Linux Audio

Check our new training course

Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * FDT related Helper functions used by the EFI stub on multiple
  4 * architectures. This should be #included by the EFI stub
  5 * implementation files.
  6 *
  7 * Copyright 2013 Linaro Limited; author Roy Franz
  8 */
  9
 10#include <linux/efi.h>
 11#include <linux/libfdt.h>
 12#include <asm/efi.h>
 13
 14#include "efistub.h"
 15
 16#define EFI_DT_ADDR_CELLS_DEFAULT 2
 17#define EFI_DT_SIZE_CELLS_DEFAULT 2
 18
 19static void fdt_update_cell_size(void *fdt)
 20{
 21	int offset;
 22
 23	offset = fdt_path_offset(fdt, "/");
 24	/* Set the #address-cells and #size-cells values for an empty tree */
 25
 26	fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
 27	fdt_setprop_u32(fdt, offset, "#size-cells",    EFI_DT_SIZE_CELLS_DEFAULT);
 28}
 29
 30static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
 31			       void *fdt, int new_fdt_size, char *cmdline_ptr)
 
 32{
 33	int node, num_rsv;
 34	int status;
 35	u32 fdt_val32;
 36	u64 fdt_val64;
 37
 38	/* Do some checks on provided FDT, if it exists: */
 39	if (orig_fdt) {
 40		if (fdt_check_header(orig_fdt)) {
 41			efi_err("Device Tree header not valid!\n");
 42			return EFI_LOAD_ERROR;
 43		}
 44		/*
 45		 * We don't get the size of the FDT if we get if from a
 46		 * configuration table:
 47		 */
 48		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
 49			efi_err("Truncated device tree! foo!\n");
 50			return EFI_LOAD_ERROR;
 51		}
 52	}
 53
 54	if (orig_fdt) {
 55		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
 56	} else {
 57		status = fdt_create_empty_tree(fdt, new_fdt_size);
 58		if (status == 0) {
 59			/*
 60			 * Any failure from the following function is
 61			 * non-critical:
 62			 */
 63			fdt_update_cell_size(fdt);
 64		}
 65	}
 66
 67	if (status != 0)
 68		goto fdt_set_fail;
 69
 70	/*
 71	 * Delete all memory reserve map entries. When booting via UEFI,
 72	 * kernel will use the UEFI memory map to find reserved regions.
 73	 */
 74	num_rsv = fdt_num_mem_rsv(fdt);
 75	while (num_rsv-- > 0)
 76		fdt_del_mem_rsv(fdt, num_rsv);
 77
 78	node = fdt_subnode_offset(fdt, 0, "chosen");
 79	if (node < 0) {
 80		node = fdt_add_subnode(fdt, 0, "chosen");
 81		if (node < 0) {
 82			/* 'node' is an error code when negative: */
 83			status = node;
 84			goto fdt_set_fail;
 85		}
 86	}
 87
 88	if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
 89		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
 90				     strlen(cmdline_ptr) + 1);
 91		if (status)
 92			goto fdt_set_fail;
 93	}
 94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 95	/* Add FDT entries for EFI runtime services in chosen node. */
 96	node = fdt_subnode_offset(fdt, 0, "chosen");
 97	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table);
 98
 99	status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
100	if (status)
101		goto fdt_set_fail;
102
103	fdt_val64 = U64_MAX; /* placeholder */
104
105	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
106	if (status)
107		goto fdt_set_fail;
108
109	fdt_val32 = U32_MAX; /* placeholder */
110
111	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
112	if (status)
113		goto fdt_set_fail;
114
115	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
116	if (status)
117		goto fdt_set_fail;
118
119	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
120	if (status)
121		goto fdt_set_fail;
122
123	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
124		efi_status_t efi_status;
125
126		efi_status = efi_get_random_bytes(sizeof(fdt_val64),
127						  (u8 *)&fdt_val64);
128		if (efi_status == EFI_SUCCESS) {
129			status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
130			if (status)
131				goto fdt_set_fail;
132		}
133	}
134
135	/* Shrink the FDT back to its minimum size: */
136	fdt_pack(fdt);
137
138	return EFI_SUCCESS;
139
140fdt_set_fail:
141	if (status == -FDT_ERR_NOSPACE)
142		return EFI_BUFFER_TOO_SMALL;
143
144	return EFI_LOAD_ERROR;
145}
146
147static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
148{
149	int node = fdt_path_offset(fdt, "/chosen");
150	u64 fdt_val64;
151	u32 fdt_val32;
152	int err;
153
154	if (node < 0)
155		return EFI_LOAD_ERROR;
156
157	fdt_val64 = cpu_to_fdt64((unsigned long)map->map);
158
159	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
160	if (err)
161		return EFI_LOAD_ERROR;
162
163	fdt_val32 = cpu_to_fdt32(map->map_size);
164
165	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
166	if (err)
167		return EFI_LOAD_ERROR;
168
169	fdt_val32 = cpu_to_fdt32(map->desc_size);
170
171	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
172	if (err)
173		return EFI_LOAD_ERROR;
174
175	fdt_val32 = cpu_to_fdt32(map->desc_ver);
176
177	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
178	if (err)
179		return EFI_LOAD_ERROR;
180
181	return EFI_SUCCESS;
182}
183
184struct exit_boot_struct {
185	struct efi_boot_memmap	*boot_memmap;
186	efi_memory_desc_t	*runtime_map;
187	int			runtime_entry_count;
188	void			*new_fdt_addr;
189};
190
191static efi_status_t exit_boot_func(struct efi_boot_memmap *map, void *priv)
 
192{
193	struct exit_boot_struct *p = priv;
194
195	p->boot_memmap = map;
196
197	/*
198	 * Update the memory map with virtual addresses. The function will also
199	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
200	 * entries so that we can pass it straight to SetVirtualAddressMap()
201	 */
202	efi_get_virtmap(map->map, map->map_size, map->desc_size,
203			p->runtime_map, &p->runtime_entry_count);
204
205	return update_fdt_memmap(p->new_fdt_addr, map);
206}
207
208#ifndef MAX_FDT_SIZE
209# define MAX_FDT_SIZE SZ_2M
210#endif
211
212/*
213 * Allocate memory for a new FDT, then add EFI and commandline related fields
214 * to the FDT.  This routine increases the FDT allocation size until the
215 * allocated memory is large enough.  EFI allocations are in EFI_PAGE_SIZE
216 * granules, which are fixed at 4K bytes, so in most cases the first allocation
217 * should succeed.  EFI boot services are exited at the end of this function.
218 * There must be no allocations between the get_memory_map() call and the
219 * exit_boot_services() call, so the exiting of boot services is very tightly
220 * tied to the creation of the FDT with the final memory map in it.
 
 
 
221 */
222static
223efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
224					    efi_loaded_image_t *image,
225					    unsigned long *new_fdt_addr,
226					    char *cmdline_ptr)
 
 
 
227{
228	unsigned long desc_size;
229	u32 desc_ver;
 
 
230	efi_status_t status;
 
 
231	struct exit_boot_struct priv;
232	unsigned long fdt_addr = 0;
233	unsigned long fdt_size = 0;
234
235	if (!efi_novamap) {
236		status = efi_alloc_virtmap(&priv.runtime_map, &desc_size,
237					   &desc_ver);
238		if (status != EFI_SUCCESS) {
239			efi_err("Unable to retrieve UEFI memory map.\n");
240			return status;
241		}
242	}
243
244	/*
245	 * Unauthenticated device tree data is a security hazard, so ignore
246	 * 'dtb=' unless UEFI Secure Boot is disabled.  We assume that secure
247	 * boot is enabled if we can't determine its state.
 
248	 */
249	if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
250	    efi_get_secureboot() != efi_secureboot_mode_disabled) {
251		if (strstr(cmdline_ptr, "dtb="))
252			efi_err("Ignoring DTB from command line.\n");
253	} else {
254		status = efi_load_dtb(image, &fdt_addr, &fdt_size);
255
256		if (status != EFI_SUCCESS && status != EFI_NOT_READY) {
257			efi_err("Failed to load device tree!\n");
258			goto fail;
259		}
260	}
261
262	if (fdt_addr) {
263		efi_info("Using DTB from command line\n");
264	} else {
265		/* Look for a device tree configuration table entry. */
266		fdt_addr = (uintptr_t)get_fdt(&fdt_size);
267		if (fdt_addr)
268			efi_info("Using DTB from configuration table\n");
269	}
270
271	if (!fdt_addr)
272		efi_info("Generating empty DTB\n");
273
274	efi_info("Exiting boot services...\n");
275
 
276	status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, ULONG_MAX);
277	if (status != EFI_SUCCESS) {
278		efi_err("Unable to allocate memory for new device tree.\n");
279		goto fail;
280	}
281
 
 
 
 
 
 
 
 
282	status = update_fdt((void *)fdt_addr, fdt_size,
283			    (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr);
 
284
285	if (status != EFI_SUCCESS) {
286		efi_err("Unable to construct new device tree.\n");
287		goto fail_free_new_fdt;
288	}
289
290	priv.new_fdt_addr = (void *)*new_fdt_addr;
 
 
 
291
292	status = efi_exit_boot_services(handle, &priv, exit_boot_func);
293
294	if (status == EFI_SUCCESS) {
295		efi_set_virtual_address_map_t *svam;
296
297		if (efi_novamap)
298			return EFI_SUCCESS;
299
300		/* Install the new virtual address map */
301		svam = efi_system_table->runtime->set_virtual_address_map;
302		status = svam(priv.runtime_entry_count * desc_size, desc_size,
303			      desc_ver, priv.runtime_map);
304
305		/*
306		 * We are beyond the point of no return here, so if the call to
307		 * SetVirtualAddressMap() failed, we need to signal that to the
308		 * incoming kernel but proceed normally otherwise.
309		 */
310		if (status != EFI_SUCCESS) {
311			efi_memory_desc_t *p;
312			int l;
313
314			/*
315			 * Set the virtual address field of all
316			 * EFI_MEMORY_RUNTIME entries to U64_MAX. This will
317			 * signal the incoming kernel that no virtual
318			 * translation has been installed.
319			 */
320			for (l = 0; l < priv.boot_memmap->map_size;
321			     l += priv.boot_memmap->desc_size) {
322				p = (void *)priv.boot_memmap->map + l;
323
324				if (p->attribute & EFI_MEMORY_RUNTIME)
325					p->virt_addr = U64_MAX;
326			}
327		}
328		return EFI_SUCCESS;
329	}
330
331	efi_err("Exit boot services failed.\n");
332
333fail_free_new_fdt:
334	efi_free(MAX_FDT_SIZE, *new_fdt_addr);
335
336fail:
337	efi_free(fdt_size, fdt_addr);
338	if (!efi_novamap)
339		efi_bs_call(free_pool, priv.runtime_map);
340
341	return EFI_LOAD_ERROR;
342}
343
344efi_status_t efi_boot_kernel(void *handle, efi_loaded_image_t *image,
345			     unsigned long kernel_addr, char *cmdline_ptr)
346{
347	unsigned long fdt_addr;
348	efi_status_t status;
349
350	status = allocate_new_fdt_and_exit_boot(handle, image, &fdt_addr,
351						cmdline_ptr);
352	if (status != EFI_SUCCESS) {
353		efi_err("Failed to update FDT and exit boot services\n");
354		return status;
355	}
356
357	if (IS_ENABLED(CONFIG_ARM))
358		efi_handle_post_ebs_state();
359
360	efi_enter_kernel(kernel_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
361	/* not reached */
362}
363
364void *get_fdt(unsigned long *fdt_size)
365{
366	void *fdt;
367
368	fdt = get_efi_config_table(DEVICE_TREE_GUID);
369
370	if (!fdt)
371		return NULL;
372
373	if (fdt_check_header(fdt) != 0) {
374		efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n");
375		return NULL;
376	}
377	*fdt_size = fdt_totalsize(fdt);
378	return fdt;
379}
v5.14.15
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * FDT related Helper functions used by the EFI stub on multiple
  4 * architectures. This should be #included by the EFI stub
  5 * implementation files.
  6 *
  7 * Copyright 2013 Linaro Limited; author Roy Franz
  8 */
  9
 10#include <linux/efi.h>
 11#include <linux/libfdt.h>
 12#include <asm/efi.h>
 13
 14#include "efistub.h"
 15
 16#define EFI_DT_ADDR_CELLS_DEFAULT 2
 17#define EFI_DT_SIZE_CELLS_DEFAULT 2
 18
 19static void fdt_update_cell_size(void *fdt)
 20{
 21	int offset;
 22
 23	offset = fdt_path_offset(fdt, "/");
 24	/* Set the #address-cells and #size-cells values for an empty tree */
 25
 26	fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
 27	fdt_setprop_u32(fdt, offset, "#size-cells",    EFI_DT_SIZE_CELLS_DEFAULT);
 28}
 29
 30static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
 31			       void *fdt, int new_fdt_size, char *cmdline_ptr,
 32			       u64 initrd_addr, u64 initrd_size)
 33{
 34	int node, num_rsv;
 35	int status;
 36	u32 fdt_val32;
 37	u64 fdt_val64;
 38
 39	/* Do some checks on provided FDT, if it exists: */
 40	if (orig_fdt) {
 41		if (fdt_check_header(orig_fdt)) {
 42			efi_err("Device Tree header not valid!\n");
 43			return EFI_LOAD_ERROR;
 44		}
 45		/*
 46		 * We don't get the size of the FDT if we get if from a
 47		 * configuration table:
 48		 */
 49		if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
 50			efi_err("Truncated device tree! foo!\n");
 51			return EFI_LOAD_ERROR;
 52		}
 53	}
 54
 55	if (orig_fdt) {
 56		status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
 57	} else {
 58		status = fdt_create_empty_tree(fdt, new_fdt_size);
 59		if (status == 0) {
 60			/*
 61			 * Any failure from the following function is
 62			 * non-critical:
 63			 */
 64			fdt_update_cell_size(fdt);
 65		}
 66	}
 67
 68	if (status != 0)
 69		goto fdt_set_fail;
 70
 71	/*
 72	 * Delete all memory reserve map entries. When booting via UEFI,
 73	 * kernel will use the UEFI memory map to find reserved regions.
 74	 */
 75	num_rsv = fdt_num_mem_rsv(fdt);
 76	while (num_rsv-- > 0)
 77		fdt_del_mem_rsv(fdt, num_rsv);
 78
 79	node = fdt_subnode_offset(fdt, 0, "chosen");
 80	if (node < 0) {
 81		node = fdt_add_subnode(fdt, 0, "chosen");
 82		if (node < 0) {
 83			/* 'node' is an error code when negative: */
 84			status = node;
 85			goto fdt_set_fail;
 86		}
 87	}
 88
 89	if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
 90		status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
 91				     strlen(cmdline_ptr) + 1);
 92		if (status)
 93			goto fdt_set_fail;
 94	}
 95
 96	/* Set initrd address/end in device tree, if present */
 97	if (initrd_size != 0) {
 98		u64 initrd_image_end;
 99		u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
100
101		status = fdt_setprop_var(fdt, node, "linux,initrd-start", initrd_image_start);
102		if (status)
103			goto fdt_set_fail;
104
105		initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
106		status = fdt_setprop_var(fdt, node, "linux,initrd-end", initrd_image_end);
107		if (status)
108			goto fdt_set_fail;
109	}
110
111	/* Add FDT entries for EFI runtime services in chosen node. */
112	node = fdt_subnode_offset(fdt, 0, "chosen");
113	fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table);
114
115	status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
116	if (status)
117		goto fdt_set_fail;
118
119	fdt_val64 = U64_MAX; /* placeholder */
120
121	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
122	if (status)
123		goto fdt_set_fail;
124
125	fdt_val32 = U32_MAX; /* placeholder */
126
127	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
128	if (status)
129		goto fdt_set_fail;
130
131	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
132	if (status)
133		goto fdt_set_fail;
134
135	status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
136	if (status)
137		goto fdt_set_fail;
138
139	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
140		efi_status_t efi_status;
141
142		efi_status = efi_get_random_bytes(sizeof(fdt_val64),
143						  (u8 *)&fdt_val64);
144		if (efi_status == EFI_SUCCESS) {
145			status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
146			if (status)
147				goto fdt_set_fail;
148		}
149	}
150
151	/* Shrink the FDT back to its minimum size: */
152	fdt_pack(fdt);
153
154	return EFI_SUCCESS;
155
156fdt_set_fail:
157	if (status == -FDT_ERR_NOSPACE)
158		return EFI_BUFFER_TOO_SMALL;
159
160	return EFI_LOAD_ERROR;
161}
162
163static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
164{
165	int node = fdt_path_offset(fdt, "/chosen");
166	u64 fdt_val64;
167	u32 fdt_val32;
168	int err;
169
170	if (node < 0)
171		return EFI_LOAD_ERROR;
172
173	fdt_val64 = cpu_to_fdt64((unsigned long)*map->map);
174
175	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
176	if (err)
177		return EFI_LOAD_ERROR;
178
179	fdt_val32 = cpu_to_fdt32(*map->map_size);
180
181	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
182	if (err)
183		return EFI_LOAD_ERROR;
184
185	fdt_val32 = cpu_to_fdt32(*map->desc_size);
186
187	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
188	if (err)
189		return EFI_LOAD_ERROR;
190
191	fdt_val32 = cpu_to_fdt32(*map->desc_ver);
192
193	err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
194	if (err)
195		return EFI_LOAD_ERROR;
196
197	return EFI_SUCCESS;
198}
199
200struct exit_boot_struct {
 
201	efi_memory_desc_t	*runtime_map;
202	int			*runtime_entry_count;
203	void			*new_fdt_addr;
204};
205
206static efi_status_t exit_boot_func(struct efi_boot_memmap *map,
207				   void *priv)
208{
209	struct exit_boot_struct *p = priv;
 
 
 
210	/*
211	 * Update the memory map with virtual addresses. The function will also
212	 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
213	 * entries so that we can pass it straight to SetVirtualAddressMap()
214	 */
215	efi_get_virtmap(*map->map, *map->map_size, *map->desc_size,
216			p->runtime_map, p->runtime_entry_count);
217
218	return update_fdt_memmap(p->new_fdt_addr, map);
219}
220
221#ifndef MAX_FDT_SIZE
222# define MAX_FDT_SIZE SZ_2M
223#endif
224
225/*
226 * Allocate memory for a new FDT, then add EFI, commandline, and
227 * initrd related fields to the FDT.  This routine increases the
228 * FDT allocation size until the allocated memory is large
229 * enough.  EFI allocations are in EFI_PAGE_SIZE granules,
230 * which are fixed at 4K bytes, so in most cases the first
231 * allocation should succeed.
232 * EFI boot services are exited at the end of this function.
233 * There must be no allocations between the get_memory_map()
234 * call and the exit_boot_services() call, so the exiting of
235 * boot services is very tightly tied to the creation of the FDT
236 * with the final memory map in it.
237 */
238
239efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
 
240					    unsigned long *new_fdt_addr,
241					    u64 initrd_addr, u64 initrd_size,
242					    char *cmdline_ptr,
243					    unsigned long fdt_addr,
244					    unsigned long fdt_size)
245{
246	unsigned long map_size, desc_size, buff_size;
247	u32 desc_ver;
248	unsigned long mmap_key;
249	efi_memory_desc_t *memory_map, *runtime_map;
250	efi_status_t status;
251	int runtime_entry_count;
252	struct efi_boot_memmap map;
253	struct exit_boot_struct priv;
 
 
254
255	map.map		= &runtime_map;
256	map.map_size	= &map_size;
257	map.desc_size	= &desc_size;
258	map.desc_ver	= &desc_ver;
259	map.key_ptr	= &mmap_key;
260	map.buff_size	= &buff_size;
 
 
261
262	/*
263	 * Get a copy of the current memory map that we will use to prepare
264	 * the input for SetVirtualAddressMap(). We don't have to worry about
265	 * subsequent allocations adding entries, since they could not affect
266	 * the number of EFI_MEMORY_RUNTIME regions.
267	 */
268	status = efi_get_memory_map(&map);
269	if (status != EFI_SUCCESS) {
270		efi_err("Unable to retrieve UEFI memory map.\n");
271		return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
272	}
273
274	efi_info("Exiting boot services and installing virtual address map...\n");
 
 
 
275
276	map.map = &memory_map;
277	status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, ULONG_MAX);
278	if (status != EFI_SUCCESS) {
279		efi_err("Unable to allocate memory for new device tree.\n");
280		goto fail;
281	}
282
283	/*
284	 * Now that we have done our final memory allocation (and free)
285	 * we can get the memory map key needed for exit_boot_services().
286	 */
287	status = efi_get_memory_map(&map);
288	if (status != EFI_SUCCESS)
289		goto fail_free_new_fdt;
290
291	status = update_fdt((void *)fdt_addr, fdt_size,
292			    (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr,
293			    initrd_addr, initrd_size);
294
295	if (status != EFI_SUCCESS) {
296		efi_err("Unable to construct new device tree.\n");
297		goto fail_free_new_fdt;
298	}
299
300	runtime_entry_count		= 0;
301	priv.runtime_map		= runtime_map;
302	priv.runtime_entry_count	= &runtime_entry_count;
303	priv.new_fdt_addr		= (void *)*new_fdt_addr;
304
305	status = efi_exit_boot_services(handle, &map, &priv, exit_boot_func);
306
307	if (status == EFI_SUCCESS) {
308		efi_set_virtual_address_map_t *svam;
309
310		if (efi_novamap)
311			return EFI_SUCCESS;
312
313		/* Install the new virtual address map */
314		svam = efi_system_table->runtime->set_virtual_address_map;
315		status = svam(runtime_entry_count * desc_size, desc_size,
316			      desc_ver, runtime_map);
317
318		/*
319		 * We are beyond the point of no return here, so if the call to
320		 * SetVirtualAddressMap() failed, we need to signal that to the
321		 * incoming kernel but proceed normally otherwise.
322		 */
323		if (status != EFI_SUCCESS) {
 
324			int l;
325
326			/*
327			 * Set the virtual address field of all
328			 * EFI_MEMORY_RUNTIME entries to 0. This will signal
329			 * the incoming kernel that no virtual translation has
330			 * been installed.
331			 */
332			for (l = 0; l < map_size; l += desc_size) {
333				efi_memory_desc_t *p = (void *)memory_map + l;
 
334
335				if (p->attribute & EFI_MEMORY_RUNTIME)
336					p->virt_addr = 0;
337			}
338		}
339		return EFI_SUCCESS;
340	}
341
342	efi_err("Exit boot services failed.\n");
343
344fail_free_new_fdt:
345	efi_free(MAX_FDT_SIZE, *new_fdt_addr);
346
347fail:
348	efi_system_table->boottime->free_pool(runtime_map);
 
 
349
350	return EFI_LOAD_ERROR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351}
352
353void *get_fdt(unsigned long *fdt_size)
354{
355	void *fdt;
356
357	fdt = get_efi_config_table(DEVICE_TREE_GUID);
358
359	if (!fdt)
360		return NULL;
361
362	if (fdt_check_header(fdt) != 0) {
363		efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n");
364		return NULL;
365	}
366	*fdt_size = fdt_totalsize(fdt);
367	return fdt;
368}