Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13#include <linux/list.h>
14#include <linux/hashtable.h>
15#include <linux/sched/signal.h>
16#include <linux/sched/mm.h>
17#include <linux/mm.h>
18#include <linux/mm_inline.h>
19#include <linux/mmu_notifier.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
31#include <linux/hugetlb.h>
32#include <linux/swapops.h>
33#include <linux/miscdevice.h>
34
35static int sysctl_unprivileged_userfaultfd __read_mostly;
36
37#ifdef CONFIG_SYSCTL
38static struct ctl_table vm_userfaultfd_table[] = {
39 {
40 .procname = "unprivileged_userfaultfd",
41 .data = &sysctl_unprivileged_userfaultfd,
42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
43 .mode = 0644,
44 .proc_handler = proc_dointvec_minmax,
45 .extra1 = SYSCTL_ZERO,
46 .extra2 = SYSCTL_ONE,
47 },
48};
49#endif
50
51static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
52
53struct userfaultfd_fork_ctx {
54 struct userfaultfd_ctx *orig;
55 struct userfaultfd_ctx *new;
56 struct list_head list;
57};
58
59struct userfaultfd_unmap_ctx {
60 struct userfaultfd_ctx *ctx;
61 unsigned long start;
62 unsigned long end;
63 struct list_head list;
64};
65
66struct userfaultfd_wait_queue {
67 struct uffd_msg msg;
68 wait_queue_entry_t wq;
69 struct userfaultfd_ctx *ctx;
70 bool waken;
71};
72
73struct userfaultfd_wake_range {
74 unsigned long start;
75 unsigned long len;
76};
77
78/* internal indication that UFFD_API ioctl was successfully executed */
79#define UFFD_FEATURE_INITIALIZED (1u << 31)
80
81static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
82{
83 return ctx->features & UFFD_FEATURE_INITIALIZED;
84}
85
86static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
87{
88 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
89}
90
91/*
92 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
93 * meaningful when userfaultfd_wp()==true on the vma and when it's
94 * anonymous.
95 */
96bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
97{
98 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
99
100 if (!ctx)
101 return false;
102
103 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
104}
105
106static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
107 vm_flags_t flags)
108{
109 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
110
111 vm_flags_reset(vma, flags);
112 /*
113 * For shared mappings, we want to enable writenotify while
114 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
115 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
116 */
117 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
118 vma_set_page_prot(vma);
119}
120
121static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
122 int wake_flags, void *key)
123{
124 struct userfaultfd_wake_range *range = key;
125 int ret;
126 struct userfaultfd_wait_queue *uwq;
127 unsigned long start, len;
128
129 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
130 ret = 0;
131 /* len == 0 means wake all */
132 start = range->start;
133 len = range->len;
134 if (len && (start > uwq->msg.arg.pagefault.address ||
135 start + len <= uwq->msg.arg.pagefault.address))
136 goto out;
137 WRITE_ONCE(uwq->waken, true);
138 /*
139 * The Program-Order guarantees provided by the scheduler
140 * ensure uwq->waken is visible before the task is woken.
141 */
142 ret = wake_up_state(wq->private, mode);
143 if (ret) {
144 /*
145 * Wake only once, autoremove behavior.
146 *
147 * After the effect of list_del_init is visible to the other
148 * CPUs, the waitqueue may disappear from under us, see the
149 * !list_empty_careful() in handle_userfault().
150 *
151 * try_to_wake_up() has an implicit smp_mb(), and the
152 * wq->private is read before calling the extern function
153 * "wake_up_state" (which in turns calls try_to_wake_up).
154 */
155 list_del_init(&wq->entry);
156 }
157out:
158 return ret;
159}
160
161/**
162 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
163 * context.
164 * @ctx: [in] Pointer to the userfaultfd context.
165 */
166static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
167{
168 refcount_inc(&ctx->refcount);
169}
170
171/**
172 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
173 * context.
174 * @ctx: [in] Pointer to userfaultfd context.
175 *
176 * The userfaultfd context reference must have been previously acquired either
177 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
178 */
179static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
180{
181 if (refcount_dec_and_test(&ctx->refcount)) {
182 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
183 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
184 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
185 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
186 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
187 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
188 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
189 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
190 mmdrop(ctx->mm);
191 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
192 }
193}
194
195static inline void msg_init(struct uffd_msg *msg)
196{
197 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
198 /*
199 * Must use memset to zero out the paddings or kernel data is
200 * leaked to userland.
201 */
202 memset(msg, 0, sizeof(struct uffd_msg));
203}
204
205static inline struct uffd_msg userfault_msg(unsigned long address,
206 unsigned long real_address,
207 unsigned int flags,
208 unsigned long reason,
209 unsigned int features)
210{
211 struct uffd_msg msg;
212
213 msg_init(&msg);
214 msg.event = UFFD_EVENT_PAGEFAULT;
215
216 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
217 real_address : address;
218
219 /*
220 * These flags indicate why the userfault occurred:
221 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
222 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
223 * - Neither of these flags being set indicates a MISSING fault.
224 *
225 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
226 * fault. Otherwise, it was a read fault.
227 */
228 if (flags & FAULT_FLAG_WRITE)
229 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
230 if (reason & VM_UFFD_WP)
231 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
232 if (reason & VM_UFFD_MINOR)
233 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
234 if (features & UFFD_FEATURE_THREAD_ID)
235 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
236 return msg;
237}
238
239#ifdef CONFIG_HUGETLB_PAGE
240/*
241 * Same functionality as userfaultfd_must_wait below with modifications for
242 * hugepmd ranges.
243 */
244static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
245 struct vm_fault *vmf,
246 unsigned long reason)
247{
248 struct vm_area_struct *vma = vmf->vma;
249 pte_t *ptep, pte;
250 bool ret = true;
251
252 assert_fault_locked(vmf);
253
254 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
255 if (!ptep)
256 goto out;
257
258 ret = false;
259 pte = huge_ptep_get(ptep);
260
261 /*
262 * Lockless access: we're in a wait_event so it's ok if it
263 * changes under us. PTE markers should be handled the same as none
264 * ptes here.
265 */
266 if (huge_pte_none_mostly(pte))
267 ret = true;
268 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
269 ret = true;
270out:
271 return ret;
272}
273#else
274static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
275 struct vm_fault *vmf,
276 unsigned long reason)
277{
278 return false; /* should never get here */
279}
280#endif /* CONFIG_HUGETLB_PAGE */
281
282/*
283 * Verify the pagetables are still not ok after having reigstered into
284 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
285 * userfault that has already been resolved, if userfaultfd_read and
286 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
287 * threads.
288 */
289static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
290 struct vm_fault *vmf,
291 unsigned long reason)
292{
293 struct mm_struct *mm = ctx->mm;
294 unsigned long address = vmf->address;
295 pgd_t *pgd;
296 p4d_t *p4d;
297 pud_t *pud;
298 pmd_t *pmd, _pmd;
299 pte_t *pte;
300 pte_t ptent;
301 bool ret = true;
302
303 assert_fault_locked(vmf);
304
305 pgd = pgd_offset(mm, address);
306 if (!pgd_present(*pgd))
307 goto out;
308 p4d = p4d_offset(pgd, address);
309 if (!p4d_present(*p4d))
310 goto out;
311 pud = pud_offset(p4d, address);
312 if (!pud_present(*pud))
313 goto out;
314 pmd = pmd_offset(pud, address);
315again:
316 _pmd = pmdp_get_lockless(pmd);
317 if (pmd_none(_pmd))
318 goto out;
319
320 ret = false;
321 if (!pmd_present(_pmd) || pmd_devmap(_pmd))
322 goto out;
323
324 if (pmd_trans_huge(_pmd)) {
325 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
326 ret = true;
327 goto out;
328 }
329
330 pte = pte_offset_map(pmd, address);
331 if (!pte) {
332 ret = true;
333 goto again;
334 }
335 /*
336 * Lockless access: we're in a wait_event so it's ok if it
337 * changes under us. PTE markers should be handled the same as none
338 * ptes here.
339 */
340 ptent = ptep_get(pte);
341 if (pte_none_mostly(ptent))
342 ret = true;
343 if (!pte_write(ptent) && (reason & VM_UFFD_WP))
344 ret = true;
345 pte_unmap(pte);
346
347out:
348 return ret;
349}
350
351static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
352{
353 if (flags & FAULT_FLAG_INTERRUPTIBLE)
354 return TASK_INTERRUPTIBLE;
355
356 if (flags & FAULT_FLAG_KILLABLE)
357 return TASK_KILLABLE;
358
359 return TASK_UNINTERRUPTIBLE;
360}
361
362/*
363 * The locking rules involved in returning VM_FAULT_RETRY depending on
364 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
365 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
366 * recommendation in __lock_page_or_retry is not an understatement.
367 *
368 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
369 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
370 * not set.
371 *
372 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
373 * set, VM_FAULT_RETRY can still be returned if and only if there are
374 * fatal_signal_pending()s, and the mmap_lock must be released before
375 * returning it.
376 */
377vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
378{
379 struct vm_area_struct *vma = vmf->vma;
380 struct mm_struct *mm = vma->vm_mm;
381 struct userfaultfd_ctx *ctx;
382 struct userfaultfd_wait_queue uwq;
383 vm_fault_t ret = VM_FAULT_SIGBUS;
384 bool must_wait;
385 unsigned int blocking_state;
386
387 /*
388 * We don't do userfault handling for the final child pid update.
389 *
390 * We also don't do userfault handling during
391 * coredumping. hugetlbfs has the special
392 * hugetlb_follow_page_mask() to skip missing pages in the
393 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
394 * the no_page_table() helper in follow_page_mask(), but the
395 * shmem_vm_ops->fault method is invoked even during
396 * coredumping and it ends up here.
397 */
398 if (current->flags & (PF_EXITING|PF_DUMPCORE))
399 goto out;
400
401 assert_fault_locked(vmf);
402
403 ctx = vma->vm_userfaultfd_ctx.ctx;
404 if (!ctx)
405 goto out;
406
407 BUG_ON(ctx->mm != mm);
408
409 /* Any unrecognized flag is a bug. */
410 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
411 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
412 VM_BUG_ON(!reason || (reason & (reason - 1)));
413
414 if (ctx->features & UFFD_FEATURE_SIGBUS)
415 goto out;
416 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
417 goto out;
418
419 /*
420 * If it's already released don't get it. This avoids to loop
421 * in __get_user_pages if userfaultfd_release waits on the
422 * caller of handle_userfault to release the mmap_lock.
423 */
424 if (unlikely(READ_ONCE(ctx->released))) {
425 /*
426 * Don't return VM_FAULT_SIGBUS in this case, so a non
427 * cooperative manager can close the uffd after the
428 * last UFFDIO_COPY, without risking to trigger an
429 * involuntary SIGBUS if the process was starting the
430 * userfaultfd while the userfaultfd was still armed
431 * (but after the last UFFDIO_COPY). If the uffd
432 * wasn't already closed when the userfault reached
433 * this point, that would normally be solved by
434 * userfaultfd_must_wait returning 'false'.
435 *
436 * If we were to return VM_FAULT_SIGBUS here, the non
437 * cooperative manager would be instead forced to
438 * always call UFFDIO_UNREGISTER before it can safely
439 * close the uffd.
440 */
441 ret = VM_FAULT_NOPAGE;
442 goto out;
443 }
444
445 /*
446 * Check that we can return VM_FAULT_RETRY.
447 *
448 * NOTE: it should become possible to return VM_FAULT_RETRY
449 * even if FAULT_FLAG_TRIED is set without leading to gup()
450 * -EBUSY failures, if the userfaultfd is to be extended for
451 * VM_UFFD_WP tracking and we intend to arm the userfault
452 * without first stopping userland access to the memory. For
453 * VM_UFFD_MISSING userfaults this is enough for now.
454 */
455 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
456 /*
457 * Validate the invariant that nowait must allow retry
458 * to be sure not to return SIGBUS erroneously on
459 * nowait invocations.
460 */
461 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
462#ifdef CONFIG_DEBUG_VM
463 if (printk_ratelimit()) {
464 printk(KERN_WARNING
465 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
466 vmf->flags);
467 dump_stack();
468 }
469#endif
470 goto out;
471 }
472
473 /*
474 * Handle nowait, not much to do other than tell it to retry
475 * and wait.
476 */
477 ret = VM_FAULT_RETRY;
478 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
479 goto out;
480
481 /* take the reference before dropping the mmap_lock */
482 userfaultfd_ctx_get(ctx);
483
484 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
485 uwq.wq.private = current;
486 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
487 reason, ctx->features);
488 uwq.ctx = ctx;
489 uwq.waken = false;
490
491 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
492
493 /*
494 * Take the vma lock now, in order to safely call
495 * userfaultfd_huge_must_wait() later. Since acquiring the
496 * (sleepable) vma lock can modify the current task state, that
497 * must be before explicitly calling set_current_state().
498 */
499 if (is_vm_hugetlb_page(vma))
500 hugetlb_vma_lock_read(vma);
501
502 spin_lock_irq(&ctx->fault_pending_wqh.lock);
503 /*
504 * After the __add_wait_queue the uwq is visible to userland
505 * through poll/read().
506 */
507 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
508 /*
509 * The smp_mb() after __set_current_state prevents the reads
510 * following the spin_unlock to happen before the list_add in
511 * __add_wait_queue.
512 */
513 set_current_state(blocking_state);
514 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
515
516 if (!is_vm_hugetlb_page(vma))
517 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
518 else
519 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
520 if (is_vm_hugetlb_page(vma))
521 hugetlb_vma_unlock_read(vma);
522 release_fault_lock(vmf);
523
524 if (likely(must_wait && !READ_ONCE(ctx->released))) {
525 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
526 schedule();
527 }
528
529 __set_current_state(TASK_RUNNING);
530
531 /*
532 * Here we race with the list_del; list_add in
533 * userfaultfd_ctx_read(), however because we don't ever run
534 * list_del_init() to refile across the two lists, the prev
535 * and next pointers will never point to self. list_add also
536 * would never let any of the two pointers to point to
537 * self. So list_empty_careful won't risk to see both pointers
538 * pointing to self at any time during the list refile. The
539 * only case where list_del_init() is called is the full
540 * removal in the wake function and there we don't re-list_add
541 * and it's fine not to block on the spinlock. The uwq on this
542 * kernel stack can be released after the list_del_init.
543 */
544 if (!list_empty_careful(&uwq.wq.entry)) {
545 spin_lock_irq(&ctx->fault_pending_wqh.lock);
546 /*
547 * No need of list_del_init(), the uwq on the stack
548 * will be freed shortly anyway.
549 */
550 list_del(&uwq.wq.entry);
551 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
552 }
553
554 /*
555 * ctx may go away after this if the userfault pseudo fd is
556 * already released.
557 */
558 userfaultfd_ctx_put(ctx);
559
560out:
561 return ret;
562}
563
564static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
565 struct userfaultfd_wait_queue *ewq)
566{
567 struct userfaultfd_ctx *release_new_ctx;
568
569 if (WARN_ON_ONCE(current->flags & PF_EXITING))
570 goto out;
571
572 ewq->ctx = ctx;
573 init_waitqueue_entry(&ewq->wq, current);
574 release_new_ctx = NULL;
575
576 spin_lock_irq(&ctx->event_wqh.lock);
577 /*
578 * After the __add_wait_queue the uwq is visible to userland
579 * through poll/read().
580 */
581 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
582 for (;;) {
583 set_current_state(TASK_KILLABLE);
584 if (ewq->msg.event == 0)
585 break;
586 if (READ_ONCE(ctx->released) ||
587 fatal_signal_pending(current)) {
588 /*
589 * &ewq->wq may be queued in fork_event, but
590 * __remove_wait_queue ignores the head
591 * parameter. It would be a problem if it
592 * didn't.
593 */
594 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
595 if (ewq->msg.event == UFFD_EVENT_FORK) {
596 struct userfaultfd_ctx *new;
597
598 new = (struct userfaultfd_ctx *)
599 (unsigned long)
600 ewq->msg.arg.reserved.reserved1;
601 release_new_ctx = new;
602 }
603 break;
604 }
605
606 spin_unlock_irq(&ctx->event_wqh.lock);
607
608 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
609 schedule();
610
611 spin_lock_irq(&ctx->event_wqh.lock);
612 }
613 __set_current_state(TASK_RUNNING);
614 spin_unlock_irq(&ctx->event_wqh.lock);
615
616 if (release_new_ctx) {
617 struct vm_area_struct *vma;
618 struct mm_struct *mm = release_new_ctx->mm;
619 VMA_ITERATOR(vmi, mm, 0);
620
621 /* the various vma->vm_userfaultfd_ctx still points to it */
622 mmap_write_lock(mm);
623 for_each_vma(vmi, vma) {
624 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
625 vma_start_write(vma);
626 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
627 userfaultfd_set_vm_flags(vma,
628 vma->vm_flags & ~__VM_UFFD_FLAGS);
629 }
630 }
631 mmap_write_unlock(mm);
632
633 userfaultfd_ctx_put(release_new_ctx);
634 }
635
636 /*
637 * ctx may go away after this if the userfault pseudo fd is
638 * already released.
639 */
640out:
641 atomic_dec(&ctx->mmap_changing);
642 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
643 userfaultfd_ctx_put(ctx);
644}
645
646static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
647 struct userfaultfd_wait_queue *ewq)
648{
649 ewq->msg.event = 0;
650 wake_up_locked(&ctx->event_wqh);
651 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
652}
653
654int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
655{
656 struct userfaultfd_ctx *ctx = NULL, *octx;
657 struct userfaultfd_fork_ctx *fctx;
658
659 octx = vma->vm_userfaultfd_ctx.ctx;
660 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
661 vma_start_write(vma);
662 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
663 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
664 return 0;
665 }
666
667 list_for_each_entry(fctx, fcs, list)
668 if (fctx->orig == octx) {
669 ctx = fctx->new;
670 break;
671 }
672
673 if (!ctx) {
674 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
675 if (!fctx)
676 return -ENOMEM;
677
678 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
679 if (!ctx) {
680 kfree(fctx);
681 return -ENOMEM;
682 }
683
684 refcount_set(&ctx->refcount, 1);
685 ctx->flags = octx->flags;
686 ctx->features = octx->features;
687 ctx->released = false;
688 init_rwsem(&ctx->map_changing_lock);
689 atomic_set(&ctx->mmap_changing, 0);
690 ctx->mm = vma->vm_mm;
691 mmgrab(ctx->mm);
692
693 userfaultfd_ctx_get(octx);
694 down_write(&octx->map_changing_lock);
695 atomic_inc(&octx->mmap_changing);
696 up_write(&octx->map_changing_lock);
697 fctx->orig = octx;
698 fctx->new = ctx;
699 list_add_tail(&fctx->list, fcs);
700 }
701
702 vma->vm_userfaultfd_ctx.ctx = ctx;
703 return 0;
704}
705
706static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
707{
708 struct userfaultfd_ctx *ctx = fctx->orig;
709 struct userfaultfd_wait_queue ewq;
710
711 msg_init(&ewq.msg);
712
713 ewq.msg.event = UFFD_EVENT_FORK;
714 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
715
716 userfaultfd_event_wait_completion(ctx, &ewq);
717}
718
719void dup_userfaultfd_complete(struct list_head *fcs)
720{
721 struct userfaultfd_fork_ctx *fctx, *n;
722
723 list_for_each_entry_safe(fctx, n, fcs, list) {
724 dup_fctx(fctx);
725 list_del(&fctx->list);
726 kfree(fctx);
727 }
728}
729
730void mremap_userfaultfd_prep(struct vm_area_struct *vma,
731 struct vm_userfaultfd_ctx *vm_ctx)
732{
733 struct userfaultfd_ctx *ctx;
734
735 ctx = vma->vm_userfaultfd_ctx.ctx;
736
737 if (!ctx)
738 return;
739
740 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
741 vm_ctx->ctx = ctx;
742 userfaultfd_ctx_get(ctx);
743 down_write(&ctx->map_changing_lock);
744 atomic_inc(&ctx->mmap_changing);
745 up_write(&ctx->map_changing_lock);
746 } else {
747 /* Drop uffd context if remap feature not enabled */
748 vma_start_write(vma);
749 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
750 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
751 }
752}
753
754void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
755 unsigned long from, unsigned long to,
756 unsigned long len)
757{
758 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
759 struct userfaultfd_wait_queue ewq;
760
761 if (!ctx)
762 return;
763
764 if (to & ~PAGE_MASK) {
765 userfaultfd_ctx_put(ctx);
766 return;
767 }
768
769 msg_init(&ewq.msg);
770
771 ewq.msg.event = UFFD_EVENT_REMAP;
772 ewq.msg.arg.remap.from = from;
773 ewq.msg.arg.remap.to = to;
774 ewq.msg.arg.remap.len = len;
775
776 userfaultfd_event_wait_completion(ctx, &ewq);
777}
778
779bool userfaultfd_remove(struct vm_area_struct *vma,
780 unsigned long start, unsigned long end)
781{
782 struct mm_struct *mm = vma->vm_mm;
783 struct userfaultfd_ctx *ctx;
784 struct userfaultfd_wait_queue ewq;
785
786 ctx = vma->vm_userfaultfd_ctx.ctx;
787 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
788 return true;
789
790 userfaultfd_ctx_get(ctx);
791 down_write(&ctx->map_changing_lock);
792 atomic_inc(&ctx->mmap_changing);
793 up_write(&ctx->map_changing_lock);
794 mmap_read_unlock(mm);
795
796 msg_init(&ewq.msg);
797
798 ewq.msg.event = UFFD_EVENT_REMOVE;
799 ewq.msg.arg.remove.start = start;
800 ewq.msg.arg.remove.end = end;
801
802 userfaultfd_event_wait_completion(ctx, &ewq);
803
804 return false;
805}
806
807static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
808 unsigned long start, unsigned long end)
809{
810 struct userfaultfd_unmap_ctx *unmap_ctx;
811
812 list_for_each_entry(unmap_ctx, unmaps, list)
813 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
814 unmap_ctx->end == end)
815 return true;
816
817 return false;
818}
819
820int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
821 unsigned long end, struct list_head *unmaps)
822{
823 struct userfaultfd_unmap_ctx *unmap_ctx;
824 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
825
826 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
827 has_unmap_ctx(ctx, unmaps, start, end))
828 return 0;
829
830 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
831 if (!unmap_ctx)
832 return -ENOMEM;
833
834 userfaultfd_ctx_get(ctx);
835 down_write(&ctx->map_changing_lock);
836 atomic_inc(&ctx->mmap_changing);
837 up_write(&ctx->map_changing_lock);
838 unmap_ctx->ctx = ctx;
839 unmap_ctx->start = start;
840 unmap_ctx->end = end;
841 list_add_tail(&unmap_ctx->list, unmaps);
842
843 return 0;
844}
845
846void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
847{
848 struct userfaultfd_unmap_ctx *ctx, *n;
849 struct userfaultfd_wait_queue ewq;
850
851 list_for_each_entry_safe(ctx, n, uf, list) {
852 msg_init(&ewq.msg);
853
854 ewq.msg.event = UFFD_EVENT_UNMAP;
855 ewq.msg.arg.remove.start = ctx->start;
856 ewq.msg.arg.remove.end = ctx->end;
857
858 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
859
860 list_del(&ctx->list);
861 kfree(ctx);
862 }
863}
864
865static int userfaultfd_release(struct inode *inode, struct file *file)
866{
867 struct userfaultfd_ctx *ctx = file->private_data;
868 struct mm_struct *mm = ctx->mm;
869 struct vm_area_struct *vma, *prev;
870 /* len == 0 means wake all */
871 struct userfaultfd_wake_range range = { .len = 0, };
872 unsigned long new_flags;
873 VMA_ITERATOR(vmi, mm, 0);
874
875 WRITE_ONCE(ctx->released, true);
876
877 if (!mmget_not_zero(mm))
878 goto wakeup;
879
880 /*
881 * Flush page faults out of all CPUs. NOTE: all page faults
882 * must be retried without returning VM_FAULT_SIGBUS if
883 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
884 * changes while handle_userfault released the mmap_lock. So
885 * it's critical that released is set to true (above), before
886 * taking the mmap_lock for writing.
887 */
888 mmap_write_lock(mm);
889 prev = NULL;
890 for_each_vma(vmi, vma) {
891 cond_resched();
892 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
893 !!(vma->vm_flags & __VM_UFFD_FLAGS));
894 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
895 prev = vma;
896 continue;
897 }
898 /* Reset ptes for the whole vma range if wr-protected */
899 if (userfaultfd_wp(vma))
900 uffd_wp_range(vma, vma->vm_start,
901 vma->vm_end - vma->vm_start, false);
902 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
903 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
904 vma->vm_end, new_flags,
905 NULL_VM_UFFD_CTX);
906
907 vma_start_write(vma);
908 userfaultfd_set_vm_flags(vma, new_flags);
909 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
910
911 prev = vma;
912 }
913 mmap_write_unlock(mm);
914 mmput(mm);
915wakeup:
916 /*
917 * After no new page faults can wait on this fault_*wqh, flush
918 * the last page faults that may have been already waiting on
919 * the fault_*wqh.
920 */
921 spin_lock_irq(&ctx->fault_pending_wqh.lock);
922 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
923 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
924 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
925
926 /* Flush pending events that may still wait on event_wqh */
927 wake_up_all(&ctx->event_wqh);
928
929 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
930 userfaultfd_ctx_put(ctx);
931 return 0;
932}
933
934/* fault_pending_wqh.lock must be hold by the caller */
935static inline struct userfaultfd_wait_queue *find_userfault_in(
936 wait_queue_head_t *wqh)
937{
938 wait_queue_entry_t *wq;
939 struct userfaultfd_wait_queue *uwq;
940
941 lockdep_assert_held(&wqh->lock);
942
943 uwq = NULL;
944 if (!waitqueue_active(wqh))
945 goto out;
946 /* walk in reverse to provide FIFO behavior to read userfaults */
947 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
948 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
949out:
950 return uwq;
951}
952
953static inline struct userfaultfd_wait_queue *find_userfault(
954 struct userfaultfd_ctx *ctx)
955{
956 return find_userfault_in(&ctx->fault_pending_wqh);
957}
958
959static inline struct userfaultfd_wait_queue *find_userfault_evt(
960 struct userfaultfd_ctx *ctx)
961{
962 return find_userfault_in(&ctx->event_wqh);
963}
964
965static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
966{
967 struct userfaultfd_ctx *ctx = file->private_data;
968 __poll_t ret;
969
970 poll_wait(file, &ctx->fd_wqh, wait);
971
972 if (!userfaultfd_is_initialized(ctx))
973 return EPOLLERR;
974
975 /*
976 * poll() never guarantees that read won't block.
977 * userfaults can be waken before they're read().
978 */
979 if (unlikely(!(file->f_flags & O_NONBLOCK)))
980 return EPOLLERR;
981 /*
982 * lockless access to see if there are pending faults
983 * __pollwait last action is the add_wait_queue but
984 * the spin_unlock would allow the waitqueue_active to
985 * pass above the actual list_add inside
986 * add_wait_queue critical section. So use a full
987 * memory barrier to serialize the list_add write of
988 * add_wait_queue() with the waitqueue_active read
989 * below.
990 */
991 ret = 0;
992 smp_mb();
993 if (waitqueue_active(&ctx->fault_pending_wqh))
994 ret = EPOLLIN;
995 else if (waitqueue_active(&ctx->event_wqh))
996 ret = EPOLLIN;
997
998 return ret;
999}
1000
1001static const struct file_operations userfaultfd_fops;
1002
1003static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1004 struct inode *inode,
1005 struct uffd_msg *msg)
1006{
1007 int fd;
1008
1009 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1010 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1011 if (fd < 0)
1012 return fd;
1013
1014 msg->arg.reserved.reserved1 = 0;
1015 msg->arg.fork.ufd = fd;
1016 return 0;
1017}
1018
1019static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1020 struct uffd_msg *msg, struct inode *inode)
1021{
1022 ssize_t ret;
1023 DECLARE_WAITQUEUE(wait, current);
1024 struct userfaultfd_wait_queue *uwq;
1025 /*
1026 * Handling fork event requires sleeping operations, so
1027 * we drop the event_wqh lock, then do these ops, then
1028 * lock it back and wake up the waiter. While the lock is
1029 * dropped the ewq may go away so we keep track of it
1030 * carefully.
1031 */
1032 LIST_HEAD(fork_event);
1033 struct userfaultfd_ctx *fork_nctx = NULL;
1034
1035 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1036 spin_lock_irq(&ctx->fd_wqh.lock);
1037 __add_wait_queue(&ctx->fd_wqh, &wait);
1038 for (;;) {
1039 set_current_state(TASK_INTERRUPTIBLE);
1040 spin_lock(&ctx->fault_pending_wqh.lock);
1041 uwq = find_userfault(ctx);
1042 if (uwq) {
1043 /*
1044 * Use a seqcount to repeat the lockless check
1045 * in wake_userfault() to avoid missing
1046 * wakeups because during the refile both
1047 * waitqueue could become empty if this is the
1048 * only userfault.
1049 */
1050 write_seqcount_begin(&ctx->refile_seq);
1051
1052 /*
1053 * The fault_pending_wqh.lock prevents the uwq
1054 * to disappear from under us.
1055 *
1056 * Refile this userfault from
1057 * fault_pending_wqh to fault_wqh, it's not
1058 * pending anymore after we read it.
1059 *
1060 * Use list_del() by hand (as
1061 * userfaultfd_wake_function also uses
1062 * list_del_init() by hand) to be sure nobody
1063 * changes __remove_wait_queue() to use
1064 * list_del_init() in turn breaking the
1065 * !list_empty_careful() check in
1066 * handle_userfault(). The uwq->wq.head list
1067 * must never be empty at any time during the
1068 * refile, or the waitqueue could disappear
1069 * from under us. The "wait_queue_head_t"
1070 * parameter of __remove_wait_queue() is unused
1071 * anyway.
1072 */
1073 list_del(&uwq->wq.entry);
1074 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1075
1076 write_seqcount_end(&ctx->refile_seq);
1077
1078 /* careful to always initialize msg if ret == 0 */
1079 *msg = uwq->msg;
1080 spin_unlock(&ctx->fault_pending_wqh.lock);
1081 ret = 0;
1082 break;
1083 }
1084 spin_unlock(&ctx->fault_pending_wqh.lock);
1085
1086 spin_lock(&ctx->event_wqh.lock);
1087 uwq = find_userfault_evt(ctx);
1088 if (uwq) {
1089 *msg = uwq->msg;
1090
1091 if (uwq->msg.event == UFFD_EVENT_FORK) {
1092 fork_nctx = (struct userfaultfd_ctx *)
1093 (unsigned long)
1094 uwq->msg.arg.reserved.reserved1;
1095 list_move(&uwq->wq.entry, &fork_event);
1096 /*
1097 * fork_nctx can be freed as soon as
1098 * we drop the lock, unless we take a
1099 * reference on it.
1100 */
1101 userfaultfd_ctx_get(fork_nctx);
1102 spin_unlock(&ctx->event_wqh.lock);
1103 ret = 0;
1104 break;
1105 }
1106
1107 userfaultfd_event_complete(ctx, uwq);
1108 spin_unlock(&ctx->event_wqh.lock);
1109 ret = 0;
1110 break;
1111 }
1112 spin_unlock(&ctx->event_wqh.lock);
1113
1114 if (signal_pending(current)) {
1115 ret = -ERESTARTSYS;
1116 break;
1117 }
1118 if (no_wait) {
1119 ret = -EAGAIN;
1120 break;
1121 }
1122 spin_unlock_irq(&ctx->fd_wqh.lock);
1123 schedule();
1124 spin_lock_irq(&ctx->fd_wqh.lock);
1125 }
1126 __remove_wait_queue(&ctx->fd_wqh, &wait);
1127 __set_current_state(TASK_RUNNING);
1128 spin_unlock_irq(&ctx->fd_wqh.lock);
1129
1130 if (!ret && msg->event == UFFD_EVENT_FORK) {
1131 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1132 spin_lock_irq(&ctx->event_wqh.lock);
1133 if (!list_empty(&fork_event)) {
1134 /*
1135 * The fork thread didn't abort, so we can
1136 * drop the temporary refcount.
1137 */
1138 userfaultfd_ctx_put(fork_nctx);
1139
1140 uwq = list_first_entry(&fork_event,
1141 typeof(*uwq),
1142 wq.entry);
1143 /*
1144 * If fork_event list wasn't empty and in turn
1145 * the event wasn't already released by fork
1146 * (the event is allocated on fork kernel
1147 * stack), put the event back to its place in
1148 * the event_wq. fork_event head will be freed
1149 * as soon as we return so the event cannot
1150 * stay queued there no matter the current
1151 * "ret" value.
1152 */
1153 list_del(&uwq->wq.entry);
1154 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1155
1156 /*
1157 * Leave the event in the waitqueue and report
1158 * error to userland if we failed to resolve
1159 * the userfault fork.
1160 */
1161 if (likely(!ret))
1162 userfaultfd_event_complete(ctx, uwq);
1163 } else {
1164 /*
1165 * Here the fork thread aborted and the
1166 * refcount from the fork thread on fork_nctx
1167 * has already been released. We still hold
1168 * the reference we took before releasing the
1169 * lock above. If resolve_userfault_fork
1170 * failed we've to drop it because the
1171 * fork_nctx has to be freed in such case. If
1172 * it succeeded we'll hold it because the new
1173 * uffd references it.
1174 */
1175 if (ret)
1176 userfaultfd_ctx_put(fork_nctx);
1177 }
1178 spin_unlock_irq(&ctx->event_wqh.lock);
1179 }
1180
1181 return ret;
1182}
1183
1184static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1185 size_t count, loff_t *ppos)
1186{
1187 struct userfaultfd_ctx *ctx = file->private_data;
1188 ssize_t _ret, ret = 0;
1189 struct uffd_msg msg;
1190 int no_wait = file->f_flags & O_NONBLOCK;
1191 struct inode *inode = file_inode(file);
1192
1193 if (!userfaultfd_is_initialized(ctx))
1194 return -EINVAL;
1195
1196 for (;;) {
1197 if (count < sizeof(msg))
1198 return ret ? ret : -EINVAL;
1199 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1200 if (_ret < 0)
1201 return ret ? ret : _ret;
1202 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1203 return ret ? ret : -EFAULT;
1204 ret += sizeof(msg);
1205 buf += sizeof(msg);
1206 count -= sizeof(msg);
1207 /*
1208 * Allow to read more than one fault at time but only
1209 * block if waiting for the very first one.
1210 */
1211 no_wait = O_NONBLOCK;
1212 }
1213}
1214
1215static void __wake_userfault(struct userfaultfd_ctx *ctx,
1216 struct userfaultfd_wake_range *range)
1217{
1218 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1219 /* wake all in the range and autoremove */
1220 if (waitqueue_active(&ctx->fault_pending_wqh))
1221 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1222 range);
1223 if (waitqueue_active(&ctx->fault_wqh))
1224 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1225 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1226}
1227
1228static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1229 struct userfaultfd_wake_range *range)
1230{
1231 unsigned seq;
1232 bool need_wakeup;
1233
1234 /*
1235 * To be sure waitqueue_active() is not reordered by the CPU
1236 * before the pagetable update, use an explicit SMP memory
1237 * barrier here. PT lock release or mmap_read_unlock(mm) still
1238 * have release semantics that can allow the
1239 * waitqueue_active() to be reordered before the pte update.
1240 */
1241 smp_mb();
1242
1243 /*
1244 * Use waitqueue_active because it's very frequent to
1245 * change the address space atomically even if there are no
1246 * userfaults yet. So we take the spinlock only when we're
1247 * sure we've userfaults to wake.
1248 */
1249 do {
1250 seq = read_seqcount_begin(&ctx->refile_seq);
1251 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1252 waitqueue_active(&ctx->fault_wqh);
1253 cond_resched();
1254 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1255 if (need_wakeup)
1256 __wake_userfault(ctx, range);
1257}
1258
1259static __always_inline int validate_unaligned_range(
1260 struct mm_struct *mm, __u64 start, __u64 len)
1261{
1262 __u64 task_size = mm->task_size;
1263
1264 if (len & ~PAGE_MASK)
1265 return -EINVAL;
1266 if (!len)
1267 return -EINVAL;
1268 if (start < mmap_min_addr)
1269 return -EINVAL;
1270 if (start >= task_size)
1271 return -EINVAL;
1272 if (len > task_size - start)
1273 return -EINVAL;
1274 if (start + len <= start)
1275 return -EINVAL;
1276 return 0;
1277}
1278
1279static __always_inline int validate_range(struct mm_struct *mm,
1280 __u64 start, __u64 len)
1281{
1282 if (start & ~PAGE_MASK)
1283 return -EINVAL;
1284
1285 return validate_unaligned_range(mm, start, len);
1286}
1287
1288static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1289 unsigned long arg)
1290{
1291 struct mm_struct *mm = ctx->mm;
1292 struct vm_area_struct *vma, *prev, *cur;
1293 int ret;
1294 struct uffdio_register uffdio_register;
1295 struct uffdio_register __user *user_uffdio_register;
1296 unsigned long vm_flags, new_flags;
1297 bool found;
1298 bool basic_ioctls;
1299 unsigned long start, end, vma_end;
1300 struct vma_iterator vmi;
1301 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1302
1303 user_uffdio_register = (struct uffdio_register __user *) arg;
1304
1305 ret = -EFAULT;
1306 if (copy_from_user(&uffdio_register, user_uffdio_register,
1307 sizeof(uffdio_register)-sizeof(__u64)))
1308 goto out;
1309
1310 ret = -EINVAL;
1311 if (!uffdio_register.mode)
1312 goto out;
1313 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1314 goto out;
1315 vm_flags = 0;
1316 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1317 vm_flags |= VM_UFFD_MISSING;
1318 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1319#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1320 goto out;
1321#endif
1322 vm_flags |= VM_UFFD_WP;
1323 }
1324 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1325#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1326 goto out;
1327#endif
1328 vm_flags |= VM_UFFD_MINOR;
1329 }
1330
1331 ret = validate_range(mm, uffdio_register.range.start,
1332 uffdio_register.range.len);
1333 if (ret)
1334 goto out;
1335
1336 start = uffdio_register.range.start;
1337 end = start + uffdio_register.range.len;
1338
1339 ret = -ENOMEM;
1340 if (!mmget_not_zero(mm))
1341 goto out;
1342
1343 ret = -EINVAL;
1344 mmap_write_lock(mm);
1345 vma_iter_init(&vmi, mm, start);
1346 vma = vma_find(&vmi, end);
1347 if (!vma)
1348 goto out_unlock;
1349
1350 /*
1351 * If the first vma contains huge pages, make sure start address
1352 * is aligned to huge page size.
1353 */
1354 if (is_vm_hugetlb_page(vma)) {
1355 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1356
1357 if (start & (vma_hpagesize - 1))
1358 goto out_unlock;
1359 }
1360
1361 /*
1362 * Search for not compatible vmas.
1363 */
1364 found = false;
1365 basic_ioctls = false;
1366 cur = vma;
1367 do {
1368 cond_resched();
1369
1370 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1371 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1372
1373 /* check not compatible vmas */
1374 ret = -EINVAL;
1375 if (!vma_can_userfault(cur, vm_flags, wp_async))
1376 goto out_unlock;
1377
1378 /*
1379 * UFFDIO_COPY will fill file holes even without
1380 * PROT_WRITE. This check enforces that if this is a
1381 * MAP_SHARED, the process has write permission to the backing
1382 * file. If VM_MAYWRITE is set it also enforces that on a
1383 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1384 * F_WRITE_SEAL can be taken until the vma is destroyed.
1385 */
1386 ret = -EPERM;
1387 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1388 goto out_unlock;
1389
1390 /*
1391 * If this vma contains ending address, and huge pages
1392 * check alignment.
1393 */
1394 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1395 end > cur->vm_start) {
1396 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1397
1398 ret = -EINVAL;
1399
1400 if (end & (vma_hpagesize - 1))
1401 goto out_unlock;
1402 }
1403 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1404 goto out_unlock;
1405
1406 /*
1407 * Check that this vma isn't already owned by a
1408 * different userfaultfd. We can't allow more than one
1409 * userfaultfd to own a single vma simultaneously or we
1410 * wouldn't know which one to deliver the userfaults to.
1411 */
1412 ret = -EBUSY;
1413 if (cur->vm_userfaultfd_ctx.ctx &&
1414 cur->vm_userfaultfd_ctx.ctx != ctx)
1415 goto out_unlock;
1416
1417 /*
1418 * Note vmas containing huge pages
1419 */
1420 if (is_vm_hugetlb_page(cur))
1421 basic_ioctls = true;
1422
1423 found = true;
1424 } for_each_vma_range(vmi, cur, end);
1425 BUG_ON(!found);
1426
1427 vma_iter_set(&vmi, start);
1428 prev = vma_prev(&vmi);
1429 if (vma->vm_start < start)
1430 prev = vma;
1431
1432 ret = 0;
1433 for_each_vma_range(vmi, vma, end) {
1434 cond_resched();
1435
1436 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1437 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1438 vma->vm_userfaultfd_ctx.ctx != ctx);
1439 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1440
1441 /*
1442 * Nothing to do: this vma is already registered into this
1443 * userfaultfd and with the right tracking mode too.
1444 */
1445 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1446 (vma->vm_flags & vm_flags) == vm_flags)
1447 goto skip;
1448
1449 if (vma->vm_start > start)
1450 start = vma->vm_start;
1451 vma_end = min(end, vma->vm_end);
1452
1453 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1454 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1455 new_flags,
1456 (struct vm_userfaultfd_ctx){ctx});
1457 if (IS_ERR(vma)) {
1458 ret = PTR_ERR(vma);
1459 break;
1460 }
1461
1462 /*
1463 * In the vma_merge() successful mprotect-like case 8:
1464 * the next vma was merged into the current one and
1465 * the current one has not been updated yet.
1466 */
1467 vma_start_write(vma);
1468 userfaultfd_set_vm_flags(vma, new_flags);
1469 vma->vm_userfaultfd_ctx.ctx = ctx;
1470
1471 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1472 hugetlb_unshare_all_pmds(vma);
1473
1474 skip:
1475 prev = vma;
1476 start = vma->vm_end;
1477 }
1478
1479out_unlock:
1480 mmap_write_unlock(mm);
1481 mmput(mm);
1482 if (!ret) {
1483 __u64 ioctls_out;
1484
1485 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1486 UFFD_API_RANGE_IOCTLS;
1487
1488 /*
1489 * Declare the WP ioctl only if the WP mode is
1490 * specified and all checks passed with the range
1491 */
1492 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1493 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1494
1495 /* CONTINUE ioctl is only supported for MINOR ranges. */
1496 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1497 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1498
1499 /*
1500 * Now that we scanned all vmas we can already tell
1501 * userland which ioctls methods are guaranteed to
1502 * succeed on this range.
1503 */
1504 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1505 ret = -EFAULT;
1506 }
1507out:
1508 return ret;
1509}
1510
1511static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1512 unsigned long arg)
1513{
1514 struct mm_struct *mm = ctx->mm;
1515 struct vm_area_struct *vma, *prev, *cur;
1516 int ret;
1517 struct uffdio_range uffdio_unregister;
1518 unsigned long new_flags;
1519 bool found;
1520 unsigned long start, end, vma_end;
1521 const void __user *buf = (void __user *)arg;
1522 struct vma_iterator vmi;
1523 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1524
1525 ret = -EFAULT;
1526 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1527 goto out;
1528
1529 ret = validate_range(mm, uffdio_unregister.start,
1530 uffdio_unregister.len);
1531 if (ret)
1532 goto out;
1533
1534 start = uffdio_unregister.start;
1535 end = start + uffdio_unregister.len;
1536
1537 ret = -ENOMEM;
1538 if (!mmget_not_zero(mm))
1539 goto out;
1540
1541 mmap_write_lock(mm);
1542 ret = -EINVAL;
1543 vma_iter_init(&vmi, mm, start);
1544 vma = vma_find(&vmi, end);
1545 if (!vma)
1546 goto out_unlock;
1547
1548 /*
1549 * If the first vma contains huge pages, make sure start address
1550 * is aligned to huge page size.
1551 */
1552 if (is_vm_hugetlb_page(vma)) {
1553 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1554
1555 if (start & (vma_hpagesize - 1))
1556 goto out_unlock;
1557 }
1558
1559 /*
1560 * Search for not compatible vmas.
1561 */
1562 found = false;
1563 cur = vma;
1564 do {
1565 cond_resched();
1566
1567 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1568 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1569
1570 /*
1571 * Check not compatible vmas, not strictly required
1572 * here as not compatible vmas cannot have an
1573 * userfaultfd_ctx registered on them, but this
1574 * provides for more strict behavior to notice
1575 * unregistration errors.
1576 */
1577 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1578 goto out_unlock;
1579
1580 found = true;
1581 } for_each_vma_range(vmi, cur, end);
1582 BUG_ON(!found);
1583
1584 vma_iter_set(&vmi, start);
1585 prev = vma_prev(&vmi);
1586 if (vma->vm_start < start)
1587 prev = vma;
1588
1589 ret = 0;
1590 for_each_vma_range(vmi, vma, end) {
1591 cond_resched();
1592
1593 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1594
1595 /*
1596 * Nothing to do: this vma is already registered into this
1597 * userfaultfd and with the right tracking mode too.
1598 */
1599 if (!vma->vm_userfaultfd_ctx.ctx)
1600 goto skip;
1601
1602 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1603
1604 if (vma->vm_start > start)
1605 start = vma->vm_start;
1606 vma_end = min(end, vma->vm_end);
1607
1608 if (userfaultfd_missing(vma)) {
1609 /*
1610 * Wake any concurrent pending userfault while
1611 * we unregister, so they will not hang
1612 * permanently and it avoids userland to call
1613 * UFFDIO_WAKE explicitly.
1614 */
1615 struct userfaultfd_wake_range range;
1616 range.start = start;
1617 range.len = vma_end - start;
1618 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1619 }
1620
1621 /* Reset ptes for the whole vma range if wr-protected */
1622 if (userfaultfd_wp(vma))
1623 uffd_wp_range(vma, start, vma_end - start, false);
1624
1625 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1626 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1627 new_flags, NULL_VM_UFFD_CTX);
1628 if (IS_ERR(vma)) {
1629 ret = PTR_ERR(vma);
1630 break;
1631 }
1632
1633 /*
1634 * In the vma_merge() successful mprotect-like case 8:
1635 * the next vma was merged into the current one and
1636 * the current one has not been updated yet.
1637 */
1638 vma_start_write(vma);
1639 userfaultfd_set_vm_flags(vma, new_flags);
1640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1641
1642 skip:
1643 prev = vma;
1644 start = vma->vm_end;
1645 }
1646
1647out_unlock:
1648 mmap_write_unlock(mm);
1649 mmput(mm);
1650out:
1651 return ret;
1652}
1653
1654/*
1655 * userfaultfd_wake may be used in combination with the
1656 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1657 */
1658static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659 unsigned long arg)
1660{
1661 int ret;
1662 struct uffdio_range uffdio_wake;
1663 struct userfaultfd_wake_range range;
1664 const void __user *buf = (void __user *)arg;
1665
1666 ret = -EFAULT;
1667 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668 goto out;
1669
1670 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1671 if (ret)
1672 goto out;
1673
1674 range.start = uffdio_wake.start;
1675 range.len = uffdio_wake.len;
1676
1677 /*
1678 * len == 0 means wake all and we don't want to wake all here,
1679 * so check it again to be sure.
1680 */
1681 VM_BUG_ON(!range.len);
1682
1683 wake_userfault(ctx, &range);
1684 ret = 0;
1685
1686out:
1687 return ret;
1688}
1689
1690static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691 unsigned long arg)
1692{
1693 __s64 ret;
1694 struct uffdio_copy uffdio_copy;
1695 struct uffdio_copy __user *user_uffdio_copy;
1696 struct userfaultfd_wake_range range;
1697 uffd_flags_t flags = 0;
1698
1699 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1700
1701 ret = -EAGAIN;
1702 if (atomic_read(&ctx->mmap_changing))
1703 goto out;
1704
1705 ret = -EFAULT;
1706 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1707 /* don't copy "copy" last field */
1708 sizeof(uffdio_copy)-sizeof(__s64)))
1709 goto out;
1710
1711 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1712 uffdio_copy.len);
1713 if (ret)
1714 goto out;
1715 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1716 if (ret)
1717 goto out;
1718
1719 ret = -EINVAL;
1720 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1721 goto out;
1722 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1723 flags |= MFILL_ATOMIC_WP;
1724 if (mmget_not_zero(ctx->mm)) {
1725 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1726 uffdio_copy.len, flags);
1727 mmput(ctx->mm);
1728 } else {
1729 return -ESRCH;
1730 }
1731 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1732 return -EFAULT;
1733 if (ret < 0)
1734 goto out;
1735 BUG_ON(!ret);
1736 /* len == 0 would wake all */
1737 range.len = ret;
1738 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1739 range.start = uffdio_copy.dst;
1740 wake_userfault(ctx, &range);
1741 }
1742 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1743out:
1744 return ret;
1745}
1746
1747static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1748 unsigned long arg)
1749{
1750 __s64 ret;
1751 struct uffdio_zeropage uffdio_zeropage;
1752 struct uffdio_zeropage __user *user_uffdio_zeropage;
1753 struct userfaultfd_wake_range range;
1754
1755 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1756
1757 ret = -EAGAIN;
1758 if (atomic_read(&ctx->mmap_changing))
1759 goto out;
1760
1761 ret = -EFAULT;
1762 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1763 /* don't copy "zeropage" last field */
1764 sizeof(uffdio_zeropage)-sizeof(__s64)))
1765 goto out;
1766
1767 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1768 uffdio_zeropage.range.len);
1769 if (ret)
1770 goto out;
1771 ret = -EINVAL;
1772 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1773 goto out;
1774
1775 if (mmget_not_zero(ctx->mm)) {
1776 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1777 uffdio_zeropage.range.len);
1778 mmput(ctx->mm);
1779 } else {
1780 return -ESRCH;
1781 }
1782 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1783 return -EFAULT;
1784 if (ret < 0)
1785 goto out;
1786 /* len == 0 would wake all */
1787 BUG_ON(!ret);
1788 range.len = ret;
1789 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1790 range.start = uffdio_zeropage.range.start;
1791 wake_userfault(ctx, &range);
1792 }
1793 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1794out:
1795 return ret;
1796}
1797
1798static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1799 unsigned long arg)
1800{
1801 int ret;
1802 struct uffdio_writeprotect uffdio_wp;
1803 struct uffdio_writeprotect __user *user_uffdio_wp;
1804 struct userfaultfd_wake_range range;
1805 bool mode_wp, mode_dontwake;
1806
1807 if (atomic_read(&ctx->mmap_changing))
1808 return -EAGAIN;
1809
1810 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1811
1812 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1813 sizeof(struct uffdio_writeprotect)))
1814 return -EFAULT;
1815
1816 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1817 uffdio_wp.range.len);
1818 if (ret)
1819 return ret;
1820
1821 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1822 UFFDIO_WRITEPROTECT_MODE_WP))
1823 return -EINVAL;
1824
1825 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1826 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1827
1828 if (mode_wp && mode_dontwake)
1829 return -EINVAL;
1830
1831 if (mmget_not_zero(ctx->mm)) {
1832 ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1833 uffdio_wp.range.len, mode_wp);
1834 mmput(ctx->mm);
1835 } else {
1836 return -ESRCH;
1837 }
1838
1839 if (ret)
1840 return ret;
1841
1842 if (!mode_wp && !mode_dontwake) {
1843 range.start = uffdio_wp.range.start;
1844 range.len = uffdio_wp.range.len;
1845 wake_userfault(ctx, &range);
1846 }
1847 return ret;
1848}
1849
1850static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1851{
1852 __s64 ret;
1853 struct uffdio_continue uffdio_continue;
1854 struct uffdio_continue __user *user_uffdio_continue;
1855 struct userfaultfd_wake_range range;
1856 uffd_flags_t flags = 0;
1857
1858 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1859
1860 ret = -EAGAIN;
1861 if (atomic_read(&ctx->mmap_changing))
1862 goto out;
1863
1864 ret = -EFAULT;
1865 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1866 /* don't copy the output fields */
1867 sizeof(uffdio_continue) - (sizeof(__s64))))
1868 goto out;
1869
1870 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1871 uffdio_continue.range.len);
1872 if (ret)
1873 goto out;
1874
1875 ret = -EINVAL;
1876 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1877 UFFDIO_CONTINUE_MODE_WP))
1878 goto out;
1879 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1880 flags |= MFILL_ATOMIC_WP;
1881
1882 if (mmget_not_zero(ctx->mm)) {
1883 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1884 uffdio_continue.range.len, flags);
1885 mmput(ctx->mm);
1886 } else {
1887 return -ESRCH;
1888 }
1889
1890 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1891 return -EFAULT;
1892 if (ret < 0)
1893 goto out;
1894
1895 /* len == 0 would wake all */
1896 BUG_ON(!ret);
1897 range.len = ret;
1898 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1899 range.start = uffdio_continue.range.start;
1900 wake_userfault(ctx, &range);
1901 }
1902 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1903
1904out:
1905 return ret;
1906}
1907
1908static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1909{
1910 __s64 ret;
1911 struct uffdio_poison uffdio_poison;
1912 struct uffdio_poison __user *user_uffdio_poison;
1913 struct userfaultfd_wake_range range;
1914
1915 user_uffdio_poison = (struct uffdio_poison __user *)arg;
1916
1917 ret = -EAGAIN;
1918 if (atomic_read(&ctx->mmap_changing))
1919 goto out;
1920
1921 ret = -EFAULT;
1922 if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1923 /* don't copy the output fields */
1924 sizeof(uffdio_poison) - (sizeof(__s64))))
1925 goto out;
1926
1927 ret = validate_range(ctx->mm, uffdio_poison.range.start,
1928 uffdio_poison.range.len);
1929 if (ret)
1930 goto out;
1931
1932 ret = -EINVAL;
1933 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1934 goto out;
1935
1936 if (mmget_not_zero(ctx->mm)) {
1937 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1938 uffdio_poison.range.len, 0);
1939 mmput(ctx->mm);
1940 } else {
1941 return -ESRCH;
1942 }
1943
1944 if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1945 return -EFAULT;
1946 if (ret < 0)
1947 goto out;
1948
1949 /* len == 0 would wake all */
1950 BUG_ON(!ret);
1951 range.len = ret;
1952 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1953 range.start = uffdio_poison.range.start;
1954 wake_userfault(ctx, &range);
1955 }
1956 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1957
1958out:
1959 return ret;
1960}
1961
1962bool userfaultfd_wp_async(struct vm_area_struct *vma)
1963{
1964 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1965}
1966
1967static inline unsigned int uffd_ctx_features(__u64 user_features)
1968{
1969 /*
1970 * For the current set of features the bits just coincide. Set
1971 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1972 */
1973 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1974}
1975
1976static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1977 unsigned long arg)
1978{
1979 __s64 ret;
1980 struct uffdio_move uffdio_move;
1981 struct uffdio_move __user *user_uffdio_move;
1982 struct userfaultfd_wake_range range;
1983 struct mm_struct *mm = ctx->mm;
1984
1985 user_uffdio_move = (struct uffdio_move __user *) arg;
1986
1987 if (atomic_read(&ctx->mmap_changing))
1988 return -EAGAIN;
1989
1990 if (copy_from_user(&uffdio_move, user_uffdio_move,
1991 /* don't copy "move" last field */
1992 sizeof(uffdio_move)-sizeof(__s64)))
1993 return -EFAULT;
1994
1995 /* Do not allow cross-mm moves. */
1996 if (mm != current->mm)
1997 return -EINVAL;
1998
1999 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2000 if (ret)
2001 return ret;
2002
2003 ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2004 if (ret)
2005 return ret;
2006
2007 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2008 UFFDIO_MOVE_MODE_DONTWAKE))
2009 return -EINVAL;
2010
2011 if (mmget_not_zero(mm)) {
2012 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2013 uffdio_move.len, uffdio_move.mode);
2014 mmput(mm);
2015 } else {
2016 return -ESRCH;
2017 }
2018
2019 if (unlikely(put_user(ret, &user_uffdio_move->move)))
2020 return -EFAULT;
2021 if (ret < 0)
2022 goto out;
2023
2024 /* len == 0 would wake all */
2025 VM_WARN_ON(!ret);
2026 range.len = ret;
2027 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2028 range.start = uffdio_move.dst;
2029 wake_userfault(ctx, &range);
2030 }
2031 ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2032
2033out:
2034 return ret;
2035}
2036
2037/*
2038 * userland asks for a certain API version and we return which bits
2039 * and ioctl commands are implemented in this kernel for such API
2040 * version or -EINVAL if unknown.
2041 */
2042static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2043 unsigned long arg)
2044{
2045 struct uffdio_api uffdio_api;
2046 void __user *buf = (void __user *)arg;
2047 unsigned int ctx_features;
2048 int ret;
2049 __u64 features;
2050
2051 ret = -EFAULT;
2052 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2053 goto out;
2054 features = uffdio_api.features;
2055 ret = -EINVAL;
2056 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2057 goto err_out;
2058 ret = -EPERM;
2059 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2060 goto err_out;
2061
2062 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2063 if (features & UFFD_FEATURE_WP_ASYNC)
2064 features |= UFFD_FEATURE_WP_UNPOPULATED;
2065
2066 /* report all available features and ioctls to userland */
2067 uffdio_api.features = UFFD_API_FEATURES;
2068#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2069 uffdio_api.features &=
2070 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2071#endif
2072#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2073 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2074#endif
2075#ifndef CONFIG_PTE_MARKER_UFFD_WP
2076 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2077 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2078 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2079#endif
2080 uffdio_api.ioctls = UFFD_API_IOCTLS;
2081 ret = -EFAULT;
2082 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2083 goto out;
2084
2085 /* only enable the requested features for this uffd context */
2086 ctx_features = uffd_ctx_features(features);
2087 ret = -EINVAL;
2088 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2089 goto err_out;
2090
2091 ret = 0;
2092out:
2093 return ret;
2094err_out:
2095 memset(&uffdio_api, 0, sizeof(uffdio_api));
2096 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2097 ret = -EFAULT;
2098 goto out;
2099}
2100
2101static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2102 unsigned long arg)
2103{
2104 int ret = -EINVAL;
2105 struct userfaultfd_ctx *ctx = file->private_data;
2106
2107 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2108 return -EINVAL;
2109
2110 switch(cmd) {
2111 case UFFDIO_API:
2112 ret = userfaultfd_api(ctx, arg);
2113 break;
2114 case UFFDIO_REGISTER:
2115 ret = userfaultfd_register(ctx, arg);
2116 break;
2117 case UFFDIO_UNREGISTER:
2118 ret = userfaultfd_unregister(ctx, arg);
2119 break;
2120 case UFFDIO_WAKE:
2121 ret = userfaultfd_wake(ctx, arg);
2122 break;
2123 case UFFDIO_COPY:
2124 ret = userfaultfd_copy(ctx, arg);
2125 break;
2126 case UFFDIO_ZEROPAGE:
2127 ret = userfaultfd_zeropage(ctx, arg);
2128 break;
2129 case UFFDIO_MOVE:
2130 ret = userfaultfd_move(ctx, arg);
2131 break;
2132 case UFFDIO_WRITEPROTECT:
2133 ret = userfaultfd_writeprotect(ctx, arg);
2134 break;
2135 case UFFDIO_CONTINUE:
2136 ret = userfaultfd_continue(ctx, arg);
2137 break;
2138 case UFFDIO_POISON:
2139 ret = userfaultfd_poison(ctx, arg);
2140 break;
2141 }
2142 return ret;
2143}
2144
2145#ifdef CONFIG_PROC_FS
2146static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2147{
2148 struct userfaultfd_ctx *ctx = f->private_data;
2149 wait_queue_entry_t *wq;
2150 unsigned long pending = 0, total = 0;
2151
2152 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2153 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2154 pending++;
2155 total++;
2156 }
2157 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2158 total++;
2159 }
2160 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2161
2162 /*
2163 * If more protocols will be added, there will be all shown
2164 * separated by a space. Like this:
2165 * protocols: aa:... bb:...
2166 */
2167 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2168 pending, total, UFFD_API, ctx->features,
2169 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2170}
2171#endif
2172
2173static const struct file_operations userfaultfd_fops = {
2174#ifdef CONFIG_PROC_FS
2175 .show_fdinfo = userfaultfd_show_fdinfo,
2176#endif
2177 .release = userfaultfd_release,
2178 .poll = userfaultfd_poll,
2179 .read = userfaultfd_read,
2180 .unlocked_ioctl = userfaultfd_ioctl,
2181 .compat_ioctl = compat_ptr_ioctl,
2182 .llseek = noop_llseek,
2183};
2184
2185static void init_once_userfaultfd_ctx(void *mem)
2186{
2187 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2188
2189 init_waitqueue_head(&ctx->fault_pending_wqh);
2190 init_waitqueue_head(&ctx->fault_wqh);
2191 init_waitqueue_head(&ctx->event_wqh);
2192 init_waitqueue_head(&ctx->fd_wqh);
2193 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2194}
2195
2196static int new_userfaultfd(int flags)
2197{
2198 struct userfaultfd_ctx *ctx;
2199 int fd;
2200
2201 BUG_ON(!current->mm);
2202
2203 /* Check the UFFD_* constants for consistency. */
2204 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2205 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2206 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2207
2208 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2209 return -EINVAL;
2210
2211 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2212 if (!ctx)
2213 return -ENOMEM;
2214
2215 refcount_set(&ctx->refcount, 1);
2216 ctx->flags = flags;
2217 ctx->features = 0;
2218 ctx->released = false;
2219 init_rwsem(&ctx->map_changing_lock);
2220 atomic_set(&ctx->mmap_changing, 0);
2221 ctx->mm = current->mm;
2222 /* prevent the mm struct to be freed */
2223 mmgrab(ctx->mm);
2224
2225 /* Create a new inode so that the LSM can block the creation. */
2226 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
2227 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2228 if (fd < 0) {
2229 mmdrop(ctx->mm);
2230 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2231 }
2232 return fd;
2233}
2234
2235static inline bool userfaultfd_syscall_allowed(int flags)
2236{
2237 /* Userspace-only page faults are always allowed */
2238 if (flags & UFFD_USER_MODE_ONLY)
2239 return true;
2240
2241 /*
2242 * The user is requesting a userfaultfd which can handle kernel faults.
2243 * Privileged users are always allowed to do this.
2244 */
2245 if (capable(CAP_SYS_PTRACE))
2246 return true;
2247
2248 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2249 return sysctl_unprivileged_userfaultfd;
2250}
2251
2252SYSCALL_DEFINE1(userfaultfd, int, flags)
2253{
2254 if (!userfaultfd_syscall_allowed(flags))
2255 return -EPERM;
2256
2257 return new_userfaultfd(flags);
2258}
2259
2260static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2261{
2262 if (cmd != USERFAULTFD_IOC_NEW)
2263 return -EINVAL;
2264
2265 return new_userfaultfd(flags);
2266}
2267
2268static const struct file_operations userfaultfd_dev_fops = {
2269 .unlocked_ioctl = userfaultfd_dev_ioctl,
2270 .compat_ioctl = userfaultfd_dev_ioctl,
2271 .owner = THIS_MODULE,
2272 .llseek = noop_llseek,
2273};
2274
2275static struct miscdevice userfaultfd_misc = {
2276 .minor = MISC_DYNAMIC_MINOR,
2277 .name = "userfaultfd",
2278 .fops = &userfaultfd_dev_fops
2279};
2280
2281static int __init userfaultfd_init(void)
2282{
2283 int ret;
2284
2285 ret = misc_register(&userfaultfd_misc);
2286 if (ret)
2287 return ret;
2288
2289 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2290 sizeof(struct userfaultfd_ctx),
2291 0,
2292 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2293 init_once_userfaultfd_ctx);
2294#ifdef CONFIG_SYSCTL
2295 register_sysctl_init("vm", vm_userfaultfd_table);
2296#endif
2297 return 0;
2298}
2299__initcall(userfaultfd_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13#include <linux/list.h>
14#include <linux/hashtable.h>
15#include <linux/sched/signal.h>
16#include <linux/sched/mm.h>
17#include <linux/mm.h>
18#include <linux/mmu_notifier.h>
19#include <linux/poll.h>
20#include <linux/slab.h>
21#include <linux/seq_file.h>
22#include <linux/file.h>
23#include <linux/bug.h>
24#include <linux/anon_inodes.h>
25#include <linux/syscalls.h>
26#include <linux/userfaultfd_k.h>
27#include <linux/mempolicy.h>
28#include <linux/ioctl.h>
29#include <linux/security.h>
30#include <linux/hugetlb.h>
31
32int sysctl_unprivileged_userfaultfd __read_mostly;
33
34static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35
36/*
37 * Start with fault_pending_wqh and fault_wqh so they're more likely
38 * to be in the same cacheline.
39 *
40 * Locking order:
41 * fd_wqh.lock
42 * fault_pending_wqh.lock
43 * fault_wqh.lock
44 * event_wqh.lock
45 *
46 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
47 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
48 * also taken in IRQ context.
49 */
50struct userfaultfd_ctx {
51 /* waitqueue head for the pending (i.e. not read) userfaults */
52 wait_queue_head_t fault_pending_wqh;
53 /* waitqueue head for the userfaults */
54 wait_queue_head_t fault_wqh;
55 /* waitqueue head for the pseudo fd to wakeup poll/read */
56 wait_queue_head_t fd_wqh;
57 /* waitqueue head for events */
58 wait_queue_head_t event_wqh;
59 /* a refile sequence protected by fault_pending_wqh lock */
60 seqcount_spinlock_t refile_seq;
61 /* pseudo fd refcounting */
62 refcount_t refcount;
63 /* userfaultfd syscall flags */
64 unsigned int flags;
65 /* features requested from the userspace */
66 unsigned int features;
67 /* released */
68 bool released;
69 /* memory mappings are changing because of non-cooperative event */
70 bool mmap_changing;
71 /* mm with one ore more vmas attached to this userfaultfd_ctx */
72 struct mm_struct *mm;
73};
74
75struct userfaultfd_fork_ctx {
76 struct userfaultfd_ctx *orig;
77 struct userfaultfd_ctx *new;
78 struct list_head list;
79};
80
81struct userfaultfd_unmap_ctx {
82 struct userfaultfd_ctx *ctx;
83 unsigned long start;
84 unsigned long end;
85 struct list_head list;
86};
87
88struct userfaultfd_wait_queue {
89 struct uffd_msg msg;
90 wait_queue_entry_t wq;
91 struct userfaultfd_ctx *ctx;
92 bool waken;
93};
94
95struct userfaultfd_wake_range {
96 unsigned long start;
97 unsigned long len;
98};
99
100/* internal indication that UFFD_API ioctl was successfully executed */
101#define UFFD_FEATURE_INITIALIZED (1u << 31)
102
103static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
104{
105 return ctx->features & UFFD_FEATURE_INITIALIZED;
106}
107
108static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
109 int wake_flags, void *key)
110{
111 struct userfaultfd_wake_range *range = key;
112 int ret;
113 struct userfaultfd_wait_queue *uwq;
114 unsigned long start, len;
115
116 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
117 ret = 0;
118 /* len == 0 means wake all */
119 start = range->start;
120 len = range->len;
121 if (len && (start > uwq->msg.arg.pagefault.address ||
122 start + len <= uwq->msg.arg.pagefault.address))
123 goto out;
124 WRITE_ONCE(uwq->waken, true);
125 /*
126 * The Program-Order guarantees provided by the scheduler
127 * ensure uwq->waken is visible before the task is woken.
128 */
129 ret = wake_up_state(wq->private, mode);
130 if (ret) {
131 /*
132 * Wake only once, autoremove behavior.
133 *
134 * After the effect of list_del_init is visible to the other
135 * CPUs, the waitqueue may disappear from under us, see the
136 * !list_empty_careful() in handle_userfault().
137 *
138 * try_to_wake_up() has an implicit smp_mb(), and the
139 * wq->private is read before calling the extern function
140 * "wake_up_state" (which in turns calls try_to_wake_up).
141 */
142 list_del_init(&wq->entry);
143 }
144out:
145 return ret;
146}
147
148/**
149 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
150 * context.
151 * @ctx: [in] Pointer to the userfaultfd context.
152 */
153static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
154{
155 refcount_inc(&ctx->refcount);
156}
157
158/**
159 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
160 * context.
161 * @ctx: [in] Pointer to userfaultfd context.
162 *
163 * The userfaultfd context reference must have been previously acquired either
164 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
165 */
166static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
167{
168 if (refcount_dec_and_test(&ctx->refcount)) {
169 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
170 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
171 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
172 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
173 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
174 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
175 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
176 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
177 mmdrop(ctx->mm);
178 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
179 }
180}
181
182static inline void msg_init(struct uffd_msg *msg)
183{
184 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
185 /*
186 * Must use memset to zero out the paddings or kernel data is
187 * leaked to userland.
188 */
189 memset(msg, 0, sizeof(struct uffd_msg));
190}
191
192static inline struct uffd_msg userfault_msg(unsigned long address,
193 unsigned int flags,
194 unsigned long reason,
195 unsigned int features)
196{
197 struct uffd_msg msg;
198 msg_init(&msg);
199 msg.event = UFFD_EVENT_PAGEFAULT;
200 msg.arg.pagefault.address = address;
201 /*
202 * These flags indicate why the userfault occurred:
203 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
204 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
205 * - Neither of these flags being set indicates a MISSING fault.
206 *
207 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
208 * fault. Otherwise, it was a read fault.
209 */
210 if (flags & FAULT_FLAG_WRITE)
211 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
212 if (reason & VM_UFFD_WP)
213 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
214 if (reason & VM_UFFD_MINOR)
215 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
216 if (features & UFFD_FEATURE_THREAD_ID)
217 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
218 return msg;
219}
220
221#ifdef CONFIG_HUGETLB_PAGE
222/*
223 * Same functionality as userfaultfd_must_wait below with modifications for
224 * hugepmd ranges.
225 */
226static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
227 struct vm_area_struct *vma,
228 unsigned long address,
229 unsigned long flags,
230 unsigned long reason)
231{
232 struct mm_struct *mm = ctx->mm;
233 pte_t *ptep, pte;
234 bool ret = true;
235
236 mmap_assert_locked(mm);
237
238 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
239
240 if (!ptep)
241 goto out;
242
243 ret = false;
244 pte = huge_ptep_get(ptep);
245
246 /*
247 * Lockless access: we're in a wait_event so it's ok if it
248 * changes under us.
249 */
250 if (huge_pte_none(pte))
251 ret = true;
252 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
253 ret = true;
254out:
255 return ret;
256}
257#else
258static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
259 struct vm_area_struct *vma,
260 unsigned long address,
261 unsigned long flags,
262 unsigned long reason)
263{
264 return false; /* should never get here */
265}
266#endif /* CONFIG_HUGETLB_PAGE */
267
268/*
269 * Verify the pagetables are still not ok after having reigstered into
270 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
271 * userfault that has already been resolved, if userfaultfd_read and
272 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
273 * threads.
274 */
275static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
276 unsigned long address,
277 unsigned long flags,
278 unsigned long reason)
279{
280 struct mm_struct *mm = ctx->mm;
281 pgd_t *pgd;
282 p4d_t *p4d;
283 pud_t *pud;
284 pmd_t *pmd, _pmd;
285 pte_t *pte;
286 bool ret = true;
287
288 mmap_assert_locked(mm);
289
290 pgd = pgd_offset(mm, address);
291 if (!pgd_present(*pgd))
292 goto out;
293 p4d = p4d_offset(pgd, address);
294 if (!p4d_present(*p4d))
295 goto out;
296 pud = pud_offset(p4d, address);
297 if (!pud_present(*pud))
298 goto out;
299 pmd = pmd_offset(pud, address);
300 /*
301 * READ_ONCE must function as a barrier with narrower scope
302 * and it must be equivalent to:
303 * _pmd = *pmd; barrier();
304 *
305 * This is to deal with the instability (as in
306 * pmd_trans_unstable) of the pmd.
307 */
308 _pmd = READ_ONCE(*pmd);
309 if (pmd_none(_pmd))
310 goto out;
311
312 ret = false;
313 if (!pmd_present(_pmd))
314 goto out;
315
316 if (pmd_trans_huge(_pmd)) {
317 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
318 ret = true;
319 goto out;
320 }
321
322 /*
323 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
324 * and use the standard pte_offset_map() instead of parsing _pmd.
325 */
326 pte = pte_offset_map(pmd, address);
327 /*
328 * Lockless access: we're in a wait_event so it's ok if it
329 * changes under us.
330 */
331 if (pte_none(*pte))
332 ret = true;
333 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
334 ret = true;
335 pte_unmap(pte);
336
337out:
338 return ret;
339}
340
341static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
342{
343 if (flags & FAULT_FLAG_INTERRUPTIBLE)
344 return TASK_INTERRUPTIBLE;
345
346 if (flags & FAULT_FLAG_KILLABLE)
347 return TASK_KILLABLE;
348
349 return TASK_UNINTERRUPTIBLE;
350}
351
352/*
353 * The locking rules involved in returning VM_FAULT_RETRY depending on
354 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
355 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
356 * recommendation in __lock_page_or_retry is not an understatement.
357 *
358 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
359 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
360 * not set.
361 *
362 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
363 * set, VM_FAULT_RETRY can still be returned if and only if there are
364 * fatal_signal_pending()s, and the mmap_lock must be released before
365 * returning it.
366 */
367vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
368{
369 struct mm_struct *mm = vmf->vma->vm_mm;
370 struct userfaultfd_ctx *ctx;
371 struct userfaultfd_wait_queue uwq;
372 vm_fault_t ret = VM_FAULT_SIGBUS;
373 bool must_wait;
374 unsigned int blocking_state;
375
376 /*
377 * We don't do userfault handling for the final child pid update.
378 *
379 * We also don't do userfault handling during
380 * coredumping. hugetlbfs has the special
381 * follow_hugetlb_page() to skip missing pages in the
382 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
383 * the no_page_table() helper in follow_page_mask(), but the
384 * shmem_vm_ops->fault method is invoked even during
385 * coredumping without mmap_lock and it ends up here.
386 */
387 if (current->flags & (PF_EXITING|PF_DUMPCORE))
388 goto out;
389
390 /*
391 * Coredumping runs without mmap_lock so we can only check that
392 * the mmap_lock is held, if PF_DUMPCORE was not set.
393 */
394 mmap_assert_locked(mm);
395
396 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
397 if (!ctx)
398 goto out;
399
400 BUG_ON(ctx->mm != mm);
401
402 /* Any unrecognized flag is a bug. */
403 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
404 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
405 VM_BUG_ON(!reason || (reason & (reason - 1)));
406
407 if (ctx->features & UFFD_FEATURE_SIGBUS)
408 goto out;
409 if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
410 ctx->flags & UFFD_USER_MODE_ONLY) {
411 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
412 "sysctl knob to 1 if kernel faults must be handled "
413 "without obtaining CAP_SYS_PTRACE capability\n");
414 goto out;
415 }
416
417 /*
418 * If it's already released don't get it. This avoids to loop
419 * in __get_user_pages if userfaultfd_release waits on the
420 * caller of handle_userfault to release the mmap_lock.
421 */
422 if (unlikely(READ_ONCE(ctx->released))) {
423 /*
424 * Don't return VM_FAULT_SIGBUS in this case, so a non
425 * cooperative manager can close the uffd after the
426 * last UFFDIO_COPY, without risking to trigger an
427 * involuntary SIGBUS if the process was starting the
428 * userfaultfd while the userfaultfd was still armed
429 * (but after the last UFFDIO_COPY). If the uffd
430 * wasn't already closed when the userfault reached
431 * this point, that would normally be solved by
432 * userfaultfd_must_wait returning 'false'.
433 *
434 * If we were to return VM_FAULT_SIGBUS here, the non
435 * cooperative manager would be instead forced to
436 * always call UFFDIO_UNREGISTER before it can safely
437 * close the uffd.
438 */
439 ret = VM_FAULT_NOPAGE;
440 goto out;
441 }
442
443 /*
444 * Check that we can return VM_FAULT_RETRY.
445 *
446 * NOTE: it should become possible to return VM_FAULT_RETRY
447 * even if FAULT_FLAG_TRIED is set without leading to gup()
448 * -EBUSY failures, if the userfaultfd is to be extended for
449 * VM_UFFD_WP tracking and we intend to arm the userfault
450 * without first stopping userland access to the memory. For
451 * VM_UFFD_MISSING userfaults this is enough for now.
452 */
453 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
454 /*
455 * Validate the invariant that nowait must allow retry
456 * to be sure not to return SIGBUS erroneously on
457 * nowait invocations.
458 */
459 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
460#ifdef CONFIG_DEBUG_VM
461 if (printk_ratelimit()) {
462 printk(KERN_WARNING
463 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
464 vmf->flags);
465 dump_stack();
466 }
467#endif
468 goto out;
469 }
470
471 /*
472 * Handle nowait, not much to do other than tell it to retry
473 * and wait.
474 */
475 ret = VM_FAULT_RETRY;
476 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
477 goto out;
478
479 /* take the reference before dropping the mmap_lock */
480 userfaultfd_ctx_get(ctx);
481
482 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
483 uwq.wq.private = current;
484 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
485 ctx->features);
486 uwq.ctx = ctx;
487 uwq.waken = false;
488
489 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
490
491 spin_lock_irq(&ctx->fault_pending_wqh.lock);
492 /*
493 * After the __add_wait_queue the uwq is visible to userland
494 * through poll/read().
495 */
496 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
497 /*
498 * The smp_mb() after __set_current_state prevents the reads
499 * following the spin_unlock to happen before the list_add in
500 * __add_wait_queue.
501 */
502 set_current_state(blocking_state);
503 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
504
505 if (!is_vm_hugetlb_page(vmf->vma))
506 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
507 reason);
508 else
509 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
510 vmf->address,
511 vmf->flags, reason);
512 mmap_read_unlock(mm);
513
514 if (likely(must_wait && !READ_ONCE(ctx->released))) {
515 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
516 schedule();
517 }
518
519 __set_current_state(TASK_RUNNING);
520
521 /*
522 * Here we race with the list_del; list_add in
523 * userfaultfd_ctx_read(), however because we don't ever run
524 * list_del_init() to refile across the two lists, the prev
525 * and next pointers will never point to self. list_add also
526 * would never let any of the two pointers to point to
527 * self. So list_empty_careful won't risk to see both pointers
528 * pointing to self at any time during the list refile. The
529 * only case where list_del_init() is called is the full
530 * removal in the wake function and there we don't re-list_add
531 * and it's fine not to block on the spinlock. The uwq on this
532 * kernel stack can be released after the list_del_init.
533 */
534 if (!list_empty_careful(&uwq.wq.entry)) {
535 spin_lock_irq(&ctx->fault_pending_wqh.lock);
536 /*
537 * No need of list_del_init(), the uwq on the stack
538 * will be freed shortly anyway.
539 */
540 list_del(&uwq.wq.entry);
541 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
542 }
543
544 /*
545 * ctx may go away after this if the userfault pseudo fd is
546 * already released.
547 */
548 userfaultfd_ctx_put(ctx);
549
550out:
551 return ret;
552}
553
554static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
555 struct userfaultfd_wait_queue *ewq)
556{
557 struct userfaultfd_ctx *release_new_ctx;
558
559 if (WARN_ON_ONCE(current->flags & PF_EXITING))
560 goto out;
561
562 ewq->ctx = ctx;
563 init_waitqueue_entry(&ewq->wq, current);
564 release_new_ctx = NULL;
565
566 spin_lock_irq(&ctx->event_wqh.lock);
567 /*
568 * After the __add_wait_queue the uwq is visible to userland
569 * through poll/read().
570 */
571 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
572 for (;;) {
573 set_current_state(TASK_KILLABLE);
574 if (ewq->msg.event == 0)
575 break;
576 if (READ_ONCE(ctx->released) ||
577 fatal_signal_pending(current)) {
578 /*
579 * &ewq->wq may be queued in fork_event, but
580 * __remove_wait_queue ignores the head
581 * parameter. It would be a problem if it
582 * didn't.
583 */
584 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
585 if (ewq->msg.event == UFFD_EVENT_FORK) {
586 struct userfaultfd_ctx *new;
587
588 new = (struct userfaultfd_ctx *)
589 (unsigned long)
590 ewq->msg.arg.reserved.reserved1;
591 release_new_ctx = new;
592 }
593 break;
594 }
595
596 spin_unlock_irq(&ctx->event_wqh.lock);
597
598 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
599 schedule();
600
601 spin_lock_irq(&ctx->event_wqh.lock);
602 }
603 __set_current_state(TASK_RUNNING);
604 spin_unlock_irq(&ctx->event_wqh.lock);
605
606 if (release_new_ctx) {
607 struct vm_area_struct *vma;
608 struct mm_struct *mm = release_new_ctx->mm;
609
610 /* the various vma->vm_userfaultfd_ctx still points to it */
611 mmap_write_lock(mm);
612 for (vma = mm->mmap; vma; vma = vma->vm_next)
613 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
614 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
615 vma->vm_flags &= ~__VM_UFFD_FLAGS;
616 }
617 mmap_write_unlock(mm);
618
619 userfaultfd_ctx_put(release_new_ctx);
620 }
621
622 /*
623 * ctx may go away after this if the userfault pseudo fd is
624 * already released.
625 */
626out:
627 WRITE_ONCE(ctx->mmap_changing, false);
628 userfaultfd_ctx_put(ctx);
629}
630
631static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
632 struct userfaultfd_wait_queue *ewq)
633{
634 ewq->msg.event = 0;
635 wake_up_locked(&ctx->event_wqh);
636 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
637}
638
639int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
640{
641 struct userfaultfd_ctx *ctx = NULL, *octx;
642 struct userfaultfd_fork_ctx *fctx;
643
644 octx = vma->vm_userfaultfd_ctx.ctx;
645 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
646 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
647 vma->vm_flags &= ~__VM_UFFD_FLAGS;
648 return 0;
649 }
650
651 list_for_each_entry(fctx, fcs, list)
652 if (fctx->orig == octx) {
653 ctx = fctx->new;
654 break;
655 }
656
657 if (!ctx) {
658 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
659 if (!fctx)
660 return -ENOMEM;
661
662 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
663 if (!ctx) {
664 kfree(fctx);
665 return -ENOMEM;
666 }
667
668 refcount_set(&ctx->refcount, 1);
669 ctx->flags = octx->flags;
670 ctx->features = octx->features;
671 ctx->released = false;
672 ctx->mmap_changing = false;
673 ctx->mm = vma->vm_mm;
674 mmgrab(ctx->mm);
675
676 userfaultfd_ctx_get(octx);
677 WRITE_ONCE(octx->mmap_changing, true);
678 fctx->orig = octx;
679 fctx->new = ctx;
680 list_add_tail(&fctx->list, fcs);
681 }
682
683 vma->vm_userfaultfd_ctx.ctx = ctx;
684 return 0;
685}
686
687static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
688{
689 struct userfaultfd_ctx *ctx = fctx->orig;
690 struct userfaultfd_wait_queue ewq;
691
692 msg_init(&ewq.msg);
693
694 ewq.msg.event = UFFD_EVENT_FORK;
695 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
696
697 userfaultfd_event_wait_completion(ctx, &ewq);
698}
699
700void dup_userfaultfd_complete(struct list_head *fcs)
701{
702 struct userfaultfd_fork_ctx *fctx, *n;
703
704 list_for_each_entry_safe(fctx, n, fcs, list) {
705 dup_fctx(fctx);
706 list_del(&fctx->list);
707 kfree(fctx);
708 }
709}
710
711void mremap_userfaultfd_prep(struct vm_area_struct *vma,
712 struct vm_userfaultfd_ctx *vm_ctx)
713{
714 struct userfaultfd_ctx *ctx;
715
716 ctx = vma->vm_userfaultfd_ctx.ctx;
717
718 if (!ctx)
719 return;
720
721 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
722 vm_ctx->ctx = ctx;
723 userfaultfd_ctx_get(ctx);
724 WRITE_ONCE(ctx->mmap_changing, true);
725 } else {
726 /* Drop uffd context if remap feature not enabled */
727 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
728 vma->vm_flags &= ~__VM_UFFD_FLAGS;
729 }
730}
731
732void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
733 unsigned long from, unsigned long to,
734 unsigned long len)
735{
736 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
737 struct userfaultfd_wait_queue ewq;
738
739 if (!ctx)
740 return;
741
742 if (to & ~PAGE_MASK) {
743 userfaultfd_ctx_put(ctx);
744 return;
745 }
746
747 msg_init(&ewq.msg);
748
749 ewq.msg.event = UFFD_EVENT_REMAP;
750 ewq.msg.arg.remap.from = from;
751 ewq.msg.arg.remap.to = to;
752 ewq.msg.arg.remap.len = len;
753
754 userfaultfd_event_wait_completion(ctx, &ewq);
755}
756
757bool userfaultfd_remove(struct vm_area_struct *vma,
758 unsigned long start, unsigned long end)
759{
760 struct mm_struct *mm = vma->vm_mm;
761 struct userfaultfd_ctx *ctx;
762 struct userfaultfd_wait_queue ewq;
763
764 ctx = vma->vm_userfaultfd_ctx.ctx;
765 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
766 return true;
767
768 userfaultfd_ctx_get(ctx);
769 WRITE_ONCE(ctx->mmap_changing, true);
770 mmap_read_unlock(mm);
771
772 msg_init(&ewq.msg);
773
774 ewq.msg.event = UFFD_EVENT_REMOVE;
775 ewq.msg.arg.remove.start = start;
776 ewq.msg.arg.remove.end = end;
777
778 userfaultfd_event_wait_completion(ctx, &ewq);
779
780 return false;
781}
782
783static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
784 unsigned long start, unsigned long end)
785{
786 struct userfaultfd_unmap_ctx *unmap_ctx;
787
788 list_for_each_entry(unmap_ctx, unmaps, list)
789 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
790 unmap_ctx->end == end)
791 return true;
792
793 return false;
794}
795
796int userfaultfd_unmap_prep(struct vm_area_struct *vma,
797 unsigned long start, unsigned long end,
798 struct list_head *unmaps)
799{
800 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
801 struct userfaultfd_unmap_ctx *unmap_ctx;
802 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
803
804 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
805 has_unmap_ctx(ctx, unmaps, start, end))
806 continue;
807
808 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
809 if (!unmap_ctx)
810 return -ENOMEM;
811
812 userfaultfd_ctx_get(ctx);
813 WRITE_ONCE(ctx->mmap_changing, true);
814 unmap_ctx->ctx = ctx;
815 unmap_ctx->start = start;
816 unmap_ctx->end = end;
817 list_add_tail(&unmap_ctx->list, unmaps);
818 }
819
820 return 0;
821}
822
823void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
824{
825 struct userfaultfd_unmap_ctx *ctx, *n;
826 struct userfaultfd_wait_queue ewq;
827
828 list_for_each_entry_safe(ctx, n, uf, list) {
829 msg_init(&ewq.msg);
830
831 ewq.msg.event = UFFD_EVENT_UNMAP;
832 ewq.msg.arg.remove.start = ctx->start;
833 ewq.msg.arg.remove.end = ctx->end;
834
835 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
836
837 list_del(&ctx->list);
838 kfree(ctx);
839 }
840}
841
842static int userfaultfd_release(struct inode *inode, struct file *file)
843{
844 struct userfaultfd_ctx *ctx = file->private_data;
845 struct mm_struct *mm = ctx->mm;
846 struct vm_area_struct *vma, *prev;
847 /* len == 0 means wake all */
848 struct userfaultfd_wake_range range = { .len = 0, };
849 unsigned long new_flags;
850
851 WRITE_ONCE(ctx->released, true);
852
853 if (!mmget_not_zero(mm))
854 goto wakeup;
855
856 /*
857 * Flush page faults out of all CPUs. NOTE: all page faults
858 * must be retried without returning VM_FAULT_SIGBUS if
859 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
860 * changes while handle_userfault released the mmap_lock. So
861 * it's critical that released is set to true (above), before
862 * taking the mmap_lock for writing.
863 */
864 mmap_write_lock(mm);
865 prev = NULL;
866 for (vma = mm->mmap; vma; vma = vma->vm_next) {
867 cond_resched();
868 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
869 !!(vma->vm_flags & __VM_UFFD_FLAGS));
870 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
871 prev = vma;
872 continue;
873 }
874 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
875 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
876 new_flags, vma->anon_vma,
877 vma->vm_file, vma->vm_pgoff,
878 vma_policy(vma),
879 NULL_VM_UFFD_CTX);
880 if (prev)
881 vma = prev;
882 else
883 prev = vma;
884 vma->vm_flags = new_flags;
885 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
886 }
887 mmap_write_unlock(mm);
888 mmput(mm);
889wakeup:
890 /*
891 * After no new page faults can wait on this fault_*wqh, flush
892 * the last page faults that may have been already waiting on
893 * the fault_*wqh.
894 */
895 spin_lock_irq(&ctx->fault_pending_wqh.lock);
896 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
897 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
898 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
899
900 /* Flush pending events that may still wait on event_wqh */
901 wake_up_all(&ctx->event_wqh);
902
903 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
904 userfaultfd_ctx_put(ctx);
905 return 0;
906}
907
908/* fault_pending_wqh.lock must be hold by the caller */
909static inline struct userfaultfd_wait_queue *find_userfault_in(
910 wait_queue_head_t *wqh)
911{
912 wait_queue_entry_t *wq;
913 struct userfaultfd_wait_queue *uwq;
914
915 lockdep_assert_held(&wqh->lock);
916
917 uwq = NULL;
918 if (!waitqueue_active(wqh))
919 goto out;
920 /* walk in reverse to provide FIFO behavior to read userfaults */
921 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
922 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
923out:
924 return uwq;
925}
926
927static inline struct userfaultfd_wait_queue *find_userfault(
928 struct userfaultfd_ctx *ctx)
929{
930 return find_userfault_in(&ctx->fault_pending_wqh);
931}
932
933static inline struct userfaultfd_wait_queue *find_userfault_evt(
934 struct userfaultfd_ctx *ctx)
935{
936 return find_userfault_in(&ctx->event_wqh);
937}
938
939static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
940{
941 struct userfaultfd_ctx *ctx = file->private_data;
942 __poll_t ret;
943
944 poll_wait(file, &ctx->fd_wqh, wait);
945
946 if (!userfaultfd_is_initialized(ctx))
947 return EPOLLERR;
948
949 /*
950 * poll() never guarantees that read won't block.
951 * userfaults can be waken before they're read().
952 */
953 if (unlikely(!(file->f_flags & O_NONBLOCK)))
954 return EPOLLERR;
955 /*
956 * lockless access to see if there are pending faults
957 * __pollwait last action is the add_wait_queue but
958 * the spin_unlock would allow the waitqueue_active to
959 * pass above the actual list_add inside
960 * add_wait_queue critical section. So use a full
961 * memory barrier to serialize the list_add write of
962 * add_wait_queue() with the waitqueue_active read
963 * below.
964 */
965 ret = 0;
966 smp_mb();
967 if (waitqueue_active(&ctx->fault_pending_wqh))
968 ret = EPOLLIN;
969 else if (waitqueue_active(&ctx->event_wqh))
970 ret = EPOLLIN;
971
972 return ret;
973}
974
975static const struct file_operations userfaultfd_fops;
976
977static int resolve_userfault_fork(struct userfaultfd_ctx *new,
978 struct inode *inode,
979 struct uffd_msg *msg)
980{
981 int fd;
982
983 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
984 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
985 if (fd < 0)
986 return fd;
987
988 msg->arg.reserved.reserved1 = 0;
989 msg->arg.fork.ufd = fd;
990 return 0;
991}
992
993static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
994 struct uffd_msg *msg, struct inode *inode)
995{
996 ssize_t ret;
997 DECLARE_WAITQUEUE(wait, current);
998 struct userfaultfd_wait_queue *uwq;
999 /*
1000 * Handling fork event requires sleeping operations, so
1001 * we drop the event_wqh lock, then do these ops, then
1002 * lock it back and wake up the waiter. While the lock is
1003 * dropped the ewq may go away so we keep track of it
1004 * carefully.
1005 */
1006 LIST_HEAD(fork_event);
1007 struct userfaultfd_ctx *fork_nctx = NULL;
1008
1009 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1010 spin_lock_irq(&ctx->fd_wqh.lock);
1011 __add_wait_queue(&ctx->fd_wqh, &wait);
1012 for (;;) {
1013 set_current_state(TASK_INTERRUPTIBLE);
1014 spin_lock(&ctx->fault_pending_wqh.lock);
1015 uwq = find_userfault(ctx);
1016 if (uwq) {
1017 /*
1018 * Use a seqcount to repeat the lockless check
1019 * in wake_userfault() to avoid missing
1020 * wakeups because during the refile both
1021 * waitqueue could become empty if this is the
1022 * only userfault.
1023 */
1024 write_seqcount_begin(&ctx->refile_seq);
1025
1026 /*
1027 * The fault_pending_wqh.lock prevents the uwq
1028 * to disappear from under us.
1029 *
1030 * Refile this userfault from
1031 * fault_pending_wqh to fault_wqh, it's not
1032 * pending anymore after we read it.
1033 *
1034 * Use list_del() by hand (as
1035 * userfaultfd_wake_function also uses
1036 * list_del_init() by hand) to be sure nobody
1037 * changes __remove_wait_queue() to use
1038 * list_del_init() in turn breaking the
1039 * !list_empty_careful() check in
1040 * handle_userfault(). The uwq->wq.head list
1041 * must never be empty at any time during the
1042 * refile, or the waitqueue could disappear
1043 * from under us. The "wait_queue_head_t"
1044 * parameter of __remove_wait_queue() is unused
1045 * anyway.
1046 */
1047 list_del(&uwq->wq.entry);
1048 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1049
1050 write_seqcount_end(&ctx->refile_seq);
1051
1052 /* careful to always initialize msg if ret == 0 */
1053 *msg = uwq->msg;
1054 spin_unlock(&ctx->fault_pending_wqh.lock);
1055 ret = 0;
1056 break;
1057 }
1058 spin_unlock(&ctx->fault_pending_wqh.lock);
1059
1060 spin_lock(&ctx->event_wqh.lock);
1061 uwq = find_userfault_evt(ctx);
1062 if (uwq) {
1063 *msg = uwq->msg;
1064
1065 if (uwq->msg.event == UFFD_EVENT_FORK) {
1066 fork_nctx = (struct userfaultfd_ctx *)
1067 (unsigned long)
1068 uwq->msg.arg.reserved.reserved1;
1069 list_move(&uwq->wq.entry, &fork_event);
1070 /*
1071 * fork_nctx can be freed as soon as
1072 * we drop the lock, unless we take a
1073 * reference on it.
1074 */
1075 userfaultfd_ctx_get(fork_nctx);
1076 spin_unlock(&ctx->event_wqh.lock);
1077 ret = 0;
1078 break;
1079 }
1080
1081 userfaultfd_event_complete(ctx, uwq);
1082 spin_unlock(&ctx->event_wqh.lock);
1083 ret = 0;
1084 break;
1085 }
1086 spin_unlock(&ctx->event_wqh.lock);
1087
1088 if (signal_pending(current)) {
1089 ret = -ERESTARTSYS;
1090 break;
1091 }
1092 if (no_wait) {
1093 ret = -EAGAIN;
1094 break;
1095 }
1096 spin_unlock_irq(&ctx->fd_wqh.lock);
1097 schedule();
1098 spin_lock_irq(&ctx->fd_wqh.lock);
1099 }
1100 __remove_wait_queue(&ctx->fd_wqh, &wait);
1101 __set_current_state(TASK_RUNNING);
1102 spin_unlock_irq(&ctx->fd_wqh.lock);
1103
1104 if (!ret && msg->event == UFFD_EVENT_FORK) {
1105 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1106 spin_lock_irq(&ctx->event_wqh.lock);
1107 if (!list_empty(&fork_event)) {
1108 /*
1109 * The fork thread didn't abort, so we can
1110 * drop the temporary refcount.
1111 */
1112 userfaultfd_ctx_put(fork_nctx);
1113
1114 uwq = list_first_entry(&fork_event,
1115 typeof(*uwq),
1116 wq.entry);
1117 /*
1118 * If fork_event list wasn't empty and in turn
1119 * the event wasn't already released by fork
1120 * (the event is allocated on fork kernel
1121 * stack), put the event back to its place in
1122 * the event_wq. fork_event head will be freed
1123 * as soon as we return so the event cannot
1124 * stay queued there no matter the current
1125 * "ret" value.
1126 */
1127 list_del(&uwq->wq.entry);
1128 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1129
1130 /*
1131 * Leave the event in the waitqueue and report
1132 * error to userland if we failed to resolve
1133 * the userfault fork.
1134 */
1135 if (likely(!ret))
1136 userfaultfd_event_complete(ctx, uwq);
1137 } else {
1138 /*
1139 * Here the fork thread aborted and the
1140 * refcount from the fork thread on fork_nctx
1141 * has already been released. We still hold
1142 * the reference we took before releasing the
1143 * lock above. If resolve_userfault_fork
1144 * failed we've to drop it because the
1145 * fork_nctx has to be freed in such case. If
1146 * it succeeded we'll hold it because the new
1147 * uffd references it.
1148 */
1149 if (ret)
1150 userfaultfd_ctx_put(fork_nctx);
1151 }
1152 spin_unlock_irq(&ctx->event_wqh.lock);
1153 }
1154
1155 return ret;
1156}
1157
1158static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1159 size_t count, loff_t *ppos)
1160{
1161 struct userfaultfd_ctx *ctx = file->private_data;
1162 ssize_t _ret, ret = 0;
1163 struct uffd_msg msg;
1164 int no_wait = file->f_flags & O_NONBLOCK;
1165 struct inode *inode = file_inode(file);
1166
1167 if (!userfaultfd_is_initialized(ctx))
1168 return -EINVAL;
1169
1170 for (;;) {
1171 if (count < sizeof(msg))
1172 return ret ? ret : -EINVAL;
1173 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1174 if (_ret < 0)
1175 return ret ? ret : _ret;
1176 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1177 return ret ? ret : -EFAULT;
1178 ret += sizeof(msg);
1179 buf += sizeof(msg);
1180 count -= sizeof(msg);
1181 /*
1182 * Allow to read more than one fault at time but only
1183 * block if waiting for the very first one.
1184 */
1185 no_wait = O_NONBLOCK;
1186 }
1187}
1188
1189static void __wake_userfault(struct userfaultfd_ctx *ctx,
1190 struct userfaultfd_wake_range *range)
1191{
1192 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1193 /* wake all in the range and autoremove */
1194 if (waitqueue_active(&ctx->fault_pending_wqh))
1195 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1196 range);
1197 if (waitqueue_active(&ctx->fault_wqh))
1198 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1199 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1200}
1201
1202static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1203 struct userfaultfd_wake_range *range)
1204{
1205 unsigned seq;
1206 bool need_wakeup;
1207
1208 /*
1209 * To be sure waitqueue_active() is not reordered by the CPU
1210 * before the pagetable update, use an explicit SMP memory
1211 * barrier here. PT lock release or mmap_read_unlock(mm) still
1212 * have release semantics that can allow the
1213 * waitqueue_active() to be reordered before the pte update.
1214 */
1215 smp_mb();
1216
1217 /*
1218 * Use waitqueue_active because it's very frequent to
1219 * change the address space atomically even if there are no
1220 * userfaults yet. So we take the spinlock only when we're
1221 * sure we've userfaults to wake.
1222 */
1223 do {
1224 seq = read_seqcount_begin(&ctx->refile_seq);
1225 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1226 waitqueue_active(&ctx->fault_wqh);
1227 cond_resched();
1228 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1229 if (need_wakeup)
1230 __wake_userfault(ctx, range);
1231}
1232
1233static __always_inline int validate_range(struct mm_struct *mm,
1234 __u64 start, __u64 len)
1235{
1236 __u64 task_size = mm->task_size;
1237
1238 if (start & ~PAGE_MASK)
1239 return -EINVAL;
1240 if (len & ~PAGE_MASK)
1241 return -EINVAL;
1242 if (!len)
1243 return -EINVAL;
1244 if (start < mmap_min_addr)
1245 return -EINVAL;
1246 if (start >= task_size)
1247 return -EINVAL;
1248 if (len > task_size - start)
1249 return -EINVAL;
1250 return 0;
1251}
1252
1253static inline bool vma_can_userfault(struct vm_area_struct *vma,
1254 unsigned long vm_flags)
1255{
1256 /* FIXME: add WP support to hugetlbfs and shmem */
1257 if (vm_flags & VM_UFFD_WP) {
1258 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1259 return false;
1260 }
1261
1262 if (vm_flags & VM_UFFD_MINOR) {
1263 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1264 return false;
1265 }
1266
1267 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1268 vma_is_shmem(vma);
1269}
1270
1271static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1272 unsigned long arg)
1273{
1274 struct mm_struct *mm = ctx->mm;
1275 struct vm_area_struct *vma, *prev, *cur;
1276 int ret;
1277 struct uffdio_register uffdio_register;
1278 struct uffdio_register __user *user_uffdio_register;
1279 unsigned long vm_flags, new_flags;
1280 bool found;
1281 bool basic_ioctls;
1282 unsigned long start, end, vma_end;
1283
1284 user_uffdio_register = (struct uffdio_register __user *) arg;
1285
1286 ret = -EFAULT;
1287 if (copy_from_user(&uffdio_register, user_uffdio_register,
1288 sizeof(uffdio_register)-sizeof(__u64)))
1289 goto out;
1290
1291 ret = -EINVAL;
1292 if (!uffdio_register.mode)
1293 goto out;
1294 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1295 goto out;
1296 vm_flags = 0;
1297 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1298 vm_flags |= VM_UFFD_MISSING;
1299 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1300#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1301 goto out;
1302#endif
1303 vm_flags |= VM_UFFD_WP;
1304 }
1305 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1306#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1307 goto out;
1308#endif
1309 vm_flags |= VM_UFFD_MINOR;
1310 }
1311
1312 ret = validate_range(mm, uffdio_register.range.start,
1313 uffdio_register.range.len);
1314 if (ret)
1315 goto out;
1316
1317 start = uffdio_register.range.start;
1318 end = start + uffdio_register.range.len;
1319
1320 ret = -ENOMEM;
1321 if (!mmget_not_zero(mm))
1322 goto out;
1323
1324 mmap_write_lock(mm);
1325 vma = find_vma_prev(mm, start, &prev);
1326 if (!vma)
1327 goto out_unlock;
1328
1329 /* check that there's at least one vma in the range */
1330 ret = -EINVAL;
1331 if (vma->vm_start >= end)
1332 goto out_unlock;
1333
1334 /*
1335 * If the first vma contains huge pages, make sure start address
1336 * is aligned to huge page size.
1337 */
1338 if (is_vm_hugetlb_page(vma)) {
1339 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1340
1341 if (start & (vma_hpagesize - 1))
1342 goto out_unlock;
1343 }
1344
1345 /*
1346 * Search for not compatible vmas.
1347 */
1348 found = false;
1349 basic_ioctls = false;
1350 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1351 cond_resched();
1352
1353 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1354 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1355
1356 /* check not compatible vmas */
1357 ret = -EINVAL;
1358 if (!vma_can_userfault(cur, vm_flags))
1359 goto out_unlock;
1360
1361 /*
1362 * UFFDIO_COPY will fill file holes even without
1363 * PROT_WRITE. This check enforces that if this is a
1364 * MAP_SHARED, the process has write permission to the backing
1365 * file. If VM_MAYWRITE is set it also enforces that on a
1366 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1367 * F_WRITE_SEAL can be taken until the vma is destroyed.
1368 */
1369 ret = -EPERM;
1370 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1371 goto out_unlock;
1372
1373 /*
1374 * If this vma contains ending address, and huge pages
1375 * check alignment.
1376 */
1377 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1378 end > cur->vm_start) {
1379 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1380
1381 ret = -EINVAL;
1382
1383 if (end & (vma_hpagesize - 1))
1384 goto out_unlock;
1385 }
1386 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1387 goto out_unlock;
1388
1389 /*
1390 * Check that this vma isn't already owned by a
1391 * different userfaultfd. We can't allow more than one
1392 * userfaultfd to own a single vma simultaneously or we
1393 * wouldn't know which one to deliver the userfaults to.
1394 */
1395 ret = -EBUSY;
1396 if (cur->vm_userfaultfd_ctx.ctx &&
1397 cur->vm_userfaultfd_ctx.ctx != ctx)
1398 goto out_unlock;
1399
1400 /*
1401 * Note vmas containing huge pages
1402 */
1403 if (is_vm_hugetlb_page(cur))
1404 basic_ioctls = true;
1405
1406 found = true;
1407 }
1408 BUG_ON(!found);
1409
1410 if (vma->vm_start < start)
1411 prev = vma;
1412
1413 ret = 0;
1414 do {
1415 cond_resched();
1416
1417 BUG_ON(!vma_can_userfault(vma, vm_flags));
1418 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1419 vma->vm_userfaultfd_ctx.ctx != ctx);
1420 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1421
1422 /*
1423 * Nothing to do: this vma is already registered into this
1424 * userfaultfd and with the right tracking mode too.
1425 */
1426 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1427 (vma->vm_flags & vm_flags) == vm_flags)
1428 goto skip;
1429
1430 if (vma->vm_start > start)
1431 start = vma->vm_start;
1432 vma_end = min(end, vma->vm_end);
1433
1434 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1435 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1436 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1437 vma_policy(vma),
1438 ((struct vm_userfaultfd_ctx){ ctx }));
1439 if (prev) {
1440 vma = prev;
1441 goto next;
1442 }
1443 if (vma->vm_start < start) {
1444 ret = split_vma(mm, vma, start, 1);
1445 if (ret)
1446 break;
1447 }
1448 if (vma->vm_end > end) {
1449 ret = split_vma(mm, vma, end, 0);
1450 if (ret)
1451 break;
1452 }
1453 next:
1454 /*
1455 * In the vma_merge() successful mprotect-like case 8:
1456 * the next vma was merged into the current one and
1457 * the current one has not been updated yet.
1458 */
1459 vma->vm_flags = new_flags;
1460 vma->vm_userfaultfd_ctx.ctx = ctx;
1461
1462 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1463 hugetlb_unshare_all_pmds(vma);
1464
1465 skip:
1466 prev = vma;
1467 start = vma->vm_end;
1468 vma = vma->vm_next;
1469 } while (vma && vma->vm_start < end);
1470out_unlock:
1471 mmap_write_unlock(mm);
1472 mmput(mm);
1473 if (!ret) {
1474 __u64 ioctls_out;
1475
1476 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1477 UFFD_API_RANGE_IOCTLS;
1478
1479 /*
1480 * Declare the WP ioctl only if the WP mode is
1481 * specified and all checks passed with the range
1482 */
1483 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1484 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1485
1486 /* CONTINUE ioctl is only supported for MINOR ranges. */
1487 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1488 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1489
1490 /*
1491 * Now that we scanned all vmas we can already tell
1492 * userland which ioctls methods are guaranteed to
1493 * succeed on this range.
1494 */
1495 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1496 ret = -EFAULT;
1497 }
1498out:
1499 return ret;
1500}
1501
1502static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1503 unsigned long arg)
1504{
1505 struct mm_struct *mm = ctx->mm;
1506 struct vm_area_struct *vma, *prev, *cur;
1507 int ret;
1508 struct uffdio_range uffdio_unregister;
1509 unsigned long new_flags;
1510 bool found;
1511 unsigned long start, end, vma_end;
1512 const void __user *buf = (void __user *)arg;
1513
1514 ret = -EFAULT;
1515 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1516 goto out;
1517
1518 ret = validate_range(mm, uffdio_unregister.start,
1519 uffdio_unregister.len);
1520 if (ret)
1521 goto out;
1522
1523 start = uffdio_unregister.start;
1524 end = start + uffdio_unregister.len;
1525
1526 ret = -ENOMEM;
1527 if (!mmget_not_zero(mm))
1528 goto out;
1529
1530 mmap_write_lock(mm);
1531 vma = find_vma_prev(mm, start, &prev);
1532 if (!vma)
1533 goto out_unlock;
1534
1535 /* check that there's at least one vma in the range */
1536 ret = -EINVAL;
1537 if (vma->vm_start >= end)
1538 goto out_unlock;
1539
1540 /*
1541 * If the first vma contains huge pages, make sure start address
1542 * is aligned to huge page size.
1543 */
1544 if (is_vm_hugetlb_page(vma)) {
1545 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1546
1547 if (start & (vma_hpagesize - 1))
1548 goto out_unlock;
1549 }
1550
1551 /*
1552 * Search for not compatible vmas.
1553 */
1554 found = false;
1555 ret = -EINVAL;
1556 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1557 cond_resched();
1558
1559 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1560 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1561
1562 /*
1563 * Check not compatible vmas, not strictly required
1564 * here as not compatible vmas cannot have an
1565 * userfaultfd_ctx registered on them, but this
1566 * provides for more strict behavior to notice
1567 * unregistration errors.
1568 */
1569 if (!vma_can_userfault(cur, cur->vm_flags))
1570 goto out_unlock;
1571
1572 found = true;
1573 }
1574 BUG_ON(!found);
1575
1576 if (vma->vm_start < start)
1577 prev = vma;
1578
1579 ret = 0;
1580 do {
1581 cond_resched();
1582
1583 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1584
1585 /*
1586 * Nothing to do: this vma is already registered into this
1587 * userfaultfd and with the right tracking mode too.
1588 */
1589 if (!vma->vm_userfaultfd_ctx.ctx)
1590 goto skip;
1591
1592 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1593
1594 if (vma->vm_start > start)
1595 start = vma->vm_start;
1596 vma_end = min(end, vma->vm_end);
1597
1598 if (userfaultfd_missing(vma)) {
1599 /*
1600 * Wake any concurrent pending userfault while
1601 * we unregister, so they will not hang
1602 * permanently and it avoids userland to call
1603 * UFFDIO_WAKE explicitly.
1604 */
1605 struct userfaultfd_wake_range range;
1606 range.start = start;
1607 range.len = vma_end - start;
1608 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1609 }
1610
1611 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1612 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1613 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1614 vma_policy(vma),
1615 NULL_VM_UFFD_CTX);
1616 if (prev) {
1617 vma = prev;
1618 goto next;
1619 }
1620 if (vma->vm_start < start) {
1621 ret = split_vma(mm, vma, start, 1);
1622 if (ret)
1623 break;
1624 }
1625 if (vma->vm_end > end) {
1626 ret = split_vma(mm, vma, end, 0);
1627 if (ret)
1628 break;
1629 }
1630 next:
1631 /*
1632 * In the vma_merge() successful mprotect-like case 8:
1633 * the next vma was merged into the current one and
1634 * the current one has not been updated yet.
1635 */
1636 vma->vm_flags = new_flags;
1637 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1638
1639 skip:
1640 prev = vma;
1641 start = vma->vm_end;
1642 vma = vma->vm_next;
1643 } while (vma && vma->vm_start < end);
1644out_unlock:
1645 mmap_write_unlock(mm);
1646 mmput(mm);
1647out:
1648 return ret;
1649}
1650
1651/*
1652 * userfaultfd_wake may be used in combination with the
1653 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1654 */
1655static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1656 unsigned long arg)
1657{
1658 int ret;
1659 struct uffdio_range uffdio_wake;
1660 struct userfaultfd_wake_range range;
1661 const void __user *buf = (void __user *)arg;
1662
1663 ret = -EFAULT;
1664 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1665 goto out;
1666
1667 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1668 if (ret)
1669 goto out;
1670
1671 range.start = uffdio_wake.start;
1672 range.len = uffdio_wake.len;
1673
1674 /*
1675 * len == 0 means wake all and we don't want to wake all here,
1676 * so check it again to be sure.
1677 */
1678 VM_BUG_ON(!range.len);
1679
1680 wake_userfault(ctx, &range);
1681 ret = 0;
1682
1683out:
1684 return ret;
1685}
1686
1687static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1688 unsigned long arg)
1689{
1690 __s64 ret;
1691 struct uffdio_copy uffdio_copy;
1692 struct uffdio_copy __user *user_uffdio_copy;
1693 struct userfaultfd_wake_range range;
1694
1695 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1696
1697 ret = -EAGAIN;
1698 if (READ_ONCE(ctx->mmap_changing))
1699 goto out;
1700
1701 ret = -EFAULT;
1702 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1703 /* don't copy "copy" last field */
1704 sizeof(uffdio_copy)-sizeof(__s64)))
1705 goto out;
1706
1707 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1708 if (ret)
1709 goto out;
1710 /*
1711 * double check for wraparound just in case. copy_from_user()
1712 * will later check uffdio_copy.src + uffdio_copy.len to fit
1713 * in the userland range.
1714 */
1715 ret = -EINVAL;
1716 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1717 goto out;
1718 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1719 goto out;
1720 if (mmget_not_zero(ctx->mm)) {
1721 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1722 uffdio_copy.len, &ctx->mmap_changing,
1723 uffdio_copy.mode);
1724 mmput(ctx->mm);
1725 } else {
1726 return -ESRCH;
1727 }
1728 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1729 return -EFAULT;
1730 if (ret < 0)
1731 goto out;
1732 BUG_ON(!ret);
1733 /* len == 0 would wake all */
1734 range.len = ret;
1735 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1736 range.start = uffdio_copy.dst;
1737 wake_userfault(ctx, &range);
1738 }
1739 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1740out:
1741 return ret;
1742}
1743
1744static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1745 unsigned long arg)
1746{
1747 __s64 ret;
1748 struct uffdio_zeropage uffdio_zeropage;
1749 struct uffdio_zeropage __user *user_uffdio_zeropage;
1750 struct userfaultfd_wake_range range;
1751
1752 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1753
1754 ret = -EAGAIN;
1755 if (READ_ONCE(ctx->mmap_changing))
1756 goto out;
1757
1758 ret = -EFAULT;
1759 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1760 /* don't copy "zeropage" last field */
1761 sizeof(uffdio_zeropage)-sizeof(__s64)))
1762 goto out;
1763
1764 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1765 uffdio_zeropage.range.len);
1766 if (ret)
1767 goto out;
1768 ret = -EINVAL;
1769 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1770 goto out;
1771
1772 if (mmget_not_zero(ctx->mm)) {
1773 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1774 uffdio_zeropage.range.len,
1775 &ctx->mmap_changing);
1776 mmput(ctx->mm);
1777 } else {
1778 return -ESRCH;
1779 }
1780 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1781 return -EFAULT;
1782 if (ret < 0)
1783 goto out;
1784 /* len == 0 would wake all */
1785 BUG_ON(!ret);
1786 range.len = ret;
1787 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1788 range.start = uffdio_zeropage.range.start;
1789 wake_userfault(ctx, &range);
1790 }
1791 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1792out:
1793 return ret;
1794}
1795
1796static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1797 unsigned long arg)
1798{
1799 int ret;
1800 struct uffdio_writeprotect uffdio_wp;
1801 struct uffdio_writeprotect __user *user_uffdio_wp;
1802 struct userfaultfd_wake_range range;
1803 bool mode_wp, mode_dontwake;
1804
1805 if (READ_ONCE(ctx->mmap_changing))
1806 return -EAGAIN;
1807
1808 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1809
1810 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1811 sizeof(struct uffdio_writeprotect)))
1812 return -EFAULT;
1813
1814 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1815 uffdio_wp.range.len);
1816 if (ret)
1817 return ret;
1818
1819 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1820 UFFDIO_WRITEPROTECT_MODE_WP))
1821 return -EINVAL;
1822
1823 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1824 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1825
1826 if (mode_wp && mode_dontwake)
1827 return -EINVAL;
1828
1829 if (mmget_not_zero(ctx->mm)) {
1830 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1831 uffdio_wp.range.len, mode_wp,
1832 &ctx->mmap_changing);
1833 mmput(ctx->mm);
1834 } else {
1835 return -ESRCH;
1836 }
1837
1838 if (ret)
1839 return ret;
1840
1841 if (!mode_wp && !mode_dontwake) {
1842 range.start = uffdio_wp.range.start;
1843 range.len = uffdio_wp.range.len;
1844 wake_userfault(ctx, &range);
1845 }
1846 return ret;
1847}
1848
1849static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1850{
1851 __s64 ret;
1852 struct uffdio_continue uffdio_continue;
1853 struct uffdio_continue __user *user_uffdio_continue;
1854 struct userfaultfd_wake_range range;
1855
1856 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1857
1858 ret = -EAGAIN;
1859 if (READ_ONCE(ctx->mmap_changing))
1860 goto out;
1861
1862 ret = -EFAULT;
1863 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1864 /* don't copy the output fields */
1865 sizeof(uffdio_continue) - (sizeof(__s64))))
1866 goto out;
1867
1868 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1869 uffdio_continue.range.len);
1870 if (ret)
1871 goto out;
1872
1873 ret = -EINVAL;
1874 /* double check for wraparound just in case. */
1875 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1876 uffdio_continue.range.start) {
1877 goto out;
1878 }
1879 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1880 goto out;
1881
1882 if (mmget_not_zero(ctx->mm)) {
1883 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1884 uffdio_continue.range.len,
1885 &ctx->mmap_changing);
1886 mmput(ctx->mm);
1887 } else {
1888 return -ESRCH;
1889 }
1890
1891 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1892 return -EFAULT;
1893 if (ret < 0)
1894 goto out;
1895
1896 /* len == 0 would wake all */
1897 BUG_ON(!ret);
1898 range.len = ret;
1899 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1900 range.start = uffdio_continue.range.start;
1901 wake_userfault(ctx, &range);
1902 }
1903 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1904
1905out:
1906 return ret;
1907}
1908
1909static inline unsigned int uffd_ctx_features(__u64 user_features)
1910{
1911 /*
1912 * For the current set of features the bits just coincide. Set
1913 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1914 */
1915 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1916}
1917
1918/*
1919 * userland asks for a certain API version and we return which bits
1920 * and ioctl commands are implemented in this kernel for such API
1921 * version or -EINVAL if unknown.
1922 */
1923static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1924 unsigned long arg)
1925{
1926 struct uffdio_api uffdio_api;
1927 void __user *buf = (void __user *)arg;
1928 unsigned int ctx_features;
1929 int ret;
1930 __u64 features;
1931
1932 ret = -EFAULT;
1933 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1934 goto out;
1935 features = uffdio_api.features;
1936 ret = -EINVAL;
1937 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1938 goto err_out;
1939 ret = -EPERM;
1940 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1941 goto err_out;
1942 /* report all available features and ioctls to userland */
1943 uffdio_api.features = UFFD_API_FEATURES;
1944#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1945 uffdio_api.features &=
1946 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1947#endif
1948#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1949 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1950#endif
1951 uffdio_api.ioctls = UFFD_API_IOCTLS;
1952 ret = -EFAULT;
1953 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1954 goto out;
1955
1956 /* only enable the requested features for this uffd context */
1957 ctx_features = uffd_ctx_features(features);
1958 ret = -EINVAL;
1959 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1960 goto err_out;
1961
1962 ret = 0;
1963out:
1964 return ret;
1965err_out:
1966 memset(&uffdio_api, 0, sizeof(uffdio_api));
1967 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1968 ret = -EFAULT;
1969 goto out;
1970}
1971
1972static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1973 unsigned long arg)
1974{
1975 int ret = -EINVAL;
1976 struct userfaultfd_ctx *ctx = file->private_data;
1977
1978 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1979 return -EINVAL;
1980
1981 switch(cmd) {
1982 case UFFDIO_API:
1983 ret = userfaultfd_api(ctx, arg);
1984 break;
1985 case UFFDIO_REGISTER:
1986 ret = userfaultfd_register(ctx, arg);
1987 break;
1988 case UFFDIO_UNREGISTER:
1989 ret = userfaultfd_unregister(ctx, arg);
1990 break;
1991 case UFFDIO_WAKE:
1992 ret = userfaultfd_wake(ctx, arg);
1993 break;
1994 case UFFDIO_COPY:
1995 ret = userfaultfd_copy(ctx, arg);
1996 break;
1997 case UFFDIO_ZEROPAGE:
1998 ret = userfaultfd_zeropage(ctx, arg);
1999 break;
2000 case UFFDIO_WRITEPROTECT:
2001 ret = userfaultfd_writeprotect(ctx, arg);
2002 break;
2003 case UFFDIO_CONTINUE:
2004 ret = userfaultfd_continue(ctx, arg);
2005 break;
2006 }
2007 return ret;
2008}
2009
2010#ifdef CONFIG_PROC_FS
2011static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2012{
2013 struct userfaultfd_ctx *ctx = f->private_data;
2014 wait_queue_entry_t *wq;
2015 unsigned long pending = 0, total = 0;
2016
2017 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2018 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2019 pending++;
2020 total++;
2021 }
2022 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2023 total++;
2024 }
2025 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2026
2027 /*
2028 * If more protocols will be added, there will be all shown
2029 * separated by a space. Like this:
2030 * protocols: aa:... bb:...
2031 */
2032 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2033 pending, total, UFFD_API, ctx->features,
2034 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2035}
2036#endif
2037
2038static const struct file_operations userfaultfd_fops = {
2039#ifdef CONFIG_PROC_FS
2040 .show_fdinfo = userfaultfd_show_fdinfo,
2041#endif
2042 .release = userfaultfd_release,
2043 .poll = userfaultfd_poll,
2044 .read = userfaultfd_read,
2045 .unlocked_ioctl = userfaultfd_ioctl,
2046 .compat_ioctl = compat_ptr_ioctl,
2047 .llseek = noop_llseek,
2048};
2049
2050static void init_once_userfaultfd_ctx(void *mem)
2051{
2052 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2053
2054 init_waitqueue_head(&ctx->fault_pending_wqh);
2055 init_waitqueue_head(&ctx->fault_wqh);
2056 init_waitqueue_head(&ctx->event_wqh);
2057 init_waitqueue_head(&ctx->fd_wqh);
2058 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2059}
2060
2061SYSCALL_DEFINE1(userfaultfd, int, flags)
2062{
2063 struct userfaultfd_ctx *ctx;
2064 int fd;
2065
2066 if (!sysctl_unprivileged_userfaultfd &&
2067 (flags & UFFD_USER_MODE_ONLY) == 0 &&
2068 !capable(CAP_SYS_PTRACE)) {
2069 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2070 "sysctl knob to 1 if kernel faults must be handled "
2071 "without obtaining CAP_SYS_PTRACE capability\n");
2072 return -EPERM;
2073 }
2074
2075 BUG_ON(!current->mm);
2076
2077 /* Check the UFFD_* constants for consistency. */
2078 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2079 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2080 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2081
2082 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2083 return -EINVAL;
2084
2085 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2086 if (!ctx)
2087 return -ENOMEM;
2088
2089 refcount_set(&ctx->refcount, 1);
2090 ctx->flags = flags;
2091 ctx->features = 0;
2092 ctx->released = false;
2093 ctx->mmap_changing = false;
2094 ctx->mm = current->mm;
2095 /* prevent the mm struct to be freed */
2096 mmgrab(ctx->mm);
2097
2098 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2099 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2100 if (fd < 0) {
2101 mmdrop(ctx->mm);
2102 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2103 }
2104 return fd;
2105}
2106
2107static int __init userfaultfd_init(void)
2108{
2109 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2110 sizeof(struct userfaultfd_ctx),
2111 0,
2112 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2113 init_once_userfaultfd_ctx);
2114 return 0;
2115}
2116__initcall(userfaultfd_init);