Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/******************************************************************************
   3*******************************************************************************
   4**
   5**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
   6**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
   7**
   8**
   9*******************************************************************************
  10******************************************************************************/
  11
  12/*
  13 * lowcomms.c
  14 *
  15 * This is the "low-level" comms layer.
  16 *
  17 * It is responsible for sending/receiving messages
  18 * from other nodes in the cluster.
  19 *
  20 * Cluster nodes are referred to by their nodeids. nodeids are
  21 * simply 32 bit numbers to the locking module - if they need to
  22 * be expanded for the cluster infrastructure then that is its
  23 * responsibility. It is this layer's
  24 * responsibility to resolve these into IP address or
  25 * whatever it needs for inter-node communication.
  26 *
  27 * The comms level is two kernel threads that deal mainly with
  28 * the receiving of messages from other nodes and passing them
  29 * up to the mid-level comms layer (which understands the
  30 * message format) for execution by the locking core, and
  31 * a send thread which does all the setting up of connections
  32 * to remote nodes and the sending of data. Threads are not allowed
  33 * to send their own data because it may cause them to wait in times
  34 * of high load. Also, this way, the sending thread can collect together
  35 * messages bound for one node and send them in one block.
  36 *
  37 * lowcomms will choose to use either TCP or SCTP as its transport layer
  38 * depending on the configuration variable 'protocol'. This should be set
  39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
  40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
  41 * for the DLM to function.
  42 *
  43 */
  44
  45#include <asm/ioctls.h>
  46#include <net/sock.h>
  47#include <net/tcp.h>
  48#include <linux/pagemap.h>
  49#include <linux/file.h>
  50#include <linux/mutex.h>
  51#include <linux/sctp.h>
  52#include <linux/slab.h>
  53#include <net/sctp/sctp.h>
  54#include <net/ipv6.h>
  55
  56#include <trace/events/dlm.h>
  57#include <trace/events/sock.h>
  58
  59#include "dlm_internal.h"
  60#include "lowcomms.h"
  61#include "midcomms.h"
  62#include "memory.h"
  63#include "config.h"
  64
  65#define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(5000)
  66#define DLM_MAX_PROCESS_BUFFERS 24
  67#define NEEDED_RMEM (4*1024*1024)
  68
 
 
 
 
  69struct connection {
  70	struct socket *sock;	/* NULL if not connected */
  71	uint32_t nodeid;	/* So we know who we are in the list */
  72	/* this semaphore is used to allow parallel recv/send in read
  73	 * lock mode. When we release a sock we need to held the write lock.
  74	 *
  75	 * However this is locking code and not nice. When we remove the
  76	 * othercon handling we can look into other mechanism to synchronize
  77	 * io handling to call sock_release() at the right time.
  78	 */
  79	struct rw_semaphore sock_lock;
  80	unsigned long flags;
  81#define CF_APP_LIMITED 0
  82#define CF_RECV_PENDING 1
  83#define CF_SEND_PENDING 2
  84#define CF_RECV_INTR 3
  85#define CF_IO_STOP 4
  86#define CF_IS_OTHERCON 5
 
 
 
 
 
 
 
 
  87	struct list_head writequeue;  /* List of outgoing writequeue_entries */
  88	spinlock_t writequeue_lock;
 
 
 
 
  89	int retries;
 
  90	struct hlist_node list;
  91	/* due some connect()/accept() races we currently have this cross over
  92	 * connection attempt second connection for one node.
  93	 *
  94	 * There is a solution to avoid the race by introducing a connect
  95	 * rule as e.g. our_nodeid > nodeid_to_connect who is allowed to
  96	 * connect. Otherside can connect but will only be considered that
  97	 * the other side wants to have a reconnect.
  98	 *
  99	 * However changing to this behaviour will break backwards compatible.
 100	 * In a DLM protocol major version upgrade we should remove this!
 101	 */
 102	struct connection *othercon;
 103	struct work_struct rwork; /* receive worker */
 104	struct work_struct swork; /* send worker */
 105	wait_queue_head_t shutdown_wait;
 106	unsigned char rx_leftover_buf[DLM_MAX_SOCKET_BUFSIZE];
 
 
 107	int rx_leftover;
 108	int mark;
 109	int addr_count;
 110	int curr_addr_index;
 111	struct sockaddr_storage addr[DLM_MAX_ADDR_COUNT];
 112	spinlock_t addrs_lock;
 113	struct rcu_head rcu;
 114};
 115#define sock2con(x) ((struct connection *)(x)->sk_user_data)
 116
 117struct listen_connection {
 118	struct socket *sock;
 119	struct work_struct rwork;
 120};
 121
 122#define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
 123#define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
 124
 125/* An entry waiting to be sent */
 126struct writequeue_entry {
 127	struct list_head list;
 128	struct page *page;
 129	int offset;
 130	int len;
 131	int end;
 132	int users;
 133	bool dirty;
 134	struct connection *con;
 135	struct list_head msgs;
 136	struct kref ref;
 137};
 138
 139struct dlm_msg {
 140	struct writequeue_entry *entry;
 141	struct dlm_msg *orig_msg;
 142	bool retransmit;
 143	void *ppc;
 144	int len;
 145	int idx; /* new()/commit() idx exchange */
 146
 147	struct list_head list;
 148	struct kref ref;
 149};
 150
 151struct processqueue_entry {
 152	unsigned char *buf;
 153	int nodeid;
 154	int buflen;
 155
 156	struct list_head list;
 157};
 158
 159struct dlm_proto_ops {
 160	bool try_new_addr;
 161	const char *name;
 162	int proto;
 163
 164	int (*connect)(struct connection *con, struct socket *sock,
 165		       struct sockaddr *addr, int addr_len);
 166	void (*sockopts)(struct socket *sock);
 167	int (*bind)(struct socket *sock);
 168	int (*listen_validate)(void);
 169	void (*listen_sockopts)(struct socket *sock);
 170	int (*listen_bind)(struct socket *sock);
 171};
 172
 173static struct listen_sock_callbacks {
 174	void (*sk_error_report)(struct sock *);
 175	void (*sk_data_ready)(struct sock *);
 176	void (*sk_state_change)(struct sock *);
 177	void (*sk_write_space)(struct sock *);
 178} listen_sock;
 179
 
 
 
 180static struct listen_connection listen_con;
 181static struct sockaddr_storage dlm_local_addr[DLM_MAX_ADDR_COUNT];
 182static int dlm_local_count;
 
 183
 184/* Work queues */
 185static struct workqueue_struct *io_workqueue;
 186static struct workqueue_struct *process_workqueue;
 187
 188static struct hlist_head connection_hash[CONN_HASH_SIZE];
 189static DEFINE_SPINLOCK(connections_lock);
 190DEFINE_STATIC_SRCU(connections_srcu);
 191
 192static const struct dlm_proto_ops *dlm_proto_ops;
 193
 194#define DLM_IO_SUCCESS 0
 195#define DLM_IO_END 1
 196#define DLM_IO_EOF 2
 197#define DLM_IO_RESCHED 3
 198#define DLM_IO_FLUSH 4
 199
 200static void process_recv_sockets(struct work_struct *work);
 201static void process_send_sockets(struct work_struct *work);
 202static void process_dlm_messages(struct work_struct *work);
 203
 204static DECLARE_WORK(process_work, process_dlm_messages);
 205static DEFINE_SPINLOCK(processqueue_lock);
 206static bool process_dlm_messages_pending;
 207static atomic_t processqueue_count;
 208static LIST_HEAD(processqueue);
 209
 210bool dlm_lowcomms_is_running(void)
 211{
 212	return !!listen_con.sock;
 213}
 214
 215static void lowcomms_queue_swork(struct connection *con)
 216{
 217	assert_spin_locked(&con->writequeue_lock);
 218
 219	if (!test_bit(CF_IO_STOP, &con->flags) &&
 220	    !test_bit(CF_APP_LIMITED, &con->flags) &&
 221	    !test_and_set_bit(CF_SEND_PENDING, &con->flags))
 222		queue_work(io_workqueue, &con->swork);
 223}
 224
 225static void lowcomms_queue_rwork(struct connection *con)
 226{
 227#ifdef CONFIG_LOCKDEP
 228	WARN_ON_ONCE(!lockdep_sock_is_held(con->sock->sk));
 229#endif
 230
 231	if (!test_bit(CF_IO_STOP, &con->flags) &&
 232	    !test_and_set_bit(CF_RECV_PENDING, &con->flags))
 233		queue_work(io_workqueue, &con->rwork);
 234}
 235
 236static void writequeue_entry_ctor(void *data)
 237{
 238	struct writequeue_entry *entry = data;
 239
 240	INIT_LIST_HEAD(&entry->msgs);
 241}
 242
 243struct kmem_cache *dlm_lowcomms_writequeue_cache_create(void)
 244{
 245	return kmem_cache_create("dlm_writequeue", sizeof(struct writequeue_entry),
 246				 0, 0, writequeue_entry_ctor);
 247}
 248
 249struct kmem_cache *dlm_lowcomms_msg_cache_create(void)
 250{
 251	return kmem_cache_create("dlm_msg", sizeof(struct dlm_msg), 0, 0, NULL);
 252}
 253
 254/* need to held writequeue_lock */
 255static struct writequeue_entry *con_next_wq(struct connection *con)
 256{
 257	struct writequeue_entry *e;
 258
 259	e = list_first_entry_or_null(&con->writequeue, struct writequeue_entry,
 260				     list);
 261	/* if len is zero nothing is to send, if there are users filling
 262	 * buffers we wait until the users are done so we can send more.
 263	 */
 264	if (!e || e->users || e->len == 0)
 265		return NULL;
 266
 267	return e;
 268}
 269
 270static struct connection *__find_con(int nodeid, int r)
 271{
 272	struct connection *con;
 273
 274	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
 275		if (con->nodeid == nodeid)
 276			return con;
 277	}
 278
 279	return NULL;
 280}
 281
 282static void dlm_con_init(struct connection *con, int nodeid)
 
 
 
 
 
 283{
 
 
 
 
 
 284	con->nodeid = nodeid;
 285	init_rwsem(&con->sock_lock);
 286	INIT_LIST_HEAD(&con->writequeue);
 287	spin_lock_init(&con->writequeue_lock);
 
 288	INIT_WORK(&con->swork, process_send_sockets);
 289	INIT_WORK(&con->rwork, process_recv_sockets);
 290	spin_lock_init(&con->addrs_lock);
 291	init_waitqueue_head(&con->shutdown_wait);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292}
 293
 294/*
 295 * If 'allocation' is zero then we don't attempt to create a new
 296 * connection structure for this node.
 297 */
 298static struct connection *nodeid2con(int nodeid, gfp_t alloc)
 299{
 300	struct connection *con, *tmp;
 301	int r;
 302
 303	r = nodeid_hash(nodeid);
 304	con = __find_con(nodeid, r);
 305	if (con || !alloc)
 306		return con;
 307
 308	con = kzalloc(sizeof(*con), alloc);
 309	if (!con)
 310		return NULL;
 311
 312	dlm_con_init(con, nodeid);
 
 
 
 
 313
 314	spin_lock(&connections_lock);
 315	/* Because multiple workqueues/threads calls this function it can
 316	 * race on multiple cpu's. Instead of locking hot path __find_con()
 317	 * we just check in rare cases of recently added nodes again
 318	 * under protection of connections_lock. If this is the case we
 319	 * abort our connection creation and return the existing connection.
 320	 */
 321	tmp = __find_con(nodeid, r);
 322	if (tmp) {
 323		spin_unlock(&connections_lock);
 
 324		kfree(con);
 325		return tmp;
 326	}
 327
 328	hlist_add_head_rcu(&con->list, &connection_hash[r]);
 329	spin_unlock(&connections_lock);
 330
 331	return con;
 332}
 333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334static int addr_compare(const struct sockaddr_storage *x,
 335			const struct sockaddr_storage *y)
 336{
 337	switch (x->ss_family) {
 338	case AF_INET: {
 339		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
 340		struct sockaddr_in *siny = (struct sockaddr_in *)y;
 341		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
 342			return 0;
 343		if (sinx->sin_port != siny->sin_port)
 344			return 0;
 345		break;
 346	}
 347	case AF_INET6: {
 348		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
 349		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
 350		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
 351			return 0;
 352		if (sinx->sin6_port != siny->sin6_port)
 353			return 0;
 354		break;
 355	}
 356	default:
 357		return 0;
 358	}
 359	return 1;
 360}
 361
 362static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
 363			  struct sockaddr *sa_out, bool try_new_addr,
 364			  unsigned int *mark)
 365{
 366	struct sockaddr_storage sas;
 367	struct connection *con;
 368	int idx;
 369
 370	if (!dlm_local_count)
 371		return -1;
 372
 373	idx = srcu_read_lock(&connections_srcu);
 374	con = nodeid2con(nodeid, 0);
 375	if (!con) {
 376		srcu_read_unlock(&connections_srcu, idx);
 377		return -ENOENT;
 378	}
 379
 380	spin_lock(&con->addrs_lock);
 381	if (!con->addr_count) {
 382		spin_unlock(&con->addrs_lock);
 383		srcu_read_unlock(&connections_srcu, idx);
 384		return -ENOENT;
 385	}
 
 386
 387	memcpy(&sas, &con->addr[con->curr_addr_index],
 388	       sizeof(struct sockaddr_storage));
 389
 390	if (try_new_addr) {
 391		con->curr_addr_index++;
 392		if (con->curr_addr_index == con->addr_count)
 393			con->curr_addr_index = 0;
 394	}
 395
 396	*mark = con->mark;
 397	spin_unlock(&con->addrs_lock);
 398
 399	if (sas_out)
 400		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
 401
 402	if (!sa_out) {
 403		srcu_read_unlock(&connections_srcu, idx);
 404		return 0;
 405	}
 406
 407	if (dlm_local_addr[0].ss_family == AF_INET) {
 408		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
 409		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
 410		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
 411	} else {
 412		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
 413		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
 414		ret6->sin6_addr = in6->sin6_addr;
 415	}
 416
 417	srcu_read_unlock(&connections_srcu, idx);
 418	return 0;
 419}
 420
 421static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
 422			  unsigned int *mark)
 423{
 424	struct connection *con;
 425	int i, idx, addr_i;
 426
 427	idx = srcu_read_lock(&connections_srcu);
 428	for (i = 0; i < CONN_HASH_SIZE; i++) {
 429		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
 430			WARN_ON_ONCE(!con->addr_count);
 431
 432			spin_lock(&con->addrs_lock);
 433			for (addr_i = 0; addr_i < con->addr_count; addr_i++) {
 434				if (addr_compare(&con->addr[addr_i], addr)) {
 435					*nodeid = con->nodeid;
 436					*mark = con->mark;
 437					spin_unlock(&con->addrs_lock);
 438					srcu_read_unlock(&connections_srcu, idx);
 439					return 0;
 440				}
 441			}
 442			spin_unlock(&con->addrs_lock);
 443		}
 444	}
 445	srcu_read_unlock(&connections_srcu, idx);
 446
 447	return -ENOENT;
 448}
 449
 450static bool dlm_lowcomms_con_has_addr(const struct connection *con,
 451				      const struct sockaddr_storage *addr)
 
 452{
 453	int i;
 454
 455	for (i = 0; i < con->addr_count; i++) {
 456		if (addr_compare(&con->addr[i], addr))
 457			return true;
 458	}
 459
 460	return false;
 461}
 462
 463int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
 464{
 465	struct connection *con;
 466	bool ret, idx;
 
 467
 468	idx = srcu_read_lock(&connections_srcu);
 469	con = nodeid2con(nodeid, GFP_NOFS);
 470	if (!con) {
 471		srcu_read_unlock(&connections_srcu, idx);
 
 
 
 472		return -ENOMEM;
 473	}
 474
 475	spin_lock(&con->addrs_lock);
 476	if (!con->addr_count) {
 477		memcpy(&con->addr[0], addr, sizeof(*addr));
 478		con->addr_count = 1;
 479		con->mark = dlm_config.ci_mark;
 480		spin_unlock(&con->addrs_lock);
 481		srcu_read_unlock(&connections_srcu, idx);
 
 
 
 
 482		return 0;
 483	}
 484
 485	ret = dlm_lowcomms_con_has_addr(con, addr);
 486	if (ret) {
 487		spin_unlock(&con->addrs_lock);
 488		srcu_read_unlock(&connections_srcu, idx);
 
 489		return -EEXIST;
 490	}
 491
 492	if (con->addr_count >= DLM_MAX_ADDR_COUNT) {
 493		spin_unlock(&con->addrs_lock);
 494		srcu_read_unlock(&connections_srcu, idx);
 
 495		return -ENOSPC;
 496	}
 497
 498	memcpy(&con->addr[con->addr_count++], addr, sizeof(*addr));
 499	srcu_read_unlock(&connections_srcu, idx);
 500	spin_unlock(&con->addrs_lock);
 501	return 0;
 502}
 503
 504/* Data available on socket or listen socket received a connect */
 505static void lowcomms_data_ready(struct sock *sk)
 506{
 507	struct connection *con = sock2con(sk);
 
 
 
 
 
 
 
 508
 509	trace_sk_data_ready(sk);
 
 
 
 510
 511	set_bit(CF_RECV_INTR, &con->flags);
 512	lowcomms_queue_rwork(con);
 513}
 514
 515static void lowcomms_write_space(struct sock *sk)
 516{
 517	struct connection *con = sock2con(sk);
 
 
 
 
 
 
 
 
 
 
 
 518
 519	clear_bit(SOCK_NOSPACE, &con->sock->flags);
 520
 521	spin_lock_bh(&con->writequeue_lock);
 522	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
 523		con->sock->sk->sk_write_pending--;
 524		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
 525	}
 526
 527	lowcomms_queue_swork(con);
 528	spin_unlock_bh(&con->writequeue_lock);
 
 529}
 530
 531static void lowcomms_state_change(struct sock *sk)
 532{
 533	/* SCTP layer is not calling sk_data_ready when the connection
 534	 * is done, so we catch the signal through here.
 535	 */
 536	if (sk->sk_shutdown == RCV_SHUTDOWN)
 537		lowcomms_data_ready(sk);
 538}
 539
 540static void lowcomms_listen_data_ready(struct sock *sk)
 541{
 542	trace_sk_data_ready(sk);
 543
 544	queue_work(io_workqueue, &listen_con.rwork);
 
 
 
 
 
 
 
 
 545}
 546
 547int dlm_lowcomms_connect_node(int nodeid)
 548{
 549	struct connection *con;
 550	int idx;
 551
 
 
 
 552	idx = srcu_read_lock(&connections_srcu);
 553	con = nodeid2con(nodeid, 0);
 554	if (WARN_ON_ONCE(!con)) {
 555		srcu_read_unlock(&connections_srcu, idx);
 556		return -ENOENT;
 557	}
 558
 559	down_read(&con->sock_lock);
 560	if (!con->sock) {
 561		spin_lock_bh(&con->writequeue_lock);
 562		lowcomms_queue_swork(con);
 563		spin_unlock_bh(&con->writequeue_lock);
 564	}
 565	up_read(&con->sock_lock);
 566	srcu_read_unlock(&connections_srcu, idx);
 567
 568	cond_resched();
 569	return 0;
 570}
 571
 572int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
 573{
 574	struct connection *con;
 575	int idx;
 576
 577	idx = srcu_read_lock(&connections_srcu);
 578	con = nodeid2con(nodeid, 0);
 579	if (!con) {
 580		srcu_read_unlock(&connections_srcu, idx);
 581		return -ENOENT;
 582	}
 583
 584	spin_lock(&con->addrs_lock);
 585	con->mark = mark;
 586	spin_unlock(&con->addrs_lock);
 587	srcu_read_unlock(&connections_srcu, idx);
 588	return 0;
 589}
 590
 591static void lowcomms_error_report(struct sock *sk)
 592{
 593	struct connection *con = sock2con(sk);
 594	struct inet_sock *inet;
 
 
 
 
 
 
 595
 596	inet = inet_sk(sk);
 597	switch (sk->sk_family) {
 598	case AF_INET:
 599		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 600				   "sending to node %d at %pI4, dport %d, "
 601				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 602				   con->nodeid, &inet->inet_daddr,
 603				   ntohs(inet->inet_dport), sk->sk_err,
 604				   READ_ONCE(sk->sk_err_soft));
 605		break;
 606#if IS_ENABLED(CONFIG_IPV6)
 607	case AF_INET6:
 608		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 609				   "sending to node %d at %pI6c, "
 610				   "dport %d, sk_err=%d/%d\n", dlm_our_nodeid(),
 611				   con->nodeid, &sk->sk_v6_daddr,
 612				   ntohs(inet->inet_dport), sk->sk_err,
 613				   READ_ONCE(sk->sk_err_soft));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614		break;
 615#endif
 616	default:
 617		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 618				   "invalid socket family %d set, "
 619				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 620				   sk->sk_family, sk->sk_err,
 621				   READ_ONCE(sk->sk_err_soft));
 622		break;
 623	}
 624
 625	dlm_midcomms_unack_msg_resend(con->nodeid);
 
 626
 627	listen_sock.sk_error_report(sk);
 
 
 
 628}
 629
 630static void restore_callbacks(struct sock *sk)
 
 631{
 632#ifdef CONFIG_LOCKDEP
 633	WARN_ON_ONCE(!lockdep_sock_is_held(sk));
 634#endif
 635
 
 
 
 
 
 
 
 
 
 
 
 636	sk->sk_user_data = NULL;
 637	sk->sk_data_ready = listen_sock.sk_data_ready;
 638	sk->sk_state_change = listen_sock.sk_state_change;
 639	sk->sk_write_space = listen_sock.sk_write_space;
 640	sk->sk_error_report = listen_sock.sk_error_report;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641}
 642
 643/* Make a socket active */
 644static void add_sock(struct socket *sock, struct connection *con)
 645{
 646	struct sock *sk = sock->sk;
 647
 648	lock_sock(sk);
 649	con->sock = sock;
 650
 651	sk->sk_user_data = con;
 
 652	sk->sk_data_ready = lowcomms_data_ready;
 653	sk->sk_write_space = lowcomms_write_space;
 654	if (dlm_config.ci_protocol == DLM_PROTO_SCTP)
 655		sk->sk_state_change = lowcomms_state_change;
 656	sk->sk_allocation = GFP_NOFS;
 657	sk->sk_use_task_frag = false;
 658	sk->sk_error_report = lowcomms_error_report;
 659	release_sock(sk);
 660}
 661
 662/* Add the port number to an IPv6 or 4 sockaddr and return the address
 663   length */
 664static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
 665			  int *addr_len)
 666{
 667	saddr->ss_family =  dlm_local_addr[0].ss_family;
 668	if (saddr->ss_family == AF_INET) {
 669		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
 670		in4_addr->sin_port = cpu_to_be16(port);
 671		*addr_len = sizeof(struct sockaddr_in);
 672		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
 673	} else {
 674		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
 675		in6_addr->sin6_port = cpu_to_be16(port);
 676		*addr_len = sizeof(struct sockaddr_in6);
 677	}
 678	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
 679}
 680
 681static void dlm_page_release(struct kref *kref)
 682{
 683	struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
 684						  ref);
 685
 686	__free_page(e->page);
 687	dlm_free_writequeue(e);
 688}
 689
 690static void dlm_msg_release(struct kref *kref)
 691{
 692	struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
 693
 694	kref_put(&msg->entry->ref, dlm_page_release);
 695	dlm_free_msg(msg);
 696}
 697
 698static void free_entry(struct writequeue_entry *e)
 699{
 700	struct dlm_msg *msg, *tmp;
 701
 702	list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
 703		if (msg->orig_msg) {
 704			msg->orig_msg->retransmit = false;
 705			kref_put(&msg->orig_msg->ref, dlm_msg_release);
 706		}
 707
 708		list_del(&msg->list);
 709		kref_put(&msg->ref, dlm_msg_release);
 710	}
 711
 712	list_del(&e->list);
 
 713	kref_put(&e->ref, dlm_page_release);
 714}
 715
 716static void dlm_close_sock(struct socket **sock)
 717{
 718	lock_sock((*sock)->sk);
 719	restore_callbacks((*sock)->sk);
 720	release_sock((*sock)->sk);
 721
 722	sock_release(*sock);
 723	*sock = NULL;
 724}
 725
 726static void allow_connection_io(struct connection *con)
 727{
 728	if (con->othercon)
 729		clear_bit(CF_IO_STOP, &con->othercon->flags);
 730	clear_bit(CF_IO_STOP, &con->flags);
 731}
 732
 733static void stop_connection_io(struct connection *con)
 734{
 735	if (con->othercon)
 736		stop_connection_io(con->othercon);
 737
 738	spin_lock_bh(&con->writequeue_lock);
 739	set_bit(CF_IO_STOP, &con->flags);
 740	spin_unlock_bh(&con->writequeue_lock);
 741
 742	down_write(&con->sock_lock);
 743	if (con->sock) {
 744		lock_sock(con->sock->sk);
 745		restore_callbacks(con->sock->sk);
 746		release_sock(con->sock->sk);
 747	}
 748	up_write(&con->sock_lock);
 749
 750	cancel_work_sync(&con->swork);
 751	cancel_work_sync(&con->rwork);
 752}
 753
 754/* Close a remote connection and tidy up */
 755static void close_connection(struct connection *con, bool and_other)
 
 756{
 
 757	struct writequeue_entry *e;
 758
 759	if (con->othercon && and_other)
 760		close_connection(con->othercon, false);
 761
 762	down_write(&con->sock_lock);
 763	if (!con->sock) {
 764		up_write(&con->sock_lock);
 765		return;
 766	}
 767
 
 768	dlm_close_sock(&con->sock);
 769
 
 
 
 
 
 770	/* if we send a writequeue entry only a half way, we drop the
 771	 * whole entry because reconnection and that we not start of the
 772	 * middle of a msg which will confuse the other end.
 773	 *
 774	 * we can always drop messages because retransmits, but what we
 775	 * cannot allow is to transmit half messages which may be processed
 776	 * at the other side.
 777	 *
 778	 * our policy is to start on a clean state when disconnects, we don't
 779	 * know what's send/received on transport layer in this case.
 780	 */
 781	spin_lock_bh(&con->writequeue_lock);
 782	if (!list_empty(&con->writequeue)) {
 783		e = list_first_entry(&con->writequeue, struct writequeue_entry,
 784				     list);
 785		if (e->dirty)
 786			free_entry(e);
 787	}
 788	spin_unlock_bh(&con->writequeue_lock);
 789
 790	con->rx_leftover = 0;
 791	con->retries = 0;
 792	clear_bit(CF_APP_LIMITED, &con->flags);
 793	clear_bit(CF_RECV_PENDING, &con->flags);
 794	clear_bit(CF_SEND_PENDING, &con->flags);
 795	up_write(&con->sock_lock);
 
 
 796}
 797
 798static void shutdown_connection(struct connection *con, bool and_other)
 799{
 800	int ret;
 801
 802	if (con->othercon && and_other)
 803		shutdown_connection(con->othercon, false);
 804
 805	flush_workqueue(io_workqueue);
 806	down_read(&con->sock_lock);
 807	/* nothing to shutdown */
 808	if (!con->sock) {
 809		up_read(&con->sock_lock);
 810		return;
 811	}
 812
 
 813	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
 814	up_read(&con->sock_lock);
 815	if (ret) {
 816		log_print("Connection %p failed to shutdown: %d will force close",
 817			  con, ret);
 818		goto force_close;
 819	} else {
 820		ret = wait_event_timeout(con->shutdown_wait, !con->sock,
 
 821					 DLM_SHUTDOWN_WAIT_TIMEOUT);
 822		if (ret == 0) {
 823			log_print("Connection %p shutdown timed out, will force close",
 824				  con);
 825			goto force_close;
 826		}
 827	}
 828
 829	return;
 830
 831force_close:
 832	close_connection(con, false);
 
 833}
 834
 835static struct processqueue_entry *new_processqueue_entry(int nodeid,
 836							 int buflen)
 837{
 838	struct processqueue_entry *pentry;
 839
 840	pentry = kmalloc(sizeof(*pentry), GFP_NOFS);
 841	if (!pentry)
 842		return NULL;
 843
 844	pentry->buf = kmalloc(buflen, GFP_NOFS);
 845	if (!pentry->buf) {
 846		kfree(pentry);
 847		return NULL;
 848	}
 849
 850	pentry->nodeid = nodeid;
 851	return pentry;
 852}
 853
 854static void free_processqueue_entry(struct processqueue_entry *pentry)
 855{
 856	kfree(pentry->buf);
 857	kfree(pentry);
 858}
 859
 860struct dlm_processed_nodes {
 861	int nodeid;
 862
 863	struct list_head list;
 864};
 865
 866static void process_dlm_messages(struct work_struct *work)
 867{
 868	struct processqueue_entry *pentry;
 869
 870	spin_lock(&processqueue_lock);
 871	pentry = list_first_entry_or_null(&processqueue,
 872					  struct processqueue_entry, list);
 873	if (WARN_ON_ONCE(!pentry)) {
 874		process_dlm_messages_pending = false;
 875		spin_unlock(&processqueue_lock);
 876		return;
 877	}
 878
 879	list_del(&pentry->list);
 880	atomic_dec(&processqueue_count);
 881	spin_unlock(&processqueue_lock);
 882
 883	for (;;) {
 884		dlm_process_incoming_buffer(pentry->nodeid, pentry->buf,
 885					    pentry->buflen);
 886		free_processqueue_entry(pentry);
 887
 888		spin_lock(&processqueue_lock);
 889		pentry = list_first_entry_or_null(&processqueue,
 890						  struct processqueue_entry, list);
 891		if (!pentry) {
 892			process_dlm_messages_pending = false;
 893			spin_unlock(&processqueue_lock);
 894			break;
 895		}
 896
 897		list_del(&pentry->list);
 898		atomic_dec(&processqueue_count);
 899		spin_unlock(&processqueue_lock);
 900	}
 901}
 902
 903/* Data received from remote end */
 904static int receive_from_sock(struct connection *con, int buflen)
 905{
 906	struct processqueue_entry *pentry;
 907	int ret, buflen_real;
 908	struct msghdr msg;
 909	struct kvec iov;
 
 910
 911	pentry = new_processqueue_entry(con->nodeid, buflen);
 912	if (!pentry)
 913		return DLM_IO_RESCHED;
 914
 915	memcpy(pentry->buf, con->rx_leftover_buf, con->rx_leftover);
 
 
 
 
 
 
 
 
 
 
 
 916
 917	/* calculate new buffer parameter regarding last receive and
 918	 * possible leftover bytes
 919	 */
 920	iov.iov_base = pentry->buf + con->rx_leftover;
 921	iov.iov_len = buflen - con->rx_leftover;
 922
 923	memset(&msg, 0, sizeof(msg));
 924	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
 925	clear_bit(CF_RECV_INTR, &con->flags);
 926again:
 927	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
 928			     msg.msg_flags);
 929	trace_dlm_recv(con->nodeid, ret);
 930	if (ret == -EAGAIN) {
 931		lock_sock(con->sock->sk);
 932		if (test_and_clear_bit(CF_RECV_INTR, &con->flags)) {
 933			release_sock(con->sock->sk);
 934			goto again;
 935		}
 936
 937		clear_bit(CF_RECV_PENDING, &con->flags);
 938		release_sock(con->sock->sk);
 939		free_processqueue_entry(pentry);
 940		return DLM_IO_END;
 941	} else if (ret == 0) {
 942		/* close will clear CF_RECV_PENDING */
 943		free_processqueue_entry(pentry);
 944		return DLM_IO_EOF;
 945	} else if (ret < 0) {
 946		free_processqueue_entry(pentry);
 947		return ret;
 948	}
 949
 950	/* new buflen according readed bytes and leftover from last receive */
 951	buflen_real = ret + con->rx_leftover;
 952	ret = dlm_validate_incoming_buffer(con->nodeid, pentry->buf,
 953					   buflen_real);
 954	if (ret < 0) {
 955		free_processqueue_entry(pentry);
 956		return ret;
 957	}
 958
 959	pentry->buflen = ret;
 960
 961	/* calculate leftover bytes from process and put it into begin of
 962	 * the receive buffer, so next receive we have the full message
 963	 * at the start address of the receive buffer.
 964	 */
 965	con->rx_leftover = buflen_real - ret;
 966	memmove(con->rx_leftover_buf, pentry->buf + ret,
 967		con->rx_leftover);
 968
 969	spin_lock(&processqueue_lock);
 970	ret = atomic_inc_return(&processqueue_count);
 971	list_add_tail(&pentry->list, &processqueue);
 972	if (!process_dlm_messages_pending) {
 973		process_dlm_messages_pending = true;
 974		queue_work(process_workqueue, &process_work);
 975	}
 976	spin_unlock(&processqueue_lock);
 977
 978	if (ret > DLM_MAX_PROCESS_BUFFERS)
 979		return DLM_IO_FLUSH;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980
 981	return DLM_IO_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 982}
 983
 984/* Listening socket is busy, accept a connection */
 985static int accept_from_sock(void)
 986{
 
 987	struct sockaddr_storage peeraddr;
 988	int len, idx, result, nodeid;
 989	struct connection *newcon;
 990	struct socket *newsock;
 
 
 
 
 991	unsigned int mark;
 992
 993	result = kernel_accept(listen_con.sock, &newsock, O_NONBLOCK);
 994	if (result == -EAGAIN)
 995		return DLM_IO_END;
 996	else if (result < 0)
 
 997		goto accept_err;
 998
 999	/* Get the connected socket's peer */
1000	memset(&peeraddr, 0, sizeof(peeraddr));
1001	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
1002	if (len < 0) {
1003		result = -ECONNABORTED;
1004		goto accept_err;
1005	}
1006
1007	/* Get the new node's NODEID */
1008	make_sockaddr(&peeraddr, 0, &len);
1009	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
1010		switch (peeraddr.ss_family) {
1011		case AF_INET: {
1012			struct sockaddr_in *sin = (struct sockaddr_in *)&peeraddr;
1013
1014			log_print("connect from non cluster IPv4 node %pI4",
1015				  &sin->sin_addr);
1016			break;
1017		}
1018#if IS_ENABLED(CONFIG_IPV6)
1019		case AF_INET6: {
1020			struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&peeraddr;
1021
1022			log_print("connect from non cluster IPv6 node %pI6c",
1023				  &sin6->sin6_addr);
1024			break;
1025		}
1026#endif
1027		default:
1028			log_print("invalid family from non cluster node");
1029			break;
1030		}
1031
1032		sock_release(newsock);
1033		return -1;
1034	}
1035
1036	log_print("got connection from %d", nodeid);
1037
1038	/*  Check to see if we already have a connection to this node. This
1039	 *  could happen if the two nodes initiate a connection at roughly
1040	 *  the same time and the connections cross on the wire.
1041	 *  In this case we store the incoming one in "othercon"
1042	 */
1043	idx = srcu_read_lock(&connections_srcu);
1044	newcon = nodeid2con(nodeid, 0);
1045	if (WARN_ON_ONCE(!newcon)) {
1046		srcu_read_unlock(&connections_srcu, idx);
1047		result = -ENOENT;
1048		goto accept_err;
1049	}
1050
1051	sock_set_mark(newsock->sk, mark);
1052
1053	down_write(&newcon->sock_lock);
1054	if (newcon->sock) {
1055		struct connection *othercon = newcon->othercon;
1056
1057		if (!othercon) {
1058			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1059			if (!othercon) {
1060				log_print("failed to allocate incoming socket");
1061				up_write(&newcon->sock_lock);
1062				srcu_read_unlock(&connections_srcu, idx);
1063				result = -ENOMEM;
1064				goto accept_err;
1065			}
1066
1067			dlm_con_init(othercon, nodeid);
1068			lockdep_set_subclass(&othercon->sock_lock, 1);
1069			newcon->othercon = othercon;
 
 
 
 
 
 
1070			set_bit(CF_IS_OTHERCON, &othercon->flags);
 
 
1071		} else {
1072			/* close other sock con if we have something new */
1073			close_connection(othercon, false);
1074		}
1075
1076		down_write(&othercon->sock_lock);
1077		add_sock(newsock, othercon);
1078
1079		/* check if we receved something while adding */
1080		lock_sock(othercon->sock->sk);
1081		lowcomms_queue_rwork(othercon);
1082		release_sock(othercon->sock->sk);
1083		up_write(&othercon->sock_lock);
1084	}
1085	else {
1086		/* accept copies the sk after we've saved the callbacks, so we
1087		   don't want to save them a second time or comm errors will
1088		   result in calling sk_error_report recursively. */
1089		add_sock(newsock, newcon);
1090
1091		/* check if we receved something while adding */
1092		lock_sock(newcon->sock->sk);
1093		lowcomms_queue_rwork(newcon);
1094		release_sock(newcon->sock->sk);
1095	}
1096	up_write(&newcon->sock_lock);
 
 
 
 
 
 
 
 
 
 
 
1097	srcu_read_unlock(&connections_srcu, idx);
1098
1099	return DLM_IO_SUCCESS;
1100
1101accept_err:
1102	if (newsock)
1103		sock_release(newsock);
1104
 
 
1105	return result;
1106}
1107
1108/*
1109 * writequeue_entry_complete - try to delete and free write queue entry
1110 * @e: write queue entry to try to delete
1111 * @completed: bytes completed
1112 *
1113 * writequeue_lock must be held.
1114 */
1115static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1116{
1117	e->offset += completed;
1118	e->len -= completed;
1119	/* signal that page was half way transmitted */
1120	e->dirty = true;
1121
1122	if (e->len == 0 && e->users == 0)
1123		free_entry(e);
1124}
1125
1126/*
1127 * sctp_bind_addrs - bind a SCTP socket to all our addresses
1128 */
1129static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1130{
1131	struct sockaddr_storage localaddr;
1132	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1133	int i, addr_len, result = 0;
1134
1135	for (i = 0; i < dlm_local_count; i++) {
1136		memcpy(&localaddr, &dlm_local_addr[i], sizeof(localaddr));
1137		make_sockaddr(&localaddr, port, &addr_len);
1138
1139		if (!i)
1140			result = kernel_bind(sock, addr, addr_len);
1141		else
1142			result = sock_bind_add(sock->sk, addr, addr_len);
1143
1144		if (result < 0) {
1145			log_print("Can't bind to %d addr number %d, %d.\n",
1146				  port, i + 1, result);
1147			break;
1148		}
1149	}
1150	return result;
1151}
1152
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1153/* Get local addresses */
1154static void init_local(void)
1155{
1156	struct sockaddr_storage sas;
1157	int i;
1158
1159	dlm_local_count = 0;
1160	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1161		if (dlm_our_addr(&sas, i))
1162			break;
1163
1164		memcpy(&dlm_local_addr[dlm_local_count++], &sas, sizeof(sas));
 
 
 
1165	}
1166}
1167
1168static struct writequeue_entry *new_writequeue_entry(struct connection *con)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1169{
1170	struct writequeue_entry *entry;
1171
1172	entry = dlm_allocate_writequeue();
1173	if (!entry)
1174		return NULL;
1175
1176	entry->page = alloc_page(GFP_ATOMIC | __GFP_ZERO);
1177	if (!entry->page) {
1178		dlm_free_writequeue(entry);
1179		return NULL;
1180	}
1181
1182	entry->offset = 0;
1183	entry->len = 0;
1184	entry->end = 0;
1185	entry->dirty = false;
1186	entry->con = con;
1187	entry->users = 1;
1188	kref_init(&entry->ref);
 
 
1189	return entry;
1190}
1191
1192static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1193					     char **ppc, void (*cb)(void *data),
1194					     void *data)
 
1195{
1196	struct writequeue_entry *e;
1197
1198	spin_lock_bh(&con->writequeue_lock);
1199	if (!list_empty(&con->writequeue)) {
1200		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1201		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1202			kref_get(&e->ref);
1203
1204			*ppc = page_address(e->page) + e->end;
1205			if (cb)
1206				cb(data);
1207
1208			e->end += len;
1209			e->users++;
1210			goto out;
 
 
1211		}
1212	}
 
1213
1214	e = new_writequeue_entry(con);
1215	if (!e)
1216		goto out;
1217
1218	kref_get(&e->ref);
1219	*ppc = page_address(e->page);
1220	e->end += len;
 
 
 
1221	if (cb)
1222		cb(data);
1223
1224	list_add_tail(&e->list, &con->writequeue);
 
1225
1226out:
1227	spin_unlock_bh(&con->writequeue_lock);
1228	return e;
1229};
1230
1231static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1232						gfp_t allocation, char **ppc,
1233						void (*cb)(void *data),
1234						void *data)
1235{
1236	struct writequeue_entry *e;
1237	struct dlm_msg *msg;
1238
1239	msg = dlm_allocate_msg(allocation);
1240	if (!msg)
1241		return NULL;
1242
1243	kref_init(&msg->ref);
1244
1245	e = new_wq_entry(con, len, ppc, cb, data);
1246	if (!e) {
1247		dlm_free_msg(msg);
1248		return NULL;
1249	}
1250
1251	msg->retransmit = false;
1252	msg->orig_msg = NULL;
1253	msg->ppc = *ppc;
1254	msg->len = len;
1255	msg->entry = e;
1256
1257	return msg;
1258}
1259
1260/* avoid false positive for nodes_srcu, unlock happens in
1261 * dlm_lowcomms_commit_msg which is a must call if success
1262 */
1263#ifndef __CHECKER__
1264struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1265				     char **ppc, void (*cb)(void *data),
1266				     void *data)
1267{
1268	struct connection *con;
1269	struct dlm_msg *msg;
1270	int idx;
1271
1272	if (len > DLM_MAX_SOCKET_BUFSIZE ||
1273	    len < sizeof(struct dlm_header)) {
1274		BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1275		log_print("failed to allocate a buffer of size %d", len);
1276		WARN_ON_ONCE(1);
1277		return NULL;
1278	}
1279
1280	idx = srcu_read_lock(&connections_srcu);
1281	con = nodeid2con(nodeid, 0);
1282	if (WARN_ON_ONCE(!con)) {
1283		srcu_read_unlock(&connections_srcu, idx);
1284		return NULL;
1285	}
1286
1287	msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, data);
1288	if (!msg) {
1289		srcu_read_unlock(&connections_srcu, idx);
1290		return NULL;
1291	}
1292
1293	/* for dlm_lowcomms_commit_msg() */
1294	kref_get(&msg->ref);
1295	/* we assume if successful commit must called */
1296	msg->idx = idx;
1297	return msg;
1298}
1299#endif
1300
1301static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1302{
1303	struct writequeue_entry *e = msg->entry;
1304	struct connection *con = e->con;
1305	int users;
1306
1307	spin_lock_bh(&con->writequeue_lock);
1308	kref_get(&msg->ref);
1309	list_add(&msg->list, &e->msgs);
1310
1311	users = --e->users;
1312	if (users)
1313		goto out;
1314
1315	e->len = DLM_WQ_LENGTH_BYTES(e);
 
1316
1317	lowcomms_queue_swork(con);
 
1318
1319out:
1320	spin_unlock_bh(&con->writequeue_lock);
1321	return;
1322}
1323
1324/* avoid false positive for nodes_srcu, lock was happen in
1325 * dlm_lowcomms_new_msg
1326 */
1327#ifndef __CHECKER__
1328void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1329{
1330	_dlm_lowcomms_commit_msg(msg);
1331	srcu_read_unlock(&connections_srcu, msg->idx);
1332	/* because dlm_lowcomms_new_msg() */
1333	kref_put(&msg->ref, dlm_msg_release);
1334}
1335#endif
1336
1337void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1338{
1339	kref_put(&msg->ref, dlm_msg_release);
1340}
1341
1342/* does not held connections_srcu, usage lowcomms_error_report only */
1343int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1344{
1345	struct dlm_msg *msg_resend;
1346	char *ppc;
1347
1348	if (msg->retransmit)
1349		return 1;
1350
1351	msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1352					      GFP_ATOMIC, &ppc, NULL, NULL);
1353	if (!msg_resend)
1354		return -ENOMEM;
1355
1356	msg->retransmit = true;
1357	kref_get(&msg->ref);
1358	msg_resend->orig_msg = msg;
1359
1360	memcpy(ppc, msg->ppc, msg->len);
1361	_dlm_lowcomms_commit_msg(msg_resend);
1362	dlm_lowcomms_put_msg(msg_resend);
1363
1364	return 0;
1365}
1366
1367/* Send a message */
1368static int send_to_sock(struct connection *con)
1369{
 
 
1370	struct writequeue_entry *e;
1371	struct bio_vec bvec;
1372	struct msghdr msg = {
1373		.msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT | MSG_NOSIGNAL,
1374	};
1375	int len, offset, ret;
1376
1377	spin_lock_bh(&con->writequeue_lock);
1378	e = con_next_wq(con);
1379	if (!e) {
1380		clear_bit(CF_SEND_PENDING, &con->flags);
1381		spin_unlock_bh(&con->writequeue_lock);
1382		return DLM_IO_END;
1383	}
1384
1385	len = e->len;
1386	offset = e->offset;
1387	WARN_ON_ONCE(len == 0 && e->users == 0);
1388	spin_unlock_bh(&con->writequeue_lock);
1389
1390	bvec_set_page(&bvec, e->page, len, offset);
1391	iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1392	ret = sock_sendmsg(con->sock, &msg);
1393	trace_dlm_send(con->nodeid, ret);
1394	if (ret == -EAGAIN || ret == 0) {
1395		lock_sock(con->sock->sk);
1396		spin_lock_bh(&con->writequeue_lock);
1397		if (test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1398		    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1399			/* Notify TCP that we're limited by the
1400			 * application window size.
1401			 */
1402			set_bit(SOCK_NOSPACE, &con->sock->sk->sk_socket->flags);
1403			con->sock->sk->sk_write_pending++;
1404
1405			clear_bit(CF_SEND_PENDING, &con->flags);
1406			spin_unlock_bh(&con->writequeue_lock);
1407			release_sock(con->sock->sk);
1408
1409			/* wait for write_space() event */
1410			return DLM_IO_END;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1411		}
1412		spin_unlock_bh(&con->writequeue_lock);
1413		release_sock(con->sock->sk);
1414
1415		return DLM_IO_RESCHED;
1416	} else if (ret < 0) {
1417		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
1418	}
1419
1420	spin_lock_bh(&con->writequeue_lock);
1421	writequeue_entry_complete(e, ret);
1422	spin_unlock_bh(&con->writequeue_lock);
 
 
1423
1424	return DLM_IO_SUCCESS;
 
 
 
1425}
1426
1427static void clean_one_writequeue(struct connection *con)
1428{
1429	struct writequeue_entry *e, *safe;
1430
1431	spin_lock_bh(&con->writequeue_lock);
1432	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1433		free_entry(e);
1434	}
1435	spin_unlock_bh(&con->writequeue_lock);
1436}
1437
1438static void connection_release(struct rcu_head *rcu)
1439{
1440	struct connection *con = container_of(rcu, struct connection, rcu);
1441
1442	WARN_ON_ONCE(!list_empty(&con->writequeue));
1443	WARN_ON_ONCE(con->sock);
1444	kfree(con);
1445}
1446
1447/* Called from recovery when it knows that a node has
1448   left the cluster */
1449int dlm_lowcomms_close(int nodeid)
1450{
1451	struct connection *con;
 
1452	int idx;
1453
1454	log_print("closing connection to node %d", nodeid);
1455
1456	idx = srcu_read_lock(&connections_srcu);
1457	con = nodeid2con(nodeid, 0);
1458	if (WARN_ON_ONCE(!con)) {
1459		srcu_read_unlock(&connections_srcu, idx);
1460		return -ENOENT;
1461	}
1462
1463	stop_connection_io(con);
1464	log_print("io handling for node: %d stopped", nodeid);
1465	close_connection(con, true);
1466
1467	spin_lock(&connections_lock);
1468	hlist_del_rcu(&con->list);
1469	spin_unlock(&connections_lock);
1470
1471	clean_one_writequeue(con);
1472	call_srcu(&connections_srcu, &con->rcu, connection_release);
1473	if (con->othercon) {
1474		clean_one_writequeue(con->othercon);
1475		call_srcu(&connections_srcu, &con->othercon->rcu, connection_release);
1476	}
1477	srcu_read_unlock(&connections_srcu, idx);
1478
1479	/* for debugging we print when we are done to compare with other
1480	 * messages in between. This function need to be correctly synchronized
1481	 * with io handling
1482	 */
1483	log_print("closing connection to node %d done", nodeid);
 
 
 
 
1484
1485	return 0;
1486}
1487
1488/* Receive worker function */
1489static void process_recv_sockets(struct work_struct *work)
1490{
1491	struct connection *con = container_of(work, struct connection, rwork);
1492	int ret, buflen;
1493
1494	down_read(&con->sock_lock);
1495	if (!con->sock) {
1496		up_read(&con->sock_lock);
1497		return;
1498	}
1499
1500	buflen = READ_ONCE(dlm_config.ci_buffer_size);
1501	do {
1502		ret = receive_from_sock(con, buflen);
1503	} while (ret == DLM_IO_SUCCESS);
1504	up_read(&con->sock_lock);
1505
1506	switch (ret) {
1507	case DLM_IO_END:
1508		/* CF_RECV_PENDING cleared */
1509		break;
1510	case DLM_IO_EOF:
1511		close_connection(con, false);
1512		wake_up(&con->shutdown_wait);
1513		/* CF_RECV_PENDING cleared */
1514		break;
1515	case DLM_IO_FLUSH:
1516		flush_workqueue(process_workqueue);
1517		fallthrough;
1518	case DLM_IO_RESCHED:
1519		cond_resched();
1520		queue_work(io_workqueue, &con->rwork);
1521		/* CF_RECV_PENDING not cleared */
1522		break;
1523	default:
1524		if (ret < 0) {
1525			if (test_bit(CF_IS_OTHERCON, &con->flags)) {
1526				close_connection(con, false);
1527			} else {
1528				spin_lock_bh(&con->writequeue_lock);
1529				lowcomms_queue_swork(con);
1530				spin_unlock_bh(&con->writequeue_lock);
1531			}
1532
1533			/* CF_RECV_PENDING cleared for othercon
1534			 * we trigger send queue if not already done
1535			 * and process_send_sockets will handle it
1536			 */
1537			break;
1538		}
1539
1540		WARN_ON_ONCE(1);
1541		break;
1542	}
1543}
1544
1545static void process_listen_recv_socket(struct work_struct *work)
1546{
1547	int ret;
1548
1549	if (WARN_ON_ONCE(!listen_con.sock))
1550		return;
1551
1552	do {
1553		ret = accept_from_sock();
1554	} while (ret == DLM_IO_SUCCESS);
1555
1556	if (ret < 0)
1557		log_print("critical error accepting connection: %d", ret);
1558}
1559
1560static int dlm_connect(struct connection *con)
1561{
1562	struct sockaddr_storage addr;
1563	int result, addr_len;
1564	struct socket *sock;
1565	unsigned int mark;
1566
1567	memset(&addr, 0, sizeof(addr));
1568	result = nodeid_to_addr(con->nodeid, &addr, NULL,
1569				dlm_proto_ops->try_new_addr, &mark);
1570	if (result < 0) {
1571		log_print("no address for nodeid %d", con->nodeid);
1572		return result;
1573	}
1574
1575	/* Create a socket to communicate with */
1576	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1577				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1578	if (result < 0)
1579		return result;
1580
1581	sock_set_mark(sock->sk, mark);
1582	dlm_proto_ops->sockopts(sock);
1583
1584	result = dlm_proto_ops->bind(sock);
1585	if (result < 0) {
1586		sock_release(sock);
1587		return result;
1588	}
1589
1590	add_sock(sock, con);
1591
1592	log_print_ratelimited("connecting to %d", con->nodeid);
1593	make_sockaddr(&addr, dlm_config.ci_tcp_port, &addr_len);
1594	result = dlm_proto_ops->connect(con, sock, (struct sockaddr *)&addr,
1595					addr_len);
1596	switch (result) {
1597	case -EINPROGRESS:
1598		/* not an error */
1599		fallthrough;
1600	case 0:
1601		break;
1602	default:
1603		if (result < 0)
1604			dlm_close_sock(&con->sock);
1605
1606		break;
1607	}
1608
1609	return result;
1610}
1611
1612/* Send worker function */
1613static void process_send_sockets(struct work_struct *work)
1614{
1615	struct connection *con = container_of(work, struct connection, swork);
1616	int ret;
1617
1618	WARN_ON_ONCE(test_bit(CF_IS_OTHERCON, &con->flags));
1619
1620	down_read(&con->sock_lock);
1621	if (!con->sock) {
1622		up_read(&con->sock_lock);
1623		down_write(&con->sock_lock);
1624		if (!con->sock) {
1625			ret = dlm_connect(con);
1626			switch (ret) {
1627			case 0:
1628				break;
1629			case -EINPROGRESS:
1630				/* avoid spamming resched on connection
1631				 * we might can switch to a state_change
1632				 * event based mechanism if established
1633				 */
1634				msleep(100);
1635				break;
1636			default:
1637				/* CF_SEND_PENDING not cleared */
1638				up_write(&con->sock_lock);
1639				log_print("connect to node %d try %d error %d",
1640					  con->nodeid, con->retries++, ret);
1641				msleep(1000);
1642				/* For now we try forever to reconnect. In
1643				 * future we should send a event to cluster
1644				 * manager to fence itself after certain amount
1645				 * of retries.
1646				 */
1647				queue_work(io_workqueue, &con->swork);
1648				return;
1649			}
1650		}
1651		downgrade_write(&con->sock_lock);
1652	}
1653
1654	do {
1655		ret = send_to_sock(con);
1656	} while (ret == DLM_IO_SUCCESS);
1657	up_read(&con->sock_lock);
1658
1659	switch (ret) {
1660	case DLM_IO_END:
1661		/* CF_SEND_PENDING cleared */
1662		break;
1663	case DLM_IO_RESCHED:
1664		/* CF_SEND_PENDING not cleared */
1665		cond_resched();
1666		queue_work(io_workqueue, &con->swork);
1667		break;
1668	default:
1669		if (ret < 0) {
1670			close_connection(con, false);
1671
1672			/* CF_SEND_PENDING cleared */
1673			spin_lock_bh(&con->writequeue_lock);
1674			lowcomms_queue_swork(con);
1675			spin_unlock_bh(&con->writequeue_lock);
1676			break;
1677		}
1678
1679		WARN_ON_ONCE(1);
1680		break;
 
 
1681	}
 
 
1682}
1683
1684static void work_stop(void)
1685{
1686	if (io_workqueue) {
1687		destroy_workqueue(io_workqueue);
1688		io_workqueue = NULL;
1689	}
1690
1691	if (process_workqueue) {
1692		destroy_workqueue(process_workqueue);
1693		process_workqueue = NULL;
1694	}
1695}
1696
1697static int work_start(void)
1698{
1699	io_workqueue = alloc_workqueue("dlm_io", WQ_HIGHPRI | WQ_MEM_RECLAIM |
1700				       WQ_UNBOUND, 0);
1701	if (!io_workqueue) {
1702		log_print("can't start dlm_io");
1703		return -ENOMEM;
1704	}
1705
1706	/* ordered dlm message process queue,
1707	 * should be converted to a tasklet
1708	 */
1709	process_workqueue = alloc_ordered_workqueue("dlm_process",
1710						    WQ_HIGHPRI | WQ_MEM_RECLAIM);
1711	if (!process_workqueue) {
1712		log_print("can't start dlm_process");
1713		destroy_workqueue(io_workqueue);
1714		io_workqueue = NULL;
1715		return -ENOMEM;
1716	}
1717
1718	return 0;
1719}
1720
1721void dlm_lowcomms_shutdown(void)
1722{
1723	struct connection *con;
1724	int i, idx;
1725
1726	/* stop lowcomms_listen_data_ready calls */
1727	lock_sock(listen_con.sock->sk);
1728	listen_con.sock->sk->sk_data_ready = listen_sock.sk_data_ready;
1729	release_sock(listen_con.sock->sk);
1730
1731	cancel_work_sync(&listen_con.rwork);
1732	dlm_close_sock(&listen_con.sock);
1733
1734	idx = srcu_read_lock(&connections_srcu);
1735	for (i = 0; i < CONN_HASH_SIZE; i++) {
1736		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1737			shutdown_connection(con, true);
1738			stop_connection_io(con);
1739			flush_workqueue(process_workqueue);
1740			close_connection(con, true);
1741
1742			clean_one_writequeue(con);
1743			if (con->othercon)
1744				clean_one_writequeue(con->othercon);
1745			allow_connection_io(con);
1746		}
1747	}
1748	srcu_read_unlock(&connections_srcu, idx);
1749}
1750
1751void dlm_lowcomms_stop(void)
1752{
1753	work_stop();
1754	dlm_proto_ops = NULL;
1755}
1756
1757static int dlm_listen_for_all(void)
1758{
1759	struct socket *sock;
1760	int result;
1761
1762	log_print("Using %s for communications",
1763		  dlm_proto_ops->name);
1764
1765	result = dlm_proto_ops->listen_validate();
1766	if (result < 0)
1767		return result;
1768
1769	result = sock_create_kern(&init_net, dlm_local_addr[0].ss_family,
1770				  SOCK_STREAM, dlm_proto_ops->proto, &sock);
1771	if (result < 0) {
1772		log_print("Can't create comms socket: %d", result);
1773		return result;
1774	}
1775
1776	sock_set_mark(sock->sk, dlm_config.ci_mark);
1777	dlm_proto_ops->listen_sockopts(sock);
1778
1779	result = dlm_proto_ops->listen_bind(sock);
1780	if (result < 0)
1781		goto out;
1782
1783	lock_sock(sock->sk);
1784	listen_sock.sk_data_ready = sock->sk->sk_data_ready;
1785	listen_sock.sk_write_space = sock->sk->sk_write_space;
1786	listen_sock.sk_error_report = sock->sk->sk_error_report;
1787	listen_sock.sk_state_change = sock->sk->sk_state_change;
1788
1789	listen_con.sock = sock;
1790
1791	sock->sk->sk_allocation = GFP_NOFS;
1792	sock->sk->sk_use_task_frag = false;
1793	sock->sk->sk_data_ready = lowcomms_listen_data_ready;
1794	release_sock(sock->sk);
1795
1796	result = sock->ops->listen(sock, 128);
1797	if (result < 0) {
1798		dlm_close_sock(&listen_con.sock);
1799		return result;
1800	}
1801
1802	return 0;
1803
1804out:
1805	sock_release(sock);
1806	return result;
1807}
1808
1809static int dlm_tcp_bind(struct socket *sock)
1810{
1811	struct sockaddr_storage src_addr;
1812	int result, addr_len;
1813
1814	/* Bind to our cluster-known address connecting to avoid
1815	 * routing problems.
1816	 */
1817	memcpy(&src_addr, &dlm_local_addr[0], sizeof(src_addr));
1818	make_sockaddr(&src_addr, 0, &addr_len);
1819
1820	result = kernel_bind(sock, (struct sockaddr *)&src_addr,
1821			     addr_len);
1822	if (result < 0) {
1823		/* This *may* not indicate a critical error */
1824		log_print("could not bind for connect: %d", result);
1825	}
1826
1827	return 0;
1828}
1829
1830static int dlm_tcp_connect(struct connection *con, struct socket *sock,
1831			   struct sockaddr *addr, int addr_len)
1832{
1833	return kernel_connect(sock, addr, addr_len, O_NONBLOCK);
1834}
1835
1836static int dlm_tcp_listen_validate(void)
1837{
1838	/* We don't support multi-homed hosts */
1839	if (dlm_local_count > 1) {
1840		log_print("TCP protocol can't handle multi-homed hosts, try SCTP");
1841		return -EINVAL;
 
 
 
 
1842	}
1843
1844	return 0;
1845}
1846
1847static void dlm_tcp_sockopts(struct socket *sock)
1848{
1849	/* Turn off Nagle's algorithm */
1850	tcp_sock_set_nodelay(sock->sk);
1851}
1852
1853static void dlm_tcp_listen_sockopts(struct socket *sock)
1854{
1855	dlm_tcp_sockopts(sock);
1856	sock_set_reuseaddr(sock->sk);
1857}
1858
1859static int dlm_tcp_listen_bind(struct socket *sock)
1860{
1861	int addr_len;
1862
1863	/* Bind to our port */
1864	make_sockaddr(&dlm_local_addr[0], dlm_config.ci_tcp_port, &addr_len);
1865	return kernel_bind(sock, (struct sockaddr *)&dlm_local_addr[0],
1866			   addr_len);
1867}
1868
1869static const struct dlm_proto_ops dlm_tcp_ops = {
1870	.name = "TCP",
1871	.proto = IPPROTO_TCP,
1872	.connect = dlm_tcp_connect,
1873	.sockopts = dlm_tcp_sockopts,
1874	.bind = dlm_tcp_bind,
1875	.listen_validate = dlm_tcp_listen_validate,
1876	.listen_sockopts = dlm_tcp_listen_sockopts,
1877	.listen_bind = dlm_tcp_listen_bind,
1878};
1879
1880static int dlm_sctp_bind(struct socket *sock)
1881{
1882	return sctp_bind_addrs(sock, 0);
1883}
1884
1885static int dlm_sctp_connect(struct connection *con, struct socket *sock,
1886			    struct sockaddr *addr, int addr_len)
1887{
1888	int ret;
1889
1890	/*
1891	 * Make kernel_connect() function return in specified time,
1892	 * since O_NONBLOCK argument in connect() function does not work here,
1893	 * then, we should restore the default value of this attribute.
1894	 */
1895	sock_set_sndtimeo(sock->sk, 5);
1896	ret = kernel_connect(sock, addr, addr_len, 0);
1897	sock_set_sndtimeo(sock->sk, 0);
1898	return ret;
1899}
1900
1901static int dlm_sctp_listen_validate(void)
1902{
1903	if (!IS_ENABLED(CONFIG_IP_SCTP)) {
1904		log_print("SCTP is not enabled by this kernel");
1905		return -EOPNOTSUPP;
1906	}
1907
1908	request_module("sctp");
1909	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910}
1911
1912static int dlm_sctp_bind_listen(struct socket *sock)
1913{
1914	return sctp_bind_addrs(sock, dlm_config.ci_tcp_port);
1915}
1916
1917static void dlm_sctp_sockopts(struct socket *sock)
1918{
1919	/* Turn off Nagle's algorithm */
1920	sctp_sock_set_nodelay(sock->sk);
1921	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
 
1922}
1923
1924static const struct dlm_proto_ops dlm_sctp_ops = {
1925	.name = "SCTP",
1926	.proto = IPPROTO_SCTP,
1927	.try_new_addr = true,
1928	.connect = dlm_sctp_connect,
1929	.sockopts = dlm_sctp_sockopts,
1930	.bind = dlm_sctp_bind,
1931	.listen_validate = dlm_sctp_listen_validate,
1932	.listen_sockopts = dlm_sctp_sockopts,
1933	.listen_bind = dlm_sctp_bind_listen,
1934};
1935
1936int dlm_lowcomms_start(void)
1937{
1938	int error;
 
 
 
 
1939
1940	init_local();
1941	if (!dlm_local_count) {
1942		error = -ENOTCONN;
1943		log_print("no local IP address has been set");
1944		goto fail;
1945	}
1946
 
 
1947	error = work_start();
1948	if (error)
1949		goto fail;
 
 
1950
1951	/* Start listening */
1952	switch (dlm_config.ci_protocol) {
1953	case DLM_PROTO_TCP:
1954		dlm_proto_ops = &dlm_tcp_ops;
1955		break;
1956	case DLM_PROTO_SCTP:
1957		dlm_proto_ops = &dlm_sctp_ops;
1958		break;
1959	default:
1960		log_print("Invalid protocol identifier %d set",
1961			  dlm_config.ci_protocol);
1962		error = -EINVAL;
1963		goto fail_proto_ops;
1964	}
1965
1966	error = dlm_listen_for_all();
1967	if (error)
1968		goto fail_listen;
1969
1970	return 0;
1971
1972fail_listen:
1973	dlm_proto_ops = NULL;
1974fail_proto_ops:
1975	work_stop();
 
 
1976fail:
1977	return error;
1978}
1979
1980void dlm_lowcomms_init(void)
1981{
1982	int i;
1983
1984	for (i = 0; i < CONN_HASH_SIZE; i++)
1985		INIT_HLIST_HEAD(&connection_hash[i]);
1986
1987	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1988}
1989
1990void dlm_lowcomms_exit(void)
1991{
1992	struct connection *con;
1993	int i, idx;
1994
1995	idx = srcu_read_lock(&connections_srcu);
1996	for (i = 0; i < CONN_HASH_SIZE; i++) {
1997		hlist_for_each_entry_rcu(con, &connection_hash[i], list) {
1998			spin_lock(&connections_lock);
1999			hlist_del_rcu(&con->list);
2000			spin_unlock(&connections_lock);
2001
2002			if (con->othercon)
2003				call_srcu(&connections_srcu, &con->othercon->rcu,
2004					  connection_release);
2005			call_srcu(&connections_srcu, &con->rcu, connection_release);
2006		}
2007	}
2008	srcu_read_unlock(&connections_srcu, idx);
2009}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/******************************************************************************
   3*******************************************************************************
   4**
   5**  Copyright (C) Sistina Software, Inc.  1997-2003  All rights reserved.
   6**  Copyright (C) 2004-2009 Red Hat, Inc.  All rights reserved.
   7**
   8**
   9*******************************************************************************
  10******************************************************************************/
  11
  12/*
  13 * lowcomms.c
  14 *
  15 * This is the "low-level" comms layer.
  16 *
  17 * It is responsible for sending/receiving messages
  18 * from other nodes in the cluster.
  19 *
  20 * Cluster nodes are referred to by their nodeids. nodeids are
  21 * simply 32 bit numbers to the locking module - if they need to
  22 * be expanded for the cluster infrastructure then that is its
  23 * responsibility. It is this layer's
  24 * responsibility to resolve these into IP address or
  25 * whatever it needs for inter-node communication.
  26 *
  27 * The comms level is two kernel threads that deal mainly with
  28 * the receiving of messages from other nodes and passing them
  29 * up to the mid-level comms layer (which understands the
  30 * message format) for execution by the locking core, and
  31 * a send thread which does all the setting up of connections
  32 * to remote nodes and the sending of data. Threads are not allowed
  33 * to send their own data because it may cause them to wait in times
  34 * of high load. Also, this way, the sending thread can collect together
  35 * messages bound for one node and send them in one block.
  36 *
  37 * lowcomms will choose to use either TCP or SCTP as its transport layer
  38 * depending on the configuration variable 'protocol'. This should be set
  39 * to 0 (default) for TCP or 1 for SCTP. It should be configured using a
  40 * cluster-wide mechanism as it must be the same on all nodes of the cluster
  41 * for the DLM to function.
  42 *
  43 */
  44
  45#include <asm/ioctls.h>
  46#include <net/sock.h>
  47#include <net/tcp.h>
  48#include <linux/pagemap.h>
  49#include <linux/file.h>
  50#include <linux/mutex.h>
  51#include <linux/sctp.h>
  52#include <linux/slab.h>
  53#include <net/sctp/sctp.h>
  54#include <net/ipv6.h>
  55
 
 
 
  56#include "dlm_internal.h"
  57#include "lowcomms.h"
  58#include "midcomms.h"
 
  59#include "config.h"
  60
 
 
  61#define NEEDED_RMEM (4*1024*1024)
  62
  63/* Number of messages to send before rescheduling */
  64#define MAX_SEND_MSG_COUNT 25
  65#define DLM_SHUTDOWN_WAIT_TIMEOUT msecs_to_jiffies(10000)
  66
  67struct connection {
  68	struct socket *sock;	/* NULL if not connected */
  69	uint32_t nodeid;	/* So we know who we are in the list */
  70	struct mutex sock_mutex;
 
 
 
 
 
 
 
  71	unsigned long flags;
  72#define CF_READ_PENDING 1
  73#define CF_WRITE_PENDING 2
  74#define CF_INIT_PENDING 4
 
 
  75#define CF_IS_OTHERCON 5
  76#define CF_CLOSE 6
  77#define CF_APP_LIMITED 7
  78#define CF_CLOSING 8
  79#define CF_SHUTDOWN 9
  80#define CF_CONNECTED 10
  81#define CF_RECONNECT 11
  82#define CF_DELAY_CONNECT 12
  83#define CF_EOF 13
  84	struct list_head writequeue;  /* List of outgoing writequeue_entries */
  85	spinlock_t writequeue_lock;
  86	atomic_t writequeue_cnt;
  87	void (*connect_action) (struct connection *);	/* What to do to connect */
  88	void (*shutdown_action)(struct connection *con); /* What to do to shutdown */
  89	bool (*eof_condition)(struct connection *con); /* What to do to eof check */
  90	int retries;
  91#define MAX_CONNECT_RETRIES 3
  92	struct hlist_node list;
 
 
 
 
 
 
 
 
 
 
 
  93	struct connection *othercon;
  94	struct connection *sendcon;
  95	struct work_struct rwork; /* Receive workqueue */
  96	struct work_struct swork; /* Send workqueue */
  97	wait_queue_head_t shutdown_wait; /* wait for graceful shutdown */
  98	unsigned char *rx_buf;
  99	int rx_buflen;
 100	int rx_leftover;
 
 
 
 
 
 101	struct rcu_head rcu;
 102};
 103#define sock2con(x) ((struct connection *)(x)->sk_user_data)
 104
 105struct listen_connection {
 106	struct socket *sock;
 107	struct work_struct rwork;
 108};
 109
 110#define DLM_WQ_REMAIN_BYTES(e) (PAGE_SIZE - e->end)
 111#define DLM_WQ_LENGTH_BYTES(e) (e->end - e->offset)
 112
 113/* An entry waiting to be sent */
 114struct writequeue_entry {
 115	struct list_head list;
 116	struct page *page;
 117	int offset;
 118	int len;
 119	int end;
 120	int users;
 121	bool dirty;
 122	struct connection *con;
 123	struct list_head msgs;
 124	struct kref ref;
 125};
 126
 127struct dlm_msg {
 128	struct writequeue_entry *entry;
 129	struct dlm_msg *orig_msg;
 130	bool retransmit;
 131	void *ppc;
 132	int len;
 133	int idx; /* new()/commit() idx exchange */
 134
 135	struct list_head list;
 136	struct kref ref;
 137};
 138
 139struct dlm_node_addr {
 
 
 
 
 140	struct list_head list;
 141	int nodeid;
 142	int mark;
 143	int addr_count;
 144	int curr_addr_index;
 145	struct sockaddr_storage *addr[DLM_MAX_ADDR_COUNT];
 
 
 
 
 
 
 
 
 
 146};
 147
 148static struct listen_sock_callbacks {
 149	void (*sk_error_report)(struct sock *);
 150	void (*sk_data_ready)(struct sock *);
 151	void (*sk_state_change)(struct sock *);
 152	void (*sk_write_space)(struct sock *);
 153} listen_sock;
 154
 155static LIST_HEAD(dlm_node_addrs);
 156static DEFINE_SPINLOCK(dlm_node_addrs_spin);
 157
 158static struct listen_connection listen_con;
 159static struct sockaddr_storage *dlm_local_addr[DLM_MAX_ADDR_COUNT];
 160static int dlm_local_count;
 161int dlm_allow_conn;
 162
 163/* Work queues */
 164static struct workqueue_struct *recv_workqueue;
 165static struct workqueue_struct *send_workqueue;
 166
 167static struct hlist_head connection_hash[CONN_HASH_SIZE];
 168static DEFINE_SPINLOCK(connections_lock);
 169DEFINE_STATIC_SRCU(connections_srcu);
 170
 
 
 
 
 
 
 
 
 171static void process_recv_sockets(struct work_struct *work);
 172static void process_send_sockets(struct work_struct *work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173
 174static void sctp_connect_to_sock(struct connection *con);
 175static void tcp_connect_to_sock(struct connection *con);
 176static void dlm_tcp_shutdown(struct connection *con);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177
 178static struct connection *__find_con(int nodeid, int r)
 179{
 180	struct connection *con;
 181
 182	hlist_for_each_entry_rcu(con, &connection_hash[r], list) {
 183		if (con->nodeid == nodeid)
 184			return con;
 185	}
 186
 187	return NULL;
 188}
 189
 190static bool tcp_eof_condition(struct connection *con)
 191{
 192	return atomic_read(&con->writequeue_cnt);
 193}
 194
 195static int dlm_con_init(struct connection *con, int nodeid)
 196{
 197	con->rx_buflen = dlm_config.ci_buffer_size;
 198	con->rx_buf = kmalloc(con->rx_buflen, GFP_NOFS);
 199	if (!con->rx_buf)
 200		return -ENOMEM;
 201
 202	con->nodeid = nodeid;
 203	mutex_init(&con->sock_mutex);
 204	INIT_LIST_HEAD(&con->writequeue);
 205	spin_lock_init(&con->writequeue_lock);
 206	atomic_set(&con->writequeue_cnt, 0);
 207	INIT_WORK(&con->swork, process_send_sockets);
 208	INIT_WORK(&con->rwork, process_recv_sockets);
 
 209	init_waitqueue_head(&con->shutdown_wait);
 210
 211	switch (dlm_config.ci_protocol) {
 212	case DLM_PROTO_TCP:
 213		con->connect_action = tcp_connect_to_sock;
 214		con->shutdown_action = dlm_tcp_shutdown;
 215		con->eof_condition = tcp_eof_condition;
 216		break;
 217	case DLM_PROTO_SCTP:
 218		con->connect_action = sctp_connect_to_sock;
 219		break;
 220	default:
 221		kfree(con->rx_buf);
 222		return -EINVAL;
 223	}
 224
 225	return 0;
 226}
 227
 228/*
 229 * If 'allocation' is zero then we don't attempt to create a new
 230 * connection structure for this node.
 231 */
 232static struct connection *nodeid2con(int nodeid, gfp_t alloc)
 233{
 234	struct connection *con, *tmp;
 235	int r, ret;
 236
 237	r = nodeid_hash(nodeid);
 238	con = __find_con(nodeid, r);
 239	if (con || !alloc)
 240		return con;
 241
 242	con = kzalloc(sizeof(*con), alloc);
 243	if (!con)
 244		return NULL;
 245
 246	ret = dlm_con_init(con, nodeid);
 247	if (ret) {
 248		kfree(con);
 249		return NULL;
 250	}
 251
 252	spin_lock(&connections_lock);
 253	/* Because multiple workqueues/threads calls this function it can
 254	 * race on multiple cpu's. Instead of locking hot path __find_con()
 255	 * we just check in rare cases of recently added nodes again
 256	 * under protection of connections_lock. If this is the case we
 257	 * abort our connection creation and return the existing connection.
 258	 */
 259	tmp = __find_con(nodeid, r);
 260	if (tmp) {
 261		spin_unlock(&connections_lock);
 262		kfree(con->rx_buf);
 263		kfree(con);
 264		return tmp;
 265	}
 266
 267	hlist_add_head_rcu(&con->list, &connection_hash[r]);
 268	spin_unlock(&connections_lock);
 269
 270	return con;
 271}
 272
 273/* Loop round all connections */
 274static void foreach_conn(void (*conn_func)(struct connection *c))
 275{
 276	int i;
 277	struct connection *con;
 278
 279	for (i = 0; i < CONN_HASH_SIZE; i++) {
 280		hlist_for_each_entry_rcu(con, &connection_hash[i], list)
 281			conn_func(con);
 282	}
 283}
 284
 285static struct dlm_node_addr *find_node_addr(int nodeid)
 286{
 287	struct dlm_node_addr *na;
 288
 289	list_for_each_entry(na, &dlm_node_addrs, list) {
 290		if (na->nodeid == nodeid)
 291			return na;
 292	}
 293	return NULL;
 294}
 295
 296static int addr_compare(const struct sockaddr_storage *x,
 297			const struct sockaddr_storage *y)
 298{
 299	switch (x->ss_family) {
 300	case AF_INET: {
 301		struct sockaddr_in *sinx = (struct sockaddr_in *)x;
 302		struct sockaddr_in *siny = (struct sockaddr_in *)y;
 303		if (sinx->sin_addr.s_addr != siny->sin_addr.s_addr)
 304			return 0;
 305		if (sinx->sin_port != siny->sin_port)
 306			return 0;
 307		break;
 308	}
 309	case AF_INET6: {
 310		struct sockaddr_in6 *sinx = (struct sockaddr_in6 *)x;
 311		struct sockaddr_in6 *siny = (struct sockaddr_in6 *)y;
 312		if (!ipv6_addr_equal(&sinx->sin6_addr, &siny->sin6_addr))
 313			return 0;
 314		if (sinx->sin6_port != siny->sin6_port)
 315			return 0;
 316		break;
 317	}
 318	default:
 319		return 0;
 320	}
 321	return 1;
 322}
 323
 324static int nodeid_to_addr(int nodeid, struct sockaddr_storage *sas_out,
 325			  struct sockaddr *sa_out, bool try_new_addr,
 326			  unsigned int *mark)
 327{
 328	struct sockaddr_storage sas;
 329	struct dlm_node_addr *na;
 
 330
 331	if (!dlm_local_count)
 332		return -1;
 333
 334	spin_lock(&dlm_node_addrs_spin);
 335	na = find_node_addr(nodeid);
 336	if (na && na->addr_count) {
 337		memcpy(&sas, na->addr[na->curr_addr_index],
 338		       sizeof(struct sockaddr_storage));
 339
 340		if (try_new_addr) {
 341			na->curr_addr_index++;
 342			if (na->curr_addr_index == na->addr_count)
 343				na->curr_addr_index = 0;
 344		}
 
 345	}
 346	spin_unlock(&dlm_node_addrs_spin);
 347
 348	if (!na)
 349		return -EEXIST;
 350
 351	if (!na->addr_count)
 352		return -ENOENT;
 
 
 
 353
 354	*mark = na->mark;
 
 355
 356	if (sas_out)
 357		memcpy(sas_out, &sas, sizeof(struct sockaddr_storage));
 358
 359	if (!sa_out)
 
 360		return 0;
 
 361
 362	if (dlm_local_addr[0]->ss_family == AF_INET) {
 363		struct sockaddr_in *in4  = (struct sockaddr_in *) &sas;
 364		struct sockaddr_in *ret4 = (struct sockaddr_in *) sa_out;
 365		ret4->sin_addr.s_addr = in4->sin_addr.s_addr;
 366	} else {
 367		struct sockaddr_in6 *in6  = (struct sockaddr_in6 *) &sas;
 368		struct sockaddr_in6 *ret6 = (struct sockaddr_in6 *) sa_out;
 369		ret6->sin6_addr = in6->sin6_addr;
 370	}
 371
 
 372	return 0;
 373}
 374
 375static int addr_to_nodeid(struct sockaddr_storage *addr, int *nodeid,
 376			  unsigned int *mark)
 377{
 378	struct dlm_node_addr *na;
 379	int rv = -EEXIST;
 380	int addr_i;
 381
 382	spin_lock(&dlm_node_addrs_spin);
 383	list_for_each_entry(na, &dlm_node_addrs, list) {
 384		if (!na->addr_count)
 385			continue;
 386
 387		for (addr_i = 0; addr_i < na->addr_count; addr_i++) {
 388			if (addr_compare(na->addr[addr_i], addr)) {
 389				*nodeid = na->nodeid;
 390				*mark = na->mark;
 391				rv = 0;
 392				goto unlock;
 
 
 393			}
 
 394		}
 395	}
 396unlock:
 397	spin_unlock(&dlm_node_addrs_spin);
 398	return rv;
 399}
 400
 401/* caller need to held dlm_node_addrs_spin lock */
 402static bool dlm_lowcomms_na_has_addr(const struct dlm_node_addr *na,
 403				     const struct sockaddr_storage *addr)
 404{
 405	int i;
 406
 407	for (i = 0; i < na->addr_count; i++) {
 408		if (addr_compare(na->addr[i], addr))
 409			return true;
 410	}
 411
 412	return false;
 413}
 414
 415int dlm_lowcomms_addr(int nodeid, struct sockaddr_storage *addr, int len)
 416{
 417	struct sockaddr_storage *new_addr;
 418	struct dlm_node_addr *new_node, *na;
 419	bool ret;
 420
 421	new_node = kzalloc(sizeof(struct dlm_node_addr), GFP_NOFS);
 422	if (!new_node)
 423		return -ENOMEM;
 424
 425	new_addr = kzalloc(sizeof(struct sockaddr_storage), GFP_NOFS);
 426	if (!new_addr) {
 427		kfree(new_node);
 428		return -ENOMEM;
 429	}
 430
 431	memcpy(new_addr, addr, len);
 432
 433	spin_lock(&dlm_node_addrs_spin);
 434	na = find_node_addr(nodeid);
 435	if (!na) {
 436		new_node->nodeid = nodeid;
 437		new_node->addr[0] = new_addr;
 438		new_node->addr_count = 1;
 439		new_node->mark = dlm_config.ci_mark;
 440		list_add(&new_node->list, &dlm_node_addrs);
 441		spin_unlock(&dlm_node_addrs_spin);
 442		return 0;
 443	}
 444
 445	ret = dlm_lowcomms_na_has_addr(na, addr);
 446	if (ret) {
 447		spin_unlock(&dlm_node_addrs_spin);
 448		kfree(new_addr);
 449		kfree(new_node);
 450		return -EEXIST;
 451	}
 452
 453	if (na->addr_count >= DLM_MAX_ADDR_COUNT) {
 454		spin_unlock(&dlm_node_addrs_spin);
 455		kfree(new_addr);
 456		kfree(new_node);
 457		return -ENOSPC;
 458	}
 459
 460	na->addr[na->addr_count++] = new_addr;
 461	spin_unlock(&dlm_node_addrs_spin);
 462	kfree(new_node);
 463	return 0;
 464}
 465
 466/* Data available on socket or listen socket received a connect */
 467static void lowcomms_data_ready(struct sock *sk)
 468{
 469	struct connection *con;
 470
 471	read_lock_bh(&sk->sk_callback_lock);
 472	con = sock2con(sk);
 473	if (con && !test_and_set_bit(CF_READ_PENDING, &con->flags))
 474		queue_work(recv_workqueue, &con->rwork);
 475	read_unlock_bh(&sk->sk_callback_lock);
 476}
 477
 478static void lowcomms_listen_data_ready(struct sock *sk)
 479{
 480	if (!dlm_allow_conn)
 481		return;
 482
 483	queue_work(recv_workqueue, &listen_con.rwork);
 
 484}
 485
 486static void lowcomms_write_space(struct sock *sk)
 487{
 488	struct connection *con;
 489
 490	read_lock_bh(&sk->sk_callback_lock);
 491	con = sock2con(sk);
 492	if (!con)
 493		goto out;
 494
 495	if (!test_and_set_bit(CF_CONNECTED, &con->flags)) {
 496		log_print("successful connected to node %d", con->nodeid);
 497		queue_work(send_workqueue, &con->swork);
 498		goto out;
 499	}
 500
 501	clear_bit(SOCK_NOSPACE, &con->sock->flags);
 502
 
 503	if (test_and_clear_bit(CF_APP_LIMITED, &con->flags)) {
 504		con->sock->sk->sk_write_pending--;
 505		clear_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags);
 506	}
 507
 508	queue_work(send_workqueue, &con->swork);
 509out:
 510	read_unlock_bh(&sk->sk_callback_lock);
 511}
 512
 513static inline void lowcomms_connect_sock(struct connection *con)
 514{
 515	if (test_bit(CF_CLOSE, &con->flags))
 516		return;
 517	queue_work(send_workqueue, &con->swork);
 518	cond_resched();
 
 519}
 520
 521static void lowcomms_state_change(struct sock *sk)
 522{
 523	/* SCTP layer is not calling sk_data_ready when the connection
 524	 * is done, so we catch the signal through here. Also, it
 525	 * doesn't switch socket state when entering shutdown, so we
 526	 * skip the write in that case.
 527	 */
 528	if (sk->sk_shutdown) {
 529		if (sk->sk_shutdown == RCV_SHUTDOWN)
 530			lowcomms_data_ready(sk);
 531	} else if (sk->sk_state == TCP_ESTABLISHED) {
 532		lowcomms_write_space(sk);
 533	}
 534}
 535
 536int dlm_lowcomms_connect_node(int nodeid)
 537{
 538	struct connection *con;
 539	int idx;
 540
 541	if (nodeid == dlm_our_nodeid())
 542		return 0;
 543
 544	idx = srcu_read_lock(&connections_srcu);
 545	con = nodeid2con(nodeid, GFP_NOFS);
 546	if (!con) {
 547		srcu_read_unlock(&connections_srcu, idx);
 548		return -ENOMEM;
 549	}
 550
 551	lowcomms_connect_sock(con);
 
 
 
 
 
 
 552	srcu_read_unlock(&connections_srcu, idx);
 553
 
 554	return 0;
 555}
 556
 557int dlm_lowcomms_nodes_set_mark(int nodeid, unsigned int mark)
 558{
 559	struct dlm_node_addr *na;
 
 560
 561	spin_lock(&dlm_node_addrs_spin);
 562	na = find_node_addr(nodeid);
 563	if (!na) {
 564		spin_unlock(&dlm_node_addrs_spin);
 565		return -ENOENT;
 566	}
 567
 568	na->mark = mark;
 569	spin_unlock(&dlm_node_addrs_spin);
 570
 
 571	return 0;
 572}
 573
 574static void lowcomms_error_report(struct sock *sk)
 575{
 576	struct connection *con;
 577	struct sockaddr_storage saddr;
 578	void (*orig_report)(struct sock *) = NULL;
 579
 580	read_lock_bh(&sk->sk_callback_lock);
 581	con = sock2con(sk);
 582	if (con == NULL)
 583		goto out;
 584
 585	orig_report = listen_sock.sk_error_report;
 586	if (con->sock == NULL ||
 587	    kernel_getpeername(con->sock, (struct sockaddr *)&saddr) < 0) {
 588		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 589				   "sending to node %d, port %d, "
 590				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 591				   con->nodeid, dlm_config.ci_tcp_port,
 592				   sk->sk_err, sk->sk_err_soft);
 593	} else if (saddr.ss_family == AF_INET) {
 594		struct sockaddr_in *sin4 = (struct sockaddr_in *)&saddr;
 595
 
 596		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 597				   "sending to node %d at %pI4, port %d, "
 598				   "sk_err=%d/%d\n", dlm_our_nodeid(),
 599				   con->nodeid, &sin4->sin_addr.s_addr,
 600				   dlm_config.ci_tcp_port, sk->sk_err,
 601				   sk->sk_err_soft);
 602	} else {
 603		struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)&saddr;
 604
 605		printk_ratelimited(KERN_ERR "dlm: node %d: socket error "
 606				   "sending to node %d at %u.%u.%u.%u, "
 607				   "port %d, sk_err=%d/%d\n", dlm_our_nodeid(),
 608				   con->nodeid, sin6->sin6_addr.s6_addr32[0],
 609				   sin6->sin6_addr.s6_addr32[1],
 610				   sin6->sin6_addr.s6_addr32[2],
 611				   sin6->sin6_addr.s6_addr32[3],
 612				   dlm_config.ci_tcp_port, sk->sk_err,
 613				   sk->sk_err_soft);
 614	}
 615
 616	/* below sendcon only handling */
 617	if (test_bit(CF_IS_OTHERCON, &con->flags))
 618		con = con->sendcon;
 619
 620	switch (sk->sk_err) {
 621	case ECONNREFUSED:
 622		set_bit(CF_DELAY_CONNECT, &con->flags);
 623		break;
 
 624	default:
 
 
 
 
 
 625		break;
 626	}
 627
 628	if (!test_and_set_bit(CF_RECONNECT, &con->flags))
 629		queue_work(send_workqueue, &con->swork);
 630
 631out:
 632	read_unlock_bh(&sk->sk_callback_lock);
 633	if (orig_report)
 634		orig_report(sk);
 635}
 636
 637/* Note: sk_callback_lock must be locked before calling this function. */
 638static void save_listen_callbacks(struct socket *sock)
 639{
 640	struct sock *sk = sock->sk;
 
 
 641
 642	listen_sock.sk_data_ready = sk->sk_data_ready;
 643	listen_sock.sk_state_change = sk->sk_state_change;
 644	listen_sock.sk_write_space = sk->sk_write_space;
 645	listen_sock.sk_error_report = sk->sk_error_report;
 646}
 647
 648static void restore_callbacks(struct socket *sock)
 649{
 650	struct sock *sk = sock->sk;
 651
 652	write_lock_bh(&sk->sk_callback_lock);
 653	sk->sk_user_data = NULL;
 654	sk->sk_data_ready = listen_sock.sk_data_ready;
 655	sk->sk_state_change = listen_sock.sk_state_change;
 656	sk->sk_write_space = listen_sock.sk_write_space;
 657	sk->sk_error_report = listen_sock.sk_error_report;
 658	write_unlock_bh(&sk->sk_callback_lock);
 659}
 660
 661static void add_listen_sock(struct socket *sock, struct listen_connection *con)
 662{
 663	struct sock *sk = sock->sk;
 664
 665	write_lock_bh(&sk->sk_callback_lock);
 666	save_listen_callbacks(sock);
 667	con->sock = sock;
 668
 669	sk->sk_user_data = con;
 670	sk->sk_allocation = GFP_NOFS;
 671	/* Install a data_ready callback */
 672	sk->sk_data_ready = lowcomms_listen_data_ready;
 673	write_unlock_bh(&sk->sk_callback_lock);
 674}
 675
 676/* Make a socket active */
 677static void add_sock(struct socket *sock, struct connection *con)
 678{
 679	struct sock *sk = sock->sk;
 680
 681	write_lock_bh(&sk->sk_callback_lock);
 682	con->sock = sock;
 683
 684	sk->sk_user_data = con;
 685	/* Install a data_ready callback */
 686	sk->sk_data_ready = lowcomms_data_ready;
 687	sk->sk_write_space = lowcomms_write_space;
 688	sk->sk_state_change = lowcomms_state_change;
 
 689	sk->sk_allocation = GFP_NOFS;
 
 690	sk->sk_error_report = lowcomms_error_report;
 691	write_unlock_bh(&sk->sk_callback_lock);
 692}
 693
 694/* Add the port number to an IPv6 or 4 sockaddr and return the address
 695   length */
 696static void make_sockaddr(struct sockaddr_storage *saddr, uint16_t port,
 697			  int *addr_len)
 698{
 699	saddr->ss_family =  dlm_local_addr[0]->ss_family;
 700	if (saddr->ss_family == AF_INET) {
 701		struct sockaddr_in *in4_addr = (struct sockaddr_in *)saddr;
 702		in4_addr->sin_port = cpu_to_be16(port);
 703		*addr_len = sizeof(struct sockaddr_in);
 704		memset(&in4_addr->sin_zero, 0, sizeof(in4_addr->sin_zero));
 705	} else {
 706		struct sockaddr_in6 *in6_addr = (struct sockaddr_in6 *)saddr;
 707		in6_addr->sin6_port = cpu_to_be16(port);
 708		*addr_len = sizeof(struct sockaddr_in6);
 709	}
 710	memset((char *)saddr + *addr_len, 0, sizeof(struct sockaddr_storage) - *addr_len);
 711}
 712
 713static void dlm_page_release(struct kref *kref)
 714{
 715	struct writequeue_entry *e = container_of(kref, struct writequeue_entry,
 716						  ref);
 717
 718	__free_page(e->page);
 719	kfree(e);
 720}
 721
 722static void dlm_msg_release(struct kref *kref)
 723{
 724	struct dlm_msg *msg = container_of(kref, struct dlm_msg, ref);
 725
 726	kref_put(&msg->entry->ref, dlm_page_release);
 727	kfree(msg);
 728}
 729
 730static void free_entry(struct writequeue_entry *e)
 731{
 732	struct dlm_msg *msg, *tmp;
 733
 734	list_for_each_entry_safe(msg, tmp, &e->msgs, list) {
 735		if (msg->orig_msg) {
 736			msg->orig_msg->retransmit = false;
 737			kref_put(&msg->orig_msg->ref, dlm_msg_release);
 738		}
 739
 740		list_del(&msg->list);
 741		kref_put(&msg->ref, dlm_msg_release);
 742	}
 743
 744	list_del(&e->list);
 745	atomic_dec(&e->con->writequeue_cnt);
 746	kref_put(&e->ref, dlm_page_release);
 747}
 748
 749static void dlm_close_sock(struct socket **sock)
 750{
 751	if (*sock) {
 752		restore_callbacks(*sock);
 753		sock_release(*sock);
 754		*sock = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755	}
 
 
 
 
 756}
 757
 758/* Close a remote connection and tidy up */
 759static void close_connection(struct connection *con, bool and_other,
 760			     bool tx, bool rx)
 761{
 762	bool closing = test_and_set_bit(CF_CLOSING, &con->flags);
 763	struct writequeue_entry *e;
 764
 765	if (tx && !closing && cancel_work_sync(&con->swork)) {
 766		log_print("canceled swork for node %d", con->nodeid);
 767		clear_bit(CF_WRITE_PENDING, &con->flags);
 768	}
 769	if (rx && !closing && cancel_work_sync(&con->rwork)) {
 770		log_print("canceled rwork for node %d", con->nodeid);
 771		clear_bit(CF_READ_PENDING, &con->flags);
 772	}
 773
 774	mutex_lock(&con->sock_mutex);
 775	dlm_close_sock(&con->sock);
 776
 777	if (con->othercon && and_other) {
 778		/* Will only re-enter once. */
 779		close_connection(con->othercon, false, tx, rx);
 780	}
 781
 782	/* if we send a writequeue entry only a half way, we drop the
 783	 * whole entry because reconnection and that we not start of the
 784	 * middle of a msg which will confuse the other end.
 785	 *
 786	 * we can always drop messages because retransmits, but what we
 787	 * cannot allow is to transmit half messages which may be processed
 788	 * at the other side.
 789	 *
 790	 * our policy is to start on a clean state when disconnects, we don't
 791	 * know what's send/received on transport layer in this case.
 792	 */
 793	spin_lock(&con->writequeue_lock);
 794	if (!list_empty(&con->writequeue)) {
 795		e = list_first_entry(&con->writequeue, struct writequeue_entry,
 796				     list);
 797		if (e->dirty)
 798			free_entry(e);
 799	}
 800	spin_unlock(&con->writequeue_lock);
 801
 802	con->rx_leftover = 0;
 803	con->retries = 0;
 804	clear_bit(CF_CONNECTED, &con->flags);
 805	clear_bit(CF_DELAY_CONNECT, &con->flags);
 806	clear_bit(CF_RECONNECT, &con->flags);
 807	clear_bit(CF_EOF, &con->flags);
 808	mutex_unlock(&con->sock_mutex);
 809	clear_bit(CF_CLOSING, &con->flags);
 810}
 811
 812static void shutdown_connection(struct connection *con)
 813{
 814	int ret;
 815
 816	flush_work(&con->swork);
 
 817
 818	mutex_lock(&con->sock_mutex);
 
 819	/* nothing to shutdown */
 820	if (!con->sock) {
 821		mutex_unlock(&con->sock_mutex);
 822		return;
 823	}
 824
 825	set_bit(CF_SHUTDOWN, &con->flags);
 826	ret = kernel_sock_shutdown(con->sock, SHUT_WR);
 827	mutex_unlock(&con->sock_mutex);
 828	if (ret) {
 829		log_print("Connection %p failed to shutdown: %d will force close",
 830			  con, ret);
 831		goto force_close;
 832	} else {
 833		ret = wait_event_timeout(con->shutdown_wait,
 834					 !test_bit(CF_SHUTDOWN, &con->flags),
 835					 DLM_SHUTDOWN_WAIT_TIMEOUT);
 836		if (ret == 0) {
 837			log_print("Connection %p shutdown timed out, will force close",
 838				  con);
 839			goto force_close;
 840		}
 841	}
 842
 843	return;
 844
 845force_close:
 846	clear_bit(CF_SHUTDOWN, &con->flags);
 847	close_connection(con, false, true, true);
 848}
 849
 850static void dlm_tcp_shutdown(struct connection *con)
 
 851{
 852	if (con->othercon)
 853		shutdown_connection(con->othercon);
 854	shutdown_connection(con);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855}
 856
 857static int con_realloc_receive_buf(struct connection *con, int newlen)
 
 
 
 
 
 
 858{
 859	unsigned char *newbuf;
 
 
 
 
 
 
 
 
 
 860
 861	newbuf = kmalloc(newlen, GFP_NOFS);
 862	if (!newbuf)
 863		return -ENOMEM;
 864
 865	/* copy any leftover from last receive */
 866	if (con->rx_leftover)
 867		memmove(newbuf, con->rx_buf, con->rx_leftover);
 868
 869	/* swap to new buffer space */
 870	kfree(con->rx_buf);
 871	con->rx_buflen = newlen;
 872	con->rx_buf = newbuf;
 
 
 
 
 
 873
 874	return 0;
 
 
 
 875}
 876
 877/* Data received from remote end */
 878static int receive_from_sock(struct connection *con)
 879{
 880	int call_again_soon = 0;
 
 881	struct msghdr msg;
 882	struct kvec iov;
 883	int ret, buflen;
 884
 885	mutex_lock(&con->sock_mutex);
 
 
 886
 887	if (con->sock == NULL) {
 888		ret = -EAGAIN;
 889		goto out_close;
 890	}
 891
 892	/* realloc if we get new buffer size to read out */
 893	buflen = dlm_config.ci_buffer_size;
 894	if (con->rx_buflen != buflen && con->rx_leftover <= buflen) {
 895		ret = con_realloc_receive_buf(con, buflen);
 896		if (ret < 0)
 897			goto out_resched;
 898	}
 899
 900	/* calculate new buffer parameter regarding last receive and
 901	 * possible leftover bytes
 902	 */
 903	iov.iov_base = con->rx_buf + con->rx_leftover;
 904	iov.iov_len = con->rx_buflen - con->rx_leftover;
 905
 906	memset(&msg, 0, sizeof(msg));
 907	msg.msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
 
 
 908	ret = kernel_recvmsg(con->sock, &msg, &iov, 1, iov.iov_len,
 909			     msg.msg_flags);
 910	if (ret <= 0)
 911		goto out_close;
 912	else if (ret == iov.iov_len)
 913		call_again_soon = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914
 915	/* new buflen according readed bytes and leftover from last receive */
 916	buflen = ret + con->rx_leftover;
 917	ret = dlm_process_incoming_buffer(con->nodeid, con->rx_buf, buflen);
 918	if (ret < 0)
 919		goto out_close;
 
 
 
 
 
 920
 921	/* calculate leftover bytes from process and put it into begin of
 922	 * the receive buffer, so next receive we have the full message
 923	 * at the start address of the receive buffer.
 924	 */
 925	con->rx_leftover = buflen - ret;
 926	if (con->rx_leftover) {
 927		memmove(con->rx_buf, con->rx_buf + ret,
 928			con->rx_leftover);
 929		call_again_soon = true;
 
 
 
 
 
 930	}
 
 931
 932	if (call_again_soon)
 933		goto out_resched;
 934
 935	mutex_unlock(&con->sock_mutex);
 936	return 0;
 937
 938out_resched:
 939	if (!test_and_set_bit(CF_READ_PENDING, &con->flags))
 940		queue_work(recv_workqueue, &con->rwork);
 941	mutex_unlock(&con->sock_mutex);
 942	return -EAGAIN;
 943
 944out_close:
 945	if (ret == 0) {
 946		log_print("connection %p got EOF from %d",
 947			  con, con->nodeid);
 948
 949		if (con->eof_condition && con->eof_condition(con)) {
 950			set_bit(CF_EOF, &con->flags);
 951			mutex_unlock(&con->sock_mutex);
 952		} else {
 953			mutex_unlock(&con->sock_mutex);
 954			close_connection(con, false, true, false);
 955
 956			/* handling for tcp shutdown */
 957			clear_bit(CF_SHUTDOWN, &con->flags);
 958			wake_up(&con->shutdown_wait);
 959		}
 960
 961		/* signal to breaking receive worker */
 962		ret = -1;
 963	} else {
 964		mutex_unlock(&con->sock_mutex);
 965	}
 966	return ret;
 967}
 968
 969/* Listening socket is busy, accept a connection */
 970static int accept_from_sock(struct listen_connection *con)
 971{
 972	int result;
 973	struct sockaddr_storage peeraddr;
 
 
 974	struct socket *newsock;
 975	int len, idx;
 976	int nodeid;
 977	struct connection *newcon;
 978	struct connection *addcon;
 979	unsigned int mark;
 980
 981	if (!con->sock)
 982		return -ENOTCONN;
 983
 984	result = kernel_accept(con->sock, &newsock, O_NONBLOCK);
 985	if (result < 0)
 986		goto accept_err;
 987
 988	/* Get the connected socket's peer */
 989	memset(&peeraddr, 0, sizeof(peeraddr));
 990	len = newsock->ops->getname(newsock, (struct sockaddr *)&peeraddr, 2);
 991	if (len < 0) {
 992		result = -ECONNABORTED;
 993		goto accept_err;
 994	}
 995
 996	/* Get the new node's NODEID */
 997	make_sockaddr(&peeraddr, 0, &len);
 998	if (addr_to_nodeid(&peeraddr, &nodeid, &mark)) {
 999		unsigned char *b=(unsigned char *)&peeraddr;
1000		log_print("connect from non cluster node");
1001		print_hex_dump_bytes("ss: ", DUMP_PREFIX_NONE, 
1002				     b, sizeof(struct sockaddr_storage));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003		sock_release(newsock);
1004		return -1;
1005	}
1006
1007	log_print("got connection from %d", nodeid);
1008
1009	/*  Check to see if we already have a connection to this node. This
1010	 *  could happen if the two nodes initiate a connection at roughly
1011	 *  the same time and the connections cross on the wire.
1012	 *  In this case we store the incoming one in "othercon"
1013	 */
1014	idx = srcu_read_lock(&connections_srcu);
1015	newcon = nodeid2con(nodeid, GFP_NOFS);
1016	if (!newcon) {
1017		srcu_read_unlock(&connections_srcu, idx);
1018		result = -ENOMEM;
1019		goto accept_err;
1020	}
1021
1022	sock_set_mark(newsock->sk, mark);
1023
1024	mutex_lock(&newcon->sock_mutex);
1025	if (newcon->sock) {
1026		struct connection *othercon = newcon->othercon;
1027
1028		if (!othercon) {
1029			othercon = kzalloc(sizeof(*othercon), GFP_NOFS);
1030			if (!othercon) {
1031				log_print("failed to allocate incoming socket");
1032				mutex_unlock(&newcon->sock_mutex);
1033				srcu_read_unlock(&connections_srcu, idx);
1034				result = -ENOMEM;
1035				goto accept_err;
1036			}
1037
1038			result = dlm_con_init(othercon, nodeid);
1039			if (result < 0) {
1040				kfree(othercon);
1041				mutex_unlock(&newcon->sock_mutex);
1042				srcu_read_unlock(&connections_srcu, idx);
1043				goto accept_err;
1044			}
1045
1046			lockdep_set_subclass(&othercon->sock_mutex, 1);
1047			set_bit(CF_IS_OTHERCON, &othercon->flags);
1048			newcon->othercon = othercon;
1049			othercon->sendcon = newcon;
1050		} else {
1051			/* close other sock con if we have something new */
1052			close_connection(othercon, false, true, false);
1053		}
1054
1055		mutex_lock(&othercon->sock_mutex);
1056		add_sock(newsock, othercon);
1057		addcon = othercon;
1058		mutex_unlock(&othercon->sock_mutex);
 
 
 
 
1059	}
1060	else {
1061		/* accept copies the sk after we've saved the callbacks, so we
1062		   don't want to save them a second time or comm errors will
1063		   result in calling sk_error_report recursively. */
1064		add_sock(newsock, newcon);
1065		addcon = newcon;
 
 
 
 
1066	}
1067
1068	set_bit(CF_CONNECTED, &addcon->flags);
1069	mutex_unlock(&newcon->sock_mutex);
1070
1071	/*
1072	 * Add it to the active queue in case we got data
1073	 * between processing the accept adding the socket
1074	 * to the read_sockets list
1075	 */
1076	if (!test_and_set_bit(CF_READ_PENDING, &addcon->flags))
1077		queue_work(recv_workqueue, &addcon->rwork);
1078
1079	srcu_read_unlock(&connections_srcu, idx);
1080
1081	return 0;
1082
1083accept_err:
1084	if (newsock)
1085		sock_release(newsock);
1086
1087	if (result != -EAGAIN)
1088		log_print("error accepting connection from node: %d", result);
1089	return result;
1090}
1091
1092/*
1093 * writequeue_entry_complete - try to delete and free write queue entry
1094 * @e: write queue entry to try to delete
1095 * @completed: bytes completed
1096 *
1097 * writequeue_lock must be held.
1098 */
1099static void writequeue_entry_complete(struct writequeue_entry *e, int completed)
1100{
1101	e->offset += completed;
1102	e->len -= completed;
1103	/* signal that page was half way transmitted */
1104	e->dirty = true;
1105
1106	if (e->len == 0 && e->users == 0)
1107		free_entry(e);
1108}
1109
1110/*
1111 * sctp_bind_addrs - bind a SCTP socket to all our addresses
1112 */
1113static int sctp_bind_addrs(struct socket *sock, uint16_t port)
1114{
1115	struct sockaddr_storage localaddr;
1116	struct sockaddr *addr = (struct sockaddr *)&localaddr;
1117	int i, addr_len, result = 0;
1118
1119	for (i = 0; i < dlm_local_count; i++) {
1120		memcpy(&localaddr, dlm_local_addr[i], sizeof(localaddr));
1121		make_sockaddr(&localaddr, port, &addr_len);
1122
1123		if (!i)
1124			result = kernel_bind(sock, addr, addr_len);
1125		else
1126			result = sock_bind_add(sock->sk, addr, addr_len);
1127
1128		if (result < 0) {
1129			log_print("Can't bind to %d addr number %d, %d.\n",
1130				  port, i + 1, result);
1131			break;
1132		}
1133	}
1134	return result;
1135}
1136
1137/* Initiate an SCTP association.
1138   This is a special case of send_to_sock() in that we don't yet have a
1139   peeled-off socket for this association, so we use the listening socket
1140   and add the primary IP address of the remote node.
1141 */
1142static void sctp_connect_to_sock(struct connection *con)
1143{
1144	struct sockaddr_storage daddr;
1145	int result;
1146	int addr_len;
1147	struct socket *sock;
1148	unsigned int mark;
1149
1150	mutex_lock(&con->sock_mutex);
1151
1152	/* Some odd races can cause double-connects, ignore them */
1153	if (con->retries++ > MAX_CONNECT_RETRIES)
1154		goto out;
1155
1156	if (con->sock) {
1157		log_print("node %d already connected.", con->nodeid);
1158		goto out;
1159	}
1160
1161	memset(&daddr, 0, sizeof(daddr));
1162	result = nodeid_to_addr(con->nodeid, &daddr, NULL, true, &mark);
1163	if (result < 0) {
1164		log_print("no address for nodeid %d", con->nodeid);
1165		goto out;
1166	}
1167
1168	/* Create a socket to communicate with */
1169	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1170				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1171	if (result < 0)
1172		goto socket_err;
1173
1174	sock_set_mark(sock->sk, mark);
1175
1176	add_sock(sock, con);
1177
1178	/* Bind to all addresses. */
1179	if (sctp_bind_addrs(con->sock, 0))
1180		goto bind_err;
1181
1182	make_sockaddr(&daddr, dlm_config.ci_tcp_port, &addr_len);
1183
1184	log_print_ratelimited("connecting to %d", con->nodeid);
1185
1186	/* Turn off Nagle's algorithm */
1187	sctp_sock_set_nodelay(sock->sk);
1188
1189	/*
1190	 * Make sock->ops->connect() function return in specified time,
1191	 * since O_NONBLOCK argument in connect() function does not work here,
1192	 * then, we should restore the default value of this attribute.
1193	 */
1194	sock_set_sndtimeo(sock->sk, 5);
1195	result = sock->ops->connect(sock, (struct sockaddr *)&daddr, addr_len,
1196				   0);
1197	sock_set_sndtimeo(sock->sk, 0);
1198
1199	if (result == -EINPROGRESS)
1200		result = 0;
1201	if (result == 0) {
1202		if (!test_and_set_bit(CF_CONNECTED, &con->flags))
1203			log_print("successful connected to node %d", con->nodeid);
1204		goto out;
1205	}
1206
1207bind_err:
1208	con->sock = NULL;
1209	sock_release(sock);
1210
1211socket_err:
1212	/*
1213	 * Some errors are fatal and this list might need adjusting. For other
1214	 * errors we try again until the max number of retries is reached.
1215	 */
1216	if (result != -EHOSTUNREACH &&
1217	    result != -ENETUNREACH &&
1218	    result != -ENETDOWN &&
1219	    result != -EINVAL &&
1220	    result != -EPROTONOSUPPORT) {
1221		log_print("connect %d try %d error %d", con->nodeid,
1222			  con->retries, result);
1223		mutex_unlock(&con->sock_mutex);
1224		msleep(1000);
1225		lowcomms_connect_sock(con);
1226		return;
1227	}
1228
1229out:
1230	mutex_unlock(&con->sock_mutex);
1231}
1232
1233/* Connect a new socket to its peer */
1234static void tcp_connect_to_sock(struct connection *con)
1235{
1236	struct sockaddr_storage saddr, src_addr;
1237	unsigned int mark;
1238	int addr_len;
1239	struct socket *sock = NULL;
1240	int result;
1241
1242	mutex_lock(&con->sock_mutex);
1243	if (con->retries++ > MAX_CONNECT_RETRIES)
1244		goto out;
1245
1246	/* Some odd races can cause double-connects, ignore them */
1247	if (con->sock)
1248		goto out;
1249
1250	/* Create a socket to communicate with */
1251	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1252				  SOCK_STREAM, IPPROTO_TCP, &sock);
1253	if (result < 0)
1254		goto out_err;
1255
1256	memset(&saddr, 0, sizeof(saddr));
1257	result = nodeid_to_addr(con->nodeid, &saddr, NULL, false, &mark);
1258	if (result < 0) {
1259		log_print("no address for nodeid %d", con->nodeid);
1260		goto out_err;
1261	}
1262
1263	sock_set_mark(sock->sk, mark);
1264
1265	add_sock(sock, con);
1266
1267	/* Bind to our cluster-known address connecting to avoid
1268	   routing problems */
1269	memcpy(&src_addr, dlm_local_addr[0], sizeof(src_addr));
1270	make_sockaddr(&src_addr, 0, &addr_len);
1271	result = sock->ops->bind(sock, (struct sockaddr *) &src_addr,
1272				 addr_len);
1273	if (result < 0) {
1274		log_print("could not bind for connect: %d", result);
1275		/* This *may* not indicate a critical error */
1276	}
1277
1278	make_sockaddr(&saddr, dlm_config.ci_tcp_port, &addr_len);
1279
1280	log_print_ratelimited("connecting to %d", con->nodeid);
1281
1282	/* Turn off Nagle's algorithm */
1283	tcp_sock_set_nodelay(sock->sk);
1284
1285	result = sock->ops->connect(sock, (struct sockaddr *)&saddr, addr_len,
1286				   O_NONBLOCK);
1287	if (result == -EINPROGRESS)
1288		result = 0;
1289	if (result == 0)
1290		goto out;
1291
1292out_err:
1293	if (con->sock) {
1294		sock_release(con->sock);
1295		con->sock = NULL;
1296	} else if (sock) {
1297		sock_release(sock);
1298	}
1299	/*
1300	 * Some errors are fatal and this list might need adjusting. For other
1301	 * errors we try again until the max number of retries is reached.
1302	 */
1303	if (result != -EHOSTUNREACH &&
1304	    result != -ENETUNREACH &&
1305	    result != -ENETDOWN && 
1306	    result != -EINVAL &&
1307	    result != -EPROTONOSUPPORT) {
1308		log_print("connect %d try %d error %d", con->nodeid,
1309			  con->retries, result);
1310		mutex_unlock(&con->sock_mutex);
1311		msleep(1000);
1312		lowcomms_connect_sock(con);
1313		return;
1314	}
1315out:
1316	mutex_unlock(&con->sock_mutex);
1317	return;
1318}
1319
1320/* On error caller must run dlm_close_sock() for the
1321 * listen connection socket.
1322 */
1323static int tcp_create_listen_sock(struct listen_connection *con,
1324				  struct sockaddr_storage *saddr)
1325{
1326	struct socket *sock = NULL;
1327	int result = 0;
1328	int addr_len;
1329
1330	if (dlm_local_addr[0]->ss_family == AF_INET)
1331		addr_len = sizeof(struct sockaddr_in);
1332	else
1333		addr_len = sizeof(struct sockaddr_in6);
1334
1335	/* Create a socket to communicate with */
1336	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1337				  SOCK_STREAM, IPPROTO_TCP, &sock);
1338	if (result < 0) {
1339		log_print("Can't create listening comms socket");
1340		goto create_out;
1341	}
1342
1343	sock_set_mark(sock->sk, dlm_config.ci_mark);
1344
1345	/* Turn off Nagle's algorithm */
1346	tcp_sock_set_nodelay(sock->sk);
1347
1348	sock_set_reuseaddr(sock->sk);
1349
1350	add_listen_sock(sock, con);
1351
1352	/* Bind to our port */
1353	make_sockaddr(saddr, dlm_config.ci_tcp_port, &addr_len);
1354	result = sock->ops->bind(sock, (struct sockaddr *) saddr, addr_len);
1355	if (result < 0) {
1356		log_print("Can't bind to port %d", dlm_config.ci_tcp_port);
1357		goto create_out;
1358	}
1359	sock_set_keepalive(sock->sk);
1360
1361	result = sock->ops->listen(sock, 5);
1362	if (result < 0) {
1363		log_print("Can't listen on port %d", dlm_config.ci_tcp_port);
1364		goto create_out;
1365	}
1366
1367	return 0;
1368
1369create_out:
1370	return result;
1371}
1372
1373/* Get local addresses */
1374static void init_local(void)
1375{
1376	struct sockaddr_storage sas, *addr;
1377	int i;
1378
1379	dlm_local_count = 0;
1380	for (i = 0; i < DLM_MAX_ADDR_COUNT; i++) {
1381		if (dlm_our_addr(&sas, i))
1382			break;
1383
1384		addr = kmemdup(&sas, sizeof(*addr), GFP_NOFS);
1385		if (!addr)
1386			break;
1387		dlm_local_addr[dlm_local_count++] = addr;
1388	}
1389}
1390
1391static void deinit_local(void)
1392{
1393	int i;
1394
1395	for (i = 0; i < dlm_local_count; i++)
1396		kfree(dlm_local_addr[i]);
1397}
1398
1399/* Initialise SCTP socket and bind to all interfaces
1400 * On error caller must run dlm_close_sock() for the
1401 * listen connection socket.
1402 */
1403static int sctp_listen_for_all(struct listen_connection *con)
1404{
1405	struct socket *sock = NULL;
1406	int result = -EINVAL;
1407
1408	log_print("Using SCTP for communications");
1409
1410	result = sock_create_kern(&init_net, dlm_local_addr[0]->ss_family,
1411				  SOCK_STREAM, IPPROTO_SCTP, &sock);
1412	if (result < 0) {
1413		log_print("Can't create comms socket, check SCTP is loaded");
1414		goto out;
1415	}
1416
1417	sock_set_rcvbuf(sock->sk, NEEDED_RMEM);
1418	sock_set_mark(sock->sk, dlm_config.ci_mark);
1419	sctp_sock_set_nodelay(sock->sk);
1420
1421	add_listen_sock(sock, con);
1422
1423	/* Bind to all addresses. */
1424	result = sctp_bind_addrs(con->sock, dlm_config.ci_tcp_port);
1425	if (result < 0)
1426		goto out;
1427
1428	result = sock->ops->listen(sock, 5);
1429	if (result < 0) {
1430		log_print("Can't set socket listening");
1431		goto out;
1432	}
1433
1434	return 0;
1435
1436out:
1437	return result;
1438}
1439
1440static int tcp_listen_for_all(void)
1441{
1442	/* We don't support multi-homed hosts */
1443	if (dlm_local_count > 1) {
1444		log_print("TCP protocol can't handle multi-homed hosts, "
1445			  "try SCTP");
1446		return -EINVAL;
1447	}
1448
1449	log_print("Using TCP for communications");
1450
1451	return tcp_create_listen_sock(&listen_con, dlm_local_addr[0]);
1452}
1453
1454
1455
1456static struct writequeue_entry *new_writequeue_entry(struct connection *con,
1457						     gfp_t allocation)
1458{
1459	struct writequeue_entry *entry;
1460
1461	entry = kzalloc(sizeof(*entry), allocation);
1462	if (!entry)
1463		return NULL;
1464
1465	entry->page = alloc_page(allocation | __GFP_ZERO);
1466	if (!entry->page) {
1467		kfree(entry);
1468		return NULL;
1469	}
1470
 
 
 
 
1471	entry->con = con;
1472	entry->users = 1;
1473	kref_init(&entry->ref);
1474	INIT_LIST_HEAD(&entry->msgs);
1475
1476	return entry;
1477}
1478
1479static struct writequeue_entry *new_wq_entry(struct connection *con, int len,
1480					     gfp_t allocation, char **ppc,
1481					     void (*cb)(struct dlm_mhandle *mh),
1482					     struct dlm_mhandle *mh)
1483{
1484	struct writequeue_entry *e;
1485
1486	spin_lock(&con->writequeue_lock);
1487	if (!list_empty(&con->writequeue)) {
1488		e = list_last_entry(&con->writequeue, struct writequeue_entry, list);
1489		if (DLM_WQ_REMAIN_BYTES(e) >= len) {
1490			kref_get(&e->ref);
1491
1492			*ppc = page_address(e->page) + e->end;
1493			if (cb)
1494				cb(mh);
1495
1496			e->end += len;
1497			e->users++;
1498			spin_unlock(&con->writequeue_lock);
1499
1500			return e;
1501		}
1502	}
1503	spin_unlock(&con->writequeue_lock);
1504
1505	e = new_writequeue_entry(con, allocation);
1506	if (!e)
1507		return NULL;
1508
1509	kref_get(&e->ref);
1510	*ppc = page_address(e->page);
1511	e->end += len;
1512	atomic_inc(&con->writequeue_cnt);
1513
1514	spin_lock(&con->writequeue_lock);
1515	if (cb)
1516		cb(mh);
1517
1518	list_add_tail(&e->list, &con->writequeue);
1519	spin_unlock(&con->writequeue_lock);
1520
 
 
1521	return e;
1522};
1523
1524static struct dlm_msg *dlm_lowcomms_new_msg_con(struct connection *con, int len,
1525						gfp_t allocation, char **ppc,
1526						void (*cb)(struct dlm_mhandle *mh),
1527						struct dlm_mhandle *mh)
1528{
1529	struct writequeue_entry *e;
1530	struct dlm_msg *msg;
1531
1532	msg = kzalloc(sizeof(*msg), allocation);
1533	if (!msg)
1534		return NULL;
1535
1536	kref_init(&msg->ref);
1537
1538	e = new_wq_entry(con, len, allocation, ppc, cb, mh);
1539	if (!e) {
1540		kfree(msg);
1541		return NULL;
1542	}
1543
 
 
1544	msg->ppc = *ppc;
1545	msg->len = len;
1546	msg->entry = e;
1547
1548	return msg;
1549}
1550
 
 
 
 
1551struct dlm_msg *dlm_lowcomms_new_msg(int nodeid, int len, gfp_t allocation,
1552				     char **ppc, void (*cb)(struct dlm_mhandle *mh),
1553				     struct dlm_mhandle *mh)
1554{
1555	struct connection *con;
1556	struct dlm_msg *msg;
1557	int idx;
1558
1559	if (len > DLM_MAX_SOCKET_BUFSIZE ||
1560	    len < sizeof(struct dlm_header)) {
1561		BUILD_BUG_ON(PAGE_SIZE < DLM_MAX_SOCKET_BUFSIZE);
1562		log_print("failed to allocate a buffer of size %d", len);
1563		WARN_ON(1);
1564		return NULL;
1565	}
1566
1567	idx = srcu_read_lock(&connections_srcu);
1568	con = nodeid2con(nodeid, allocation);
1569	if (!con) {
1570		srcu_read_unlock(&connections_srcu, idx);
1571		return NULL;
1572	}
1573
1574	msg = dlm_lowcomms_new_msg_con(con, len, allocation, ppc, cb, mh);
1575	if (!msg) {
1576		srcu_read_unlock(&connections_srcu, idx);
1577		return NULL;
1578	}
1579
 
 
1580	/* we assume if successful commit must called */
1581	msg->idx = idx;
1582	return msg;
1583}
 
1584
1585static void _dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1586{
1587	struct writequeue_entry *e = msg->entry;
1588	struct connection *con = e->con;
1589	int users;
1590
1591	spin_lock(&con->writequeue_lock);
1592	kref_get(&msg->ref);
1593	list_add(&msg->list, &e->msgs);
1594
1595	users = --e->users;
1596	if (users)
1597		goto out;
1598
1599	e->len = DLM_WQ_LENGTH_BYTES(e);
1600	spin_unlock(&con->writequeue_lock);
1601
1602	queue_work(send_workqueue, &con->swork);
1603	return;
1604
1605out:
1606	spin_unlock(&con->writequeue_lock);
1607	return;
1608}
1609
 
 
 
 
1610void dlm_lowcomms_commit_msg(struct dlm_msg *msg)
1611{
1612	_dlm_lowcomms_commit_msg(msg);
1613	srcu_read_unlock(&connections_srcu, msg->idx);
 
 
1614}
 
1615
1616void dlm_lowcomms_put_msg(struct dlm_msg *msg)
1617{
1618	kref_put(&msg->ref, dlm_msg_release);
1619}
1620
1621/* does not held connections_srcu, usage workqueue only */
1622int dlm_lowcomms_resend_msg(struct dlm_msg *msg)
1623{
1624	struct dlm_msg *msg_resend;
1625	char *ppc;
1626
1627	if (msg->retransmit)
1628		return 1;
1629
1630	msg_resend = dlm_lowcomms_new_msg_con(msg->entry->con, msg->len,
1631					      GFP_ATOMIC, &ppc, NULL, NULL);
1632	if (!msg_resend)
1633		return -ENOMEM;
1634
1635	msg->retransmit = true;
1636	kref_get(&msg->ref);
1637	msg_resend->orig_msg = msg;
1638
1639	memcpy(ppc, msg->ppc, msg->len);
1640	_dlm_lowcomms_commit_msg(msg_resend);
1641	dlm_lowcomms_put_msg(msg_resend);
1642
1643	return 0;
1644}
1645
1646/* Send a message */
1647static void send_to_sock(struct connection *con)
1648{
1649	int ret = 0;
1650	const int msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL;
1651	struct writequeue_entry *e;
1652	int len, offset;
1653	int count = 0;
 
 
 
1654
1655	mutex_lock(&con->sock_mutex);
1656	if (con->sock == NULL)
1657		goto out_connect;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658
1659	spin_lock(&con->writequeue_lock);
1660	for (;;) {
1661		if (list_empty(&con->writequeue))
1662			break;
1663
1664		e = list_first_entry(&con->writequeue, struct writequeue_entry, list);
1665		len = e->len;
1666		offset = e->offset;
1667		BUG_ON(len == 0 && e->users == 0);
1668		spin_unlock(&con->writequeue_lock);
1669
1670		ret = 0;
1671		if (len) {
1672			ret = kernel_sendpage(con->sock, e->page, offset, len,
1673					      msg_flags);
1674			if (ret == -EAGAIN || ret == 0) {
1675				if (ret == -EAGAIN &&
1676				    test_bit(SOCKWQ_ASYNC_NOSPACE, &con->sock->flags) &&
1677				    !test_and_set_bit(CF_APP_LIMITED, &con->flags)) {
1678					/* Notify TCP that we're limited by the
1679					 * application window size.
1680					 */
1681					set_bit(SOCK_NOSPACE, &con->sock->flags);
1682					con->sock->sk->sk_write_pending++;
1683				}
1684				cond_resched();
1685				goto out;
1686			} else if (ret < 0)
1687				goto out;
1688		}
1689
1690		/* Don't starve people filling buffers */
1691		if (++count >= MAX_SEND_MSG_COUNT) {
1692			cond_resched();
1693			count = 0;
1694		}
 
 
1695
1696		spin_lock(&con->writequeue_lock);
1697		writequeue_entry_complete(e, ret);
1698	}
1699	spin_unlock(&con->writequeue_lock);
1700
1701	/* close if we got EOF */
1702	if (test_and_clear_bit(CF_EOF, &con->flags)) {
1703		mutex_unlock(&con->sock_mutex);
1704		close_connection(con, false, false, true);
1705
1706		/* handling for tcp shutdown */
1707		clear_bit(CF_SHUTDOWN, &con->flags);
1708		wake_up(&con->shutdown_wait);
1709	} else {
1710		mutex_unlock(&con->sock_mutex);
1711	}
1712
1713	return;
1714
1715out:
1716	mutex_unlock(&con->sock_mutex);
1717	return;
1718
1719out_connect:
1720	mutex_unlock(&con->sock_mutex);
1721	queue_work(send_workqueue, &con->swork);
1722	cond_resched();
1723}
1724
1725static void clean_one_writequeue(struct connection *con)
1726{
1727	struct writequeue_entry *e, *safe;
1728
1729	spin_lock(&con->writequeue_lock);
1730	list_for_each_entry_safe(e, safe, &con->writequeue, list) {
1731		free_entry(e);
1732	}
1733	spin_unlock(&con->writequeue_lock);
 
 
 
 
 
 
 
 
 
1734}
1735
1736/* Called from recovery when it knows that a node has
1737   left the cluster */
1738int dlm_lowcomms_close(int nodeid)
1739{
1740	struct connection *con;
1741	struct dlm_node_addr *na;
1742	int idx;
1743
1744	log_print("closing connection to node %d", nodeid);
 
1745	idx = srcu_read_lock(&connections_srcu);
1746	con = nodeid2con(nodeid, 0);
1747	if (con) {
1748		set_bit(CF_CLOSE, &con->flags);
1749		close_connection(con, true, true, true);
1750		clean_one_writequeue(con);
1751		if (con->othercon)
1752			clean_one_writequeue(con->othercon);
 
 
 
 
 
 
 
 
 
 
 
 
1753	}
1754	srcu_read_unlock(&connections_srcu, idx);
1755
1756	spin_lock(&dlm_node_addrs_spin);
1757	na = find_node_addr(nodeid);
1758	if (na) {
1759		list_del(&na->list);
1760		while (na->addr_count--)
1761			kfree(na->addr[na->addr_count]);
1762		kfree(na);
1763	}
1764	spin_unlock(&dlm_node_addrs_spin);
1765
1766	return 0;
1767}
1768
1769/* Receive workqueue function */
1770static void process_recv_sockets(struct work_struct *work)
1771{
1772	struct connection *con = container_of(work, struct connection, rwork);
1773	int err;
1774
1775	clear_bit(CF_READ_PENDING, &con->flags);
 
 
 
 
 
 
1776	do {
1777		err = receive_from_sock(con);
1778	} while (!err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1779}
1780
1781static void process_listen_recv_socket(struct work_struct *work)
1782{
1783	accept_from_sock(&listen_con);
 
 
 
 
 
 
 
 
 
 
1784}
1785
1786/* Send workqueue function */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1787static void process_send_sockets(struct work_struct *work)
1788{
1789	struct connection *con = container_of(work, struct connection, swork);
 
1790
1791	WARN_ON(test_bit(CF_IS_OTHERCON, &con->flags));
1792
1793	clear_bit(CF_WRITE_PENDING, &con->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1794
1795	if (test_and_clear_bit(CF_RECONNECT, &con->flags)) {
1796		close_connection(con, false, false, true);
1797		dlm_midcomms_unack_msg_resend(con->nodeid);
1798	}
 
 
1799
1800	if (con->sock == NULL) { /* not mutex protected so check it inside too */
1801		if (test_and_clear_bit(CF_DELAY_CONNECT, &con->flags))
1802			msleep(1000);
1803		con->connect_action(con);
1804	}
1805	if (!list_empty(&con->writequeue))
1806		send_to_sock(con);
1807}
1808
1809static void work_stop(void)
1810{
1811	if (recv_workqueue) {
1812		destroy_workqueue(recv_workqueue);
1813		recv_workqueue = NULL;
1814	}
1815
1816	if (send_workqueue) {
1817		destroy_workqueue(send_workqueue);
1818		send_workqueue = NULL;
1819	}
1820}
1821
1822static int work_start(void)
1823{
1824	recv_workqueue = alloc_ordered_workqueue("dlm_recv", WQ_MEM_RECLAIM);
1825	if (!recv_workqueue) {
1826		log_print("can't start dlm_recv");
 
1827		return -ENOMEM;
1828	}
1829
1830	send_workqueue = alloc_ordered_workqueue("dlm_send", WQ_MEM_RECLAIM);
1831	if (!send_workqueue) {
1832		log_print("can't start dlm_send");
1833		destroy_workqueue(recv_workqueue);
1834		recv_workqueue = NULL;
 
 
 
 
1835		return -ENOMEM;
1836	}
1837
1838	return 0;
1839}
1840
1841static void shutdown_conn(struct connection *con)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1842{
1843	if (con->shutdown_action)
1844		con->shutdown_action(con);
1845}
1846
1847void dlm_lowcomms_shutdown(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848{
1849	int idx;
 
1850
1851	/* Set all the flags to prevent any
1852	 * socket activity.
1853	 */
1854	dlm_allow_conn = 0;
 
1855
1856	if (recv_workqueue)
1857		flush_workqueue(recv_workqueue);
1858	if (send_workqueue)
1859		flush_workqueue(send_workqueue);
 
 
1860
1861	dlm_close_sock(&listen_con.sock);
 
1862
1863	idx = srcu_read_lock(&connections_srcu);
1864	foreach_conn(shutdown_conn);
1865	srcu_read_unlock(&connections_srcu, idx);
 
1866}
1867
1868static void _stop_conn(struct connection *con, bool and_other)
1869{
1870	mutex_lock(&con->sock_mutex);
1871	set_bit(CF_CLOSE, &con->flags);
1872	set_bit(CF_READ_PENDING, &con->flags);
1873	set_bit(CF_WRITE_PENDING, &con->flags);
1874	if (con->sock && con->sock->sk) {
1875		write_lock_bh(&con->sock->sk->sk_callback_lock);
1876		con->sock->sk->sk_user_data = NULL;
1877		write_unlock_bh(&con->sock->sk->sk_callback_lock);
1878	}
1879	if (con->othercon && and_other)
1880		_stop_conn(con->othercon, false);
1881	mutex_unlock(&con->sock_mutex);
 
 
 
 
 
1882}
1883
1884static void stop_conn(struct connection *con)
1885{
1886	_stop_conn(con, true);
 
1887}
1888
1889static void connection_release(struct rcu_head *rcu)
1890{
1891	struct connection *con = container_of(rcu, struct connection, rcu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1892
1893	kfree(con->rx_buf);
1894	kfree(con);
 
1895}
1896
1897static void free_conn(struct connection *con)
 
1898{
1899	close_connection(con, true, true, true);
1900	spin_lock(&connections_lock);
1901	hlist_del_rcu(&con->list);
1902	spin_unlock(&connections_lock);
1903	if (con->othercon) {
1904		clean_one_writequeue(con->othercon);
1905		call_srcu(&connections_srcu, &con->othercon->rcu,
1906			  connection_release);
1907	}
1908	clean_one_writequeue(con);
1909	call_srcu(&connections_srcu, &con->rcu, connection_release);
1910}
1911
1912static void work_flush(void)
1913{
1914	int ok;
1915	int i;
1916	struct connection *con;
 
1917
1918	do {
1919		ok = 1;
1920		foreach_conn(stop_conn);
1921		if (recv_workqueue)
1922			flush_workqueue(recv_workqueue);
1923		if (send_workqueue)
1924			flush_workqueue(send_workqueue);
1925		for (i = 0; i < CONN_HASH_SIZE && ok; i++) {
1926			hlist_for_each_entry_rcu(con, &connection_hash[i],
1927						 list) {
1928				ok &= test_bit(CF_READ_PENDING, &con->flags);
1929				ok &= test_bit(CF_WRITE_PENDING, &con->flags);
1930				if (con->othercon) {
1931					ok &= test_bit(CF_READ_PENDING,
1932						       &con->othercon->flags);
1933					ok &= test_bit(CF_WRITE_PENDING,
1934						       &con->othercon->flags);
1935				}
1936			}
1937		}
1938	} while (!ok);
1939}
1940
1941void dlm_lowcomms_stop(void)
1942{
1943	int idx;
 
1944
1945	idx = srcu_read_lock(&connections_srcu);
1946	work_flush();
1947	foreach_conn(free_conn);
1948	srcu_read_unlock(&connections_srcu, idx);
1949	work_stop();
1950	deinit_local();
1951}
1952
 
 
 
 
 
 
 
 
 
 
 
 
1953int dlm_lowcomms_start(void)
1954{
1955	int error = -EINVAL;
1956	int i;
1957
1958	for (i = 0; i < CONN_HASH_SIZE; i++)
1959		INIT_HLIST_HEAD(&connection_hash[i]);
1960
1961	init_local();
1962	if (!dlm_local_count) {
1963		error = -ENOTCONN;
1964		log_print("no local IP address has been set");
1965		goto fail;
1966	}
1967
1968	INIT_WORK(&listen_con.rwork, process_listen_recv_socket);
1969
1970	error = work_start();
1971	if (error)
1972		goto fail_local;
1973
1974	dlm_allow_conn = 1;
1975
1976	/* Start listening */
1977	switch (dlm_config.ci_protocol) {
1978	case DLM_PROTO_TCP:
1979		error = tcp_listen_for_all();
1980		break;
1981	case DLM_PROTO_SCTP:
1982		error = sctp_listen_for_all(&listen_con);
1983		break;
1984	default:
1985		log_print("Invalid protocol identifier %d set",
1986			  dlm_config.ci_protocol);
1987		error = -EINVAL;
1988		break;
1989	}
 
 
1990	if (error)
1991		goto fail_unlisten;
1992
1993	return 0;
1994
1995fail_unlisten:
1996	dlm_allow_conn = 0;
1997	dlm_close_sock(&listen_con.sock);
1998	work_stop();
1999fail_local:
2000	deinit_local();
2001fail:
2002	return error;
2003}
2004
 
 
 
 
 
 
 
 
 
 
2005void dlm_lowcomms_exit(void)
2006{
2007	struct dlm_node_addr *na, *safe;
 
2008
2009	spin_lock(&dlm_node_addrs_spin);
2010	list_for_each_entry_safe(na, safe, &dlm_node_addrs, list) {
2011		list_del(&na->list);
2012		while (na->addr_count--)
2013			kfree(na->addr[na->addr_count]);
2014		kfree(na);
 
 
 
 
 
 
2015	}
2016	spin_unlock(&dlm_node_addrs_spin);
2017}