
58 struct xfs_efi_log_item *efip)
59{
60 ASSERT(atomic_read(&efip->efi_refcount) > 0);
61 if (atomic_dec_and_test(&efip->efi_refcount)) {
62 xfs_trans_ail_delete(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
63 xfs_efi_item_free(efip);
64 }
65}
66
67/*
68 * This returns the number of iovecs needed to log the given efi item.
69 * We only need 1 iovec for an efi item. It just logs the efi_log_format
70 * structure.
71 */
72static inline int
73xfs_efi_item_sizeof(
74 struct xfs_efi_log_item *efip)
75{
76 return sizeof(struct xfs_efi_log_format) +
77 (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
78}
79
80STATIC void
81xfs_efi_item_size(
82 struct xfs_log_item *lip,
83 int *nvecs,
84 int *nbytes)
85{
86 *nvecs += 1;
87 *nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
88}
89
90/*
91 * This is called to fill in the vector of log iovecs for the
92 * given efi log item. We use only 1 iovec, and we point that
93 * at the efi_log_format structure embedded in the efi item.
94 * It is at this point that we assert that all of the extent
95 * slots in the efi item have been filled.
96 */
97STATIC void
98xfs_efi_item_format(
99 struct xfs_log_item *lip,
100 struct xfs_log_vec *lv)
101{
102 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
103 struct xfs_log_iovec *vecp = NULL;
104
105 ASSERT(atomic_read(&efip->efi_next_extent) ==
106 efip->efi_format.efi_nextents);
107
108 efip->efi_format.efi_type = XFS_LI_EFI;
109 efip->efi_format.efi_size = 1;
110
111 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
112 &efip->efi_format,
113 xfs_efi_item_sizeof(efip));
114}
115
116
117/*
118 * The unpin operation is the last place an EFI is manipulated in the log. It is
119 * either inserted in the AIL or aborted in the event of a log I/O error. In
120 * either case, the EFI transaction has been successfully committed to make it
121 * this far. Therefore, we expect whoever committed the EFI to either construct
122 * and commit the EFD or drop the EFD's reference in the event of error. Simply
123 * drop the log's EFI reference now that the log is done with it.
124 */
125STATIC void
126xfs_efi_item_unpin(
127 struct xfs_log_item *lip,
128 int remove)
129{
130 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
131 xfs_efi_release(efip);
132}
133
134/*
135 * The EFI has been either committed or aborted if the transaction has been
136 * cancelled. If the transaction was cancelled, an EFD isn't going to be
137 * constructed and thus we free the EFI here directly.
138 */
139STATIC void
140xfs_efi_item_release(
141 struct xfs_log_item *lip)
142{
143 xfs_efi_release(EFI_ITEM(lip));
144}
145
146/*
147 * Allocate and initialize an efi item with the given number of extents.
148 */
149STATIC struct xfs_efi_log_item *
150xfs_efi_init(
151 struct xfs_mount *mp,
152 uint nextents)
153
154{
155 struct xfs_efi_log_item *efip;
156 uint size;
157
158 ASSERT(nextents > 0);
159 if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
160 size = (uint)(sizeof(struct xfs_efi_log_item) +
161 ((nextents - 1) * sizeof(xfs_extent_t)));
162 efip = kmem_zalloc(size, 0);
163 } else {
164 efip = kmem_cache_zalloc(xfs_efi_zone,
165 GFP_KERNEL | __GFP_NOFAIL);
166 }
167
168 xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
169 efip->efi_format.efi_nextents = nextents;
170 efip->efi_format.efi_id = (uintptr_t)(void *)efip;
171 atomic_set(&efip->efi_next_extent, 0);
172 atomic_set(&efip->efi_refcount, 2);
173
174 return efip;
175}
176
177/*
178 * Copy an EFI format buffer from the given buf, and into the destination
179 * EFI format structure.
180 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
181 * one of which will be the native format for this kernel.
182 * It will handle the conversion of formats if necessary.
183 */
184STATIC int
185xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
186{
187 xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
188 uint i;
189 uint len = sizeof(xfs_efi_log_format_t) +
190 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
191 uint len32 = sizeof(xfs_efi_log_format_32_t) +
192 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
193 uint len64 = sizeof(xfs_efi_log_format_64_t) +
194 (src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
195
196 if (buf->i_len == len) {
197 memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
198 return 0;
199 } else if (buf->i_len == len32) {
200 xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
201
202 dst_efi_fmt->efi_type = src_efi_fmt_32->efi_type;
203 dst_efi_fmt->efi_size = src_efi_fmt_32->efi_size;
204 dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
205 dst_efi_fmt->efi_id = src_efi_fmt_32->efi_id;
206 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
207 dst_efi_fmt->efi_extents[i].ext_start =
208 src_efi_fmt_32->efi_extents[i].ext_start;
209 dst_efi_fmt->efi_extents[i].ext_len =
210 src_efi_fmt_32->efi_extents[i].ext_len;
211 }
212 return 0;
213 } else if (buf->i_len == len64) {
214 xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
215
216 dst_efi_fmt->efi_type = src_efi_fmt_64->efi_type;
217 dst_efi_fmt->efi_size = src_efi_fmt_64->efi_size;
218 dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
219 dst_efi_fmt->efi_id = src_efi_fmt_64->efi_id;
220 for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
221 dst_efi_fmt->efi_extents[i].ext_start =
222 src_efi_fmt_64->efi_extents[i].ext_start;
223 dst_efi_fmt->efi_extents[i].ext_len =
224 src_efi_fmt_64->efi_extents[i].ext_len;
225 }
226 return 0;
227 }
228 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
229 return -EFSCORRUPTED;
230}
231
232static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
233{
234 return container_of(lip, struct xfs_efd_log_item, efd_item);
235}
236
237STATIC void
238xfs_efd_item_free(struct xfs_efd_log_item *efdp)
239{
240 kmem_free(efdp->efd_item.li_lv_shadow);
241 if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
242 kmem_free(efdp);
243 else
244 kmem_cache_free(xfs_efd_zone, efdp);
245}
246
247/*
248 * This returns the number of iovecs needed to log the given efd item.
249 * We only need 1 iovec for an efd item. It just logs the efd_log_format
250 * structure.
251 */
252static inline int
253xfs_efd_item_sizeof(
254 struct xfs_efd_log_item *efdp)
255{
256 return sizeof(xfs_efd_log_format_t) +
257 (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
258}
259
260STATIC void
261xfs_efd_item_size(
262 struct xfs_log_item *lip,
263 int *nvecs,
264 int *nbytes)
265{
266 *nvecs += 1;
267 *nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
268}
269
270/*
271 * This is called to fill in the vector of log iovecs for the
272 * given efd log item. We use only 1 iovec, and we point that
273 * at the efd_log_format structure embedded in the efd item.
274 * It is at this point that we assert that all of the extent
275 * slots in the efd item have been filled.
276 */
277STATIC void
278xfs_efd_item_format(
279 struct xfs_log_item *lip,
280 struct xfs_log_vec *lv)
281{
282 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
283 struct xfs_log_iovec *vecp = NULL;
284
285 ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
286
287 efdp->efd_format.efd_type = XFS_LI_EFD;
288 efdp->efd_format.efd_size = 1;
289
290 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
291 &efdp->efd_format,
292 xfs_efd_item_sizeof(efdp));
293}
294
295/*
296 * The EFD is either committed or aborted if the transaction is cancelled. If
297 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
298 */
299STATIC void
300xfs_efd_item_release(
301 struct xfs_log_item *lip)
302{
303 struct xfs_efd_log_item *efdp = EFD_ITEM(lip);
304
305 xfs_efi_release(efdp->efd_efip);
306 xfs_efd_item_free(efdp);
307}
308
309static const struct xfs_item_ops xfs_efd_item_ops = {
310 .flags = XFS_ITEM_RELEASE_WHEN_COMMITTED,
311 .iop_size = xfs_efd_item_size,
312 .iop_format = xfs_efd_item_format,
313 .iop_release = xfs_efd_item_release,
314};
315
316/*
317 * Allocate an "extent free done" log item that will hold nextents worth of
318 * extents. The caller must use all nextents extents, because we are not
319 * flexible about this at all.
320 */
321static struct xfs_efd_log_item *
322xfs_trans_get_efd(
323 struct xfs_trans *tp,
324 struct xfs_efi_log_item *efip,
325 unsigned int nextents)
326{
327 struct xfs_efd_log_item *efdp;
328
329 ASSERT(nextents > 0);
330
331 if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
332 efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
333 (nextents - 1) * sizeof(struct xfs_extent),
334 0);
335 } else {
336 efdp = kmem_cache_zalloc(xfs_efd_zone,
337 GFP_KERNEL | __GFP_NOFAIL);
338 }
339
340 xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
341 &xfs_efd_item_ops);
342 efdp->efd_efip = efip;
343 efdp->efd_format.efd_nextents = nextents;
344 efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
345
346 xfs_trans_add_item(tp, &efdp->efd_item);
347 return efdp;
348}
349
350/*
351 * Free an extent and log it to the EFD. Note that the transaction is marked
352 * dirty regardless of whether the extent free succeeds or fails to support the
353 * EFI/EFD lifecycle rules.
354 */
355static int
356xfs_trans_free_extent(
357 struct xfs_trans *tp,
358 struct xfs_efd_log_item *efdp,
359 xfs_fsblock_t start_block,
360 xfs_extlen_t ext_len,
361 const struct xfs_owner_info *oinfo,
362 bool skip_discard)
363{
364 struct xfs_mount *mp = tp->t_mountp;
365 struct xfs_extent *extp;
366 uint next_extent;
367 xfs_agnumber_t agno = XFS_FSB_TO_AGNO(mp, start_block);
368 xfs_agblock_t agbno = XFS_FSB_TO_AGBNO(mp,
369 start_block);
370 int error;
371
372 trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
373
374 error = __xfs_free_extent(tp, start_block, ext_len,
375 oinfo, XFS_AG_RESV_NONE, skip_discard);
376 /*
377 * Mark the transaction dirty, even on error. This ensures the
378 * transaction is aborted, which:
379 *
380 * 1.) releases the EFI and frees the EFD
381 * 2.) shuts down the filesystem
382 */
383 tp->t_flags |= XFS_TRANS_DIRTY;
384 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
385
386 next_extent = efdp->efd_next_extent;
387 ASSERT(next_extent < efdp->efd_format.efd_nextents);
388 extp = &(efdp->efd_format.efd_extents[next_extent]);
389 extp->ext_start = start_block;
390 extp->ext_len = ext_len;
391 efdp->efd_next_extent++;
392
393 return error;
394}
395
396/* Sort bmap items by AG. */
397static int
398xfs_extent_free_diff_items(
399 void *priv,
400 const struct list_head *a,
401 const struct list_head *b)
402{
403 struct xfs_mount *mp = priv;
404 struct xfs_extent_free_item *ra;
405 struct xfs_extent_free_item *rb;
406
407 ra = container_of(a, struct xfs_extent_free_item, xefi_list);
408 rb = container_of(b, struct xfs_extent_free_item, xefi_list);
409 return XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
410 XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
411}
412
413/* Log a free extent to the intent item. */
414STATIC void
415xfs_extent_free_log_item(
416 struct xfs_trans *tp,
417 struct xfs_efi_log_item *efip,
418 struct xfs_extent_free_item *free)
419{
420 uint next_extent;
421 struct xfs_extent *extp;
422
423 tp->t_flags |= XFS_TRANS_DIRTY;
424 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
425
426 /*
427 * atomic_inc_return gives us the value after the increment;
428 * we want to use it as an array index so we need to subtract 1 from
429 * it.
430 */
431 next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
432 ASSERT(next_extent < efip->efi_format.efi_nextents);
433 extp = &efip->efi_format.efi_extents[next_extent];
434 extp->ext_start = free->xefi_startblock;
435 extp->ext_len = free->xefi_blockcount;
436}
437
438static struct xfs_log_item *
439xfs_extent_free_create_intent(
440 struct xfs_trans *tp,
441 struct list_head *items,
442 unsigned int count,
443 bool sort)
444{
445 struct xfs_mount *mp = tp->t_mountp;
446 struct xfs_efi_log_item *efip = xfs_efi_init(mp, count);
447 struct xfs_extent_free_item *free;
448
449 ASSERT(count > 0);
450
451 xfs_trans_add_item(tp, &efip->efi_item);
452 if (sort)
453 list_sort(mp, items, xfs_extent_free_diff_items);
454 list_for_each_entry(free, items, xefi_list)
455 xfs_extent_free_log_item(tp, efip, free);
456 return &efip->efi_item;
457}
458
459/* Get an EFD so we can process all the free extents. */
460static struct xfs_log_item *
461xfs_extent_free_create_done(
462 struct xfs_trans *tp,
463 struct xfs_log_item *intent,
464 unsigned int count)
465{
466 return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
467}
468
469/* Process a free extent. */
470STATIC int
471xfs_extent_free_finish_item(
472 struct xfs_trans *tp,
473 struct xfs_log_item *done,
474 struct list_head *item,
475 struct xfs_btree_cur **state)
476{
477 struct xfs_extent_free_item *free;
478 int error;
479
480 free = container_of(item, struct xfs_extent_free_item, xefi_list);
481 error = xfs_trans_free_extent(tp, EFD_ITEM(done),
482 free->xefi_startblock,
483 free->xefi_blockcount,
484 &free->xefi_oinfo, free->xefi_skip_discard);
485 kmem_free(free);
486 return error;
487}
488
489/* Abort all pending EFIs. */
490STATIC void
491xfs_extent_free_abort_intent(
492 struct xfs_log_item *intent)
493{
494 xfs_efi_release(EFI_ITEM(intent));
495}
496
497/* Cancel a free extent. */
498STATIC void
499xfs_extent_free_cancel_item(
500 struct list_head *item)
501{
502 struct xfs_extent_free_item *free;
503
504 free = container_of(item, struct xfs_extent_free_item, xefi_list);
505 kmem_free(free);
506}
507
508const struct xfs_defer_op_type xfs_extent_free_defer_type = {
509 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
510 .create_intent = xfs_extent_free_create_intent,
511 .abort_intent = xfs_extent_free_abort_intent,
512 .create_done = xfs_extent_free_create_done,
513 .finish_item = xfs_extent_free_finish_item,
514 .cancel_item = xfs_extent_free_cancel_item,
515};
516
517/*
518 * AGFL blocks are accounted differently in the reserve pools and are not
519 * inserted into the busy extent list.
520 */
521STATIC int
522xfs_agfl_free_finish_item(
523 struct xfs_trans *tp,
524 struct xfs_log_item *done,
525 struct list_head *item,
526 struct xfs_btree_cur **state)
527{
528 struct xfs_mount *mp = tp->t_mountp;
529 struct xfs_efd_log_item *efdp = EFD_ITEM(done);
530 struct xfs_extent_free_item *free;
531 struct xfs_extent *extp;
532 struct xfs_buf *agbp;
533 int error;
534 xfs_agnumber_t agno;
535 xfs_agblock_t agbno;
536 uint next_extent;
537
538 free = container_of(item, struct xfs_extent_free_item, xefi_list);
539 ASSERT(free->xefi_blockcount == 1);
540 agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
541 agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
542
543 trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
544
545 error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
546 if (!error)
547 error = xfs_free_agfl_block(tp, agno, agbno, agbp,
548 &free->xefi_oinfo);
549
550 /*
551 * Mark the transaction dirty, even on error. This ensures the
552 * transaction is aborted, which:
553 *
554 * 1.) releases the EFI and frees the EFD
555 * 2.) shuts down the filesystem
556 */
557 tp->t_flags |= XFS_TRANS_DIRTY;
558 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
559
560 next_extent = efdp->efd_next_extent;
561 ASSERT(next_extent < efdp->efd_format.efd_nextents);
562 extp = &(efdp->efd_format.efd_extents[next_extent]);
563 extp->ext_start = free->xefi_startblock;
564 extp->ext_len = free->xefi_blockcount;
565 efdp->efd_next_extent++;
566
567 kmem_free(free);
568 return error;
569}
570
571/* sub-type with special handling for AGFL deferred frees */
572const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
573 .max_items = XFS_EFI_MAX_FAST_EXTENTS,
574 .create_intent = xfs_extent_free_create_intent,
575 .abort_intent = xfs_extent_free_abort_intent,
576 .create_done = xfs_extent_free_create_done,
577 .finish_item = xfs_agfl_free_finish_item,
578 .cancel_item = xfs_extent_free_cancel_item,
579};
580
581/* Is this recovered EFI ok? */
582static inline bool
583xfs_efi_validate_ext(
584 struct xfs_mount *mp,
585 struct xfs_extent *extp)
586{
587 return xfs_verify_fsbext(mp, extp->ext_start, extp->ext_len);
588}
589
590/*
591 * Process an extent free intent item that was recovered from
592 * the log. We need to free the extents that it describes.
593 */
594STATIC int
595xfs_efi_item_recover(
596 struct xfs_log_item *lip,
597 struct list_head *capture_list)
598{
599 struct xfs_efi_log_item *efip = EFI_ITEM(lip);
600 struct xfs_mount *mp = lip->li_mountp;
601 struct xfs_efd_log_item *efdp;
602 struct xfs_trans *tp;
603 struct xfs_extent *extp;
604 int i;
605 int error = 0;
606
607 /*
608 * First check the validity of the extents described by the
609 * EFI. If any are bad, then assume that all are bad and
610 * just toss the EFI.
611 */
612 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
613 if (!xfs_efi_validate_ext(mp,
614 &efip->efi_format.efi_extents[i])) {
615 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
616 &efip->efi_format,
617 sizeof(efip->efi_format));
618 return -EFSCORRUPTED;
619 }
620 }
621
622 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
623 if (error)
624 return error;
625 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
626
627 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
628 extp = &efip->efi_format.efi_extents[i];
629 error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
630 extp->ext_len,
631 &XFS_RMAP_OINFO_ANY_OWNER, false);
632 if (error)
633 goto abort_error;
634
635 }
636
637 return xfs_defer_ops_capture_and_commit(tp, NULL, capture_list);
638
639abort_error:
640 xfs_trans_cancel(tp);
641 return error;
642}
643
644STATIC bool
645xfs_efi_item_match(
646 struct xfs_log_item *lip,
647 uint64_t intent_id)
648{
649 return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
650}
651
652/* Relog an intent item to push the log tail forward. */
653static struct xfs_log_item *
654xfs_efi_item_relog(
655 struct xfs_log_item *intent,
656 struct xfs_trans *tp)
657{
658 struct xfs_efd_log_item *efdp;
659 struct xfs_efi_log_item *efip;
660 struct xfs_extent *extp;
661 unsigned int count;
662
663 count = EFI_ITEM(intent)->efi_format.efi_nextents;
664 extp = EFI_ITEM(intent)->efi_format.efi_extents;
665
666 tp->t_flags |= XFS_TRANS_DIRTY;
667 efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
668 efdp->efd_next_extent = count;
669 memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
670 set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
671
672 efip = xfs_efi_init(tp->t_mountp, count);
673 memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
674 atomic_set(&efip->efi_next_extent, count);
675 xfs_trans_add_item(tp, &efip->efi_item);
676 set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
677 return &efip->efi_item;
678}
679
680static const struct xfs_item_ops xfs_efi_item_ops = {
681 .iop_size = xfs_efi_item_size,
682 .iop_format = xfs_efi_item_format,
683 .iop_unpin = xfs_efi_item_unpin,
684 .iop_release = xfs_efi_item_release,
685 .iop_recover = xfs_efi_item_recover,
686 .iop_match = xfs_efi_item_match,
687 .iop_relog = xfs_efi_item_relog,
688};
689
690/*
691 * This routine is called to create an in-core extent free intent
692 * item from the efi format structure which was logged on disk.
693 * It allocates an in-core efi, copies the extents from the format
694 * structure into it, and adds the efi to the AIL with the given
695 * LSN.
696 */
697STATIC int
698xlog_recover_efi_commit_pass2(
699 struct xlog *log,
700 struct list_head *buffer_list,
701 struct xlog_recover_item *item,
702 xfs_lsn_t lsn)
703{
704 struct xfs_mount *mp = log->l_mp;
705 struct xfs_efi_log_item *efip;
706 struct xfs_efi_log_format *efi_formatp;
707 int error;
708
709 efi_formatp = item->ri_buf[0].i_addr;
710
711 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
712 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
713 if (error) {
714 xfs_efi_item_free(efip);
715 return error;
716 }
717 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
718 /*
719 * Insert the intent into the AIL directly and drop one reference so
720 * that finishing or canceling the work will drop the other.
721 */
722 xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
723 xfs_efi_release(efip);
724 return 0;
725}
726
727const struct xlog_recover_item_ops xlog_efi_item_ops = {
728 .item_type = XFS_LI_EFI,
729 .commit_pass2 = xlog_recover_efi_commit_pass2,
730};
731
732/*
733 * This routine is called when an EFD format structure is found in a committed
734 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
735 * was still in the log. To do this it searches the AIL for the EFI with an id
736 * equal to that in the EFD format structure. If we find it we drop the EFD
737 * reference, which removes the EFI from the AIL and frees it.
738 */
739STATIC int
740xlog_recover_efd_commit_pass2(
741 struct xlog *log,
742 struct list_head *buffer_list,
743 struct xlog_recover_item *item,
744 xfs_lsn_t lsn)
745{
746 struct xfs_efd_log_format *efd_formatp;
747
748 efd_formatp = item->ri_buf[0].i_addr;
749 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
750 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
751 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
752 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
753
754 xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
755 return 0;
756}
757
758const struct xlog_recover_item_ops xlog_efd_item_ops = {
759 .item_type = XFS_LI_EFD,
760 .commit_pass2 = xlog_recover_efd_commit_pass2,
761};