Loading...
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/mutex.h>
25#include <linux/log2.h>
26#include <linux/sched.h>
27#include <linux/sched/mm.h>
28#include <linux/sched/task.h>
29#include <linux/mmu_context.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/compat.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/pm_runtime.h>
36#include "amdgpu_amdkfd.h"
37#include "amdgpu.h"
38
39struct mm_struct;
40
41#include "kfd_priv.h"
42#include "kfd_device_queue_manager.h"
43#include "kfd_svm.h"
44#include "kfd_smi_events.h"
45#include "kfd_debug.h"
46
47/*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52DEFINE_MUTEX(kfd_processes_mutex);
53
54DEFINE_SRCU(kfd_processes_srcu);
55
56/* For process termination handling */
57static struct workqueue_struct *kfd_process_wq;
58
59/* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65static struct workqueue_struct *kfd_restore_wq;
66
67static struct kfd_process *find_process(const struct task_struct *thread,
68 bool ref);
69static void kfd_process_ref_release(struct kref *ref);
70static struct kfd_process *create_process(const struct task_struct *thread);
71
72static void evict_process_worker(struct work_struct *work);
73static void restore_process_worker(struct work_struct *work);
74
75static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77struct kfd_procfs_tree {
78 struct kobject *kobj;
79};
80
81static struct kfd_procfs_tree procfs;
82
83/*
84 * Structure for SDMA activity tracking
85 */
86struct kfd_sdma_activity_handler_workarea {
87 struct work_struct sdma_activity_work;
88 struct kfd_process_device *pdd;
89 uint64_t sdma_activity_counter;
90};
91
92struct temp_sdma_queue_list {
93 uint64_t __user *rptr;
94 uint64_t sdma_val;
95 unsigned int queue_id;
96 struct list_head list;
97};
98
99static void kfd_sdma_activity_worker(struct work_struct *work)
100{
101 struct kfd_sdma_activity_handler_workarea *workarea;
102 struct kfd_process_device *pdd;
103 uint64_t val;
104 struct mm_struct *mm;
105 struct queue *q;
106 struct qcm_process_device *qpd;
107 struct device_queue_manager *dqm;
108 int ret = 0;
109 struct temp_sdma_queue_list sdma_q_list;
110 struct temp_sdma_queue_list *sdma_q, *next;
111
112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 sdma_activity_work);
114
115 pdd = workarea->pdd;
116 if (!pdd)
117 return;
118 dqm = pdd->dev->dqm;
119 qpd = &pdd->qpd;
120 if (!dqm || !qpd)
121 return;
122 /*
123 * Total SDMA activity is current SDMA activity + past SDMA activity
124 * Past SDMA count is stored in pdd.
125 * To get the current activity counters for all active SDMA queues,
126 * we loop over all SDMA queues and get their counts from user-space.
127 *
128 * We cannot call get_user() with dqm_lock held as it can cause
129 * a circular lock dependency situation. To read the SDMA stats,
130 * we need to do the following:
131 *
132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 * with dqm_lock/dqm_unlock().
134 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 * Save the SDMA count for each node and also add the count to the total
136 * SDMA count counter.
137 * Its possible, during this step, a few SDMA queue nodes got deleted
138 * from the qpd->queues_list.
139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 * If any node got deleted, its SDMA count would be captured in the sdma
141 * past activity counter. So subtract the SDMA counter stored in step 2
142 * for this node from the total SDMA count.
143 */
144 INIT_LIST_HEAD(&sdma_q_list.list);
145
146 /*
147 * Create the temp list of all SDMA queues
148 */
149 dqm_lock(dqm);
150
151 list_for_each_entry(q, &qpd->queues_list, list) {
152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 continue;
155
156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 if (!sdma_q) {
158 dqm_unlock(dqm);
159 goto cleanup;
160 }
161
162 INIT_LIST_HEAD(&sdma_q->list);
163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 sdma_q->queue_id = q->properties.queue_id;
165 list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 }
167
168 /*
169 * If the temp list is empty, then no SDMA queues nodes were found in
170 * qpd->queues_list. Return the past activity count as the total sdma
171 * count
172 */
173 if (list_empty(&sdma_q_list.list)) {
174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 dqm_unlock(dqm);
176 return;
177 }
178
179 dqm_unlock(dqm);
180
181 /*
182 * Get the usage count for each SDMA queue in temp_list.
183 */
184 mm = get_task_mm(pdd->process->lead_thread);
185 if (!mm)
186 goto cleanup;
187
188 kthread_use_mm(mm);
189
190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 val = 0;
192 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 if (ret) {
194 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 sdma_q->queue_id);
196 } else {
197 sdma_q->sdma_val = val;
198 workarea->sdma_activity_counter += val;
199 }
200 }
201
202 kthread_unuse_mm(mm);
203 mmput(mm);
204
205 /*
206 * Do a second iteration over qpd_queues_list to check if any SDMA
207 * nodes got deleted while fetching SDMA counter.
208 */
209 dqm_lock(dqm);
210
211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213 list_for_each_entry(q, &qpd->queues_list, list) {
214 if (list_empty(&sdma_q_list.list))
215 break;
216
217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 continue;
220
221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 (sdma_q->queue_id == q->properties.queue_id)) {
224 list_del(&sdma_q->list);
225 kfree(sdma_q);
226 break;
227 }
228 }
229 }
230
231 dqm_unlock(dqm);
232
233 /*
234 * If temp list is not empty, it implies some queues got deleted
235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 * count for each node from the total SDMA count.
237 */
238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 list_del(&sdma_q->list);
241 kfree(sdma_q);
242 }
243
244 return;
245
246cleanup:
247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 list_del(&sdma_q->list);
249 kfree(sdma_q);
250 }
251}
252
253/**
254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255 * by current process. Translates acquired wave count into number of compute units
256 * that are occupied.
257 *
258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
259 * handle encapsulates GPU device it is associated with, thereby allowing collection
260 * of waves in flight, etc
261 * @buffer: Handle of user provided buffer updated with wave count
262 *
263 * Return: Number of bytes written to user buffer or an error value
264 */
265static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266{
267 int cu_cnt;
268 int wave_cnt;
269 int max_waves_per_cu;
270 struct kfd_node *dev = NULL;
271 struct kfd_process *proc = NULL;
272 struct kfd_process_device *pdd = NULL;
273
274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 dev = pdd->dev;
276 if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 return -EINVAL;
278
279 cu_cnt = 0;
280 proc = pdd->process;
281 if (pdd->qpd.queue_count == 0) {
282 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 dev->id, proc->pasid);
284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 }
286
287 /* Collect wave count from device if it supports */
288 wave_cnt = 0;
289 max_waves_per_cu = 0;
290 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291 &max_waves_per_cu, 0);
292
293 /* Translate wave count to number of compute units */
294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296}
297
298static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 char *buffer)
300{
301 if (strcmp(attr->name, "pasid") == 0) {
302 struct kfd_process *p = container_of(attr, struct kfd_process,
303 attr_pasid);
304
305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 } else if (strncmp(attr->name, "vram_", 5) == 0) {
307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 attr_vram);
309 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 attr_sdma);
313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314
315 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 kfd_sdma_activity_worker);
317
318 sdma_activity_work_handler.pdd = pdd;
319 sdma_activity_work_handler.sdma_activity_counter = 0;
320
321 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322
323 flush_work(&sdma_activity_work_handler.sdma_activity_work);
324
325 return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 (sdma_activity_work_handler.sdma_activity_counter)/
327 SDMA_ACTIVITY_DIVISOR);
328 } else {
329 pr_err("Invalid attribute");
330 return -EINVAL;
331 }
332
333 return 0;
334}
335
336static void kfd_procfs_kobj_release(struct kobject *kobj)
337{
338 kfree(kobj);
339}
340
341static const struct sysfs_ops kfd_procfs_ops = {
342 .show = kfd_procfs_show,
343};
344
345static const struct kobj_type procfs_type = {
346 .release = kfd_procfs_kobj_release,
347 .sysfs_ops = &kfd_procfs_ops,
348};
349
350void kfd_procfs_init(void)
351{
352 int ret = 0;
353
354 procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 if (!procfs.kobj)
356 return;
357
358 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 &kfd_device->kobj, "proc");
360 if (ret) {
361 pr_warn("Could not create procfs proc folder");
362 /* If we fail to create the procfs, clean up */
363 kfd_procfs_shutdown();
364 }
365}
366
367void kfd_procfs_shutdown(void)
368{
369 if (procfs.kobj) {
370 kobject_del(procfs.kobj);
371 kobject_put(procfs.kobj);
372 procfs.kobj = NULL;
373 }
374}
375
376static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 struct attribute *attr, char *buffer)
378{
379 struct queue *q = container_of(kobj, struct queue, kobj);
380
381 if (!strcmp(attr->name, "size"))
382 return snprintf(buffer, PAGE_SIZE, "%llu",
383 q->properties.queue_size);
384 else if (!strcmp(attr->name, "type"))
385 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 else if (!strcmp(attr->name, "gpuid"))
387 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 else
389 pr_err("Invalid attribute");
390
391 return 0;
392}
393
394static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 struct attribute *attr, char *buffer)
396{
397 if (strcmp(attr->name, "evicted_ms") == 0) {
398 struct kfd_process_device *pdd = container_of(attr,
399 struct kfd_process_device,
400 attr_evict);
401 uint64_t evict_jiffies;
402
403 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404
405 return snprintf(buffer,
406 PAGE_SIZE,
407 "%llu\n",
408 jiffies64_to_msecs(evict_jiffies));
409
410 /* Sysfs handle that gets CU occupancy is per device */
411 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 return kfd_get_cu_occupancy(attr, buffer);
413 } else {
414 pr_err("Invalid attribute");
415 }
416
417 return 0;
418}
419
420static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421 struct attribute *attr, char *buf)
422{
423 struct kfd_process_device *pdd;
424
425 if (!strcmp(attr->name, "faults")) {
426 pdd = container_of(attr, struct kfd_process_device,
427 attr_faults);
428 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429 }
430 if (!strcmp(attr->name, "page_in")) {
431 pdd = container_of(attr, struct kfd_process_device,
432 attr_page_in);
433 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434 }
435 if (!strcmp(attr->name, "page_out")) {
436 pdd = container_of(attr, struct kfd_process_device,
437 attr_page_out);
438 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439 }
440 return 0;
441}
442
443static struct attribute attr_queue_size = {
444 .name = "size",
445 .mode = KFD_SYSFS_FILE_MODE
446};
447
448static struct attribute attr_queue_type = {
449 .name = "type",
450 .mode = KFD_SYSFS_FILE_MODE
451};
452
453static struct attribute attr_queue_gpuid = {
454 .name = "gpuid",
455 .mode = KFD_SYSFS_FILE_MODE
456};
457
458static struct attribute *procfs_queue_attrs[] = {
459 &attr_queue_size,
460 &attr_queue_type,
461 &attr_queue_gpuid,
462 NULL
463};
464ATTRIBUTE_GROUPS(procfs_queue);
465
466static const struct sysfs_ops procfs_queue_ops = {
467 .show = kfd_procfs_queue_show,
468};
469
470static const struct kobj_type procfs_queue_type = {
471 .sysfs_ops = &procfs_queue_ops,
472 .default_groups = procfs_queue_groups,
473};
474
475static const struct sysfs_ops procfs_stats_ops = {
476 .show = kfd_procfs_stats_show,
477};
478
479static const struct kobj_type procfs_stats_type = {
480 .sysfs_ops = &procfs_stats_ops,
481 .release = kfd_procfs_kobj_release,
482};
483
484static const struct sysfs_ops sysfs_counters_ops = {
485 .show = kfd_sysfs_counters_show,
486};
487
488static const struct kobj_type sysfs_counters_type = {
489 .sysfs_ops = &sysfs_counters_ops,
490 .release = kfd_procfs_kobj_release,
491};
492
493int kfd_procfs_add_queue(struct queue *q)
494{
495 struct kfd_process *proc;
496 int ret;
497
498 if (!q || !q->process)
499 return -EINVAL;
500 proc = q->process;
501
502 /* Create proc/<pid>/queues/<queue id> folder */
503 if (!proc->kobj_queues)
504 return -EFAULT;
505 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 proc->kobj_queues, "%u", q->properties.queue_id);
507 if (ret < 0) {
508 pr_warn("Creating proc/<pid>/queues/%u failed",
509 q->properties.queue_id);
510 kobject_put(&q->kobj);
511 return ret;
512 }
513
514 return 0;
515}
516
517static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 char *name)
519{
520 int ret;
521
522 if (!kobj || !attr || !name)
523 return;
524
525 attr->name = name;
526 attr->mode = KFD_SYSFS_FILE_MODE;
527 sysfs_attr_init(attr);
528
529 ret = sysfs_create_file(kobj, attr);
530 if (ret)
531 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532}
533
534static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535{
536 int ret;
537 int i;
538 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539
540 if (!p || !p->kobj)
541 return;
542
543 /*
544 * Create sysfs files for each GPU:
545 * - proc/<pid>/stats_<gpuid>/
546 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 */
549 for (i = 0; i < p->n_pdds; i++) {
550 struct kfd_process_device *pdd = p->pdds[i];
551
552 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 "stats_%u", pdd->dev->id);
554 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 if (!pdd->kobj_stats)
556 return;
557
558 ret = kobject_init_and_add(pdd->kobj_stats,
559 &procfs_stats_type,
560 p->kobj,
561 stats_dir_filename);
562
563 if (ret) {
564 pr_warn("Creating KFD proc/stats_%s folder failed",
565 stats_dir_filename);
566 kobject_put(pdd->kobj_stats);
567 pdd->kobj_stats = NULL;
568 return;
569 }
570
571 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 "evicted_ms");
573 /* Add sysfs file to report compute unit occupancy */
574 if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 kfd_sysfs_create_file(pdd->kobj_stats,
576 &pdd->attr_cu_occupancy,
577 "cu_occupancy");
578 }
579}
580
581static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582{
583 int ret = 0;
584 int i;
585 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586
587 if (!p || !p->kobj)
588 return;
589
590 /*
591 * Create sysfs files for each GPU which supports SVM
592 * - proc/<pid>/counters_<gpuid>/
593 * - proc/<pid>/counters_<gpuid>/faults
594 * - proc/<pid>/counters_<gpuid>/page_in
595 * - proc/<pid>/counters_<gpuid>/page_out
596 */
597 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 struct kfd_process_device *pdd = p->pdds[i];
599 struct kobject *kobj_counters;
600
601 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 "counters_%u", pdd->dev->id);
603 kobj_counters = kfd_alloc_struct(kobj_counters);
604 if (!kobj_counters)
605 return;
606
607 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 p->kobj, counters_dir_filename);
609 if (ret) {
610 pr_warn("Creating KFD proc/%s folder failed",
611 counters_dir_filename);
612 kobject_put(kobj_counters);
613 return;
614 }
615
616 pdd->kobj_counters = kobj_counters;
617 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 "faults");
619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 "page_in");
621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 "page_out");
623 }
624}
625
626static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627{
628 int i;
629
630 if (!p || !p->kobj)
631 return;
632
633 /*
634 * Create sysfs files for each GPU:
635 * - proc/<pid>/vram_<gpuid>
636 * - proc/<pid>/sdma_<gpuid>
637 */
638 for (i = 0; i < p->n_pdds; i++) {
639 struct kfd_process_device *pdd = p->pdds[i];
640
641 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 pdd->dev->id);
643 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 pdd->vram_filename);
645
646 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 pdd->dev->id);
648 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 pdd->sdma_filename);
650 }
651}
652
653void kfd_procfs_del_queue(struct queue *q)
654{
655 if (!q)
656 return;
657
658 kobject_del(&q->kobj);
659 kobject_put(&q->kobj);
660}
661
662int kfd_process_create_wq(void)
663{
664 if (!kfd_process_wq)
665 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 if (!kfd_restore_wq)
667 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
668 WQ_FREEZABLE);
669
670 if (!kfd_process_wq || !kfd_restore_wq) {
671 kfd_process_destroy_wq();
672 return -ENOMEM;
673 }
674
675 return 0;
676}
677
678void kfd_process_destroy_wq(void)
679{
680 if (kfd_process_wq) {
681 destroy_workqueue(kfd_process_wq);
682 kfd_process_wq = NULL;
683 }
684 if (kfd_restore_wq) {
685 destroy_workqueue(kfd_restore_wq);
686 kfd_restore_wq = NULL;
687 }
688}
689
690static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691 struct kfd_process_device *pdd, void **kptr)
692{
693 struct kfd_node *dev = pdd->dev;
694
695 if (kptr && *kptr) {
696 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
697 *kptr = NULL;
698 }
699
700 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702 NULL);
703}
704
705/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706 * This function should be only called right after the process
707 * is created and when kfd_processes_mutex is still being held
708 * to avoid concurrency. Because of that exclusiveness, we do
709 * not need to take p->mutex.
710 */
711static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712 uint64_t gpu_va, uint32_t size,
713 uint32_t flags, struct kgd_mem **mem, void **kptr)
714{
715 struct kfd_node *kdev = pdd->dev;
716 int err;
717
718 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719 pdd->drm_priv, mem, NULL,
720 flags, false);
721 if (err)
722 goto err_alloc_mem;
723
724 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725 pdd->drm_priv);
726 if (err)
727 goto err_map_mem;
728
729 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730 if (err) {
731 pr_debug("Sync memory failed, wait interrupted by user signal\n");
732 goto sync_memory_failed;
733 }
734
735 if (kptr) {
736 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
737 (struct kgd_mem *)*mem, kptr, NULL);
738 if (err) {
739 pr_debug("Map GTT BO to kernel failed\n");
740 goto sync_memory_failed;
741 }
742 }
743
744 return err;
745
746sync_memory_failed:
747 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748
749err_map_mem:
750 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751 NULL);
752err_alloc_mem:
753 *mem = NULL;
754 *kptr = NULL;
755 return err;
756}
757
758/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759 * process for IB usage The memory reserved is for KFD to submit
760 * IB to AMDGPU from kernel. If the memory is reserved
761 * successfully, ib_kaddr will have the CPU/kernel
762 * address. Check ib_kaddr before accessing the memory.
763 */
764static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765{
766 struct qcm_process_device *qpd = &pdd->qpd;
767 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771 struct kgd_mem *mem;
772 void *kaddr;
773 int ret;
774
775 if (qpd->ib_kaddr || !qpd->ib_base)
776 return 0;
777
778 /* ib_base is only set for dGPU */
779 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780 &mem, &kaddr);
781 if (ret)
782 return ret;
783
784 qpd->ib_mem = mem;
785 qpd->ib_kaddr = kaddr;
786
787 return 0;
788}
789
790static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791{
792 struct qcm_process_device *qpd = &pdd->qpd;
793
794 if (!qpd->ib_kaddr || !qpd->ib_base)
795 return;
796
797 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
798}
799
800struct kfd_process *kfd_create_process(struct task_struct *thread)
801{
802 struct kfd_process *process;
803 int ret;
804
805 if (!(thread->mm && mmget_not_zero(thread->mm)))
806 return ERR_PTR(-EINVAL);
807
808 /* Only the pthreads threading model is supported. */
809 if (thread->group_leader->mm != thread->mm) {
810 mmput(thread->mm);
811 return ERR_PTR(-EINVAL);
812 }
813
814 /*
815 * take kfd processes mutex before starting of process creation
816 * so there won't be a case where two threads of the same process
817 * create two kfd_process structures
818 */
819 mutex_lock(&kfd_processes_mutex);
820
821 if (kfd_is_locked()) {
822 pr_debug("KFD is locked! Cannot create process");
823 process = ERR_PTR(-EINVAL);
824 goto out;
825 }
826
827 /* A prior open of /dev/kfd could have already created the process. */
828 process = find_process(thread, false);
829 if (process) {
830 pr_debug("Process already found\n");
831 } else {
832 /* If the process just called exec(3), it is possible that the
833 * cleanup of the kfd_process (following the release of the mm
834 * of the old process image) is still in the cleanup work queue.
835 * Make sure to drain any job before trying to recreate any
836 * resource for this process.
837 */
838 flush_workqueue(kfd_process_wq);
839
840 process = create_process(thread);
841 if (IS_ERR(process))
842 goto out;
843
844 if (!procfs.kobj)
845 goto out;
846
847 process->kobj = kfd_alloc_struct(process->kobj);
848 if (!process->kobj) {
849 pr_warn("Creating procfs kobject failed");
850 goto out;
851 }
852 ret = kobject_init_and_add(process->kobj, &procfs_type,
853 procfs.kobj, "%d",
854 (int)process->lead_thread->pid);
855 if (ret) {
856 pr_warn("Creating procfs pid directory failed");
857 kobject_put(process->kobj);
858 goto out;
859 }
860
861 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
862 "pasid");
863
864 process->kobj_queues = kobject_create_and_add("queues",
865 process->kobj);
866 if (!process->kobj_queues)
867 pr_warn("Creating KFD proc/queues folder failed");
868
869 kfd_procfs_add_sysfs_stats(process);
870 kfd_procfs_add_sysfs_files(process);
871 kfd_procfs_add_sysfs_counters(process);
872
873 init_waitqueue_head(&process->wait_irq_drain);
874 }
875out:
876 if (!IS_ERR(process))
877 kref_get(&process->ref);
878 mutex_unlock(&kfd_processes_mutex);
879 mmput(thread->mm);
880
881 return process;
882}
883
884struct kfd_process *kfd_get_process(const struct task_struct *thread)
885{
886 struct kfd_process *process;
887
888 if (!thread->mm)
889 return ERR_PTR(-EINVAL);
890
891 /* Only the pthreads threading model is supported. */
892 if (thread->group_leader->mm != thread->mm)
893 return ERR_PTR(-EINVAL);
894
895 process = find_process(thread, false);
896 if (!process)
897 return ERR_PTR(-EINVAL);
898
899 return process;
900}
901
902static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
903{
904 struct kfd_process *process;
905
906 hash_for_each_possible_rcu(kfd_processes_table, process,
907 kfd_processes, (uintptr_t)mm)
908 if (process->mm == mm)
909 return process;
910
911 return NULL;
912}
913
914static struct kfd_process *find_process(const struct task_struct *thread,
915 bool ref)
916{
917 struct kfd_process *p;
918 int idx;
919
920 idx = srcu_read_lock(&kfd_processes_srcu);
921 p = find_process_by_mm(thread->mm);
922 if (p && ref)
923 kref_get(&p->ref);
924 srcu_read_unlock(&kfd_processes_srcu, idx);
925
926 return p;
927}
928
929void kfd_unref_process(struct kfd_process *p)
930{
931 kref_put(&p->ref, kfd_process_ref_release);
932}
933
934/* This increments the process->ref counter. */
935struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
936{
937 struct task_struct *task = NULL;
938 struct kfd_process *p = NULL;
939
940 if (!pid) {
941 task = current;
942 get_task_struct(task);
943 } else {
944 task = get_pid_task(pid, PIDTYPE_PID);
945 }
946
947 if (task) {
948 p = find_process(task, true);
949 put_task_struct(task);
950 }
951
952 return p;
953}
954
955static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
956{
957 struct kfd_process *p = pdd->process;
958 void *mem;
959 int id;
960 int i;
961
962 /*
963 * Remove all handles from idr and release appropriate
964 * local memory object
965 */
966 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
967
968 for (i = 0; i < p->n_pdds; i++) {
969 struct kfd_process_device *peer_pdd = p->pdds[i];
970
971 if (!peer_pdd->drm_priv)
972 continue;
973 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
974 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
975 }
976
977 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
978 pdd->drm_priv, NULL);
979 kfd_process_device_remove_obj_handle(pdd, id);
980 }
981}
982
983/*
984 * Just kunmap and unpin signal BO here. It will be freed in
985 * kfd_process_free_outstanding_kfd_bos()
986 */
987static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
988{
989 struct kfd_process_device *pdd;
990 struct kfd_node *kdev;
991 void *mem;
992
993 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
994 if (!kdev)
995 return;
996
997 mutex_lock(&p->mutex);
998
999 pdd = kfd_get_process_device_data(kdev, p);
1000 if (!pdd)
1001 goto out;
1002
1003 mem = kfd_process_device_translate_handle(
1004 pdd, GET_IDR_HANDLE(p->signal_handle));
1005 if (!mem)
1006 goto out;
1007
1008 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1009
1010out:
1011 mutex_unlock(&p->mutex);
1012}
1013
1014static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1015{
1016 int i;
1017
1018 for (i = 0; i < p->n_pdds; i++)
1019 kfd_process_device_free_bos(p->pdds[i]);
1020}
1021
1022static void kfd_process_destroy_pdds(struct kfd_process *p)
1023{
1024 int i;
1025
1026 for (i = 0; i < p->n_pdds; i++) {
1027 struct kfd_process_device *pdd = p->pdds[i];
1028
1029 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1030 pdd->dev->id, p->pasid);
1031
1032 kfd_process_device_destroy_cwsr_dgpu(pdd);
1033 kfd_process_device_destroy_ib_mem(pdd);
1034
1035 if (pdd->drm_file) {
1036 amdgpu_amdkfd_gpuvm_release_process_vm(
1037 pdd->dev->adev, pdd->drm_priv);
1038 fput(pdd->drm_file);
1039 }
1040
1041 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1042 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1043 get_order(KFD_CWSR_TBA_TMA_SIZE));
1044
1045 idr_destroy(&pdd->alloc_idr);
1046
1047 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1048
1049 if (pdd->dev->kfd->shared_resources.enable_mes)
1050 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1051 pdd->proc_ctx_bo);
1052 /*
1053 * before destroying pdd, make sure to report availability
1054 * for auto suspend
1055 */
1056 if (pdd->runtime_inuse) {
1057 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1058 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1059 pdd->runtime_inuse = false;
1060 }
1061
1062 kfree(pdd);
1063 p->pdds[i] = NULL;
1064 }
1065 p->n_pdds = 0;
1066}
1067
1068static void kfd_process_remove_sysfs(struct kfd_process *p)
1069{
1070 struct kfd_process_device *pdd;
1071 int i;
1072
1073 if (!p->kobj)
1074 return;
1075
1076 sysfs_remove_file(p->kobj, &p->attr_pasid);
1077 kobject_del(p->kobj_queues);
1078 kobject_put(p->kobj_queues);
1079 p->kobj_queues = NULL;
1080
1081 for (i = 0; i < p->n_pdds; i++) {
1082 pdd = p->pdds[i];
1083
1084 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1085 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1086
1087 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1088 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1089 sysfs_remove_file(pdd->kobj_stats,
1090 &pdd->attr_cu_occupancy);
1091 kobject_del(pdd->kobj_stats);
1092 kobject_put(pdd->kobj_stats);
1093 pdd->kobj_stats = NULL;
1094 }
1095
1096 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1097 pdd = p->pdds[i];
1098
1099 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1100 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1101 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1102 kobject_del(pdd->kobj_counters);
1103 kobject_put(pdd->kobj_counters);
1104 pdd->kobj_counters = NULL;
1105 }
1106
1107 kobject_del(p->kobj);
1108 kobject_put(p->kobj);
1109 p->kobj = NULL;
1110}
1111
1112/* No process locking is needed in this function, because the process
1113 * is not findable any more. We must assume that no other thread is
1114 * using it any more, otherwise we couldn't safely free the process
1115 * structure in the end.
1116 */
1117static void kfd_process_wq_release(struct work_struct *work)
1118{
1119 struct kfd_process *p = container_of(work, struct kfd_process,
1120 release_work);
1121 struct dma_fence *ef;
1122
1123 kfd_process_dequeue_from_all_devices(p);
1124 pqm_uninit(&p->pqm);
1125
1126 /* Signal the eviction fence after user mode queues are
1127 * destroyed. This allows any BOs to be freed without
1128 * triggering pointless evictions or waiting for fences.
1129 */
1130 synchronize_rcu();
1131 ef = rcu_access_pointer(p->ef);
1132 dma_fence_signal(ef);
1133
1134 kfd_process_remove_sysfs(p);
1135
1136 kfd_process_kunmap_signal_bo(p);
1137 kfd_process_free_outstanding_kfd_bos(p);
1138 svm_range_list_fini(p);
1139
1140 kfd_process_destroy_pdds(p);
1141 dma_fence_put(ef);
1142
1143 kfd_event_free_process(p);
1144
1145 kfd_pasid_free(p->pasid);
1146 mutex_destroy(&p->mutex);
1147
1148 put_task_struct(p->lead_thread);
1149
1150 kfree(p);
1151}
1152
1153static void kfd_process_ref_release(struct kref *ref)
1154{
1155 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1156
1157 INIT_WORK(&p->release_work, kfd_process_wq_release);
1158 queue_work(kfd_process_wq, &p->release_work);
1159}
1160
1161static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1162{
1163 int idx = srcu_read_lock(&kfd_processes_srcu);
1164 struct kfd_process *p = find_process_by_mm(mm);
1165
1166 srcu_read_unlock(&kfd_processes_srcu, idx);
1167
1168 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1169}
1170
1171static void kfd_process_free_notifier(struct mmu_notifier *mn)
1172{
1173 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1174}
1175
1176static void kfd_process_notifier_release_internal(struct kfd_process *p)
1177{
1178 int i;
1179
1180 cancel_delayed_work_sync(&p->eviction_work);
1181 cancel_delayed_work_sync(&p->restore_work);
1182
1183 for (i = 0; i < p->n_pdds; i++) {
1184 struct kfd_process_device *pdd = p->pdds[i];
1185
1186 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1187 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1188 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1189 }
1190
1191 /* Indicate to other users that MM is no longer valid */
1192 p->mm = NULL;
1193 kfd_dbg_trap_disable(p);
1194
1195 if (atomic_read(&p->debugged_process_count) > 0) {
1196 struct kfd_process *target;
1197 unsigned int temp;
1198 int idx = srcu_read_lock(&kfd_processes_srcu);
1199
1200 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1201 if (target->debugger_process && target->debugger_process == p) {
1202 mutex_lock_nested(&target->mutex, 1);
1203 kfd_dbg_trap_disable(target);
1204 mutex_unlock(&target->mutex);
1205 if (atomic_read(&p->debugged_process_count) == 0)
1206 break;
1207 }
1208 }
1209
1210 srcu_read_unlock(&kfd_processes_srcu, idx);
1211 }
1212
1213 mmu_notifier_put(&p->mmu_notifier);
1214}
1215
1216static void kfd_process_notifier_release(struct mmu_notifier *mn,
1217 struct mm_struct *mm)
1218{
1219 struct kfd_process *p;
1220
1221 /*
1222 * The kfd_process structure can not be free because the
1223 * mmu_notifier srcu is read locked
1224 */
1225 p = container_of(mn, struct kfd_process, mmu_notifier);
1226 if (WARN_ON(p->mm != mm))
1227 return;
1228
1229 mutex_lock(&kfd_processes_mutex);
1230 /*
1231 * Do early return if table is empty.
1232 *
1233 * This could potentially happen if this function is called concurrently
1234 * by mmu_notifier and by kfd_cleanup_pocesses.
1235 *
1236 */
1237 if (hash_empty(kfd_processes_table)) {
1238 mutex_unlock(&kfd_processes_mutex);
1239 return;
1240 }
1241 hash_del_rcu(&p->kfd_processes);
1242 mutex_unlock(&kfd_processes_mutex);
1243 synchronize_srcu(&kfd_processes_srcu);
1244
1245 kfd_process_notifier_release_internal(p);
1246}
1247
1248static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1249 .release = kfd_process_notifier_release,
1250 .alloc_notifier = kfd_process_alloc_notifier,
1251 .free_notifier = kfd_process_free_notifier,
1252};
1253
1254/*
1255 * This code handles the case when driver is being unloaded before all
1256 * mm_struct are released. We need to safely free the kfd_process and
1257 * avoid race conditions with mmu_notifier that might try to free them.
1258 *
1259 */
1260void kfd_cleanup_processes(void)
1261{
1262 struct kfd_process *p;
1263 struct hlist_node *p_temp;
1264 unsigned int temp;
1265 HLIST_HEAD(cleanup_list);
1266
1267 /*
1268 * Move all remaining kfd_process from the process table to a
1269 * temp list for processing. Once done, callback from mmu_notifier
1270 * release will not see the kfd_process in the table and do early return,
1271 * avoiding double free issues.
1272 */
1273 mutex_lock(&kfd_processes_mutex);
1274 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1275 hash_del_rcu(&p->kfd_processes);
1276 synchronize_srcu(&kfd_processes_srcu);
1277 hlist_add_head(&p->kfd_processes, &cleanup_list);
1278 }
1279 mutex_unlock(&kfd_processes_mutex);
1280
1281 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1282 kfd_process_notifier_release_internal(p);
1283
1284 /*
1285 * Ensures that all outstanding free_notifier get called, triggering
1286 * the release of the kfd_process struct.
1287 */
1288 mmu_notifier_synchronize();
1289}
1290
1291int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1292{
1293 unsigned long offset;
1294 int i;
1295
1296 if (p->has_cwsr)
1297 return 0;
1298
1299 for (i = 0; i < p->n_pdds; i++) {
1300 struct kfd_node *dev = p->pdds[i]->dev;
1301 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1302
1303 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1304 continue;
1305
1306 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1307 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1308 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1309 MAP_SHARED, offset);
1310
1311 if (IS_ERR_VALUE(qpd->tba_addr)) {
1312 int err = qpd->tba_addr;
1313
1314 pr_err("Failure to set tba address. error %d.\n", err);
1315 qpd->tba_addr = 0;
1316 qpd->cwsr_kaddr = NULL;
1317 return err;
1318 }
1319
1320 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1321
1322 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1323
1324 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1325 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1326 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1327 }
1328
1329 p->has_cwsr = true;
1330
1331 return 0;
1332}
1333
1334static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1335{
1336 struct kfd_node *dev = pdd->dev;
1337 struct qcm_process_device *qpd = &pdd->qpd;
1338 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1339 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1340 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1341 struct kgd_mem *mem;
1342 void *kaddr;
1343 int ret;
1344
1345 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1346 return 0;
1347
1348 /* cwsr_base is only set for dGPU */
1349 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1350 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1351 if (ret)
1352 return ret;
1353
1354 qpd->cwsr_mem = mem;
1355 qpd->cwsr_kaddr = kaddr;
1356 qpd->tba_addr = qpd->cwsr_base;
1357
1358 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1359
1360 kfd_process_set_trap_debug_flag(&pdd->qpd,
1361 pdd->process->debug_trap_enabled);
1362
1363 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1364 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1365 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1366
1367 return 0;
1368}
1369
1370static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1371{
1372 struct kfd_node *dev = pdd->dev;
1373 struct qcm_process_device *qpd = &pdd->qpd;
1374
1375 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1376 return;
1377
1378 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1379}
1380
1381void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1382 uint64_t tba_addr,
1383 uint64_t tma_addr)
1384{
1385 if (qpd->cwsr_kaddr) {
1386 /* KFD trap handler is bound, record as second-level TBA/TMA
1387 * in first-level TMA. First-level trap will jump to second.
1388 */
1389 uint64_t *tma =
1390 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1391 tma[0] = tba_addr;
1392 tma[1] = tma_addr;
1393 } else {
1394 /* No trap handler bound, bind as first-level TBA/TMA. */
1395 qpd->tba_addr = tba_addr;
1396 qpd->tma_addr = tma_addr;
1397 }
1398}
1399
1400bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1401{
1402 int i;
1403
1404 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1405 * boot time retry setting. Mixing processes with different
1406 * XNACK/retry settings can hang the GPU.
1407 *
1408 * Different GPUs can have different noretry settings depending
1409 * on HW bugs or limitations. We need to find at least one
1410 * XNACK mode for this process that's compatible with all GPUs.
1411 * Fortunately GPUs with retry enabled (noretry=0) can run code
1412 * built for XNACK-off. On GFXv9 it may perform slower.
1413 *
1414 * Therefore applications built for XNACK-off can always be
1415 * supported and will be our fallback if any GPU does not
1416 * support retry.
1417 */
1418 for (i = 0; i < p->n_pdds; i++) {
1419 struct kfd_node *dev = p->pdds[i]->dev;
1420
1421 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1422 * support the SVM APIs and don't need to be considered
1423 * for the XNACK mode selection.
1424 */
1425 if (!KFD_IS_SOC15(dev))
1426 continue;
1427 /* Aldebaran can always support XNACK because it can support
1428 * per-process XNACK mode selection. But let the dev->noretry
1429 * setting still influence the default XNACK mode.
1430 */
1431 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1432 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1433 pr_debug("SRIOV platform xnack not supported\n");
1434 return false;
1435 }
1436 continue;
1437 }
1438
1439 /* GFXv10 and later GPUs do not support shader preemption
1440 * during page faults. This can lead to poor QoS for queue
1441 * management and memory-manager-related preemptions or
1442 * even deadlocks.
1443 */
1444 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1445 return false;
1446
1447 if (dev->kfd->noretry)
1448 return false;
1449 }
1450
1451 return true;
1452}
1453
1454void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1455 bool enabled)
1456{
1457 if (qpd->cwsr_kaddr) {
1458 uint64_t *tma =
1459 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1460 tma[2] = enabled;
1461 }
1462}
1463
1464/*
1465 * On return the kfd_process is fully operational and will be freed when the
1466 * mm is released
1467 */
1468static struct kfd_process *create_process(const struct task_struct *thread)
1469{
1470 struct kfd_process *process;
1471 struct mmu_notifier *mn;
1472 int err = -ENOMEM;
1473
1474 process = kzalloc(sizeof(*process), GFP_KERNEL);
1475 if (!process)
1476 goto err_alloc_process;
1477
1478 kref_init(&process->ref);
1479 mutex_init(&process->mutex);
1480 process->mm = thread->mm;
1481 process->lead_thread = thread->group_leader;
1482 process->n_pdds = 0;
1483 process->queues_paused = false;
1484 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1485 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1486 process->last_restore_timestamp = get_jiffies_64();
1487 err = kfd_event_init_process(process);
1488 if (err)
1489 goto err_event_init;
1490 process->is_32bit_user_mode = in_compat_syscall();
1491 process->debug_trap_enabled = false;
1492 process->debugger_process = NULL;
1493 process->exception_enable_mask = 0;
1494 atomic_set(&process->debugged_process_count, 0);
1495 sema_init(&process->runtime_enable_sema, 0);
1496
1497 process->pasid = kfd_pasid_alloc();
1498 if (process->pasid == 0) {
1499 err = -ENOSPC;
1500 goto err_alloc_pasid;
1501 }
1502
1503 err = pqm_init(&process->pqm, process);
1504 if (err != 0)
1505 goto err_process_pqm_init;
1506
1507 /* init process apertures*/
1508 err = kfd_init_apertures(process);
1509 if (err != 0)
1510 goto err_init_apertures;
1511
1512 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1513 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1514
1515 err = svm_range_list_init(process);
1516 if (err)
1517 goto err_init_svm_range_list;
1518
1519 /* alloc_notifier needs to find the process in the hash table */
1520 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1521 (uintptr_t)process->mm);
1522
1523 /* Avoid free_notifier to start kfd_process_wq_release if
1524 * mmu_notifier_get failed because of pending signal.
1525 */
1526 kref_get(&process->ref);
1527
1528 /* MMU notifier registration must be the last call that can fail
1529 * because after this point we cannot unwind the process creation.
1530 * After this point, mmu_notifier_put will trigger the cleanup by
1531 * dropping the last process reference in the free_notifier.
1532 */
1533 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1534 if (IS_ERR(mn)) {
1535 err = PTR_ERR(mn);
1536 goto err_register_notifier;
1537 }
1538 BUG_ON(mn != &process->mmu_notifier);
1539
1540 kfd_unref_process(process);
1541 get_task_struct(process->lead_thread);
1542
1543 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1544
1545 return process;
1546
1547err_register_notifier:
1548 hash_del_rcu(&process->kfd_processes);
1549 svm_range_list_fini(process);
1550err_init_svm_range_list:
1551 kfd_process_free_outstanding_kfd_bos(process);
1552 kfd_process_destroy_pdds(process);
1553err_init_apertures:
1554 pqm_uninit(&process->pqm);
1555err_process_pqm_init:
1556 kfd_pasid_free(process->pasid);
1557err_alloc_pasid:
1558 kfd_event_free_process(process);
1559err_event_init:
1560 mutex_destroy(&process->mutex);
1561 kfree(process);
1562err_alloc_process:
1563 return ERR_PTR(err);
1564}
1565
1566struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1567 struct kfd_process *p)
1568{
1569 int i;
1570
1571 for (i = 0; i < p->n_pdds; i++)
1572 if (p->pdds[i]->dev == dev)
1573 return p->pdds[i];
1574
1575 return NULL;
1576}
1577
1578struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1579 struct kfd_process *p)
1580{
1581 struct kfd_process_device *pdd = NULL;
1582 int retval = 0;
1583
1584 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1585 return NULL;
1586 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1587 if (!pdd)
1588 return NULL;
1589
1590 pdd->dev = dev;
1591 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1592 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1593 pdd->qpd.dqm = dev->dqm;
1594 pdd->qpd.pqm = &p->pqm;
1595 pdd->qpd.evicted = 0;
1596 pdd->qpd.mapped_gws_queue = false;
1597 pdd->process = p;
1598 pdd->bound = PDD_UNBOUND;
1599 pdd->already_dequeued = false;
1600 pdd->runtime_inuse = false;
1601 pdd->vram_usage = 0;
1602 pdd->sdma_past_activity_counter = 0;
1603 pdd->user_gpu_id = dev->id;
1604 atomic64_set(&pdd->evict_duration_counter, 0);
1605
1606 if (dev->kfd->shared_resources.enable_mes) {
1607 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1608 AMDGPU_MES_PROC_CTX_SIZE,
1609 &pdd->proc_ctx_bo,
1610 &pdd->proc_ctx_gpu_addr,
1611 &pdd->proc_ctx_cpu_ptr,
1612 false);
1613 if (retval) {
1614 pr_err("failed to allocate process context bo\n");
1615 goto err_free_pdd;
1616 }
1617 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1618 }
1619
1620 p->pdds[p->n_pdds++] = pdd;
1621 if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1622 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1623 pdd->dev->adev,
1624 false,
1625 0);
1626
1627 /* Init idr used for memory handle translation */
1628 idr_init(&pdd->alloc_idr);
1629
1630 return pdd;
1631
1632err_free_pdd:
1633 kfree(pdd);
1634 return NULL;
1635}
1636
1637/**
1638 * kfd_process_device_init_vm - Initialize a VM for a process-device
1639 *
1640 * @pdd: The process-device
1641 * @drm_file: Optional pointer to a DRM file descriptor
1642 *
1643 * If @drm_file is specified, it will be used to acquire the VM from
1644 * that file descriptor. If successful, the @pdd takes ownership of
1645 * the file descriptor.
1646 *
1647 * If @drm_file is NULL, a new VM is created.
1648 *
1649 * Returns 0 on success, -errno on failure.
1650 */
1651int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1652 struct file *drm_file)
1653{
1654 struct amdgpu_fpriv *drv_priv;
1655 struct amdgpu_vm *avm;
1656 struct kfd_process *p;
1657 struct dma_fence *ef;
1658 struct kfd_node *dev;
1659 int ret;
1660
1661 if (!drm_file)
1662 return -EINVAL;
1663
1664 if (pdd->drm_priv)
1665 return -EBUSY;
1666
1667 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1668 if (ret)
1669 return ret;
1670 avm = &drv_priv->vm;
1671
1672 p = pdd->process;
1673 dev = pdd->dev;
1674
1675 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1676 &p->kgd_process_info,
1677 &ef);
1678 if (ret) {
1679 pr_err("Failed to create process VM object\n");
1680 return ret;
1681 }
1682 RCU_INIT_POINTER(p->ef, ef);
1683 pdd->drm_priv = drm_file->private_data;
1684
1685 ret = kfd_process_device_reserve_ib_mem(pdd);
1686 if (ret)
1687 goto err_reserve_ib_mem;
1688 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1689 if (ret)
1690 goto err_init_cwsr;
1691
1692 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1693 if (ret)
1694 goto err_set_pasid;
1695
1696 pdd->drm_file = drm_file;
1697
1698 return 0;
1699
1700err_set_pasid:
1701 kfd_process_device_destroy_cwsr_dgpu(pdd);
1702err_init_cwsr:
1703 kfd_process_device_destroy_ib_mem(pdd);
1704err_reserve_ib_mem:
1705 pdd->drm_priv = NULL;
1706 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1707
1708 return ret;
1709}
1710
1711/*
1712 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1713 * to the device.
1714 * Unbinding occurs when the process dies or the device is removed.
1715 *
1716 * Assumes that the process lock is held.
1717 */
1718struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1719 struct kfd_process *p)
1720{
1721 struct kfd_process_device *pdd;
1722 int err;
1723
1724 pdd = kfd_get_process_device_data(dev, p);
1725 if (!pdd) {
1726 pr_err("Process device data doesn't exist\n");
1727 return ERR_PTR(-ENOMEM);
1728 }
1729
1730 if (!pdd->drm_priv)
1731 return ERR_PTR(-ENODEV);
1732
1733 /*
1734 * signal runtime-pm system to auto resume and prevent
1735 * further runtime suspend once device pdd is created until
1736 * pdd is destroyed.
1737 */
1738 if (!pdd->runtime_inuse) {
1739 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1740 if (err < 0) {
1741 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1742 return ERR_PTR(err);
1743 }
1744 }
1745
1746 /*
1747 * make sure that runtime_usage counter is incremented just once
1748 * per pdd
1749 */
1750 pdd->runtime_inuse = true;
1751
1752 return pdd;
1753}
1754
1755/* Create specific handle mapped to mem from process local memory idr
1756 * Assumes that the process lock is held.
1757 */
1758int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1759 void *mem)
1760{
1761 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1762}
1763
1764/* Translate specific handle from process local memory idr
1765 * Assumes that the process lock is held.
1766 */
1767void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1768 int handle)
1769{
1770 if (handle < 0)
1771 return NULL;
1772
1773 return idr_find(&pdd->alloc_idr, handle);
1774}
1775
1776/* Remove specific handle from process local memory idr
1777 * Assumes that the process lock is held.
1778 */
1779void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1780 int handle)
1781{
1782 if (handle >= 0)
1783 idr_remove(&pdd->alloc_idr, handle);
1784}
1785
1786/* This increments the process->ref counter. */
1787struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1788{
1789 struct kfd_process *p, *ret_p = NULL;
1790 unsigned int temp;
1791
1792 int idx = srcu_read_lock(&kfd_processes_srcu);
1793
1794 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1795 if (p->pasid == pasid) {
1796 kref_get(&p->ref);
1797 ret_p = p;
1798 break;
1799 }
1800 }
1801
1802 srcu_read_unlock(&kfd_processes_srcu, idx);
1803
1804 return ret_p;
1805}
1806
1807/* This increments the process->ref counter. */
1808struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1809{
1810 struct kfd_process *p;
1811
1812 int idx = srcu_read_lock(&kfd_processes_srcu);
1813
1814 p = find_process_by_mm(mm);
1815 if (p)
1816 kref_get(&p->ref);
1817
1818 srcu_read_unlock(&kfd_processes_srcu, idx);
1819
1820 return p;
1821}
1822
1823/* kfd_process_evict_queues - Evict all user queues of a process
1824 *
1825 * Eviction is reference-counted per process-device. This means multiple
1826 * evictions from different sources can be nested safely.
1827 */
1828int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1829{
1830 int r = 0;
1831 int i;
1832 unsigned int n_evicted = 0;
1833
1834 for (i = 0; i < p->n_pdds; i++) {
1835 struct kfd_process_device *pdd = p->pdds[i];
1836
1837 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1838 trigger);
1839
1840 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1841 &pdd->qpd);
1842 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1843 * we would like to set all the queues to be in evicted state to prevent
1844 * them been add back since they actually not be saved right now.
1845 */
1846 if (r && r != -EIO) {
1847 pr_err("Failed to evict process queues\n");
1848 goto fail;
1849 }
1850 n_evicted++;
1851 }
1852
1853 return r;
1854
1855fail:
1856 /* To keep state consistent, roll back partial eviction by
1857 * restoring queues
1858 */
1859 for (i = 0; i < p->n_pdds; i++) {
1860 struct kfd_process_device *pdd = p->pdds[i];
1861
1862 if (n_evicted == 0)
1863 break;
1864
1865 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1866
1867 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1868 &pdd->qpd))
1869 pr_err("Failed to restore queues\n");
1870
1871 n_evicted--;
1872 }
1873
1874 return r;
1875}
1876
1877/* kfd_process_restore_queues - Restore all user queues of a process */
1878int kfd_process_restore_queues(struct kfd_process *p)
1879{
1880 int r, ret = 0;
1881 int i;
1882
1883 for (i = 0; i < p->n_pdds; i++) {
1884 struct kfd_process_device *pdd = p->pdds[i];
1885
1886 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1887
1888 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1889 &pdd->qpd);
1890 if (r) {
1891 pr_err("Failed to restore process queues\n");
1892 if (!ret)
1893 ret = r;
1894 }
1895 }
1896
1897 return ret;
1898}
1899
1900int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1901{
1902 int i;
1903
1904 for (i = 0; i < p->n_pdds; i++)
1905 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1906 return i;
1907 return -EINVAL;
1908}
1909
1910int
1911kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1912 uint32_t *gpuid, uint32_t *gpuidx)
1913{
1914 int i;
1915
1916 for (i = 0; i < p->n_pdds; i++)
1917 if (p->pdds[i] && p->pdds[i]->dev == node) {
1918 *gpuid = p->pdds[i]->user_gpu_id;
1919 *gpuidx = i;
1920 return 0;
1921 }
1922 return -EINVAL;
1923}
1924
1925static int signal_eviction_fence(struct kfd_process *p)
1926{
1927 struct dma_fence *ef;
1928 int ret;
1929
1930 rcu_read_lock();
1931 ef = dma_fence_get_rcu_safe(&p->ef);
1932 rcu_read_unlock();
1933 if (!ef)
1934 return -EINVAL;
1935
1936 ret = dma_fence_signal(ef);
1937 dma_fence_put(ef);
1938
1939 return ret;
1940}
1941
1942static void evict_process_worker(struct work_struct *work)
1943{
1944 int ret;
1945 struct kfd_process *p;
1946 struct delayed_work *dwork;
1947
1948 dwork = to_delayed_work(work);
1949
1950 /* Process termination destroys this worker thread. So during the
1951 * lifetime of this thread, kfd_process p will be valid
1952 */
1953 p = container_of(dwork, struct kfd_process, eviction_work);
1954
1955 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1956 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1957 if (!ret) {
1958 /* If another thread already signaled the eviction fence,
1959 * they are responsible stopping the queues and scheduling
1960 * the restore work.
1961 */
1962 if (signal_eviction_fence(p) ||
1963 mod_delayed_work(kfd_restore_wq, &p->restore_work,
1964 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
1965 kfd_process_restore_queues(p);
1966
1967 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1968 } else
1969 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1970}
1971
1972static int restore_process_helper(struct kfd_process *p)
1973{
1974 int ret = 0;
1975
1976 /* VMs may not have been acquired yet during debugging. */
1977 if (p->kgd_process_info) {
1978 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1979 p->kgd_process_info, &p->ef);
1980 if (ret)
1981 return ret;
1982 }
1983
1984 ret = kfd_process_restore_queues(p);
1985 if (!ret)
1986 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1987 else
1988 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1989
1990 return ret;
1991}
1992
1993static void restore_process_worker(struct work_struct *work)
1994{
1995 struct delayed_work *dwork;
1996 struct kfd_process *p;
1997 int ret = 0;
1998
1999 dwork = to_delayed_work(work);
2000
2001 /* Process termination destroys this worker thread. So during the
2002 * lifetime of this thread, kfd_process p will be valid
2003 */
2004 p = container_of(dwork, struct kfd_process, restore_work);
2005 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2006
2007 /* Setting last_restore_timestamp before successful restoration.
2008 * Otherwise this would have to be set by KGD (restore_process_bos)
2009 * before KFD BOs are unreserved. If not, the process can be evicted
2010 * again before the timestamp is set.
2011 * If restore fails, the timestamp will be set again in the next
2012 * attempt. This would mean that the minimum GPU quanta would be
2013 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2014 * functions)
2015 */
2016
2017 p->last_restore_timestamp = get_jiffies_64();
2018
2019 ret = restore_process_helper(p);
2020 if (ret) {
2021 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2022 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2023 if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2024 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2025 kfd_process_restore_queues(p);
2026 }
2027}
2028
2029void kfd_suspend_all_processes(void)
2030{
2031 struct kfd_process *p;
2032 unsigned int temp;
2033 int idx = srcu_read_lock(&kfd_processes_srcu);
2034
2035 WARN(debug_evictions, "Evicting all processes");
2036 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2037 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2038 pr_err("Failed to suspend process 0x%x\n", p->pasid);
2039 signal_eviction_fence(p);
2040 }
2041 srcu_read_unlock(&kfd_processes_srcu, idx);
2042}
2043
2044int kfd_resume_all_processes(void)
2045{
2046 struct kfd_process *p;
2047 unsigned int temp;
2048 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2049
2050 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2051 if (restore_process_helper(p)) {
2052 pr_err("Restore process %d failed during resume\n",
2053 p->pasid);
2054 ret = -EFAULT;
2055 }
2056 }
2057 srcu_read_unlock(&kfd_processes_srcu, idx);
2058 return ret;
2059}
2060
2061int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2062 struct vm_area_struct *vma)
2063{
2064 struct kfd_process_device *pdd;
2065 struct qcm_process_device *qpd;
2066
2067 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2068 pr_err("Incorrect CWSR mapping size.\n");
2069 return -EINVAL;
2070 }
2071
2072 pdd = kfd_get_process_device_data(dev, process);
2073 if (!pdd)
2074 return -EINVAL;
2075 qpd = &pdd->qpd;
2076
2077 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2078 get_order(KFD_CWSR_TBA_TMA_SIZE));
2079 if (!qpd->cwsr_kaddr) {
2080 pr_err("Error allocating per process CWSR buffer.\n");
2081 return -ENOMEM;
2082 }
2083
2084 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2085 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2086 /* Mapping pages to user process */
2087 return remap_pfn_range(vma, vma->vm_start,
2088 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2089 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2090}
2091
2092/* assumes caller holds process lock. */
2093int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2094{
2095 uint32_t irq_drain_fence[8];
2096 uint8_t node_id = 0;
2097 int r = 0;
2098
2099 if (!KFD_IS_SOC15(pdd->dev))
2100 return 0;
2101
2102 pdd->process->irq_drain_is_open = true;
2103
2104 memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2105 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2106 KFD_IRQ_FENCE_CLIENTID;
2107 irq_drain_fence[3] = pdd->process->pasid;
2108
2109 /*
2110 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2111 */
2112 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2113 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2114 irq_drain_fence[3] |= node_id << 16;
2115 }
2116
2117 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2118 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2119 irq_drain_fence)) {
2120 pdd->process->irq_drain_is_open = false;
2121 return 0;
2122 }
2123
2124 r = wait_event_interruptible(pdd->process->wait_irq_drain,
2125 !READ_ONCE(pdd->process->irq_drain_is_open));
2126 if (r)
2127 pdd->process->irq_drain_is_open = false;
2128
2129 return r;
2130}
2131
2132void kfd_process_close_interrupt_drain(unsigned int pasid)
2133{
2134 struct kfd_process *p;
2135
2136 p = kfd_lookup_process_by_pasid(pasid);
2137
2138 if (!p)
2139 return;
2140
2141 WRITE_ONCE(p->irq_drain_is_open, false);
2142 wake_up_all(&p->wait_irq_drain);
2143 kfd_unref_process(p);
2144}
2145
2146struct send_exception_work_handler_workarea {
2147 struct work_struct work;
2148 struct kfd_process *p;
2149 unsigned int queue_id;
2150 uint64_t error_reason;
2151};
2152
2153static void send_exception_work_handler(struct work_struct *work)
2154{
2155 struct send_exception_work_handler_workarea *workarea;
2156 struct kfd_process *p;
2157 struct queue *q;
2158 struct mm_struct *mm;
2159 struct kfd_context_save_area_header __user *csa_header;
2160 uint64_t __user *err_payload_ptr;
2161 uint64_t cur_err;
2162 uint32_t ev_id;
2163
2164 workarea = container_of(work,
2165 struct send_exception_work_handler_workarea,
2166 work);
2167 p = workarea->p;
2168
2169 mm = get_task_mm(p->lead_thread);
2170
2171 if (!mm)
2172 return;
2173
2174 kthread_use_mm(mm);
2175
2176 q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2177
2178 if (!q)
2179 goto out;
2180
2181 csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2182
2183 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2184 get_user(cur_err, err_payload_ptr);
2185 cur_err |= workarea->error_reason;
2186 put_user(cur_err, err_payload_ptr);
2187 get_user(ev_id, &csa_header->err_event_id);
2188
2189 kfd_set_event(p, ev_id);
2190
2191out:
2192 kthread_unuse_mm(mm);
2193 mmput(mm);
2194}
2195
2196int kfd_send_exception_to_runtime(struct kfd_process *p,
2197 unsigned int queue_id,
2198 uint64_t error_reason)
2199{
2200 struct send_exception_work_handler_workarea worker;
2201
2202 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2203
2204 worker.p = p;
2205 worker.queue_id = queue_id;
2206 worker.error_reason = error_reason;
2207
2208 schedule_work(&worker.work);
2209 flush_work(&worker.work);
2210 destroy_work_on_stack(&worker.work);
2211
2212 return 0;
2213}
2214
2215struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2216{
2217 int i;
2218
2219 if (gpu_id) {
2220 for (i = 0; i < p->n_pdds; i++) {
2221 struct kfd_process_device *pdd = p->pdds[i];
2222
2223 if (pdd->user_gpu_id == gpu_id)
2224 return pdd;
2225 }
2226 }
2227 return NULL;
2228}
2229
2230int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2231{
2232 int i;
2233
2234 if (!actual_gpu_id)
2235 return 0;
2236
2237 for (i = 0; i < p->n_pdds; i++) {
2238 struct kfd_process_device *pdd = p->pdds[i];
2239
2240 if (pdd->dev->id == actual_gpu_id)
2241 return pdd->user_gpu_id;
2242 }
2243 return -EINVAL;
2244}
2245
2246#if defined(CONFIG_DEBUG_FS)
2247
2248int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2249{
2250 struct kfd_process *p;
2251 unsigned int temp;
2252 int r = 0;
2253
2254 int idx = srcu_read_lock(&kfd_processes_srcu);
2255
2256 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2257 seq_printf(m, "Process %d PASID 0x%x:\n",
2258 p->lead_thread->tgid, p->pasid);
2259
2260 mutex_lock(&p->mutex);
2261 r = pqm_debugfs_mqds(m, &p->pqm);
2262 mutex_unlock(&p->mutex);
2263
2264 if (r)
2265 break;
2266 }
2267
2268 srcu_read_unlock(&kfd_processes_srcu, idx);
2269
2270 return r;
2271}
2272
2273#endif
1/*
2 * Copyright 2014 Advanced Micro Devices, Inc.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
21 */
22
23#include <linux/mutex.h>
24#include <linux/log2.h>
25#include <linux/sched.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/task.h>
28#include <linux/mmu_context.h>
29#include <linux/slab.h>
30#include <linux/amd-iommu.h>
31#include <linux/notifier.h>
32#include <linux/compat.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/pm_runtime.h>
36#include "amdgpu_amdkfd.h"
37#include "amdgpu.h"
38
39struct mm_struct;
40
41#include "kfd_priv.h"
42#include "kfd_device_queue_manager.h"
43#include "kfd_dbgmgr.h"
44#include "kfd_iommu.h"
45#include "kfd_svm.h"
46
47/*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52static DEFINE_MUTEX(kfd_processes_mutex);
53
54DEFINE_SRCU(kfd_processes_srcu);
55
56/* For process termination handling */
57static struct workqueue_struct *kfd_process_wq;
58
59/* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65static struct workqueue_struct *kfd_restore_wq;
66
67static struct kfd_process *find_process(const struct task_struct *thread);
68static void kfd_process_ref_release(struct kref *ref);
69static struct kfd_process *create_process(const struct task_struct *thread);
70static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
71
72static void evict_process_worker(struct work_struct *work);
73static void restore_process_worker(struct work_struct *work);
74
75struct kfd_procfs_tree {
76 struct kobject *kobj;
77};
78
79static struct kfd_procfs_tree procfs;
80
81/*
82 * Structure for SDMA activity tracking
83 */
84struct kfd_sdma_activity_handler_workarea {
85 struct work_struct sdma_activity_work;
86 struct kfd_process_device *pdd;
87 uint64_t sdma_activity_counter;
88};
89
90struct temp_sdma_queue_list {
91 uint64_t __user *rptr;
92 uint64_t sdma_val;
93 unsigned int queue_id;
94 struct list_head list;
95};
96
97static void kfd_sdma_activity_worker(struct work_struct *work)
98{
99 struct kfd_sdma_activity_handler_workarea *workarea;
100 struct kfd_process_device *pdd;
101 uint64_t val;
102 struct mm_struct *mm;
103 struct queue *q;
104 struct qcm_process_device *qpd;
105 struct device_queue_manager *dqm;
106 int ret = 0;
107 struct temp_sdma_queue_list sdma_q_list;
108 struct temp_sdma_queue_list *sdma_q, *next;
109
110 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
111 sdma_activity_work);
112
113 pdd = workarea->pdd;
114 if (!pdd)
115 return;
116 dqm = pdd->dev->dqm;
117 qpd = &pdd->qpd;
118 if (!dqm || !qpd)
119 return;
120 /*
121 * Total SDMA activity is current SDMA activity + past SDMA activity
122 * Past SDMA count is stored in pdd.
123 * To get the current activity counters for all active SDMA queues,
124 * we loop over all SDMA queues and get their counts from user-space.
125 *
126 * We cannot call get_user() with dqm_lock held as it can cause
127 * a circular lock dependency situation. To read the SDMA stats,
128 * we need to do the following:
129 *
130 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
131 * with dqm_lock/dqm_unlock().
132 * 2. Call get_user() for each node in temporary list without dqm_lock.
133 * Save the SDMA count for each node and also add the count to the total
134 * SDMA count counter.
135 * Its possible, during this step, a few SDMA queue nodes got deleted
136 * from the qpd->queues_list.
137 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
138 * If any node got deleted, its SDMA count would be captured in the sdma
139 * past activity counter. So subtract the SDMA counter stored in step 2
140 * for this node from the total SDMA count.
141 */
142 INIT_LIST_HEAD(&sdma_q_list.list);
143
144 /*
145 * Create the temp list of all SDMA queues
146 */
147 dqm_lock(dqm);
148
149 list_for_each_entry(q, &qpd->queues_list, list) {
150 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
151 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
152 continue;
153
154 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
155 if (!sdma_q) {
156 dqm_unlock(dqm);
157 goto cleanup;
158 }
159
160 INIT_LIST_HEAD(&sdma_q->list);
161 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
162 sdma_q->queue_id = q->properties.queue_id;
163 list_add_tail(&sdma_q->list, &sdma_q_list.list);
164 }
165
166 /*
167 * If the temp list is empty, then no SDMA queues nodes were found in
168 * qpd->queues_list. Return the past activity count as the total sdma
169 * count
170 */
171 if (list_empty(&sdma_q_list.list)) {
172 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
173 dqm_unlock(dqm);
174 return;
175 }
176
177 dqm_unlock(dqm);
178
179 /*
180 * Get the usage count for each SDMA queue in temp_list.
181 */
182 mm = get_task_mm(pdd->process->lead_thread);
183 if (!mm)
184 goto cleanup;
185
186 kthread_use_mm(mm);
187
188 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
189 val = 0;
190 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
191 if (ret) {
192 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
193 sdma_q->queue_id);
194 } else {
195 sdma_q->sdma_val = val;
196 workarea->sdma_activity_counter += val;
197 }
198 }
199
200 kthread_unuse_mm(mm);
201 mmput(mm);
202
203 /*
204 * Do a second iteration over qpd_queues_list to check if any SDMA
205 * nodes got deleted while fetching SDMA counter.
206 */
207 dqm_lock(dqm);
208
209 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
210
211 list_for_each_entry(q, &qpd->queues_list, list) {
212 if (list_empty(&sdma_q_list.list))
213 break;
214
215 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
216 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
217 continue;
218
219 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
220 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
221 (sdma_q->queue_id == q->properties.queue_id)) {
222 list_del(&sdma_q->list);
223 kfree(sdma_q);
224 break;
225 }
226 }
227 }
228
229 dqm_unlock(dqm);
230
231 /*
232 * If temp list is not empty, it implies some queues got deleted
233 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
234 * count for each node from the total SDMA count.
235 */
236 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
237 workarea->sdma_activity_counter -= sdma_q->sdma_val;
238 list_del(&sdma_q->list);
239 kfree(sdma_q);
240 }
241
242 return;
243
244cleanup:
245 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
246 list_del(&sdma_q->list);
247 kfree(sdma_q);
248 }
249}
250
251/**
252 * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device
253 * by current process. Translates acquired wave count into number of compute units
254 * that are occupied.
255 *
256 * @atr: Handle of attribute that allows reporting of wave count. The attribute
257 * handle encapsulates GPU device it is associated with, thereby allowing collection
258 * of waves in flight, etc
259 *
260 * @buffer: Handle of user provided buffer updated with wave count
261 *
262 * Return: Number of bytes written to user buffer or an error value
263 */
264static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
265{
266 int cu_cnt;
267 int wave_cnt;
268 int max_waves_per_cu;
269 struct kfd_dev *dev = NULL;
270 struct kfd_process *proc = NULL;
271 struct kfd_process_device *pdd = NULL;
272
273 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
274 dev = pdd->dev;
275 if (dev->kfd2kgd->get_cu_occupancy == NULL)
276 return -EINVAL;
277
278 cu_cnt = 0;
279 proc = pdd->process;
280 if (pdd->qpd.queue_count == 0) {
281 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
282 dev->id, proc->pasid);
283 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
284 }
285
286 /* Collect wave count from device if it supports */
287 wave_cnt = 0;
288 max_waves_per_cu = 0;
289 dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt,
290 &max_waves_per_cu);
291
292 /* Translate wave count to number of compute units */
293 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
294 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
295}
296
297static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
298 char *buffer)
299{
300 if (strcmp(attr->name, "pasid") == 0) {
301 struct kfd_process *p = container_of(attr, struct kfd_process,
302 attr_pasid);
303
304 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
305 } else if (strncmp(attr->name, "vram_", 5) == 0) {
306 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
307 attr_vram);
308 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
309 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
310 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
311 attr_sdma);
312 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
313
314 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
315 kfd_sdma_activity_worker);
316
317 sdma_activity_work_handler.pdd = pdd;
318 sdma_activity_work_handler.sdma_activity_counter = 0;
319
320 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
321
322 flush_work(&sdma_activity_work_handler.sdma_activity_work);
323
324 return snprintf(buffer, PAGE_SIZE, "%llu\n",
325 (sdma_activity_work_handler.sdma_activity_counter)/
326 SDMA_ACTIVITY_DIVISOR);
327 } else {
328 pr_err("Invalid attribute");
329 return -EINVAL;
330 }
331
332 return 0;
333}
334
335static void kfd_procfs_kobj_release(struct kobject *kobj)
336{
337 kfree(kobj);
338}
339
340static const struct sysfs_ops kfd_procfs_ops = {
341 .show = kfd_procfs_show,
342};
343
344static struct kobj_type procfs_type = {
345 .release = kfd_procfs_kobj_release,
346 .sysfs_ops = &kfd_procfs_ops,
347};
348
349void kfd_procfs_init(void)
350{
351 int ret = 0;
352
353 procfs.kobj = kfd_alloc_struct(procfs.kobj);
354 if (!procfs.kobj)
355 return;
356
357 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
358 &kfd_device->kobj, "proc");
359 if (ret) {
360 pr_warn("Could not create procfs proc folder");
361 /* If we fail to create the procfs, clean up */
362 kfd_procfs_shutdown();
363 }
364}
365
366void kfd_procfs_shutdown(void)
367{
368 if (procfs.kobj) {
369 kobject_del(procfs.kobj);
370 kobject_put(procfs.kobj);
371 procfs.kobj = NULL;
372 }
373}
374
375static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
376 struct attribute *attr, char *buffer)
377{
378 struct queue *q = container_of(kobj, struct queue, kobj);
379
380 if (!strcmp(attr->name, "size"))
381 return snprintf(buffer, PAGE_SIZE, "%llu",
382 q->properties.queue_size);
383 else if (!strcmp(attr->name, "type"))
384 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
385 else if (!strcmp(attr->name, "gpuid"))
386 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
387 else
388 pr_err("Invalid attribute");
389
390 return 0;
391}
392
393static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
394 struct attribute *attr, char *buffer)
395{
396 if (strcmp(attr->name, "evicted_ms") == 0) {
397 struct kfd_process_device *pdd = container_of(attr,
398 struct kfd_process_device,
399 attr_evict);
400 uint64_t evict_jiffies;
401
402 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
403
404 return snprintf(buffer,
405 PAGE_SIZE,
406 "%llu\n",
407 jiffies64_to_msecs(evict_jiffies));
408
409 /* Sysfs handle that gets CU occupancy is per device */
410 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
411 return kfd_get_cu_occupancy(attr, buffer);
412 } else {
413 pr_err("Invalid attribute");
414 }
415
416 return 0;
417}
418
419static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
420 struct attribute *attr, char *buf)
421{
422 struct kfd_process_device *pdd;
423
424 if (!strcmp(attr->name, "faults")) {
425 pdd = container_of(attr, struct kfd_process_device,
426 attr_faults);
427 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
428 }
429 if (!strcmp(attr->name, "page_in")) {
430 pdd = container_of(attr, struct kfd_process_device,
431 attr_page_in);
432 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
433 }
434 if (!strcmp(attr->name, "page_out")) {
435 pdd = container_of(attr, struct kfd_process_device,
436 attr_page_out);
437 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
438 }
439 return 0;
440}
441
442static struct attribute attr_queue_size = {
443 .name = "size",
444 .mode = KFD_SYSFS_FILE_MODE
445};
446
447static struct attribute attr_queue_type = {
448 .name = "type",
449 .mode = KFD_SYSFS_FILE_MODE
450};
451
452static struct attribute attr_queue_gpuid = {
453 .name = "gpuid",
454 .mode = KFD_SYSFS_FILE_MODE
455};
456
457static struct attribute *procfs_queue_attrs[] = {
458 &attr_queue_size,
459 &attr_queue_type,
460 &attr_queue_gpuid,
461 NULL
462};
463
464static const struct sysfs_ops procfs_queue_ops = {
465 .show = kfd_procfs_queue_show,
466};
467
468static struct kobj_type procfs_queue_type = {
469 .sysfs_ops = &procfs_queue_ops,
470 .default_attrs = procfs_queue_attrs,
471};
472
473static const struct sysfs_ops procfs_stats_ops = {
474 .show = kfd_procfs_stats_show,
475};
476
477static struct kobj_type procfs_stats_type = {
478 .sysfs_ops = &procfs_stats_ops,
479 .release = kfd_procfs_kobj_release,
480};
481
482static const struct sysfs_ops sysfs_counters_ops = {
483 .show = kfd_sysfs_counters_show,
484};
485
486static struct kobj_type sysfs_counters_type = {
487 .sysfs_ops = &sysfs_counters_ops,
488 .release = kfd_procfs_kobj_release,
489};
490
491int kfd_procfs_add_queue(struct queue *q)
492{
493 struct kfd_process *proc;
494 int ret;
495
496 if (!q || !q->process)
497 return -EINVAL;
498 proc = q->process;
499
500 /* Create proc/<pid>/queues/<queue id> folder */
501 if (!proc->kobj_queues)
502 return -EFAULT;
503 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
504 proc->kobj_queues, "%u", q->properties.queue_id);
505 if (ret < 0) {
506 pr_warn("Creating proc/<pid>/queues/%u failed",
507 q->properties.queue_id);
508 kobject_put(&q->kobj);
509 return ret;
510 }
511
512 return 0;
513}
514
515static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
516 char *name)
517{
518 int ret;
519
520 if (!kobj || !attr || !name)
521 return;
522
523 attr->name = name;
524 attr->mode = KFD_SYSFS_FILE_MODE;
525 sysfs_attr_init(attr);
526
527 ret = sysfs_create_file(kobj, attr);
528 if (ret)
529 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
530}
531
532static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
533{
534 int ret;
535 int i;
536 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
537
538 if (!p || !p->kobj)
539 return;
540
541 /*
542 * Create sysfs files for each GPU:
543 * - proc/<pid>/stats_<gpuid>/
544 * - proc/<pid>/stats_<gpuid>/evicted_ms
545 * - proc/<pid>/stats_<gpuid>/cu_occupancy
546 */
547 for (i = 0; i < p->n_pdds; i++) {
548 struct kfd_process_device *pdd = p->pdds[i];
549
550 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
551 "stats_%u", pdd->dev->id);
552 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
553 if (!pdd->kobj_stats)
554 return;
555
556 ret = kobject_init_and_add(pdd->kobj_stats,
557 &procfs_stats_type,
558 p->kobj,
559 stats_dir_filename);
560
561 if (ret) {
562 pr_warn("Creating KFD proc/stats_%s folder failed",
563 stats_dir_filename);
564 kobject_put(pdd->kobj_stats);
565 pdd->kobj_stats = NULL;
566 return;
567 }
568
569 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
570 "evicted_ms");
571 /* Add sysfs file to report compute unit occupancy */
572 if (pdd->dev->kfd2kgd->get_cu_occupancy)
573 kfd_sysfs_create_file(pdd->kobj_stats,
574 &pdd->attr_cu_occupancy,
575 "cu_occupancy");
576 }
577}
578
579static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
580{
581 int ret = 0;
582 int i;
583 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
584
585 if (!p || !p->kobj)
586 return;
587
588 /*
589 * Create sysfs files for each GPU which supports SVM
590 * - proc/<pid>/counters_<gpuid>/
591 * - proc/<pid>/counters_<gpuid>/faults
592 * - proc/<pid>/counters_<gpuid>/page_in
593 * - proc/<pid>/counters_<gpuid>/page_out
594 */
595 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
596 struct kfd_process_device *pdd = p->pdds[i];
597 struct kobject *kobj_counters;
598
599 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
600 "counters_%u", pdd->dev->id);
601 kobj_counters = kfd_alloc_struct(kobj_counters);
602 if (!kobj_counters)
603 return;
604
605 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
606 p->kobj, counters_dir_filename);
607 if (ret) {
608 pr_warn("Creating KFD proc/%s folder failed",
609 counters_dir_filename);
610 kobject_put(kobj_counters);
611 return;
612 }
613
614 pdd->kobj_counters = kobj_counters;
615 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
616 "faults");
617 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
618 "page_in");
619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
620 "page_out");
621 }
622}
623
624static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
625{
626 int i;
627
628 if (!p || !p->kobj)
629 return;
630
631 /*
632 * Create sysfs files for each GPU:
633 * - proc/<pid>/vram_<gpuid>
634 * - proc/<pid>/sdma_<gpuid>
635 */
636 for (i = 0; i < p->n_pdds; i++) {
637 struct kfd_process_device *pdd = p->pdds[i];
638
639 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
640 pdd->dev->id);
641 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
642 pdd->vram_filename);
643
644 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
645 pdd->dev->id);
646 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
647 pdd->sdma_filename);
648 }
649}
650
651void kfd_procfs_del_queue(struct queue *q)
652{
653 if (!q)
654 return;
655
656 kobject_del(&q->kobj);
657 kobject_put(&q->kobj);
658}
659
660int kfd_process_create_wq(void)
661{
662 if (!kfd_process_wq)
663 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
664 if (!kfd_restore_wq)
665 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
666
667 if (!kfd_process_wq || !kfd_restore_wq) {
668 kfd_process_destroy_wq();
669 return -ENOMEM;
670 }
671
672 return 0;
673}
674
675void kfd_process_destroy_wq(void)
676{
677 if (kfd_process_wq) {
678 destroy_workqueue(kfd_process_wq);
679 kfd_process_wq = NULL;
680 }
681 if (kfd_restore_wq) {
682 destroy_workqueue(kfd_restore_wq);
683 kfd_restore_wq = NULL;
684 }
685}
686
687static void kfd_process_free_gpuvm(struct kgd_mem *mem,
688 struct kfd_process_device *pdd)
689{
690 struct kfd_dev *dev = pdd->dev;
691
692 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv);
693 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv,
694 NULL);
695}
696
697/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
698 * This function should be only called right after the process
699 * is created and when kfd_processes_mutex is still being held
700 * to avoid concurrency. Because of that exclusiveness, we do
701 * not need to take p->mutex.
702 */
703static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
704 uint64_t gpu_va, uint32_t size,
705 uint32_t flags, void **kptr)
706{
707 struct kfd_dev *kdev = pdd->dev;
708 struct kgd_mem *mem = NULL;
709 int handle;
710 int err;
711
712 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
713 pdd->drm_priv, &mem, NULL, flags);
714 if (err)
715 goto err_alloc_mem;
716
717 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->drm_priv);
718 if (err)
719 goto err_map_mem;
720
721 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
722 if (err) {
723 pr_debug("Sync memory failed, wait interrupted by user signal\n");
724 goto sync_memory_failed;
725 }
726
727 /* Create an obj handle so kfd_process_device_remove_obj_handle
728 * will take care of the bo removal when the process finishes.
729 * We do not need to take p->mutex, because the process is just
730 * created and the ioctls have not had the chance to run.
731 */
732 handle = kfd_process_device_create_obj_handle(pdd, mem);
733
734 if (handle < 0) {
735 err = handle;
736 goto free_gpuvm;
737 }
738
739 if (kptr) {
740 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
741 (struct kgd_mem *)mem, kptr, NULL);
742 if (err) {
743 pr_debug("Map GTT BO to kernel failed\n");
744 goto free_obj_handle;
745 }
746 }
747
748 return err;
749
750free_obj_handle:
751 kfd_process_device_remove_obj_handle(pdd, handle);
752free_gpuvm:
753sync_memory_failed:
754 kfd_process_free_gpuvm(mem, pdd);
755 return err;
756
757err_map_mem:
758 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, pdd->drm_priv,
759 NULL);
760err_alloc_mem:
761 *kptr = NULL;
762 return err;
763}
764
765/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
766 * process for IB usage The memory reserved is for KFD to submit
767 * IB to AMDGPU from kernel. If the memory is reserved
768 * successfully, ib_kaddr will have the CPU/kernel
769 * address. Check ib_kaddr before accessing the memory.
770 */
771static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
772{
773 struct qcm_process_device *qpd = &pdd->qpd;
774 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
775 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
776 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
777 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
778 void *kaddr;
779 int ret;
780
781 if (qpd->ib_kaddr || !qpd->ib_base)
782 return 0;
783
784 /* ib_base is only set for dGPU */
785 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
786 &kaddr);
787 if (ret)
788 return ret;
789
790 qpd->ib_kaddr = kaddr;
791
792 return 0;
793}
794
795struct kfd_process *kfd_create_process(struct file *filep)
796{
797 struct kfd_process *process;
798 struct task_struct *thread = current;
799 int ret;
800
801 if (!thread->mm)
802 return ERR_PTR(-EINVAL);
803
804 /* Only the pthreads threading model is supported. */
805 if (thread->group_leader->mm != thread->mm)
806 return ERR_PTR(-EINVAL);
807
808 /*
809 * take kfd processes mutex before starting of process creation
810 * so there won't be a case where two threads of the same process
811 * create two kfd_process structures
812 */
813 mutex_lock(&kfd_processes_mutex);
814
815 /* A prior open of /dev/kfd could have already created the process. */
816 process = find_process(thread);
817 if (process) {
818 pr_debug("Process already found\n");
819 } else {
820 process = create_process(thread);
821 if (IS_ERR(process))
822 goto out;
823
824 ret = kfd_process_init_cwsr_apu(process, filep);
825 if (ret)
826 goto out_destroy;
827
828 if (!procfs.kobj)
829 goto out;
830
831 process->kobj = kfd_alloc_struct(process->kobj);
832 if (!process->kobj) {
833 pr_warn("Creating procfs kobject failed");
834 goto out;
835 }
836 ret = kobject_init_and_add(process->kobj, &procfs_type,
837 procfs.kobj, "%d",
838 (int)process->lead_thread->pid);
839 if (ret) {
840 pr_warn("Creating procfs pid directory failed");
841 kobject_put(process->kobj);
842 goto out;
843 }
844
845 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
846 "pasid");
847
848 process->kobj_queues = kobject_create_and_add("queues",
849 process->kobj);
850 if (!process->kobj_queues)
851 pr_warn("Creating KFD proc/queues folder failed");
852
853 kfd_procfs_add_sysfs_stats(process);
854 kfd_procfs_add_sysfs_files(process);
855 kfd_procfs_add_sysfs_counters(process);
856 }
857out:
858 if (!IS_ERR(process))
859 kref_get(&process->ref);
860 mutex_unlock(&kfd_processes_mutex);
861
862 return process;
863
864out_destroy:
865 hash_del_rcu(&process->kfd_processes);
866 mutex_unlock(&kfd_processes_mutex);
867 synchronize_srcu(&kfd_processes_srcu);
868 /* kfd_process_free_notifier will trigger the cleanup */
869 mmu_notifier_put(&process->mmu_notifier);
870 return ERR_PTR(ret);
871}
872
873struct kfd_process *kfd_get_process(const struct task_struct *thread)
874{
875 struct kfd_process *process;
876
877 if (!thread->mm)
878 return ERR_PTR(-EINVAL);
879
880 /* Only the pthreads threading model is supported. */
881 if (thread->group_leader->mm != thread->mm)
882 return ERR_PTR(-EINVAL);
883
884 process = find_process(thread);
885 if (!process)
886 return ERR_PTR(-EINVAL);
887
888 return process;
889}
890
891static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
892{
893 struct kfd_process *process;
894
895 hash_for_each_possible_rcu(kfd_processes_table, process,
896 kfd_processes, (uintptr_t)mm)
897 if (process->mm == mm)
898 return process;
899
900 return NULL;
901}
902
903static struct kfd_process *find_process(const struct task_struct *thread)
904{
905 struct kfd_process *p;
906 int idx;
907
908 idx = srcu_read_lock(&kfd_processes_srcu);
909 p = find_process_by_mm(thread->mm);
910 srcu_read_unlock(&kfd_processes_srcu, idx);
911
912 return p;
913}
914
915void kfd_unref_process(struct kfd_process *p)
916{
917 kref_put(&p->ref, kfd_process_ref_release);
918}
919
920
921static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
922{
923 struct kfd_process *p = pdd->process;
924 void *mem;
925 int id;
926 int i;
927
928 /*
929 * Remove all handles from idr and release appropriate
930 * local memory object
931 */
932 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
933
934 for (i = 0; i < p->n_pdds; i++) {
935 struct kfd_process_device *peer_pdd = p->pdds[i];
936
937 if (!peer_pdd->drm_priv)
938 continue;
939 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
940 peer_pdd->dev->kgd, mem, peer_pdd->drm_priv);
941 }
942
943 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem,
944 pdd->drm_priv, NULL);
945 kfd_process_device_remove_obj_handle(pdd, id);
946 }
947}
948
949static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
950{
951 int i;
952
953 for (i = 0; i < p->n_pdds; i++)
954 kfd_process_device_free_bos(p->pdds[i]);
955}
956
957static void kfd_process_destroy_pdds(struct kfd_process *p)
958{
959 int i;
960
961 for (i = 0; i < p->n_pdds; i++) {
962 struct kfd_process_device *pdd = p->pdds[i];
963
964 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
965 pdd->dev->id, p->pasid);
966
967 if (pdd->drm_file) {
968 amdgpu_amdkfd_gpuvm_release_process_vm(
969 pdd->dev->kgd, pdd->drm_priv);
970 fput(pdd->drm_file);
971 }
972
973 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
974 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
975 get_order(KFD_CWSR_TBA_TMA_SIZE));
976
977 kfree(pdd->qpd.doorbell_bitmap);
978 idr_destroy(&pdd->alloc_idr);
979
980 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
981
982 /*
983 * before destroying pdd, make sure to report availability
984 * for auto suspend
985 */
986 if (pdd->runtime_inuse) {
987 pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
988 pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
989 pdd->runtime_inuse = false;
990 }
991
992 kfree(pdd);
993 p->pdds[i] = NULL;
994 }
995 p->n_pdds = 0;
996}
997
998static void kfd_process_remove_sysfs(struct kfd_process *p)
999{
1000 struct kfd_process_device *pdd;
1001 int i;
1002
1003 if (!p->kobj)
1004 return;
1005
1006 sysfs_remove_file(p->kobj, &p->attr_pasid);
1007 kobject_del(p->kobj_queues);
1008 kobject_put(p->kobj_queues);
1009 p->kobj_queues = NULL;
1010
1011 for (i = 0; i < p->n_pdds; i++) {
1012 pdd = p->pdds[i];
1013
1014 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1015 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1016
1017 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1018 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1019 sysfs_remove_file(pdd->kobj_stats,
1020 &pdd->attr_cu_occupancy);
1021 kobject_del(pdd->kobj_stats);
1022 kobject_put(pdd->kobj_stats);
1023 pdd->kobj_stats = NULL;
1024 }
1025
1026 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1027 pdd = p->pdds[i];
1028
1029 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1030 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1031 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1032 kobject_del(pdd->kobj_counters);
1033 kobject_put(pdd->kobj_counters);
1034 pdd->kobj_counters = NULL;
1035 }
1036
1037 kobject_del(p->kobj);
1038 kobject_put(p->kobj);
1039 p->kobj = NULL;
1040}
1041
1042/* No process locking is needed in this function, because the process
1043 * is not findable any more. We must assume that no other thread is
1044 * using it any more, otherwise we couldn't safely free the process
1045 * structure in the end.
1046 */
1047static void kfd_process_wq_release(struct work_struct *work)
1048{
1049 struct kfd_process *p = container_of(work, struct kfd_process,
1050 release_work);
1051 kfd_process_remove_sysfs(p);
1052 kfd_iommu_unbind_process(p);
1053
1054 kfd_process_free_outstanding_kfd_bos(p);
1055 svm_range_list_fini(p);
1056
1057 kfd_process_destroy_pdds(p);
1058 dma_fence_put(p->ef);
1059
1060 kfd_event_free_process(p);
1061
1062 kfd_pasid_free(p->pasid);
1063 mutex_destroy(&p->mutex);
1064
1065 put_task_struct(p->lead_thread);
1066
1067 kfree(p);
1068}
1069
1070static void kfd_process_ref_release(struct kref *ref)
1071{
1072 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1073
1074 INIT_WORK(&p->release_work, kfd_process_wq_release);
1075 queue_work(kfd_process_wq, &p->release_work);
1076}
1077
1078static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1079{
1080 int idx = srcu_read_lock(&kfd_processes_srcu);
1081 struct kfd_process *p = find_process_by_mm(mm);
1082
1083 srcu_read_unlock(&kfd_processes_srcu, idx);
1084
1085 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1086}
1087
1088static void kfd_process_free_notifier(struct mmu_notifier *mn)
1089{
1090 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1091}
1092
1093static void kfd_process_notifier_release(struct mmu_notifier *mn,
1094 struct mm_struct *mm)
1095{
1096 struct kfd_process *p;
1097 int i;
1098
1099 /*
1100 * The kfd_process structure can not be free because the
1101 * mmu_notifier srcu is read locked
1102 */
1103 p = container_of(mn, struct kfd_process, mmu_notifier);
1104 if (WARN_ON(p->mm != mm))
1105 return;
1106
1107 mutex_lock(&kfd_processes_mutex);
1108 hash_del_rcu(&p->kfd_processes);
1109 mutex_unlock(&kfd_processes_mutex);
1110 synchronize_srcu(&kfd_processes_srcu);
1111
1112 cancel_delayed_work_sync(&p->eviction_work);
1113 cancel_delayed_work_sync(&p->restore_work);
1114 cancel_delayed_work_sync(&p->svms.restore_work);
1115
1116 mutex_lock(&p->mutex);
1117
1118 /* Iterate over all process device data structures and if the
1119 * pdd is in debug mode, we should first force unregistration,
1120 * then we will be able to destroy the queues
1121 */
1122 for (i = 0; i < p->n_pdds; i++) {
1123 struct kfd_dev *dev = p->pdds[i]->dev;
1124
1125 mutex_lock(kfd_get_dbgmgr_mutex());
1126 if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
1127 if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
1128 kfd_dbgmgr_destroy(dev->dbgmgr);
1129 dev->dbgmgr = NULL;
1130 }
1131 }
1132 mutex_unlock(kfd_get_dbgmgr_mutex());
1133 }
1134
1135 kfd_process_dequeue_from_all_devices(p);
1136 pqm_uninit(&p->pqm);
1137
1138 /* Indicate to other users that MM is no longer valid */
1139 p->mm = NULL;
1140 /* Signal the eviction fence after user mode queues are
1141 * destroyed. This allows any BOs to be freed without
1142 * triggering pointless evictions or waiting for fences.
1143 */
1144 dma_fence_signal(p->ef);
1145
1146 mutex_unlock(&p->mutex);
1147
1148 mmu_notifier_put(&p->mmu_notifier);
1149}
1150
1151static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1152 .release = kfd_process_notifier_release,
1153 .alloc_notifier = kfd_process_alloc_notifier,
1154 .free_notifier = kfd_process_free_notifier,
1155};
1156
1157static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1158{
1159 unsigned long offset;
1160 int i;
1161
1162 for (i = 0; i < p->n_pdds; i++) {
1163 struct kfd_dev *dev = p->pdds[i]->dev;
1164 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1165
1166 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1167 continue;
1168
1169 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1170 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1171 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1172 MAP_SHARED, offset);
1173
1174 if (IS_ERR_VALUE(qpd->tba_addr)) {
1175 int err = qpd->tba_addr;
1176
1177 pr_err("Failure to set tba address. error %d.\n", err);
1178 qpd->tba_addr = 0;
1179 qpd->cwsr_kaddr = NULL;
1180 return err;
1181 }
1182
1183 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1184
1185 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1186 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1187 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1188 }
1189
1190 return 0;
1191}
1192
1193static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1194{
1195 struct kfd_dev *dev = pdd->dev;
1196 struct qcm_process_device *qpd = &pdd->qpd;
1197 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1198 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1199 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1200 void *kaddr;
1201 int ret;
1202
1203 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1204 return 0;
1205
1206 /* cwsr_base is only set for dGPU */
1207 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1208 KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
1209 if (ret)
1210 return ret;
1211
1212 qpd->cwsr_kaddr = kaddr;
1213 qpd->tba_addr = qpd->cwsr_base;
1214
1215 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1216
1217 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1218 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1219 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1220
1221 return 0;
1222}
1223
1224void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1225 uint64_t tba_addr,
1226 uint64_t tma_addr)
1227{
1228 if (qpd->cwsr_kaddr) {
1229 /* KFD trap handler is bound, record as second-level TBA/TMA
1230 * in first-level TMA. First-level trap will jump to second.
1231 */
1232 uint64_t *tma =
1233 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1234 tma[0] = tba_addr;
1235 tma[1] = tma_addr;
1236 } else {
1237 /* No trap handler bound, bind as first-level TBA/TMA. */
1238 qpd->tba_addr = tba_addr;
1239 qpd->tma_addr = tma_addr;
1240 }
1241}
1242
1243bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1244{
1245 int i;
1246
1247 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1248 * boot time retry setting. Mixing processes with different
1249 * XNACK/retry settings can hang the GPU.
1250 *
1251 * Different GPUs can have different noretry settings depending
1252 * on HW bugs or limitations. We need to find at least one
1253 * XNACK mode for this process that's compatible with all GPUs.
1254 * Fortunately GPUs with retry enabled (noretry=0) can run code
1255 * built for XNACK-off. On GFXv9 it may perform slower.
1256 *
1257 * Therefore applications built for XNACK-off can always be
1258 * supported and will be our fallback if any GPU does not
1259 * support retry.
1260 */
1261 for (i = 0; i < p->n_pdds; i++) {
1262 struct kfd_dev *dev = p->pdds[i]->dev;
1263
1264 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1265 * support the SVM APIs and don't need to be considered
1266 * for the XNACK mode selection.
1267 */
1268 if (dev->device_info->asic_family < CHIP_VEGA10)
1269 continue;
1270 /* Aldebaran can always support XNACK because it can support
1271 * per-process XNACK mode selection. But let the dev->noretry
1272 * setting still influence the default XNACK mode.
1273 */
1274 if (supported &&
1275 dev->device_info->asic_family == CHIP_ALDEBARAN)
1276 continue;
1277
1278 /* GFXv10 and later GPUs do not support shader preemption
1279 * during page faults. This can lead to poor QoS for queue
1280 * management and memory-manager-related preemptions or
1281 * even deadlocks.
1282 */
1283 if (dev->device_info->asic_family >= CHIP_NAVI10)
1284 return false;
1285
1286 if (dev->noretry)
1287 return false;
1288 }
1289
1290 return true;
1291}
1292
1293/*
1294 * On return the kfd_process is fully operational and will be freed when the
1295 * mm is released
1296 */
1297static struct kfd_process *create_process(const struct task_struct *thread)
1298{
1299 struct kfd_process *process;
1300 struct mmu_notifier *mn;
1301 int err = -ENOMEM;
1302
1303 process = kzalloc(sizeof(*process), GFP_KERNEL);
1304 if (!process)
1305 goto err_alloc_process;
1306
1307 kref_init(&process->ref);
1308 mutex_init(&process->mutex);
1309 process->mm = thread->mm;
1310 process->lead_thread = thread->group_leader;
1311 process->n_pdds = 0;
1312 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1313 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1314 process->last_restore_timestamp = get_jiffies_64();
1315 kfd_event_init_process(process);
1316 process->is_32bit_user_mode = in_compat_syscall();
1317
1318 process->pasid = kfd_pasid_alloc();
1319 if (process->pasid == 0)
1320 goto err_alloc_pasid;
1321
1322 err = pqm_init(&process->pqm, process);
1323 if (err != 0)
1324 goto err_process_pqm_init;
1325
1326 /* init process apertures*/
1327 err = kfd_init_apertures(process);
1328 if (err != 0)
1329 goto err_init_apertures;
1330
1331 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1332 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1333
1334 err = svm_range_list_init(process);
1335 if (err)
1336 goto err_init_svm_range_list;
1337
1338 /* alloc_notifier needs to find the process in the hash table */
1339 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1340 (uintptr_t)process->mm);
1341
1342 /* MMU notifier registration must be the last call that can fail
1343 * because after this point we cannot unwind the process creation.
1344 * After this point, mmu_notifier_put will trigger the cleanup by
1345 * dropping the last process reference in the free_notifier.
1346 */
1347 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1348 if (IS_ERR(mn)) {
1349 err = PTR_ERR(mn);
1350 goto err_register_notifier;
1351 }
1352 BUG_ON(mn != &process->mmu_notifier);
1353
1354 get_task_struct(process->lead_thread);
1355
1356 return process;
1357
1358err_register_notifier:
1359 hash_del_rcu(&process->kfd_processes);
1360 svm_range_list_fini(process);
1361err_init_svm_range_list:
1362 kfd_process_free_outstanding_kfd_bos(process);
1363 kfd_process_destroy_pdds(process);
1364err_init_apertures:
1365 pqm_uninit(&process->pqm);
1366err_process_pqm_init:
1367 kfd_pasid_free(process->pasid);
1368err_alloc_pasid:
1369 mutex_destroy(&process->mutex);
1370 kfree(process);
1371err_alloc_process:
1372 return ERR_PTR(err);
1373}
1374
1375static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1376 struct kfd_dev *dev)
1377{
1378 unsigned int i;
1379 int range_start = dev->shared_resources.non_cp_doorbells_start;
1380 int range_end = dev->shared_resources.non_cp_doorbells_end;
1381
1382 if (!KFD_IS_SOC15(dev->device_info->asic_family))
1383 return 0;
1384
1385 qpd->doorbell_bitmap =
1386 kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1387 BITS_PER_BYTE), GFP_KERNEL);
1388 if (!qpd->doorbell_bitmap)
1389 return -ENOMEM;
1390
1391 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1392 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1393 pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1394 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1395 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1396
1397 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1398 if (i >= range_start && i <= range_end) {
1399 set_bit(i, qpd->doorbell_bitmap);
1400 set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1401 qpd->doorbell_bitmap);
1402 }
1403 }
1404
1405 return 0;
1406}
1407
1408struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1409 struct kfd_process *p)
1410{
1411 int i;
1412
1413 for (i = 0; i < p->n_pdds; i++)
1414 if (p->pdds[i]->dev == dev)
1415 return p->pdds[i];
1416
1417 return NULL;
1418}
1419
1420struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1421 struct kfd_process *p)
1422{
1423 struct kfd_process_device *pdd = NULL;
1424
1425 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1426 return NULL;
1427 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1428 if (!pdd)
1429 return NULL;
1430
1431 if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1432 pr_err("Failed to alloc doorbell for pdd\n");
1433 goto err_free_pdd;
1434 }
1435
1436 if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1437 pr_err("Failed to init doorbell for process\n");
1438 goto err_free_pdd;
1439 }
1440
1441 pdd->dev = dev;
1442 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1443 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1444 pdd->qpd.dqm = dev->dqm;
1445 pdd->qpd.pqm = &p->pqm;
1446 pdd->qpd.evicted = 0;
1447 pdd->qpd.mapped_gws_queue = false;
1448 pdd->process = p;
1449 pdd->bound = PDD_UNBOUND;
1450 pdd->already_dequeued = false;
1451 pdd->runtime_inuse = false;
1452 pdd->vram_usage = 0;
1453 pdd->sdma_past_activity_counter = 0;
1454 atomic64_set(&pdd->evict_duration_counter, 0);
1455 p->pdds[p->n_pdds++] = pdd;
1456
1457 /* Init idr used for memory handle translation */
1458 idr_init(&pdd->alloc_idr);
1459
1460 return pdd;
1461
1462err_free_pdd:
1463 kfree(pdd);
1464 return NULL;
1465}
1466
1467/**
1468 * kfd_process_device_init_vm - Initialize a VM for a process-device
1469 *
1470 * @pdd: The process-device
1471 * @drm_file: Optional pointer to a DRM file descriptor
1472 *
1473 * If @drm_file is specified, it will be used to acquire the VM from
1474 * that file descriptor. If successful, the @pdd takes ownership of
1475 * the file descriptor.
1476 *
1477 * If @drm_file is NULL, a new VM is created.
1478 *
1479 * Returns 0 on success, -errno on failure.
1480 */
1481int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1482 struct file *drm_file)
1483{
1484 struct kfd_process *p;
1485 struct kfd_dev *dev;
1486 int ret;
1487
1488 if (!drm_file)
1489 return -EINVAL;
1490
1491 if (pdd->drm_priv)
1492 return -EBUSY;
1493
1494 p = pdd->process;
1495 dev = pdd->dev;
1496
1497 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1498 dev->kgd, drm_file, p->pasid,
1499 &p->kgd_process_info, &p->ef);
1500 if (ret) {
1501 pr_err("Failed to create process VM object\n");
1502 return ret;
1503 }
1504 pdd->drm_priv = drm_file->private_data;
1505
1506 ret = kfd_process_device_reserve_ib_mem(pdd);
1507 if (ret)
1508 goto err_reserve_ib_mem;
1509 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1510 if (ret)
1511 goto err_init_cwsr;
1512
1513 pdd->drm_file = drm_file;
1514
1515 return 0;
1516
1517err_init_cwsr:
1518err_reserve_ib_mem:
1519 kfd_process_device_free_bos(pdd);
1520 pdd->drm_priv = NULL;
1521
1522 return ret;
1523}
1524
1525/*
1526 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1527 * to the device.
1528 * Unbinding occurs when the process dies or the device is removed.
1529 *
1530 * Assumes that the process lock is held.
1531 */
1532struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1533 struct kfd_process *p)
1534{
1535 struct kfd_process_device *pdd;
1536 int err;
1537
1538 pdd = kfd_get_process_device_data(dev, p);
1539 if (!pdd) {
1540 pr_err("Process device data doesn't exist\n");
1541 return ERR_PTR(-ENOMEM);
1542 }
1543
1544 if (!pdd->drm_priv)
1545 return ERR_PTR(-ENODEV);
1546
1547 /*
1548 * signal runtime-pm system to auto resume and prevent
1549 * further runtime suspend once device pdd is created until
1550 * pdd is destroyed.
1551 */
1552 if (!pdd->runtime_inuse) {
1553 err = pm_runtime_get_sync(dev->ddev->dev);
1554 if (err < 0) {
1555 pm_runtime_put_autosuspend(dev->ddev->dev);
1556 return ERR_PTR(err);
1557 }
1558 }
1559
1560 err = kfd_iommu_bind_process_to_device(pdd);
1561 if (err)
1562 goto out;
1563
1564 /*
1565 * make sure that runtime_usage counter is incremented just once
1566 * per pdd
1567 */
1568 pdd->runtime_inuse = true;
1569
1570 return pdd;
1571
1572out:
1573 /* balance runpm reference count and exit with error */
1574 if (!pdd->runtime_inuse) {
1575 pm_runtime_mark_last_busy(dev->ddev->dev);
1576 pm_runtime_put_autosuspend(dev->ddev->dev);
1577 }
1578
1579 return ERR_PTR(err);
1580}
1581
1582/* Create specific handle mapped to mem from process local memory idr
1583 * Assumes that the process lock is held.
1584 */
1585int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1586 void *mem)
1587{
1588 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1589}
1590
1591/* Translate specific handle from process local memory idr
1592 * Assumes that the process lock is held.
1593 */
1594void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1595 int handle)
1596{
1597 if (handle < 0)
1598 return NULL;
1599
1600 return idr_find(&pdd->alloc_idr, handle);
1601}
1602
1603/* Remove specific handle from process local memory idr
1604 * Assumes that the process lock is held.
1605 */
1606void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1607 int handle)
1608{
1609 if (handle >= 0)
1610 idr_remove(&pdd->alloc_idr, handle);
1611}
1612
1613/* This increments the process->ref counter. */
1614struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1615{
1616 struct kfd_process *p, *ret_p = NULL;
1617 unsigned int temp;
1618
1619 int idx = srcu_read_lock(&kfd_processes_srcu);
1620
1621 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1622 if (p->pasid == pasid) {
1623 kref_get(&p->ref);
1624 ret_p = p;
1625 break;
1626 }
1627 }
1628
1629 srcu_read_unlock(&kfd_processes_srcu, idx);
1630
1631 return ret_p;
1632}
1633
1634/* This increments the process->ref counter. */
1635struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1636{
1637 struct kfd_process *p;
1638
1639 int idx = srcu_read_lock(&kfd_processes_srcu);
1640
1641 p = find_process_by_mm(mm);
1642 if (p)
1643 kref_get(&p->ref);
1644
1645 srcu_read_unlock(&kfd_processes_srcu, idx);
1646
1647 return p;
1648}
1649
1650/* kfd_process_evict_queues - Evict all user queues of a process
1651 *
1652 * Eviction is reference-counted per process-device. This means multiple
1653 * evictions from different sources can be nested safely.
1654 */
1655int kfd_process_evict_queues(struct kfd_process *p)
1656{
1657 int r = 0;
1658 int i;
1659 unsigned int n_evicted = 0;
1660
1661 for (i = 0; i < p->n_pdds; i++) {
1662 struct kfd_process_device *pdd = p->pdds[i];
1663
1664 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1665 &pdd->qpd);
1666 if (r) {
1667 pr_err("Failed to evict process queues\n");
1668 goto fail;
1669 }
1670 n_evicted++;
1671 }
1672
1673 return r;
1674
1675fail:
1676 /* To keep state consistent, roll back partial eviction by
1677 * restoring queues
1678 */
1679 for (i = 0; i < p->n_pdds; i++) {
1680 struct kfd_process_device *pdd = p->pdds[i];
1681
1682 if (n_evicted == 0)
1683 break;
1684 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1685 &pdd->qpd))
1686 pr_err("Failed to restore queues\n");
1687
1688 n_evicted--;
1689 }
1690
1691 return r;
1692}
1693
1694/* kfd_process_restore_queues - Restore all user queues of a process */
1695int kfd_process_restore_queues(struct kfd_process *p)
1696{
1697 int r, ret = 0;
1698 int i;
1699
1700 for (i = 0; i < p->n_pdds; i++) {
1701 struct kfd_process_device *pdd = p->pdds[i];
1702
1703 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1704 &pdd->qpd);
1705 if (r) {
1706 pr_err("Failed to restore process queues\n");
1707 if (!ret)
1708 ret = r;
1709 }
1710 }
1711
1712 return ret;
1713}
1714
1715int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1716{
1717 int i;
1718
1719 for (i = 0; i < p->n_pdds; i++)
1720 if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id)
1721 return i;
1722 return -EINVAL;
1723}
1724
1725int
1726kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev,
1727 uint32_t *gpuid, uint32_t *gpuidx)
1728{
1729 struct kgd_dev *kgd = (struct kgd_dev *)adev;
1730 int i;
1731
1732 for (i = 0; i < p->n_pdds; i++)
1733 if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) {
1734 *gpuid = p->pdds[i]->dev->id;
1735 *gpuidx = i;
1736 return 0;
1737 }
1738 return -EINVAL;
1739}
1740
1741static void evict_process_worker(struct work_struct *work)
1742{
1743 int ret;
1744 struct kfd_process *p;
1745 struct delayed_work *dwork;
1746
1747 dwork = to_delayed_work(work);
1748
1749 /* Process termination destroys this worker thread. So during the
1750 * lifetime of this thread, kfd_process p will be valid
1751 */
1752 p = container_of(dwork, struct kfd_process, eviction_work);
1753 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1754 "Eviction fence mismatch\n");
1755
1756 /* Narrow window of overlap between restore and evict work
1757 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1758 * unreserves KFD BOs, it is possible to evicted again. But
1759 * restore has few more steps of finish. So lets wait for any
1760 * previous restore work to complete
1761 */
1762 flush_delayed_work(&p->restore_work);
1763
1764 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1765 ret = kfd_process_evict_queues(p);
1766 if (!ret) {
1767 dma_fence_signal(p->ef);
1768 dma_fence_put(p->ef);
1769 p->ef = NULL;
1770 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1771 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1772
1773 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1774 } else
1775 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1776}
1777
1778static void restore_process_worker(struct work_struct *work)
1779{
1780 struct delayed_work *dwork;
1781 struct kfd_process *p;
1782 int ret = 0;
1783
1784 dwork = to_delayed_work(work);
1785
1786 /* Process termination destroys this worker thread. So during the
1787 * lifetime of this thread, kfd_process p will be valid
1788 */
1789 p = container_of(dwork, struct kfd_process, restore_work);
1790 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1791
1792 /* Setting last_restore_timestamp before successful restoration.
1793 * Otherwise this would have to be set by KGD (restore_process_bos)
1794 * before KFD BOs are unreserved. If not, the process can be evicted
1795 * again before the timestamp is set.
1796 * If restore fails, the timestamp will be set again in the next
1797 * attempt. This would mean that the minimum GPU quanta would be
1798 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1799 * functions)
1800 */
1801
1802 p->last_restore_timestamp = get_jiffies_64();
1803 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1804 &p->ef);
1805 if (ret) {
1806 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1807 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1808 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1809 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1810 WARN(!ret, "reschedule restore work failed\n");
1811 return;
1812 }
1813
1814 ret = kfd_process_restore_queues(p);
1815 if (!ret)
1816 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1817 else
1818 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1819}
1820
1821void kfd_suspend_all_processes(void)
1822{
1823 struct kfd_process *p;
1824 unsigned int temp;
1825 int idx = srcu_read_lock(&kfd_processes_srcu);
1826
1827 WARN(debug_evictions, "Evicting all processes");
1828 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1829 cancel_delayed_work_sync(&p->eviction_work);
1830 cancel_delayed_work_sync(&p->restore_work);
1831
1832 if (kfd_process_evict_queues(p))
1833 pr_err("Failed to suspend process 0x%x\n", p->pasid);
1834 dma_fence_signal(p->ef);
1835 dma_fence_put(p->ef);
1836 p->ef = NULL;
1837 }
1838 srcu_read_unlock(&kfd_processes_srcu, idx);
1839}
1840
1841int kfd_resume_all_processes(void)
1842{
1843 struct kfd_process *p;
1844 unsigned int temp;
1845 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1846
1847 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1848 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1849 pr_err("Restore process %d failed during resume\n",
1850 p->pasid);
1851 ret = -EFAULT;
1852 }
1853 }
1854 srcu_read_unlock(&kfd_processes_srcu, idx);
1855 return ret;
1856}
1857
1858int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1859 struct vm_area_struct *vma)
1860{
1861 struct kfd_process_device *pdd;
1862 struct qcm_process_device *qpd;
1863
1864 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1865 pr_err("Incorrect CWSR mapping size.\n");
1866 return -EINVAL;
1867 }
1868
1869 pdd = kfd_get_process_device_data(dev, process);
1870 if (!pdd)
1871 return -EINVAL;
1872 qpd = &pdd->qpd;
1873
1874 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1875 get_order(KFD_CWSR_TBA_TMA_SIZE));
1876 if (!qpd->cwsr_kaddr) {
1877 pr_err("Error allocating per process CWSR buffer.\n");
1878 return -ENOMEM;
1879 }
1880
1881 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1882 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1883 /* Mapping pages to user process */
1884 return remap_pfn_range(vma, vma->vm_start,
1885 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1886 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1887}
1888
1889void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1890{
1891 struct kfd_dev *dev = pdd->dev;
1892
1893 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1894 /* Nothing to flush until a VMID is assigned, which
1895 * only happens when the first queue is created.
1896 */
1897 if (pdd->qpd.vmid)
1898 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1899 pdd->qpd.vmid);
1900 } else {
1901 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1902 pdd->process->pasid, type);
1903 }
1904}
1905
1906#if defined(CONFIG_DEBUG_FS)
1907
1908int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1909{
1910 struct kfd_process *p;
1911 unsigned int temp;
1912 int r = 0;
1913
1914 int idx = srcu_read_lock(&kfd_processes_srcu);
1915
1916 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1917 seq_printf(m, "Process %d PASID 0x%x:\n",
1918 p->lead_thread->tgid, p->pasid);
1919
1920 mutex_lock(&p->mutex);
1921 r = pqm_debugfs_mqds(m, &p->pqm);
1922 mutex_unlock(&p->mutex);
1923
1924 if (r)
1925 break;
1926 }
1927
1928 srcu_read_unlock(&kfd_processes_srcu, idx);
1929
1930 return r;
1931}
1932
1933#endif
1934