Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  fs/userfaultfd.c
   4 *
   5 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   6 *  Copyright (C) 2008-2009 Red Hat, Inc.
   7 *  Copyright (C) 2015  Red Hat, Inc.
   8 *
   9 *  Some part derived from fs/eventfd.c (anon inode setup) and
  10 *  mm/ksm.c (mm hashing).
  11 */
  12
  13#include <linux/list.h>
  14#include <linux/hashtable.h>
  15#include <linux/sched/signal.h>
  16#include <linux/sched/mm.h>
  17#include <linux/mm.h>
  18#include <linux/mm_inline.h>
  19#include <linux/mmu_notifier.h>
  20#include <linux/poll.h>
  21#include <linux/slab.h>
  22#include <linux/seq_file.h>
  23#include <linux/file.h>
  24#include <linux/bug.h>
  25#include <linux/anon_inodes.h>
  26#include <linux/syscalls.h>
  27#include <linux/userfaultfd_k.h>
  28#include <linux/mempolicy.h>
  29#include <linux/ioctl.h>
  30#include <linux/security.h>
  31#include <linux/hugetlb.h>
  32#include <linux/swapops.h>
  33#include <linux/miscdevice.h>
  34
  35static int sysctl_unprivileged_userfaultfd __read_mostly;
  36
  37#ifdef CONFIG_SYSCTL
  38static struct ctl_table vm_userfaultfd_table[] = {
  39	{
  40		.procname	= "unprivileged_userfaultfd",
  41		.data		= &sysctl_unprivileged_userfaultfd,
  42		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
  43		.mode		= 0644,
  44		.proc_handler	= proc_dointvec_minmax,
  45		.extra1		= SYSCTL_ZERO,
  46		.extra2		= SYSCTL_ONE,
  47	},
  48};
  49#endif
  50
  51static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52
  53struct userfaultfd_fork_ctx {
  54	struct userfaultfd_ctx *orig;
  55	struct userfaultfd_ctx *new;
  56	struct list_head list;
  57};
  58
  59struct userfaultfd_unmap_ctx {
  60	struct userfaultfd_ctx *ctx;
  61	unsigned long start;
  62	unsigned long end;
  63	struct list_head list;
  64};
  65
  66struct userfaultfd_wait_queue {
  67	struct uffd_msg msg;
  68	wait_queue_entry_t wq;
  69	struct userfaultfd_ctx *ctx;
  70	bool waken;
  71};
  72
  73struct userfaultfd_wake_range {
  74	unsigned long start;
  75	unsigned long len;
  76};
  77
  78/* internal indication that UFFD_API ioctl was successfully executed */
  79#define UFFD_FEATURE_INITIALIZED		(1u << 31)
  80
  81static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
  82{
  83	return ctx->features & UFFD_FEATURE_INITIALIZED;
  84}
  85
  86static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
  87{
  88	return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
  89}
  90
  91/*
  92 * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
  93 * meaningful when userfaultfd_wp()==true on the vma and when it's
  94 * anonymous.
  95 */
  96bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
  97{
  98	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
  99
 100	if (!ctx)
 101		return false;
 102
 103	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
 104}
 105
 106static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
 107				     vm_flags_t flags)
 108{
 109	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
 110
 111	vm_flags_reset(vma, flags);
 112	/*
 113	 * For shared mappings, we want to enable writenotify while
 114	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
 115	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
 116	 */
 117	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
 118		vma_set_page_prot(vma);
 119}
 120
 121static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
 122				     int wake_flags, void *key)
 123{
 124	struct userfaultfd_wake_range *range = key;
 125	int ret;
 126	struct userfaultfd_wait_queue *uwq;
 127	unsigned long start, len;
 128
 129	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 130	ret = 0;
 131	/* len == 0 means wake all */
 132	start = range->start;
 133	len = range->len;
 134	if (len && (start > uwq->msg.arg.pagefault.address ||
 135		    start + len <= uwq->msg.arg.pagefault.address))
 136		goto out;
 137	WRITE_ONCE(uwq->waken, true);
 138	/*
 139	 * The Program-Order guarantees provided by the scheduler
 140	 * ensure uwq->waken is visible before the task is woken.
 141	 */
 142	ret = wake_up_state(wq->private, mode);
 143	if (ret) {
 144		/*
 145		 * Wake only once, autoremove behavior.
 146		 *
 147		 * After the effect of list_del_init is visible to the other
 148		 * CPUs, the waitqueue may disappear from under us, see the
 149		 * !list_empty_careful() in handle_userfault().
 150		 *
 151		 * try_to_wake_up() has an implicit smp_mb(), and the
 152		 * wq->private is read before calling the extern function
 153		 * "wake_up_state" (which in turns calls try_to_wake_up).
 154		 */
 155		list_del_init(&wq->entry);
 156	}
 157out:
 158	return ret;
 159}
 160
 161/**
 162 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 163 * context.
 164 * @ctx: [in] Pointer to the userfaultfd context.
 165 */
 166static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 167{
 168	refcount_inc(&ctx->refcount);
 169}
 170
 171/**
 172 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 173 * context.
 174 * @ctx: [in] Pointer to userfaultfd context.
 175 *
 176 * The userfaultfd context reference must have been previously acquired either
 177 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 178 */
 179static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 180{
 181	if (refcount_dec_and_test(&ctx->refcount)) {
 182		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 183		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 184		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 185		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 186		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
 187		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
 188		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 189		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 190		mmdrop(ctx->mm);
 191		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 192	}
 193}
 194
 195static inline void msg_init(struct uffd_msg *msg)
 196{
 197	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 198	/*
 199	 * Must use memset to zero out the paddings or kernel data is
 200	 * leaked to userland.
 201	 */
 202	memset(msg, 0, sizeof(struct uffd_msg));
 203}
 204
 205static inline struct uffd_msg userfault_msg(unsigned long address,
 206					    unsigned long real_address,
 207					    unsigned int flags,
 208					    unsigned long reason,
 209					    unsigned int features)
 210{
 211	struct uffd_msg msg;
 212
 213	msg_init(&msg);
 214	msg.event = UFFD_EVENT_PAGEFAULT;
 215
 216	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
 217				    real_address : address;
 218
 219	/*
 220	 * These flags indicate why the userfault occurred:
 221	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
 222	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
 223	 * - Neither of these flags being set indicates a MISSING fault.
 224	 *
 225	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
 226	 * fault. Otherwise, it was a read fault.
 227	 */
 228	if (flags & FAULT_FLAG_WRITE)
 229		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 230	if (reason & VM_UFFD_WP)
 231		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 232	if (reason & VM_UFFD_MINOR)
 233		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
 234	if (features & UFFD_FEATURE_THREAD_ID)
 235		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
 236	return msg;
 237}
 238
 239#ifdef CONFIG_HUGETLB_PAGE
 240/*
 241 * Same functionality as userfaultfd_must_wait below with modifications for
 242 * hugepmd ranges.
 243 */
 244static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 245					      struct vm_fault *vmf,
 246					      unsigned long reason)
 
 
 247{
 248	struct vm_area_struct *vma = vmf->vma;
 249	pte_t *ptep, pte;
 250	bool ret = true;
 251
 252	assert_fault_locked(vmf);
 
 
 253
 254	ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
 255	if (!ptep)
 256		goto out;
 257
 258	ret = false;
 259	pte = huge_ptep_get(ptep);
 260
 261	/*
 262	 * Lockless access: we're in a wait_event so it's ok if it
 263	 * changes under us.  PTE markers should be handled the same as none
 264	 * ptes here.
 265	 */
 266	if (huge_pte_none_mostly(pte))
 267		ret = true;
 268	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
 269		ret = true;
 270out:
 271	return ret;
 272}
 273#else
 274static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 275					      struct vm_fault *vmf,
 276					      unsigned long reason)
 
 
 277{
 278	return false;	/* should never get here */
 279}
 280#endif /* CONFIG_HUGETLB_PAGE */
 281
 282/*
 283 * Verify the pagetables are still not ok after having reigstered into
 284 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 285 * userfault that has already been resolved, if userfaultfd_read and
 286 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 287 * threads.
 288 */
 289static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 290					 struct vm_fault *vmf,
 
 291					 unsigned long reason)
 292{
 293	struct mm_struct *mm = ctx->mm;
 294	unsigned long address = vmf->address;
 295	pgd_t *pgd;
 296	p4d_t *p4d;
 297	pud_t *pud;
 298	pmd_t *pmd, _pmd;
 299	pte_t *pte;
 300	pte_t ptent;
 301	bool ret = true;
 302
 303	assert_fault_locked(vmf);
 304
 305	pgd = pgd_offset(mm, address);
 306	if (!pgd_present(*pgd))
 307		goto out;
 308	p4d = p4d_offset(pgd, address);
 309	if (!p4d_present(*p4d))
 310		goto out;
 311	pud = pud_offset(p4d, address);
 312	if (!pud_present(*pud))
 313		goto out;
 314	pmd = pmd_offset(pud, address);
 315again:
 316	_pmd = pmdp_get_lockless(pmd);
 
 
 
 
 
 
 
 317	if (pmd_none(_pmd))
 318		goto out;
 319
 320	ret = false;
 321	if (!pmd_present(_pmd) || pmd_devmap(_pmd))
 322		goto out;
 323
 324	if (pmd_trans_huge(_pmd)) {
 325		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
 326			ret = true;
 327		goto out;
 328	}
 329
 
 
 
 
 330	pte = pte_offset_map(pmd, address);
 331	if (!pte) {
 332		ret = true;
 333		goto again;
 334	}
 335	/*
 336	 * Lockless access: we're in a wait_event so it's ok if it
 337	 * changes under us.  PTE markers should be handled the same as none
 338	 * ptes here.
 339	 */
 340	ptent = ptep_get(pte);
 341	if (pte_none_mostly(ptent))
 342		ret = true;
 343	if (!pte_write(ptent) && (reason & VM_UFFD_WP))
 344		ret = true;
 345	pte_unmap(pte);
 346
 347out:
 348	return ret;
 349}
 350
 351static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
 352{
 353	if (flags & FAULT_FLAG_INTERRUPTIBLE)
 354		return TASK_INTERRUPTIBLE;
 355
 356	if (flags & FAULT_FLAG_KILLABLE)
 357		return TASK_KILLABLE;
 358
 359	return TASK_UNINTERRUPTIBLE;
 360}
 361
 362/*
 363 * The locking rules involved in returning VM_FAULT_RETRY depending on
 364 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 365 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 366 * recommendation in __lock_page_or_retry is not an understatement.
 367 *
 368 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
 369 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 370 * not set.
 371 *
 372 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 373 * set, VM_FAULT_RETRY can still be returned if and only if there are
 374 * fatal_signal_pending()s, and the mmap_lock must be released before
 375 * returning it.
 376 */
 377vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
 378{
 379	struct vm_area_struct *vma = vmf->vma;
 380	struct mm_struct *mm = vma->vm_mm;
 381	struct userfaultfd_ctx *ctx;
 382	struct userfaultfd_wait_queue uwq;
 383	vm_fault_t ret = VM_FAULT_SIGBUS;
 384	bool must_wait;
 385	unsigned int blocking_state;
 386
 387	/*
 388	 * We don't do userfault handling for the final child pid update.
 389	 *
 390	 * We also don't do userfault handling during
 391	 * coredumping. hugetlbfs has the special
 392	 * hugetlb_follow_page_mask() to skip missing pages in the
 393	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
 394	 * the no_page_table() helper in follow_page_mask(), but the
 395	 * shmem_vm_ops->fault method is invoked even during
 396	 * coredumping and it ends up here.
 397	 */
 398	if (current->flags & (PF_EXITING|PF_DUMPCORE))
 399		goto out;
 400
 401	assert_fault_locked(vmf);
 
 
 
 
 402
 403	ctx = vma->vm_userfaultfd_ctx.ctx;
 404	if (!ctx)
 405		goto out;
 406
 407	BUG_ON(ctx->mm != mm);
 408
 409	/* Any unrecognized flag is a bug. */
 410	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
 411	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
 412	VM_BUG_ON(!reason || (reason & (reason - 1)));
 413
 414	if (ctx->features & UFFD_FEATURE_SIGBUS)
 415		goto out;
 416	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
 
 
 
 
 417		goto out;
 
 418
 419	/*
 420	 * If it's already released don't get it. This avoids to loop
 421	 * in __get_user_pages if userfaultfd_release waits on the
 422	 * caller of handle_userfault to release the mmap_lock.
 423	 */
 424	if (unlikely(READ_ONCE(ctx->released))) {
 425		/*
 426		 * Don't return VM_FAULT_SIGBUS in this case, so a non
 427		 * cooperative manager can close the uffd after the
 428		 * last UFFDIO_COPY, without risking to trigger an
 429		 * involuntary SIGBUS if the process was starting the
 430		 * userfaultfd while the userfaultfd was still armed
 431		 * (but after the last UFFDIO_COPY). If the uffd
 432		 * wasn't already closed when the userfault reached
 433		 * this point, that would normally be solved by
 434		 * userfaultfd_must_wait returning 'false'.
 435		 *
 436		 * If we were to return VM_FAULT_SIGBUS here, the non
 437		 * cooperative manager would be instead forced to
 438		 * always call UFFDIO_UNREGISTER before it can safely
 439		 * close the uffd.
 440		 */
 441		ret = VM_FAULT_NOPAGE;
 442		goto out;
 443	}
 444
 445	/*
 446	 * Check that we can return VM_FAULT_RETRY.
 447	 *
 448	 * NOTE: it should become possible to return VM_FAULT_RETRY
 449	 * even if FAULT_FLAG_TRIED is set without leading to gup()
 450	 * -EBUSY failures, if the userfaultfd is to be extended for
 451	 * VM_UFFD_WP tracking and we intend to arm the userfault
 452	 * without first stopping userland access to the memory. For
 453	 * VM_UFFD_MISSING userfaults this is enough for now.
 454	 */
 455	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
 456		/*
 457		 * Validate the invariant that nowait must allow retry
 458		 * to be sure not to return SIGBUS erroneously on
 459		 * nowait invocations.
 460		 */
 461		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
 462#ifdef CONFIG_DEBUG_VM
 463		if (printk_ratelimit()) {
 464			printk(KERN_WARNING
 465			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
 466			       vmf->flags);
 467			dump_stack();
 468		}
 469#endif
 470		goto out;
 471	}
 472
 473	/*
 474	 * Handle nowait, not much to do other than tell it to retry
 475	 * and wait.
 476	 */
 477	ret = VM_FAULT_RETRY;
 478	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 479		goto out;
 480
 481	/* take the reference before dropping the mmap_lock */
 482	userfaultfd_ctx_get(ctx);
 483
 484	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 485	uwq.wq.private = current;
 486	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
 487				reason, ctx->features);
 488	uwq.ctx = ctx;
 489	uwq.waken = false;
 490
 491	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
 492
 493        /*
 494         * Take the vma lock now, in order to safely call
 495         * userfaultfd_huge_must_wait() later. Since acquiring the
 496         * (sleepable) vma lock can modify the current task state, that
 497         * must be before explicitly calling set_current_state().
 498         */
 499	if (is_vm_hugetlb_page(vma))
 500		hugetlb_vma_lock_read(vma);
 501
 502	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 503	/*
 504	 * After the __add_wait_queue the uwq is visible to userland
 505	 * through poll/read().
 506	 */
 507	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 508	/*
 509	 * The smp_mb() after __set_current_state prevents the reads
 510	 * following the spin_unlock to happen before the list_add in
 511	 * __add_wait_queue.
 512	 */
 513	set_current_state(blocking_state);
 514	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 515
 516	if (!is_vm_hugetlb_page(vma))
 517		must_wait = userfaultfd_must_wait(ctx, vmf, reason);
 
 518	else
 519		must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
 520	if (is_vm_hugetlb_page(vma))
 521		hugetlb_vma_unlock_read(vma);
 522	release_fault_lock(vmf);
 523
 524	if (likely(must_wait && !READ_ONCE(ctx->released))) {
 525		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 526		schedule();
 527	}
 528
 529	__set_current_state(TASK_RUNNING);
 530
 531	/*
 532	 * Here we race with the list_del; list_add in
 533	 * userfaultfd_ctx_read(), however because we don't ever run
 534	 * list_del_init() to refile across the two lists, the prev
 535	 * and next pointers will never point to self. list_add also
 536	 * would never let any of the two pointers to point to
 537	 * self. So list_empty_careful won't risk to see both pointers
 538	 * pointing to self at any time during the list refile. The
 539	 * only case where list_del_init() is called is the full
 540	 * removal in the wake function and there we don't re-list_add
 541	 * and it's fine not to block on the spinlock. The uwq on this
 542	 * kernel stack can be released after the list_del_init.
 543	 */
 544	if (!list_empty_careful(&uwq.wq.entry)) {
 545		spin_lock_irq(&ctx->fault_pending_wqh.lock);
 546		/*
 547		 * No need of list_del_init(), the uwq on the stack
 548		 * will be freed shortly anyway.
 549		 */
 550		list_del(&uwq.wq.entry);
 551		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 552	}
 553
 554	/*
 555	 * ctx may go away after this if the userfault pseudo fd is
 556	 * already released.
 557	 */
 558	userfaultfd_ctx_put(ctx);
 559
 560out:
 561	return ret;
 562}
 563
 564static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
 565					      struct userfaultfd_wait_queue *ewq)
 566{
 567	struct userfaultfd_ctx *release_new_ctx;
 568
 569	if (WARN_ON_ONCE(current->flags & PF_EXITING))
 570		goto out;
 571
 572	ewq->ctx = ctx;
 573	init_waitqueue_entry(&ewq->wq, current);
 574	release_new_ctx = NULL;
 575
 576	spin_lock_irq(&ctx->event_wqh.lock);
 577	/*
 578	 * After the __add_wait_queue the uwq is visible to userland
 579	 * through poll/read().
 580	 */
 581	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
 582	for (;;) {
 583		set_current_state(TASK_KILLABLE);
 584		if (ewq->msg.event == 0)
 585			break;
 586		if (READ_ONCE(ctx->released) ||
 587		    fatal_signal_pending(current)) {
 588			/*
 589			 * &ewq->wq may be queued in fork_event, but
 590			 * __remove_wait_queue ignores the head
 591			 * parameter. It would be a problem if it
 592			 * didn't.
 593			 */
 594			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 595			if (ewq->msg.event == UFFD_EVENT_FORK) {
 596				struct userfaultfd_ctx *new;
 597
 598				new = (struct userfaultfd_ctx *)
 599					(unsigned long)
 600					ewq->msg.arg.reserved.reserved1;
 601				release_new_ctx = new;
 602			}
 603			break;
 604		}
 605
 606		spin_unlock_irq(&ctx->event_wqh.lock);
 607
 608		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 609		schedule();
 610
 611		spin_lock_irq(&ctx->event_wqh.lock);
 612	}
 613	__set_current_state(TASK_RUNNING);
 614	spin_unlock_irq(&ctx->event_wqh.lock);
 615
 616	if (release_new_ctx) {
 617		struct vm_area_struct *vma;
 618		struct mm_struct *mm = release_new_ctx->mm;
 619		VMA_ITERATOR(vmi, mm, 0);
 620
 621		/* the various vma->vm_userfaultfd_ctx still points to it */
 622		mmap_write_lock(mm);
 623		for_each_vma(vmi, vma) {
 624			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
 625				vma_start_write(vma);
 626				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 627				userfaultfd_set_vm_flags(vma,
 628							 vma->vm_flags & ~__VM_UFFD_FLAGS);
 629			}
 630		}
 631		mmap_write_unlock(mm);
 632
 633		userfaultfd_ctx_put(release_new_ctx);
 634	}
 635
 636	/*
 637	 * ctx may go away after this if the userfault pseudo fd is
 638	 * already released.
 639	 */
 640out:
 641	atomic_dec(&ctx->mmap_changing);
 642	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
 643	userfaultfd_ctx_put(ctx);
 644}
 645
 646static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
 647				       struct userfaultfd_wait_queue *ewq)
 648{
 649	ewq->msg.event = 0;
 650	wake_up_locked(&ctx->event_wqh);
 651	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 652}
 653
 654int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
 655{
 656	struct userfaultfd_ctx *ctx = NULL, *octx;
 657	struct userfaultfd_fork_ctx *fctx;
 658
 659	octx = vma->vm_userfaultfd_ctx.ctx;
 660	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
 661		vma_start_write(vma);
 662		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 663		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
 664		return 0;
 665	}
 666
 667	list_for_each_entry(fctx, fcs, list)
 668		if (fctx->orig == octx) {
 669			ctx = fctx->new;
 670			break;
 671		}
 672
 673	if (!ctx) {
 674		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
 675		if (!fctx)
 676			return -ENOMEM;
 677
 678		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
 679		if (!ctx) {
 680			kfree(fctx);
 681			return -ENOMEM;
 682		}
 683
 684		refcount_set(&ctx->refcount, 1);
 685		ctx->flags = octx->flags;
 686		ctx->features = octx->features;
 687		ctx->released = false;
 688		init_rwsem(&ctx->map_changing_lock);
 689		atomic_set(&ctx->mmap_changing, 0);
 690		ctx->mm = vma->vm_mm;
 691		mmgrab(ctx->mm);
 692
 693		userfaultfd_ctx_get(octx);
 694		down_write(&octx->map_changing_lock);
 695		atomic_inc(&octx->mmap_changing);
 696		up_write(&octx->map_changing_lock);
 697		fctx->orig = octx;
 698		fctx->new = ctx;
 699		list_add_tail(&fctx->list, fcs);
 700	}
 701
 702	vma->vm_userfaultfd_ctx.ctx = ctx;
 703	return 0;
 704}
 705
 706static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
 707{
 708	struct userfaultfd_ctx *ctx = fctx->orig;
 709	struct userfaultfd_wait_queue ewq;
 710
 711	msg_init(&ewq.msg);
 712
 713	ewq.msg.event = UFFD_EVENT_FORK;
 714	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
 715
 716	userfaultfd_event_wait_completion(ctx, &ewq);
 717}
 718
 719void dup_userfaultfd_complete(struct list_head *fcs)
 720{
 721	struct userfaultfd_fork_ctx *fctx, *n;
 722
 723	list_for_each_entry_safe(fctx, n, fcs, list) {
 724		dup_fctx(fctx);
 725		list_del(&fctx->list);
 726		kfree(fctx);
 727	}
 728}
 729
 730void mremap_userfaultfd_prep(struct vm_area_struct *vma,
 731			     struct vm_userfaultfd_ctx *vm_ctx)
 732{
 733	struct userfaultfd_ctx *ctx;
 734
 735	ctx = vma->vm_userfaultfd_ctx.ctx;
 736
 737	if (!ctx)
 738		return;
 739
 740	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
 741		vm_ctx->ctx = ctx;
 742		userfaultfd_ctx_get(ctx);
 743		down_write(&ctx->map_changing_lock);
 744		atomic_inc(&ctx->mmap_changing);
 745		up_write(&ctx->map_changing_lock);
 746	} else {
 747		/* Drop uffd context if remap feature not enabled */
 748		vma_start_write(vma);
 749		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 750		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
 751	}
 752}
 753
 754void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
 755				 unsigned long from, unsigned long to,
 756				 unsigned long len)
 757{
 758	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
 759	struct userfaultfd_wait_queue ewq;
 760
 761	if (!ctx)
 762		return;
 763
 764	if (to & ~PAGE_MASK) {
 765		userfaultfd_ctx_put(ctx);
 766		return;
 767	}
 768
 769	msg_init(&ewq.msg);
 770
 771	ewq.msg.event = UFFD_EVENT_REMAP;
 772	ewq.msg.arg.remap.from = from;
 773	ewq.msg.arg.remap.to = to;
 774	ewq.msg.arg.remap.len = len;
 775
 776	userfaultfd_event_wait_completion(ctx, &ewq);
 777}
 778
 779bool userfaultfd_remove(struct vm_area_struct *vma,
 780			unsigned long start, unsigned long end)
 781{
 782	struct mm_struct *mm = vma->vm_mm;
 783	struct userfaultfd_ctx *ctx;
 784	struct userfaultfd_wait_queue ewq;
 785
 786	ctx = vma->vm_userfaultfd_ctx.ctx;
 787	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
 788		return true;
 789
 790	userfaultfd_ctx_get(ctx);
 791	down_write(&ctx->map_changing_lock);
 792	atomic_inc(&ctx->mmap_changing);
 793	up_write(&ctx->map_changing_lock);
 794	mmap_read_unlock(mm);
 795
 796	msg_init(&ewq.msg);
 797
 798	ewq.msg.event = UFFD_EVENT_REMOVE;
 799	ewq.msg.arg.remove.start = start;
 800	ewq.msg.arg.remove.end = end;
 801
 802	userfaultfd_event_wait_completion(ctx, &ewq);
 803
 804	return false;
 805}
 806
 807static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
 808			  unsigned long start, unsigned long end)
 809{
 810	struct userfaultfd_unmap_ctx *unmap_ctx;
 811
 812	list_for_each_entry(unmap_ctx, unmaps, list)
 813		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
 814		    unmap_ctx->end == end)
 815			return true;
 816
 817	return false;
 818}
 819
 820int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
 821			   unsigned long end, struct list_head *unmaps)
 822{
 823	struct userfaultfd_unmap_ctx *unmap_ctx;
 824	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
 
 
 825
 826	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
 827	    has_unmap_ctx(ctx, unmaps, start, end))
 828		return 0;
 829
 830	unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
 831	if (!unmap_ctx)
 832		return -ENOMEM;
 833
 834	userfaultfd_ctx_get(ctx);
 835	down_write(&ctx->map_changing_lock);
 836	atomic_inc(&ctx->mmap_changing);
 837	up_write(&ctx->map_changing_lock);
 838	unmap_ctx->ctx = ctx;
 839	unmap_ctx->start = start;
 840	unmap_ctx->end = end;
 841	list_add_tail(&unmap_ctx->list, unmaps);
 842
 843	return 0;
 844}
 845
 846void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
 847{
 848	struct userfaultfd_unmap_ctx *ctx, *n;
 849	struct userfaultfd_wait_queue ewq;
 850
 851	list_for_each_entry_safe(ctx, n, uf, list) {
 852		msg_init(&ewq.msg);
 853
 854		ewq.msg.event = UFFD_EVENT_UNMAP;
 855		ewq.msg.arg.remove.start = ctx->start;
 856		ewq.msg.arg.remove.end = ctx->end;
 857
 858		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
 859
 860		list_del(&ctx->list);
 861		kfree(ctx);
 862	}
 863}
 864
 865static int userfaultfd_release(struct inode *inode, struct file *file)
 866{
 867	struct userfaultfd_ctx *ctx = file->private_data;
 868	struct mm_struct *mm = ctx->mm;
 869	struct vm_area_struct *vma, *prev;
 870	/* len == 0 means wake all */
 871	struct userfaultfd_wake_range range = { .len = 0, };
 872	unsigned long new_flags;
 873	VMA_ITERATOR(vmi, mm, 0);
 874
 875	WRITE_ONCE(ctx->released, true);
 876
 877	if (!mmget_not_zero(mm))
 878		goto wakeup;
 879
 880	/*
 881	 * Flush page faults out of all CPUs. NOTE: all page faults
 882	 * must be retried without returning VM_FAULT_SIGBUS if
 883	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 884	 * changes while handle_userfault released the mmap_lock. So
 885	 * it's critical that released is set to true (above), before
 886	 * taking the mmap_lock for writing.
 887	 */
 888	mmap_write_lock(mm);
 889	prev = NULL;
 890	for_each_vma(vmi, vma) {
 891		cond_resched();
 892		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 893		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
 894		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 895			prev = vma;
 896			continue;
 897		}
 898		/* Reset ptes for the whole vma range if wr-protected */
 899		if (userfaultfd_wp(vma))
 900			uffd_wp_range(vma, vma->vm_start,
 901				      vma->vm_end - vma->vm_start, false);
 902		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
 903		vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
 904					    vma->vm_end, new_flags,
 905					    NULL_VM_UFFD_CTX);
 906
 907		vma_start_write(vma);
 908		userfaultfd_set_vm_flags(vma, new_flags);
 
 
 
 
 909		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 910
 911		prev = vma;
 912	}
 913	mmap_write_unlock(mm);
 914	mmput(mm);
 915wakeup:
 916	/*
 917	 * After no new page faults can wait on this fault_*wqh, flush
 918	 * the last page faults that may have been already waiting on
 919	 * the fault_*wqh.
 920	 */
 921	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 922	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 923	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
 924	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 925
 926	/* Flush pending events that may still wait on event_wqh */
 927	wake_up_all(&ctx->event_wqh);
 928
 929	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
 930	userfaultfd_ctx_put(ctx);
 931	return 0;
 932}
 933
 934/* fault_pending_wqh.lock must be hold by the caller */
 935static inline struct userfaultfd_wait_queue *find_userfault_in(
 936		wait_queue_head_t *wqh)
 937{
 938	wait_queue_entry_t *wq;
 939	struct userfaultfd_wait_queue *uwq;
 940
 941	lockdep_assert_held(&wqh->lock);
 942
 943	uwq = NULL;
 944	if (!waitqueue_active(wqh))
 945		goto out;
 946	/* walk in reverse to provide FIFO behavior to read userfaults */
 947	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
 948	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 949out:
 950	return uwq;
 951}
 952
 953static inline struct userfaultfd_wait_queue *find_userfault(
 954		struct userfaultfd_ctx *ctx)
 955{
 956	return find_userfault_in(&ctx->fault_pending_wqh);
 957}
 958
 959static inline struct userfaultfd_wait_queue *find_userfault_evt(
 960		struct userfaultfd_ctx *ctx)
 961{
 962	return find_userfault_in(&ctx->event_wqh);
 963}
 964
 965static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
 966{
 967	struct userfaultfd_ctx *ctx = file->private_data;
 968	__poll_t ret;
 969
 970	poll_wait(file, &ctx->fd_wqh, wait);
 971
 972	if (!userfaultfd_is_initialized(ctx))
 973		return EPOLLERR;
 974
 975	/*
 976	 * poll() never guarantees that read won't block.
 977	 * userfaults can be waken before they're read().
 978	 */
 979	if (unlikely(!(file->f_flags & O_NONBLOCK)))
 980		return EPOLLERR;
 981	/*
 982	 * lockless access to see if there are pending faults
 983	 * __pollwait last action is the add_wait_queue but
 984	 * the spin_unlock would allow the waitqueue_active to
 985	 * pass above the actual list_add inside
 986	 * add_wait_queue critical section. So use a full
 987	 * memory barrier to serialize the list_add write of
 988	 * add_wait_queue() with the waitqueue_active read
 989	 * below.
 990	 */
 991	ret = 0;
 992	smp_mb();
 993	if (waitqueue_active(&ctx->fault_pending_wqh))
 994		ret = EPOLLIN;
 995	else if (waitqueue_active(&ctx->event_wqh))
 996		ret = EPOLLIN;
 997
 998	return ret;
 999}
1000
1001static const struct file_operations userfaultfd_fops;
1002
1003static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1004				  struct inode *inode,
1005				  struct uffd_msg *msg)
1006{
1007	int fd;
1008
1009	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1010			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1011	if (fd < 0)
1012		return fd;
1013
1014	msg->arg.reserved.reserved1 = 0;
1015	msg->arg.fork.ufd = fd;
1016	return 0;
1017}
1018
1019static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1020				    struct uffd_msg *msg, struct inode *inode)
1021{
1022	ssize_t ret;
1023	DECLARE_WAITQUEUE(wait, current);
1024	struct userfaultfd_wait_queue *uwq;
1025	/*
1026	 * Handling fork event requires sleeping operations, so
1027	 * we drop the event_wqh lock, then do these ops, then
1028	 * lock it back and wake up the waiter. While the lock is
1029	 * dropped the ewq may go away so we keep track of it
1030	 * carefully.
1031	 */
1032	LIST_HEAD(fork_event);
1033	struct userfaultfd_ctx *fork_nctx = NULL;
1034
1035	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1036	spin_lock_irq(&ctx->fd_wqh.lock);
1037	__add_wait_queue(&ctx->fd_wqh, &wait);
1038	for (;;) {
1039		set_current_state(TASK_INTERRUPTIBLE);
1040		spin_lock(&ctx->fault_pending_wqh.lock);
1041		uwq = find_userfault(ctx);
1042		if (uwq) {
1043			/*
1044			 * Use a seqcount to repeat the lockless check
1045			 * in wake_userfault() to avoid missing
1046			 * wakeups because during the refile both
1047			 * waitqueue could become empty if this is the
1048			 * only userfault.
1049			 */
1050			write_seqcount_begin(&ctx->refile_seq);
1051
1052			/*
1053			 * The fault_pending_wqh.lock prevents the uwq
1054			 * to disappear from under us.
1055			 *
1056			 * Refile this userfault from
1057			 * fault_pending_wqh to fault_wqh, it's not
1058			 * pending anymore after we read it.
1059			 *
1060			 * Use list_del() by hand (as
1061			 * userfaultfd_wake_function also uses
1062			 * list_del_init() by hand) to be sure nobody
1063			 * changes __remove_wait_queue() to use
1064			 * list_del_init() in turn breaking the
1065			 * !list_empty_careful() check in
1066			 * handle_userfault(). The uwq->wq.head list
1067			 * must never be empty at any time during the
1068			 * refile, or the waitqueue could disappear
1069			 * from under us. The "wait_queue_head_t"
1070			 * parameter of __remove_wait_queue() is unused
1071			 * anyway.
1072			 */
1073			list_del(&uwq->wq.entry);
1074			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1075
1076			write_seqcount_end(&ctx->refile_seq);
1077
1078			/* careful to always initialize msg if ret == 0 */
1079			*msg = uwq->msg;
1080			spin_unlock(&ctx->fault_pending_wqh.lock);
1081			ret = 0;
1082			break;
1083		}
1084		spin_unlock(&ctx->fault_pending_wqh.lock);
1085
1086		spin_lock(&ctx->event_wqh.lock);
1087		uwq = find_userfault_evt(ctx);
1088		if (uwq) {
1089			*msg = uwq->msg;
1090
1091			if (uwq->msg.event == UFFD_EVENT_FORK) {
1092				fork_nctx = (struct userfaultfd_ctx *)
1093					(unsigned long)
1094					uwq->msg.arg.reserved.reserved1;
1095				list_move(&uwq->wq.entry, &fork_event);
1096				/*
1097				 * fork_nctx can be freed as soon as
1098				 * we drop the lock, unless we take a
1099				 * reference on it.
1100				 */
1101				userfaultfd_ctx_get(fork_nctx);
1102				spin_unlock(&ctx->event_wqh.lock);
1103				ret = 0;
1104				break;
1105			}
1106
1107			userfaultfd_event_complete(ctx, uwq);
1108			spin_unlock(&ctx->event_wqh.lock);
1109			ret = 0;
1110			break;
1111		}
1112		spin_unlock(&ctx->event_wqh.lock);
1113
1114		if (signal_pending(current)) {
1115			ret = -ERESTARTSYS;
1116			break;
1117		}
1118		if (no_wait) {
1119			ret = -EAGAIN;
1120			break;
1121		}
1122		spin_unlock_irq(&ctx->fd_wqh.lock);
1123		schedule();
1124		spin_lock_irq(&ctx->fd_wqh.lock);
1125	}
1126	__remove_wait_queue(&ctx->fd_wqh, &wait);
1127	__set_current_state(TASK_RUNNING);
1128	spin_unlock_irq(&ctx->fd_wqh.lock);
1129
1130	if (!ret && msg->event == UFFD_EVENT_FORK) {
1131		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1132		spin_lock_irq(&ctx->event_wqh.lock);
1133		if (!list_empty(&fork_event)) {
1134			/*
1135			 * The fork thread didn't abort, so we can
1136			 * drop the temporary refcount.
1137			 */
1138			userfaultfd_ctx_put(fork_nctx);
1139
1140			uwq = list_first_entry(&fork_event,
1141					       typeof(*uwq),
1142					       wq.entry);
1143			/*
1144			 * If fork_event list wasn't empty and in turn
1145			 * the event wasn't already released by fork
1146			 * (the event is allocated on fork kernel
1147			 * stack), put the event back to its place in
1148			 * the event_wq. fork_event head will be freed
1149			 * as soon as we return so the event cannot
1150			 * stay queued there no matter the current
1151			 * "ret" value.
1152			 */
1153			list_del(&uwq->wq.entry);
1154			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1155
1156			/*
1157			 * Leave the event in the waitqueue and report
1158			 * error to userland if we failed to resolve
1159			 * the userfault fork.
1160			 */
1161			if (likely(!ret))
1162				userfaultfd_event_complete(ctx, uwq);
1163		} else {
1164			/*
1165			 * Here the fork thread aborted and the
1166			 * refcount from the fork thread on fork_nctx
1167			 * has already been released. We still hold
1168			 * the reference we took before releasing the
1169			 * lock above. If resolve_userfault_fork
1170			 * failed we've to drop it because the
1171			 * fork_nctx has to be freed in such case. If
1172			 * it succeeded we'll hold it because the new
1173			 * uffd references it.
1174			 */
1175			if (ret)
1176				userfaultfd_ctx_put(fork_nctx);
1177		}
1178		spin_unlock_irq(&ctx->event_wqh.lock);
1179	}
1180
1181	return ret;
1182}
1183
1184static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1185				size_t count, loff_t *ppos)
1186{
1187	struct userfaultfd_ctx *ctx = file->private_data;
1188	ssize_t _ret, ret = 0;
1189	struct uffd_msg msg;
1190	int no_wait = file->f_flags & O_NONBLOCK;
1191	struct inode *inode = file_inode(file);
1192
1193	if (!userfaultfd_is_initialized(ctx))
1194		return -EINVAL;
1195
1196	for (;;) {
1197		if (count < sizeof(msg))
1198			return ret ? ret : -EINVAL;
1199		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1200		if (_ret < 0)
1201			return ret ? ret : _ret;
1202		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1203			return ret ? ret : -EFAULT;
1204		ret += sizeof(msg);
1205		buf += sizeof(msg);
1206		count -= sizeof(msg);
1207		/*
1208		 * Allow to read more than one fault at time but only
1209		 * block if waiting for the very first one.
1210		 */
1211		no_wait = O_NONBLOCK;
1212	}
1213}
1214
1215static void __wake_userfault(struct userfaultfd_ctx *ctx,
1216			     struct userfaultfd_wake_range *range)
1217{
1218	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1219	/* wake all in the range and autoremove */
1220	if (waitqueue_active(&ctx->fault_pending_wqh))
1221		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1222				     range);
1223	if (waitqueue_active(&ctx->fault_wqh))
1224		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1225	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1226}
1227
1228static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1229					   struct userfaultfd_wake_range *range)
1230{
1231	unsigned seq;
1232	bool need_wakeup;
1233
1234	/*
1235	 * To be sure waitqueue_active() is not reordered by the CPU
1236	 * before the pagetable update, use an explicit SMP memory
1237	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1238	 * have release semantics that can allow the
1239	 * waitqueue_active() to be reordered before the pte update.
1240	 */
1241	smp_mb();
1242
1243	/*
1244	 * Use waitqueue_active because it's very frequent to
1245	 * change the address space atomically even if there are no
1246	 * userfaults yet. So we take the spinlock only when we're
1247	 * sure we've userfaults to wake.
1248	 */
1249	do {
1250		seq = read_seqcount_begin(&ctx->refile_seq);
1251		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1252			waitqueue_active(&ctx->fault_wqh);
1253		cond_resched();
1254	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1255	if (need_wakeup)
1256		__wake_userfault(ctx, range);
1257}
1258
1259static __always_inline int validate_unaligned_range(
1260	struct mm_struct *mm, __u64 start, __u64 len)
1261{
1262	__u64 task_size = mm->task_size;
1263
 
 
1264	if (len & ~PAGE_MASK)
1265		return -EINVAL;
1266	if (!len)
1267		return -EINVAL;
1268	if (start < mmap_min_addr)
1269		return -EINVAL;
1270	if (start >= task_size)
1271		return -EINVAL;
1272	if (len > task_size - start)
1273		return -EINVAL;
1274	if (start + len <= start)
1275		return -EINVAL;
1276	return 0;
1277}
1278
1279static __always_inline int validate_range(struct mm_struct *mm,
1280					  __u64 start, __u64 len)
1281{
1282	if (start & ~PAGE_MASK)
1283		return -EINVAL;
 
 
 
 
 
 
 
 
1284
1285	return validate_unaligned_range(mm, start, len);
 
1286}
1287
1288static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1289				unsigned long arg)
1290{
1291	struct mm_struct *mm = ctx->mm;
1292	struct vm_area_struct *vma, *prev, *cur;
1293	int ret;
1294	struct uffdio_register uffdio_register;
1295	struct uffdio_register __user *user_uffdio_register;
1296	unsigned long vm_flags, new_flags;
1297	bool found;
1298	bool basic_ioctls;
1299	unsigned long start, end, vma_end;
1300	struct vma_iterator vmi;
1301	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1302
1303	user_uffdio_register = (struct uffdio_register __user *) arg;
1304
1305	ret = -EFAULT;
1306	if (copy_from_user(&uffdio_register, user_uffdio_register,
1307			   sizeof(uffdio_register)-sizeof(__u64)))
1308		goto out;
1309
1310	ret = -EINVAL;
1311	if (!uffdio_register.mode)
1312		goto out;
1313	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1314		goto out;
1315	vm_flags = 0;
1316	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1317		vm_flags |= VM_UFFD_MISSING;
1318	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1319#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1320		goto out;
1321#endif
1322		vm_flags |= VM_UFFD_WP;
1323	}
1324	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1325#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1326		goto out;
1327#endif
1328		vm_flags |= VM_UFFD_MINOR;
1329	}
1330
1331	ret = validate_range(mm, uffdio_register.range.start,
1332			     uffdio_register.range.len);
1333	if (ret)
1334		goto out;
1335
1336	start = uffdio_register.range.start;
1337	end = start + uffdio_register.range.len;
1338
1339	ret = -ENOMEM;
1340	if (!mmget_not_zero(mm))
1341		goto out;
1342
1343	ret = -EINVAL;
1344	mmap_write_lock(mm);
1345	vma_iter_init(&vmi, mm, start);
1346	vma = vma_find(&vmi, end);
1347	if (!vma)
1348		goto out_unlock;
1349
 
 
 
 
 
1350	/*
1351	 * If the first vma contains huge pages, make sure start address
1352	 * is aligned to huge page size.
1353	 */
1354	if (is_vm_hugetlb_page(vma)) {
1355		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1356
1357		if (start & (vma_hpagesize - 1))
1358			goto out_unlock;
1359	}
1360
1361	/*
1362	 * Search for not compatible vmas.
1363	 */
1364	found = false;
1365	basic_ioctls = false;
1366	cur = vma;
1367	do {
1368		cond_resched();
1369
1370		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1371		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1372
1373		/* check not compatible vmas */
1374		ret = -EINVAL;
1375		if (!vma_can_userfault(cur, vm_flags, wp_async))
1376			goto out_unlock;
1377
1378		/*
1379		 * UFFDIO_COPY will fill file holes even without
1380		 * PROT_WRITE. This check enforces that if this is a
1381		 * MAP_SHARED, the process has write permission to the backing
1382		 * file. If VM_MAYWRITE is set it also enforces that on a
1383		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1384		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1385		 */
1386		ret = -EPERM;
1387		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1388			goto out_unlock;
1389
1390		/*
1391		 * If this vma contains ending address, and huge pages
1392		 * check alignment.
1393		 */
1394		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1395		    end > cur->vm_start) {
1396			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1397
1398			ret = -EINVAL;
1399
1400			if (end & (vma_hpagesize - 1))
1401				goto out_unlock;
1402		}
1403		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1404			goto out_unlock;
1405
1406		/*
1407		 * Check that this vma isn't already owned by a
1408		 * different userfaultfd. We can't allow more than one
1409		 * userfaultfd to own a single vma simultaneously or we
1410		 * wouldn't know which one to deliver the userfaults to.
1411		 */
1412		ret = -EBUSY;
1413		if (cur->vm_userfaultfd_ctx.ctx &&
1414		    cur->vm_userfaultfd_ctx.ctx != ctx)
1415			goto out_unlock;
1416
1417		/*
1418		 * Note vmas containing huge pages
1419		 */
1420		if (is_vm_hugetlb_page(cur))
1421			basic_ioctls = true;
1422
1423		found = true;
1424	} for_each_vma_range(vmi, cur, end);
1425	BUG_ON(!found);
1426
1427	vma_iter_set(&vmi, start);
1428	prev = vma_prev(&vmi);
1429	if (vma->vm_start < start)
1430		prev = vma;
1431
1432	ret = 0;
1433	for_each_vma_range(vmi, vma, end) {
1434		cond_resched();
1435
1436		BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1437		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1438		       vma->vm_userfaultfd_ctx.ctx != ctx);
1439		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1440
1441		/*
1442		 * Nothing to do: this vma is already registered into this
1443		 * userfaultfd and with the right tracking mode too.
1444		 */
1445		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1446		    (vma->vm_flags & vm_flags) == vm_flags)
1447			goto skip;
1448
1449		if (vma->vm_start > start)
1450			start = vma->vm_start;
1451		vma_end = min(end, vma->vm_end);
1452
1453		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1454		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1455					    new_flags,
1456					    (struct vm_userfaultfd_ctx){ctx});
1457		if (IS_ERR(vma)) {
1458			ret = PTR_ERR(vma);
1459			break;
 
1460		}
1461
 
 
 
 
 
 
 
 
 
 
1462		/*
1463		 * In the vma_merge() successful mprotect-like case 8:
1464		 * the next vma was merged into the current one and
1465		 * the current one has not been updated yet.
1466		 */
1467		vma_start_write(vma);
1468		userfaultfd_set_vm_flags(vma, new_flags);
1469		vma->vm_userfaultfd_ctx.ctx = ctx;
1470
1471		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1472			hugetlb_unshare_all_pmds(vma);
1473
1474	skip:
1475		prev = vma;
1476		start = vma->vm_end;
1477	}
1478
1479out_unlock:
1480	mmap_write_unlock(mm);
1481	mmput(mm);
1482	if (!ret) {
1483		__u64 ioctls_out;
1484
1485		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1486		    UFFD_API_RANGE_IOCTLS;
1487
1488		/*
1489		 * Declare the WP ioctl only if the WP mode is
1490		 * specified and all checks passed with the range
1491		 */
1492		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1493			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1494
1495		/* CONTINUE ioctl is only supported for MINOR ranges. */
1496		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1497			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1498
1499		/*
1500		 * Now that we scanned all vmas we can already tell
1501		 * userland which ioctls methods are guaranteed to
1502		 * succeed on this range.
1503		 */
1504		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1505			ret = -EFAULT;
1506	}
1507out:
1508	return ret;
1509}
1510
1511static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1512				  unsigned long arg)
1513{
1514	struct mm_struct *mm = ctx->mm;
1515	struct vm_area_struct *vma, *prev, *cur;
1516	int ret;
1517	struct uffdio_range uffdio_unregister;
1518	unsigned long new_flags;
1519	bool found;
1520	unsigned long start, end, vma_end;
1521	const void __user *buf = (void __user *)arg;
1522	struct vma_iterator vmi;
1523	bool wp_async = userfaultfd_wp_async_ctx(ctx);
1524
1525	ret = -EFAULT;
1526	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1527		goto out;
1528
1529	ret = validate_range(mm, uffdio_unregister.start,
1530			     uffdio_unregister.len);
1531	if (ret)
1532		goto out;
1533
1534	start = uffdio_unregister.start;
1535	end = start + uffdio_unregister.len;
1536
1537	ret = -ENOMEM;
1538	if (!mmget_not_zero(mm))
1539		goto out;
1540
1541	mmap_write_lock(mm);
1542	ret = -EINVAL;
1543	vma_iter_init(&vmi, mm, start);
1544	vma = vma_find(&vmi, end);
1545	if (!vma)
1546		goto out_unlock;
1547
 
 
 
 
 
1548	/*
1549	 * If the first vma contains huge pages, make sure start address
1550	 * is aligned to huge page size.
1551	 */
1552	if (is_vm_hugetlb_page(vma)) {
1553		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1554
1555		if (start & (vma_hpagesize - 1))
1556			goto out_unlock;
1557	}
1558
1559	/*
1560	 * Search for not compatible vmas.
1561	 */
1562	found = false;
1563	cur = vma;
1564	do {
1565		cond_resched();
1566
1567		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1568		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1569
1570		/*
1571		 * Check not compatible vmas, not strictly required
1572		 * here as not compatible vmas cannot have an
1573		 * userfaultfd_ctx registered on them, but this
1574		 * provides for more strict behavior to notice
1575		 * unregistration errors.
1576		 */
1577		if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1578			goto out_unlock;
1579
1580		found = true;
1581	} for_each_vma_range(vmi, cur, end);
1582	BUG_ON(!found);
1583
1584	vma_iter_set(&vmi, start);
1585	prev = vma_prev(&vmi);
1586	if (vma->vm_start < start)
1587		prev = vma;
1588
1589	ret = 0;
1590	for_each_vma_range(vmi, vma, end) {
1591		cond_resched();
1592
1593		BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1594
1595		/*
1596		 * Nothing to do: this vma is already registered into this
1597		 * userfaultfd and with the right tracking mode too.
1598		 */
1599		if (!vma->vm_userfaultfd_ctx.ctx)
1600			goto skip;
1601
1602		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1603
1604		if (vma->vm_start > start)
1605			start = vma->vm_start;
1606		vma_end = min(end, vma->vm_end);
1607
1608		if (userfaultfd_missing(vma)) {
1609			/*
1610			 * Wake any concurrent pending userfault while
1611			 * we unregister, so they will not hang
1612			 * permanently and it avoids userland to call
1613			 * UFFDIO_WAKE explicitly.
1614			 */
1615			struct userfaultfd_wake_range range;
1616			range.start = start;
1617			range.len = vma_end - start;
1618			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1619		}
1620
1621		/* Reset ptes for the whole vma range if wr-protected */
1622		if (userfaultfd_wp(vma))
1623			uffd_wp_range(vma, start, vma_end - start, false);
1624
1625		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1626		vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1627					    new_flags, NULL_VM_UFFD_CTX);
1628		if (IS_ERR(vma)) {
1629			ret = PTR_ERR(vma);
1630			break;
 
 
1631		}
1632
 
 
 
 
 
 
 
 
 
 
1633		/*
1634		 * In the vma_merge() successful mprotect-like case 8:
1635		 * the next vma was merged into the current one and
1636		 * the current one has not been updated yet.
1637		 */
1638		vma_start_write(vma);
1639		userfaultfd_set_vm_flags(vma, new_flags);
1640		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1641
1642	skip:
1643		prev = vma;
1644		start = vma->vm_end;
1645	}
1646
1647out_unlock:
1648	mmap_write_unlock(mm);
1649	mmput(mm);
1650out:
1651	return ret;
1652}
1653
1654/*
1655 * userfaultfd_wake may be used in combination with the
1656 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1657 */
1658static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659			    unsigned long arg)
1660{
1661	int ret;
1662	struct uffdio_range uffdio_wake;
1663	struct userfaultfd_wake_range range;
1664	const void __user *buf = (void __user *)arg;
1665
1666	ret = -EFAULT;
1667	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668		goto out;
1669
1670	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1671	if (ret)
1672		goto out;
1673
1674	range.start = uffdio_wake.start;
1675	range.len = uffdio_wake.len;
1676
1677	/*
1678	 * len == 0 means wake all and we don't want to wake all here,
1679	 * so check it again to be sure.
1680	 */
1681	VM_BUG_ON(!range.len);
1682
1683	wake_userfault(ctx, &range);
1684	ret = 0;
1685
1686out:
1687	return ret;
1688}
1689
1690static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691			    unsigned long arg)
1692{
1693	__s64 ret;
1694	struct uffdio_copy uffdio_copy;
1695	struct uffdio_copy __user *user_uffdio_copy;
1696	struct userfaultfd_wake_range range;
1697	uffd_flags_t flags = 0;
1698
1699	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1700
1701	ret = -EAGAIN;
1702	if (atomic_read(&ctx->mmap_changing))
1703		goto out;
1704
1705	ret = -EFAULT;
1706	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1707			   /* don't copy "copy" last field */
1708			   sizeof(uffdio_copy)-sizeof(__s64)))
1709		goto out;
1710
1711	ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1712				       uffdio_copy.len);
1713	if (ret)
1714		goto out;
1715	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1716	if (ret)
1717		goto out;
1718
 
 
 
 
1719	ret = -EINVAL;
 
 
1720	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1721		goto out;
1722	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1723		flags |= MFILL_ATOMIC_WP;
1724	if (mmget_not_zero(ctx->mm)) {
1725		ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1726					uffdio_copy.len, flags);
 
1727		mmput(ctx->mm);
1728	} else {
1729		return -ESRCH;
1730	}
1731	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1732		return -EFAULT;
1733	if (ret < 0)
1734		goto out;
1735	BUG_ON(!ret);
1736	/* len == 0 would wake all */
1737	range.len = ret;
1738	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1739		range.start = uffdio_copy.dst;
1740		wake_userfault(ctx, &range);
1741	}
1742	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1743out:
1744	return ret;
1745}
1746
1747static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1748				unsigned long arg)
1749{
1750	__s64 ret;
1751	struct uffdio_zeropage uffdio_zeropage;
1752	struct uffdio_zeropage __user *user_uffdio_zeropage;
1753	struct userfaultfd_wake_range range;
1754
1755	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1756
1757	ret = -EAGAIN;
1758	if (atomic_read(&ctx->mmap_changing))
1759		goto out;
1760
1761	ret = -EFAULT;
1762	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1763			   /* don't copy "zeropage" last field */
1764			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1765		goto out;
1766
1767	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1768			     uffdio_zeropage.range.len);
1769	if (ret)
1770		goto out;
1771	ret = -EINVAL;
1772	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1773		goto out;
1774
1775	if (mmget_not_zero(ctx->mm)) {
1776		ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1777					   uffdio_zeropage.range.len);
 
1778		mmput(ctx->mm);
1779	} else {
1780		return -ESRCH;
1781	}
1782	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1783		return -EFAULT;
1784	if (ret < 0)
1785		goto out;
1786	/* len == 0 would wake all */
1787	BUG_ON(!ret);
1788	range.len = ret;
1789	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1790		range.start = uffdio_zeropage.range.start;
1791		wake_userfault(ctx, &range);
1792	}
1793	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1794out:
1795	return ret;
1796}
1797
1798static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1799				    unsigned long arg)
1800{
1801	int ret;
1802	struct uffdio_writeprotect uffdio_wp;
1803	struct uffdio_writeprotect __user *user_uffdio_wp;
1804	struct userfaultfd_wake_range range;
1805	bool mode_wp, mode_dontwake;
1806
1807	if (atomic_read(&ctx->mmap_changing))
1808		return -EAGAIN;
1809
1810	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1811
1812	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1813			   sizeof(struct uffdio_writeprotect)))
1814		return -EFAULT;
1815
1816	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1817			     uffdio_wp.range.len);
1818	if (ret)
1819		return ret;
1820
1821	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1822			       UFFDIO_WRITEPROTECT_MODE_WP))
1823		return -EINVAL;
1824
1825	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1826	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1827
1828	if (mode_wp && mode_dontwake)
1829		return -EINVAL;
1830
1831	if (mmget_not_zero(ctx->mm)) {
1832		ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1833					  uffdio_wp.range.len, mode_wp);
 
1834		mmput(ctx->mm);
1835	} else {
1836		return -ESRCH;
1837	}
1838
1839	if (ret)
1840		return ret;
1841
1842	if (!mode_wp && !mode_dontwake) {
1843		range.start = uffdio_wp.range.start;
1844		range.len = uffdio_wp.range.len;
1845		wake_userfault(ctx, &range);
1846	}
1847	return ret;
1848}
1849
1850static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1851{
1852	__s64 ret;
1853	struct uffdio_continue uffdio_continue;
1854	struct uffdio_continue __user *user_uffdio_continue;
1855	struct userfaultfd_wake_range range;
1856	uffd_flags_t flags = 0;
1857
1858	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1859
1860	ret = -EAGAIN;
1861	if (atomic_read(&ctx->mmap_changing))
1862		goto out;
1863
1864	ret = -EFAULT;
1865	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1866			   /* don't copy the output fields */
1867			   sizeof(uffdio_continue) - (sizeof(__s64))))
1868		goto out;
1869
1870	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1871			     uffdio_continue.range.len);
1872	if (ret)
1873		goto out;
1874
1875	ret = -EINVAL;
1876	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1877				     UFFDIO_CONTINUE_MODE_WP))
 
 
 
 
1878		goto out;
1879	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1880		flags |= MFILL_ATOMIC_WP;
1881
1882	if (mmget_not_zero(ctx->mm)) {
1883		ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1884					    uffdio_continue.range.len, flags);
 
1885		mmput(ctx->mm);
1886	} else {
1887		return -ESRCH;
1888	}
1889
1890	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1891		return -EFAULT;
1892	if (ret < 0)
1893		goto out;
1894
1895	/* len == 0 would wake all */
1896	BUG_ON(!ret);
1897	range.len = ret;
1898	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1899		range.start = uffdio_continue.range.start;
1900		wake_userfault(ctx, &range);
1901	}
1902	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1903
1904out:
1905	return ret;
1906}
1907
1908static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1909{
1910	__s64 ret;
1911	struct uffdio_poison uffdio_poison;
1912	struct uffdio_poison __user *user_uffdio_poison;
1913	struct userfaultfd_wake_range range;
1914
1915	user_uffdio_poison = (struct uffdio_poison __user *)arg;
1916
1917	ret = -EAGAIN;
1918	if (atomic_read(&ctx->mmap_changing))
1919		goto out;
1920
1921	ret = -EFAULT;
1922	if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1923			   /* don't copy the output fields */
1924			   sizeof(uffdio_poison) - (sizeof(__s64))))
1925		goto out;
1926
1927	ret = validate_range(ctx->mm, uffdio_poison.range.start,
1928			     uffdio_poison.range.len);
1929	if (ret)
1930		goto out;
1931
1932	ret = -EINVAL;
1933	if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1934		goto out;
1935
1936	if (mmget_not_zero(ctx->mm)) {
1937		ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1938					  uffdio_poison.range.len, 0);
1939		mmput(ctx->mm);
1940	} else {
1941		return -ESRCH;
1942	}
1943
1944	if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1945		return -EFAULT;
1946	if (ret < 0)
1947		goto out;
1948
1949	/* len == 0 would wake all */
1950	BUG_ON(!ret);
1951	range.len = ret;
1952	if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1953		range.start = uffdio_poison.range.start;
1954		wake_userfault(ctx, &range);
1955	}
1956	ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1957
1958out:
1959	return ret;
1960}
1961
1962bool userfaultfd_wp_async(struct vm_area_struct *vma)
1963{
1964	return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1965}
1966
1967static inline unsigned int uffd_ctx_features(__u64 user_features)
1968{
1969	/*
1970	 * For the current set of features the bits just coincide. Set
1971	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1972	 */
1973	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1974}
1975
1976static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1977			    unsigned long arg)
1978{
1979	__s64 ret;
1980	struct uffdio_move uffdio_move;
1981	struct uffdio_move __user *user_uffdio_move;
1982	struct userfaultfd_wake_range range;
1983	struct mm_struct *mm = ctx->mm;
1984
1985	user_uffdio_move = (struct uffdio_move __user *) arg;
1986
1987	if (atomic_read(&ctx->mmap_changing))
1988		return -EAGAIN;
1989
1990	if (copy_from_user(&uffdio_move, user_uffdio_move,
1991			   /* don't copy "move" last field */
1992			   sizeof(uffdio_move)-sizeof(__s64)))
1993		return -EFAULT;
1994
1995	/* Do not allow cross-mm moves. */
1996	if (mm != current->mm)
1997		return -EINVAL;
1998
1999	ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
2000	if (ret)
2001		return ret;
2002
2003	ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2004	if (ret)
2005		return ret;
2006
2007	if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2008				  UFFDIO_MOVE_MODE_DONTWAKE))
2009		return -EINVAL;
2010
2011	if (mmget_not_zero(mm)) {
2012		ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2013				 uffdio_move.len, uffdio_move.mode);
2014		mmput(mm);
2015	} else {
2016		return -ESRCH;
2017	}
2018
2019	if (unlikely(put_user(ret, &user_uffdio_move->move)))
2020		return -EFAULT;
2021	if (ret < 0)
2022		goto out;
2023
2024	/* len == 0 would wake all */
2025	VM_WARN_ON(!ret);
2026	range.len = ret;
2027	if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2028		range.start = uffdio_move.dst;
2029		wake_userfault(ctx, &range);
2030	}
2031	ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2032
2033out:
2034	return ret;
2035}
2036
2037/*
2038 * userland asks for a certain API version and we return which bits
2039 * and ioctl commands are implemented in this kernel for such API
2040 * version or -EINVAL if unknown.
2041 */
2042static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2043			   unsigned long arg)
2044{
2045	struct uffdio_api uffdio_api;
2046	void __user *buf = (void __user *)arg;
2047	unsigned int ctx_features;
2048	int ret;
2049	__u64 features;
2050
2051	ret = -EFAULT;
2052	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2053		goto out;
2054	features = uffdio_api.features;
2055	ret = -EINVAL;
2056	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2057		goto err_out;
2058	ret = -EPERM;
2059	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2060		goto err_out;
2061
2062	/* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2063	if (features & UFFD_FEATURE_WP_ASYNC)
2064		features |= UFFD_FEATURE_WP_UNPOPULATED;
2065
2066	/* report all available features and ioctls to userland */
2067	uffdio_api.features = UFFD_API_FEATURES;
2068#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2069	uffdio_api.features &=
2070		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2071#endif
2072#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2073	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2074#endif
2075#ifndef CONFIG_PTE_MARKER_UFFD_WP
2076	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2077	uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2078	uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2079#endif
2080	uffdio_api.ioctls = UFFD_API_IOCTLS;
2081	ret = -EFAULT;
2082	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2083		goto out;
2084
2085	/* only enable the requested features for this uffd context */
2086	ctx_features = uffd_ctx_features(features);
2087	ret = -EINVAL;
2088	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2089		goto err_out;
2090
2091	ret = 0;
2092out:
2093	return ret;
2094err_out:
2095	memset(&uffdio_api, 0, sizeof(uffdio_api));
2096	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2097		ret = -EFAULT;
2098	goto out;
2099}
2100
2101static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2102			      unsigned long arg)
2103{
2104	int ret = -EINVAL;
2105	struct userfaultfd_ctx *ctx = file->private_data;
2106
2107	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2108		return -EINVAL;
2109
2110	switch(cmd) {
2111	case UFFDIO_API:
2112		ret = userfaultfd_api(ctx, arg);
2113		break;
2114	case UFFDIO_REGISTER:
2115		ret = userfaultfd_register(ctx, arg);
2116		break;
2117	case UFFDIO_UNREGISTER:
2118		ret = userfaultfd_unregister(ctx, arg);
2119		break;
2120	case UFFDIO_WAKE:
2121		ret = userfaultfd_wake(ctx, arg);
2122		break;
2123	case UFFDIO_COPY:
2124		ret = userfaultfd_copy(ctx, arg);
2125		break;
2126	case UFFDIO_ZEROPAGE:
2127		ret = userfaultfd_zeropage(ctx, arg);
2128		break;
2129	case UFFDIO_MOVE:
2130		ret = userfaultfd_move(ctx, arg);
2131		break;
2132	case UFFDIO_WRITEPROTECT:
2133		ret = userfaultfd_writeprotect(ctx, arg);
2134		break;
2135	case UFFDIO_CONTINUE:
2136		ret = userfaultfd_continue(ctx, arg);
2137		break;
2138	case UFFDIO_POISON:
2139		ret = userfaultfd_poison(ctx, arg);
2140		break;
2141	}
2142	return ret;
2143}
2144
2145#ifdef CONFIG_PROC_FS
2146static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2147{
2148	struct userfaultfd_ctx *ctx = f->private_data;
2149	wait_queue_entry_t *wq;
2150	unsigned long pending = 0, total = 0;
2151
2152	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2153	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2154		pending++;
2155		total++;
2156	}
2157	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2158		total++;
2159	}
2160	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2161
2162	/*
2163	 * If more protocols will be added, there will be all shown
2164	 * separated by a space. Like this:
2165	 *	protocols: aa:... bb:...
2166	 */
2167	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2168		   pending, total, UFFD_API, ctx->features,
2169		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2170}
2171#endif
2172
2173static const struct file_operations userfaultfd_fops = {
2174#ifdef CONFIG_PROC_FS
2175	.show_fdinfo	= userfaultfd_show_fdinfo,
2176#endif
2177	.release	= userfaultfd_release,
2178	.poll		= userfaultfd_poll,
2179	.read		= userfaultfd_read,
2180	.unlocked_ioctl = userfaultfd_ioctl,
2181	.compat_ioctl	= compat_ptr_ioctl,
2182	.llseek		= noop_llseek,
2183};
2184
2185static void init_once_userfaultfd_ctx(void *mem)
2186{
2187	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2188
2189	init_waitqueue_head(&ctx->fault_pending_wqh);
2190	init_waitqueue_head(&ctx->fault_wqh);
2191	init_waitqueue_head(&ctx->event_wqh);
2192	init_waitqueue_head(&ctx->fd_wqh);
2193	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2194}
2195
2196static int new_userfaultfd(int flags)
2197{
2198	struct userfaultfd_ctx *ctx;
2199	int fd;
2200
 
 
 
 
 
 
 
 
 
2201	BUG_ON(!current->mm);
2202
2203	/* Check the UFFD_* constants for consistency.  */
2204	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2205	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2206	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2207
2208	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2209		return -EINVAL;
2210
2211	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2212	if (!ctx)
2213		return -ENOMEM;
2214
2215	refcount_set(&ctx->refcount, 1);
2216	ctx->flags = flags;
2217	ctx->features = 0;
2218	ctx->released = false;
2219	init_rwsem(&ctx->map_changing_lock);
2220	atomic_set(&ctx->mmap_changing, 0);
2221	ctx->mm = current->mm;
2222	/* prevent the mm struct to be freed */
2223	mmgrab(ctx->mm);
2224
2225	/* Create a new inode so that the LSM can block the creation.  */
2226	fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
2227			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2228	if (fd < 0) {
2229		mmdrop(ctx->mm);
2230		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2231	}
2232	return fd;
2233}
2234
2235static inline bool userfaultfd_syscall_allowed(int flags)
2236{
2237	/* Userspace-only page faults are always allowed */
2238	if (flags & UFFD_USER_MODE_ONLY)
2239		return true;
2240
2241	/*
2242	 * The user is requesting a userfaultfd which can handle kernel faults.
2243	 * Privileged users are always allowed to do this.
2244	 */
2245	if (capable(CAP_SYS_PTRACE))
2246		return true;
2247
2248	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2249	return sysctl_unprivileged_userfaultfd;
2250}
2251
2252SYSCALL_DEFINE1(userfaultfd, int, flags)
2253{
2254	if (!userfaultfd_syscall_allowed(flags))
2255		return -EPERM;
2256
2257	return new_userfaultfd(flags);
2258}
2259
2260static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2261{
2262	if (cmd != USERFAULTFD_IOC_NEW)
2263		return -EINVAL;
2264
2265	return new_userfaultfd(flags);
2266}
2267
2268static const struct file_operations userfaultfd_dev_fops = {
2269	.unlocked_ioctl = userfaultfd_dev_ioctl,
2270	.compat_ioctl = userfaultfd_dev_ioctl,
2271	.owner = THIS_MODULE,
2272	.llseek = noop_llseek,
2273};
2274
2275static struct miscdevice userfaultfd_misc = {
2276	.minor = MISC_DYNAMIC_MINOR,
2277	.name = "userfaultfd",
2278	.fops = &userfaultfd_dev_fops
2279};
2280
2281static int __init userfaultfd_init(void)
2282{
2283	int ret;
2284
2285	ret = misc_register(&userfaultfd_misc);
2286	if (ret)
2287		return ret;
2288
2289	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2290						sizeof(struct userfaultfd_ctx),
2291						0,
2292						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2293						init_once_userfaultfd_ctx);
2294#ifdef CONFIG_SYSCTL
2295	register_sysctl_init("vm", vm_userfaultfd_table);
2296#endif
2297	return 0;
2298}
2299__initcall(userfaultfd_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  fs/userfaultfd.c
   4 *
   5 *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
   6 *  Copyright (C) 2008-2009 Red Hat, Inc.
   7 *  Copyright (C) 2015  Red Hat, Inc.
   8 *
   9 *  Some part derived from fs/eventfd.c (anon inode setup) and
  10 *  mm/ksm.c (mm hashing).
  11 */
  12
  13#include <linux/list.h>
  14#include <linux/hashtable.h>
  15#include <linux/sched/signal.h>
  16#include <linux/sched/mm.h>
  17#include <linux/mm.h>
 
  18#include <linux/mmu_notifier.h>
  19#include <linux/poll.h>
  20#include <linux/slab.h>
  21#include <linux/seq_file.h>
  22#include <linux/file.h>
  23#include <linux/bug.h>
  24#include <linux/anon_inodes.h>
  25#include <linux/syscalls.h>
  26#include <linux/userfaultfd_k.h>
  27#include <linux/mempolicy.h>
  28#include <linux/ioctl.h>
  29#include <linux/security.h>
  30#include <linux/hugetlb.h>
 
 
  31
  32int sysctl_unprivileged_userfaultfd __read_mostly;
  33
  34static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
  35
  36/*
  37 * Start with fault_pending_wqh and fault_wqh so they're more likely
  38 * to be in the same cacheline.
  39 *
  40 * Locking order:
  41 *	fd_wqh.lock
  42 *		fault_pending_wqh.lock
  43 *			fault_wqh.lock
  44 *		event_wqh.lock
  45 *
  46 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
  47 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
  48 * also taken in IRQ context.
  49 */
  50struct userfaultfd_ctx {
  51	/* waitqueue head for the pending (i.e. not read) userfaults */
  52	wait_queue_head_t fault_pending_wqh;
  53	/* waitqueue head for the userfaults */
  54	wait_queue_head_t fault_wqh;
  55	/* waitqueue head for the pseudo fd to wakeup poll/read */
  56	wait_queue_head_t fd_wqh;
  57	/* waitqueue head for events */
  58	wait_queue_head_t event_wqh;
  59	/* a refile sequence protected by fault_pending_wqh lock */
  60	seqcount_spinlock_t refile_seq;
  61	/* pseudo fd refcounting */
  62	refcount_t refcount;
  63	/* userfaultfd syscall flags */
  64	unsigned int flags;
  65	/* features requested from the userspace */
  66	unsigned int features;
  67	/* released */
  68	bool released;
  69	/* memory mappings are changing because of non-cooperative event */
  70	bool mmap_changing;
  71	/* mm with one ore more vmas attached to this userfaultfd_ctx */
  72	struct mm_struct *mm;
  73};
  74
  75struct userfaultfd_fork_ctx {
  76	struct userfaultfd_ctx *orig;
  77	struct userfaultfd_ctx *new;
  78	struct list_head list;
  79};
  80
  81struct userfaultfd_unmap_ctx {
  82	struct userfaultfd_ctx *ctx;
  83	unsigned long start;
  84	unsigned long end;
  85	struct list_head list;
  86};
  87
  88struct userfaultfd_wait_queue {
  89	struct uffd_msg msg;
  90	wait_queue_entry_t wq;
  91	struct userfaultfd_ctx *ctx;
  92	bool waken;
  93};
  94
  95struct userfaultfd_wake_range {
  96	unsigned long start;
  97	unsigned long len;
  98};
  99
 100/* internal indication that UFFD_API ioctl was successfully executed */
 101#define UFFD_FEATURE_INITIALIZED		(1u << 31)
 102
 103static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
 104{
 105	return ctx->features & UFFD_FEATURE_INITIALIZED;
 106}
 107
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 108static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
 109				     int wake_flags, void *key)
 110{
 111	struct userfaultfd_wake_range *range = key;
 112	int ret;
 113	struct userfaultfd_wait_queue *uwq;
 114	unsigned long start, len;
 115
 116	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 117	ret = 0;
 118	/* len == 0 means wake all */
 119	start = range->start;
 120	len = range->len;
 121	if (len && (start > uwq->msg.arg.pagefault.address ||
 122		    start + len <= uwq->msg.arg.pagefault.address))
 123		goto out;
 124	WRITE_ONCE(uwq->waken, true);
 125	/*
 126	 * The Program-Order guarantees provided by the scheduler
 127	 * ensure uwq->waken is visible before the task is woken.
 128	 */
 129	ret = wake_up_state(wq->private, mode);
 130	if (ret) {
 131		/*
 132		 * Wake only once, autoremove behavior.
 133		 *
 134		 * After the effect of list_del_init is visible to the other
 135		 * CPUs, the waitqueue may disappear from under us, see the
 136		 * !list_empty_careful() in handle_userfault().
 137		 *
 138		 * try_to_wake_up() has an implicit smp_mb(), and the
 139		 * wq->private is read before calling the extern function
 140		 * "wake_up_state" (which in turns calls try_to_wake_up).
 141		 */
 142		list_del_init(&wq->entry);
 143	}
 144out:
 145	return ret;
 146}
 147
 148/**
 149 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
 150 * context.
 151 * @ctx: [in] Pointer to the userfaultfd context.
 152 */
 153static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
 154{
 155	refcount_inc(&ctx->refcount);
 156}
 157
 158/**
 159 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
 160 * context.
 161 * @ctx: [in] Pointer to userfaultfd context.
 162 *
 163 * The userfaultfd context reference must have been previously acquired either
 164 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
 165 */
 166static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
 167{
 168	if (refcount_dec_and_test(&ctx->refcount)) {
 169		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
 170		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
 171		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
 172		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
 173		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
 174		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
 175		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
 176		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
 177		mmdrop(ctx->mm);
 178		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
 179	}
 180}
 181
 182static inline void msg_init(struct uffd_msg *msg)
 183{
 184	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
 185	/*
 186	 * Must use memset to zero out the paddings or kernel data is
 187	 * leaked to userland.
 188	 */
 189	memset(msg, 0, sizeof(struct uffd_msg));
 190}
 191
 192static inline struct uffd_msg userfault_msg(unsigned long address,
 
 193					    unsigned int flags,
 194					    unsigned long reason,
 195					    unsigned int features)
 196{
 197	struct uffd_msg msg;
 
 198	msg_init(&msg);
 199	msg.event = UFFD_EVENT_PAGEFAULT;
 200	msg.arg.pagefault.address = address;
 
 
 
 201	/*
 202	 * These flags indicate why the userfault occurred:
 203	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
 204	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
 205	 * - Neither of these flags being set indicates a MISSING fault.
 206	 *
 207	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
 208	 * fault. Otherwise, it was a read fault.
 209	 */
 210	if (flags & FAULT_FLAG_WRITE)
 211		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
 212	if (reason & VM_UFFD_WP)
 213		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
 214	if (reason & VM_UFFD_MINOR)
 215		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
 216	if (features & UFFD_FEATURE_THREAD_ID)
 217		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
 218	return msg;
 219}
 220
 221#ifdef CONFIG_HUGETLB_PAGE
 222/*
 223 * Same functionality as userfaultfd_must_wait below with modifications for
 224 * hugepmd ranges.
 225 */
 226static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 227					 struct vm_area_struct *vma,
 228					 unsigned long address,
 229					 unsigned long flags,
 230					 unsigned long reason)
 231{
 232	struct mm_struct *mm = ctx->mm;
 233	pte_t *ptep, pte;
 234	bool ret = true;
 235
 236	mmap_assert_locked(mm);
 237
 238	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
 239
 
 240	if (!ptep)
 241		goto out;
 242
 243	ret = false;
 244	pte = huge_ptep_get(ptep);
 245
 246	/*
 247	 * Lockless access: we're in a wait_event so it's ok if it
 248	 * changes under us.
 
 249	 */
 250	if (huge_pte_none(pte))
 251		ret = true;
 252	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
 253		ret = true;
 254out:
 255	return ret;
 256}
 257#else
 258static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
 259					 struct vm_area_struct *vma,
 260					 unsigned long address,
 261					 unsigned long flags,
 262					 unsigned long reason)
 263{
 264	return false;	/* should never get here */
 265}
 266#endif /* CONFIG_HUGETLB_PAGE */
 267
 268/*
 269 * Verify the pagetables are still not ok after having reigstered into
 270 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
 271 * userfault that has already been resolved, if userfaultfd_read and
 272 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
 273 * threads.
 274 */
 275static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
 276					 unsigned long address,
 277					 unsigned long flags,
 278					 unsigned long reason)
 279{
 280	struct mm_struct *mm = ctx->mm;
 
 281	pgd_t *pgd;
 282	p4d_t *p4d;
 283	pud_t *pud;
 284	pmd_t *pmd, _pmd;
 285	pte_t *pte;
 
 286	bool ret = true;
 287
 288	mmap_assert_locked(mm);
 289
 290	pgd = pgd_offset(mm, address);
 291	if (!pgd_present(*pgd))
 292		goto out;
 293	p4d = p4d_offset(pgd, address);
 294	if (!p4d_present(*p4d))
 295		goto out;
 296	pud = pud_offset(p4d, address);
 297	if (!pud_present(*pud))
 298		goto out;
 299	pmd = pmd_offset(pud, address);
 300	/*
 301	 * READ_ONCE must function as a barrier with narrower scope
 302	 * and it must be equivalent to:
 303	 *	_pmd = *pmd; barrier();
 304	 *
 305	 * This is to deal with the instability (as in
 306	 * pmd_trans_unstable) of the pmd.
 307	 */
 308	_pmd = READ_ONCE(*pmd);
 309	if (pmd_none(_pmd))
 310		goto out;
 311
 312	ret = false;
 313	if (!pmd_present(_pmd))
 314		goto out;
 315
 316	if (pmd_trans_huge(_pmd)) {
 317		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
 318			ret = true;
 319		goto out;
 320	}
 321
 322	/*
 323	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
 324	 * and use the standard pte_offset_map() instead of parsing _pmd.
 325	 */
 326	pte = pte_offset_map(pmd, address);
 
 
 
 
 327	/*
 328	 * Lockless access: we're in a wait_event so it's ok if it
 329	 * changes under us.
 
 330	 */
 331	if (pte_none(*pte))
 
 332		ret = true;
 333	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
 334		ret = true;
 335	pte_unmap(pte);
 336
 337out:
 338	return ret;
 339}
 340
 341static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
 342{
 343	if (flags & FAULT_FLAG_INTERRUPTIBLE)
 344		return TASK_INTERRUPTIBLE;
 345
 346	if (flags & FAULT_FLAG_KILLABLE)
 347		return TASK_KILLABLE;
 348
 349	return TASK_UNINTERRUPTIBLE;
 350}
 351
 352/*
 353 * The locking rules involved in returning VM_FAULT_RETRY depending on
 354 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
 355 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
 356 * recommendation in __lock_page_or_retry is not an understatement.
 357 *
 358 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
 359 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
 360 * not set.
 361 *
 362 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
 363 * set, VM_FAULT_RETRY can still be returned if and only if there are
 364 * fatal_signal_pending()s, and the mmap_lock must be released before
 365 * returning it.
 366 */
 367vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
 368{
 369	struct mm_struct *mm = vmf->vma->vm_mm;
 
 370	struct userfaultfd_ctx *ctx;
 371	struct userfaultfd_wait_queue uwq;
 372	vm_fault_t ret = VM_FAULT_SIGBUS;
 373	bool must_wait;
 374	unsigned int blocking_state;
 375
 376	/*
 377	 * We don't do userfault handling for the final child pid update.
 378	 *
 379	 * We also don't do userfault handling during
 380	 * coredumping. hugetlbfs has the special
 381	 * follow_hugetlb_page() to skip missing pages in the
 382	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
 383	 * the no_page_table() helper in follow_page_mask(), but the
 384	 * shmem_vm_ops->fault method is invoked even during
 385	 * coredumping without mmap_lock and it ends up here.
 386	 */
 387	if (current->flags & (PF_EXITING|PF_DUMPCORE))
 388		goto out;
 389
 390	/*
 391	 * Coredumping runs without mmap_lock so we can only check that
 392	 * the mmap_lock is held, if PF_DUMPCORE was not set.
 393	 */
 394	mmap_assert_locked(mm);
 395
 396	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
 397	if (!ctx)
 398		goto out;
 399
 400	BUG_ON(ctx->mm != mm);
 401
 402	/* Any unrecognized flag is a bug. */
 403	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
 404	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
 405	VM_BUG_ON(!reason || (reason & (reason - 1)));
 406
 407	if (ctx->features & UFFD_FEATURE_SIGBUS)
 408		goto out;
 409	if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
 410	    ctx->flags & UFFD_USER_MODE_ONLY) {
 411		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
 412			"sysctl knob to 1 if kernel faults must be handled "
 413			"without obtaining CAP_SYS_PTRACE capability\n");
 414		goto out;
 415	}
 416
 417	/*
 418	 * If it's already released don't get it. This avoids to loop
 419	 * in __get_user_pages if userfaultfd_release waits on the
 420	 * caller of handle_userfault to release the mmap_lock.
 421	 */
 422	if (unlikely(READ_ONCE(ctx->released))) {
 423		/*
 424		 * Don't return VM_FAULT_SIGBUS in this case, so a non
 425		 * cooperative manager can close the uffd after the
 426		 * last UFFDIO_COPY, without risking to trigger an
 427		 * involuntary SIGBUS if the process was starting the
 428		 * userfaultfd while the userfaultfd was still armed
 429		 * (but after the last UFFDIO_COPY). If the uffd
 430		 * wasn't already closed when the userfault reached
 431		 * this point, that would normally be solved by
 432		 * userfaultfd_must_wait returning 'false'.
 433		 *
 434		 * If we were to return VM_FAULT_SIGBUS here, the non
 435		 * cooperative manager would be instead forced to
 436		 * always call UFFDIO_UNREGISTER before it can safely
 437		 * close the uffd.
 438		 */
 439		ret = VM_FAULT_NOPAGE;
 440		goto out;
 441	}
 442
 443	/*
 444	 * Check that we can return VM_FAULT_RETRY.
 445	 *
 446	 * NOTE: it should become possible to return VM_FAULT_RETRY
 447	 * even if FAULT_FLAG_TRIED is set without leading to gup()
 448	 * -EBUSY failures, if the userfaultfd is to be extended for
 449	 * VM_UFFD_WP tracking and we intend to arm the userfault
 450	 * without first stopping userland access to the memory. For
 451	 * VM_UFFD_MISSING userfaults this is enough for now.
 452	 */
 453	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
 454		/*
 455		 * Validate the invariant that nowait must allow retry
 456		 * to be sure not to return SIGBUS erroneously on
 457		 * nowait invocations.
 458		 */
 459		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
 460#ifdef CONFIG_DEBUG_VM
 461		if (printk_ratelimit()) {
 462			printk(KERN_WARNING
 463			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
 464			       vmf->flags);
 465			dump_stack();
 466		}
 467#endif
 468		goto out;
 469	}
 470
 471	/*
 472	 * Handle nowait, not much to do other than tell it to retry
 473	 * and wait.
 474	 */
 475	ret = VM_FAULT_RETRY;
 476	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
 477		goto out;
 478
 479	/* take the reference before dropping the mmap_lock */
 480	userfaultfd_ctx_get(ctx);
 481
 482	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
 483	uwq.wq.private = current;
 484	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
 485			ctx->features);
 486	uwq.ctx = ctx;
 487	uwq.waken = false;
 488
 489	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
 490
 
 
 
 
 
 
 
 
 
 491	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 492	/*
 493	 * After the __add_wait_queue the uwq is visible to userland
 494	 * through poll/read().
 495	 */
 496	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
 497	/*
 498	 * The smp_mb() after __set_current_state prevents the reads
 499	 * following the spin_unlock to happen before the list_add in
 500	 * __add_wait_queue.
 501	 */
 502	set_current_state(blocking_state);
 503	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 504
 505	if (!is_vm_hugetlb_page(vmf->vma))
 506		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
 507						  reason);
 508	else
 509		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
 510						       vmf->address,
 511						       vmf->flags, reason);
 512	mmap_read_unlock(mm);
 513
 514	if (likely(must_wait && !READ_ONCE(ctx->released))) {
 515		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 516		schedule();
 517	}
 518
 519	__set_current_state(TASK_RUNNING);
 520
 521	/*
 522	 * Here we race with the list_del; list_add in
 523	 * userfaultfd_ctx_read(), however because we don't ever run
 524	 * list_del_init() to refile across the two lists, the prev
 525	 * and next pointers will never point to self. list_add also
 526	 * would never let any of the two pointers to point to
 527	 * self. So list_empty_careful won't risk to see both pointers
 528	 * pointing to self at any time during the list refile. The
 529	 * only case where list_del_init() is called is the full
 530	 * removal in the wake function and there we don't re-list_add
 531	 * and it's fine not to block on the spinlock. The uwq on this
 532	 * kernel stack can be released after the list_del_init.
 533	 */
 534	if (!list_empty_careful(&uwq.wq.entry)) {
 535		spin_lock_irq(&ctx->fault_pending_wqh.lock);
 536		/*
 537		 * No need of list_del_init(), the uwq on the stack
 538		 * will be freed shortly anyway.
 539		 */
 540		list_del(&uwq.wq.entry);
 541		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 542	}
 543
 544	/*
 545	 * ctx may go away after this if the userfault pseudo fd is
 546	 * already released.
 547	 */
 548	userfaultfd_ctx_put(ctx);
 549
 550out:
 551	return ret;
 552}
 553
 554static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
 555					      struct userfaultfd_wait_queue *ewq)
 556{
 557	struct userfaultfd_ctx *release_new_ctx;
 558
 559	if (WARN_ON_ONCE(current->flags & PF_EXITING))
 560		goto out;
 561
 562	ewq->ctx = ctx;
 563	init_waitqueue_entry(&ewq->wq, current);
 564	release_new_ctx = NULL;
 565
 566	spin_lock_irq(&ctx->event_wqh.lock);
 567	/*
 568	 * After the __add_wait_queue the uwq is visible to userland
 569	 * through poll/read().
 570	 */
 571	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
 572	for (;;) {
 573		set_current_state(TASK_KILLABLE);
 574		if (ewq->msg.event == 0)
 575			break;
 576		if (READ_ONCE(ctx->released) ||
 577		    fatal_signal_pending(current)) {
 578			/*
 579			 * &ewq->wq may be queued in fork_event, but
 580			 * __remove_wait_queue ignores the head
 581			 * parameter. It would be a problem if it
 582			 * didn't.
 583			 */
 584			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 585			if (ewq->msg.event == UFFD_EVENT_FORK) {
 586				struct userfaultfd_ctx *new;
 587
 588				new = (struct userfaultfd_ctx *)
 589					(unsigned long)
 590					ewq->msg.arg.reserved.reserved1;
 591				release_new_ctx = new;
 592			}
 593			break;
 594		}
 595
 596		spin_unlock_irq(&ctx->event_wqh.lock);
 597
 598		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
 599		schedule();
 600
 601		spin_lock_irq(&ctx->event_wqh.lock);
 602	}
 603	__set_current_state(TASK_RUNNING);
 604	spin_unlock_irq(&ctx->event_wqh.lock);
 605
 606	if (release_new_ctx) {
 607		struct vm_area_struct *vma;
 608		struct mm_struct *mm = release_new_ctx->mm;
 
 609
 610		/* the various vma->vm_userfaultfd_ctx still points to it */
 611		mmap_write_lock(mm);
 612		for (vma = mm->mmap; vma; vma = vma->vm_next)
 613			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
 
 614				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 615				vma->vm_flags &= ~__VM_UFFD_FLAGS;
 
 616			}
 
 617		mmap_write_unlock(mm);
 618
 619		userfaultfd_ctx_put(release_new_ctx);
 620	}
 621
 622	/*
 623	 * ctx may go away after this if the userfault pseudo fd is
 624	 * already released.
 625	 */
 626out:
 627	WRITE_ONCE(ctx->mmap_changing, false);
 
 628	userfaultfd_ctx_put(ctx);
 629}
 630
 631static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
 632				       struct userfaultfd_wait_queue *ewq)
 633{
 634	ewq->msg.event = 0;
 635	wake_up_locked(&ctx->event_wqh);
 636	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
 637}
 638
 639int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
 640{
 641	struct userfaultfd_ctx *ctx = NULL, *octx;
 642	struct userfaultfd_fork_ctx *fctx;
 643
 644	octx = vma->vm_userfaultfd_ctx.ctx;
 645	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
 
 646		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 647		vma->vm_flags &= ~__VM_UFFD_FLAGS;
 648		return 0;
 649	}
 650
 651	list_for_each_entry(fctx, fcs, list)
 652		if (fctx->orig == octx) {
 653			ctx = fctx->new;
 654			break;
 655		}
 656
 657	if (!ctx) {
 658		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
 659		if (!fctx)
 660			return -ENOMEM;
 661
 662		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
 663		if (!ctx) {
 664			kfree(fctx);
 665			return -ENOMEM;
 666		}
 667
 668		refcount_set(&ctx->refcount, 1);
 669		ctx->flags = octx->flags;
 670		ctx->features = octx->features;
 671		ctx->released = false;
 672		ctx->mmap_changing = false;
 
 673		ctx->mm = vma->vm_mm;
 674		mmgrab(ctx->mm);
 675
 676		userfaultfd_ctx_get(octx);
 677		WRITE_ONCE(octx->mmap_changing, true);
 
 
 678		fctx->orig = octx;
 679		fctx->new = ctx;
 680		list_add_tail(&fctx->list, fcs);
 681	}
 682
 683	vma->vm_userfaultfd_ctx.ctx = ctx;
 684	return 0;
 685}
 686
 687static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
 688{
 689	struct userfaultfd_ctx *ctx = fctx->orig;
 690	struct userfaultfd_wait_queue ewq;
 691
 692	msg_init(&ewq.msg);
 693
 694	ewq.msg.event = UFFD_EVENT_FORK;
 695	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
 696
 697	userfaultfd_event_wait_completion(ctx, &ewq);
 698}
 699
 700void dup_userfaultfd_complete(struct list_head *fcs)
 701{
 702	struct userfaultfd_fork_ctx *fctx, *n;
 703
 704	list_for_each_entry_safe(fctx, n, fcs, list) {
 705		dup_fctx(fctx);
 706		list_del(&fctx->list);
 707		kfree(fctx);
 708	}
 709}
 710
 711void mremap_userfaultfd_prep(struct vm_area_struct *vma,
 712			     struct vm_userfaultfd_ctx *vm_ctx)
 713{
 714	struct userfaultfd_ctx *ctx;
 715
 716	ctx = vma->vm_userfaultfd_ctx.ctx;
 717
 718	if (!ctx)
 719		return;
 720
 721	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
 722		vm_ctx->ctx = ctx;
 723		userfaultfd_ctx_get(ctx);
 724		WRITE_ONCE(ctx->mmap_changing, true);
 
 
 725	} else {
 726		/* Drop uffd context if remap feature not enabled */
 
 727		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 728		vma->vm_flags &= ~__VM_UFFD_FLAGS;
 729	}
 730}
 731
 732void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
 733				 unsigned long from, unsigned long to,
 734				 unsigned long len)
 735{
 736	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
 737	struct userfaultfd_wait_queue ewq;
 738
 739	if (!ctx)
 740		return;
 741
 742	if (to & ~PAGE_MASK) {
 743		userfaultfd_ctx_put(ctx);
 744		return;
 745	}
 746
 747	msg_init(&ewq.msg);
 748
 749	ewq.msg.event = UFFD_EVENT_REMAP;
 750	ewq.msg.arg.remap.from = from;
 751	ewq.msg.arg.remap.to = to;
 752	ewq.msg.arg.remap.len = len;
 753
 754	userfaultfd_event_wait_completion(ctx, &ewq);
 755}
 756
 757bool userfaultfd_remove(struct vm_area_struct *vma,
 758			unsigned long start, unsigned long end)
 759{
 760	struct mm_struct *mm = vma->vm_mm;
 761	struct userfaultfd_ctx *ctx;
 762	struct userfaultfd_wait_queue ewq;
 763
 764	ctx = vma->vm_userfaultfd_ctx.ctx;
 765	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
 766		return true;
 767
 768	userfaultfd_ctx_get(ctx);
 769	WRITE_ONCE(ctx->mmap_changing, true);
 
 
 770	mmap_read_unlock(mm);
 771
 772	msg_init(&ewq.msg);
 773
 774	ewq.msg.event = UFFD_EVENT_REMOVE;
 775	ewq.msg.arg.remove.start = start;
 776	ewq.msg.arg.remove.end = end;
 777
 778	userfaultfd_event_wait_completion(ctx, &ewq);
 779
 780	return false;
 781}
 782
 783static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
 784			  unsigned long start, unsigned long end)
 785{
 786	struct userfaultfd_unmap_ctx *unmap_ctx;
 787
 788	list_for_each_entry(unmap_ctx, unmaps, list)
 789		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
 790		    unmap_ctx->end == end)
 791			return true;
 792
 793	return false;
 794}
 795
 796int userfaultfd_unmap_prep(struct vm_area_struct *vma,
 797			   unsigned long start, unsigned long end,
 798			   struct list_head *unmaps)
 799{
 800	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
 801		struct userfaultfd_unmap_ctx *unmap_ctx;
 802		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
 803
 804		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
 805		    has_unmap_ctx(ctx, unmaps, start, end))
 806			continue;
 807
 808		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
 809		if (!unmap_ctx)
 810			return -ENOMEM;
 811
 812		userfaultfd_ctx_get(ctx);
 813		WRITE_ONCE(ctx->mmap_changing, true);
 814		unmap_ctx->ctx = ctx;
 815		unmap_ctx->start = start;
 816		unmap_ctx->end = end;
 817		list_add_tail(&unmap_ctx->list, unmaps);
 818	}
 
 819
 820	return 0;
 821}
 822
 823void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
 824{
 825	struct userfaultfd_unmap_ctx *ctx, *n;
 826	struct userfaultfd_wait_queue ewq;
 827
 828	list_for_each_entry_safe(ctx, n, uf, list) {
 829		msg_init(&ewq.msg);
 830
 831		ewq.msg.event = UFFD_EVENT_UNMAP;
 832		ewq.msg.arg.remove.start = ctx->start;
 833		ewq.msg.arg.remove.end = ctx->end;
 834
 835		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
 836
 837		list_del(&ctx->list);
 838		kfree(ctx);
 839	}
 840}
 841
 842static int userfaultfd_release(struct inode *inode, struct file *file)
 843{
 844	struct userfaultfd_ctx *ctx = file->private_data;
 845	struct mm_struct *mm = ctx->mm;
 846	struct vm_area_struct *vma, *prev;
 847	/* len == 0 means wake all */
 848	struct userfaultfd_wake_range range = { .len = 0, };
 849	unsigned long new_flags;
 
 850
 851	WRITE_ONCE(ctx->released, true);
 852
 853	if (!mmget_not_zero(mm))
 854		goto wakeup;
 855
 856	/*
 857	 * Flush page faults out of all CPUs. NOTE: all page faults
 858	 * must be retried without returning VM_FAULT_SIGBUS if
 859	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
 860	 * changes while handle_userfault released the mmap_lock. So
 861	 * it's critical that released is set to true (above), before
 862	 * taking the mmap_lock for writing.
 863	 */
 864	mmap_write_lock(mm);
 865	prev = NULL;
 866	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 867		cond_resched();
 868		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
 869		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
 870		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
 871			prev = vma;
 872			continue;
 873		}
 
 
 
 
 874		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
 875		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
 876				 new_flags, vma->anon_vma,
 877				 vma->vm_file, vma->vm_pgoff,
 878				 vma_policy(vma),
 879				 NULL_VM_UFFD_CTX);
 880		if (prev)
 881			vma = prev;
 882		else
 883			prev = vma;
 884		vma->vm_flags = new_flags;
 885		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
 
 
 886	}
 887	mmap_write_unlock(mm);
 888	mmput(mm);
 889wakeup:
 890	/*
 891	 * After no new page faults can wait on this fault_*wqh, flush
 892	 * the last page faults that may have been already waiting on
 893	 * the fault_*wqh.
 894	 */
 895	spin_lock_irq(&ctx->fault_pending_wqh.lock);
 896	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
 897	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
 898	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
 899
 900	/* Flush pending events that may still wait on event_wqh */
 901	wake_up_all(&ctx->event_wqh);
 902
 903	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
 904	userfaultfd_ctx_put(ctx);
 905	return 0;
 906}
 907
 908/* fault_pending_wqh.lock must be hold by the caller */
 909static inline struct userfaultfd_wait_queue *find_userfault_in(
 910		wait_queue_head_t *wqh)
 911{
 912	wait_queue_entry_t *wq;
 913	struct userfaultfd_wait_queue *uwq;
 914
 915	lockdep_assert_held(&wqh->lock);
 916
 917	uwq = NULL;
 918	if (!waitqueue_active(wqh))
 919		goto out;
 920	/* walk in reverse to provide FIFO behavior to read userfaults */
 921	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
 922	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
 923out:
 924	return uwq;
 925}
 926
 927static inline struct userfaultfd_wait_queue *find_userfault(
 928		struct userfaultfd_ctx *ctx)
 929{
 930	return find_userfault_in(&ctx->fault_pending_wqh);
 931}
 932
 933static inline struct userfaultfd_wait_queue *find_userfault_evt(
 934		struct userfaultfd_ctx *ctx)
 935{
 936	return find_userfault_in(&ctx->event_wqh);
 937}
 938
 939static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
 940{
 941	struct userfaultfd_ctx *ctx = file->private_data;
 942	__poll_t ret;
 943
 944	poll_wait(file, &ctx->fd_wqh, wait);
 945
 946	if (!userfaultfd_is_initialized(ctx))
 947		return EPOLLERR;
 948
 949	/*
 950	 * poll() never guarantees that read won't block.
 951	 * userfaults can be waken before they're read().
 952	 */
 953	if (unlikely(!(file->f_flags & O_NONBLOCK)))
 954		return EPOLLERR;
 955	/*
 956	 * lockless access to see if there are pending faults
 957	 * __pollwait last action is the add_wait_queue but
 958	 * the spin_unlock would allow the waitqueue_active to
 959	 * pass above the actual list_add inside
 960	 * add_wait_queue critical section. So use a full
 961	 * memory barrier to serialize the list_add write of
 962	 * add_wait_queue() with the waitqueue_active read
 963	 * below.
 964	 */
 965	ret = 0;
 966	smp_mb();
 967	if (waitqueue_active(&ctx->fault_pending_wqh))
 968		ret = EPOLLIN;
 969	else if (waitqueue_active(&ctx->event_wqh))
 970		ret = EPOLLIN;
 971
 972	return ret;
 973}
 974
 975static const struct file_operations userfaultfd_fops;
 976
 977static int resolve_userfault_fork(struct userfaultfd_ctx *new,
 978				  struct inode *inode,
 979				  struct uffd_msg *msg)
 980{
 981	int fd;
 982
 983	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
 984			O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
 985	if (fd < 0)
 986		return fd;
 987
 988	msg->arg.reserved.reserved1 = 0;
 989	msg->arg.fork.ufd = fd;
 990	return 0;
 991}
 992
 993static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
 994				    struct uffd_msg *msg, struct inode *inode)
 995{
 996	ssize_t ret;
 997	DECLARE_WAITQUEUE(wait, current);
 998	struct userfaultfd_wait_queue *uwq;
 999	/*
1000	 * Handling fork event requires sleeping operations, so
1001	 * we drop the event_wqh lock, then do these ops, then
1002	 * lock it back and wake up the waiter. While the lock is
1003	 * dropped the ewq may go away so we keep track of it
1004	 * carefully.
1005	 */
1006	LIST_HEAD(fork_event);
1007	struct userfaultfd_ctx *fork_nctx = NULL;
1008
1009	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1010	spin_lock_irq(&ctx->fd_wqh.lock);
1011	__add_wait_queue(&ctx->fd_wqh, &wait);
1012	for (;;) {
1013		set_current_state(TASK_INTERRUPTIBLE);
1014		spin_lock(&ctx->fault_pending_wqh.lock);
1015		uwq = find_userfault(ctx);
1016		if (uwq) {
1017			/*
1018			 * Use a seqcount to repeat the lockless check
1019			 * in wake_userfault() to avoid missing
1020			 * wakeups because during the refile both
1021			 * waitqueue could become empty if this is the
1022			 * only userfault.
1023			 */
1024			write_seqcount_begin(&ctx->refile_seq);
1025
1026			/*
1027			 * The fault_pending_wqh.lock prevents the uwq
1028			 * to disappear from under us.
1029			 *
1030			 * Refile this userfault from
1031			 * fault_pending_wqh to fault_wqh, it's not
1032			 * pending anymore after we read it.
1033			 *
1034			 * Use list_del() by hand (as
1035			 * userfaultfd_wake_function also uses
1036			 * list_del_init() by hand) to be sure nobody
1037			 * changes __remove_wait_queue() to use
1038			 * list_del_init() in turn breaking the
1039			 * !list_empty_careful() check in
1040			 * handle_userfault(). The uwq->wq.head list
1041			 * must never be empty at any time during the
1042			 * refile, or the waitqueue could disappear
1043			 * from under us. The "wait_queue_head_t"
1044			 * parameter of __remove_wait_queue() is unused
1045			 * anyway.
1046			 */
1047			list_del(&uwq->wq.entry);
1048			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1049
1050			write_seqcount_end(&ctx->refile_seq);
1051
1052			/* careful to always initialize msg if ret == 0 */
1053			*msg = uwq->msg;
1054			spin_unlock(&ctx->fault_pending_wqh.lock);
1055			ret = 0;
1056			break;
1057		}
1058		spin_unlock(&ctx->fault_pending_wqh.lock);
1059
1060		spin_lock(&ctx->event_wqh.lock);
1061		uwq = find_userfault_evt(ctx);
1062		if (uwq) {
1063			*msg = uwq->msg;
1064
1065			if (uwq->msg.event == UFFD_EVENT_FORK) {
1066				fork_nctx = (struct userfaultfd_ctx *)
1067					(unsigned long)
1068					uwq->msg.arg.reserved.reserved1;
1069				list_move(&uwq->wq.entry, &fork_event);
1070				/*
1071				 * fork_nctx can be freed as soon as
1072				 * we drop the lock, unless we take a
1073				 * reference on it.
1074				 */
1075				userfaultfd_ctx_get(fork_nctx);
1076				spin_unlock(&ctx->event_wqh.lock);
1077				ret = 0;
1078				break;
1079			}
1080
1081			userfaultfd_event_complete(ctx, uwq);
1082			spin_unlock(&ctx->event_wqh.lock);
1083			ret = 0;
1084			break;
1085		}
1086		spin_unlock(&ctx->event_wqh.lock);
1087
1088		if (signal_pending(current)) {
1089			ret = -ERESTARTSYS;
1090			break;
1091		}
1092		if (no_wait) {
1093			ret = -EAGAIN;
1094			break;
1095		}
1096		spin_unlock_irq(&ctx->fd_wqh.lock);
1097		schedule();
1098		spin_lock_irq(&ctx->fd_wqh.lock);
1099	}
1100	__remove_wait_queue(&ctx->fd_wqh, &wait);
1101	__set_current_state(TASK_RUNNING);
1102	spin_unlock_irq(&ctx->fd_wqh.lock);
1103
1104	if (!ret && msg->event == UFFD_EVENT_FORK) {
1105		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1106		spin_lock_irq(&ctx->event_wqh.lock);
1107		if (!list_empty(&fork_event)) {
1108			/*
1109			 * The fork thread didn't abort, so we can
1110			 * drop the temporary refcount.
1111			 */
1112			userfaultfd_ctx_put(fork_nctx);
1113
1114			uwq = list_first_entry(&fork_event,
1115					       typeof(*uwq),
1116					       wq.entry);
1117			/*
1118			 * If fork_event list wasn't empty and in turn
1119			 * the event wasn't already released by fork
1120			 * (the event is allocated on fork kernel
1121			 * stack), put the event back to its place in
1122			 * the event_wq. fork_event head will be freed
1123			 * as soon as we return so the event cannot
1124			 * stay queued there no matter the current
1125			 * "ret" value.
1126			 */
1127			list_del(&uwq->wq.entry);
1128			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1129
1130			/*
1131			 * Leave the event in the waitqueue and report
1132			 * error to userland if we failed to resolve
1133			 * the userfault fork.
1134			 */
1135			if (likely(!ret))
1136				userfaultfd_event_complete(ctx, uwq);
1137		} else {
1138			/*
1139			 * Here the fork thread aborted and the
1140			 * refcount from the fork thread on fork_nctx
1141			 * has already been released. We still hold
1142			 * the reference we took before releasing the
1143			 * lock above. If resolve_userfault_fork
1144			 * failed we've to drop it because the
1145			 * fork_nctx has to be freed in such case. If
1146			 * it succeeded we'll hold it because the new
1147			 * uffd references it.
1148			 */
1149			if (ret)
1150				userfaultfd_ctx_put(fork_nctx);
1151		}
1152		spin_unlock_irq(&ctx->event_wqh.lock);
1153	}
1154
1155	return ret;
1156}
1157
1158static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1159				size_t count, loff_t *ppos)
1160{
1161	struct userfaultfd_ctx *ctx = file->private_data;
1162	ssize_t _ret, ret = 0;
1163	struct uffd_msg msg;
1164	int no_wait = file->f_flags & O_NONBLOCK;
1165	struct inode *inode = file_inode(file);
1166
1167	if (!userfaultfd_is_initialized(ctx))
1168		return -EINVAL;
1169
1170	for (;;) {
1171		if (count < sizeof(msg))
1172			return ret ? ret : -EINVAL;
1173		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1174		if (_ret < 0)
1175			return ret ? ret : _ret;
1176		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1177			return ret ? ret : -EFAULT;
1178		ret += sizeof(msg);
1179		buf += sizeof(msg);
1180		count -= sizeof(msg);
1181		/*
1182		 * Allow to read more than one fault at time but only
1183		 * block if waiting for the very first one.
1184		 */
1185		no_wait = O_NONBLOCK;
1186	}
1187}
1188
1189static void __wake_userfault(struct userfaultfd_ctx *ctx,
1190			     struct userfaultfd_wake_range *range)
1191{
1192	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1193	/* wake all in the range and autoremove */
1194	if (waitqueue_active(&ctx->fault_pending_wqh))
1195		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1196				     range);
1197	if (waitqueue_active(&ctx->fault_wqh))
1198		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1199	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1200}
1201
1202static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1203					   struct userfaultfd_wake_range *range)
1204{
1205	unsigned seq;
1206	bool need_wakeup;
1207
1208	/*
1209	 * To be sure waitqueue_active() is not reordered by the CPU
1210	 * before the pagetable update, use an explicit SMP memory
1211	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1212	 * have release semantics that can allow the
1213	 * waitqueue_active() to be reordered before the pte update.
1214	 */
1215	smp_mb();
1216
1217	/*
1218	 * Use waitqueue_active because it's very frequent to
1219	 * change the address space atomically even if there are no
1220	 * userfaults yet. So we take the spinlock only when we're
1221	 * sure we've userfaults to wake.
1222	 */
1223	do {
1224		seq = read_seqcount_begin(&ctx->refile_seq);
1225		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1226			waitqueue_active(&ctx->fault_wqh);
1227		cond_resched();
1228	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1229	if (need_wakeup)
1230		__wake_userfault(ctx, range);
1231}
1232
1233static __always_inline int validate_range(struct mm_struct *mm,
1234					  __u64 start, __u64 len)
1235{
1236	__u64 task_size = mm->task_size;
1237
1238	if (start & ~PAGE_MASK)
1239		return -EINVAL;
1240	if (len & ~PAGE_MASK)
1241		return -EINVAL;
1242	if (!len)
1243		return -EINVAL;
1244	if (start < mmap_min_addr)
1245		return -EINVAL;
1246	if (start >= task_size)
1247		return -EINVAL;
1248	if (len > task_size - start)
1249		return -EINVAL;
 
 
1250	return 0;
1251}
1252
1253static inline bool vma_can_userfault(struct vm_area_struct *vma,
1254				     unsigned long vm_flags)
1255{
1256	/* FIXME: add WP support to hugetlbfs and shmem */
1257	if (vm_flags & VM_UFFD_WP) {
1258		if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1259			return false;
1260	}
1261
1262	if (vm_flags & VM_UFFD_MINOR) {
1263		if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1264			return false;
1265	}
1266
1267	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1268	       vma_is_shmem(vma);
1269}
1270
1271static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1272				unsigned long arg)
1273{
1274	struct mm_struct *mm = ctx->mm;
1275	struct vm_area_struct *vma, *prev, *cur;
1276	int ret;
1277	struct uffdio_register uffdio_register;
1278	struct uffdio_register __user *user_uffdio_register;
1279	unsigned long vm_flags, new_flags;
1280	bool found;
1281	bool basic_ioctls;
1282	unsigned long start, end, vma_end;
 
 
1283
1284	user_uffdio_register = (struct uffdio_register __user *) arg;
1285
1286	ret = -EFAULT;
1287	if (copy_from_user(&uffdio_register, user_uffdio_register,
1288			   sizeof(uffdio_register)-sizeof(__u64)))
1289		goto out;
1290
1291	ret = -EINVAL;
1292	if (!uffdio_register.mode)
1293		goto out;
1294	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1295		goto out;
1296	vm_flags = 0;
1297	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1298		vm_flags |= VM_UFFD_MISSING;
1299	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1300#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1301		goto out;
1302#endif
1303		vm_flags |= VM_UFFD_WP;
1304	}
1305	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1306#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1307		goto out;
1308#endif
1309		vm_flags |= VM_UFFD_MINOR;
1310	}
1311
1312	ret = validate_range(mm, uffdio_register.range.start,
1313			     uffdio_register.range.len);
1314	if (ret)
1315		goto out;
1316
1317	start = uffdio_register.range.start;
1318	end = start + uffdio_register.range.len;
1319
1320	ret = -ENOMEM;
1321	if (!mmget_not_zero(mm))
1322		goto out;
1323
 
1324	mmap_write_lock(mm);
1325	vma = find_vma_prev(mm, start, &prev);
 
1326	if (!vma)
1327		goto out_unlock;
1328
1329	/* check that there's at least one vma in the range */
1330	ret = -EINVAL;
1331	if (vma->vm_start >= end)
1332		goto out_unlock;
1333
1334	/*
1335	 * If the first vma contains huge pages, make sure start address
1336	 * is aligned to huge page size.
1337	 */
1338	if (is_vm_hugetlb_page(vma)) {
1339		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1340
1341		if (start & (vma_hpagesize - 1))
1342			goto out_unlock;
1343	}
1344
1345	/*
1346	 * Search for not compatible vmas.
1347	 */
1348	found = false;
1349	basic_ioctls = false;
1350	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
 
1351		cond_resched();
1352
1353		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1354		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1355
1356		/* check not compatible vmas */
1357		ret = -EINVAL;
1358		if (!vma_can_userfault(cur, vm_flags))
1359			goto out_unlock;
1360
1361		/*
1362		 * UFFDIO_COPY will fill file holes even without
1363		 * PROT_WRITE. This check enforces that if this is a
1364		 * MAP_SHARED, the process has write permission to the backing
1365		 * file. If VM_MAYWRITE is set it also enforces that on a
1366		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1367		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1368		 */
1369		ret = -EPERM;
1370		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1371			goto out_unlock;
1372
1373		/*
1374		 * If this vma contains ending address, and huge pages
1375		 * check alignment.
1376		 */
1377		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1378		    end > cur->vm_start) {
1379			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1380
1381			ret = -EINVAL;
1382
1383			if (end & (vma_hpagesize - 1))
1384				goto out_unlock;
1385		}
1386		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1387			goto out_unlock;
1388
1389		/*
1390		 * Check that this vma isn't already owned by a
1391		 * different userfaultfd. We can't allow more than one
1392		 * userfaultfd to own a single vma simultaneously or we
1393		 * wouldn't know which one to deliver the userfaults to.
1394		 */
1395		ret = -EBUSY;
1396		if (cur->vm_userfaultfd_ctx.ctx &&
1397		    cur->vm_userfaultfd_ctx.ctx != ctx)
1398			goto out_unlock;
1399
1400		/*
1401		 * Note vmas containing huge pages
1402		 */
1403		if (is_vm_hugetlb_page(cur))
1404			basic_ioctls = true;
1405
1406		found = true;
1407	}
1408	BUG_ON(!found);
1409
 
 
1410	if (vma->vm_start < start)
1411		prev = vma;
1412
1413	ret = 0;
1414	do {
1415		cond_resched();
1416
1417		BUG_ON(!vma_can_userfault(vma, vm_flags));
1418		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1419		       vma->vm_userfaultfd_ctx.ctx != ctx);
1420		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1421
1422		/*
1423		 * Nothing to do: this vma is already registered into this
1424		 * userfaultfd and with the right tracking mode too.
1425		 */
1426		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1427		    (vma->vm_flags & vm_flags) == vm_flags)
1428			goto skip;
1429
1430		if (vma->vm_start > start)
1431			start = vma->vm_start;
1432		vma_end = min(end, vma->vm_end);
1433
1434		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1435		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1436				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1437				 vma_policy(vma),
1438				 ((struct vm_userfaultfd_ctx){ ctx }));
1439		if (prev) {
1440			vma = prev;
1441			goto next;
1442		}
1443		if (vma->vm_start < start) {
1444			ret = split_vma(mm, vma, start, 1);
1445			if (ret)
1446				break;
1447		}
1448		if (vma->vm_end > end) {
1449			ret = split_vma(mm, vma, end, 0);
1450			if (ret)
1451				break;
1452		}
1453	next:
1454		/*
1455		 * In the vma_merge() successful mprotect-like case 8:
1456		 * the next vma was merged into the current one and
1457		 * the current one has not been updated yet.
1458		 */
1459		vma->vm_flags = new_flags;
 
1460		vma->vm_userfaultfd_ctx.ctx = ctx;
1461
1462		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1463			hugetlb_unshare_all_pmds(vma);
1464
1465	skip:
1466		prev = vma;
1467		start = vma->vm_end;
1468		vma = vma->vm_next;
1469	} while (vma && vma->vm_start < end);
1470out_unlock:
1471	mmap_write_unlock(mm);
1472	mmput(mm);
1473	if (!ret) {
1474		__u64 ioctls_out;
1475
1476		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1477		    UFFD_API_RANGE_IOCTLS;
1478
1479		/*
1480		 * Declare the WP ioctl only if the WP mode is
1481		 * specified and all checks passed with the range
1482		 */
1483		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1484			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1485
1486		/* CONTINUE ioctl is only supported for MINOR ranges. */
1487		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1488			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1489
1490		/*
1491		 * Now that we scanned all vmas we can already tell
1492		 * userland which ioctls methods are guaranteed to
1493		 * succeed on this range.
1494		 */
1495		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1496			ret = -EFAULT;
1497	}
1498out:
1499	return ret;
1500}
1501
1502static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1503				  unsigned long arg)
1504{
1505	struct mm_struct *mm = ctx->mm;
1506	struct vm_area_struct *vma, *prev, *cur;
1507	int ret;
1508	struct uffdio_range uffdio_unregister;
1509	unsigned long new_flags;
1510	bool found;
1511	unsigned long start, end, vma_end;
1512	const void __user *buf = (void __user *)arg;
 
 
1513
1514	ret = -EFAULT;
1515	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1516		goto out;
1517
1518	ret = validate_range(mm, uffdio_unregister.start,
1519			     uffdio_unregister.len);
1520	if (ret)
1521		goto out;
1522
1523	start = uffdio_unregister.start;
1524	end = start + uffdio_unregister.len;
1525
1526	ret = -ENOMEM;
1527	if (!mmget_not_zero(mm))
1528		goto out;
1529
1530	mmap_write_lock(mm);
1531	vma = find_vma_prev(mm, start, &prev);
 
 
1532	if (!vma)
1533		goto out_unlock;
1534
1535	/* check that there's at least one vma in the range */
1536	ret = -EINVAL;
1537	if (vma->vm_start >= end)
1538		goto out_unlock;
1539
1540	/*
1541	 * If the first vma contains huge pages, make sure start address
1542	 * is aligned to huge page size.
1543	 */
1544	if (is_vm_hugetlb_page(vma)) {
1545		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1546
1547		if (start & (vma_hpagesize - 1))
1548			goto out_unlock;
1549	}
1550
1551	/*
1552	 * Search for not compatible vmas.
1553	 */
1554	found = false;
1555	ret = -EINVAL;
1556	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1557		cond_resched();
1558
1559		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1560		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1561
1562		/*
1563		 * Check not compatible vmas, not strictly required
1564		 * here as not compatible vmas cannot have an
1565		 * userfaultfd_ctx registered on them, but this
1566		 * provides for more strict behavior to notice
1567		 * unregistration errors.
1568		 */
1569		if (!vma_can_userfault(cur, cur->vm_flags))
1570			goto out_unlock;
1571
1572		found = true;
1573	}
1574	BUG_ON(!found);
1575
 
 
1576	if (vma->vm_start < start)
1577		prev = vma;
1578
1579	ret = 0;
1580	do {
1581		cond_resched();
1582
1583		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1584
1585		/*
1586		 * Nothing to do: this vma is already registered into this
1587		 * userfaultfd and with the right tracking mode too.
1588		 */
1589		if (!vma->vm_userfaultfd_ctx.ctx)
1590			goto skip;
1591
1592		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1593
1594		if (vma->vm_start > start)
1595			start = vma->vm_start;
1596		vma_end = min(end, vma->vm_end);
1597
1598		if (userfaultfd_missing(vma)) {
1599			/*
1600			 * Wake any concurrent pending userfault while
1601			 * we unregister, so they will not hang
1602			 * permanently and it avoids userland to call
1603			 * UFFDIO_WAKE explicitly.
1604			 */
1605			struct userfaultfd_wake_range range;
1606			range.start = start;
1607			range.len = vma_end - start;
1608			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1609		}
1610
 
 
 
 
1611		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1612		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1613				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1614				 vma_policy(vma),
1615				 NULL_VM_UFFD_CTX);
1616		if (prev) {
1617			vma = prev;
1618			goto next;
1619		}
1620		if (vma->vm_start < start) {
1621			ret = split_vma(mm, vma, start, 1);
1622			if (ret)
1623				break;
1624		}
1625		if (vma->vm_end > end) {
1626			ret = split_vma(mm, vma, end, 0);
1627			if (ret)
1628				break;
1629		}
1630	next:
1631		/*
1632		 * In the vma_merge() successful mprotect-like case 8:
1633		 * the next vma was merged into the current one and
1634		 * the current one has not been updated yet.
1635		 */
1636		vma->vm_flags = new_flags;
 
1637		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1638
1639	skip:
1640		prev = vma;
1641		start = vma->vm_end;
1642		vma = vma->vm_next;
1643	} while (vma && vma->vm_start < end);
1644out_unlock:
1645	mmap_write_unlock(mm);
1646	mmput(mm);
1647out:
1648	return ret;
1649}
1650
1651/*
1652 * userfaultfd_wake may be used in combination with the
1653 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1654 */
1655static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1656			    unsigned long arg)
1657{
1658	int ret;
1659	struct uffdio_range uffdio_wake;
1660	struct userfaultfd_wake_range range;
1661	const void __user *buf = (void __user *)arg;
1662
1663	ret = -EFAULT;
1664	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1665		goto out;
1666
1667	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1668	if (ret)
1669		goto out;
1670
1671	range.start = uffdio_wake.start;
1672	range.len = uffdio_wake.len;
1673
1674	/*
1675	 * len == 0 means wake all and we don't want to wake all here,
1676	 * so check it again to be sure.
1677	 */
1678	VM_BUG_ON(!range.len);
1679
1680	wake_userfault(ctx, &range);
1681	ret = 0;
1682
1683out:
1684	return ret;
1685}
1686
1687static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1688			    unsigned long arg)
1689{
1690	__s64 ret;
1691	struct uffdio_copy uffdio_copy;
1692	struct uffdio_copy __user *user_uffdio_copy;
1693	struct userfaultfd_wake_range range;
 
1694
1695	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1696
1697	ret = -EAGAIN;
1698	if (READ_ONCE(ctx->mmap_changing))
1699		goto out;
1700
1701	ret = -EFAULT;
1702	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1703			   /* don't copy "copy" last field */
1704			   sizeof(uffdio_copy)-sizeof(__s64)))
1705		goto out;
1706
 
 
 
 
1707	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1708	if (ret)
1709		goto out;
1710	/*
1711	 * double check for wraparound just in case. copy_from_user()
1712	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1713	 * in the userland range.
1714	 */
1715	ret = -EINVAL;
1716	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1717		goto out;
1718	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1719		goto out;
 
 
1720	if (mmget_not_zero(ctx->mm)) {
1721		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1722				   uffdio_copy.len, &ctx->mmap_changing,
1723				   uffdio_copy.mode);
1724		mmput(ctx->mm);
1725	} else {
1726		return -ESRCH;
1727	}
1728	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1729		return -EFAULT;
1730	if (ret < 0)
1731		goto out;
1732	BUG_ON(!ret);
1733	/* len == 0 would wake all */
1734	range.len = ret;
1735	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1736		range.start = uffdio_copy.dst;
1737		wake_userfault(ctx, &range);
1738	}
1739	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1740out:
1741	return ret;
1742}
1743
1744static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1745				unsigned long arg)
1746{
1747	__s64 ret;
1748	struct uffdio_zeropage uffdio_zeropage;
1749	struct uffdio_zeropage __user *user_uffdio_zeropage;
1750	struct userfaultfd_wake_range range;
1751
1752	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1753
1754	ret = -EAGAIN;
1755	if (READ_ONCE(ctx->mmap_changing))
1756		goto out;
1757
1758	ret = -EFAULT;
1759	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1760			   /* don't copy "zeropage" last field */
1761			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1762		goto out;
1763
1764	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1765			     uffdio_zeropage.range.len);
1766	if (ret)
1767		goto out;
1768	ret = -EINVAL;
1769	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1770		goto out;
1771
1772	if (mmget_not_zero(ctx->mm)) {
1773		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1774				     uffdio_zeropage.range.len,
1775				     &ctx->mmap_changing);
1776		mmput(ctx->mm);
1777	} else {
1778		return -ESRCH;
1779	}
1780	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1781		return -EFAULT;
1782	if (ret < 0)
1783		goto out;
1784	/* len == 0 would wake all */
1785	BUG_ON(!ret);
1786	range.len = ret;
1787	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1788		range.start = uffdio_zeropage.range.start;
1789		wake_userfault(ctx, &range);
1790	}
1791	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1792out:
1793	return ret;
1794}
1795
1796static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1797				    unsigned long arg)
1798{
1799	int ret;
1800	struct uffdio_writeprotect uffdio_wp;
1801	struct uffdio_writeprotect __user *user_uffdio_wp;
1802	struct userfaultfd_wake_range range;
1803	bool mode_wp, mode_dontwake;
1804
1805	if (READ_ONCE(ctx->mmap_changing))
1806		return -EAGAIN;
1807
1808	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1809
1810	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1811			   sizeof(struct uffdio_writeprotect)))
1812		return -EFAULT;
1813
1814	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1815			     uffdio_wp.range.len);
1816	if (ret)
1817		return ret;
1818
1819	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1820			       UFFDIO_WRITEPROTECT_MODE_WP))
1821		return -EINVAL;
1822
1823	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1824	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1825
1826	if (mode_wp && mode_dontwake)
1827		return -EINVAL;
1828
1829	if (mmget_not_zero(ctx->mm)) {
1830		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1831					  uffdio_wp.range.len, mode_wp,
1832					  &ctx->mmap_changing);
1833		mmput(ctx->mm);
1834	} else {
1835		return -ESRCH;
1836	}
1837
1838	if (ret)
1839		return ret;
1840
1841	if (!mode_wp && !mode_dontwake) {
1842		range.start = uffdio_wp.range.start;
1843		range.len = uffdio_wp.range.len;
1844		wake_userfault(ctx, &range);
1845	}
1846	return ret;
1847}
1848
1849static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1850{
1851	__s64 ret;
1852	struct uffdio_continue uffdio_continue;
1853	struct uffdio_continue __user *user_uffdio_continue;
1854	struct userfaultfd_wake_range range;
 
1855
1856	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1857
1858	ret = -EAGAIN;
1859	if (READ_ONCE(ctx->mmap_changing))
1860		goto out;
1861
1862	ret = -EFAULT;
1863	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1864			   /* don't copy the output fields */
1865			   sizeof(uffdio_continue) - (sizeof(__s64))))
1866		goto out;
1867
1868	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1869			     uffdio_continue.range.len);
1870	if (ret)
1871		goto out;
1872
1873	ret = -EINVAL;
1874	/* double check for wraparound just in case. */
1875	if (uffdio_continue.range.start + uffdio_continue.range.len <=
1876	    uffdio_continue.range.start) {
1877		goto out;
1878	}
1879	if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1880		goto out;
 
 
1881
1882	if (mmget_not_zero(ctx->mm)) {
1883		ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1884				     uffdio_continue.range.len,
1885				     &ctx->mmap_changing);
1886		mmput(ctx->mm);
1887	} else {
1888		return -ESRCH;
1889	}
1890
1891	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1892		return -EFAULT;
1893	if (ret < 0)
1894		goto out;
1895
1896	/* len == 0 would wake all */
1897	BUG_ON(!ret);
1898	range.len = ret;
1899	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1900		range.start = uffdio_continue.range.start;
1901		wake_userfault(ctx, &range);
1902	}
1903	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1904
1905out:
1906	return ret;
1907}
1908
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909static inline unsigned int uffd_ctx_features(__u64 user_features)
1910{
1911	/*
1912	 * For the current set of features the bits just coincide. Set
1913	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1914	 */
1915	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1916}
1917
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1918/*
1919 * userland asks for a certain API version and we return which bits
1920 * and ioctl commands are implemented in this kernel for such API
1921 * version or -EINVAL if unknown.
1922 */
1923static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1924			   unsigned long arg)
1925{
1926	struct uffdio_api uffdio_api;
1927	void __user *buf = (void __user *)arg;
1928	unsigned int ctx_features;
1929	int ret;
1930	__u64 features;
1931
1932	ret = -EFAULT;
1933	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1934		goto out;
1935	features = uffdio_api.features;
1936	ret = -EINVAL;
1937	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1938		goto err_out;
1939	ret = -EPERM;
1940	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1941		goto err_out;
 
 
 
 
 
1942	/* report all available features and ioctls to userland */
1943	uffdio_api.features = UFFD_API_FEATURES;
1944#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1945	uffdio_api.features &=
1946		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1947#endif
1948#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1949	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1950#endif
 
 
 
 
 
1951	uffdio_api.ioctls = UFFD_API_IOCTLS;
1952	ret = -EFAULT;
1953	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1954		goto out;
1955
1956	/* only enable the requested features for this uffd context */
1957	ctx_features = uffd_ctx_features(features);
1958	ret = -EINVAL;
1959	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1960		goto err_out;
1961
1962	ret = 0;
1963out:
1964	return ret;
1965err_out:
1966	memset(&uffdio_api, 0, sizeof(uffdio_api));
1967	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1968		ret = -EFAULT;
1969	goto out;
1970}
1971
1972static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1973			      unsigned long arg)
1974{
1975	int ret = -EINVAL;
1976	struct userfaultfd_ctx *ctx = file->private_data;
1977
1978	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1979		return -EINVAL;
1980
1981	switch(cmd) {
1982	case UFFDIO_API:
1983		ret = userfaultfd_api(ctx, arg);
1984		break;
1985	case UFFDIO_REGISTER:
1986		ret = userfaultfd_register(ctx, arg);
1987		break;
1988	case UFFDIO_UNREGISTER:
1989		ret = userfaultfd_unregister(ctx, arg);
1990		break;
1991	case UFFDIO_WAKE:
1992		ret = userfaultfd_wake(ctx, arg);
1993		break;
1994	case UFFDIO_COPY:
1995		ret = userfaultfd_copy(ctx, arg);
1996		break;
1997	case UFFDIO_ZEROPAGE:
1998		ret = userfaultfd_zeropage(ctx, arg);
1999		break;
 
 
 
2000	case UFFDIO_WRITEPROTECT:
2001		ret = userfaultfd_writeprotect(ctx, arg);
2002		break;
2003	case UFFDIO_CONTINUE:
2004		ret = userfaultfd_continue(ctx, arg);
2005		break;
 
 
 
2006	}
2007	return ret;
2008}
2009
2010#ifdef CONFIG_PROC_FS
2011static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2012{
2013	struct userfaultfd_ctx *ctx = f->private_data;
2014	wait_queue_entry_t *wq;
2015	unsigned long pending = 0, total = 0;
2016
2017	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2018	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2019		pending++;
2020		total++;
2021	}
2022	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2023		total++;
2024	}
2025	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2026
2027	/*
2028	 * If more protocols will be added, there will be all shown
2029	 * separated by a space. Like this:
2030	 *	protocols: aa:... bb:...
2031	 */
2032	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2033		   pending, total, UFFD_API, ctx->features,
2034		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2035}
2036#endif
2037
2038static const struct file_operations userfaultfd_fops = {
2039#ifdef CONFIG_PROC_FS
2040	.show_fdinfo	= userfaultfd_show_fdinfo,
2041#endif
2042	.release	= userfaultfd_release,
2043	.poll		= userfaultfd_poll,
2044	.read		= userfaultfd_read,
2045	.unlocked_ioctl = userfaultfd_ioctl,
2046	.compat_ioctl	= compat_ptr_ioctl,
2047	.llseek		= noop_llseek,
2048};
2049
2050static void init_once_userfaultfd_ctx(void *mem)
2051{
2052	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2053
2054	init_waitqueue_head(&ctx->fault_pending_wqh);
2055	init_waitqueue_head(&ctx->fault_wqh);
2056	init_waitqueue_head(&ctx->event_wqh);
2057	init_waitqueue_head(&ctx->fd_wqh);
2058	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2059}
2060
2061SYSCALL_DEFINE1(userfaultfd, int, flags)
2062{
2063	struct userfaultfd_ctx *ctx;
2064	int fd;
2065
2066	if (!sysctl_unprivileged_userfaultfd &&
2067	    (flags & UFFD_USER_MODE_ONLY) == 0 &&
2068	    !capable(CAP_SYS_PTRACE)) {
2069		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2070			"sysctl knob to 1 if kernel faults must be handled "
2071			"without obtaining CAP_SYS_PTRACE capability\n");
2072		return -EPERM;
2073	}
2074
2075	BUG_ON(!current->mm);
2076
2077	/* Check the UFFD_* constants for consistency.  */
2078	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2079	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2080	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2081
2082	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2083		return -EINVAL;
2084
2085	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2086	if (!ctx)
2087		return -ENOMEM;
2088
2089	refcount_set(&ctx->refcount, 1);
2090	ctx->flags = flags;
2091	ctx->features = 0;
2092	ctx->released = false;
2093	ctx->mmap_changing = false;
 
2094	ctx->mm = current->mm;
2095	/* prevent the mm struct to be freed */
2096	mmgrab(ctx->mm);
2097
2098	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2099			O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
 
2100	if (fd < 0) {
2101		mmdrop(ctx->mm);
2102		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2103	}
2104	return fd;
2105}
2106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107static int __init userfaultfd_init(void)
2108{
 
 
 
 
 
 
2109	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2110						sizeof(struct userfaultfd_ctx),
2111						0,
2112						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2113						init_once_userfaultfd_ctx);
 
 
 
2114	return 0;
2115}
2116__initcall(userfaultfd_init);