Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_btree.h"
14#include "xfs_btree_staging.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_health.h"
20#include "xfs_trace.h"
21#include "xfs_trans.h"
22#include "xfs_ag.h"
23
24static struct kmem_cache *xfs_allocbt_cur_cache;
25
26STATIC struct xfs_btree_cur *
27xfs_bnobt_dup_cursor(
28 struct xfs_btree_cur *cur)
29{
30 return xfs_bnobt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
31 cur->bc_ag.pag);
32}
33
34STATIC struct xfs_btree_cur *
35xfs_cntbt_dup_cursor(
36 struct xfs_btree_cur *cur)
37{
38 return xfs_cntbt_init_cursor(cur->bc_mp, cur->bc_tp, cur->bc_ag.agbp,
39 cur->bc_ag.pag);
40}
41
42
43STATIC void
44xfs_allocbt_set_root(
45 struct xfs_btree_cur *cur,
46 const union xfs_btree_ptr *ptr,
47 int inc)
48{
49 struct xfs_buf *agbp = cur->bc_ag.agbp;
50 struct xfs_agf *agf = agbp->b_addr;
51
52 ASSERT(ptr->s != 0);
53
54 if (xfs_btree_is_bno(cur->bc_ops)) {
55 agf->agf_bno_root = ptr->s;
56 be32_add_cpu(&agf->agf_bno_level, inc);
57 cur->bc_ag.pag->pagf_bno_level += inc;
58 } else {
59 agf->agf_cnt_root = ptr->s;
60 be32_add_cpu(&agf->agf_cnt_level, inc);
61 cur->bc_ag.pag->pagf_cnt_level += inc;
62 }
63
64 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
65}
66
67STATIC int
68xfs_allocbt_alloc_block(
69 struct xfs_btree_cur *cur,
70 const union xfs_btree_ptr *start,
71 union xfs_btree_ptr *new,
72 int *stat)
73{
74 int error;
75 xfs_agblock_t bno;
76
77 /* Allocate the new block from the freelist. If we can't, give up. */
78 error = xfs_alloc_get_freelist(cur->bc_ag.pag, cur->bc_tp,
79 cur->bc_ag.agbp, &bno, 1);
80 if (error)
81 return error;
82
83 if (bno == NULLAGBLOCK) {
84 *stat = 0;
85 return 0;
86 }
87
88 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
89 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.pag, bno, 1, false);
90
91 new->s = cpu_to_be32(bno);
92
93 *stat = 1;
94 return 0;
95}
96
97STATIC int
98xfs_allocbt_free_block(
99 struct xfs_btree_cur *cur,
100 struct xfs_buf *bp)
101{
102 struct xfs_buf *agbp = cur->bc_ag.agbp;
103 xfs_agblock_t bno;
104 int error;
105
106 bno = xfs_daddr_to_agbno(cur->bc_mp, xfs_buf_daddr(bp));
107 error = xfs_alloc_put_freelist(cur->bc_ag.pag, cur->bc_tp, agbp, NULL,
108 bno, 1);
109 if (error)
110 return error;
111
112 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
113 xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
114 XFS_EXTENT_BUSY_SKIP_DISCARD);
115 return 0;
116}
117
118/*
119 * Update the longest extent in the AGF
120 */
121STATIC void
122xfs_allocbt_update_lastrec(
123 struct xfs_btree_cur *cur,
124 const struct xfs_btree_block *block,
125 const union xfs_btree_rec *rec,
126 int ptr,
127 int reason)
128{
129 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
130 struct xfs_perag *pag;
131 __be32 len;
132 int numrecs;
133
134 ASSERT(!xfs_btree_is_bno(cur->bc_ops));
135
136 switch (reason) {
137 case LASTREC_UPDATE:
138 /*
139 * If this is the last leaf block and it's the last record,
140 * then update the size of the longest extent in the AG.
141 */
142 if (ptr != xfs_btree_get_numrecs(block))
143 return;
144 len = rec->alloc.ar_blockcount;
145 break;
146 case LASTREC_INSREC:
147 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
148 be32_to_cpu(agf->agf_longest))
149 return;
150 len = rec->alloc.ar_blockcount;
151 break;
152 case LASTREC_DELREC:
153 numrecs = xfs_btree_get_numrecs(block);
154 if (ptr <= numrecs)
155 return;
156 ASSERT(ptr == numrecs + 1);
157
158 if (numrecs) {
159 xfs_alloc_rec_t *rrp;
160
161 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
162 len = rrp->ar_blockcount;
163 } else {
164 len = 0;
165 }
166
167 break;
168 default:
169 ASSERT(0);
170 return;
171 }
172
173 agf->agf_longest = len;
174 pag = cur->bc_ag.agbp->b_pag;
175 pag->pagf_longest = be32_to_cpu(len);
176 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
177}
178
179STATIC int
180xfs_allocbt_get_minrecs(
181 struct xfs_btree_cur *cur,
182 int level)
183{
184 return cur->bc_mp->m_alloc_mnr[level != 0];
185}
186
187STATIC int
188xfs_allocbt_get_maxrecs(
189 struct xfs_btree_cur *cur,
190 int level)
191{
192 return cur->bc_mp->m_alloc_mxr[level != 0];
193}
194
195STATIC void
196xfs_allocbt_init_key_from_rec(
197 union xfs_btree_key *key,
198 const union xfs_btree_rec *rec)
199{
200 key->alloc.ar_startblock = rec->alloc.ar_startblock;
201 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
202}
203
204STATIC void
205xfs_bnobt_init_high_key_from_rec(
206 union xfs_btree_key *key,
207 const union xfs_btree_rec *rec)
208{
209 __u32 x;
210
211 x = be32_to_cpu(rec->alloc.ar_startblock);
212 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
213 key->alloc.ar_startblock = cpu_to_be32(x);
214 key->alloc.ar_blockcount = 0;
215}
216
217STATIC void
218xfs_cntbt_init_high_key_from_rec(
219 union xfs_btree_key *key,
220 const union xfs_btree_rec *rec)
221{
222 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
223 key->alloc.ar_startblock = 0;
224}
225
226STATIC void
227xfs_allocbt_init_rec_from_cur(
228 struct xfs_btree_cur *cur,
229 union xfs_btree_rec *rec)
230{
231 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
232 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
233}
234
235STATIC void
236xfs_allocbt_init_ptr_from_cur(
237 struct xfs_btree_cur *cur,
238 union xfs_btree_ptr *ptr)
239{
240 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
241
242 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
243
244 if (xfs_btree_is_bno(cur->bc_ops))
245 ptr->s = agf->agf_bno_root;
246 else
247 ptr->s = agf->agf_cnt_root;
248}
249
250STATIC int64_t
251xfs_bnobt_key_diff(
252 struct xfs_btree_cur *cur,
253 const union xfs_btree_key *key)
254{
255 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
256 const struct xfs_alloc_rec *kp = &key->alloc;
257
258 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
259}
260
261STATIC int64_t
262xfs_cntbt_key_diff(
263 struct xfs_btree_cur *cur,
264 const union xfs_btree_key *key)
265{
266 struct xfs_alloc_rec_incore *rec = &cur->bc_rec.a;
267 const struct xfs_alloc_rec *kp = &key->alloc;
268 int64_t diff;
269
270 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
271 if (diff)
272 return diff;
273
274 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
275}
276
277STATIC int64_t
278xfs_bnobt_diff_two_keys(
279 struct xfs_btree_cur *cur,
280 const union xfs_btree_key *k1,
281 const union xfs_btree_key *k2,
282 const union xfs_btree_key *mask)
283{
284 ASSERT(!mask || mask->alloc.ar_startblock);
285
286 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
287 be32_to_cpu(k2->alloc.ar_startblock);
288}
289
290STATIC int64_t
291xfs_cntbt_diff_two_keys(
292 struct xfs_btree_cur *cur,
293 const union xfs_btree_key *k1,
294 const union xfs_btree_key *k2,
295 const union xfs_btree_key *mask)
296{
297 int64_t diff;
298
299 ASSERT(!mask || (mask->alloc.ar_blockcount &&
300 mask->alloc.ar_startblock));
301
302 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
303 be32_to_cpu(k2->alloc.ar_blockcount);
304 if (diff)
305 return diff;
306
307 return be32_to_cpu(k1->alloc.ar_startblock) -
308 be32_to_cpu(k2->alloc.ar_startblock);
309}
310
311static xfs_failaddr_t
312xfs_allocbt_verify(
313 struct xfs_buf *bp)
314{
315 struct xfs_mount *mp = bp->b_mount;
316 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
317 struct xfs_perag *pag = bp->b_pag;
318 xfs_failaddr_t fa;
319 unsigned int level;
320
321 if (!xfs_verify_magic(bp, block->bb_magic))
322 return __this_address;
323
324 if (xfs_has_crc(mp)) {
325 fa = xfs_btree_agblock_v5hdr_verify(bp);
326 if (fa)
327 return fa;
328 }
329
330 /*
331 * The perag may not be attached during grow operations or fully
332 * initialized from the AGF during log recovery. Therefore we can only
333 * check against maximum tree depth from those contexts.
334 *
335 * Otherwise check against the per-tree limit. Peek at one of the
336 * verifier magic values to determine the type of tree we're verifying
337 * against.
338 */
339 level = be16_to_cpu(block->bb_level);
340 if (pag && xfs_perag_initialised_agf(pag)) {
341 unsigned int maxlevel, repair_maxlevel = 0;
342
343 /*
344 * Online repair could be rewriting the free space btrees, so
345 * we'll validate against the larger of either tree while this
346 * is going on.
347 */
348 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC)) {
349 maxlevel = pag->pagf_cnt_level;
350#ifdef CONFIG_XFS_ONLINE_REPAIR
351 repair_maxlevel = pag->pagf_repair_cnt_level;
352#endif
353 } else {
354 maxlevel = pag->pagf_bno_level;
355#ifdef CONFIG_XFS_ONLINE_REPAIR
356 repair_maxlevel = pag->pagf_repair_bno_level;
357#endif
358 }
359
360 if (level >= max(maxlevel, repair_maxlevel))
361 return __this_address;
362 } else if (level >= mp->m_alloc_maxlevels)
363 return __this_address;
364
365 return xfs_btree_agblock_verify(bp, mp->m_alloc_mxr[level != 0]);
366}
367
368static void
369xfs_allocbt_read_verify(
370 struct xfs_buf *bp)
371{
372 xfs_failaddr_t fa;
373
374 if (!xfs_btree_agblock_verify_crc(bp))
375 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
376 else {
377 fa = xfs_allocbt_verify(bp);
378 if (fa)
379 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
380 }
381
382 if (bp->b_error)
383 trace_xfs_btree_corrupt(bp, _RET_IP_);
384}
385
386static void
387xfs_allocbt_write_verify(
388 struct xfs_buf *bp)
389{
390 xfs_failaddr_t fa;
391
392 fa = xfs_allocbt_verify(bp);
393 if (fa) {
394 trace_xfs_btree_corrupt(bp, _RET_IP_);
395 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
396 return;
397 }
398 xfs_btree_agblock_calc_crc(bp);
399
400}
401
402const struct xfs_buf_ops xfs_bnobt_buf_ops = {
403 .name = "xfs_bnobt",
404 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
405 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
406 .verify_read = xfs_allocbt_read_verify,
407 .verify_write = xfs_allocbt_write_verify,
408 .verify_struct = xfs_allocbt_verify,
409};
410
411const struct xfs_buf_ops xfs_cntbt_buf_ops = {
412 .name = "xfs_cntbt",
413 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
414 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
415 .verify_read = xfs_allocbt_read_verify,
416 .verify_write = xfs_allocbt_write_verify,
417 .verify_struct = xfs_allocbt_verify,
418};
419
420STATIC int
421xfs_bnobt_keys_inorder(
422 struct xfs_btree_cur *cur,
423 const union xfs_btree_key *k1,
424 const union xfs_btree_key *k2)
425{
426 return be32_to_cpu(k1->alloc.ar_startblock) <
427 be32_to_cpu(k2->alloc.ar_startblock);
428}
429
430STATIC int
431xfs_bnobt_recs_inorder(
432 struct xfs_btree_cur *cur,
433 const union xfs_btree_rec *r1,
434 const union xfs_btree_rec *r2)
435{
436 return be32_to_cpu(r1->alloc.ar_startblock) +
437 be32_to_cpu(r1->alloc.ar_blockcount) <=
438 be32_to_cpu(r2->alloc.ar_startblock);
439}
440
441STATIC int
442xfs_cntbt_keys_inorder(
443 struct xfs_btree_cur *cur,
444 const union xfs_btree_key *k1,
445 const union xfs_btree_key *k2)
446{
447 return be32_to_cpu(k1->alloc.ar_blockcount) <
448 be32_to_cpu(k2->alloc.ar_blockcount) ||
449 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
450 be32_to_cpu(k1->alloc.ar_startblock) <
451 be32_to_cpu(k2->alloc.ar_startblock));
452}
453
454STATIC int
455xfs_cntbt_recs_inorder(
456 struct xfs_btree_cur *cur,
457 const union xfs_btree_rec *r1,
458 const union xfs_btree_rec *r2)
459{
460 return be32_to_cpu(r1->alloc.ar_blockcount) <
461 be32_to_cpu(r2->alloc.ar_blockcount) ||
462 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
463 be32_to_cpu(r1->alloc.ar_startblock) <
464 be32_to_cpu(r2->alloc.ar_startblock));
465}
466
467STATIC enum xbtree_key_contig
468xfs_allocbt_keys_contiguous(
469 struct xfs_btree_cur *cur,
470 const union xfs_btree_key *key1,
471 const union xfs_btree_key *key2,
472 const union xfs_btree_key *mask)
473{
474 ASSERT(!mask || mask->alloc.ar_startblock);
475
476 return xbtree_key_contig(be32_to_cpu(key1->alloc.ar_startblock),
477 be32_to_cpu(key2->alloc.ar_startblock));
478}
479
480const struct xfs_btree_ops xfs_bnobt_ops = {
481 .name = "bno",
482 .type = XFS_BTREE_TYPE_AG,
483
484 .rec_len = sizeof(xfs_alloc_rec_t),
485 .key_len = sizeof(xfs_alloc_key_t),
486 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
487
488 .lru_refs = XFS_ALLOC_BTREE_REF,
489 .statoff = XFS_STATS_CALC_INDEX(xs_abtb_2),
490 .sick_mask = XFS_SICK_AG_BNOBT,
491
492 .dup_cursor = xfs_bnobt_dup_cursor,
493 .set_root = xfs_allocbt_set_root,
494 .alloc_block = xfs_allocbt_alloc_block,
495 .free_block = xfs_allocbt_free_block,
496 .update_lastrec = xfs_allocbt_update_lastrec,
497 .get_minrecs = xfs_allocbt_get_minrecs,
498 .get_maxrecs = xfs_allocbt_get_maxrecs,
499 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
500 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
501 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
502 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
503 .key_diff = xfs_bnobt_key_diff,
504 .buf_ops = &xfs_bnobt_buf_ops,
505 .diff_two_keys = xfs_bnobt_diff_two_keys,
506 .keys_inorder = xfs_bnobt_keys_inorder,
507 .recs_inorder = xfs_bnobt_recs_inorder,
508 .keys_contiguous = xfs_allocbt_keys_contiguous,
509};
510
511const struct xfs_btree_ops xfs_cntbt_ops = {
512 .name = "cnt",
513 .type = XFS_BTREE_TYPE_AG,
514 .geom_flags = XFS_BTGEO_LASTREC_UPDATE,
515
516 .rec_len = sizeof(xfs_alloc_rec_t),
517 .key_len = sizeof(xfs_alloc_key_t),
518 .ptr_len = XFS_BTREE_SHORT_PTR_LEN,
519
520 .lru_refs = XFS_ALLOC_BTREE_REF,
521 .statoff = XFS_STATS_CALC_INDEX(xs_abtc_2),
522 .sick_mask = XFS_SICK_AG_CNTBT,
523
524 .dup_cursor = xfs_cntbt_dup_cursor,
525 .set_root = xfs_allocbt_set_root,
526 .alloc_block = xfs_allocbt_alloc_block,
527 .free_block = xfs_allocbt_free_block,
528 .update_lastrec = xfs_allocbt_update_lastrec,
529 .get_minrecs = xfs_allocbt_get_minrecs,
530 .get_maxrecs = xfs_allocbt_get_maxrecs,
531 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
532 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
533 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
534 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
535 .key_diff = xfs_cntbt_key_diff,
536 .buf_ops = &xfs_cntbt_buf_ops,
537 .diff_two_keys = xfs_cntbt_diff_two_keys,
538 .keys_inorder = xfs_cntbt_keys_inorder,
539 .recs_inorder = xfs_cntbt_recs_inorder,
540 .keys_contiguous = NULL, /* not needed right now */
541};
542
543/*
544 * Allocate a new bnobt cursor.
545 *
546 * For staging cursors tp and agbp are NULL.
547 */
548struct xfs_btree_cur *
549xfs_bnobt_init_cursor(
550 struct xfs_mount *mp,
551 struct xfs_trans *tp,
552 struct xfs_buf *agbp,
553 struct xfs_perag *pag)
554{
555 struct xfs_btree_cur *cur;
556
557 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_bnobt_ops,
558 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
559 cur->bc_ag.pag = xfs_perag_hold(pag);
560 cur->bc_ag.agbp = agbp;
561 if (agbp) {
562 struct xfs_agf *agf = agbp->b_addr;
563
564 cur->bc_nlevels = be32_to_cpu(agf->agf_bno_level);
565 }
566 return cur;
567}
568
569/*
570 * Allocate a new cntbt cursor.
571 *
572 * For staging cursors tp and agbp are NULL.
573 */
574struct xfs_btree_cur *
575xfs_cntbt_init_cursor(
576 struct xfs_mount *mp,
577 struct xfs_trans *tp,
578 struct xfs_buf *agbp,
579 struct xfs_perag *pag)
580{
581 struct xfs_btree_cur *cur;
582
583 cur = xfs_btree_alloc_cursor(mp, tp, &xfs_cntbt_ops,
584 mp->m_alloc_maxlevels, xfs_allocbt_cur_cache);
585 cur->bc_ag.pag = xfs_perag_hold(pag);
586 cur->bc_ag.agbp = agbp;
587 if (agbp) {
588 struct xfs_agf *agf = agbp->b_addr;
589
590 cur->bc_nlevels = be32_to_cpu(agf->agf_cnt_level);
591 }
592 return cur;
593}
594
595/*
596 * Install a new free space btree root. Caller is responsible for invalidating
597 * and freeing the old btree blocks.
598 */
599void
600xfs_allocbt_commit_staged_btree(
601 struct xfs_btree_cur *cur,
602 struct xfs_trans *tp,
603 struct xfs_buf *agbp)
604{
605 struct xfs_agf *agf = agbp->b_addr;
606 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
607
608 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
609
610 if (xfs_btree_is_bno(cur->bc_ops)) {
611 agf->agf_bno_root = cpu_to_be32(afake->af_root);
612 agf->agf_bno_level = cpu_to_be32(afake->af_levels);
613 } else {
614 agf->agf_cnt_root = cpu_to_be32(afake->af_root);
615 agf->agf_cnt_level = cpu_to_be32(afake->af_levels);
616 }
617 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
618
619 xfs_btree_commit_afakeroot(cur, tp, agbp);
620}
621
622/* Calculate number of records in an alloc btree block. */
623static inline unsigned int
624xfs_allocbt_block_maxrecs(
625 unsigned int blocklen,
626 bool leaf)
627{
628 if (leaf)
629 return blocklen / sizeof(xfs_alloc_rec_t);
630 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
631}
632
633/*
634 * Calculate number of records in an alloc btree block.
635 */
636int
637xfs_allocbt_maxrecs(
638 struct xfs_mount *mp,
639 int blocklen,
640 int leaf)
641{
642 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
643 return xfs_allocbt_block_maxrecs(blocklen, leaf);
644}
645
646/* Free space btrees are at their largest when every other block is free. */
647#define XFS_MAX_FREESP_RECORDS ((XFS_MAX_AG_BLOCKS + 1) / 2)
648
649/* Compute the max possible height for free space btrees. */
650unsigned int
651xfs_allocbt_maxlevels_ondisk(void)
652{
653 unsigned int minrecs[2];
654 unsigned int blocklen;
655
656 blocklen = min(XFS_MIN_BLOCKSIZE - XFS_BTREE_SBLOCK_LEN,
657 XFS_MIN_CRC_BLOCKSIZE - XFS_BTREE_SBLOCK_CRC_LEN);
658
659 minrecs[0] = xfs_allocbt_block_maxrecs(blocklen, true) / 2;
660 minrecs[1] = xfs_allocbt_block_maxrecs(blocklen, false) / 2;
661
662 return xfs_btree_compute_maxlevels(minrecs, XFS_MAX_FREESP_RECORDS);
663}
664
665/* Calculate the freespace btree size for some records. */
666xfs_extlen_t
667xfs_allocbt_calc_size(
668 struct xfs_mount *mp,
669 unsigned long long len)
670{
671 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
672}
673
674int __init
675xfs_allocbt_init_cur_cache(void)
676{
677 xfs_allocbt_cur_cache = kmem_cache_create("xfs_bnobt_cur",
678 xfs_btree_cur_sizeof(xfs_allocbt_maxlevels_ondisk()),
679 0, 0, NULL);
680
681 if (!xfs_allocbt_cur_cache)
682 return -ENOMEM;
683 return 0;
684}
685
686void
687xfs_allocbt_destroy_cur_cache(void)
688{
689 kmem_cache_destroy(xfs_allocbt_cur_cache);
690 xfs_allocbt_cur_cache = NULL;
691}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_btree.h"
14#include "xfs_btree_staging.h"
15#include "xfs_alloc_btree.h"
16#include "xfs_alloc.h"
17#include "xfs_extent_busy.h"
18#include "xfs_error.h"
19#include "xfs_trace.h"
20#include "xfs_trans.h"
21#include "xfs_ag.h"
22
23
24STATIC struct xfs_btree_cur *
25xfs_allocbt_dup_cursor(
26 struct xfs_btree_cur *cur)
27{
28 return xfs_allocbt_init_cursor(cur->bc_mp, cur->bc_tp,
29 cur->bc_ag.agbp, cur->bc_ag.pag, cur->bc_btnum);
30}
31
32STATIC void
33xfs_allocbt_set_root(
34 struct xfs_btree_cur *cur,
35 union xfs_btree_ptr *ptr,
36 int inc)
37{
38 struct xfs_buf *agbp = cur->bc_ag.agbp;
39 struct xfs_agf *agf = agbp->b_addr;
40 int btnum = cur->bc_btnum;
41
42 ASSERT(ptr->s != 0);
43
44 agf->agf_roots[btnum] = ptr->s;
45 be32_add_cpu(&agf->agf_levels[btnum], inc);
46 cur->bc_ag.pag->pagf_levels[btnum] += inc;
47
48 xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
49}
50
51STATIC int
52xfs_allocbt_alloc_block(
53 struct xfs_btree_cur *cur,
54 union xfs_btree_ptr *start,
55 union xfs_btree_ptr *new,
56 int *stat)
57{
58 int error;
59 xfs_agblock_t bno;
60
61 /* Allocate the new block from the freelist. If we can't, give up. */
62 error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
63 &bno, 1);
64 if (error)
65 return error;
66
67 if (bno == NULLAGBLOCK) {
68 *stat = 0;
69 return 0;
70 }
71
72 atomic64_inc(&cur->bc_mp->m_allocbt_blks);
73 xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agbp->b_pag, bno, 1, false);
74
75 new->s = cpu_to_be32(bno);
76
77 *stat = 1;
78 return 0;
79}
80
81STATIC int
82xfs_allocbt_free_block(
83 struct xfs_btree_cur *cur,
84 struct xfs_buf *bp)
85{
86 struct xfs_buf *agbp = cur->bc_ag.agbp;
87 xfs_agblock_t bno;
88 int error;
89
90 bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
91 error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
92 if (error)
93 return error;
94
95 atomic64_dec(&cur->bc_mp->m_allocbt_blks);
96 xfs_extent_busy_insert(cur->bc_tp, agbp->b_pag, bno, 1,
97 XFS_EXTENT_BUSY_SKIP_DISCARD);
98 return 0;
99}
100
101/*
102 * Update the longest extent in the AGF
103 */
104STATIC void
105xfs_allocbt_update_lastrec(
106 struct xfs_btree_cur *cur,
107 struct xfs_btree_block *block,
108 union xfs_btree_rec *rec,
109 int ptr,
110 int reason)
111{
112 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
113 struct xfs_perag *pag;
114 __be32 len;
115 int numrecs;
116
117 ASSERT(cur->bc_btnum == XFS_BTNUM_CNT);
118
119 switch (reason) {
120 case LASTREC_UPDATE:
121 /*
122 * If this is the last leaf block and it's the last record,
123 * then update the size of the longest extent in the AG.
124 */
125 if (ptr != xfs_btree_get_numrecs(block))
126 return;
127 len = rec->alloc.ar_blockcount;
128 break;
129 case LASTREC_INSREC:
130 if (be32_to_cpu(rec->alloc.ar_blockcount) <=
131 be32_to_cpu(agf->agf_longest))
132 return;
133 len = rec->alloc.ar_blockcount;
134 break;
135 case LASTREC_DELREC:
136 numrecs = xfs_btree_get_numrecs(block);
137 if (ptr <= numrecs)
138 return;
139 ASSERT(ptr == numrecs + 1);
140
141 if (numrecs) {
142 xfs_alloc_rec_t *rrp;
143
144 rrp = XFS_ALLOC_REC_ADDR(cur->bc_mp, block, numrecs);
145 len = rrp->ar_blockcount;
146 } else {
147 len = 0;
148 }
149
150 break;
151 default:
152 ASSERT(0);
153 return;
154 }
155
156 agf->agf_longest = len;
157 pag = cur->bc_ag.agbp->b_pag;
158 pag->pagf_longest = be32_to_cpu(len);
159 xfs_alloc_log_agf(cur->bc_tp, cur->bc_ag.agbp, XFS_AGF_LONGEST);
160}
161
162STATIC int
163xfs_allocbt_get_minrecs(
164 struct xfs_btree_cur *cur,
165 int level)
166{
167 return cur->bc_mp->m_alloc_mnr[level != 0];
168}
169
170STATIC int
171xfs_allocbt_get_maxrecs(
172 struct xfs_btree_cur *cur,
173 int level)
174{
175 return cur->bc_mp->m_alloc_mxr[level != 0];
176}
177
178STATIC void
179xfs_allocbt_init_key_from_rec(
180 union xfs_btree_key *key,
181 union xfs_btree_rec *rec)
182{
183 key->alloc.ar_startblock = rec->alloc.ar_startblock;
184 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
185}
186
187STATIC void
188xfs_bnobt_init_high_key_from_rec(
189 union xfs_btree_key *key,
190 union xfs_btree_rec *rec)
191{
192 __u32 x;
193
194 x = be32_to_cpu(rec->alloc.ar_startblock);
195 x += be32_to_cpu(rec->alloc.ar_blockcount) - 1;
196 key->alloc.ar_startblock = cpu_to_be32(x);
197 key->alloc.ar_blockcount = 0;
198}
199
200STATIC void
201xfs_cntbt_init_high_key_from_rec(
202 union xfs_btree_key *key,
203 union xfs_btree_rec *rec)
204{
205 key->alloc.ar_blockcount = rec->alloc.ar_blockcount;
206 key->alloc.ar_startblock = 0;
207}
208
209STATIC void
210xfs_allocbt_init_rec_from_cur(
211 struct xfs_btree_cur *cur,
212 union xfs_btree_rec *rec)
213{
214 rec->alloc.ar_startblock = cpu_to_be32(cur->bc_rec.a.ar_startblock);
215 rec->alloc.ar_blockcount = cpu_to_be32(cur->bc_rec.a.ar_blockcount);
216}
217
218STATIC void
219xfs_allocbt_init_ptr_from_cur(
220 struct xfs_btree_cur *cur,
221 union xfs_btree_ptr *ptr)
222{
223 struct xfs_agf *agf = cur->bc_ag.agbp->b_addr;
224
225 ASSERT(cur->bc_ag.pag->pag_agno == be32_to_cpu(agf->agf_seqno));
226
227 ptr->s = agf->agf_roots[cur->bc_btnum];
228}
229
230STATIC int64_t
231xfs_bnobt_key_diff(
232 struct xfs_btree_cur *cur,
233 union xfs_btree_key *key)
234{
235 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
236 xfs_alloc_key_t *kp = &key->alloc;
237
238 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
239}
240
241STATIC int64_t
242xfs_cntbt_key_diff(
243 struct xfs_btree_cur *cur,
244 union xfs_btree_key *key)
245{
246 xfs_alloc_rec_incore_t *rec = &cur->bc_rec.a;
247 xfs_alloc_key_t *kp = &key->alloc;
248 int64_t diff;
249
250 diff = (int64_t)be32_to_cpu(kp->ar_blockcount) - rec->ar_blockcount;
251 if (diff)
252 return diff;
253
254 return (int64_t)be32_to_cpu(kp->ar_startblock) - rec->ar_startblock;
255}
256
257STATIC int64_t
258xfs_bnobt_diff_two_keys(
259 struct xfs_btree_cur *cur,
260 union xfs_btree_key *k1,
261 union xfs_btree_key *k2)
262{
263 return (int64_t)be32_to_cpu(k1->alloc.ar_startblock) -
264 be32_to_cpu(k2->alloc.ar_startblock);
265}
266
267STATIC int64_t
268xfs_cntbt_diff_two_keys(
269 struct xfs_btree_cur *cur,
270 union xfs_btree_key *k1,
271 union xfs_btree_key *k2)
272{
273 int64_t diff;
274
275 diff = be32_to_cpu(k1->alloc.ar_blockcount) -
276 be32_to_cpu(k2->alloc.ar_blockcount);
277 if (diff)
278 return diff;
279
280 return be32_to_cpu(k1->alloc.ar_startblock) -
281 be32_to_cpu(k2->alloc.ar_startblock);
282}
283
284static xfs_failaddr_t
285xfs_allocbt_verify(
286 struct xfs_buf *bp)
287{
288 struct xfs_mount *mp = bp->b_mount;
289 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp);
290 struct xfs_perag *pag = bp->b_pag;
291 xfs_failaddr_t fa;
292 unsigned int level;
293 xfs_btnum_t btnum = XFS_BTNUM_BNOi;
294
295 if (!xfs_verify_magic(bp, block->bb_magic))
296 return __this_address;
297
298 if (xfs_sb_version_hascrc(&mp->m_sb)) {
299 fa = xfs_btree_sblock_v5hdr_verify(bp);
300 if (fa)
301 return fa;
302 }
303
304 /*
305 * The perag may not be attached during grow operations or fully
306 * initialized from the AGF during log recovery. Therefore we can only
307 * check against maximum tree depth from those contexts.
308 *
309 * Otherwise check against the per-tree limit. Peek at one of the
310 * verifier magic values to determine the type of tree we're verifying
311 * against.
312 */
313 level = be16_to_cpu(block->bb_level);
314 if (bp->b_ops->magic[0] == cpu_to_be32(XFS_ABTC_MAGIC))
315 btnum = XFS_BTNUM_CNTi;
316 if (pag && pag->pagf_init) {
317 if (level >= pag->pagf_levels[btnum])
318 return __this_address;
319 } else if (level >= mp->m_ag_maxlevels)
320 return __this_address;
321
322 return xfs_btree_sblock_verify(bp, mp->m_alloc_mxr[level != 0]);
323}
324
325static void
326xfs_allocbt_read_verify(
327 struct xfs_buf *bp)
328{
329 xfs_failaddr_t fa;
330
331 if (!xfs_btree_sblock_verify_crc(bp))
332 xfs_verifier_error(bp, -EFSBADCRC, __this_address);
333 else {
334 fa = xfs_allocbt_verify(bp);
335 if (fa)
336 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
337 }
338
339 if (bp->b_error)
340 trace_xfs_btree_corrupt(bp, _RET_IP_);
341}
342
343static void
344xfs_allocbt_write_verify(
345 struct xfs_buf *bp)
346{
347 xfs_failaddr_t fa;
348
349 fa = xfs_allocbt_verify(bp);
350 if (fa) {
351 trace_xfs_btree_corrupt(bp, _RET_IP_);
352 xfs_verifier_error(bp, -EFSCORRUPTED, fa);
353 return;
354 }
355 xfs_btree_sblock_calc_crc(bp);
356
357}
358
359const struct xfs_buf_ops xfs_bnobt_buf_ops = {
360 .name = "xfs_bnobt",
361 .magic = { cpu_to_be32(XFS_ABTB_MAGIC),
362 cpu_to_be32(XFS_ABTB_CRC_MAGIC) },
363 .verify_read = xfs_allocbt_read_verify,
364 .verify_write = xfs_allocbt_write_verify,
365 .verify_struct = xfs_allocbt_verify,
366};
367
368const struct xfs_buf_ops xfs_cntbt_buf_ops = {
369 .name = "xfs_cntbt",
370 .magic = { cpu_to_be32(XFS_ABTC_MAGIC),
371 cpu_to_be32(XFS_ABTC_CRC_MAGIC) },
372 .verify_read = xfs_allocbt_read_verify,
373 .verify_write = xfs_allocbt_write_verify,
374 .verify_struct = xfs_allocbt_verify,
375};
376
377STATIC int
378xfs_bnobt_keys_inorder(
379 struct xfs_btree_cur *cur,
380 union xfs_btree_key *k1,
381 union xfs_btree_key *k2)
382{
383 return be32_to_cpu(k1->alloc.ar_startblock) <
384 be32_to_cpu(k2->alloc.ar_startblock);
385}
386
387STATIC int
388xfs_bnobt_recs_inorder(
389 struct xfs_btree_cur *cur,
390 union xfs_btree_rec *r1,
391 union xfs_btree_rec *r2)
392{
393 return be32_to_cpu(r1->alloc.ar_startblock) +
394 be32_to_cpu(r1->alloc.ar_blockcount) <=
395 be32_to_cpu(r2->alloc.ar_startblock);
396}
397
398STATIC int
399xfs_cntbt_keys_inorder(
400 struct xfs_btree_cur *cur,
401 union xfs_btree_key *k1,
402 union xfs_btree_key *k2)
403{
404 return be32_to_cpu(k1->alloc.ar_blockcount) <
405 be32_to_cpu(k2->alloc.ar_blockcount) ||
406 (k1->alloc.ar_blockcount == k2->alloc.ar_blockcount &&
407 be32_to_cpu(k1->alloc.ar_startblock) <
408 be32_to_cpu(k2->alloc.ar_startblock));
409}
410
411STATIC int
412xfs_cntbt_recs_inorder(
413 struct xfs_btree_cur *cur,
414 union xfs_btree_rec *r1,
415 union xfs_btree_rec *r2)
416{
417 return be32_to_cpu(r1->alloc.ar_blockcount) <
418 be32_to_cpu(r2->alloc.ar_blockcount) ||
419 (r1->alloc.ar_blockcount == r2->alloc.ar_blockcount &&
420 be32_to_cpu(r1->alloc.ar_startblock) <
421 be32_to_cpu(r2->alloc.ar_startblock));
422}
423
424static const struct xfs_btree_ops xfs_bnobt_ops = {
425 .rec_len = sizeof(xfs_alloc_rec_t),
426 .key_len = sizeof(xfs_alloc_key_t),
427
428 .dup_cursor = xfs_allocbt_dup_cursor,
429 .set_root = xfs_allocbt_set_root,
430 .alloc_block = xfs_allocbt_alloc_block,
431 .free_block = xfs_allocbt_free_block,
432 .update_lastrec = xfs_allocbt_update_lastrec,
433 .get_minrecs = xfs_allocbt_get_minrecs,
434 .get_maxrecs = xfs_allocbt_get_maxrecs,
435 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
436 .init_high_key_from_rec = xfs_bnobt_init_high_key_from_rec,
437 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
438 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
439 .key_diff = xfs_bnobt_key_diff,
440 .buf_ops = &xfs_bnobt_buf_ops,
441 .diff_two_keys = xfs_bnobt_diff_two_keys,
442 .keys_inorder = xfs_bnobt_keys_inorder,
443 .recs_inorder = xfs_bnobt_recs_inorder,
444};
445
446static const struct xfs_btree_ops xfs_cntbt_ops = {
447 .rec_len = sizeof(xfs_alloc_rec_t),
448 .key_len = sizeof(xfs_alloc_key_t),
449
450 .dup_cursor = xfs_allocbt_dup_cursor,
451 .set_root = xfs_allocbt_set_root,
452 .alloc_block = xfs_allocbt_alloc_block,
453 .free_block = xfs_allocbt_free_block,
454 .update_lastrec = xfs_allocbt_update_lastrec,
455 .get_minrecs = xfs_allocbt_get_minrecs,
456 .get_maxrecs = xfs_allocbt_get_maxrecs,
457 .init_key_from_rec = xfs_allocbt_init_key_from_rec,
458 .init_high_key_from_rec = xfs_cntbt_init_high_key_from_rec,
459 .init_rec_from_cur = xfs_allocbt_init_rec_from_cur,
460 .init_ptr_from_cur = xfs_allocbt_init_ptr_from_cur,
461 .key_diff = xfs_cntbt_key_diff,
462 .buf_ops = &xfs_cntbt_buf_ops,
463 .diff_two_keys = xfs_cntbt_diff_two_keys,
464 .keys_inorder = xfs_cntbt_keys_inorder,
465 .recs_inorder = xfs_cntbt_recs_inorder,
466};
467
468/* Allocate most of a new allocation btree cursor. */
469STATIC struct xfs_btree_cur *
470xfs_allocbt_init_common(
471 struct xfs_mount *mp,
472 struct xfs_trans *tp,
473 struct xfs_perag *pag,
474 xfs_btnum_t btnum)
475{
476 struct xfs_btree_cur *cur;
477
478 ASSERT(btnum == XFS_BTNUM_BNO || btnum == XFS_BTNUM_CNT);
479
480 cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
481
482 cur->bc_tp = tp;
483 cur->bc_mp = mp;
484 cur->bc_btnum = btnum;
485 cur->bc_blocklog = mp->m_sb.sb_blocklog;
486 cur->bc_ag.abt.active = false;
487
488 if (btnum == XFS_BTNUM_CNT) {
489 cur->bc_ops = &xfs_cntbt_ops;
490 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtc_2);
491 cur->bc_flags = XFS_BTREE_LASTREC_UPDATE;
492 } else {
493 cur->bc_ops = &xfs_bnobt_ops;
494 cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_abtb_2);
495 }
496
497 /* take a reference for the cursor */
498 atomic_inc(&pag->pag_ref);
499 cur->bc_ag.pag = pag;
500
501 if (xfs_sb_version_hascrc(&mp->m_sb))
502 cur->bc_flags |= XFS_BTREE_CRC_BLOCKS;
503
504 return cur;
505}
506
507/*
508 * Allocate a new allocation btree cursor.
509 */
510struct xfs_btree_cur * /* new alloc btree cursor */
511xfs_allocbt_init_cursor(
512 struct xfs_mount *mp, /* file system mount point */
513 struct xfs_trans *tp, /* transaction pointer */
514 struct xfs_buf *agbp, /* buffer for agf structure */
515 struct xfs_perag *pag,
516 xfs_btnum_t btnum) /* btree identifier */
517{
518 struct xfs_agf *agf = agbp->b_addr;
519 struct xfs_btree_cur *cur;
520
521 cur = xfs_allocbt_init_common(mp, tp, pag, btnum);
522 if (btnum == XFS_BTNUM_CNT)
523 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_CNT]);
524 else
525 cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_BNO]);
526
527 cur->bc_ag.agbp = agbp;
528
529 return cur;
530}
531
532/* Create a free space btree cursor with a fake root for staging. */
533struct xfs_btree_cur *
534xfs_allocbt_stage_cursor(
535 struct xfs_mount *mp,
536 struct xbtree_afakeroot *afake,
537 struct xfs_perag *pag,
538 xfs_btnum_t btnum)
539{
540 struct xfs_btree_cur *cur;
541
542 cur = xfs_allocbt_init_common(mp, NULL, pag, btnum);
543 xfs_btree_stage_afakeroot(cur, afake);
544 return cur;
545}
546
547/*
548 * Install a new free space btree root. Caller is responsible for invalidating
549 * and freeing the old btree blocks.
550 */
551void
552xfs_allocbt_commit_staged_btree(
553 struct xfs_btree_cur *cur,
554 struct xfs_trans *tp,
555 struct xfs_buf *agbp)
556{
557 struct xfs_agf *agf = agbp->b_addr;
558 struct xbtree_afakeroot *afake = cur->bc_ag.afake;
559
560 ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
561
562 agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
563 agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
564 xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
565
566 if (cur->bc_btnum == XFS_BTNUM_BNO) {
567 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_bnobt_ops);
568 } else {
569 cur->bc_flags |= XFS_BTREE_LASTREC_UPDATE;
570 xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_cntbt_ops);
571 }
572}
573
574/*
575 * Calculate number of records in an alloc btree block.
576 */
577int
578xfs_allocbt_maxrecs(
579 struct xfs_mount *mp,
580 int blocklen,
581 int leaf)
582{
583 blocklen -= XFS_ALLOC_BLOCK_LEN(mp);
584
585 if (leaf)
586 return blocklen / sizeof(xfs_alloc_rec_t);
587 return blocklen / (sizeof(xfs_alloc_key_t) + sizeof(xfs_alloc_ptr_t));
588}
589
590/* Calculate the freespace btree size for some records. */
591xfs_extlen_t
592xfs_allocbt_calc_size(
593 struct xfs_mount *mp,
594 unsigned long long len)
595{
596 return xfs_btree_calc_size(mp->m_alloc_mnr, len);
597}