Linux Audio

Check our new training course

Embedded Linux training

Mar 10-20, 2025, special US time zones
Register
Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/page-io.c
  4 *
  5 * This contains the new page_io functions for ext4
  6 *
  7 * Written by Theodore Ts'o, 2010.
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/time.h>
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 21#include <linux/uio.h>
 22#include <linux/bio.h>
 23#include <linux/workqueue.h>
 24#include <linux/kernel.h>
 25#include <linux/slab.h>
 26#include <linux/mm.h>
 27#include <linux/sched/mm.h>
 28
 29#include "ext4_jbd2.h"
 30#include "xattr.h"
 31#include "acl.h"
 32
 33static struct kmem_cache *io_end_cachep;
 34static struct kmem_cache *io_end_vec_cachep;
 35
 36int __init ext4_init_pageio(void)
 37{
 38	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 39	if (io_end_cachep == NULL)
 40		return -ENOMEM;
 41
 42	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
 43	if (io_end_vec_cachep == NULL) {
 44		kmem_cache_destroy(io_end_cachep);
 45		return -ENOMEM;
 46	}
 47	return 0;
 48}
 49
 50void ext4_exit_pageio(void)
 51{
 52	kmem_cache_destroy(io_end_cachep);
 53	kmem_cache_destroy(io_end_vec_cachep);
 54}
 55
 56struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
 57{
 58	struct ext4_io_end_vec *io_end_vec;
 59
 60	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
 61	if (!io_end_vec)
 62		return ERR_PTR(-ENOMEM);
 63	INIT_LIST_HEAD(&io_end_vec->list);
 64	list_add_tail(&io_end_vec->list, &io_end->list_vec);
 65	return io_end_vec;
 66}
 67
 68static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
 69{
 70	struct ext4_io_end_vec *io_end_vec, *tmp;
 71
 72	if (list_empty(&io_end->list_vec))
 73		return;
 74	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
 75		list_del(&io_end_vec->list);
 76		kmem_cache_free(io_end_vec_cachep, io_end_vec);
 77	}
 78}
 79
 80struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
 81{
 82	BUG_ON(list_empty(&io_end->list_vec));
 83	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
 84}
 85
 86/*
 87 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 88 * provides compatibility with dmesg scrapers that look for a specific
 89 * buffer I/O error message.  We really need a unified error reporting
 90 * structure to userspace ala Digital Unix's uerf system, but it's
 91 * probably not going to happen in my lifetime, due to LKML politics...
 92 */
 93static void buffer_io_error(struct buffer_head *bh)
 94{
 95	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
 96		       bh->b_bdev,
 97			(unsigned long long)bh->b_blocknr);
 98}
 99
100static void ext4_finish_bio(struct bio *bio)
101{
102	struct folio_iter fi;
 
103
104	bio_for_each_folio_all(fi, bio) {
105		struct folio *folio = fi.folio;
106		struct folio *io_folio = NULL;
107		struct buffer_head *bh, *head;
108		size_t bio_start = fi.offset;
109		size_t bio_end = bio_start + fi.length;
110		unsigned under_io = 0;
111		unsigned long flags;
112
113		if (fscrypt_is_bounce_folio(folio)) {
114			io_folio = folio;
115			folio = fscrypt_pagecache_folio(folio);
116		}
117
118		if (bio->bi_status) {
119			int err = blk_status_to_errno(bio->bi_status);
120			folio_set_error(folio);
121			mapping_set_error(folio->mapping, err);
122		}
123		bh = head = folio_buffers(folio);
124		/*
125		 * We check all buffers in the folio under b_uptodate_lock
126		 * to avoid races with other end io clearing async_write flags
127		 */
128		spin_lock_irqsave(&head->b_uptodate_lock, flags);
129		do {
130			if (bh_offset(bh) < bio_start ||
131			    bh_offset(bh) + bh->b_size > bio_end) {
132				if (buffer_async_write(bh))
133					under_io++;
134				continue;
135			}
136			clear_buffer_async_write(bh);
137			if (bio->bi_status) {
138				set_buffer_write_io_error(bh);
139				buffer_io_error(bh);
140			}
141		} while ((bh = bh->b_this_page) != head);
142		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
143		if (!under_io) {
144			fscrypt_free_bounce_page(&io_folio->page);
145			folio_end_writeback(folio);
146		}
147	}
148}
149
150static void ext4_release_io_end(ext4_io_end_t *io_end)
151{
152	struct bio *bio, *next_bio;
153
154	BUG_ON(!list_empty(&io_end->list));
155	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
156	WARN_ON(io_end->handle);
157
158	for (bio = io_end->bio; bio; bio = next_bio) {
159		next_bio = bio->bi_private;
160		ext4_finish_bio(bio);
161		bio_put(bio);
162	}
163	ext4_free_io_end_vec(io_end);
164	kmem_cache_free(io_end_cachep, io_end);
165}
166
167/*
168 * Check a range of space and convert unwritten extents to written. Note that
169 * we are protected from truncate touching same part of extent tree by the
170 * fact that truncate code waits for all DIO to finish (thus exclusion from
171 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
172 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
173 * completed (happens from ext4_free_ioend()).
174 */
175static int ext4_end_io_end(ext4_io_end_t *io_end)
176{
177	struct inode *inode = io_end->inode;
178	handle_t *handle = io_end->handle;
179	int ret = 0;
180
181	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
182		   "list->prev 0x%p\n",
183		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
184
185	io_end->handle = NULL;	/* Following call will use up the handle */
186	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
187	if (ret < 0 && !ext4_forced_shutdown(inode->i_sb)) {
188		ext4_msg(inode->i_sb, KERN_EMERG,
189			 "failed to convert unwritten extents to written "
190			 "extents -- potential data loss!  "
191			 "(inode %lu, error %d)", inode->i_ino, ret);
192	}
193	ext4_clear_io_unwritten_flag(io_end);
194	ext4_release_io_end(io_end);
195	return ret;
196}
197
198static void dump_completed_IO(struct inode *inode, struct list_head *head)
199{
200#ifdef	EXT4FS_DEBUG
201	struct list_head *cur, *before, *after;
202	ext4_io_end_t *io_end, *io_end0, *io_end1;
203
204	if (list_empty(head))
205		return;
206
207	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
208	list_for_each_entry(io_end, head, list) {
209		cur = &io_end->list;
210		before = cur->prev;
211		io_end0 = container_of(before, ext4_io_end_t, list);
212		after = cur->next;
213		io_end1 = container_of(after, ext4_io_end_t, list);
214
215		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
216			    io_end, inode->i_ino, io_end0, io_end1);
217	}
218#endif
219}
220
221/* Add the io_end to per-inode completed end_io list. */
222static void ext4_add_complete_io(ext4_io_end_t *io_end)
223{
224	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
225	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
226	struct workqueue_struct *wq;
227	unsigned long flags;
228
229	/* Only reserved conversions from writeback should enter here */
230	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
231	WARN_ON(!io_end->handle && sbi->s_journal);
232	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
233	wq = sbi->rsv_conversion_wq;
234	if (list_empty(&ei->i_rsv_conversion_list))
235		queue_work(wq, &ei->i_rsv_conversion_work);
236	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
237	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
238}
239
240static int ext4_do_flush_completed_IO(struct inode *inode,
241				      struct list_head *head)
242{
243	ext4_io_end_t *io_end;
244	struct list_head unwritten;
245	unsigned long flags;
246	struct ext4_inode_info *ei = EXT4_I(inode);
247	int err, ret = 0;
248
249	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
250	dump_completed_IO(inode, head);
251	list_replace_init(head, &unwritten);
252	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
253
254	while (!list_empty(&unwritten)) {
255		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
256		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
257		list_del_init(&io_end->list);
258
259		err = ext4_end_io_end(io_end);
260		if (unlikely(!ret && err))
261			ret = err;
262	}
263	return ret;
264}
265
266/*
267 * work on completed IO, to convert unwritten extents to extents
268 */
269void ext4_end_io_rsv_work(struct work_struct *work)
270{
271	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
272						  i_rsv_conversion_work);
273	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
274}
275
276ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
277{
278	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
279
280	if (io_end) {
281		io_end->inode = inode;
282		INIT_LIST_HEAD(&io_end->list);
283		INIT_LIST_HEAD(&io_end->list_vec);
284		refcount_set(&io_end->count, 1);
285	}
286	return io_end;
287}
288
289void ext4_put_io_end_defer(ext4_io_end_t *io_end)
290{
291	if (refcount_dec_and_test(&io_end->count)) {
292		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
293				list_empty(&io_end->list_vec)) {
294			ext4_release_io_end(io_end);
295			return;
296		}
297		ext4_add_complete_io(io_end);
298	}
299}
300
301int ext4_put_io_end(ext4_io_end_t *io_end)
302{
303	int err = 0;
304
305	if (refcount_dec_and_test(&io_end->count)) {
306		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
307			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
308								io_end);
309			io_end->handle = NULL;
310			ext4_clear_io_unwritten_flag(io_end);
311		}
312		ext4_release_io_end(io_end);
313	}
314	return err;
315}
316
317ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
318{
319	refcount_inc(&io_end->count);
320	return io_end;
321}
322
323/* BIO completion function for page writeback */
324static void ext4_end_bio(struct bio *bio)
325{
326	ext4_io_end_t *io_end = bio->bi_private;
327	sector_t bi_sector = bio->bi_iter.bi_sector;
 
328
329	if (WARN_ONCE(!io_end, "io_end is NULL: %pg: sector %Lu len %u err %d\n",
330		      bio->bi_bdev,
331		      (long long) bio->bi_iter.bi_sector,
332		      (unsigned) bio_sectors(bio),
333		      bio->bi_status)) {
334		ext4_finish_bio(bio);
335		bio_put(bio);
336		return;
337	}
338	bio->bi_end_io = NULL;
339
340	if (bio->bi_status) {
341		struct inode *inode = io_end->inode;
342
343		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
344			     "starting block %llu)",
345			     bio->bi_status, inode->i_ino,
346			     (unsigned long long)
347			     bi_sector >> (inode->i_blkbits - 9));
348		mapping_set_error(inode->i_mapping,
349				blk_status_to_errno(bio->bi_status));
350	}
351
352	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
353		/*
354		 * Link bio into list hanging from io_end. We have to do it
355		 * atomically as bio completions can be racing against each
356		 * other.
357		 */
358		bio->bi_private = xchg(&io_end->bio, bio);
359		ext4_put_io_end_defer(io_end);
360	} else {
361		/*
362		 * Drop io_end reference early. Inode can get freed once
363		 * we finish the bio.
364		 */
365		ext4_put_io_end_defer(io_end);
366		ext4_finish_bio(bio);
367		bio_put(bio);
368	}
369}
370
371void ext4_io_submit(struct ext4_io_submit *io)
372{
373	struct bio *bio = io->io_bio;
374
375	if (bio) {
376		if (io->io_wbc->sync_mode == WB_SYNC_ALL)
377			io->io_bio->bi_opf |= REQ_SYNC;
 
 
378		submit_bio(io->io_bio);
379	}
380	io->io_bio = NULL;
381}
382
383void ext4_io_submit_init(struct ext4_io_submit *io,
384			 struct writeback_control *wbc)
385{
386	io->io_wbc = wbc;
387	io->io_bio = NULL;
388	io->io_end = NULL;
389}
390
391static void io_submit_init_bio(struct ext4_io_submit *io,
392			       struct buffer_head *bh)
393{
394	struct bio *bio;
395
396	/*
397	 * bio_alloc will _always_ be able to allocate a bio if
398	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
399	 */
400	bio = bio_alloc(bh->b_bdev, BIO_MAX_VECS, REQ_OP_WRITE, GFP_NOIO);
401	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
402	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 
403	bio->bi_end_io = ext4_end_bio;
404	bio->bi_private = ext4_get_io_end(io->io_end);
405	io->io_bio = bio;
406	io->io_next_block = bh->b_blocknr;
407	wbc_init_bio(io->io_wbc, bio);
408}
409
410static void io_submit_add_bh(struct ext4_io_submit *io,
411			     struct inode *inode,
412			     struct folio *folio,
413			     struct folio *io_folio,
414			     struct buffer_head *bh)
415{
 
 
416	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
417			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
418submit_and_retry:
419		ext4_io_submit(io);
420	}
421	if (io->io_bio == NULL)
422		io_submit_init_bio(io, bh);
423	if (!bio_add_folio(io->io_bio, io_folio, bh->b_size, bh_offset(bh)))
 
 
 
424		goto submit_and_retry;
425	wbc_account_cgroup_owner(io->io_wbc, &folio->page, bh->b_size);
426	io->io_next_block++;
427}
428
429int ext4_bio_write_folio(struct ext4_io_submit *io, struct folio *folio,
430		size_t len)
 
 
431{
432	struct folio *io_folio = folio;
433	struct inode *inode = folio->mapping->host;
434	unsigned block_start;
435	struct buffer_head *bh, *head;
436	int ret = 0;
 
437	int nr_to_submit = 0;
438	struct writeback_control *wbc = io->io_wbc;
439	bool keep_towrite = false;
440
441	BUG_ON(!folio_test_locked(folio));
442	BUG_ON(folio_test_writeback(folio));
443
444	folio_clear_error(folio);
 
 
 
 
445
446	/*
447	 * Comments copied from block_write_full_folio:
448	 *
449	 * The folio straddles i_size.  It must be zeroed out on each and every
450	 * writepage invocation because it may be mmapped.  "A file is mapped
451	 * in multiples of the page size.  For a file that is not a multiple of
452	 * the page size, the remaining memory is zeroed when mapped, and
453	 * writes to that region are not written out to the file."
454	 */
455	if (len < folio_size(folio))
456		folio_zero_segment(folio, len, folio_size(folio));
457	/*
458	 * In the first loop we prepare and mark buffers to submit. We have to
459	 * mark all buffers in the folio before submitting so that
460	 * folio_end_writeback() cannot be called from ext4_end_bio() when IO
461	 * on the first buffer finishes and we are still working on submitting
462	 * the second buffer.
463	 */
464	bh = head = folio_buffers(folio);
465	do {
466		block_start = bh_offset(bh);
467		if (block_start >= len) {
468			clear_buffer_dirty(bh);
469			set_buffer_uptodate(bh);
470			continue;
471		}
472		if (!buffer_dirty(bh) || buffer_delay(bh) ||
473		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
474			/* A hole? We can safely clear the dirty bit */
475			if (!buffer_mapped(bh))
476				clear_buffer_dirty(bh);
477			/*
478			 * Keeping dirty some buffer we cannot write? Make sure
479			 * to redirty the folio and keep TOWRITE tag so that
480			 * racing WB_SYNC_ALL writeback does not skip the folio.
481			 * This happens e.g. when doing writeout for
482			 * transaction commit or when journalled data is not
483			 * yet committed.
484			 */
485			if (buffer_dirty(bh) ||
486			    (buffer_jbd(bh) && buffer_jbddirty(bh))) {
487				if (!folio_test_dirty(folio))
488					folio_redirty_for_writepage(wbc, folio);
489				keep_towrite = true;
490			}
491			continue;
492		}
493		if (buffer_new(bh))
494			clear_buffer_new(bh);
495		set_buffer_async_write(bh);
496		clear_buffer_dirty(bh);
497		nr_to_submit++;
498	} while ((bh = bh->b_this_page) != head);
499
500	/* Nothing to submit? Just unlock the folio... */
501	if (!nr_to_submit)
502		return 0;
503
504	bh = head = folio_buffers(folio);
505
506	/*
507	 * If any blocks are being written to an encrypted file, encrypt them
508	 * into a bounce page.  For simplicity, just encrypt until the last
509	 * block which might be needed.  This may cause some unneeded blocks
510	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
511	 * can't happen in the common case of blocksize == PAGE_SIZE.
512	 */
513	if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
514		gfp_t gfp_flags = GFP_NOFS;
515		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
516		struct page *bounce_page;
517
518		/*
519		 * Since bounce page allocation uses a mempool, we can only use
520		 * a waiting mask (i.e. request guaranteed allocation) on the
521		 * first page of the bio.  Otherwise it can deadlock.
522		 */
523		if (io->io_bio)
524			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
525	retry_encrypt:
526		bounce_page = fscrypt_encrypt_pagecache_blocks(&folio->page,
527					enc_bytes, 0, gfp_flags);
528		if (IS_ERR(bounce_page)) {
529			ret = PTR_ERR(bounce_page);
530			if (ret == -ENOMEM &&
531			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
532				gfp_t new_gfp_flags = GFP_NOFS;
533				if (io->io_bio)
534					ext4_io_submit(io);
535				else
536					new_gfp_flags |= __GFP_NOFAIL;
537				memalloc_retry_wait(gfp_flags);
538				gfp_flags = new_gfp_flags;
539				goto retry_encrypt;
540			}
541
542			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
543			folio_redirty_for_writepage(wbc, folio);
544			do {
545				if (buffer_async_write(bh)) {
546					clear_buffer_async_write(bh);
547					set_buffer_dirty(bh);
548				}
549				bh = bh->b_this_page;
550			} while (bh != head);
551
552			return ret;
553		}
554		io_folio = page_folio(bounce_page);
555	}
556
557	__folio_start_writeback(folio, keep_towrite);
558
559	/* Now submit buffers to write */
560	do {
561		if (!buffer_async_write(bh))
562			continue;
563		io_submit_add_bh(io, inode, folio, io_folio, bh);
 
 
 
564	} while ((bh = bh->b_this_page) != head);
565
566	return 0;
 
 
 
 
 
567}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * linux/fs/ext4/page-io.c
  4 *
  5 * This contains the new page_io functions for ext4
  6 *
  7 * Written by Theodore Ts'o, 2010.
  8 */
  9
 10#include <linux/fs.h>
 11#include <linux/time.h>
 12#include <linux/highuid.h>
 13#include <linux/pagemap.h>
 14#include <linux/quotaops.h>
 15#include <linux/string.h>
 16#include <linux/buffer_head.h>
 17#include <linux/writeback.h>
 18#include <linux/pagevec.h>
 19#include <linux/mpage.h>
 20#include <linux/namei.h>
 21#include <linux/uio.h>
 22#include <linux/bio.h>
 23#include <linux/workqueue.h>
 24#include <linux/kernel.h>
 25#include <linux/slab.h>
 26#include <linux/mm.h>
 27#include <linux/backing-dev.h>
 28
 29#include "ext4_jbd2.h"
 30#include "xattr.h"
 31#include "acl.h"
 32
 33static struct kmem_cache *io_end_cachep;
 34static struct kmem_cache *io_end_vec_cachep;
 35
 36int __init ext4_init_pageio(void)
 37{
 38	io_end_cachep = KMEM_CACHE(ext4_io_end, SLAB_RECLAIM_ACCOUNT);
 39	if (io_end_cachep == NULL)
 40		return -ENOMEM;
 41
 42	io_end_vec_cachep = KMEM_CACHE(ext4_io_end_vec, 0);
 43	if (io_end_vec_cachep == NULL) {
 44		kmem_cache_destroy(io_end_cachep);
 45		return -ENOMEM;
 46	}
 47	return 0;
 48}
 49
 50void ext4_exit_pageio(void)
 51{
 52	kmem_cache_destroy(io_end_cachep);
 53	kmem_cache_destroy(io_end_vec_cachep);
 54}
 55
 56struct ext4_io_end_vec *ext4_alloc_io_end_vec(ext4_io_end_t *io_end)
 57{
 58	struct ext4_io_end_vec *io_end_vec;
 59
 60	io_end_vec = kmem_cache_zalloc(io_end_vec_cachep, GFP_NOFS);
 61	if (!io_end_vec)
 62		return ERR_PTR(-ENOMEM);
 63	INIT_LIST_HEAD(&io_end_vec->list);
 64	list_add_tail(&io_end_vec->list, &io_end->list_vec);
 65	return io_end_vec;
 66}
 67
 68static void ext4_free_io_end_vec(ext4_io_end_t *io_end)
 69{
 70	struct ext4_io_end_vec *io_end_vec, *tmp;
 71
 72	if (list_empty(&io_end->list_vec))
 73		return;
 74	list_for_each_entry_safe(io_end_vec, tmp, &io_end->list_vec, list) {
 75		list_del(&io_end_vec->list);
 76		kmem_cache_free(io_end_vec_cachep, io_end_vec);
 77	}
 78}
 79
 80struct ext4_io_end_vec *ext4_last_io_end_vec(ext4_io_end_t *io_end)
 81{
 82	BUG_ON(list_empty(&io_end->list_vec));
 83	return list_last_entry(&io_end->list_vec, struct ext4_io_end_vec, list);
 84}
 85
 86/*
 87 * Print an buffer I/O error compatible with the fs/buffer.c.  This
 88 * provides compatibility with dmesg scrapers that look for a specific
 89 * buffer I/O error message.  We really need a unified error reporting
 90 * structure to userspace ala Digital Unix's uerf system, but it's
 91 * probably not going to happen in my lifetime, due to LKML politics...
 92 */
 93static void buffer_io_error(struct buffer_head *bh)
 94{
 95	printk_ratelimited(KERN_ERR "Buffer I/O error on device %pg, logical block %llu\n",
 96		       bh->b_bdev,
 97			(unsigned long long)bh->b_blocknr);
 98}
 99
100static void ext4_finish_bio(struct bio *bio)
101{
102	struct bio_vec *bvec;
103	struct bvec_iter_all iter_all;
104
105	bio_for_each_segment_all(bvec, bio, iter_all) {
106		struct page *page = bvec->bv_page;
107		struct page *bounce_page = NULL;
108		struct buffer_head *bh, *head;
109		unsigned bio_start = bvec->bv_offset;
110		unsigned bio_end = bio_start + bvec->bv_len;
111		unsigned under_io = 0;
112		unsigned long flags;
113
114		if (fscrypt_is_bounce_page(page)) {
115			bounce_page = page;
116			page = fscrypt_pagecache_page(bounce_page);
117		}
118
119		if (bio->bi_status) {
120			SetPageError(page);
121			mapping_set_error(page->mapping, -EIO);
 
122		}
123		bh = head = page_buffers(page);
124		/*
125		 * We check all buffers in the page under b_uptodate_lock
126		 * to avoid races with other end io clearing async_write flags
127		 */
128		spin_lock_irqsave(&head->b_uptodate_lock, flags);
129		do {
130			if (bh_offset(bh) < bio_start ||
131			    bh_offset(bh) + bh->b_size > bio_end) {
132				if (buffer_async_write(bh))
133					under_io++;
134				continue;
135			}
136			clear_buffer_async_write(bh);
137			if (bio->bi_status)
 
138				buffer_io_error(bh);
 
139		} while ((bh = bh->b_this_page) != head);
140		spin_unlock_irqrestore(&head->b_uptodate_lock, flags);
141		if (!under_io) {
142			fscrypt_free_bounce_page(bounce_page);
143			end_page_writeback(page);
144		}
145	}
146}
147
148static void ext4_release_io_end(ext4_io_end_t *io_end)
149{
150	struct bio *bio, *next_bio;
151
152	BUG_ON(!list_empty(&io_end->list));
153	BUG_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
154	WARN_ON(io_end->handle);
155
156	for (bio = io_end->bio; bio; bio = next_bio) {
157		next_bio = bio->bi_private;
158		ext4_finish_bio(bio);
159		bio_put(bio);
160	}
161	ext4_free_io_end_vec(io_end);
162	kmem_cache_free(io_end_cachep, io_end);
163}
164
165/*
166 * Check a range of space and convert unwritten extents to written. Note that
167 * we are protected from truncate touching same part of extent tree by the
168 * fact that truncate code waits for all DIO to finish (thus exclusion from
169 * direct IO is achieved) and also waits for PageWriteback bits. Thus we
170 * cannot get to ext4_ext_truncate() before all IOs overlapping that range are
171 * completed (happens from ext4_free_ioend()).
172 */
173static int ext4_end_io_end(ext4_io_end_t *io_end)
174{
175	struct inode *inode = io_end->inode;
176	handle_t *handle = io_end->handle;
177	int ret = 0;
178
179	ext4_debug("ext4_end_io_nolock: io_end 0x%p from inode %lu,list->next 0x%p,"
180		   "list->prev 0x%p\n",
181		   io_end, inode->i_ino, io_end->list.next, io_end->list.prev);
182
183	io_end->handle = NULL;	/* Following call will use up the handle */
184	ret = ext4_convert_unwritten_io_end_vec(handle, io_end);
185	if (ret < 0 && !ext4_forced_shutdown(EXT4_SB(inode->i_sb))) {
186		ext4_msg(inode->i_sb, KERN_EMERG,
187			 "failed to convert unwritten extents to written "
188			 "extents -- potential data loss!  "
189			 "(inode %lu, error %d)", inode->i_ino, ret);
190	}
191	ext4_clear_io_unwritten_flag(io_end);
192	ext4_release_io_end(io_end);
193	return ret;
194}
195
196static void dump_completed_IO(struct inode *inode, struct list_head *head)
197{
198#ifdef	EXT4FS_DEBUG
199	struct list_head *cur, *before, *after;
200	ext4_io_end_t *io_end, *io_end0, *io_end1;
201
202	if (list_empty(head))
203		return;
204
205	ext4_debug("Dump inode %lu completed io list\n", inode->i_ino);
206	list_for_each_entry(io_end, head, list) {
207		cur = &io_end->list;
208		before = cur->prev;
209		io_end0 = container_of(before, ext4_io_end_t, list);
210		after = cur->next;
211		io_end1 = container_of(after, ext4_io_end_t, list);
212
213		ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
214			    io_end, inode->i_ino, io_end0, io_end1);
215	}
216#endif
217}
218
219/* Add the io_end to per-inode completed end_io list. */
220static void ext4_add_complete_io(ext4_io_end_t *io_end)
221{
222	struct ext4_inode_info *ei = EXT4_I(io_end->inode);
223	struct ext4_sb_info *sbi = EXT4_SB(io_end->inode->i_sb);
224	struct workqueue_struct *wq;
225	unsigned long flags;
226
227	/* Only reserved conversions from writeback should enter here */
228	WARN_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
229	WARN_ON(!io_end->handle && sbi->s_journal);
230	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
231	wq = sbi->rsv_conversion_wq;
232	if (list_empty(&ei->i_rsv_conversion_list))
233		queue_work(wq, &ei->i_rsv_conversion_work);
234	list_add_tail(&io_end->list, &ei->i_rsv_conversion_list);
235	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
236}
237
238static int ext4_do_flush_completed_IO(struct inode *inode,
239				      struct list_head *head)
240{
241	ext4_io_end_t *io_end;
242	struct list_head unwritten;
243	unsigned long flags;
244	struct ext4_inode_info *ei = EXT4_I(inode);
245	int err, ret = 0;
246
247	spin_lock_irqsave(&ei->i_completed_io_lock, flags);
248	dump_completed_IO(inode, head);
249	list_replace_init(head, &unwritten);
250	spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
251
252	while (!list_empty(&unwritten)) {
253		io_end = list_entry(unwritten.next, ext4_io_end_t, list);
254		BUG_ON(!(io_end->flag & EXT4_IO_END_UNWRITTEN));
255		list_del_init(&io_end->list);
256
257		err = ext4_end_io_end(io_end);
258		if (unlikely(!ret && err))
259			ret = err;
260	}
261	return ret;
262}
263
264/*
265 * work on completed IO, to convert unwritten extents to extents
266 */
267void ext4_end_io_rsv_work(struct work_struct *work)
268{
269	struct ext4_inode_info *ei = container_of(work, struct ext4_inode_info,
270						  i_rsv_conversion_work);
271	ext4_do_flush_completed_IO(&ei->vfs_inode, &ei->i_rsv_conversion_list);
272}
273
274ext4_io_end_t *ext4_init_io_end(struct inode *inode, gfp_t flags)
275{
276	ext4_io_end_t *io_end = kmem_cache_zalloc(io_end_cachep, flags);
277
278	if (io_end) {
279		io_end->inode = inode;
280		INIT_LIST_HEAD(&io_end->list);
281		INIT_LIST_HEAD(&io_end->list_vec);
282		atomic_set(&io_end->count, 1);
283	}
284	return io_end;
285}
286
287void ext4_put_io_end_defer(ext4_io_end_t *io_end)
288{
289	if (atomic_dec_and_test(&io_end->count)) {
290		if (!(io_end->flag & EXT4_IO_END_UNWRITTEN) ||
291				list_empty(&io_end->list_vec)) {
292			ext4_release_io_end(io_end);
293			return;
294		}
295		ext4_add_complete_io(io_end);
296	}
297}
298
299int ext4_put_io_end(ext4_io_end_t *io_end)
300{
301	int err = 0;
302
303	if (atomic_dec_and_test(&io_end->count)) {
304		if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
305			err = ext4_convert_unwritten_io_end_vec(io_end->handle,
306								io_end);
307			io_end->handle = NULL;
308			ext4_clear_io_unwritten_flag(io_end);
309		}
310		ext4_release_io_end(io_end);
311	}
312	return err;
313}
314
315ext4_io_end_t *ext4_get_io_end(ext4_io_end_t *io_end)
316{
317	atomic_inc(&io_end->count);
318	return io_end;
319}
320
321/* BIO completion function for page writeback */
322static void ext4_end_bio(struct bio *bio)
323{
324	ext4_io_end_t *io_end = bio->bi_private;
325	sector_t bi_sector = bio->bi_iter.bi_sector;
326	char b[BDEVNAME_SIZE];
327
328	if (WARN_ONCE(!io_end, "io_end is NULL: %s: sector %Lu len %u err %d\n",
329		      bio_devname(bio, b),
330		      (long long) bio->bi_iter.bi_sector,
331		      (unsigned) bio_sectors(bio),
332		      bio->bi_status)) {
333		ext4_finish_bio(bio);
334		bio_put(bio);
335		return;
336	}
337	bio->bi_end_io = NULL;
338
339	if (bio->bi_status) {
340		struct inode *inode = io_end->inode;
341
342		ext4_warning(inode->i_sb, "I/O error %d writing to inode %lu "
343			     "starting block %llu)",
344			     bio->bi_status, inode->i_ino,
345			     (unsigned long long)
346			     bi_sector >> (inode->i_blkbits - 9));
347		mapping_set_error(inode->i_mapping,
348				blk_status_to_errno(bio->bi_status));
349	}
350
351	if (io_end->flag & EXT4_IO_END_UNWRITTEN) {
352		/*
353		 * Link bio into list hanging from io_end. We have to do it
354		 * atomically as bio completions can be racing against each
355		 * other.
356		 */
357		bio->bi_private = xchg(&io_end->bio, bio);
358		ext4_put_io_end_defer(io_end);
359	} else {
360		/*
361		 * Drop io_end reference early. Inode can get freed once
362		 * we finish the bio.
363		 */
364		ext4_put_io_end_defer(io_end);
365		ext4_finish_bio(bio);
366		bio_put(bio);
367	}
368}
369
370void ext4_io_submit(struct ext4_io_submit *io)
371{
372	struct bio *bio = io->io_bio;
373
374	if (bio) {
375		int io_op_flags = io->io_wbc->sync_mode == WB_SYNC_ALL ?
376				  REQ_SYNC : 0;
377		io->io_bio->bi_write_hint = io->io_end->inode->i_write_hint;
378		bio_set_op_attrs(io->io_bio, REQ_OP_WRITE, io_op_flags);
379		submit_bio(io->io_bio);
380	}
381	io->io_bio = NULL;
382}
383
384void ext4_io_submit_init(struct ext4_io_submit *io,
385			 struct writeback_control *wbc)
386{
387	io->io_wbc = wbc;
388	io->io_bio = NULL;
389	io->io_end = NULL;
390}
391
392static void io_submit_init_bio(struct ext4_io_submit *io,
393			       struct buffer_head *bh)
394{
395	struct bio *bio;
396
397	/*
398	 * bio_alloc will _always_ be able to allocate a bio if
399	 * __GFP_DIRECT_RECLAIM is set, see comments for bio_alloc_bioset().
400	 */
401	bio = bio_alloc(GFP_NOIO, BIO_MAX_VECS);
402	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
403	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
404	bio_set_dev(bio, bh->b_bdev);
405	bio->bi_end_io = ext4_end_bio;
406	bio->bi_private = ext4_get_io_end(io->io_end);
407	io->io_bio = bio;
408	io->io_next_block = bh->b_blocknr;
409	wbc_init_bio(io->io_wbc, bio);
410}
411
412static void io_submit_add_bh(struct ext4_io_submit *io,
413			     struct inode *inode,
414			     struct page *page,
 
415			     struct buffer_head *bh)
416{
417	int ret;
418
419	if (io->io_bio && (bh->b_blocknr != io->io_next_block ||
420			   !fscrypt_mergeable_bio_bh(io->io_bio, bh))) {
421submit_and_retry:
422		ext4_io_submit(io);
423	}
424	if (io->io_bio == NULL) {
425		io_submit_init_bio(io, bh);
426		io->io_bio->bi_write_hint = inode->i_write_hint;
427	}
428	ret = bio_add_page(io->io_bio, page, bh->b_size, bh_offset(bh));
429	if (ret != bh->b_size)
430		goto submit_and_retry;
431	wbc_account_cgroup_owner(io->io_wbc, page, bh->b_size);
432	io->io_next_block++;
433}
434
435int ext4_bio_write_page(struct ext4_io_submit *io,
436			struct page *page,
437			int len,
438			bool keep_towrite)
439{
440	struct page *bounce_page = NULL;
441	struct inode *inode = page->mapping->host;
442	unsigned block_start;
443	struct buffer_head *bh, *head;
444	int ret = 0;
445	int nr_submitted = 0;
446	int nr_to_submit = 0;
447	struct writeback_control *wbc = io->io_wbc;
 
448
449	BUG_ON(!PageLocked(page));
450	BUG_ON(PageWriteback(page));
451
452	if (keep_towrite)
453		set_page_writeback_keepwrite(page);
454	else
455		set_page_writeback(page);
456	ClearPageError(page);
457
458	/*
459	 * Comments copied from block_write_full_page:
460	 *
461	 * The page straddles i_size.  It must be zeroed out on each and every
462	 * writepage invocation because it may be mmapped.  "A file is mapped
463	 * in multiples of the page size.  For a file that is not a multiple of
464	 * the page size, the remaining memory is zeroed when mapped, and
465	 * writes to that region are not written out to the file."
466	 */
467	if (len < PAGE_SIZE)
468		zero_user_segment(page, len, PAGE_SIZE);
469	/*
470	 * In the first loop we prepare and mark buffers to submit. We have to
471	 * mark all buffers in the page before submitting so that
472	 * end_page_writeback() cannot be called from ext4_bio_end_io() when IO
473	 * on the first buffer finishes and we are still working on submitting
474	 * the second buffer.
475	 */
476	bh = head = page_buffers(page);
477	do {
478		block_start = bh_offset(bh);
479		if (block_start >= len) {
480			clear_buffer_dirty(bh);
481			set_buffer_uptodate(bh);
482			continue;
483		}
484		if (!buffer_dirty(bh) || buffer_delay(bh) ||
485		    !buffer_mapped(bh) || buffer_unwritten(bh)) {
486			/* A hole? We can safely clear the dirty bit */
487			if (!buffer_mapped(bh))
488				clear_buffer_dirty(bh);
489			if (io->io_bio)
490				ext4_io_submit(io);
 
 
 
 
 
 
 
 
 
 
 
 
491			continue;
492		}
493		if (buffer_new(bh))
494			clear_buffer_new(bh);
495		set_buffer_async_write(bh);
 
496		nr_to_submit++;
497	} while ((bh = bh->b_this_page) != head);
498
499	bh = head = page_buffers(page);
 
 
 
 
500
501	/*
502	 * If any blocks are being written to an encrypted file, encrypt them
503	 * into a bounce page.  For simplicity, just encrypt until the last
504	 * block which might be needed.  This may cause some unneeded blocks
505	 * (e.g. holes) to be unnecessarily encrypted, but this is rare and
506	 * can't happen in the common case of blocksize == PAGE_SIZE.
507	 */
508	if (fscrypt_inode_uses_fs_layer_crypto(inode) && nr_to_submit) {
509		gfp_t gfp_flags = GFP_NOFS;
510		unsigned int enc_bytes = round_up(len, i_blocksize(inode));
 
511
512		/*
513		 * Since bounce page allocation uses a mempool, we can only use
514		 * a waiting mask (i.e. request guaranteed allocation) on the
515		 * first page of the bio.  Otherwise it can deadlock.
516		 */
517		if (io->io_bio)
518			gfp_flags = GFP_NOWAIT | __GFP_NOWARN;
519	retry_encrypt:
520		bounce_page = fscrypt_encrypt_pagecache_blocks(page, enc_bytes,
521							       0, gfp_flags);
522		if (IS_ERR(bounce_page)) {
523			ret = PTR_ERR(bounce_page);
524			if (ret == -ENOMEM &&
525			    (io->io_bio || wbc->sync_mode == WB_SYNC_ALL)) {
526				gfp_flags = GFP_NOFS;
527				if (io->io_bio)
528					ext4_io_submit(io);
529				else
530					gfp_flags |= __GFP_NOFAIL;
531				congestion_wait(BLK_RW_ASYNC, HZ/50);
 
532				goto retry_encrypt;
533			}
534
535			printk_ratelimited(KERN_ERR "%s: ret = %d\n", __func__, ret);
536			redirty_page_for_writepage(wbc, page);
537			do {
538				clear_buffer_async_write(bh);
 
 
 
539				bh = bh->b_this_page;
540			} while (bh != head);
541			goto unlock;
 
542		}
 
543	}
544
 
 
545	/* Now submit buffers to write */
546	do {
547		if (!buffer_async_write(bh))
548			continue;
549		io_submit_add_bh(io, inode,
550				 bounce_page ? bounce_page : page, bh);
551		nr_submitted++;
552		clear_buffer_dirty(bh);
553	} while ((bh = bh->b_this_page) != head);
554
555unlock:
556	unlock_page(page);
557	/* Nothing submitted - we have to end page writeback */
558	if (!nr_submitted)
559		end_page_writeback(page);
560	return ret;
561}