Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/mutex.h>
  25#include <linux/log2.h>
  26#include <linux/sched.h>
  27#include <linux/sched/mm.h>
  28#include <linux/sched/task.h>
  29#include <linux/mmu_context.h>
  30#include <linux/slab.h>
 
  31#include <linux/notifier.h>
  32#include <linux/compat.h>
  33#include <linux/mman.h>
  34#include <linux/file.h>
  35#include <linux/pm_runtime.h>
  36#include "amdgpu_amdkfd.h"
  37#include "amdgpu.h"
  38
  39struct mm_struct;
  40
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
 
 
  43#include "kfd_svm.h"
  44#include "kfd_smi_events.h"
  45#include "kfd_debug.h"
  46
  47/*
  48 * List of struct kfd_process (field kfd_process).
  49 * Unique/indexed by mm_struct*
  50 */
  51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  52DEFINE_MUTEX(kfd_processes_mutex);
  53
  54DEFINE_SRCU(kfd_processes_srcu);
  55
  56/* For process termination handling */
  57static struct workqueue_struct *kfd_process_wq;
  58
  59/* Ordered, single-threaded workqueue for restoring evicted
  60 * processes. Restoring multiple processes concurrently under memory
  61 * pressure can lead to processes blocking each other from validating
  62 * their BOs and result in a live-lock situation where processes
  63 * remain evicted indefinitely.
  64 */
  65static struct workqueue_struct *kfd_restore_wq;
  66
  67static struct kfd_process *find_process(const struct task_struct *thread,
  68					bool ref);
  69static void kfd_process_ref_release(struct kref *ref);
  70static struct kfd_process *create_process(const struct task_struct *thread);
 
  71
  72static void evict_process_worker(struct work_struct *work);
  73static void restore_process_worker(struct work_struct *work);
  74
  75static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
  76
  77struct kfd_procfs_tree {
  78	struct kobject *kobj;
  79};
  80
  81static struct kfd_procfs_tree procfs;
  82
  83/*
  84 * Structure for SDMA activity tracking
  85 */
  86struct kfd_sdma_activity_handler_workarea {
  87	struct work_struct sdma_activity_work;
  88	struct kfd_process_device *pdd;
  89	uint64_t sdma_activity_counter;
  90};
  91
  92struct temp_sdma_queue_list {
  93	uint64_t __user *rptr;
  94	uint64_t sdma_val;
  95	unsigned int queue_id;
  96	struct list_head list;
  97};
  98
  99static void kfd_sdma_activity_worker(struct work_struct *work)
 100{
 101	struct kfd_sdma_activity_handler_workarea *workarea;
 102	struct kfd_process_device *pdd;
 103	uint64_t val;
 104	struct mm_struct *mm;
 105	struct queue *q;
 106	struct qcm_process_device *qpd;
 107	struct device_queue_manager *dqm;
 108	int ret = 0;
 109	struct temp_sdma_queue_list sdma_q_list;
 110	struct temp_sdma_queue_list *sdma_q, *next;
 111
 112	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
 113				sdma_activity_work);
 114
 115	pdd = workarea->pdd;
 116	if (!pdd)
 117		return;
 118	dqm = pdd->dev->dqm;
 119	qpd = &pdd->qpd;
 120	if (!dqm || !qpd)
 121		return;
 122	/*
 123	 * Total SDMA activity is current SDMA activity + past SDMA activity
 124	 * Past SDMA count is stored in pdd.
 125	 * To get the current activity counters for all active SDMA queues,
 126	 * we loop over all SDMA queues and get their counts from user-space.
 127	 *
 128	 * We cannot call get_user() with dqm_lock held as it can cause
 129	 * a circular lock dependency situation. To read the SDMA stats,
 130	 * we need to do the following:
 131	 *
 132	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
 133	 *    with dqm_lock/dqm_unlock().
 134	 * 2. Call get_user() for each node in temporary list without dqm_lock.
 135	 *    Save the SDMA count for each node and also add the count to the total
 136	 *    SDMA count counter.
 137	 *    Its possible, during this step, a few SDMA queue nodes got deleted
 138	 *    from the qpd->queues_list.
 139	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
 140	 *    If any node got deleted, its SDMA count would be captured in the sdma
 141	 *    past activity counter. So subtract the SDMA counter stored in step 2
 142	 *    for this node from the total SDMA count.
 143	 */
 144	INIT_LIST_HEAD(&sdma_q_list.list);
 145
 146	/*
 147	 * Create the temp list of all SDMA queues
 148	 */
 149	dqm_lock(dqm);
 150
 151	list_for_each_entry(q, &qpd->queues_list, list) {
 152		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 153		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 154			continue;
 155
 156		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
 157		if (!sdma_q) {
 158			dqm_unlock(dqm);
 159			goto cleanup;
 160		}
 161
 162		INIT_LIST_HEAD(&sdma_q->list);
 163		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
 164		sdma_q->queue_id = q->properties.queue_id;
 165		list_add_tail(&sdma_q->list, &sdma_q_list.list);
 166	}
 167
 168	/*
 169	 * If the temp list is empty, then no SDMA queues nodes were found in
 170	 * qpd->queues_list. Return the past activity count as the total sdma
 171	 * count
 172	 */
 173	if (list_empty(&sdma_q_list.list)) {
 174		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
 175		dqm_unlock(dqm);
 176		return;
 177	}
 178
 179	dqm_unlock(dqm);
 180
 181	/*
 182	 * Get the usage count for each SDMA queue in temp_list.
 183	 */
 184	mm = get_task_mm(pdd->process->lead_thread);
 185	if (!mm)
 186		goto cleanup;
 187
 188	kthread_use_mm(mm);
 189
 190	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
 191		val = 0;
 192		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
 193		if (ret) {
 194			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
 195				 sdma_q->queue_id);
 196		} else {
 197			sdma_q->sdma_val = val;
 198			workarea->sdma_activity_counter += val;
 199		}
 200	}
 201
 202	kthread_unuse_mm(mm);
 203	mmput(mm);
 204
 205	/*
 206	 * Do a second iteration over qpd_queues_list to check if any SDMA
 207	 * nodes got deleted while fetching SDMA counter.
 208	 */
 209	dqm_lock(dqm);
 210
 211	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
 212
 213	list_for_each_entry(q, &qpd->queues_list, list) {
 214		if (list_empty(&sdma_q_list.list))
 215			break;
 216
 217		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 218		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 219			continue;
 220
 221		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 222			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
 223			     (sdma_q->queue_id == q->properties.queue_id)) {
 224				list_del(&sdma_q->list);
 225				kfree(sdma_q);
 226				break;
 227			}
 228		}
 229	}
 230
 231	dqm_unlock(dqm);
 232
 233	/*
 234	 * If temp list is not empty, it implies some queues got deleted
 235	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
 236	 * count for each node from the total SDMA count.
 237	 */
 238	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 239		workarea->sdma_activity_counter -= sdma_q->sdma_val;
 240		list_del(&sdma_q->list);
 241		kfree(sdma_q);
 242	}
 243
 244	return;
 245
 246cleanup:
 247	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 248		list_del(&sdma_q->list);
 249		kfree(sdma_q);
 250	}
 251}
 252
 253/**
 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
 255 * by current process. Translates acquired wave count into number of compute units
 256 * that are occupied.
 257 *
 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
 259 * handle encapsulates GPU device it is associated with, thereby allowing collection
 260 * of waves in flight, etc
 
 261 * @buffer: Handle of user provided buffer updated with wave count
 262 *
 263 * Return: Number of bytes written to user buffer or an error value
 264 */
 265static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
 266{
 267	int cu_cnt;
 268	int wave_cnt;
 269	int max_waves_per_cu;
 270	struct kfd_node *dev = NULL;
 271	struct kfd_process *proc = NULL;
 272	struct kfd_process_device *pdd = NULL;
 273
 274	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
 275	dev = pdd->dev;
 276	if (dev->kfd2kgd->get_cu_occupancy == NULL)
 277		return -EINVAL;
 278
 279	cu_cnt = 0;
 280	proc = pdd->process;
 281	if (pdd->qpd.queue_count == 0) {
 282		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
 283			 dev->id, proc->pasid);
 284		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 285	}
 286
 287	/* Collect wave count from device if it supports */
 288	wave_cnt = 0;
 289	max_waves_per_cu = 0;
 290	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
 291			&max_waves_per_cu, 0);
 292
 293	/* Translate wave count to number of compute units */
 294	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
 295	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 296}
 297
 298static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
 299			       char *buffer)
 300{
 301	if (strcmp(attr->name, "pasid") == 0) {
 302		struct kfd_process *p = container_of(attr, struct kfd_process,
 303						     attr_pasid);
 304
 305		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
 306	} else if (strncmp(attr->name, "vram_", 5) == 0) {
 307		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 308							      attr_vram);
 309		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
 310	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
 311		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 312							      attr_sdma);
 313		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
 314
 315		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
 316					kfd_sdma_activity_worker);
 317
 318		sdma_activity_work_handler.pdd = pdd;
 319		sdma_activity_work_handler.sdma_activity_counter = 0;
 320
 321		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
 322
 323		flush_work(&sdma_activity_work_handler.sdma_activity_work);
 324
 325		return snprintf(buffer, PAGE_SIZE, "%llu\n",
 326				(sdma_activity_work_handler.sdma_activity_counter)/
 327				 SDMA_ACTIVITY_DIVISOR);
 328	} else {
 329		pr_err("Invalid attribute");
 330		return -EINVAL;
 331	}
 332
 333	return 0;
 334}
 335
 336static void kfd_procfs_kobj_release(struct kobject *kobj)
 337{
 338	kfree(kobj);
 339}
 340
 341static const struct sysfs_ops kfd_procfs_ops = {
 342	.show = kfd_procfs_show,
 343};
 344
 345static const struct kobj_type procfs_type = {
 346	.release = kfd_procfs_kobj_release,
 347	.sysfs_ops = &kfd_procfs_ops,
 348};
 349
 350void kfd_procfs_init(void)
 351{
 352	int ret = 0;
 353
 354	procfs.kobj = kfd_alloc_struct(procfs.kobj);
 355	if (!procfs.kobj)
 356		return;
 357
 358	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
 359				   &kfd_device->kobj, "proc");
 360	if (ret) {
 361		pr_warn("Could not create procfs proc folder");
 362		/* If we fail to create the procfs, clean up */
 363		kfd_procfs_shutdown();
 364	}
 365}
 366
 367void kfd_procfs_shutdown(void)
 368{
 369	if (procfs.kobj) {
 370		kobject_del(procfs.kobj);
 371		kobject_put(procfs.kobj);
 372		procfs.kobj = NULL;
 373	}
 374}
 375
 376static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
 377				     struct attribute *attr, char *buffer)
 378{
 379	struct queue *q = container_of(kobj, struct queue, kobj);
 380
 381	if (!strcmp(attr->name, "size"))
 382		return snprintf(buffer, PAGE_SIZE, "%llu",
 383				q->properties.queue_size);
 384	else if (!strcmp(attr->name, "type"))
 385		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
 386	else if (!strcmp(attr->name, "gpuid"))
 387		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
 388	else
 389		pr_err("Invalid attribute");
 390
 391	return 0;
 392}
 393
 394static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
 395				     struct attribute *attr, char *buffer)
 396{
 397	if (strcmp(attr->name, "evicted_ms") == 0) {
 398		struct kfd_process_device *pdd = container_of(attr,
 399				struct kfd_process_device,
 400				attr_evict);
 401		uint64_t evict_jiffies;
 402
 403		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
 404
 405		return snprintf(buffer,
 406				PAGE_SIZE,
 407				"%llu\n",
 408				jiffies64_to_msecs(evict_jiffies));
 409
 410	/* Sysfs handle that gets CU occupancy is per device */
 411	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
 412		return kfd_get_cu_occupancy(attr, buffer);
 413	} else {
 414		pr_err("Invalid attribute");
 415	}
 416
 417	return 0;
 418}
 419
 420static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
 421				       struct attribute *attr, char *buf)
 422{
 423	struct kfd_process_device *pdd;
 424
 425	if (!strcmp(attr->name, "faults")) {
 426		pdd = container_of(attr, struct kfd_process_device,
 427				   attr_faults);
 428		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
 429	}
 430	if (!strcmp(attr->name, "page_in")) {
 431		pdd = container_of(attr, struct kfd_process_device,
 432				   attr_page_in);
 433		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
 434	}
 435	if (!strcmp(attr->name, "page_out")) {
 436		pdd = container_of(attr, struct kfd_process_device,
 437				   attr_page_out);
 438		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
 439	}
 440	return 0;
 441}
 442
 443static struct attribute attr_queue_size = {
 444	.name = "size",
 445	.mode = KFD_SYSFS_FILE_MODE
 446};
 447
 448static struct attribute attr_queue_type = {
 449	.name = "type",
 450	.mode = KFD_SYSFS_FILE_MODE
 451};
 452
 453static struct attribute attr_queue_gpuid = {
 454	.name = "gpuid",
 455	.mode = KFD_SYSFS_FILE_MODE
 456};
 457
 458static struct attribute *procfs_queue_attrs[] = {
 459	&attr_queue_size,
 460	&attr_queue_type,
 461	&attr_queue_gpuid,
 462	NULL
 463};
 464ATTRIBUTE_GROUPS(procfs_queue);
 465
 466static const struct sysfs_ops procfs_queue_ops = {
 467	.show = kfd_procfs_queue_show,
 468};
 469
 470static const struct kobj_type procfs_queue_type = {
 471	.sysfs_ops = &procfs_queue_ops,
 472	.default_groups = procfs_queue_groups,
 473};
 474
 475static const struct sysfs_ops procfs_stats_ops = {
 476	.show = kfd_procfs_stats_show,
 477};
 478
 479static const struct kobj_type procfs_stats_type = {
 480	.sysfs_ops = &procfs_stats_ops,
 481	.release = kfd_procfs_kobj_release,
 482};
 483
 484static const struct sysfs_ops sysfs_counters_ops = {
 485	.show = kfd_sysfs_counters_show,
 486};
 487
 488static const struct kobj_type sysfs_counters_type = {
 489	.sysfs_ops = &sysfs_counters_ops,
 490	.release = kfd_procfs_kobj_release,
 491};
 492
 493int kfd_procfs_add_queue(struct queue *q)
 494{
 495	struct kfd_process *proc;
 496	int ret;
 497
 498	if (!q || !q->process)
 499		return -EINVAL;
 500	proc = q->process;
 501
 502	/* Create proc/<pid>/queues/<queue id> folder */
 503	if (!proc->kobj_queues)
 504		return -EFAULT;
 505	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
 506			proc->kobj_queues, "%u", q->properties.queue_id);
 507	if (ret < 0) {
 508		pr_warn("Creating proc/<pid>/queues/%u failed",
 509			q->properties.queue_id);
 510		kobject_put(&q->kobj);
 511		return ret;
 512	}
 513
 514	return 0;
 515}
 516
 517static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
 518				 char *name)
 519{
 520	int ret;
 521
 522	if (!kobj || !attr || !name)
 523		return;
 524
 525	attr->name = name;
 526	attr->mode = KFD_SYSFS_FILE_MODE;
 527	sysfs_attr_init(attr);
 528
 529	ret = sysfs_create_file(kobj, attr);
 530	if (ret)
 531		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
 532}
 533
 534static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
 535{
 536	int ret;
 537	int i;
 538	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
 539
 540	if (!p || !p->kobj)
 541		return;
 542
 543	/*
 544	 * Create sysfs files for each GPU:
 545	 * - proc/<pid>/stats_<gpuid>/
 546	 * - proc/<pid>/stats_<gpuid>/evicted_ms
 547	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
 548	 */
 549	for (i = 0; i < p->n_pdds; i++) {
 550		struct kfd_process_device *pdd = p->pdds[i];
 551
 552		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
 553				"stats_%u", pdd->dev->id);
 554		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
 555		if (!pdd->kobj_stats)
 556			return;
 557
 558		ret = kobject_init_and_add(pdd->kobj_stats,
 559					   &procfs_stats_type,
 560					   p->kobj,
 561					   stats_dir_filename);
 562
 563		if (ret) {
 564			pr_warn("Creating KFD proc/stats_%s folder failed",
 565				stats_dir_filename);
 566			kobject_put(pdd->kobj_stats);
 567			pdd->kobj_stats = NULL;
 568			return;
 569		}
 570
 571		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
 572				      "evicted_ms");
 573		/* Add sysfs file to report compute unit occupancy */
 574		if (pdd->dev->kfd2kgd->get_cu_occupancy)
 575			kfd_sysfs_create_file(pdd->kobj_stats,
 576					      &pdd->attr_cu_occupancy,
 577					      "cu_occupancy");
 578	}
 579}
 580
 581static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
 582{
 583	int ret = 0;
 584	int i;
 585	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
 586
 587	if (!p || !p->kobj)
 588		return;
 589
 590	/*
 591	 * Create sysfs files for each GPU which supports SVM
 592	 * - proc/<pid>/counters_<gpuid>/
 593	 * - proc/<pid>/counters_<gpuid>/faults
 594	 * - proc/<pid>/counters_<gpuid>/page_in
 595	 * - proc/<pid>/counters_<gpuid>/page_out
 596	 */
 597	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
 598		struct kfd_process_device *pdd = p->pdds[i];
 599		struct kobject *kobj_counters;
 600
 601		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
 602			"counters_%u", pdd->dev->id);
 603		kobj_counters = kfd_alloc_struct(kobj_counters);
 604		if (!kobj_counters)
 605			return;
 606
 607		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
 608					   p->kobj, counters_dir_filename);
 609		if (ret) {
 610			pr_warn("Creating KFD proc/%s folder failed",
 611				counters_dir_filename);
 612			kobject_put(kobj_counters);
 613			return;
 614		}
 615
 616		pdd->kobj_counters = kobj_counters;
 617		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
 618				      "faults");
 619		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
 620				      "page_in");
 621		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
 622				      "page_out");
 623	}
 624}
 625
 626static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
 627{
 628	int i;
 629
 630	if (!p || !p->kobj)
 631		return;
 632
 633	/*
 634	 * Create sysfs files for each GPU:
 635	 * - proc/<pid>/vram_<gpuid>
 636	 * - proc/<pid>/sdma_<gpuid>
 637	 */
 638	for (i = 0; i < p->n_pdds; i++) {
 639		struct kfd_process_device *pdd = p->pdds[i];
 640
 641		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
 642			 pdd->dev->id);
 643		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
 644				      pdd->vram_filename);
 645
 646		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
 647			 pdd->dev->id);
 648		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
 649					    pdd->sdma_filename);
 650	}
 651}
 652
 653void kfd_procfs_del_queue(struct queue *q)
 654{
 655	if (!q)
 656		return;
 657
 658	kobject_del(&q->kobj);
 659	kobject_put(&q->kobj);
 660}
 661
 662int kfd_process_create_wq(void)
 663{
 664	if (!kfd_process_wq)
 665		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
 666	if (!kfd_restore_wq)
 667		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
 668							 WQ_FREEZABLE);
 669
 670	if (!kfd_process_wq || !kfd_restore_wq) {
 671		kfd_process_destroy_wq();
 672		return -ENOMEM;
 673	}
 674
 675	return 0;
 676}
 677
 678void kfd_process_destroy_wq(void)
 679{
 680	if (kfd_process_wq) {
 681		destroy_workqueue(kfd_process_wq);
 682		kfd_process_wq = NULL;
 683	}
 684	if (kfd_restore_wq) {
 685		destroy_workqueue(kfd_restore_wq);
 686		kfd_restore_wq = NULL;
 687	}
 688}
 689
 690static void kfd_process_free_gpuvm(struct kgd_mem *mem,
 691			struct kfd_process_device *pdd, void **kptr)
 692{
 693	struct kfd_node *dev = pdd->dev;
 694
 695	if (kptr && *kptr) {
 696		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
 697		*kptr = NULL;
 698	}
 699
 700	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
 701	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
 702					       NULL);
 703}
 704
 705/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 706 *	This function should be only called right after the process
 707 *	is created and when kfd_processes_mutex is still being held
 708 *	to avoid concurrency. Because of that exclusiveness, we do
 709 *	not need to take p->mutex.
 710 */
 711static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 712				   uint64_t gpu_va, uint32_t size,
 713				   uint32_t flags, struct kgd_mem **mem, void **kptr)
 714{
 715	struct kfd_node *kdev = pdd->dev;
 
 
 716	int err;
 717
 718	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
 719						 pdd->drm_priv, mem, NULL,
 720						 flags, false);
 721	if (err)
 722		goto err_alloc_mem;
 723
 724	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
 725			pdd->drm_priv);
 726	if (err)
 727		goto err_map_mem;
 728
 729	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
 730	if (err) {
 731		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 732		goto sync_memory_failed;
 733	}
 734
 
 
 
 
 
 
 
 
 
 
 
 
 735	if (kptr) {
 736		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
 737				(struct kgd_mem *)*mem, kptr, NULL);
 738		if (err) {
 739			pr_debug("Map GTT BO to kernel failed\n");
 740			goto sync_memory_failed;
 741		}
 742	}
 743
 744	return err;
 745
 
 
 
 746sync_memory_failed:
 747	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
 
 748
 749err_map_mem:
 750	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
 751					       NULL);
 752err_alloc_mem:
 753	*mem = NULL;
 754	*kptr = NULL;
 755	return err;
 756}
 757
 758/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 759 *	process for IB usage The memory reserved is for KFD to submit
 760 *	IB to AMDGPU from kernel.  If the memory is reserved
 761 *	successfully, ib_kaddr will have the CPU/kernel
 762 *	address. Check ib_kaddr before accessing the memory.
 763 */
 764static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 765{
 766	struct qcm_process_device *qpd = &pdd->qpd;
 767	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
 768			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 769			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
 770			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 771	struct kgd_mem *mem;
 772	void *kaddr;
 773	int ret;
 774
 775	if (qpd->ib_kaddr || !qpd->ib_base)
 776		return 0;
 777
 778	/* ib_base is only set for dGPU */
 779	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 780				      &mem, &kaddr);
 781	if (ret)
 782		return ret;
 783
 784	qpd->ib_mem = mem;
 785	qpd->ib_kaddr = kaddr;
 786
 787	return 0;
 788}
 789
 790static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
 791{
 792	struct qcm_process_device *qpd = &pdd->qpd;
 793
 794	if (!qpd->ib_kaddr || !qpd->ib_base)
 795		return;
 796
 797	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
 798}
 799
 800struct kfd_process *kfd_create_process(struct task_struct *thread)
 801{
 802	struct kfd_process *process;
 
 803	int ret;
 804
 805	if (!(thread->mm && mmget_not_zero(thread->mm)))
 806		return ERR_PTR(-EINVAL);
 807
 808	/* Only the pthreads threading model is supported. */
 809	if (thread->group_leader->mm != thread->mm) {
 810		mmput(thread->mm);
 811		return ERR_PTR(-EINVAL);
 812	}
 813
 814	/*
 815	 * take kfd processes mutex before starting of process creation
 816	 * so there won't be a case where two threads of the same process
 817	 * create two kfd_process structures
 818	 */
 819	mutex_lock(&kfd_processes_mutex);
 820
 821	if (kfd_is_locked()) {
 822		pr_debug("KFD is locked! Cannot create process");
 823		process = ERR_PTR(-EINVAL);
 824		goto out;
 825	}
 826
 827	/* A prior open of /dev/kfd could have already created the process. */
 828	process = find_process(thread, false);
 829	if (process) {
 830		pr_debug("Process already found\n");
 831	} else {
 832		/* If the process just called exec(3), it is possible that the
 833		 * cleanup of the kfd_process (following the release of the mm
 834		 * of the old process image) is still in the cleanup work queue.
 835		 * Make sure to drain any job before trying to recreate any
 836		 * resource for this process.
 837		 */
 838		flush_workqueue(kfd_process_wq);
 839
 840		process = create_process(thread);
 841		if (IS_ERR(process))
 842			goto out;
 843
 
 
 
 
 844		if (!procfs.kobj)
 845			goto out;
 846
 847		process->kobj = kfd_alloc_struct(process->kobj);
 848		if (!process->kobj) {
 849			pr_warn("Creating procfs kobject failed");
 850			goto out;
 851		}
 852		ret = kobject_init_and_add(process->kobj, &procfs_type,
 853					   procfs.kobj, "%d",
 854					   (int)process->lead_thread->pid);
 855		if (ret) {
 856			pr_warn("Creating procfs pid directory failed");
 857			kobject_put(process->kobj);
 858			goto out;
 859		}
 860
 861		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
 862				      "pasid");
 863
 864		process->kobj_queues = kobject_create_and_add("queues",
 865							process->kobj);
 866		if (!process->kobj_queues)
 867			pr_warn("Creating KFD proc/queues folder failed");
 868
 869		kfd_procfs_add_sysfs_stats(process);
 870		kfd_procfs_add_sysfs_files(process);
 871		kfd_procfs_add_sysfs_counters(process);
 872
 873		init_waitqueue_head(&process->wait_irq_drain);
 874	}
 875out:
 876	if (!IS_ERR(process))
 877		kref_get(&process->ref);
 878	mutex_unlock(&kfd_processes_mutex);
 879	mmput(thread->mm);
 880
 881	return process;
 
 
 
 
 
 
 
 
 882}
 883
 884struct kfd_process *kfd_get_process(const struct task_struct *thread)
 885{
 886	struct kfd_process *process;
 887
 888	if (!thread->mm)
 889		return ERR_PTR(-EINVAL);
 890
 891	/* Only the pthreads threading model is supported. */
 892	if (thread->group_leader->mm != thread->mm)
 893		return ERR_PTR(-EINVAL);
 894
 895	process = find_process(thread, false);
 896	if (!process)
 897		return ERR_PTR(-EINVAL);
 898
 899	return process;
 900}
 901
 902static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 903{
 904	struct kfd_process *process;
 905
 906	hash_for_each_possible_rcu(kfd_processes_table, process,
 907					kfd_processes, (uintptr_t)mm)
 908		if (process->mm == mm)
 909			return process;
 910
 911	return NULL;
 912}
 913
 914static struct kfd_process *find_process(const struct task_struct *thread,
 915					bool ref)
 916{
 917	struct kfd_process *p;
 918	int idx;
 919
 920	idx = srcu_read_lock(&kfd_processes_srcu);
 921	p = find_process_by_mm(thread->mm);
 922	if (p && ref)
 923		kref_get(&p->ref);
 924	srcu_read_unlock(&kfd_processes_srcu, idx);
 925
 926	return p;
 927}
 928
 929void kfd_unref_process(struct kfd_process *p)
 930{
 931	kref_put(&p->ref, kfd_process_ref_release);
 932}
 933
 934/* This increments the process->ref counter. */
 935struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
 936{
 937	struct task_struct *task = NULL;
 938	struct kfd_process *p    = NULL;
 939
 940	if (!pid) {
 941		task = current;
 942		get_task_struct(task);
 943	} else {
 944		task = get_pid_task(pid, PIDTYPE_PID);
 945	}
 946
 947	if (task) {
 948		p = find_process(task, true);
 949		put_task_struct(task);
 950	}
 951
 952	return p;
 953}
 954
 955static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 956{
 957	struct kfd_process *p = pdd->process;
 958	void *mem;
 959	int id;
 960	int i;
 961
 962	/*
 963	 * Remove all handles from idr and release appropriate
 964	 * local memory object
 965	 */
 966	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 967
 968		for (i = 0; i < p->n_pdds; i++) {
 969			struct kfd_process_device *peer_pdd = p->pdds[i];
 970
 971			if (!peer_pdd->drm_priv)
 972				continue;
 973			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
 974				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
 975		}
 976
 977		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
 978						       pdd->drm_priv, NULL);
 979		kfd_process_device_remove_obj_handle(pdd, id);
 980	}
 981}
 982
 983/*
 984 * Just kunmap and unpin signal BO here. It will be freed in
 985 * kfd_process_free_outstanding_kfd_bos()
 986 */
 987static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
 988{
 989	struct kfd_process_device *pdd;
 990	struct kfd_node *kdev;
 991	void *mem;
 992
 993	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
 994	if (!kdev)
 995		return;
 996
 997	mutex_lock(&p->mutex);
 998
 999	pdd = kfd_get_process_device_data(kdev, p);
1000	if (!pdd)
1001		goto out;
1002
1003	mem = kfd_process_device_translate_handle(
1004		pdd, GET_IDR_HANDLE(p->signal_handle));
1005	if (!mem)
1006		goto out;
1007
1008	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1009
1010out:
1011	mutex_unlock(&p->mutex);
1012}
1013
1014static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1015{
1016	int i;
1017
1018	for (i = 0; i < p->n_pdds; i++)
1019		kfd_process_device_free_bos(p->pdds[i]);
1020}
1021
1022static void kfd_process_destroy_pdds(struct kfd_process *p)
1023{
1024	int i;
1025
1026	for (i = 0; i < p->n_pdds; i++) {
1027		struct kfd_process_device *pdd = p->pdds[i];
1028
1029		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1030				pdd->dev->id, p->pasid);
1031
1032		kfd_process_device_destroy_cwsr_dgpu(pdd);
1033		kfd_process_device_destroy_ib_mem(pdd);
1034
1035		if (pdd->drm_file) {
1036			amdgpu_amdkfd_gpuvm_release_process_vm(
1037					pdd->dev->adev, pdd->drm_priv);
1038			fput(pdd->drm_file);
1039		}
1040
1041		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1042			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1043				get_order(KFD_CWSR_TBA_TMA_SIZE));
1044
 
1045		idr_destroy(&pdd->alloc_idr);
1046
1047		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1048
1049		if (pdd->dev->kfd->shared_resources.enable_mes)
1050			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1051						   pdd->proc_ctx_bo);
1052		/*
1053		 * before destroying pdd, make sure to report availability
1054		 * for auto suspend
1055		 */
1056		if (pdd->runtime_inuse) {
1057			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1058			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1059			pdd->runtime_inuse = false;
1060		}
1061
1062		kfree(pdd);
1063		p->pdds[i] = NULL;
1064	}
1065	p->n_pdds = 0;
1066}
1067
1068static void kfd_process_remove_sysfs(struct kfd_process *p)
1069{
1070	struct kfd_process_device *pdd;
1071	int i;
1072
1073	if (!p->kobj)
1074		return;
1075
1076	sysfs_remove_file(p->kobj, &p->attr_pasid);
1077	kobject_del(p->kobj_queues);
1078	kobject_put(p->kobj_queues);
1079	p->kobj_queues = NULL;
1080
1081	for (i = 0; i < p->n_pdds; i++) {
1082		pdd = p->pdds[i];
1083
1084		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1085		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1086
1087		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1088		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1089			sysfs_remove_file(pdd->kobj_stats,
1090					  &pdd->attr_cu_occupancy);
1091		kobject_del(pdd->kobj_stats);
1092		kobject_put(pdd->kobj_stats);
1093		pdd->kobj_stats = NULL;
1094	}
1095
1096	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1097		pdd = p->pdds[i];
1098
1099		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1100		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1101		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1102		kobject_del(pdd->kobj_counters);
1103		kobject_put(pdd->kobj_counters);
1104		pdd->kobj_counters = NULL;
1105	}
1106
1107	kobject_del(p->kobj);
1108	kobject_put(p->kobj);
1109	p->kobj = NULL;
1110}
1111
1112/* No process locking is needed in this function, because the process
1113 * is not findable any more. We must assume that no other thread is
1114 * using it any more, otherwise we couldn't safely free the process
1115 * structure in the end.
1116 */
1117static void kfd_process_wq_release(struct work_struct *work)
1118{
1119	struct kfd_process *p = container_of(work, struct kfd_process,
1120					     release_work);
1121	struct dma_fence *ef;
1122
1123	kfd_process_dequeue_from_all_devices(p);
1124	pqm_uninit(&p->pqm);
1125
1126	/* Signal the eviction fence after user mode queues are
1127	 * destroyed. This allows any BOs to be freed without
1128	 * triggering pointless evictions or waiting for fences.
1129	 */
1130	synchronize_rcu();
1131	ef = rcu_access_pointer(p->ef);
1132	dma_fence_signal(ef);
1133
1134	kfd_process_remove_sysfs(p);
 
1135
1136	kfd_process_kunmap_signal_bo(p);
1137	kfd_process_free_outstanding_kfd_bos(p);
1138	svm_range_list_fini(p);
1139
1140	kfd_process_destroy_pdds(p);
1141	dma_fence_put(ef);
1142
1143	kfd_event_free_process(p);
1144
1145	kfd_pasid_free(p->pasid);
1146	mutex_destroy(&p->mutex);
1147
1148	put_task_struct(p->lead_thread);
1149
1150	kfree(p);
1151}
1152
1153static void kfd_process_ref_release(struct kref *ref)
1154{
1155	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1156
1157	INIT_WORK(&p->release_work, kfd_process_wq_release);
1158	queue_work(kfd_process_wq, &p->release_work);
1159}
1160
1161static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1162{
1163	int idx = srcu_read_lock(&kfd_processes_srcu);
1164	struct kfd_process *p = find_process_by_mm(mm);
1165
1166	srcu_read_unlock(&kfd_processes_srcu, idx);
1167
1168	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1169}
1170
1171static void kfd_process_free_notifier(struct mmu_notifier *mn)
1172{
1173	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1174}
1175
1176static void kfd_process_notifier_release_internal(struct kfd_process *p)
1177{
1178	int i;
1179
1180	cancel_delayed_work_sync(&p->eviction_work);
1181	cancel_delayed_work_sync(&p->restore_work);
1182
1183	for (i = 0; i < p->n_pdds; i++) {
1184		struct kfd_process_device *pdd = p->pdds[i];
1185
1186		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1187		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1188			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1189	}
1190
1191	/* Indicate to other users that MM is no longer valid */
1192	p->mm = NULL;
1193	kfd_dbg_trap_disable(p);
1194
1195	if (atomic_read(&p->debugged_process_count) > 0) {
1196		struct kfd_process *target;
1197		unsigned int temp;
1198		int idx = srcu_read_lock(&kfd_processes_srcu);
1199
1200		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1201			if (target->debugger_process && target->debugger_process == p) {
1202				mutex_lock_nested(&target->mutex, 1);
1203				kfd_dbg_trap_disable(target);
1204				mutex_unlock(&target->mutex);
1205				if (atomic_read(&p->debugged_process_count) == 0)
1206					break;
1207			}
1208		}
1209
1210		srcu_read_unlock(&kfd_processes_srcu, idx);
1211	}
1212
1213	mmu_notifier_put(&p->mmu_notifier);
1214}
1215
1216static void kfd_process_notifier_release(struct mmu_notifier *mn,
1217					struct mm_struct *mm)
1218{
1219	struct kfd_process *p;
 
1220
1221	/*
1222	 * The kfd_process structure can not be free because the
1223	 * mmu_notifier srcu is read locked
1224	 */
1225	p = container_of(mn, struct kfd_process, mmu_notifier);
1226	if (WARN_ON(p->mm != mm))
1227		return;
1228
1229	mutex_lock(&kfd_processes_mutex);
1230	/*
1231	 * Do early return if table is empty.
1232	 *
1233	 * This could potentially happen if this function is called concurrently
1234	 * by mmu_notifier and by kfd_cleanup_pocesses.
1235	 *
1236	 */
1237	if (hash_empty(kfd_processes_table)) {
1238		mutex_unlock(&kfd_processes_mutex);
1239		return;
1240	}
1241	hash_del_rcu(&p->kfd_processes);
1242	mutex_unlock(&kfd_processes_mutex);
1243	synchronize_srcu(&kfd_processes_srcu);
1244
1245	kfd_process_notifier_release_internal(p);
1246}
1247
1248static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1249	.release = kfd_process_notifier_release,
1250	.alloc_notifier = kfd_process_alloc_notifier,
1251	.free_notifier = kfd_process_free_notifier,
1252};
1253
1254/*
1255 * This code handles the case when driver is being unloaded before all
1256 * mm_struct are released.  We need to safely free the kfd_process and
1257 * avoid race conditions with mmu_notifier that might try to free them.
1258 *
1259 */
1260void kfd_cleanup_processes(void)
1261{
1262	struct kfd_process *p;
1263	struct hlist_node *p_temp;
1264	unsigned int temp;
1265	HLIST_HEAD(cleanup_list);
1266
1267	/*
1268	 * Move all remaining kfd_process from the process table to a
1269	 * temp list for processing.   Once done, callback from mmu_notifier
1270	 * release will not see the kfd_process in the table and do early return,
1271	 * avoiding double free issues.
1272	 */
1273	mutex_lock(&kfd_processes_mutex);
1274	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1275		hash_del_rcu(&p->kfd_processes);
1276		synchronize_srcu(&kfd_processes_srcu);
1277		hlist_add_head(&p->kfd_processes, &cleanup_list);
 
 
 
 
 
 
1278	}
1279	mutex_unlock(&kfd_processes_mutex);
1280
1281	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1282		kfd_process_notifier_release_internal(p);
1283
1284	/*
1285	 * Ensures that all outstanding free_notifier get called, triggering
1286	 * the release of the kfd_process struct.
 
 
1287	 */
1288	mmu_notifier_synchronize();
 
 
 
 
1289}
1290
1291int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
 
 
 
 
 
 
1292{
1293	unsigned long  offset;
1294	int i;
1295
1296	if (p->has_cwsr)
1297		return 0;
1298
1299	for (i = 0; i < p->n_pdds; i++) {
1300		struct kfd_node *dev = p->pdds[i]->dev;
1301		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1302
1303		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1304			continue;
1305
1306		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1307		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1308			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1309			MAP_SHARED, offset);
1310
1311		if (IS_ERR_VALUE(qpd->tba_addr)) {
1312			int err = qpd->tba_addr;
1313
1314			pr_err("Failure to set tba address. error %d.\n", err);
1315			qpd->tba_addr = 0;
1316			qpd->cwsr_kaddr = NULL;
1317			return err;
1318		}
1319
1320		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1321
1322		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1323
1324		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1325		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1326			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1327	}
1328
1329	p->has_cwsr = true;
1330
1331	return 0;
1332}
1333
1334static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1335{
1336	struct kfd_node *dev = pdd->dev;
1337	struct qcm_process_device *qpd = &pdd->qpd;
1338	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1339			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1340			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1341	struct kgd_mem *mem;
1342	void *kaddr;
1343	int ret;
1344
1345	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1346		return 0;
1347
1348	/* cwsr_base is only set for dGPU */
1349	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1350				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1351	if (ret)
1352		return ret;
1353
1354	qpd->cwsr_mem = mem;
1355	qpd->cwsr_kaddr = kaddr;
1356	qpd->tba_addr = qpd->cwsr_base;
1357
1358	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1359
1360	kfd_process_set_trap_debug_flag(&pdd->qpd,
1361					pdd->process->debug_trap_enabled);
1362
1363	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1364	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1365		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1366
1367	return 0;
1368}
1369
1370static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1371{
1372	struct kfd_node *dev = pdd->dev;
1373	struct qcm_process_device *qpd = &pdd->qpd;
1374
1375	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1376		return;
1377
1378	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1379}
1380
1381void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1382				  uint64_t tba_addr,
1383				  uint64_t tma_addr)
1384{
1385	if (qpd->cwsr_kaddr) {
1386		/* KFD trap handler is bound, record as second-level TBA/TMA
1387		 * in first-level TMA. First-level trap will jump to second.
1388		 */
1389		uint64_t *tma =
1390			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1391		tma[0] = tba_addr;
1392		tma[1] = tma_addr;
1393	} else {
1394		/* No trap handler bound, bind as first-level TBA/TMA. */
1395		qpd->tba_addr = tba_addr;
1396		qpd->tma_addr = tma_addr;
1397	}
1398}
1399
1400bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1401{
1402	int i;
1403
1404	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1405	 * boot time retry setting. Mixing processes with different
1406	 * XNACK/retry settings can hang the GPU.
1407	 *
1408	 * Different GPUs can have different noretry settings depending
1409	 * on HW bugs or limitations. We need to find at least one
1410	 * XNACK mode for this process that's compatible with all GPUs.
1411	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1412	 * built for XNACK-off. On GFXv9 it may perform slower.
1413	 *
1414	 * Therefore applications built for XNACK-off can always be
1415	 * supported and will be our fallback if any GPU does not
1416	 * support retry.
1417	 */
1418	for (i = 0; i < p->n_pdds; i++) {
1419		struct kfd_node *dev = p->pdds[i]->dev;
1420
1421		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1422		 * support the SVM APIs and don't need to be considered
1423		 * for the XNACK mode selection.
1424		 */
1425		if (!KFD_IS_SOC15(dev))
1426			continue;
1427		/* Aldebaran can always support XNACK because it can support
1428		 * per-process XNACK mode selection. But let the dev->noretry
1429		 * setting still influence the default XNACK mode.
1430		 */
1431		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1432			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1433				pr_debug("SRIOV platform xnack not supported\n");
1434				return false;
1435			}
1436			continue;
1437		}
1438
1439		/* GFXv10 and later GPUs do not support shader preemption
1440		 * during page faults. This can lead to poor QoS for queue
1441		 * management and memory-manager-related preemptions or
1442		 * even deadlocks.
1443		 */
1444		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1445			return false;
1446
1447		if (dev->kfd->noretry)
1448			return false;
1449	}
1450
1451	return true;
1452}
1453
1454void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1455				     bool enabled)
1456{
1457	if (qpd->cwsr_kaddr) {
1458		uint64_t *tma =
1459			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1460		tma[2] = enabled;
1461	}
1462}
1463
1464/*
1465 * On return the kfd_process is fully operational and will be freed when the
1466 * mm is released
1467 */
1468static struct kfd_process *create_process(const struct task_struct *thread)
1469{
1470	struct kfd_process *process;
1471	struct mmu_notifier *mn;
1472	int err = -ENOMEM;
1473
1474	process = kzalloc(sizeof(*process), GFP_KERNEL);
1475	if (!process)
1476		goto err_alloc_process;
1477
1478	kref_init(&process->ref);
1479	mutex_init(&process->mutex);
1480	process->mm = thread->mm;
1481	process->lead_thread = thread->group_leader;
1482	process->n_pdds = 0;
1483	process->queues_paused = false;
1484	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1485	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1486	process->last_restore_timestamp = get_jiffies_64();
1487	err = kfd_event_init_process(process);
1488	if (err)
1489		goto err_event_init;
1490	process->is_32bit_user_mode = in_compat_syscall();
1491	process->debug_trap_enabled = false;
1492	process->debugger_process = NULL;
1493	process->exception_enable_mask = 0;
1494	atomic_set(&process->debugged_process_count, 0);
1495	sema_init(&process->runtime_enable_sema, 0);
1496
1497	process->pasid = kfd_pasid_alloc();
1498	if (process->pasid == 0) {
1499		err = -ENOSPC;
1500		goto err_alloc_pasid;
1501	}
1502
1503	err = pqm_init(&process->pqm, process);
1504	if (err != 0)
1505		goto err_process_pqm_init;
1506
1507	/* init process apertures*/
1508	err = kfd_init_apertures(process);
1509	if (err != 0)
1510		goto err_init_apertures;
1511
1512	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1513	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1514
1515	err = svm_range_list_init(process);
1516	if (err)
1517		goto err_init_svm_range_list;
1518
1519	/* alloc_notifier needs to find the process in the hash table */
1520	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1521			(uintptr_t)process->mm);
1522
1523	/* Avoid free_notifier to start kfd_process_wq_release if
1524	 * mmu_notifier_get failed because of pending signal.
1525	 */
1526	kref_get(&process->ref);
1527
1528	/* MMU notifier registration must be the last call that can fail
1529	 * because after this point we cannot unwind the process creation.
1530	 * After this point, mmu_notifier_put will trigger the cleanup by
1531	 * dropping the last process reference in the free_notifier.
1532	 */
1533	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1534	if (IS_ERR(mn)) {
1535		err = PTR_ERR(mn);
1536		goto err_register_notifier;
1537	}
1538	BUG_ON(mn != &process->mmu_notifier);
1539
1540	kfd_unref_process(process);
1541	get_task_struct(process->lead_thread);
1542
1543	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1544
1545	return process;
1546
1547err_register_notifier:
1548	hash_del_rcu(&process->kfd_processes);
1549	svm_range_list_fini(process);
1550err_init_svm_range_list:
1551	kfd_process_free_outstanding_kfd_bos(process);
1552	kfd_process_destroy_pdds(process);
1553err_init_apertures:
1554	pqm_uninit(&process->pqm);
1555err_process_pqm_init:
1556	kfd_pasid_free(process->pasid);
1557err_alloc_pasid:
1558	kfd_event_free_process(process);
1559err_event_init:
1560	mutex_destroy(&process->mutex);
1561	kfree(process);
1562err_alloc_process:
1563	return ERR_PTR(err);
1564}
1565
1566struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1567							struct kfd_process *p)
1568{
1569	int i;
1570
1571	for (i = 0; i < p->n_pdds; i++)
1572		if (p->pdds[i]->dev == dev)
1573			return p->pdds[i];
1574
1575	return NULL;
1576}
1577
1578struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1579							struct kfd_process *p)
1580{
1581	struct kfd_process_device *pdd = NULL;
1582	int retval = 0;
1583
1584	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1585		return NULL;
1586	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1587	if (!pdd)
1588		return NULL;
1589
 
 
 
 
 
 
 
 
 
 
1590	pdd->dev = dev;
1591	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1592	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1593	pdd->qpd.dqm = dev->dqm;
1594	pdd->qpd.pqm = &p->pqm;
1595	pdd->qpd.evicted = 0;
1596	pdd->qpd.mapped_gws_queue = false;
1597	pdd->process = p;
1598	pdd->bound = PDD_UNBOUND;
1599	pdd->already_dequeued = false;
1600	pdd->runtime_inuse = false;
1601	pdd->vram_usage = 0;
1602	pdd->sdma_past_activity_counter = 0;
1603	pdd->user_gpu_id = dev->id;
1604	atomic64_set(&pdd->evict_duration_counter, 0);
1605
1606	if (dev->kfd->shared_resources.enable_mes) {
1607		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1608						AMDGPU_MES_PROC_CTX_SIZE,
1609						&pdd->proc_ctx_bo,
1610						&pdd->proc_ctx_gpu_addr,
1611						&pdd->proc_ctx_cpu_ptr,
1612						false);
1613		if (retval) {
1614			pr_err("failed to allocate process context bo\n");
1615			goto err_free_pdd;
1616		}
1617		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1618	}
1619
1620	p->pdds[p->n_pdds++] = pdd;
1621	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1622		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1623							pdd->dev->adev,
1624							false,
1625							0);
1626
1627	/* Init idr used for memory handle translation */
1628	idr_init(&pdd->alloc_idr);
1629
1630	return pdd;
1631
1632err_free_pdd:
1633	kfree(pdd);
1634	return NULL;
1635}
1636
1637/**
1638 * kfd_process_device_init_vm - Initialize a VM for a process-device
1639 *
1640 * @pdd: The process-device
1641 * @drm_file: Optional pointer to a DRM file descriptor
1642 *
1643 * If @drm_file is specified, it will be used to acquire the VM from
1644 * that file descriptor. If successful, the @pdd takes ownership of
1645 * the file descriptor.
1646 *
1647 * If @drm_file is NULL, a new VM is created.
1648 *
1649 * Returns 0 on success, -errno on failure.
1650 */
1651int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1652			       struct file *drm_file)
1653{
1654	struct amdgpu_fpriv *drv_priv;
1655	struct amdgpu_vm *avm;
1656	struct kfd_process *p;
1657	struct dma_fence *ef;
1658	struct kfd_node *dev;
1659	int ret;
1660
1661	if (!drm_file)
1662		return -EINVAL;
1663
1664	if (pdd->drm_priv)
1665		return -EBUSY;
1666
1667	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1668	if (ret)
1669		return ret;
1670	avm = &drv_priv->vm;
1671
1672	p = pdd->process;
1673	dev = pdd->dev;
1674
1675	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1676						     &p->kgd_process_info,
1677						     &ef);
1678	if (ret) {
1679		pr_err("Failed to create process VM object\n");
1680		return ret;
1681	}
1682	RCU_INIT_POINTER(p->ef, ef);
1683	pdd->drm_priv = drm_file->private_data;
1684
1685	ret = kfd_process_device_reserve_ib_mem(pdd);
1686	if (ret)
1687		goto err_reserve_ib_mem;
1688	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1689	if (ret)
1690		goto err_init_cwsr;
1691
1692	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1693	if (ret)
1694		goto err_set_pasid;
1695
1696	pdd->drm_file = drm_file;
1697
1698	return 0;
1699
1700err_set_pasid:
1701	kfd_process_device_destroy_cwsr_dgpu(pdd);
1702err_init_cwsr:
1703	kfd_process_device_destroy_ib_mem(pdd);
1704err_reserve_ib_mem:
 
1705	pdd->drm_priv = NULL;
1706	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1707
1708	return ret;
1709}
1710
1711/*
1712 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1713 * to the device.
1714 * Unbinding occurs when the process dies or the device is removed.
1715 *
1716 * Assumes that the process lock is held.
1717 */
1718struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1719							struct kfd_process *p)
1720{
1721	struct kfd_process_device *pdd;
1722	int err;
1723
1724	pdd = kfd_get_process_device_data(dev, p);
1725	if (!pdd) {
1726		pr_err("Process device data doesn't exist\n");
1727		return ERR_PTR(-ENOMEM);
1728	}
1729
1730	if (!pdd->drm_priv)
1731		return ERR_PTR(-ENODEV);
1732
1733	/*
1734	 * signal runtime-pm system to auto resume and prevent
1735	 * further runtime suspend once device pdd is created until
1736	 * pdd is destroyed.
1737	 */
1738	if (!pdd->runtime_inuse) {
1739		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1740		if (err < 0) {
1741			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1742			return ERR_PTR(err);
1743		}
1744	}
1745
 
 
 
 
1746	/*
1747	 * make sure that runtime_usage counter is incremented just once
1748	 * per pdd
1749	 */
1750	pdd->runtime_inuse = true;
1751
1752	return pdd;
 
 
 
 
 
 
 
 
 
1753}
1754
1755/* Create specific handle mapped to mem from process local memory idr
1756 * Assumes that the process lock is held.
1757 */
1758int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1759					void *mem)
1760{
1761	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1762}
1763
1764/* Translate specific handle from process local memory idr
1765 * Assumes that the process lock is held.
1766 */
1767void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1768					int handle)
1769{
1770	if (handle < 0)
1771		return NULL;
1772
1773	return idr_find(&pdd->alloc_idr, handle);
1774}
1775
1776/* Remove specific handle from process local memory idr
1777 * Assumes that the process lock is held.
1778 */
1779void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1780					int handle)
1781{
1782	if (handle >= 0)
1783		idr_remove(&pdd->alloc_idr, handle);
1784}
1785
1786/* This increments the process->ref counter. */
1787struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1788{
1789	struct kfd_process *p, *ret_p = NULL;
1790	unsigned int temp;
1791
1792	int idx = srcu_read_lock(&kfd_processes_srcu);
1793
1794	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1795		if (p->pasid == pasid) {
1796			kref_get(&p->ref);
1797			ret_p = p;
1798			break;
1799		}
1800	}
1801
1802	srcu_read_unlock(&kfd_processes_srcu, idx);
1803
1804	return ret_p;
1805}
1806
1807/* This increments the process->ref counter. */
1808struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1809{
1810	struct kfd_process *p;
1811
1812	int idx = srcu_read_lock(&kfd_processes_srcu);
1813
1814	p = find_process_by_mm(mm);
1815	if (p)
1816		kref_get(&p->ref);
1817
1818	srcu_read_unlock(&kfd_processes_srcu, idx);
1819
1820	return p;
1821}
1822
1823/* kfd_process_evict_queues - Evict all user queues of a process
1824 *
1825 * Eviction is reference-counted per process-device. This means multiple
1826 * evictions from different sources can be nested safely.
1827 */
1828int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1829{
1830	int r = 0;
1831	int i;
1832	unsigned int n_evicted = 0;
1833
1834	for (i = 0; i < p->n_pdds; i++) {
1835		struct kfd_process_device *pdd = p->pdds[i];
1836
1837		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1838					     trigger);
1839
1840		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1841							    &pdd->qpd);
1842		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1843		 * we would like to set all the queues to be in evicted state to prevent
1844		 * them been add back since they actually not be saved right now.
1845		 */
1846		if (r && r != -EIO) {
1847			pr_err("Failed to evict process queues\n");
1848			goto fail;
1849		}
1850		n_evicted++;
1851	}
1852
1853	return r;
1854
1855fail:
1856	/* To keep state consistent, roll back partial eviction by
1857	 * restoring queues
1858	 */
1859	for (i = 0; i < p->n_pdds; i++) {
1860		struct kfd_process_device *pdd = p->pdds[i];
1861
1862		if (n_evicted == 0)
1863			break;
1864
1865		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1866
1867		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1868							      &pdd->qpd))
1869			pr_err("Failed to restore queues\n");
1870
1871		n_evicted--;
1872	}
1873
1874	return r;
1875}
1876
1877/* kfd_process_restore_queues - Restore all user queues of a process */
1878int kfd_process_restore_queues(struct kfd_process *p)
1879{
1880	int r, ret = 0;
1881	int i;
1882
1883	for (i = 0; i < p->n_pdds; i++) {
1884		struct kfd_process_device *pdd = p->pdds[i];
1885
1886		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1887
1888		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1889							      &pdd->qpd);
1890		if (r) {
1891			pr_err("Failed to restore process queues\n");
1892			if (!ret)
1893				ret = r;
1894		}
1895	}
1896
1897	return ret;
1898}
1899
1900int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1901{
1902	int i;
1903
1904	for (i = 0; i < p->n_pdds; i++)
1905		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1906			return i;
1907	return -EINVAL;
1908}
1909
1910int
1911kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1912			    uint32_t *gpuid, uint32_t *gpuidx)
1913{
 
1914	int i;
1915
1916	for (i = 0; i < p->n_pdds; i++)
1917		if (p->pdds[i] && p->pdds[i]->dev == node) {
1918			*gpuid = p->pdds[i]->user_gpu_id;
1919			*gpuidx = i;
1920			return 0;
1921		}
1922	return -EINVAL;
1923}
1924
1925static int signal_eviction_fence(struct kfd_process *p)
1926{
1927	struct dma_fence *ef;
1928	int ret;
1929
1930	rcu_read_lock();
1931	ef = dma_fence_get_rcu_safe(&p->ef);
1932	rcu_read_unlock();
1933	if (!ef)
1934		return -EINVAL;
1935
1936	ret = dma_fence_signal(ef);
1937	dma_fence_put(ef);
1938
1939	return ret;
1940}
1941
1942static void evict_process_worker(struct work_struct *work)
1943{
1944	int ret;
1945	struct kfd_process *p;
1946	struct delayed_work *dwork;
1947
1948	dwork = to_delayed_work(work);
1949
1950	/* Process termination destroys this worker thread. So during the
1951	 * lifetime of this thread, kfd_process p will be valid
1952	 */
1953	p = container_of(dwork, struct kfd_process, eviction_work);
 
 
 
 
 
 
 
 
 
 
1954
1955	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1956	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1957	if (!ret) {
1958		/* If another thread already signaled the eviction fence,
1959		 * they are responsible stopping the queues and scheduling
1960		 * the restore work.
1961		 */
1962		if (signal_eviction_fence(p) ||
1963		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
1964				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
1965			kfd_process_restore_queues(p);
1966
1967		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1968	} else
1969		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1970}
1971
1972static int restore_process_helper(struct kfd_process *p)
1973{
1974	int ret = 0;
1975
1976	/* VMs may not have been acquired yet during debugging. */
1977	if (p->kgd_process_info) {
1978		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1979			p->kgd_process_info, &p->ef);
1980		if (ret)
1981			return ret;
1982	}
1983
1984	ret = kfd_process_restore_queues(p);
1985	if (!ret)
1986		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1987	else
1988		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1989
1990	return ret;
1991}
1992
1993static void restore_process_worker(struct work_struct *work)
1994{
1995	struct delayed_work *dwork;
1996	struct kfd_process *p;
1997	int ret = 0;
1998
1999	dwork = to_delayed_work(work);
2000
2001	/* Process termination destroys this worker thread. So during the
2002	 * lifetime of this thread, kfd_process p will be valid
2003	 */
2004	p = container_of(dwork, struct kfd_process, restore_work);
2005	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2006
2007	/* Setting last_restore_timestamp before successful restoration.
2008	 * Otherwise this would have to be set by KGD (restore_process_bos)
2009	 * before KFD BOs are unreserved. If not, the process can be evicted
2010	 * again before the timestamp is set.
2011	 * If restore fails, the timestamp will be set again in the next
2012	 * attempt. This would mean that the minimum GPU quanta would be
2013	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2014	 * functions)
2015	 */
2016
2017	p->last_restore_timestamp = get_jiffies_64();
2018
2019	ret = restore_process_helper(p);
2020	if (ret) {
2021		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2022			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2023		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2024				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2025			kfd_process_restore_queues(p);
 
2026	}
 
 
 
 
 
 
2027}
2028
2029void kfd_suspend_all_processes(void)
2030{
2031	struct kfd_process *p;
2032	unsigned int temp;
2033	int idx = srcu_read_lock(&kfd_processes_srcu);
2034
2035	WARN(debug_evictions, "Evicting all processes");
2036	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2037		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
 
 
 
2038			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2039		signal_eviction_fence(p);
 
 
2040	}
2041	srcu_read_unlock(&kfd_processes_srcu, idx);
2042}
2043
2044int kfd_resume_all_processes(void)
2045{
2046	struct kfd_process *p;
2047	unsigned int temp;
2048	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2049
2050	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2051		if (restore_process_helper(p)) {
2052			pr_err("Restore process %d failed during resume\n",
2053			       p->pasid);
2054			ret = -EFAULT;
2055		}
2056	}
2057	srcu_read_unlock(&kfd_processes_srcu, idx);
2058	return ret;
2059}
2060
2061int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2062			  struct vm_area_struct *vma)
2063{
2064	struct kfd_process_device *pdd;
2065	struct qcm_process_device *qpd;
2066
2067	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2068		pr_err("Incorrect CWSR mapping size.\n");
2069		return -EINVAL;
2070	}
2071
2072	pdd = kfd_get_process_device_data(dev, process);
2073	if (!pdd)
2074		return -EINVAL;
2075	qpd = &pdd->qpd;
2076
2077	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2078					get_order(KFD_CWSR_TBA_TMA_SIZE));
2079	if (!qpd->cwsr_kaddr) {
2080		pr_err("Error allocating per process CWSR buffer.\n");
2081		return -ENOMEM;
2082	}
2083
2084	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2085		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2086	/* Mapping pages to user process */
2087	return remap_pfn_range(vma, vma->vm_start,
2088			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2089			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2090}
2091
2092/* assumes caller holds process lock. */
2093int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2094{
2095	uint32_t irq_drain_fence[8];
2096	uint8_t node_id = 0;
2097	int r = 0;
2098
2099	if (!KFD_IS_SOC15(pdd->dev))
2100		return 0;
2101
2102	pdd->process->irq_drain_is_open = true;
2103
2104	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2105	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2106							KFD_IRQ_FENCE_CLIENTID;
2107	irq_drain_fence[3] = pdd->process->pasid;
2108
2109	/*
2110	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2111	 */
2112	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2113		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2114		irq_drain_fence[3] |= node_id << 16;
2115	}
2116
2117	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2118	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2119						     irq_drain_fence)) {
2120		pdd->process->irq_drain_is_open = false;
2121		return 0;
2122	}
2123
2124	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2125				     !READ_ONCE(pdd->process->irq_drain_is_open));
2126	if (r)
2127		pdd->process->irq_drain_is_open = false;
2128
2129	return r;
2130}
2131
2132void kfd_process_close_interrupt_drain(unsigned int pasid)
2133{
2134	struct kfd_process *p;
2135
2136	p = kfd_lookup_process_by_pasid(pasid);
2137
2138	if (!p)
2139		return;
2140
2141	WRITE_ONCE(p->irq_drain_is_open, false);
2142	wake_up_all(&p->wait_irq_drain);
2143	kfd_unref_process(p);
2144}
2145
2146struct send_exception_work_handler_workarea {
2147	struct work_struct work;
2148	struct kfd_process *p;
2149	unsigned int queue_id;
2150	uint64_t error_reason;
2151};
2152
2153static void send_exception_work_handler(struct work_struct *work)
2154{
2155	struct send_exception_work_handler_workarea *workarea;
2156	struct kfd_process *p;
2157	struct queue *q;
2158	struct mm_struct *mm;
2159	struct kfd_context_save_area_header __user *csa_header;
2160	uint64_t __user *err_payload_ptr;
2161	uint64_t cur_err;
2162	uint32_t ev_id;
2163
2164	workarea = container_of(work,
2165				struct send_exception_work_handler_workarea,
2166				work);
2167	p = workarea->p;
2168
2169	mm = get_task_mm(p->lead_thread);
2170
2171	if (!mm)
2172		return;
2173
2174	kthread_use_mm(mm);
2175
2176	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2177
2178	if (!q)
2179		goto out;
2180
2181	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2182
2183	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2184	get_user(cur_err, err_payload_ptr);
2185	cur_err |= workarea->error_reason;
2186	put_user(cur_err, err_payload_ptr);
2187	get_user(ev_id, &csa_header->err_event_id);
2188
2189	kfd_set_event(p, ev_id);
2190
2191out:
2192	kthread_unuse_mm(mm);
2193	mmput(mm);
2194}
2195
2196int kfd_send_exception_to_runtime(struct kfd_process *p,
2197			unsigned int queue_id,
2198			uint64_t error_reason)
2199{
2200	struct send_exception_work_handler_workarea worker;
2201
2202	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2203
2204	worker.p = p;
2205	worker.queue_id = queue_id;
2206	worker.error_reason = error_reason;
2207
2208	schedule_work(&worker.work);
2209	flush_work(&worker.work);
2210	destroy_work_on_stack(&worker.work);
2211
2212	return 0;
2213}
2214
2215struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2216{
2217	int i;
2218
2219	if (gpu_id) {
2220		for (i = 0; i < p->n_pdds; i++) {
2221			struct kfd_process_device *pdd = p->pdds[i];
2222
2223			if (pdd->user_gpu_id == gpu_id)
2224				return pdd;
2225		}
2226	}
2227	return NULL;
2228}
2229
2230int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2231{
2232	int i;
2233
2234	if (!actual_gpu_id)
2235		return 0;
2236
2237	for (i = 0; i < p->n_pdds; i++) {
2238		struct kfd_process_device *pdd = p->pdds[i];
2239
2240		if (pdd->dev->id == actual_gpu_id)
2241			return pdd->user_gpu_id;
2242	}
2243	return -EINVAL;
2244}
2245
2246#if defined(CONFIG_DEBUG_FS)
2247
2248int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2249{
2250	struct kfd_process *p;
2251	unsigned int temp;
2252	int r = 0;
2253
2254	int idx = srcu_read_lock(&kfd_processes_srcu);
2255
2256	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2257		seq_printf(m, "Process %d PASID 0x%x:\n",
2258			   p->lead_thread->tgid, p->pasid);
2259
2260		mutex_lock(&p->mutex);
2261		r = pqm_debugfs_mqds(m, &p->pqm);
2262		mutex_unlock(&p->mutex);
2263
2264		if (r)
2265			break;
2266	}
2267
2268	srcu_read_unlock(&kfd_processes_srcu, idx);
2269
2270	return r;
2271}
2272
2273#endif
v5.14.15
 
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/mutex.h>
  24#include <linux/log2.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/task.h>
  28#include <linux/mmu_context.h>
  29#include <linux/slab.h>
  30#include <linux/amd-iommu.h>
  31#include <linux/notifier.h>
  32#include <linux/compat.h>
  33#include <linux/mman.h>
  34#include <linux/file.h>
  35#include <linux/pm_runtime.h>
  36#include "amdgpu_amdkfd.h"
  37#include "amdgpu.h"
  38
  39struct mm_struct;
  40
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
  43#include "kfd_dbgmgr.h"
  44#include "kfd_iommu.h"
  45#include "kfd_svm.h"
 
 
  46
  47/*
  48 * List of struct kfd_process (field kfd_process).
  49 * Unique/indexed by mm_struct*
  50 */
  51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  52static DEFINE_MUTEX(kfd_processes_mutex);
  53
  54DEFINE_SRCU(kfd_processes_srcu);
  55
  56/* For process termination handling */
  57static struct workqueue_struct *kfd_process_wq;
  58
  59/* Ordered, single-threaded workqueue for restoring evicted
  60 * processes. Restoring multiple processes concurrently under memory
  61 * pressure can lead to processes blocking each other from validating
  62 * their BOs and result in a live-lock situation where processes
  63 * remain evicted indefinitely.
  64 */
  65static struct workqueue_struct *kfd_restore_wq;
  66
  67static struct kfd_process *find_process(const struct task_struct *thread);
 
  68static void kfd_process_ref_release(struct kref *ref);
  69static struct kfd_process *create_process(const struct task_struct *thread);
  70static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
  71
  72static void evict_process_worker(struct work_struct *work);
  73static void restore_process_worker(struct work_struct *work);
  74
 
 
  75struct kfd_procfs_tree {
  76	struct kobject *kobj;
  77};
  78
  79static struct kfd_procfs_tree procfs;
  80
  81/*
  82 * Structure for SDMA activity tracking
  83 */
  84struct kfd_sdma_activity_handler_workarea {
  85	struct work_struct sdma_activity_work;
  86	struct kfd_process_device *pdd;
  87	uint64_t sdma_activity_counter;
  88};
  89
  90struct temp_sdma_queue_list {
  91	uint64_t __user *rptr;
  92	uint64_t sdma_val;
  93	unsigned int queue_id;
  94	struct list_head list;
  95};
  96
  97static void kfd_sdma_activity_worker(struct work_struct *work)
  98{
  99	struct kfd_sdma_activity_handler_workarea *workarea;
 100	struct kfd_process_device *pdd;
 101	uint64_t val;
 102	struct mm_struct *mm;
 103	struct queue *q;
 104	struct qcm_process_device *qpd;
 105	struct device_queue_manager *dqm;
 106	int ret = 0;
 107	struct temp_sdma_queue_list sdma_q_list;
 108	struct temp_sdma_queue_list *sdma_q, *next;
 109
 110	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
 111				sdma_activity_work);
 112
 113	pdd = workarea->pdd;
 114	if (!pdd)
 115		return;
 116	dqm = pdd->dev->dqm;
 117	qpd = &pdd->qpd;
 118	if (!dqm || !qpd)
 119		return;
 120	/*
 121	 * Total SDMA activity is current SDMA activity + past SDMA activity
 122	 * Past SDMA count is stored in pdd.
 123	 * To get the current activity counters for all active SDMA queues,
 124	 * we loop over all SDMA queues and get their counts from user-space.
 125	 *
 126	 * We cannot call get_user() with dqm_lock held as it can cause
 127	 * a circular lock dependency situation. To read the SDMA stats,
 128	 * we need to do the following:
 129	 *
 130	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
 131	 *    with dqm_lock/dqm_unlock().
 132	 * 2. Call get_user() for each node in temporary list without dqm_lock.
 133	 *    Save the SDMA count for each node and also add the count to the total
 134	 *    SDMA count counter.
 135	 *    Its possible, during this step, a few SDMA queue nodes got deleted
 136	 *    from the qpd->queues_list.
 137	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
 138	 *    If any node got deleted, its SDMA count would be captured in the sdma
 139	 *    past activity counter. So subtract the SDMA counter stored in step 2
 140	 *    for this node from the total SDMA count.
 141	 */
 142	INIT_LIST_HEAD(&sdma_q_list.list);
 143
 144	/*
 145	 * Create the temp list of all SDMA queues
 146	 */
 147	dqm_lock(dqm);
 148
 149	list_for_each_entry(q, &qpd->queues_list, list) {
 150		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 151		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 152			continue;
 153
 154		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
 155		if (!sdma_q) {
 156			dqm_unlock(dqm);
 157			goto cleanup;
 158		}
 159
 160		INIT_LIST_HEAD(&sdma_q->list);
 161		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
 162		sdma_q->queue_id = q->properties.queue_id;
 163		list_add_tail(&sdma_q->list, &sdma_q_list.list);
 164	}
 165
 166	/*
 167	 * If the temp list is empty, then no SDMA queues nodes were found in
 168	 * qpd->queues_list. Return the past activity count as the total sdma
 169	 * count
 170	 */
 171	if (list_empty(&sdma_q_list.list)) {
 172		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
 173		dqm_unlock(dqm);
 174		return;
 175	}
 176
 177	dqm_unlock(dqm);
 178
 179	/*
 180	 * Get the usage count for each SDMA queue in temp_list.
 181	 */
 182	mm = get_task_mm(pdd->process->lead_thread);
 183	if (!mm)
 184		goto cleanup;
 185
 186	kthread_use_mm(mm);
 187
 188	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
 189		val = 0;
 190		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
 191		if (ret) {
 192			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
 193				 sdma_q->queue_id);
 194		} else {
 195			sdma_q->sdma_val = val;
 196			workarea->sdma_activity_counter += val;
 197		}
 198	}
 199
 200	kthread_unuse_mm(mm);
 201	mmput(mm);
 202
 203	/*
 204	 * Do a second iteration over qpd_queues_list to check if any SDMA
 205	 * nodes got deleted while fetching SDMA counter.
 206	 */
 207	dqm_lock(dqm);
 208
 209	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
 210
 211	list_for_each_entry(q, &qpd->queues_list, list) {
 212		if (list_empty(&sdma_q_list.list))
 213			break;
 214
 215		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 216		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 217			continue;
 218
 219		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 220			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
 221			     (sdma_q->queue_id == q->properties.queue_id)) {
 222				list_del(&sdma_q->list);
 223				kfree(sdma_q);
 224				break;
 225			}
 226		}
 227	}
 228
 229	dqm_unlock(dqm);
 230
 231	/*
 232	 * If temp list is not empty, it implies some queues got deleted
 233	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
 234	 * count for each node from the total SDMA count.
 235	 */
 236	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 237		workarea->sdma_activity_counter -= sdma_q->sdma_val;
 238		list_del(&sdma_q->list);
 239		kfree(sdma_q);
 240	}
 241
 242	return;
 243
 244cleanup:
 245	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 246		list_del(&sdma_q->list);
 247		kfree(sdma_q);
 248	}
 249}
 250
 251/**
 252 * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device
 253 * by current process. Translates acquired wave count into number of compute units
 254 * that are occupied.
 255 *
 256 * @atr: Handle of attribute that allows reporting of wave count. The attribute
 257 * handle encapsulates GPU device it is associated with, thereby allowing collection
 258 * of waves in flight, etc
 259 *
 260 * @buffer: Handle of user provided buffer updated with wave count
 261 *
 262 * Return: Number of bytes written to user buffer or an error value
 263 */
 264static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
 265{
 266	int cu_cnt;
 267	int wave_cnt;
 268	int max_waves_per_cu;
 269	struct kfd_dev *dev = NULL;
 270	struct kfd_process *proc = NULL;
 271	struct kfd_process_device *pdd = NULL;
 272
 273	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
 274	dev = pdd->dev;
 275	if (dev->kfd2kgd->get_cu_occupancy == NULL)
 276		return -EINVAL;
 277
 278	cu_cnt = 0;
 279	proc = pdd->process;
 280	if (pdd->qpd.queue_count == 0) {
 281		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
 282			 dev->id, proc->pasid);
 283		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 284	}
 285
 286	/* Collect wave count from device if it supports */
 287	wave_cnt = 0;
 288	max_waves_per_cu = 0;
 289	dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt,
 290			&max_waves_per_cu);
 291
 292	/* Translate wave count to number of compute units */
 293	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
 294	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 295}
 296
 297static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
 298			       char *buffer)
 299{
 300	if (strcmp(attr->name, "pasid") == 0) {
 301		struct kfd_process *p = container_of(attr, struct kfd_process,
 302						     attr_pasid);
 303
 304		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
 305	} else if (strncmp(attr->name, "vram_", 5) == 0) {
 306		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 307							      attr_vram);
 308		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
 309	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
 310		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 311							      attr_sdma);
 312		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
 313
 314		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
 315					kfd_sdma_activity_worker);
 316
 317		sdma_activity_work_handler.pdd = pdd;
 318		sdma_activity_work_handler.sdma_activity_counter = 0;
 319
 320		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
 321
 322		flush_work(&sdma_activity_work_handler.sdma_activity_work);
 323
 324		return snprintf(buffer, PAGE_SIZE, "%llu\n",
 325				(sdma_activity_work_handler.sdma_activity_counter)/
 326				 SDMA_ACTIVITY_DIVISOR);
 327	} else {
 328		pr_err("Invalid attribute");
 329		return -EINVAL;
 330	}
 331
 332	return 0;
 333}
 334
 335static void kfd_procfs_kobj_release(struct kobject *kobj)
 336{
 337	kfree(kobj);
 338}
 339
 340static const struct sysfs_ops kfd_procfs_ops = {
 341	.show = kfd_procfs_show,
 342};
 343
 344static struct kobj_type procfs_type = {
 345	.release = kfd_procfs_kobj_release,
 346	.sysfs_ops = &kfd_procfs_ops,
 347};
 348
 349void kfd_procfs_init(void)
 350{
 351	int ret = 0;
 352
 353	procfs.kobj = kfd_alloc_struct(procfs.kobj);
 354	if (!procfs.kobj)
 355		return;
 356
 357	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
 358				   &kfd_device->kobj, "proc");
 359	if (ret) {
 360		pr_warn("Could not create procfs proc folder");
 361		/* If we fail to create the procfs, clean up */
 362		kfd_procfs_shutdown();
 363	}
 364}
 365
 366void kfd_procfs_shutdown(void)
 367{
 368	if (procfs.kobj) {
 369		kobject_del(procfs.kobj);
 370		kobject_put(procfs.kobj);
 371		procfs.kobj = NULL;
 372	}
 373}
 374
 375static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
 376				     struct attribute *attr, char *buffer)
 377{
 378	struct queue *q = container_of(kobj, struct queue, kobj);
 379
 380	if (!strcmp(attr->name, "size"))
 381		return snprintf(buffer, PAGE_SIZE, "%llu",
 382				q->properties.queue_size);
 383	else if (!strcmp(attr->name, "type"))
 384		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
 385	else if (!strcmp(attr->name, "gpuid"))
 386		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
 387	else
 388		pr_err("Invalid attribute");
 389
 390	return 0;
 391}
 392
 393static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
 394				     struct attribute *attr, char *buffer)
 395{
 396	if (strcmp(attr->name, "evicted_ms") == 0) {
 397		struct kfd_process_device *pdd = container_of(attr,
 398				struct kfd_process_device,
 399				attr_evict);
 400		uint64_t evict_jiffies;
 401
 402		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
 403
 404		return snprintf(buffer,
 405				PAGE_SIZE,
 406				"%llu\n",
 407				jiffies64_to_msecs(evict_jiffies));
 408
 409	/* Sysfs handle that gets CU occupancy is per device */
 410	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
 411		return kfd_get_cu_occupancy(attr, buffer);
 412	} else {
 413		pr_err("Invalid attribute");
 414	}
 415
 416	return 0;
 417}
 418
 419static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
 420				       struct attribute *attr, char *buf)
 421{
 422	struct kfd_process_device *pdd;
 423
 424	if (!strcmp(attr->name, "faults")) {
 425		pdd = container_of(attr, struct kfd_process_device,
 426				   attr_faults);
 427		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
 428	}
 429	if (!strcmp(attr->name, "page_in")) {
 430		pdd = container_of(attr, struct kfd_process_device,
 431				   attr_page_in);
 432		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
 433	}
 434	if (!strcmp(attr->name, "page_out")) {
 435		pdd = container_of(attr, struct kfd_process_device,
 436				   attr_page_out);
 437		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
 438	}
 439	return 0;
 440}
 441
 442static struct attribute attr_queue_size = {
 443	.name = "size",
 444	.mode = KFD_SYSFS_FILE_MODE
 445};
 446
 447static struct attribute attr_queue_type = {
 448	.name = "type",
 449	.mode = KFD_SYSFS_FILE_MODE
 450};
 451
 452static struct attribute attr_queue_gpuid = {
 453	.name = "gpuid",
 454	.mode = KFD_SYSFS_FILE_MODE
 455};
 456
 457static struct attribute *procfs_queue_attrs[] = {
 458	&attr_queue_size,
 459	&attr_queue_type,
 460	&attr_queue_gpuid,
 461	NULL
 462};
 
 463
 464static const struct sysfs_ops procfs_queue_ops = {
 465	.show = kfd_procfs_queue_show,
 466};
 467
 468static struct kobj_type procfs_queue_type = {
 469	.sysfs_ops = &procfs_queue_ops,
 470	.default_attrs = procfs_queue_attrs,
 471};
 472
 473static const struct sysfs_ops procfs_stats_ops = {
 474	.show = kfd_procfs_stats_show,
 475};
 476
 477static struct kobj_type procfs_stats_type = {
 478	.sysfs_ops = &procfs_stats_ops,
 479	.release = kfd_procfs_kobj_release,
 480};
 481
 482static const struct sysfs_ops sysfs_counters_ops = {
 483	.show = kfd_sysfs_counters_show,
 484};
 485
 486static struct kobj_type sysfs_counters_type = {
 487	.sysfs_ops = &sysfs_counters_ops,
 488	.release = kfd_procfs_kobj_release,
 489};
 490
 491int kfd_procfs_add_queue(struct queue *q)
 492{
 493	struct kfd_process *proc;
 494	int ret;
 495
 496	if (!q || !q->process)
 497		return -EINVAL;
 498	proc = q->process;
 499
 500	/* Create proc/<pid>/queues/<queue id> folder */
 501	if (!proc->kobj_queues)
 502		return -EFAULT;
 503	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
 504			proc->kobj_queues, "%u", q->properties.queue_id);
 505	if (ret < 0) {
 506		pr_warn("Creating proc/<pid>/queues/%u failed",
 507			q->properties.queue_id);
 508		kobject_put(&q->kobj);
 509		return ret;
 510	}
 511
 512	return 0;
 513}
 514
 515static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
 516				 char *name)
 517{
 518	int ret;
 519
 520	if (!kobj || !attr || !name)
 521		return;
 522
 523	attr->name = name;
 524	attr->mode = KFD_SYSFS_FILE_MODE;
 525	sysfs_attr_init(attr);
 526
 527	ret = sysfs_create_file(kobj, attr);
 528	if (ret)
 529		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
 530}
 531
 532static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
 533{
 534	int ret;
 535	int i;
 536	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
 537
 538	if (!p || !p->kobj)
 539		return;
 540
 541	/*
 542	 * Create sysfs files for each GPU:
 543	 * - proc/<pid>/stats_<gpuid>/
 544	 * - proc/<pid>/stats_<gpuid>/evicted_ms
 545	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
 546	 */
 547	for (i = 0; i < p->n_pdds; i++) {
 548		struct kfd_process_device *pdd = p->pdds[i];
 549
 550		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
 551				"stats_%u", pdd->dev->id);
 552		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
 553		if (!pdd->kobj_stats)
 554			return;
 555
 556		ret = kobject_init_and_add(pdd->kobj_stats,
 557					   &procfs_stats_type,
 558					   p->kobj,
 559					   stats_dir_filename);
 560
 561		if (ret) {
 562			pr_warn("Creating KFD proc/stats_%s folder failed",
 563				stats_dir_filename);
 564			kobject_put(pdd->kobj_stats);
 565			pdd->kobj_stats = NULL;
 566			return;
 567		}
 568
 569		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
 570				      "evicted_ms");
 571		/* Add sysfs file to report compute unit occupancy */
 572		if (pdd->dev->kfd2kgd->get_cu_occupancy)
 573			kfd_sysfs_create_file(pdd->kobj_stats,
 574					      &pdd->attr_cu_occupancy,
 575					      "cu_occupancy");
 576	}
 577}
 578
 579static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
 580{
 581	int ret = 0;
 582	int i;
 583	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
 584
 585	if (!p || !p->kobj)
 586		return;
 587
 588	/*
 589	 * Create sysfs files for each GPU which supports SVM
 590	 * - proc/<pid>/counters_<gpuid>/
 591	 * - proc/<pid>/counters_<gpuid>/faults
 592	 * - proc/<pid>/counters_<gpuid>/page_in
 593	 * - proc/<pid>/counters_<gpuid>/page_out
 594	 */
 595	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
 596		struct kfd_process_device *pdd = p->pdds[i];
 597		struct kobject *kobj_counters;
 598
 599		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
 600			"counters_%u", pdd->dev->id);
 601		kobj_counters = kfd_alloc_struct(kobj_counters);
 602		if (!kobj_counters)
 603			return;
 604
 605		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
 606					   p->kobj, counters_dir_filename);
 607		if (ret) {
 608			pr_warn("Creating KFD proc/%s folder failed",
 609				counters_dir_filename);
 610			kobject_put(kobj_counters);
 611			return;
 612		}
 613
 614		pdd->kobj_counters = kobj_counters;
 615		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
 616				      "faults");
 617		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
 618				      "page_in");
 619		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
 620				      "page_out");
 621	}
 622}
 623
 624static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
 625{
 626	int i;
 627
 628	if (!p || !p->kobj)
 629		return;
 630
 631	/*
 632	 * Create sysfs files for each GPU:
 633	 * - proc/<pid>/vram_<gpuid>
 634	 * - proc/<pid>/sdma_<gpuid>
 635	 */
 636	for (i = 0; i < p->n_pdds; i++) {
 637		struct kfd_process_device *pdd = p->pdds[i];
 638
 639		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
 640			 pdd->dev->id);
 641		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
 642				      pdd->vram_filename);
 643
 644		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
 645			 pdd->dev->id);
 646		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
 647					    pdd->sdma_filename);
 648	}
 649}
 650
 651void kfd_procfs_del_queue(struct queue *q)
 652{
 653	if (!q)
 654		return;
 655
 656	kobject_del(&q->kobj);
 657	kobject_put(&q->kobj);
 658}
 659
 660int kfd_process_create_wq(void)
 661{
 662	if (!kfd_process_wq)
 663		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
 664	if (!kfd_restore_wq)
 665		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
 
 666
 667	if (!kfd_process_wq || !kfd_restore_wq) {
 668		kfd_process_destroy_wq();
 669		return -ENOMEM;
 670	}
 671
 672	return 0;
 673}
 674
 675void kfd_process_destroy_wq(void)
 676{
 677	if (kfd_process_wq) {
 678		destroy_workqueue(kfd_process_wq);
 679		kfd_process_wq = NULL;
 680	}
 681	if (kfd_restore_wq) {
 682		destroy_workqueue(kfd_restore_wq);
 683		kfd_restore_wq = NULL;
 684	}
 685}
 686
 687static void kfd_process_free_gpuvm(struct kgd_mem *mem,
 688			struct kfd_process_device *pdd)
 689{
 690	struct kfd_dev *dev = pdd->dev;
 
 
 
 
 
 691
 692	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv);
 693	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv,
 694					       NULL);
 695}
 696
 697/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 698 *	This function should be only called right after the process
 699 *	is created and when kfd_processes_mutex is still being held
 700 *	to avoid concurrency. Because of that exclusiveness, we do
 701 *	not need to take p->mutex.
 702 */
 703static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 704				   uint64_t gpu_va, uint32_t size,
 705				   uint32_t flags, void **kptr)
 706{
 707	struct kfd_dev *kdev = pdd->dev;
 708	struct kgd_mem *mem = NULL;
 709	int handle;
 710	int err;
 711
 712	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
 713						 pdd->drm_priv, &mem, NULL, flags);
 
 714	if (err)
 715		goto err_alloc_mem;
 716
 717	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->drm_priv);
 
 718	if (err)
 719		goto err_map_mem;
 720
 721	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
 722	if (err) {
 723		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 724		goto sync_memory_failed;
 725	}
 726
 727	/* Create an obj handle so kfd_process_device_remove_obj_handle
 728	 * will take care of the bo removal when the process finishes.
 729	 * We do not need to take p->mutex, because the process is just
 730	 * created and the ioctls have not had the chance to run.
 731	 */
 732	handle = kfd_process_device_create_obj_handle(pdd, mem);
 733
 734	if (handle < 0) {
 735		err = handle;
 736		goto free_gpuvm;
 737	}
 738
 739	if (kptr) {
 740		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
 741				(struct kgd_mem *)mem, kptr, NULL);
 742		if (err) {
 743			pr_debug("Map GTT BO to kernel failed\n");
 744			goto free_obj_handle;
 745		}
 746	}
 747
 748	return err;
 749
 750free_obj_handle:
 751	kfd_process_device_remove_obj_handle(pdd, handle);
 752free_gpuvm:
 753sync_memory_failed:
 754	kfd_process_free_gpuvm(mem, pdd);
 755	return err;
 756
 757err_map_mem:
 758	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, pdd->drm_priv,
 759					       NULL);
 760err_alloc_mem:
 
 761	*kptr = NULL;
 762	return err;
 763}
 764
 765/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 766 *	process for IB usage The memory reserved is for KFD to submit
 767 *	IB to AMDGPU from kernel.  If the memory is reserved
 768 *	successfully, ib_kaddr will have the CPU/kernel
 769 *	address. Check ib_kaddr before accessing the memory.
 770 */
 771static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 772{
 773	struct qcm_process_device *qpd = &pdd->qpd;
 774	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
 775			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 776			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
 777			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 
 778	void *kaddr;
 779	int ret;
 780
 781	if (qpd->ib_kaddr || !qpd->ib_base)
 782		return 0;
 783
 784	/* ib_base is only set for dGPU */
 785	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 786				      &kaddr);
 787	if (ret)
 788		return ret;
 789
 
 790	qpd->ib_kaddr = kaddr;
 791
 792	return 0;
 793}
 794
 795struct kfd_process *kfd_create_process(struct file *filep)
 
 
 
 
 
 
 
 
 
 
 796{
 797	struct kfd_process *process;
 798	struct task_struct *thread = current;
 799	int ret;
 800
 801	if (!thread->mm)
 802		return ERR_PTR(-EINVAL);
 803
 804	/* Only the pthreads threading model is supported. */
 805	if (thread->group_leader->mm != thread->mm)
 
 806		return ERR_PTR(-EINVAL);
 
 807
 808	/*
 809	 * take kfd processes mutex before starting of process creation
 810	 * so there won't be a case where two threads of the same process
 811	 * create two kfd_process structures
 812	 */
 813	mutex_lock(&kfd_processes_mutex);
 814
 
 
 
 
 
 
 815	/* A prior open of /dev/kfd could have already created the process. */
 816	process = find_process(thread);
 817	if (process) {
 818		pr_debug("Process already found\n");
 819	} else {
 
 
 
 
 
 
 
 
 820		process = create_process(thread);
 821		if (IS_ERR(process))
 822			goto out;
 823
 824		ret = kfd_process_init_cwsr_apu(process, filep);
 825		if (ret)
 826			goto out_destroy;
 827
 828		if (!procfs.kobj)
 829			goto out;
 830
 831		process->kobj = kfd_alloc_struct(process->kobj);
 832		if (!process->kobj) {
 833			pr_warn("Creating procfs kobject failed");
 834			goto out;
 835		}
 836		ret = kobject_init_and_add(process->kobj, &procfs_type,
 837					   procfs.kobj, "%d",
 838					   (int)process->lead_thread->pid);
 839		if (ret) {
 840			pr_warn("Creating procfs pid directory failed");
 841			kobject_put(process->kobj);
 842			goto out;
 843		}
 844
 845		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
 846				      "pasid");
 847
 848		process->kobj_queues = kobject_create_and_add("queues",
 849							process->kobj);
 850		if (!process->kobj_queues)
 851			pr_warn("Creating KFD proc/queues folder failed");
 852
 853		kfd_procfs_add_sysfs_stats(process);
 854		kfd_procfs_add_sysfs_files(process);
 855		kfd_procfs_add_sysfs_counters(process);
 
 
 856	}
 857out:
 858	if (!IS_ERR(process))
 859		kref_get(&process->ref);
 860	mutex_unlock(&kfd_processes_mutex);
 
 861
 862	return process;
 863
 864out_destroy:
 865	hash_del_rcu(&process->kfd_processes);
 866	mutex_unlock(&kfd_processes_mutex);
 867	synchronize_srcu(&kfd_processes_srcu);
 868	/* kfd_process_free_notifier will trigger the cleanup */
 869	mmu_notifier_put(&process->mmu_notifier);
 870	return ERR_PTR(ret);
 871}
 872
 873struct kfd_process *kfd_get_process(const struct task_struct *thread)
 874{
 875	struct kfd_process *process;
 876
 877	if (!thread->mm)
 878		return ERR_PTR(-EINVAL);
 879
 880	/* Only the pthreads threading model is supported. */
 881	if (thread->group_leader->mm != thread->mm)
 882		return ERR_PTR(-EINVAL);
 883
 884	process = find_process(thread);
 885	if (!process)
 886		return ERR_PTR(-EINVAL);
 887
 888	return process;
 889}
 890
 891static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 892{
 893	struct kfd_process *process;
 894
 895	hash_for_each_possible_rcu(kfd_processes_table, process,
 896					kfd_processes, (uintptr_t)mm)
 897		if (process->mm == mm)
 898			return process;
 899
 900	return NULL;
 901}
 902
 903static struct kfd_process *find_process(const struct task_struct *thread)
 
 904{
 905	struct kfd_process *p;
 906	int idx;
 907
 908	idx = srcu_read_lock(&kfd_processes_srcu);
 909	p = find_process_by_mm(thread->mm);
 
 
 910	srcu_read_unlock(&kfd_processes_srcu, idx);
 911
 912	return p;
 913}
 914
 915void kfd_unref_process(struct kfd_process *p)
 916{
 917	kref_put(&p->ref, kfd_process_ref_release);
 918}
 919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920
 921static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 922{
 923	struct kfd_process *p = pdd->process;
 924	void *mem;
 925	int id;
 926	int i;
 927
 928	/*
 929	 * Remove all handles from idr and release appropriate
 930	 * local memory object
 931	 */
 932	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 933
 934		for (i = 0; i < p->n_pdds; i++) {
 935			struct kfd_process_device *peer_pdd = p->pdds[i];
 936
 937			if (!peer_pdd->drm_priv)
 938				continue;
 939			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
 940				peer_pdd->dev->kgd, mem, peer_pdd->drm_priv);
 941		}
 942
 943		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem,
 944						       pdd->drm_priv, NULL);
 945		kfd_process_device_remove_obj_handle(pdd, id);
 946	}
 947}
 948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
 950{
 951	int i;
 952
 953	for (i = 0; i < p->n_pdds; i++)
 954		kfd_process_device_free_bos(p->pdds[i]);
 955}
 956
 957static void kfd_process_destroy_pdds(struct kfd_process *p)
 958{
 959	int i;
 960
 961	for (i = 0; i < p->n_pdds; i++) {
 962		struct kfd_process_device *pdd = p->pdds[i];
 963
 964		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
 965				pdd->dev->id, p->pasid);
 966
 
 
 
 967		if (pdd->drm_file) {
 968			amdgpu_amdkfd_gpuvm_release_process_vm(
 969					pdd->dev->kgd, pdd->drm_priv);
 970			fput(pdd->drm_file);
 971		}
 972
 973		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
 974			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
 975				get_order(KFD_CWSR_TBA_TMA_SIZE));
 976
 977		kfree(pdd->qpd.doorbell_bitmap);
 978		idr_destroy(&pdd->alloc_idr);
 979
 980		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
 981
 
 
 
 982		/*
 983		 * before destroying pdd, make sure to report availability
 984		 * for auto suspend
 985		 */
 986		if (pdd->runtime_inuse) {
 987			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
 988			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
 989			pdd->runtime_inuse = false;
 990		}
 991
 992		kfree(pdd);
 993		p->pdds[i] = NULL;
 994	}
 995	p->n_pdds = 0;
 996}
 997
 998static void kfd_process_remove_sysfs(struct kfd_process *p)
 999{
1000	struct kfd_process_device *pdd;
1001	int i;
1002
1003	if (!p->kobj)
1004		return;
1005
1006	sysfs_remove_file(p->kobj, &p->attr_pasid);
1007	kobject_del(p->kobj_queues);
1008	kobject_put(p->kobj_queues);
1009	p->kobj_queues = NULL;
1010
1011	for (i = 0; i < p->n_pdds; i++) {
1012		pdd = p->pdds[i];
1013
1014		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1015		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1016
1017		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1018		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1019			sysfs_remove_file(pdd->kobj_stats,
1020					  &pdd->attr_cu_occupancy);
1021		kobject_del(pdd->kobj_stats);
1022		kobject_put(pdd->kobj_stats);
1023		pdd->kobj_stats = NULL;
1024	}
1025
1026	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1027		pdd = p->pdds[i];
1028
1029		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1030		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1031		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1032		kobject_del(pdd->kobj_counters);
1033		kobject_put(pdd->kobj_counters);
1034		pdd->kobj_counters = NULL;
1035	}
1036
1037	kobject_del(p->kobj);
1038	kobject_put(p->kobj);
1039	p->kobj = NULL;
1040}
1041
1042/* No process locking is needed in this function, because the process
1043 * is not findable any more. We must assume that no other thread is
1044 * using it any more, otherwise we couldn't safely free the process
1045 * structure in the end.
1046 */
1047static void kfd_process_wq_release(struct work_struct *work)
1048{
1049	struct kfd_process *p = container_of(work, struct kfd_process,
1050					     release_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
1051	kfd_process_remove_sysfs(p);
1052	kfd_iommu_unbind_process(p);
1053
 
1054	kfd_process_free_outstanding_kfd_bos(p);
1055	svm_range_list_fini(p);
1056
1057	kfd_process_destroy_pdds(p);
1058	dma_fence_put(p->ef);
1059
1060	kfd_event_free_process(p);
1061
1062	kfd_pasid_free(p->pasid);
1063	mutex_destroy(&p->mutex);
1064
1065	put_task_struct(p->lead_thread);
1066
1067	kfree(p);
1068}
1069
1070static void kfd_process_ref_release(struct kref *ref)
1071{
1072	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1073
1074	INIT_WORK(&p->release_work, kfd_process_wq_release);
1075	queue_work(kfd_process_wq, &p->release_work);
1076}
1077
1078static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1079{
1080	int idx = srcu_read_lock(&kfd_processes_srcu);
1081	struct kfd_process *p = find_process_by_mm(mm);
1082
1083	srcu_read_unlock(&kfd_processes_srcu, idx);
1084
1085	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1086}
1087
1088static void kfd_process_free_notifier(struct mmu_notifier *mn)
1089{
1090	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1091}
1092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093static void kfd_process_notifier_release(struct mmu_notifier *mn,
1094					struct mm_struct *mm)
1095{
1096	struct kfd_process *p;
1097	int i;
1098
1099	/*
1100	 * The kfd_process structure can not be free because the
1101	 * mmu_notifier srcu is read locked
1102	 */
1103	p = container_of(mn, struct kfd_process, mmu_notifier);
1104	if (WARN_ON(p->mm != mm))
1105		return;
1106
1107	mutex_lock(&kfd_processes_mutex);
 
 
 
 
 
 
 
 
 
 
 
1108	hash_del_rcu(&p->kfd_processes);
1109	mutex_unlock(&kfd_processes_mutex);
1110	synchronize_srcu(&kfd_processes_srcu);
1111
1112	cancel_delayed_work_sync(&p->eviction_work);
1113	cancel_delayed_work_sync(&p->restore_work);
1114	cancel_delayed_work_sync(&p->svms.restore_work);
 
 
 
 
 
1115
1116	mutex_lock(&p->mutex);
 
 
 
 
 
 
 
 
 
 
 
1117
1118	/* Iterate over all process device data structures and if the
1119	 * pdd is in debug mode, we should first force unregistration,
1120	 * then we will be able to destroy the queues
 
 
1121	 */
1122	for (i = 0; i < p->n_pdds; i++) {
1123		struct kfd_dev *dev = p->pdds[i]->dev;
1124
1125		mutex_lock(kfd_get_dbgmgr_mutex());
1126		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
1127			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
1128				kfd_dbgmgr_destroy(dev->dbgmgr);
1129				dev->dbgmgr = NULL;
1130			}
1131		}
1132		mutex_unlock(kfd_get_dbgmgr_mutex());
1133	}
 
1134
1135	kfd_process_dequeue_from_all_devices(p);
1136	pqm_uninit(&p->pqm);
1137
1138	/* Indicate to other users that MM is no longer valid */
1139	p->mm = NULL;
1140	/* Signal the eviction fence after user mode queues are
1141	 * destroyed. This allows any BOs to be freed without
1142	 * triggering pointless evictions or waiting for fences.
1143	 */
1144	dma_fence_signal(p->ef);
1145
1146	mutex_unlock(&p->mutex);
1147
1148	mmu_notifier_put(&p->mmu_notifier);
1149}
1150
1151static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1152	.release = kfd_process_notifier_release,
1153	.alloc_notifier = kfd_process_alloc_notifier,
1154	.free_notifier = kfd_process_free_notifier,
1155};
1156
1157static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1158{
1159	unsigned long  offset;
1160	int i;
1161
 
 
 
1162	for (i = 0; i < p->n_pdds; i++) {
1163		struct kfd_dev *dev = p->pdds[i]->dev;
1164		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1165
1166		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1167			continue;
1168
1169		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1170		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1171			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1172			MAP_SHARED, offset);
1173
1174		if (IS_ERR_VALUE(qpd->tba_addr)) {
1175			int err = qpd->tba_addr;
1176
1177			pr_err("Failure to set tba address. error %d.\n", err);
1178			qpd->tba_addr = 0;
1179			qpd->cwsr_kaddr = NULL;
1180			return err;
1181		}
1182
1183		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
 
 
1184
1185		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1186		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1187			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1188	}
1189
 
 
1190	return 0;
1191}
1192
1193static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1194{
1195	struct kfd_dev *dev = pdd->dev;
1196	struct qcm_process_device *qpd = &pdd->qpd;
1197	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1198			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1199			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 
1200	void *kaddr;
1201	int ret;
1202
1203	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1204		return 0;
1205
1206	/* cwsr_base is only set for dGPU */
1207	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1208				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
1209	if (ret)
1210		return ret;
1211
 
1212	qpd->cwsr_kaddr = kaddr;
1213	qpd->tba_addr = qpd->cwsr_base;
1214
1215	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
 
 
 
1216
1217	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1218	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1219		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1220
1221	return 0;
1222}
1223
 
 
 
 
 
 
 
 
 
 
 
1224void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1225				  uint64_t tba_addr,
1226				  uint64_t tma_addr)
1227{
1228	if (qpd->cwsr_kaddr) {
1229		/* KFD trap handler is bound, record as second-level TBA/TMA
1230		 * in first-level TMA. First-level trap will jump to second.
1231		 */
1232		uint64_t *tma =
1233			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1234		tma[0] = tba_addr;
1235		tma[1] = tma_addr;
1236	} else {
1237		/* No trap handler bound, bind as first-level TBA/TMA. */
1238		qpd->tba_addr = tba_addr;
1239		qpd->tma_addr = tma_addr;
1240	}
1241}
1242
1243bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1244{
1245	int i;
1246
1247	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1248	 * boot time retry setting. Mixing processes with different
1249	 * XNACK/retry settings can hang the GPU.
1250	 *
1251	 * Different GPUs can have different noretry settings depending
1252	 * on HW bugs or limitations. We need to find at least one
1253	 * XNACK mode for this process that's compatible with all GPUs.
1254	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1255	 * built for XNACK-off. On GFXv9 it may perform slower.
1256	 *
1257	 * Therefore applications built for XNACK-off can always be
1258	 * supported and will be our fallback if any GPU does not
1259	 * support retry.
1260	 */
1261	for (i = 0; i < p->n_pdds; i++) {
1262		struct kfd_dev *dev = p->pdds[i]->dev;
1263
1264		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1265		 * support the SVM APIs and don't need to be considered
1266		 * for the XNACK mode selection.
1267		 */
1268		if (dev->device_info->asic_family < CHIP_VEGA10)
1269			continue;
1270		/* Aldebaran can always support XNACK because it can support
1271		 * per-process XNACK mode selection. But let the dev->noretry
1272		 * setting still influence the default XNACK mode.
1273		 */
1274		if (supported &&
1275		    dev->device_info->asic_family == CHIP_ALDEBARAN)
 
 
 
1276			continue;
 
1277
1278		/* GFXv10 and later GPUs do not support shader preemption
1279		 * during page faults. This can lead to poor QoS for queue
1280		 * management and memory-manager-related preemptions or
1281		 * even deadlocks.
1282		 */
1283		if (dev->device_info->asic_family >= CHIP_NAVI10)
1284			return false;
1285
1286		if (dev->noretry)
1287			return false;
1288	}
1289
1290	return true;
1291}
1292
 
 
 
 
 
 
 
 
 
 
1293/*
1294 * On return the kfd_process is fully operational and will be freed when the
1295 * mm is released
1296 */
1297static struct kfd_process *create_process(const struct task_struct *thread)
1298{
1299	struct kfd_process *process;
1300	struct mmu_notifier *mn;
1301	int err = -ENOMEM;
1302
1303	process = kzalloc(sizeof(*process), GFP_KERNEL);
1304	if (!process)
1305		goto err_alloc_process;
1306
1307	kref_init(&process->ref);
1308	mutex_init(&process->mutex);
1309	process->mm = thread->mm;
1310	process->lead_thread = thread->group_leader;
1311	process->n_pdds = 0;
 
1312	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1313	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1314	process->last_restore_timestamp = get_jiffies_64();
1315	kfd_event_init_process(process);
 
 
1316	process->is_32bit_user_mode = in_compat_syscall();
 
 
 
 
 
1317
1318	process->pasid = kfd_pasid_alloc();
1319	if (process->pasid == 0)
 
1320		goto err_alloc_pasid;
 
1321
1322	err = pqm_init(&process->pqm, process);
1323	if (err != 0)
1324		goto err_process_pqm_init;
1325
1326	/* init process apertures*/
1327	err = kfd_init_apertures(process);
1328	if (err != 0)
1329		goto err_init_apertures;
1330
1331	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1332	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1333
1334	err = svm_range_list_init(process);
1335	if (err)
1336		goto err_init_svm_range_list;
1337
1338	/* alloc_notifier needs to find the process in the hash table */
1339	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1340			(uintptr_t)process->mm);
1341
 
 
 
 
 
1342	/* MMU notifier registration must be the last call that can fail
1343	 * because after this point we cannot unwind the process creation.
1344	 * After this point, mmu_notifier_put will trigger the cleanup by
1345	 * dropping the last process reference in the free_notifier.
1346	 */
1347	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1348	if (IS_ERR(mn)) {
1349		err = PTR_ERR(mn);
1350		goto err_register_notifier;
1351	}
1352	BUG_ON(mn != &process->mmu_notifier);
1353
 
1354	get_task_struct(process->lead_thread);
1355
 
 
1356	return process;
1357
1358err_register_notifier:
1359	hash_del_rcu(&process->kfd_processes);
1360	svm_range_list_fini(process);
1361err_init_svm_range_list:
1362	kfd_process_free_outstanding_kfd_bos(process);
1363	kfd_process_destroy_pdds(process);
1364err_init_apertures:
1365	pqm_uninit(&process->pqm);
1366err_process_pqm_init:
1367	kfd_pasid_free(process->pasid);
1368err_alloc_pasid:
 
 
1369	mutex_destroy(&process->mutex);
1370	kfree(process);
1371err_alloc_process:
1372	return ERR_PTR(err);
1373}
1374
1375static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1376			struct kfd_dev *dev)
1377{
1378	unsigned int i;
1379	int range_start = dev->shared_resources.non_cp_doorbells_start;
1380	int range_end = dev->shared_resources.non_cp_doorbells_end;
1381
1382	if (!KFD_IS_SOC15(dev->device_info->asic_family))
1383		return 0;
1384
1385	qpd->doorbell_bitmap =
1386		kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1387				     BITS_PER_BYTE), GFP_KERNEL);
1388	if (!qpd->doorbell_bitmap)
1389		return -ENOMEM;
1390
1391	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1392	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1393	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1394			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1395			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1396
1397	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1398		if (i >= range_start && i <= range_end) {
1399			set_bit(i, qpd->doorbell_bitmap);
1400			set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1401				qpd->doorbell_bitmap);
1402		}
1403	}
1404
1405	return 0;
1406}
1407
1408struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1409							struct kfd_process *p)
1410{
1411	int i;
1412
1413	for (i = 0; i < p->n_pdds; i++)
1414		if (p->pdds[i]->dev == dev)
1415			return p->pdds[i];
1416
1417	return NULL;
1418}
1419
1420struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1421							struct kfd_process *p)
1422{
1423	struct kfd_process_device *pdd = NULL;
 
1424
1425	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1426		return NULL;
1427	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1428	if (!pdd)
1429		return NULL;
1430
1431	if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1432		pr_err("Failed to alloc doorbell for pdd\n");
1433		goto err_free_pdd;
1434	}
1435
1436	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1437		pr_err("Failed to init doorbell for process\n");
1438		goto err_free_pdd;
1439	}
1440
1441	pdd->dev = dev;
1442	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1443	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1444	pdd->qpd.dqm = dev->dqm;
1445	pdd->qpd.pqm = &p->pqm;
1446	pdd->qpd.evicted = 0;
1447	pdd->qpd.mapped_gws_queue = false;
1448	pdd->process = p;
1449	pdd->bound = PDD_UNBOUND;
1450	pdd->already_dequeued = false;
1451	pdd->runtime_inuse = false;
1452	pdd->vram_usage = 0;
1453	pdd->sdma_past_activity_counter = 0;
 
1454	atomic64_set(&pdd->evict_duration_counter, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455	p->pdds[p->n_pdds++] = pdd;
 
 
 
 
 
1456
1457	/* Init idr used for memory handle translation */
1458	idr_init(&pdd->alloc_idr);
1459
1460	return pdd;
1461
1462err_free_pdd:
1463	kfree(pdd);
1464	return NULL;
1465}
1466
1467/**
1468 * kfd_process_device_init_vm - Initialize a VM for a process-device
1469 *
1470 * @pdd: The process-device
1471 * @drm_file: Optional pointer to a DRM file descriptor
1472 *
1473 * If @drm_file is specified, it will be used to acquire the VM from
1474 * that file descriptor. If successful, the @pdd takes ownership of
1475 * the file descriptor.
1476 *
1477 * If @drm_file is NULL, a new VM is created.
1478 *
1479 * Returns 0 on success, -errno on failure.
1480 */
1481int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1482			       struct file *drm_file)
1483{
 
 
1484	struct kfd_process *p;
1485	struct kfd_dev *dev;
 
1486	int ret;
1487
1488	if (!drm_file)
1489		return -EINVAL;
1490
1491	if (pdd->drm_priv)
1492		return -EBUSY;
1493
 
 
 
 
 
1494	p = pdd->process;
1495	dev = pdd->dev;
1496
1497	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1498		dev->kgd, drm_file, p->pasid,
1499		&p->kgd_process_info, &p->ef);
1500	if (ret) {
1501		pr_err("Failed to create process VM object\n");
1502		return ret;
1503	}
 
1504	pdd->drm_priv = drm_file->private_data;
1505
1506	ret = kfd_process_device_reserve_ib_mem(pdd);
1507	if (ret)
1508		goto err_reserve_ib_mem;
1509	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1510	if (ret)
1511		goto err_init_cwsr;
1512
 
 
 
 
1513	pdd->drm_file = drm_file;
1514
1515	return 0;
1516
 
 
1517err_init_cwsr:
 
1518err_reserve_ib_mem:
1519	kfd_process_device_free_bos(pdd);
1520	pdd->drm_priv = NULL;
 
1521
1522	return ret;
1523}
1524
1525/*
1526 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1527 * to the device.
1528 * Unbinding occurs when the process dies or the device is removed.
1529 *
1530 * Assumes that the process lock is held.
1531 */
1532struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1533							struct kfd_process *p)
1534{
1535	struct kfd_process_device *pdd;
1536	int err;
1537
1538	pdd = kfd_get_process_device_data(dev, p);
1539	if (!pdd) {
1540		pr_err("Process device data doesn't exist\n");
1541		return ERR_PTR(-ENOMEM);
1542	}
1543
1544	if (!pdd->drm_priv)
1545		return ERR_PTR(-ENODEV);
1546
1547	/*
1548	 * signal runtime-pm system to auto resume and prevent
1549	 * further runtime suspend once device pdd is created until
1550	 * pdd is destroyed.
1551	 */
1552	if (!pdd->runtime_inuse) {
1553		err = pm_runtime_get_sync(dev->ddev->dev);
1554		if (err < 0) {
1555			pm_runtime_put_autosuspend(dev->ddev->dev);
1556			return ERR_PTR(err);
1557		}
1558	}
1559
1560	err = kfd_iommu_bind_process_to_device(pdd);
1561	if (err)
1562		goto out;
1563
1564	/*
1565	 * make sure that runtime_usage counter is incremented just once
1566	 * per pdd
1567	 */
1568	pdd->runtime_inuse = true;
1569
1570	return pdd;
1571
1572out:
1573	/* balance runpm reference count and exit with error */
1574	if (!pdd->runtime_inuse) {
1575		pm_runtime_mark_last_busy(dev->ddev->dev);
1576		pm_runtime_put_autosuspend(dev->ddev->dev);
1577	}
1578
1579	return ERR_PTR(err);
1580}
1581
1582/* Create specific handle mapped to mem from process local memory idr
1583 * Assumes that the process lock is held.
1584 */
1585int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1586					void *mem)
1587{
1588	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1589}
1590
1591/* Translate specific handle from process local memory idr
1592 * Assumes that the process lock is held.
1593 */
1594void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1595					int handle)
1596{
1597	if (handle < 0)
1598		return NULL;
1599
1600	return idr_find(&pdd->alloc_idr, handle);
1601}
1602
1603/* Remove specific handle from process local memory idr
1604 * Assumes that the process lock is held.
1605 */
1606void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1607					int handle)
1608{
1609	if (handle >= 0)
1610		idr_remove(&pdd->alloc_idr, handle);
1611}
1612
1613/* This increments the process->ref counter. */
1614struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1615{
1616	struct kfd_process *p, *ret_p = NULL;
1617	unsigned int temp;
1618
1619	int idx = srcu_read_lock(&kfd_processes_srcu);
1620
1621	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1622		if (p->pasid == pasid) {
1623			kref_get(&p->ref);
1624			ret_p = p;
1625			break;
1626		}
1627	}
1628
1629	srcu_read_unlock(&kfd_processes_srcu, idx);
1630
1631	return ret_p;
1632}
1633
1634/* This increments the process->ref counter. */
1635struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1636{
1637	struct kfd_process *p;
1638
1639	int idx = srcu_read_lock(&kfd_processes_srcu);
1640
1641	p = find_process_by_mm(mm);
1642	if (p)
1643		kref_get(&p->ref);
1644
1645	srcu_read_unlock(&kfd_processes_srcu, idx);
1646
1647	return p;
1648}
1649
1650/* kfd_process_evict_queues - Evict all user queues of a process
1651 *
1652 * Eviction is reference-counted per process-device. This means multiple
1653 * evictions from different sources can be nested safely.
1654 */
1655int kfd_process_evict_queues(struct kfd_process *p)
1656{
1657	int r = 0;
1658	int i;
1659	unsigned int n_evicted = 0;
1660
1661	for (i = 0; i < p->n_pdds; i++) {
1662		struct kfd_process_device *pdd = p->pdds[i];
1663
 
 
 
1664		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1665							    &pdd->qpd);
1666		if (r) {
 
 
 
 
1667			pr_err("Failed to evict process queues\n");
1668			goto fail;
1669		}
1670		n_evicted++;
1671	}
1672
1673	return r;
1674
1675fail:
1676	/* To keep state consistent, roll back partial eviction by
1677	 * restoring queues
1678	 */
1679	for (i = 0; i < p->n_pdds; i++) {
1680		struct kfd_process_device *pdd = p->pdds[i];
1681
1682		if (n_evicted == 0)
1683			break;
 
 
 
1684		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1685							      &pdd->qpd))
1686			pr_err("Failed to restore queues\n");
1687
1688		n_evicted--;
1689	}
1690
1691	return r;
1692}
1693
1694/* kfd_process_restore_queues - Restore all user queues of a process */
1695int kfd_process_restore_queues(struct kfd_process *p)
1696{
1697	int r, ret = 0;
1698	int i;
1699
1700	for (i = 0; i < p->n_pdds; i++) {
1701		struct kfd_process_device *pdd = p->pdds[i];
1702
 
 
1703		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1704							      &pdd->qpd);
1705		if (r) {
1706			pr_err("Failed to restore process queues\n");
1707			if (!ret)
1708				ret = r;
1709		}
1710	}
1711
1712	return ret;
1713}
1714
1715int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1716{
1717	int i;
1718
1719	for (i = 0; i < p->n_pdds; i++)
1720		if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id)
1721			return i;
1722	return -EINVAL;
1723}
1724
1725int
1726kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev,
1727			   uint32_t *gpuid, uint32_t *gpuidx)
1728{
1729	struct kgd_dev *kgd = (struct kgd_dev *)adev;
1730	int i;
1731
1732	for (i = 0; i < p->n_pdds; i++)
1733		if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) {
1734			*gpuid = p->pdds[i]->dev->id;
1735			*gpuidx = i;
1736			return 0;
1737		}
1738	return -EINVAL;
1739}
1740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741static void evict_process_worker(struct work_struct *work)
1742{
1743	int ret;
1744	struct kfd_process *p;
1745	struct delayed_work *dwork;
1746
1747	dwork = to_delayed_work(work);
1748
1749	/* Process termination destroys this worker thread. So during the
1750	 * lifetime of this thread, kfd_process p will be valid
1751	 */
1752	p = container_of(dwork, struct kfd_process, eviction_work);
1753	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1754		  "Eviction fence mismatch\n");
1755
1756	/* Narrow window of overlap between restore and evict work
1757	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1758	 * unreserves KFD BOs, it is possible to evicted again. But
1759	 * restore has few more steps of finish. So lets wait for any
1760	 * previous restore work to complete
1761	 */
1762	flush_delayed_work(&p->restore_work);
1763
1764	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1765	ret = kfd_process_evict_queues(p);
1766	if (!ret) {
1767		dma_fence_signal(p->ef);
1768		dma_fence_put(p->ef);
1769		p->ef = NULL;
1770		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1771				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
 
 
 
1772
1773		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1774	} else
1775		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1776}
1777
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778static void restore_process_worker(struct work_struct *work)
1779{
1780	struct delayed_work *dwork;
1781	struct kfd_process *p;
1782	int ret = 0;
1783
1784	dwork = to_delayed_work(work);
1785
1786	/* Process termination destroys this worker thread. So during the
1787	 * lifetime of this thread, kfd_process p will be valid
1788	 */
1789	p = container_of(dwork, struct kfd_process, restore_work);
1790	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1791
1792	/* Setting last_restore_timestamp before successful restoration.
1793	 * Otherwise this would have to be set by KGD (restore_process_bos)
1794	 * before KFD BOs are unreserved. If not, the process can be evicted
1795	 * again before the timestamp is set.
1796	 * If restore fails, the timestamp will be set again in the next
1797	 * attempt. This would mean that the minimum GPU quanta would be
1798	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1799	 * functions)
1800	 */
1801
1802	p->last_restore_timestamp = get_jiffies_64();
1803	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1804						     &p->ef);
1805	if (ret) {
1806		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1807			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1808		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1809				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1810		WARN(!ret, "reschedule restore work failed\n");
1811		return;
1812	}
1813
1814	ret = kfd_process_restore_queues(p);
1815	if (!ret)
1816		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1817	else
1818		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1819}
1820
1821void kfd_suspend_all_processes(void)
1822{
1823	struct kfd_process *p;
1824	unsigned int temp;
1825	int idx = srcu_read_lock(&kfd_processes_srcu);
1826
1827	WARN(debug_evictions, "Evicting all processes");
1828	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1829		cancel_delayed_work_sync(&p->eviction_work);
1830		cancel_delayed_work_sync(&p->restore_work);
1831
1832		if (kfd_process_evict_queues(p))
1833			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1834		dma_fence_signal(p->ef);
1835		dma_fence_put(p->ef);
1836		p->ef = NULL;
1837	}
1838	srcu_read_unlock(&kfd_processes_srcu, idx);
1839}
1840
1841int kfd_resume_all_processes(void)
1842{
1843	struct kfd_process *p;
1844	unsigned int temp;
1845	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1846
1847	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1848		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1849			pr_err("Restore process %d failed during resume\n",
1850			       p->pasid);
1851			ret = -EFAULT;
1852		}
1853	}
1854	srcu_read_unlock(&kfd_processes_srcu, idx);
1855	return ret;
1856}
1857
1858int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1859			  struct vm_area_struct *vma)
1860{
1861	struct kfd_process_device *pdd;
1862	struct qcm_process_device *qpd;
1863
1864	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1865		pr_err("Incorrect CWSR mapping size.\n");
1866		return -EINVAL;
1867	}
1868
1869	pdd = kfd_get_process_device_data(dev, process);
1870	if (!pdd)
1871		return -EINVAL;
1872	qpd = &pdd->qpd;
1873
1874	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1875					get_order(KFD_CWSR_TBA_TMA_SIZE));
1876	if (!qpd->cwsr_kaddr) {
1877		pr_err("Error allocating per process CWSR buffer.\n");
1878		return -ENOMEM;
1879	}
1880
1881	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1882		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1883	/* Mapping pages to user process */
1884	return remap_pfn_range(vma, vma->vm_start,
1885			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1886			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1887}
1888
1889void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
 
1890{
1891	struct kfd_dev *dev = pdd->dev;
 
 
1892
1893	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1894		/* Nothing to flush until a VMID is assigned, which
1895		 * only happens when the first queue is created.
1896		 */
1897		if (pdd->qpd.vmid)
1898			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1899							pdd->qpd.vmid);
1900	} else {
1901		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1902					pdd->process->pasid, type);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1903	}
 
1904}
1905
1906#if defined(CONFIG_DEBUG_FS)
1907
1908int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1909{
1910	struct kfd_process *p;
1911	unsigned int temp;
1912	int r = 0;
1913
1914	int idx = srcu_read_lock(&kfd_processes_srcu);
1915
1916	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1917		seq_printf(m, "Process %d PASID 0x%x:\n",
1918			   p->lead_thread->tgid, p->pasid);
1919
1920		mutex_lock(&p->mutex);
1921		r = pqm_debugfs_mqds(m, &p->pqm);
1922		mutex_unlock(&p->mutex);
1923
1924		if (r)
1925			break;
1926	}
1927
1928	srcu_read_unlock(&kfd_processes_srcu, idx);
1929
1930	return r;
1931}
1932
1933#endif
1934