Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Read-Copy Update module-based scalability-test facility
4 *
5 * Copyright (C) IBM Corporation, 2015
6 *
7 * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
8 */
9
10#define pr_fmt(fmt) fmt
11
12#include <linux/types.h>
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/mm.h>
16#include <linux/module.h>
17#include <linux/kthread.h>
18#include <linux/err.h>
19#include <linux/spinlock.h>
20#include <linux/smp.h>
21#include <linux/rcupdate.h>
22#include <linux/interrupt.h>
23#include <linux/sched.h>
24#include <uapi/linux/sched/types.h>
25#include <linux/atomic.h>
26#include <linux/bitops.h>
27#include <linux/completion.h>
28#include <linux/moduleparam.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/reboot.h>
32#include <linux/freezer.h>
33#include <linux/cpu.h>
34#include <linux/delay.h>
35#include <linux/stat.h>
36#include <linux/srcu.h>
37#include <linux/slab.h>
38#include <asm/byteorder.h>
39#include <linux/torture.h>
40#include <linux/vmalloc.h>
41#include <linux/rcupdate_trace.h>
42
43#include "rcu.h"
44
45MODULE_LICENSE("GPL");
46MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
47
48#define SCALE_FLAG "-scale:"
49#define SCALEOUT_STRING(s) \
50 pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s)
51#define VERBOSE_SCALEOUT_STRING(s) \
52 do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0)
53#define SCALEOUT_ERRSTRING(s) \
54 pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s)
55
56/*
57 * The intended use cases for the nreaders and nwriters module parameters
58 * are as follows:
59 *
60 * 1. Specify only the nr_cpus kernel boot parameter. This will
61 * set both nreaders and nwriters to the value specified by
62 * nr_cpus for a mixed reader/writer test.
63 *
64 * 2. Specify the nr_cpus kernel boot parameter, but set
65 * rcuscale.nreaders to zero. This will set nwriters to the
66 * value specified by nr_cpus for an update-only test.
67 *
68 * 3. Specify the nr_cpus kernel boot parameter, but set
69 * rcuscale.nwriters to zero. This will set nreaders to the
70 * value specified by nr_cpus for a read-only test.
71 *
72 * Various other use cases may of course be specified.
73 *
74 * Note that this test's readers are intended only as a test load for
75 * the writers. The reader scalability statistics will be overly
76 * pessimistic due to the per-critical-section interrupt disabling,
77 * test-end checks, and the pair of calls through pointers.
78 */
79
80#ifdef MODULE
81# define RCUSCALE_SHUTDOWN 0
82#else
83# define RCUSCALE_SHUTDOWN 1
84#endif
85
86torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives");
87torture_param(int, gp_async_max, 1000, "Max # outstanding waits per writer");
88torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
89torture_param(int, holdoff, 10, "Holdoff time before test start (s)");
90torture_param(int, minruntime, 0, "Minimum run time (s)");
91torture_param(int, nreaders, -1, "Number of RCU reader threads");
92torture_param(int, nwriters, -1, "Number of RCU updater threads");
93torture_param(bool, shutdown, RCUSCALE_SHUTDOWN,
94 "Shutdown at end of scalability tests.");
95torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
96torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
97torture_param(int, writer_holdoff_jiffies, 0, "Holdoff (jiffies) between GPs, zero to disable");
98torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?");
99torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate.");
100torture_param(int, kfree_by_call_rcu, 0, "Use call_rcu() to emulate kfree_rcu()?");
101
102static char *scale_type = "rcu";
103module_param(scale_type, charp, 0444);
104MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)");
105
106static int nrealreaders;
107static int nrealwriters;
108static struct task_struct **writer_tasks;
109static struct task_struct **reader_tasks;
110static struct task_struct *shutdown_task;
111
112static u64 **writer_durations;
113static int *writer_n_durations;
114static atomic_t n_rcu_scale_reader_started;
115static atomic_t n_rcu_scale_writer_started;
116static atomic_t n_rcu_scale_writer_finished;
117static wait_queue_head_t shutdown_wq;
118static u64 t_rcu_scale_writer_started;
119static u64 t_rcu_scale_writer_finished;
120static unsigned long b_rcu_gp_test_started;
121static unsigned long b_rcu_gp_test_finished;
122static DEFINE_PER_CPU(atomic_t, n_async_inflight);
123
124#define MAX_MEAS 10000
125#define MIN_MEAS 100
126
127/*
128 * Operations vector for selecting different types of tests.
129 */
130
131struct rcu_scale_ops {
132 int ptype;
133 void (*init)(void);
134 void (*cleanup)(void);
135 int (*readlock)(void);
136 void (*readunlock)(int idx);
137 unsigned long (*get_gp_seq)(void);
138 unsigned long (*gp_diff)(unsigned long new, unsigned long old);
139 unsigned long (*exp_completed)(void);
140 void (*async)(struct rcu_head *head, rcu_callback_t func);
141 void (*gp_barrier)(void);
142 void (*sync)(void);
143 void (*exp_sync)(void);
144 struct task_struct *(*rso_gp_kthread)(void);
145 const char *name;
146};
147
148static struct rcu_scale_ops *cur_ops;
149
150/*
151 * Definitions for rcu scalability testing.
152 */
153
154static int rcu_scale_read_lock(void) __acquires(RCU)
155{
156 rcu_read_lock();
157 return 0;
158}
159
160static void rcu_scale_read_unlock(int idx) __releases(RCU)
161{
162 rcu_read_unlock();
163}
164
165static unsigned long __maybe_unused rcu_no_completed(void)
166{
167 return 0;
168}
169
170static void rcu_sync_scale_init(void)
171{
172}
173
174static struct rcu_scale_ops rcu_ops = {
175 .ptype = RCU_FLAVOR,
176 .init = rcu_sync_scale_init,
177 .readlock = rcu_scale_read_lock,
178 .readunlock = rcu_scale_read_unlock,
179 .get_gp_seq = rcu_get_gp_seq,
180 .gp_diff = rcu_seq_diff,
181 .exp_completed = rcu_exp_batches_completed,
182 .async = call_rcu_hurry,
183 .gp_barrier = rcu_barrier,
184 .sync = synchronize_rcu,
185 .exp_sync = synchronize_rcu_expedited,
186 .name = "rcu"
187};
188
189/*
190 * Definitions for srcu scalability testing.
191 */
192
193DEFINE_STATIC_SRCU(srcu_ctl_scale);
194static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale;
195
196static int srcu_scale_read_lock(void) __acquires(srcu_ctlp)
197{
198 return srcu_read_lock(srcu_ctlp);
199}
200
201static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp)
202{
203 srcu_read_unlock(srcu_ctlp, idx);
204}
205
206static unsigned long srcu_scale_completed(void)
207{
208 return srcu_batches_completed(srcu_ctlp);
209}
210
211static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func)
212{
213 call_srcu(srcu_ctlp, head, func);
214}
215
216static void srcu_rcu_barrier(void)
217{
218 srcu_barrier(srcu_ctlp);
219}
220
221static void srcu_scale_synchronize(void)
222{
223 synchronize_srcu(srcu_ctlp);
224}
225
226static void srcu_scale_synchronize_expedited(void)
227{
228 synchronize_srcu_expedited(srcu_ctlp);
229}
230
231static struct rcu_scale_ops srcu_ops = {
232 .ptype = SRCU_FLAVOR,
233 .init = rcu_sync_scale_init,
234 .readlock = srcu_scale_read_lock,
235 .readunlock = srcu_scale_read_unlock,
236 .get_gp_seq = srcu_scale_completed,
237 .gp_diff = rcu_seq_diff,
238 .exp_completed = srcu_scale_completed,
239 .async = srcu_call_rcu,
240 .gp_barrier = srcu_rcu_barrier,
241 .sync = srcu_scale_synchronize,
242 .exp_sync = srcu_scale_synchronize_expedited,
243 .name = "srcu"
244};
245
246static struct srcu_struct srcud;
247
248static void srcu_sync_scale_init(void)
249{
250 srcu_ctlp = &srcud;
251 init_srcu_struct(srcu_ctlp);
252}
253
254static void srcu_sync_scale_cleanup(void)
255{
256 cleanup_srcu_struct(srcu_ctlp);
257}
258
259static struct rcu_scale_ops srcud_ops = {
260 .ptype = SRCU_FLAVOR,
261 .init = srcu_sync_scale_init,
262 .cleanup = srcu_sync_scale_cleanup,
263 .readlock = srcu_scale_read_lock,
264 .readunlock = srcu_scale_read_unlock,
265 .get_gp_seq = srcu_scale_completed,
266 .gp_diff = rcu_seq_diff,
267 .exp_completed = srcu_scale_completed,
268 .async = srcu_call_rcu,
269 .gp_barrier = srcu_rcu_barrier,
270 .sync = srcu_scale_synchronize,
271 .exp_sync = srcu_scale_synchronize_expedited,
272 .name = "srcud"
273};
274
275#ifdef CONFIG_TASKS_RCU
276
277/*
278 * Definitions for RCU-tasks scalability testing.
279 */
280
281static int tasks_scale_read_lock(void)
282{
283 return 0;
284}
285
286static void tasks_scale_read_unlock(int idx)
287{
288}
289
290static struct rcu_scale_ops tasks_ops = {
291 .ptype = RCU_TASKS_FLAVOR,
292 .init = rcu_sync_scale_init,
293 .readlock = tasks_scale_read_lock,
294 .readunlock = tasks_scale_read_unlock,
295 .get_gp_seq = rcu_no_completed,
296 .gp_diff = rcu_seq_diff,
297 .async = call_rcu_tasks,
298 .gp_barrier = rcu_barrier_tasks,
299 .sync = synchronize_rcu_tasks,
300 .exp_sync = synchronize_rcu_tasks,
301 .rso_gp_kthread = get_rcu_tasks_gp_kthread,
302 .name = "tasks"
303};
304
305#define TASKS_OPS &tasks_ops,
306
307#else // #ifdef CONFIG_TASKS_RCU
308
309#define TASKS_OPS
310
311#endif // #else // #ifdef CONFIG_TASKS_RCU
312
313#ifdef CONFIG_TASKS_RUDE_RCU
314
315/*
316 * Definitions for RCU-tasks-rude scalability testing.
317 */
318
319static int tasks_rude_scale_read_lock(void)
320{
321 return 0;
322}
323
324static void tasks_rude_scale_read_unlock(int idx)
325{
326}
327
328static struct rcu_scale_ops tasks_rude_ops = {
329 .ptype = RCU_TASKS_RUDE_FLAVOR,
330 .init = rcu_sync_scale_init,
331 .readlock = tasks_rude_scale_read_lock,
332 .readunlock = tasks_rude_scale_read_unlock,
333 .get_gp_seq = rcu_no_completed,
334 .gp_diff = rcu_seq_diff,
335 .async = call_rcu_tasks_rude,
336 .gp_barrier = rcu_barrier_tasks_rude,
337 .sync = synchronize_rcu_tasks_rude,
338 .exp_sync = synchronize_rcu_tasks_rude,
339 .rso_gp_kthread = get_rcu_tasks_rude_gp_kthread,
340 .name = "tasks-rude"
341};
342
343#define TASKS_RUDE_OPS &tasks_rude_ops,
344
345#else // #ifdef CONFIG_TASKS_RUDE_RCU
346
347#define TASKS_RUDE_OPS
348
349#endif // #else // #ifdef CONFIG_TASKS_RUDE_RCU
350
351#ifdef CONFIG_TASKS_TRACE_RCU
352
353/*
354 * Definitions for RCU-tasks-trace scalability testing.
355 */
356
357static int tasks_trace_scale_read_lock(void)
358{
359 rcu_read_lock_trace();
360 return 0;
361}
362
363static void tasks_trace_scale_read_unlock(int idx)
364{
365 rcu_read_unlock_trace();
366}
367
368static struct rcu_scale_ops tasks_tracing_ops = {
369 .ptype = RCU_TASKS_FLAVOR,
370 .init = rcu_sync_scale_init,
371 .readlock = tasks_trace_scale_read_lock,
372 .readunlock = tasks_trace_scale_read_unlock,
373 .get_gp_seq = rcu_no_completed,
374 .gp_diff = rcu_seq_diff,
375 .async = call_rcu_tasks_trace,
376 .gp_barrier = rcu_barrier_tasks_trace,
377 .sync = synchronize_rcu_tasks_trace,
378 .exp_sync = synchronize_rcu_tasks_trace,
379 .rso_gp_kthread = get_rcu_tasks_trace_gp_kthread,
380 .name = "tasks-tracing"
381};
382
383#define TASKS_TRACING_OPS &tasks_tracing_ops,
384
385#else // #ifdef CONFIG_TASKS_TRACE_RCU
386
387#define TASKS_TRACING_OPS
388
389#endif // #else // #ifdef CONFIG_TASKS_TRACE_RCU
390
391static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old)
392{
393 if (!cur_ops->gp_diff)
394 return new - old;
395 return cur_ops->gp_diff(new, old);
396}
397
398/*
399 * If scalability tests complete, wait for shutdown to commence.
400 */
401static void rcu_scale_wait_shutdown(void)
402{
403 cond_resched_tasks_rcu_qs();
404 if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters)
405 return;
406 while (!torture_must_stop())
407 schedule_timeout_uninterruptible(1);
408}
409
410/*
411 * RCU scalability reader kthread. Repeatedly does empty RCU read-side
412 * critical section, minimizing update-side interference. However, the
413 * point of this test is not to evaluate reader scalability, but instead
414 * to serve as a test load for update-side scalability testing.
415 */
416static int
417rcu_scale_reader(void *arg)
418{
419 unsigned long flags;
420 int idx;
421 long me = (long)arg;
422
423 VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started");
424 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
425 set_user_nice(current, MAX_NICE);
426 atomic_inc(&n_rcu_scale_reader_started);
427
428 do {
429 local_irq_save(flags);
430 idx = cur_ops->readlock();
431 cur_ops->readunlock(idx);
432 local_irq_restore(flags);
433 rcu_scale_wait_shutdown();
434 } while (!torture_must_stop());
435 torture_kthread_stopping("rcu_scale_reader");
436 return 0;
437}
438
439/*
440 * Callback function for asynchronous grace periods from rcu_scale_writer().
441 */
442static void rcu_scale_async_cb(struct rcu_head *rhp)
443{
444 atomic_dec(this_cpu_ptr(&n_async_inflight));
445 kfree(rhp);
446}
447
448/*
449 * RCU scale writer kthread. Repeatedly does a grace period.
450 */
451static int
452rcu_scale_writer(void *arg)
453{
454 int i = 0;
455 int i_max;
456 unsigned long jdone;
457 long me = (long)arg;
458 struct rcu_head *rhp = NULL;
459 bool started = false, done = false, alldone = false;
460 u64 t;
461 DEFINE_TORTURE_RANDOM(tr);
462 u64 *wdp;
463 u64 *wdpp = writer_durations[me];
464
465 VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started");
466 WARN_ON(!wdpp);
467 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
468 current->flags |= PF_NO_SETAFFINITY;
469 sched_set_fifo_low(current);
470
471 if (holdoff)
472 schedule_timeout_idle(holdoff * HZ);
473
474 /*
475 * Wait until rcu_end_inkernel_boot() is called for normal GP tests
476 * so that RCU is not always expedited for normal GP tests.
477 * The system_state test is approximate, but works well in practice.
478 */
479 while (!gp_exp && system_state != SYSTEM_RUNNING)
480 schedule_timeout_uninterruptible(1);
481
482 t = ktime_get_mono_fast_ns();
483 if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) {
484 t_rcu_scale_writer_started = t;
485 if (gp_exp) {
486 b_rcu_gp_test_started =
487 cur_ops->exp_completed() / 2;
488 } else {
489 b_rcu_gp_test_started = cur_ops->get_gp_seq();
490 }
491 }
492
493 jdone = jiffies + minruntime * HZ;
494 do {
495 if (writer_holdoff)
496 udelay(writer_holdoff);
497 if (writer_holdoff_jiffies)
498 schedule_timeout_idle(torture_random(&tr) % writer_holdoff_jiffies + 1);
499 wdp = &wdpp[i];
500 *wdp = ktime_get_mono_fast_ns();
501 if (gp_async) {
502retry:
503 if (!rhp)
504 rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
505 if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) {
506 atomic_inc(this_cpu_ptr(&n_async_inflight));
507 cur_ops->async(rhp, rcu_scale_async_cb);
508 rhp = NULL;
509 } else if (!kthread_should_stop()) {
510 cur_ops->gp_barrier();
511 goto retry;
512 } else {
513 kfree(rhp); /* Because we are stopping. */
514 }
515 } else if (gp_exp) {
516 cur_ops->exp_sync();
517 } else {
518 cur_ops->sync();
519 }
520 t = ktime_get_mono_fast_ns();
521 *wdp = t - *wdp;
522 i_max = i;
523 if (!started &&
524 atomic_read(&n_rcu_scale_writer_started) >= nrealwriters)
525 started = true;
526 if (!done && i >= MIN_MEAS && time_after(jiffies, jdone)) {
527 done = true;
528 sched_set_normal(current, 0);
529 pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n",
530 scale_type, SCALE_FLAG, me, MIN_MEAS);
531 if (atomic_inc_return(&n_rcu_scale_writer_finished) >=
532 nrealwriters) {
533 schedule_timeout_interruptible(10);
534 rcu_ftrace_dump(DUMP_ALL);
535 SCALEOUT_STRING("Test complete");
536 t_rcu_scale_writer_finished = t;
537 if (gp_exp) {
538 b_rcu_gp_test_finished =
539 cur_ops->exp_completed() / 2;
540 } else {
541 b_rcu_gp_test_finished =
542 cur_ops->get_gp_seq();
543 }
544 if (shutdown) {
545 smp_mb(); /* Assign before wake. */
546 wake_up(&shutdown_wq);
547 }
548 }
549 }
550 if (done && !alldone &&
551 atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters)
552 alldone = true;
553 if (started && !alldone && i < MAX_MEAS - 1)
554 i++;
555 rcu_scale_wait_shutdown();
556 } while (!torture_must_stop());
557 if (gp_async) {
558 cur_ops->gp_barrier();
559 }
560 writer_n_durations[me] = i_max + 1;
561 torture_kthread_stopping("rcu_scale_writer");
562 return 0;
563}
564
565static void
566rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag)
567{
568 pr_alert("%s" SCALE_FLAG
569 "--- %s: gp_async=%d gp_async_max=%d gp_exp=%d holdoff=%d minruntime=%d nreaders=%d nwriters=%d writer_holdoff=%d writer_holdoff_jiffies=%d verbose=%d shutdown=%d\n",
570 scale_type, tag, gp_async, gp_async_max, gp_exp, holdoff, minruntime, nrealreaders, nrealwriters, writer_holdoff, writer_holdoff_jiffies, verbose, shutdown);
571}
572
573/*
574 * Return the number if non-negative. If -1, the number of CPUs.
575 * If less than -1, that much less than the number of CPUs, but
576 * at least one.
577 */
578static int compute_real(int n)
579{
580 int nr;
581
582 if (n >= 0) {
583 nr = n;
584 } else {
585 nr = num_online_cpus() + 1 + n;
586 if (nr <= 0)
587 nr = 1;
588 }
589 return nr;
590}
591
592/*
593 * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number
594 * of iterations and measure total time and number of GP for all iterations to complete.
595 */
596
597torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu().");
598torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration.");
599torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees.");
600torture_param(bool, kfree_rcu_test_double, false, "Do we run a kfree_rcu() double-argument scale test?");
601torture_param(bool, kfree_rcu_test_single, false, "Do we run a kfree_rcu() single-argument scale test?");
602
603static struct task_struct **kfree_reader_tasks;
604static int kfree_nrealthreads;
605static atomic_t n_kfree_scale_thread_started;
606static atomic_t n_kfree_scale_thread_ended;
607static struct task_struct *kthread_tp;
608static u64 kthread_stime;
609
610struct kfree_obj {
611 char kfree_obj[8];
612 struct rcu_head rh;
613};
614
615/* Used if doing RCU-kfree'ing via call_rcu(). */
616static void kfree_call_rcu(struct rcu_head *rh)
617{
618 struct kfree_obj *obj = container_of(rh, struct kfree_obj, rh);
619
620 kfree(obj);
621}
622
623static int
624kfree_scale_thread(void *arg)
625{
626 int i, loop = 0;
627 long me = (long)arg;
628 struct kfree_obj *alloc_ptr;
629 u64 start_time, end_time;
630 long long mem_begin, mem_during = 0;
631 bool kfree_rcu_test_both;
632 DEFINE_TORTURE_RANDOM(tr);
633
634 VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started");
635 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
636 set_user_nice(current, MAX_NICE);
637 kfree_rcu_test_both = (kfree_rcu_test_single == kfree_rcu_test_double);
638
639 start_time = ktime_get_mono_fast_ns();
640
641 if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) {
642 if (gp_exp)
643 b_rcu_gp_test_started = cur_ops->exp_completed() / 2;
644 else
645 b_rcu_gp_test_started = cur_ops->get_gp_seq();
646 }
647
648 do {
649 if (!mem_during) {
650 mem_during = mem_begin = si_mem_available();
651 } else if (loop % (kfree_loops / 4) == 0) {
652 mem_during = (mem_during + si_mem_available()) / 2;
653 }
654
655 for (i = 0; i < kfree_alloc_num; i++) {
656 alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL);
657 if (!alloc_ptr)
658 return -ENOMEM;
659
660 if (kfree_by_call_rcu) {
661 call_rcu(&(alloc_ptr->rh), kfree_call_rcu);
662 continue;
663 }
664
665 // By default kfree_rcu_test_single and kfree_rcu_test_double are
666 // initialized to false. If both have the same value (false or true)
667 // both are randomly tested, otherwise only the one with value true
668 // is tested.
669 if ((kfree_rcu_test_single && !kfree_rcu_test_double) ||
670 (kfree_rcu_test_both && torture_random(&tr) & 0x800))
671 kfree_rcu_mightsleep(alloc_ptr);
672 else
673 kfree_rcu(alloc_ptr, rh);
674 }
675
676 cond_resched();
677 } while (!torture_must_stop() && ++loop < kfree_loops);
678
679 if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) {
680 end_time = ktime_get_mono_fast_ns();
681
682 if (gp_exp)
683 b_rcu_gp_test_finished = cur_ops->exp_completed() / 2;
684 else
685 b_rcu_gp_test_finished = cur_ops->get_gp_seq();
686
687 pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n",
688 (unsigned long long)(end_time - start_time), kfree_loops,
689 rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started),
690 (mem_begin - mem_during) >> (20 - PAGE_SHIFT));
691
692 if (shutdown) {
693 smp_mb(); /* Assign before wake. */
694 wake_up(&shutdown_wq);
695 }
696 }
697
698 torture_kthread_stopping("kfree_scale_thread");
699 return 0;
700}
701
702static void
703kfree_scale_cleanup(void)
704{
705 int i;
706
707 if (torture_cleanup_begin())
708 return;
709
710 if (kfree_reader_tasks) {
711 for (i = 0; i < kfree_nrealthreads; i++)
712 torture_stop_kthread(kfree_scale_thread,
713 kfree_reader_tasks[i]);
714 kfree(kfree_reader_tasks);
715 }
716
717 torture_cleanup_end();
718}
719
720/*
721 * shutdown kthread. Just waits to be awakened, then shuts down system.
722 */
723static int
724kfree_scale_shutdown(void *arg)
725{
726 wait_event_idle(shutdown_wq,
727 atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads);
728
729 smp_mb(); /* Wake before output. */
730
731 kfree_scale_cleanup();
732 kernel_power_off();
733 return -EINVAL;
734}
735
736// Used if doing RCU-kfree'ing via call_rcu().
737static unsigned long jiffies_at_lazy_cb;
738static struct rcu_head lazy_test1_rh;
739static int rcu_lazy_test1_cb_called;
740static void call_rcu_lazy_test1(struct rcu_head *rh)
741{
742 jiffies_at_lazy_cb = jiffies;
743 WRITE_ONCE(rcu_lazy_test1_cb_called, 1);
744}
745
746static int __init
747kfree_scale_init(void)
748{
749 int firsterr = 0;
750 long i;
751 unsigned long jif_start;
752 unsigned long orig_jif;
753
754 pr_alert("%s" SCALE_FLAG
755 "--- kfree_rcu_test: kfree_mult=%d kfree_by_call_rcu=%d kfree_nthreads=%d kfree_alloc_num=%d kfree_loops=%d kfree_rcu_test_double=%d kfree_rcu_test_single=%d\n",
756 scale_type, kfree_mult, kfree_by_call_rcu, kfree_nthreads, kfree_alloc_num, kfree_loops, kfree_rcu_test_double, kfree_rcu_test_single);
757
758 // Also, do a quick self-test to ensure laziness is as much as
759 // expected.
760 if (kfree_by_call_rcu && !IS_ENABLED(CONFIG_RCU_LAZY)) {
761 pr_alert("CONFIG_RCU_LAZY is disabled, falling back to kfree_rcu() for delayed RCU kfree'ing\n");
762 kfree_by_call_rcu = 0;
763 }
764
765 if (kfree_by_call_rcu) {
766 /* do a test to check the timeout. */
767 orig_jif = rcu_get_jiffies_lazy_flush();
768
769 rcu_set_jiffies_lazy_flush(2 * HZ);
770 rcu_barrier();
771
772 jif_start = jiffies;
773 jiffies_at_lazy_cb = 0;
774 call_rcu(&lazy_test1_rh, call_rcu_lazy_test1);
775
776 smp_cond_load_relaxed(&rcu_lazy_test1_cb_called, VAL == 1);
777
778 rcu_set_jiffies_lazy_flush(orig_jif);
779
780 if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) {
781 pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n");
782 WARN_ON_ONCE(1);
783 return -1;
784 }
785
786 if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) {
787 pr_alert("ERROR: call_rcu() CBs are being too lazy!\n");
788 WARN_ON_ONCE(1);
789 return -1;
790 }
791 }
792
793 kfree_nrealthreads = compute_real(kfree_nthreads);
794 /* Start up the kthreads. */
795 if (shutdown) {
796 init_waitqueue_head(&shutdown_wq);
797 firsterr = torture_create_kthread(kfree_scale_shutdown, NULL,
798 shutdown_task);
799 if (torture_init_error(firsterr))
800 goto unwind;
801 schedule_timeout_uninterruptible(1);
802 }
803
804 pr_alert("kfree object size=%zu, kfree_by_call_rcu=%d\n",
805 kfree_mult * sizeof(struct kfree_obj),
806 kfree_by_call_rcu);
807
808 kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
809 GFP_KERNEL);
810 if (kfree_reader_tasks == NULL) {
811 firsterr = -ENOMEM;
812 goto unwind;
813 }
814
815 for (i = 0; i < kfree_nrealthreads; i++) {
816 firsterr = torture_create_kthread(kfree_scale_thread, (void *)i,
817 kfree_reader_tasks[i]);
818 if (torture_init_error(firsterr))
819 goto unwind;
820 }
821
822 while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads)
823 schedule_timeout_uninterruptible(1);
824
825 torture_init_end();
826 return 0;
827
828unwind:
829 torture_init_end();
830 kfree_scale_cleanup();
831 return firsterr;
832}
833
834static void
835rcu_scale_cleanup(void)
836{
837 int i;
838 int j;
839 int ngps = 0;
840 u64 *wdp;
841 u64 *wdpp;
842
843 /*
844 * Would like warning at start, but everything is expedited
845 * during the mid-boot phase, so have to wait till the end.
846 */
847 if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp)
848 SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!");
849 if (rcu_gp_is_normal() && gp_exp)
850 SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!");
851 if (gp_exp && gp_async)
852 SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!");
853
854 // If built-in, just report all of the GP kthread's CPU time.
855 if (IS_BUILTIN(CONFIG_RCU_SCALE_TEST) && !kthread_tp && cur_ops->rso_gp_kthread)
856 kthread_tp = cur_ops->rso_gp_kthread();
857 if (kthread_tp) {
858 u32 ns;
859 u64 us;
860
861 kthread_stime = kthread_tp->stime - kthread_stime;
862 us = div_u64_rem(kthread_stime, 1000, &ns);
863 pr_info("rcu_scale: Grace-period kthread CPU time: %llu.%03u us\n", us, ns);
864 show_rcu_gp_kthreads();
865 }
866 if (kfree_rcu_test) {
867 kfree_scale_cleanup();
868 return;
869 }
870
871 if (torture_cleanup_begin())
872 return;
873 if (!cur_ops) {
874 torture_cleanup_end();
875 return;
876 }
877
878 if (reader_tasks) {
879 for (i = 0; i < nrealreaders; i++)
880 torture_stop_kthread(rcu_scale_reader,
881 reader_tasks[i]);
882 kfree(reader_tasks);
883 }
884
885 if (writer_tasks) {
886 for (i = 0; i < nrealwriters; i++) {
887 torture_stop_kthread(rcu_scale_writer,
888 writer_tasks[i]);
889 if (!writer_n_durations)
890 continue;
891 j = writer_n_durations[i];
892 pr_alert("%s%s writer %d gps: %d\n",
893 scale_type, SCALE_FLAG, i, j);
894 ngps += j;
895 }
896 pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n",
897 scale_type, SCALE_FLAG,
898 t_rcu_scale_writer_started, t_rcu_scale_writer_finished,
899 t_rcu_scale_writer_finished -
900 t_rcu_scale_writer_started,
901 ngps,
902 rcuscale_seq_diff(b_rcu_gp_test_finished,
903 b_rcu_gp_test_started));
904 for (i = 0; i < nrealwriters; i++) {
905 if (!writer_durations)
906 break;
907 if (!writer_n_durations)
908 continue;
909 wdpp = writer_durations[i];
910 if (!wdpp)
911 continue;
912 for (j = 0; j < writer_n_durations[i]; j++) {
913 wdp = &wdpp[j];
914 pr_alert("%s%s %4d writer-duration: %5d %llu\n",
915 scale_type, SCALE_FLAG,
916 i, j, *wdp);
917 if (j % 100 == 0)
918 schedule_timeout_uninterruptible(1);
919 }
920 kfree(writer_durations[i]);
921 }
922 kfree(writer_tasks);
923 kfree(writer_durations);
924 kfree(writer_n_durations);
925 }
926
927 /* Do torture-type-specific cleanup operations. */
928 if (cur_ops->cleanup != NULL)
929 cur_ops->cleanup();
930
931 torture_cleanup_end();
932}
933
934/*
935 * RCU scalability shutdown kthread. Just waits to be awakened, then shuts
936 * down system.
937 */
938static int
939rcu_scale_shutdown(void *arg)
940{
941 wait_event_idle(shutdown_wq, atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters);
942 smp_mb(); /* Wake before output. */
943 rcu_scale_cleanup();
944 kernel_power_off();
945 return -EINVAL;
946}
947
948static int __init
949rcu_scale_init(void)
950{
951 long i;
952 int firsterr = 0;
953 static struct rcu_scale_ops *scale_ops[] = {
954 &rcu_ops, &srcu_ops, &srcud_ops, TASKS_OPS TASKS_RUDE_OPS TASKS_TRACING_OPS
955 };
956
957 if (!torture_init_begin(scale_type, verbose))
958 return -EBUSY;
959
960 /* Process args and announce that the scalability'er is on the job. */
961 for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
962 cur_ops = scale_ops[i];
963 if (strcmp(scale_type, cur_ops->name) == 0)
964 break;
965 }
966 if (i == ARRAY_SIZE(scale_ops)) {
967 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
968 pr_alert("rcu-scale types:");
969 for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
970 pr_cont(" %s", scale_ops[i]->name);
971 pr_cont("\n");
972 firsterr = -EINVAL;
973 cur_ops = NULL;
974 goto unwind;
975 }
976 if (cur_ops->init)
977 cur_ops->init();
978
979 if (cur_ops->rso_gp_kthread) {
980 kthread_tp = cur_ops->rso_gp_kthread();
981 if (kthread_tp)
982 kthread_stime = kthread_tp->stime;
983 }
984 if (kfree_rcu_test)
985 return kfree_scale_init();
986
987 nrealwriters = compute_real(nwriters);
988 nrealreaders = compute_real(nreaders);
989 atomic_set(&n_rcu_scale_reader_started, 0);
990 atomic_set(&n_rcu_scale_writer_started, 0);
991 atomic_set(&n_rcu_scale_writer_finished, 0);
992 rcu_scale_print_module_parms(cur_ops, "Start of test");
993
994 /* Start up the kthreads. */
995
996 if (shutdown) {
997 init_waitqueue_head(&shutdown_wq);
998 firsterr = torture_create_kthread(rcu_scale_shutdown, NULL,
999 shutdown_task);
1000 if (torture_init_error(firsterr))
1001 goto unwind;
1002 schedule_timeout_uninterruptible(1);
1003 }
1004 reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
1005 GFP_KERNEL);
1006 if (reader_tasks == NULL) {
1007 SCALEOUT_ERRSTRING("out of memory");
1008 firsterr = -ENOMEM;
1009 goto unwind;
1010 }
1011 for (i = 0; i < nrealreaders; i++) {
1012 firsterr = torture_create_kthread(rcu_scale_reader, (void *)i,
1013 reader_tasks[i]);
1014 if (torture_init_error(firsterr))
1015 goto unwind;
1016 }
1017 while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders)
1018 schedule_timeout_uninterruptible(1);
1019 writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]),
1020 GFP_KERNEL);
1021 writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations),
1022 GFP_KERNEL);
1023 writer_n_durations =
1024 kcalloc(nrealwriters, sizeof(*writer_n_durations),
1025 GFP_KERNEL);
1026 if (!writer_tasks || !writer_durations || !writer_n_durations) {
1027 SCALEOUT_ERRSTRING("out of memory");
1028 firsterr = -ENOMEM;
1029 goto unwind;
1030 }
1031 for (i = 0; i < nrealwriters; i++) {
1032 writer_durations[i] =
1033 kcalloc(MAX_MEAS, sizeof(*writer_durations[i]),
1034 GFP_KERNEL);
1035 if (!writer_durations[i]) {
1036 firsterr = -ENOMEM;
1037 goto unwind;
1038 }
1039 firsterr = torture_create_kthread(rcu_scale_writer, (void *)i,
1040 writer_tasks[i]);
1041 if (torture_init_error(firsterr))
1042 goto unwind;
1043 }
1044 torture_init_end();
1045 return 0;
1046
1047unwind:
1048 torture_init_end();
1049 rcu_scale_cleanup();
1050 if (shutdown) {
1051 WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
1052 kernel_power_off();
1053 }
1054 return firsterr;
1055}
1056
1057module_init(rcu_scale_init);
1058module_exit(rcu_scale_cleanup);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Read-Copy Update module-based scalability-test facility
4 *
5 * Copyright (C) IBM Corporation, 2015
6 *
7 * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
8 */
9
10#define pr_fmt(fmt) fmt
11
12#include <linux/types.h>
13#include <linux/kernel.h>
14#include <linux/init.h>
15#include <linux/mm.h>
16#include <linux/module.h>
17#include <linux/kthread.h>
18#include <linux/err.h>
19#include <linux/spinlock.h>
20#include <linux/smp.h>
21#include <linux/rcupdate.h>
22#include <linux/interrupt.h>
23#include <linux/sched.h>
24#include <uapi/linux/sched/types.h>
25#include <linux/atomic.h>
26#include <linux/bitops.h>
27#include <linux/completion.h>
28#include <linux/moduleparam.h>
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/reboot.h>
32#include <linux/freezer.h>
33#include <linux/cpu.h>
34#include <linux/delay.h>
35#include <linux/stat.h>
36#include <linux/srcu.h>
37#include <linux/slab.h>
38#include <asm/byteorder.h>
39#include <linux/torture.h>
40#include <linux/vmalloc.h>
41#include <linux/rcupdate_trace.h>
42
43#include "rcu.h"
44
45MODULE_LICENSE("GPL");
46MODULE_AUTHOR("Paul E. McKenney <paulmck@linux.ibm.com>");
47
48#define SCALE_FLAG "-scale:"
49#define SCALEOUT_STRING(s) \
50 pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s)
51#define VERBOSE_SCALEOUT_STRING(s) \
52 do { if (verbose) pr_alert("%s" SCALE_FLAG " %s\n", scale_type, s); } while (0)
53#define VERBOSE_SCALEOUT_ERRSTRING(s) \
54 do { if (verbose) pr_alert("%s" SCALE_FLAG "!!! %s\n", scale_type, s); } while (0)
55
56/*
57 * The intended use cases for the nreaders and nwriters module parameters
58 * are as follows:
59 *
60 * 1. Specify only the nr_cpus kernel boot parameter. This will
61 * set both nreaders and nwriters to the value specified by
62 * nr_cpus for a mixed reader/writer test.
63 *
64 * 2. Specify the nr_cpus kernel boot parameter, but set
65 * rcuscale.nreaders to zero. This will set nwriters to the
66 * value specified by nr_cpus for an update-only test.
67 *
68 * 3. Specify the nr_cpus kernel boot parameter, but set
69 * rcuscale.nwriters to zero. This will set nreaders to the
70 * value specified by nr_cpus for a read-only test.
71 *
72 * Various other use cases may of course be specified.
73 *
74 * Note that this test's readers are intended only as a test load for
75 * the writers. The reader scalability statistics will be overly
76 * pessimistic due to the per-critical-section interrupt disabling,
77 * test-end checks, and the pair of calls through pointers.
78 */
79
80#ifdef MODULE
81# define RCUSCALE_SHUTDOWN 0
82#else
83# define RCUSCALE_SHUTDOWN 1
84#endif
85
86torture_param(bool, gp_async, false, "Use asynchronous GP wait primitives");
87torture_param(int, gp_async_max, 1000, "Max # outstanding waits per reader");
88torture_param(bool, gp_exp, false, "Use expedited GP wait primitives");
89torture_param(int, holdoff, 10, "Holdoff time before test start (s)");
90torture_param(int, nreaders, -1, "Number of RCU reader threads");
91torture_param(int, nwriters, -1, "Number of RCU updater threads");
92torture_param(bool, shutdown, RCUSCALE_SHUTDOWN,
93 "Shutdown at end of scalability tests.");
94torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
95torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
96torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?");
97torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate.");
98
99static char *scale_type = "rcu";
100module_param(scale_type, charp, 0444);
101MODULE_PARM_DESC(scale_type, "Type of RCU to scalability-test (rcu, srcu, ...)");
102
103static int nrealreaders;
104static int nrealwriters;
105static struct task_struct **writer_tasks;
106static struct task_struct **reader_tasks;
107static struct task_struct *shutdown_task;
108
109static u64 **writer_durations;
110static int *writer_n_durations;
111static atomic_t n_rcu_scale_reader_started;
112static atomic_t n_rcu_scale_writer_started;
113static atomic_t n_rcu_scale_writer_finished;
114static wait_queue_head_t shutdown_wq;
115static u64 t_rcu_scale_writer_started;
116static u64 t_rcu_scale_writer_finished;
117static unsigned long b_rcu_gp_test_started;
118static unsigned long b_rcu_gp_test_finished;
119static DEFINE_PER_CPU(atomic_t, n_async_inflight);
120
121#define MAX_MEAS 10000
122#define MIN_MEAS 100
123
124/*
125 * Operations vector for selecting different types of tests.
126 */
127
128struct rcu_scale_ops {
129 int ptype;
130 void (*init)(void);
131 void (*cleanup)(void);
132 int (*readlock)(void);
133 void (*readunlock)(int idx);
134 unsigned long (*get_gp_seq)(void);
135 unsigned long (*gp_diff)(unsigned long new, unsigned long old);
136 unsigned long (*exp_completed)(void);
137 void (*async)(struct rcu_head *head, rcu_callback_t func);
138 void (*gp_barrier)(void);
139 void (*sync)(void);
140 void (*exp_sync)(void);
141 const char *name;
142};
143
144static struct rcu_scale_ops *cur_ops;
145
146/*
147 * Definitions for rcu scalability testing.
148 */
149
150static int rcu_scale_read_lock(void) __acquires(RCU)
151{
152 rcu_read_lock();
153 return 0;
154}
155
156static void rcu_scale_read_unlock(int idx) __releases(RCU)
157{
158 rcu_read_unlock();
159}
160
161static unsigned long __maybe_unused rcu_no_completed(void)
162{
163 return 0;
164}
165
166static void rcu_sync_scale_init(void)
167{
168}
169
170static struct rcu_scale_ops rcu_ops = {
171 .ptype = RCU_FLAVOR,
172 .init = rcu_sync_scale_init,
173 .readlock = rcu_scale_read_lock,
174 .readunlock = rcu_scale_read_unlock,
175 .get_gp_seq = rcu_get_gp_seq,
176 .gp_diff = rcu_seq_diff,
177 .exp_completed = rcu_exp_batches_completed,
178 .async = call_rcu,
179 .gp_barrier = rcu_barrier,
180 .sync = synchronize_rcu,
181 .exp_sync = synchronize_rcu_expedited,
182 .name = "rcu"
183};
184
185/*
186 * Definitions for srcu scalability testing.
187 */
188
189DEFINE_STATIC_SRCU(srcu_ctl_scale);
190static struct srcu_struct *srcu_ctlp = &srcu_ctl_scale;
191
192static int srcu_scale_read_lock(void) __acquires(srcu_ctlp)
193{
194 return srcu_read_lock(srcu_ctlp);
195}
196
197static void srcu_scale_read_unlock(int idx) __releases(srcu_ctlp)
198{
199 srcu_read_unlock(srcu_ctlp, idx);
200}
201
202static unsigned long srcu_scale_completed(void)
203{
204 return srcu_batches_completed(srcu_ctlp);
205}
206
207static void srcu_call_rcu(struct rcu_head *head, rcu_callback_t func)
208{
209 call_srcu(srcu_ctlp, head, func);
210}
211
212static void srcu_rcu_barrier(void)
213{
214 srcu_barrier(srcu_ctlp);
215}
216
217static void srcu_scale_synchronize(void)
218{
219 synchronize_srcu(srcu_ctlp);
220}
221
222static void srcu_scale_synchronize_expedited(void)
223{
224 synchronize_srcu_expedited(srcu_ctlp);
225}
226
227static struct rcu_scale_ops srcu_ops = {
228 .ptype = SRCU_FLAVOR,
229 .init = rcu_sync_scale_init,
230 .readlock = srcu_scale_read_lock,
231 .readunlock = srcu_scale_read_unlock,
232 .get_gp_seq = srcu_scale_completed,
233 .gp_diff = rcu_seq_diff,
234 .exp_completed = srcu_scale_completed,
235 .async = srcu_call_rcu,
236 .gp_barrier = srcu_rcu_barrier,
237 .sync = srcu_scale_synchronize,
238 .exp_sync = srcu_scale_synchronize_expedited,
239 .name = "srcu"
240};
241
242static struct srcu_struct srcud;
243
244static void srcu_sync_scale_init(void)
245{
246 srcu_ctlp = &srcud;
247 init_srcu_struct(srcu_ctlp);
248}
249
250static void srcu_sync_scale_cleanup(void)
251{
252 cleanup_srcu_struct(srcu_ctlp);
253}
254
255static struct rcu_scale_ops srcud_ops = {
256 .ptype = SRCU_FLAVOR,
257 .init = srcu_sync_scale_init,
258 .cleanup = srcu_sync_scale_cleanup,
259 .readlock = srcu_scale_read_lock,
260 .readunlock = srcu_scale_read_unlock,
261 .get_gp_seq = srcu_scale_completed,
262 .gp_diff = rcu_seq_diff,
263 .exp_completed = srcu_scale_completed,
264 .async = srcu_call_rcu,
265 .gp_barrier = srcu_rcu_barrier,
266 .sync = srcu_scale_synchronize,
267 .exp_sync = srcu_scale_synchronize_expedited,
268 .name = "srcud"
269};
270
271/*
272 * Definitions for RCU-tasks scalability testing.
273 */
274
275static int tasks_scale_read_lock(void)
276{
277 return 0;
278}
279
280static void tasks_scale_read_unlock(int idx)
281{
282}
283
284static struct rcu_scale_ops tasks_ops = {
285 .ptype = RCU_TASKS_FLAVOR,
286 .init = rcu_sync_scale_init,
287 .readlock = tasks_scale_read_lock,
288 .readunlock = tasks_scale_read_unlock,
289 .get_gp_seq = rcu_no_completed,
290 .gp_diff = rcu_seq_diff,
291 .async = call_rcu_tasks,
292 .gp_barrier = rcu_barrier_tasks,
293 .sync = synchronize_rcu_tasks,
294 .exp_sync = synchronize_rcu_tasks,
295 .name = "tasks"
296};
297
298/*
299 * Definitions for RCU-tasks-trace scalability testing.
300 */
301
302static int tasks_trace_scale_read_lock(void)
303{
304 rcu_read_lock_trace();
305 return 0;
306}
307
308static void tasks_trace_scale_read_unlock(int idx)
309{
310 rcu_read_unlock_trace();
311}
312
313static struct rcu_scale_ops tasks_tracing_ops = {
314 .ptype = RCU_TASKS_FLAVOR,
315 .init = rcu_sync_scale_init,
316 .readlock = tasks_trace_scale_read_lock,
317 .readunlock = tasks_trace_scale_read_unlock,
318 .get_gp_seq = rcu_no_completed,
319 .gp_diff = rcu_seq_diff,
320 .async = call_rcu_tasks_trace,
321 .gp_barrier = rcu_barrier_tasks_trace,
322 .sync = synchronize_rcu_tasks_trace,
323 .exp_sync = synchronize_rcu_tasks_trace,
324 .name = "tasks-tracing"
325};
326
327static unsigned long rcuscale_seq_diff(unsigned long new, unsigned long old)
328{
329 if (!cur_ops->gp_diff)
330 return new - old;
331 return cur_ops->gp_diff(new, old);
332}
333
334/*
335 * If scalability tests complete, wait for shutdown to commence.
336 */
337static void rcu_scale_wait_shutdown(void)
338{
339 cond_resched_tasks_rcu_qs();
340 if (atomic_read(&n_rcu_scale_writer_finished) < nrealwriters)
341 return;
342 while (!torture_must_stop())
343 schedule_timeout_uninterruptible(1);
344}
345
346/*
347 * RCU scalability reader kthread. Repeatedly does empty RCU read-side
348 * critical section, minimizing update-side interference. However, the
349 * point of this test is not to evaluate reader scalability, but instead
350 * to serve as a test load for update-side scalability testing.
351 */
352static int
353rcu_scale_reader(void *arg)
354{
355 unsigned long flags;
356 int idx;
357 long me = (long)arg;
358
359 VERBOSE_SCALEOUT_STRING("rcu_scale_reader task started");
360 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
361 set_user_nice(current, MAX_NICE);
362 atomic_inc(&n_rcu_scale_reader_started);
363
364 do {
365 local_irq_save(flags);
366 idx = cur_ops->readlock();
367 cur_ops->readunlock(idx);
368 local_irq_restore(flags);
369 rcu_scale_wait_shutdown();
370 } while (!torture_must_stop());
371 torture_kthread_stopping("rcu_scale_reader");
372 return 0;
373}
374
375/*
376 * Callback function for asynchronous grace periods from rcu_scale_writer().
377 */
378static void rcu_scale_async_cb(struct rcu_head *rhp)
379{
380 atomic_dec(this_cpu_ptr(&n_async_inflight));
381 kfree(rhp);
382}
383
384/*
385 * RCU scale writer kthread. Repeatedly does a grace period.
386 */
387static int
388rcu_scale_writer(void *arg)
389{
390 int i = 0;
391 int i_max;
392 long me = (long)arg;
393 struct rcu_head *rhp = NULL;
394 bool started = false, done = false, alldone = false;
395 u64 t;
396 u64 *wdp;
397 u64 *wdpp = writer_durations[me];
398
399 VERBOSE_SCALEOUT_STRING("rcu_scale_writer task started");
400 WARN_ON(!wdpp);
401 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
402 sched_set_fifo_low(current);
403
404 if (holdoff)
405 schedule_timeout_uninterruptible(holdoff * HZ);
406
407 /*
408 * Wait until rcu_end_inkernel_boot() is called for normal GP tests
409 * so that RCU is not always expedited for normal GP tests.
410 * The system_state test is approximate, but works well in practice.
411 */
412 while (!gp_exp && system_state != SYSTEM_RUNNING)
413 schedule_timeout_uninterruptible(1);
414
415 t = ktime_get_mono_fast_ns();
416 if (atomic_inc_return(&n_rcu_scale_writer_started) >= nrealwriters) {
417 t_rcu_scale_writer_started = t;
418 if (gp_exp) {
419 b_rcu_gp_test_started =
420 cur_ops->exp_completed() / 2;
421 } else {
422 b_rcu_gp_test_started = cur_ops->get_gp_seq();
423 }
424 }
425
426 do {
427 if (writer_holdoff)
428 udelay(writer_holdoff);
429 wdp = &wdpp[i];
430 *wdp = ktime_get_mono_fast_ns();
431 if (gp_async) {
432retry:
433 if (!rhp)
434 rhp = kmalloc(sizeof(*rhp), GFP_KERNEL);
435 if (rhp && atomic_read(this_cpu_ptr(&n_async_inflight)) < gp_async_max) {
436 atomic_inc(this_cpu_ptr(&n_async_inflight));
437 cur_ops->async(rhp, rcu_scale_async_cb);
438 rhp = NULL;
439 } else if (!kthread_should_stop()) {
440 cur_ops->gp_barrier();
441 goto retry;
442 } else {
443 kfree(rhp); /* Because we are stopping. */
444 }
445 } else if (gp_exp) {
446 cur_ops->exp_sync();
447 } else {
448 cur_ops->sync();
449 }
450 t = ktime_get_mono_fast_ns();
451 *wdp = t - *wdp;
452 i_max = i;
453 if (!started &&
454 atomic_read(&n_rcu_scale_writer_started) >= nrealwriters)
455 started = true;
456 if (!done && i >= MIN_MEAS) {
457 done = true;
458 sched_set_normal(current, 0);
459 pr_alert("%s%s rcu_scale_writer %ld has %d measurements\n",
460 scale_type, SCALE_FLAG, me, MIN_MEAS);
461 if (atomic_inc_return(&n_rcu_scale_writer_finished) >=
462 nrealwriters) {
463 schedule_timeout_interruptible(10);
464 rcu_ftrace_dump(DUMP_ALL);
465 SCALEOUT_STRING("Test complete");
466 t_rcu_scale_writer_finished = t;
467 if (gp_exp) {
468 b_rcu_gp_test_finished =
469 cur_ops->exp_completed() / 2;
470 } else {
471 b_rcu_gp_test_finished =
472 cur_ops->get_gp_seq();
473 }
474 if (shutdown) {
475 smp_mb(); /* Assign before wake. */
476 wake_up(&shutdown_wq);
477 }
478 }
479 }
480 if (done && !alldone &&
481 atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters)
482 alldone = true;
483 if (started && !alldone && i < MAX_MEAS - 1)
484 i++;
485 rcu_scale_wait_shutdown();
486 } while (!torture_must_stop());
487 if (gp_async) {
488 cur_ops->gp_barrier();
489 }
490 writer_n_durations[me] = i_max;
491 torture_kthread_stopping("rcu_scale_writer");
492 return 0;
493}
494
495static void
496rcu_scale_print_module_parms(struct rcu_scale_ops *cur_ops, const char *tag)
497{
498 pr_alert("%s" SCALE_FLAG
499 "--- %s: nreaders=%d nwriters=%d verbose=%d shutdown=%d\n",
500 scale_type, tag, nrealreaders, nrealwriters, verbose, shutdown);
501}
502
503static void
504rcu_scale_cleanup(void)
505{
506 int i;
507 int j;
508 int ngps = 0;
509 u64 *wdp;
510 u64 *wdpp;
511
512 /*
513 * Would like warning at start, but everything is expedited
514 * during the mid-boot phase, so have to wait till the end.
515 */
516 if (rcu_gp_is_expedited() && !rcu_gp_is_normal() && !gp_exp)
517 VERBOSE_SCALEOUT_ERRSTRING("All grace periods expedited, no normal ones to measure!");
518 if (rcu_gp_is_normal() && gp_exp)
519 VERBOSE_SCALEOUT_ERRSTRING("All grace periods normal, no expedited ones to measure!");
520 if (gp_exp && gp_async)
521 VERBOSE_SCALEOUT_ERRSTRING("No expedited async GPs, so went with async!");
522
523 if (torture_cleanup_begin())
524 return;
525 if (!cur_ops) {
526 torture_cleanup_end();
527 return;
528 }
529
530 if (reader_tasks) {
531 for (i = 0; i < nrealreaders; i++)
532 torture_stop_kthread(rcu_scale_reader,
533 reader_tasks[i]);
534 kfree(reader_tasks);
535 }
536
537 if (writer_tasks) {
538 for (i = 0; i < nrealwriters; i++) {
539 torture_stop_kthread(rcu_scale_writer,
540 writer_tasks[i]);
541 if (!writer_n_durations)
542 continue;
543 j = writer_n_durations[i];
544 pr_alert("%s%s writer %d gps: %d\n",
545 scale_type, SCALE_FLAG, i, j);
546 ngps += j;
547 }
548 pr_alert("%s%s start: %llu end: %llu duration: %llu gps: %d batches: %ld\n",
549 scale_type, SCALE_FLAG,
550 t_rcu_scale_writer_started, t_rcu_scale_writer_finished,
551 t_rcu_scale_writer_finished -
552 t_rcu_scale_writer_started,
553 ngps,
554 rcuscale_seq_diff(b_rcu_gp_test_finished,
555 b_rcu_gp_test_started));
556 for (i = 0; i < nrealwriters; i++) {
557 if (!writer_durations)
558 break;
559 if (!writer_n_durations)
560 continue;
561 wdpp = writer_durations[i];
562 if (!wdpp)
563 continue;
564 for (j = 0; j <= writer_n_durations[i]; j++) {
565 wdp = &wdpp[j];
566 pr_alert("%s%s %4d writer-duration: %5d %llu\n",
567 scale_type, SCALE_FLAG,
568 i, j, *wdp);
569 if (j % 100 == 0)
570 schedule_timeout_uninterruptible(1);
571 }
572 kfree(writer_durations[i]);
573 }
574 kfree(writer_tasks);
575 kfree(writer_durations);
576 kfree(writer_n_durations);
577 }
578
579 /* Do torture-type-specific cleanup operations. */
580 if (cur_ops->cleanup != NULL)
581 cur_ops->cleanup();
582
583 torture_cleanup_end();
584}
585
586/*
587 * Return the number if non-negative. If -1, the number of CPUs.
588 * If less than -1, that much less than the number of CPUs, but
589 * at least one.
590 */
591static int compute_real(int n)
592{
593 int nr;
594
595 if (n >= 0) {
596 nr = n;
597 } else {
598 nr = num_online_cpus() + 1 + n;
599 if (nr <= 0)
600 nr = 1;
601 }
602 return nr;
603}
604
605/*
606 * RCU scalability shutdown kthread. Just waits to be awakened, then shuts
607 * down system.
608 */
609static int
610rcu_scale_shutdown(void *arg)
611{
612 wait_event(shutdown_wq,
613 atomic_read(&n_rcu_scale_writer_finished) >= nrealwriters);
614 smp_mb(); /* Wake before output. */
615 rcu_scale_cleanup();
616 kernel_power_off();
617 return -EINVAL;
618}
619
620/*
621 * kfree_rcu() scalability tests: Start a kfree_rcu() loop on all CPUs for number
622 * of iterations and measure total time and number of GP for all iterations to complete.
623 */
624
625torture_param(int, kfree_nthreads, -1, "Number of threads running loops of kfree_rcu().");
626torture_param(int, kfree_alloc_num, 8000, "Number of allocations and frees done in an iteration.");
627torture_param(int, kfree_loops, 10, "Number of loops doing kfree_alloc_num allocations and frees.");
628torture_param(bool, kfree_rcu_test_double, false, "Do we run a kfree_rcu() double-argument scale test?");
629torture_param(bool, kfree_rcu_test_single, false, "Do we run a kfree_rcu() single-argument scale test?");
630
631static struct task_struct **kfree_reader_tasks;
632static int kfree_nrealthreads;
633static atomic_t n_kfree_scale_thread_started;
634static atomic_t n_kfree_scale_thread_ended;
635
636struct kfree_obj {
637 char kfree_obj[8];
638 struct rcu_head rh;
639};
640
641static int
642kfree_scale_thread(void *arg)
643{
644 int i, loop = 0;
645 long me = (long)arg;
646 struct kfree_obj *alloc_ptr;
647 u64 start_time, end_time;
648 long long mem_begin, mem_during = 0;
649 bool kfree_rcu_test_both;
650 DEFINE_TORTURE_RANDOM(tr);
651
652 VERBOSE_SCALEOUT_STRING("kfree_scale_thread task started");
653 set_cpus_allowed_ptr(current, cpumask_of(me % nr_cpu_ids));
654 set_user_nice(current, MAX_NICE);
655 kfree_rcu_test_both = (kfree_rcu_test_single == kfree_rcu_test_double);
656
657 start_time = ktime_get_mono_fast_ns();
658
659 if (atomic_inc_return(&n_kfree_scale_thread_started) >= kfree_nrealthreads) {
660 if (gp_exp)
661 b_rcu_gp_test_started = cur_ops->exp_completed() / 2;
662 else
663 b_rcu_gp_test_started = cur_ops->get_gp_seq();
664 }
665
666 do {
667 if (!mem_during) {
668 mem_during = mem_begin = si_mem_available();
669 } else if (loop % (kfree_loops / 4) == 0) {
670 mem_during = (mem_during + si_mem_available()) / 2;
671 }
672
673 for (i = 0; i < kfree_alloc_num; i++) {
674 alloc_ptr = kmalloc(kfree_mult * sizeof(struct kfree_obj), GFP_KERNEL);
675 if (!alloc_ptr)
676 return -ENOMEM;
677
678 // By default kfree_rcu_test_single and kfree_rcu_test_double are
679 // initialized to false. If both have the same value (false or true)
680 // both are randomly tested, otherwise only the one with value true
681 // is tested.
682 if ((kfree_rcu_test_single && !kfree_rcu_test_double) ||
683 (kfree_rcu_test_both && torture_random(&tr) & 0x800))
684 kfree_rcu(alloc_ptr);
685 else
686 kfree_rcu(alloc_ptr, rh);
687 }
688
689 cond_resched();
690 } while (!torture_must_stop() && ++loop < kfree_loops);
691
692 if (atomic_inc_return(&n_kfree_scale_thread_ended) >= kfree_nrealthreads) {
693 end_time = ktime_get_mono_fast_ns();
694
695 if (gp_exp)
696 b_rcu_gp_test_finished = cur_ops->exp_completed() / 2;
697 else
698 b_rcu_gp_test_finished = cur_ops->get_gp_seq();
699
700 pr_alert("Total time taken by all kfree'ers: %llu ns, loops: %d, batches: %ld, memory footprint: %lldMB\n",
701 (unsigned long long)(end_time - start_time), kfree_loops,
702 rcuscale_seq_diff(b_rcu_gp_test_finished, b_rcu_gp_test_started),
703 (mem_begin - mem_during) >> (20 - PAGE_SHIFT));
704
705 if (shutdown) {
706 smp_mb(); /* Assign before wake. */
707 wake_up(&shutdown_wq);
708 }
709 }
710
711 torture_kthread_stopping("kfree_scale_thread");
712 return 0;
713}
714
715static void
716kfree_scale_cleanup(void)
717{
718 int i;
719
720 if (torture_cleanup_begin())
721 return;
722
723 if (kfree_reader_tasks) {
724 for (i = 0; i < kfree_nrealthreads; i++)
725 torture_stop_kthread(kfree_scale_thread,
726 kfree_reader_tasks[i]);
727 kfree(kfree_reader_tasks);
728 }
729
730 torture_cleanup_end();
731}
732
733/*
734 * shutdown kthread. Just waits to be awakened, then shuts down system.
735 */
736static int
737kfree_scale_shutdown(void *arg)
738{
739 wait_event(shutdown_wq,
740 atomic_read(&n_kfree_scale_thread_ended) >= kfree_nrealthreads);
741
742 smp_mb(); /* Wake before output. */
743
744 kfree_scale_cleanup();
745 kernel_power_off();
746 return -EINVAL;
747}
748
749static int __init
750kfree_scale_init(void)
751{
752 long i;
753 int firsterr = 0;
754
755 kfree_nrealthreads = compute_real(kfree_nthreads);
756 /* Start up the kthreads. */
757 if (shutdown) {
758 init_waitqueue_head(&shutdown_wq);
759 firsterr = torture_create_kthread(kfree_scale_shutdown, NULL,
760 shutdown_task);
761 if (firsterr)
762 goto unwind;
763 schedule_timeout_uninterruptible(1);
764 }
765
766 pr_alert("kfree object size=%zu\n", kfree_mult * sizeof(struct kfree_obj));
767
768 kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
769 GFP_KERNEL);
770 if (kfree_reader_tasks == NULL) {
771 firsterr = -ENOMEM;
772 goto unwind;
773 }
774
775 for (i = 0; i < kfree_nrealthreads; i++) {
776 firsterr = torture_create_kthread(kfree_scale_thread, (void *)i,
777 kfree_reader_tasks[i]);
778 if (firsterr)
779 goto unwind;
780 }
781
782 while (atomic_read(&n_kfree_scale_thread_started) < kfree_nrealthreads)
783 schedule_timeout_uninterruptible(1);
784
785 torture_init_end();
786 return 0;
787
788unwind:
789 torture_init_end();
790 kfree_scale_cleanup();
791 return firsterr;
792}
793
794static int __init
795rcu_scale_init(void)
796{
797 long i;
798 int firsterr = 0;
799 static struct rcu_scale_ops *scale_ops[] = {
800 &rcu_ops, &srcu_ops, &srcud_ops, &tasks_ops, &tasks_tracing_ops
801 };
802
803 if (!torture_init_begin(scale_type, verbose))
804 return -EBUSY;
805
806 /* Process args and announce that the scalability'er is on the job. */
807 for (i = 0; i < ARRAY_SIZE(scale_ops); i++) {
808 cur_ops = scale_ops[i];
809 if (strcmp(scale_type, cur_ops->name) == 0)
810 break;
811 }
812 if (i == ARRAY_SIZE(scale_ops)) {
813 pr_alert("rcu-scale: invalid scale type: \"%s\"\n", scale_type);
814 pr_alert("rcu-scale types:");
815 for (i = 0; i < ARRAY_SIZE(scale_ops); i++)
816 pr_cont(" %s", scale_ops[i]->name);
817 pr_cont("\n");
818 firsterr = -EINVAL;
819 cur_ops = NULL;
820 goto unwind;
821 }
822 if (cur_ops->init)
823 cur_ops->init();
824
825 if (kfree_rcu_test)
826 return kfree_scale_init();
827
828 nrealwriters = compute_real(nwriters);
829 nrealreaders = compute_real(nreaders);
830 atomic_set(&n_rcu_scale_reader_started, 0);
831 atomic_set(&n_rcu_scale_writer_started, 0);
832 atomic_set(&n_rcu_scale_writer_finished, 0);
833 rcu_scale_print_module_parms(cur_ops, "Start of test");
834
835 /* Start up the kthreads. */
836
837 if (shutdown) {
838 init_waitqueue_head(&shutdown_wq);
839 firsterr = torture_create_kthread(rcu_scale_shutdown, NULL,
840 shutdown_task);
841 if (firsterr)
842 goto unwind;
843 schedule_timeout_uninterruptible(1);
844 }
845 reader_tasks = kcalloc(nrealreaders, sizeof(reader_tasks[0]),
846 GFP_KERNEL);
847 if (reader_tasks == NULL) {
848 VERBOSE_SCALEOUT_ERRSTRING("out of memory");
849 firsterr = -ENOMEM;
850 goto unwind;
851 }
852 for (i = 0; i < nrealreaders; i++) {
853 firsterr = torture_create_kthread(rcu_scale_reader, (void *)i,
854 reader_tasks[i]);
855 if (firsterr)
856 goto unwind;
857 }
858 while (atomic_read(&n_rcu_scale_reader_started) < nrealreaders)
859 schedule_timeout_uninterruptible(1);
860 writer_tasks = kcalloc(nrealwriters, sizeof(reader_tasks[0]),
861 GFP_KERNEL);
862 writer_durations = kcalloc(nrealwriters, sizeof(*writer_durations),
863 GFP_KERNEL);
864 writer_n_durations =
865 kcalloc(nrealwriters, sizeof(*writer_n_durations),
866 GFP_KERNEL);
867 if (!writer_tasks || !writer_durations || !writer_n_durations) {
868 VERBOSE_SCALEOUT_ERRSTRING("out of memory");
869 firsterr = -ENOMEM;
870 goto unwind;
871 }
872 for (i = 0; i < nrealwriters; i++) {
873 writer_durations[i] =
874 kcalloc(MAX_MEAS, sizeof(*writer_durations[i]),
875 GFP_KERNEL);
876 if (!writer_durations[i]) {
877 firsterr = -ENOMEM;
878 goto unwind;
879 }
880 firsterr = torture_create_kthread(rcu_scale_writer, (void *)i,
881 writer_tasks[i]);
882 if (firsterr)
883 goto unwind;
884 }
885 torture_init_end();
886 return 0;
887
888unwind:
889 torture_init_end();
890 rcu_scale_cleanup();
891 if (shutdown) {
892 WARN_ON(!IS_MODULE(CONFIG_RCU_SCALE_TEST));
893 kernel_power_off();
894 }
895 return firsterr;
896}
897
898module_init(rcu_scale_init);
899module_exit(rcu_scale_cleanup);