Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/buffer.c
   4 *
   5 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   6 */
   7
   8/*
   9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
  10 *
  11 * Removed a lot of unnecessary code and simplified things now that
  12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  13 *
  14 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  15 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  16 *
  17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  18 *
  19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/sched/signal.h>
  24#include <linux/syscalls.h>
  25#include <linux/fs.h>
  26#include <linux/iomap.h>
  27#include <linux/mm.h>
  28#include <linux/percpu.h>
  29#include <linux/slab.h>
  30#include <linux/capability.h>
  31#include <linux/blkdev.h>
  32#include <linux/file.h>
  33#include <linux/quotaops.h>
  34#include <linux/highmem.h>
  35#include <linux/export.h>
  36#include <linux/backing-dev.h>
  37#include <linux/writeback.h>
  38#include <linux/hash.h>
  39#include <linux/suspend.h>
  40#include <linux/buffer_head.h>
  41#include <linux/task_io_accounting_ops.h>
  42#include <linux/bio.h>
  43#include <linux/cpu.h>
  44#include <linux/bitops.h>
  45#include <linux/mpage.h>
  46#include <linux/bit_spinlock.h>
  47#include <linux/pagevec.h>
  48#include <linux/sched/mm.h>
  49#include <trace/events/block.h>
  50#include <linux/fscrypt.h>
  51#include <linux/fsverity.h>
  52#include <linux/sched/isolation.h>
  53
  54#include "internal.h"
  55
  56static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  57static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
  58			  enum rw_hint hint, struct writeback_control *wbc);
  59
  60#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  61
  62inline void touch_buffer(struct buffer_head *bh)
  63{
  64	trace_block_touch_buffer(bh);
  65	folio_mark_accessed(bh->b_folio);
  66}
  67EXPORT_SYMBOL(touch_buffer);
  68
  69void __lock_buffer(struct buffer_head *bh)
  70{
  71	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  72}
  73EXPORT_SYMBOL(__lock_buffer);
  74
  75void unlock_buffer(struct buffer_head *bh)
  76{
  77	clear_bit_unlock(BH_Lock, &bh->b_state);
  78	smp_mb__after_atomic();
  79	wake_up_bit(&bh->b_state, BH_Lock);
  80}
  81EXPORT_SYMBOL(unlock_buffer);
  82
  83/*
  84 * Returns if the folio has dirty or writeback buffers. If all the buffers
  85 * are unlocked and clean then the folio_test_dirty information is stale. If
  86 * any of the buffers are locked, it is assumed they are locked for IO.
  87 */
  88void buffer_check_dirty_writeback(struct folio *folio,
  89				     bool *dirty, bool *writeback)
  90{
  91	struct buffer_head *head, *bh;
  92	*dirty = false;
  93	*writeback = false;
  94
  95	BUG_ON(!folio_test_locked(folio));
  96
  97	head = folio_buffers(folio);
  98	if (!head)
  99		return;
 100
 101	if (folio_test_writeback(folio))
 102		*writeback = true;
 103
 
 104	bh = head;
 105	do {
 106		if (buffer_locked(bh))
 107			*writeback = true;
 108
 109		if (buffer_dirty(bh))
 110			*dirty = true;
 111
 112		bh = bh->b_this_page;
 113	} while (bh != head);
 114}
 
 115
 116/*
 117 * Block until a buffer comes unlocked.  This doesn't stop it
 118 * from becoming locked again - you have to lock it yourself
 119 * if you want to preserve its state.
 120 */
 121void __wait_on_buffer(struct buffer_head * bh)
 122{
 123	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 124}
 125EXPORT_SYMBOL(__wait_on_buffer);
 126
 127static void buffer_io_error(struct buffer_head *bh, char *msg)
 128{
 129	if (!test_bit(BH_Quiet, &bh->b_state))
 130		printk_ratelimited(KERN_ERR
 131			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 132			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 133}
 134
 135/*
 136 * End-of-IO handler helper function which does not touch the bh after
 137 * unlocking it.
 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 139 * a race there is benign: unlock_buffer() only use the bh's address for
 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 141 * itself.
 142 */
 143static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 144{
 145	if (uptodate) {
 146		set_buffer_uptodate(bh);
 147	} else {
 148		/* This happens, due to failed read-ahead attempts. */
 149		clear_buffer_uptodate(bh);
 150	}
 151	unlock_buffer(bh);
 152}
 153
 154/*
 155 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 156 * unlock the buffer.
 157 */
 158void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 159{
 160	__end_buffer_read_notouch(bh, uptodate);
 161	put_bh(bh);
 162}
 163EXPORT_SYMBOL(end_buffer_read_sync);
 164
 165void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 166{
 167	if (uptodate) {
 168		set_buffer_uptodate(bh);
 169	} else {
 170		buffer_io_error(bh, ", lost sync page write");
 171		mark_buffer_write_io_error(bh);
 172		clear_buffer_uptodate(bh);
 173	}
 174	unlock_buffer(bh);
 175	put_bh(bh);
 176}
 177EXPORT_SYMBOL(end_buffer_write_sync);
 178
 179/*
 180 * Various filesystems appear to want __find_get_block to be non-blocking.
 181 * But it's the page lock which protects the buffers.  To get around this,
 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 183 * i_private_lock.
 184 *
 185 * Hack idea: for the blockdev mapping, i_private_lock contention
 186 * may be quite high.  This code could TryLock the page, and if that
 187 * succeeds, there is no need to take i_private_lock.
 188 */
 189static struct buffer_head *
 190__find_get_block_slow(struct block_device *bdev, sector_t block)
 191{
 192	struct inode *bd_inode = bdev->bd_inode;
 193	struct address_space *bd_mapping = bd_inode->i_mapping;
 194	struct buffer_head *ret = NULL;
 195	pgoff_t index;
 196	struct buffer_head *bh;
 197	struct buffer_head *head;
 198	struct folio *folio;
 199	int all_mapped = 1;
 200	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
 201
 202	index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE;
 203	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
 204	if (IS_ERR(folio))
 205		goto out;
 206
 207	spin_lock(&bd_mapping->i_private_lock);
 208	head = folio_buffers(folio);
 209	if (!head)
 210		goto out_unlock;
 
 211	bh = head;
 212	do {
 213		if (!buffer_mapped(bh))
 214			all_mapped = 0;
 215		else if (bh->b_blocknr == block) {
 216			ret = bh;
 217			get_bh(bh);
 218			goto out_unlock;
 219		}
 220		bh = bh->b_this_page;
 221	} while (bh != head);
 222
 223	/* we might be here because some of the buffers on this page are
 224	 * not mapped.  This is due to various races between
 225	 * file io on the block device and getblk.  It gets dealt with
 226	 * elsewhere, don't buffer_error if we had some unmapped buffers
 227	 */
 228	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
 229	if (all_mapped && __ratelimit(&last_warned)) {
 230		printk("__find_get_block_slow() failed. block=%llu, "
 231		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
 232		       "device %pg blocksize: %d\n",
 233		       (unsigned long long)block,
 234		       (unsigned long long)bh->b_blocknr,
 235		       bh->b_state, bh->b_size, bdev,
 236		       1 << bd_inode->i_blkbits);
 237	}
 238out_unlock:
 239	spin_unlock(&bd_mapping->i_private_lock);
 240	folio_put(folio);
 241out:
 242	return ret;
 243}
 244
 245static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 246{
 247	unsigned long flags;
 248	struct buffer_head *first;
 249	struct buffer_head *tmp;
 250	struct folio *folio;
 251	int folio_uptodate = 1;
 252
 253	BUG_ON(!buffer_async_read(bh));
 254
 255	folio = bh->b_folio;
 256	if (uptodate) {
 257		set_buffer_uptodate(bh);
 258	} else {
 259		clear_buffer_uptodate(bh);
 260		buffer_io_error(bh, ", async page read");
 261		folio_set_error(folio);
 262	}
 263
 264	/*
 265	 * Be _very_ careful from here on. Bad things can happen if
 266	 * two buffer heads end IO at almost the same time and both
 267	 * decide that the page is now completely done.
 268	 */
 269	first = folio_buffers(folio);
 270	spin_lock_irqsave(&first->b_uptodate_lock, flags);
 271	clear_buffer_async_read(bh);
 272	unlock_buffer(bh);
 273	tmp = bh;
 274	do {
 275		if (!buffer_uptodate(tmp))
 276			folio_uptodate = 0;
 277		if (buffer_async_read(tmp)) {
 278			BUG_ON(!buffer_locked(tmp));
 279			goto still_busy;
 280		}
 281		tmp = tmp->b_this_page;
 282	} while (tmp != bh);
 283	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 284
 285	folio_end_read(folio, folio_uptodate);
 
 
 
 
 
 
 286	return;
 287
 288still_busy:
 289	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 290	return;
 291}
 292
 293struct postprocess_bh_ctx {
 294	struct work_struct work;
 295	struct buffer_head *bh;
 296};
 297
 298static void verify_bh(struct work_struct *work)
 299{
 300	struct postprocess_bh_ctx *ctx =
 301		container_of(work, struct postprocess_bh_ctx, work);
 302	struct buffer_head *bh = ctx->bh;
 303	bool valid;
 304
 305	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
 306	end_buffer_async_read(bh, valid);
 307	kfree(ctx);
 308}
 309
 310static bool need_fsverity(struct buffer_head *bh)
 311{
 312	struct folio *folio = bh->b_folio;
 313	struct inode *inode = folio->mapping->host;
 314
 315	return fsverity_active(inode) &&
 316		/* needed by ext4 */
 317		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
 318}
 319
 320static void decrypt_bh(struct work_struct *work)
 321{
 322	struct postprocess_bh_ctx *ctx =
 323		container_of(work, struct postprocess_bh_ctx, work);
 324	struct buffer_head *bh = ctx->bh;
 325	int err;
 326
 327	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
 328					       bh_offset(bh));
 329	if (err == 0 && need_fsverity(bh)) {
 330		/*
 331		 * We use different work queues for decryption and for verity
 332		 * because verity may require reading metadata pages that need
 333		 * decryption, and we shouldn't recurse to the same workqueue.
 334		 */
 335		INIT_WORK(&ctx->work, verify_bh);
 336		fsverity_enqueue_verify_work(&ctx->work);
 337		return;
 338	}
 339	end_buffer_async_read(bh, err == 0);
 340	kfree(ctx);
 341}
 342
 343/*
 344 * I/O completion handler for block_read_full_folio() - pages
 345 * which come unlocked at the end of I/O.
 346 */
 347static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
 348{
 349	struct inode *inode = bh->b_folio->mapping->host;
 350	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
 351	bool verify = need_fsverity(bh);
 352
 353	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
 354	if (uptodate && (decrypt || verify)) {
 355		struct postprocess_bh_ctx *ctx =
 356			kmalloc(sizeof(*ctx), GFP_ATOMIC);
 357
 358		if (ctx) {
 
 359			ctx->bh = bh;
 360			if (decrypt) {
 361				INIT_WORK(&ctx->work, decrypt_bh);
 362				fscrypt_enqueue_decrypt_work(&ctx->work);
 363			} else {
 364				INIT_WORK(&ctx->work, verify_bh);
 365				fsverity_enqueue_verify_work(&ctx->work);
 366			}
 367			return;
 368		}
 369		uptodate = 0;
 370	}
 371	end_buffer_async_read(bh, uptodate);
 372}
 373
 374/*
 375 * Completion handler for block_write_full_folio() - folios which are unlocked
 376 * during I/O, and which have the writeback flag cleared upon I/O completion.
 377 */
 378static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 379{
 380	unsigned long flags;
 381	struct buffer_head *first;
 382	struct buffer_head *tmp;
 383	struct folio *folio;
 384
 385	BUG_ON(!buffer_async_write(bh));
 386
 387	folio = bh->b_folio;
 388	if (uptodate) {
 389		set_buffer_uptodate(bh);
 390	} else {
 391		buffer_io_error(bh, ", lost async page write");
 392		mark_buffer_write_io_error(bh);
 393		clear_buffer_uptodate(bh);
 394		folio_set_error(folio);
 395	}
 396
 397	first = folio_buffers(folio);
 398	spin_lock_irqsave(&first->b_uptodate_lock, flags);
 399
 400	clear_buffer_async_write(bh);
 401	unlock_buffer(bh);
 402	tmp = bh->b_this_page;
 403	while (tmp != bh) {
 404		if (buffer_async_write(tmp)) {
 405			BUG_ON(!buffer_locked(tmp));
 406			goto still_busy;
 407		}
 408		tmp = tmp->b_this_page;
 409	}
 410	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 411	folio_end_writeback(folio);
 412	return;
 413
 414still_busy:
 415	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 416	return;
 417}
 
 418
 419/*
 420 * If a page's buffers are under async readin (end_buffer_async_read
 421 * completion) then there is a possibility that another thread of
 422 * control could lock one of the buffers after it has completed
 423 * but while some of the other buffers have not completed.  This
 424 * locked buffer would confuse end_buffer_async_read() into not unlocking
 425 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 426 * that this buffer is not under async I/O.
 427 *
 428 * The page comes unlocked when it has no locked buffer_async buffers
 429 * left.
 430 *
 431 * PageLocked prevents anyone starting new async I/O reads any of
 432 * the buffers.
 433 *
 434 * PageWriteback is used to prevent simultaneous writeout of the same
 435 * page.
 436 *
 437 * PageLocked prevents anyone from starting writeback of a page which is
 438 * under read I/O (PageWriteback is only ever set against a locked page).
 439 */
 440static void mark_buffer_async_read(struct buffer_head *bh)
 441{
 442	bh->b_end_io = end_buffer_async_read_io;
 443	set_buffer_async_read(bh);
 444}
 445
 446static void mark_buffer_async_write_endio(struct buffer_head *bh,
 447					  bh_end_io_t *handler)
 448{
 449	bh->b_end_io = handler;
 450	set_buffer_async_write(bh);
 451}
 452
 453void mark_buffer_async_write(struct buffer_head *bh)
 454{
 455	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 456}
 457EXPORT_SYMBOL(mark_buffer_async_write);
 458
 459
 460/*
 461 * fs/buffer.c contains helper functions for buffer-backed address space's
 462 * fsync functions.  A common requirement for buffer-based filesystems is
 463 * that certain data from the backing blockdev needs to be written out for
 464 * a successful fsync().  For example, ext2 indirect blocks need to be
 465 * written back and waited upon before fsync() returns.
 466 *
 467 * The functions mark_buffer_dirty_inode(), fsync_inode_buffers(),
 468 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 469 * management of a list of dependent buffers at ->i_mapping->i_private_list.
 470 *
 471 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 472 * from their controlling inode's queue when they are being freed.  But
 473 * try_to_free_buffers() will be operating against the *blockdev* mapping
 474 * at the time, not against the S_ISREG file which depends on those buffers.
 475 * So the locking for i_private_list is via the i_private_lock in the address_space
 476 * which backs the buffers.  Which is different from the address_space 
 477 * against which the buffers are listed.  So for a particular address_space,
 478 * mapping->i_private_lock does *not* protect mapping->i_private_list!  In fact,
 479 * mapping->i_private_list will always be protected by the backing blockdev's
 480 * ->i_private_lock.
 481 *
 482 * Which introduces a requirement: all buffers on an address_space's
 483 * ->i_private_list must be from the same address_space: the blockdev's.
 484 *
 485 * address_spaces which do not place buffers at ->i_private_list via these
 486 * utility functions are free to use i_private_lock and i_private_list for
 487 * whatever they want.  The only requirement is that list_empty(i_private_list)
 488 * be true at clear_inode() time.
 489 *
 490 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 491 * filesystems should do that.  invalidate_inode_buffers() should just go
 492 * BUG_ON(!list_empty).
 493 *
 494 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 495 * take an address_space, not an inode.  And it should be called
 496 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 497 * queued up.
 498 *
 499 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 500 * list if it is already on a list.  Because if the buffer is on a list,
 501 * it *must* already be on the right one.  If not, the filesystem is being
 502 * silly.  This will save a ton of locking.  But first we have to ensure
 503 * that buffers are taken *off* the old inode's list when they are freed
 504 * (presumably in truncate).  That requires careful auditing of all
 505 * filesystems (do it inside bforget()).  It could also be done by bringing
 506 * b_inode back.
 507 */
 508
 509/*
 510 * The buffer's backing address_space's i_private_lock must be held
 511 */
 512static void __remove_assoc_queue(struct buffer_head *bh)
 513{
 514	list_del_init(&bh->b_assoc_buffers);
 515	WARN_ON(!bh->b_assoc_map);
 516	bh->b_assoc_map = NULL;
 517}
 518
 519int inode_has_buffers(struct inode *inode)
 520{
 521	return !list_empty(&inode->i_data.i_private_list);
 522}
 523
 524/*
 525 * osync is designed to support O_SYNC io.  It waits synchronously for
 526 * all already-submitted IO to complete, but does not queue any new
 527 * writes to the disk.
 528 *
 529 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
 530 * as you dirty the buffers, and then use osync_inode_buffers to wait for
 531 * completion.  Any other dirty buffers which are not yet queued for
 532 * write will not be flushed to disk by the osync.
 533 */
 534static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 535{
 536	struct buffer_head *bh;
 537	struct list_head *p;
 538	int err = 0;
 539
 540	spin_lock(lock);
 541repeat:
 542	list_for_each_prev(p, list) {
 543		bh = BH_ENTRY(p);
 544		if (buffer_locked(bh)) {
 545			get_bh(bh);
 546			spin_unlock(lock);
 547			wait_on_buffer(bh);
 548			if (!buffer_uptodate(bh))
 549				err = -EIO;
 550			brelse(bh);
 551			spin_lock(lock);
 552			goto repeat;
 553		}
 554	}
 555	spin_unlock(lock);
 556	return err;
 557}
 558
 
 
 
 
 
 
 559/**
 560 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 561 * @mapping: the mapping which wants those buffers written
 562 *
 563 * Starts I/O against the buffers at mapping->i_private_list, and waits upon
 564 * that I/O.
 565 *
 566 * Basically, this is a convenience function for fsync().
 567 * @mapping is a file or directory which needs those buffers to be written for
 568 * a successful fsync().
 569 */
 570int sync_mapping_buffers(struct address_space *mapping)
 571{
 572	struct address_space *buffer_mapping = mapping->i_private_data;
 573
 574	if (buffer_mapping == NULL || list_empty(&mapping->i_private_list))
 575		return 0;
 576
 577	return fsync_buffers_list(&buffer_mapping->i_private_lock,
 578					&mapping->i_private_list);
 579}
 580EXPORT_SYMBOL(sync_mapping_buffers);
 581
 582/**
 583 * generic_buffers_fsync_noflush - generic buffer fsync implementation
 584 * for simple filesystems with no inode lock
 585 *
 586 * @file:	file to synchronize
 587 * @start:	start offset in bytes
 588 * @end:	end offset in bytes (inclusive)
 589 * @datasync:	only synchronize essential metadata if true
 590 *
 591 * This is a generic implementation of the fsync method for simple
 592 * filesystems which track all non-inode metadata in the buffers list
 593 * hanging off the address_space structure.
 594 */
 595int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
 596				  bool datasync)
 597{
 598	struct inode *inode = file->f_mapping->host;
 599	int err;
 600	int ret;
 601
 602	err = file_write_and_wait_range(file, start, end);
 603	if (err)
 604		return err;
 605
 606	ret = sync_mapping_buffers(inode->i_mapping);
 607	if (!(inode->i_state & I_DIRTY_ALL))
 608		goto out;
 609	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
 610		goto out;
 611
 612	err = sync_inode_metadata(inode, 1);
 613	if (ret == 0)
 614		ret = err;
 615
 616out:
 617	/* check and advance again to catch errors after syncing out buffers */
 618	err = file_check_and_advance_wb_err(file);
 619	if (ret == 0)
 620		ret = err;
 621	return ret;
 622}
 623EXPORT_SYMBOL(generic_buffers_fsync_noflush);
 624
 625/**
 626 * generic_buffers_fsync - generic buffer fsync implementation
 627 * for simple filesystems with no inode lock
 628 *
 629 * @file:	file to synchronize
 630 * @start:	start offset in bytes
 631 * @end:	end offset in bytes (inclusive)
 632 * @datasync:	only synchronize essential metadata if true
 633 *
 634 * This is a generic implementation of the fsync method for simple
 635 * filesystems which track all non-inode metadata in the buffers list
 636 * hanging off the address_space structure. This also makes sure that
 637 * a device cache flush operation is called at the end.
 638 */
 639int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
 640			  bool datasync)
 641{
 642	struct inode *inode = file->f_mapping->host;
 643	int ret;
 644
 645	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
 646	if (!ret)
 647		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
 648	return ret;
 649}
 650EXPORT_SYMBOL(generic_buffers_fsync);
 651
 652/*
 653 * Called when we've recently written block `bblock', and it is known that
 654 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 655 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 656 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 657 */
 658void write_boundary_block(struct block_device *bdev,
 659			sector_t bblock, unsigned blocksize)
 660{
 661	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 662	if (bh) {
 663		if (buffer_dirty(bh))
 664			write_dirty_buffer(bh, 0);
 665		put_bh(bh);
 666	}
 667}
 668
 669void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 670{
 671	struct address_space *mapping = inode->i_mapping;
 672	struct address_space *buffer_mapping = bh->b_folio->mapping;
 673
 674	mark_buffer_dirty(bh);
 675	if (!mapping->i_private_data) {
 676		mapping->i_private_data = buffer_mapping;
 677	} else {
 678		BUG_ON(mapping->i_private_data != buffer_mapping);
 679	}
 680	if (!bh->b_assoc_map) {
 681		spin_lock(&buffer_mapping->i_private_lock);
 682		list_move_tail(&bh->b_assoc_buffers,
 683				&mapping->i_private_list);
 684		bh->b_assoc_map = mapping;
 685		spin_unlock(&buffer_mapping->i_private_lock);
 686	}
 687}
 688EXPORT_SYMBOL(mark_buffer_dirty_inode);
 689
 690/*
 691 * Add a page to the dirty page list.
 692 *
 693 * It is a sad fact of life that this function is called from several places
 694 * deeply under spinlocking.  It may not sleep.
 695 *
 696 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 697 * dirty-state coherency between the page and the buffers.  It the page does
 698 * not have buffers then when they are later attached they will all be set
 699 * dirty.
 700 *
 701 * The buffers are dirtied before the page is dirtied.  There's a small race
 702 * window in which a writepage caller may see the page cleanness but not the
 703 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 704 * before the buffers, a concurrent writepage caller could clear the page dirty
 705 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 706 * page on the dirty page list.
 707 *
 708 * We use i_private_lock to lock against try_to_free_buffers while using the
 709 * page's buffer list.  Also use this to protect against clean buffers being
 710 * added to the page after it was set dirty.
 711 *
 712 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 713 * address_space though.
 714 */
 715bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
 716{
 717	struct buffer_head *head;
 718	bool newly_dirty;
 719
 720	spin_lock(&mapping->i_private_lock);
 721	head = folio_buffers(folio);
 722	if (head) {
 
 
 
 723		struct buffer_head *bh = head;
 724
 725		do {
 726			set_buffer_dirty(bh);
 727			bh = bh->b_this_page;
 728		} while (bh != head);
 729	}
 730	/*
 731	 * Lock out page's memcg migration to keep PageDirty
 732	 * synchronized with per-memcg dirty page counters.
 733	 */
 734	folio_memcg_lock(folio);
 735	newly_dirty = !folio_test_set_dirty(folio);
 736	spin_unlock(&mapping->i_private_lock);
 737
 738	if (newly_dirty)
 739		__folio_mark_dirty(folio, mapping, 1);
 740
 741	folio_memcg_unlock(folio);
 742
 743	if (newly_dirty)
 744		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 745
 746	return newly_dirty;
 747}
 748EXPORT_SYMBOL(block_dirty_folio);
 749
 750/*
 751 * Write out and wait upon a list of buffers.
 752 *
 753 * We have conflicting pressures: we want to make sure that all
 754 * initially dirty buffers get waited on, but that any subsequently
 755 * dirtied buffers don't.  After all, we don't want fsync to last
 756 * forever if somebody is actively writing to the file.
 757 *
 758 * Do this in two main stages: first we copy dirty buffers to a
 759 * temporary inode list, queueing the writes as we go.  Then we clean
 760 * up, waiting for those writes to complete.
 761 * 
 762 * During this second stage, any subsequent updates to the file may end
 763 * up refiling the buffer on the original inode's dirty list again, so
 764 * there is a chance we will end up with a buffer queued for write but
 765 * not yet completed on that list.  So, as a final cleanup we go through
 766 * the osync code to catch these locked, dirty buffers without requeuing
 767 * any newly dirty buffers for write.
 768 */
 769static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 770{
 771	struct buffer_head *bh;
 772	struct list_head tmp;
 773	struct address_space *mapping;
 774	int err = 0, err2;
 775	struct blk_plug plug;
 776
 777	INIT_LIST_HEAD(&tmp);
 778	blk_start_plug(&plug);
 779
 780	spin_lock(lock);
 781	while (!list_empty(list)) {
 782		bh = BH_ENTRY(list->next);
 783		mapping = bh->b_assoc_map;
 784		__remove_assoc_queue(bh);
 785		/* Avoid race with mark_buffer_dirty_inode() which does
 786		 * a lockless check and we rely on seeing the dirty bit */
 787		smp_mb();
 788		if (buffer_dirty(bh) || buffer_locked(bh)) {
 789			list_add(&bh->b_assoc_buffers, &tmp);
 790			bh->b_assoc_map = mapping;
 791			if (buffer_dirty(bh)) {
 792				get_bh(bh);
 793				spin_unlock(lock);
 794				/*
 795				 * Ensure any pending I/O completes so that
 796				 * write_dirty_buffer() actually writes the
 797				 * current contents - it is a noop if I/O is
 798				 * still in flight on potentially older
 799				 * contents.
 800				 */
 801				write_dirty_buffer(bh, REQ_SYNC);
 802
 803				/*
 804				 * Kick off IO for the previous mapping. Note
 805				 * that we will not run the very last mapping,
 806				 * wait_on_buffer() will do that for us
 807				 * through sync_buffer().
 808				 */
 809				brelse(bh);
 810				spin_lock(lock);
 811			}
 812		}
 813	}
 814
 815	spin_unlock(lock);
 816	blk_finish_plug(&plug);
 817	spin_lock(lock);
 818
 819	while (!list_empty(&tmp)) {
 820		bh = BH_ENTRY(tmp.prev);
 821		get_bh(bh);
 822		mapping = bh->b_assoc_map;
 823		__remove_assoc_queue(bh);
 824		/* Avoid race with mark_buffer_dirty_inode() which does
 825		 * a lockless check and we rely on seeing the dirty bit */
 826		smp_mb();
 827		if (buffer_dirty(bh)) {
 828			list_add(&bh->b_assoc_buffers,
 829				 &mapping->i_private_list);
 830			bh->b_assoc_map = mapping;
 831		}
 832		spin_unlock(lock);
 833		wait_on_buffer(bh);
 834		if (!buffer_uptodate(bh))
 835			err = -EIO;
 836		brelse(bh);
 837		spin_lock(lock);
 838	}
 839	
 840	spin_unlock(lock);
 841	err2 = osync_buffers_list(lock, list);
 842	if (err)
 843		return err;
 844	else
 845		return err2;
 846}
 847
 848/*
 849 * Invalidate any and all dirty buffers on a given inode.  We are
 850 * probably unmounting the fs, but that doesn't mean we have already
 851 * done a sync().  Just drop the buffers from the inode list.
 852 *
 853 * NOTE: we take the inode's blockdev's mapping's i_private_lock.  Which
 854 * assumes that all the buffers are against the blockdev.  Not true
 855 * for reiserfs.
 856 */
 857void invalidate_inode_buffers(struct inode *inode)
 858{
 859	if (inode_has_buffers(inode)) {
 860		struct address_space *mapping = &inode->i_data;
 861		struct list_head *list = &mapping->i_private_list;
 862		struct address_space *buffer_mapping = mapping->i_private_data;
 863
 864		spin_lock(&buffer_mapping->i_private_lock);
 865		while (!list_empty(list))
 866			__remove_assoc_queue(BH_ENTRY(list->next));
 867		spin_unlock(&buffer_mapping->i_private_lock);
 868	}
 869}
 870EXPORT_SYMBOL(invalidate_inode_buffers);
 871
 872/*
 873 * Remove any clean buffers from the inode's buffer list.  This is called
 874 * when we're trying to free the inode itself.  Those buffers can pin it.
 875 *
 876 * Returns true if all buffers were removed.
 877 */
 878int remove_inode_buffers(struct inode *inode)
 879{
 880	int ret = 1;
 881
 882	if (inode_has_buffers(inode)) {
 883		struct address_space *mapping = &inode->i_data;
 884		struct list_head *list = &mapping->i_private_list;
 885		struct address_space *buffer_mapping = mapping->i_private_data;
 886
 887		spin_lock(&buffer_mapping->i_private_lock);
 888		while (!list_empty(list)) {
 889			struct buffer_head *bh = BH_ENTRY(list->next);
 890			if (buffer_dirty(bh)) {
 891				ret = 0;
 892				break;
 893			}
 894			__remove_assoc_queue(bh);
 895		}
 896		spin_unlock(&buffer_mapping->i_private_lock);
 897	}
 898	return ret;
 899}
 900
 901/*
 902 * Create the appropriate buffers when given a folio for data area and
 903 * the size of each buffer.. Use the bh->b_this_page linked list to
 904 * follow the buffers created.  Return NULL if unable to create more
 905 * buffers.
 906 *
 907 * The retry flag is used to differentiate async IO (paging, swapping)
 908 * which may not fail from ordinary buffer allocations.
 909 */
 910struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
 911					gfp_t gfp)
 912{
 913	struct buffer_head *bh, *head;
 
 914	long offset;
 915	struct mem_cgroup *memcg, *old_memcg;
 916
 917	/* The folio lock pins the memcg */
 918	memcg = folio_memcg(folio);
 
 
 
 919	old_memcg = set_active_memcg(memcg);
 920
 921	head = NULL;
 922	offset = folio_size(folio);
 923	while ((offset -= size) >= 0) {
 924		bh = alloc_buffer_head(gfp);
 925		if (!bh)
 926			goto no_grow;
 927
 928		bh->b_this_page = head;
 929		bh->b_blocknr = -1;
 930		head = bh;
 931
 932		bh->b_size = size;
 933
 934		/* Link the buffer to its folio */
 935		folio_set_bh(bh, folio, offset);
 936	}
 937out:
 938	set_active_memcg(old_memcg);
 939	return head;
 940/*
 941 * In case anything failed, we just free everything we got.
 942 */
 943no_grow:
 944	if (head) {
 945		do {
 946			bh = head;
 947			head = head->b_this_page;
 948			free_buffer_head(bh);
 949		} while (head);
 950	}
 951
 952	goto out;
 953}
 954EXPORT_SYMBOL_GPL(folio_alloc_buffers);
 955
 956struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 957				       bool retry)
 958{
 959	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
 960	if (retry)
 961		gfp |= __GFP_NOFAIL;
 962
 963	return folio_alloc_buffers(page_folio(page), size, gfp);
 964}
 965EXPORT_SYMBOL_GPL(alloc_page_buffers);
 966
 967static inline void link_dev_buffers(struct folio *folio,
 968		struct buffer_head *head)
 969{
 970	struct buffer_head *bh, *tail;
 971
 972	bh = head;
 973	do {
 974		tail = bh;
 975		bh = bh->b_this_page;
 976	} while (bh);
 977	tail->b_this_page = head;
 978	folio_attach_private(folio, head);
 979}
 980
 981static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 982{
 983	sector_t retval = ~((sector_t)0);
 984	loff_t sz = bdev_nr_bytes(bdev);
 985
 986	if (sz) {
 987		unsigned int sizebits = blksize_bits(size);
 988		retval = (sz >> sizebits);
 989	}
 990	return retval;
 991}
 992
 993/*
 994 * Initialise the state of a blockdev folio's buffers.
 995 */ 
 996static sector_t folio_init_buffers(struct folio *folio,
 997		struct block_device *bdev, unsigned size)
 
 998{
 999	struct buffer_head *head = folio_buffers(folio);
1000	struct buffer_head *bh = head;
1001	bool uptodate = folio_test_uptodate(folio);
1002	sector_t block = div_u64(folio_pos(folio), size);
1003	sector_t end_block = blkdev_max_block(bdev, size);
1004
1005	do {
1006		if (!buffer_mapped(bh)) {
1007			bh->b_end_io = NULL;
1008			bh->b_private = NULL;
1009			bh->b_bdev = bdev;
1010			bh->b_blocknr = block;
1011			if (uptodate)
1012				set_buffer_uptodate(bh);
1013			if (block < end_block)
1014				set_buffer_mapped(bh);
1015		}
1016		block++;
1017		bh = bh->b_this_page;
1018	} while (bh != head);
1019
1020	/*
1021	 * Caller needs to validate requested block against end of device.
1022	 */
1023	return end_block;
1024}
1025
1026/*
1027 * Create the page-cache folio that contains the requested block.
1028 *
1029 * This is used purely for blockdev mappings.
1030 *
1031 * Returns false if we have a failure which cannot be cured by retrying
1032 * without sleeping.  Returns true if we succeeded, or the caller should retry.
1033 */
1034static bool grow_dev_folio(struct block_device *bdev, sector_t block,
1035		pgoff_t index, unsigned size, gfp_t gfp)
 
1036{
1037	struct inode *inode = bdev->bd_inode;
1038	struct folio *folio;
1039	struct buffer_head *bh;
1040	sector_t end_block = 0;
 
 
1041
1042	folio = __filemap_get_folio(inode->i_mapping, index,
1043			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1044	if (IS_ERR(folio))
1045		return false;
1046
1047	bh = folio_buffers(folio);
1048	if (bh) {
1049		if (bh->b_size == size) {
1050			end_block = folio_init_buffers(folio, bdev, size);
1051			goto unlock;
1052		}
 
1053
1054		/*
1055		 * Retrying may succeed; for example the folio may finish
1056		 * writeback, or buffers may be cleaned.  This should not
1057		 * happen very often; maybe we have old buffers attached to
1058		 * this blockdev's page cache and we're trying to change
1059		 * the block size?
1060		 */
1061		if (!try_to_free_buffers(folio)) {
1062			end_block = ~0ULL;
1063			goto unlock;
 
1064		}
 
 
1065	}
1066
1067	bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1068	if (!bh)
1069		goto unlock;
 
1070
1071	/*
1072	 * Link the folio to the buffers and initialise them.  Take the
1073	 * lock to be atomic wrt __find_get_block(), which does not
1074	 * run under the folio lock.
1075	 */
1076	spin_lock(&inode->i_mapping->i_private_lock);
1077	link_dev_buffers(folio, bh);
1078	end_block = folio_init_buffers(folio, bdev, size);
1079	spin_unlock(&inode->i_mapping->i_private_lock);
1080unlock:
1081	folio_unlock(folio);
1082	folio_put(folio);
1083	return block < end_block;
 
 
 
1084}
1085
1086/*
1087 * Create buffers for the specified block device block's folio.  If
1088 * that folio was dirty, the buffers are set dirty also.  Returns false
1089 * if we've hit a permanent error.
1090 */
1091static bool grow_buffers(struct block_device *bdev, sector_t block,
1092		unsigned size, gfp_t gfp)
1093{
1094	loff_t pos;
 
 
 
 
1095
1096	/*
1097	 * Check for a block which lies outside our maximum possible
1098	 * pagecache index.
1099	 */
1100	if (check_mul_overflow(block, (sector_t)size, &pos) || pos > MAX_LFS_FILESIZE) {
1101		printk(KERN_ERR "%s: requested out-of-range block %llu for device %pg\n",
 
1102			__func__, (unsigned long long)block,
1103			bdev);
1104		return false;
1105	}
1106
1107	/* Create a folio with the proper size buffers */
1108	return grow_dev_folio(bdev, block, pos / PAGE_SIZE, size, gfp);
1109}
1110
1111static struct buffer_head *
1112__getblk_slow(struct block_device *bdev, sector_t block,
1113	     unsigned size, gfp_t gfp)
1114{
1115	/* Size must be multiple of hard sectorsize */
1116	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1117			(size < 512 || size > PAGE_SIZE))) {
1118		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1119					size);
1120		printk(KERN_ERR "logical block size: %d\n",
1121					bdev_logical_block_size(bdev));
1122
1123		dump_stack();
1124		return NULL;
1125	}
1126
1127	for (;;) {
1128		struct buffer_head *bh;
 
1129
1130		bh = __find_get_block(bdev, block, size);
1131		if (bh)
1132			return bh;
1133
1134		if (!grow_buffers(bdev, block, size, gfp))
 
1135			return NULL;
1136	}
1137}
1138
1139/*
1140 * The relationship between dirty buffers and dirty pages:
1141 *
1142 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1143 * the page is tagged dirty in the page cache.
1144 *
1145 * At all times, the dirtiness of the buffers represents the dirtiness of
1146 * subsections of the page.  If the page has buffers, the page dirty bit is
1147 * merely a hint about the true dirty state.
1148 *
1149 * When a page is set dirty in its entirety, all its buffers are marked dirty
1150 * (if the page has buffers).
1151 *
1152 * When a buffer is marked dirty, its page is dirtied, but the page's other
1153 * buffers are not.
1154 *
1155 * Also.  When blockdev buffers are explicitly read with bread(), they
1156 * individually become uptodate.  But their backing page remains not
1157 * uptodate - even if all of its buffers are uptodate.  A subsequent
1158 * block_read_full_folio() against that folio will discover all the uptodate
1159 * buffers, will set the folio uptodate and will perform no I/O.
1160 */
1161
1162/**
1163 * mark_buffer_dirty - mark a buffer_head as needing writeout
1164 * @bh: the buffer_head to mark dirty
1165 *
1166 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1167 * its backing page dirty, then tag the page as dirty in the page cache
1168 * and then attach the address_space's inode to its superblock's dirty
1169 * inode list.
1170 *
1171 * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->i_private_lock,
1172 * i_pages lock and mapping->host->i_lock.
1173 */
1174void mark_buffer_dirty(struct buffer_head *bh)
1175{
1176	WARN_ON_ONCE(!buffer_uptodate(bh));
1177
1178	trace_block_dirty_buffer(bh);
1179
1180	/*
1181	 * Very *carefully* optimize the it-is-already-dirty case.
1182	 *
1183	 * Don't let the final "is it dirty" escape to before we
1184	 * perhaps modified the buffer.
1185	 */
1186	if (buffer_dirty(bh)) {
1187		smp_mb();
1188		if (buffer_dirty(bh))
1189			return;
1190	}
1191
1192	if (!test_set_buffer_dirty(bh)) {
1193		struct folio *folio = bh->b_folio;
1194		struct address_space *mapping = NULL;
1195
1196		folio_memcg_lock(folio);
1197		if (!folio_test_set_dirty(folio)) {
1198			mapping = folio->mapping;
1199			if (mapping)
1200				__folio_mark_dirty(folio, mapping, 0);
1201		}
1202		folio_memcg_unlock(folio);
1203		if (mapping)
1204			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1205	}
1206}
1207EXPORT_SYMBOL(mark_buffer_dirty);
1208
1209void mark_buffer_write_io_error(struct buffer_head *bh)
1210{
 
 
1211	set_buffer_write_io_error(bh);
1212	/* FIXME: do we need to set this in both places? */
1213	if (bh->b_folio && bh->b_folio->mapping)
1214		mapping_set_error(bh->b_folio->mapping, -EIO);
1215	if (bh->b_assoc_map) {
1216		mapping_set_error(bh->b_assoc_map, -EIO);
1217		errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1218	}
 
 
 
1219}
1220EXPORT_SYMBOL(mark_buffer_write_io_error);
1221
1222/*
1223 * Decrement a buffer_head's reference count.  If all buffers against a page
1224 * have zero reference count, are clean and unlocked, and if the page is clean
1225 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1226 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1227 * a page but it ends up not being freed, and buffers may later be reattached).
1228 */
1229void __brelse(struct buffer_head * buf)
1230{
1231	if (atomic_read(&buf->b_count)) {
1232		put_bh(buf);
1233		return;
1234	}
1235	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1236}
1237EXPORT_SYMBOL(__brelse);
1238
1239/*
1240 * bforget() is like brelse(), except it discards any
1241 * potentially dirty data.
1242 */
1243void __bforget(struct buffer_head *bh)
1244{
1245	clear_buffer_dirty(bh);
1246	if (bh->b_assoc_map) {
1247		struct address_space *buffer_mapping = bh->b_folio->mapping;
1248
1249		spin_lock(&buffer_mapping->i_private_lock);
1250		list_del_init(&bh->b_assoc_buffers);
1251		bh->b_assoc_map = NULL;
1252		spin_unlock(&buffer_mapping->i_private_lock);
1253	}
1254	__brelse(bh);
1255}
1256EXPORT_SYMBOL(__bforget);
1257
1258static struct buffer_head *__bread_slow(struct buffer_head *bh)
1259{
1260	lock_buffer(bh);
1261	if (buffer_uptodate(bh)) {
1262		unlock_buffer(bh);
1263		return bh;
1264	} else {
1265		get_bh(bh);
1266		bh->b_end_io = end_buffer_read_sync;
1267		submit_bh(REQ_OP_READ, bh);
1268		wait_on_buffer(bh);
1269		if (buffer_uptodate(bh))
1270			return bh;
1271	}
1272	brelse(bh);
1273	return NULL;
1274}
1275
1276/*
1277 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1278 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1279 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1280 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1281 * CPU's LRUs at the same time.
1282 *
1283 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1284 * sb_find_get_block().
1285 *
1286 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1287 * a local interrupt disable for that.
1288 */
1289
1290#define BH_LRU_SIZE	16
1291
1292struct bh_lru {
1293	struct buffer_head *bhs[BH_LRU_SIZE];
1294};
1295
1296static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1297
1298#ifdef CONFIG_SMP
1299#define bh_lru_lock()	local_irq_disable()
1300#define bh_lru_unlock()	local_irq_enable()
1301#else
1302#define bh_lru_lock()	preempt_disable()
1303#define bh_lru_unlock()	preempt_enable()
1304#endif
1305
1306static inline void check_irqs_on(void)
1307{
1308#ifdef irqs_disabled
1309	BUG_ON(irqs_disabled());
1310#endif
1311}
1312
1313/*
1314 * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1315 * inserted at the front, and the buffer_head at the back if any is evicted.
1316 * Or, if already in the LRU it is moved to the front.
1317 */
1318static void bh_lru_install(struct buffer_head *bh)
1319{
1320	struct buffer_head *evictee = bh;
1321	struct bh_lru *b;
1322	int i;
1323
1324	check_irqs_on();
1325	bh_lru_lock();
1326
1327	/*
1328	 * the refcount of buffer_head in bh_lru prevents dropping the
1329	 * attached page(i.e., try_to_free_buffers) so it could cause
1330	 * failing page migration.
1331	 * Skip putting upcoming bh into bh_lru until migration is done.
1332	 */
1333	if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1334		bh_lru_unlock();
1335		return;
1336	}
 
1337
1338	b = this_cpu_ptr(&bh_lrus);
1339	for (i = 0; i < BH_LRU_SIZE; i++) {
1340		swap(evictee, b->bhs[i]);
1341		if (evictee == bh) {
1342			bh_lru_unlock();
1343			return;
1344		}
1345	}
1346
1347	get_bh(bh);
1348	bh_lru_unlock();
1349	brelse(evictee);
1350}
1351
1352/*
1353 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1354 */
1355static struct buffer_head *
1356lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1357{
1358	struct buffer_head *ret = NULL;
1359	unsigned int i;
1360
1361	check_irqs_on();
1362	bh_lru_lock();
1363	if (cpu_is_isolated(smp_processor_id())) {
1364		bh_lru_unlock();
1365		return NULL;
1366	}
1367	for (i = 0; i < BH_LRU_SIZE; i++) {
1368		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1369
1370		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1371		    bh->b_size == size) {
1372			if (i) {
1373				while (i) {
1374					__this_cpu_write(bh_lrus.bhs[i],
1375						__this_cpu_read(bh_lrus.bhs[i - 1]));
1376					i--;
1377				}
1378				__this_cpu_write(bh_lrus.bhs[0], bh);
1379			}
1380			get_bh(bh);
1381			ret = bh;
1382			break;
1383		}
1384	}
1385	bh_lru_unlock();
1386	return ret;
1387}
1388
1389/*
1390 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1391 * it in the LRU and mark it as accessed.  If it is not present then return
1392 * NULL
1393 */
1394struct buffer_head *
1395__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1396{
1397	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1398
1399	if (bh == NULL) {
1400		/* __find_get_block_slow will mark the page accessed */
1401		bh = __find_get_block_slow(bdev, block);
1402		if (bh)
1403			bh_lru_install(bh);
1404	} else
1405		touch_buffer(bh);
1406
1407	return bh;
1408}
1409EXPORT_SYMBOL(__find_get_block);
1410
1411/**
1412 * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1413 * @bdev: The block device.
1414 * @block: The block number.
1415 * @size: The size of buffer_heads for this @bdev.
1416 * @gfp: The memory allocation flags to use.
1417 *
1418 * Return: The buffer head, or NULL if memory could not be allocated.
 
1419 */
1420struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1421		unsigned size, gfp_t gfp)
 
1422{
1423	struct buffer_head *bh = __find_get_block(bdev, block, size);
1424
1425	might_alloc(gfp);
1426	if (bh)
1427		return bh;
1428
1429	return __getblk_slow(bdev, block, size, gfp);
1430}
1431EXPORT_SYMBOL(bdev_getblk);
1432
1433/*
1434 * Do async read-ahead on a buffer..
1435 */
1436void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1437{
1438	struct buffer_head *bh = bdev_getblk(bdev, block, size,
1439			GFP_NOWAIT | __GFP_MOVABLE);
1440
1441	if (likely(bh)) {
1442		bh_readahead(bh, REQ_RAHEAD);
1443		brelse(bh);
1444	}
1445}
1446EXPORT_SYMBOL(__breadahead);
1447
 
 
 
 
 
 
 
 
 
 
 
1448/**
1449 *  __bread_gfp() - reads a specified block and returns the bh
1450 *  @bdev: the block_device to read from
1451 *  @block: number of block
1452 *  @size: size (in bytes) to read
1453 *  @gfp: page allocation flag
1454 *
1455 *  Reads a specified block, and returns buffer head that contains it.
1456 *  The page cache can be allocated from non-movable area
1457 *  not to prevent page migration if you set gfp to zero.
1458 *  It returns NULL if the block was unreadable.
1459 */
1460struct buffer_head *
1461__bread_gfp(struct block_device *bdev, sector_t block,
1462		   unsigned size, gfp_t gfp)
1463{
1464	struct buffer_head *bh;
1465
1466	gfp |= mapping_gfp_constraint(bdev->bd_inode->i_mapping, ~__GFP_FS);
1467
1468	/*
1469	 * Prefer looping in the allocator rather than here, at least that
1470	 * code knows what it's doing.
1471	 */
1472	gfp |= __GFP_NOFAIL;
1473
1474	bh = bdev_getblk(bdev, block, size, gfp);
1475
1476	if (likely(bh) && !buffer_uptodate(bh))
1477		bh = __bread_slow(bh);
1478	return bh;
1479}
1480EXPORT_SYMBOL(__bread_gfp);
1481
1482static void __invalidate_bh_lrus(struct bh_lru *b)
1483{
1484	int i;
1485
1486	for (i = 0; i < BH_LRU_SIZE; i++) {
1487		brelse(b->bhs[i]);
1488		b->bhs[i] = NULL;
1489	}
1490}
1491/*
1492 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1493 * This doesn't race because it runs in each cpu either in irq
1494 * or with preempt disabled.
1495 */
1496static void invalidate_bh_lru(void *arg)
1497{
1498	struct bh_lru *b = &get_cpu_var(bh_lrus);
1499
1500	__invalidate_bh_lrus(b);
1501	put_cpu_var(bh_lrus);
1502}
1503
1504bool has_bh_in_lru(int cpu, void *dummy)
1505{
1506	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1507	int i;
1508	
1509	for (i = 0; i < BH_LRU_SIZE; i++) {
1510		if (b->bhs[i])
1511			return true;
1512	}
1513
1514	return false;
1515}
1516
1517void invalidate_bh_lrus(void)
1518{
1519	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1520}
1521EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1522
1523/*
1524 * It's called from workqueue context so we need a bh_lru_lock to close
1525 * the race with preemption/irq.
1526 */
1527void invalidate_bh_lrus_cpu(void)
1528{
1529	struct bh_lru *b;
1530
1531	bh_lru_lock();
1532	b = this_cpu_ptr(&bh_lrus);
1533	__invalidate_bh_lrus(b);
1534	bh_lru_unlock();
1535}
1536
1537void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1538		  unsigned long offset)
1539{
1540	bh->b_folio = folio;
1541	BUG_ON(offset >= folio_size(folio));
1542	if (folio_test_highmem(folio))
1543		/*
1544		 * This catches illegal uses and preserves the offset:
1545		 */
1546		bh->b_data = (char *)(0 + offset);
1547	else
1548		bh->b_data = folio_address(folio) + offset;
1549}
1550EXPORT_SYMBOL(folio_set_bh);
1551
1552/*
1553 * Called when truncating a buffer on a page completely.
1554 */
1555
1556/* Bits that are cleared during an invalidate */
1557#define BUFFER_FLAGS_DISCARD \
1558	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1559	 1 << BH_Delay | 1 << BH_Unwritten)
1560
1561static void discard_buffer(struct buffer_head * bh)
1562{
1563	unsigned long b_state;
1564
1565	lock_buffer(bh);
1566	clear_buffer_dirty(bh);
1567	bh->b_bdev = NULL;
1568	b_state = READ_ONCE(bh->b_state);
1569	do {
1570	} while (!try_cmpxchg(&bh->b_state, &b_state,
1571			      b_state & ~BUFFER_FLAGS_DISCARD));
 
 
 
 
1572	unlock_buffer(bh);
1573}
1574
1575/**
1576 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1577 * @folio: The folio which is affected.
 
1578 * @offset: start of the range to invalidate
1579 * @length: length of the range to invalidate
1580 *
1581 * block_invalidate_folio() is called when all or part of the folio has been
1582 * invalidated by a truncate operation.
1583 *
1584 * block_invalidate_folio() does not have to release all buffers, but it must
1585 * ensure that no dirty buffer is left outside @offset and that no I/O
1586 * is underway against any of the blocks which are outside the truncation
1587 * point.  Because the caller is about to free (and possibly reuse) those
1588 * blocks on-disk.
1589 */
1590void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
 
1591{
1592	struct buffer_head *head, *bh, *next;
1593	size_t curr_off = 0;
1594	size_t stop = length + offset;
1595
1596	BUG_ON(!folio_test_locked(folio));
 
 
1597
1598	/*
1599	 * Check for overflow
1600	 */
1601	BUG_ON(stop > folio_size(folio) || stop < length);
1602
1603	head = folio_buffers(folio);
1604	if (!head)
1605		return;
1606
 
1607	bh = head;
1608	do {
1609		size_t next_off = curr_off + bh->b_size;
1610		next = bh->b_this_page;
1611
1612		/*
1613		 * Are we still fully in range ?
1614		 */
1615		if (next_off > stop)
1616			goto out;
1617
1618		/*
1619		 * is this block fully invalidated?
1620		 */
1621		if (offset <= curr_off)
1622			discard_buffer(bh);
1623		curr_off = next_off;
1624		bh = next;
1625	} while (bh != head);
1626
1627	/*
1628	 * We release buffers only if the entire folio is being invalidated.
1629	 * The get_block cached value has been unconditionally invalidated,
1630	 * so real IO is not possible anymore.
1631	 */
1632	if (length == folio_size(folio))
1633		filemap_release_folio(folio, 0);
1634out:
1635	return;
1636}
1637EXPORT_SYMBOL(block_invalidate_folio);
 
1638
1639/*
1640 * We attach and possibly dirty the buffers atomically wrt
1641 * block_dirty_folio() via i_private_lock.  try_to_free_buffers
1642 * is already excluded via the folio lock.
1643 */
1644struct buffer_head *create_empty_buffers(struct folio *folio,
1645		unsigned long blocksize, unsigned long b_state)
1646{
1647	struct buffer_head *bh, *head, *tail;
1648	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1649
1650	head = folio_alloc_buffers(folio, blocksize, gfp);
1651	bh = head;
1652	do {
1653		bh->b_state |= b_state;
1654		tail = bh;
1655		bh = bh->b_this_page;
1656	} while (bh);
1657	tail->b_this_page = head;
1658
1659	spin_lock(&folio->mapping->i_private_lock);
1660	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1661		bh = head;
1662		do {
1663			if (folio_test_dirty(folio))
1664				set_buffer_dirty(bh);
1665			if (folio_test_uptodate(folio))
1666				set_buffer_uptodate(bh);
1667			bh = bh->b_this_page;
1668		} while (bh != head);
1669	}
1670	folio_attach_private(folio, head);
1671	spin_unlock(&folio->mapping->i_private_lock);
1672
1673	return head;
1674}
1675EXPORT_SYMBOL(create_empty_buffers);
1676
1677/**
1678 * clean_bdev_aliases: clean a range of buffers in block device
1679 * @bdev: Block device to clean buffers in
1680 * @block: Start of a range of blocks to clean
1681 * @len: Number of blocks to clean
1682 *
1683 * We are taking a range of blocks for data and we don't want writeback of any
1684 * buffer-cache aliases starting from return from this function and until the
1685 * moment when something will explicitly mark the buffer dirty (hopefully that
1686 * will not happen until we will free that block ;-) We don't even need to mark
1687 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1688 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1689 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1690 * would confuse anyone who might pick it with bread() afterwards...
1691 *
1692 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1693 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1694 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1695 * need to.  That happens here.
1696 */
1697void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1698{
1699	struct inode *bd_inode = bdev->bd_inode;
1700	struct address_space *bd_mapping = bd_inode->i_mapping;
1701	struct folio_batch fbatch;
1702	pgoff_t index = ((loff_t)block << bd_inode->i_blkbits) / PAGE_SIZE;
1703	pgoff_t end;
1704	int i, count;
1705	struct buffer_head *bh;
1706	struct buffer_head *head;
1707
1708	end = ((loff_t)(block + len - 1) << bd_inode->i_blkbits) / PAGE_SIZE;
1709	folio_batch_init(&fbatch);
1710	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1711		count = folio_batch_count(&fbatch);
1712		for (i = 0; i < count; i++) {
1713			struct folio *folio = fbatch.folios[i];
1714
1715			if (!folio_buffers(folio))
1716				continue;
1717			/*
1718			 * We use folio lock instead of bd_mapping->i_private_lock
1719			 * to pin buffers here since we can afford to sleep and
1720			 * it scales better than a global spinlock lock.
1721			 */
1722			folio_lock(folio);
1723			/* Recheck when the folio is locked which pins bhs */
1724			head = folio_buffers(folio);
1725			if (!head)
1726				goto unlock_page;
 
1727			bh = head;
1728			do {
1729				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1730					goto next;
1731				if (bh->b_blocknr >= block + len)
1732					break;
1733				clear_buffer_dirty(bh);
1734				wait_on_buffer(bh);
1735				clear_buffer_req(bh);
1736next:
1737				bh = bh->b_this_page;
1738			} while (bh != head);
1739unlock_page:
1740			folio_unlock(folio);
1741		}
1742		folio_batch_release(&fbatch);
1743		cond_resched();
1744		/* End of range already reached? */
1745		if (index > end || !index)
1746			break;
1747	}
1748}
1749EXPORT_SYMBOL(clean_bdev_aliases);
1750
1751static struct buffer_head *folio_create_buffers(struct folio *folio,
1752						struct inode *inode,
1753						unsigned int b_state)
 
 
 
 
 
 
1754{
1755	struct buffer_head *bh;
 
1756
1757	BUG_ON(!folio_test_locked(folio));
 
 
1758
1759	bh = folio_buffers(folio);
1760	if (!bh)
1761		bh = create_empty_buffers(folio,
1762				1 << READ_ONCE(inode->i_blkbits), b_state);
1763	return bh;
1764}
1765
1766/*
1767 * NOTE! All mapped/uptodate combinations are valid:
1768 *
1769 *	Mapped	Uptodate	Meaning
1770 *
1771 *	No	No		"unknown" - must do get_block()
1772 *	No	Yes		"hole" - zero-filled
1773 *	Yes	No		"allocated" - allocated on disk, not read in
1774 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1775 *
1776 * "Dirty" is valid only with the last case (mapped+uptodate).
1777 */
1778
1779/*
1780 * While block_write_full_folio is writing back the dirty buffers under
1781 * the page lock, whoever dirtied the buffers may decide to clean them
1782 * again at any time.  We handle that by only looking at the buffer
1783 * state inside lock_buffer().
1784 *
1785 * If block_write_full_folio() is called for regular writeback
1786 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1787 * locked buffer.   This only can happen if someone has written the buffer
1788 * directly, with submit_bh().  At the address_space level PageWriteback
1789 * prevents this contention from occurring.
1790 *
1791 * If block_write_full_folio() is called with wbc->sync_mode ==
1792 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1793 * causes the writes to be flagged as synchronous writes.
1794 */
1795int __block_write_full_folio(struct inode *inode, struct folio *folio,
1796			get_block_t *get_block, struct writeback_control *wbc)
 
1797{
1798	int err;
1799	sector_t block;
1800	sector_t last_block;
1801	struct buffer_head *bh, *head;
1802	size_t blocksize;
1803	int nr_underway = 0;
1804	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1805
1806	head = folio_create_buffers(folio, inode,
1807				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1808
1809	/*
1810	 * Be very careful.  We have no exclusion from block_dirty_folio
1811	 * here, and the (potentially unmapped) buffers may become dirty at
1812	 * any time.  If a buffer becomes dirty here after we've inspected it
1813	 * then we just miss that fact, and the folio stays dirty.
1814	 *
1815	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1816	 * handle that here by just cleaning them.
1817	 */
1818
1819	bh = head;
1820	blocksize = bh->b_size;
 
1821
1822	block = div_u64(folio_pos(folio), blocksize);
1823	last_block = div_u64(i_size_read(inode) - 1, blocksize);
1824
1825	/*
1826	 * Get all the dirty buffers mapped to disk addresses and
1827	 * handle any aliases from the underlying blockdev's mapping.
1828	 */
1829	do {
1830		if (block > last_block) {
1831			/*
1832			 * mapped buffers outside i_size will occur, because
1833			 * this folio can be outside i_size when there is a
1834			 * truncate in progress.
1835			 */
1836			/*
1837			 * The buffer was zeroed by block_write_full_folio()
1838			 */
1839			clear_buffer_dirty(bh);
1840			set_buffer_uptodate(bh);
1841		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1842			   buffer_dirty(bh)) {
1843			WARN_ON(bh->b_size != blocksize);
1844			err = get_block(inode, block, bh, 1);
1845			if (err)
1846				goto recover;
1847			clear_buffer_delay(bh);
1848			if (buffer_new(bh)) {
1849				/* blockdev mappings never come here */
1850				clear_buffer_new(bh);
1851				clean_bdev_bh_alias(bh);
1852			}
1853		}
1854		bh = bh->b_this_page;
1855		block++;
1856	} while (bh != head);
1857
1858	do {
1859		if (!buffer_mapped(bh))
1860			continue;
1861		/*
1862		 * If it's a fully non-blocking write attempt and we cannot
1863		 * lock the buffer then redirty the folio.  Note that this can
1864		 * potentially cause a busy-wait loop from writeback threads
1865		 * and kswapd activity, but those code paths have their own
1866		 * higher-level throttling.
1867		 */
1868		if (wbc->sync_mode != WB_SYNC_NONE) {
1869			lock_buffer(bh);
1870		} else if (!trylock_buffer(bh)) {
1871			folio_redirty_for_writepage(wbc, folio);
1872			continue;
1873		}
1874		if (test_clear_buffer_dirty(bh)) {
1875			mark_buffer_async_write_endio(bh,
1876				end_buffer_async_write);
1877		} else {
1878			unlock_buffer(bh);
1879		}
1880	} while ((bh = bh->b_this_page) != head);
1881
1882	/*
1883	 * The folio and its buffers are protected by the writeback flag,
1884	 * so we can drop the bh refcounts early.
1885	 */
1886	BUG_ON(folio_test_writeback(folio));
1887	folio_start_writeback(folio);
1888
1889	do {
1890		struct buffer_head *next = bh->b_this_page;
1891		if (buffer_async_write(bh)) {
1892			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1893				      inode->i_write_hint, wbc);
1894			nr_underway++;
1895		}
1896		bh = next;
1897	} while (bh != head);
1898	folio_unlock(folio);
1899
1900	err = 0;
1901done:
1902	if (nr_underway == 0) {
1903		/*
1904		 * The folio was marked dirty, but the buffers were
1905		 * clean.  Someone wrote them back by hand with
1906		 * write_dirty_buffer/submit_bh.  A rare case.
1907		 */
1908		folio_end_writeback(folio);
1909
1910		/*
1911		 * The folio and buffer_heads can be released at any time from
1912		 * here on.
1913		 */
1914	}
1915	return err;
1916
1917recover:
1918	/*
1919	 * ENOSPC, or some other error.  We may already have added some
1920	 * blocks to the file, so we need to write these out to avoid
1921	 * exposing stale data.
1922	 * The folio is currently locked and not marked for writeback
1923	 */
1924	bh = head;
1925	/* Recovery: lock and submit the mapped buffers */
1926	do {
1927		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1928		    !buffer_delay(bh)) {
1929			lock_buffer(bh);
1930			mark_buffer_async_write_endio(bh,
1931				end_buffer_async_write);
1932		} else {
1933			/*
1934			 * The buffer may have been set dirty during
1935			 * attachment to a dirty folio.
1936			 */
1937			clear_buffer_dirty(bh);
1938		}
1939	} while ((bh = bh->b_this_page) != head);
1940	folio_set_error(folio);
1941	BUG_ON(folio_test_writeback(folio));
1942	mapping_set_error(folio->mapping, err);
1943	folio_start_writeback(folio);
1944	do {
1945		struct buffer_head *next = bh->b_this_page;
1946		if (buffer_async_write(bh)) {
1947			clear_buffer_dirty(bh);
1948			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh,
1949				      inode->i_write_hint, wbc);
1950			nr_underway++;
1951		}
1952		bh = next;
1953	} while (bh != head);
1954	folio_unlock(folio);
1955	goto done;
1956}
1957EXPORT_SYMBOL(__block_write_full_folio);
1958
1959/*
1960 * If a folio has any new buffers, zero them out here, and mark them uptodate
1961 * and dirty so they'll be written out (in order to prevent uninitialised
1962 * block data from leaking). And clear the new bit.
1963 */
1964void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1965{
1966	size_t block_start, block_end;
1967	struct buffer_head *head, *bh;
1968
1969	BUG_ON(!folio_test_locked(folio));
1970	head = folio_buffers(folio);
1971	if (!head)
1972		return;
1973
1974	bh = head;
1975	block_start = 0;
1976	do {
1977		block_end = block_start + bh->b_size;
1978
1979		if (buffer_new(bh)) {
1980			if (block_end > from && block_start < to) {
1981				if (!folio_test_uptodate(folio)) {
1982					size_t start, xend;
1983
1984					start = max(from, block_start);
1985					xend = min(to, block_end);
1986
1987					folio_zero_segment(folio, start, xend);
1988					set_buffer_uptodate(bh);
1989				}
1990
1991				clear_buffer_new(bh);
1992				mark_buffer_dirty(bh);
1993			}
1994		}
1995
1996		block_start = block_end;
1997		bh = bh->b_this_page;
1998	} while (bh != head);
1999}
2000EXPORT_SYMBOL(folio_zero_new_buffers);
2001
2002static int
2003iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2004		const struct iomap *iomap)
2005{
2006	loff_t offset = (loff_t)block << inode->i_blkbits;
2007
2008	bh->b_bdev = iomap->bdev;
2009
2010	/*
2011	 * Block points to offset in file we need to map, iomap contains
2012	 * the offset at which the map starts. If the map ends before the
2013	 * current block, then do not map the buffer and let the caller
2014	 * handle it.
2015	 */
2016	if (offset >= iomap->offset + iomap->length)
2017		return -EIO;
2018
2019	switch (iomap->type) {
2020	case IOMAP_HOLE:
2021		/*
2022		 * If the buffer is not up to date or beyond the current EOF,
2023		 * we need to mark it as new to ensure sub-block zeroing is
2024		 * executed if necessary.
2025		 */
2026		if (!buffer_uptodate(bh) ||
2027		    (offset >= i_size_read(inode)))
2028			set_buffer_new(bh);
2029		return 0;
2030	case IOMAP_DELALLOC:
2031		if (!buffer_uptodate(bh) ||
2032		    (offset >= i_size_read(inode)))
2033			set_buffer_new(bh);
2034		set_buffer_uptodate(bh);
2035		set_buffer_mapped(bh);
2036		set_buffer_delay(bh);
2037		return 0;
2038	case IOMAP_UNWRITTEN:
2039		/*
2040		 * For unwritten regions, we always need to ensure that regions
2041		 * in the block we are not writing to are zeroed. Mark the
2042		 * buffer as new to ensure this.
2043		 */
2044		set_buffer_new(bh);
2045		set_buffer_unwritten(bh);
2046		fallthrough;
2047	case IOMAP_MAPPED:
2048		if ((iomap->flags & IOMAP_F_NEW) ||
2049		    offset >= i_size_read(inode)) {
2050			/*
2051			 * This can happen if truncating the block device races
2052			 * with the check in the caller as i_size updates on
2053			 * block devices aren't synchronized by i_rwsem for
2054			 * block devices.
2055			 */
2056			if (S_ISBLK(inode->i_mode))
2057				return -EIO;
2058			set_buffer_new(bh);
2059		}
2060		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2061				inode->i_blkbits;
2062		set_buffer_mapped(bh);
2063		return 0;
2064	default:
2065		WARN_ON_ONCE(1);
2066		return -EIO;
2067	}
2068}
2069
2070int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2071		get_block_t *get_block, const struct iomap *iomap)
2072{
2073	size_t from = offset_in_folio(folio, pos);
2074	size_t to = from + len;
2075	struct inode *inode = folio->mapping->host;
2076	size_t block_start, block_end;
2077	sector_t block;
2078	int err = 0;
2079	size_t blocksize;
2080	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2081
2082	BUG_ON(!folio_test_locked(folio));
2083	BUG_ON(to > folio_size(folio));
 
2084	BUG_ON(from > to);
2085
2086	head = folio_create_buffers(folio, inode, 0);
2087	blocksize = head->b_size;
2088	block = div_u64(folio_pos(folio), blocksize);
2089
2090	for (bh = head, block_start = 0; bh != head || !block_start;
 
 
2091	    block++, block_start=block_end, bh = bh->b_this_page) {
2092		block_end = block_start + blocksize;
2093		if (block_end <= from || block_start >= to) {
2094			if (folio_test_uptodate(folio)) {
2095				if (!buffer_uptodate(bh))
2096					set_buffer_uptodate(bh);
2097			}
2098			continue;
2099		}
2100		if (buffer_new(bh))
2101			clear_buffer_new(bh);
2102		if (!buffer_mapped(bh)) {
2103			WARN_ON(bh->b_size != blocksize);
2104			if (get_block)
2105				err = get_block(inode, block, bh, 1);
2106			else
2107				err = iomap_to_bh(inode, block, bh, iomap);
2108			if (err)
2109				break;
 
2110
2111			if (buffer_new(bh)) {
2112				clean_bdev_bh_alias(bh);
2113				if (folio_test_uptodate(folio)) {
2114					clear_buffer_new(bh);
2115					set_buffer_uptodate(bh);
2116					mark_buffer_dirty(bh);
2117					continue;
2118				}
2119				if (block_end > to || block_start < from)
2120					folio_zero_segments(folio,
2121						to, block_end,
2122						block_start, from);
2123				continue;
2124			}
2125		}
2126		if (folio_test_uptodate(folio)) {
2127			if (!buffer_uptodate(bh))
2128				set_buffer_uptodate(bh);
2129			continue; 
2130		}
2131		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2132		    !buffer_unwritten(bh) &&
2133		     (block_start < from || block_end > to)) {
2134			bh_read_nowait(bh, 0);
2135			*wait_bh++=bh;
2136		}
2137	}
2138	/*
2139	 * If we issued read requests - let them complete.
2140	 */
2141	while(wait_bh > wait) {
2142		wait_on_buffer(*--wait_bh);
2143		if (!buffer_uptodate(*wait_bh))
2144			err = -EIO;
2145	}
2146	if (unlikely(err))
2147		folio_zero_new_buffers(folio, from, to);
2148	return err;
2149}
2150
2151int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2152		get_block_t *get_block)
2153{
2154	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2155				       NULL);
2156}
2157EXPORT_SYMBOL(__block_write_begin);
2158
2159static void __block_commit_write(struct folio *folio, size_t from, size_t to)
 
2160{
2161	size_t block_start, block_end;
2162	bool partial = false;
2163	unsigned blocksize;
2164	struct buffer_head *bh, *head;
2165
2166	bh = head = folio_buffers(folio);
2167	blocksize = bh->b_size;
2168
2169	block_start = 0;
2170	do {
2171		block_end = block_start + blocksize;
2172		if (block_end <= from || block_start >= to) {
2173			if (!buffer_uptodate(bh))
2174				partial = true;
2175		} else {
2176			set_buffer_uptodate(bh);
2177			mark_buffer_dirty(bh);
2178		}
2179		if (buffer_new(bh))
2180			clear_buffer_new(bh);
2181
2182		block_start = block_end;
2183		bh = bh->b_this_page;
2184	} while (bh != head);
2185
2186	/*
2187	 * If this is a partial write which happened to make all buffers
2188	 * uptodate then we can optimize away a bogus read_folio() for
2189	 * the next read(). Here we 'discover' whether the folio went
2190	 * uptodate as a result of this (potentially partial) write.
2191	 */
2192	if (!partial)
2193		folio_mark_uptodate(folio);
 
2194}
2195
2196/*
2197 * block_write_begin takes care of the basic task of block allocation and
2198 * bringing partial write blocks uptodate first.
2199 *
2200 * The filesystem needs to handle block truncation upon failure.
2201 */
2202int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2203		struct page **pagep, get_block_t *get_block)
2204{
2205	pgoff_t index = pos >> PAGE_SHIFT;
2206	struct page *page;
2207	int status;
2208
2209	page = grab_cache_page_write_begin(mapping, index);
2210	if (!page)
2211		return -ENOMEM;
2212
2213	status = __block_write_begin(page, pos, len, get_block);
2214	if (unlikely(status)) {
2215		unlock_page(page);
2216		put_page(page);
2217		page = NULL;
2218	}
2219
2220	*pagep = page;
2221	return status;
2222}
2223EXPORT_SYMBOL(block_write_begin);
2224
2225int block_write_end(struct file *file, struct address_space *mapping,
2226			loff_t pos, unsigned len, unsigned copied,
2227			struct page *page, void *fsdata)
2228{
2229	struct folio *folio = page_folio(page);
2230	size_t start = pos - folio_pos(folio);
 
 
2231
2232	if (unlikely(copied < len)) {
2233		/*
2234		 * The buffers that were written will now be uptodate, so
2235		 * we don't have to worry about a read_folio reading them
2236		 * and overwriting a partial write. However if we have
2237		 * encountered a short write and only partially written
2238		 * into a buffer, it will not be marked uptodate, so a
2239		 * read_folio might come in and destroy our partial write.
2240		 *
2241		 * Do the simplest thing, and just treat any short write to a
2242		 * non uptodate folio as a zero-length write, and force the
2243		 * caller to redo the whole thing.
2244		 */
2245		if (!folio_test_uptodate(folio))
2246			copied = 0;
2247
2248		folio_zero_new_buffers(folio, start+copied, start+len);
2249	}
2250	flush_dcache_folio(folio);
2251
2252	/* This could be a short (even 0-length) commit */
2253	__block_commit_write(folio, start, start + copied);
2254
2255	return copied;
2256}
2257EXPORT_SYMBOL(block_write_end);
2258
2259int generic_write_end(struct file *file, struct address_space *mapping,
2260			loff_t pos, unsigned len, unsigned copied,
2261			struct page *page, void *fsdata)
2262{
2263	struct inode *inode = mapping->host;
2264	loff_t old_size = inode->i_size;
2265	bool i_size_changed = false;
2266
2267	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2268
2269	/*
2270	 * No need to use i_size_read() here, the i_size cannot change under us
2271	 * because we hold i_rwsem.
2272	 *
2273	 * But it's important to update i_size while still holding page lock:
2274	 * page writeout could otherwise come in and zero beyond i_size.
2275	 */
2276	if (pos + copied > inode->i_size) {
2277		i_size_write(inode, pos + copied);
2278		i_size_changed = true;
2279	}
2280
2281	unlock_page(page);
2282	put_page(page);
2283
2284	if (old_size < pos)
2285		pagecache_isize_extended(inode, old_size, pos);
2286	/*
2287	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2288	 * makes the holding time of page lock longer. Second, it forces lock
2289	 * ordering of page lock and transaction start for journaling
2290	 * filesystems.
2291	 */
2292	if (i_size_changed)
2293		mark_inode_dirty(inode);
2294	return copied;
2295}
2296EXPORT_SYMBOL(generic_write_end);
2297
2298/*
2299 * block_is_partially_uptodate checks whether buffers within a folio are
2300 * uptodate or not.
2301 *
2302 * Returns true if all buffers which correspond to the specified part
2303 * of the folio are uptodate.
2304 */
2305bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
 
2306{
2307	unsigned block_start, block_end, blocksize;
2308	unsigned to;
2309	struct buffer_head *bh, *head;
2310	bool ret = true;
 
 
 
2311
2312	head = folio_buffers(folio);
2313	if (!head)
2314		return false;
2315	blocksize = head->b_size;
2316	to = min_t(unsigned, folio_size(folio) - from, count);
2317	to = from + to;
2318	if (from < blocksize && to > folio_size(folio) - blocksize)
2319		return false;
2320
2321	bh = head;
2322	block_start = 0;
2323	do {
2324		block_end = block_start + blocksize;
2325		if (block_end > from && block_start < to) {
2326			if (!buffer_uptodate(bh)) {
2327				ret = false;
2328				break;
2329			}
2330			if (block_end >= to)
2331				break;
2332		}
2333		block_start = block_end;
2334		bh = bh->b_this_page;
2335	} while (bh != head);
2336
2337	return ret;
2338}
2339EXPORT_SYMBOL(block_is_partially_uptodate);
2340
2341/*
2342 * Generic "read_folio" function for block devices that have the normal
2343 * get_block functionality. This is most of the block device filesystems.
2344 * Reads the folio asynchronously --- the unlock_buffer() and
2345 * set/clear_buffer_uptodate() functions propagate buffer state into the
2346 * folio once IO has completed.
2347 */
2348int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2349{
2350	struct inode *inode = folio->mapping->host;
2351	sector_t iblock, lblock;
2352	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2353	size_t blocksize;
2354	int nr, i;
2355	int fully_mapped = 1;
2356	bool page_error = false;
2357	loff_t limit = i_size_read(inode);
2358
2359	/* This is needed for ext4. */
2360	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2361		limit = inode->i_sb->s_maxbytes;
2362
2363	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2364
2365	head = folio_create_buffers(folio, inode, 0);
2366	blocksize = head->b_size;
 
2367
2368	iblock = div_u64(folio_pos(folio), blocksize);
2369	lblock = div_u64(limit + blocksize - 1, blocksize);
2370	bh = head;
2371	nr = 0;
2372	i = 0;
2373
2374	do {
2375		if (buffer_uptodate(bh))
2376			continue;
2377
2378		if (!buffer_mapped(bh)) {
2379			int err = 0;
2380
2381			fully_mapped = 0;
2382			if (iblock < lblock) {
2383				WARN_ON(bh->b_size != blocksize);
2384				err = get_block(inode, iblock, bh, 0);
2385				if (err) {
2386					folio_set_error(folio);
2387					page_error = true;
2388				}
2389			}
2390			if (!buffer_mapped(bh)) {
2391				folio_zero_range(folio, i * blocksize,
2392						blocksize);
2393				if (!err)
2394					set_buffer_uptodate(bh);
2395				continue;
2396			}
2397			/*
2398			 * get_block() might have updated the buffer
2399			 * synchronously
2400			 */
2401			if (buffer_uptodate(bh))
2402				continue;
2403		}
2404		arr[nr++] = bh;
2405	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2406
2407	if (fully_mapped)
2408		folio_set_mappedtodisk(folio);
2409
2410	if (!nr) {
2411		/*
2412		 * All buffers are uptodate or get_block() returned an
2413		 * error when trying to map them - we can finish the read.
2414		 */
2415		folio_end_read(folio, !page_error);
 
 
2416		return 0;
2417	}
2418
2419	/* Stage two: lock the buffers */
2420	for (i = 0; i < nr; i++) {
2421		bh = arr[i];
2422		lock_buffer(bh);
2423		mark_buffer_async_read(bh);
2424	}
2425
2426	/*
2427	 * Stage 3: start the IO.  Check for uptodateness
2428	 * inside the buffer lock in case another process reading
2429	 * the underlying blockdev brought it uptodate (the sct fix).
2430	 */
2431	for (i = 0; i < nr; i++) {
2432		bh = arr[i];
2433		if (buffer_uptodate(bh))
2434			end_buffer_async_read(bh, 1);
2435		else
2436			submit_bh(REQ_OP_READ, bh);
2437	}
2438	return 0;
2439}
2440EXPORT_SYMBOL(block_read_full_folio);
2441
2442/* utility function for filesystems that need to do work on expanding
2443 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2444 * deal with the hole.  
2445 */
2446int generic_cont_expand_simple(struct inode *inode, loff_t size)
2447{
2448	struct address_space *mapping = inode->i_mapping;
2449	const struct address_space_operations *aops = mapping->a_ops;
2450	struct page *page;
2451	void *fsdata = NULL;
2452	int err;
2453
2454	err = inode_newsize_ok(inode, size);
2455	if (err)
2456		goto out;
2457
2458	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
 
2459	if (err)
2460		goto out;
2461
2462	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2463	BUG_ON(err > 0);
2464
2465out:
2466	return err;
2467}
2468EXPORT_SYMBOL(generic_cont_expand_simple);
2469
2470static int cont_expand_zero(struct file *file, struct address_space *mapping,
2471			    loff_t pos, loff_t *bytes)
2472{
2473	struct inode *inode = mapping->host;
2474	const struct address_space_operations *aops = mapping->a_ops;
2475	unsigned int blocksize = i_blocksize(inode);
2476	struct page *page;
2477	void *fsdata = NULL;
2478	pgoff_t index, curidx;
2479	loff_t curpos;
2480	unsigned zerofrom, offset, len;
2481	int err = 0;
2482
2483	index = pos >> PAGE_SHIFT;
2484	offset = pos & ~PAGE_MASK;
2485
2486	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2487		zerofrom = curpos & ~PAGE_MASK;
2488		if (zerofrom & (blocksize-1)) {
2489			*bytes |= (blocksize-1);
2490			(*bytes)++;
2491		}
2492		len = PAGE_SIZE - zerofrom;
2493
2494		err = aops->write_begin(file, mapping, curpos, len,
2495					    &page, &fsdata);
2496		if (err)
2497			goto out;
2498		zero_user(page, zerofrom, len);
2499		err = aops->write_end(file, mapping, curpos, len, len,
2500						page, fsdata);
2501		if (err < 0)
2502			goto out;
2503		BUG_ON(err != len);
2504		err = 0;
2505
2506		balance_dirty_pages_ratelimited(mapping);
2507
2508		if (fatal_signal_pending(current)) {
2509			err = -EINTR;
2510			goto out;
2511		}
2512	}
2513
2514	/* page covers the boundary, find the boundary offset */
2515	if (index == curidx) {
2516		zerofrom = curpos & ~PAGE_MASK;
2517		/* if we will expand the thing last block will be filled */
2518		if (offset <= zerofrom) {
2519			goto out;
2520		}
2521		if (zerofrom & (blocksize-1)) {
2522			*bytes |= (blocksize-1);
2523			(*bytes)++;
2524		}
2525		len = offset - zerofrom;
2526
2527		err = aops->write_begin(file, mapping, curpos, len,
2528					    &page, &fsdata);
2529		if (err)
2530			goto out;
2531		zero_user(page, zerofrom, len);
2532		err = aops->write_end(file, mapping, curpos, len, len,
2533						page, fsdata);
2534		if (err < 0)
2535			goto out;
2536		BUG_ON(err != len);
2537		err = 0;
2538	}
2539out:
2540	return err;
2541}
2542
2543/*
2544 * For moronic filesystems that do not allow holes in file.
2545 * We may have to extend the file.
2546 */
2547int cont_write_begin(struct file *file, struct address_space *mapping,
2548			loff_t pos, unsigned len,
2549			struct page **pagep, void **fsdata,
2550			get_block_t *get_block, loff_t *bytes)
2551{
2552	struct inode *inode = mapping->host;
2553	unsigned int blocksize = i_blocksize(inode);
2554	unsigned int zerofrom;
2555	int err;
2556
2557	err = cont_expand_zero(file, mapping, pos, bytes);
2558	if (err)
2559		return err;
2560
2561	zerofrom = *bytes & ~PAGE_MASK;
2562	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2563		*bytes |= (blocksize-1);
2564		(*bytes)++;
2565	}
2566
2567	return block_write_begin(mapping, pos, len, pagep, get_block);
2568}
2569EXPORT_SYMBOL(cont_write_begin);
2570
2571void block_commit_write(struct page *page, unsigned from, unsigned to)
2572{
2573	struct folio *folio = page_folio(page);
2574	__block_commit_write(folio, from, to);
 
2575}
2576EXPORT_SYMBOL(block_commit_write);
2577
2578/*
2579 * block_page_mkwrite() is not allowed to change the file size as it gets
2580 * called from a page fault handler when a page is first dirtied. Hence we must
2581 * be careful to check for EOF conditions here. We set the page up correctly
2582 * for a written page which means we get ENOSPC checking when writing into
2583 * holes and correct delalloc and unwritten extent mapping on filesystems that
2584 * support these features.
2585 *
2586 * We are not allowed to take the i_mutex here so we have to play games to
2587 * protect against truncate races as the page could now be beyond EOF.  Because
2588 * truncate writes the inode size before removing pages, once we have the
2589 * page lock we can determine safely if the page is beyond EOF. If it is not
2590 * beyond EOF, then the page is guaranteed safe against truncation until we
2591 * unlock the page.
2592 *
2593 * Direct callers of this function should protect against filesystem freezing
2594 * using sb_start_pagefault() - sb_end_pagefault() functions.
2595 */
2596int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2597			 get_block_t get_block)
2598{
2599	struct folio *folio = page_folio(vmf->page);
2600	struct inode *inode = file_inode(vma->vm_file);
2601	unsigned long end;
2602	loff_t size;
2603	int ret;
2604
2605	folio_lock(folio);
2606	size = i_size_read(inode);
2607	if ((folio->mapping != inode->i_mapping) ||
2608	    (folio_pos(folio) >= size)) {
2609		/* We overload EFAULT to mean page got truncated */
2610		ret = -EFAULT;
2611		goto out_unlock;
2612	}
2613
2614	end = folio_size(folio);
2615	/* folio is wholly or partially inside EOF */
2616	if (folio_pos(folio) + end > size)
2617		end = size - folio_pos(folio);
2618
2619	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2620	if (unlikely(ret))
2621		goto out_unlock;
2622
2623	__block_commit_write(folio, 0, end);
 
 
2624
2625	folio_mark_dirty(folio);
2626	folio_wait_stable(folio);
 
 
2627	return 0;
2628out_unlock:
2629	folio_unlock(folio);
2630	return ret;
2631}
2632EXPORT_SYMBOL(block_page_mkwrite);
2633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634int block_truncate_page(struct address_space *mapping,
2635			loff_t from, get_block_t *get_block)
2636{
2637	pgoff_t index = from >> PAGE_SHIFT;
 
2638	unsigned blocksize;
2639	sector_t iblock;
2640	size_t offset, length, pos;
2641	struct inode *inode = mapping->host;
2642	struct folio *folio;
2643	struct buffer_head *bh;
2644	int err = 0;
2645
2646	blocksize = i_blocksize(inode);
2647	length = from & (blocksize - 1);
2648
2649	/* Block boundary? Nothing to do */
2650	if (!length)
2651		return 0;
2652
2653	length = blocksize - length;
2654	iblock = ((loff_t)index * PAGE_SIZE) >> inode->i_blkbits;
 
 
 
 
 
2655
2656	folio = filemap_grab_folio(mapping, index);
2657	if (IS_ERR(folio))
2658		return PTR_ERR(folio);
2659
2660	bh = folio_buffers(folio);
2661	if (!bh)
2662		bh = create_empty_buffers(folio, blocksize, 0);
2663
2664	/* Find the buffer that contains "offset" */
2665	offset = offset_in_folio(folio, from);
2666	pos = blocksize;
2667	while (offset >= pos) {
2668		bh = bh->b_this_page;
2669		iblock++;
2670		pos += blocksize;
2671	}
2672
 
2673	if (!buffer_mapped(bh)) {
2674		WARN_ON(bh->b_size != blocksize);
2675		err = get_block(inode, iblock, bh, 0);
2676		if (err)
2677			goto unlock;
2678		/* unmapped? It's a hole - nothing to do */
2679		if (!buffer_mapped(bh))
2680			goto unlock;
2681	}
2682
2683	/* Ok, it's mapped. Make sure it's up-to-date */
2684	if (folio_test_uptodate(folio))
2685		set_buffer_uptodate(bh);
2686
2687	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2688		err = bh_read(bh, 0);
 
 
2689		/* Uhhuh. Read error. Complain and punt. */
2690		if (err < 0)
2691			goto unlock;
2692	}
2693
2694	folio_zero_range(folio, offset, length);
2695	mark_buffer_dirty(bh);
 
2696
2697unlock:
2698	folio_unlock(folio);
2699	folio_put(folio);
2700
2701	return err;
2702}
2703EXPORT_SYMBOL(block_truncate_page);
2704
2705/*
2706 * The generic ->writepage function for buffer-backed address_spaces
2707 */
2708int block_write_full_folio(struct folio *folio, struct writeback_control *wbc,
2709		void *get_block)
2710{
2711	struct inode * const inode = folio->mapping->host;
2712	loff_t i_size = i_size_read(inode);
 
 
2713
2714	/* Is the folio fully inside i_size? */
2715	if (folio_pos(folio) + folio_size(folio) <= i_size)
2716		return __block_write_full_folio(inode, folio, get_block, wbc);
2717
2718	/* Is the folio fully outside i_size? (truncate in progress) */
2719	if (folio_pos(folio) >= i_size) {
2720		folio_unlock(folio);
 
 
2721		return 0; /* don't care */
2722	}
2723
2724	/*
2725	 * The folio straddles i_size.  It must be zeroed out on each and every
2726	 * writepage invocation because it may be mmapped.  "A file is mapped
2727	 * in multiples of the page size.  For a file that is not a multiple of
2728	 * the page size, the remaining memory is zeroed when mapped, and
2729	 * writes to that region are not written out to the file."
2730	 */
2731	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2732			folio_size(folio));
2733	return __block_write_full_folio(inode, folio, get_block, wbc);
2734}
 
2735
2736sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2737			    get_block_t *get_block)
2738{
2739	struct inode *inode = mapping->host;
2740	struct buffer_head tmp = {
2741		.b_size = i_blocksize(inode),
2742	};
2743
2744	get_block(inode, block, &tmp, 0);
2745	return tmp.b_blocknr;
2746}
2747EXPORT_SYMBOL(generic_block_bmap);
2748
2749static void end_bio_bh_io_sync(struct bio *bio)
2750{
2751	struct buffer_head *bh = bio->bi_private;
2752
2753	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2754		set_bit(BH_Quiet, &bh->b_state);
2755
2756	bh->b_end_io(bh, !bio->bi_status);
2757	bio_put(bio);
2758}
2759
2760static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2761			  enum rw_hint write_hint,
2762			  struct writeback_control *wbc)
2763{
2764	const enum req_op op = opf & REQ_OP_MASK;
2765	struct bio *bio;
2766
2767	BUG_ON(!buffer_locked(bh));
2768	BUG_ON(!buffer_mapped(bh));
2769	BUG_ON(!bh->b_end_io);
2770	BUG_ON(buffer_delay(bh));
2771	BUG_ON(buffer_unwritten(bh));
2772
2773	/*
2774	 * Only clear out a write error when rewriting
2775	 */
2776	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2777		clear_buffer_write_io_error(bh);
2778
2779	if (buffer_meta(bh))
2780		opf |= REQ_META;
2781	if (buffer_prio(bh))
2782		opf |= REQ_PRIO;
2783
2784	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2785
2786	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2787
2788	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 
2789	bio->bi_write_hint = write_hint;
2790
2791	__bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 
2792
2793	bio->bi_end_io = end_bio_bh_io_sync;
2794	bio->bi_private = bh;
2795
 
 
 
 
 
 
2796	/* Take care of bh's that straddle the end of the device */
2797	guard_bio_eod(bio);
2798
2799	if (wbc) {
2800		wbc_init_bio(wbc, bio);
2801		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2802	}
2803
2804	submit_bio(bio);
 
2805}
2806
2807void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2808{
2809	submit_bh_wbc(opf, bh, WRITE_LIFE_NOT_SET, NULL);
2810}
2811EXPORT_SYMBOL(submit_bh);
2812
2813void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2814{
2815	lock_buffer(bh);
2816	if (!test_clear_buffer_dirty(bh)) {
2817		unlock_buffer(bh);
2818		return;
2819	}
2820	bh->b_end_io = end_buffer_write_sync;
2821	get_bh(bh);
2822	submit_bh(REQ_OP_WRITE | op_flags, bh);
2823}
2824EXPORT_SYMBOL(write_dirty_buffer);
2825
2826/*
2827 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2828 * and then start new I/O and then wait upon it.  The caller must have a ref on
2829 * the buffer_head.
2830 */
2831int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2832{
 
 
2833	WARN_ON(atomic_read(&bh->b_count) < 1);
2834	lock_buffer(bh);
2835	if (test_clear_buffer_dirty(bh)) {
2836		/*
2837		 * The bh should be mapped, but it might not be if the
2838		 * device was hot-removed. Not much we can do but fail the I/O.
2839		 */
2840		if (!buffer_mapped(bh)) {
2841			unlock_buffer(bh);
2842			return -EIO;
2843		}
2844
2845		get_bh(bh);
2846		bh->b_end_io = end_buffer_write_sync;
2847		submit_bh(REQ_OP_WRITE | op_flags, bh);
2848		wait_on_buffer(bh);
2849		if (!buffer_uptodate(bh))
2850			return -EIO;
2851	} else {
2852		unlock_buffer(bh);
2853	}
2854	return 0;
2855}
2856EXPORT_SYMBOL(__sync_dirty_buffer);
2857
2858int sync_dirty_buffer(struct buffer_head *bh)
2859{
2860	return __sync_dirty_buffer(bh, REQ_SYNC);
2861}
2862EXPORT_SYMBOL(sync_dirty_buffer);
2863
2864/*
2865 * try_to_free_buffers() checks if all the buffers on this particular folio
2866 * are unused, and releases them if so.
2867 *
2868 * Exclusion against try_to_free_buffers may be obtained by either
2869 * locking the folio or by holding its mapping's i_private_lock.
2870 *
2871 * If the folio is dirty but all the buffers are clean then we need to
2872 * be sure to mark the folio clean as well.  This is because the folio
2873 * may be against a block device, and a later reattachment of buffers
2874 * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2875 * filesystem data on the same device.
2876 *
2877 * The same applies to regular filesystem folios: if all the buffers are
2878 * clean then we set the folio clean and proceed.  To do that, we require
2879 * total exclusion from block_dirty_folio().  That is obtained with
2880 * i_private_lock.
2881 *
2882 * try_to_free_buffers() is non-blocking.
2883 */
2884static inline int buffer_busy(struct buffer_head *bh)
2885{
2886	return atomic_read(&bh->b_count) |
2887		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2888}
2889
2890static bool
2891drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2892{
2893	struct buffer_head *head = folio_buffers(folio);
2894	struct buffer_head *bh;
2895
2896	bh = head;
2897	do {
2898		if (buffer_busy(bh))
2899			goto failed;
2900		bh = bh->b_this_page;
2901	} while (bh != head);
2902
2903	do {
2904		struct buffer_head *next = bh->b_this_page;
2905
2906		if (bh->b_assoc_map)
2907			__remove_assoc_queue(bh);
2908		bh = next;
2909	} while (bh != head);
2910	*buffers_to_free = head;
2911	folio_detach_private(folio);
2912	return true;
2913failed:
2914	return false;
2915}
2916
2917bool try_to_free_buffers(struct folio *folio)
2918{
2919	struct address_space * const mapping = folio->mapping;
2920	struct buffer_head *buffers_to_free = NULL;
2921	bool ret = 0;
2922
2923	BUG_ON(!folio_test_locked(folio));
2924	if (folio_test_writeback(folio))
2925		return false;
2926
2927	if (mapping == NULL) {		/* can this still happen? */
2928		ret = drop_buffers(folio, &buffers_to_free);
2929		goto out;
2930	}
2931
2932	spin_lock(&mapping->i_private_lock);
2933	ret = drop_buffers(folio, &buffers_to_free);
2934
2935	/*
2936	 * If the filesystem writes its buffers by hand (eg ext3)
2937	 * then we can have clean buffers against a dirty folio.  We
2938	 * clean the folio here; otherwise the VM will never notice
2939	 * that the filesystem did any IO at all.
2940	 *
2941	 * Also, during truncate, discard_buffer will have marked all
2942	 * the folio's buffers clean.  We discover that here and clean
2943	 * the folio also.
2944	 *
2945	 * i_private_lock must be held over this entire operation in order
2946	 * to synchronise against block_dirty_folio and prevent the
2947	 * dirty bit from being lost.
2948	 */
2949	if (ret)
2950		folio_cancel_dirty(folio);
2951	spin_unlock(&mapping->i_private_lock);
2952out:
2953	if (buffers_to_free) {
2954		struct buffer_head *bh = buffers_to_free;
2955
2956		do {
2957			struct buffer_head *next = bh->b_this_page;
2958			free_buffer_head(bh);
2959			bh = next;
2960		} while (bh != buffers_to_free);
2961	}
2962	return ret;
2963}
2964EXPORT_SYMBOL(try_to_free_buffers);
2965
2966/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2967 * Buffer-head allocation
2968 */
2969static struct kmem_cache *bh_cachep __ro_after_init;
2970
2971/*
2972 * Once the number of bh's in the machine exceeds this level, we start
2973 * stripping them in writeback.
2974 */
2975static unsigned long max_buffer_heads __ro_after_init;
2976
2977int buffer_heads_over_limit;
2978
2979struct bh_accounting {
2980	int nr;			/* Number of live bh's */
2981	int ratelimit;		/* Limit cacheline bouncing */
2982};
2983
2984static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2985
2986static void recalc_bh_state(void)
2987{
2988	int i;
2989	int tot = 0;
2990
2991	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2992		return;
2993	__this_cpu_write(bh_accounting.ratelimit, 0);
2994	for_each_online_cpu(i)
2995		tot += per_cpu(bh_accounting, i).nr;
2996	buffer_heads_over_limit = (tot > max_buffer_heads);
2997}
2998
2999struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3000{
3001	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3002	if (ret) {
3003		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3004		spin_lock_init(&ret->b_uptodate_lock);
3005		preempt_disable();
3006		__this_cpu_inc(bh_accounting.nr);
3007		recalc_bh_state();
3008		preempt_enable();
3009	}
3010	return ret;
3011}
3012EXPORT_SYMBOL(alloc_buffer_head);
3013
3014void free_buffer_head(struct buffer_head *bh)
3015{
3016	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3017	kmem_cache_free(bh_cachep, bh);
3018	preempt_disable();
3019	__this_cpu_dec(bh_accounting.nr);
3020	recalc_bh_state();
3021	preempt_enable();
3022}
3023EXPORT_SYMBOL(free_buffer_head);
3024
3025static int buffer_exit_cpu_dead(unsigned int cpu)
3026{
3027	int i;
3028	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3029
3030	for (i = 0; i < BH_LRU_SIZE; i++) {
3031		brelse(b->bhs[i]);
3032		b->bhs[i] = NULL;
3033	}
3034	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3035	per_cpu(bh_accounting, cpu).nr = 0;
3036	return 0;
3037}
3038
3039/**
3040 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3041 * @bh: struct buffer_head
3042 *
3043 * Return true if the buffer is up-to-date and false,
3044 * with the buffer locked, if not.
3045 */
3046int bh_uptodate_or_lock(struct buffer_head *bh)
3047{
3048	if (!buffer_uptodate(bh)) {
3049		lock_buffer(bh);
3050		if (!buffer_uptodate(bh))
3051			return 0;
3052		unlock_buffer(bh);
3053	}
3054	return 1;
3055}
3056EXPORT_SYMBOL(bh_uptodate_or_lock);
3057
3058/**
3059 * __bh_read - Submit read for a locked buffer
3060 * @bh: struct buffer_head
3061 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3062 * @wait: wait until reading finish
3063 *
3064 * Returns zero on success or don't wait, and -EIO on error.
3065 */
3066int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3067{
3068	int ret = 0;
3069
3070	BUG_ON(!buffer_locked(bh));
3071
3072	get_bh(bh);
3073	bh->b_end_io = end_buffer_read_sync;
3074	submit_bh(REQ_OP_READ | op_flags, bh);
3075	if (wait) {
3076		wait_on_buffer(bh);
3077		if (!buffer_uptodate(bh))
3078			ret = -EIO;
3079	}
3080	return ret;
3081}
3082EXPORT_SYMBOL(__bh_read);
3083
3084/**
3085 * __bh_read_batch - Submit read for a batch of unlocked buffers
3086 * @nr: entry number of the buffer batch
3087 * @bhs: a batch of struct buffer_head
3088 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3089 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3090 *              buffer that cannot lock.
3091 *
3092 * Returns zero on success or don't wait, and -EIO on error.
3093 */
3094void __bh_read_batch(int nr, struct buffer_head *bhs[],
3095		     blk_opf_t op_flags, bool force_lock)
3096{
3097	int i;
3098
3099	for (i = 0; i < nr; i++) {
3100		struct buffer_head *bh = bhs[i];
3101
3102		if (buffer_uptodate(bh))
3103			continue;
3104
3105		if (force_lock)
3106			lock_buffer(bh);
3107		else
3108			if (!trylock_buffer(bh))
3109				continue;
3110
3111		if (buffer_uptodate(bh)) {
3112			unlock_buffer(bh);
3113			continue;
3114		}
3115
3116		bh->b_end_io = end_buffer_read_sync;
3117		get_bh(bh);
3118		submit_bh(REQ_OP_READ | op_flags, bh);
3119	}
3120}
3121EXPORT_SYMBOL(__bh_read_batch);
3122
3123void __init buffer_init(void)
3124{
3125	unsigned long nrpages;
3126	int ret;
3127
3128	bh_cachep = KMEM_CACHE(buffer_head,
3129				SLAB_RECLAIM_ACCOUNT|SLAB_PANIC);
 
 
 
 
3130	/*
3131	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3132	 */
3133	nrpages = (nr_free_buffer_pages() * 10) / 100;
3134	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3135	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3136					NULL, buffer_exit_cpu_dead);
3137	WARN_ON(ret < 0);
3138}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  linux/fs/buffer.c
   4 *
   5 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   6 */
   7
   8/*
   9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
  10 *
  11 * Removed a lot of unnecessary code and simplified things now that
  12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  13 *
  14 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  15 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  16 *
  17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  18 *
  19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  20 */
  21
  22#include <linux/kernel.h>
  23#include <linux/sched/signal.h>
  24#include <linux/syscalls.h>
  25#include <linux/fs.h>
  26#include <linux/iomap.h>
  27#include <linux/mm.h>
  28#include <linux/percpu.h>
  29#include <linux/slab.h>
  30#include <linux/capability.h>
  31#include <linux/blkdev.h>
  32#include <linux/file.h>
  33#include <linux/quotaops.h>
  34#include <linux/highmem.h>
  35#include <linux/export.h>
  36#include <linux/backing-dev.h>
  37#include <linux/writeback.h>
  38#include <linux/hash.h>
  39#include <linux/suspend.h>
  40#include <linux/buffer_head.h>
  41#include <linux/task_io_accounting_ops.h>
  42#include <linux/bio.h>
  43#include <linux/cpu.h>
  44#include <linux/bitops.h>
  45#include <linux/mpage.h>
  46#include <linux/bit_spinlock.h>
  47#include <linux/pagevec.h>
  48#include <linux/sched/mm.h>
  49#include <trace/events/block.h>
  50#include <linux/fscrypt.h>
 
 
  51
  52#include "internal.h"
  53
  54static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  55static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
  56			 enum rw_hint hint, struct writeback_control *wbc);
  57
  58#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  59
  60inline void touch_buffer(struct buffer_head *bh)
  61{
  62	trace_block_touch_buffer(bh);
  63	mark_page_accessed(bh->b_page);
  64}
  65EXPORT_SYMBOL(touch_buffer);
  66
  67void __lock_buffer(struct buffer_head *bh)
  68{
  69	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
  70}
  71EXPORT_SYMBOL(__lock_buffer);
  72
  73void unlock_buffer(struct buffer_head *bh)
  74{
  75	clear_bit_unlock(BH_Lock, &bh->b_state);
  76	smp_mb__after_atomic();
  77	wake_up_bit(&bh->b_state, BH_Lock);
  78}
  79EXPORT_SYMBOL(unlock_buffer);
  80
  81/*
  82 * Returns if the page has dirty or writeback buffers. If all the buffers
  83 * are unlocked and clean then the PageDirty information is stale. If
  84 * any of the pages are locked, it is assumed they are locked for IO.
  85 */
  86void buffer_check_dirty_writeback(struct page *page,
  87				     bool *dirty, bool *writeback)
  88{
  89	struct buffer_head *head, *bh;
  90	*dirty = false;
  91	*writeback = false;
  92
  93	BUG_ON(!PageLocked(page));
  94
  95	if (!page_has_buffers(page))
 
  96		return;
  97
  98	if (PageWriteback(page))
  99		*writeback = true;
 100
 101	head = page_buffers(page);
 102	bh = head;
 103	do {
 104		if (buffer_locked(bh))
 105			*writeback = true;
 106
 107		if (buffer_dirty(bh))
 108			*dirty = true;
 109
 110		bh = bh->b_this_page;
 111	} while (bh != head);
 112}
 113EXPORT_SYMBOL(buffer_check_dirty_writeback);
 114
 115/*
 116 * Block until a buffer comes unlocked.  This doesn't stop it
 117 * from becoming locked again - you have to lock it yourself
 118 * if you want to preserve its state.
 119 */
 120void __wait_on_buffer(struct buffer_head * bh)
 121{
 122	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
 123}
 124EXPORT_SYMBOL(__wait_on_buffer);
 125
 126static void buffer_io_error(struct buffer_head *bh, char *msg)
 127{
 128	if (!test_bit(BH_Quiet, &bh->b_state))
 129		printk_ratelimited(KERN_ERR
 130			"Buffer I/O error on dev %pg, logical block %llu%s\n",
 131			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
 132}
 133
 134/*
 135 * End-of-IO handler helper function which does not touch the bh after
 136 * unlocking it.
 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 138 * a race there is benign: unlock_buffer() only use the bh's address for
 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 140 * itself.
 141 */
 142static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 143{
 144	if (uptodate) {
 145		set_buffer_uptodate(bh);
 146	} else {
 147		/* This happens, due to failed read-ahead attempts. */
 148		clear_buffer_uptodate(bh);
 149	}
 150	unlock_buffer(bh);
 151}
 152
 153/*
 154 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 155 * unlock the buffer. This is what ll_rw_block uses too.
 156 */
 157void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 158{
 159	__end_buffer_read_notouch(bh, uptodate);
 160	put_bh(bh);
 161}
 162EXPORT_SYMBOL(end_buffer_read_sync);
 163
 164void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 165{
 166	if (uptodate) {
 167		set_buffer_uptodate(bh);
 168	} else {
 169		buffer_io_error(bh, ", lost sync page write");
 170		mark_buffer_write_io_error(bh);
 171		clear_buffer_uptodate(bh);
 172	}
 173	unlock_buffer(bh);
 174	put_bh(bh);
 175}
 176EXPORT_SYMBOL(end_buffer_write_sync);
 177
 178/*
 179 * Various filesystems appear to want __find_get_block to be non-blocking.
 180 * But it's the page lock which protects the buffers.  To get around this,
 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 182 * private_lock.
 183 *
 184 * Hack idea: for the blockdev mapping, private_lock contention
 185 * may be quite high.  This code could TryLock the page, and if that
 186 * succeeds, there is no need to take private_lock.
 187 */
 188static struct buffer_head *
 189__find_get_block_slow(struct block_device *bdev, sector_t block)
 190{
 191	struct inode *bd_inode = bdev->bd_inode;
 192	struct address_space *bd_mapping = bd_inode->i_mapping;
 193	struct buffer_head *ret = NULL;
 194	pgoff_t index;
 195	struct buffer_head *bh;
 196	struct buffer_head *head;
 197	struct page *page;
 198	int all_mapped = 1;
 199	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
 200
 201	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
 202	page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
 203	if (!page)
 204		goto out;
 205
 206	spin_lock(&bd_mapping->private_lock);
 207	if (!page_has_buffers(page))
 
 208		goto out_unlock;
 209	head = page_buffers(page);
 210	bh = head;
 211	do {
 212		if (!buffer_mapped(bh))
 213			all_mapped = 0;
 214		else if (bh->b_blocknr == block) {
 215			ret = bh;
 216			get_bh(bh);
 217			goto out_unlock;
 218		}
 219		bh = bh->b_this_page;
 220	} while (bh != head);
 221
 222	/* we might be here because some of the buffers on this page are
 223	 * not mapped.  This is due to various races between
 224	 * file io on the block device and getblk.  It gets dealt with
 225	 * elsewhere, don't buffer_error if we had some unmapped buffers
 226	 */
 227	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
 228	if (all_mapped && __ratelimit(&last_warned)) {
 229		printk("__find_get_block_slow() failed. block=%llu, "
 230		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
 231		       "device %pg blocksize: %d\n",
 232		       (unsigned long long)block,
 233		       (unsigned long long)bh->b_blocknr,
 234		       bh->b_state, bh->b_size, bdev,
 235		       1 << bd_inode->i_blkbits);
 236	}
 237out_unlock:
 238	spin_unlock(&bd_mapping->private_lock);
 239	put_page(page);
 240out:
 241	return ret;
 242}
 243
 244static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 245{
 246	unsigned long flags;
 247	struct buffer_head *first;
 248	struct buffer_head *tmp;
 249	struct page *page;
 250	int page_uptodate = 1;
 251
 252	BUG_ON(!buffer_async_read(bh));
 253
 254	page = bh->b_page;
 255	if (uptodate) {
 256		set_buffer_uptodate(bh);
 257	} else {
 258		clear_buffer_uptodate(bh);
 259		buffer_io_error(bh, ", async page read");
 260		SetPageError(page);
 261	}
 262
 263	/*
 264	 * Be _very_ careful from here on. Bad things can happen if
 265	 * two buffer heads end IO at almost the same time and both
 266	 * decide that the page is now completely done.
 267	 */
 268	first = page_buffers(page);
 269	spin_lock_irqsave(&first->b_uptodate_lock, flags);
 270	clear_buffer_async_read(bh);
 271	unlock_buffer(bh);
 272	tmp = bh;
 273	do {
 274		if (!buffer_uptodate(tmp))
 275			page_uptodate = 0;
 276		if (buffer_async_read(tmp)) {
 277			BUG_ON(!buffer_locked(tmp));
 278			goto still_busy;
 279		}
 280		tmp = tmp->b_this_page;
 281	} while (tmp != bh);
 282	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 283
 284	/*
 285	 * If none of the buffers had errors and they are all
 286	 * uptodate then we can set the page uptodate.
 287	 */
 288	if (page_uptodate && !PageError(page))
 289		SetPageUptodate(page);
 290	unlock_page(page);
 291	return;
 292
 293still_busy:
 294	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 295	return;
 296}
 297
 298struct decrypt_bh_ctx {
 299	struct work_struct work;
 300	struct buffer_head *bh;
 301};
 302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 303static void decrypt_bh(struct work_struct *work)
 304{
 305	struct decrypt_bh_ctx *ctx =
 306		container_of(work, struct decrypt_bh_ctx, work);
 307	struct buffer_head *bh = ctx->bh;
 308	int err;
 309
 310	err = fscrypt_decrypt_pagecache_blocks(bh->b_page, bh->b_size,
 311					       bh_offset(bh));
 
 
 
 
 
 
 
 
 
 
 312	end_buffer_async_read(bh, err == 0);
 313	kfree(ctx);
 314}
 315
 316/*
 317 * I/O completion handler for block_read_full_page() - pages
 318 * which come unlocked at the end of I/O.
 319 */
 320static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
 321{
 322	/* Decrypt if needed */
 323	if (uptodate &&
 324	    fscrypt_inode_uses_fs_layer_crypto(bh->b_page->mapping->host)) {
 325		struct decrypt_bh_ctx *ctx = kmalloc(sizeof(*ctx), GFP_ATOMIC);
 
 
 
 
 326
 327		if (ctx) {
 328			INIT_WORK(&ctx->work, decrypt_bh);
 329			ctx->bh = bh;
 330			fscrypt_enqueue_decrypt_work(&ctx->work);
 
 
 
 
 
 
 331			return;
 332		}
 333		uptodate = 0;
 334	}
 335	end_buffer_async_read(bh, uptodate);
 336}
 337
 338/*
 339 * Completion handler for block_write_full_page() - pages which are unlocked
 340 * during I/O, and which have PageWriteback cleared upon I/O completion.
 341 */
 342void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 343{
 344	unsigned long flags;
 345	struct buffer_head *first;
 346	struct buffer_head *tmp;
 347	struct page *page;
 348
 349	BUG_ON(!buffer_async_write(bh));
 350
 351	page = bh->b_page;
 352	if (uptodate) {
 353		set_buffer_uptodate(bh);
 354	} else {
 355		buffer_io_error(bh, ", lost async page write");
 356		mark_buffer_write_io_error(bh);
 357		clear_buffer_uptodate(bh);
 358		SetPageError(page);
 359	}
 360
 361	first = page_buffers(page);
 362	spin_lock_irqsave(&first->b_uptodate_lock, flags);
 363
 364	clear_buffer_async_write(bh);
 365	unlock_buffer(bh);
 366	tmp = bh->b_this_page;
 367	while (tmp != bh) {
 368		if (buffer_async_write(tmp)) {
 369			BUG_ON(!buffer_locked(tmp));
 370			goto still_busy;
 371		}
 372		tmp = tmp->b_this_page;
 373	}
 374	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 375	end_page_writeback(page);
 376	return;
 377
 378still_busy:
 379	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
 380	return;
 381}
 382EXPORT_SYMBOL(end_buffer_async_write);
 383
 384/*
 385 * If a page's buffers are under async readin (end_buffer_async_read
 386 * completion) then there is a possibility that another thread of
 387 * control could lock one of the buffers after it has completed
 388 * but while some of the other buffers have not completed.  This
 389 * locked buffer would confuse end_buffer_async_read() into not unlocking
 390 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 391 * that this buffer is not under async I/O.
 392 *
 393 * The page comes unlocked when it has no locked buffer_async buffers
 394 * left.
 395 *
 396 * PageLocked prevents anyone starting new async I/O reads any of
 397 * the buffers.
 398 *
 399 * PageWriteback is used to prevent simultaneous writeout of the same
 400 * page.
 401 *
 402 * PageLocked prevents anyone from starting writeback of a page which is
 403 * under read I/O (PageWriteback is only ever set against a locked page).
 404 */
 405static void mark_buffer_async_read(struct buffer_head *bh)
 406{
 407	bh->b_end_io = end_buffer_async_read_io;
 408	set_buffer_async_read(bh);
 409}
 410
 411static void mark_buffer_async_write_endio(struct buffer_head *bh,
 412					  bh_end_io_t *handler)
 413{
 414	bh->b_end_io = handler;
 415	set_buffer_async_write(bh);
 416}
 417
 418void mark_buffer_async_write(struct buffer_head *bh)
 419{
 420	mark_buffer_async_write_endio(bh, end_buffer_async_write);
 421}
 422EXPORT_SYMBOL(mark_buffer_async_write);
 423
 424
 425/*
 426 * fs/buffer.c contains helper functions for buffer-backed address space's
 427 * fsync functions.  A common requirement for buffer-based filesystems is
 428 * that certain data from the backing blockdev needs to be written out for
 429 * a successful fsync().  For example, ext2 indirect blocks need to be
 430 * written back and waited upon before fsync() returns.
 431 *
 432 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 433 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 434 * management of a list of dependent buffers at ->i_mapping->private_list.
 435 *
 436 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 437 * from their controlling inode's queue when they are being freed.  But
 438 * try_to_free_buffers() will be operating against the *blockdev* mapping
 439 * at the time, not against the S_ISREG file which depends on those buffers.
 440 * So the locking for private_list is via the private_lock in the address_space
 441 * which backs the buffers.  Which is different from the address_space 
 442 * against which the buffers are listed.  So for a particular address_space,
 443 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 444 * mapping->private_list will always be protected by the backing blockdev's
 445 * ->private_lock.
 446 *
 447 * Which introduces a requirement: all buffers on an address_space's
 448 * ->private_list must be from the same address_space: the blockdev's.
 449 *
 450 * address_spaces which do not place buffers at ->private_list via these
 451 * utility functions are free to use private_lock and private_list for
 452 * whatever they want.  The only requirement is that list_empty(private_list)
 453 * be true at clear_inode() time.
 454 *
 455 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 456 * filesystems should do that.  invalidate_inode_buffers() should just go
 457 * BUG_ON(!list_empty).
 458 *
 459 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 460 * take an address_space, not an inode.  And it should be called
 461 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 462 * queued up.
 463 *
 464 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 465 * list if it is already on a list.  Because if the buffer is on a list,
 466 * it *must* already be on the right one.  If not, the filesystem is being
 467 * silly.  This will save a ton of locking.  But first we have to ensure
 468 * that buffers are taken *off* the old inode's list when they are freed
 469 * (presumably in truncate).  That requires careful auditing of all
 470 * filesystems (do it inside bforget()).  It could also be done by bringing
 471 * b_inode back.
 472 */
 473
 474/*
 475 * The buffer's backing address_space's private_lock must be held
 476 */
 477static void __remove_assoc_queue(struct buffer_head *bh)
 478{
 479	list_del_init(&bh->b_assoc_buffers);
 480	WARN_ON(!bh->b_assoc_map);
 481	bh->b_assoc_map = NULL;
 482}
 483
 484int inode_has_buffers(struct inode *inode)
 485{
 486	return !list_empty(&inode->i_data.private_list);
 487}
 488
 489/*
 490 * osync is designed to support O_SYNC io.  It waits synchronously for
 491 * all already-submitted IO to complete, but does not queue any new
 492 * writes to the disk.
 493 *
 494 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 495 * you dirty the buffers, and then use osync_inode_buffers to wait for
 496 * completion.  Any other dirty buffers which are not yet queued for
 497 * write will not be flushed to disk by the osync.
 498 */
 499static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 500{
 501	struct buffer_head *bh;
 502	struct list_head *p;
 503	int err = 0;
 504
 505	spin_lock(lock);
 506repeat:
 507	list_for_each_prev(p, list) {
 508		bh = BH_ENTRY(p);
 509		if (buffer_locked(bh)) {
 510			get_bh(bh);
 511			spin_unlock(lock);
 512			wait_on_buffer(bh);
 513			if (!buffer_uptodate(bh))
 514				err = -EIO;
 515			brelse(bh);
 516			spin_lock(lock);
 517			goto repeat;
 518		}
 519	}
 520	spin_unlock(lock);
 521	return err;
 522}
 523
 524void emergency_thaw_bdev(struct super_block *sb)
 525{
 526	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
 527		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
 528}
 529
 530/**
 531 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 532 * @mapping: the mapping which wants those buffers written
 533 *
 534 * Starts I/O against the buffers at mapping->private_list, and waits upon
 535 * that I/O.
 536 *
 537 * Basically, this is a convenience function for fsync().
 538 * @mapping is a file or directory which needs those buffers to be written for
 539 * a successful fsync().
 540 */
 541int sync_mapping_buffers(struct address_space *mapping)
 542{
 543	struct address_space *buffer_mapping = mapping->private_data;
 544
 545	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 546		return 0;
 547
 548	return fsync_buffers_list(&buffer_mapping->private_lock,
 549					&mapping->private_list);
 550}
 551EXPORT_SYMBOL(sync_mapping_buffers);
 552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 553/*
 554 * Called when we've recently written block `bblock', and it is known that
 555 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 556 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 557 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 558 */
 559void write_boundary_block(struct block_device *bdev,
 560			sector_t bblock, unsigned blocksize)
 561{
 562	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 563	if (bh) {
 564		if (buffer_dirty(bh))
 565			ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
 566		put_bh(bh);
 567	}
 568}
 569
 570void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 571{
 572	struct address_space *mapping = inode->i_mapping;
 573	struct address_space *buffer_mapping = bh->b_page->mapping;
 574
 575	mark_buffer_dirty(bh);
 576	if (!mapping->private_data) {
 577		mapping->private_data = buffer_mapping;
 578	} else {
 579		BUG_ON(mapping->private_data != buffer_mapping);
 580	}
 581	if (!bh->b_assoc_map) {
 582		spin_lock(&buffer_mapping->private_lock);
 583		list_move_tail(&bh->b_assoc_buffers,
 584				&mapping->private_list);
 585		bh->b_assoc_map = mapping;
 586		spin_unlock(&buffer_mapping->private_lock);
 587	}
 588}
 589EXPORT_SYMBOL(mark_buffer_dirty_inode);
 590
 591/*
 592 * Add a page to the dirty page list.
 593 *
 594 * It is a sad fact of life that this function is called from several places
 595 * deeply under spinlocking.  It may not sleep.
 596 *
 597 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 598 * dirty-state coherency between the page and the buffers.  It the page does
 599 * not have buffers then when they are later attached they will all be set
 600 * dirty.
 601 *
 602 * The buffers are dirtied before the page is dirtied.  There's a small race
 603 * window in which a writepage caller may see the page cleanness but not the
 604 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 605 * before the buffers, a concurrent writepage caller could clear the page dirty
 606 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 607 * page on the dirty page list.
 608 *
 609 * We use private_lock to lock against try_to_free_buffers while using the
 610 * page's buffer list.  Also use this to protect against clean buffers being
 611 * added to the page after it was set dirty.
 612 *
 613 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 614 * address_space though.
 615 */
 616int __set_page_dirty_buffers(struct page *page)
 617{
 618	int newly_dirty;
 619	struct address_space *mapping = page_mapping(page);
 620
 621	if (unlikely(!mapping))
 622		return !TestSetPageDirty(page);
 623
 624	spin_lock(&mapping->private_lock);
 625	if (page_has_buffers(page)) {
 626		struct buffer_head *head = page_buffers(page);
 627		struct buffer_head *bh = head;
 628
 629		do {
 630			set_buffer_dirty(bh);
 631			bh = bh->b_this_page;
 632		} while (bh != head);
 633	}
 634	/*
 635	 * Lock out page's memcg migration to keep PageDirty
 636	 * synchronized with per-memcg dirty page counters.
 637	 */
 638	lock_page_memcg(page);
 639	newly_dirty = !TestSetPageDirty(page);
 640	spin_unlock(&mapping->private_lock);
 641
 642	if (newly_dirty)
 643		__set_page_dirty(page, mapping, 1);
 644
 645	unlock_page_memcg(page);
 646
 647	if (newly_dirty)
 648		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 649
 650	return newly_dirty;
 651}
 652EXPORT_SYMBOL(__set_page_dirty_buffers);
 653
 654/*
 655 * Write out and wait upon a list of buffers.
 656 *
 657 * We have conflicting pressures: we want to make sure that all
 658 * initially dirty buffers get waited on, but that any subsequently
 659 * dirtied buffers don't.  After all, we don't want fsync to last
 660 * forever if somebody is actively writing to the file.
 661 *
 662 * Do this in two main stages: first we copy dirty buffers to a
 663 * temporary inode list, queueing the writes as we go.  Then we clean
 664 * up, waiting for those writes to complete.
 665 * 
 666 * During this second stage, any subsequent updates to the file may end
 667 * up refiling the buffer on the original inode's dirty list again, so
 668 * there is a chance we will end up with a buffer queued for write but
 669 * not yet completed on that list.  So, as a final cleanup we go through
 670 * the osync code to catch these locked, dirty buffers without requeuing
 671 * any newly dirty buffers for write.
 672 */
 673static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 674{
 675	struct buffer_head *bh;
 676	struct list_head tmp;
 677	struct address_space *mapping;
 678	int err = 0, err2;
 679	struct blk_plug plug;
 680
 681	INIT_LIST_HEAD(&tmp);
 682	blk_start_plug(&plug);
 683
 684	spin_lock(lock);
 685	while (!list_empty(list)) {
 686		bh = BH_ENTRY(list->next);
 687		mapping = bh->b_assoc_map;
 688		__remove_assoc_queue(bh);
 689		/* Avoid race with mark_buffer_dirty_inode() which does
 690		 * a lockless check and we rely on seeing the dirty bit */
 691		smp_mb();
 692		if (buffer_dirty(bh) || buffer_locked(bh)) {
 693			list_add(&bh->b_assoc_buffers, &tmp);
 694			bh->b_assoc_map = mapping;
 695			if (buffer_dirty(bh)) {
 696				get_bh(bh);
 697				spin_unlock(lock);
 698				/*
 699				 * Ensure any pending I/O completes so that
 700				 * write_dirty_buffer() actually writes the
 701				 * current contents - it is a noop if I/O is
 702				 * still in flight on potentially older
 703				 * contents.
 704				 */
 705				write_dirty_buffer(bh, REQ_SYNC);
 706
 707				/*
 708				 * Kick off IO for the previous mapping. Note
 709				 * that we will not run the very last mapping,
 710				 * wait_on_buffer() will do that for us
 711				 * through sync_buffer().
 712				 */
 713				brelse(bh);
 714				spin_lock(lock);
 715			}
 716		}
 717	}
 718
 719	spin_unlock(lock);
 720	blk_finish_plug(&plug);
 721	spin_lock(lock);
 722
 723	while (!list_empty(&tmp)) {
 724		bh = BH_ENTRY(tmp.prev);
 725		get_bh(bh);
 726		mapping = bh->b_assoc_map;
 727		__remove_assoc_queue(bh);
 728		/* Avoid race with mark_buffer_dirty_inode() which does
 729		 * a lockless check and we rely on seeing the dirty bit */
 730		smp_mb();
 731		if (buffer_dirty(bh)) {
 732			list_add(&bh->b_assoc_buffers,
 733				 &mapping->private_list);
 734			bh->b_assoc_map = mapping;
 735		}
 736		spin_unlock(lock);
 737		wait_on_buffer(bh);
 738		if (!buffer_uptodate(bh))
 739			err = -EIO;
 740		brelse(bh);
 741		spin_lock(lock);
 742	}
 743	
 744	spin_unlock(lock);
 745	err2 = osync_buffers_list(lock, list);
 746	if (err)
 747		return err;
 748	else
 749		return err2;
 750}
 751
 752/*
 753 * Invalidate any and all dirty buffers on a given inode.  We are
 754 * probably unmounting the fs, but that doesn't mean we have already
 755 * done a sync().  Just drop the buffers from the inode list.
 756 *
 757 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 758 * assumes that all the buffers are against the blockdev.  Not true
 759 * for reiserfs.
 760 */
 761void invalidate_inode_buffers(struct inode *inode)
 762{
 763	if (inode_has_buffers(inode)) {
 764		struct address_space *mapping = &inode->i_data;
 765		struct list_head *list = &mapping->private_list;
 766		struct address_space *buffer_mapping = mapping->private_data;
 767
 768		spin_lock(&buffer_mapping->private_lock);
 769		while (!list_empty(list))
 770			__remove_assoc_queue(BH_ENTRY(list->next));
 771		spin_unlock(&buffer_mapping->private_lock);
 772	}
 773}
 774EXPORT_SYMBOL(invalidate_inode_buffers);
 775
 776/*
 777 * Remove any clean buffers from the inode's buffer list.  This is called
 778 * when we're trying to free the inode itself.  Those buffers can pin it.
 779 *
 780 * Returns true if all buffers were removed.
 781 */
 782int remove_inode_buffers(struct inode *inode)
 783{
 784	int ret = 1;
 785
 786	if (inode_has_buffers(inode)) {
 787		struct address_space *mapping = &inode->i_data;
 788		struct list_head *list = &mapping->private_list;
 789		struct address_space *buffer_mapping = mapping->private_data;
 790
 791		spin_lock(&buffer_mapping->private_lock);
 792		while (!list_empty(list)) {
 793			struct buffer_head *bh = BH_ENTRY(list->next);
 794			if (buffer_dirty(bh)) {
 795				ret = 0;
 796				break;
 797			}
 798			__remove_assoc_queue(bh);
 799		}
 800		spin_unlock(&buffer_mapping->private_lock);
 801	}
 802	return ret;
 803}
 804
 805/*
 806 * Create the appropriate buffers when given a page for data area and
 807 * the size of each buffer.. Use the bh->b_this_page linked list to
 808 * follow the buffers created.  Return NULL if unable to create more
 809 * buffers.
 810 *
 811 * The retry flag is used to differentiate async IO (paging, swapping)
 812 * which may not fail from ordinary buffer allocations.
 813 */
 814struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 815		bool retry)
 816{
 817	struct buffer_head *bh, *head;
 818	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
 819	long offset;
 820	struct mem_cgroup *memcg, *old_memcg;
 821
 822	if (retry)
 823		gfp |= __GFP_NOFAIL;
 824
 825	/* The page lock pins the memcg */
 826	memcg = page_memcg(page);
 827	old_memcg = set_active_memcg(memcg);
 828
 829	head = NULL;
 830	offset = PAGE_SIZE;
 831	while ((offset -= size) >= 0) {
 832		bh = alloc_buffer_head(gfp);
 833		if (!bh)
 834			goto no_grow;
 835
 836		bh->b_this_page = head;
 837		bh->b_blocknr = -1;
 838		head = bh;
 839
 840		bh->b_size = size;
 841
 842		/* Link the buffer to its page */
 843		set_bh_page(bh, page, offset);
 844	}
 845out:
 846	set_active_memcg(old_memcg);
 847	return head;
 848/*
 849 * In case anything failed, we just free everything we got.
 850 */
 851no_grow:
 852	if (head) {
 853		do {
 854			bh = head;
 855			head = head->b_this_page;
 856			free_buffer_head(bh);
 857		} while (head);
 858	}
 859
 860	goto out;
 861}
 
 
 
 
 
 
 
 
 
 
 
 862EXPORT_SYMBOL_GPL(alloc_page_buffers);
 863
 864static inline void
 865link_dev_buffers(struct page *page, struct buffer_head *head)
 866{
 867	struct buffer_head *bh, *tail;
 868
 869	bh = head;
 870	do {
 871		tail = bh;
 872		bh = bh->b_this_page;
 873	} while (bh);
 874	tail->b_this_page = head;
 875	attach_page_private(page, head);
 876}
 877
 878static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
 879{
 880	sector_t retval = ~((sector_t)0);
 881	loff_t sz = i_size_read(bdev->bd_inode);
 882
 883	if (sz) {
 884		unsigned int sizebits = blksize_bits(size);
 885		retval = (sz >> sizebits);
 886	}
 887	return retval;
 888}
 889
 890/*
 891 * Initialise the state of a blockdev page's buffers.
 892 */ 
 893static sector_t
 894init_page_buffers(struct page *page, struct block_device *bdev,
 895			sector_t block, int size)
 896{
 897	struct buffer_head *head = page_buffers(page);
 898	struct buffer_head *bh = head;
 899	int uptodate = PageUptodate(page);
 900	sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
 
 901
 902	do {
 903		if (!buffer_mapped(bh)) {
 904			bh->b_end_io = NULL;
 905			bh->b_private = NULL;
 906			bh->b_bdev = bdev;
 907			bh->b_blocknr = block;
 908			if (uptodate)
 909				set_buffer_uptodate(bh);
 910			if (block < end_block)
 911				set_buffer_mapped(bh);
 912		}
 913		block++;
 914		bh = bh->b_this_page;
 915	} while (bh != head);
 916
 917	/*
 918	 * Caller needs to validate requested block against end of device.
 919	 */
 920	return end_block;
 921}
 922
 923/*
 924 * Create the page-cache page that contains the requested block.
 925 *
 926 * This is used purely for blockdev mappings.
 
 
 
 927 */
 928static int
 929grow_dev_page(struct block_device *bdev, sector_t block,
 930	      pgoff_t index, int size, int sizebits, gfp_t gfp)
 931{
 932	struct inode *inode = bdev->bd_inode;
 933	struct page *page;
 934	struct buffer_head *bh;
 935	sector_t end_block;
 936	int ret = 0;
 937	gfp_t gfp_mask;
 938
 939	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
 
 
 
 940
 941	/*
 942	 * XXX: __getblk_slow() can not really deal with failure and
 943	 * will endlessly loop on improvised global reclaim.  Prefer
 944	 * looping in the allocator rather than here, at least that
 945	 * code knows what it's doing.
 946	 */
 947	gfp_mask |= __GFP_NOFAIL;
 948
 949	page = find_or_create_page(inode->i_mapping, index, gfp_mask);
 950
 951	BUG_ON(!PageLocked(page));
 952
 953	if (page_has_buffers(page)) {
 954		bh = page_buffers(page);
 955		if (bh->b_size == size) {
 956			end_block = init_page_buffers(page, bdev,
 957						(sector_t)index << sizebits,
 958						size);
 959			goto done;
 960		}
 961		if (!try_to_free_buffers(page))
 962			goto failed;
 963	}
 964
 965	/*
 966	 * Allocate some buffers for this page
 967	 */
 968	bh = alloc_page_buffers(page, size, true);
 969
 970	/*
 971	 * Link the page to the buffers and initialise them.  Take the
 972	 * lock to be atomic wrt __find_get_block(), which does not
 973	 * run under the page lock.
 974	 */
 975	spin_lock(&inode->i_mapping->private_lock);
 976	link_dev_buffers(page, bh);
 977	end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
 978			size);
 979	spin_unlock(&inode->i_mapping->private_lock);
 980done:
 981	ret = (block < end_block) ? 1 : -ENXIO;
 982failed:
 983	unlock_page(page);
 984	put_page(page);
 985	return ret;
 986}
 987
 988/*
 989 * Create buffers for the specified block device block's page.  If
 990 * that page was dirty, the buffers are set dirty also.
 
 991 */
 992static int
 993grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
 994{
 995	pgoff_t index;
 996	int sizebits;
 997
 998	sizebits = PAGE_SHIFT - __ffs(size);
 999	index = block >> sizebits;
1000
1001	/*
1002	 * Check for a block which wants to lie outside our maximum possible
1003	 * pagecache index.  (this comparison is done using sector_t types).
1004	 */
1005	if (unlikely(index != block >> sizebits)) {
1006		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1007			"device %pg\n",
1008			__func__, (unsigned long long)block,
1009			bdev);
1010		return -EIO;
1011	}
1012
1013	/* Create a page with the proper size buffers.. */
1014	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1015}
1016
1017static struct buffer_head *
1018__getblk_slow(struct block_device *bdev, sector_t block,
1019	     unsigned size, gfp_t gfp)
1020{
1021	/* Size must be multiple of hard sectorsize */
1022	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1023			(size < 512 || size > PAGE_SIZE))) {
1024		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1025					size);
1026		printk(KERN_ERR "logical block size: %d\n",
1027					bdev_logical_block_size(bdev));
1028
1029		dump_stack();
1030		return NULL;
1031	}
1032
1033	for (;;) {
1034		struct buffer_head *bh;
1035		int ret;
1036
1037		bh = __find_get_block(bdev, block, size);
1038		if (bh)
1039			return bh;
1040
1041		ret = grow_buffers(bdev, block, size, gfp);
1042		if (ret < 0)
1043			return NULL;
1044	}
1045}
1046
1047/*
1048 * The relationship between dirty buffers and dirty pages:
1049 *
1050 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1051 * the page is tagged dirty in the page cache.
1052 *
1053 * At all times, the dirtiness of the buffers represents the dirtiness of
1054 * subsections of the page.  If the page has buffers, the page dirty bit is
1055 * merely a hint about the true dirty state.
1056 *
1057 * When a page is set dirty in its entirety, all its buffers are marked dirty
1058 * (if the page has buffers).
1059 *
1060 * When a buffer is marked dirty, its page is dirtied, but the page's other
1061 * buffers are not.
1062 *
1063 * Also.  When blockdev buffers are explicitly read with bread(), they
1064 * individually become uptodate.  But their backing page remains not
1065 * uptodate - even if all of its buffers are uptodate.  A subsequent
1066 * block_read_full_page() against that page will discover all the uptodate
1067 * buffers, will set the page uptodate and will perform no I/O.
1068 */
1069
1070/**
1071 * mark_buffer_dirty - mark a buffer_head as needing writeout
1072 * @bh: the buffer_head to mark dirty
1073 *
1074 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1075 * its backing page dirty, then tag the page as dirty in the page cache
1076 * and then attach the address_space's inode to its superblock's dirty
1077 * inode list.
1078 *
1079 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1080 * i_pages lock and mapping->host->i_lock.
1081 */
1082void mark_buffer_dirty(struct buffer_head *bh)
1083{
1084	WARN_ON_ONCE(!buffer_uptodate(bh));
1085
1086	trace_block_dirty_buffer(bh);
1087
1088	/*
1089	 * Very *carefully* optimize the it-is-already-dirty case.
1090	 *
1091	 * Don't let the final "is it dirty" escape to before we
1092	 * perhaps modified the buffer.
1093	 */
1094	if (buffer_dirty(bh)) {
1095		smp_mb();
1096		if (buffer_dirty(bh))
1097			return;
1098	}
1099
1100	if (!test_set_buffer_dirty(bh)) {
1101		struct page *page = bh->b_page;
1102		struct address_space *mapping = NULL;
1103
1104		lock_page_memcg(page);
1105		if (!TestSetPageDirty(page)) {
1106			mapping = page_mapping(page);
1107			if (mapping)
1108				__set_page_dirty(page, mapping, 0);
1109		}
1110		unlock_page_memcg(page);
1111		if (mapping)
1112			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1113	}
1114}
1115EXPORT_SYMBOL(mark_buffer_dirty);
1116
1117void mark_buffer_write_io_error(struct buffer_head *bh)
1118{
1119	struct super_block *sb;
1120
1121	set_buffer_write_io_error(bh);
1122	/* FIXME: do we need to set this in both places? */
1123	if (bh->b_page && bh->b_page->mapping)
1124		mapping_set_error(bh->b_page->mapping, -EIO);
1125	if (bh->b_assoc_map)
1126		mapping_set_error(bh->b_assoc_map, -EIO);
1127	rcu_read_lock();
1128	sb = READ_ONCE(bh->b_bdev->bd_super);
1129	if (sb)
1130		errseq_set(&sb->s_wb_err, -EIO);
1131	rcu_read_unlock();
1132}
1133EXPORT_SYMBOL(mark_buffer_write_io_error);
1134
1135/*
1136 * Decrement a buffer_head's reference count.  If all buffers against a page
1137 * have zero reference count, are clean and unlocked, and if the page is clean
1138 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1139 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1140 * a page but it ends up not being freed, and buffers may later be reattached).
1141 */
1142void __brelse(struct buffer_head * buf)
1143{
1144	if (atomic_read(&buf->b_count)) {
1145		put_bh(buf);
1146		return;
1147	}
1148	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1149}
1150EXPORT_SYMBOL(__brelse);
1151
1152/*
1153 * bforget() is like brelse(), except it discards any
1154 * potentially dirty data.
1155 */
1156void __bforget(struct buffer_head *bh)
1157{
1158	clear_buffer_dirty(bh);
1159	if (bh->b_assoc_map) {
1160		struct address_space *buffer_mapping = bh->b_page->mapping;
1161
1162		spin_lock(&buffer_mapping->private_lock);
1163		list_del_init(&bh->b_assoc_buffers);
1164		bh->b_assoc_map = NULL;
1165		spin_unlock(&buffer_mapping->private_lock);
1166	}
1167	__brelse(bh);
1168}
1169EXPORT_SYMBOL(__bforget);
1170
1171static struct buffer_head *__bread_slow(struct buffer_head *bh)
1172{
1173	lock_buffer(bh);
1174	if (buffer_uptodate(bh)) {
1175		unlock_buffer(bh);
1176		return bh;
1177	} else {
1178		get_bh(bh);
1179		bh->b_end_io = end_buffer_read_sync;
1180		submit_bh(REQ_OP_READ, 0, bh);
1181		wait_on_buffer(bh);
1182		if (buffer_uptodate(bh))
1183			return bh;
1184	}
1185	brelse(bh);
1186	return NULL;
1187}
1188
1189/*
1190 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1191 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1192 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1193 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1194 * CPU's LRUs at the same time.
1195 *
1196 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1197 * sb_find_get_block().
1198 *
1199 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1200 * a local interrupt disable for that.
1201 */
1202
1203#define BH_LRU_SIZE	16
1204
1205struct bh_lru {
1206	struct buffer_head *bhs[BH_LRU_SIZE];
1207};
1208
1209static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1210
1211#ifdef CONFIG_SMP
1212#define bh_lru_lock()	local_irq_disable()
1213#define bh_lru_unlock()	local_irq_enable()
1214#else
1215#define bh_lru_lock()	preempt_disable()
1216#define bh_lru_unlock()	preempt_enable()
1217#endif
1218
1219static inline void check_irqs_on(void)
1220{
1221#ifdef irqs_disabled
1222	BUG_ON(irqs_disabled());
1223#endif
1224}
1225
1226/*
1227 * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1228 * inserted at the front, and the buffer_head at the back if any is evicted.
1229 * Or, if already in the LRU it is moved to the front.
1230 */
1231static void bh_lru_install(struct buffer_head *bh)
1232{
1233	struct buffer_head *evictee = bh;
1234	struct bh_lru *b;
1235	int i;
1236
1237	check_irqs_on();
 
 
1238	/*
1239	 * the refcount of buffer_head in bh_lru prevents dropping the
1240	 * attached page(i.e., try_to_free_buffers) so it could cause
1241	 * failing page migration.
1242	 * Skip putting upcoming bh into bh_lru until migration is done.
1243	 */
1244	if (lru_cache_disabled())
 
1245		return;
1246
1247	bh_lru_lock();
1248
1249	b = this_cpu_ptr(&bh_lrus);
1250	for (i = 0; i < BH_LRU_SIZE; i++) {
1251		swap(evictee, b->bhs[i]);
1252		if (evictee == bh) {
1253			bh_lru_unlock();
1254			return;
1255		}
1256	}
1257
1258	get_bh(bh);
1259	bh_lru_unlock();
1260	brelse(evictee);
1261}
1262
1263/*
1264 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1265 */
1266static struct buffer_head *
1267lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1268{
1269	struct buffer_head *ret = NULL;
1270	unsigned int i;
1271
1272	check_irqs_on();
1273	bh_lru_lock();
 
 
 
 
1274	for (i = 0; i < BH_LRU_SIZE; i++) {
1275		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1276
1277		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1278		    bh->b_size == size) {
1279			if (i) {
1280				while (i) {
1281					__this_cpu_write(bh_lrus.bhs[i],
1282						__this_cpu_read(bh_lrus.bhs[i - 1]));
1283					i--;
1284				}
1285				__this_cpu_write(bh_lrus.bhs[0], bh);
1286			}
1287			get_bh(bh);
1288			ret = bh;
1289			break;
1290		}
1291	}
1292	bh_lru_unlock();
1293	return ret;
1294}
1295
1296/*
1297 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1298 * it in the LRU and mark it as accessed.  If it is not present then return
1299 * NULL
1300 */
1301struct buffer_head *
1302__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1303{
1304	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1305
1306	if (bh == NULL) {
1307		/* __find_get_block_slow will mark the page accessed */
1308		bh = __find_get_block_slow(bdev, block);
1309		if (bh)
1310			bh_lru_install(bh);
1311	} else
1312		touch_buffer(bh);
1313
1314	return bh;
1315}
1316EXPORT_SYMBOL(__find_get_block);
1317
1318/*
1319 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1320 * which corresponds to the passed block_device, block and size. The
1321 * returned buffer has its reference count incremented.
 
 
1322 *
1323 * __getblk_gfp() will lock up the machine if grow_dev_page's
1324 * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1325 */
1326struct buffer_head *
1327__getblk_gfp(struct block_device *bdev, sector_t block,
1328	     unsigned size, gfp_t gfp)
1329{
1330	struct buffer_head *bh = __find_get_block(bdev, block, size);
1331
1332	might_sleep();
1333	if (bh == NULL)
1334		bh = __getblk_slow(bdev, block, size, gfp);
1335	return bh;
 
1336}
1337EXPORT_SYMBOL(__getblk_gfp);
1338
1339/*
1340 * Do async read-ahead on a buffer..
1341 */
1342void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1343{
1344	struct buffer_head *bh = __getblk(bdev, block, size);
 
 
1345	if (likely(bh)) {
1346		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1347		brelse(bh);
1348	}
1349}
1350EXPORT_SYMBOL(__breadahead);
1351
1352void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1353		      gfp_t gfp)
1354{
1355	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1356	if (likely(bh)) {
1357		ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1358		brelse(bh);
1359	}
1360}
1361EXPORT_SYMBOL(__breadahead_gfp);
1362
1363/**
1364 *  __bread_gfp() - reads a specified block and returns the bh
1365 *  @bdev: the block_device to read from
1366 *  @block: number of block
1367 *  @size: size (in bytes) to read
1368 *  @gfp: page allocation flag
1369 *
1370 *  Reads a specified block, and returns buffer head that contains it.
1371 *  The page cache can be allocated from non-movable area
1372 *  not to prevent page migration if you set gfp to zero.
1373 *  It returns NULL if the block was unreadable.
1374 */
1375struct buffer_head *
1376__bread_gfp(struct block_device *bdev, sector_t block,
1377		   unsigned size, gfp_t gfp)
1378{
1379	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
 
 
 
 
 
 
 
 
 
 
1380
1381	if (likely(bh) && !buffer_uptodate(bh))
1382		bh = __bread_slow(bh);
1383	return bh;
1384}
1385EXPORT_SYMBOL(__bread_gfp);
1386
1387static void __invalidate_bh_lrus(struct bh_lru *b)
1388{
1389	int i;
1390
1391	for (i = 0; i < BH_LRU_SIZE; i++) {
1392		brelse(b->bhs[i]);
1393		b->bhs[i] = NULL;
1394	}
1395}
1396/*
1397 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1398 * This doesn't race because it runs in each cpu either in irq
1399 * or with preempt disabled.
1400 */
1401static void invalidate_bh_lru(void *arg)
1402{
1403	struct bh_lru *b = &get_cpu_var(bh_lrus);
1404
1405	__invalidate_bh_lrus(b);
1406	put_cpu_var(bh_lrus);
1407}
1408
1409bool has_bh_in_lru(int cpu, void *dummy)
1410{
1411	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1412	int i;
1413	
1414	for (i = 0; i < BH_LRU_SIZE; i++) {
1415		if (b->bhs[i])
1416			return true;
1417	}
1418
1419	return false;
1420}
1421
1422void invalidate_bh_lrus(void)
1423{
1424	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1425}
1426EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1427
1428void invalidate_bh_lrus_cpu(int cpu)
 
 
 
 
1429{
1430	struct bh_lru *b;
1431
1432	bh_lru_lock();
1433	b = per_cpu_ptr(&bh_lrus, cpu);
1434	__invalidate_bh_lrus(b);
1435	bh_lru_unlock();
1436}
1437
1438void set_bh_page(struct buffer_head *bh,
1439		struct page *page, unsigned long offset)
1440{
1441	bh->b_page = page;
1442	BUG_ON(offset >= PAGE_SIZE);
1443	if (PageHighMem(page))
1444		/*
1445		 * This catches illegal uses and preserves the offset:
1446		 */
1447		bh->b_data = (char *)(0 + offset);
1448	else
1449		bh->b_data = page_address(page) + offset;
1450}
1451EXPORT_SYMBOL(set_bh_page);
1452
1453/*
1454 * Called when truncating a buffer on a page completely.
1455 */
1456
1457/* Bits that are cleared during an invalidate */
1458#define BUFFER_FLAGS_DISCARD \
1459	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1460	 1 << BH_Delay | 1 << BH_Unwritten)
1461
1462static void discard_buffer(struct buffer_head * bh)
1463{
1464	unsigned long b_state, b_state_old;
1465
1466	lock_buffer(bh);
1467	clear_buffer_dirty(bh);
1468	bh->b_bdev = NULL;
1469	b_state = bh->b_state;
1470	for (;;) {
1471		b_state_old = cmpxchg(&bh->b_state, b_state,
1472				      (b_state & ~BUFFER_FLAGS_DISCARD));
1473		if (b_state_old == b_state)
1474			break;
1475		b_state = b_state_old;
1476	}
1477	unlock_buffer(bh);
1478}
1479
1480/**
1481 * block_invalidatepage - invalidate part or all of a buffer-backed page
1482 *
1483 * @page: the page which is affected
1484 * @offset: start of the range to invalidate
1485 * @length: length of the range to invalidate
1486 *
1487 * block_invalidatepage() is called when all or part of the page has become
1488 * invalidated by a truncate operation.
1489 *
1490 * block_invalidatepage() does not have to release all buffers, but it must
1491 * ensure that no dirty buffer is left outside @offset and that no I/O
1492 * is underway against any of the blocks which are outside the truncation
1493 * point.  Because the caller is about to free (and possibly reuse) those
1494 * blocks on-disk.
1495 */
1496void block_invalidatepage(struct page *page, unsigned int offset,
1497			  unsigned int length)
1498{
1499	struct buffer_head *head, *bh, *next;
1500	unsigned int curr_off = 0;
1501	unsigned int stop = length + offset;
1502
1503	BUG_ON(!PageLocked(page));
1504	if (!page_has_buffers(page))
1505		goto out;
1506
1507	/*
1508	 * Check for overflow
1509	 */
1510	BUG_ON(stop > PAGE_SIZE || stop < length);
 
 
 
 
1511
1512	head = page_buffers(page);
1513	bh = head;
1514	do {
1515		unsigned int next_off = curr_off + bh->b_size;
1516		next = bh->b_this_page;
1517
1518		/*
1519		 * Are we still fully in range ?
1520		 */
1521		if (next_off > stop)
1522			goto out;
1523
1524		/*
1525		 * is this block fully invalidated?
1526		 */
1527		if (offset <= curr_off)
1528			discard_buffer(bh);
1529		curr_off = next_off;
1530		bh = next;
1531	} while (bh != head);
1532
1533	/*
1534	 * We release buffers only if the entire page is being invalidated.
1535	 * The get_block cached value has been unconditionally invalidated,
1536	 * so real IO is not possible anymore.
1537	 */
1538	if (length == PAGE_SIZE)
1539		try_to_release_page(page, 0);
1540out:
1541	return;
1542}
1543EXPORT_SYMBOL(block_invalidatepage);
1544
1545
1546/*
1547 * We attach and possibly dirty the buffers atomically wrt
1548 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1549 * is already excluded via the page lock.
1550 */
1551void create_empty_buffers(struct page *page,
1552			unsigned long blocksize, unsigned long b_state)
1553{
1554	struct buffer_head *bh, *head, *tail;
 
1555
1556	head = alloc_page_buffers(page, blocksize, true);
1557	bh = head;
1558	do {
1559		bh->b_state |= b_state;
1560		tail = bh;
1561		bh = bh->b_this_page;
1562	} while (bh);
1563	tail->b_this_page = head;
1564
1565	spin_lock(&page->mapping->private_lock);
1566	if (PageUptodate(page) || PageDirty(page)) {
1567		bh = head;
1568		do {
1569			if (PageDirty(page))
1570				set_buffer_dirty(bh);
1571			if (PageUptodate(page))
1572				set_buffer_uptodate(bh);
1573			bh = bh->b_this_page;
1574		} while (bh != head);
1575	}
1576	attach_page_private(page, head);
1577	spin_unlock(&page->mapping->private_lock);
 
 
1578}
1579EXPORT_SYMBOL(create_empty_buffers);
1580
1581/**
1582 * clean_bdev_aliases: clean a range of buffers in block device
1583 * @bdev: Block device to clean buffers in
1584 * @block: Start of a range of blocks to clean
1585 * @len: Number of blocks to clean
1586 *
1587 * We are taking a range of blocks for data and we don't want writeback of any
1588 * buffer-cache aliases starting from return from this function and until the
1589 * moment when something will explicitly mark the buffer dirty (hopefully that
1590 * will not happen until we will free that block ;-) We don't even need to mark
1591 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1592 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1593 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1594 * would confuse anyone who might pick it with bread() afterwards...
1595 *
1596 * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1597 * writeout I/O going on against recently-freed buffers.  We don't wait on that
1598 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1599 * need to.  That happens here.
1600 */
1601void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1602{
1603	struct inode *bd_inode = bdev->bd_inode;
1604	struct address_space *bd_mapping = bd_inode->i_mapping;
1605	struct pagevec pvec;
1606	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1607	pgoff_t end;
1608	int i, count;
1609	struct buffer_head *bh;
1610	struct buffer_head *head;
1611
1612	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1613	pagevec_init(&pvec);
1614	while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1615		count = pagevec_count(&pvec);
1616		for (i = 0; i < count; i++) {
1617			struct page *page = pvec.pages[i];
1618
1619			if (!page_has_buffers(page))
1620				continue;
1621			/*
1622			 * We use page lock instead of bd_mapping->private_lock
1623			 * to pin buffers here since we can afford to sleep and
1624			 * it scales better than a global spinlock lock.
1625			 */
1626			lock_page(page);
1627			/* Recheck when the page is locked which pins bhs */
1628			if (!page_has_buffers(page))
 
1629				goto unlock_page;
1630			head = page_buffers(page);
1631			bh = head;
1632			do {
1633				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1634					goto next;
1635				if (bh->b_blocknr >= block + len)
1636					break;
1637				clear_buffer_dirty(bh);
1638				wait_on_buffer(bh);
1639				clear_buffer_req(bh);
1640next:
1641				bh = bh->b_this_page;
1642			} while (bh != head);
1643unlock_page:
1644			unlock_page(page);
1645		}
1646		pagevec_release(&pvec);
1647		cond_resched();
1648		/* End of range already reached? */
1649		if (index > end || !index)
1650			break;
1651	}
1652}
1653EXPORT_SYMBOL(clean_bdev_aliases);
1654
1655/*
1656 * Size is a power-of-two in the range 512..PAGE_SIZE,
1657 * and the case we care about most is PAGE_SIZE.
1658 *
1659 * So this *could* possibly be written with those
1660 * constraints in mind (relevant mostly if some
1661 * architecture has a slow bit-scan instruction)
1662 */
1663static inline int block_size_bits(unsigned int blocksize)
1664{
1665	return ilog2(blocksize);
1666}
1667
1668static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1669{
1670	BUG_ON(!PageLocked(page));
1671
1672	if (!page_has_buffers(page))
1673		create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1674				     b_state);
1675	return page_buffers(page);
 
1676}
1677
1678/*
1679 * NOTE! All mapped/uptodate combinations are valid:
1680 *
1681 *	Mapped	Uptodate	Meaning
1682 *
1683 *	No	No		"unknown" - must do get_block()
1684 *	No	Yes		"hole" - zero-filled
1685 *	Yes	No		"allocated" - allocated on disk, not read in
1686 *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1687 *
1688 * "Dirty" is valid only with the last case (mapped+uptodate).
1689 */
1690
1691/*
1692 * While block_write_full_page is writing back the dirty buffers under
1693 * the page lock, whoever dirtied the buffers may decide to clean them
1694 * again at any time.  We handle that by only looking at the buffer
1695 * state inside lock_buffer().
1696 *
1697 * If block_write_full_page() is called for regular writeback
1698 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1699 * locked buffer.   This only can happen if someone has written the buffer
1700 * directly, with submit_bh().  At the address_space level PageWriteback
1701 * prevents this contention from occurring.
1702 *
1703 * If block_write_full_page() is called with wbc->sync_mode ==
1704 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1705 * causes the writes to be flagged as synchronous writes.
1706 */
1707int __block_write_full_page(struct inode *inode, struct page *page,
1708			get_block_t *get_block, struct writeback_control *wbc,
1709			bh_end_io_t *handler)
1710{
1711	int err;
1712	sector_t block;
1713	sector_t last_block;
1714	struct buffer_head *bh, *head;
1715	unsigned int blocksize, bbits;
1716	int nr_underway = 0;
1717	int write_flags = wbc_to_write_flags(wbc);
1718
1719	head = create_page_buffers(page, inode,
1720					(1 << BH_Dirty)|(1 << BH_Uptodate));
1721
1722	/*
1723	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1724	 * here, and the (potentially unmapped) buffers may become dirty at
1725	 * any time.  If a buffer becomes dirty here after we've inspected it
1726	 * then we just miss that fact, and the page stays dirty.
1727	 *
1728	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1729	 * handle that here by just cleaning them.
1730	 */
1731
1732	bh = head;
1733	blocksize = bh->b_size;
1734	bbits = block_size_bits(blocksize);
1735
1736	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1737	last_block = (i_size_read(inode) - 1) >> bbits;
1738
1739	/*
1740	 * Get all the dirty buffers mapped to disk addresses and
1741	 * handle any aliases from the underlying blockdev's mapping.
1742	 */
1743	do {
1744		if (block > last_block) {
1745			/*
1746			 * mapped buffers outside i_size will occur, because
1747			 * this page can be outside i_size when there is a
1748			 * truncate in progress.
1749			 */
1750			/*
1751			 * The buffer was zeroed by block_write_full_page()
1752			 */
1753			clear_buffer_dirty(bh);
1754			set_buffer_uptodate(bh);
1755		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1756			   buffer_dirty(bh)) {
1757			WARN_ON(bh->b_size != blocksize);
1758			err = get_block(inode, block, bh, 1);
1759			if (err)
1760				goto recover;
1761			clear_buffer_delay(bh);
1762			if (buffer_new(bh)) {
1763				/* blockdev mappings never come here */
1764				clear_buffer_new(bh);
1765				clean_bdev_bh_alias(bh);
1766			}
1767		}
1768		bh = bh->b_this_page;
1769		block++;
1770	} while (bh != head);
1771
1772	do {
1773		if (!buffer_mapped(bh))
1774			continue;
1775		/*
1776		 * If it's a fully non-blocking write attempt and we cannot
1777		 * lock the buffer then redirty the page.  Note that this can
1778		 * potentially cause a busy-wait loop from writeback threads
1779		 * and kswapd activity, but those code paths have their own
1780		 * higher-level throttling.
1781		 */
1782		if (wbc->sync_mode != WB_SYNC_NONE) {
1783			lock_buffer(bh);
1784		} else if (!trylock_buffer(bh)) {
1785			redirty_page_for_writepage(wbc, page);
1786			continue;
1787		}
1788		if (test_clear_buffer_dirty(bh)) {
1789			mark_buffer_async_write_endio(bh, handler);
 
1790		} else {
1791			unlock_buffer(bh);
1792		}
1793	} while ((bh = bh->b_this_page) != head);
1794
1795	/*
1796	 * The page and its buffers are protected by PageWriteback(), so we can
1797	 * drop the bh refcounts early.
1798	 */
1799	BUG_ON(PageWriteback(page));
1800	set_page_writeback(page);
1801
1802	do {
1803		struct buffer_head *next = bh->b_this_page;
1804		if (buffer_async_write(bh)) {
1805			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1806					inode->i_write_hint, wbc);
1807			nr_underway++;
1808		}
1809		bh = next;
1810	} while (bh != head);
1811	unlock_page(page);
1812
1813	err = 0;
1814done:
1815	if (nr_underway == 0) {
1816		/*
1817		 * The page was marked dirty, but the buffers were
1818		 * clean.  Someone wrote them back by hand with
1819		 * ll_rw_block/submit_bh.  A rare case.
1820		 */
1821		end_page_writeback(page);
1822
1823		/*
1824		 * The page and buffer_heads can be released at any time from
1825		 * here on.
1826		 */
1827	}
1828	return err;
1829
1830recover:
1831	/*
1832	 * ENOSPC, or some other error.  We may already have added some
1833	 * blocks to the file, so we need to write these out to avoid
1834	 * exposing stale data.
1835	 * The page is currently locked and not marked for writeback
1836	 */
1837	bh = head;
1838	/* Recovery: lock and submit the mapped buffers */
1839	do {
1840		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1841		    !buffer_delay(bh)) {
1842			lock_buffer(bh);
1843			mark_buffer_async_write_endio(bh, handler);
 
1844		} else {
1845			/*
1846			 * The buffer may have been set dirty during
1847			 * attachment to a dirty page.
1848			 */
1849			clear_buffer_dirty(bh);
1850		}
1851	} while ((bh = bh->b_this_page) != head);
1852	SetPageError(page);
1853	BUG_ON(PageWriteback(page));
1854	mapping_set_error(page->mapping, err);
1855	set_page_writeback(page);
1856	do {
1857		struct buffer_head *next = bh->b_this_page;
1858		if (buffer_async_write(bh)) {
1859			clear_buffer_dirty(bh);
1860			submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1861					inode->i_write_hint, wbc);
1862			nr_underway++;
1863		}
1864		bh = next;
1865	} while (bh != head);
1866	unlock_page(page);
1867	goto done;
1868}
1869EXPORT_SYMBOL(__block_write_full_page);
1870
1871/*
1872 * If a page has any new buffers, zero them out here, and mark them uptodate
1873 * and dirty so they'll be written out (in order to prevent uninitialised
1874 * block data from leaking). And clear the new bit.
1875 */
1876void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1877{
1878	unsigned int block_start, block_end;
1879	struct buffer_head *head, *bh;
1880
1881	BUG_ON(!PageLocked(page));
1882	if (!page_has_buffers(page))
 
1883		return;
1884
1885	bh = head = page_buffers(page);
1886	block_start = 0;
1887	do {
1888		block_end = block_start + bh->b_size;
1889
1890		if (buffer_new(bh)) {
1891			if (block_end > from && block_start < to) {
1892				if (!PageUptodate(page)) {
1893					unsigned start, size;
1894
1895					start = max(from, block_start);
1896					size = min(to, block_end) - start;
1897
1898					zero_user(page, start, size);
1899					set_buffer_uptodate(bh);
1900				}
1901
1902				clear_buffer_new(bh);
1903				mark_buffer_dirty(bh);
1904			}
1905		}
1906
1907		block_start = block_end;
1908		bh = bh->b_this_page;
1909	} while (bh != head);
1910}
1911EXPORT_SYMBOL(page_zero_new_buffers);
1912
1913static void
1914iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1915		struct iomap *iomap)
1916{
1917	loff_t offset = block << inode->i_blkbits;
1918
1919	bh->b_bdev = iomap->bdev;
1920
1921	/*
1922	 * Block points to offset in file we need to map, iomap contains
1923	 * the offset at which the map starts. If the map ends before the
1924	 * current block, then do not map the buffer and let the caller
1925	 * handle it.
1926	 */
1927	BUG_ON(offset >= iomap->offset + iomap->length);
 
1928
1929	switch (iomap->type) {
1930	case IOMAP_HOLE:
1931		/*
1932		 * If the buffer is not up to date or beyond the current EOF,
1933		 * we need to mark it as new to ensure sub-block zeroing is
1934		 * executed if necessary.
1935		 */
1936		if (!buffer_uptodate(bh) ||
1937		    (offset >= i_size_read(inode)))
1938			set_buffer_new(bh);
1939		break;
1940	case IOMAP_DELALLOC:
1941		if (!buffer_uptodate(bh) ||
1942		    (offset >= i_size_read(inode)))
1943			set_buffer_new(bh);
1944		set_buffer_uptodate(bh);
1945		set_buffer_mapped(bh);
1946		set_buffer_delay(bh);
1947		break;
1948	case IOMAP_UNWRITTEN:
1949		/*
1950		 * For unwritten regions, we always need to ensure that regions
1951		 * in the block we are not writing to are zeroed. Mark the
1952		 * buffer as new to ensure this.
1953		 */
1954		set_buffer_new(bh);
1955		set_buffer_unwritten(bh);
1956		fallthrough;
1957	case IOMAP_MAPPED:
1958		if ((iomap->flags & IOMAP_F_NEW) ||
1959		    offset >= i_size_read(inode))
 
 
 
 
 
 
 
 
1960			set_buffer_new(bh);
 
1961		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1962				inode->i_blkbits;
1963		set_buffer_mapped(bh);
1964		break;
 
 
 
1965	}
1966}
1967
1968int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1969		get_block_t *get_block, struct iomap *iomap)
1970{
1971	unsigned from = pos & (PAGE_SIZE - 1);
1972	unsigned to = from + len;
1973	struct inode *inode = page->mapping->host;
1974	unsigned block_start, block_end;
1975	sector_t block;
1976	int err = 0;
1977	unsigned blocksize, bbits;
1978	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1979
1980	BUG_ON(!PageLocked(page));
1981	BUG_ON(from > PAGE_SIZE);
1982	BUG_ON(to > PAGE_SIZE);
1983	BUG_ON(from > to);
1984
1985	head = create_page_buffers(page, inode, 0);
1986	blocksize = head->b_size;
1987	bbits = block_size_bits(blocksize);
1988
1989	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1990
1991	for(bh = head, block_start = 0; bh != head || !block_start;
1992	    block++, block_start=block_end, bh = bh->b_this_page) {
1993		block_end = block_start + blocksize;
1994		if (block_end <= from || block_start >= to) {
1995			if (PageUptodate(page)) {
1996				if (!buffer_uptodate(bh))
1997					set_buffer_uptodate(bh);
1998			}
1999			continue;
2000		}
2001		if (buffer_new(bh))
2002			clear_buffer_new(bh);
2003		if (!buffer_mapped(bh)) {
2004			WARN_ON(bh->b_size != blocksize);
2005			if (get_block) {
2006				err = get_block(inode, block, bh, 1);
2007				if (err)
2008					break;
2009			} else {
2010				iomap_to_bh(inode, block, bh, iomap);
2011			}
2012
2013			if (buffer_new(bh)) {
2014				clean_bdev_bh_alias(bh);
2015				if (PageUptodate(page)) {
2016					clear_buffer_new(bh);
2017					set_buffer_uptodate(bh);
2018					mark_buffer_dirty(bh);
2019					continue;
2020				}
2021				if (block_end > to || block_start < from)
2022					zero_user_segments(page,
2023						to, block_end,
2024						block_start, from);
2025				continue;
2026			}
2027		}
2028		if (PageUptodate(page)) {
2029			if (!buffer_uptodate(bh))
2030				set_buffer_uptodate(bh);
2031			continue; 
2032		}
2033		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2034		    !buffer_unwritten(bh) &&
2035		     (block_start < from || block_end > to)) {
2036			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2037			*wait_bh++=bh;
2038		}
2039	}
2040	/*
2041	 * If we issued read requests - let them complete.
2042	 */
2043	while(wait_bh > wait) {
2044		wait_on_buffer(*--wait_bh);
2045		if (!buffer_uptodate(*wait_bh))
2046			err = -EIO;
2047	}
2048	if (unlikely(err))
2049		page_zero_new_buffers(page, from, to);
2050	return err;
2051}
2052
2053int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2054		get_block_t *get_block)
2055{
2056	return __block_write_begin_int(page, pos, len, get_block, NULL);
 
2057}
2058EXPORT_SYMBOL(__block_write_begin);
2059
2060static int __block_commit_write(struct inode *inode, struct page *page,
2061		unsigned from, unsigned to)
2062{
2063	unsigned block_start, block_end;
2064	int partial = 0;
2065	unsigned blocksize;
2066	struct buffer_head *bh, *head;
2067
2068	bh = head = page_buffers(page);
2069	blocksize = bh->b_size;
2070
2071	block_start = 0;
2072	do {
2073		block_end = block_start + blocksize;
2074		if (block_end <= from || block_start >= to) {
2075			if (!buffer_uptodate(bh))
2076				partial = 1;
2077		} else {
2078			set_buffer_uptodate(bh);
2079			mark_buffer_dirty(bh);
2080		}
2081		if (buffer_new(bh))
2082			clear_buffer_new(bh);
2083
2084		block_start = block_end;
2085		bh = bh->b_this_page;
2086	} while (bh != head);
2087
2088	/*
2089	 * If this is a partial write which happened to make all buffers
2090	 * uptodate then we can optimize away a bogus readpage() for
2091	 * the next read(). Here we 'discover' whether the page went
2092	 * uptodate as a result of this (potentially partial) write.
2093	 */
2094	if (!partial)
2095		SetPageUptodate(page);
2096	return 0;
2097}
2098
2099/*
2100 * block_write_begin takes care of the basic task of block allocation and
2101 * bringing partial write blocks uptodate first.
2102 *
2103 * The filesystem needs to handle block truncation upon failure.
2104 */
2105int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2106		unsigned flags, struct page **pagep, get_block_t *get_block)
2107{
2108	pgoff_t index = pos >> PAGE_SHIFT;
2109	struct page *page;
2110	int status;
2111
2112	page = grab_cache_page_write_begin(mapping, index, flags);
2113	if (!page)
2114		return -ENOMEM;
2115
2116	status = __block_write_begin(page, pos, len, get_block);
2117	if (unlikely(status)) {
2118		unlock_page(page);
2119		put_page(page);
2120		page = NULL;
2121	}
2122
2123	*pagep = page;
2124	return status;
2125}
2126EXPORT_SYMBOL(block_write_begin);
2127
2128int block_write_end(struct file *file, struct address_space *mapping,
2129			loff_t pos, unsigned len, unsigned copied,
2130			struct page *page, void *fsdata)
2131{
2132	struct inode *inode = mapping->host;
2133	unsigned start;
2134
2135	start = pos & (PAGE_SIZE - 1);
2136
2137	if (unlikely(copied < len)) {
2138		/*
2139		 * The buffers that were written will now be uptodate, so we
2140		 * don't have to worry about a readpage reading them and
2141		 * overwriting a partial write. However if we have encountered
2142		 * a short write and only partially written into a buffer, it
2143		 * will not be marked uptodate, so a readpage might come in and
2144		 * destroy our partial write.
2145		 *
2146		 * Do the simplest thing, and just treat any short write to a
2147		 * non uptodate page as a zero-length write, and force the
2148		 * caller to redo the whole thing.
2149		 */
2150		if (!PageUptodate(page))
2151			copied = 0;
2152
2153		page_zero_new_buffers(page, start+copied, start+len);
2154	}
2155	flush_dcache_page(page);
2156
2157	/* This could be a short (even 0-length) commit */
2158	__block_commit_write(inode, page, start, start+copied);
2159
2160	return copied;
2161}
2162EXPORT_SYMBOL(block_write_end);
2163
2164int generic_write_end(struct file *file, struct address_space *mapping,
2165			loff_t pos, unsigned len, unsigned copied,
2166			struct page *page, void *fsdata)
2167{
2168	struct inode *inode = mapping->host;
2169	loff_t old_size = inode->i_size;
2170	bool i_size_changed = false;
2171
2172	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2173
2174	/*
2175	 * No need to use i_size_read() here, the i_size cannot change under us
2176	 * because we hold i_rwsem.
2177	 *
2178	 * But it's important to update i_size while still holding page lock:
2179	 * page writeout could otherwise come in and zero beyond i_size.
2180	 */
2181	if (pos + copied > inode->i_size) {
2182		i_size_write(inode, pos + copied);
2183		i_size_changed = true;
2184	}
2185
2186	unlock_page(page);
2187	put_page(page);
2188
2189	if (old_size < pos)
2190		pagecache_isize_extended(inode, old_size, pos);
2191	/*
2192	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2193	 * makes the holding time of page lock longer. Second, it forces lock
2194	 * ordering of page lock and transaction start for journaling
2195	 * filesystems.
2196	 */
2197	if (i_size_changed)
2198		mark_inode_dirty(inode);
2199	return copied;
2200}
2201EXPORT_SYMBOL(generic_write_end);
2202
2203/*
2204 * block_is_partially_uptodate checks whether buffers within a page are
2205 * uptodate or not.
2206 *
2207 * Returns true if all buffers which correspond to a file portion
2208 * we want to read are uptodate.
2209 */
2210int block_is_partially_uptodate(struct page *page, unsigned long from,
2211					unsigned long count)
2212{
2213	unsigned block_start, block_end, blocksize;
2214	unsigned to;
2215	struct buffer_head *bh, *head;
2216	int ret = 1;
2217
2218	if (!page_has_buffers(page))
2219		return 0;
2220
2221	head = page_buffers(page);
 
 
2222	blocksize = head->b_size;
2223	to = min_t(unsigned, PAGE_SIZE - from, count);
2224	to = from + to;
2225	if (from < blocksize && to > PAGE_SIZE - blocksize)
2226		return 0;
2227
2228	bh = head;
2229	block_start = 0;
2230	do {
2231		block_end = block_start + blocksize;
2232		if (block_end > from && block_start < to) {
2233			if (!buffer_uptodate(bh)) {
2234				ret = 0;
2235				break;
2236			}
2237			if (block_end >= to)
2238				break;
2239		}
2240		block_start = block_end;
2241		bh = bh->b_this_page;
2242	} while (bh != head);
2243
2244	return ret;
2245}
2246EXPORT_SYMBOL(block_is_partially_uptodate);
2247
2248/*
2249 * Generic "read page" function for block devices that have the normal
2250 * get_block functionality. This is most of the block device filesystems.
2251 * Reads the page asynchronously --- the unlock_buffer() and
2252 * set/clear_buffer_uptodate() functions propagate buffer state into the
2253 * page struct once IO has completed.
2254 */
2255int block_read_full_page(struct page *page, get_block_t *get_block)
2256{
2257	struct inode *inode = page->mapping->host;
2258	sector_t iblock, lblock;
2259	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2260	unsigned int blocksize, bbits;
2261	int nr, i;
2262	int fully_mapped = 1;
 
 
 
 
 
 
 
 
2263
2264	head = create_page_buffers(page, inode, 0);
2265	blocksize = head->b_size;
2266	bbits = block_size_bits(blocksize);
2267
2268	iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2269	lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2270	bh = head;
2271	nr = 0;
2272	i = 0;
2273
2274	do {
2275		if (buffer_uptodate(bh))
2276			continue;
2277
2278		if (!buffer_mapped(bh)) {
2279			int err = 0;
2280
2281			fully_mapped = 0;
2282			if (iblock < lblock) {
2283				WARN_ON(bh->b_size != blocksize);
2284				err = get_block(inode, iblock, bh, 0);
2285				if (err)
2286					SetPageError(page);
 
 
2287			}
2288			if (!buffer_mapped(bh)) {
2289				zero_user(page, i * blocksize, blocksize);
 
2290				if (!err)
2291					set_buffer_uptodate(bh);
2292				continue;
2293			}
2294			/*
2295			 * get_block() might have updated the buffer
2296			 * synchronously
2297			 */
2298			if (buffer_uptodate(bh))
2299				continue;
2300		}
2301		arr[nr++] = bh;
2302	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2303
2304	if (fully_mapped)
2305		SetPageMappedToDisk(page);
2306
2307	if (!nr) {
2308		/*
2309		 * All buffers are uptodate - we can set the page uptodate
2310		 * as well. But not if get_block() returned an error.
2311		 */
2312		if (!PageError(page))
2313			SetPageUptodate(page);
2314		unlock_page(page);
2315		return 0;
2316	}
2317
2318	/* Stage two: lock the buffers */
2319	for (i = 0; i < nr; i++) {
2320		bh = arr[i];
2321		lock_buffer(bh);
2322		mark_buffer_async_read(bh);
2323	}
2324
2325	/*
2326	 * Stage 3: start the IO.  Check for uptodateness
2327	 * inside the buffer lock in case another process reading
2328	 * the underlying blockdev brought it uptodate (the sct fix).
2329	 */
2330	for (i = 0; i < nr; i++) {
2331		bh = arr[i];
2332		if (buffer_uptodate(bh))
2333			end_buffer_async_read(bh, 1);
2334		else
2335			submit_bh(REQ_OP_READ, 0, bh);
2336	}
2337	return 0;
2338}
2339EXPORT_SYMBOL(block_read_full_page);
2340
2341/* utility function for filesystems that need to do work on expanding
2342 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2343 * deal with the hole.  
2344 */
2345int generic_cont_expand_simple(struct inode *inode, loff_t size)
2346{
2347	struct address_space *mapping = inode->i_mapping;
 
2348	struct page *page;
2349	void *fsdata;
2350	int err;
2351
2352	err = inode_newsize_ok(inode, size);
2353	if (err)
2354		goto out;
2355
2356	err = pagecache_write_begin(NULL, mapping, size, 0,
2357				    AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2358	if (err)
2359		goto out;
2360
2361	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2362	BUG_ON(err > 0);
2363
2364out:
2365	return err;
2366}
2367EXPORT_SYMBOL(generic_cont_expand_simple);
2368
2369static int cont_expand_zero(struct file *file, struct address_space *mapping,
2370			    loff_t pos, loff_t *bytes)
2371{
2372	struct inode *inode = mapping->host;
 
2373	unsigned int blocksize = i_blocksize(inode);
2374	struct page *page;
2375	void *fsdata;
2376	pgoff_t index, curidx;
2377	loff_t curpos;
2378	unsigned zerofrom, offset, len;
2379	int err = 0;
2380
2381	index = pos >> PAGE_SHIFT;
2382	offset = pos & ~PAGE_MASK;
2383
2384	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2385		zerofrom = curpos & ~PAGE_MASK;
2386		if (zerofrom & (blocksize-1)) {
2387			*bytes |= (blocksize-1);
2388			(*bytes)++;
2389		}
2390		len = PAGE_SIZE - zerofrom;
2391
2392		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2393					    &page, &fsdata);
2394		if (err)
2395			goto out;
2396		zero_user(page, zerofrom, len);
2397		err = pagecache_write_end(file, mapping, curpos, len, len,
2398						page, fsdata);
2399		if (err < 0)
2400			goto out;
2401		BUG_ON(err != len);
2402		err = 0;
2403
2404		balance_dirty_pages_ratelimited(mapping);
2405
2406		if (fatal_signal_pending(current)) {
2407			err = -EINTR;
2408			goto out;
2409		}
2410	}
2411
2412	/* page covers the boundary, find the boundary offset */
2413	if (index == curidx) {
2414		zerofrom = curpos & ~PAGE_MASK;
2415		/* if we will expand the thing last block will be filled */
2416		if (offset <= zerofrom) {
2417			goto out;
2418		}
2419		if (zerofrom & (blocksize-1)) {
2420			*bytes |= (blocksize-1);
2421			(*bytes)++;
2422		}
2423		len = offset - zerofrom;
2424
2425		err = pagecache_write_begin(file, mapping, curpos, len, 0,
2426					    &page, &fsdata);
2427		if (err)
2428			goto out;
2429		zero_user(page, zerofrom, len);
2430		err = pagecache_write_end(file, mapping, curpos, len, len,
2431						page, fsdata);
2432		if (err < 0)
2433			goto out;
2434		BUG_ON(err != len);
2435		err = 0;
2436	}
2437out:
2438	return err;
2439}
2440
2441/*
2442 * For moronic filesystems that do not allow holes in file.
2443 * We may have to extend the file.
2444 */
2445int cont_write_begin(struct file *file, struct address_space *mapping,
2446			loff_t pos, unsigned len, unsigned flags,
2447			struct page **pagep, void **fsdata,
2448			get_block_t *get_block, loff_t *bytes)
2449{
2450	struct inode *inode = mapping->host;
2451	unsigned int blocksize = i_blocksize(inode);
2452	unsigned int zerofrom;
2453	int err;
2454
2455	err = cont_expand_zero(file, mapping, pos, bytes);
2456	if (err)
2457		return err;
2458
2459	zerofrom = *bytes & ~PAGE_MASK;
2460	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2461		*bytes |= (blocksize-1);
2462		(*bytes)++;
2463	}
2464
2465	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2466}
2467EXPORT_SYMBOL(cont_write_begin);
2468
2469int block_commit_write(struct page *page, unsigned from, unsigned to)
2470{
2471	struct inode *inode = page->mapping->host;
2472	__block_commit_write(inode,page,from,to);
2473	return 0;
2474}
2475EXPORT_SYMBOL(block_commit_write);
2476
2477/*
2478 * block_page_mkwrite() is not allowed to change the file size as it gets
2479 * called from a page fault handler when a page is first dirtied. Hence we must
2480 * be careful to check for EOF conditions here. We set the page up correctly
2481 * for a written page which means we get ENOSPC checking when writing into
2482 * holes and correct delalloc and unwritten extent mapping on filesystems that
2483 * support these features.
2484 *
2485 * We are not allowed to take the i_mutex here so we have to play games to
2486 * protect against truncate races as the page could now be beyond EOF.  Because
2487 * truncate writes the inode size before removing pages, once we have the
2488 * page lock we can determine safely if the page is beyond EOF. If it is not
2489 * beyond EOF, then the page is guaranteed safe against truncation until we
2490 * unlock the page.
2491 *
2492 * Direct callers of this function should protect against filesystem freezing
2493 * using sb_start_pagefault() - sb_end_pagefault() functions.
2494 */
2495int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2496			 get_block_t get_block)
2497{
2498	struct page *page = vmf->page;
2499	struct inode *inode = file_inode(vma->vm_file);
2500	unsigned long end;
2501	loff_t size;
2502	int ret;
2503
2504	lock_page(page);
2505	size = i_size_read(inode);
2506	if ((page->mapping != inode->i_mapping) ||
2507	    (page_offset(page) > size)) {
2508		/* We overload EFAULT to mean page got truncated */
2509		ret = -EFAULT;
2510		goto out_unlock;
2511	}
2512
2513	/* page is wholly or partially inside EOF */
2514	if (((page->index + 1) << PAGE_SHIFT) > size)
2515		end = size & ~PAGE_MASK;
2516	else
2517		end = PAGE_SIZE;
 
 
 
2518
2519	ret = __block_write_begin(page, 0, end, get_block);
2520	if (!ret)
2521		ret = block_commit_write(page, 0, end);
2522
2523	if (unlikely(ret < 0))
2524		goto out_unlock;
2525	set_page_dirty(page);
2526	wait_for_stable_page(page);
2527	return 0;
2528out_unlock:
2529	unlock_page(page);
2530	return ret;
2531}
2532EXPORT_SYMBOL(block_page_mkwrite);
2533
2534/*
2535 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2536 * immediately, while under the page lock.  So it needs a special end_io
2537 * handler which does not touch the bh after unlocking it.
2538 */
2539static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2540{
2541	__end_buffer_read_notouch(bh, uptodate);
2542}
2543
2544/*
2545 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2546 * the page (converting it to circular linked list and taking care of page
2547 * dirty races).
2548 */
2549static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2550{
2551	struct buffer_head *bh;
2552
2553	BUG_ON(!PageLocked(page));
2554
2555	spin_lock(&page->mapping->private_lock);
2556	bh = head;
2557	do {
2558		if (PageDirty(page))
2559			set_buffer_dirty(bh);
2560		if (!bh->b_this_page)
2561			bh->b_this_page = head;
2562		bh = bh->b_this_page;
2563	} while (bh != head);
2564	attach_page_private(page, head);
2565	spin_unlock(&page->mapping->private_lock);
2566}
2567
2568/*
2569 * On entry, the page is fully not uptodate.
2570 * On exit the page is fully uptodate in the areas outside (from,to)
2571 * The filesystem needs to handle block truncation upon failure.
2572 */
2573int nobh_write_begin(struct address_space *mapping,
2574			loff_t pos, unsigned len, unsigned flags,
2575			struct page **pagep, void **fsdata,
2576			get_block_t *get_block)
2577{
2578	struct inode *inode = mapping->host;
2579	const unsigned blkbits = inode->i_blkbits;
2580	const unsigned blocksize = 1 << blkbits;
2581	struct buffer_head *head, *bh;
2582	struct page *page;
2583	pgoff_t index;
2584	unsigned from, to;
2585	unsigned block_in_page;
2586	unsigned block_start, block_end;
2587	sector_t block_in_file;
2588	int nr_reads = 0;
2589	int ret = 0;
2590	int is_mapped_to_disk = 1;
2591
2592	index = pos >> PAGE_SHIFT;
2593	from = pos & (PAGE_SIZE - 1);
2594	to = from + len;
2595
2596	page = grab_cache_page_write_begin(mapping, index, flags);
2597	if (!page)
2598		return -ENOMEM;
2599	*pagep = page;
2600	*fsdata = NULL;
2601
2602	if (page_has_buffers(page)) {
2603		ret = __block_write_begin(page, pos, len, get_block);
2604		if (unlikely(ret))
2605			goto out_release;
2606		return ret;
2607	}
2608
2609	if (PageMappedToDisk(page))
2610		return 0;
2611
2612	/*
2613	 * Allocate buffers so that we can keep track of state, and potentially
2614	 * attach them to the page if an error occurs. In the common case of
2615	 * no error, they will just be freed again without ever being attached
2616	 * to the page (which is all OK, because we're under the page lock).
2617	 *
2618	 * Be careful: the buffer linked list is a NULL terminated one, rather
2619	 * than the circular one we're used to.
2620	 */
2621	head = alloc_page_buffers(page, blocksize, false);
2622	if (!head) {
2623		ret = -ENOMEM;
2624		goto out_release;
2625	}
2626
2627	block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2628
2629	/*
2630	 * We loop across all blocks in the page, whether or not they are
2631	 * part of the affected region.  This is so we can discover if the
2632	 * page is fully mapped-to-disk.
2633	 */
2634	for (block_start = 0, block_in_page = 0, bh = head;
2635		  block_start < PAGE_SIZE;
2636		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2637		int create;
2638
2639		block_end = block_start + blocksize;
2640		bh->b_state = 0;
2641		create = 1;
2642		if (block_start >= to)
2643			create = 0;
2644		ret = get_block(inode, block_in_file + block_in_page,
2645					bh, create);
2646		if (ret)
2647			goto failed;
2648		if (!buffer_mapped(bh))
2649			is_mapped_to_disk = 0;
2650		if (buffer_new(bh))
2651			clean_bdev_bh_alias(bh);
2652		if (PageUptodate(page)) {
2653			set_buffer_uptodate(bh);
2654			continue;
2655		}
2656		if (buffer_new(bh) || !buffer_mapped(bh)) {
2657			zero_user_segments(page, block_start, from,
2658							to, block_end);
2659			continue;
2660		}
2661		if (buffer_uptodate(bh))
2662			continue;	/* reiserfs does this */
2663		if (block_start < from || block_end > to) {
2664			lock_buffer(bh);
2665			bh->b_end_io = end_buffer_read_nobh;
2666			submit_bh(REQ_OP_READ, 0, bh);
2667			nr_reads++;
2668		}
2669	}
2670
2671	if (nr_reads) {
2672		/*
2673		 * The page is locked, so these buffers are protected from
2674		 * any VM or truncate activity.  Hence we don't need to care
2675		 * for the buffer_head refcounts.
2676		 */
2677		for (bh = head; bh; bh = bh->b_this_page) {
2678			wait_on_buffer(bh);
2679			if (!buffer_uptodate(bh))
2680				ret = -EIO;
2681		}
2682		if (ret)
2683			goto failed;
2684	}
2685
2686	if (is_mapped_to_disk)
2687		SetPageMappedToDisk(page);
2688
2689	*fsdata = head; /* to be released by nobh_write_end */
2690
2691	return 0;
2692
2693failed:
2694	BUG_ON(!ret);
2695	/*
2696	 * Error recovery is a bit difficult. We need to zero out blocks that
2697	 * were newly allocated, and dirty them to ensure they get written out.
2698	 * Buffers need to be attached to the page at this point, otherwise
2699	 * the handling of potential IO errors during writeout would be hard
2700	 * (could try doing synchronous writeout, but what if that fails too?)
2701	 */
2702	attach_nobh_buffers(page, head);
2703	page_zero_new_buffers(page, from, to);
2704
2705out_release:
2706	unlock_page(page);
2707	put_page(page);
2708	*pagep = NULL;
2709
2710	return ret;
2711}
2712EXPORT_SYMBOL(nobh_write_begin);
2713
2714int nobh_write_end(struct file *file, struct address_space *mapping,
2715			loff_t pos, unsigned len, unsigned copied,
2716			struct page *page, void *fsdata)
2717{
2718	struct inode *inode = page->mapping->host;
2719	struct buffer_head *head = fsdata;
2720	struct buffer_head *bh;
2721	BUG_ON(fsdata != NULL && page_has_buffers(page));
2722
2723	if (unlikely(copied < len) && head)
2724		attach_nobh_buffers(page, head);
2725	if (page_has_buffers(page))
2726		return generic_write_end(file, mapping, pos, len,
2727					copied, page, fsdata);
2728
2729	SetPageUptodate(page);
2730	set_page_dirty(page);
2731	if (pos+copied > inode->i_size) {
2732		i_size_write(inode, pos+copied);
2733		mark_inode_dirty(inode);
2734	}
2735
2736	unlock_page(page);
2737	put_page(page);
2738
2739	while (head) {
2740		bh = head;
2741		head = head->b_this_page;
2742		free_buffer_head(bh);
2743	}
2744
2745	return copied;
2746}
2747EXPORT_SYMBOL(nobh_write_end);
2748
2749/*
2750 * nobh_writepage() - based on block_full_write_page() except
2751 * that it tries to operate without attaching bufferheads to
2752 * the page.
2753 */
2754int nobh_writepage(struct page *page, get_block_t *get_block,
2755			struct writeback_control *wbc)
2756{
2757	struct inode * const inode = page->mapping->host;
2758	loff_t i_size = i_size_read(inode);
2759	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2760	unsigned offset;
2761	int ret;
2762
2763	/* Is the page fully inside i_size? */
2764	if (page->index < end_index)
2765		goto out;
2766
2767	/* Is the page fully outside i_size? (truncate in progress) */
2768	offset = i_size & (PAGE_SIZE-1);
2769	if (page->index >= end_index+1 || !offset) {
2770		unlock_page(page);
2771		return 0; /* don't care */
2772	}
2773
2774	/*
2775	 * The page straddles i_size.  It must be zeroed out on each and every
2776	 * writepage invocation because it may be mmapped.  "A file is mapped
2777	 * in multiples of the page size.  For a file that is not a multiple of
2778	 * the  page size, the remaining memory is zeroed when mapped, and
2779	 * writes to that region are not written out to the file."
2780	 */
2781	zero_user_segment(page, offset, PAGE_SIZE);
2782out:
2783	ret = mpage_writepage(page, get_block, wbc);
2784	if (ret == -EAGAIN)
2785		ret = __block_write_full_page(inode, page, get_block, wbc,
2786					      end_buffer_async_write);
2787	return ret;
2788}
2789EXPORT_SYMBOL(nobh_writepage);
2790
2791int nobh_truncate_page(struct address_space *mapping,
2792			loff_t from, get_block_t *get_block)
2793{
2794	pgoff_t index = from >> PAGE_SHIFT;
2795	unsigned offset = from & (PAGE_SIZE-1);
2796	unsigned blocksize;
2797	sector_t iblock;
2798	unsigned length, pos;
2799	struct inode *inode = mapping->host;
2800	struct page *page;
2801	struct buffer_head map_bh;
2802	int err;
2803
2804	blocksize = i_blocksize(inode);
2805	length = offset & (blocksize - 1);
2806
2807	/* Block boundary? Nothing to do */
2808	if (!length)
2809		return 0;
2810
2811	length = blocksize - length;
2812	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2813
2814	page = grab_cache_page(mapping, index);
2815	err = -ENOMEM;
2816	if (!page)
2817		goto out;
2818
2819	if (page_has_buffers(page)) {
2820has_buffers:
2821		unlock_page(page);
2822		put_page(page);
2823		return block_truncate_page(mapping, from, get_block);
2824	}
2825
2826	/* Find the buffer that contains "offset" */
2827	pos = blocksize;
2828	while (offset >= pos) {
2829		iblock++;
2830		pos += blocksize;
2831	}
2832
2833	map_bh.b_size = blocksize;
2834	map_bh.b_state = 0;
2835	err = get_block(inode, iblock, &map_bh, 0);
2836	if (err)
2837		goto unlock;
2838	/* unmapped? It's a hole - nothing to do */
2839	if (!buffer_mapped(&map_bh))
2840		goto unlock;
2841
2842	/* Ok, it's mapped. Make sure it's up-to-date */
2843	if (!PageUptodate(page)) {
2844		err = mapping->a_ops->readpage(NULL, page);
2845		if (err) {
2846			put_page(page);
2847			goto out;
2848		}
2849		lock_page(page);
2850		if (!PageUptodate(page)) {
2851			err = -EIO;
2852			goto unlock;
2853		}
2854		if (page_has_buffers(page))
2855			goto has_buffers;
2856	}
2857	zero_user(page, offset, length);
2858	set_page_dirty(page);
2859	err = 0;
2860
2861unlock:
2862	unlock_page(page);
2863	put_page(page);
2864out:
2865	return err;
2866}
2867EXPORT_SYMBOL(nobh_truncate_page);
2868
2869int block_truncate_page(struct address_space *mapping,
2870			loff_t from, get_block_t *get_block)
2871{
2872	pgoff_t index = from >> PAGE_SHIFT;
2873	unsigned offset = from & (PAGE_SIZE-1);
2874	unsigned blocksize;
2875	sector_t iblock;
2876	unsigned length, pos;
2877	struct inode *inode = mapping->host;
2878	struct page *page;
2879	struct buffer_head *bh;
2880	int err;
2881
2882	blocksize = i_blocksize(inode);
2883	length = offset & (blocksize - 1);
2884
2885	/* Block boundary? Nothing to do */
2886	if (!length)
2887		return 0;
2888
2889	length = blocksize - length;
2890	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2891	
2892	page = grab_cache_page(mapping, index);
2893	err = -ENOMEM;
2894	if (!page)
2895		goto out;
2896
2897	if (!page_has_buffers(page))
2898		create_empty_buffers(page, blocksize, 0);
 
 
 
 
 
2899
2900	/* Find the buffer that contains "offset" */
2901	bh = page_buffers(page);
2902	pos = blocksize;
2903	while (offset >= pos) {
2904		bh = bh->b_this_page;
2905		iblock++;
2906		pos += blocksize;
2907	}
2908
2909	err = 0;
2910	if (!buffer_mapped(bh)) {
2911		WARN_ON(bh->b_size != blocksize);
2912		err = get_block(inode, iblock, bh, 0);
2913		if (err)
2914			goto unlock;
2915		/* unmapped? It's a hole - nothing to do */
2916		if (!buffer_mapped(bh))
2917			goto unlock;
2918	}
2919
2920	/* Ok, it's mapped. Make sure it's up-to-date */
2921	if (PageUptodate(page))
2922		set_buffer_uptodate(bh);
2923
2924	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2925		err = -EIO;
2926		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2927		wait_on_buffer(bh);
2928		/* Uhhuh. Read error. Complain and punt. */
2929		if (!buffer_uptodate(bh))
2930			goto unlock;
2931	}
2932
2933	zero_user(page, offset, length);
2934	mark_buffer_dirty(bh);
2935	err = 0;
2936
2937unlock:
2938	unlock_page(page);
2939	put_page(page);
2940out:
2941	return err;
2942}
2943EXPORT_SYMBOL(block_truncate_page);
2944
2945/*
2946 * The generic ->writepage function for buffer-backed address_spaces
2947 */
2948int block_write_full_page(struct page *page, get_block_t *get_block,
2949			struct writeback_control *wbc)
2950{
2951	struct inode * const inode = page->mapping->host;
2952	loff_t i_size = i_size_read(inode);
2953	const pgoff_t end_index = i_size >> PAGE_SHIFT;
2954	unsigned offset;
2955
2956	/* Is the page fully inside i_size? */
2957	if (page->index < end_index)
2958		return __block_write_full_page(inode, page, get_block, wbc,
2959					       end_buffer_async_write);
2960
2961	/* Is the page fully outside i_size? (truncate in progress) */
2962	offset = i_size & (PAGE_SIZE-1);
2963	if (page->index >= end_index+1 || !offset) {
2964		unlock_page(page);
2965		return 0; /* don't care */
2966	}
2967
2968	/*
2969	 * The page straddles i_size.  It must be zeroed out on each and every
2970	 * writepage invocation because it may be mmapped.  "A file is mapped
2971	 * in multiples of the page size.  For a file that is not a multiple of
2972	 * the  page size, the remaining memory is zeroed when mapped, and
2973	 * writes to that region are not written out to the file."
2974	 */
2975	zero_user_segment(page, offset, PAGE_SIZE);
2976	return __block_write_full_page(inode, page, get_block, wbc,
2977							end_buffer_async_write);
2978}
2979EXPORT_SYMBOL(block_write_full_page);
2980
2981sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2982			    get_block_t *get_block)
2983{
2984	struct inode *inode = mapping->host;
2985	struct buffer_head tmp = {
2986		.b_size = i_blocksize(inode),
2987	};
2988
2989	get_block(inode, block, &tmp, 0);
2990	return tmp.b_blocknr;
2991}
2992EXPORT_SYMBOL(generic_block_bmap);
2993
2994static void end_bio_bh_io_sync(struct bio *bio)
2995{
2996	struct buffer_head *bh = bio->bi_private;
2997
2998	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2999		set_bit(BH_Quiet, &bh->b_state);
3000
3001	bh->b_end_io(bh, !bio->bi_status);
3002	bio_put(bio);
3003}
3004
3005static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3006			 enum rw_hint write_hint, struct writeback_control *wbc)
 
3007{
 
3008	struct bio *bio;
3009
3010	BUG_ON(!buffer_locked(bh));
3011	BUG_ON(!buffer_mapped(bh));
3012	BUG_ON(!bh->b_end_io);
3013	BUG_ON(buffer_delay(bh));
3014	BUG_ON(buffer_unwritten(bh));
3015
3016	/*
3017	 * Only clear out a write error when rewriting
3018	 */
3019	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3020		clear_buffer_write_io_error(bh);
3021
3022	bio = bio_alloc(GFP_NOIO, 1);
 
 
 
 
 
3023
3024	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
3025
3026	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3027	bio_set_dev(bio, bh->b_bdev);
3028	bio->bi_write_hint = write_hint;
3029
3030	bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3031	BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3032
3033	bio->bi_end_io = end_bio_bh_io_sync;
3034	bio->bi_private = bh;
3035
3036	if (buffer_meta(bh))
3037		op_flags |= REQ_META;
3038	if (buffer_prio(bh))
3039		op_flags |= REQ_PRIO;
3040	bio_set_op_attrs(bio, op, op_flags);
3041
3042	/* Take care of bh's that straddle the end of the device */
3043	guard_bio_eod(bio);
3044
3045	if (wbc) {
3046		wbc_init_bio(wbc, bio);
3047		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
3048	}
3049
3050	submit_bio(bio);
3051	return 0;
3052}
3053
3054int submit_bh(int op, int op_flags, struct buffer_head *bh)
3055{
3056	return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3057}
3058EXPORT_SYMBOL(submit_bh);
3059
3060/**
3061 * ll_rw_block: low-level access to block devices (DEPRECATED)
3062 * @op: whether to %READ or %WRITE
3063 * @op_flags: req_flag_bits
3064 * @nr: number of &struct buffer_heads in the array
3065 * @bhs: array of pointers to &struct buffer_head
3066 *
3067 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3068 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3069 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3070 * %REQ_RAHEAD.
3071 *
3072 * This function drops any buffer that it cannot get a lock on (with the
3073 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3074 * request, and any buffer that appears to be up-to-date when doing read
3075 * request.  Further it marks as clean buffers that are processed for
3076 * writing (the buffer cache won't assume that they are actually clean
3077 * until the buffer gets unlocked).
3078 *
3079 * ll_rw_block sets b_end_io to simple completion handler that marks
3080 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3081 * any waiters. 
3082 *
3083 * All of the buffers must be for the same device, and must also be a
3084 * multiple of the current approved size for the device.
3085 */
3086void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3087{
3088	int i;
3089
3090	for (i = 0; i < nr; i++) {
3091		struct buffer_head *bh = bhs[i];
3092
3093		if (!trylock_buffer(bh))
3094			continue;
3095		if (op == WRITE) {
3096			if (test_clear_buffer_dirty(bh)) {
3097				bh->b_end_io = end_buffer_write_sync;
3098				get_bh(bh);
3099				submit_bh(op, op_flags, bh);
3100				continue;
3101			}
3102		} else {
3103			if (!buffer_uptodate(bh)) {
3104				bh->b_end_io = end_buffer_read_sync;
3105				get_bh(bh);
3106				submit_bh(op, op_flags, bh);
3107				continue;
3108			}
3109		}
3110		unlock_buffer(bh);
3111	}
3112}
3113EXPORT_SYMBOL(ll_rw_block);
3114
3115void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3116{
3117	lock_buffer(bh);
3118	if (!test_clear_buffer_dirty(bh)) {
3119		unlock_buffer(bh);
3120		return;
3121	}
3122	bh->b_end_io = end_buffer_write_sync;
3123	get_bh(bh);
3124	submit_bh(REQ_OP_WRITE, op_flags, bh);
3125}
3126EXPORT_SYMBOL(write_dirty_buffer);
3127
3128/*
3129 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3130 * and then start new I/O and then wait upon it.  The caller must have a ref on
3131 * the buffer_head.
3132 */
3133int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3134{
3135	int ret = 0;
3136
3137	WARN_ON(atomic_read(&bh->b_count) < 1);
3138	lock_buffer(bh);
3139	if (test_clear_buffer_dirty(bh)) {
3140		/*
3141		 * The bh should be mapped, but it might not be if the
3142		 * device was hot-removed. Not much we can do but fail the I/O.
3143		 */
3144		if (!buffer_mapped(bh)) {
3145			unlock_buffer(bh);
3146			return -EIO;
3147		}
3148
3149		get_bh(bh);
3150		bh->b_end_io = end_buffer_write_sync;
3151		ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3152		wait_on_buffer(bh);
3153		if (!ret && !buffer_uptodate(bh))
3154			ret = -EIO;
3155	} else {
3156		unlock_buffer(bh);
3157	}
3158	return ret;
3159}
3160EXPORT_SYMBOL(__sync_dirty_buffer);
3161
3162int sync_dirty_buffer(struct buffer_head *bh)
3163{
3164	return __sync_dirty_buffer(bh, REQ_SYNC);
3165}
3166EXPORT_SYMBOL(sync_dirty_buffer);
3167
3168/*
3169 * try_to_free_buffers() checks if all the buffers on this particular page
3170 * are unused, and releases them if so.
3171 *
3172 * Exclusion against try_to_free_buffers may be obtained by either
3173 * locking the page or by holding its mapping's private_lock.
3174 *
3175 * If the page is dirty but all the buffers are clean then we need to
3176 * be sure to mark the page clean as well.  This is because the page
3177 * may be against a block device, and a later reattachment of buffers
3178 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3179 * filesystem data on the same device.
3180 *
3181 * The same applies to regular filesystem pages: if all the buffers are
3182 * clean then we set the page clean and proceed.  To do that, we require
3183 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3184 * private_lock.
3185 *
3186 * try_to_free_buffers() is non-blocking.
3187 */
3188static inline int buffer_busy(struct buffer_head *bh)
3189{
3190	return atomic_read(&bh->b_count) |
3191		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3192}
3193
3194static int
3195drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3196{
3197	struct buffer_head *head = page_buffers(page);
3198	struct buffer_head *bh;
3199
3200	bh = head;
3201	do {
3202		if (buffer_busy(bh))
3203			goto failed;
3204		bh = bh->b_this_page;
3205	} while (bh != head);
3206
3207	do {
3208		struct buffer_head *next = bh->b_this_page;
3209
3210		if (bh->b_assoc_map)
3211			__remove_assoc_queue(bh);
3212		bh = next;
3213	} while (bh != head);
3214	*buffers_to_free = head;
3215	detach_page_private(page);
3216	return 1;
3217failed:
3218	return 0;
3219}
3220
3221int try_to_free_buffers(struct page *page)
3222{
3223	struct address_space * const mapping = page->mapping;
3224	struct buffer_head *buffers_to_free = NULL;
3225	int ret = 0;
3226
3227	BUG_ON(!PageLocked(page));
3228	if (PageWriteback(page))
3229		return 0;
3230
3231	if (mapping == NULL) {		/* can this still happen? */
3232		ret = drop_buffers(page, &buffers_to_free);
3233		goto out;
3234	}
3235
3236	spin_lock(&mapping->private_lock);
3237	ret = drop_buffers(page, &buffers_to_free);
3238
3239	/*
3240	 * If the filesystem writes its buffers by hand (eg ext3)
3241	 * then we can have clean buffers against a dirty page.  We
3242	 * clean the page here; otherwise the VM will never notice
3243	 * that the filesystem did any IO at all.
3244	 *
3245	 * Also, during truncate, discard_buffer will have marked all
3246	 * the page's buffers clean.  We discover that here and clean
3247	 * the page also.
3248	 *
3249	 * private_lock must be held over this entire operation in order
3250	 * to synchronise against __set_page_dirty_buffers and prevent the
3251	 * dirty bit from being lost.
3252	 */
3253	if (ret)
3254		cancel_dirty_page(page);
3255	spin_unlock(&mapping->private_lock);
3256out:
3257	if (buffers_to_free) {
3258		struct buffer_head *bh = buffers_to_free;
3259
3260		do {
3261			struct buffer_head *next = bh->b_this_page;
3262			free_buffer_head(bh);
3263			bh = next;
3264		} while (bh != buffers_to_free);
3265	}
3266	return ret;
3267}
3268EXPORT_SYMBOL(try_to_free_buffers);
3269
3270/*
3271 * There are no bdflush tunables left.  But distributions are
3272 * still running obsolete flush daemons, so we terminate them here.
3273 *
3274 * Use of bdflush() is deprecated and will be removed in a future kernel.
3275 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3276 */
3277SYSCALL_DEFINE2(bdflush, int, func, long, data)
3278{
3279	static int msg_count;
3280
3281	if (!capable(CAP_SYS_ADMIN))
3282		return -EPERM;
3283
3284	if (msg_count < 5) {
3285		msg_count++;
3286		printk(KERN_INFO
3287			"warning: process `%s' used the obsolete bdflush"
3288			" system call\n", current->comm);
3289		printk(KERN_INFO "Fix your initscripts?\n");
3290	}
3291
3292	if (func == 1)
3293		do_exit(0);
3294	return 0;
3295}
3296
3297/*
3298 * Buffer-head allocation
3299 */
3300static struct kmem_cache *bh_cachep __read_mostly;
3301
3302/*
3303 * Once the number of bh's in the machine exceeds this level, we start
3304 * stripping them in writeback.
3305 */
3306static unsigned long max_buffer_heads;
3307
3308int buffer_heads_over_limit;
3309
3310struct bh_accounting {
3311	int nr;			/* Number of live bh's */
3312	int ratelimit;		/* Limit cacheline bouncing */
3313};
3314
3315static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3316
3317static void recalc_bh_state(void)
3318{
3319	int i;
3320	int tot = 0;
3321
3322	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3323		return;
3324	__this_cpu_write(bh_accounting.ratelimit, 0);
3325	for_each_online_cpu(i)
3326		tot += per_cpu(bh_accounting, i).nr;
3327	buffer_heads_over_limit = (tot > max_buffer_heads);
3328}
3329
3330struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3331{
3332	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3333	if (ret) {
3334		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3335		spin_lock_init(&ret->b_uptodate_lock);
3336		preempt_disable();
3337		__this_cpu_inc(bh_accounting.nr);
3338		recalc_bh_state();
3339		preempt_enable();
3340	}
3341	return ret;
3342}
3343EXPORT_SYMBOL(alloc_buffer_head);
3344
3345void free_buffer_head(struct buffer_head *bh)
3346{
3347	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3348	kmem_cache_free(bh_cachep, bh);
3349	preempt_disable();
3350	__this_cpu_dec(bh_accounting.nr);
3351	recalc_bh_state();
3352	preempt_enable();
3353}
3354EXPORT_SYMBOL(free_buffer_head);
3355
3356static int buffer_exit_cpu_dead(unsigned int cpu)
3357{
3358	int i;
3359	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3360
3361	for (i = 0; i < BH_LRU_SIZE; i++) {
3362		brelse(b->bhs[i]);
3363		b->bhs[i] = NULL;
3364	}
3365	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3366	per_cpu(bh_accounting, cpu).nr = 0;
3367	return 0;
3368}
3369
3370/**
3371 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3372 * @bh: struct buffer_head
3373 *
3374 * Return true if the buffer is up-to-date and false,
3375 * with the buffer locked, if not.
3376 */
3377int bh_uptodate_or_lock(struct buffer_head *bh)
3378{
3379	if (!buffer_uptodate(bh)) {
3380		lock_buffer(bh);
3381		if (!buffer_uptodate(bh))
3382			return 0;
3383		unlock_buffer(bh);
3384	}
3385	return 1;
3386}
3387EXPORT_SYMBOL(bh_uptodate_or_lock);
3388
3389/**
3390 * bh_submit_read - Submit a locked buffer for reading
3391 * @bh: struct buffer_head
 
 
3392 *
3393 * Returns zero on success and -EIO on error.
3394 */
3395int bh_submit_read(struct buffer_head *bh)
3396{
 
 
3397	BUG_ON(!buffer_locked(bh));
3398
3399	if (buffer_uptodate(bh)) {
3400		unlock_buffer(bh);
3401		return 0;
 
 
 
 
3402	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3403
3404	get_bh(bh);
3405	bh->b_end_io = end_buffer_read_sync;
3406	submit_bh(REQ_OP_READ, 0, bh);
3407	wait_on_buffer(bh);
3408	if (buffer_uptodate(bh))
3409		return 0;
3410	return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3411}
3412EXPORT_SYMBOL(bh_submit_read);
3413
3414void __init buffer_init(void)
3415{
3416	unsigned long nrpages;
3417	int ret;
3418
3419	bh_cachep = kmem_cache_create("buffer_head",
3420			sizeof(struct buffer_head), 0,
3421				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3422				SLAB_MEM_SPREAD),
3423				NULL);
3424
3425	/*
3426	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3427	 */
3428	nrpages = (nr_free_buffer_pages() * 10) / 100;
3429	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3430	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3431					NULL, buffer_exit_cpu_dead);
3432	WARN_ON(ret < 0);
3433}