Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/super.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Big-endian to little-endian byte-swapping/bitmaps by
  17 *        David S. Miller (davem@caip.rutgers.edu), 1995
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/string.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/parser.h>
  30#include <linux/buffer_head.h>
  31#include <linux/exportfs.h>
  32#include <linux/vfs.h>
  33#include <linux/random.h>
  34#include <linux/mount.h>
  35#include <linux/namei.h>
  36#include <linux/quotaops.h>
  37#include <linux/seq_file.h>
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/dax.h>
 
  42#include <linux/uaccess.h>
  43#include <linux/iversion.h>
  44#include <linux/unicode.h>
  45#include <linux/part_stat.h>
  46#include <linux/kthread.h>
  47#include <linux/freezer.h>
  48#include <linux/fsnotify.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51
  52#include "ext4.h"
  53#include "ext4_extents.h"	/* Needed for trace points definition */
  54#include "ext4_jbd2.h"
  55#include "xattr.h"
  56#include "acl.h"
  57#include "mballoc.h"
  58#include "fsmap.h"
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/ext4.h>
  62
  63static struct ext4_lazy_init *ext4_li_info;
  64static DEFINE_MUTEX(ext4_li_mtx);
  65static struct ratelimit_state ext4_mount_msg_ratelimit;
  66
  67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  68			     unsigned long journal_devnum);
  69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  70static void ext4_update_super(struct super_block *sb);
  71static int ext4_commit_super(struct super_block *sb);
  72static int ext4_mark_recovery_complete(struct super_block *sb,
  73					struct ext4_super_block *es);
  74static int ext4_clear_journal_err(struct super_block *sb,
  75				  struct ext4_super_block *es);
  76static int ext4_sync_fs(struct super_block *sb, int wait);
 
  77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  78static int ext4_unfreeze(struct super_block *sb);
  79static int ext4_freeze(struct super_block *sb);
 
 
  80static inline int ext2_feature_set_ok(struct super_block *sb);
  81static inline int ext3_feature_set_ok(struct super_block *sb);
 
  82static void ext4_destroy_lazyinit_thread(void);
  83static void ext4_unregister_li_request(struct super_block *sb);
  84static void ext4_clear_request_list(void);
  85static struct inode *ext4_get_journal_inode(struct super_block *sb,
  86					    unsigned int journal_inum);
  87static int ext4_validate_options(struct fs_context *fc);
  88static int ext4_check_opt_consistency(struct fs_context *fc,
  89				      struct super_block *sb);
  90static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
  91static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
  92static int ext4_get_tree(struct fs_context *fc);
  93static int ext4_reconfigure(struct fs_context *fc);
  94static void ext4_fc_free(struct fs_context *fc);
  95static int ext4_init_fs_context(struct fs_context *fc);
  96static void ext4_kill_sb(struct super_block *sb);
  97static const struct fs_parameter_spec ext4_param_specs[];
  98
  99/*
 100 * Lock ordering
 101 *
 
 
 
 102 * page fault path:
 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
 104 *   -> page lock -> i_data_sem (rw)
 105 *
 106 * buffered write path:
 107 * sb_start_write -> i_mutex -> mmap_lock
 108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
 109 *   i_data_sem (rw)
 110 *
 111 * truncate:
 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
 113 *   page lock
 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
 115 *   i_data_sem (rw)
 116 *
 117 * direct IO:
 118 * sb_start_write -> i_mutex -> mmap_lock
 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
 120 *
 121 * writepages:
 122 * transaction start -> page lock(s) -> i_data_sem (rw)
 123 */
 124
 125static const struct fs_context_operations ext4_context_ops = {
 126	.parse_param	= ext4_parse_param,
 127	.get_tree	= ext4_get_tree,
 128	.reconfigure	= ext4_reconfigure,
 129	.free		= ext4_fc_free,
 130};
 131
 132
 133#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 134static struct file_system_type ext2_fs_type = {
 135	.owner			= THIS_MODULE,
 136	.name			= "ext2",
 137	.init_fs_context	= ext4_init_fs_context,
 138	.parameters		= ext4_param_specs,
 139	.kill_sb		= ext4_kill_sb,
 140	.fs_flags		= FS_REQUIRES_DEV,
 141};
 142MODULE_ALIAS_FS("ext2");
 143MODULE_ALIAS("ext2");
 144#define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
 145#else
 146#define IS_EXT2_SB(sb) (0)
 147#endif
 148
 149
 150static struct file_system_type ext3_fs_type = {
 151	.owner			= THIS_MODULE,
 152	.name			= "ext3",
 153	.init_fs_context	= ext4_init_fs_context,
 154	.parameters		= ext4_param_specs,
 155	.kill_sb		= ext4_kill_sb,
 156	.fs_flags		= FS_REQUIRES_DEV,
 157};
 158MODULE_ALIAS_FS("ext3");
 159MODULE_ALIAS("ext3");
 160#define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
 161
 162
 163static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
 164				  bh_end_io_t *end_io)
 165{
 166	/*
 167	 * buffer's verified bit is no longer valid after reading from
 168	 * disk again due to write out error, clear it to make sure we
 169	 * recheck the buffer contents.
 170	 */
 171	clear_buffer_verified(bh);
 172
 173	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
 174	get_bh(bh);
 175	submit_bh(REQ_OP_READ | op_flags, bh);
 176}
 177
 178void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
 179			 bh_end_io_t *end_io)
 180{
 181	BUG_ON(!buffer_locked(bh));
 182
 183	if (ext4_buffer_uptodate(bh)) {
 184		unlock_buffer(bh);
 185		return;
 186	}
 187	__ext4_read_bh(bh, op_flags, end_io);
 188}
 189
 190int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
 191{
 192	BUG_ON(!buffer_locked(bh));
 193
 194	if (ext4_buffer_uptodate(bh)) {
 195		unlock_buffer(bh);
 196		return 0;
 197	}
 198
 199	__ext4_read_bh(bh, op_flags, end_io);
 200
 201	wait_on_buffer(bh);
 202	if (buffer_uptodate(bh))
 203		return 0;
 204	return -EIO;
 205}
 206
 207int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
 208{
 209	lock_buffer(bh);
 210	if (!wait) {
 
 211		ext4_read_bh_nowait(bh, op_flags, NULL);
 212		return 0;
 213	}
 214	return ext4_read_bh(bh, op_flags, NULL);
 
 
 
 
 
 
 215}
 216
 217/*
 218 * This works like __bread_gfp() except it uses ERR_PTR for error
 219 * returns.  Currently with sb_bread it's impossible to distinguish
 220 * between ENOMEM and EIO situations (since both result in a NULL
 221 * return.
 222 */
 223static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
 224					       sector_t block,
 225					       blk_opf_t op_flags, gfp_t gfp)
 226{
 227	struct buffer_head *bh;
 228	int ret;
 229
 230	bh = sb_getblk_gfp(sb, block, gfp);
 231	if (bh == NULL)
 232		return ERR_PTR(-ENOMEM);
 233	if (ext4_buffer_uptodate(bh))
 234		return bh;
 235
 236	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
 237	if (ret) {
 238		put_bh(bh);
 239		return ERR_PTR(ret);
 240	}
 241	return bh;
 242}
 243
 244struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
 245				   blk_opf_t op_flags)
 246{
 247	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
 248			~__GFP_FS) | __GFP_MOVABLE;
 249
 250	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
 251}
 252
 253struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
 254					    sector_t block)
 255{
 256	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
 257			~__GFP_FS);
 258
 259	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
 260}
 261
 262void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
 263{
 264	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
 265			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
 266
 267	if (likely(bh)) {
 268		if (trylock_buffer(bh))
 269			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
 270		brelse(bh);
 271	}
 272}
 273
 274static int ext4_verify_csum_type(struct super_block *sb,
 275				 struct ext4_super_block *es)
 276{
 277	if (!ext4_has_feature_metadata_csum(sb))
 278		return 1;
 279
 280	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 281}
 282
 283__le32 ext4_superblock_csum(struct super_block *sb,
 284			    struct ext4_super_block *es)
 285{
 286	struct ext4_sb_info *sbi = EXT4_SB(sb);
 287	int offset = offsetof(struct ext4_super_block, s_checksum);
 288	__u32 csum;
 289
 290	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 291
 292	return cpu_to_le32(csum);
 293}
 294
 295static int ext4_superblock_csum_verify(struct super_block *sb,
 296				       struct ext4_super_block *es)
 297{
 298	if (!ext4_has_metadata_csum(sb))
 299		return 1;
 300
 301	return es->s_checksum == ext4_superblock_csum(sb, es);
 302}
 303
 304void ext4_superblock_csum_set(struct super_block *sb)
 305{
 306	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 307
 308	if (!ext4_has_metadata_csum(sb))
 309		return;
 310
 311	es->s_checksum = ext4_superblock_csum(sb, es);
 312}
 313
 314ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 315			       struct ext4_group_desc *bg)
 316{
 317	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 318		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 319		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 320}
 321
 322ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 323			       struct ext4_group_desc *bg)
 324{
 325	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 326		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 327		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 328}
 329
 330ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 331			      struct ext4_group_desc *bg)
 332{
 333	return le32_to_cpu(bg->bg_inode_table_lo) |
 334		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 335		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 336}
 337
 338__u32 ext4_free_group_clusters(struct super_block *sb,
 339			       struct ext4_group_desc *bg)
 340{
 341	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 342		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 343		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 344}
 345
 346__u32 ext4_free_inodes_count(struct super_block *sb,
 347			      struct ext4_group_desc *bg)
 348{
 349	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 350		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 351		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 352}
 353
 354__u32 ext4_used_dirs_count(struct super_block *sb,
 355			      struct ext4_group_desc *bg)
 356{
 357	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 358		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 359		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 360}
 361
 362__u32 ext4_itable_unused_count(struct super_block *sb,
 363			      struct ext4_group_desc *bg)
 364{
 365	return le16_to_cpu(bg->bg_itable_unused_lo) |
 366		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 367		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 368}
 369
 370void ext4_block_bitmap_set(struct super_block *sb,
 371			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 372{
 373	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 374	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 375		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 376}
 377
 378void ext4_inode_bitmap_set(struct super_block *sb,
 379			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 380{
 381	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 382	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 383		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 384}
 385
 386void ext4_inode_table_set(struct super_block *sb,
 387			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 388{
 389	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 390	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 391		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 392}
 393
 394void ext4_free_group_clusters_set(struct super_block *sb,
 395				  struct ext4_group_desc *bg, __u32 count)
 396{
 397	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 398	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 399		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 400}
 401
 402void ext4_free_inodes_set(struct super_block *sb,
 403			  struct ext4_group_desc *bg, __u32 count)
 404{
 405	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 406	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 407		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 408}
 409
 410void ext4_used_dirs_set(struct super_block *sb,
 411			  struct ext4_group_desc *bg, __u32 count)
 412{
 413	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 414	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 415		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 416}
 417
 418void ext4_itable_unused_set(struct super_block *sb,
 419			  struct ext4_group_desc *bg, __u32 count)
 420{
 421	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 422	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 423		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 424}
 425
 426static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
 427{
 428	now = clamp_val(now, 0, (1ull << 40) - 1);
 429
 430	*lo = cpu_to_le32(lower_32_bits(now));
 431	*hi = upper_32_bits(now);
 432}
 433
 434static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
 435{
 436	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
 437}
 438#define ext4_update_tstamp(es, tstamp) \
 439	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
 440			     ktime_get_real_seconds())
 441#define ext4_get_tstamp(es, tstamp) \
 442	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
 443
 444#define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
 445#define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
 446
 447/*
 448 * The ext4_maybe_update_superblock() function checks and updates the
 449 * superblock if needed.
 450 *
 451 * This function is designed to update the on-disk superblock only under
 452 * certain conditions to prevent excessive disk writes and unnecessary
 453 * waking of the disk from sleep. The superblock will be updated if:
 454 * 1. More than an hour has passed since the last superblock update, and
 455 * 2. More than 16MB have been written since the last superblock update.
 456 *
 457 * @sb: The superblock
 458 */
 459static void ext4_maybe_update_superblock(struct super_block *sb)
 460{
 461	struct ext4_sb_info *sbi = EXT4_SB(sb);
 462	struct ext4_super_block *es = sbi->s_es;
 463	journal_t *journal = sbi->s_journal;
 464	time64_t now;
 465	__u64 last_update;
 466	__u64 lifetime_write_kbytes;
 467	__u64 diff_size;
 468
 469	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
 470	    !journal || (journal->j_flags & JBD2_UNMOUNT))
 471		return;
 472
 473	now = ktime_get_real_seconds();
 474	last_update = ext4_get_tstamp(es, s_wtime);
 475
 476	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
 477		return;
 478
 479	lifetime_write_kbytes = sbi->s_kbytes_written +
 480		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
 481		  sbi->s_sectors_written_start) >> 1);
 482
 483	/* Get the number of kilobytes not written to disk to account
 484	 * for statistics and compare with a multiple of 16 MB. This
 485	 * is used to determine when the next superblock commit should
 486	 * occur (i.e. not more often than once per 16MB if there was
 487	 * less written in an hour).
 488	 */
 489	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
 490
 491	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
 492		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
 493}
 494
 495/*
 496 * The del_gendisk() function uninitializes the disk-specific data
 497 * structures, including the bdi structure, without telling anyone
 498 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 499 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 500 * This is a kludge to prevent these oops until we can put in a proper
 501 * hook in del_gendisk() to inform the VFS and file system layers.
 502 */
 503static int block_device_ejected(struct super_block *sb)
 504{
 505	struct inode *bd_inode = sb->s_bdev->bd_inode;
 506	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 507
 508	return bdi->dev == NULL;
 509}
 510
 511static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 512{
 513	struct super_block		*sb = journal->j_private;
 514	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 515	int				error = is_journal_aborted(journal);
 516	struct ext4_journal_cb_entry	*jce;
 517
 518	BUG_ON(txn->t_state == T_FINISHED);
 519
 520	ext4_process_freed_data(sb, txn->t_tid);
 521	ext4_maybe_update_superblock(sb);
 522
 523	spin_lock(&sbi->s_md_lock);
 524	while (!list_empty(&txn->t_private_list)) {
 525		jce = list_entry(txn->t_private_list.next,
 526				 struct ext4_journal_cb_entry, jce_list);
 527		list_del_init(&jce->jce_list);
 528		spin_unlock(&sbi->s_md_lock);
 529		jce->jce_func(sb, jce, error);
 530		spin_lock(&sbi->s_md_lock);
 531	}
 532	spin_unlock(&sbi->s_md_lock);
 533}
 534
 535/*
 536 * This writepage callback for write_cache_pages()
 537 * takes care of a few cases after page cleaning.
 538 *
 539 * write_cache_pages() already checks for dirty pages
 540 * and calls clear_page_dirty_for_io(), which we want,
 541 * to write protect the pages.
 542 *
 543 * However, we may have to redirty a page (see below.)
 544 */
 545static int ext4_journalled_writepage_callback(struct folio *folio,
 546					      struct writeback_control *wbc,
 547					      void *data)
 548{
 549	transaction_t *transaction = (transaction_t *) data;
 550	struct buffer_head *bh, *head;
 551	struct journal_head *jh;
 552
 553	bh = head = folio_buffers(folio);
 554	do {
 555		/*
 556		 * We have to redirty a page in these cases:
 557		 * 1) If buffer is dirty, it means the page was dirty because it
 558		 * contains a buffer that needs checkpointing. So the dirty bit
 559		 * needs to be preserved so that checkpointing writes the buffer
 560		 * properly.
 561		 * 2) If buffer is not part of the committing transaction
 562		 * (we may have just accidentally come across this buffer because
 563		 * inode range tracking is not exact) or if the currently running
 564		 * transaction already contains this buffer as well, dirty bit
 565		 * needs to be preserved so that the buffer gets writeprotected
 566		 * properly on running transaction's commit.
 567		 */
 568		jh = bh2jh(bh);
 569		if (buffer_dirty(bh) ||
 570		    (jh && (jh->b_transaction != transaction ||
 571			    jh->b_next_transaction))) {
 572			folio_redirty_for_writepage(wbc, folio);
 573			goto out;
 574		}
 575	} while ((bh = bh->b_this_page) != head);
 576
 577out:
 578	return AOP_WRITEPAGE_ACTIVATE;
 579}
 580
 581static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
 582{
 583	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
 584	struct writeback_control wbc = {
 585		.sync_mode =  WB_SYNC_ALL,
 586		.nr_to_write = LONG_MAX,
 587		.range_start = jinode->i_dirty_start,
 588		.range_end = jinode->i_dirty_end,
 589        };
 590
 591	return write_cache_pages(mapping, &wbc,
 592				 ext4_journalled_writepage_callback,
 593				 jinode->i_transaction);
 594}
 595
 596static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
 597{
 598	int ret;
 599
 600	if (ext4_should_journal_data(jinode->i_vfs_inode))
 601		ret = ext4_journalled_submit_inode_data_buffers(jinode);
 602	else
 603		ret = ext4_normal_submit_inode_data_buffers(jinode);
 
 604	return ret;
 605}
 606
 607static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
 608{
 609	int ret = 0;
 610
 611	if (!ext4_should_journal_data(jinode->i_vfs_inode))
 612		ret = jbd2_journal_finish_inode_data_buffers(jinode);
 613
 614	return ret;
 615}
 616
 617static bool system_going_down(void)
 618{
 619	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 620		|| system_state == SYSTEM_RESTART;
 621}
 622
 623struct ext4_err_translation {
 624	int code;
 625	int errno;
 626};
 627
 628#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
 629
 630static struct ext4_err_translation err_translation[] = {
 631	EXT4_ERR_TRANSLATE(EIO),
 632	EXT4_ERR_TRANSLATE(ENOMEM),
 633	EXT4_ERR_TRANSLATE(EFSBADCRC),
 634	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
 635	EXT4_ERR_TRANSLATE(ENOSPC),
 636	EXT4_ERR_TRANSLATE(ENOKEY),
 637	EXT4_ERR_TRANSLATE(EROFS),
 638	EXT4_ERR_TRANSLATE(EFBIG),
 639	EXT4_ERR_TRANSLATE(EEXIST),
 640	EXT4_ERR_TRANSLATE(ERANGE),
 641	EXT4_ERR_TRANSLATE(EOVERFLOW),
 642	EXT4_ERR_TRANSLATE(EBUSY),
 643	EXT4_ERR_TRANSLATE(ENOTDIR),
 644	EXT4_ERR_TRANSLATE(ENOTEMPTY),
 645	EXT4_ERR_TRANSLATE(ESHUTDOWN),
 646	EXT4_ERR_TRANSLATE(EFAULT),
 647};
 648
 649static int ext4_errno_to_code(int errno)
 650{
 651	int i;
 652
 653	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
 654		if (err_translation[i].errno == errno)
 655			return err_translation[i].code;
 656	return EXT4_ERR_UNKNOWN;
 657}
 658
 659static void save_error_info(struct super_block *sb, int error,
 660			    __u32 ino, __u64 block,
 661			    const char *func, unsigned int line)
 662{
 663	struct ext4_sb_info *sbi = EXT4_SB(sb);
 664
 665	/* We default to EFSCORRUPTED error... */
 666	if (error == 0)
 667		error = EFSCORRUPTED;
 668
 669	spin_lock(&sbi->s_error_lock);
 670	sbi->s_add_error_count++;
 671	sbi->s_last_error_code = error;
 672	sbi->s_last_error_line = line;
 673	sbi->s_last_error_ino = ino;
 674	sbi->s_last_error_block = block;
 675	sbi->s_last_error_func = func;
 676	sbi->s_last_error_time = ktime_get_real_seconds();
 677	if (!sbi->s_first_error_time) {
 678		sbi->s_first_error_code = error;
 679		sbi->s_first_error_line = line;
 680		sbi->s_first_error_ino = ino;
 681		sbi->s_first_error_block = block;
 682		sbi->s_first_error_func = func;
 683		sbi->s_first_error_time = sbi->s_last_error_time;
 684	}
 685	spin_unlock(&sbi->s_error_lock);
 686}
 687
 688/* Deal with the reporting of failure conditions on a filesystem such as
 689 * inconsistencies detected or read IO failures.
 690 *
 691 * On ext2, we can store the error state of the filesystem in the
 692 * superblock.  That is not possible on ext4, because we may have other
 693 * write ordering constraints on the superblock which prevent us from
 694 * writing it out straight away; and given that the journal is about to
 695 * be aborted, we can't rely on the current, or future, transactions to
 696 * write out the superblock safely.
 697 *
 698 * We'll just use the jbd2_journal_abort() error code to record an error in
 699 * the journal instead.  On recovery, the journal will complain about
 700 * that error until we've noted it down and cleared it.
 701 *
 702 * If force_ro is set, we unconditionally force the filesystem into an
 703 * ABORT|READONLY state, unless the error response on the fs has been set to
 704 * panic in which case we take the easy way out and panic immediately. This is
 705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
 706 * at a critical moment in log management.
 707 */
 708static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
 709			      __u32 ino, __u64 block,
 710			      const char *func, unsigned int line)
 711{
 712	journal_t *journal = EXT4_SB(sb)->s_journal;
 713	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
 714
 715	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 716	if (test_opt(sb, WARN_ON_ERROR))
 717		WARN_ON_ONCE(1);
 718
 719	if (!continue_fs && !sb_rdonly(sb)) {
 720		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
 721		if (journal)
 722			jbd2_journal_abort(journal, -EIO);
 723	}
 724
 725	if (!bdev_read_only(sb->s_bdev)) {
 726		save_error_info(sb, error, ino, block, func, line);
 727		/*
 728		 * In case the fs should keep running, we need to writeout
 729		 * superblock through the journal. Due to lock ordering
 730		 * constraints, it may not be safe to do it right here so we
 731		 * defer superblock flushing to a workqueue.
 732		 */
 733		if (continue_fs && journal)
 734			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
 735		else
 736			ext4_commit_super(sb);
 737	}
 738
 739	/*
 740	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
 741	 * could panic during 'reboot -f' as the underlying device got already
 742	 * disabled.
 743	 */
 744	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
 745		panic("EXT4-fs (device %s): panic forced after error\n",
 746			sb->s_id);
 747	}
 748
 749	if (sb_rdonly(sb) || continue_fs)
 750		return;
 751
 752	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 753	/*
 754	 * Make sure updated value of ->s_mount_flags will be visible before
 755	 * ->s_flags update
 756	 */
 757	smp_wmb();
 758	sb->s_flags |= SB_RDONLY;
 759}
 760
 761static void update_super_work(struct work_struct *work)
 762{
 763	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
 764						s_sb_upd_work);
 765	journal_t *journal = sbi->s_journal;
 766	handle_t *handle;
 767
 768	/*
 769	 * If the journal is still running, we have to write out superblock
 770	 * through the journal to avoid collisions of other journalled sb
 771	 * updates.
 772	 *
 773	 * We use directly jbd2 functions here to avoid recursing back into
 774	 * ext4 error handling code during handling of previous errors.
 775	 */
 776	if (!sb_rdonly(sbi->s_sb) && journal) {
 777		struct buffer_head *sbh = sbi->s_sbh;
 778		bool call_notify_err = false;
 779
 780		handle = jbd2_journal_start(journal, 1);
 781		if (IS_ERR(handle))
 782			goto write_directly;
 783		if (jbd2_journal_get_write_access(handle, sbh)) {
 784			jbd2_journal_stop(handle);
 785			goto write_directly;
 786		}
 787
 788		if (sbi->s_add_error_count > 0)
 789			call_notify_err = true;
 790
 791		ext4_update_super(sbi->s_sb);
 792		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
 793			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
 794				 "superblock detected");
 795			clear_buffer_write_io_error(sbh);
 796			set_buffer_uptodate(sbh);
 797		}
 798
 799		if (jbd2_journal_dirty_metadata(handle, sbh)) {
 800			jbd2_journal_stop(handle);
 801			goto write_directly;
 802		}
 803		jbd2_journal_stop(handle);
 804
 805		if (call_notify_err)
 806			ext4_notify_error_sysfs(sbi);
 807
 808		return;
 809	}
 810write_directly:
 811	/*
 812	 * Write through journal failed. Write sb directly to get error info
 813	 * out and hope for the best.
 814	 */
 815	ext4_commit_super(sbi->s_sb);
 816	ext4_notify_error_sysfs(sbi);
 817}
 818
 819#define ext4_error_ratelimit(sb)					\
 820		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 821			     "EXT4-fs error")
 822
 823void __ext4_error(struct super_block *sb, const char *function,
 824		  unsigned int line, bool force_ro, int error, __u64 block,
 825		  const char *fmt, ...)
 826{
 827	struct va_format vaf;
 828	va_list args;
 829
 830	if (unlikely(ext4_forced_shutdown(sb)))
 831		return;
 832
 833	trace_ext4_error(sb, function, line);
 834	if (ext4_error_ratelimit(sb)) {
 835		va_start(args, fmt);
 836		vaf.fmt = fmt;
 837		vaf.va = &args;
 838		printk(KERN_CRIT
 839		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 840		       sb->s_id, function, line, current->comm, &vaf);
 841		va_end(args);
 842	}
 843	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
 844
 845	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
 846}
 847
 848void __ext4_error_inode(struct inode *inode, const char *function,
 849			unsigned int line, ext4_fsblk_t block, int error,
 850			const char *fmt, ...)
 851{
 852	va_list args;
 853	struct va_format vaf;
 854
 855	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 856		return;
 857
 858	trace_ext4_error(inode->i_sb, function, line);
 859	if (ext4_error_ratelimit(inode->i_sb)) {
 860		va_start(args, fmt);
 861		vaf.fmt = fmt;
 862		vaf.va = &args;
 863		if (block)
 864			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 865			       "inode #%lu: block %llu: comm %s: %pV\n",
 866			       inode->i_sb->s_id, function, line, inode->i_ino,
 867			       block, current->comm, &vaf);
 868		else
 869			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 870			       "inode #%lu: comm %s: %pV\n",
 871			       inode->i_sb->s_id, function, line, inode->i_ino,
 872			       current->comm, &vaf);
 873		va_end(args);
 874	}
 875	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
 876
 877	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
 878			  function, line);
 879}
 880
 881void __ext4_error_file(struct file *file, const char *function,
 882		       unsigned int line, ext4_fsblk_t block,
 883		       const char *fmt, ...)
 884{
 885	va_list args;
 886	struct va_format vaf;
 887	struct inode *inode = file_inode(file);
 888	char pathname[80], *path;
 889
 890	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 891		return;
 892
 893	trace_ext4_error(inode->i_sb, function, line);
 894	if (ext4_error_ratelimit(inode->i_sb)) {
 895		path = file_path(file, pathname, sizeof(pathname));
 896		if (IS_ERR(path))
 897			path = "(unknown)";
 898		va_start(args, fmt);
 899		vaf.fmt = fmt;
 900		vaf.va = &args;
 901		if (block)
 902			printk(KERN_CRIT
 903			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 904			       "block %llu: comm %s: path %s: %pV\n",
 905			       inode->i_sb->s_id, function, line, inode->i_ino,
 906			       block, current->comm, path, &vaf);
 907		else
 908			printk(KERN_CRIT
 909			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 910			       "comm %s: path %s: %pV\n",
 911			       inode->i_sb->s_id, function, line, inode->i_ino,
 912			       current->comm, path, &vaf);
 913		va_end(args);
 914	}
 915	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
 916
 917	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
 918			  function, line);
 919}
 920
 921const char *ext4_decode_error(struct super_block *sb, int errno,
 922			      char nbuf[16])
 923{
 924	char *errstr = NULL;
 925
 926	switch (errno) {
 927	case -EFSCORRUPTED:
 928		errstr = "Corrupt filesystem";
 929		break;
 930	case -EFSBADCRC:
 931		errstr = "Filesystem failed CRC";
 932		break;
 933	case -EIO:
 934		errstr = "IO failure";
 935		break;
 936	case -ENOMEM:
 937		errstr = "Out of memory";
 938		break;
 939	case -EROFS:
 940		if (!sb || (EXT4_SB(sb)->s_journal &&
 941			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 942			errstr = "Journal has aborted";
 943		else
 944			errstr = "Readonly filesystem";
 945		break;
 946	default:
 947		/* If the caller passed in an extra buffer for unknown
 948		 * errors, textualise them now.  Else we just return
 949		 * NULL. */
 950		if (nbuf) {
 951			/* Check for truncated error codes... */
 952			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 953				errstr = nbuf;
 954		}
 955		break;
 956	}
 957
 958	return errstr;
 959}
 960
 961/* __ext4_std_error decodes expected errors from journaling functions
 962 * automatically and invokes the appropriate error response.  */
 963
 964void __ext4_std_error(struct super_block *sb, const char *function,
 965		      unsigned int line, int errno)
 966{
 967	char nbuf[16];
 968	const char *errstr;
 969
 970	if (unlikely(ext4_forced_shutdown(sb)))
 971		return;
 972
 973	/* Special case: if the error is EROFS, and we're not already
 974	 * inside a transaction, then there's really no point in logging
 975	 * an error. */
 976	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 977		return;
 978
 979	if (ext4_error_ratelimit(sb)) {
 980		errstr = ext4_decode_error(sb, errno, nbuf);
 981		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 982		       sb->s_id, function, line, errstr);
 983	}
 984	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
 985
 986	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
 987}
 988
 989void __ext4_msg(struct super_block *sb,
 990		const char *prefix, const char *fmt, ...)
 991{
 992	struct va_format vaf;
 993	va_list args;
 994
 995	if (sb) {
 996		atomic_inc(&EXT4_SB(sb)->s_msg_count);
 997		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
 998				  "EXT4-fs"))
 999			return;
1000	}
1001
1002	va_start(args, fmt);
1003	vaf.fmt = fmt;
1004	vaf.va = &args;
1005	if (sb)
1006		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1007	else
1008		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1009	va_end(args);
1010}
1011
1012static int ext4_warning_ratelimit(struct super_block *sb)
1013{
1014	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1015	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1016			    "EXT4-fs warning");
1017}
1018
1019void __ext4_warning(struct super_block *sb, const char *function,
1020		    unsigned int line, const char *fmt, ...)
1021{
1022	struct va_format vaf;
1023	va_list args;
1024
1025	if (!ext4_warning_ratelimit(sb))
1026		return;
1027
1028	va_start(args, fmt);
1029	vaf.fmt = fmt;
1030	vaf.va = &args;
1031	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1032	       sb->s_id, function, line, &vaf);
1033	va_end(args);
1034}
1035
1036void __ext4_warning_inode(const struct inode *inode, const char *function,
1037			  unsigned int line, const char *fmt, ...)
1038{
1039	struct va_format vaf;
1040	va_list args;
1041
1042	if (!ext4_warning_ratelimit(inode->i_sb))
1043		return;
1044
1045	va_start(args, fmt);
1046	vaf.fmt = fmt;
1047	vaf.va = &args;
1048	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1049	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1050	       function, line, inode->i_ino, current->comm, &vaf);
1051	va_end(args);
1052}
1053
1054void __ext4_grp_locked_error(const char *function, unsigned int line,
1055			     struct super_block *sb, ext4_group_t grp,
1056			     unsigned long ino, ext4_fsblk_t block,
1057			     const char *fmt, ...)
1058__releases(bitlock)
1059__acquires(bitlock)
1060{
1061	struct va_format vaf;
1062	va_list args;
1063
1064	if (unlikely(ext4_forced_shutdown(sb)))
1065		return;
1066
1067	trace_ext4_error(sb, function, line);
1068	if (ext4_error_ratelimit(sb)) {
1069		va_start(args, fmt);
1070		vaf.fmt = fmt;
1071		vaf.va = &args;
1072		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1073		       sb->s_id, function, line, grp);
1074		if (ino)
1075			printk(KERN_CONT "inode %lu: ", ino);
1076		if (block)
1077			printk(KERN_CONT "block %llu:",
1078			       (unsigned long long) block);
1079		printk(KERN_CONT "%pV\n", &vaf);
1080		va_end(args);
1081	}
1082
1083	if (test_opt(sb, ERRORS_CONT)) {
1084		if (test_opt(sb, WARN_ON_ERROR))
1085			WARN_ON_ONCE(1);
1086		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1087		if (!bdev_read_only(sb->s_bdev)) {
1088			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1089					line);
1090			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1091		}
1092		return;
1093	}
1094	ext4_unlock_group(sb, grp);
1095	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1096	/*
1097	 * We only get here in the ERRORS_RO case; relocking the group
1098	 * may be dangerous, but nothing bad will happen since the
1099	 * filesystem will have already been marked read/only and the
1100	 * journal has been aborted.  We return 1 as a hint to callers
1101	 * who might what to use the return value from
1102	 * ext4_grp_locked_error() to distinguish between the
1103	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1104	 * aggressively from the ext4 function in question, with a
1105	 * more appropriate error code.
1106	 */
1107	ext4_lock_group(sb, grp);
1108	return;
1109}
1110
1111void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1112				     ext4_group_t group,
1113				     unsigned int flags)
1114{
1115	struct ext4_sb_info *sbi = EXT4_SB(sb);
1116	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1117	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1118	int ret;
1119
1120	if (!grp || !gdp)
1121		return;
1122	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1123		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1124					    &grp->bb_state);
1125		if (!ret)
1126			percpu_counter_sub(&sbi->s_freeclusters_counter,
1127					   grp->bb_free);
1128	}
1129
1130	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1131		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1132					    &grp->bb_state);
1133		if (!ret && gdp) {
1134			int count;
1135
1136			count = ext4_free_inodes_count(sb, gdp);
1137			percpu_counter_sub(&sbi->s_freeinodes_counter,
1138					   count);
1139		}
1140	}
1141}
1142
1143void ext4_update_dynamic_rev(struct super_block *sb)
1144{
1145	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1146
1147	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1148		return;
1149
1150	ext4_warning(sb,
1151		     "updating to rev %d because of new feature flag, "
1152		     "running e2fsck is recommended",
1153		     EXT4_DYNAMIC_REV);
1154
1155	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1156	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1157	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1158	/* leave es->s_feature_*compat flags alone */
1159	/* es->s_uuid will be set by e2fsck if empty */
1160
1161	/*
1162	 * The rest of the superblock fields should be zero, and if not it
1163	 * means they are likely already in use, so leave them alone.  We
1164	 * can leave it up to e2fsck to clean up any inconsistencies there.
1165	 */
1166}
1167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168static inline struct inode *orphan_list_entry(struct list_head *l)
1169{
1170	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1171}
1172
1173static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1174{
1175	struct list_head *l;
1176
1177	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1178		 le32_to_cpu(sbi->s_es->s_last_orphan));
1179
1180	printk(KERN_ERR "sb_info orphan list:\n");
1181	list_for_each(l, &sbi->s_orphan) {
1182		struct inode *inode = orphan_list_entry(l);
1183		printk(KERN_ERR "  "
1184		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1185		       inode->i_sb->s_id, inode->i_ino, inode,
1186		       inode->i_mode, inode->i_nlink,
1187		       NEXT_ORPHAN(inode));
1188	}
1189}
1190
1191#ifdef CONFIG_QUOTA
1192static int ext4_quota_off(struct super_block *sb, int type);
1193
1194static inline void ext4_quotas_off(struct super_block *sb, int type)
1195{
1196	BUG_ON(type > EXT4_MAXQUOTAS);
1197
1198	/* Use our quota_off function to clear inode flags etc. */
1199	for (type--; type >= 0; type--)
1200		ext4_quota_off(sb, type);
1201}
1202
1203/*
1204 * This is a helper function which is used in the mount/remount
1205 * codepaths (which holds s_umount) to fetch the quota file name.
1206 */
1207static inline char *get_qf_name(struct super_block *sb,
1208				struct ext4_sb_info *sbi,
1209				int type)
1210{
1211	return rcu_dereference_protected(sbi->s_qf_names[type],
1212					 lockdep_is_held(&sb->s_umount));
1213}
1214#else
1215static inline void ext4_quotas_off(struct super_block *sb, int type)
1216{
1217}
1218#endif
1219
1220static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1221{
1222	ext4_fsblk_t block;
1223	int err;
1224
1225	block = ext4_count_free_clusters(sbi->s_sb);
1226	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1227	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1228				  GFP_KERNEL);
1229	if (!err) {
1230		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1231		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1232		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1233					  GFP_KERNEL);
1234	}
1235	if (!err)
1236		err = percpu_counter_init(&sbi->s_dirs_counter,
1237					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1238	if (!err)
1239		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1240					  GFP_KERNEL);
1241	if (!err)
1242		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1243					  GFP_KERNEL);
1244	if (!err)
1245		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1246
1247	if (err)
1248		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1249
1250	return err;
1251}
1252
1253static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1254{
1255	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1256	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1257	percpu_counter_destroy(&sbi->s_dirs_counter);
1258	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1259	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1260	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1261}
1262
1263static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1264{
1265	struct buffer_head **group_desc;
1266	int i;
1267
1268	rcu_read_lock();
1269	group_desc = rcu_dereference(sbi->s_group_desc);
1270	for (i = 0; i < sbi->s_gdb_count; i++)
1271		brelse(group_desc[i]);
1272	kvfree(group_desc);
1273	rcu_read_unlock();
1274}
1275
1276static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1277{
1278	struct flex_groups **flex_groups;
1279	int i;
1280
1281	rcu_read_lock();
1282	flex_groups = rcu_dereference(sbi->s_flex_groups);
1283	if (flex_groups) {
1284		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1285			kvfree(flex_groups[i]);
1286		kvfree(flex_groups);
1287	}
1288	rcu_read_unlock();
1289}
1290
1291static void ext4_put_super(struct super_block *sb)
1292{
1293	struct ext4_sb_info *sbi = EXT4_SB(sb);
1294	struct ext4_super_block *es = sbi->s_es;
 
 
1295	int aborted = 0;
1296	int err;
 
 
 
 
 
 
1297
1298	/*
1299	 * Unregister sysfs before destroying jbd2 journal.
1300	 * Since we could still access attr_journal_task attribute via sysfs
1301	 * path which could have sbi->s_journal->j_task as NULL
1302	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1303	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1304	 * read metadata verify failed then will queue error work.
1305	 * update_super_work will call start_this_handle may trigger
1306	 * BUG_ON.
1307	 */
1308	ext4_unregister_sysfs(sb);
1309
1310	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1311		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1312			 &sb->s_uuid);
1313
1314	ext4_unregister_li_request(sb);
1315	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1316
1317	flush_work(&sbi->s_sb_upd_work);
1318	destroy_workqueue(sbi->rsv_conversion_wq);
1319	ext4_release_orphan_info(sb);
1320
1321	if (sbi->s_journal) {
1322		aborted = is_journal_aborted(sbi->s_journal);
1323		err = jbd2_journal_destroy(sbi->s_journal);
1324		sbi->s_journal = NULL;
1325		if ((err < 0) && !aborted) {
1326			ext4_abort(sb, -err, "Couldn't clean up the journal");
1327		}
1328	}
1329
1330	ext4_es_unregister_shrinker(sbi);
1331	timer_shutdown_sync(&sbi->s_err_report);
1332	ext4_release_system_zone(sb);
1333	ext4_mb_release(sb);
1334	ext4_ext_release(sb);
1335
1336	if (!sb_rdonly(sb) && !aborted) {
1337		ext4_clear_feature_journal_needs_recovery(sb);
1338		ext4_clear_feature_orphan_present(sb);
1339		es->s_state = cpu_to_le16(sbi->s_mount_state);
1340	}
1341	if (!sb_rdonly(sb))
1342		ext4_commit_super(sb);
1343
1344	ext4_group_desc_free(sbi);
1345	ext4_flex_groups_free(sbi);
1346	ext4_percpu_param_destroy(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347#ifdef CONFIG_QUOTA
1348	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1349		kfree(get_qf_name(sb, sbi, i));
1350#endif
1351
1352	/* Debugging code just in case the in-memory inode orphan list
1353	 * isn't empty.  The on-disk one can be non-empty if we've
1354	 * detected an error and taken the fs readonly, but the
1355	 * in-memory list had better be clean by this point. */
1356	if (!list_empty(&sbi->s_orphan))
1357		dump_orphan_list(sb, sbi);
1358	ASSERT(list_empty(&sbi->s_orphan));
1359
1360	sync_blockdev(sb->s_bdev);
1361	invalidate_bdev(sb->s_bdev);
1362	if (sbi->s_journal_bdev_file) {
1363		/*
1364		 * Invalidate the journal device's buffers.  We don't want them
1365		 * floating about in memory - the physical journal device may
1366		 * hotswapped, and it breaks the `ro-after' testing code.
1367		 */
1368		sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1369		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
 
1370	}
1371
1372	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1373	sbi->s_ea_inode_cache = NULL;
1374
1375	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1376	sbi->s_ea_block_cache = NULL;
1377
1378	ext4_stop_mmpd(sbi);
1379
1380	brelse(sbi->s_sbh);
1381	sb->s_fs_info = NULL;
1382	/*
1383	 * Now that we are completely done shutting down the
1384	 * superblock, we need to actually destroy the kobject.
1385	 */
1386	kobject_put(&sbi->s_kobj);
1387	wait_for_completion(&sbi->s_kobj_unregister);
1388	if (sbi->s_chksum_driver)
1389		crypto_free_shash(sbi->s_chksum_driver);
1390	kfree(sbi->s_blockgroup_lock);
1391	fs_put_dax(sbi->s_daxdev, NULL);
1392	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1393#if IS_ENABLED(CONFIG_UNICODE)
1394	utf8_unload(sb->s_encoding);
1395#endif
1396	kfree(sbi);
1397}
1398
1399static struct kmem_cache *ext4_inode_cachep;
1400
1401/*
1402 * Called inside transaction, so use GFP_NOFS
1403 */
1404static struct inode *ext4_alloc_inode(struct super_block *sb)
1405{
1406	struct ext4_inode_info *ei;
1407
1408	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1409	if (!ei)
1410		return NULL;
1411
1412	inode_set_iversion(&ei->vfs_inode, 1);
1413	ei->i_flags = 0;
1414	spin_lock_init(&ei->i_raw_lock);
1415	ei->i_prealloc_node = RB_ROOT;
1416	atomic_set(&ei->i_prealloc_active, 0);
1417	rwlock_init(&ei->i_prealloc_lock);
1418	ext4_es_init_tree(&ei->i_es_tree);
1419	rwlock_init(&ei->i_es_lock);
1420	INIT_LIST_HEAD(&ei->i_es_list);
1421	ei->i_es_all_nr = 0;
1422	ei->i_es_shk_nr = 0;
1423	ei->i_es_shrink_lblk = 0;
1424	ei->i_reserved_data_blocks = 0;
1425	spin_lock_init(&(ei->i_block_reservation_lock));
1426	ext4_init_pending_tree(&ei->i_pending_tree);
1427#ifdef CONFIG_QUOTA
1428	ei->i_reserved_quota = 0;
1429	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1430#endif
1431	ei->jinode = NULL;
1432	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1433	spin_lock_init(&ei->i_completed_io_lock);
1434	ei->i_sync_tid = 0;
1435	ei->i_datasync_tid = 0;
1436	atomic_set(&ei->i_unwritten, 0);
1437	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1438	ext4_fc_init_inode(&ei->vfs_inode);
1439	mutex_init(&ei->i_fc_lock);
1440	return &ei->vfs_inode;
1441}
1442
1443static int ext4_drop_inode(struct inode *inode)
1444{
1445	int drop = generic_drop_inode(inode);
1446
1447	if (!drop)
1448		drop = fscrypt_drop_inode(inode);
1449
1450	trace_ext4_drop_inode(inode, drop);
1451	return drop;
1452}
1453
1454static void ext4_free_in_core_inode(struct inode *inode)
1455{
1456	fscrypt_free_inode(inode);
1457	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1458		pr_warn("%s: inode %ld still in fc list",
1459			__func__, inode->i_ino);
1460	}
1461	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1462}
1463
1464static void ext4_destroy_inode(struct inode *inode)
1465{
1466	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1467		ext4_msg(inode->i_sb, KERN_ERR,
1468			 "Inode %lu (%p): orphan list check failed!",
1469			 inode->i_ino, EXT4_I(inode));
1470		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1471				EXT4_I(inode), sizeof(struct ext4_inode_info),
1472				true);
1473		dump_stack();
1474	}
1475
1476	if (EXT4_I(inode)->i_reserved_data_blocks)
1477		ext4_msg(inode->i_sb, KERN_ERR,
1478			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1479			 inode->i_ino, EXT4_I(inode),
1480			 EXT4_I(inode)->i_reserved_data_blocks);
1481}
1482
1483static void ext4_shutdown(struct super_block *sb)
1484{
1485       ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1486}
1487
1488static void init_once(void *foo)
1489{
1490	struct ext4_inode_info *ei = foo;
1491
1492	INIT_LIST_HEAD(&ei->i_orphan);
1493	init_rwsem(&ei->xattr_sem);
1494	init_rwsem(&ei->i_data_sem);
 
1495	inode_init_once(&ei->vfs_inode);
1496	ext4_fc_init_inode(&ei->vfs_inode);
1497}
1498
1499static int __init init_inodecache(void)
1500{
1501	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1502				sizeof(struct ext4_inode_info), 0,
1503				SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
 
1504				offsetof(struct ext4_inode_info, i_data),
1505				sizeof_field(struct ext4_inode_info, i_data),
1506				init_once);
1507	if (ext4_inode_cachep == NULL)
1508		return -ENOMEM;
1509	return 0;
1510}
1511
1512static void destroy_inodecache(void)
1513{
1514	/*
1515	 * Make sure all delayed rcu free inodes are flushed before we
1516	 * destroy cache.
1517	 */
1518	rcu_barrier();
1519	kmem_cache_destroy(ext4_inode_cachep);
1520}
1521
1522void ext4_clear_inode(struct inode *inode)
1523{
1524	ext4_fc_del(inode);
1525	invalidate_inode_buffers(inode);
1526	clear_inode(inode);
1527	ext4_discard_preallocations(inode);
1528	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1529	dquot_drop(inode);
1530	if (EXT4_I(inode)->jinode) {
1531		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1532					       EXT4_I(inode)->jinode);
1533		jbd2_free_inode(EXT4_I(inode)->jinode);
1534		EXT4_I(inode)->jinode = NULL;
1535	}
1536	fscrypt_put_encryption_info(inode);
1537	fsverity_cleanup_inode(inode);
1538}
1539
1540static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1541					u64 ino, u32 generation)
1542{
1543	struct inode *inode;
1544
1545	/*
1546	 * Currently we don't know the generation for parent directory, so
1547	 * a generation of 0 means "accept any"
1548	 */
1549	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1550	if (IS_ERR(inode))
1551		return ERR_CAST(inode);
1552	if (generation && inode->i_generation != generation) {
1553		iput(inode);
1554		return ERR_PTR(-ESTALE);
1555	}
1556
1557	return inode;
1558}
1559
1560static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1561					int fh_len, int fh_type)
1562{
1563	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1564				    ext4_nfs_get_inode);
1565}
1566
1567static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1568					int fh_len, int fh_type)
1569{
1570	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1571				    ext4_nfs_get_inode);
1572}
1573
1574static int ext4_nfs_commit_metadata(struct inode *inode)
1575{
1576	struct writeback_control wbc = {
1577		.sync_mode = WB_SYNC_ALL
1578	};
1579
1580	trace_ext4_nfs_commit_metadata(inode);
1581	return ext4_write_inode(inode, &wbc);
1582}
1583
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1584#ifdef CONFIG_QUOTA
1585static const char * const quotatypes[] = INITQFNAMES;
1586#define QTYPE2NAME(t) (quotatypes[t])
1587
1588static int ext4_write_dquot(struct dquot *dquot);
1589static int ext4_acquire_dquot(struct dquot *dquot);
1590static int ext4_release_dquot(struct dquot *dquot);
1591static int ext4_mark_dquot_dirty(struct dquot *dquot);
1592static int ext4_write_info(struct super_block *sb, int type);
1593static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1594			 const struct path *path);
 
1595static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1596			       size_t len, loff_t off);
1597static ssize_t ext4_quota_write(struct super_block *sb, int type,
1598				const char *data, size_t len, loff_t off);
1599static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1600			     unsigned int flags);
 
1601
1602static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1603{
1604	return EXT4_I(inode)->i_dquot;
1605}
1606
1607static const struct dquot_operations ext4_quota_operations = {
1608	.get_reserved_space	= ext4_get_reserved_space,
1609	.write_dquot		= ext4_write_dquot,
1610	.acquire_dquot		= ext4_acquire_dquot,
1611	.release_dquot		= ext4_release_dquot,
1612	.mark_dirty		= ext4_mark_dquot_dirty,
1613	.write_info		= ext4_write_info,
1614	.alloc_dquot		= dquot_alloc,
1615	.destroy_dquot		= dquot_destroy,
1616	.get_projid		= ext4_get_projid,
1617	.get_inode_usage	= ext4_get_inode_usage,
1618	.get_next_id		= dquot_get_next_id,
1619};
1620
1621static const struct quotactl_ops ext4_qctl_operations = {
1622	.quota_on	= ext4_quota_on,
1623	.quota_off	= ext4_quota_off,
1624	.quota_sync	= dquot_quota_sync,
1625	.get_state	= dquot_get_state,
1626	.set_info	= dquot_set_dqinfo,
1627	.get_dqblk	= dquot_get_dqblk,
1628	.set_dqblk	= dquot_set_dqblk,
1629	.get_nextdqblk	= dquot_get_next_dqblk,
1630};
1631#endif
1632
1633static const struct super_operations ext4_sops = {
1634	.alloc_inode	= ext4_alloc_inode,
1635	.free_inode	= ext4_free_in_core_inode,
1636	.destroy_inode	= ext4_destroy_inode,
1637	.write_inode	= ext4_write_inode,
1638	.dirty_inode	= ext4_dirty_inode,
1639	.drop_inode	= ext4_drop_inode,
1640	.evict_inode	= ext4_evict_inode,
1641	.put_super	= ext4_put_super,
1642	.sync_fs	= ext4_sync_fs,
1643	.freeze_fs	= ext4_freeze,
1644	.unfreeze_fs	= ext4_unfreeze,
1645	.statfs		= ext4_statfs,
 
1646	.show_options	= ext4_show_options,
1647	.shutdown	= ext4_shutdown,
1648#ifdef CONFIG_QUOTA
1649	.quota_read	= ext4_quota_read,
1650	.quota_write	= ext4_quota_write,
1651	.get_dquots	= ext4_get_dquots,
1652#endif
1653};
1654
1655static const struct export_operations ext4_export_ops = {
1656	.encode_fh = generic_encode_ino32_fh,
1657	.fh_to_dentry = ext4_fh_to_dentry,
1658	.fh_to_parent = ext4_fh_to_parent,
1659	.get_parent = ext4_get_parent,
1660	.commit_metadata = ext4_nfs_commit_metadata,
1661};
1662
1663enum {
1664	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1665	Opt_resgid, Opt_resuid, Opt_sb,
1666	Opt_nouid32, Opt_debug, Opt_removed,
1667	Opt_user_xattr, Opt_acl,
1668	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1669	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1670	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1671	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1672	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1673	Opt_inlinecrypt,
1674	Opt_usrjquota, Opt_grpjquota, Opt_quota,
 
1675	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1676	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1677	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1678	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1679	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
 
1680	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1681	Opt_inode_readahead_blks, Opt_journal_ioprio,
1682	Opt_dioread_nolock, Opt_dioread_lock,
1683	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1684	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1685	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1686	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1687#ifdef CONFIG_EXT4_DEBUG
1688	Opt_fc_debug_max_replay, Opt_fc_debug_force
1689#endif
1690};
1691
1692static const struct constant_table ext4_param_errors[] = {
1693	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1694	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1695	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1696	{}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1697};
1698
1699static const struct constant_table ext4_param_data[] = {
1700	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1701	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1702	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1703	{}
1704};
1705
1706static const struct constant_table ext4_param_data_err[] = {
1707	{"abort",	Opt_data_err_abort},
1708	{"ignore",	Opt_data_err_ignore},
1709	{}
1710};
1711
1712static const struct constant_table ext4_param_jqfmt[] = {
1713	{"vfsold",	QFMT_VFS_OLD},
1714	{"vfsv0",	QFMT_VFS_V0},
1715	{"vfsv1",	QFMT_VFS_V1},
1716	{}
1717};
 
 
 
 
 
1718
1719static const struct constant_table ext4_param_dax[] = {
1720	{"always",	Opt_dax_always},
1721	{"inode",	Opt_dax_inode},
1722	{"never",	Opt_dax_never},
1723	{}
1724};
1725
1726/* String parameter that allows empty argument */
1727#define fsparam_string_empty(NAME, OPT) \
1728	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1729
1730/*
1731 * Mount option specification
1732 * We don't use fsparam_flag_no because of the way we set the
1733 * options and the way we show them in _ext4_show_options(). To
1734 * keep the changes to a minimum, let's keep the negative options
1735 * separate for now.
1736 */
1737static const struct fs_parameter_spec ext4_param_specs[] = {
1738	fsparam_flag	("bsddf",		Opt_bsd_df),
1739	fsparam_flag	("minixdf",		Opt_minix_df),
1740	fsparam_flag	("grpid",		Opt_grpid),
1741	fsparam_flag	("bsdgroups",		Opt_grpid),
1742	fsparam_flag	("nogrpid",		Opt_nogrpid),
1743	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1744	fsparam_u32	("resgid",		Opt_resgid),
1745	fsparam_u32	("resuid",		Opt_resuid),
1746	fsparam_u32	("sb",			Opt_sb),
1747	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1748	fsparam_flag	("nouid32",		Opt_nouid32),
1749	fsparam_flag	("debug",		Opt_debug),
1750	fsparam_flag	("oldalloc",		Opt_removed),
1751	fsparam_flag	("orlov",		Opt_removed),
1752	fsparam_flag	("user_xattr",		Opt_user_xattr),
1753	fsparam_flag	("acl",			Opt_acl),
1754	fsparam_flag	("norecovery",		Opt_noload),
1755	fsparam_flag	("noload",		Opt_noload),
1756	fsparam_flag	("bh",			Opt_removed),
1757	fsparam_flag	("nobh",		Opt_removed),
1758	fsparam_u32	("commit",		Opt_commit),
1759	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1760	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1761	fsparam_u32	("journal_dev",		Opt_journal_dev),
1762	fsparam_bdev	("journal_path",	Opt_journal_path),
1763	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1764	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1765	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1766	fsparam_flag	("abort",		Opt_abort),
1767	fsparam_enum	("data",		Opt_data, ext4_param_data),
1768	fsparam_enum	("data_err",		Opt_data_err,
1769						ext4_param_data_err),
1770	fsparam_string_empty
1771			("usrjquota",		Opt_usrjquota),
1772	fsparam_string_empty
1773			("grpjquota",		Opt_grpjquota),
1774	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1775	fsparam_flag	("grpquota",		Opt_grpquota),
1776	fsparam_flag	("quota",		Opt_quota),
1777	fsparam_flag	("noquota",		Opt_noquota),
1778	fsparam_flag	("usrquota",		Opt_usrquota),
1779	fsparam_flag	("prjquota",		Opt_prjquota),
1780	fsparam_flag	("barrier",		Opt_barrier),
1781	fsparam_u32	("barrier",		Opt_barrier),
1782	fsparam_flag	("nobarrier",		Opt_nobarrier),
1783	fsparam_flag	("i_version",		Opt_removed),
1784	fsparam_flag	("dax",			Opt_dax),
1785	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1786	fsparam_u32	("stripe",		Opt_stripe),
1787	fsparam_flag	("delalloc",		Opt_delalloc),
1788	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1789	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1790	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1791	fsparam_u32	("debug_want_extra_isize",
1792						Opt_debug_want_extra_isize),
1793	fsparam_flag	("mblk_io_submit",	Opt_removed),
1794	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1795	fsparam_flag	("block_validity",	Opt_block_validity),
1796	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1797	fsparam_u32	("inode_readahead_blks",
1798						Opt_inode_readahead_blks),
1799	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1800	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1801	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1802	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1803	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1804	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1805	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1806	fsparam_flag	("discard",		Opt_discard),
1807	fsparam_flag	("nodiscard",		Opt_nodiscard),
1808	fsparam_u32	("init_itable",		Opt_init_itable),
1809	fsparam_flag	("init_itable",		Opt_init_itable),
1810	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1811#ifdef CONFIG_EXT4_DEBUG
1812	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1813	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1814#endif
1815	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1816	fsparam_flag	("test_dummy_encryption",
1817						Opt_test_dummy_encryption),
1818	fsparam_string	("test_dummy_encryption",
1819						Opt_test_dummy_encryption),
1820	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1821	fsparam_flag	("nombcache",		Opt_nombcache),
1822	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1823	fsparam_flag	("prefetch_block_bitmaps",
1824						Opt_removed),
1825	fsparam_flag	("no_prefetch_block_bitmaps",
1826						Opt_no_prefetch_block_bitmaps),
1827	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1828	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1829	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1830	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1831	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1832	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1833	{}
1834};
1835
1836#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1837
1838#define MOPT_SET	0x0001
1839#define MOPT_CLEAR	0x0002
1840#define MOPT_NOSUPPORT	0x0004
1841#define MOPT_EXPLICIT	0x0008
 
 
1842#ifdef CONFIG_QUOTA
1843#define MOPT_Q		0
1844#define MOPT_QFMT	0x0010
1845#else
1846#define MOPT_Q		MOPT_NOSUPPORT
1847#define MOPT_QFMT	MOPT_NOSUPPORT
1848#endif
1849#define MOPT_NO_EXT2	0x0020
1850#define MOPT_NO_EXT3	0x0040
 
1851#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1852#define MOPT_SKIP	0x0080
1853#define	MOPT_2		0x0100
 
1854
1855static const struct mount_opts {
1856	int	token;
1857	int	mount_opt;
1858	int	flags;
1859} ext4_mount_opts[] = {
1860	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1861	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1862	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1863	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1864	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1865	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1866	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1867	 MOPT_EXT4_ONLY | MOPT_SET},
1868	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1869	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1870	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1871	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1872	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1873	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1874	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1875	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1876	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1877	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1878	{Opt_commit, 0, MOPT_NO_EXT2},
1879	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1880	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1881	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1882	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1883	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1884				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1885	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1886	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1887	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
 
 
 
 
 
 
1888	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1889	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1890	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1891	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1892	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1893	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1894	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1895	{Opt_journal_path, 0, MOPT_NO_EXT2},
1896	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1897	{Opt_data, 0, MOPT_NO_EXT2},
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1898	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
 
1899#ifdef CONFIG_EXT4_FS_POSIX_ACL
1900	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
 
1901#else
1902	{Opt_acl, 0, MOPT_NOSUPPORT},
 
1903#endif
1904	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1905	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
 
1906	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1907	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1908							MOPT_SET | MOPT_Q},
1909	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1910							MOPT_SET | MOPT_Q},
1911	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1912							MOPT_SET | MOPT_Q},
1913	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1914		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1915							MOPT_CLEAR | MOPT_Q},
1916	{Opt_usrjquota, 0, MOPT_Q},
1917	{Opt_grpjquota, 0, MOPT_Q},
1918	{Opt_jqfmt, 0, MOPT_QFMT},
 
 
 
 
 
 
1919	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1920	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1921	 MOPT_SET},
 
1922#ifdef CONFIG_EXT4_DEBUG
1923	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1924	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
 
1925#endif
1926	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1927	{Opt_err, 0, 0}
1928};
1929
1930#if IS_ENABLED(CONFIG_UNICODE)
1931static const struct ext4_sb_encodings {
1932	__u16 magic;
1933	char *name;
1934	unsigned int version;
1935} ext4_sb_encoding_map[] = {
1936	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1937};
1938
1939static const struct ext4_sb_encodings *
1940ext4_sb_read_encoding(const struct ext4_super_block *es)
 
1941{
1942	__u16 magic = le16_to_cpu(es->s_encoding);
1943	int i;
1944
1945	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1946		if (magic == ext4_sb_encoding_map[i].magic)
1947			return &ext4_sb_encoding_map[i];
1948
1949	return NULL;
1950}
1951#endif
1952
1953#define EXT4_SPEC_JQUOTA			(1 <<  0)
1954#define EXT4_SPEC_JQFMT				(1 <<  1)
1955#define EXT4_SPEC_DATAJ				(1 <<  2)
1956#define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1957#define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1958#define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1959#define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1960#define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1961#define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1962#define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1963#define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1964#define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1965#define EXT4_SPEC_s_stripe			(1 << 13)
1966#define EXT4_SPEC_s_resuid			(1 << 14)
1967#define EXT4_SPEC_s_resgid			(1 << 15)
1968#define EXT4_SPEC_s_commit_interval		(1 << 16)
1969#define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1970#define EXT4_SPEC_s_sb_block			(1 << 18)
1971#define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1972
1973struct ext4_fs_context {
1974	char		*s_qf_names[EXT4_MAXQUOTAS];
1975	struct fscrypt_dummy_policy dummy_enc_policy;
1976	int		s_jquota_fmt;	/* Format of quota to use */
1977#ifdef CONFIG_EXT4_DEBUG
1978	int s_fc_debug_max_replay;
1979#endif
1980	unsigned short	qname_spec;
1981	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1982	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1983	unsigned long	journal_devnum;
1984	unsigned long	s_commit_interval;
1985	unsigned long	s_stripe;
1986	unsigned int	s_inode_readahead_blks;
1987	unsigned int	s_want_extra_isize;
1988	unsigned int	s_li_wait_mult;
1989	unsigned int	s_max_dir_size_kb;
1990	unsigned int	journal_ioprio;
1991	unsigned int	vals_s_mount_opt;
1992	unsigned int	mask_s_mount_opt;
1993	unsigned int	vals_s_mount_opt2;
1994	unsigned int	mask_s_mount_opt2;
1995	unsigned int	opt_flags;	/* MOPT flags */
1996	unsigned int	spec;
1997	u32		s_max_batch_time;
1998	u32		s_min_batch_time;
1999	kuid_t		s_resuid;
2000	kgid_t		s_resgid;
2001	ext4_fsblk_t	s_sb_block;
2002};
2003
2004static void ext4_fc_free(struct fs_context *fc)
2005{
2006	struct ext4_fs_context *ctx = fc->fs_private;
2007	int i;
2008
2009	if (!ctx)
2010		return;
2011
2012	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2013		kfree(ctx->s_qf_names[i]);
2014
2015	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2016	kfree(ctx);
2017}
2018
2019int ext4_init_fs_context(struct fs_context *fc)
2020{
2021	struct ext4_fs_context *ctx;
2022
2023	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2024	if (!ctx)
2025		return -ENOMEM;
2026
2027	fc->fs_private = ctx;
2028	fc->ops = &ext4_context_ops;
2029
2030	return 0;
2031}
2032
2033#ifdef CONFIG_QUOTA
2034/*
2035 * Note the name of the specified quota file.
2036 */
2037static int note_qf_name(struct fs_context *fc, int qtype,
2038		       struct fs_parameter *param)
2039{
2040	struct ext4_fs_context *ctx = fc->fs_private;
2041	char *qname;
2042
2043	if (param->size < 1) {
2044		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2045		return -EINVAL;
2046	}
2047	if (strchr(param->string, '/')) {
2048		ext4_msg(NULL, KERN_ERR,
2049			 "quotafile must be on filesystem root");
2050		return -EINVAL;
2051	}
2052	if (ctx->s_qf_names[qtype]) {
2053		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2054			ext4_msg(NULL, KERN_ERR,
2055				 "%s quota file already specified",
2056				 QTYPE2NAME(qtype));
2057			return -EINVAL;
2058		}
2059		return 0;
2060	}
2061
2062	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2063	if (!qname) {
2064		ext4_msg(NULL, KERN_ERR,
2065			 "Not enough memory for storing quotafile name");
2066		return -ENOMEM;
2067	}
2068	ctx->s_qf_names[qtype] = qname;
2069	ctx->qname_spec |= 1 << qtype;
2070	ctx->spec |= EXT4_SPEC_JQUOTA;
2071	return 0;
2072}
2073
2074/*
2075 * Clear the name of the specified quota file.
2076 */
2077static int unnote_qf_name(struct fs_context *fc, int qtype)
2078{
2079	struct ext4_fs_context *ctx = fc->fs_private;
2080
2081	if (ctx->s_qf_names[qtype])
2082		kfree(ctx->s_qf_names[qtype]);
2083
2084	ctx->s_qf_names[qtype] = NULL;
2085	ctx->qname_spec |= 1 << qtype;
2086	ctx->spec |= EXT4_SPEC_JQUOTA;
2087	return 0;
2088}
2089#endif
2090
2091static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2092					    struct ext4_fs_context *ctx)
 
 
2093{
 
 
2094	int err;
2095
2096	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2097		ext4_msg(NULL, KERN_WARNING,
2098			 "test_dummy_encryption option not supported");
2099		return -EINVAL;
 
 
 
 
 
 
2100	}
2101	err = fscrypt_parse_test_dummy_encryption(param,
2102						  &ctx->dummy_enc_policy);
2103	if (err == -EINVAL) {
2104		ext4_msg(NULL, KERN_WARNING,
2105			 "Value of option \"%s\" is unrecognized", param->key);
2106	} else if (err == -EEXIST) {
2107		ext4_msg(NULL, KERN_WARNING,
2108			 "Conflicting test_dummy_encryption options");
2109		return -EINVAL;
 
 
 
 
 
2110	}
2111	return err;
 
 
 
 
 
2112}
2113
2114#define EXT4_SET_CTX(name)						\
2115static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2116				  unsigned long flag)			\
2117{									\
2118	ctx->mask_s_##name |= flag;					\
2119	ctx->vals_s_##name |= flag;					\
2120}
2121
2122#define EXT4_CLEAR_CTX(name)						\
2123static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2124				    unsigned long flag)			\
2125{									\
2126	ctx->mask_s_##name |= flag;					\
2127	ctx->vals_s_##name &= ~flag;					\
2128}
2129
2130#define EXT4_TEST_CTX(name)						\
2131static inline unsigned long						\
2132ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2133{									\
2134	return (ctx->vals_s_##name & flag);				\
2135}
2136
2137EXT4_SET_CTX(flags); /* set only */
2138EXT4_SET_CTX(mount_opt);
2139EXT4_CLEAR_CTX(mount_opt);
2140EXT4_TEST_CTX(mount_opt);
2141EXT4_SET_CTX(mount_opt2);
2142EXT4_CLEAR_CTX(mount_opt2);
2143EXT4_TEST_CTX(mount_opt2);
2144
2145static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
 
 
2146{
2147	struct ext4_fs_context *ctx = fc->fs_private;
2148	struct fs_parse_result result;
2149	const struct mount_opts *m;
2150	int is_remount;
2151	kuid_t uid;
2152	kgid_t gid;
2153	int token;
2154
2155	token = fs_parse(fc, ext4_param_specs, param, &result);
2156	if (token < 0)
2157		return token;
2158	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2159
2160	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2161		if (token == m->token)
2162			break;
2163
2164	ctx->opt_flags |= m->flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2165
 
 
 
 
2166	if (m->flags & MOPT_EXPLICIT) {
2167		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2168			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2169		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2170			ctx_set_mount_opt2(ctx,
2171				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2172		} else
2173			return -EINVAL;
2174	}
2175
2176	if (m->flags & MOPT_NOSUPPORT) {
2177		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2178			 param->key);
2179		return 0;
 
2180	}
2181
2182	switch (token) {
2183#ifdef CONFIG_QUOTA
2184	case Opt_usrjquota:
2185		if (!*param->string)
2186			return unnote_qf_name(fc, USRQUOTA);
2187		else
2188			return note_qf_name(fc, USRQUOTA, param);
2189	case Opt_grpjquota:
2190		if (!*param->string)
2191			return unnote_qf_name(fc, GRPQUOTA);
2192		else
2193			return note_qf_name(fc, GRPQUOTA, param);
2194#endif
2195	case Opt_sb:
2196		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2197			ext4_msg(NULL, KERN_WARNING,
2198				 "Ignoring %s option on remount", param->key);
2199		} else {
2200			ctx->s_sb_block = result.uint_32;
2201			ctx->spec |= EXT4_SPEC_s_sb_block;
2202		}
2203		return 0;
2204	case Opt_removed:
2205		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2206			 param->key);
2207		return 0;
2208	case Opt_inlinecrypt:
2209#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2210		ctx_set_flags(ctx, SB_INLINECRYPT);
2211#else
2212		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2213#endif
2214		return 0;
2215	case Opt_errors:
2216		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2217		ctx_set_mount_opt(ctx, result.uint_32);
2218		return 0;
2219#ifdef CONFIG_QUOTA
2220	case Opt_jqfmt:
2221		ctx->s_jquota_fmt = result.uint_32;
2222		ctx->spec |= EXT4_SPEC_JQFMT;
2223		return 0;
2224#endif
2225	case Opt_data:
2226		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2227		ctx_set_mount_opt(ctx, result.uint_32);
2228		ctx->spec |= EXT4_SPEC_DATAJ;
2229		return 0;
2230	case Opt_commit:
2231		if (result.uint_32 == 0)
2232			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2233		else if (result.uint_32 > INT_MAX / HZ) {
2234			ext4_msg(NULL, KERN_ERR,
2235				 "Invalid commit interval %d, "
2236				 "must be smaller than %d",
2237				 result.uint_32, INT_MAX / HZ);
2238			return -EINVAL;
2239		}
2240		ctx->s_commit_interval = HZ * result.uint_32;
2241		ctx->spec |= EXT4_SPEC_s_commit_interval;
2242		return 0;
2243	case Opt_debug_want_extra_isize:
2244		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2245			ext4_msg(NULL, KERN_ERR,
2246				 "Invalid want_extra_isize %d", result.uint_32);
2247			return -EINVAL;
2248		}
2249		ctx->s_want_extra_isize = result.uint_32;
2250		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2251		return 0;
2252	case Opt_max_batch_time:
2253		ctx->s_max_batch_time = result.uint_32;
2254		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2255		return 0;
2256	case Opt_min_batch_time:
2257		ctx->s_min_batch_time = result.uint_32;
2258		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2259		return 0;
2260	case Opt_inode_readahead_blks:
2261		if (result.uint_32 &&
2262		    (result.uint_32 > (1 << 30) ||
2263		     !is_power_of_2(result.uint_32))) {
2264			ext4_msg(NULL, KERN_ERR,
2265				 "EXT4-fs: inode_readahead_blks must be "
2266				 "0 or a power of 2 smaller than 2^31");
2267			return -EINVAL;
2268		}
2269		ctx->s_inode_readahead_blks = result.uint_32;
2270		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2271		return 0;
2272	case Opt_init_itable:
2273		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2274		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2275		if (param->type == fs_value_is_string)
2276			ctx->s_li_wait_mult = result.uint_32;
2277		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2278		return 0;
2279	case Opt_max_dir_size_kb:
2280		ctx->s_max_dir_size_kb = result.uint_32;
2281		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2282		return 0;
2283#ifdef CONFIG_EXT4_DEBUG
2284	case Opt_fc_debug_max_replay:
2285		ctx->s_fc_debug_max_replay = result.uint_32;
2286		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2287		return 0;
2288#endif
2289	case Opt_stripe:
2290		ctx->s_stripe = result.uint_32;
2291		ctx->spec |= EXT4_SPEC_s_stripe;
2292		return 0;
2293	case Opt_resuid:
2294		uid = make_kuid(current_user_ns(), result.uint_32);
2295		if (!uid_valid(uid)) {
2296			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2297				 result.uint_32);
2298			return -EINVAL;
2299		}
2300		ctx->s_resuid = uid;
2301		ctx->spec |= EXT4_SPEC_s_resuid;
2302		return 0;
2303	case Opt_resgid:
2304		gid = make_kgid(current_user_ns(), result.uint_32);
2305		if (!gid_valid(gid)) {
2306			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2307				 result.uint_32);
2308			return -EINVAL;
2309		}
2310		ctx->s_resgid = gid;
2311		ctx->spec |= EXT4_SPEC_s_resgid;
2312		return 0;
2313	case Opt_journal_dev:
2314		if (is_remount) {
2315			ext4_msg(NULL, KERN_ERR,
2316				 "Cannot specify journal on remount");
2317			return -EINVAL;
2318		}
2319		ctx->journal_devnum = result.uint_32;
2320		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2321		return 0;
2322	case Opt_journal_path:
2323	{
2324		struct inode *journal_inode;
2325		struct path path;
2326		int error;
2327
2328		if (is_remount) {
2329			ext4_msg(NULL, KERN_ERR,
2330				 "Cannot specify journal on remount");
2331			return -EINVAL;
 
 
 
 
 
 
2332		}
2333
2334		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2335		if (error) {
2336			ext4_msg(NULL, KERN_ERR, "error: could not find "
2337				 "journal device path");
2338			return -EINVAL;
 
2339		}
2340
2341		journal_inode = d_inode(path.dentry);
2342		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2343		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
 
 
 
 
 
 
 
2344		path_put(&path);
2345		return 0;
2346	}
2347	case Opt_journal_ioprio:
2348		if (result.uint_32 > 7) {
2349			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2350				 " (must be 0-7)");
2351			return -EINVAL;
2352		}
2353		ctx->journal_ioprio =
2354			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2355		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2356		return 0;
2357	case Opt_test_dummy_encryption:
2358		return ext4_parse_test_dummy_encryption(param, ctx);
2359	case Opt_dax:
2360	case Opt_dax_type:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2361#ifdef CONFIG_FS_DAX
2362	{
2363		int type = (token == Opt_dax) ?
2364			   Opt_dax : result.uint_32;
2365
2366		switch (type) {
2367		case Opt_dax:
2368		case Opt_dax_always:
2369			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2370			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2371			break;
2372		case Opt_dax_never:
2373			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2374			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
 
 
 
 
2375			break;
2376		case Opt_dax_inode:
2377			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2378			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
 
 
 
 
 
2379			/* Strictly for printing options */
2380			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2381			break;
2382		}
2383		return 0;
2384	}
2385#else
2386		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2387		return -EINVAL;
2388#endif
2389	case Opt_data_err:
2390		if (result.uint_32 == Opt_data_err_abort)
2391			ctx_set_mount_opt(ctx, m->mount_opt);
2392		else if (result.uint_32 == Opt_data_err_ignore)
2393			ctx_clear_mount_opt(ctx, m->mount_opt);
2394		return 0;
2395	case Opt_mb_optimize_scan:
2396		if (result.int_32 == 1) {
2397			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2398			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2399		} else if (result.int_32 == 0) {
2400			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2401			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2402		} else {
2403			ext4_msg(NULL, KERN_WARNING,
2404				 "mb_optimize_scan should be set to 0 or 1.");
2405			return -EINVAL;
2406		}
2407		return 0;
2408	}
2409
2410	/*
2411	 * At this point we should only be getting options requiring MOPT_SET,
2412	 * or MOPT_CLEAR. Anything else is a bug
2413	 */
2414	if (m->token == Opt_err) {
2415		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2416			 param->key);
2417		WARN_ON(1);
2418		return -EINVAL;
2419	}
2420
2421	else {
2422		unsigned int set = 0;
2423
2424		if ((param->type == fs_value_is_flag) ||
2425		    result.uint_32 > 0)
2426			set = 1;
2427
2428		if (m->flags & MOPT_CLEAR)
2429			set = !set;
2430		else if (unlikely(!(m->flags & MOPT_SET))) {
2431			ext4_msg(NULL, KERN_WARNING,
2432				 "buggy handling of option %s",
2433				 param->key);
2434			WARN_ON(1);
2435			return -EINVAL;
2436		}
2437		if (m->flags & MOPT_2) {
2438			if (set != 0)
2439				ctx_set_mount_opt2(ctx, m->mount_opt);
2440			else
2441				ctx_clear_mount_opt2(ctx, m->mount_opt);
2442		} else {
2443			if (set != 0)
2444				ctx_set_mount_opt(ctx, m->mount_opt);
2445			else
2446				ctx_clear_mount_opt(ctx, m->mount_opt);
2447		}
2448	}
2449
2450	return 0;
2451}
2452
2453static int parse_options(struct fs_context *fc, char *options)
2454{
2455	struct fs_parameter param;
2456	int ret;
2457	char *key;
 
 
 
2458
2459	if (!options)
2460		return 0;
2461
2462	while ((key = strsep(&options, ",")) != NULL) {
2463		if (*key) {
2464			size_t v_len = 0;
2465			char *value = strchr(key, '=');
2466
2467			param.type = fs_value_is_flag;
2468			param.string = NULL;
2469
2470			if (value) {
2471				if (value == key)
2472					continue;
2473
2474				*value++ = 0;
2475				v_len = strlen(value);
2476				param.string = kmemdup_nul(value, v_len,
2477							   GFP_KERNEL);
2478				if (!param.string)
2479					return -ENOMEM;
2480				param.type = fs_value_is_string;
2481			}
2482
2483			param.key = key;
2484			param.size = v_len;
2485
2486			ret = ext4_parse_param(fc, &param);
2487			if (param.string)
2488				kfree(param.string);
2489			if (ret < 0)
2490				return ret;
2491		}
2492	}
2493
2494	ret = ext4_validate_options(fc);
2495	if (ret < 0)
2496		return ret;
2497
2498	return 0;
2499}
2500
2501static int parse_apply_sb_mount_options(struct super_block *sb,
2502					struct ext4_fs_context *m_ctx)
2503{
2504	struct ext4_sb_info *sbi = EXT4_SB(sb);
2505	char *s_mount_opts = NULL;
2506	struct ext4_fs_context *s_ctx = NULL;
2507	struct fs_context *fc = NULL;
2508	int ret = -ENOMEM;
2509
2510	if (!sbi->s_es->s_mount_opts[0])
2511		return 0;
2512
2513	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2514				sizeof(sbi->s_es->s_mount_opts),
2515				GFP_KERNEL);
2516	if (!s_mount_opts)
2517		return ret;
2518
2519	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2520	if (!fc)
2521		goto out_free;
2522
2523	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2524	if (!s_ctx)
2525		goto out_free;
2526
2527	fc->fs_private = s_ctx;
2528	fc->s_fs_info = sbi;
2529
2530	ret = parse_options(fc, s_mount_opts);
2531	if (ret < 0)
2532		goto parse_failed;
2533
2534	ret = ext4_check_opt_consistency(fc, sb);
2535	if (ret < 0) {
2536parse_failed:
2537		ext4_msg(sb, KERN_WARNING,
2538			 "failed to parse options in superblock: %s",
2539			 s_mount_opts);
2540		ret = 0;
2541		goto out_free;
2542	}
2543
2544	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2545		m_ctx->journal_devnum = s_ctx->journal_devnum;
2546	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2547		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2548
2549	ext4_apply_options(fc, sb);
2550	ret = 0;
2551
2552out_free:
2553	if (fc) {
2554		ext4_fc_free(fc);
2555		kfree(fc);
2556	}
2557	kfree(s_mount_opts);
2558	return ret;
2559}
2560
2561static void ext4_apply_quota_options(struct fs_context *fc,
2562				     struct super_block *sb)
2563{
2564#ifdef CONFIG_QUOTA
2565	bool quota_feature = ext4_has_feature_quota(sb);
2566	struct ext4_fs_context *ctx = fc->fs_private;
2567	struct ext4_sb_info *sbi = EXT4_SB(sb);
2568	char *qname;
2569	int i;
2570
2571	if (quota_feature)
2572		return;
2573
2574	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2575		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2576			if (!(ctx->qname_spec & (1 << i)))
2577				continue;
2578
2579			qname = ctx->s_qf_names[i]; /* May be NULL */
2580			if (qname)
2581				set_opt(sb, QUOTA);
2582			ctx->s_qf_names[i] = NULL;
2583			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2584						lockdep_is_held(&sb->s_umount));
2585			if (qname)
2586				kfree_rcu_mightsleep(qname);
2587		}
 
 
 
2588	}
2589
2590	if (ctx->spec & EXT4_SPEC_JQFMT)
2591		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2592#endif
2593}
2594
2595/*
2596 * Check quota settings consistency.
2597 */
2598static int ext4_check_quota_consistency(struct fs_context *fc,
2599					struct super_block *sb)
2600{
2601#ifdef CONFIG_QUOTA
2602	struct ext4_fs_context *ctx = fc->fs_private;
2603	struct ext4_sb_info *sbi = EXT4_SB(sb);
2604	bool quota_feature = ext4_has_feature_quota(sb);
2605	bool quota_loaded = sb_any_quota_loaded(sb);
2606	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2607	int quota_flags, i;
2608
2609	/*
2610	 * We do the test below only for project quotas. 'usrquota' and
2611	 * 'grpquota' mount options are allowed even without quota feature
2612	 * to support legacy quotas in quota files.
2613	 */
2614	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2615	    !ext4_has_feature_project(sb)) {
2616		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2617			 "Cannot enable project quota enforcement.");
2618		return -EINVAL;
2619	}
2620
2621	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2622		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2623	if (quota_loaded &&
2624	    ctx->mask_s_mount_opt & quota_flags &&
2625	    !ctx_test_mount_opt(ctx, quota_flags))
2626		goto err_quota_change;
2627
2628	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2629
2630		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2631			if (!(ctx->qname_spec & (1 << i)))
2632				continue;
2633
2634			if (quota_loaded &&
2635			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2636				goto err_jquota_change;
2637
2638			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2639			    strcmp(get_qf_name(sb, sbi, i),
2640				   ctx->s_qf_names[i]) != 0)
2641				goto err_jquota_specified;
2642		}
2643
2644		if (quota_feature) {
2645			ext4_msg(NULL, KERN_INFO,
2646				 "Journaled quota options ignored when "
2647				 "QUOTA feature is enabled");
2648			return 0;
2649		}
2650	}
2651
2652	if (ctx->spec & EXT4_SPEC_JQFMT) {
2653		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2654			goto err_jquota_change;
2655		if (quota_feature) {
2656			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2657				 "ignored when QUOTA feature is enabled");
2658			return 0;
2659		}
2660	}
2661
2662	/* Make sure we don't mix old and new quota format */
2663	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2664		       ctx->s_qf_names[USRQUOTA]);
2665	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2666		       ctx->s_qf_names[GRPQUOTA]);
2667
2668	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2669		    test_opt(sb, USRQUOTA));
2670
2671	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2672		    test_opt(sb, GRPQUOTA));
2673
2674	if (usr_qf_name) {
2675		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2676		usrquota = false;
2677	}
2678	if (grp_qf_name) {
2679		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2680		grpquota = false;
2681	}
2682
 
2683	if (usr_qf_name || grp_qf_name) {
2684		if (usrquota || grpquota) {
2685			ext4_msg(NULL, KERN_ERR, "old and new quota "
2686				 "format mixing");
2687			return -EINVAL;
2688		}
2689
2690		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2691			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2692				 "not specified");
2693			return -EINVAL;
2694		}
2695	}
2696
2697	return 0;
 
2698
2699err_quota_change:
2700	ext4_msg(NULL, KERN_ERR,
2701		 "Cannot change quota options when quota turned on");
2702	return -EINVAL;
2703err_jquota_change:
2704	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2705		 "options when quota turned on");
2706	return -EINVAL;
2707err_jquota_specified:
2708	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2709		 QTYPE2NAME(i));
2710	return -EINVAL;
2711#else
2712	return 0;
2713#endif
2714}
2715
2716static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2717					    struct super_block *sb)
2718{
2719	const struct ext4_fs_context *ctx = fc->fs_private;
2720	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2721
2722	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2723		return 0;
2724
2725	if (!ext4_has_feature_encrypt(sb)) {
2726		ext4_msg(NULL, KERN_WARNING,
2727			 "test_dummy_encryption requires encrypt feature");
2728		return -EINVAL;
2729	}
2730	/*
2731	 * This mount option is just for testing, and it's not worthwhile to
2732	 * implement the extra complexity (e.g. RCU protection) that would be
2733	 * needed to allow it to be set or changed during remount.  We do allow
2734	 * it to be specified during remount, but only if there is no change.
2735	 */
2736	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2737		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2738						 &ctx->dummy_enc_policy))
2739			return 0;
2740		ext4_msg(NULL, KERN_WARNING,
2741			 "Can't set or change test_dummy_encryption on remount");
2742		return -EINVAL;
2743	}
2744	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2745	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2746		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2747						 &ctx->dummy_enc_policy))
2748			return 0;
2749		ext4_msg(NULL, KERN_WARNING,
2750			 "Conflicting test_dummy_encryption options");
2751		return -EINVAL;
2752	}
2753	return 0;
2754}
2755
2756static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2757					     struct super_block *sb)
2758{
2759	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2760	    /* if already set, it was already verified to be the same */
2761	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2762		return;
2763	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2764	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2765	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2766}
2767
2768static int ext4_check_opt_consistency(struct fs_context *fc,
2769				      struct super_block *sb)
2770{
2771	struct ext4_fs_context *ctx = fc->fs_private;
2772	struct ext4_sb_info *sbi = fc->s_fs_info;
2773	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2774	int err;
2775
2776	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2777		ext4_msg(NULL, KERN_ERR,
2778			 "Mount option(s) incompatible with ext2");
2779		return -EINVAL;
2780	}
2781	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2782		ext4_msg(NULL, KERN_ERR,
2783			 "Mount option(s) incompatible with ext3");
2784		return -EINVAL;
2785	}
2786
2787	if (ctx->s_want_extra_isize >
2788	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2789		ext4_msg(NULL, KERN_ERR,
2790			 "Invalid want_extra_isize %d",
2791			 ctx->s_want_extra_isize);
2792		return -EINVAL;
2793	}
2794
2795	err = ext4_check_test_dummy_encryption(fc, sb);
2796	if (err)
2797		return err;
2798
2799	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2800		if (!sbi->s_journal) {
2801			ext4_msg(NULL, KERN_WARNING,
2802				 "Remounting file system with no journal "
2803				 "so ignoring journalled data option");
2804			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2805		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2806			   test_opt(sb, DATA_FLAGS)) {
2807			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2808				 "on remount");
2809			return -EINVAL;
2810		}
2811	}
2812
2813	if (is_remount) {
2814		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2815		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2816			ext4_msg(NULL, KERN_ERR, "can't mount with "
2817				 "both data=journal and dax");
2818			return -EINVAL;
2819		}
2820
2821		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2822		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2823		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2824fail_dax_change_remount:
2825			ext4_msg(NULL, KERN_ERR, "can't change "
2826				 "dax mount option while remounting");
2827			return -EINVAL;
2828		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2829			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2830			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2831			goto fail_dax_change_remount;
2832		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2833			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2834			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2835			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2836			goto fail_dax_change_remount;
2837		}
2838	}
2839
2840	return ext4_check_quota_consistency(fc, sb);
2841}
2842
2843static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2844{
2845	struct ext4_fs_context *ctx = fc->fs_private;
2846	struct ext4_sb_info *sbi = fc->s_fs_info;
2847
2848	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2849	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2850	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2851	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2852	sb->s_flags &= ~ctx->mask_s_flags;
2853	sb->s_flags |= ctx->vals_s_flags;
2854
2855#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2856	APPLY(s_commit_interval);
2857	APPLY(s_stripe);
2858	APPLY(s_max_batch_time);
2859	APPLY(s_min_batch_time);
2860	APPLY(s_want_extra_isize);
2861	APPLY(s_inode_readahead_blks);
2862	APPLY(s_max_dir_size_kb);
2863	APPLY(s_li_wait_mult);
2864	APPLY(s_resgid);
2865	APPLY(s_resuid);
2866
2867#ifdef CONFIG_EXT4_DEBUG
2868	APPLY(s_fc_debug_max_replay);
2869#endif
2870
2871	ext4_apply_quota_options(fc, sb);
2872	ext4_apply_test_dummy_encryption(ctx, sb);
2873}
2874
2875
2876static int ext4_validate_options(struct fs_context *fc)
2877{
2878#ifdef CONFIG_QUOTA
2879	struct ext4_fs_context *ctx = fc->fs_private;
2880	char *usr_qf_name, *grp_qf_name;
2881
2882	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2883	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2884
2885	if (usr_qf_name || grp_qf_name) {
2886		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2887			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2888
2889		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2890			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2891
2892		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2893		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2894			ext4_msg(NULL, KERN_ERR, "old and new quota "
2895				 "format mixing");
2896			return -EINVAL;
2897		}
2898	}
2899#endif
2900	return 1;
2901}
2902
2903static inline void ext4_show_quota_options(struct seq_file *seq,
2904					   struct super_block *sb)
2905{
2906#if defined(CONFIG_QUOTA)
2907	struct ext4_sb_info *sbi = EXT4_SB(sb);
2908	char *usr_qf_name, *grp_qf_name;
2909
2910	if (sbi->s_jquota_fmt) {
2911		char *fmtname = "";
2912
2913		switch (sbi->s_jquota_fmt) {
2914		case QFMT_VFS_OLD:
2915			fmtname = "vfsold";
2916			break;
2917		case QFMT_VFS_V0:
2918			fmtname = "vfsv0";
2919			break;
2920		case QFMT_VFS_V1:
2921			fmtname = "vfsv1";
2922			break;
2923		}
2924		seq_printf(seq, ",jqfmt=%s", fmtname);
2925	}
2926
2927	rcu_read_lock();
2928	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2929	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2930	if (usr_qf_name)
2931		seq_show_option(seq, "usrjquota", usr_qf_name);
2932	if (grp_qf_name)
2933		seq_show_option(seq, "grpjquota", grp_qf_name);
2934	rcu_read_unlock();
2935#endif
2936}
2937
2938static const char *token2str(int token)
2939{
2940	const struct fs_parameter_spec *spec;
2941
2942	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2943		if (spec->opt == token && !spec->type)
2944			break;
2945	return spec->name;
2946}
2947
2948/*
2949 * Show an option if
2950 *  - it's set to a non-default value OR
2951 *  - if the per-sb default is different from the global default
2952 */
2953static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2954			      int nodefs)
2955{
2956	struct ext4_sb_info *sbi = EXT4_SB(sb);
2957	struct ext4_super_block *es = sbi->s_es;
2958	int def_errors;
2959	const struct mount_opts *m;
2960	char sep = nodefs ? '\n' : ',';
2961
2962#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2963#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2964
2965	if (sbi->s_sb_block != 1)
2966		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2967
2968	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2969		int want_set = m->flags & MOPT_SET;
2970		int opt_2 = m->flags & MOPT_2;
2971		unsigned int mount_opt, def_mount_opt;
2972
2973		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2974		    m->flags & MOPT_SKIP)
2975			continue;
2976
2977		if (opt_2) {
2978			mount_opt = sbi->s_mount_opt2;
2979			def_mount_opt = sbi->s_def_mount_opt2;
2980		} else {
2981			mount_opt = sbi->s_mount_opt;
2982			def_mount_opt = sbi->s_def_mount_opt;
2983		}
2984		/* skip if same as the default */
2985		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2986			continue;
2987		/* select Opt_noFoo vs Opt_Foo */
 
2988		if ((want_set &&
2989		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2990		    (!want_set && (mount_opt & m->mount_opt)))
2991			continue;
2992		SEQ_OPTS_PRINT("%s", token2str(m->token));
2993	}
2994
2995	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2996	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2997		SEQ_OPTS_PRINT("resuid=%u",
2998				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2999	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3000	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3001		SEQ_OPTS_PRINT("resgid=%u",
3002				from_kgid_munged(&init_user_ns, sbi->s_resgid));
3003	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3004	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3005		SEQ_OPTS_PUTS("errors=remount-ro");
3006	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3007		SEQ_OPTS_PUTS("errors=continue");
3008	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3009		SEQ_OPTS_PUTS("errors=panic");
3010	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3011		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3012	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3013		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3014	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3015		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
 
 
3016	if (nodefs || sbi->s_stripe)
3017		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3018	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3019			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3020		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3021			SEQ_OPTS_PUTS("data=journal");
3022		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3023			SEQ_OPTS_PUTS("data=ordered");
3024		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3025			SEQ_OPTS_PUTS("data=writeback");
3026	}
3027	if (nodefs ||
3028	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3029		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3030			       sbi->s_inode_readahead_blks);
3031
3032	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3033		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3034		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3035	if (nodefs || sbi->s_max_dir_size_kb)
3036		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3037	if (test_opt(sb, DATA_ERR_ABORT))
3038		SEQ_OPTS_PUTS("data_err=abort");
3039
3040	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3041
3042	if (sb->s_flags & SB_INLINECRYPT)
3043		SEQ_OPTS_PUTS("inlinecrypt");
3044
3045	if (test_opt(sb, DAX_ALWAYS)) {
3046		if (IS_EXT2_SB(sb))
3047			SEQ_OPTS_PUTS("dax");
3048		else
3049			SEQ_OPTS_PUTS("dax=always");
3050	} else if (test_opt2(sb, DAX_NEVER)) {
3051		SEQ_OPTS_PUTS("dax=never");
3052	} else if (test_opt2(sb, DAX_INODE)) {
3053		SEQ_OPTS_PUTS("dax=inode");
3054	}
3055
3056	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3057			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3058		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3059	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3060			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3061		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3062	}
3063
3064	ext4_show_quota_options(seq, sb);
3065	return 0;
3066}
3067
3068static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3069{
3070	return _ext4_show_options(seq, root->d_sb, 0);
3071}
3072
3073int ext4_seq_options_show(struct seq_file *seq, void *offset)
3074{
3075	struct super_block *sb = seq->private;
3076	int rc;
3077
3078	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3079	rc = _ext4_show_options(seq, sb, 1);
3080	seq_puts(seq, "\n");
3081	return rc;
3082}
3083
3084static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3085			    int read_only)
3086{
3087	struct ext4_sb_info *sbi = EXT4_SB(sb);
3088	int err = 0;
3089
3090	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3091		ext4_msg(sb, KERN_ERR, "revision level too high, "
3092			 "forcing read-only mode");
3093		err = -EROFS;
3094		goto done;
3095	}
3096	if (read_only)
3097		goto done;
3098	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3099		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3100			 "running e2fsck is recommended");
3101	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3102		ext4_msg(sb, KERN_WARNING,
3103			 "warning: mounting fs with errors, "
3104			 "running e2fsck is recommended");
3105	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3106		 le16_to_cpu(es->s_mnt_count) >=
3107		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3108		ext4_msg(sb, KERN_WARNING,
3109			 "warning: maximal mount count reached, "
3110			 "running e2fsck is recommended");
3111	else if (le32_to_cpu(es->s_checkinterval) &&
3112		 (ext4_get_tstamp(es, s_lastcheck) +
3113		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3114		ext4_msg(sb, KERN_WARNING,
3115			 "warning: checktime reached, "
3116			 "running e2fsck is recommended");
3117	if (!sbi->s_journal)
3118		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3119	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3120		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3121	le16_add_cpu(&es->s_mnt_count, 1);
3122	ext4_update_tstamp(es, s_mtime);
3123	if (sbi->s_journal) {
3124		ext4_set_feature_journal_needs_recovery(sb);
3125		if (ext4_has_feature_orphan_file(sb))
3126			ext4_set_feature_orphan_present(sb);
3127	}
3128
3129	err = ext4_commit_super(sb);
3130done:
3131	if (test_opt(sb, DEBUG))
3132		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3133				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3134			sb->s_blocksize,
3135			sbi->s_groups_count,
3136			EXT4_BLOCKS_PER_GROUP(sb),
3137			EXT4_INODES_PER_GROUP(sb),
3138			sbi->s_mount_opt, sbi->s_mount_opt2);
 
 
3139	return err;
3140}
3141
3142int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3143{
3144	struct ext4_sb_info *sbi = EXT4_SB(sb);
3145	struct flex_groups **old_groups, **new_groups;
3146	int size, i, j;
3147
3148	if (!sbi->s_log_groups_per_flex)
3149		return 0;
3150
3151	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3152	if (size <= sbi->s_flex_groups_allocated)
3153		return 0;
3154
3155	new_groups = kvzalloc(roundup_pow_of_two(size *
3156			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3157	if (!new_groups) {
3158		ext4_msg(sb, KERN_ERR,
3159			 "not enough memory for %d flex group pointers", size);
3160		return -ENOMEM;
3161	}
3162	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3163		new_groups[i] = kvzalloc(roundup_pow_of_two(
3164					 sizeof(struct flex_groups)),
3165					 GFP_KERNEL);
3166		if (!new_groups[i]) {
3167			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3168				kvfree(new_groups[j]);
3169			kvfree(new_groups);
3170			ext4_msg(sb, KERN_ERR,
3171				 "not enough memory for %d flex groups", size);
3172			return -ENOMEM;
3173		}
3174	}
3175	rcu_read_lock();
3176	old_groups = rcu_dereference(sbi->s_flex_groups);
3177	if (old_groups)
3178		memcpy(new_groups, old_groups,
3179		       (sbi->s_flex_groups_allocated *
3180			sizeof(struct flex_groups *)));
3181	rcu_read_unlock();
3182	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3183	sbi->s_flex_groups_allocated = size;
3184	if (old_groups)
3185		ext4_kvfree_array_rcu(old_groups);
3186	return 0;
3187}
3188
3189static int ext4_fill_flex_info(struct super_block *sb)
3190{
3191	struct ext4_sb_info *sbi = EXT4_SB(sb);
3192	struct ext4_group_desc *gdp = NULL;
3193	struct flex_groups *fg;
3194	ext4_group_t flex_group;
3195	int i, err;
3196
3197	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3198	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3199		sbi->s_log_groups_per_flex = 0;
3200		return 1;
3201	}
3202
3203	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3204	if (err)
3205		goto failed;
3206
3207	for (i = 0; i < sbi->s_groups_count; i++) {
3208		gdp = ext4_get_group_desc(sb, i, NULL);
3209
3210		flex_group = ext4_flex_group(sbi, i);
3211		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3212		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3213		atomic64_add(ext4_free_group_clusters(sb, gdp),
3214			     &fg->free_clusters);
3215		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3216	}
3217
3218	return 1;
3219failed:
3220	return 0;
3221}
3222
3223static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3224				   struct ext4_group_desc *gdp)
3225{
3226	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3227	__u16 crc = 0;
3228	__le32 le_group = cpu_to_le32(block_group);
3229	struct ext4_sb_info *sbi = EXT4_SB(sb);
3230
3231	if (ext4_has_metadata_csum(sbi->s_sb)) {
3232		/* Use new metadata_csum algorithm */
3233		__u32 csum32;
3234		__u16 dummy_csum = 0;
3235
3236		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3237				     sizeof(le_group));
3238		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3239		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3240				     sizeof(dummy_csum));
3241		offset += sizeof(dummy_csum);
3242		if (offset < sbi->s_desc_size)
3243			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3244					     sbi->s_desc_size - offset);
3245
3246		crc = csum32 & 0xFFFF;
3247		goto out;
3248	}
3249
3250	/* old crc16 code */
3251	if (!ext4_has_feature_gdt_csum(sb))
3252		return 0;
3253
3254	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3255	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3256	crc = crc16(crc, (__u8 *)gdp, offset);
3257	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3258	/* for checksum of struct ext4_group_desc do the rest...*/
3259	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
 
3260		crc = crc16(crc, (__u8 *)gdp + offset,
3261			    sbi->s_desc_size - offset);
 
3262
3263out:
3264	return cpu_to_le16(crc);
3265}
3266
3267int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3268				struct ext4_group_desc *gdp)
3269{
3270	if (ext4_has_group_desc_csum(sb) &&
3271	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3272		return 0;
3273
3274	return 1;
3275}
3276
3277void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3278			      struct ext4_group_desc *gdp)
3279{
3280	if (!ext4_has_group_desc_csum(sb))
3281		return;
3282	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3283}
3284
3285/* Called at mount-time, super-block is locked */
3286static int ext4_check_descriptors(struct super_block *sb,
3287				  ext4_fsblk_t sb_block,
3288				  ext4_group_t *first_not_zeroed)
3289{
3290	struct ext4_sb_info *sbi = EXT4_SB(sb);
3291	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3292	ext4_fsblk_t last_block;
3293	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3294	ext4_fsblk_t block_bitmap;
3295	ext4_fsblk_t inode_bitmap;
3296	ext4_fsblk_t inode_table;
3297	int flexbg_flag = 0;
3298	ext4_group_t i, grp = sbi->s_groups_count;
3299
3300	if (ext4_has_feature_flex_bg(sb))
3301		flexbg_flag = 1;
3302
3303	ext4_debug("Checking group descriptors");
3304
3305	for (i = 0; i < sbi->s_groups_count; i++) {
3306		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3307
3308		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3309			last_block = ext4_blocks_count(sbi->s_es) - 1;
3310		else
3311			last_block = first_block +
3312				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3313
3314		if ((grp == sbi->s_groups_count) &&
3315		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3316			grp = i;
3317
3318		block_bitmap = ext4_block_bitmap(sb, gdp);
3319		if (block_bitmap == sb_block) {
3320			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3321				 "Block bitmap for group %u overlaps "
3322				 "superblock", i);
3323			if (!sb_rdonly(sb))
3324				return 0;
3325		}
3326		if (block_bitmap >= sb_block + 1 &&
3327		    block_bitmap <= last_bg_block) {
3328			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3329				 "Block bitmap for group %u overlaps "
3330				 "block group descriptors", i);
3331			if (!sb_rdonly(sb))
3332				return 0;
3333		}
3334		if (block_bitmap < first_block || block_bitmap > last_block) {
3335			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3336			       "Block bitmap for group %u not in group "
3337			       "(block %llu)!", i, block_bitmap);
3338			return 0;
3339		}
3340		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3341		if (inode_bitmap == sb_block) {
3342			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3343				 "Inode bitmap for group %u overlaps "
3344				 "superblock", i);
3345			if (!sb_rdonly(sb))
3346				return 0;
3347		}
3348		if (inode_bitmap >= sb_block + 1 &&
3349		    inode_bitmap <= last_bg_block) {
3350			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3351				 "Inode bitmap for group %u overlaps "
3352				 "block group descriptors", i);
3353			if (!sb_rdonly(sb))
3354				return 0;
3355		}
3356		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3357			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3358			       "Inode bitmap for group %u not in group "
3359			       "(block %llu)!", i, inode_bitmap);
3360			return 0;
3361		}
3362		inode_table = ext4_inode_table(sb, gdp);
3363		if (inode_table == sb_block) {
3364			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3365				 "Inode table for group %u overlaps "
3366				 "superblock", i);
3367			if (!sb_rdonly(sb))
3368				return 0;
3369		}
3370		if (inode_table >= sb_block + 1 &&
3371		    inode_table <= last_bg_block) {
3372			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3373				 "Inode table for group %u overlaps "
3374				 "block group descriptors", i);
3375			if (!sb_rdonly(sb))
3376				return 0;
3377		}
3378		if (inode_table < first_block ||
3379		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3380			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3381			       "Inode table for group %u not in group "
3382			       "(block %llu)!", i, inode_table);
3383			return 0;
3384		}
3385		ext4_lock_group(sb, i);
3386		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3387			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3388				 "Checksum for group %u failed (%u!=%u)",
3389				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3390				     gdp)), le16_to_cpu(gdp->bg_checksum));
3391			if (!sb_rdonly(sb)) {
3392				ext4_unlock_group(sb, i);
3393				return 0;
3394			}
3395		}
3396		ext4_unlock_group(sb, i);
3397		if (!flexbg_flag)
3398			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3399	}
3400	if (NULL != first_not_zeroed)
3401		*first_not_zeroed = grp;
3402	return 1;
3403}
3404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3405/*
3406 * Maximal extent format file size.
3407 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3408 * extent format containers, within a sector_t, and within i_blocks
3409 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3410 * so that won't be a limiting factor.
3411 *
3412 * However there is other limiting factor. We do store extents in the form
3413 * of starting block and length, hence the resulting length of the extent
3414 * covering maximum file size must fit into on-disk format containers as
3415 * well. Given that length is always by 1 unit bigger than max unit (because
3416 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3417 *
3418 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3419 */
3420static loff_t ext4_max_size(int blkbits, int has_huge_files)
3421{
3422	loff_t res;
3423	loff_t upper_limit = MAX_LFS_FILESIZE;
3424
3425	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3426
3427	if (!has_huge_files) {
3428		upper_limit = (1LL << 32) - 1;
3429
3430		/* total blocks in file system block size */
3431		upper_limit >>= (blkbits - 9);
3432		upper_limit <<= blkbits;
3433	}
3434
3435	/*
3436	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3437	 * by one fs block, so ee_len can cover the extent of maximum file
3438	 * size
3439	 */
3440	res = (1LL << 32) - 1;
3441	res <<= blkbits;
3442
3443	/* Sanity check against vm- & vfs- imposed limits */
3444	if (res > upper_limit)
3445		res = upper_limit;
3446
3447	return res;
3448}
3449
3450/*
3451 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3452 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3453 * We need to be 1 filesystem block less than the 2^48 sector limit.
3454 */
3455static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3456{
3457	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3458	int meta_blocks;
3459	unsigned int ppb = 1 << (bits - 2);
3460
3461	/*
3462	 * This is calculated to be the largest file size for a dense, block
3463	 * mapped file such that the file's total number of 512-byte sectors,
3464	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3465	 *
3466	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3467	 * number of 512-byte sectors of the file.
3468	 */
3469	if (!has_huge_files) {
3470		/*
3471		 * !has_huge_files or implies that the inode i_block field
3472		 * represents total file blocks in 2^32 512-byte sectors ==
3473		 * size of vfs inode i_blocks * 8
3474		 */
3475		upper_limit = (1LL << 32) - 1;
3476
3477		/* total blocks in file system block size */
3478		upper_limit >>= (bits - 9);
3479
3480	} else {
3481		/*
3482		 * We use 48 bit ext4_inode i_blocks
3483		 * With EXT4_HUGE_FILE_FL set the i_blocks
3484		 * represent total number of blocks in
3485		 * file system block size
3486		 */
3487		upper_limit = (1LL << 48) - 1;
3488
3489	}
3490
3491	/* Compute how many blocks we can address by block tree */
3492	res += ppb;
3493	res += ppb * ppb;
3494	res += ((loff_t)ppb) * ppb * ppb;
3495	/* Compute how many metadata blocks are needed */
3496	meta_blocks = 1;
3497	meta_blocks += 1 + ppb;
3498	meta_blocks += 1 + ppb + ppb * ppb;
3499	/* Does block tree limit file size? */
3500	if (res + meta_blocks <= upper_limit)
3501		goto check_lfs;
3502
3503	res = upper_limit;
3504	/* How many metadata blocks are needed for addressing upper_limit? */
3505	upper_limit -= EXT4_NDIR_BLOCKS;
3506	/* indirect blocks */
3507	meta_blocks = 1;
3508	upper_limit -= ppb;
3509	/* double indirect blocks */
3510	if (upper_limit < ppb * ppb) {
3511		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3512		res -= meta_blocks;
3513		goto check_lfs;
3514	}
3515	meta_blocks += 1 + ppb;
3516	upper_limit -= ppb * ppb;
3517	/* tripple indirect blocks for the rest */
3518	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3519		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3520	res -= meta_blocks;
3521check_lfs:
3522	res <<= bits;
 
 
 
3523	if (res > MAX_LFS_FILESIZE)
3524		res = MAX_LFS_FILESIZE;
3525
3526	return res;
3527}
3528
3529static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3530				   ext4_fsblk_t logical_sb_block, int nr)
3531{
3532	struct ext4_sb_info *sbi = EXT4_SB(sb);
3533	ext4_group_t bg, first_meta_bg;
3534	int has_super = 0;
3535
3536	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3537
3538	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3539		return logical_sb_block + nr + 1;
3540	bg = sbi->s_desc_per_block * nr;
3541	if (ext4_bg_has_super(sb, bg))
3542		has_super = 1;
3543
3544	/*
3545	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3546	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3547	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3548	 * compensate.
3549	 */
3550	if (sb->s_blocksize == 1024 && nr == 0 &&
3551	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3552		has_super++;
3553
3554	return (has_super + ext4_group_first_block_no(sb, bg));
3555}
3556
3557/**
3558 * ext4_get_stripe_size: Get the stripe size.
3559 * @sbi: In memory super block info
3560 *
3561 * If we have specified it via mount option, then
3562 * use the mount option value. If the value specified at mount time is
3563 * greater than the blocks per group use the super block value.
3564 * If the super block value is greater than blocks per group return 0.
3565 * Allocator needs it be less than blocks per group.
3566 *
3567 */
3568static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3569{
3570	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3571	unsigned long stripe_width =
3572			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3573	int ret;
3574
3575	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3576		ret = sbi->s_stripe;
3577	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3578		ret = stripe_width;
3579	else if (stride && stride <= sbi->s_blocks_per_group)
3580		ret = stride;
3581	else
3582		ret = 0;
3583
3584	/*
3585	 * If the stripe width is 1, this makes no sense and
3586	 * we set it to 0 to turn off stripe handling code.
3587	 */
3588	if (ret <= 1)
3589		ret = 0;
3590
3591	return ret;
3592}
3593
3594/*
3595 * Check whether this filesystem can be mounted based on
3596 * the features present and the RDONLY/RDWR mount requested.
3597 * Returns 1 if this filesystem can be mounted as requested,
3598 * 0 if it cannot be.
3599 */
3600int ext4_feature_set_ok(struct super_block *sb, int readonly)
3601{
3602	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3603		ext4_msg(sb, KERN_ERR,
3604			"Couldn't mount because of "
3605			"unsupported optional features (%x)",
3606			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3607			~EXT4_FEATURE_INCOMPAT_SUPP));
3608		return 0;
3609	}
3610
3611#if !IS_ENABLED(CONFIG_UNICODE)
3612	if (ext4_has_feature_casefold(sb)) {
3613		ext4_msg(sb, KERN_ERR,
3614			 "Filesystem with casefold feature cannot be "
3615			 "mounted without CONFIG_UNICODE");
3616		return 0;
3617	}
3618#endif
3619
3620	if (readonly)
3621		return 1;
3622
3623	if (ext4_has_feature_readonly(sb)) {
3624		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3625		sb->s_flags |= SB_RDONLY;
3626		return 1;
3627	}
3628
3629	/* Check that feature set is OK for a read-write mount */
3630	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3631		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3632			 "unsupported optional features (%x)",
3633			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3634				~EXT4_FEATURE_RO_COMPAT_SUPP));
3635		return 0;
3636	}
3637	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3638		ext4_msg(sb, KERN_ERR,
3639			 "Can't support bigalloc feature without "
3640			 "extents feature\n");
3641		return 0;
3642	}
3643
3644#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3645	if (!readonly && (ext4_has_feature_quota(sb) ||
3646			  ext4_has_feature_project(sb))) {
3647		ext4_msg(sb, KERN_ERR,
3648			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3649		return 0;
3650	}
3651#endif  /* CONFIG_QUOTA */
3652	return 1;
3653}
3654
3655/*
3656 * This function is called once a day if we have errors logged
3657 * on the file system
3658 */
3659static void print_daily_error_info(struct timer_list *t)
3660{
3661	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3662	struct super_block *sb = sbi->s_sb;
3663	struct ext4_super_block *es = sbi->s_es;
3664
3665	if (es->s_error_count)
3666		/* fsck newer than v1.41.13 is needed to clean this condition. */
3667		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3668			 le32_to_cpu(es->s_error_count));
3669	if (es->s_first_error_time) {
3670		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3671		       sb->s_id,
3672		       ext4_get_tstamp(es, s_first_error_time),
3673		       (int) sizeof(es->s_first_error_func),
3674		       es->s_first_error_func,
3675		       le32_to_cpu(es->s_first_error_line));
3676		if (es->s_first_error_ino)
3677			printk(KERN_CONT ": inode %u",
3678			       le32_to_cpu(es->s_first_error_ino));
3679		if (es->s_first_error_block)
3680			printk(KERN_CONT ": block %llu", (unsigned long long)
3681			       le64_to_cpu(es->s_first_error_block));
3682		printk(KERN_CONT "\n");
3683	}
3684	if (es->s_last_error_time) {
3685		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3686		       sb->s_id,
3687		       ext4_get_tstamp(es, s_last_error_time),
3688		       (int) sizeof(es->s_last_error_func),
3689		       es->s_last_error_func,
3690		       le32_to_cpu(es->s_last_error_line));
3691		if (es->s_last_error_ino)
3692			printk(KERN_CONT ": inode %u",
3693			       le32_to_cpu(es->s_last_error_ino));
3694		if (es->s_last_error_block)
3695			printk(KERN_CONT ": block %llu", (unsigned long long)
3696			       le64_to_cpu(es->s_last_error_block));
3697		printk(KERN_CONT "\n");
3698	}
3699	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3700}
3701
3702/* Find next suitable group and run ext4_init_inode_table */
3703static int ext4_run_li_request(struct ext4_li_request *elr)
3704{
3705	struct ext4_group_desc *gdp = NULL;
3706	struct super_block *sb = elr->lr_super;
3707	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3708	ext4_group_t group = elr->lr_next_group;
 
3709	unsigned int prefetch_ios = 0;
3710	int ret = 0;
3711	int nr = EXT4_SB(sb)->s_mb_prefetch;
3712	u64 start_time;
3713
3714	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3715		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3716		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3717		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
 
 
 
 
3718		if (group >= elr->lr_next_group) {
3719			ret = 1;
3720			if (elr->lr_first_not_zeroed != ngroups &&
3721			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3722				elr->lr_next_group = elr->lr_first_not_zeroed;
3723				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3724				ret = 0;
3725			}
3726		}
3727		return ret;
3728	}
3729
3730	for (; group < ngroups; group++) {
3731		gdp = ext4_get_group_desc(sb, group, NULL);
3732		if (!gdp) {
3733			ret = 1;
3734			break;
3735		}
3736
3737		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3738			break;
3739	}
3740
3741	if (group >= ngroups)
3742		ret = 1;
3743
3744	if (!ret) {
3745		start_time = ktime_get_real_ns();
3746		ret = ext4_init_inode_table(sb, group,
3747					    elr->lr_timeout ? 0 : 1);
3748		trace_ext4_lazy_itable_init(sb, group);
3749		if (elr->lr_timeout == 0) {
3750			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3751				EXT4_SB(elr->lr_super)->s_li_wait_mult);
 
3752		}
3753		elr->lr_next_sched = jiffies + elr->lr_timeout;
3754		elr->lr_next_group = group + 1;
3755	}
3756	return ret;
3757}
3758
3759/*
3760 * Remove lr_request from the list_request and free the
3761 * request structure. Should be called with li_list_mtx held
3762 */
3763static void ext4_remove_li_request(struct ext4_li_request *elr)
3764{
3765	if (!elr)
3766		return;
3767
3768	list_del(&elr->lr_request);
3769	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3770	kfree(elr);
3771}
3772
3773static void ext4_unregister_li_request(struct super_block *sb)
3774{
3775	mutex_lock(&ext4_li_mtx);
3776	if (!ext4_li_info) {
3777		mutex_unlock(&ext4_li_mtx);
3778		return;
3779	}
3780
3781	mutex_lock(&ext4_li_info->li_list_mtx);
3782	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3783	mutex_unlock(&ext4_li_info->li_list_mtx);
3784	mutex_unlock(&ext4_li_mtx);
3785}
3786
3787static struct task_struct *ext4_lazyinit_task;
3788
3789/*
3790 * This is the function where ext4lazyinit thread lives. It walks
3791 * through the request list searching for next scheduled filesystem.
3792 * When such a fs is found, run the lazy initialization request
3793 * (ext4_rn_li_request) and keep track of the time spend in this
3794 * function. Based on that time we compute next schedule time of
3795 * the request. When walking through the list is complete, compute
3796 * next waking time and put itself into sleep.
3797 */
3798static int ext4_lazyinit_thread(void *arg)
3799{
3800	struct ext4_lazy_init *eli = arg;
3801	struct list_head *pos, *n;
3802	struct ext4_li_request *elr;
3803	unsigned long next_wakeup, cur;
3804
3805	BUG_ON(NULL == eli);
3806	set_freezable();
3807
3808cont_thread:
3809	while (true) {
3810		next_wakeup = MAX_JIFFY_OFFSET;
3811
3812		mutex_lock(&eli->li_list_mtx);
3813		if (list_empty(&eli->li_request_list)) {
3814			mutex_unlock(&eli->li_list_mtx);
3815			goto exit_thread;
3816		}
3817		list_for_each_safe(pos, n, &eli->li_request_list) {
3818			int err = 0;
3819			int progress = 0;
3820			elr = list_entry(pos, struct ext4_li_request,
3821					 lr_request);
3822
3823			if (time_before(jiffies, elr->lr_next_sched)) {
3824				if (time_before(elr->lr_next_sched, next_wakeup))
3825					next_wakeup = elr->lr_next_sched;
3826				continue;
3827			}
3828			if (down_read_trylock(&elr->lr_super->s_umount)) {
3829				if (sb_start_write_trylock(elr->lr_super)) {
3830					progress = 1;
3831					/*
3832					 * We hold sb->s_umount, sb can not
3833					 * be removed from the list, it is
3834					 * now safe to drop li_list_mtx
3835					 */
3836					mutex_unlock(&eli->li_list_mtx);
3837					err = ext4_run_li_request(elr);
3838					sb_end_write(elr->lr_super);
3839					mutex_lock(&eli->li_list_mtx);
3840					n = pos->next;
3841				}
3842				up_read((&elr->lr_super->s_umount));
3843			}
3844			/* error, remove the lazy_init job */
3845			if (err) {
3846				ext4_remove_li_request(elr);
3847				continue;
3848			}
3849			if (!progress) {
3850				elr->lr_next_sched = jiffies +
3851					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
 
3852			}
3853			if (time_before(elr->lr_next_sched, next_wakeup))
3854				next_wakeup = elr->lr_next_sched;
3855		}
3856		mutex_unlock(&eli->li_list_mtx);
3857
3858		try_to_freeze();
3859
3860		cur = jiffies;
3861		if ((time_after_eq(cur, next_wakeup)) ||
3862		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3863			cond_resched();
3864			continue;
3865		}
3866
3867		schedule_timeout_interruptible(next_wakeup - cur);
3868
3869		if (kthread_should_stop()) {
3870			ext4_clear_request_list();
3871			goto exit_thread;
3872		}
3873	}
3874
3875exit_thread:
3876	/*
3877	 * It looks like the request list is empty, but we need
3878	 * to check it under the li_list_mtx lock, to prevent any
3879	 * additions into it, and of course we should lock ext4_li_mtx
3880	 * to atomically free the list and ext4_li_info, because at
3881	 * this point another ext4 filesystem could be registering
3882	 * new one.
3883	 */
3884	mutex_lock(&ext4_li_mtx);
3885	mutex_lock(&eli->li_list_mtx);
3886	if (!list_empty(&eli->li_request_list)) {
3887		mutex_unlock(&eli->li_list_mtx);
3888		mutex_unlock(&ext4_li_mtx);
3889		goto cont_thread;
3890	}
3891	mutex_unlock(&eli->li_list_mtx);
3892	kfree(ext4_li_info);
3893	ext4_li_info = NULL;
3894	mutex_unlock(&ext4_li_mtx);
3895
3896	return 0;
3897}
3898
3899static void ext4_clear_request_list(void)
3900{
3901	struct list_head *pos, *n;
3902	struct ext4_li_request *elr;
3903
3904	mutex_lock(&ext4_li_info->li_list_mtx);
3905	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3906		elr = list_entry(pos, struct ext4_li_request,
3907				 lr_request);
3908		ext4_remove_li_request(elr);
3909	}
3910	mutex_unlock(&ext4_li_info->li_list_mtx);
3911}
3912
3913static int ext4_run_lazyinit_thread(void)
3914{
3915	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3916					 ext4_li_info, "ext4lazyinit");
3917	if (IS_ERR(ext4_lazyinit_task)) {
3918		int err = PTR_ERR(ext4_lazyinit_task);
3919		ext4_clear_request_list();
3920		kfree(ext4_li_info);
3921		ext4_li_info = NULL;
3922		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3923				 "initialization thread\n",
3924				 err);
3925		return err;
3926	}
3927	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3928	return 0;
3929}
3930
3931/*
3932 * Check whether it make sense to run itable init. thread or not.
3933 * If there is at least one uninitialized inode table, return
3934 * corresponding group number, else the loop goes through all
3935 * groups and return total number of groups.
3936 */
3937static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3938{
3939	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3940	struct ext4_group_desc *gdp = NULL;
3941
3942	if (!ext4_has_group_desc_csum(sb))
3943		return ngroups;
3944
3945	for (group = 0; group < ngroups; group++) {
3946		gdp = ext4_get_group_desc(sb, group, NULL);
3947		if (!gdp)
3948			continue;
3949
3950		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3951			break;
3952	}
3953
3954	return group;
3955}
3956
3957static int ext4_li_info_new(void)
3958{
3959	struct ext4_lazy_init *eli = NULL;
3960
3961	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3962	if (!eli)
3963		return -ENOMEM;
3964
3965	INIT_LIST_HEAD(&eli->li_request_list);
3966	mutex_init(&eli->li_list_mtx);
3967
3968	eli->li_state |= EXT4_LAZYINIT_QUIT;
3969
3970	ext4_li_info = eli;
3971
3972	return 0;
3973}
3974
3975static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3976					    ext4_group_t start)
3977{
3978	struct ext4_li_request *elr;
3979
3980	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3981	if (!elr)
3982		return NULL;
3983
3984	elr->lr_super = sb;
3985	elr->lr_first_not_zeroed = start;
3986	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3987		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3988		elr->lr_next_group = start;
3989	} else {
3990		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3991	}
3992
3993	/*
3994	 * Randomize first schedule time of the request to
3995	 * spread the inode table initialization requests
3996	 * better.
3997	 */
3998	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
 
3999	return elr;
4000}
4001
4002int ext4_register_li_request(struct super_block *sb,
4003			     ext4_group_t first_not_zeroed)
4004{
4005	struct ext4_sb_info *sbi = EXT4_SB(sb);
4006	struct ext4_li_request *elr = NULL;
4007	ext4_group_t ngroups = sbi->s_groups_count;
4008	int ret = 0;
4009
4010	mutex_lock(&ext4_li_mtx);
4011	if (sbi->s_li_request != NULL) {
4012		/*
4013		 * Reset timeout so it can be computed again, because
4014		 * s_li_wait_mult might have changed.
4015		 */
4016		sbi->s_li_request->lr_timeout = 0;
4017		goto out;
4018	}
4019
4020	if (sb_rdonly(sb) ||
4021	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4022	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4023		goto out;
4024
4025	elr = ext4_li_request_new(sb, first_not_zeroed);
4026	if (!elr) {
4027		ret = -ENOMEM;
4028		goto out;
4029	}
4030
4031	if (NULL == ext4_li_info) {
4032		ret = ext4_li_info_new();
4033		if (ret)
4034			goto out;
4035	}
4036
4037	mutex_lock(&ext4_li_info->li_list_mtx);
4038	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4039	mutex_unlock(&ext4_li_info->li_list_mtx);
4040
4041	sbi->s_li_request = elr;
4042	/*
4043	 * set elr to NULL here since it has been inserted to
4044	 * the request_list and the removal and free of it is
4045	 * handled by ext4_clear_request_list from now on.
4046	 */
4047	elr = NULL;
4048
4049	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4050		ret = ext4_run_lazyinit_thread();
4051		if (ret)
4052			goto out;
4053	}
4054out:
4055	mutex_unlock(&ext4_li_mtx);
4056	if (ret)
4057		kfree(elr);
4058	return ret;
4059}
4060
4061/*
4062 * We do not need to lock anything since this is called on
4063 * module unload.
4064 */
4065static void ext4_destroy_lazyinit_thread(void)
4066{
4067	/*
4068	 * If thread exited earlier
4069	 * there's nothing to be done.
4070	 */
4071	if (!ext4_li_info || !ext4_lazyinit_task)
4072		return;
4073
4074	kthread_stop(ext4_lazyinit_task);
4075}
4076
4077static int set_journal_csum_feature_set(struct super_block *sb)
4078{
4079	int ret = 1;
4080	int compat, incompat;
4081	struct ext4_sb_info *sbi = EXT4_SB(sb);
4082
4083	if (ext4_has_metadata_csum(sb)) {
4084		/* journal checksum v3 */
4085		compat = 0;
4086		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4087	} else {
4088		/* journal checksum v1 */
4089		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4090		incompat = 0;
4091	}
4092
4093	jbd2_journal_clear_features(sbi->s_journal,
4094			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4095			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4096			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4097	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4098		ret = jbd2_journal_set_features(sbi->s_journal,
4099				compat, 0,
4100				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4101				incompat);
4102	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4103		ret = jbd2_journal_set_features(sbi->s_journal,
4104				compat, 0,
4105				incompat);
4106		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4107				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4108	} else {
4109		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4110				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4111	}
4112
4113	return ret;
4114}
4115
4116/*
4117 * Note: calculating the overhead so we can be compatible with
4118 * historical BSD practice is quite difficult in the face of
4119 * clusters/bigalloc.  This is because multiple metadata blocks from
4120 * different block group can end up in the same allocation cluster.
4121 * Calculating the exact overhead in the face of clustered allocation
4122 * requires either O(all block bitmaps) in memory or O(number of block
4123 * groups**2) in time.  We will still calculate the superblock for
4124 * older file systems --- and if we come across with a bigalloc file
4125 * system with zero in s_overhead_clusters the estimate will be close to
4126 * correct especially for very large cluster sizes --- but for newer
4127 * file systems, it's better to calculate this figure once at mkfs
4128 * time, and store it in the superblock.  If the superblock value is
4129 * present (even for non-bigalloc file systems), we will use it.
4130 */
4131static int count_overhead(struct super_block *sb, ext4_group_t grp,
4132			  char *buf)
4133{
4134	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4135	struct ext4_group_desc	*gdp;
4136	ext4_fsblk_t		first_block, last_block, b;
4137	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4138	int			s, j, count = 0;
4139	int			has_super = ext4_bg_has_super(sb, grp);
4140
4141	if (!ext4_has_feature_bigalloc(sb))
4142		return (has_super + ext4_bg_num_gdb(sb, grp) +
4143			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4144			sbi->s_itb_per_group + 2);
4145
4146	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4147		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4148	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4149	for (i = 0; i < ngroups; i++) {
4150		gdp = ext4_get_group_desc(sb, i, NULL);
4151		b = ext4_block_bitmap(sb, gdp);
4152		if (b >= first_block && b <= last_block) {
4153			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4154			count++;
4155		}
4156		b = ext4_inode_bitmap(sb, gdp);
4157		if (b >= first_block && b <= last_block) {
4158			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4159			count++;
4160		}
4161		b = ext4_inode_table(sb, gdp);
4162		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4163			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4164				int c = EXT4_B2C(sbi, b - first_block);
4165				ext4_set_bit(c, buf);
4166				count++;
4167			}
4168		if (i != grp)
4169			continue;
4170		s = 0;
4171		if (ext4_bg_has_super(sb, grp)) {
4172			ext4_set_bit(s++, buf);
4173			count++;
4174		}
4175		j = ext4_bg_num_gdb(sb, grp);
4176		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4177			ext4_error(sb, "Invalid number of block group "
4178				   "descriptor blocks: %d", j);
4179			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4180		}
4181		count += j;
4182		for (; j > 0; j--)
4183			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4184	}
4185	if (!count)
4186		return 0;
4187	return EXT4_CLUSTERS_PER_GROUP(sb) -
4188		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4189}
4190
4191/*
4192 * Compute the overhead and stash it in sbi->s_overhead
4193 */
4194int ext4_calculate_overhead(struct super_block *sb)
4195{
4196	struct ext4_sb_info *sbi = EXT4_SB(sb);
4197	struct ext4_super_block *es = sbi->s_es;
4198	struct inode *j_inode;
4199	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4200	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4201	ext4_fsblk_t overhead = 0;
4202	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4203
4204	if (!buf)
4205		return -ENOMEM;
4206
4207	/*
4208	 * Compute the overhead (FS structures).  This is constant
4209	 * for a given filesystem unless the number of block groups
4210	 * changes so we cache the previous value until it does.
4211	 */
4212
4213	/*
4214	 * All of the blocks before first_data_block are overhead
4215	 */
4216	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4217
4218	/*
4219	 * Add the overhead found in each block group
4220	 */
4221	for (i = 0; i < ngroups; i++) {
4222		int blks;
4223
4224		blks = count_overhead(sb, i, buf);
4225		overhead += blks;
4226		if (blks)
4227			memset(buf, 0, PAGE_SIZE);
4228		cond_resched();
4229	}
4230
4231	/*
4232	 * Add the internal journal blocks whether the journal has been
4233	 * loaded or not
4234	 */
4235	if (sbi->s_journal && !sbi->s_journal_bdev_file)
4236		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4237	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4238		/* j_inum for internal journal is non-zero */
4239		j_inode = ext4_get_journal_inode(sb, j_inum);
4240		if (!IS_ERR(j_inode)) {
4241			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4242			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4243			iput(j_inode);
4244		} else {
4245			ext4_msg(sb, KERN_ERR, "can't get journal size");
4246		}
4247	}
4248	sbi->s_overhead = overhead;
4249	smp_wmb();
4250	free_page((unsigned long) buf);
4251	return 0;
4252}
4253
4254static void ext4_set_resv_clusters(struct super_block *sb)
4255{
4256	ext4_fsblk_t resv_clusters;
4257	struct ext4_sb_info *sbi = EXT4_SB(sb);
4258
4259	/*
4260	 * There's no need to reserve anything when we aren't using extents.
4261	 * The space estimates are exact, there are no unwritten extents,
4262	 * hole punching doesn't need new metadata... This is needed especially
4263	 * to keep ext2/3 backward compatibility.
4264	 */
4265	if (!ext4_has_feature_extents(sb))
4266		return;
4267	/*
4268	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4269	 * This should cover the situations where we can not afford to run
4270	 * out of space like for example punch hole, or converting
4271	 * unwritten extents in delalloc path. In most cases such
4272	 * allocation would require 1, or 2 blocks, higher numbers are
4273	 * very rare.
4274	 */
4275	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4276			 sbi->s_cluster_bits);
4277
4278	do_div(resv_clusters, 50);
4279	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4280
4281	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4282}
4283
4284static const char *ext4_quota_mode(struct super_block *sb)
4285{
4286#ifdef CONFIG_QUOTA
4287	if (!ext4_quota_capable(sb))
4288		return "none";
4289
4290	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4291		return "journalled";
4292	else
4293		return "writeback";
4294#else
4295	return "disabled";
4296#endif
4297}
4298
4299static void ext4_setup_csum_trigger(struct super_block *sb,
4300				    enum ext4_journal_trigger_type type,
4301				    void (*trigger)(
4302					struct jbd2_buffer_trigger_type *type,
4303					struct buffer_head *bh,
4304					void *mapped_data,
4305					size_t size))
4306{
4307	struct ext4_sb_info *sbi = EXT4_SB(sb);
4308
4309	sbi->s_journal_triggers[type].sb = sb;
4310	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4311}
4312
4313static void ext4_free_sbi(struct ext4_sb_info *sbi)
4314{
4315	if (!sbi)
4316		return;
4317
4318	kfree(sbi->s_blockgroup_lock);
4319	fs_put_dax(sbi->s_daxdev, NULL);
4320	kfree(sbi);
4321}
4322
4323static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4324{
4325	struct ext4_sb_info *sbi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4326
4327	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4328	if (!sbi)
4329		return NULL;
 
4330
4331	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4332					   NULL, NULL);
4333
 
4334	sbi->s_blockgroup_lock =
4335		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4336
4337	if (!sbi->s_blockgroup_lock)
4338		goto err_out;
4339
4340	sb->s_fs_info = sbi;
4341	sbi->s_sb = sb;
4342	return sbi;
4343err_out:
4344	fs_put_dax(sbi->s_daxdev, NULL);
4345	kfree(sbi);
4346	return NULL;
4347}
4348
4349static void ext4_set_def_opts(struct super_block *sb,
4350			      struct ext4_super_block *es)
4351{
4352	unsigned long def_mount_opts;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4353
4354	/* Set defaults before we parse the mount options */
4355	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4356	set_opt(sb, INIT_INODE_TABLE);
4357	if (def_mount_opts & EXT4_DEFM_DEBUG)
4358		set_opt(sb, DEBUG);
4359	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4360		set_opt(sb, GRPID);
4361	if (def_mount_opts & EXT4_DEFM_UID16)
4362		set_opt(sb, NO_UID32);
4363	/* xattr user namespace & acls are now defaulted on */
4364	set_opt(sb, XATTR_USER);
4365#ifdef CONFIG_EXT4_FS_POSIX_ACL
4366	set_opt(sb, POSIX_ACL);
4367#endif
4368	if (ext4_has_feature_fast_commit(sb))
4369		set_opt2(sb, JOURNAL_FAST_COMMIT);
4370	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4371	if (ext4_has_metadata_csum(sb))
4372		set_opt(sb, JOURNAL_CHECKSUM);
4373
4374	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4375		set_opt(sb, JOURNAL_DATA);
4376	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4377		set_opt(sb, ORDERED_DATA);
4378	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4379		set_opt(sb, WRITEBACK_DATA);
4380
4381	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4382		set_opt(sb, ERRORS_PANIC);
4383	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4384		set_opt(sb, ERRORS_CONT);
4385	else
4386		set_opt(sb, ERRORS_RO);
4387	/* block_validity enabled by default; disable with noblock_validity */
4388	set_opt(sb, BLOCK_VALIDITY);
4389	if (def_mount_opts & EXT4_DEFM_DISCARD)
4390		set_opt(sb, DISCARD);
4391
 
 
 
 
 
 
4392	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4393		set_opt(sb, BARRIER);
4394
4395	/*
4396	 * enable delayed allocation by default
4397	 * Use -o nodelalloc to turn it off
4398	 */
4399	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4400	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4401		set_opt(sb, DELALLOC);
4402
4403	if (sb->s_blocksize <= PAGE_SIZE)
4404		set_opt(sb, DIOREAD_NOLOCK);
4405}
4406
4407static int ext4_handle_clustersize(struct super_block *sb)
4408{
4409	struct ext4_sb_info *sbi = EXT4_SB(sb);
4410	struct ext4_super_block *es = sbi->s_es;
4411	int clustersize;
4412
4413	/* Handle clustersize */
4414	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4415	if (ext4_has_feature_bigalloc(sb)) {
4416		if (clustersize < sb->s_blocksize) {
4417			ext4_msg(sb, KERN_ERR,
4418				 "cluster size (%d) smaller than "
4419				 "block size (%lu)", clustersize, sb->s_blocksize);
4420			return -EINVAL;
4421		}
4422		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4423			le32_to_cpu(es->s_log_block_size);
4424	} else {
4425		if (clustersize != sb->s_blocksize) {
4426			ext4_msg(sb, KERN_ERR,
4427				 "fragment/cluster size (%d) != "
4428				 "block size (%lu)", clustersize, sb->s_blocksize);
4429			return -EINVAL;
4430		}
4431		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4432			ext4_msg(sb, KERN_ERR,
4433				 "#blocks per group too big: %lu",
4434				 sbi->s_blocks_per_group);
4435			return -EINVAL;
4436		}
4437		sbi->s_cluster_bits = 0;
4438	}
4439	sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4440	if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4441		ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4442			 sbi->s_clusters_per_group);
4443		return -EINVAL;
4444	}
4445	if (sbi->s_blocks_per_group !=
4446	    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4447		ext4_msg(sb, KERN_ERR,
4448			 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4449			 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4450		return -EINVAL;
4451	}
4452	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4453
4454	/* Do we have standard group size of clustersize * 8 blocks ? */
4455	if (sbi->s_blocks_per_group == clustersize << 3)
4456		set_opt2(sb, STD_GROUP_SIZE);
4457
4458	return 0;
4459}
4460
4461static void ext4_fast_commit_init(struct super_block *sb)
4462{
4463	struct ext4_sb_info *sbi = EXT4_SB(sb);
4464
4465	/* Initialize fast commit stuff */
4466	atomic_set(&sbi->s_fc_subtid, 0);
4467	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4468	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4469	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4470	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4471	sbi->s_fc_bytes = 0;
4472	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4473	sbi->s_fc_ineligible_tid = 0;
4474	spin_lock_init(&sbi->s_fc_lock);
4475	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4476	sbi->s_fc_replay_state.fc_regions = NULL;
4477	sbi->s_fc_replay_state.fc_regions_size = 0;
4478	sbi->s_fc_replay_state.fc_regions_used = 0;
4479	sbi->s_fc_replay_state.fc_regions_valid = 0;
4480	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4481	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4482	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4483}
4484
4485static int ext4_inode_info_init(struct super_block *sb,
4486				struct ext4_super_block *es)
4487{
4488	struct ext4_sb_info *sbi = EXT4_SB(sb);
4489
4490	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4491		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4492		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4493	} else {
4494		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4495		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4496		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4497			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4498				 sbi->s_first_ino);
4499			return -EINVAL;
4500		}
4501		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4502		    (!is_power_of_2(sbi->s_inode_size)) ||
4503		    (sbi->s_inode_size > sb->s_blocksize)) {
4504			ext4_msg(sb, KERN_ERR,
4505			       "unsupported inode size: %d",
4506			       sbi->s_inode_size);
4507			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4508			return -EINVAL;
4509		}
4510		/*
4511		 * i_atime_extra is the last extra field available for
4512		 * [acm]times in struct ext4_inode. Checking for that
4513		 * field should suffice to ensure we have extra space
4514		 * for all three.
4515		 */
4516		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4517			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4518			sb->s_time_gran = 1;
4519			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4520		} else {
4521			sb->s_time_gran = NSEC_PER_SEC;
4522			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4523		}
4524		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4525	}
4526
4527	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4528		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4529			EXT4_GOOD_OLD_INODE_SIZE;
4530		if (ext4_has_feature_extra_isize(sb)) {
4531			unsigned v, max = (sbi->s_inode_size -
4532					   EXT4_GOOD_OLD_INODE_SIZE);
4533
4534			v = le16_to_cpu(es->s_want_extra_isize);
4535			if (v > max) {
4536				ext4_msg(sb, KERN_ERR,
4537					 "bad s_want_extra_isize: %d", v);
4538				return -EINVAL;
4539			}
4540			if (sbi->s_want_extra_isize < v)
4541				sbi->s_want_extra_isize = v;
4542
4543			v = le16_to_cpu(es->s_min_extra_isize);
4544			if (v > max) {
4545				ext4_msg(sb, KERN_ERR,
4546					 "bad s_min_extra_isize: %d", v);
4547				return -EINVAL;
4548			}
4549			if (sbi->s_want_extra_isize < v)
4550				sbi->s_want_extra_isize = v;
4551		}
4552	}
4553
4554	return 0;
4555}
4556
4557#if IS_ENABLED(CONFIG_UNICODE)
4558static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4559{
4560	const struct ext4_sb_encodings *encoding_info;
4561	struct unicode_map *encoding;
4562	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4563
4564	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4565		return 0;
4566
4567	encoding_info = ext4_sb_read_encoding(es);
4568	if (!encoding_info) {
4569		ext4_msg(sb, KERN_ERR,
4570			"Encoding requested by superblock is unknown");
4571		return -EINVAL;
4572	}
4573
4574	encoding = utf8_load(encoding_info->version);
4575	if (IS_ERR(encoding)) {
4576		ext4_msg(sb, KERN_ERR,
4577			"can't mount with superblock charset: %s-%u.%u.%u "
4578			"not supported by the kernel. flags: 0x%x.",
4579			encoding_info->name,
4580			unicode_major(encoding_info->version),
4581			unicode_minor(encoding_info->version),
4582			unicode_rev(encoding_info->version),
4583			encoding_flags);
4584		return -EINVAL;
4585	}
4586	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4587		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4588		unicode_major(encoding_info->version),
4589		unicode_minor(encoding_info->version),
4590		unicode_rev(encoding_info->version),
4591		encoding_flags);
4592
4593	sb->s_encoding = encoding;
4594	sb->s_encoding_flags = encoding_flags;
4595
4596	return 0;
4597}
4598#else
4599static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4600{
4601	return 0;
4602}
4603#endif
4604
4605static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4606{
4607	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
4608
4609	/* Warn if metadata_csum and gdt_csum are both set. */
4610	if (ext4_has_feature_metadata_csum(sb) &&
4611	    ext4_has_feature_gdt_csum(sb))
4612		ext4_warning(sb, "metadata_csum and uninit_bg are "
4613			     "redundant flags; please run fsck.");
 
4614
4615	/* Check for a known checksum algorithm */
4616	if (!ext4_verify_csum_type(sb, es)) {
4617		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4618			 "unknown checksum algorithm.");
4619		return -EINVAL;
4620	}
4621	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4622				ext4_orphan_file_block_trigger);
 
 
 
 
4623
4624	/* Load the checksum driver */
4625	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4626	if (IS_ERR(sbi->s_chksum_driver)) {
4627		int ret = PTR_ERR(sbi->s_chksum_driver);
4628		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4629		sbi->s_chksum_driver = NULL;
4630		return ret;
4631	}
 
4632
4633	/* Check superblock checksum */
4634	if (!ext4_superblock_csum_verify(sb, es)) {
4635		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4636			 "invalid superblock checksum.  Run e2fsck?");
4637		return -EFSBADCRC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4638	}
4639
4640	/* Precompute checksum seed for all metadata */
4641	if (ext4_has_feature_csum_seed(sb))
4642		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4643	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4644		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4645					       sizeof(es->s_uuid));
4646	return 0;
4647}
4648
4649static int ext4_check_feature_compatibility(struct super_block *sb,
4650					    struct ext4_super_block *es,
4651					    int silent)
4652{
4653	struct ext4_sb_info *sbi = EXT4_SB(sb);
4654
4655	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4656	    (ext4_has_compat_features(sb) ||
4657	     ext4_has_ro_compat_features(sb) ||
4658	     ext4_has_incompat_features(sb)))
4659		ext4_msg(sb, KERN_WARNING,
4660		       "feature flags set on rev 0 fs, "
4661		       "running e2fsck is recommended");
4662
4663	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4664		set_opt2(sb, HURD_COMPAT);
4665		if (ext4_has_feature_64bit(sb)) {
4666			ext4_msg(sb, KERN_ERR,
4667				 "The Hurd can't support 64-bit file systems");
4668			return -EINVAL;
4669		}
4670
4671		/*
4672		 * ea_inode feature uses l_i_version field which is not
4673		 * available in HURD_COMPAT mode.
4674		 */
4675		if (ext4_has_feature_ea_inode(sb)) {
4676			ext4_msg(sb, KERN_ERR,
4677				 "ea_inode feature is not supported for Hurd");
4678			return -EINVAL;
4679		}
4680	}
4681
4682	if (IS_EXT2_SB(sb)) {
4683		if (ext2_feature_set_ok(sb))
4684			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4685				 "using the ext4 subsystem");
4686		else {
4687			/*
4688			 * If we're probing be silent, if this looks like
4689			 * it's actually an ext[34] filesystem.
4690			 */
4691			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4692				return -EINVAL;
4693			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4694				 "to feature incompatibilities");
4695			return -EINVAL;
4696		}
4697	}
4698
4699	if (IS_EXT3_SB(sb)) {
4700		if (ext3_feature_set_ok(sb))
4701			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4702				 "using the ext4 subsystem");
4703		else {
4704			/*
4705			 * If we're probing be silent, if this looks like
4706			 * it's actually an ext4 filesystem.
4707			 */
4708			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4709				return -EINVAL;
4710			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4711				 "to feature incompatibilities");
4712			return -EINVAL;
4713		}
4714	}
4715
4716	/*
4717	 * Check feature flags regardless of the revision level, since we
4718	 * previously didn't change the revision level when setting the flags,
4719	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4720	 */
4721	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4722		return -EINVAL;
4723
4724	if (sbi->s_daxdev) {
4725		if (sb->s_blocksize == PAGE_SIZE)
4726			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4727		else
4728			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4729	}
4730
 
 
 
4731	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4732		if (ext4_has_feature_inline_data(sb)) {
4733			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4734					" that may contain inline data");
4735			return -EINVAL;
4736		}
4737		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4738			ext4_msg(sb, KERN_ERR,
4739				"DAX unsupported by block device.");
4740			return -EINVAL;
4741		}
4742	}
4743
4744	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4745		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4746			 es->s_encryption_level);
4747		return -EINVAL;
4748	}
4749
4750	return 0;
4751}
 
 
 
 
 
 
 
 
 
 
 
 
4752
4753static int ext4_check_geometry(struct super_block *sb,
4754			       struct ext4_super_block *es)
4755{
4756	struct ext4_sb_info *sbi = EXT4_SB(sb);
4757	__u64 blocks_count;
4758	int err;
 
 
 
 
 
 
 
 
 
 
 
 
4759
4760	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4761		ext4_msg(sb, KERN_ERR,
4762			 "Number of reserved GDT blocks insanely large: %d",
4763			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4764		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4765	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4766	/*
4767	 * Test whether we have more sectors than will fit in sector_t,
4768	 * and whether the max offset is addressable by the page cache.
4769	 */
4770	err = generic_check_addressable(sb->s_blocksize_bits,
4771					ext4_blocks_count(es));
4772	if (err) {
4773		ext4_msg(sb, KERN_ERR, "filesystem"
4774			 " too large to mount safely on this system");
4775		return err;
4776	}
4777
 
 
 
4778	/* check blocks count against device size */
4779	blocks_count = sb_bdev_nr_blocks(sb);
4780	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4781		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4782		       "exceeds size of device (%llu blocks)",
4783		       ext4_blocks_count(es), blocks_count);
4784		return -EINVAL;
4785	}
4786
4787	/*
4788	 * It makes no sense for the first data block to be beyond the end
4789	 * of the filesystem.
4790	 */
4791	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4792		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4793			 "block %u is beyond end of filesystem (%llu)",
4794			 le32_to_cpu(es->s_first_data_block),
4795			 ext4_blocks_count(es));
4796		return -EINVAL;
4797	}
4798	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4799	    (sbi->s_cluster_ratio == 1)) {
4800		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4801			 "block is 0 with a 1k block and cluster size");
4802		return -EINVAL;
4803	}
4804
4805	blocks_count = (ext4_blocks_count(es) -
4806			le32_to_cpu(es->s_first_data_block) +
4807			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4808	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4809	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4810		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4811		       "(block count %llu, first data block %u, "
4812		       "blocks per group %lu)", blocks_count,
4813		       ext4_blocks_count(es),
4814		       le32_to_cpu(es->s_first_data_block),
4815		       EXT4_BLOCKS_PER_GROUP(sb));
4816		return -EINVAL;
4817	}
4818	sbi->s_groups_count = blocks_count;
4819	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4820			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4821	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4822	    le32_to_cpu(es->s_inodes_count)) {
4823		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4824			 le32_to_cpu(es->s_inodes_count),
4825			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4826		return -EINVAL;
 
4827	}
4828
4829	return 0;
4830}
4831
4832static int ext4_group_desc_init(struct super_block *sb,
4833				struct ext4_super_block *es,
4834				ext4_fsblk_t logical_sb_block,
4835				ext4_group_t *first_not_zeroed)
4836{
4837	struct ext4_sb_info *sbi = EXT4_SB(sb);
4838	unsigned int db_count;
4839	ext4_fsblk_t block;
4840	int i;
4841
4842	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4843		   EXT4_DESC_PER_BLOCK(sb);
4844	if (ext4_has_feature_meta_bg(sb)) {
4845		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4846			ext4_msg(sb, KERN_WARNING,
4847				 "first meta block group too large: %u "
4848				 "(group descriptor block count %u)",
4849				 le32_to_cpu(es->s_first_meta_bg), db_count);
4850			return -EINVAL;
4851		}
4852	}
4853	rcu_assign_pointer(sbi->s_group_desc,
4854			   kvmalloc_array(db_count,
4855					  sizeof(struct buffer_head *),
4856					  GFP_KERNEL));
4857	if (sbi->s_group_desc == NULL) {
4858		ext4_msg(sb, KERN_ERR, "not enough memory");
4859		return -ENOMEM;
 
4860	}
4861
4862	bgl_lock_init(sbi->s_blockgroup_lock);
4863
4864	/* Pre-read the descriptors into the buffer cache */
4865	for (i = 0; i < db_count; i++) {
4866		block = descriptor_loc(sb, logical_sb_block, i);
4867		ext4_sb_breadahead_unmovable(sb, block);
4868	}
4869
4870	for (i = 0; i < db_count; i++) {
4871		struct buffer_head *bh;
4872
4873		block = descriptor_loc(sb, logical_sb_block, i);
4874		bh = ext4_sb_bread_unmovable(sb, block);
4875		if (IS_ERR(bh)) {
4876			ext4_msg(sb, KERN_ERR,
4877			       "can't read group descriptor %d", i);
4878			sbi->s_gdb_count = i;
4879			return PTR_ERR(bh);
 
4880		}
4881		rcu_read_lock();
4882		rcu_dereference(sbi->s_group_desc)[i] = bh;
4883		rcu_read_unlock();
4884	}
4885	sbi->s_gdb_count = db_count;
4886	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4887		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4888		return -EFSCORRUPTED;
4889	}
4890
4891	return 0;
4892}
4893
4894static int ext4_load_and_init_journal(struct super_block *sb,
4895				      struct ext4_super_block *es,
4896				      struct ext4_fs_context *ctx)
4897{
4898	struct ext4_sb_info *sbi = EXT4_SB(sb);
4899	int err;
4900
4901	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4902	if (err)
4903		return err;
4904
4905	if (ext4_has_feature_64bit(sb) &&
4906	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4907				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4908		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4909		goto out;
4910	}
4911
4912	if (!set_journal_csum_feature_set(sb)) {
4913		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4914			 "feature set");
4915		goto out;
4916	}
4917
4918	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4919		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4920					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4921		ext4_msg(sb, KERN_ERR,
4922			"Failed to set fast commit journal feature");
4923		goto out;
4924	}
4925
4926	/* We have now updated the journal if required, so we can
4927	 * validate the data journaling mode. */
4928	switch (test_opt(sb, DATA_FLAGS)) {
4929	case 0:
4930		/* No mode set, assume a default based on the journal
4931		 * capabilities: ORDERED_DATA if the journal can
4932		 * cope, else JOURNAL_DATA
4933		 */
4934		if (jbd2_journal_check_available_features
4935		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4936			set_opt(sb, ORDERED_DATA);
4937			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4938		} else {
4939			set_opt(sb, JOURNAL_DATA);
4940			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4941		}
4942		break;
4943
4944	case EXT4_MOUNT_ORDERED_DATA:
4945	case EXT4_MOUNT_WRITEBACK_DATA:
4946		if (!jbd2_journal_check_available_features
4947		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4948			ext4_msg(sb, KERN_ERR, "Journal does not support "
4949			       "requested data journaling mode");
4950			goto out;
4951		}
4952		break;
4953	default:
4954		break;
4955	}
4956
4957	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4958	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4959		ext4_msg(sb, KERN_ERR, "can't mount with "
4960			"journal_async_commit in data=ordered mode");
4961		goto out;
4962	}
4963
4964	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4965
4966	sbi->s_journal->j_submit_inode_data_buffers =
4967		ext4_journal_submit_inode_data_buffers;
4968	sbi->s_journal->j_finish_inode_data_buffers =
4969		ext4_journal_finish_inode_data_buffers;
4970
4971	return 0;
4972
4973out:
4974	/* flush s_sb_upd_work before destroying the journal. */
4975	flush_work(&sbi->s_sb_upd_work);
4976	jbd2_journal_destroy(sbi->s_journal);
4977	sbi->s_journal = NULL;
4978	return -EINVAL;
4979}
4980
4981static int ext4_check_journal_data_mode(struct super_block *sb)
4982{
4983	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4984		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4985			    "data=journal disables delayed allocation, "
4986			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4987		/* can't mount with both data=journal and dioread_nolock. */
4988		clear_opt(sb, DIOREAD_NOLOCK);
4989		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4990		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4991			ext4_msg(sb, KERN_ERR, "can't mount with "
4992				 "both data=journal and delalloc");
4993			return -EINVAL;
4994		}
4995		if (test_opt(sb, DAX_ALWAYS)) {
4996			ext4_msg(sb, KERN_ERR, "can't mount with "
4997				 "both data=journal and dax");
4998			return -EINVAL;
4999		}
5000		if (ext4_has_feature_encrypt(sb)) {
5001			ext4_msg(sb, KERN_WARNING,
5002				 "encrypted files will use data=ordered "
5003				 "instead of data journaling mode");
5004		}
5005		if (test_opt(sb, DELALLOC))
5006			clear_opt(sb, DELALLOC);
5007	} else {
5008		sb->s_iflags |= SB_I_CGROUPWB;
5009	}
5010
5011	return 0;
5012}
5013
5014static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5015			   int silent)
5016{
5017	struct ext4_sb_info *sbi = EXT4_SB(sb);
5018	struct ext4_super_block *es;
5019	ext4_fsblk_t logical_sb_block;
5020	unsigned long offset = 0;
5021	struct buffer_head *bh;
5022	int ret = -EINVAL;
5023	int blocksize;
5024
5025	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5026	if (!blocksize) {
5027		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5028		return -EINVAL;
5029	}
5030
5031	/*
5032	 * The ext4 superblock will not be buffer aligned for other than 1kB
5033	 * block sizes.  We need to calculate the offset from buffer start.
5034	 */
5035	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5036		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5037		offset = do_div(logical_sb_block, blocksize);
5038	} else {
5039		logical_sb_block = sbi->s_sb_block;
5040	}
5041
5042	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5043	if (IS_ERR(bh)) {
5044		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5045		return PTR_ERR(bh);
5046	}
5047	/*
5048	 * Note: s_es must be initialized as soon as possible because
5049	 *       some ext4 macro-instructions depend on its value
5050	 */
5051	es = (struct ext4_super_block *) (bh->b_data + offset);
5052	sbi->s_es = es;
5053	sb->s_magic = le16_to_cpu(es->s_magic);
5054	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5055		if (!silent)
5056			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5057		goto out;
5058	}
5059
5060	if (le32_to_cpu(es->s_log_block_size) >
5061	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5062		ext4_msg(sb, KERN_ERR,
5063			 "Invalid log block size: %u",
5064			 le32_to_cpu(es->s_log_block_size));
5065		goto out;
5066	}
5067	if (le32_to_cpu(es->s_log_cluster_size) >
5068	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5069		ext4_msg(sb, KERN_ERR,
5070			 "Invalid log cluster size: %u",
5071			 le32_to_cpu(es->s_log_cluster_size));
5072		goto out;
5073	}
5074
5075	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5076
5077	/*
5078	 * If the default block size is not the same as the real block size,
5079	 * we need to reload it.
5080	 */
5081	if (sb->s_blocksize == blocksize) {
5082		*lsb = logical_sb_block;
5083		sbi->s_sbh = bh;
5084		return 0;
5085	}
5086
5087	/*
5088	 * bh must be released before kill_bdev(), otherwise
5089	 * it won't be freed and its page also. kill_bdev()
5090	 * is called by sb_set_blocksize().
5091	 */
5092	brelse(bh);
5093	/* Validate the filesystem blocksize */
5094	if (!sb_set_blocksize(sb, blocksize)) {
5095		ext4_msg(sb, KERN_ERR, "bad block size %d",
5096				blocksize);
5097		bh = NULL;
5098		goto out;
5099	}
5100
5101	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5102	offset = do_div(logical_sb_block, blocksize);
5103	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5104	if (IS_ERR(bh)) {
5105		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5106		ret = PTR_ERR(bh);
5107		bh = NULL;
5108		goto out;
5109	}
5110	es = (struct ext4_super_block *)(bh->b_data + offset);
5111	sbi->s_es = es;
5112	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5113		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5114		goto out;
5115	}
5116	*lsb = logical_sb_block;
5117	sbi->s_sbh = bh;
5118	return 0;
5119out:
5120	brelse(bh);
5121	return ret;
5122}
5123
5124static void ext4_hash_info_init(struct super_block *sb)
5125{
5126	struct ext4_sb_info *sbi = EXT4_SB(sb);
5127	struct ext4_super_block *es = sbi->s_es;
5128	unsigned int i;
5129
5130	for (i = 0; i < 4; i++)
5131		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5132
5133	sbi->s_def_hash_version = es->s_def_hash_version;
5134	if (ext4_has_feature_dir_index(sb)) {
5135		i = le32_to_cpu(es->s_flags);
5136		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5137			sbi->s_hash_unsigned = 3;
5138		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5139#ifdef __CHAR_UNSIGNED__
5140			if (!sb_rdonly(sb))
5141				es->s_flags |=
5142					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5143			sbi->s_hash_unsigned = 3;
5144#else
5145			if (!sb_rdonly(sb))
5146				es->s_flags |=
5147					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5148#endif
5149		}
5150	}
5151}
5152
5153static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5154{
5155	struct ext4_sb_info *sbi = EXT4_SB(sb);
5156	struct ext4_super_block *es = sbi->s_es;
5157	int has_huge_files;
5158
5159	has_huge_files = ext4_has_feature_huge_file(sb);
5160	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5161						      has_huge_files);
5162	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5163
5164	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5165	if (ext4_has_feature_64bit(sb)) {
5166		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5167		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5168		    !is_power_of_2(sbi->s_desc_size)) {
5169			ext4_msg(sb, KERN_ERR,
5170			       "unsupported descriptor size %lu",
5171			       sbi->s_desc_size);
5172			return -EINVAL;
5173		}
5174	} else
5175		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5176
5177	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5178	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5179
5180	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5181	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5182		if (!silent)
5183			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5184		return -EINVAL;
5185	}
5186	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5187	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5188		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5189			 sbi->s_inodes_per_group);
5190		return -EINVAL;
5191	}
5192	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5193					sbi->s_inodes_per_block;
5194	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5195	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5196	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5197	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5198
5199	return 0;
5200}
5201
5202static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5203{
5204	struct ext4_super_block *es = NULL;
5205	struct ext4_sb_info *sbi = EXT4_SB(sb);
5206	ext4_fsblk_t logical_sb_block;
5207	struct inode *root;
5208	int needs_recovery;
5209	int err;
5210	ext4_group_t first_not_zeroed;
5211	struct ext4_fs_context *ctx = fc->fs_private;
5212	int silent = fc->sb_flags & SB_SILENT;
5213
5214	/* Set defaults for the variables that will be set during parsing */
5215	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5216		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5217
5218	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5219	sbi->s_sectors_written_start =
5220		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5221
5222	err = ext4_load_super(sb, &logical_sb_block, silent);
5223	if (err)
5224		goto out_fail;
5225
5226	es = sbi->s_es;
5227	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5228
5229	err = ext4_init_metadata_csum(sb, es);
5230	if (err)
5231		goto failed_mount;
5232
5233	ext4_set_def_opts(sb, es);
5234
5235	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5236	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5237	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5238	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5239	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5240
5241	/*
5242	 * set default s_li_wait_mult for lazyinit, for the case there is
5243	 * no mount option specified.
5244	 */
5245	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5246
5247	err = ext4_inode_info_init(sb, es);
5248	if (err)
5249		goto failed_mount;
5250
5251	err = parse_apply_sb_mount_options(sb, ctx);
5252	if (err < 0)
5253		goto failed_mount;
5254
5255	sbi->s_def_mount_opt = sbi->s_mount_opt;
5256	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5257
5258	err = ext4_check_opt_consistency(fc, sb);
5259	if (err < 0)
5260		goto failed_mount;
5261
5262	ext4_apply_options(fc, sb);
5263
5264	err = ext4_encoding_init(sb, es);
5265	if (err)
5266		goto failed_mount;
5267
5268	err = ext4_check_journal_data_mode(sb);
5269	if (err)
5270		goto failed_mount;
5271
5272	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5273		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5274
5275	/* i_version is always enabled now */
5276	sb->s_flags |= SB_I_VERSION;
5277
5278	err = ext4_check_feature_compatibility(sb, es, silent);
5279	if (err)
5280		goto failed_mount;
5281
5282	err = ext4_block_group_meta_init(sb, silent);
5283	if (err)
5284		goto failed_mount;
5285
5286	ext4_hash_info_init(sb);
5287
5288	err = ext4_handle_clustersize(sb);
5289	if (err)
5290		goto failed_mount;
5291
5292	err = ext4_check_geometry(sb, es);
5293	if (err)
5294		goto failed_mount;
5295
5296	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5297	spin_lock_init(&sbi->s_error_lock);
5298	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5299
5300	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5301	if (err)
5302		goto failed_mount3;
5303
5304	err = ext4_es_register_shrinker(sbi);
5305	if (err)
5306		goto failed_mount3;
5307
5308	sbi->s_stripe = ext4_get_stripe_size(sbi);
5309	/*
5310	 * It's hard to get stripe aligned blocks if stripe is not aligned with
5311	 * cluster, just disable stripe and alert user to simpfy code and avoid
5312	 * stripe aligned allocation which will rarely successes.
5313	 */
5314	if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5315	    sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5316		ext4_msg(sb, KERN_WARNING,
5317			 "stripe (%lu) is not aligned with cluster size (%u), "
5318			 "stripe is disabled",
5319			 sbi->s_stripe, sbi->s_cluster_ratio);
5320		sbi->s_stripe = 0;
5321	}
5322	sbi->s_extent_max_zeroout_kb = 32;
5323
5324	/*
5325	 * set up enough so that it can read an inode
5326	 */
5327	sb->s_op = &ext4_sops;
5328	sb->s_export_op = &ext4_export_ops;
5329	sb->s_xattr = ext4_xattr_handlers;
5330#ifdef CONFIG_FS_ENCRYPTION
5331	sb->s_cop = &ext4_cryptops;
5332#endif
5333#ifdef CONFIG_FS_VERITY
5334	sb->s_vop = &ext4_verityops;
5335#endif
5336#ifdef CONFIG_QUOTA
5337	sb->dq_op = &ext4_quota_operations;
5338	if (ext4_has_feature_quota(sb))
5339		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5340	else
5341		sb->s_qcop = &ext4_qctl_operations;
5342	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5343#endif
5344	super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5345
5346	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5347	mutex_init(&sbi->s_orphan_lock);
5348
5349	ext4_fast_commit_init(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5350
5351	sb->s_root = NULL;
5352
5353	needs_recovery = (es->s_last_orphan != 0 ||
5354			  ext4_has_feature_orphan_present(sb) ||
5355			  ext4_has_feature_journal_needs_recovery(sb));
5356
5357	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5358		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5359		if (err)
5360			goto failed_mount3a;
5361	}
5362
5363	err = -EINVAL;
5364	/*
5365	 * The first inode we look at is the journal inode.  Don't try
5366	 * root first: it may be modified in the journal!
5367	 */
5368	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5369		err = ext4_load_and_init_journal(sb, es, ctx);
5370		if (err)
5371			goto failed_mount3a;
5372	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5373		   ext4_has_feature_journal_needs_recovery(sb)) {
5374		ext4_msg(sb, KERN_ERR, "required journal recovery "
5375		       "suppressed and not mounted read-only");
5376		goto failed_mount3a;
5377	} else {
5378		/* Nojournal mode, all journal mount options are illegal */
5379		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5380			ext4_msg(sb, KERN_ERR, "can't mount with "
5381				 "journal_async_commit, fs mounted w/o journal");
5382			goto failed_mount3a;
5383		}
5384
5385		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5386			ext4_msg(sb, KERN_ERR, "can't mount with "
5387				 "journal_checksum, fs mounted w/o journal");
5388			goto failed_mount3a;
 
 
 
 
 
5389		}
5390		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5391			ext4_msg(sb, KERN_ERR, "can't mount with "
5392				 "commit=%lu, fs mounted w/o journal",
5393				 sbi->s_commit_interval / HZ);
5394			goto failed_mount3a;
5395		}
5396		if (EXT4_MOUNT_DATA_FLAGS &
5397		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5398			ext4_msg(sb, KERN_ERR, "can't mount with "
5399				 "data=, fs mounted w/o journal");
5400			goto failed_mount3a;
5401		}
5402		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5403		clear_opt(sb, JOURNAL_CHECKSUM);
5404		clear_opt(sb, DATA_FLAGS);
5405		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5406		sbi->s_journal = NULL;
5407		needs_recovery = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5408	}
5409
 
 
 
 
 
 
 
 
5410	if (!test_opt(sb, NO_MBCACHE)) {
5411		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5412		if (!sbi->s_ea_block_cache) {
5413			ext4_msg(sb, KERN_ERR,
5414				 "Failed to create ea_block_cache");
5415			err = -EINVAL;
5416			goto failed_mount_wq;
5417		}
5418
5419		if (ext4_has_feature_ea_inode(sb)) {
5420			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5421			if (!sbi->s_ea_inode_cache) {
5422				ext4_msg(sb, KERN_ERR,
5423					 "Failed to create ea_inode_cache");
5424				err = -EINVAL;
5425				goto failed_mount_wq;
5426			}
5427		}
5428	}
5429
 
 
 
 
 
 
 
 
 
 
 
5430	/*
5431	 * Get the # of file system overhead blocks from the
5432	 * superblock if present.
5433	 */
5434	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5435	/* ignore the precalculated value if it is ridiculous */
5436	if (sbi->s_overhead > ext4_blocks_count(es))
5437		sbi->s_overhead = 0;
5438	/*
5439	 * If the bigalloc feature is not enabled recalculating the
5440	 * overhead doesn't take long, so we might as well just redo
5441	 * it to make sure we are using the correct value.
5442	 */
5443	if (!ext4_has_feature_bigalloc(sb))
5444		sbi->s_overhead = 0;
5445	if (sbi->s_overhead == 0) {
5446		err = ext4_calculate_overhead(sb);
5447		if (err)
5448			goto failed_mount_wq;
5449	}
5450
5451	/*
5452	 * The maximum number of concurrent works can be high and
5453	 * concurrency isn't really necessary.  Limit it to 1.
5454	 */
5455	EXT4_SB(sb)->rsv_conversion_wq =
5456		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5457	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5458		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5459		err = -ENOMEM;
5460		goto failed_mount4;
5461	}
5462
5463	/*
5464	 * The jbd2_journal_load will have done any necessary log recovery,
5465	 * so we can safely mount the rest of the filesystem now.
5466	 */
5467
5468	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5469	if (IS_ERR(root)) {
5470		ext4_msg(sb, KERN_ERR, "get root inode failed");
5471		err = PTR_ERR(root);
5472		root = NULL;
5473		goto failed_mount4;
5474	}
5475	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5476		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5477		iput(root);
5478		err = -EFSCORRUPTED;
5479		goto failed_mount4;
5480	}
5481
5482	generic_set_sb_d_ops(sb);
5483	sb->s_root = d_make_root(root);
5484	if (!sb->s_root) {
5485		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5486		err = -ENOMEM;
5487		goto failed_mount4;
5488	}
5489
5490	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5491	if (err == -EROFS) {
5492		sb->s_flags |= SB_RDONLY;
5493	} else if (err)
 
5494		goto failed_mount4a;
5495
5496	ext4_set_resv_clusters(sb);
5497
5498	if (test_opt(sb, BLOCK_VALIDITY)) {
5499		err = ext4_setup_system_zone(sb);
5500		if (err) {
5501			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5502				 "zone (%d)", err);
5503			goto failed_mount4a;
5504		}
5505	}
5506	ext4_fc_replay_cleanup(sb);
5507
5508	ext4_ext_init(sb);
5509
5510	/*
5511	 * Enable optimize_scan if number of groups is > threshold. This can be
5512	 * turned off by passing "mb_optimize_scan=0". This can also be
5513	 * turned on forcefully by passing "mb_optimize_scan=1".
5514	 */
5515	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5516		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5517			set_opt2(sb, MB_OPTIMIZE_SCAN);
5518		else
5519			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5520	}
5521
5522	err = ext4_mb_init(sb);
5523	if (err) {
5524		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5525			 err);
5526		goto failed_mount5;
5527	}
5528
5529	/*
5530	 * We can only set up the journal commit callback once
5531	 * mballoc is initialized
5532	 */
5533	if (sbi->s_journal)
5534		sbi->s_journal->j_commit_callback =
5535			ext4_journal_commit_callback;
5536
5537	err = ext4_percpu_param_init(sbi);
5538	if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5539		goto failed_mount6;
 
5540
5541	if (ext4_has_feature_flex_bg(sb))
5542		if (!ext4_fill_flex_info(sb)) {
5543			ext4_msg(sb, KERN_ERR,
5544			       "unable to initialize "
5545			       "flex_bg meta info!");
5546			err = -ENOMEM;
5547			goto failed_mount6;
5548		}
5549
5550	err = ext4_register_li_request(sb, first_not_zeroed);
5551	if (err)
5552		goto failed_mount6;
5553
5554	err = ext4_register_sysfs(sb);
5555	if (err)
5556		goto failed_mount7;
5557
5558	err = ext4_init_orphan_info(sb);
5559	if (err)
5560		goto failed_mount8;
5561#ifdef CONFIG_QUOTA
5562	/* Enable quota usage during mount. */
5563	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5564		err = ext4_enable_quotas(sb);
5565		if (err)
5566			goto failed_mount9;
5567	}
5568#endif  /* CONFIG_QUOTA */
5569
5570	/*
5571	 * Save the original bdev mapping's wb_err value which could be
5572	 * used to detect the metadata async write error.
5573	 */
5574	spin_lock_init(&sbi->s_bdev_wb_lock);
5575	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5576				 &sbi->s_bdev_wb_err);
 
5577	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5578	ext4_orphan_cleanup(sb, es);
5579	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5580	/*
5581	 * Update the checksum after updating free space/inode counters and
5582	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5583	 * checksum in the buffer cache until it is written out and
5584	 * e2fsprogs programs trying to open a file system immediately
5585	 * after it is mounted can fail.
5586	 */
5587	ext4_superblock_csum_set(sb);
5588	if (needs_recovery) {
5589		ext4_msg(sb, KERN_INFO, "recovery complete");
5590		err = ext4_mark_recovery_complete(sb, es);
5591		if (err)
5592			goto failed_mount10;
5593	}
 
 
 
 
 
 
 
 
 
5594
5595	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5596		ext4_msg(sb, KERN_WARNING,
5597			 "mounting with \"discard\" option, but the device does not support discard");
 
 
 
 
 
 
 
 
 
 
 
 
5598
5599	if (es->s_error_count)
5600		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5601
5602	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5603	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5604	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5605	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5606	atomic_set(&sbi->s_warning_count, 0);
5607	atomic_set(&sbi->s_msg_count, 0);
5608
 
5609	return 0;
5610
5611failed_mount10:
5612	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5613failed_mount9: __maybe_unused
5614	ext4_release_orphan_info(sb);
 
5615failed_mount8:
5616	ext4_unregister_sysfs(sb);
5617	kobject_put(&sbi->s_kobj);
5618failed_mount7:
5619	ext4_unregister_li_request(sb);
5620failed_mount6:
5621	ext4_mb_release(sb);
5622	ext4_flex_groups_free(sbi);
5623	ext4_percpu_param_destroy(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
5624failed_mount5:
5625	ext4_ext_release(sb);
5626	ext4_release_system_zone(sb);
5627failed_mount4a:
5628	dput(sb->s_root);
5629	sb->s_root = NULL;
5630failed_mount4:
5631	ext4_msg(sb, KERN_ERR, "mount failed");
5632	if (EXT4_SB(sb)->rsv_conversion_wq)
5633		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5634failed_mount_wq:
5635	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5636	sbi->s_ea_inode_cache = NULL;
5637
5638	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5639	sbi->s_ea_block_cache = NULL;
5640
5641	if (sbi->s_journal) {
5642		/* flush s_sb_upd_work before journal destroy. */
5643		flush_work(&sbi->s_sb_upd_work);
5644		jbd2_journal_destroy(sbi->s_journal);
5645		sbi->s_journal = NULL;
5646	}
5647failed_mount3a:
5648	ext4_es_unregister_shrinker(sbi);
5649failed_mount3:
5650	/* flush s_sb_upd_work before sbi destroy */
5651	flush_work(&sbi->s_sb_upd_work);
5652	del_timer_sync(&sbi->s_err_report);
5653	ext4_stop_mmpd(sbi);
5654	ext4_group_desc_free(sbi);
 
 
 
 
 
 
5655failed_mount:
5656	if (sbi->s_chksum_driver)
5657		crypto_free_shash(sbi->s_chksum_driver);
5658
5659#if IS_ENABLED(CONFIG_UNICODE)
5660	utf8_unload(sb->s_encoding);
5661#endif
5662
5663#ifdef CONFIG_QUOTA
5664	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5665		kfree(get_qf_name(sb, sbi, i));
5666#endif
5667	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5668	brelse(sbi->s_sbh);
5669	if (sbi->s_journal_bdev_file) {
5670		invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5671		bdev_fput(sbi->s_journal_bdev_file);
5672	}
5673out_fail:
5674	invalidate_bdev(sb->s_bdev);
5675	sb->s_fs_info = NULL;
5676	return err;
5677}
5678
5679static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5680{
5681	struct ext4_fs_context *ctx = fc->fs_private;
5682	struct ext4_sb_info *sbi;
5683	const char *descr;
5684	int ret;
5685
5686	sbi = ext4_alloc_sbi(sb);
5687	if (!sbi)
5688		return -ENOMEM;
5689
5690	fc->s_fs_info = sbi;
5691
5692	/* Cleanup superblock name */
5693	strreplace(sb->s_id, '/', '!');
5694
5695	sbi->s_sb_block = 1;	/* Default super block location */
5696	if (ctx->spec & EXT4_SPEC_s_sb_block)
5697		sbi->s_sb_block = ctx->s_sb_block;
5698
5699	ret = __ext4_fill_super(fc, sb);
5700	if (ret < 0)
5701		goto free_sbi;
5702
5703	if (sbi->s_journal) {
5704		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5705			descr = " journalled data mode";
5706		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5707			descr = " ordered data mode";
5708		else
5709			descr = " writeback data mode";
5710	} else
5711		descr = "out journal";
5712
5713	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5714		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5715			 "Quota mode: %s.", &sb->s_uuid,
5716			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5717			 ext4_quota_mode(sb));
5718
5719	/* Update the s_overhead_clusters if necessary */
5720	ext4_update_overhead(sb, false);
5721	return 0;
5722
5723free_sbi:
5724	ext4_free_sbi(sbi);
5725	fc->s_fs_info = NULL;
5726	return ret;
5727}
5728
5729static int ext4_get_tree(struct fs_context *fc)
5730{
5731	return get_tree_bdev(fc, ext4_fill_super);
5732}
5733
5734/*
5735 * Setup any per-fs journal parameters now.  We'll do this both on
5736 * initial mount, once the journal has been initialised but before we've
5737 * done any recovery; and again on any subsequent remount.
5738 */
5739static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5740{
5741	struct ext4_sb_info *sbi = EXT4_SB(sb);
5742
5743	journal->j_commit_interval = sbi->s_commit_interval;
5744	journal->j_min_batch_time = sbi->s_min_batch_time;
5745	journal->j_max_batch_time = sbi->s_max_batch_time;
5746	ext4_fc_init(sb, journal);
5747
5748	write_lock(&journal->j_state_lock);
5749	if (test_opt(sb, BARRIER))
5750		journal->j_flags |= JBD2_BARRIER;
5751	else
5752		journal->j_flags &= ~JBD2_BARRIER;
5753	if (test_opt(sb, DATA_ERR_ABORT))
5754		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5755	else
5756		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5757	/*
5758	 * Always enable journal cycle record option, letting the journal
5759	 * records log transactions continuously between each mount.
5760	 */
5761	journal->j_flags |= JBD2_CYCLE_RECORD;
5762	write_unlock(&journal->j_state_lock);
5763}
5764
5765static struct inode *ext4_get_journal_inode(struct super_block *sb,
5766					     unsigned int journal_inum)
5767{
5768	struct inode *journal_inode;
5769
5770	/*
5771	 * Test for the existence of a valid inode on disk.  Bad things
5772	 * happen if we iget() an unused inode, as the subsequent iput()
5773	 * will try to delete it.
5774	 */
5775	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5776	if (IS_ERR(journal_inode)) {
5777		ext4_msg(sb, KERN_ERR, "no journal found");
5778		return ERR_CAST(journal_inode);
5779	}
5780	if (!journal_inode->i_nlink) {
5781		make_bad_inode(journal_inode);
5782		iput(journal_inode);
5783		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5784		return ERR_PTR(-EFSCORRUPTED);
5785	}
5786	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
 
 
 
5787		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5788		iput(journal_inode);
5789		return ERR_PTR(-EFSCORRUPTED);
5790	}
5791
5792	ext4_debug("Journal inode found at %p: %lld bytes\n",
5793		  journal_inode, journal_inode->i_size);
5794	return journal_inode;
5795}
5796
5797static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5798{
5799	struct ext4_map_blocks map;
5800	int ret;
5801
5802	if (journal->j_inode == NULL)
5803		return 0;
5804
5805	map.m_lblk = *block;
5806	map.m_len = 1;
5807	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5808	if (ret <= 0) {
5809		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5810			 "journal bmap failed: block %llu ret %d\n",
5811			 *block, ret);
5812		jbd2_journal_abort(journal, ret ? ret : -EIO);
5813		return ret;
5814	}
5815	*block = map.m_pblk;
5816	return 0;
5817}
5818
5819static journal_t *ext4_open_inode_journal(struct super_block *sb,
5820					  unsigned int journal_inum)
5821{
5822	struct inode *journal_inode;
5823	journal_t *journal;
5824
 
 
 
5825	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5826	if (IS_ERR(journal_inode))
5827		return ERR_CAST(journal_inode);
5828
5829	journal = jbd2_journal_init_inode(journal_inode);
5830	if (IS_ERR(journal)) {
5831		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5832		iput(journal_inode);
5833		return ERR_CAST(journal);
5834	}
5835	journal->j_private = sb;
5836	journal->j_bmap = ext4_journal_bmap;
5837	ext4_init_journal_params(sb, journal);
5838	return journal;
5839}
5840
5841static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5842					dev_t j_dev, ext4_fsblk_t *j_start,
5843					ext4_fsblk_t *j_len)
5844{
5845	struct buffer_head *bh;
5846	struct block_device *bdev;
5847	struct file *bdev_file;
 
5848	int hblock, blocksize;
5849	ext4_fsblk_t sb_block;
5850	unsigned long offset;
5851	struct ext4_super_block *es;
5852	int errno;
5853
5854	bdev_file = bdev_file_open_by_dev(j_dev,
5855		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5856		sb, &fs_holder_ops);
5857	if (IS_ERR(bdev_file)) {
5858		ext4_msg(sb, KERN_ERR,
5859			 "failed to open journal device unknown-block(%u,%u) %ld",
5860			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5861		return bdev_file;
5862	}
5863
5864	bdev = file_bdev(bdev_file);
5865	blocksize = sb->s_blocksize;
5866	hblock = bdev_logical_block_size(bdev);
5867	if (blocksize < hblock) {
5868		ext4_msg(sb, KERN_ERR,
5869			"blocksize too small for journal device");
5870		errno = -EINVAL;
5871		goto out_bdev;
5872	}
5873
5874	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5875	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5876	set_blocksize(bdev, blocksize);
5877	bh = __bread(bdev, sb_block, blocksize);
5878	if (!bh) {
5879		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5880		       "external journal");
5881		errno = -EINVAL;
5882		goto out_bdev;
5883	}
5884
5885	es = (struct ext4_super_block *) (bh->b_data + offset);
5886	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5887	    !(le32_to_cpu(es->s_feature_incompat) &
5888	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5889		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5890		errno = -EFSCORRUPTED;
5891		goto out_bh;
 
5892	}
5893
5894	if ((le32_to_cpu(es->s_feature_ro_compat) &
5895	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5896	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5897		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5898		errno = -EFSCORRUPTED;
5899		goto out_bh;
 
5900	}
5901
5902	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5903		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5904		errno = -EFSCORRUPTED;
5905		goto out_bh;
5906	}
5907
5908	*j_start = sb_block + 1;
5909	*j_len = ext4_blocks_count(es);
5910	brelse(bh);
5911	return bdev_file;
5912
5913out_bh:
5914	brelse(bh);
5915out_bdev:
5916	bdev_fput(bdev_file);
5917	return ERR_PTR(errno);
5918}
5919
5920static journal_t *ext4_open_dev_journal(struct super_block *sb,
5921					dev_t j_dev)
5922{
5923	journal_t *journal;
5924	ext4_fsblk_t j_start;
5925	ext4_fsblk_t j_len;
5926	struct file *bdev_file;
5927	int errno = 0;
5928
5929	bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5930	if (IS_ERR(bdev_file))
5931		return ERR_CAST(bdev_file);
5932
5933	journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5934					j_len, sb->s_blocksize);
5935	if (IS_ERR(journal)) {
5936		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5937		errno = PTR_ERR(journal);
5938		goto out_bdev;
5939	}
 
 
 
 
 
5940	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5941		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5942					"user (unsupported) - %d",
5943			be32_to_cpu(journal->j_superblock->s_nr_users));
5944		errno = -EINVAL;
5945		goto out_journal;
5946	}
5947	journal->j_private = sb;
5948	EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5949	ext4_init_journal_params(sb, journal);
5950	return journal;
5951
5952out_journal:
5953	jbd2_journal_destroy(journal);
5954out_bdev:
5955	bdev_fput(bdev_file);
5956	return ERR_PTR(errno);
5957}
5958
5959static int ext4_load_journal(struct super_block *sb,
5960			     struct ext4_super_block *es,
5961			     unsigned long journal_devnum)
5962{
5963	journal_t *journal;
5964	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5965	dev_t journal_dev;
5966	int err = 0;
5967	int really_read_only;
5968	int journal_dev_ro;
5969
5970	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5971		return -EFSCORRUPTED;
5972
5973	if (journal_devnum &&
5974	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5975		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5976			"numbers have changed");
5977		journal_dev = new_decode_dev(journal_devnum);
5978	} else
5979		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5980
5981	if (journal_inum && journal_dev) {
5982		ext4_msg(sb, KERN_ERR,
5983			 "filesystem has both journal inode and journal device!");
5984		return -EINVAL;
5985	}
5986
5987	if (journal_inum) {
5988		journal = ext4_open_inode_journal(sb, journal_inum);
5989		if (IS_ERR(journal))
5990			return PTR_ERR(journal);
5991	} else {
5992		journal = ext4_open_dev_journal(sb, journal_dev);
5993		if (IS_ERR(journal))
5994			return PTR_ERR(journal);
5995	}
5996
5997	journal_dev_ro = bdev_read_only(journal->j_dev);
5998	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5999
6000	if (journal_dev_ro && !sb_rdonly(sb)) {
6001		ext4_msg(sb, KERN_ERR,
6002			 "journal device read-only, try mounting with '-o ro'");
6003		err = -EROFS;
6004		goto err_out;
6005	}
6006
6007	/*
6008	 * Are we loading a blank journal or performing recovery after a
6009	 * crash?  For recovery, we need to check in advance whether we
6010	 * can get read-write access to the device.
6011	 */
6012	if (ext4_has_feature_journal_needs_recovery(sb)) {
6013		if (sb_rdonly(sb)) {
6014			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6015					"required on readonly filesystem");
6016			if (really_read_only) {
6017				ext4_msg(sb, KERN_ERR, "write access "
6018					"unavailable, cannot proceed "
6019					"(try mounting with noload)");
6020				err = -EROFS;
6021				goto err_out;
6022			}
6023			ext4_msg(sb, KERN_INFO, "write access will "
6024			       "be enabled during recovery");
6025		}
6026	}
6027
6028	if (!(journal->j_flags & JBD2_BARRIER))
6029		ext4_msg(sb, KERN_INFO, "barriers disabled");
6030
6031	if (!ext4_has_feature_journal_needs_recovery(sb))
6032		err = jbd2_journal_wipe(journal, !really_read_only);
6033	if (!err) {
6034		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6035		__le16 orig_state;
6036		bool changed = false;
6037
6038		if (save)
6039			memcpy(save, ((char *) es) +
6040			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6041		err = jbd2_journal_load(journal);
6042		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6043				   save, EXT4_S_ERR_LEN)) {
6044			memcpy(((char *) es) + EXT4_S_ERR_START,
6045			       save, EXT4_S_ERR_LEN);
6046			changed = true;
6047		}
6048		kfree(save);
6049		orig_state = es->s_state;
6050		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6051					   EXT4_ERROR_FS);
6052		if (orig_state != es->s_state)
6053			changed = true;
6054		/* Write out restored error information to the superblock */
6055		if (changed && !really_read_only) {
6056			int err2;
6057			err2 = ext4_commit_super(sb);
6058			err = err ? : err2;
6059		}
6060	}
6061
6062	if (err) {
6063		ext4_msg(sb, KERN_ERR, "error loading journal");
6064		goto err_out;
6065	}
6066
6067	EXT4_SB(sb)->s_journal = journal;
6068	err = ext4_clear_journal_err(sb, es);
6069	if (err) {
6070		EXT4_SB(sb)->s_journal = NULL;
6071		jbd2_journal_destroy(journal);
6072		return err;
6073	}
6074
6075	if (!really_read_only && journal_devnum &&
6076	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6077		es->s_journal_dev = cpu_to_le32(journal_devnum);
6078		ext4_commit_super(sb);
6079	}
6080	if (!really_read_only && journal_inum &&
6081	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6082		es->s_journal_inum = cpu_to_le32(journal_inum);
6083		ext4_commit_super(sb);
6084	}
6085
6086	return 0;
6087
6088err_out:
6089	jbd2_journal_destroy(journal);
6090	return err;
6091}
6092
6093/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6094static void ext4_update_super(struct super_block *sb)
6095{
6096	struct ext4_sb_info *sbi = EXT4_SB(sb);
6097	struct ext4_super_block *es = sbi->s_es;
6098	struct buffer_head *sbh = sbi->s_sbh;
6099
6100	lock_buffer(sbh);
6101	/*
6102	 * If the file system is mounted read-only, don't update the
6103	 * superblock write time.  This avoids updating the superblock
6104	 * write time when we are mounting the root file system
6105	 * read/only but we need to replay the journal; at that point,
6106	 * for people who are east of GMT and who make their clock
6107	 * tick in localtime for Windows bug-for-bug compatibility,
6108	 * the clock is set in the future, and this will cause e2fsck
6109	 * to complain and force a full file system check.
6110	 */
6111	if (!sb_rdonly(sb))
6112		ext4_update_tstamp(es, s_wtime);
6113	es->s_kbytes_written =
6114		cpu_to_le64(sbi->s_kbytes_written +
6115		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6116		      sbi->s_sectors_written_start) >> 1));
6117	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6118		ext4_free_blocks_count_set(es,
6119			EXT4_C2B(sbi, percpu_counter_sum_positive(
6120				&sbi->s_freeclusters_counter)));
6121	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6122		es->s_free_inodes_count =
6123			cpu_to_le32(percpu_counter_sum_positive(
6124				&sbi->s_freeinodes_counter));
6125	/* Copy error information to the on-disk superblock */
6126	spin_lock(&sbi->s_error_lock);
6127	if (sbi->s_add_error_count > 0) {
6128		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6129		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6130			__ext4_update_tstamp(&es->s_first_error_time,
6131					     &es->s_first_error_time_hi,
6132					     sbi->s_first_error_time);
6133			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6134				sizeof(es->s_first_error_func));
6135			es->s_first_error_line =
6136				cpu_to_le32(sbi->s_first_error_line);
6137			es->s_first_error_ino =
6138				cpu_to_le32(sbi->s_first_error_ino);
6139			es->s_first_error_block =
6140				cpu_to_le64(sbi->s_first_error_block);
6141			es->s_first_error_errcode =
6142				ext4_errno_to_code(sbi->s_first_error_code);
6143		}
6144		__ext4_update_tstamp(&es->s_last_error_time,
6145				     &es->s_last_error_time_hi,
6146				     sbi->s_last_error_time);
6147		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6148			sizeof(es->s_last_error_func));
6149		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6150		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6151		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6152		es->s_last_error_errcode =
6153				ext4_errno_to_code(sbi->s_last_error_code);
6154		/*
6155		 * Start the daily error reporting function if it hasn't been
6156		 * started already
6157		 */
6158		if (!es->s_error_count)
6159			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6160		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6161		sbi->s_add_error_count = 0;
6162	}
6163	spin_unlock(&sbi->s_error_lock);
6164
6165	ext4_superblock_csum_set(sb);
6166	unlock_buffer(sbh);
6167}
6168
6169static int ext4_commit_super(struct super_block *sb)
6170{
6171	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
 
6172
6173	if (!sbh)
6174		return -EINVAL;
6175	if (block_device_ejected(sb))
6176		return -ENODEV;
6177
6178	ext4_update_super(sb);
6179
6180	lock_buffer(sbh);
6181	/* Buffer got discarded which means block device got invalidated */
6182	if (!buffer_mapped(sbh)) {
6183		unlock_buffer(sbh);
6184		return -EIO;
6185	}
6186
6187	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6188		/*
6189		 * Oh, dear.  A previous attempt to write the
6190		 * superblock failed.  This could happen because the
6191		 * USB device was yanked out.  Or it could happen to
6192		 * be a transient write error and maybe the block will
6193		 * be remapped.  Nothing we can do but to retry the
6194		 * write and hope for the best.
6195		 */
6196		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6197		       "superblock detected");
6198		clear_buffer_write_io_error(sbh);
6199		set_buffer_uptodate(sbh);
6200	}
6201	get_bh(sbh);
6202	/* Clear potential dirty bit if it was journalled update */
6203	clear_buffer_dirty(sbh);
6204	sbh->b_end_io = end_buffer_write_sync;
6205	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6206		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6207	wait_on_buffer(sbh);
6208	if (buffer_write_io_error(sbh)) {
6209		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6210		       "superblock");
6211		clear_buffer_write_io_error(sbh);
6212		set_buffer_uptodate(sbh);
6213		return -EIO;
6214	}
6215	return 0;
6216}
6217
6218/*
6219 * Have we just finished recovery?  If so, and if we are mounting (or
6220 * remounting) the filesystem readonly, then we will end up with a
6221 * consistent fs on disk.  Record that fact.
6222 */
6223static int ext4_mark_recovery_complete(struct super_block *sb,
6224				       struct ext4_super_block *es)
6225{
6226	int err;
6227	journal_t *journal = EXT4_SB(sb)->s_journal;
6228
6229	if (!ext4_has_feature_journal(sb)) {
6230		if (journal != NULL) {
6231			ext4_error(sb, "Journal got removed while the fs was "
6232				   "mounted!");
6233			return -EFSCORRUPTED;
6234		}
6235		return 0;
6236	}
6237	jbd2_journal_lock_updates(journal);
6238	err = jbd2_journal_flush(journal, 0);
6239	if (err < 0)
6240		goto out;
6241
6242	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6243	    ext4_has_feature_orphan_present(sb))) {
6244		if (!ext4_orphan_file_empty(sb)) {
6245			ext4_error(sb, "Orphan file not empty on read-only fs.");
6246			err = -EFSCORRUPTED;
6247			goto out;
6248		}
6249		ext4_clear_feature_journal_needs_recovery(sb);
6250		ext4_clear_feature_orphan_present(sb);
6251		ext4_commit_super(sb);
6252	}
6253out:
6254	jbd2_journal_unlock_updates(journal);
6255	return err;
6256}
6257
6258/*
6259 * If we are mounting (or read-write remounting) a filesystem whose journal
6260 * has recorded an error from a previous lifetime, move that error to the
6261 * main filesystem now.
6262 */
6263static int ext4_clear_journal_err(struct super_block *sb,
6264				   struct ext4_super_block *es)
6265{
6266	journal_t *journal;
6267	int j_errno;
6268	const char *errstr;
6269
6270	if (!ext4_has_feature_journal(sb)) {
6271		ext4_error(sb, "Journal got removed while the fs was mounted!");
6272		return -EFSCORRUPTED;
6273	}
6274
6275	journal = EXT4_SB(sb)->s_journal;
6276
6277	/*
6278	 * Now check for any error status which may have been recorded in the
6279	 * journal by a prior ext4_error() or ext4_abort()
6280	 */
6281
6282	j_errno = jbd2_journal_errno(journal);
6283	if (j_errno) {
6284		char nbuf[16];
6285
6286		errstr = ext4_decode_error(sb, j_errno, nbuf);
6287		ext4_warning(sb, "Filesystem error recorded "
6288			     "from previous mount: %s", errstr);
 
6289
6290		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6291		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6292		j_errno = ext4_commit_super(sb);
6293		if (j_errno)
6294			return j_errno;
6295		ext4_warning(sb, "Marked fs in need of filesystem check.");
6296
6297		jbd2_journal_clear_err(journal);
6298		jbd2_journal_update_sb_errno(journal);
6299	}
6300	return 0;
6301}
6302
6303/*
6304 * Force the running and committing transactions to commit,
6305 * and wait on the commit.
6306 */
6307int ext4_force_commit(struct super_block *sb)
6308{
6309	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
 
 
 
 
 
 
6310}
6311
6312static int ext4_sync_fs(struct super_block *sb, int wait)
6313{
6314	int ret = 0;
6315	tid_t target;
6316	bool needs_barrier = false;
6317	struct ext4_sb_info *sbi = EXT4_SB(sb);
6318
6319	if (unlikely(ext4_forced_shutdown(sb)))
6320		return 0;
6321
6322	trace_ext4_sync_fs(sb, wait);
6323	flush_workqueue(sbi->rsv_conversion_wq);
6324	/*
6325	 * Writeback quota in non-journalled quota case - journalled quota has
6326	 * no dirty dquots
6327	 */
6328	dquot_writeback_dquots(sb, -1);
6329	/*
6330	 * Data writeback is possible w/o journal transaction, so barrier must
6331	 * being sent at the end of the function. But we can skip it if
6332	 * transaction_commit will do it for us.
6333	 */
6334	if (sbi->s_journal) {
6335		target = jbd2_get_latest_transaction(sbi->s_journal);
6336		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6337		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6338			needs_barrier = true;
6339
6340		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6341			if (wait)
6342				ret = jbd2_log_wait_commit(sbi->s_journal,
6343							   target);
6344		}
6345	} else if (wait && test_opt(sb, BARRIER))
6346		needs_barrier = true;
6347	if (needs_barrier) {
6348		int err;
6349		err = blkdev_issue_flush(sb->s_bdev);
6350		if (!ret)
6351			ret = err;
6352	}
6353
6354	return ret;
6355}
6356
6357/*
6358 * LVM calls this function before a (read-only) snapshot is created.  This
6359 * gives us a chance to flush the journal completely and mark the fs clean.
6360 *
6361 * Note that only this function cannot bring a filesystem to be in a clean
6362 * state independently. It relies on upper layer to stop all data & metadata
6363 * modifications.
6364 */
6365static int ext4_freeze(struct super_block *sb)
6366{
6367	int error = 0;
6368	journal_t *journal = EXT4_SB(sb)->s_journal;
 
 
 
 
 
6369
6370	if (journal) {
6371		/* Now we set up the journal barrier. */
6372		jbd2_journal_lock_updates(journal);
6373
6374		/*
6375		 * Don't clear the needs_recovery flag if we failed to
6376		 * flush the journal.
6377		 */
6378		error = jbd2_journal_flush(journal, 0);
6379		if (error < 0)
6380			goto out;
6381
6382		/* Journal blocked and flushed, clear needs_recovery flag. */
6383		ext4_clear_feature_journal_needs_recovery(sb);
6384		if (ext4_orphan_file_empty(sb))
6385			ext4_clear_feature_orphan_present(sb);
6386	}
6387
6388	error = ext4_commit_super(sb);
6389out:
6390	if (journal)
6391		/* we rely on upper layer to stop further updates */
6392		jbd2_journal_unlock_updates(journal);
6393	return error;
6394}
6395
6396/*
6397 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6398 * flag here, even though the filesystem is not technically dirty yet.
6399 */
6400static int ext4_unfreeze(struct super_block *sb)
6401{
6402	if (ext4_forced_shutdown(sb))
6403		return 0;
6404
6405	if (EXT4_SB(sb)->s_journal) {
6406		/* Reset the needs_recovery flag before the fs is unlocked. */
6407		ext4_set_feature_journal_needs_recovery(sb);
6408		if (ext4_has_feature_orphan_file(sb))
6409			ext4_set_feature_orphan_present(sb);
6410	}
6411
6412	ext4_commit_super(sb);
6413	return 0;
6414}
6415
6416/*
6417 * Structure to save mount options for ext4_remount's benefit
6418 */
6419struct ext4_mount_options {
6420	unsigned long s_mount_opt;
6421	unsigned long s_mount_opt2;
6422	kuid_t s_resuid;
6423	kgid_t s_resgid;
6424	unsigned long s_commit_interval;
6425	u32 s_min_batch_time, s_max_batch_time;
6426#ifdef CONFIG_QUOTA
6427	int s_jquota_fmt;
6428	char *s_qf_names[EXT4_MAXQUOTAS];
6429#endif
6430};
6431
6432static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6433{
6434	struct ext4_fs_context *ctx = fc->fs_private;
6435	struct ext4_super_block *es;
6436	struct ext4_sb_info *sbi = EXT4_SB(sb);
6437	unsigned long old_sb_flags;
6438	struct ext4_mount_options old_opts;
 
6439	ext4_group_t g;
6440	int err = 0;
6441	int alloc_ctx;
6442#ifdef CONFIG_QUOTA
6443	int enable_quota = 0;
6444	int i, j;
6445	char *to_free[EXT4_MAXQUOTAS];
6446#endif
 
 
 
 
 
6447
 
 
6448
6449	/* Store the original options */
6450	old_sb_flags = sb->s_flags;
6451	old_opts.s_mount_opt = sbi->s_mount_opt;
6452	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6453	old_opts.s_resuid = sbi->s_resuid;
6454	old_opts.s_resgid = sbi->s_resgid;
6455	old_opts.s_commit_interval = sbi->s_commit_interval;
6456	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6457	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6458#ifdef CONFIG_QUOTA
6459	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6460	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6461		if (sbi->s_qf_names[i]) {
6462			char *qf_name = get_qf_name(sb, sbi, i);
6463
6464			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6465			if (!old_opts.s_qf_names[i]) {
6466				for (j = 0; j < i; j++)
6467					kfree(old_opts.s_qf_names[j]);
 
6468				return -ENOMEM;
6469			}
6470		} else
6471			old_opts.s_qf_names[i] = NULL;
6472#endif
6473	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6474		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6475			ctx->journal_ioprio =
6476				sbi->s_journal->j_task->io_context->ioprio;
6477		else
6478			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6479
6480	}
6481
6482	/*
6483	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6484	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6485	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6486	 * here s_writepages_rwsem to avoid race between writepages ops and
6487	 * remount.
6488	 */
6489	alloc_ctx = ext4_writepages_down_write(sb);
6490	ext4_apply_options(fc, sb);
6491	ext4_writepages_up_write(sb, alloc_ctx);
 
 
 
 
6492
6493	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6494	    test_opt(sb, JOURNAL_CHECKSUM)) {
6495		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6496			 "during remount not supported; ignoring");
6497		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6498	}
6499
6500	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6501		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6502			ext4_msg(sb, KERN_ERR, "can't mount with "
6503				 "both data=journal and delalloc");
6504			err = -EINVAL;
6505			goto restore_opts;
6506		}
6507		if (test_opt(sb, DIOREAD_NOLOCK)) {
6508			ext4_msg(sb, KERN_ERR, "can't mount with "
6509				 "both data=journal and dioread_nolock");
6510			err = -EINVAL;
6511			goto restore_opts;
6512		}
6513	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6514		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6515			ext4_msg(sb, KERN_ERR, "can't mount with "
6516				"journal_async_commit in data=ordered mode");
6517			err = -EINVAL;
6518			goto restore_opts;
6519		}
6520	}
6521
6522	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6523		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6524		err = -EINVAL;
6525		goto restore_opts;
6526	}
6527
6528	if (test_opt2(sb, ABORT))
6529		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6530
6531	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6532		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6533
6534	es = sbi->s_es;
6535
6536	if (sbi->s_journal) {
6537		ext4_init_journal_params(sb, sbi->s_journal);
6538		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6539	}
6540
6541	/* Flush outstanding errors before changing fs state */
6542	flush_work(&sbi->s_sb_upd_work);
6543
6544	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6545		if (ext4_forced_shutdown(sb)) {
6546			err = -EROFS;
6547			goto restore_opts;
6548		}
6549
6550		if (fc->sb_flags & SB_RDONLY) {
6551			err = sync_filesystem(sb);
6552			if (err < 0)
6553				goto restore_opts;
6554			err = dquot_suspend(sb, -1);
6555			if (err < 0)
6556				goto restore_opts;
6557
6558			/*
6559			 * First of all, the unconditional stuff we have to do
6560			 * to disable replay of the journal when we next remount
6561			 */
6562			sb->s_flags |= SB_RDONLY;
6563
6564			/*
6565			 * OK, test if we are remounting a valid rw partition
6566			 * readonly, and if so set the rdonly flag and then
6567			 * mark the partition as valid again.
6568			 */
6569			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6570			    (sbi->s_mount_state & EXT4_VALID_FS))
6571				es->s_state = cpu_to_le16(sbi->s_mount_state);
6572
6573			if (sbi->s_journal) {
6574				/*
6575				 * We let remount-ro finish even if marking fs
6576				 * as clean failed...
6577				 */
6578				ext4_mark_recovery_complete(sb, es);
6579			}
6580		} else {
6581			/* Make sure we can mount this feature set readwrite */
6582			if (ext4_has_feature_readonly(sb) ||
6583			    !ext4_feature_set_ok(sb, 0)) {
6584				err = -EROFS;
6585				goto restore_opts;
6586			}
6587			/*
6588			 * Make sure the group descriptor checksums
6589			 * are sane.  If they aren't, refuse to remount r/w.
6590			 */
6591			for (g = 0; g < sbi->s_groups_count; g++) {
6592				struct ext4_group_desc *gdp =
6593					ext4_get_group_desc(sb, g, NULL);
6594
6595				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6596					ext4_msg(sb, KERN_ERR,
6597	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6598		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6599					       le16_to_cpu(gdp->bg_checksum));
6600					err = -EFSBADCRC;
6601					goto restore_opts;
6602				}
6603			}
6604
6605			/*
6606			 * If we have an unprocessed orphan list hanging
6607			 * around from a previously readonly bdev mount,
6608			 * require a full umount/remount for now.
6609			 */
6610			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6611				ext4_msg(sb, KERN_WARNING, "Couldn't "
6612				       "remount RDWR because of unprocessed "
6613				       "orphan inode list.  Please "
6614				       "umount/remount instead");
6615				err = -EINVAL;
6616				goto restore_opts;
6617			}
6618
6619			/*
6620			 * Mounting a RDONLY partition read-write, so reread
6621			 * and store the current valid flag.  (It may have
6622			 * been changed by e2fsck since we originally mounted
6623			 * the partition.)
6624			 */
6625			if (sbi->s_journal) {
6626				err = ext4_clear_journal_err(sb, es);
6627				if (err)
6628					goto restore_opts;
6629			}
6630			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6631					      ~EXT4_FC_REPLAY);
6632
6633			err = ext4_setup_super(sb, es, 0);
6634			if (err)
6635				goto restore_opts;
6636
6637			sb->s_flags &= ~SB_RDONLY;
6638			if (ext4_has_feature_mmp(sb)) {
6639				err = ext4_multi_mount_protect(sb,
6640						le64_to_cpu(es->s_mmp_block));
6641				if (err)
6642					goto restore_opts;
6643			}
6644#ifdef CONFIG_QUOTA
6645			enable_quota = 1;
6646#endif
6647		}
6648	}
6649
6650	/*
 
 
 
 
 
 
 
 
 
 
 
 
6651	 * Handle creation of system zone data early because it can fail.
6652	 * Releasing of existing data is done when we are sure remount will
6653	 * succeed.
6654	 */
6655	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6656		err = ext4_setup_system_zone(sb);
6657		if (err)
6658			goto restore_opts;
6659	}
6660
6661	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6662		err = ext4_commit_super(sb);
6663		if (err)
6664			goto restore_opts;
6665	}
6666
6667#ifdef CONFIG_QUOTA
 
 
 
6668	if (enable_quota) {
6669		if (sb_any_quota_suspended(sb))
6670			dquot_resume(sb, -1);
6671		else if (ext4_has_feature_quota(sb)) {
6672			err = ext4_enable_quotas(sb);
6673			if (err)
6674				goto restore_opts;
6675		}
6676	}
6677	/* Release old quota file names */
6678	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6679		kfree(old_opts.s_qf_names[i]);
6680#endif
6681	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6682		ext4_release_system_zone(sb);
6683
6684	/*
6685	 * Reinitialize lazy itable initialization thread based on
6686	 * current settings
6687	 */
6688	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6689		ext4_unregister_li_request(sb);
6690	else {
6691		ext4_group_t first_not_zeroed;
6692		first_not_zeroed = ext4_has_uninit_itable(sb);
6693		ext4_register_li_request(sb, first_not_zeroed);
6694	}
6695
6696	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6697		ext4_stop_mmpd(sbi);
6698
 
 
 
 
 
 
 
 
 
 
6699	return 0;
6700
6701restore_opts:
6702	/*
6703	 * If there was a failing r/w to ro transition, we may need to
6704	 * re-enable quota
6705	 */
6706	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6707	    sb_any_quota_suspended(sb))
6708		dquot_resume(sb, -1);
6709
6710	alloc_ctx = ext4_writepages_down_write(sb);
6711	sb->s_flags = old_sb_flags;
6712	sbi->s_mount_opt = old_opts.s_mount_opt;
6713	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6714	sbi->s_resuid = old_opts.s_resuid;
6715	sbi->s_resgid = old_opts.s_resgid;
6716	sbi->s_commit_interval = old_opts.s_commit_interval;
6717	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6718	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6719	ext4_writepages_up_write(sb, alloc_ctx);
6720
6721	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6722		ext4_release_system_zone(sb);
6723#ifdef CONFIG_QUOTA
6724	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6725	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6726		to_free[i] = get_qf_name(sb, sbi, i);
6727		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6728	}
6729	synchronize_rcu();
6730	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6731		kfree(to_free[i]);
6732#endif
6733	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6734		ext4_stop_mmpd(sbi);
 
6735	return err;
6736}
6737
6738static int ext4_reconfigure(struct fs_context *fc)
6739{
6740	struct super_block *sb = fc->root->d_sb;
6741	int ret;
6742
6743	fc->s_fs_info = EXT4_SB(sb);
6744
6745	ret = ext4_check_opt_consistency(fc, sb);
6746	if (ret < 0)
6747		return ret;
6748
6749	ret = __ext4_remount(fc, sb);
6750	if (ret < 0)
6751		return ret;
6752
6753	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6754		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6755		 ext4_quota_mode(sb));
6756
6757	return 0;
6758}
6759
6760#ifdef CONFIG_QUOTA
6761static int ext4_statfs_project(struct super_block *sb,
6762			       kprojid_t projid, struct kstatfs *buf)
6763{
6764	struct kqid qid;
6765	struct dquot *dquot;
6766	u64 limit;
6767	u64 curblock;
6768
6769	qid = make_kqid_projid(projid);
6770	dquot = dqget(sb, qid);
6771	if (IS_ERR(dquot))
6772		return PTR_ERR(dquot);
6773	spin_lock(&dquot->dq_dqb_lock);
6774
6775	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6776			     dquot->dq_dqb.dqb_bhardlimit);
6777	limit >>= sb->s_blocksize_bits;
6778
6779	if (limit && buf->f_blocks > limit) {
6780		curblock = (dquot->dq_dqb.dqb_curspace +
6781			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6782		buf->f_blocks = limit;
6783		buf->f_bfree = buf->f_bavail =
6784			(buf->f_blocks > curblock) ?
6785			 (buf->f_blocks - curblock) : 0;
6786	}
6787
6788	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6789			     dquot->dq_dqb.dqb_ihardlimit);
6790	if (limit && buf->f_files > limit) {
6791		buf->f_files = limit;
6792		buf->f_ffree =
6793			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6794			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6795	}
6796
6797	spin_unlock(&dquot->dq_dqb_lock);
6798	dqput(dquot);
6799	return 0;
6800}
6801#endif
6802
6803static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6804{
6805	struct super_block *sb = dentry->d_sb;
6806	struct ext4_sb_info *sbi = EXT4_SB(sb);
6807	struct ext4_super_block *es = sbi->s_es;
6808	ext4_fsblk_t overhead = 0, resv_blocks;
6809	s64 bfree;
6810	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6811
6812	if (!test_opt(sb, MINIX_DF))
6813		overhead = sbi->s_overhead;
6814
6815	buf->f_type = EXT4_SUPER_MAGIC;
6816	buf->f_bsize = sb->s_blocksize;
6817	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6818	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6819		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6820	/* prevent underflow in case that few free space is available */
6821	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6822	buf->f_bavail = buf->f_bfree -
6823			(ext4_r_blocks_count(es) + resv_blocks);
6824	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6825		buf->f_bavail = 0;
6826	buf->f_files = le32_to_cpu(es->s_inodes_count);
6827	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6828	buf->f_namelen = EXT4_NAME_LEN;
6829	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6830
6831#ifdef CONFIG_QUOTA
6832	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6833	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6834		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6835#endif
6836	return 0;
6837}
6838
6839
6840#ifdef CONFIG_QUOTA
6841
6842/*
6843 * Helper functions so that transaction is started before we acquire dqio_sem
6844 * to keep correct lock ordering of transaction > dqio_sem
6845 */
6846static inline struct inode *dquot_to_inode(struct dquot *dquot)
6847{
6848	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6849}
6850
6851static int ext4_write_dquot(struct dquot *dquot)
6852{
6853	int ret, err;
6854	handle_t *handle;
6855	struct inode *inode;
6856
6857	inode = dquot_to_inode(dquot);
6858	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6859				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6860	if (IS_ERR(handle))
6861		return PTR_ERR(handle);
6862	ret = dquot_commit(dquot);
6863	if (ret < 0)
6864		ext4_error_err(dquot->dq_sb, -ret,
6865			       "Failed to commit dquot type %d",
6866			       dquot->dq_id.type);
6867	err = ext4_journal_stop(handle);
6868	if (!ret)
6869		ret = err;
6870	return ret;
6871}
6872
6873static int ext4_acquire_dquot(struct dquot *dquot)
6874{
6875	int ret, err;
6876	handle_t *handle;
6877
6878	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6879				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6880	if (IS_ERR(handle))
6881		return PTR_ERR(handle);
6882	ret = dquot_acquire(dquot);
6883	if (ret < 0)
6884		ext4_error_err(dquot->dq_sb, -ret,
6885			      "Failed to acquire dquot type %d",
6886			      dquot->dq_id.type);
6887	err = ext4_journal_stop(handle);
6888	if (!ret)
6889		ret = err;
6890	return ret;
6891}
6892
6893static int ext4_release_dquot(struct dquot *dquot)
6894{
6895	int ret, err;
6896	handle_t *handle;
6897
6898	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6899				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6900	if (IS_ERR(handle)) {
6901		/* Release dquot anyway to avoid endless cycle in dqput() */
6902		dquot_release(dquot);
6903		return PTR_ERR(handle);
6904	}
6905	ret = dquot_release(dquot);
6906	if (ret < 0)
6907		ext4_error_err(dquot->dq_sb, -ret,
6908			       "Failed to release dquot type %d",
6909			       dquot->dq_id.type);
6910	err = ext4_journal_stop(handle);
6911	if (!ret)
6912		ret = err;
6913	return ret;
6914}
6915
6916static int ext4_mark_dquot_dirty(struct dquot *dquot)
6917{
6918	struct super_block *sb = dquot->dq_sb;
6919
6920	if (ext4_is_quota_journalled(sb)) {
6921		dquot_mark_dquot_dirty(dquot);
6922		return ext4_write_dquot(dquot);
6923	} else {
6924		return dquot_mark_dquot_dirty(dquot);
6925	}
6926}
6927
6928static int ext4_write_info(struct super_block *sb, int type)
6929{
6930	int ret, err;
6931	handle_t *handle;
6932
6933	/* Data block + inode block */
6934	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6935	if (IS_ERR(handle))
6936		return PTR_ERR(handle);
6937	ret = dquot_commit_info(sb, type);
6938	err = ext4_journal_stop(handle);
6939	if (!ret)
6940		ret = err;
6941	return ret;
6942}
6943
 
 
 
 
 
 
 
 
 
 
6944static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6945{
6946	struct ext4_inode_info *ei = EXT4_I(inode);
6947
6948	/* The first argument of lockdep_set_subclass has to be
6949	 * *exactly* the same as the argument to init_rwsem() --- in
6950	 * this case, in init_once() --- or lockdep gets unhappy
6951	 * because the name of the lock is set using the
6952	 * stringification of the argument to init_rwsem().
6953	 */
6954	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6955	lockdep_set_subclass(&ei->i_data_sem, subclass);
6956}
6957
6958/*
6959 * Standard function to be called on quota_on
6960 */
6961static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6962			 const struct path *path)
6963{
6964	int err;
6965
6966	if (!test_opt(sb, QUOTA))
6967		return -EINVAL;
6968
6969	/* Quotafile not on the same filesystem? */
6970	if (path->dentry->d_sb != sb)
6971		return -EXDEV;
6972
6973	/* Quota already enabled for this file? */
6974	if (IS_NOQUOTA(d_inode(path->dentry)))
6975		return -EBUSY;
6976
6977	/* Journaling quota? */
6978	if (EXT4_SB(sb)->s_qf_names[type]) {
6979		/* Quotafile not in fs root? */
6980		if (path->dentry->d_parent != sb->s_root)
6981			ext4_msg(sb, KERN_WARNING,
6982				"Quota file not on filesystem root. "
6983				"Journaled quota will not work");
6984		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6985	} else {
6986		/*
6987		 * Clear the flag just in case mount options changed since
6988		 * last time.
6989		 */
6990		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6991	}
6992
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6993	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6994	err = dquot_quota_on(sb, type, format_id, path);
6995	if (!err) {
 
 
 
6996		struct inode *inode = d_inode(path->dentry);
6997		handle_t *handle;
6998
6999		/*
7000		 * Set inode flags to prevent userspace from messing with quota
7001		 * files. If this fails, we return success anyway since quotas
7002		 * are already enabled and this is not a hard failure.
7003		 */
7004		inode_lock(inode);
7005		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7006		if (IS_ERR(handle))
7007			goto unlock_inode;
7008		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7009		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7010				S_NOATIME | S_IMMUTABLE);
7011		err = ext4_mark_inode_dirty(handle, inode);
7012		ext4_journal_stop(handle);
7013	unlock_inode:
7014		inode_unlock(inode);
7015		if (err)
7016			dquot_quota_off(sb, type);
7017	}
7018	if (err)
7019		lockdep_set_quota_inode(path->dentry->d_inode,
7020					     I_DATA_SEM_NORMAL);
7021	return err;
7022}
7023
7024static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7025{
7026	switch (type) {
7027	case USRQUOTA:
7028		return qf_inum == EXT4_USR_QUOTA_INO;
7029	case GRPQUOTA:
7030		return qf_inum == EXT4_GRP_QUOTA_INO;
7031	case PRJQUOTA:
7032		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7033	default:
7034		BUG();
7035	}
7036}
7037
7038static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7039			     unsigned int flags)
7040{
7041	int err;
7042	struct inode *qf_inode;
7043	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7044		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7045		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7046		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7047	};
7048
7049	BUG_ON(!ext4_has_feature_quota(sb));
7050
7051	if (!qf_inums[type])
7052		return -EPERM;
7053
7054	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7055		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7056				qf_inums[type], type);
7057		return -EUCLEAN;
7058	}
7059
7060	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7061	if (IS_ERR(qf_inode)) {
7062		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7063				qf_inums[type], type);
7064		return PTR_ERR(qf_inode);
7065	}
7066
7067	/* Don't account quota for quota files to avoid recursion */
7068	qf_inode->i_flags |= S_NOQUOTA;
7069	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7070	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7071	if (err)
7072		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7073	iput(qf_inode);
7074
7075	return err;
7076}
7077
7078/* Enable usage tracking for all quota types. */
7079int ext4_enable_quotas(struct super_block *sb)
7080{
7081	int type, err = 0;
7082	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7083		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7084		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7085		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7086	};
7087	bool quota_mopt[EXT4_MAXQUOTAS] = {
7088		test_opt(sb, USRQUOTA),
7089		test_opt(sb, GRPQUOTA),
7090		test_opt(sb, PRJQUOTA),
7091	};
7092
7093	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7094	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7095		if (qf_inums[type]) {
7096			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7097				DQUOT_USAGE_ENABLED |
7098				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7099			if (err) {
7100				ext4_warning(sb,
7101					"Failed to enable quota tracking "
7102					"(type=%d, err=%d, ino=%lu). "
7103					"Please run e2fsck to fix.", type,
7104					err, qf_inums[type]);
 
7105
7106				ext4_quotas_off(sb, type);
7107				return err;
7108			}
7109		}
7110	}
7111	return 0;
7112}
7113
7114static int ext4_quota_off(struct super_block *sb, int type)
7115{
7116	struct inode *inode = sb_dqopt(sb)->files[type];
7117	handle_t *handle;
7118	int err;
7119
7120	/* Force all delayed allocation blocks to be allocated.
7121	 * Caller already holds s_umount sem */
7122	if (test_opt(sb, DELALLOC))
7123		sync_filesystem(sb);
7124
7125	if (!inode || !igrab(inode))
7126		goto out;
7127
7128	err = dquot_quota_off(sb, type);
7129	if (err || ext4_has_feature_quota(sb))
7130		goto out_put;
7131	/*
7132	 * When the filesystem was remounted read-only first, we cannot cleanup
7133	 * inode flags here. Bad luck but people should be using QUOTA feature
7134	 * these days anyway.
7135	 */
7136	if (sb_rdonly(sb))
7137		goto out_put;
7138
7139	inode_lock(inode);
7140	/*
7141	 * Update modification times of quota files when userspace can
7142	 * start looking at them. If we fail, we return success anyway since
7143	 * this is not a hard failure and quotas are already disabled.
7144	 */
7145	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7146	if (IS_ERR(handle)) {
7147		err = PTR_ERR(handle);
7148		goto out_unlock;
7149	}
7150	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7151	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7152	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7153	err = ext4_mark_inode_dirty(handle, inode);
7154	ext4_journal_stop(handle);
7155out_unlock:
7156	inode_unlock(inode);
7157out_put:
7158	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7159	iput(inode);
7160	return err;
7161out:
7162	return dquot_quota_off(sb, type);
7163}
7164
7165/* Read data from quotafile - avoid pagecache and such because we cannot afford
7166 * acquiring the locks... As quota files are never truncated and quota code
7167 * itself serializes the operations (and no one else should touch the files)
7168 * we don't have to be afraid of races */
7169static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7170			       size_t len, loff_t off)
7171{
7172	struct inode *inode = sb_dqopt(sb)->files[type];
7173	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7174	int offset = off & (sb->s_blocksize - 1);
7175	int tocopy;
7176	size_t toread;
7177	struct buffer_head *bh;
7178	loff_t i_size = i_size_read(inode);
7179
7180	if (off > i_size)
7181		return 0;
7182	if (off+len > i_size)
7183		len = i_size-off;
7184	toread = len;
7185	while (toread > 0) {
7186		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
 
7187		bh = ext4_bread(NULL, inode, blk, 0);
7188		if (IS_ERR(bh))
7189			return PTR_ERR(bh);
7190		if (!bh)	/* A hole? */
7191			memset(data, 0, tocopy);
7192		else
7193			memcpy(data, bh->b_data+offset, tocopy);
7194		brelse(bh);
7195		offset = 0;
7196		toread -= tocopy;
7197		data += tocopy;
7198		blk++;
7199	}
7200	return len;
7201}
7202
7203/* Write to quotafile (we know the transaction is already started and has
7204 * enough credits) */
7205static ssize_t ext4_quota_write(struct super_block *sb, int type,
7206				const char *data, size_t len, loff_t off)
7207{
7208	struct inode *inode = sb_dqopt(sb)->files[type];
7209	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7210	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7211	int retries = 0;
7212	struct buffer_head *bh;
7213	handle_t *handle = journal_current_handle();
7214
7215	if (!handle) {
7216		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7217			" cancelled because transaction is not started",
7218			(unsigned long long)off, (unsigned long long)len);
7219		return -EIO;
7220	}
7221	/*
7222	 * Since we account only one data block in transaction credits,
7223	 * then it is impossible to cross a block boundary.
7224	 */
7225	if (sb->s_blocksize - offset < len) {
7226		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7227			" cancelled because not block aligned",
7228			(unsigned long long)off, (unsigned long long)len);
7229		return -EIO;
7230	}
7231
7232	do {
7233		bh = ext4_bread(handle, inode, blk,
7234				EXT4_GET_BLOCKS_CREATE |
7235				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7236	} while (PTR_ERR(bh) == -ENOSPC &&
7237		 ext4_should_retry_alloc(inode->i_sb, &retries));
7238	if (IS_ERR(bh))
7239		return PTR_ERR(bh);
7240	if (!bh)
7241		goto out;
7242	BUFFER_TRACE(bh, "get write access");
7243	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7244	if (err) {
7245		brelse(bh);
7246		return err;
7247	}
7248	lock_buffer(bh);
7249	memcpy(bh->b_data+offset, data, len);
7250	flush_dcache_page(bh->b_page);
7251	unlock_buffer(bh);
7252	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7253	brelse(bh);
7254out:
7255	if (inode->i_size < off + len) {
7256		i_size_write(inode, off + len);
7257		EXT4_I(inode)->i_disksize = inode->i_size;
7258		err2 = ext4_mark_inode_dirty(handle, inode);
7259		if (unlikely(err2 && !err))
7260			err = err2;
7261	}
7262	return err ? err : len;
7263}
7264#endif
7265
 
 
 
 
 
 
7266#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7267static inline void register_as_ext2(void)
7268{
7269	int err = register_filesystem(&ext2_fs_type);
7270	if (err)
7271		printk(KERN_WARNING
7272		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7273}
7274
7275static inline void unregister_as_ext2(void)
7276{
7277	unregister_filesystem(&ext2_fs_type);
7278}
7279
7280static inline int ext2_feature_set_ok(struct super_block *sb)
7281{
7282	if (ext4_has_unknown_ext2_incompat_features(sb))
7283		return 0;
7284	if (sb_rdonly(sb))
7285		return 1;
7286	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7287		return 0;
7288	return 1;
7289}
7290#else
7291static inline void register_as_ext2(void) { }
7292static inline void unregister_as_ext2(void) { }
7293static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7294#endif
7295
7296static inline void register_as_ext3(void)
7297{
7298	int err = register_filesystem(&ext3_fs_type);
7299	if (err)
7300		printk(KERN_WARNING
7301		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7302}
7303
7304static inline void unregister_as_ext3(void)
7305{
7306	unregister_filesystem(&ext3_fs_type);
7307}
7308
7309static inline int ext3_feature_set_ok(struct super_block *sb)
7310{
7311	if (ext4_has_unknown_ext3_incompat_features(sb))
7312		return 0;
7313	if (!ext4_has_feature_journal(sb))
7314		return 0;
7315	if (sb_rdonly(sb))
7316		return 1;
7317	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7318		return 0;
7319	return 1;
7320}
7321
7322static void ext4_kill_sb(struct super_block *sb)
7323{
7324	struct ext4_sb_info *sbi = EXT4_SB(sb);
7325	struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7326
7327	kill_block_super(sb);
7328
7329	if (bdev_file)
7330		bdev_fput(bdev_file);
7331}
7332
7333static struct file_system_type ext4_fs_type = {
7334	.owner			= THIS_MODULE,
7335	.name			= "ext4",
7336	.init_fs_context	= ext4_init_fs_context,
7337	.parameters		= ext4_param_specs,
7338	.kill_sb		= ext4_kill_sb,
7339	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7340};
7341MODULE_ALIAS_FS("ext4");
7342
7343/* Shared across all ext4 file systems */
7344wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7345
7346static int __init ext4_init_fs(void)
7347{
7348	int i, err;
7349
7350	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7351	ext4_li_info = NULL;
7352
7353	/* Build-time check for flags consistency */
7354	ext4_check_flag_values();
7355
7356	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7357		init_waitqueue_head(&ext4__ioend_wq[i]);
7358
7359	err = ext4_init_es();
7360	if (err)
7361		return err;
7362
7363	err = ext4_init_pending();
7364	if (err)
7365		goto out7;
7366
7367	err = ext4_init_post_read_processing();
7368	if (err)
7369		goto out6;
7370
7371	err = ext4_init_pageio();
7372	if (err)
7373		goto out5;
7374
7375	err = ext4_init_system_zone();
7376	if (err)
7377		goto out4;
7378
7379	err = ext4_init_sysfs();
7380	if (err)
7381		goto out3;
7382
7383	err = ext4_init_mballoc();
7384	if (err)
7385		goto out2;
7386	err = init_inodecache();
7387	if (err)
7388		goto out1;
7389
7390	err = ext4_fc_init_dentry_cache();
7391	if (err)
7392		goto out05;
7393
7394	register_as_ext3();
7395	register_as_ext2();
7396	err = register_filesystem(&ext4_fs_type);
7397	if (err)
7398		goto out;
7399
7400	return 0;
7401out:
7402	unregister_as_ext2();
7403	unregister_as_ext3();
7404	ext4_fc_destroy_dentry_cache();
7405out05:
7406	destroy_inodecache();
7407out1:
7408	ext4_exit_mballoc();
7409out2:
7410	ext4_exit_sysfs();
7411out3:
7412	ext4_exit_system_zone();
7413out4:
7414	ext4_exit_pageio();
7415out5:
7416	ext4_exit_post_read_processing();
7417out6:
7418	ext4_exit_pending();
7419out7:
7420	ext4_exit_es();
7421
7422	return err;
7423}
7424
7425static void __exit ext4_exit_fs(void)
7426{
7427	ext4_destroy_lazyinit_thread();
7428	unregister_as_ext2();
7429	unregister_as_ext3();
7430	unregister_filesystem(&ext4_fs_type);
7431	ext4_fc_destroy_dentry_cache();
7432	destroy_inodecache();
7433	ext4_exit_mballoc();
7434	ext4_exit_sysfs();
7435	ext4_exit_system_zone();
7436	ext4_exit_pageio();
7437	ext4_exit_post_read_processing();
7438	ext4_exit_es();
7439	ext4_exit_pending();
7440}
7441
7442MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7443MODULE_DESCRIPTION("Fourth Extended Filesystem");
7444MODULE_LICENSE("GPL");
7445MODULE_SOFTDEP("pre: crc32c");
7446module_init(ext4_init_fs)
7447module_exit(ext4_exit_fs)
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/super.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Big-endian to little-endian byte-swapping/bitmaps by
  17 *        David S. Miller (davem@caip.rutgers.edu), 1995
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/string.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/parser.h>
  30#include <linux/buffer_head.h>
  31#include <linux/exportfs.h>
  32#include <linux/vfs.h>
  33#include <linux/random.h>
  34#include <linux/mount.h>
  35#include <linux/namei.h>
  36#include <linux/quotaops.h>
  37#include <linux/seq_file.h>
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/dax.h>
  42#include <linux/cleancache.h>
  43#include <linux/uaccess.h>
  44#include <linux/iversion.h>
  45#include <linux/unicode.h>
  46#include <linux/part_stat.h>
  47#include <linux/kthread.h>
  48#include <linux/freezer.h>
 
 
 
  49
  50#include "ext4.h"
  51#include "ext4_extents.h"	/* Needed for trace points definition */
  52#include "ext4_jbd2.h"
  53#include "xattr.h"
  54#include "acl.h"
  55#include "mballoc.h"
  56#include "fsmap.h"
  57
  58#define CREATE_TRACE_POINTS
  59#include <trace/events/ext4.h>
  60
  61static struct ext4_lazy_init *ext4_li_info;
  62static DEFINE_MUTEX(ext4_li_mtx);
  63static struct ratelimit_state ext4_mount_msg_ratelimit;
  64
  65static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  66			     unsigned long journal_devnum);
  67static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  68static void ext4_update_super(struct super_block *sb);
  69static int ext4_commit_super(struct super_block *sb);
  70static int ext4_mark_recovery_complete(struct super_block *sb,
  71					struct ext4_super_block *es);
  72static int ext4_clear_journal_err(struct super_block *sb,
  73				  struct ext4_super_block *es);
  74static int ext4_sync_fs(struct super_block *sb, int wait);
  75static int ext4_remount(struct super_block *sb, int *flags, char *data);
  76static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  77static int ext4_unfreeze(struct super_block *sb);
  78static int ext4_freeze(struct super_block *sb);
  79static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
  80		       const char *dev_name, void *data);
  81static inline int ext2_feature_set_ok(struct super_block *sb);
  82static inline int ext3_feature_set_ok(struct super_block *sb);
  83static int ext4_feature_set_ok(struct super_block *sb, int readonly);
  84static void ext4_destroy_lazyinit_thread(void);
  85static void ext4_unregister_li_request(struct super_block *sb);
  86static void ext4_clear_request_list(void);
  87static struct inode *ext4_get_journal_inode(struct super_block *sb,
  88					    unsigned int journal_inum);
 
 
 
 
 
 
 
 
 
 
 
  89
  90/*
  91 * Lock ordering
  92 *
  93 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
  94 * i_mmap_rwsem (inode->i_mmap_rwsem)!
  95 *
  96 * page fault path:
  97 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
  98 *   page lock -> i_data_sem (rw)
  99 *
 100 * buffered write path:
 101 * sb_start_write -> i_mutex -> mmap_lock
 102 * sb_start_write -> i_mutex -> transaction start -> page lock ->
 103 *   i_data_sem (rw)
 104 *
 105 * truncate:
 106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
 107 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
 
 108 *   i_data_sem (rw)
 109 *
 110 * direct IO:
 111 * sb_start_write -> i_mutex -> mmap_lock
 112 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
 113 *
 114 * writepages:
 115 * transaction start -> page lock(s) -> i_data_sem (rw)
 116 */
 117
 
 
 
 
 
 
 
 
 118#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 119static struct file_system_type ext2_fs_type = {
 120	.owner		= THIS_MODULE,
 121	.name		= "ext2",
 122	.mount		= ext4_mount,
 123	.kill_sb	= kill_block_super,
 124	.fs_flags	= FS_REQUIRES_DEV,
 
 125};
 126MODULE_ALIAS_FS("ext2");
 127MODULE_ALIAS("ext2");
 128#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
 129#else
 130#define IS_EXT2_SB(sb) (0)
 131#endif
 132
 133
 134static struct file_system_type ext3_fs_type = {
 135	.owner		= THIS_MODULE,
 136	.name		= "ext3",
 137	.mount		= ext4_mount,
 138	.kill_sb	= kill_block_super,
 139	.fs_flags	= FS_REQUIRES_DEV,
 
 140};
 141MODULE_ALIAS_FS("ext3");
 142MODULE_ALIAS("ext3");
 143#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
 144
 145
 146static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
 147				  bh_end_io_t *end_io)
 148{
 149	/*
 150	 * buffer's verified bit is no longer valid after reading from
 151	 * disk again due to write out error, clear it to make sure we
 152	 * recheck the buffer contents.
 153	 */
 154	clear_buffer_verified(bh);
 155
 156	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
 157	get_bh(bh);
 158	submit_bh(REQ_OP_READ, op_flags, bh);
 159}
 160
 161void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
 162			 bh_end_io_t *end_io)
 163{
 164	BUG_ON(!buffer_locked(bh));
 165
 166	if (ext4_buffer_uptodate(bh)) {
 167		unlock_buffer(bh);
 168		return;
 169	}
 170	__ext4_read_bh(bh, op_flags, end_io);
 171}
 172
 173int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
 174{
 175	BUG_ON(!buffer_locked(bh));
 176
 177	if (ext4_buffer_uptodate(bh)) {
 178		unlock_buffer(bh);
 179		return 0;
 180	}
 181
 182	__ext4_read_bh(bh, op_flags, end_io);
 183
 184	wait_on_buffer(bh);
 185	if (buffer_uptodate(bh))
 186		return 0;
 187	return -EIO;
 188}
 189
 190int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
 191{
 192	if (trylock_buffer(bh)) {
 193		if (wait)
 194			return ext4_read_bh(bh, op_flags, NULL);
 195		ext4_read_bh_nowait(bh, op_flags, NULL);
 196		return 0;
 197	}
 198	if (wait) {
 199		wait_on_buffer(bh);
 200		if (buffer_uptodate(bh))
 201			return 0;
 202		return -EIO;
 203	}
 204	return 0;
 205}
 206
 207/*
 208 * This works like __bread_gfp() except it uses ERR_PTR for error
 209 * returns.  Currently with sb_bread it's impossible to distinguish
 210 * between ENOMEM and EIO situations (since both result in a NULL
 211 * return.
 212 */
 213static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
 214					       sector_t block, int op_flags,
 215					       gfp_t gfp)
 216{
 217	struct buffer_head *bh;
 218	int ret;
 219
 220	bh = sb_getblk_gfp(sb, block, gfp);
 221	if (bh == NULL)
 222		return ERR_PTR(-ENOMEM);
 223	if (ext4_buffer_uptodate(bh))
 224		return bh;
 225
 226	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
 227	if (ret) {
 228		put_bh(bh);
 229		return ERR_PTR(ret);
 230	}
 231	return bh;
 232}
 233
 234struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
 235				   int op_flags)
 236{
 237	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
 
 
 
 238}
 239
 240struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
 241					    sector_t block)
 242{
 243	return __ext4_sb_bread_gfp(sb, block, 0, 0);
 
 
 
 244}
 245
 246void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
 247{
 248	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
 
 249
 250	if (likely(bh)) {
 251		ext4_read_bh_lock(bh, REQ_RAHEAD, false);
 
 252		brelse(bh);
 253	}
 254}
 255
 256static int ext4_verify_csum_type(struct super_block *sb,
 257				 struct ext4_super_block *es)
 258{
 259	if (!ext4_has_feature_metadata_csum(sb))
 260		return 1;
 261
 262	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 263}
 264
 265static __le32 ext4_superblock_csum(struct super_block *sb,
 266				   struct ext4_super_block *es)
 267{
 268	struct ext4_sb_info *sbi = EXT4_SB(sb);
 269	int offset = offsetof(struct ext4_super_block, s_checksum);
 270	__u32 csum;
 271
 272	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 273
 274	return cpu_to_le32(csum);
 275}
 276
 277static int ext4_superblock_csum_verify(struct super_block *sb,
 278				       struct ext4_super_block *es)
 279{
 280	if (!ext4_has_metadata_csum(sb))
 281		return 1;
 282
 283	return es->s_checksum == ext4_superblock_csum(sb, es);
 284}
 285
 286void ext4_superblock_csum_set(struct super_block *sb)
 287{
 288	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 289
 290	if (!ext4_has_metadata_csum(sb))
 291		return;
 292
 293	es->s_checksum = ext4_superblock_csum(sb, es);
 294}
 295
 296ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 297			       struct ext4_group_desc *bg)
 298{
 299	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 300		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 301		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 302}
 303
 304ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 305			       struct ext4_group_desc *bg)
 306{
 307	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 308		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 309		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 310}
 311
 312ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 313			      struct ext4_group_desc *bg)
 314{
 315	return le32_to_cpu(bg->bg_inode_table_lo) |
 316		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 317		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 318}
 319
 320__u32 ext4_free_group_clusters(struct super_block *sb,
 321			       struct ext4_group_desc *bg)
 322{
 323	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 324		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 325		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 326}
 327
 328__u32 ext4_free_inodes_count(struct super_block *sb,
 329			      struct ext4_group_desc *bg)
 330{
 331	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 332		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 333		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 334}
 335
 336__u32 ext4_used_dirs_count(struct super_block *sb,
 337			      struct ext4_group_desc *bg)
 338{
 339	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 340		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 341		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 342}
 343
 344__u32 ext4_itable_unused_count(struct super_block *sb,
 345			      struct ext4_group_desc *bg)
 346{
 347	return le16_to_cpu(bg->bg_itable_unused_lo) |
 348		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 349		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 350}
 351
 352void ext4_block_bitmap_set(struct super_block *sb,
 353			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 354{
 355	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 356	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 357		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 358}
 359
 360void ext4_inode_bitmap_set(struct super_block *sb,
 361			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 362{
 363	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 364	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 365		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 366}
 367
 368void ext4_inode_table_set(struct super_block *sb,
 369			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 370{
 371	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 372	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 373		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 374}
 375
 376void ext4_free_group_clusters_set(struct super_block *sb,
 377				  struct ext4_group_desc *bg, __u32 count)
 378{
 379	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 380	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 381		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 382}
 383
 384void ext4_free_inodes_set(struct super_block *sb,
 385			  struct ext4_group_desc *bg, __u32 count)
 386{
 387	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 388	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 389		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 390}
 391
 392void ext4_used_dirs_set(struct super_block *sb,
 393			  struct ext4_group_desc *bg, __u32 count)
 394{
 395	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 396	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 397		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 398}
 399
 400void ext4_itable_unused_set(struct super_block *sb,
 401			  struct ext4_group_desc *bg, __u32 count)
 402{
 403	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 404	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 405		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 406}
 407
 408static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
 409{
 410	now = clamp_val(now, 0, (1ull << 40) - 1);
 411
 412	*lo = cpu_to_le32(lower_32_bits(now));
 413	*hi = upper_32_bits(now);
 414}
 415
 416static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
 417{
 418	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
 419}
 420#define ext4_update_tstamp(es, tstamp) \
 421	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
 422			     ktime_get_real_seconds())
 423#define ext4_get_tstamp(es, tstamp) \
 424	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
 425
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426/*
 427 * The del_gendisk() function uninitializes the disk-specific data
 428 * structures, including the bdi structure, without telling anyone
 429 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 430 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 431 * This is a kludge to prevent these oops until we can put in a proper
 432 * hook in del_gendisk() to inform the VFS and file system layers.
 433 */
 434static int block_device_ejected(struct super_block *sb)
 435{
 436	struct inode *bd_inode = sb->s_bdev->bd_inode;
 437	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 438
 439	return bdi->dev == NULL;
 440}
 441
 442static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 443{
 444	struct super_block		*sb = journal->j_private;
 445	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 446	int				error = is_journal_aborted(journal);
 447	struct ext4_journal_cb_entry	*jce;
 448
 449	BUG_ON(txn->t_state == T_FINISHED);
 450
 451	ext4_process_freed_data(sb, txn->t_tid);
 
 452
 453	spin_lock(&sbi->s_md_lock);
 454	while (!list_empty(&txn->t_private_list)) {
 455		jce = list_entry(txn->t_private_list.next,
 456				 struct ext4_journal_cb_entry, jce_list);
 457		list_del_init(&jce->jce_list);
 458		spin_unlock(&sbi->s_md_lock);
 459		jce->jce_func(sb, jce, error);
 460		spin_lock(&sbi->s_md_lock);
 461	}
 462	spin_unlock(&sbi->s_md_lock);
 463}
 464
 465/*
 466 * This writepage callback for write_cache_pages()
 467 * takes care of a few cases after page cleaning.
 468 *
 469 * write_cache_pages() already checks for dirty pages
 470 * and calls clear_page_dirty_for_io(), which we want,
 471 * to write protect the pages.
 472 *
 473 * However, we may have to redirty a page (see below.)
 474 */
 475static int ext4_journalled_writepage_callback(struct page *page,
 476					      struct writeback_control *wbc,
 477					      void *data)
 478{
 479	transaction_t *transaction = (transaction_t *) data;
 480	struct buffer_head *bh, *head;
 481	struct journal_head *jh;
 482
 483	bh = head = page_buffers(page);
 484	do {
 485		/*
 486		 * We have to redirty a page in these cases:
 487		 * 1) If buffer is dirty, it means the page was dirty because it
 488		 * contains a buffer that needs checkpointing. So the dirty bit
 489		 * needs to be preserved so that checkpointing writes the buffer
 490		 * properly.
 491		 * 2) If buffer is not part of the committing transaction
 492		 * (we may have just accidentally come across this buffer because
 493		 * inode range tracking is not exact) or if the currently running
 494		 * transaction already contains this buffer as well, dirty bit
 495		 * needs to be preserved so that the buffer gets writeprotected
 496		 * properly on running transaction's commit.
 497		 */
 498		jh = bh2jh(bh);
 499		if (buffer_dirty(bh) ||
 500		    (jh && (jh->b_transaction != transaction ||
 501			    jh->b_next_transaction))) {
 502			redirty_page_for_writepage(wbc, page);
 503			goto out;
 504		}
 505	} while ((bh = bh->b_this_page) != head);
 506
 507out:
 508	return AOP_WRITEPAGE_ACTIVATE;
 509}
 510
 511static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
 512{
 513	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
 514	struct writeback_control wbc = {
 515		.sync_mode =  WB_SYNC_ALL,
 516		.nr_to_write = LONG_MAX,
 517		.range_start = jinode->i_dirty_start,
 518		.range_end = jinode->i_dirty_end,
 519        };
 520
 521	return write_cache_pages(mapping, &wbc,
 522				 ext4_journalled_writepage_callback,
 523				 jinode->i_transaction);
 524}
 525
 526static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
 527{
 528	int ret;
 529
 530	if (ext4_should_journal_data(jinode->i_vfs_inode))
 531		ret = ext4_journalled_submit_inode_data_buffers(jinode);
 532	else
 533		ret = jbd2_journal_submit_inode_data_buffers(jinode);
 534
 535	return ret;
 536}
 537
 538static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
 539{
 540	int ret = 0;
 541
 542	if (!ext4_should_journal_data(jinode->i_vfs_inode))
 543		ret = jbd2_journal_finish_inode_data_buffers(jinode);
 544
 545	return ret;
 546}
 547
 548static bool system_going_down(void)
 549{
 550	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 551		|| system_state == SYSTEM_RESTART;
 552}
 553
 554struct ext4_err_translation {
 555	int code;
 556	int errno;
 557};
 558
 559#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
 560
 561static struct ext4_err_translation err_translation[] = {
 562	EXT4_ERR_TRANSLATE(EIO),
 563	EXT4_ERR_TRANSLATE(ENOMEM),
 564	EXT4_ERR_TRANSLATE(EFSBADCRC),
 565	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
 566	EXT4_ERR_TRANSLATE(ENOSPC),
 567	EXT4_ERR_TRANSLATE(ENOKEY),
 568	EXT4_ERR_TRANSLATE(EROFS),
 569	EXT4_ERR_TRANSLATE(EFBIG),
 570	EXT4_ERR_TRANSLATE(EEXIST),
 571	EXT4_ERR_TRANSLATE(ERANGE),
 572	EXT4_ERR_TRANSLATE(EOVERFLOW),
 573	EXT4_ERR_TRANSLATE(EBUSY),
 574	EXT4_ERR_TRANSLATE(ENOTDIR),
 575	EXT4_ERR_TRANSLATE(ENOTEMPTY),
 576	EXT4_ERR_TRANSLATE(ESHUTDOWN),
 577	EXT4_ERR_TRANSLATE(EFAULT),
 578};
 579
 580static int ext4_errno_to_code(int errno)
 581{
 582	int i;
 583
 584	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
 585		if (err_translation[i].errno == errno)
 586			return err_translation[i].code;
 587	return EXT4_ERR_UNKNOWN;
 588}
 589
 590static void save_error_info(struct super_block *sb, int error,
 591			    __u32 ino, __u64 block,
 592			    const char *func, unsigned int line)
 593{
 594	struct ext4_sb_info *sbi = EXT4_SB(sb);
 595
 596	/* We default to EFSCORRUPTED error... */
 597	if (error == 0)
 598		error = EFSCORRUPTED;
 599
 600	spin_lock(&sbi->s_error_lock);
 601	sbi->s_add_error_count++;
 602	sbi->s_last_error_code = error;
 603	sbi->s_last_error_line = line;
 604	sbi->s_last_error_ino = ino;
 605	sbi->s_last_error_block = block;
 606	sbi->s_last_error_func = func;
 607	sbi->s_last_error_time = ktime_get_real_seconds();
 608	if (!sbi->s_first_error_time) {
 609		sbi->s_first_error_code = error;
 610		sbi->s_first_error_line = line;
 611		sbi->s_first_error_ino = ino;
 612		sbi->s_first_error_block = block;
 613		sbi->s_first_error_func = func;
 614		sbi->s_first_error_time = sbi->s_last_error_time;
 615	}
 616	spin_unlock(&sbi->s_error_lock);
 617}
 618
 619/* Deal with the reporting of failure conditions on a filesystem such as
 620 * inconsistencies detected or read IO failures.
 621 *
 622 * On ext2, we can store the error state of the filesystem in the
 623 * superblock.  That is not possible on ext4, because we may have other
 624 * write ordering constraints on the superblock which prevent us from
 625 * writing it out straight away; and given that the journal is about to
 626 * be aborted, we can't rely on the current, or future, transactions to
 627 * write out the superblock safely.
 628 *
 629 * We'll just use the jbd2_journal_abort() error code to record an error in
 630 * the journal instead.  On recovery, the journal will complain about
 631 * that error until we've noted it down and cleared it.
 632 *
 633 * If force_ro is set, we unconditionally force the filesystem into an
 634 * ABORT|READONLY state, unless the error response on the fs has been set to
 635 * panic in which case we take the easy way out and panic immediately. This is
 636 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
 637 * at a critical moment in log management.
 638 */
 639static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
 640			      __u32 ino, __u64 block,
 641			      const char *func, unsigned int line)
 642{
 643	journal_t *journal = EXT4_SB(sb)->s_journal;
 644	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
 645
 646	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 647	if (test_opt(sb, WARN_ON_ERROR))
 648		WARN_ON_ONCE(1);
 649
 650	if (!continue_fs && !sb_rdonly(sb)) {
 651		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
 652		if (journal)
 653			jbd2_journal_abort(journal, -EIO);
 654	}
 655
 656	if (!bdev_read_only(sb->s_bdev)) {
 657		save_error_info(sb, error, ino, block, func, line);
 658		/*
 659		 * In case the fs should keep running, we need to writeout
 660		 * superblock through the journal. Due to lock ordering
 661		 * constraints, it may not be safe to do it right here so we
 662		 * defer superblock flushing to a workqueue.
 663		 */
 664		if (continue_fs && journal)
 665			schedule_work(&EXT4_SB(sb)->s_error_work);
 666		else
 667			ext4_commit_super(sb);
 668	}
 669
 670	/*
 671	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
 672	 * could panic during 'reboot -f' as the underlying device got already
 673	 * disabled.
 674	 */
 675	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
 676		panic("EXT4-fs (device %s): panic forced after error\n",
 677			sb->s_id);
 678	}
 679
 680	if (sb_rdonly(sb) || continue_fs)
 681		return;
 682
 683	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 684	/*
 685	 * Make sure updated value of ->s_mount_flags will be visible before
 686	 * ->s_flags update
 687	 */
 688	smp_wmb();
 689	sb->s_flags |= SB_RDONLY;
 690}
 691
 692static void flush_stashed_error_work(struct work_struct *work)
 693{
 694	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
 695						s_error_work);
 696	journal_t *journal = sbi->s_journal;
 697	handle_t *handle;
 698
 699	/*
 700	 * If the journal is still running, we have to write out superblock
 701	 * through the journal to avoid collisions of other journalled sb
 702	 * updates.
 703	 *
 704	 * We use directly jbd2 functions here to avoid recursing back into
 705	 * ext4 error handling code during handling of previous errors.
 706	 */
 707	if (!sb_rdonly(sbi->s_sb) && journal) {
 708		struct buffer_head *sbh = sbi->s_sbh;
 
 
 709		handle = jbd2_journal_start(journal, 1);
 710		if (IS_ERR(handle))
 711			goto write_directly;
 712		if (jbd2_journal_get_write_access(handle, sbh)) {
 713			jbd2_journal_stop(handle);
 714			goto write_directly;
 715		}
 
 
 
 
 716		ext4_update_super(sbi->s_sb);
 717		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
 718			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
 719				 "superblock detected");
 720			clear_buffer_write_io_error(sbh);
 721			set_buffer_uptodate(sbh);
 722		}
 723
 724		if (jbd2_journal_dirty_metadata(handle, sbh)) {
 725			jbd2_journal_stop(handle);
 726			goto write_directly;
 727		}
 728		jbd2_journal_stop(handle);
 729		ext4_notify_error_sysfs(sbi);
 
 
 
 730		return;
 731	}
 732write_directly:
 733	/*
 734	 * Write through journal failed. Write sb directly to get error info
 735	 * out and hope for the best.
 736	 */
 737	ext4_commit_super(sbi->s_sb);
 738	ext4_notify_error_sysfs(sbi);
 739}
 740
 741#define ext4_error_ratelimit(sb)					\
 742		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 743			     "EXT4-fs error")
 744
 745void __ext4_error(struct super_block *sb, const char *function,
 746		  unsigned int line, bool force_ro, int error, __u64 block,
 747		  const char *fmt, ...)
 748{
 749	struct va_format vaf;
 750	va_list args;
 751
 752	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 753		return;
 754
 755	trace_ext4_error(sb, function, line);
 756	if (ext4_error_ratelimit(sb)) {
 757		va_start(args, fmt);
 758		vaf.fmt = fmt;
 759		vaf.va = &args;
 760		printk(KERN_CRIT
 761		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 762		       sb->s_id, function, line, current->comm, &vaf);
 763		va_end(args);
 764	}
 
 
 765	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
 766}
 767
 768void __ext4_error_inode(struct inode *inode, const char *function,
 769			unsigned int line, ext4_fsblk_t block, int error,
 770			const char *fmt, ...)
 771{
 772	va_list args;
 773	struct va_format vaf;
 774
 775	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 776		return;
 777
 778	trace_ext4_error(inode->i_sb, function, line);
 779	if (ext4_error_ratelimit(inode->i_sb)) {
 780		va_start(args, fmt);
 781		vaf.fmt = fmt;
 782		vaf.va = &args;
 783		if (block)
 784			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 785			       "inode #%lu: block %llu: comm %s: %pV\n",
 786			       inode->i_sb->s_id, function, line, inode->i_ino,
 787			       block, current->comm, &vaf);
 788		else
 789			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 790			       "inode #%lu: comm %s: %pV\n",
 791			       inode->i_sb->s_id, function, line, inode->i_ino,
 792			       current->comm, &vaf);
 793		va_end(args);
 794	}
 
 
 795	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
 796			  function, line);
 797}
 798
 799void __ext4_error_file(struct file *file, const char *function,
 800		       unsigned int line, ext4_fsblk_t block,
 801		       const char *fmt, ...)
 802{
 803	va_list args;
 804	struct va_format vaf;
 805	struct inode *inode = file_inode(file);
 806	char pathname[80], *path;
 807
 808	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 809		return;
 810
 811	trace_ext4_error(inode->i_sb, function, line);
 812	if (ext4_error_ratelimit(inode->i_sb)) {
 813		path = file_path(file, pathname, sizeof(pathname));
 814		if (IS_ERR(path))
 815			path = "(unknown)";
 816		va_start(args, fmt);
 817		vaf.fmt = fmt;
 818		vaf.va = &args;
 819		if (block)
 820			printk(KERN_CRIT
 821			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 822			       "block %llu: comm %s: path %s: %pV\n",
 823			       inode->i_sb->s_id, function, line, inode->i_ino,
 824			       block, current->comm, path, &vaf);
 825		else
 826			printk(KERN_CRIT
 827			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 828			       "comm %s: path %s: %pV\n",
 829			       inode->i_sb->s_id, function, line, inode->i_ino,
 830			       current->comm, path, &vaf);
 831		va_end(args);
 832	}
 
 
 833	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
 834			  function, line);
 835}
 836
 837const char *ext4_decode_error(struct super_block *sb, int errno,
 838			      char nbuf[16])
 839{
 840	char *errstr = NULL;
 841
 842	switch (errno) {
 843	case -EFSCORRUPTED:
 844		errstr = "Corrupt filesystem";
 845		break;
 846	case -EFSBADCRC:
 847		errstr = "Filesystem failed CRC";
 848		break;
 849	case -EIO:
 850		errstr = "IO failure";
 851		break;
 852	case -ENOMEM:
 853		errstr = "Out of memory";
 854		break;
 855	case -EROFS:
 856		if (!sb || (EXT4_SB(sb)->s_journal &&
 857			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 858			errstr = "Journal has aborted";
 859		else
 860			errstr = "Readonly filesystem";
 861		break;
 862	default:
 863		/* If the caller passed in an extra buffer for unknown
 864		 * errors, textualise them now.  Else we just return
 865		 * NULL. */
 866		if (nbuf) {
 867			/* Check for truncated error codes... */
 868			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 869				errstr = nbuf;
 870		}
 871		break;
 872	}
 873
 874	return errstr;
 875}
 876
 877/* __ext4_std_error decodes expected errors from journaling functions
 878 * automatically and invokes the appropriate error response.  */
 879
 880void __ext4_std_error(struct super_block *sb, const char *function,
 881		      unsigned int line, int errno)
 882{
 883	char nbuf[16];
 884	const char *errstr;
 885
 886	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 887		return;
 888
 889	/* Special case: if the error is EROFS, and we're not already
 890	 * inside a transaction, then there's really no point in logging
 891	 * an error. */
 892	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 893		return;
 894
 895	if (ext4_error_ratelimit(sb)) {
 896		errstr = ext4_decode_error(sb, errno, nbuf);
 897		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 898		       sb->s_id, function, line, errstr);
 899	}
 
 900
 901	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
 902}
 903
 904void __ext4_msg(struct super_block *sb,
 905		const char *prefix, const char *fmt, ...)
 906{
 907	struct va_format vaf;
 908	va_list args;
 909
 910	atomic_inc(&EXT4_SB(sb)->s_msg_count);
 911	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
 912		return;
 
 
 
 913
 914	va_start(args, fmt);
 915	vaf.fmt = fmt;
 916	vaf.va = &args;
 917	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
 
 
 
 918	va_end(args);
 919}
 920
 921static int ext4_warning_ratelimit(struct super_block *sb)
 922{
 923	atomic_inc(&EXT4_SB(sb)->s_warning_count);
 924	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
 925			    "EXT4-fs warning");
 926}
 927
 928void __ext4_warning(struct super_block *sb, const char *function,
 929		    unsigned int line, const char *fmt, ...)
 930{
 931	struct va_format vaf;
 932	va_list args;
 933
 934	if (!ext4_warning_ratelimit(sb))
 935		return;
 936
 937	va_start(args, fmt);
 938	vaf.fmt = fmt;
 939	vaf.va = &args;
 940	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
 941	       sb->s_id, function, line, &vaf);
 942	va_end(args);
 943}
 944
 945void __ext4_warning_inode(const struct inode *inode, const char *function,
 946			  unsigned int line, const char *fmt, ...)
 947{
 948	struct va_format vaf;
 949	va_list args;
 950
 951	if (!ext4_warning_ratelimit(inode->i_sb))
 952		return;
 953
 954	va_start(args, fmt);
 955	vaf.fmt = fmt;
 956	vaf.va = &args;
 957	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
 958	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
 959	       function, line, inode->i_ino, current->comm, &vaf);
 960	va_end(args);
 961}
 962
 963void __ext4_grp_locked_error(const char *function, unsigned int line,
 964			     struct super_block *sb, ext4_group_t grp,
 965			     unsigned long ino, ext4_fsblk_t block,
 966			     const char *fmt, ...)
 967__releases(bitlock)
 968__acquires(bitlock)
 969{
 970	struct va_format vaf;
 971	va_list args;
 972
 973	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 974		return;
 975
 976	trace_ext4_error(sb, function, line);
 977	if (ext4_error_ratelimit(sb)) {
 978		va_start(args, fmt);
 979		vaf.fmt = fmt;
 980		vaf.va = &args;
 981		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
 982		       sb->s_id, function, line, grp);
 983		if (ino)
 984			printk(KERN_CONT "inode %lu: ", ino);
 985		if (block)
 986			printk(KERN_CONT "block %llu:",
 987			       (unsigned long long) block);
 988		printk(KERN_CONT "%pV\n", &vaf);
 989		va_end(args);
 990	}
 991
 992	if (test_opt(sb, ERRORS_CONT)) {
 993		if (test_opt(sb, WARN_ON_ERROR))
 994			WARN_ON_ONCE(1);
 995		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 996		if (!bdev_read_only(sb->s_bdev)) {
 997			save_error_info(sb, EFSCORRUPTED, ino, block, function,
 998					line);
 999			schedule_work(&EXT4_SB(sb)->s_error_work);
1000		}
1001		return;
1002	}
1003	ext4_unlock_group(sb, grp);
1004	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1005	/*
1006	 * We only get here in the ERRORS_RO case; relocking the group
1007	 * may be dangerous, but nothing bad will happen since the
1008	 * filesystem will have already been marked read/only and the
1009	 * journal has been aborted.  We return 1 as a hint to callers
1010	 * who might what to use the return value from
1011	 * ext4_grp_locked_error() to distinguish between the
1012	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1013	 * aggressively from the ext4 function in question, with a
1014	 * more appropriate error code.
1015	 */
1016	ext4_lock_group(sb, grp);
1017	return;
1018}
1019
1020void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1021				     ext4_group_t group,
1022				     unsigned int flags)
1023{
1024	struct ext4_sb_info *sbi = EXT4_SB(sb);
1025	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1026	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1027	int ret;
1028
 
 
1029	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1030		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1031					    &grp->bb_state);
1032		if (!ret)
1033			percpu_counter_sub(&sbi->s_freeclusters_counter,
1034					   grp->bb_free);
1035	}
1036
1037	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1038		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1039					    &grp->bb_state);
1040		if (!ret && gdp) {
1041			int count;
1042
1043			count = ext4_free_inodes_count(sb, gdp);
1044			percpu_counter_sub(&sbi->s_freeinodes_counter,
1045					   count);
1046		}
1047	}
1048}
1049
1050void ext4_update_dynamic_rev(struct super_block *sb)
1051{
1052	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1053
1054	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1055		return;
1056
1057	ext4_warning(sb,
1058		     "updating to rev %d because of new feature flag, "
1059		     "running e2fsck is recommended",
1060		     EXT4_DYNAMIC_REV);
1061
1062	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1063	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1064	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1065	/* leave es->s_feature_*compat flags alone */
1066	/* es->s_uuid will be set by e2fsck if empty */
1067
1068	/*
1069	 * The rest of the superblock fields should be zero, and if not it
1070	 * means they are likely already in use, so leave them alone.  We
1071	 * can leave it up to e2fsck to clean up any inconsistencies there.
1072	 */
1073}
1074
1075/*
1076 * Open the external journal device
1077 */
1078static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1079{
1080	struct block_device *bdev;
1081
1082	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1083	if (IS_ERR(bdev))
1084		goto fail;
1085	return bdev;
1086
1087fail:
1088	ext4_msg(sb, KERN_ERR,
1089		 "failed to open journal device unknown-block(%u,%u) %ld",
1090		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1091	return NULL;
1092}
1093
1094/*
1095 * Release the journal device
1096 */
1097static void ext4_blkdev_put(struct block_device *bdev)
1098{
1099	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1100}
1101
1102static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1103{
1104	struct block_device *bdev;
1105	bdev = sbi->s_journal_bdev;
1106	if (bdev) {
1107		ext4_blkdev_put(bdev);
1108		sbi->s_journal_bdev = NULL;
1109	}
1110}
1111
1112static inline struct inode *orphan_list_entry(struct list_head *l)
1113{
1114	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1115}
1116
1117static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1118{
1119	struct list_head *l;
1120
1121	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1122		 le32_to_cpu(sbi->s_es->s_last_orphan));
1123
1124	printk(KERN_ERR "sb_info orphan list:\n");
1125	list_for_each(l, &sbi->s_orphan) {
1126		struct inode *inode = orphan_list_entry(l);
1127		printk(KERN_ERR "  "
1128		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1129		       inode->i_sb->s_id, inode->i_ino, inode,
1130		       inode->i_mode, inode->i_nlink,
1131		       NEXT_ORPHAN(inode));
1132	}
1133}
1134
1135#ifdef CONFIG_QUOTA
1136static int ext4_quota_off(struct super_block *sb, int type);
1137
1138static inline void ext4_quota_off_umount(struct super_block *sb)
1139{
1140	int type;
1141
1142	/* Use our quota_off function to clear inode flags etc. */
1143	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1144		ext4_quota_off(sb, type);
1145}
1146
1147/*
1148 * This is a helper function which is used in the mount/remount
1149 * codepaths (which holds s_umount) to fetch the quota file name.
1150 */
1151static inline char *get_qf_name(struct super_block *sb,
1152				struct ext4_sb_info *sbi,
1153				int type)
1154{
1155	return rcu_dereference_protected(sbi->s_qf_names[type],
1156					 lockdep_is_held(&sb->s_umount));
1157}
1158#else
1159static inline void ext4_quota_off_umount(struct super_block *sb)
1160{
1161}
1162#endif
1163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164static void ext4_put_super(struct super_block *sb)
1165{
1166	struct ext4_sb_info *sbi = EXT4_SB(sb);
1167	struct ext4_super_block *es = sbi->s_es;
1168	struct buffer_head **group_desc;
1169	struct flex_groups **flex_groups;
1170	int aborted = 0;
1171	int i, err;
1172
1173	ext4_unregister_li_request(sb);
1174	ext4_quota_off_umount(sb);
1175
1176	flush_work(&sbi->s_error_work);
1177	destroy_workqueue(sbi->rsv_conversion_wq);
1178
1179	/*
1180	 * Unregister sysfs before destroying jbd2 journal.
1181	 * Since we could still access attr_journal_task attribute via sysfs
1182	 * path which could have sbi->s_journal->j_task as NULL
 
 
 
 
 
1183	 */
1184	ext4_unregister_sysfs(sb);
1185
 
 
 
 
 
 
 
 
 
 
 
1186	if (sbi->s_journal) {
1187		aborted = is_journal_aborted(sbi->s_journal);
1188		err = jbd2_journal_destroy(sbi->s_journal);
1189		sbi->s_journal = NULL;
1190		if ((err < 0) && !aborted) {
1191			ext4_abort(sb, -err, "Couldn't clean up the journal");
1192		}
1193	}
1194
1195	ext4_es_unregister_shrinker(sbi);
1196	del_timer_sync(&sbi->s_err_report);
1197	ext4_release_system_zone(sb);
1198	ext4_mb_release(sb);
1199	ext4_ext_release(sb);
1200
1201	if (!sb_rdonly(sb) && !aborted) {
1202		ext4_clear_feature_journal_needs_recovery(sb);
 
1203		es->s_state = cpu_to_le16(sbi->s_mount_state);
1204	}
1205	if (!sb_rdonly(sb))
1206		ext4_commit_super(sb);
1207
1208	rcu_read_lock();
1209	group_desc = rcu_dereference(sbi->s_group_desc);
1210	for (i = 0; i < sbi->s_gdb_count; i++)
1211		brelse(group_desc[i]);
1212	kvfree(group_desc);
1213	flex_groups = rcu_dereference(sbi->s_flex_groups);
1214	if (flex_groups) {
1215		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1216			kvfree(flex_groups[i]);
1217		kvfree(flex_groups);
1218	}
1219	rcu_read_unlock();
1220	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1221	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1222	percpu_counter_destroy(&sbi->s_dirs_counter);
1223	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1224	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1225	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1226#ifdef CONFIG_QUOTA
1227	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1228		kfree(get_qf_name(sb, sbi, i));
1229#endif
1230
1231	/* Debugging code just in case the in-memory inode orphan list
1232	 * isn't empty.  The on-disk one can be non-empty if we've
1233	 * detected an error and taken the fs readonly, but the
1234	 * in-memory list had better be clean by this point. */
1235	if (!list_empty(&sbi->s_orphan))
1236		dump_orphan_list(sb, sbi);
1237	ASSERT(list_empty(&sbi->s_orphan));
1238
1239	sync_blockdev(sb->s_bdev);
1240	invalidate_bdev(sb->s_bdev);
1241	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1242		/*
1243		 * Invalidate the journal device's buffers.  We don't want them
1244		 * floating about in memory - the physical journal device may
1245		 * hotswapped, and it breaks the `ro-after' testing code.
1246		 */
1247		sync_blockdev(sbi->s_journal_bdev);
1248		invalidate_bdev(sbi->s_journal_bdev);
1249		ext4_blkdev_remove(sbi);
1250	}
1251
1252	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1253	sbi->s_ea_inode_cache = NULL;
1254
1255	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1256	sbi->s_ea_block_cache = NULL;
1257
1258	ext4_stop_mmpd(sbi);
1259
1260	brelse(sbi->s_sbh);
1261	sb->s_fs_info = NULL;
1262	/*
1263	 * Now that we are completely done shutting down the
1264	 * superblock, we need to actually destroy the kobject.
1265	 */
1266	kobject_put(&sbi->s_kobj);
1267	wait_for_completion(&sbi->s_kobj_unregister);
1268	if (sbi->s_chksum_driver)
1269		crypto_free_shash(sbi->s_chksum_driver);
1270	kfree(sbi->s_blockgroup_lock);
1271	fs_put_dax(sbi->s_daxdev);
1272	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1273#ifdef CONFIG_UNICODE
1274	utf8_unload(sb->s_encoding);
1275#endif
1276	kfree(sbi);
1277}
1278
1279static struct kmem_cache *ext4_inode_cachep;
1280
1281/*
1282 * Called inside transaction, so use GFP_NOFS
1283 */
1284static struct inode *ext4_alloc_inode(struct super_block *sb)
1285{
1286	struct ext4_inode_info *ei;
1287
1288	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1289	if (!ei)
1290		return NULL;
1291
1292	inode_set_iversion(&ei->vfs_inode, 1);
 
1293	spin_lock_init(&ei->i_raw_lock);
1294	INIT_LIST_HEAD(&ei->i_prealloc_list);
1295	atomic_set(&ei->i_prealloc_active, 0);
1296	spin_lock_init(&ei->i_prealloc_lock);
1297	ext4_es_init_tree(&ei->i_es_tree);
1298	rwlock_init(&ei->i_es_lock);
1299	INIT_LIST_HEAD(&ei->i_es_list);
1300	ei->i_es_all_nr = 0;
1301	ei->i_es_shk_nr = 0;
1302	ei->i_es_shrink_lblk = 0;
1303	ei->i_reserved_data_blocks = 0;
1304	spin_lock_init(&(ei->i_block_reservation_lock));
1305	ext4_init_pending_tree(&ei->i_pending_tree);
1306#ifdef CONFIG_QUOTA
1307	ei->i_reserved_quota = 0;
1308	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1309#endif
1310	ei->jinode = NULL;
1311	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1312	spin_lock_init(&ei->i_completed_io_lock);
1313	ei->i_sync_tid = 0;
1314	ei->i_datasync_tid = 0;
1315	atomic_set(&ei->i_unwritten, 0);
1316	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1317	ext4_fc_init_inode(&ei->vfs_inode);
1318	mutex_init(&ei->i_fc_lock);
1319	return &ei->vfs_inode;
1320}
1321
1322static int ext4_drop_inode(struct inode *inode)
1323{
1324	int drop = generic_drop_inode(inode);
1325
1326	if (!drop)
1327		drop = fscrypt_drop_inode(inode);
1328
1329	trace_ext4_drop_inode(inode, drop);
1330	return drop;
1331}
1332
1333static void ext4_free_in_core_inode(struct inode *inode)
1334{
1335	fscrypt_free_inode(inode);
1336	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1337		pr_warn("%s: inode %ld still in fc list",
1338			__func__, inode->i_ino);
1339	}
1340	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1341}
1342
1343static void ext4_destroy_inode(struct inode *inode)
1344{
1345	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1346		ext4_msg(inode->i_sb, KERN_ERR,
1347			 "Inode %lu (%p): orphan list check failed!",
1348			 inode->i_ino, EXT4_I(inode));
1349		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1350				EXT4_I(inode), sizeof(struct ext4_inode_info),
1351				true);
1352		dump_stack();
1353	}
1354
1355	if (EXT4_I(inode)->i_reserved_data_blocks)
1356		ext4_msg(inode->i_sb, KERN_ERR,
1357			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1358			 inode->i_ino, EXT4_I(inode),
1359			 EXT4_I(inode)->i_reserved_data_blocks);
1360}
1361
 
 
 
 
 
1362static void init_once(void *foo)
1363{
1364	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1365
1366	INIT_LIST_HEAD(&ei->i_orphan);
1367	init_rwsem(&ei->xattr_sem);
1368	init_rwsem(&ei->i_data_sem);
1369	init_rwsem(&ei->i_mmap_sem);
1370	inode_init_once(&ei->vfs_inode);
1371	ext4_fc_init_inode(&ei->vfs_inode);
1372}
1373
1374static int __init init_inodecache(void)
1375{
1376	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1377				sizeof(struct ext4_inode_info), 0,
1378				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1379					SLAB_ACCOUNT),
1380				offsetof(struct ext4_inode_info, i_data),
1381				sizeof_field(struct ext4_inode_info, i_data),
1382				init_once);
1383	if (ext4_inode_cachep == NULL)
1384		return -ENOMEM;
1385	return 0;
1386}
1387
1388static void destroy_inodecache(void)
1389{
1390	/*
1391	 * Make sure all delayed rcu free inodes are flushed before we
1392	 * destroy cache.
1393	 */
1394	rcu_barrier();
1395	kmem_cache_destroy(ext4_inode_cachep);
1396}
1397
1398void ext4_clear_inode(struct inode *inode)
1399{
1400	ext4_fc_del(inode);
1401	invalidate_inode_buffers(inode);
1402	clear_inode(inode);
1403	ext4_discard_preallocations(inode, 0);
1404	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1405	dquot_drop(inode);
1406	if (EXT4_I(inode)->jinode) {
1407		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1408					       EXT4_I(inode)->jinode);
1409		jbd2_free_inode(EXT4_I(inode)->jinode);
1410		EXT4_I(inode)->jinode = NULL;
1411	}
1412	fscrypt_put_encryption_info(inode);
1413	fsverity_cleanup_inode(inode);
1414}
1415
1416static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1417					u64 ino, u32 generation)
1418{
1419	struct inode *inode;
1420
1421	/*
1422	 * Currently we don't know the generation for parent directory, so
1423	 * a generation of 0 means "accept any"
1424	 */
1425	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1426	if (IS_ERR(inode))
1427		return ERR_CAST(inode);
1428	if (generation && inode->i_generation != generation) {
1429		iput(inode);
1430		return ERR_PTR(-ESTALE);
1431	}
1432
1433	return inode;
1434}
1435
1436static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1437					int fh_len, int fh_type)
1438{
1439	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1440				    ext4_nfs_get_inode);
1441}
1442
1443static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1444					int fh_len, int fh_type)
1445{
1446	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1447				    ext4_nfs_get_inode);
1448}
1449
1450static int ext4_nfs_commit_metadata(struct inode *inode)
1451{
1452	struct writeback_control wbc = {
1453		.sync_mode = WB_SYNC_ALL
1454	};
1455
1456	trace_ext4_nfs_commit_metadata(inode);
1457	return ext4_write_inode(inode, &wbc);
1458}
1459
1460#ifdef CONFIG_FS_ENCRYPTION
1461static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1462{
1463	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1464				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1465}
1466
1467static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1468							void *fs_data)
1469{
1470	handle_t *handle = fs_data;
1471	int res, res2, credits, retries = 0;
1472
1473	/*
1474	 * Encrypting the root directory is not allowed because e2fsck expects
1475	 * lost+found to exist and be unencrypted, and encrypting the root
1476	 * directory would imply encrypting the lost+found directory as well as
1477	 * the filename "lost+found" itself.
1478	 */
1479	if (inode->i_ino == EXT4_ROOT_INO)
1480		return -EPERM;
1481
1482	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1483		return -EINVAL;
1484
1485	if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1486		return -EOPNOTSUPP;
1487
1488	res = ext4_convert_inline_data(inode);
1489	if (res)
1490		return res;
1491
1492	/*
1493	 * If a journal handle was specified, then the encryption context is
1494	 * being set on a new inode via inheritance and is part of a larger
1495	 * transaction to create the inode.  Otherwise the encryption context is
1496	 * being set on an existing inode in its own transaction.  Only in the
1497	 * latter case should the "retry on ENOSPC" logic be used.
1498	 */
1499
1500	if (handle) {
1501		res = ext4_xattr_set_handle(handle, inode,
1502					    EXT4_XATTR_INDEX_ENCRYPTION,
1503					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1504					    ctx, len, 0);
1505		if (!res) {
1506			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1507			ext4_clear_inode_state(inode,
1508					EXT4_STATE_MAY_INLINE_DATA);
1509			/*
1510			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1511			 * S_DAX may be disabled
1512			 */
1513			ext4_set_inode_flags(inode, false);
1514		}
1515		return res;
1516	}
1517
1518	res = dquot_initialize(inode);
1519	if (res)
1520		return res;
1521retry:
1522	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1523				     &credits);
1524	if (res)
1525		return res;
1526
1527	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1528	if (IS_ERR(handle))
1529		return PTR_ERR(handle);
1530
1531	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1532				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1533				    ctx, len, 0);
1534	if (!res) {
1535		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1536		/*
1537		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1538		 * S_DAX may be disabled
1539		 */
1540		ext4_set_inode_flags(inode, false);
1541		res = ext4_mark_inode_dirty(handle, inode);
1542		if (res)
1543			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1544	}
1545	res2 = ext4_journal_stop(handle);
1546
1547	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1548		goto retry;
1549	if (!res)
1550		res = res2;
1551	return res;
1552}
1553
1554static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1555{
1556	return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1557}
1558
1559static bool ext4_has_stable_inodes(struct super_block *sb)
1560{
1561	return ext4_has_feature_stable_inodes(sb);
1562}
1563
1564static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1565				       int *ino_bits_ret, int *lblk_bits_ret)
1566{
1567	*ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1568	*lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1569}
1570
1571static const struct fscrypt_operations ext4_cryptops = {
1572	.key_prefix		= "ext4:",
1573	.get_context		= ext4_get_context,
1574	.set_context		= ext4_set_context,
1575	.get_dummy_policy	= ext4_get_dummy_policy,
1576	.empty_dir		= ext4_empty_dir,
1577	.max_namelen		= EXT4_NAME_LEN,
1578	.has_stable_inodes	= ext4_has_stable_inodes,
1579	.get_ino_and_lblk_bits	= ext4_get_ino_and_lblk_bits,
1580};
1581#endif
1582
1583#ifdef CONFIG_QUOTA
1584static const char * const quotatypes[] = INITQFNAMES;
1585#define QTYPE2NAME(t) (quotatypes[t])
1586
1587static int ext4_write_dquot(struct dquot *dquot);
1588static int ext4_acquire_dquot(struct dquot *dquot);
1589static int ext4_release_dquot(struct dquot *dquot);
1590static int ext4_mark_dquot_dirty(struct dquot *dquot);
1591static int ext4_write_info(struct super_block *sb, int type);
1592static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1593			 const struct path *path);
1594static int ext4_quota_on_mount(struct super_block *sb, int type);
1595static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1596			       size_t len, loff_t off);
1597static ssize_t ext4_quota_write(struct super_block *sb, int type,
1598				const char *data, size_t len, loff_t off);
1599static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1600			     unsigned int flags);
1601static int ext4_enable_quotas(struct super_block *sb);
1602
1603static struct dquot **ext4_get_dquots(struct inode *inode)
1604{
1605	return EXT4_I(inode)->i_dquot;
1606}
1607
1608static const struct dquot_operations ext4_quota_operations = {
1609	.get_reserved_space	= ext4_get_reserved_space,
1610	.write_dquot		= ext4_write_dquot,
1611	.acquire_dquot		= ext4_acquire_dquot,
1612	.release_dquot		= ext4_release_dquot,
1613	.mark_dirty		= ext4_mark_dquot_dirty,
1614	.write_info		= ext4_write_info,
1615	.alloc_dquot		= dquot_alloc,
1616	.destroy_dquot		= dquot_destroy,
1617	.get_projid		= ext4_get_projid,
1618	.get_inode_usage	= ext4_get_inode_usage,
1619	.get_next_id		= dquot_get_next_id,
1620};
1621
1622static const struct quotactl_ops ext4_qctl_operations = {
1623	.quota_on	= ext4_quota_on,
1624	.quota_off	= ext4_quota_off,
1625	.quota_sync	= dquot_quota_sync,
1626	.get_state	= dquot_get_state,
1627	.set_info	= dquot_set_dqinfo,
1628	.get_dqblk	= dquot_get_dqblk,
1629	.set_dqblk	= dquot_set_dqblk,
1630	.get_nextdqblk	= dquot_get_next_dqblk,
1631};
1632#endif
1633
1634static const struct super_operations ext4_sops = {
1635	.alloc_inode	= ext4_alloc_inode,
1636	.free_inode	= ext4_free_in_core_inode,
1637	.destroy_inode	= ext4_destroy_inode,
1638	.write_inode	= ext4_write_inode,
1639	.dirty_inode	= ext4_dirty_inode,
1640	.drop_inode	= ext4_drop_inode,
1641	.evict_inode	= ext4_evict_inode,
1642	.put_super	= ext4_put_super,
1643	.sync_fs	= ext4_sync_fs,
1644	.freeze_fs	= ext4_freeze,
1645	.unfreeze_fs	= ext4_unfreeze,
1646	.statfs		= ext4_statfs,
1647	.remount_fs	= ext4_remount,
1648	.show_options	= ext4_show_options,
 
1649#ifdef CONFIG_QUOTA
1650	.quota_read	= ext4_quota_read,
1651	.quota_write	= ext4_quota_write,
1652	.get_dquots	= ext4_get_dquots,
1653#endif
1654};
1655
1656static const struct export_operations ext4_export_ops = {
 
1657	.fh_to_dentry = ext4_fh_to_dentry,
1658	.fh_to_parent = ext4_fh_to_parent,
1659	.get_parent = ext4_get_parent,
1660	.commit_metadata = ext4_nfs_commit_metadata,
1661};
1662
1663enum {
1664	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1665	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1666	Opt_nouid32, Opt_debug, Opt_removed,
1667	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1668	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1669	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1670	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1671	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1672	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1673	Opt_inlinecrypt,
1674	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1675	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1676	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1677	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1678	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1679	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1680	Opt_nowarn_on_error, Opt_mblk_io_submit,
1681	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1682	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1683	Opt_inode_readahead_blks, Opt_journal_ioprio,
1684	Opt_dioread_nolock, Opt_dioread_lock,
1685	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1686	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1687	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
 
1688#ifdef CONFIG_EXT4_DEBUG
1689	Opt_fc_debug_max_replay, Opt_fc_debug_force
1690#endif
1691};
1692
1693static const match_table_t tokens = {
1694	{Opt_bsd_df, "bsddf"},
1695	{Opt_minix_df, "minixdf"},
1696	{Opt_grpid, "grpid"},
1697	{Opt_grpid, "bsdgroups"},
1698	{Opt_nogrpid, "nogrpid"},
1699	{Opt_nogrpid, "sysvgroups"},
1700	{Opt_resgid, "resgid=%u"},
1701	{Opt_resuid, "resuid=%u"},
1702	{Opt_sb, "sb=%u"},
1703	{Opt_err_cont, "errors=continue"},
1704	{Opt_err_panic, "errors=panic"},
1705	{Opt_err_ro, "errors=remount-ro"},
1706	{Opt_nouid32, "nouid32"},
1707	{Opt_debug, "debug"},
1708	{Opt_removed, "oldalloc"},
1709	{Opt_removed, "orlov"},
1710	{Opt_user_xattr, "user_xattr"},
1711	{Opt_nouser_xattr, "nouser_xattr"},
1712	{Opt_acl, "acl"},
1713	{Opt_noacl, "noacl"},
1714	{Opt_noload, "norecovery"},
1715	{Opt_noload, "noload"},
1716	{Opt_removed, "nobh"},
1717	{Opt_removed, "bh"},
1718	{Opt_commit, "commit=%u"},
1719	{Opt_min_batch_time, "min_batch_time=%u"},
1720	{Opt_max_batch_time, "max_batch_time=%u"},
1721	{Opt_journal_dev, "journal_dev=%u"},
1722	{Opt_journal_path, "journal_path=%s"},
1723	{Opt_journal_checksum, "journal_checksum"},
1724	{Opt_nojournal_checksum, "nojournal_checksum"},
1725	{Opt_journal_async_commit, "journal_async_commit"},
1726	{Opt_abort, "abort"},
1727	{Opt_data_journal, "data=journal"},
1728	{Opt_data_ordered, "data=ordered"},
1729	{Opt_data_writeback, "data=writeback"},
1730	{Opt_data_err_abort, "data_err=abort"},
1731	{Opt_data_err_ignore, "data_err=ignore"},
1732	{Opt_offusrjquota, "usrjquota="},
1733	{Opt_usrjquota, "usrjquota=%s"},
1734	{Opt_offgrpjquota, "grpjquota="},
1735	{Opt_grpjquota, "grpjquota=%s"},
1736	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1737	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1738	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1739	{Opt_grpquota, "grpquota"},
1740	{Opt_noquota, "noquota"},
1741	{Opt_quota, "quota"},
1742	{Opt_usrquota, "usrquota"},
1743	{Opt_prjquota, "prjquota"},
1744	{Opt_barrier, "barrier=%u"},
1745	{Opt_barrier, "barrier"},
1746	{Opt_nobarrier, "nobarrier"},
1747	{Opt_i_version, "i_version"},
1748	{Opt_dax, "dax"},
1749	{Opt_dax_always, "dax=always"},
1750	{Opt_dax_inode, "dax=inode"},
1751	{Opt_dax_never, "dax=never"},
1752	{Opt_stripe, "stripe=%u"},
1753	{Opt_delalloc, "delalloc"},
1754	{Opt_warn_on_error, "warn_on_error"},
1755	{Opt_nowarn_on_error, "nowarn_on_error"},
1756	{Opt_lazytime, "lazytime"},
1757	{Opt_nolazytime, "nolazytime"},
1758	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1759	{Opt_nodelalloc, "nodelalloc"},
1760	{Opt_removed, "mblk_io_submit"},
1761	{Opt_removed, "nomblk_io_submit"},
1762	{Opt_block_validity, "block_validity"},
1763	{Opt_noblock_validity, "noblock_validity"},
1764	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1765	{Opt_journal_ioprio, "journal_ioprio=%u"},
1766	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1767	{Opt_auto_da_alloc, "auto_da_alloc"},
1768	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1769	{Opt_dioread_nolock, "dioread_nolock"},
1770	{Opt_dioread_lock, "nodioread_nolock"},
1771	{Opt_dioread_lock, "dioread_lock"},
1772	{Opt_discard, "discard"},
1773	{Opt_nodiscard, "nodiscard"},
1774	{Opt_init_itable, "init_itable=%u"},
1775	{Opt_init_itable, "init_itable"},
1776	{Opt_noinit_itable, "noinit_itable"},
1777#ifdef CONFIG_EXT4_DEBUG
1778	{Opt_fc_debug_force, "fc_debug_force"},
1779	{Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1780#endif
1781	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1782	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1783	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1784	{Opt_inlinecrypt, "inlinecrypt"},
1785	{Opt_nombcache, "nombcache"},
1786	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1787	{Opt_removed, "prefetch_block_bitmaps"},
1788	{Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1789	{Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1790	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1791	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1792	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1793	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1794	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1795	{Opt_err, NULL},
1796};
1797
1798static ext4_fsblk_t get_sb_block(void **data)
1799{
1800	ext4_fsblk_t	sb_block;
1801	char		*options = (char *) *data;
 
 
1802
1803	if (!options || strncmp(options, "sb=", 3) != 0)
1804		return 1;	/* Default location */
 
 
 
1805
1806	options += 3;
1807	/* TODO: use simple_strtoll with >32bit ext4 */
1808	sb_block = simple_strtoul(options, &options, 0);
1809	if (*options && *options != ',') {
1810		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1811		       (char *) *data);
1812		return 1;
1813	}
1814	if (*options == ',')
1815		options++;
1816	*data = (void *) options;
1817
1818	return sb_block;
1819}
 
 
 
 
1820
1821#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1822#define DEFAULT_MB_OPTIMIZE_SCAN	(-1)
 
1823
1824static const char deprecated_msg[] =
1825	"Mount option \"%s\" will be removed by %s\n"
1826	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1827
1828#ifdef CONFIG_QUOTA
1829static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1830{
1831	struct ext4_sb_info *sbi = EXT4_SB(sb);
1832	char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1833	int ret = -1;
1834
1835	if (sb_any_quota_loaded(sb) && !old_qname) {
1836		ext4_msg(sb, KERN_ERR,
1837			"Cannot change journaled "
1838			"quota options when quota turned on");
1839		return -1;
1840	}
1841	if (ext4_has_feature_quota(sb)) {
1842		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1843			 "ignored when QUOTA feature is enabled");
1844		return 1;
1845	}
1846	qname = match_strdup(args);
1847	if (!qname) {
1848		ext4_msg(sb, KERN_ERR,
1849			"Not enough memory for storing quotafile name");
1850		return -1;
1851	}
1852	if (old_qname) {
1853		if (strcmp(old_qname, qname) == 0)
1854			ret = 1;
1855		else
1856			ext4_msg(sb, KERN_ERR,
1857				 "%s quota file already specified",
1858				 QTYPE2NAME(qtype));
1859		goto errout;
1860	}
1861	if (strchr(qname, '/')) {
1862		ext4_msg(sb, KERN_ERR,
1863			"quotafile must be on filesystem root");
1864		goto errout;
1865	}
1866	rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1867	set_opt(sb, QUOTA);
1868	return 1;
1869errout:
1870	kfree(qname);
1871	return ret;
1872}
1873
1874static int clear_qf_name(struct super_block *sb, int qtype)
1875{
1876
1877	struct ext4_sb_info *sbi = EXT4_SB(sb);
1878	char *old_qname = get_qf_name(sb, sbi, qtype);
1879
1880	if (sb_any_quota_loaded(sb) && old_qname) {
1881		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1882			" when quota turned on");
1883		return -1;
1884	}
1885	rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1886	synchronize_rcu();
1887	kfree(old_qname);
1888	return 1;
1889}
1890#endif
1891
1892#define MOPT_SET	0x0001
1893#define MOPT_CLEAR	0x0002
1894#define MOPT_NOSUPPORT	0x0004
1895#define MOPT_EXPLICIT	0x0008
1896#define MOPT_CLEAR_ERR	0x0010
1897#define MOPT_GTE0	0x0020
1898#ifdef CONFIG_QUOTA
1899#define MOPT_Q		0
1900#define MOPT_QFMT	0x0040
1901#else
1902#define MOPT_Q		MOPT_NOSUPPORT
1903#define MOPT_QFMT	MOPT_NOSUPPORT
1904#endif
1905#define MOPT_DATAJ	0x0080
1906#define MOPT_NO_EXT2	0x0100
1907#define MOPT_NO_EXT3	0x0200
1908#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1909#define MOPT_STRING	0x0400
1910#define MOPT_SKIP	0x0800
1911#define	MOPT_2		0x1000
1912
1913static const struct mount_opts {
1914	int	token;
1915	int	mount_opt;
1916	int	flags;
1917} ext4_mount_opts[] = {
1918	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1919	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1920	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1921	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1922	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1923	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1924	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1925	 MOPT_EXT4_ONLY | MOPT_SET},
1926	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1927	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1928	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1929	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1930	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1931	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1932	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1933	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1934	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1935	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
 
1936	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1937	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1938	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1939	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1940	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1941				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1942	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1943	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1944	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1945	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1946	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1947	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1948	 MOPT_NO_EXT2},
1949	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1950	 MOPT_NO_EXT2},
1951	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1952	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1953	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1954	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1955	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1956	{Opt_commit, 0, MOPT_GTE0},
1957	{Opt_max_batch_time, 0, MOPT_GTE0},
1958	{Opt_min_batch_time, 0, MOPT_GTE0},
1959	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1960	{Opt_init_itable, 0, MOPT_GTE0},
1961	{Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1962	{Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1963		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1964	{Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1965		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1966	{Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1967		MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1968	{Opt_stripe, 0, MOPT_GTE0},
1969	{Opt_resuid, 0, MOPT_GTE0},
1970	{Opt_resgid, 0, MOPT_GTE0},
1971	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1972	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1973	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1974	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1975	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1976	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1977	 MOPT_NO_EXT2 | MOPT_DATAJ},
1978	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1979	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1980#ifdef CONFIG_EXT4_FS_POSIX_ACL
1981	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1982	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1983#else
1984	{Opt_acl, 0, MOPT_NOSUPPORT},
1985	{Opt_noacl, 0, MOPT_NOSUPPORT},
1986#endif
1987	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1988	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1989	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1990	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1991	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1992							MOPT_SET | MOPT_Q},
1993	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1994							MOPT_SET | MOPT_Q},
1995	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1996							MOPT_SET | MOPT_Q},
1997	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1998		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1999							MOPT_CLEAR | MOPT_Q},
2000	{Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2001	{Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2002	{Opt_offusrjquota, 0, MOPT_Q},
2003	{Opt_offgrpjquota, 0, MOPT_Q},
2004	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2005	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2006	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2007	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
2008	{Opt_test_dummy_encryption, 0, MOPT_STRING},
2009	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2010	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2011	 MOPT_SET},
2012	{Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2013#ifdef CONFIG_EXT4_DEBUG
2014	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2015	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2016	{Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2017#endif
 
2018	{Opt_err, 0, 0}
2019};
2020
2021#ifdef CONFIG_UNICODE
2022static const struct ext4_sb_encodings {
2023	__u16 magic;
2024	char *name;
2025	char *version;
2026} ext4_sb_encoding_map[] = {
2027	{EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2028};
2029
2030static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2031				 const struct ext4_sb_encodings **encoding,
2032				 __u16 *flags)
2033{
2034	__u16 magic = le16_to_cpu(es->s_encoding);
2035	int i;
2036
2037	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2038		if (magic == ext4_sb_encoding_map[i].magic)
2039			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040
2041	if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
 
2042		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2043
2044	*encoding = &ext4_sb_encoding_map[i];
2045	*flags = le16_to_cpu(es->s_encoding_flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2046
 
 
 
2047	return 0;
2048}
2049#endif
2050
2051static int ext4_set_test_dummy_encryption(struct super_block *sb,
2052					  const char *opt,
2053					  const substring_t *arg,
2054					  bool is_remount)
2055{
2056#ifdef CONFIG_FS_ENCRYPTION
2057	struct ext4_sb_info *sbi = EXT4_SB(sb);
2058	int err;
2059
2060	/*
2061	 * This mount option is just for testing, and it's not worthwhile to
2062	 * implement the extra complexity (e.g. RCU protection) that would be
2063	 * needed to allow it to be set or changed during remount.  We do allow
2064	 * it to be specified during remount, but only if there is no change.
2065	 */
2066	if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2067		ext4_msg(sb, KERN_WARNING,
2068			 "Can't set test_dummy_encryption on remount");
2069		return -1;
2070	}
2071	err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2072						&sbi->s_dummy_enc_policy);
2073	if (err) {
2074		if (err == -EEXIST)
2075			ext4_msg(sb, KERN_WARNING,
2076				 "Can't change test_dummy_encryption on remount");
2077		else if (err == -EINVAL)
2078			ext4_msg(sb, KERN_WARNING,
2079				 "Value of option \"%s\" is unrecognized", opt);
2080		else
2081			ext4_msg(sb, KERN_WARNING,
2082				 "Error processing option \"%s\" [%d]",
2083				 opt, err);
2084		return -1;
2085	}
2086	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2087#else
2088	ext4_msg(sb, KERN_WARNING,
2089		 "Test dummy encryption mount option ignored");
2090#endif
2091	return 1;
2092}
2093
2094struct ext4_parsed_options {
2095	unsigned long journal_devnum;
2096	unsigned int journal_ioprio;
2097	int mb_optimize_scan;
2098};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2099
2100static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2101			    substring_t *args, struct ext4_parsed_options *parsed_opts,
2102			    int is_remount)
2103{
2104	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
2105	const struct mount_opts *m;
 
2106	kuid_t uid;
2107	kgid_t gid;
2108	int arg = 0;
2109
2110#ifdef CONFIG_QUOTA
2111	if (token == Opt_usrjquota)
2112		return set_qf_name(sb, USRQUOTA, &args[0]);
2113	else if (token == Opt_grpjquota)
2114		return set_qf_name(sb, GRPQUOTA, &args[0]);
2115	else if (token == Opt_offusrjquota)
2116		return clear_qf_name(sb, USRQUOTA);
2117	else if (token == Opt_offgrpjquota)
2118		return clear_qf_name(sb, GRPQUOTA);
2119#endif
2120	switch (token) {
2121	case Opt_noacl:
2122	case Opt_nouser_xattr:
2123		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2124		break;
2125	case Opt_sb:
2126		return 1;	/* handled by get_sb_block() */
2127	case Opt_removed:
2128		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2129		return 1;
2130	case Opt_abort:
2131		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2132		return 1;
2133	case Opt_i_version:
2134		sb->s_flags |= SB_I_VERSION;
2135		return 1;
2136	case Opt_lazytime:
2137		sb->s_flags |= SB_LAZYTIME;
2138		return 1;
2139	case Opt_nolazytime:
2140		sb->s_flags &= ~SB_LAZYTIME;
2141		return 1;
2142	case Opt_inlinecrypt:
2143#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2144		sb->s_flags |= SB_INLINECRYPT;
2145#else
2146		ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2147#endif
2148		return 1;
2149	}
2150
2151	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2152		if (token == m->token)
2153			break;
2154
2155	if (m->token == Opt_err) {
2156		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2157			 "or missing value", opt);
2158		return -1;
2159	}
2160
2161	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2162		ext4_msg(sb, KERN_ERR,
2163			 "Mount option \"%s\" incompatible with ext2", opt);
2164		return -1;
2165	}
2166	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2167		ext4_msg(sb, KERN_ERR,
2168			 "Mount option \"%s\" incompatible with ext3", opt);
2169		return -1;
2170	}
2171
2172	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2173		return -1;
2174	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2175		return -1;
2176	if (m->flags & MOPT_EXPLICIT) {
2177		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2178			set_opt2(sb, EXPLICIT_DELALLOC);
2179		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2180			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
 
2181		} else
2182			return -1;
2183	}
2184	if (m->flags & MOPT_CLEAR_ERR)
2185		clear_opt(sb, ERRORS_MASK);
2186	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2187		ext4_msg(sb, KERN_ERR, "Cannot change quota "
2188			 "options when quota turned on");
2189		return -1;
2190	}
2191
2192	if (m->flags & MOPT_NOSUPPORT) {
2193		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2194	} else if (token == Opt_commit) {
2195		if (arg == 0)
2196			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2197		else if (arg > INT_MAX / HZ) {
2198			ext4_msg(sb, KERN_ERR,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2199				 "Invalid commit interval %d, "
2200				 "must be smaller than %d",
2201				 arg, INT_MAX / HZ);
2202			return -1;
2203		}
2204		sbi->s_commit_interval = HZ * arg;
2205	} else if (token == Opt_debug_want_extra_isize) {
2206		if ((arg & 1) ||
2207		    (arg < 4) ||
2208		    (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2209			ext4_msg(sb, KERN_ERR,
2210				 "Invalid want_extra_isize %d", arg);
2211			return -1;
2212		}
2213		sbi->s_want_extra_isize = arg;
2214	} else if (token == Opt_max_batch_time) {
2215		sbi->s_max_batch_time = arg;
2216	} else if (token == Opt_min_batch_time) {
2217		sbi->s_min_batch_time = arg;
2218	} else if (token == Opt_inode_readahead_blks) {
2219		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2220			ext4_msg(sb, KERN_ERR,
 
 
 
 
 
 
 
 
2221				 "EXT4-fs: inode_readahead_blks must be "
2222				 "0 or a power of 2 smaller than 2^31");
2223			return -1;
2224		}
2225		sbi->s_inode_readahead_blks = arg;
2226	} else if (token == Opt_init_itable) {
2227		set_opt(sb, INIT_INODE_TABLE);
2228		if (!args->from)
2229			arg = EXT4_DEF_LI_WAIT_MULT;
2230		sbi->s_li_wait_mult = arg;
2231	} else if (token == Opt_max_dir_size_kb) {
2232		sbi->s_max_dir_size_kb = arg;
 
 
 
 
 
 
2233#ifdef CONFIG_EXT4_DEBUG
2234	} else if (token == Opt_fc_debug_max_replay) {
2235		sbi->s_fc_debug_max_replay = arg;
 
 
2236#endif
2237	} else if (token == Opt_stripe) {
2238		sbi->s_stripe = arg;
2239	} else if (token == Opt_resuid) {
2240		uid = make_kuid(current_user_ns(), arg);
 
 
2241		if (!uid_valid(uid)) {
2242			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2243			return -1;
 
2244		}
2245		sbi->s_resuid = uid;
2246	} else if (token == Opt_resgid) {
2247		gid = make_kgid(current_user_ns(), arg);
 
 
2248		if (!gid_valid(gid)) {
2249			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2250			return -1;
 
2251		}
2252		sbi->s_resgid = gid;
2253	} else if (token == Opt_journal_dev) {
 
 
2254		if (is_remount) {
2255			ext4_msg(sb, KERN_ERR,
2256				 "Cannot specify journal on remount");
2257			return -1;
2258		}
2259		parsed_opts->journal_devnum = arg;
2260	} else if (token == Opt_journal_path) {
2261		char *journal_path;
 
 
2262		struct inode *journal_inode;
2263		struct path path;
2264		int error;
2265
2266		if (is_remount) {
2267			ext4_msg(sb, KERN_ERR,
2268				 "Cannot specify journal on remount");
2269			return -1;
2270		}
2271		journal_path = match_strdup(&args[0]);
2272		if (!journal_path) {
2273			ext4_msg(sb, KERN_ERR, "error: could not dup "
2274				"journal device string");
2275			return -1;
2276		}
2277
2278		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2279		if (error) {
2280			ext4_msg(sb, KERN_ERR, "error: could not find "
2281				"journal device path: error %d", error);
2282			kfree(journal_path);
2283			return -1;
2284		}
2285
2286		journal_inode = d_inode(path.dentry);
2287		if (!S_ISBLK(journal_inode->i_mode)) {
2288			ext4_msg(sb, KERN_ERR, "error: journal path %s "
2289				"is not a block device", journal_path);
2290			path_put(&path);
2291			kfree(journal_path);
2292			return -1;
2293		}
2294
2295		parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2296		path_put(&path);
2297		kfree(journal_path);
2298	} else if (token == Opt_journal_ioprio) {
2299		if (arg > 7) {
2300			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
 
2301				 " (must be 0-7)");
2302			return -1;
2303		}
2304		parsed_opts->journal_ioprio =
2305			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2306	} else if (token == Opt_test_dummy_encryption) {
2307		return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2308						      is_remount);
2309	} else if (m->flags & MOPT_DATAJ) {
2310		if (is_remount) {
2311			if (!sbi->s_journal)
2312				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2313			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2314				ext4_msg(sb, KERN_ERR,
2315					 "Cannot change data mode on remount");
2316				return -1;
2317			}
2318		} else {
2319			clear_opt(sb, DATA_FLAGS);
2320			sbi->s_mount_opt |= m->mount_opt;
2321		}
2322#ifdef CONFIG_QUOTA
2323	} else if (m->flags & MOPT_QFMT) {
2324		if (sb_any_quota_loaded(sb) &&
2325		    sbi->s_jquota_fmt != m->mount_opt) {
2326			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2327				 "quota options when quota turned on");
2328			return -1;
2329		}
2330		if (ext4_has_feature_quota(sb)) {
2331			ext4_msg(sb, KERN_INFO,
2332				 "Quota format mount options ignored "
2333				 "when QUOTA feature is enabled");
2334			return 1;
2335		}
2336		sbi->s_jquota_fmt = m->mount_opt;
2337#endif
2338	} else if (token == Opt_dax || token == Opt_dax_always ||
2339		   token == Opt_dax_inode || token == Opt_dax_never) {
2340#ifdef CONFIG_FS_DAX
2341		switch (token) {
 
 
 
 
2342		case Opt_dax:
2343		case Opt_dax_always:
2344			if (is_remount &&
2345			    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2346			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2347			fail_dax_change_remount:
2348				ext4_msg(sb, KERN_ERR, "can't change "
2349					 "dax mount option while remounting");
2350				return -1;
2351			}
2352			if (is_remount &&
2353			    (test_opt(sb, DATA_FLAGS) ==
2354			     EXT4_MOUNT_JOURNAL_DATA)) {
2355				    ext4_msg(sb, KERN_ERR, "can't mount with "
2356					     "both data=journal and dax");
2357				    return -1;
2358			}
2359			ext4_msg(sb, KERN_WARNING,
2360				"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2361			sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2362			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2363			break;
2364		case Opt_dax_never:
2365			if (is_remount &&
2366			    (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2367			     (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2368				goto fail_dax_change_remount;
2369			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2370			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2371			break;
2372		case Opt_dax_inode:
2373			if (is_remount &&
2374			    ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2375			     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2376			     !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2377				goto fail_dax_change_remount;
2378			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2379			sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2380			/* Strictly for printing options */
2381			sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2382			break;
2383		}
 
 
2384#else
2385		ext4_msg(sb, KERN_INFO, "dax option not supported");
2386		sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2387		sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2388		return -1;
2389#endif
2390	} else if (token == Opt_data_err_abort) {
2391		sbi->s_mount_opt |= m->mount_opt;
2392	} else if (token == Opt_data_err_ignore) {
2393		sbi->s_mount_opt &= ~m->mount_opt;
2394	} else if (token == Opt_mb_optimize_scan) {
2395		if (arg != 0 && arg != 1) {
2396			ext4_msg(sb, KERN_WARNING,
 
 
 
 
 
 
2397				 "mb_optimize_scan should be set to 0 or 1.");
2398			return -1;
2399		}
2400		parsed_opts->mb_optimize_scan = arg;
2401	} else {
2402		if (!args->from)
2403			arg = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2404		if (m->flags & MOPT_CLEAR)
2405			arg = !arg;
2406		else if (unlikely(!(m->flags & MOPT_SET))) {
2407			ext4_msg(sb, KERN_WARNING,
2408				 "buggy handling of option %s", opt);
 
2409			WARN_ON(1);
2410			return -1;
2411		}
2412		if (m->flags & MOPT_2) {
2413			if (arg != 0)
2414				sbi->s_mount_opt2 |= m->mount_opt;
2415			else
2416				sbi->s_mount_opt2 &= ~m->mount_opt;
2417		} else {
2418			if (arg != 0)
2419				sbi->s_mount_opt |= m->mount_opt;
2420			else
2421				sbi->s_mount_opt &= ~m->mount_opt;
2422		}
2423	}
2424	return 1;
 
2425}
2426
2427static int parse_options(char *options, struct super_block *sb,
2428			 struct ext4_parsed_options *ret_opts,
2429			 int is_remount)
2430{
2431	struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2432	char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2433	substring_t args[MAX_OPT_ARGS];
2434	int token;
2435
2436	if (!options)
2437		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2438
2439	while ((p = strsep(&options, ",")) != NULL) {
2440		if (!*p)
2441			continue;
2442		/*
2443		 * Initialize args struct so we know whether arg was
2444		 * found; some options take optional arguments.
2445		 */
2446		args[0].to = args[0].from = NULL;
2447		token = match_token(p, tokens, args);
2448		if (handle_mount_opt(sb, p, token, args, ret_opts,
2449				     is_remount) < 0)
2450			return 0;
2451	}
 
 
 
 
 
 
 
 
 
 
 
 
2452#ifdef CONFIG_QUOTA
 
 
 
 
 
 
 
2453	/*
2454	 * We do the test below only for project quotas. 'usrquota' and
2455	 * 'grpquota' mount options are allowed even without quota feature
2456	 * to support legacy quotas in quota files.
2457	 */
2458	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2459		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
 
2460			 "Cannot enable project quota enforcement.");
2461		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2462	}
2463	usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2464	grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2465	if (usr_qf_name || grp_qf_name) {
2466		if (test_opt(sb, USRQUOTA) && usr_qf_name)
2467			clear_opt(sb, USRQUOTA);
 
 
 
 
 
 
 
 
 
 
2468
2469		if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2470			clear_opt(sb, GRPQUOTA);
2471
2472		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2473			ext4_msg(sb, KERN_ERR, "old and new quota "
2474					"format mixing");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2475			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2476		}
2477
2478		if (!sbi->s_jquota_fmt) {
2479			ext4_msg(sb, KERN_ERR, "journaled quota format "
2480					"not specified");
2481			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
2482		}
2483	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484#endif
2485	if (test_opt(sb, DIOREAD_NOLOCK)) {
2486		int blocksize =
2487			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2488		if (blocksize < PAGE_SIZE)
2489			ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2490				 "experimental mount option 'dioread_nolock' "
2491				 "for blocksize < PAGE_SIZE");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2492	}
 
2493	return 1;
2494}
2495
2496static inline void ext4_show_quota_options(struct seq_file *seq,
2497					   struct super_block *sb)
2498{
2499#if defined(CONFIG_QUOTA)
2500	struct ext4_sb_info *sbi = EXT4_SB(sb);
2501	char *usr_qf_name, *grp_qf_name;
2502
2503	if (sbi->s_jquota_fmt) {
2504		char *fmtname = "";
2505
2506		switch (sbi->s_jquota_fmt) {
2507		case QFMT_VFS_OLD:
2508			fmtname = "vfsold";
2509			break;
2510		case QFMT_VFS_V0:
2511			fmtname = "vfsv0";
2512			break;
2513		case QFMT_VFS_V1:
2514			fmtname = "vfsv1";
2515			break;
2516		}
2517		seq_printf(seq, ",jqfmt=%s", fmtname);
2518	}
2519
2520	rcu_read_lock();
2521	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2522	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2523	if (usr_qf_name)
2524		seq_show_option(seq, "usrjquota", usr_qf_name);
2525	if (grp_qf_name)
2526		seq_show_option(seq, "grpjquota", grp_qf_name);
2527	rcu_read_unlock();
2528#endif
2529}
2530
2531static const char *token2str(int token)
2532{
2533	const struct match_token *t;
2534
2535	for (t = tokens; t->token != Opt_err; t++)
2536		if (t->token == token && !strchr(t->pattern, '='))
2537			break;
2538	return t->pattern;
2539}
2540
2541/*
2542 * Show an option if
2543 *  - it's set to a non-default value OR
2544 *  - if the per-sb default is different from the global default
2545 */
2546static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2547			      int nodefs)
2548{
2549	struct ext4_sb_info *sbi = EXT4_SB(sb);
2550	struct ext4_super_block *es = sbi->s_es;
2551	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2552	const struct mount_opts *m;
2553	char sep = nodefs ? '\n' : ',';
2554
2555#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2556#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2557
2558	if (sbi->s_sb_block != 1)
2559		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2560
2561	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2562		int want_set = m->flags & MOPT_SET;
 
 
 
2563		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2564		    (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
 
 
 
 
 
 
 
 
 
 
 
2565			continue;
2566		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2567			continue; /* skip if same as the default */
2568		if ((want_set &&
2569		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2570		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2571			continue; /* select Opt_noFoo vs Opt_Foo */
2572		SEQ_OPTS_PRINT("%s", token2str(m->token));
2573	}
2574
2575	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2576	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2577		SEQ_OPTS_PRINT("resuid=%u",
2578				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2579	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2580	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2581		SEQ_OPTS_PRINT("resgid=%u",
2582				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2583	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2584	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2585		SEQ_OPTS_PUTS("errors=remount-ro");
2586	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2587		SEQ_OPTS_PUTS("errors=continue");
2588	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2589		SEQ_OPTS_PUTS("errors=panic");
2590	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2591		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2592	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2593		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2594	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2595		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2596	if (sb->s_flags & SB_I_VERSION)
2597		SEQ_OPTS_PUTS("i_version");
2598	if (nodefs || sbi->s_stripe)
2599		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2600	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2601			(sbi->s_mount_opt ^ def_mount_opt)) {
2602		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2603			SEQ_OPTS_PUTS("data=journal");
2604		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2605			SEQ_OPTS_PUTS("data=ordered");
2606		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2607			SEQ_OPTS_PUTS("data=writeback");
2608	}
2609	if (nodefs ||
2610	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2611		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2612			       sbi->s_inode_readahead_blks);
2613
2614	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2615		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2616		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2617	if (nodefs || sbi->s_max_dir_size_kb)
2618		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2619	if (test_opt(sb, DATA_ERR_ABORT))
2620		SEQ_OPTS_PUTS("data_err=abort");
2621
2622	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2623
2624	if (sb->s_flags & SB_INLINECRYPT)
2625		SEQ_OPTS_PUTS("inlinecrypt");
2626
2627	if (test_opt(sb, DAX_ALWAYS)) {
2628		if (IS_EXT2_SB(sb))
2629			SEQ_OPTS_PUTS("dax");
2630		else
2631			SEQ_OPTS_PUTS("dax=always");
2632	} else if (test_opt2(sb, DAX_NEVER)) {
2633		SEQ_OPTS_PUTS("dax=never");
2634	} else if (test_opt2(sb, DAX_INODE)) {
2635		SEQ_OPTS_PUTS("dax=inode");
2636	}
 
 
 
 
 
 
 
 
 
2637	ext4_show_quota_options(seq, sb);
2638	return 0;
2639}
2640
2641static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2642{
2643	return _ext4_show_options(seq, root->d_sb, 0);
2644}
2645
2646int ext4_seq_options_show(struct seq_file *seq, void *offset)
2647{
2648	struct super_block *sb = seq->private;
2649	int rc;
2650
2651	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2652	rc = _ext4_show_options(seq, sb, 1);
2653	seq_puts(seq, "\n");
2654	return rc;
2655}
2656
2657static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2658			    int read_only)
2659{
2660	struct ext4_sb_info *sbi = EXT4_SB(sb);
2661	int err = 0;
2662
2663	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2664		ext4_msg(sb, KERN_ERR, "revision level too high, "
2665			 "forcing read-only mode");
2666		err = -EROFS;
2667		goto done;
2668	}
2669	if (read_only)
2670		goto done;
2671	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2672		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2673			 "running e2fsck is recommended");
2674	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2675		ext4_msg(sb, KERN_WARNING,
2676			 "warning: mounting fs with errors, "
2677			 "running e2fsck is recommended");
2678	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2679		 le16_to_cpu(es->s_mnt_count) >=
2680		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2681		ext4_msg(sb, KERN_WARNING,
2682			 "warning: maximal mount count reached, "
2683			 "running e2fsck is recommended");
2684	else if (le32_to_cpu(es->s_checkinterval) &&
2685		 (ext4_get_tstamp(es, s_lastcheck) +
2686		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2687		ext4_msg(sb, KERN_WARNING,
2688			 "warning: checktime reached, "
2689			 "running e2fsck is recommended");
2690	if (!sbi->s_journal)
2691		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2692	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2693		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2694	le16_add_cpu(&es->s_mnt_count, 1);
2695	ext4_update_tstamp(es, s_mtime);
2696	if (sbi->s_journal)
2697		ext4_set_feature_journal_needs_recovery(sb);
 
 
 
2698
2699	err = ext4_commit_super(sb);
2700done:
2701	if (test_opt(sb, DEBUG))
2702		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2703				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2704			sb->s_blocksize,
2705			sbi->s_groups_count,
2706			EXT4_BLOCKS_PER_GROUP(sb),
2707			EXT4_INODES_PER_GROUP(sb),
2708			sbi->s_mount_opt, sbi->s_mount_opt2);
2709
2710	cleancache_init_fs(sb);
2711	return err;
2712}
2713
2714int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2715{
2716	struct ext4_sb_info *sbi = EXT4_SB(sb);
2717	struct flex_groups **old_groups, **new_groups;
2718	int size, i, j;
2719
2720	if (!sbi->s_log_groups_per_flex)
2721		return 0;
2722
2723	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2724	if (size <= sbi->s_flex_groups_allocated)
2725		return 0;
2726
2727	new_groups = kvzalloc(roundup_pow_of_two(size *
2728			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2729	if (!new_groups) {
2730		ext4_msg(sb, KERN_ERR,
2731			 "not enough memory for %d flex group pointers", size);
2732		return -ENOMEM;
2733	}
2734	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2735		new_groups[i] = kvzalloc(roundup_pow_of_two(
2736					 sizeof(struct flex_groups)),
2737					 GFP_KERNEL);
2738		if (!new_groups[i]) {
2739			for (j = sbi->s_flex_groups_allocated; j < i; j++)
2740				kvfree(new_groups[j]);
2741			kvfree(new_groups);
2742			ext4_msg(sb, KERN_ERR,
2743				 "not enough memory for %d flex groups", size);
2744			return -ENOMEM;
2745		}
2746	}
2747	rcu_read_lock();
2748	old_groups = rcu_dereference(sbi->s_flex_groups);
2749	if (old_groups)
2750		memcpy(new_groups, old_groups,
2751		       (sbi->s_flex_groups_allocated *
2752			sizeof(struct flex_groups *)));
2753	rcu_read_unlock();
2754	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2755	sbi->s_flex_groups_allocated = size;
2756	if (old_groups)
2757		ext4_kvfree_array_rcu(old_groups);
2758	return 0;
2759}
2760
2761static int ext4_fill_flex_info(struct super_block *sb)
2762{
2763	struct ext4_sb_info *sbi = EXT4_SB(sb);
2764	struct ext4_group_desc *gdp = NULL;
2765	struct flex_groups *fg;
2766	ext4_group_t flex_group;
2767	int i, err;
2768
2769	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2770	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2771		sbi->s_log_groups_per_flex = 0;
2772		return 1;
2773	}
2774
2775	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2776	if (err)
2777		goto failed;
2778
2779	for (i = 0; i < sbi->s_groups_count; i++) {
2780		gdp = ext4_get_group_desc(sb, i, NULL);
2781
2782		flex_group = ext4_flex_group(sbi, i);
2783		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2784		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2785		atomic64_add(ext4_free_group_clusters(sb, gdp),
2786			     &fg->free_clusters);
2787		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2788	}
2789
2790	return 1;
2791failed:
2792	return 0;
2793}
2794
2795static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2796				   struct ext4_group_desc *gdp)
2797{
2798	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2799	__u16 crc = 0;
2800	__le32 le_group = cpu_to_le32(block_group);
2801	struct ext4_sb_info *sbi = EXT4_SB(sb);
2802
2803	if (ext4_has_metadata_csum(sbi->s_sb)) {
2804		/* Use new metadata_csum algorithm */
2805		__u32 csum32;
2806		__u16 dummy_csum = 0;
2807
2808		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2809				     sizeof(le_group));
2810		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2811		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2812				     sizeof(dummy_csum));
2813		offset += sizeof(dummy_csum);
2814		if (offset < sbi->s_desc_size)
2815			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2816					     sbi->s_desc_size - offset);
2817
2818		crc = csum32 & 0xFFFF;
2819		goto out;
2820	}
2821
2822	/* old crc16 code */
2823	if (!ext4_has_feature_gdt_csum(sb))
2824		return 0;
2825
2826	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2827	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2828	crc = crc16(crc, (__u8 *)gdp, offset);
2829	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2830	/* for checksum of struct ext4_group_desc do the rest...*/
2831	if (ext4_has_feature_64bit(sb) &&
2832	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2833		crc = crc16(crc, (__u8 *)gdp + offset,
2834			    le16_to_cpu(sbi->s_es->s_desc_size) -
2835				offset);
2836
2837out:
2838	return cpu_to_le16(crc);
2839}
2840
2841int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2842				struct ext4_group_desc *gdp)
2843{
2844	if (ext4_has_group_desc_csum(sb) &&
2845	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2846		return 0;
2847
2848	return 1;
2849}
2850
2851void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2852			      struct ext4_group_desc *gdp)
2853{
2854	if (!ext4_has_group_desc_csum(sb))
2855		return;
2856	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2857}
2858
2859/* Called at mount-time, super-block is locked */
2860static int ext4_check_descriptors(struct super_block *sb,
2861				  ext4_fsblk_t sb_block,
2862				  ext4_group_t *first_not_zeroed)
2863{
2864	struct ext4_sb_info *sbi = EXT4_SB(sb);
2865	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2866	ext4_fsblk_t last_block;
2867	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2868	ext4_fsblk_t block_bitmap;
2869	ext4_fsblk_t inode_bitmap;
2870	ext4_fsblk_t inode_table;
2871	int flexbg_flag = 0;
2872	ext4_group_t i, grp = sbi->s_groups_count;
2873
2874	if (ext4_has_feature_flex_bg(sb))
2875		flexbg_flag = 1;
2876
2877	ext4_debug("Checking group descriptors");
2878
2879	for (i = 0; i < sbi->s_groups_count; i++) {
2880		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2881
2882		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2883			last_block = ext4_blocks_count(sbi->s_es) - 1;
2884		else
2885			last_block = first_block +
2886				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2887
2888		if ((grp == sbi->s_groups_count) &&
2889		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2890			grp = i;
2891
2892		block_bitmap = ext4_block_bitmap(sb, gdp);
2893		if (block_bitmap == sb_block) {
2894			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2895				 "Block bitmap for group %u overlaps "
2896				 "superblock", i);
2897			if (!sb_rdonly(sb))
2898				return 0;
2899		}
2900		if (block_bitmap >= sb_block + 1 &&
2901		    block_bitmap <= last_bg_block) {
2902			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2903				 "Block bitmap for group %u overlaps "
2904				 "block group descriptors", i);
2905			if (!sb_rdonly(sb))
2906				return 0;
2907		}
2908		if (block_bitmap < first_block || block_bitmap > last_block) {
2909			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2910			       "Block bitmap for group %u not in group "
2911			       "(block %llu)!", i, block_bitmap);
2912			return 0;
2913		}
2914		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2915		if (inode_bitmap == sb_block) {
2916			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2917				 "Inode bitmap for group %u overlaps "
2918				 "superblock", i);
2919			if (!sb_rdonly(sb))
2920				return 0;
2921		}
2922		if (inode_bitmap >= sb_block + 1 &&
2923		    inode_bitmap <= last_bg_block) {
2924			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2925				 "Inode bitmap for group %u overlaps "
2926				 "block group descriptors", i);
2927			if (!sb_rdonly(sb))
2928				return 0;
2929		}
2930		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2931			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2932			       "Inode bitmap for group %u not in group "
2933			       "(block %llu)!", i, inode_bitmap);
2934			return 0;
2935		}
2936		inode_table = ext4_inode_table(sb, gdp);
2937		if (inode_table == sb_block) {
2938			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2939				 "Inode table for group %u overlaps "
2940				 "superblock", i);
2941			if (!sb_rdonly(sb))
2942				return 0;
2943		}
2944		if (inode_table >= sb_block + 1 &&
2945		    inode_table <= last_bg_block) {
2946			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2947				 "Inode table for group %u overlaps "
2948				 "block group descriptors", i);
2949			if (!sb_rdonly(sb))
2950				return 0;
2951		}
2952		if (inode_table < first_block ||
2953		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2954			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2955			       "Inode table for group %u not in group "
2956			       "(block %llu)!", i, inode_table);
2957			return 0;
2958		}
2959		ext4_lock_group(sb, i);
2960		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2961			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2962				 "Checksum for group %u failed (%u!=%u)",
2963				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2964				     gdp)), le16_to_cpu(gdp->bg_checksum));
2965			if (!sb_rdonly(sb)) {
2966				ext4_unlock_group(sb, i);
2967				return 0;
2968			}
2969		}
2970		ext4_unlock_group(sb, i);
2971		if (!flexbg_flag)
2972			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2973	}
2974	if (NULL != first_not_zeroed)
2975		*first_not_zeroed = grp;
2976	return 1;
2977}
2978
2979/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2980 * the superblock) which were deleted from all directories, but held open by
2981 * a process at the time of a crash.  We walk the list and try to delete these
2982 * inodes at recovery time (only with a read-write filesystem).
2983 *
2984 * In order to keep the orphan inode chain consistent during traversal (in
2985 * case of crash during recovery), we link each inode into the superblock
2986 * orphan list_head and handle it the same way as an inode deletion during
2987 * normal operation (which journals the operations for us).
2988 *
2989 * We only do an iget() and an iput() on each inode, which is very safe if we
2990 * accidentally point at an in-use or already deleted inode.  The worst that
2991 * can happen in this case is that we get a "bit already cleared" message from
2992 * ext4_free_inode().  The only reason we would point at a wrong inode is if
2993 * e2fsck was run on this filesystem, and it must have already done the orphan
2994 * inode cleanup for us, so we can safely abort without any further action.
2995 */
2996static void ext4_orphan_cleanup(struct super_block *sb,
2997				struct ext4_super_block *es)
2998{
2999	unsigned int s_flags = sb->s_flags;
3000	int ret, nr_orphans = 0, nr_truncates = 0;
3001#ifdef CONFIG_QUOTA
3002	int quota_update = 0;
3003	int i;
3004#endif
3005	if (!es->s_last_orphan) {
3006		jbd_debug(4, "no orphan inodes to clean up\n");
3007		return;
3008	}
3009
3010	if (bdev_read_only(sb->s_bdev)) {
3011		ext4_msg(sb, KERN_ERR, "write access "
3012			"unavailable, skipping orphan cleanup");
3013		return;
3014	}
3015
3016	/* Check if feature set would not allow a r/w mount */
3017	if (!ext4_feature_set_ok(sb, 0)) {
3018		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3019			 "unknown ROCOMPAT features");
3020		return;
3021	}
3022
3023	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3024		/* don't clear list on RO mount w/ errors */
3025		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3026			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3027				  "clearing orphan list.\n");
3028			es->s_last_orphan = 0;
3029		}
3030		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3031		return;
3032	}
3033
3034	if (s_flags & SB_RDONLY) {
3035		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3036		sb->s_flags &= ~SB_RDONLY;
3037	}
3038#ifdef CONFIG_QUOTA
3039	/*
3040	 * Turn on quotas which were not enabled for read-only mounts if
3041	 * filesystem has quota feature, so that they are updated correctly.
3042	 */
3043	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3044		int ret = ext4_enable_quotas(sb);
3045
3046		if (!ret)
3047			quota_update = 1;
3048		else
3049			ext4_msg(sb, KERN_ERR,
3050				"Cannot turn on quotas: error %d", ret);
3051	}
3052
3053	/* Turn on journaled quotas used for old sytle */
3054	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3055		if (EXT4_SB(sb)->s_qf_names[i]) {
3056			int ret = ext4_quota_on_mount(sb, i);
3057
3058			if (!ret)
3059				quota_update = 1;
3060			else
3061				ext4_msg(sb, KERN_ERR,
3062					"Cannot turn on journaled "
3063					"quota: type %d: error %d", i, ret);
3064		}
3065	}
3066#endif
3067
3068	while (es->s_last_orphan) {
3069		struct inode *inode;
3070
3071		/*
3072		 * We may have encountered an error during cleanup; if
3073		 * so, skip the rest.
3074		 */
3075		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3076			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3077			es->s_last_orphan = 0;
3078			break;
3079		}
3080
3081		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3082		if (IS_ERR(inode)) {
3083			es->s_last_orphan = 0;
3084			break;
3085		}
3086
3087		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3088		dquot_initialize(inode);
3089		if (inode->i_nlink) {
3090			if (test_opt(sb, DEBUG))
3091				ext4_msg(sb, KERN_DEBUG,
3092					"%s: truncating inode %lu to %lld bytes",
3093					__func__, inode->i_ino, inode->i_size);
3094			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3095				  inode->i_ino, inode->i_size);
3096			inode_lock(inode);
3097			truncate_inode_pages(inode->i_mapping, inode->i_size);
3098			ret = ext4_truncate(inode);
3099			if (ret) {
3100				/*
3101				 * We need to clean up the in-core orphan list
3102				 * manually if ext4_truncate() failed to get a
3103				 * transaction handle.
3104				 */
3105				ext4_orphan_del(NULL, inode);
3106				ext4_std_error(inode->i_sb, ret);
3107			}
3108			inode_unlock(inode);
3109			nr_truncates++;
3110		} else {
3111			if (test_opt(sb, DEBUG))
3112				ext4_msg(sb, KERN_DEBUG,
3113					"%s: deleting unreferenced inode %lu",
3114					__func__, inode->i_ino);
3115			jbd_debug(2, "deleting unreferenced inode %lu\n",
3116				  inode->i_ino);
3117			nr_orphans++;
3118		}
3119		iput(inode);  /* The delete magic happens here! */
3120	}
3121
3122#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3123
3124	if (nr_orphans)
3125		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3126		       PLURAL(nr_orphans));
3127	if (nr_truncates)
3128		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3129		       PLURAL(nr_truncates));
3130#ifdef CONFIG_QUOTA
3131	/* Turn off quotas if they were enabled for orphan cleanup */
3132	if (quota_update) {
3133		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3134			if (sb_dqopt(sb)->files[i])
3135				dquot_quota_off(sb, i);
3136		}
3137	}
3138#endif
3139	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3140}
3141
3142/*
3143 * Maximal extent format file size.
3144 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3145 * extent format containers, within a sector_t, and within i_blocks
3146 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3147 * so that won't be a limiting factor.
3148 *
3149 * However there is other limiting factor. We do store extents in the form
3150 * of starting block and length, hence the resulting length of the extent
3151 * covering maximum file size must fit into on-disk format containers as
3152 * well. Given that length is always by 1 unit bigger than max unit (because
3153 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3154 *
3155 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3156 */
3157static loff_t ext4_max_size(int blkbits, int has_huge_files)
3158{
3159	loff_t res;
3160	loff_t upper_limit = MAX_LFS_FILESIZE;
3161
3162	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3163
3164	if (!has_huge_files) {
3165		upper_limit = (1LL << 32) - 1;
3166
3167		/* total blocks in file system block size */
3168		upper_limit >>= (blkbits - 9);
3169		upper_limit <<= blkbits;
3170	}
3171
3172	/*
3173	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3174	 * by one fs block, so ee_len can cover the extent of maximum file
3175	 * size
3176	 */
3177	res = (1LL << 32) - 1;
3178	res <<= blkbits;
3179
3180	/* Sanity check against vm- & vfs- imposed limits */
3181	if (res > upper_limit)
3182		res = upper_limit;
3183
3184	return res;
3185}
3186
3187/*
3188 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3189 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3190 * We need to be 1 filesystem block less than the 2^48 sector limit.
3191 */
3192static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3193{
3194	unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3195	int meta_blocks;
 
3196
3197	/*
3198	 * This is calculated to be the largest file size for a dense, block
3199	 * mapped file such that the file's total number of 512-byte sectors,
3200	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3201	 *
3202	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3203	 * number of 512-byte sectors of the file.
3204	 */
3205	if (!has_huge_files) {
3206		/*
3207		 * !has_huge_files or implies that the inode i_block field
3208		 * represents total file blocks in 2^32 512-byte sectors ==
3209		 * size of vfs inode i_blocks * 8
3210		 */
3211		upper_limit = (1LL << 32) - 1;
3212
3213		/* total blocks in file system block size */
3214		upper_limit >>= (bits - 9);
3215
3216	} else {
3217		/*
3218		 * We use 48 bit ext4_inode i_blocks
3219		 * With EXT4_HUGE_FILE_FL set the i_blocks
3220		 * represent total number of blocks in
3221		 * file system block size
3222		 */
3223		upper_limit = (1LL << 48) - 1;
3224
3225	}
3226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3227	/* indirect blocks */
3228	meta_blocks = 1;
 
3229	/* double indirect blocks */
3230	meta_blocks += 1 + (1LL << (bits-2));
3231	/* tripple indirect blocks */
3232	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3233
3234	upper_limit -= meta_blocks;
3235	upper_limit <<= bits;
3236
3237	res += 1LL << (bits-2);
3238	res += 1LL << (2*(bits-2));
3239	res += 1LL << (3*(bits-2));
 
 
3240	res <<= bits;
3241	if (res > upper_limit)
3242		res = upper_limit;
3243
3244	if (res > MAX_LFS_FILESIZE)
3245		res = MAX_LFS_FILESIZE;
3246
3247	return (loff_t)res;
3248}
3249
3250static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3251				   ext4_fsblk_t logical_sb_block, int nr)
3252{
3253	struct ext4_sb_info *sbi = EXT4_SB(sb);
3254	ext4_group_t bg, first_meta_bg;
3255	int has_super = 0;
3256
3257	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3258
3259	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3260		return logical_sb_block + nr + 1;
3261	bg = sbi->s_desc_per_block * nr;
3262	if (ext4_bg_has_super(sb, bg))
3263		has_super = 1;
3264
3265	/*
3266	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3267	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3268	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3269	 * compensate.
3270	 */
3271	if (sb->s_blocksize == 1024 && nr == 0 &&
3272	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3273		has_super++;
3274
3275	return (has_super + ext4_group_first_block_no(sb, bg));
3276}
3277
3278/**
3279 * ext4_get_stripe_size: Get the stripe size.
3280 * @sbi: In memory super block info
3281 *
3282 * If we have specified it via mount option, then
3283 * use the mount option value. If the value specified at mount time is
3284 * greater than the blocks per group use the super block value.
3285 * If the super block value is greater than blocks per group return 0.
3286 * Allocator needs it be less than blocks per group.
3287 *
3288 */
3289static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3290{
3291	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3292	unsigned long stripe_width =
3293			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3294	int ret;
3295
3296	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3297		ret = sbi->s_stripe;
3298	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3299		ret = stripe_width;
3300	else if (stride && stride <= sbi->s_blocks_per_group)
3301		ret = stride;
3302	else
3303		ret = 0;
3304
3305	/*
3306	 * If the stripe width is 1, this makes no sense and
3307	 * we set it to 0 to turn off stripe handling code.
3308	 */
3309	if (ret <= 1)
3310		ret = 0;
3311
3312	return ret;
3313}
3314
3315/*
3316 * Check whether this filesystem can be mounted based on
3317 * the features present and the RDONLY/RDWR mount requested.
3318 * Returns 1 if this filesystem can be mounted as requested,
3319 * 0 if it cannot be.
3320 */
3321static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3322{
3323	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3324		ext4_msg(sb, KERN_ERR,
3325			"Couldn't mount because of "
3326			"unsupported optional features (%x)",
3327			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3328			~EXT4_FEATURE_INCOMPAT_SUPP));
3329		return 0;
3330	}
3331
3332#ifndef CONFIG_UNICODE
3333	if (ext4_has_feature_casefold(sb)) {
3334		ext4_msg(sb, KERN_ERR,
3335			 "Filesystem with casefold feature cannot be "
3336			 "mounted without CONFIG_UNICODE");
3337		return 0;
3338	}
3339#endif
3340
3341	if (readonly)
3342		return 1;
3343
3344	if (ext4_has_feature_readonly(sb)) {
3345		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3346		sb->s_flags |= SB_RDONLY;
3347		return 1;
3348	}
3349
3350	/* Check that feature set is OK for a read-write mount */
3351	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3352		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3353			 "unsupported optional features (%x)",
3354			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3355				~EXT4_FEATURE_RO_COMPAT_SUPP));
3356		return 0;
3357	}
3358	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3359		ext4_msg(sb, KERN_ERR,
3360			 "Can't support bigalloc feature without "
3361			 "extents feature\n");
3362		return 0;
3363	}
3364
3365#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3366	if (!readonly && (ext4_has_feature_quota(sb) ||
3367			  ext4_has_feature_project(sb))) {
3368		ext4_msg(sb, KERN_ERR,
3369			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3370		return 0;
3371	}
3372#endif  /* CONFIG_QUOTA */
3373	return 1;
3374}
3375
3376/*
3377 * This function is called once a day if we have errors logged
3378 * on the file system
3379 */
3380static void print_daily_error_info(struct timer_list *t)
3381{
3382	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3383	struct super_block *sb = sbi->s_sb;
3384	struct ext4_super_block *es = sbi->s_es;
3385
3386	if (es->s_error_count)
3387		/* fsck newer than v1.41.13 is needed to clean this condition. */
3388		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3389			 le32_to_cpu(es->s_error_count));
3390	if (es->s_first_error_time) {
3391		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3392		       sb->s_id,
3393		       ext4_get_tstamp(es, s_first_error_time),
3394		       (int) sizeof(es->s_first_error_func),
3395		       es->s_first_error_func,
3396		       le32_to_cpu(es->s_first_error_line));
3397		if (es->s_first_error_ino)
3398			printk(KERN_CONT ": inode %u",
3399			       le32_to_cpu(es->s_first_error_ino));
3400		if (es->s_first_error_block)
3401			printk(KERN_CONT ": block %llu", (unsigned long long)
3402			       le64_to_cpu(es->s_first_error_block));
3403		printk(KERN_CONT "\n");
3404	}
3405	if (es->s_last_error_time) {
3406		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3407		       sb->s_id,
3408		       ext4_get_tstamp(es, s_last_error_time),
3409		       (int) sizeof(es->s_last_error_func),
3410		       es->s_last_error_func,
3411		       le32_to_cpu(es->s_last_error_line));
3412		if (es->s_last_error_ino)
3413			printk(KERN_CONT ": inode %u",
3414			       le32_to_cpu(es->s_last_error_ino));
3415		if (es->s_last_error_block)
3416			printk(KERN_CONT ": block %llu", (unsigned long long)
3417			       le64_to_cpu(es->s_last_error_block));
3418		printk(KERN_CONT "\n");
3419	}
3420	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3421}
3422
3423/* Find next suitable group and run ext4_init_inode_table */
3424static int ext4_run_li_request(struct ext4_li_request *elr)
3425{
3426	struct ext4_group_desc *gdp = NULL;
3427	struct super_block *sb = elr->lr_super;
3428	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3429	ext4_group_t group = elr->lr_next_group;
3430	unsigned long timeout = 0;
3431	unsigned int prefetch_ios = 0;
3432	int ret = 0;
 
 
3433
3434	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3435		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3436				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3437		if (prefetch_ios)
3438			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3439					      prefetch_ios);
3440		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3441					    prefetch_ios);
3442		if (group >= elr->lr_next_group) {
3443			ret = 1;
3444			if (elr->lr_first_not_zeroed != ngroups &&
3445			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3446				elr->lr_next_group = elr->lr_first_not_zeroed;
3447				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3448				ret = 0;
3449			}
3450		}
3451		return ret;
3452	}
3453
3454	for (; group < ngroups; group++) {
3455		gdp = ext4_get_group_desc(sb, group, NULL);
3456		if (!gdp) {
3457			ret = 1;
3458			break;
3459		}
3460
3461		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3462			break;
3463	}
3464
3465	if (group >= ngroups)
3466		ret = 1;
3467
3468	if (!ret) {
3469		timeout = jiffies;
3470		ret = ext4_init_inode_table(sb, group,
3471					    elr->lr_timeout ? 0 : 1);
3472		trace_ext4_lazy_itable_init(sb, group);
3473		if (elr->lr_timeout == 0) {
3474			timeout = (jiffies - timeout) *
3475				EXT4_SB(elr->lr_super)->s_li_wait_mult;
3476			elr->lr_timeout = timeout;
3477		}
3478		elr->lr_next_sched = jiffies + elr->lr_timeout;
3479		elr->lr_next_group = group + 1;
3480	}
3481	return ret;
3482}
3483
3484/*
3485 * Remove lr_request from the list_request and free the
3486 * request structure. Should be called with li_list_mtx held
3487 */
3488static void ext4_remove_li_request(struct ext4_li_request *elr)
3489{
3490	if (!elr)
3491		return;
3492
3493	list_del(&elr->lr_request);
3494	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3495	kfree(elr);
3496}
3497
3498static void ext4_unregister_li_request(struct super_block *sb)
3499{
3500	mutex_lock(&ext4_li_mtx);
3501	if (!ext4_li_info) {
3502		mutex_unlock(&ext4_li_mtx);
3503		return;
3504	}
3505
3506	mutex_lock(&ext4_li_info->li_list_mtx);
3507	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3508	mutex_unlock(&ext4_li_info->li_list_mtx);
3509	mutex_unlock(&ext4_li_mtx);
3510}
3511
3512static struct task_struct *ext4_lazyinit_task;
3513
3514/*
3515 * This is the function where ext4lazyinit thread lives. It walks
3516 * through the request list searching for next scheduled filesystem.
3517 * When such a fs is found, run the lazy initialization request
3518 * (ext4_rn_li_request) and keep track of the time spend in this
3519 * function. Based on that time we compute next schedule time of
3520 * the request. When walking through the list is complete, compute
3521 * next waking time and put itself into sleep.
3522 */
3523static int ext4_lazyinit_thread(void *arg)
3524{
3525	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3526	struct list_head *pos, *n;
3527	struct ext4_li_request *elr;
3528	unsigned long next_wakeup, cur;
3529
3530	BUG_ON(NULL == eli);
 
3531
3532cont_thread:
3533	while (true) {
3534		next_wakeup = MAX_JIFFY_OFFSET;
3535
3536		mutex_lock(&eli->li_list_mtx);
3537		if (list_empty(&eli->li_request_list)) {
3538			mutex_unlock(&eli->li_list_mtx);
3539			goto exit_thread;
3540		}
3541		list_for_each_safe(pos, n, &eli->li_request_list) {
3542			int err = 0;
3543			int progress = 0;
3544			elr = list_entry(pos, struct ext4_li_request,
3545					 lr_request);
3546
3547			if (time_before(jiffies, elr->lr_next_sched)) {
3548				if (time_before(elr->lr_next_sched, next_wakeup))
3549					next_wakeup = elr->lr_next_sched;
3550				continue;
3551			}
3552			if (down_read_trylock(&elr->lr_super->s_umount)) {
3553				if (sb_start_write_trylock(elr->lr_super)) {
3554					progress = 1;
3555					/*
3556					 * We hold sb->s_umount, sb can not
3557					 * be removed from the list, it is
3558					 * now safe to drop li_list_mtx
3559					 */
3560					mutex_unlock(&eli->li_list_mtx);
3561					err = ext4_run_li_request(elr);
3562					sb_end_write(elr->lr_super);
3563					mutex_lock(&eli->li_list_mtx);
3564					n = pos->next;
3565				}
3566				up_read((&elr->lr_super->s_umount));
3567			}
3568			/* error, remove the lazy_init job */
3569			if (err) {
3570				ext4_remove_li_request(elr);
3571				continue;
3572			}
3573			if (!progress) {
3574				elr->lr_next_sched = jiffies +
3575					(prandom_u32()
3576					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3577			}
3578			if (time_before(elr->lr_next_sched, next_wakeup))
3579				next_wakeup = elr->lr_next_sched;
3580		}
3581		mutex_unlock(&eli->li_list_mtx);
3582
3583		try_to_freeze();
3584
3585		cur = jiffies;
3586		if ((time_after_eq(cur, next_wakeup)) ||
3587		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3588			cond_resched();
3589			continue;
3590		}
3591
3592		schedule_timeout_interruptible(next_wakeup - cur);
3593
3594		if (kthread_should_stop()) {
3595			ext4_clear_request_list();
3596			goto exit_thread;
3597		}
3598	}
3599
3600exit_thread:
3601	/*
3602	 * It looks like the request list is empty, but we need
3603	 * to check it under the li_list_mtx lock, to prevent any
3604	 * additions into it, and of course we should lock ext4_li_mtx
3605	 * to atomically free the list and ext4_li_info, because at
3606	 * this point another ext4 filesystem could be registering
3607	 * new one.
3608	 */
3609	mutex_lock(&ext4_li_mtx);
3610	mutex_lock(&eli->li_list_mtx);
3611	if (!list_empty(&eli->li_request_list)) {
3612		mutex_unlock(&eli->li_list_mtx);
3613		mutex_unlock(&ext4_li_mtx);
3614		goto cont_thread;
3615	}
3616	mutex_unlock(&eli->li_list_mtx);
3617	kfree(ext4_li_info);
3618	ext4_li_info = NULL;
3619	mutex_unlock(&ext4_li_mtx);
3620
3621	return 0;
3622}
3623
3624static void ext4_clear_request_list(void)
3625{
3626	struct list_head *pos, *n;
3627	struct ext4_li_request *elr;
3628
3629	mutex_lock(&ext4_li_info->li_list_mtx);
3630	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3631		elr = list_entry(pos, struct ext4_li_request,
3632				 lr_request);
3633		ext4_remove_li_request(elr);
3634	}
3635	mutex_unlock(&ext4_li_info->li_list_mtx);
3636}
3637
3638static int ext4_run_lazyinit_thread(void)
3639{
3640	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3641					 ext4_li_info, "ext4lazyinit");
3642	if (IS_ERR(ext4_lazyinit_task)) {
3643		int err = PTR_ERR(ext4_lazyinit_task);
3644		ext4_clear_request_list();
3645		kfree(ext4_li_info);
3646		ext4_li_info = NULL;
3647		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3648				 "initialization thread\n",
3649				 err);
3650		return err;
3651	}
3652	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3653	return 0;
3654}
3655
3656/*
3657 * Check whether it make sense to run itable init. thread or not.
3658 * If there is at least one uninitialized inode table, return
3659 * corresponding group number, else the loop goes through all
3660 * groups and return total number of groups.
3661 */
3662static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3663{
3664	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3665	struct ext4_group_desc *gdp = NULL;
3666
3667	if (!ext4_has_group_desc_csum(sb))
3668		return ngroups;
3669
3670	for (group = 0; group < ngroups; group++) {
3671		gdp = ext4_get_group_desc(sb, group, NULL);
3672		if (!gdp)
3673			continue;
3674
3675		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3676			break;
3677	}
3678
3679	return group;
3680}
3681
3682static int ext4_li_info_new(void)
3683{
3684	struct ext4_lazy_init *eli = NULL;
3685
3686	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3687	if (!eli)
3688		return -ENOMEM;
3689
3690	INIT_LIST_HEAD(&eli->li_request_list);
3691	mutex_init(&eli->li_list_mtx);
3692
3693	eli->li_state |= EXT4_LAZYINIT_QUIT;
3694
3695	ext4_li_info = eli;
3696
3697	return 0;
3698}
3699
3700static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3701					    ext4_group_t start)
3702{
3703	struct ext4_li_request *elr;
3704
3705	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3706	if (!elr)
3707		return NULL;
3708
3709	elr->lr_super = sb;
3710	elr->lr_first_not_zeroed = start;
3711	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3712		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3713		elr->lr_next_group = start;
3714	} else {
3715		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3716	}
3717
3718	/*
3719	 * Randomize first schedule time of the request to
3720	 * spread the inode table initialization requests
3721	 * better.
3722	 */
3723	elr->lr_next_sched = jiffies + (prandom_u32() %
3724				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3725	return elr;
3726}
3727
3728int ext4_register_li_request(struct super_block *sb,
3729			     ext4_group_t first_not_zeroed)
3730{
3731	struct ext4_sb_info *sbi = EXT4_SB(sb);
3732	struct ext4_li_request *elr = NULL;
3733	ext4_group_t ngroups = sbi->s_groups_count;
3734	int ret = 0;
3735
3736	mutex_lock(&ext4_li_mtx);
3737	if (sbi->s_li_request != NULL) {
3738		/*
3739		 * Reset timeout so it can be computed again, because
3740		 * s_li_wait_mult might have changed.
3741		 */
3742		sbi->s_li_request->lr_timeout = 0;
3743		goto out;
3744	}
3745
3746	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3747	    (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3748	     !test_opt(sb, INIT_INODE_TABLE)))
3749		goto out;
3750
3751	elr = ext4_li_request_new(sb, first_not_zeroed);
3752	if (!elr) {
3753		ret = -ENOMEM;
3754		goto out;
3755	}
3756
3757	if (NULL == ext4_li_info) {
3758		ret = ext4_li_info_new();
3759		if (ret)
3760			goto out;
3761	}
3762
3763	mutex_lock(&ext4_li_info->li_list_mtx);
3764	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3765	mutex_unlock(&ext4_li_info->li_list_mtx);
3766
3767	sbi->s_li_request = elr;
3768	/*
3769	 * set elr to NULL here since it has been inserted to
3770	 * the request_list and the removal and free of it is
3771	 * handled by ext4_clear_request_list from now on.
3772	 */
3773	elr = NULL;
3774
3775	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3776		ret = ext4_run_lazyinit_thread();
3777		if (ret)
3778			goto out;
3779	}
3780out:
3781	mutex_unlock(&ext4_li_mtx);
3782	if (ret)
3783		kfree(elr);
3784	return ret;
3785}
3786
3787/*
3788 * We do not need to lock anything since this is called on
3789 * module unload.
3790 */
3791static void ext4_destroy_lazyinit_thread(void)
3792{
3793	/*
3794	 * If thread exited earlier
3795	 * there's nothing to be done.
3796	 */
3797	if (!ext4_li_info || !ext4_lazyinit_task)
3798		return;
3799
3800	kthread_stop(ext4_lazyinit_task);
3801}
3802
3803static int set_journal_csum_feature_set(struct super_block *sb)
3804{
3805	int ret = 1;
3806	int compat, incompat;
3807	struct ext4_sb_info *sbi = EXT4_SB(sb);
3808
3809	if (ext4_has_metadata_csum(sb)) {
3810		/* journal checksum v3 */
3811		compat = 0;
3812		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3813	} else {
3814		/* journal checksum v1 */
3815		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3816		incompat = 0;
3817	}
3818
3819	jbd2_journal_clear_features(sbi->s_journal,
3820			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3821			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3822			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3823	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3824		ret = jbd2_journal_set_features(sbi->s_journal,
3825				compat, 0,
3826				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3827				incompat);
3828	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3829		ret = jbd2_journal_set_features(sbi->s_journal,
3830				compat, 0,
3831				incompat);
3832		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3833				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3834	} else {
3835		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3836				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3837	}
3838
3839	return ret;
3840}
3841
3842/*
3843 * Note: calculating the overhead so we can be compatible with
3844 * historical BSD practice is quite difficult in the face of
3845 * clusters/bigalloc.  This is because multiple metadata blocks from
3846 * different block group can end up in the same allocation cluster.
3847 * Calculating the exact overhead in the face of clustered allocation
3848 * requires either O(all block bitmaps) in memory or O(number of block
3849 * groups**2) in time.  We will still calculate the superblock for
3850 * older file systems --- and if we come across with a bigalloc file
3851 * system with zero in s_overhead_clusters the estimate will be close to
3852 * correct especially for very large cluster sizes --- but for newer
3853 * file systems, it's better to calculate this figure once at mkfs
3854 * time, and store it in the superblock.  If the superblock value is
3855 * present (even for non-bigalloc file systems), we will use it.
3856 */
3857static int count_overhead(struct super_block *sb, ext4_group_t grp,
3858			  char *buf)
3859{
3860	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3861	struct ext4_group_desc	*gdp;
3862	ext4_fsblk_t		first_block, last_block, b;
3863	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3864	int			s, j, count = 0;
 
3865
3866	if (!ext4_has_feature_bigalloc(sb))
3867		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
 
3868			sbi->s_itb_per_group + 2);
3869
3870	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3871		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3872	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3873	for (i = 0; i < ngroups; i++) {
3874		gdp = ext4_get_group_desc(sb, i, NULL);
3875		b = ext4_block_bitmap(sb, gdp);
3876		if (b >= first_block && b <= last_block) {
3877			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3878			count++;
3879		}
3880		b = ext4_inode_bitmap(sb, gdp);
3881		if (b >= first_block && b <= last_block) {
3882			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3883			count++;
3884		}
3885		b = ext4_inode_table(sb, gdp);
3886		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3887			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3888				int c = EXT4_B2C(sbi, b - first_block);
3889				ext4_set_bit(c, buf);
3890				count++;
3891			}
3892		if (i != grp)
3893			continue;
3894		s = 0;
3895		if (ext4_bg_has_super(sb, grp)) {
3896			ext4_set_bit(s++, buf);
3897			count++;
3898		}
3899		j = ext4_bg_num_gdb(sb, grp);
3900		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3901			ext4_error(sb, "Invalid number of block group "
3902				   "descriptor blocks: %d", j);
3903			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3904		}
3905		count += j;
3906		for (; j > 0; j--)
3907			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3908	}
3909	if (!count)
3910		return 0;
3911	return EXT4_CLUSTERS_PER_GROUP(sb) -
3912		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3913}
3914
3915/*
3916 * Compute the overhead and stash it in sbi->s_overhead
3917 */
3918int ext4_calculate_overhead(struct super_block *sb)
3919{
3920	struct ext4_sb_info *sbi = EXT4_SB(sb);
3921	struct ext4_super_block *es = sbi->s_es;
3922	struct inode *j_inode;
3923	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3924	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3925	ext4_fsblk_t overhead = 0;
3926	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3927
3928	if (!buf)
3929		return -ENOMEM;
3930
3931	/*
3932	 * Compute the overhead (FS structures).  This is constant
3933	 * for a given filesystem unless the number of block groups
3934	 * changes so we cache the previous value until it does.
3935	 */
3936
3937	/*
3938	 * All of the blocks before first_data_block are overhead
3939	 */
3940	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3941
3942	/*
3943	 * Add the overhead found in each block group
3944	 */
3945	for (i = 0; i < ngroups; i++) {
3946		int blks;
3947
3948		blks = count_overhead(sb, i, buf);
3949		overhead += blks;
3950		if (blks)
3951			memset(buf, 0, PAGE_SIZE);
3952		cond_resched();
3953	}
3954
3955	/*
3956	 * Add the internal journal blocks whether the journal has been
3957	 * loaded or not
3958	 */
3959	if (sbi->s_journal && !sbi->s_journal_bdev)
3960		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3961	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3962		/* j_inum for internal journal is non-zero */
3963		j_inode = ext4_get_journal_inode(sb, j_inum);
3964		if (j_inode) {
3965			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3966			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3967			iput(j_inode);
3968		} else {
3969			ext4_msg(sb, KERN_ERR, "can't get journal size");
3970		}
3971	}
3972	sbi->s_overhead = overhead;
3973	smp_wmb();
3974	free_page((unsigned long) buf);
3975	return 0;
3976}
3977
3978static void ext4_set_resv_clusters(struct super_block *sb)
3979{
3980	ext4_fsblk_t resv_clusters;
3981	struct ext4_sb_info *sbi = EXT4_SB(sb);
3982
3983	/*
3984	 * There's no need to reserve anything when we aren't using extents.
3985	 * The space estimates are exact, there are no unwritten extents,
3986	 * hole punching doesn't need new metadata... This is needed especially
3987	 * to keep ext2/3 backward compatibility.
3988	 */
3989	if (!ext4_has_feature_extents(sb))
3990		return;
3991	/*
3992	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3993	 * This should cover the situations where we can not afford to run
3994	 * out of space like for example punch hole, or converting
3995	 * unwritten extents in delalloc path. In most cases such
3996	 * allocation would require 1, or 2 blocks, higher numbers are
3997	 * very rare.
3998	 */
3999	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4000			 sbi->s_cluster_bits);
4001
4002	do_div(resv_clusters, 50);
4003	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4004
4005	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4006}
4007
4008static const char *ext4_quota_mode(struct super_block *sb)
4009{
4010#ifdef CONFIG_QUOTA
4011	if (!ext4_quota_capable(sb))
4012		return "none";
4013
4014	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4015		return "journalled";
4016	else
4017		return "writeback";
4018#else
4019	return "disabled";
4020#endif
4021}
4022
4023static int ext4_fill_super(struct super_block *sb, void *data, int silent)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4024{
4025	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4026	char *orig_data = kstrdup(data, GFP_KERNEL);
4027	struct buffer_head *bh, **group_desc;
4028	struct ext4_super_block *es = NULL;
4029	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4030	struct flex_groups **flex_groups;
4031	ext4_fsblk_t block;
4032	ext4_fsblk_t sb_block = get_sb_block(&data);
4033	ext4_fsblk_t logical_sb_block;
4034	unsigned long offset = 0;
4035	unsigned long def_mount_opts;
4036	struct inode *root;
4037	const char *descr;
4038	int ret = -ENOMEM;
4039	int blocksize, clustersize;
4040	unsigned int db_count;
4041	unsigned int i;
4042	int needs_recovery, has_huge_files;
4043	__u64 blocks_count;
4044	int err = 0;
4045	ext4_group_t first_not_zeroed;
4046	struct ext4_parsed_options parsed_opts;
4047
4048	/* Set defaults for the variables that will be set during parsing */
4049	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4050	parsed_opts.journal_devnum = 0;
4051	parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
4052
4053	if ((data && !orig_data) || !sbi)
4054		goto out_free_base;
4055
4056	sbi->s_daxdev = dax_dev;
4057	sbi->s_blockgroup_lock =
4058		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
 
4059	if (!sbi->s_blockgroup_lock)
4060		goto out_free_base;
4061
4062	sb->s_fs_info = sbi;
4063	sbi->s_sb = sb;
4064	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4065	sbi->s_sb_block = sb_block;
4066	sbi->s_sectors_written_start =
4067		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
 
 
4068
4069	/* Cleanup superblock name */
4070	strreplace(sb->s_id, '/', '!');
4071
4072	/* -EINVAL is default */
4073	ret = -EINVAL;
4074	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4075	if (!blocksize) {
4076		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4077		goto out_fail;
4078	}
4079
4080	/*
4081	 * The ext4 superblock will not be buffer aligned for other than 1kB
4082	 * block sizes.  We need to calculate the offset from buffer start.
4083	 */
4084	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4085		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4086		offset = do_div(logical_sb_block, blocksize);
4087	} else {
4088		logical_sb_block = sb_block;
4089	}
4090
4091	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4092	if (IS_ERR(bh)) {
4093		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4094		ret = PTR_ERR(bh);
4095		goto out_fail;
4096	}
4097	/*
4098	 * Note: s_es must be initialized as soon as possible because
4099	 *       some ext4 macro-instructions depend on its value
4100	 */
4101	es = (struct ext4_super_block *) (bh->b_data + offset);
4102	sbi->s_es = es;
4103	sb->s_magic = le16_to_cpu(es->s_magic);
4104	if (sb->s_magic != EXT4_SUPER_MAGIC)
4105		goto cantfind_ext4;
4106	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4107
4108	/* Warn if metadata_csum and gdt_csum are both set. */
4109	if (ext4_has_feature_metadata_csum(sb) &&
4110	    ext4_has_feature_gdt_csum(sb))
4111		ext4_warning(sb, "metadata_csum and uninit_bg are "
4112			     "redundant flags; please run fsck.");
4113
4114	/* Check for a known checksum algorithm */
4115	if (!ext4_verify_csum_type(sb, es)) {
4116		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4117			 "unknown checksum algorithm.");
4118		silent = 1;
4119		goto cantfind_ext4;
4120	}
4121
4122	/* Load the checksum driver */
4123	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4124	if (IS_ERR(sbi->s_chksum_driver)) {
4125		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4126		ret = PTR_ERR(sbi->s_chksum_driver);
4127		sbi->s_chksum_driver = NULL;
4128		goto failed_mount;
4129	}
4130
4131	/* Check superblock checksum */
4132	if (!ext4_superblock_csum_verify(sb, es)) {
4133		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4134			 "invalid superblock checksum.  Run e2fsck?");
4135		silent = 1;
4136		ret = -EFSBADCRC;
4137		goto cantfind_ext4;
4138	}
4139
4140	/* Precompute checksum seed for all metadata */
4141	if (ext4_has_feature_csum_seed(sb))
4142		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4143	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4144		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4145					       sizeof(es->s_uuid));
4146
4147	/* Set defaults before we parse the mount options */
4148	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4149	set_opt(sb, INIT_INODE_TABLE);
4150	if (def_mount_opts & EXT4_DEFM_DEBUG)
4151		set_opt(sb, DEBUG);
4152	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4153		set_opt(sb, GRPID);
4154	if (def_mount_opts & EXT4_DEFM_UID16)
4155		set_opt(sb, NO_UID32);
4156	/* xattr user namespace & acls are now defaulted on */
4157	set_opt(sb, XATTR_USER);
4158#ifdef CONFIG_EXT4_FS_POSIX_ACL
4159	set_opt(sb, POSIX_ACL);
4160#endif
4161	if (ext4_has_feature_fast_commit(sb))
4162		set_opt2(sb, JOURNAL_FAST_COMMIT);
4163	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4164	if (ext4_has_metadata_csum(sb))
4165		set_opt(sb, JOURNAL_CHECKSUM);
4166
4167	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4168		set_opt(sb, JOURNAL_DATA);
4169	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4170		set_opt(sb, ORDERED_DATA);
4171	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4172		set_opt(sb, WRITEBACK_DATA);
4173
4174	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4175		set_opt(sb, ERRORS_PANIC);
4176	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4177		set_opt(sb, ERRORS_CONT);
4178	else
4179		set_opt(sb, ERRORS_RO);
4180	/* block_validity enabled by default; disable with noblock_validity */
4181	set_opt(sb, BLOCK_VALIDITY);
4182	if (def_mount_opts & EXT4_DEFM_DISCARD)
4183		set_opt(sb, DISCARD);
4184
4185	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4186	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4187	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4188	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4189	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4190
4191	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4192		set_opt(sb, BARRIER);
4193
4194	/*
4195	 * enable delayed allocation by default
4196	 * Use -o nodelalloc to turn it off
4197	 */
4198	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4199	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4200		set_opt(sb, DELALLOC);
4201
4202	/*
4203	 * set default s_li_wait_mult for lazyinit, for the case there is
4204	 * no mount option specified.
4205	 */
4206	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
 
 
 
 
4207
4208	if (le32_to_cpu(es->s_log_block_size) >
4209	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4210		ext4_msg(sb, KERN_ERR,
4211			 "Invalid log block size: %u",
4212			 le32_to_cpu(es->s_log_block_size));
4213		goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4214	}
4215	if (le32_to_cpu(es->s_log_cluster_size) >
4216	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4217		ext4_msg(sb, KERN_ERR,
4218			 "Invalid log cluster size: %u",
4219			 le32_to_cpu(es->s_log_cluster_size));
4220		goto failed_mount;
4221	}
 
 
 
 
 
 
 
 
 
 
 
 
4222
4223	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4224
4225	if (blocksize == PAGE_SIZE)
4226		set_opt(sb, DIOREAD_NOLOCK);
 
 
4227
4228	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4229		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4230		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4231	} else {
4232		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4233		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4234		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4235			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4236				 sbi->s_first_ino);
4237			goto failed_mount;
4238		}
4239		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4240		    (!is_power_of_2(sbi->s_inode_size)) ||
4241		    (sbi->s_inode_size > blocksize)) {
4242			ext4_msg(sb, KERN_ERR,
4243			       "unsupported inode size: %d",
4244			       sbi->s_inode_size);
4245			ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4246			goto failed_mount;
4247		}
4248		/*
4249		 * i_atime_extra is the last extra field available for
4250		 * [acm]times in struct ext4_inode. Checking for that
4251		 * field should suffice to ensure we have extra space
4252		 * for all three.
4253		 */
4254		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4255			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4256			sb->s_time_gran = 1;
4257			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4258		} else {
4259			sb->s_time_gran = NSEC_PER_SEC;
4260			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4261		}
4262		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4263	}
 
4264	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4265		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4266			EXT4_GOOD_OLD_INODE_SIZE;
4267		if (ext4_has_feature_extra_isize(sb)) {
4268			unsigned v, max = (sbi->s_inode_size -
4269					   EXT4_GOOD_OLD_INODE_SIZE);
4270
4271			v = le16_to_cpu(es->s_want_extra_isize);
4272			if (v > max) {
4273				ext4_msg(sb, KERN_ERR,
4274					 "bad s_want_extra_isize: %d", v);
4275				goto failed_mount;
4276			}
4277			if (sbi->s_want_extra_isize < v)
4278				sbi->s_want_extra_isize = v;
4279
4280			v = le16_to_cpu(es->s_min_extra_isize);
4281			if (v > max) {
4282				ext4_msg(sb, KERN_ERR,
4283					 "bad s_min_extra_isize: %d", v);
4284				goto failed_mount;
4285			}
4286			if (sbi->s_want_extra_isize < v)
4287				sbi->s_want_extra_isize = v;
4288		}
4289	}
4290
4291	if (sbi->s_es->s_mount_opts[0]) {
4292		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4293					      sizeof(sbi->s_es->s_mount_opts),
4294					      GFP_KERNEL);
4295		if (!s_mount_opts)
4296			goto failed_mount;
4297		if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4298			ext4_msg(sb, KERN_WARNING,
4299				 "failed to parse options in superblock: %s",
4300				 s_mount_opts);
4301		}
4302		kfree(s_mount_opts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4303	}
4304	sbi->s_def_mount_opt = sbi->s_mount_opt;
4305	if (!parse_options((char *) data, sb, &parsed_opts, 0))
4306		goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4307
4308#ifdef CONFIG_UNICODE
4309	if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4310		const struct ext4_sb_encodings *encoding_info;
4311		struct unicode_map *encoding;
4312		__u16 encoding_flags;
4313
4314		if (ext4_sb_read_encoding(es, &encoding_info,
4315					  &encoding_flags)) {
4316			ext4_msg(sb, KERN_ERR,
4317				 "Encoding requested by superblock is unknown");
4318			goto failed_mount;
4319		}
4320
4321		encoding = utf8_load(encoding_info->version);
4322		if (IS_ERR(encoding)) {
4323			ext4_msg(sb, KERN_ERR,
4324				 "can't mount with superblock charset: %s-%s "
4325				 "not supported by the kernel. flags: 0x%x.",
4326				 encoding_info->name, encoding_info->version,
4327				 encoding_flags);
4328			goto failed_mount;
4329		}
4330		ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4331			 "%s-%s with flags 0x%hx", encoding_info->name,
4332			 encoding_info->version?:"\b", encoding_flags);
4333
4334		sb->s_encoding = encoding;
4335		sb->s_encoding_flags = encoding_flags;
 
 
 
 
 
4336	}
4337#endif
4338
4339	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4340		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4341		/* can't mount with both data=journal and dioread_nolock. */
4342		clear_opt(sb, DIOREAD_NOLOCK);
4343		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4344		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4345			ext4_msg(sb, KERN_ERR, "can't mount with "
4346				 "both data=journal and delalloc");
4347			goto failed_mount;
4348		}
4349		if (test_opt(sb, DAX_ALWAYS)) {
4350			ext4_msg(sb, KERN_ERR, "can't mount with "
4351				 "both data=journal and dax");
4352			goto failed_mount;
4353		}
4354		if (ext4_has_feature_encrypt(sb)) {
4355			ext4_msg(sb, KERN_WARNING,
4356				 "encrypted files will use data=ordered "
4357				 "instead of data journaling mode");
4358		}
4359		if (test_opt(sb, DELALLOC))
4360			clear_opt(sb, DELALLOC);
4361	} else {
4362		sb->s_iflags |= SB_I_CGROUPWB;
4363	}
4364
4365	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4366		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
 
 
 
 
 
 
 
 
 
 
 
 
4367
4368	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4369	    (ext4_has_compat_features(sb) ||
4370	     ext4_has_ro_compat_features(sb) ||
4371	     ext4_has_incompat_features(sb)))
4372		ext4_msg(sb, KERN_WARNING,
4373		       "feature flags set on rev 0 fs, "
4374		       "running e2fsck is recommended");
4375
4376	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4377		set_opt2(sb, HURD_COMPAT);
4378		if (ext4_has_feature_64bit(sb)) {
4379			ext4_msg(sb, KERN_ERR,
4380				 "The Hurd can't support 64-bit file systems");
4381			goto failed_mount;
4382		}
4383
4384		/*
4385		 * ea_inode feature uses l_i_version field which is not
4386		 * available in HURD_COMPAT mode.
4387		 */
4388		if (ext4_has_feature_ea_inode(sb)) {
4389			ext4_msg(sb, KERN_ERR,
4390				 "ea_inode feature is not supported for Hurd");
4391			goto failed_mount;
4392		}
4393	}
4394
4395	if (IS_EXT2_SB(sb)) {
4396		if (ext2_feature_set_ok(sb))
4397			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4398				 "using the ext4 subsystem");
4399		else {
4400			/*
4401			 * If we're probing be silent, if this looks like
4402			 * it's actually an ext[34] filesystem.
4403			 */
4404			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4405				goto failed_mount;
4406			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4407				 "to feature incompatibilities");
4408			goto failed_mount;
4409		}
4410	}
4411
4412	if (IS_EXT3_SB(sb)) {
4413		if (ext3_feature_set_ok(sb))
4414			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4415				 "using the ext4 subsystem");
4416		else {
4417			/*
4418			 * If we're probing be silent, if this looks like
4419			 * it's actually an ext4 filesystem.
4420			 */
4421			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4422				goto failed_mount;
4423			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4424				 "to feature incompatibilities");
4425			goto failed_mount;
4426		}
4427	}
4428
4429	/*
4430	 * Check feature flags regardless of the revision level, since we
4431	 * previously didn't change the revision level when setting the flags,
4432	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4433	 */
4434	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4435		goto failed_mount;
4436
4437	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4438		ext4_msg(sb, KERN_ERR,
4439			 "Number of reserved GDT blocks insanely large: %d",
4440			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4441		goto failed_mount;
4442	}
4443
4444	if (bdev_dax_supported(sb->s_bdev, blocksize))
4445		set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4446
4447	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4448		if (ext4_has_feature_inline_data(sb)) {
4449			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4450					" that may contain inline data");
4451			goto failed_mount;
4452		}
4453		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4454			ext4_msg(sb, KERN_ERR,
4455				"DAX unsupported by block device.");
4456			goto failed_mount;
4457		}
4458	}
4459
4460	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4461		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4462			 es->s_encryption_level);
4463		goto failed_mount;
4464	}
4465
4466	if (sb->s_blocksize != blocksize) {
4467		/*
4468		 * bh must be released before kill_bdev(), otherwise
4469		 * it won't be freed and its page also. kill_bdev()
4470		 * is called by sb_set_blocksize().
4471		 */
4472		brelse(bh);
4473		/* Validate the filesystem blocksize */
4474		if (!sb_set_blocksize(sb, blocksize)) {
4475			ext4_msg(sb, KERN_ERR, "bad block size %d",
4476					blocksize);
4477			bh = NULL;
4478			goto failed_mount;
4479		}
4480
4481		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4482		offset = do_div(logical_sb_block, blocksize);
4483		bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4484		if (IS_ERR(bh)) {
4485			ext4_msg(sb, KERN_ERR,
4486			       "Can't read superblock on 2nd try");
4487			ret = PTR_ERR(bh);
4488			bh = NULL;
4489			goto failed_mount;
4490		}
4491		es = (struct ext4_super_block *)(bh->b_data + offset);
4492		sbi->s_es = es;
4493		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4494			ext4_msg(sb, KERN_ERR,
4495			       "Magic mismatch, very weird!");
4496			goto failed_mount;
4497		}
4498	}
4499
4500	has_huge_files = ext4_has_feature_huge_file(sb);
4501	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4502						      has_huge_files);
4503	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4504
4505	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4506	if (ext4_has_feature_64bit(sb)) {
4507		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4508		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4509		    !is_power_of_2(sbi->s_desc_size)) {
4510			ext4_msg(sb, KERN_ERR,
4511			       "unsupported descriptor size %lu",
4512			       sbi->s_desc_size);
4513			goto failed_mount;
4514		}
4515	} else
4516		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4517
4518	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4519	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4520
4521	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4522	if (sbi->s_inodes_per_block == 0)
4523		goto cantfind_ext4;
4524	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4525	    sbi->s_inodes_per_group > blocksize * 8) {
4526		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4527			 sbi->s_inodes_per_group);
4528		goto failed_mount;
4529	}
4530	sbi->s_itb_per_group = sbi->s_inodes_per_group /
4531					sbi->s_inodes_per_block;
4532	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4533	sbi->s_sbh = bh;
4534	sbi->s_mount_state = le16_to_cpu(es->s_state);
4535	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4536	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4537
4538	for (i = 0; i < 4; i++)
4539		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4540	sbi->s_def_hash_version = es->s_def_hash_version;
4541	if (ext4_has_feature_dir_index(sb)) {
4542		i = le32_to_cpu(es->s_flags);
4543		if (i & EXT2_FLAGS_UNSIGNED_HASH)
4544			sbi->s_hash_unsigned = 3;
4545		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4546#ifdef __CHAR_UNSIGNED__
4547			if (!sb_rdonly(sb))
4548				es->s_flags |=
4549					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4550			sbi->s_hash_unsigned = 3;
4551#else
4552			if (!sb_rdonly(sb))
4553				es->s_flags |=
4554					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4555#endif
4556		}
4557	}
4558
4559	/* Handle clustersize */
4560	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4561	if (ext4_has_feature_bigalloc(sb)) {
4562		if (clustersize < blocksize) {
4563			ext4_msg(sb, KERN_ERR,
4564				 "cluster size (%d) smaller than "
4565				 "block size (%d)", clustersize, blocksize);
4566			goto failed_mount;
4567		}
4568		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4569			le32_to_cpu(es->s_log_block_size);
4570		sbi->s_clusters_per_group =
4571			le32_to_cpu(es->s_clusters_per_group);
4572		if (sbi->s_clusters_per_group > blocksize * 8) {
4573			ext4_msg(sb, KERN_ERR,
4574				 "#clusters per group too big: %lu",
4575				 sbi->s_clusters_per_group);
4576			goto failed_mount;
4577		}
4578		if (sbi->s_blocks_per_group !=
4579		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4580			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4581				 "clusters per group (%lu) inconsistent",
4582				 sbi->s_blocks_per_group,
4583				 sbi->s_clusters_per_group);
4584			goto failed_mount;
4585		}
4586	} else {
4587		if (clustersize != blocksize) {
4588			ext4_msg(sb, KERN_ERR,
4589				 "fragment/cluster size (%d) != "
4590				 "block size (%d)", clustersize, blocksize);
4591			goto failed_mount;
4592		}
4593		if (sbi->s_blocks_per_group > blocksize * 8) {
4594			ext4_msg(sb, KERN_ERR,
4595				 "#blocks per group too big: %lu",
4596				 sbi->s_blocks_per_group);
4597			goto failed_mount;
4598		}
4599		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4600		sbi->s_cluster_bits = 0;
4601	}
4602	sbi->s_cluster_ratio = clustersize / blocksize;
4603
4604	/* Do we have standard group size of clustersize * 8 blocks ? */
4605	if (sbi->s_blocks_per_group == clustersize << 3)
4606		set_opt2(sb, STD_GROUP_SIZE);
4607
4608	/*
4609	 * Test whether we have more sectors than will fit in sector_t,
4610	 * and whether the max offset is addressable by the page cache.
4611	 */
4612	err = generic_check_addressable(sb->s_blocksize_bits,
4613					ext4_blocks_count(es));
4614	if (err) {
4615		ext4_msg(sb, KERN_ERR, "filesystem"
4616			 " too large to mount safely on this system");
4617		goto failed_mount;
4618	}
4619
4620	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4621		goto cantfind_ext4;
4622
4623	/* check blocks count against device size */
4624	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4625	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4626		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4627		       "exceeds size of device (%llu blocks)",
4628		       ext4_blocks_count(es), blocks_count);
4629		goto failed_mount;
4630	}
4631
4632	/*
4633	 * It makes no sense for the first data block to be beyond the end
4634	 * of the filesystem.
4635	 */
4636	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4637		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4638			 "block %u is beyond end of filesystem (%llu)",
4639			 le32_to_cpu(es->s_first_data_block),
4640			 ext4_blocks_count(es));
4641		goto failed_mount;
4642	}
4643	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4644	    (sbi->s_cluster_ratio == 1)) {
4645		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4646			 "block is 0 with a 1k block and cluster size");
4647		goto failed_mount;
4648	}
4649
4650	blocks_count = (ext4_blocks_count(es) -
4651			le32_to_cpu(es->s_first_data_block) +
4652			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4653	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4654	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4655		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4656		       "(block count %llu, first data block %u, "
4657		       "blocks per group %lu)", blocks_count,
4658		       ext4_blocks_count(es),
4659		       le32_to_cpu(es->s_first_data_block),
4660		       EXT4_BLOCKS_PER_GROUP(sb));
4661		goto failed_mount;
4662	}
4663	sbi->s_groups_count = blocks_count;
4664	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4665			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4666	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4667	    le32_to_cpu(es->s_inodes_count)) {
4668		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4669			 le32_to_cpu(es->s_inodes_count),
4670			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4671		ret = -EINVAL;
4672		goto failed_mount;
4673	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4674	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4675		   EXT4_DESC_PER_BLOCK(sb);
4676	if (ext4_has_feature_meta_bg(sb)) {
4677		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4678			ext4_msg(sb, KERN_WARNING,
4679				 "first meta block group too large: %u "
4680				 "(group descriptor block count %u)",
4681				 le32_to_cpu(es->s_first_meta_bg), db_count);
4682			goto failed_mount;
4683		}
4684	}
4685	rcu_assign_pointer(sbi->s_group_desc,
4686			   kvmalloc_array(db_count,
4687					  sizeof(struct buffer_head *),
4688					  GFP_KERNEL));
4689	if (sbi->s_group_desc == NULL) {
4690		ext4_msg(sb, KERN_ERR, "not enough memory");
4691		ret = -ENOMEM;
4692		goto failed_mount;
4693	}
4694
4695	bgl_lock_init(sbi->s_blockgroup_lock);
4696
4697	/* Pre-read the descriptors into the buffer cache */
4698	for (i = 0; i < db_count; i++) {
4699		block = descriptor_loc(sb, logical_sb_block, i);
4700		ext4_sb_breadahead_unmovable(sb, block);
4701	}
4702
4703	for (i = 0; i < db_count; i++) {
4704		struct buffer_head *bh;
4705
4706		block = descriptor_loc(sb, logical_sb_block, i);
4707		bh = ext4_sb_bread_unmovable(sb, block);
4708		if (IS_ERR(bh)) {
4709			ext4_msg(sb, KERN_ERR,
4710			       "can't read group descriptor %d", i);
4711			db_count = i;
4712			ret = PTR_ERR(bh);
4713			goto failed_mount2;
4714		}
4715		rcu_read_lock();
4716		rcu_dereference(sbi->s_group_desc)[i] = bh;
4717		rcu_read_unlock();
4718	}
4719	sbi->s_gdb_count = db_count;
4720	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4721		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4722		ret = -EFSCORRUPTED;
4723		goto failed_mount2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4724	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4725
4726	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4727	spin_lock_init(&sbi->s_error_lock);
4728	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4729
4730	/* Register extent status tree shrinker */
4731	if (ext4_es_register_shrinker(sbi))
 
 
 
 
4732		goto failed_mount3;
4733
4734	sbi->s_stripe = ext4_get_stripe_size(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
4735	sbi->s_extent_max_zeroout_kb = 32;
4736
4737	/*
4738	 * set up enough so that it can read an inode
4739	 */
4740	sb->s_op = &ext4_sops;
4741	sb->s_export_op = &ext4_export_ops;
4742	sb->s_xattr = ext4_xattr_handlers;
4743#ifdef CONFIG_FS_ENCRYPTION
4744	sb->s_cop = &ext4_cryptops;
4745#endif
4746#ifdef CONFIG_FS_VERITY
4747	sb->s_vop = &ext4_verityops;
4748#endif
4749#ifdef CONFIG_QUOTA
4750	sb->dq_op = &ext4_quota_operations;
4751	if (ext4_has_feature_quota(sb))
4752		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4753	else
4754		sb->s_qcop = &ext4_qctl_operations;
4755	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4756#endif
4757	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4758
4759	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4760	mutex_init(&sbi->s_orphan_lock);
4761
4762	/* Initialize fast commit stuff */
4763	atomic_set(&sbi->s_fc_subtid, 0);
4764	atomic_set(&sbi->s_fc_ineligible_updates, 0);
4765	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4766	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4767	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4768	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4769	sbi->s_fc_bytes = 0;
4770	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4771	ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4772	spin_lock_init(&sbi->s_fc_lock);
4773	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4774	sbi->s_fc_replay_state.fc_regions = NULL;
4775	sbi->s_fc_replay_state.fc_regions_size = 0;
4776	sbi->s_fc_replay_state.fc_regions_used = 0;
4777	sbi->s_fc_replay_state.fc_regions_valid = 0;
4778	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4779	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4780	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4781
4782	sb->s_root = NULL;
4783
4784	needs_recovery = (es->s_last_orphan != 0 ||
 
4785			  ext4_has_feature_journal_needs_recovery(sb));
4786
4787	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4788		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
 
4789			goto failed_mount3a;
 
4790
 
4791	/*
4792	 * The first inode we look at is the journal inode.  Don't try
4793	 * root first: it may be modified in the journal!
4794	 */
4795	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4796		err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4797		if (err)
4798			goto failed_mount3a;
4799	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4800		   ext4_has_feature_journal_needs_recovery(sb)) {
4801		ext4_msg(sb, KERN_ERR, "required journal recovery "
4802		       "suppressed and not mounted read-only");
4803		goto failed_mount_wq;
4804	} else {
4805		/* Nojournal mode, all journal mount options are illegal */
 
 
 
 
 
 
4806		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4807			ext4_msg(sb, KERN_ERR, "can't mount with "
4808				 "journal_checksum, fs mounted w/o journal");
4809			goto failed_mount_wq;
4810		}
4811		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4812			ext4_msg(sb, KERN_ERR, "can't mount with "
4813				 "journal_async_commit, fs mounted w/o journal");
4814			goto failed_mount_wq;
4815		}
4816		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4817			ext4_msg(sb, KERN_ERR, "can't mount with "
4818				 "commit=%lu, fs mounted w/o journal",
4819				 sbi->s_commit_interval / HZ);
4820			goto failed_mount_wq;
4821		}
4822		if (EXT4_MOUNT_DATA_FLAGS &
4823		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4824			ext4_msg(sb, KERN_ERR, "can't mount with "
4825				 "data=, fs mounted w/o journal");
4826			goto failed_mount_wq;
4827		}
4828		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4829		clear_opt(sb, JOURNAL_CHECKSUM);
4830		clear_opt(sb, DATA_FLAGS);
4831		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4832		sbi->s_journal = NULL;
4833		needs_recovery = 0;
4834		goto no_journal;
4835	}
4836
4837	if (ext4_has_feature_64bit(sb) &&
4838	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4839				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4840		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4841		goto failed_mount_wq;
4842	}
4843
4844	if (!set_journal_csum_feature_set(sb)) {
4845		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4846			 "feature set");
4847		goto failed_mount_wq;
4848	}
4849
4850	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4851		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4852					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4853		ext4_msg(sb, KERN_ERR,
4854			"Failed to set fast commit journal feature");
4855		goto failed_mount_wq;
4856	}
4857
4858	/* We have now updated the journal if required, so we can
4859	 * validate the data journaling mode. */
4860	switch (test_opt(sb, DATA_FLAGS)) {
4861	case 0:
4862		/* No mode set, assume a default based on the journal
4863		 * capabilities: ORDERED_DATA if the journal can
4864		 * cope, else JOURNAL_DATA
4865		 */
4866		if (jbd2_journal_check_available_features
4867		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4868			set_opt(sb, ORDERED_DATA);
4869			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4870		} else {
4871			set_opt(sb, JOURNAL_DATA);
4872			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4873		}
4874		break;
4875
4876	case EXT4_MOUNT_ORDERED_DATA:
4877	case EXT4_MOUNT_WRITEBACK_DATA:
4878		if (!jbd2_journal_check_available_features
4879		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4880			ext4_msg(sb, KERN_ERR, "Journal does not support "
4881			       "requested data journaling mode");
4882			goto failed_mount_wq;
4883		}
4884		break;
4885	default:
4886		break;
4887	}
4888
4889	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4890	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4891		ext4_msg(sb, KERN_ERR, "can't mount with "
4892			"journal_async_commit in data=ordered mode");
4893		goto failed_mount_wq;
4894	}
4895
4896	set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4897
4898	sbi->s_journal->j_submit_inode_data_buffers =
4899		ext4_journal_submit_inode_data_buffers;
4900	sbi->s_journal->j_finish_inode_data_buffers =
4901		ext4_journal_finish_inode_data_buffers;
4902
4903no_journal:
4904	if (!test_opt(sb, NO_MBCACHE)) {
4905		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4906		if (!sbi->s_ea_block_cache) {
4907			ext4_msg(sb, KERN_ERR,
4908				 "Failed to create ea_block_cache");
 
4909			goto failed_mount_wq;
4910		}
4911
4912		if (ext4_has_feature_ea_inode(sb)) {
4913			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4914			if (!sbi->s_ea_inode_cache) {
4915				ext4_msg(sb, KERN_ERR,
4916					 "Failed to create ea_inode_cache");
 
4917				goto failed_mount_wq;
4918			}
4919		}
4920	}
4921
4922	if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4923		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4924		goto failed_mount_wq;
4925	}
4926
4927	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4928	    !ext4_has_feature_encrypt(sb)) {
4929		ext4_set_feature_encrypt(sb);
4930		ext4_commit_super(sb);
4931	}
4932
4933	/*
4934	 * Get the # of file system overhead blocks from the
4935	 * superblock if present.
4936	 */
4937	if (es->s_overhead_clusters)
4938		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4939	else {
 
 
 
 
 
 
 
 
 
4940		err = ext4_calculate_overhead(sb);
4941		if (err)
4942			goto failed_mount_wq;
4943	}
4944
4945	/*
4946	 * The maximum number of concurrent works can be high and
4947	 * concurrency isn't really necessary.  Limit it to 1.
4948	 */
4949	EXT4_SB(sb)->rsv_conversion_wq =
4950		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4951	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4952		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4953		ret = -ENOMEM;
4954		goto failed_mount4;
4955	}
4956
4957	/*
4958	 * The jbd2_journal_load will have done any necessary log recovery,
4959	 * so we can safely mount the rest of the filesystem now.
4960	 */
4961
4962	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4963	if (IS_ERR(root)) {
4964		ext4_msg(sb, KERN_ERR, "get root inode failed");
4965		ret = PTR_ERR(root);
4966		root = NULL;
4967		goto failed_mount4;
4968	}
4969	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4970		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4971		iput(root);
 
4972		goto failed_mount4;
4973	}
4974
 
4975	sb->s_root = d_make_root(root);
4976	if (!sb->s_root) {
4977		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4978		ret = -ENOMEM;
4979		goto failed_mount4;
4980	}
4981
4982	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4983	if (ret == -EROFS) {
4984		sb->s_flags |= SB_RDONLY;
4985		ret = 0;
4986	} else if (ret)
4987		goto failed_mount4a;
4988
4989	ext4_set_resv_clusters(sb);
4990
4991	if (test_opt(sb, BLOCK_VALIDITY)) {
4992		err = ext4_setup_system_zone(sb);
4993		if (err) {
4994			ext4_msg(sb, KERN_ERR, "failed to initialize system "
4995				 "zone (%d)", err);
4996			goto failed_mount4a;
4997		}
4998	}
4999	ext4_fc_replay_cleanup(sb);
5000
5001	ext4_ext_init(sb);
5002
5003	/*
5004	 * Enable optimize_scan if number of groups is > threshold. This can be
5005	 * turned off by passing "mb_optimize_scan=0". This can also be
5006	 * turned on forcefully by passing "mb_optimize_scan=1".
5007	 */
5008	if (parsed_opts.mb_optimize_scan == 1)
5009		set_opt2(sb, MB_OPTIMIZE_SCAN);
5010	else if (parsed_opts.mb_optimize_scan == 0)
5011		clear_opt2(sb, MB_OPTIMIZE_SCAN);
5012	else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5013		set_opt2(sb, MB_OPTIMIZE_SCAN);
5014
5015	err = ext4_mb_init(sb);
5016	if (err) {
5017		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5018			 err);
5019		goto failed_mount5;
5020	}
5021
5022	/*
5023	 * We can only set up the journal commit callback once
5024	 * mballoc is initialized
5025	 */
5026	if (sbi->s_journal)
5027		sbi->s_journal->j_commit_callback =
5028			ext4_journal_commit_callback;
5029
5030	block = ext4_count_free_clusters(sb);
5031	ext4_free_blocks_count_set(sbi->s_es,
5032				   EXT4_C2B(sbi, block));
5033	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5034				  GFP_KERNEL);
5035	if (!err) {
5036		unsigned long freei = ext4_count_free_inodes(sb);
5037		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5038		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5039					  GFP_KERNEL);
5040	}
5041	/*
5042	 * Update the checksum after updating free space/inode
5043	 * counters.  Otherwise the superblock can have an incorrect
5044	 * checksum in the buffer cache until it is written out and
5045	 * e2fsprogs programs trying to open a file system immediately
5046	 * after it is mounted can fail.
5047	 */
5048	ext4_superblock_csum_set(sb);
5049	if (!err)
5050		err = percpu_counter_init(&sbi->s_dirs_counter,
5051					  ext4_count_dirs(sb), GFP_KERNEL);
5052	if (!err)
5053		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5054					  GFP_KERNEL);
5055	if (!err)
5056		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5057					  GFP_KERNEL);
5058	if (!err)
5059		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5060
5061	if (err) {
5062		ext4_msg(sb, KERN_ERR, "insufficient memory");
5063		goto failed_mount6;
5064	}
5065
5066	if (ext4_has_feature_flex_bg(sb))
5067		if (!ext4_fill_flex_info(sb)) {
5068			ext4_msg(sb, KERN_ERR,
5069			       "unable to initialize "
5070			       "flex_bg meta info!");
5071			ret = -ENOMEM;
5072			goto failed_mount6;
5073		}
5074
5075	err = ext4_register_li_request(sb, first_not_zeroed);
5076	if (err)
5077		goto failed_mount6;
5078
5079	err = ext4_register_sysfs(sb);
5080	if (err)
5081		goto failed_mount7;
5082
 
 
 
5083#ifdef CONFIG_QUOTA
5084	/* Enable quota usage during mount. */
5085	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5086		err = ext4_enable_quotas(sb);
5087		if (err)
5088			goto failed_mount8;
5089	}
5090#endif  /* CONFIG_QUOTA */
5091
5092	/*
5093	 * Save the original bdev mapping's wb_err value which could be
5094	 * used to detect the metadata async write error.
5095	 */
5096	spin_lock_init(&sbi->s_bdev_wb_lock);
5097	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5098				 &sbi->s_bdev_wb_err);
5099	sb->s_bdev->bd_super = sb;
5100	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5101	ext4_orphan_cleanup(sb, es);
5102	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
 
 
 
 
 
 
 
 
5103	if (needs_recovery) {
5104		ext4_msg(sb, KERN_INFO, "recovery complete");
5105		err = ext4_mark_recovery_complete(sb, es);
5106		if (err)
5107			goto failed_mount8;
5108	}
5109	if (EXT4_SB(sb)->s_journal) {
5110		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5111			descr = " journalled data mode";
5112		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5113			descr = " ordered data mode";
5114		else
5115			descr = " writeback data mode";
5116	} else
5117		descr = "out journal";
5118
5119	if (test_opt(sb, DISCARD)) {
5120		struct request_queue *q = bdev_get_queue(sb->s_bdev);
5121		if (!blk_queue_discard(q))
5122			ext4_msg(sb, KERN_WARNING,
5123				 "mounting with \"discard\" option, but "
5124				 "the device does not support discard");
5125	}
5126
5127	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5128		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5129			 "Opts: %.*s%s%s. Quota mode: %s.", descr,
5130			 (int) sizeof(sbi->s_es->s_mount_opts),
5131			 sbi->s_es->s_mount_opts,
5132			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5133			 ext4_quota_mode(sb));
5134
5135	if (es->s_error_count)
5136		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5137
5138	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5139	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5140	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5141	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5142	atomic_set(&sbi->s_warning_count, 0);
5143	atomic_set(&sbi->s_msg_count, 0);
5144
5145	kfree(orig_data);
5146	return 0;
5147
5148cantfind_ext4:
5149	if (!silent)
5150		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5151	goto failed_mount;
5152
5153failed_mount8:
5154	ext4_unregister_sysfs(sb);
5155	kobject_put(&sbi->s_kobj);
5156failed_mount7:
5157	ext4_unregister_li_request(sb);
5158failed_mount6:
5159	ext4_mb_release(sb);
5160	rcu_read_lock();
5161	flex_groups = rcu_dereference(sbi->s_flex_groups);
5162	if (flex_groups) {
5163		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5164			kvfree(flex_groups[i]);
5165		kvfree(flex_groups);
5166	}
5167	rcu_read_unlock();
5168	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5169	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5170	percpu_counter_destroy(&sbi->s_dirs_counter);
5171	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5172	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5173	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5174failed_mount5:
5175	ext4_ext_release(sb);
5176	ext4_release_system_zone(sb);
5177failed_mount4a:
5178	dput(sb->s_root);
5179	sb->s_root = NULL;
5180failed_mount4:
5181	ext4_msg(sb, KERN_ERR, "mount failed");
5182	if (EXT4_SB(sb)->rsv_conversion_wq)
5183		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5184failed_mount_wq:
5185	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5186	sbi->s_ea_inode_cache = NULL;
5187
5188	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5189	sbi->s_ea_block_cache = NULL;
5190
5191	if (sbi->s_journal) {
5192		/* flush s_error_work before journal destroy. */
5193		flush_work(&sbi->s_error_work);
5194		jbd2_journal_destroy(sbi->s_journal);
5195		sbi->s_journal = NULL;
5196	}
5197failed_mount3a:
5198	ext4_es_unregister_shrinker(sbi);
5199failed_mount3:
5200	/* flush s_error_work before sbi destroy */
5201	flush_work(&sbi->s_error_work);
5202	del_timer_sync(&sbi->s_err_report);
5203	ext4_stop_mmpd(sbi);
5204failed_mount2:
5205	rcu_read_lock();
5206	group_desc = rcu_dereference(sbi->s_group_desc);
5207	for (i = 0; i < db_count; i++)
5208		brelse(group_desc[i]);
5209	kvfree(group_desc);
5210	rcu_read_unlock();
5211failed_mount:
5212	if (sbi->s_chksum_driver)
5213		crypto_free_shash(sbi->s_chksum_driver);
5214
5215#ifdef CONFIG_UNICODE
5216	utf8_unload(sb->s_encoding);
5217#endif
5218
5219#ifdef CONFIG_QUOTA
5220	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5221		kfree(get_qf_name(sb, sbi, i));
5222#endif
5223	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5224	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5225	brelse(bh);
5226	ext4_blkdev_remove(sbi);
 
 
5227out_fail:
 
5228	sb->s_fs_info = NULL;
5229	kfree(sbi->s_blockgroup_lock);
5230out_free_base:
5231	kfree(sbi);
5232	kfree(orig_data);
5233	fs_put_dax(dax_dev);
5234	return err ? err : ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5235}
5236
5237/*
5238 * Setup any per-fs journal parameters now.  We'll do this both on
5239 * initial mount, once the journal has been initialised but before we've
5240 * done any recovery; and again on any subsequent remount.
5241 */
5242static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5243{
5244	struct ext4_sb_info *sbi = EXT4_SB(sb);
5245
5246	journal->j_commit_interval = sbi->s_commit_interval;
5247	journal->j_min_batch_time = sbi->s_min_batch_time;
5248	journal->j_max_batch_time = sbi->s_max_batch_time;
5249	ext4_fc_init(sb, journal);
5250
5251	write_lock(&journal->j_state_lock);
5252	if (test_opt(sb, BARRIER))
5253		journal->j_flags |= JBD2_BARRIER;
5254	else
5255		journal->j_flags &= ~JBD2_BARRIER;
5256	if (test_opt(sb, DATA_ERR_ABORT))
5257		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5258	else
5259		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
 
 
 
 
 
5260	write_unlock(&journal->j_state_lock);
5261}
5262
5263static struct inode *ext4_get_journal_inode(struct super_block *sb,
5264					     unsigned int journal_inum)
5265{
5266	struct inode *journal_inode;
5267
5268	/*
5269	 * Test for the existence of a valid inode on disk.  Bad things
5270	 * happen if we iget() an unused inode, as the subsequent iput()
5271	 * will try to delete it.
5272	 */
5273	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5274	if (IS_ERR(journal_inode)) {
5275		ext4_msg(sb, KERN_ERR, "no journal found");
5276		return NULL;
5277	}
5278	if (!journal_inode->i_nlink) {
5279		make_bad_inode(journal_inode);
5280		iput(journal_inode);
5281		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5282		return NULL;
5283	}
5284
5285	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5286		  journal_inode, journal_inode->i_size);
5287	if (!S_ISREG(journal_inode->i_mode)) {
5288		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5289		iput(journal_inode);
5290		return NULL;
5291	}
 
 
 
5292	return journal_inode;
5293}
5294
5295static journal_t *ext4_get_journal(struct super_block *sb,
5296				   unsigned int journal_inum)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5297{
5298	struct inode *journal_inode;
5299	journal_t *journal;
5300
5301	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5302		return NULL;
5303
5304	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5305	if (!journal_inode)
5306		return NULL;
5307
5308	journal = jbd2_journal_init_inode(journal_inode);
5309	if (!journal) {
5310		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5311		iput(journal_inode);
5312		return NULL;
5313	}
5314	journal->j_private = sb;
 
5315	ext4_init_journal_params(sb, journal);
5316	return journal;
5317}
5318
5319static journal_t *ext4_get_dev_journal(struct super_block *sb,
5320				       dev_t j_dev)
 
5321{
5322	struct buffer_head *bh;
5323	journal_t *journal;
5324	ext4_fsblk_t start;
5325	ext4_fsblk_t len;
5326	int hblock, blocksize;
5327	ext4_fsblk_t sb_block;
5328	unsigned long offset;
5329	struct ext4_super_block *es;
5330	struct block_device *bdev;
5331
5332	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5333		return NULL;
5334
5335	bdev = ext4_blkdev_get(j_dev, sb);
5336	if (bdev == NULL)
5337		return NULL;
 
 
 
5338
 
5339	blocksize = sb->s_blocksize;
5340	hblock = bdev_logical_block_size(bdev);
5341	if (blocksize < hblock) {
5342		ext4_msg(sb, KERN_ERR,
5343			"blocksize too small for journal device");
 
5344		goto out_bdev;
5345	}
5346
5347	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5348	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5349	set_blocksize(bdev, blocksize);
5350	if (!(bh = __bread(bdev, sb_block, blocksize))) {
 
5351		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5352		       "external journal");
 
5353		goto out_bdev;
5354	}
5355
5356	es = (struct ext4_super_block *) (bh->b_data + offset);
5357	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5358	    !(le32_to_cpu(es->s_feature_incompat) &
5359	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5360		ext4_msg(sb, KERN_ERR, "external journal has "
5361					"bad superblock");
5362		brelse(bh);
5363		goto out_bdev;
5364	}
5365
5366	if ((le32_to_cpu(es->s_feature_ro_compat) &
5367	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5368	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5369		ext4_msg(sb, KERN_ERR, "external journal has "
5370				       "corrupt superblock");
5371		brelse(bh);
5372		goto out_bdev;
5373	}
5374
5375	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5376		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5377		brelse(bh);
5378		goto out_bdev;
5379	}
5380
5381	len = ext4_blocks_count(es);
5382	start = sb_block + 1;
5383	brelse(bh);	/* we're done with the superblock */
5384
5385	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5386					start, len, blocksize);
5387	if (!journal) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5388		ext4_msg(sb, KERN_ERR, "failed to create device journal");
 
5389		goto out_bdev;
5390	}
5391	journal->j_private = sb;
5392	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5393		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5394		goto out_journal;
5395	}
5396	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5397		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5398					"user (unsupported) - %d",
5399			be32_to_cpu(journal->j_superblock->s_nr_users));
 
5400		goto out_journal;
5401	}
5402	EXT4_SB(sb)->s_journal_bdev = bdev;
 
5403	ext4_init_journal_params(sb, journal);
5404	return journal;
5405
5406out_journal:
5407	jbd2_journal_destroy(journal);
5408out_bdev:
5409	ext4_blkdev_put(bdev);
5410	return NULL;
5411}
5412
5413static int ext4_load_journal(struct super_block *sb,
5414			     struct ext4_super_block *es,
5415			     unsigned long journal_devnum)
5416{
5417	journal_t *journal;
5418	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5419	dev_t journal_dev;
5420	int err = 0;
5421	int really_read_only;
5422	int journal_dev_ro;
5423
5424	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5425		return -EFSCORRUPTED;
5426
5427	if (journal_devnum &&
5428	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5429		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5430			"numbers have changed");
5431		journal_dev = new_decode_dev(journal_devnum);
5432	} else
5433		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5434
5435	if (journal_inum && journal_dev) {
5436		ext4_msg(sb, KERN_ERR,
5437			 "filesystem has both journal inode and journal device!");
5438		return -EINVAL;
5439	}
5440
5441	if (journal_inum) {
5442		journal = ext4_get_journal(sb, journal_inum);
5443		if (!journal)
5444			return -EINVAL;
5445	} else {
5446		journal = ext4_get_dev_journal(sb, journal_dev);
5447		if (!journal)
5448			return -EINVAL;
5449	}
5450
5451	journal_dev_ro = bdev_read_only(journal->j_dev);
5452	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5453
5454	if (journal_dev_ro && !sb_rdonly(sb)) {
5455		ext4_msg(sb, KERN_ERR,
5456			 "journal device read-only, try mounting with '-o ro'");
5457		err = -EROFS;
5458		goto err_out;
5459	}
5460
5461	/*
5462	 * Are we loading a blank journal or performing recovery after a
5463	 * crash?  For recovery, we need to check in advance whether we
5464	 * can get read-write access to the device.
5465	 */
5466	if (ext4_has_feature_journal_needs_recovery(sb)) {
5467		if (sb_rdonly(sb)) {
5468			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5469					"required on readonly filesystem");
5470			if (really_read_only) {
5471				ext4_msg(sb, KERN_ERR, "write access "
5472					"unavailable, cannot proceed "
5473					"(try mounting with noload)");
5474				err = -EROFS;
5475				goto err_out;
5476			}
5477			ext4_msg(sb, KERN_INFO, "write access will "
5478			       "be enabled during recovery");
5479		}
5480	}
5481
5482	if (!(journal->j_flags & JBD2_BARRIER))
5483		ext4_msg(sb, KERN_INFO, "barriers disabled");
5484
5485	if (!ext4_has_feature_journal_needs_recovery(sb))
5486		err = jbd2_journal_wipe(journal, !really_read_only);
5487	if (!err) {
5488		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
 
 
 
5489		if (save)
5490			memcpy(save, ((char *) es) +
5491			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5492		err = jbd2_journal_load(journal);
5493		if (save)
 
5494			memcpy(((char *) es) + EXT4_S_ERR_START,
5495			       save, EXT4_S_ERR_LEN);
 
 
5496		kfree(save);
 
 
 
 
 
 
 
 
 
 
 
5497	}
5498
5499	if (err) {
5500		ext4_msg(sb, KERN_ERR, "error loading journal");
5501		goto err_out;
5502	}
5503
5504	EXT4_SB(sb)->s_journal = journal;
5505	err = ext4_clear_journal_err(sb, es);
5506	if (err) {
5507		EXT4_SB(sb)->s_journal = NULL;
5508		jbd2_journal_destroy(journal);
5509		return err;
5510	}
5511
5512	if (!really_read_only && journal_devnum &&
5513	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5514		es->s_journal_dev = cpu_to_le32(journal_devnum);
5515
5516		/* Make sure we flush the recovery flag to disk. */
 
 
 
5517		ext4_commit_super(sb);
5518	}
5519
5520	return 0;
5521
5522err_out:
5523	jbd2_journal_destroy(journal);
5524	return err;
5525}
5526
5527/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5528static void ext4_update_super(struct super_block *sb)
5529{
5530	struct ext4_sb_info *sbi = EXT4_SB(sb);
5531	struct ext4_super_block *es = sbi->s_es;
5532	struct buffer_head *sbh = sbi->s_sbh;
5533
5534	lock_buffer(sbh);
5535	/*
5536	 * If the file system is mounted read-only, don't update the
5537	 * superblock write time.  This avoids updating the superblock
5538	 * write time when we are mounting the root file system
5539	 * read/only but we need to replay the journal; at that point,
5540	 * for people who are east of GMT and who make their clock
5541	 * tick in localtime for Windows bug-for-bug compatibility,
5542	 * the clock is set in the future, and this will cause e2fsck
5543	 * to complain and force a full file system check.
5544	 */
5545	if (!(sb->s_flags & SB_RDONLY))
5546		ext4_update_tstamp(es, s_wtime);
5547	es->s_kbytes_written =
5548		cpu_to_le64(sbi->s_kbytes_written +
5549		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5550		      sbi->s_sectors_written_start) >> 1));
5551	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5552		ext4_free_blocks_count_set(es,
5553			EXT4_C2B(sbi, percpu_counter_sum_positive(
5554				&sbi->s_freeclusters_counter)));
5555	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5556		es->s_free_inodes_count =
5557			cpu_to_le32(percpu_counter_sum_positive(
5558				&sbi->s_freeinodes_counter));
5559	/* Copy error information to the on-disk superblock */
5560	spin_lock(&sbi->s_error_lock);
5561	if (sbi->s_add_error_count > 0) {
5562		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5563		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5564			__ext4_update_tstamp(&es->s_first_error_time,
5565					     &es->s_first_error_time_hi,
5566					     sbi->s_first_error_time);
5567			strncpy(es->s_first_error_func, sbi->s_first_error_func,
5568				sizeof(es->s_first_error_func));
5569			es->s_first_error_line =
5570				cpu_to_le32(sbi->s_first_error_line);
5571			es->s_first_error_ino =
5572				cpu_to_le32(sbi->s_first_error_ino);
5573			es->s_first_error_block =
5574				cpu_to_le64(sbi->s_first_error_block);
5575			es->s_first_error_errcode =
5576				ext4_errno_to_code(sbi->s_first_error_code);
5577		}
5578		__ext4_update_tstamp(&es->s_last_error_time,
5579				     &es->s_last_error_time_hi,
5580				     sbi->s_last_error_time);
5581		strncpy(es->s_last_error_func, sbi->s_last_error_func,
5582			sizeof(es->s_last_error_func));
5583		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5584		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5585		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5586		es->s_last_error_errcode =
5587				ext4_errno_to_code(sbi->s_last_error_code);
5588		/*
5589		 * Start the daily error reporting function if it hasn't been
5590		 * started already
5591		 */
5592		if (!es->s_error_count)
5593			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5594		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5595		sbi->s_add_error_count = 0;
5596	}
5597	spin_unlock(&sbi->s_error_lock);
5598
5599	ext4_superblock_csum_set(sb);
5600	unlock_buffer(sbh);
5601}
5602
5603static int ext4_commit_super(struct super_block *sb)
5604{
5605	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5606	int error = 0;
5607
5608	if (!sbh)
5609		return -EINVAL;
5610	if (block_device_ejected(sb))
5611		return -ENODEV;
5612
5613	ext4_update_super(sb);
5614
 
 
 
 
 
 
 
5615	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5616		/*
5617		 * Oh, dear.  A previous attempt to write the
5618		 * superblock failed.  This could happen because the
5619		 * USB device was yanked out.  Or it could happen to
5620		 * be a transient write error and maybe the block will
5621		 * be remapped.  Nothing we can do but to retry the
5622		 * write and hope for the best.
5623		 */
5624		ext4_msg(sb, KERN_ERR, "previous I/O error to "
5625		       "superblock detected");
5626		clear_buffer_write_io_error(sbh);
5627		set_buffer_uptodate(sbh);
5628	}
5629	BUFFER_TRACE(sbh, "marking dirty");
5630	mark_buffer_dirty(sbh);
5631	error = __sync_dirty_buffer(sbh,
5632		REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
 
 
 
5633	if (buffer_write_io_error(sbh)) {
5634		ext4_msg(sb, KERN_ERR, "I/O error while writing "
5635		       "superblock");
5636		clear_buffer_write_io_error(sbh);
5637		set_buffer_uptodate(sbh);
 
5638	}
5639	return error;
5640}
5641
5642/*
5643 * Have we just finished recovery?  If so, and if we are mounting (or
5644 * remounting) the filesystem readonly, then we will end up with a
5645 * consistent fs on disk.  Record that fact.
5646 */
5647static int ext4_mark_recovery_complete(struct super_block *sb,
5648				       struct ext4_super_block *es)
5649{
5650	int err;
5651	journal_t *journal = EXT4_SB(sb)->s_journal;
5652
5653	if (!ext4_has_feature_journal(sb)) {
5654		if (journal != NULL) {
5655			ext4_error(sb, "Journal got removed while the fs was "
5656				   "mounted!");
5657			return -EFSCORRUPTED;
5658		}
5659		return 0;
5660	}
5661	jbd2_journal_lock_updates(journal);
5662	err = jbd2_journal_flush(journal, 0);
5663	if (err < 0)
5664		goto out;
5665
5666	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
 
 
 
 
 
 
5667		ext4_clear_feature_journal_needs_recovery(sb);
 
5668		ext4_commit_super(sb);
5669	}
5670out:
5671	jbd2_journal_unlock_updates(journal);
5672	return err;
5673}
5674
5675/*
5676 * If we are mounting (or read-write remounting) a filesystem whose journal
5677 * has recorded an error from a previous lifetime, move that error to the
5678 * main filesystem now.
5679 */
5680static int ext4_clear_journal_err(struct super_block *sb,
5681				   struct ext4_super_block *es)
5682{
5683	journal_t *journal;
5684	int j_errno;
5685	const char *errstr;
5686
5687	if (!ext4_has_feature_journal(sb)) {
5688		ext4_error(sb, "Journal got removed while the fs was mounted!");
5689		return -EFSCORRUPTED;
5690	}
5691
5692	journal = EXT4_SB(sb)->s_journal;
5693
5694	/*
5695	 * Now check for any error status which may have been recorded in the
5696	 * journal by a prior ext4_error() or ext4_abort()
5697	 */
5698
5699	j_errno = jbd2_journal_errno(journal);
5700	if (j_errno) {
5701		char nbuf[16];
5702
5703		errstr = ext4_decode_error(sb, j_errno, nbuf);
5704		ext4_warning(sb, "Filesystem error recorded "
5705			     "from previous mount: %s", errstr);
5706		ext4_warning(sb, "Marking fs in need of filesystem check.");
5707
5708		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5709		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5710		ext4_commit_super(sb);
 
 
 
5711
5712		jbd2_journal_clear_err(journal);
5713		jbd2_journal_update_sb_errno(journal);
5714	}
5715	return 0;
5716}
5717
5718/*
5719 * Force the running and committing transactions to commit,
5720 * and wait on the commit.
5721 */
5722int ext4_force_commit(struct super_block *sb)
5723{
5724	journal_t *journal;
5725
5726	if (sb_rdonly(sb))
5727		return 0;
5728
5729	journal = EXT4_SB(sb)->s_journal;
5730	return ext4_journal_force_commit(journal);
5731}
5732
5733static int ext4_sync_fs(struct super_block *sb, int wait)
5734{
5735	int ret = 0;
5736	tid_t target;
5737	bool needs_barrier = false;
5738	struct ext4_sb_info *sbi = EXT4_SB(sb);
5739
5740	if (unlikely(ext4_forced_shutdown(sbi)))
5741		return 0;
5742
5743	trace_ext4_sync_fs(sb, wait);
5744	flush_workqueue(sbi->rsv_conversion_wq);
5745	/*
5746	 * Writeback quota in non-journalled quota case - journalled quota has
5747	 * no dirty dquots
5748	 */
5749	dquot_writeback_dquots(sb, -1);
5750	/*
5751	 * Data writeback is possible w/o journal transaction, so barrier must
5752	 * being sent at the end of the function. But we can skip it if
5753	 * transaction_commit will do it for us.
5754	 */
5755	if (sbi->s_journal) {
5756		target = jbd2_get_latest_transaction(sbi->s_journal);
5757		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5758		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5759			needs_barrier = true;
5760
5761		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5762			if (wait)
5763				ret = jbd2_log_wait_commit(sbi->s_journal,
5764							   target);
5765		}
5766	} else if (wait && test_opt(sb, BARRIER))
5767		needs_barrier = true;
5768	if (needs_barrier) {
5769		int err;
5770		err = blkdev_issue_flush(sb->s_bdev);
5771		if (!ret)
5772			ret = err;
5773	}
5774
5775	return ret;
5776}
5777
5778/*
5779 * LVM calls this function before a (read-only) snapshot is created.  This
5780 * gives us a chance to flush the journal completely and mark the fs clean.
5781 *
5782 * Note that only this function cannot bring a filesystem to be in a clean
5783 * state independently. It relies on upper layer to stop all data & metadata
5784 * modifications.
5785 */
5786static int ext4_freeze(struct super_block *sb)
5787{
5788	int error = 0;
5789	journal_t *journal;
5790
5791	if (sb_rdonly(sb))
5792		return 0;
5793
5794	journal = EXT4_SB(sb)->s_journal;
5795
5796	if (journal) {
5797		/* Now we set up the journal barrier. */
5798		jbd2_journal_lock_updates(journal);
5799
5800		/*
5801		 * Don't clear the needs_recovery flag if we failed to
5802		 * flush the journal.
5803		 */
5804		error = jbd2_journal_flush(journal, 0);
5805		if (error < 0)
5806			goto out;
5807
5808		/* Journal blocked and flushed, clear needs_recovery flag. */
5809		ext4_clear_feature_journal_needs_recovery(sb);
 
 
5810	}
5811
5812	error = ext4_commit_super(sb);
5813out:
5814	if (journal)
5815		/* we rely on upper layer to stop further updates */
5816		jbd2_journal_unlock_updates(journal);
5817	return error;
5818}
5819
5820/*
5821 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
5822 * flag here, even though the filesystem is not technically dirty yet.
5823 */
5824static int ext4_unfreeze(struct super_block *sb)
5825{
5826	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5827		return 0;
5828
5829	if (EXT4_SB(sb)->s_journal) {
5830		/* Reset the needs_recovery flag before the fs is unlocked. */
5831		ext4_set_feature_journal_needs_recovery(sb);
 
 
5832	}
5833
5834	ext4_commit_super(sb);
5835	return 0;
5836}
5837
5838/*
5839 * Structure to save mount options for ext4_remount's benefit
5840 */
5841struct ext4_mount_options {
5842	unsigned long s_mount_opt;
5843	unsigned long s_mount_opt2;
5844	kuid_t s_resuid;
5845	kgid_t s_resgid;
5846	unsigned long s_commit_interval;
5847	u32 s_min_batch_time, s_max_batch_time;
5848#ifdef CONFIG_QUOTA
5849	int s_jquota_fmt;
5850	char *s_qf_names[EXT4_MAXQUOTAS];
5851#endif
5852};
5853
5854static int ext4_remount(struct super_block *sb, int *flags, char *data)
5855{
 
5856	struct ext4_super_block *es;
5857	struct ext4_sb_info *sbi = EXT4_SB(sb);
5858	unsigned long old_sb_flags, vfs_flags;
5859	struct ext4_mount_options old_opts;
5860	int enable_quota = 0;
5861	ext4_group_t g;
5862	int err = 0;
 
5863#ifdef CONFIG_QUOTA
 
5864	int i, j;
5865	char *to_free[EXT4_MAXQUOTAS];
5866#endif
5867	char *orig_data = kstrdup(data, GFP_KERNEL);
5868	struct ext4_parsed_options parsed_opts;
5869
5870	parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5871	parsed_opts.journal_devnum = 0;
5872
5873	if (data && !orig_data)
5874		return -ENOMEM;
5875
5876	/* Store the original options */
5877	old_sb_flags = sb->s_flags;
5878	old_opts.s_mount_opt = sbi->s_mount_opt;
5879	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5880	old_opts.s_resuid = sbi->s_resuid;
5881	old_opts.s_resgid = sbi->s_resgid;
5882	old_opts.s_commit_interval = sbi->s_commit_interval;
5883	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5884	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5885#ifdef CONFIG_QUOTA
5886	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5887	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5888		if (sbi->s_qf_names[i]) {
5889			char *qf_name = get_qf_name(sb, sbi, i);
5890
5891			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5892			if (!old_opts.s_qf_names[i]) {
5893				for (j = 0; j < i; j++)
5894					kfree(old_opts.s_qf_names[j]);
5895				kfree(orig_data);
5896				return -ENOMEM;
5897			}
5898		} else
5899			old_opts.s_qf_names[i] = NULL;
5900#endif
5901	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5902		parsed_opts.journal_ioprio =
5903			sbi->s_journal->j_task->io_context->ioprio;
 
 
 
 
 
5904
5905	/*
5906	 * Some options can be enabled by ext4 and/or by VFS mount flag
5907	 * either way we need to make sure it matches in both *flags and
5908	 * s_flags. Copy those selected flags from *flags to s_flags
 
 
5909	 */
5910	vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5911	sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5912
5913	if (!parse_options(data, sb, &parsed_opts, 1)) {
5914		err = -EINVAL;
5915		goto restore_opts;
5916	}
5917
5918	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5919	    test_opt(sb, JOURNAL_CHECKSUM)) {
5920		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5921			 "during remount not supported; ignoring");
5922		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5923	}
5924
5925	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5926		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5927			ext4_msg(sb, KERN_ERR, "can't mount with "
5928				 "both data=journal and delalloc");
5929			err = -EINVAL;
5930			goto restore_opts;
5931		}
5932		if (test_opt(sb, DIOREAD_NOLOCK)) {
5933			ext4_msg(sb, KERN_ERR, "can't mount with "
5934				 "both data=journal and dioread_nolock");
5935			err = -EINVAL;
5936			goto restore_opts;
5937		}
5938	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5939		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5940			ext4_msg(sb, KERN_ERR, "can't mount with "
5941				"journal_async_commit in data=ordered mode");
5942			err = -EINVAL;
5943			goto restore_opts;
5944		}
5945	}
5946
5947	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5948		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5949		err = -EINVAL;
5950		goto restore_opts;
5951	}
5952
5953	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5954		ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5955
5956	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5957		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5958
5959	es = sbi->s_es;
5960
5961	if (sbi->s_journal) {
5962		ext4_init_journal_params(sb, sbi->s_journal);
5963		set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5964	}
5965
5966	/* Flush outstanding errors before changing fs state */
5967	flush_work(&sbi->s_error_work);
5968
5969	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5970		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5971			err = -EROFS;
5972			goto restore_opts;
5973		}
5974
5975		if (*flags & SB_RDONLY) {
5976			err = sync_filesystem(sb);
5977			if (err < 0)
5978				goto restore_opts;
5979			err = dquot_suspend(sb, -1);
5980			if (err < 0)
5981				goto restore_opts;
5982
5983			/*
5984			 * First of all, the unconditional stuff we have to do
5985			 * to disable replay of the journal when we next remount
5986			 */
5987			sb->s_flags |= SB_RDONLY;
5988
5989			/*
5990			 * OK, test if we are remounting a valid rw partition
5991			 * readonly, and if so set the rdonly flag and then
5992			 * mark the partition as valid again.
5993			 */
5994			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5995			    (sbi->s_mount_state & EXT4_VALID_FS))
5996				es->s_state = cpu_to_le16(sbi->s_mount_state);
5997
5998			if (sbi->s_journal) {
5999				/*
6000				 * We let remount-ro finish even if marking fs
6001				 * as clean failed...
6002				 */
6003				ext4_mark_recovery_complete(sb, es);
6004			}
6005		} else {
6006			/* Make sure we can mount this feature set readwrite */
6007			if (ext4_has_feature_readonly(sb) ||
6008			    !ext4_feature_set_ok(sb, 0)) {
6009				err = -EROFS;
6010				goto restore_opts;
6011			}
6012			/*
6013			 * Make sure the group descriptor checksums
6014			 * are sane.  If they aren't, refuse to remount r/w.
6015			 */
6016			for (g = 0; g < sbi->s_groups_count; g++) {
6017				struct ext4_group_desc *gdp =
6018					ext4_get_group_desc(sb, g, NULL);
6019
6020				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6021					ext4_msg(sb, KERN_ERR,
6022	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6023		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6024					       le16_to_cpu(gdp->bg_checksum));
6025					err = -EFSBADCRC;
6026					goto restore_opts;
6027				}
6028			}
6029
6030			/*
6031			 * If we have an unprocessed orphan list hanging
6032			 * around from a previously readonly bdev mount,
6033			 * require a full umount/remount for now.
6034			 */
6035			if (es->s_last_orphan) {
6036				ext4_msg(sb, KERN_WARNING, "Couldn't "
6037				       "remount RDWR because of unprocessed "
6038				       "orphan inode list.  Please "
6039				       "umount/remount instead");
6040				err = -EINVAL;
6041				goto restore_opts;
6042			}
6043
6044			/*
6045			 * Mounting a RDONLY partition read-write, so reread
6046			 * and store the current valid flag.  (It may have
6047			 * been changed by e2fsck since we originally mounted
6048			 * the partition.)
6049			 */
6050			if (sbi->s_journal) {
6051				err = ext4_clear_journal_err(sb, es);
6052				if (err)
6053					goto restore_opts;
6054			}
6055			sbi->s_mount_state = le16_to_cpu(es->s_state);
 
6056
6057			err = ext4_setup_super(sb, es, 0);
6058			if (err)
6059				goto restore_opts;
6060
6061			sb->s_flags &= ~SB_RDONLY;
6062			if (ext4_has_feature_mmp(sb))
6063				if (ext4_multi_mount_protect(sb,
6064						le64_to_cpu(es->s_mmp_block))) {
6065					err = -EROFS;
6066					goto restore_opts;
6067				}
 
6068			enable_quota = 1;
 
6069		}
6070	}
6071
6072	/*
6073	 * Reinitialize lazy itable initialization thread based on
6074	 * current settings
6075	 */
6076	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6077		ext4_unregister_li_request(sb);
6078	else {
6079		ext4_group_t first_not_zeroed;
6080		first_not_zeroed = ext4_has_uninit_itable(sb);
6081		ext4_register_li_request(sb, first_not_zeroed);
6082	}
6083
6084	/*
6085	 * Handle creation of system zone data early because it can fail.
6086	 * Releasing of existing data is done when we are sure remount will
6087	 * succeed.
6088	 */
6089	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6090		err = ext4_setup_system_zone(sb);
6091		if (err)
6092			goto restore_opts;
6093	}
6094
6095	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6096		err = ext4_commit_super(sb);
6097		if (err)
6098			goto restore_opts;
6099	}
6100
6101#ifdef CONFIG_QUOTA
6102	/* Release old quota file names */
6103	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6104		kfree(old_opts.s_qf_names[i]);
6105	if (enable_quota) {
6106		if (sb_any_quota_suspended(sb))
6107			dquot_resume(sb, -1);
6108		else if (ext4_has_feature_quota(sb)) {
6109			err = ext4_enable_quotas(sb);
6110			if (err)
6111				goto restore_opts;
6112		}
6113	}
 
 
 
6114#endif
6115	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6116		ext4_release_system_zone(sb);
6117
 
 
 
 
 
 
 
 
 
 
 
 
6118	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6119		ext4_stop_mmpd(sbi);
6120
6121	/*
6122	 * Some options can be enabled by ext4 and/or by VFS mount flag
6123	 * either way we need to make sure it matches in both *flags and
6124	 * s_flags. Copy those selected flags from s_flags to *flags
6125	 */
6126	*flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6127
6128	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6129		 orig_data, ext4_quota_mode(sb));
6130	kfree(orig_data);
6131	return 0;
6132
6133restore_opts:
 
 
 
 
 
 
 
 
 
6134	sb->s_flags = old_sb_flags;
6135	sbi->s_mount_opt = old_opts.s_mount_opt;
6136	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6137	sbi->s_resuid = old_opts.s_resuid;
6138	sbi->s_resgid = old_opts.s_resgid;
6139	sbi->s_commit_interval = old_opts.s_commit_interval;
6140	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6141	sbi->s_max_batch_time = old_opts.s_max_batch_time;
 
 
6142	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6143		ext4_release_system_zone(sb);
6144#ifdef CONFIG_QUOTA
6145	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6146	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6147		to_free[i] = get_qf_name(sb, sbi, i);
6148		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6149	}
6150	synchronize_rcu();
6151	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6152		kfree(to_free[i]);
6153#endif
6154	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6155		ext4_stop_mmpd(sbi);
6156	kfree(orig_data);
6157	return err;
6158}
6159
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6160#ifdef CONFIG_QUOTA
6161static int ext4_statfs_project(struct super_block *sb,
6162			       kprojid_t projid, struct kstatfs *buf)
6163{
6164	struct kqid qid;
6165	struct dquot *dquot;
6166	u64 limit;
6167	u64 curblock;
6168
6169	qid = make_kqid_projid(projid);
6170	dquot = dqget(sb, qid);
6171	if (IS_ERR(dquot))
6172		return PTR_ERR(dquot);
6173	spin_lock(&dquot->dq_dqb_lock);
6174
6175	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6176			     dquot->dq_dqb.dqb_bhardlimit);
6177	limit >>= sb->s_blocksize_bits;
6178
6179	if (limit && buf->f_blocks > limit) {
6180		curblock = (dquot->dq_dqb.dqb_curspace +
6181			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6182		buf->f_blocks = limit;
6183		buf->f_bfree = buf->f_bavail =
6184			(buf->f_blocks > curblock) ?
6185			 (buf->f_blocks - curblock) : 0;
6186	}
6187
6188	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6189			     dquot->dq_dqb.dqb_ihardlimit);
6190	if (limit && buf->f_files > limit) {
6191		buf->f_files = limit;
6192		buf->f_ffree =
6193			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6194			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6195	}
6196
6197	spin_unlock(&dquot->dq_dqb_lock);
6198	dqput(dquot);
6199	return 0;
6200}
6201#endif
6202
6203static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6204{
6205	struct super_block *sb = dentry->d_sb;
6206	struct ext4_sb_info *sbi = EXT4_SB(sb);
6207	struct ext4_super_block *es = sbi->s_es;
6208	ext4_fsblk_t overhead = 0, resv_blocks;
6209	s64 bfree;
6210	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6211
6212	if (!test_opt(sb, MINIX_DF))
6213		overhead = sbi->s_overhead;
6214
6215	buf->f_type = EXT4_SUPER_MAGIC;
6216	buf->f_bsize = sb->s_blocksize;
6217	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6218	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6219		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6220	/* prevent underflow in case that few free space is available */
6221	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6222	buf->f_bavail = buf->f_bfree -
6223			(ext4_r_blocks_count(es) + resv_blocks);
6224	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6225		buf->f_bavail = 0;
6226	buf->f_files = le32_to_cpu(es->s_inodes_count);
6227	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6228	buf->f_namelen = EXT4_NAME_LEN;
6229	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6230
6231#ifdef CONFIG_QUOTA
6232	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6233	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6234		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6235#endif
6236	return 0;
6237}
6238
6239
6240#ifdef CONFIG_QUOTA
6241
6242/*
6243 * Helper functions so that transaction is started before we acquire dqio_sem
6244 * to keep correct lock ordering of transaction > dqio_sem
6245 */
6246static inline struct inode *dquot_to_inode(struct dquot *dquot)
6247{
6248	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6249}
6250
6251static int ext4_write_dquot(struct dquot *dquot)
6252{
6253	int ret, err;
6254	handle_t *handle;
6255	struct inode *inode;
6256
6257	inode = dquot_to_inode(dquot);
6258	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6259				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6260	if (IS_ERR(handle))
6261		return PTR_ERR(handle);
6262	ret = dquot_commit(dquot);
 
 
 
 
6263	err = ext4_journal_stop(handle);
6264	if (!ret)
6265		ret = err;
6266	return ret;
6267}
6268
6269static int ext4_acquire_dquot(struct dquot *dquot)
6270{
6271	int ret, err;
6272	handle_t *handle;
6273
6274	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6275				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6276	if (IS_ERR(handle))
6277		return PTR_ERR(handle);
6278	ret = dquot_acquire(dquot);
 
 
 
 
6279	err = ext4_journal_stop(handle);
6280	if (!ret)
6281		ret = err;
6282	return ret;
6283}
6284
6285static int ext4_release_dquot(struct dquot *dquot)
6286{
6287	int ret, err;
6288	handle_t *handle;
6289
6290	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6291				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6292	if (IS_ERR(handle)) {
6293		/* Release dquot anyway to avoid endless cycle in dqput() */
6294		dquot_release(dquot);
6295		return PTR_ERR(handle);
6296	}
6297	ret = dquot_release(dquot);
 
 
 
 
6298	err = ext4_journal_stop(handle);
6299	if (!ret)
6300		ret = err;
6301	return ret;
6302}
6303
6304static int ext4_mark_dquot_dirty(struct dquot *dquot)
6305{
6306	struct super_block *sb = dquot->dq_sb;
6307
6308	if (ext4_is_quota_journalled(sb)) {
6309		dquot_mark_dquot_dirty(dquot);
6310		return ext4_write_dquot(dquot);
6311	} else {
6312		return dquot_mark_dquot_dirty(dquot);
6313	}
6314}
6315
6316static int ext4_write_info(struct super_block *sb, int type)
6317{
6318	int ret, err;
6319	handle_t *handle;
6320
6321	/* Data block + inode block */
6322	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6323	if (IS_ERR(handle))
6324		return PTR_ERR(handle);
6325	ret = dquot_commit_info(sb, type);
6326	err = ext4_journal_stop(handle);
6327	if (!ret)
6328		ret = err;
6329	return ret;
6330}
6331
6332/*
6333 * Turn on quotas during mount time - we need to find
6334 * the quota file and such...
6335 */
6336static int ext4_quota_on_mount(struct super_block *sb, int type)
6337{
6338	return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6339					EXT4_SB(sb)->s_jquota_fmt, type);
6340}
6341
6342static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6343{
6344	struct ext4_inode_info *ei = EXT4_I(inode);
6345
6346	/* The first argument of lockdep_set_subclass has to be
6347	 * *exactly* the same as the argument to init_rwsem() --- in
6348	 * this case, in init_once() --- or lockdep gets unhappy
6349	 * because the name of the lock is set using the
6350	 * stringification of the argument to init_rwsem().
6351	 */
6352	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6353	lockdep_set_subclass(&ei->i_data_sem, subclass);
6354}
6355
6356/*
6357 * Standard function to be called on quota_on
6358 */
6359static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6360			 const struct path *path)
6361{
6362	int err;
6363
6364	if (!test_opt(sb, QUOTA))
6365		return -EINVAL;
6366
6367	/* Quotafile not on the same filesystem? */
6368	if (path->dentry->d_sb != sb)
6369		return -EXDEV;
6370
6371	/* Quota already enabled for this file? */
6372	if (IS_NOQUOTA(d_inode(path->dentry)))
6373		return -EBUSY;
6374
6375	/* Journaling quota? */
6376	if (EXT4_SB(sb)->s_qf_names[type]) {
6377		/* Quotafile not in fs root? */
6378		if (path->dentry->d_parent != sb->s_root)
6379			ext4_msg(sb, KERN_WARNING,
6380				"Quota file not on filesystem root. "
6381				"Journaled quota will not work");
6382		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6383	} else {
6384		/*
6385		 * Clear the flag just in case mount options changed since
6386		 * last time.
6387		 */
6388		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6389	}
6390
6391	/*
6392	 * When we journal data on quota file, we have to flush journal to see
6393	 * all updates to the file when we bypass pagecache...
6394	 */
6395	if (EXT4_SB(sb)->s_journal &&
6396	    ext4_should_journal_data(d_inode(path->dentry))) {
6397		/*
6398		 * We don't need to lock updates but journal_flush() could
6399		 * otherwise be livelocked...
6400		 */
6401		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6402		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6403		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6404		if (err)
6405			return err;
6406	}
6407
6408	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6409	err = dquot_quota_on(sb, type, format_id, path);
6410	if (err) {
6411		lockdep_set_quota_inode(path->dentry->d_inode,
6412					     I_DATA_SEM_NORMAL);
6413	} else {
6414		struct inode *inode = d_inode(path->dentry);
6415		handle_t *handle;
6416
6417		/*
6418		 * Set inode flags to prevent userspace from messing with quota
6419		 * files. If this fails, we return success anyway since quotas
6420		 * are already enabled and this is not a hard failure.
6421		 */
6422		inode_lock(inode);
6423		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6424		if (IS_ERR(handle))
6425			goto unlock_inode;
6426		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6427		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6428				S_NOATIME | S_IMMUTABLE);
6429		err = ext4_mark_inode_dirty(handle, inode);
6430		ext4_journal_stop(handle);
6431	unlock_inode:
6432		inode_unlock(inode);
 
 
6433	}
 
 
 
6434	return err;
6435}
6436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6437static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6438			     unsigned int flags)
6439{
6440	int err;
6441	struct inode *qf_inode;
6442	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6443		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6444		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6445		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6446	};
6447
6448	BUG_ON(!ext4_has_feature_quota(sb));
6449
6450	if (!qf_inums[type])
6451		return -EPERM;
6452
 
 
 
 
 
 
6453	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6454	if (IS_ERR(qf_inode)) {
6455		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
 
6456		return PTR_ERR(qf_inode);
6457	}
6458
6459	/* Don't account quota for quota files to avoid recursion */
6460	qf_inode->i_flags |= S_NOQUOTA;
6461	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6462	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6463	if (err)
6464		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6465	iput(qf_inode);
6466
6467	return err;
6468}
6469
6470/* Enable usage tracking for all quota types. */
6471static int ext4_enable_quotas(struct super_block *sb)
6472{
6473	int type, err = 0;
6474	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6475		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6476		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6477		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6478	};
6479	bool quota_mopt[EXT4_MAXQUOTAS] = {
6480		test_opt(sb, USRQUOTA),
6481		test_opt(sb, GRPQUOTA),
6482		test_opt(sb, PRJQUOTA),
6483	};
6484
6485	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6486	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6487		if (qf_inums[type]) {
6488			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6489				DQUOT_USAGE_ENABLED |
6490				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6491			if (err) {
6492				ext4_warning(sb,
6493					"Failed to enable quota tracking "
6494					"(type=%d, err=%d). Please run "
6495					"e2fsck to fix.", type, err);
6496				for (type--; type >= 0; type--)
6497					dquot_quota_off(sb, type);
6498
 
6499				return err;
6500			}
6501		}
6502	}
6503	return 0;
6504}
6505
6506static int ext4_quota_off(struct super_block *sb, int type)
6507{
6508	struct inode *inode = sb_dqopt(sb)->files[type];
6509	handle_t *handle;
6510	int err;
6511
6512	/* Force all delayed allocation blocks to be allocated.
6513	 * Caller already holds s_umount sem */
6514	if (test_opt(sb, DELALLOC))
6515		sync_filesystem(sb);
6516
6517	if (!inode || !igrab(inode))
6518		goto out;
6519
6520	err = dquot_quota_off(sb, type);
6521	if (err || ext4_has_feature_quota(sb))
6522		goto out_put;
 
 
 
 
 
 
 
6523
6524	inode_lock(inode);
6525	/*
6526	 * Update modification times of quota files when userspace can
6527	 * start looking at them. If we fail, we return success anyway since
6528	 * this is not a hard failure and quotas are already disabled.
6529	 */
6530	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6531	if (IS_ERR(handle)) {
6532		err = PTR_ERR(handle);
6533		goto out_unlock;
6534	}
6535	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6536	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6537	inode->i_mtime = inode->i_ctime = current_time(inode);
6538	err = ext4_mark_inode_dirty(handle, inode);
6539	ext4_journal_stop(handle);
6540out_unlock:
6541	inode_unlock(inode);
6542out_put:
6543	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6544	iput(inode);
6545	return err;
6546out:
6547	return dquot_quota_off(sb, type);
6548}
6549
6550/* Read data from quotafile - avoid pagecache and such because we cannot afford
6551 * acquiring the locks... As quota files are never truncated and quota code
6552 * itself serializes the operations (and no one else should touch the files)
6553 * we don't have to be afraid of races */
6554static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6555			       size_t len, loff_t off)
6556{
6557	struct inode *inode = sb_dqopt(sb)->files[type];
6558	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6559	int offset = off & (sb->s_blocksize - 1);
6560	int tocopy;
6561	size_t toread;
6562	struct buffer_head *bh;
6563	loff_t i_size = i_size_read(inode);
6564
6565	if (off > i_size)
6566		return 0;
6567	if (off+len > i_size)
6568		len = i_size-off;
6569	toread = len;
6570	while (toread > 0) {
6571		tocopy = sb->s_blocksize - offset < toread ?
6572				sb->s_blocksize - offset : toread;
6573		bh = ext4_bread(NULL, inode, blk, 0);
6574		if (IS_ERR(bh))
6575			return PTR_ERR(bh);
6576		if (!bh)	/* A hole? */
6577			memset(data, 0, tocopy);
6578		else
6579			memcpy(data, bh->b_data+offset, tocopy);
6580		brelse(bh);
6581		offset = 0;
6582		toread -= tocopy;
6583		data += tocopy;
6584		blk++;
6585	}
6586	return len;
6587}
6588
6589/* Write to quotafile (we know the transaction is already started and has
6590 * enough credits) */
6591static ssize_t ext4_quota_write(struct super_block *sb, int type,
6592				const char *data, size_t len, loff_t off)
6593{
6594	struct inode *inode = sb_dqopt(sb)->files[type];
6595	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6596	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6597	int retries = 0;
6598	struct buffer_head *bh;
6599	handle_t *handle = journal_current_handle();
6600
6601	if (EXT4_SB(sb)->s_journal && !handle) {
6602		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6603			" cancelled because transaction is not started",
6604			(unsigned long long)off, (unsigned long long)len);
6605		return -EIO;
6606	}
6607	/*
6608	 * Since we account only one data block in transaction credits,
6609	 * then it is impossible to cross a block boundary.
6610	 */
6611	if (sb->s_blocksize - offset < len) {
6612		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6613			" cancelled because not block aligned",
6614			(unsigned long long)off, (unsigned long long)len);
6615		return -EIO;
6616	}
6617
6618	do {
6619		bh = ext4_bread(handle, inode, blk,
6620				EXT4_GET_BLOCKS_CREATE |
6621				EXT4_GET_BLOCKS_METADATA_NOFAIL);
6622	} while (PTR_ERR(bh) == -ENOSPC &&
6623		 ext4_should_retry_alloc(inode->i_sb, &retries));
6624	if (IS_ERR(bh))
6625		return PTR_ERR(bh);
6626	if (!bh)
6627		goto out;
6628	BUFFER_TRACE(bh, "get write access");
6629	err = ext4_journal_get_write_access(handle, bh);
6630	if (err) {
6631		brelse(bh);
6632		return err;
6633	}
6634	lock_buffer(bh);
6635	memcpy(bh->b_data+offset, data, len);
6636	flush_dcache_page(bh->b_page);
6637	unlock_buffer(bh);
6638	err = ext4_handle_dirty_metadata(handle, NULL, bh);
6639	brelse(bh);
6640out:
6641	if (inode->i_size < off + len) {
6642		i_size_write(inode, off + len);
6643		EXT4_I(inode)->i_disksize = inode->i_size;
6644		err2 = ext4_mark_inode_dirty(handle, inode);
6645		if (unlikely(err2 && !err))
6646			err = err2;
6647	}
6648	return err ? err : len;
6649}
6650#endif
6651
6652static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6653		       const char *dev_name, void *data)
6654{
6655	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6656}
6657
6658#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6659static inline void register_as_ext2(void)
6660{
6661	int err = register_filesystem(&ext2_fs_type);
6662	if (err)
6663		printk(KERN_WARNING
6664		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6665}
6666
6667static inline void unregister_as_ext2(void)
6668{
6669	unregister_filesystem(&ext2_fs_type);
6670}
6671
6672static inline int ext2_feature_set_ok(struct super_block *sb)
6673{
6674	if (ext4_has_unknown_ext2_incompat_features(sb))
6675		return 0;
6676	if (sb_rdonly(sb))
6677		return 1;
6678	if (ext4_has_unknown_ext2_ro_compat_features(sb))
6679		return 0;
6680	return 1;
6681}
6682#else
6683static inline void register_as_ext2(void) { }
6684static inline void unregister_as_ext2(void) { }
6685static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6686#endif
6687
6688static inline void register_as_ext3(void)
6689{
6690	int err = register_filesystem(&ext3_fs_type);
6691	if (err)
6692		printk(KERN_WARNING
6693		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6694}
6695
6696static inline void unregister_as_ext3(void)
6697{
6698	unregister_filesystem(&ext3_fs_type);
6699}
6700
6701static inline int ext3_feature_set_ok(struct super_block *sb)
6702{
6703	if (ext4_has_unknown_ext3_incompat_features(sb))
6704		return 0;
6705	if (!ext4_has_feature_journal(sb))
6706		return 0;
6707	if (sb_rdonly(sb))
6708		return 1;
6709	if (ext4_has_unknown_ext3_ro_compat_features(sb))
6710		return 0;
6711	return 1;
6712}
6713
 
 
 
 
 
 
 
 
 
 
 
6714static struct file_system_type ext4_fs_type = {
6715	.owner		= THIS_MODULE,
6716	.name		= "ext4",
6717	.mount		= ext4_mount,
6718	.kill_sb	= kill_block_super,
6719	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
 
6720};
6721MODULE_ALIAS_FS("ext4");
6722
6723/* Shared across all ext4 file systems */
6724wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6725
6726static int __init ext4_init_fs(void)
6727{
6728	int i, err;
6729
6730	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6731	ext4_li_info = NULL;
6732
6733	/* Build-time check for flags consistency */
6734	ext4_check_flag_values();
6735
6736	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6737		init_waitqueue_head(&ext4__ioend_wq[i]);
6738
6739	err = ext4_init_es();
6740	if (err)
6741		return err;
6742
6743	err = ext4_init_pending();
6744	if (err)
6745		goto out7;
6746
6747	err = ext4_init_post_read_processing();
6748	if (err)
6749		goto out6;
6750
6751	err = ext4_init_pageio();
6752	if (err)
6753		goto out5;
6754
6755	err = ext4_init_system_zone();
6756	if (err)
6757		goto out4;
6758
6759	err = ext4_init_sysfs();
6760	if (err)
6761		goto out3;
6762
6763	err = ext4_init_mballoc();
6764	if (err)
6765		goto out2;
6766	err = init_inodecache();
6767	if (err)
6768		goto out1;
6769
6770	err = ext4_fc_init_dentry_cache();
6771	if (err)
6772		goto out05;
6773
6774	register_as_ext3();
6775	register_as_ext2();
6776	err = register_filesystem(&ext4_fs_type);
6777	if (err)
6778		goto out;
6779
6780	return 0;
6781out:
6782	unregister_as_ext2();
6783	unregister_as_ext3();
 
6784out05:
6785	destroy_inodecache();
6786out1:
6787	ext4_exit_mballoc();
6788out2:
6789	ext4_exit_sysfs();
6790out3:
6791	ext4_exit_system_zone();
6792out4:
6793	ext4_exit_pageio();
6794out5:
6795	ext4_exit_post_read_processing();
6796out6:
6797	ext4_exit_pending();
6798out7:
6799	ext4_exit_es();
6800
6801	return err;
6802}
6803
6804static void __exit ext4_exit_fs(void)
6805{
6806	ext4_destroy_lazyinit_thread();
6807	unregister_as_ext2();
6808	unregister_as_ext3();
6809	unregister_filesystem(&ext4_fs_type);
 
6810	destroy_inodecache();
6811	ext4_exit_mballoc();
6812	ext4_exit_sysfs();
6813	ext4_exit_system_zone();
6814	ext4_exit_pageio();
6815	ext4_exit_post_read_processing();
6816	ext4_exit_es();
6817	ext4_exit_pending();
6818}
6819
6820MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6821MODULE_DESCRIPTION("Fourth Extended Filesystem");
6822MODULE_LICENSE("GPL");
6823MODULE_SOFTDEP("pre: crc32c");
6824module_init(ext4_init_fs)
6825module_exit(ext4_exit_fs)