Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include <linux/fileattr.h>
30#include <linux/fsverity.h>
31#include <linux/sched/xacct.h>
32#include "ctree.h"
33#include "disk-io.h"
34#include "export.h"
35#include "transaction.h"
36#include "btrfs_inode.h"
37#include "volumes.h"
38#include "locking.h"
39#include "backref.h"
40#include "send.h"
41#include "dev-replace.h"
42#include "props.h"
43#include "sysfs.h"
44#include "qgroup.h"
45#include "tree-log.h"
46#include "compression.h"
47#include "space-info.h"
48#include "block-group.h"
49#include "fs.h"
50#include "accessors.h"
51#include "extent-tree.h"
52#include "root-tree.h"
53#include "defrag.h"
54#include "dir-item.h"
55#include "uuid-tree.h"
56#include "ioctl.h"
57#include "file.h"
58#include "scrub.h"
59#include "super.h"
60
61#ifdef CONFIG_64BIT
62/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
63 * structures are incorrect, as the timespec structure from userspace
64 * is 4 bytes too small. We define these alternatives here to teach
65 * the kernel about the 32-bit struct packing.
66 */
67struct btrfs_ioctl_timespec_32 {
68 __u64 sec;
69 __u32 nsec;
70} __attribute__ ((__packed__));
71
72struct btrfs_ioctl_received_subvol_args_32 {
73 char uuid[BTRFS_UUID_SIZE]; /* in */
74 __u64 stransid; /* in */
75 __u64 rtransid; /* out */
76 struct btrfs_ioctl_timespec_32 stime; /* in */
77 struct btrfs_ioctl_timespec_32 rtime; /* out */
78 __u64 flags; /* in */
79 __u64 reserved[16]; /* in */
80} __attribute__ ((__packed__));
81
82#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
83 struct btrfs_ioctl_received_subvol_args_32)
84#endif
85
86#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
87struct btrfs_ioctl_send_args_32 {
88 __s64 send_fd; /* in */
89 __u64 clone_sources_count; /* in */
90 compat_uptr_t clone_sources; /* in */
91 __u64 parent_root; /* in */
92 __u64 flags; /* in */
93 __u32 version; /* in */
94 __u8 reserved[28]; /* in */
95} __attribute__ ((__packed__));
96
97#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
98 struct btrfs_ioctl_send_args_32)
99
100struct btrfs_ioctl_encoded_io_args_32 {
101 compat_uptr_t iov;
102 compat_ulong_t iovcnt;
103 __s64 offset;
104 __u64 flags;
105 __u64 len;
106 __u64 unencoded_len;
107 __u64 unencoded_offset;
108 __u32 compression;
109 __u32 encryption;
110 __u8 reserved[64];
111};
112
113#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
114 struct btrfs_ioctl_encoded_io_args_32)
115#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
116 struct btrfs_ioctl_encoded_io_args_32)
117#endif
118
119/* Mask out flags that are inappropriate for the given type of inode. */
120static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
121 unsigned int flags)
122{
123 if (S_ISDIR(inode->i_mode))
124 return flags;
125 else if (S_ISREG(inode->i_mode))
126 return flags & ~FS_DIRSYNC_FL;
127 else
128 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
129}
130
131/*
132 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
133 * ioctl.
134 */
135static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
136{
137 unsigned int iflags = 0;
138 u32 flags = binode->flags;
139 u32 ro_flags = binode->ro_flags;
140
141 if (flags & BTRFS_INODE_SYNC)
142 iflags |= FS_SYNC_FL;
143 if (flags & BTRFS_INODE_IMMUTABLE)
144 iflags |= FS_IMMUTABLE_FL;
145 if (flags & BTRFS_INODE_APPEND)
146 iflags |= FS_APPEND_FL;
147 if (flags & BTRFS_INODE_NODUMP)
148 iflags |= FS_NODUMP_FL;
149 if (flags & BTRFS_INODE_NOATIME)
150 iflags |= FS_NOATIME_FL;
151 if (flags & BTRFS_INODE_DIRSYNC)
152 iflags |= FS_DIRSYNC_FL;
153 if (flags & BTRFS_INODE_NODATACOW)
154 iflags |= FS_NOCOW_FL;
155 if (ro_flags & BTRFS_INODE_RO_VERITY)
156 iflags |= FS_VERITY_FL;
157
158 if (flags & BTRFS_INODE_NOCOMPRESS)
159 iflags |= FS_NOCOMP_FL;
160 else if (flags & BTRFS_INODE_COMPRESS)
161 iflags |= FS_COMPR_FL;
162
163 return iflags;
164}
165
166/*
167 * Update inode->i_flags based on the btrfs internal flags.
168 */
169void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
170{
171 struct btrfs_inode *binode = BTRFS_I(inode);
172 unsigned int new_fl = 0;
173
174 if (binode->flags & BTRFS_INODE_SYNC)
175 new_fl |= S_SYNC;
176 if (binode->flags & BTRFS_INODE_IMMUTABLE)
177 new_fl |= S_IMMUTABLE;
178 if (binode->flags & BTRFS_INODE_APPEND)
179 new_fl |= S_APPEND;
180 if (binode->flags & BTRFS_INODE_NOATIME)
181 new_fl |= S_NOATIME;
182 if (binode->flags & BTRFS_INODE_DIRSYNC)
183 new_fl |= S_DIRSYNC;
184 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
185 new_fl |= S_VERITY;
186
187 set_mask_bits(&inode->i_flags,
188 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
189 S_VERITY, new_fl);
190}
191
192/*
193 * Check if @flags are a supported and valid set of FS_*_FL flags and that
194 * the old and new flags are not conflicting
195 */
196static int check_fsflags(unsigned int old_flags, unsigned int flags)
197{
198 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
199 FS_NOATIME_FL | FS_NODUMP_FL | \
200 FS_SYNC_FL | FS_DIRSYNC_FL | \
201 FS_NOCOMP_FL | FS_COMPR_FL |
202 FS_NOCOW_FL))
203 return -EOPNOTSUPP;
204
205 /* COMPR and NOCOMP on new/old are valid */
206 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
207 return -EINVAL;
208
209 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
210 return -EINVAL;
211
212 /* NOCOW and compression options are mutually exclusive */
213 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
214 return -EINVAL;
215 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
216 return -EINVAL;
217
218 return 0;
219}
220
221static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
222 unsigned int flags)
223{
224 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
225 return -EPERM;
226
227 return 0;
228}
229
230int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
231{
232 if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
233 return -ENAMETOOLONG;
234 return 0;
235}
236
237static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
238{
239 if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
240 return -ENAMETOOLONG;
241 return 0;
242}
243
244/*
245 * Set flags/xflags from the internal inode flags. The remaining items of
246 * fsxattr are zeroed.
247 */
248int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
249{
250 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
251
252 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
253 return 0;
254}
255
256int btrfs_fileattr_set(struct mnt_idmap *idmap,
257 struct dentry *dentry, struct fileattr *fa)
258{
259 struct inode *inode = d_inode(dentry);
260 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
261 struct btrfs_inode *binode = BTRFS_I(inode);
262 struct btrfs_root *root = binode->root;
263 struct btrfs_trans_handle *trans;
264 unsigned int fsflags, old_fsflags;
265 int ret;
266 const char *comp = NULL;
267 u32 binode_flags;
268
269 if (btrfs_root_readonly(root))
270 return -EROFS;
271
272 if (fileattr_has_fsx(fa))
273 return -EOPNOTSUPP;
274
275 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
276 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
277 ret = check_fsflags(old_fsflags, fsflags);
278 if (ret)
279 return ret;
280
281 ret = check_fsflags_compatible(fs_info, fsflags);
282 if (ret)
283 return ret;
284
285 binode_flags = binode->flags;
286 if (fsflags & FS_SYNC_FL)
287 binode_flags |= BTRFS_INODE_SYNC;
288 else
289 binode_flags &= ~BTRFS_INODE_SYNC;
290 if (fsflags & FS_IMMUTABLE_FL)
291 binode_flags |= BTRFS_INODE_IMMUTABLE;
292 else
293 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
294 if (fsflags & FS_APPEND_FL)
295 binode_flags |= BTRFS_INODE_APPEND;
296 else
297 binode_flags &= ~BTRFS_INODE_APPEND;
298 if (fsflags & FS_NODUMP_FL)
299 binode_flags |= BTRFS_INODE_NODUMP;
300 else
301 binode_flags &= ~BTRFS_INODE_NODUMP;
302 if (fsflags & FS_NOATIME_FL)
303 binode_flags |= BTRFS_INODE_NOATIME;
304 else
305 binode_flags &= ~BTRFS_INODE_NOATIME;
306
307 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
308 if (!fa->flags_valid) {
309 /* 1 item for the inode */
310 trans = btrfs_start_transaction(root, 1);
311 if (IS_ERR(trans))
312 return PTR_ERR(trans);
313 goto update_flags;
314 }
315
316 if (fsflags & FS_DIRSYNC_FL)
317 binode_flags |= BTRFS_INODE_DIRSYNC;
318 else
319 binode_flags &= ~BTRFS_INODE_DIRSYNC;
320 if (fsflags & FS_NOCOW_FL) {
321 if (S_ISREG(inode->i_mode)) {
322 /*
323 * It's safe to turn csums off here, no extents exist.
324 * Otherwise we want the flag to reflect the real COW
325 * status of the file and will not set it.
326 */
327 if (inode->i_size == 0)
328 binode_flags |= BTRFS_INODE_NODATACOW |
329 BTRFS_INODE_NODATASUM;
330 } else {
331 binode_flags |= BTRFS_INODE_NODATACOW;
332 }
333 } else {
334 /*
335 * Revert back under same assumptions as above
336 */
337 if (S_ISREG(inode->i_mode)) {
338 if (inode->i_size == 0)
339 binode_flags &= ~(BTRFS_INODE_NODATACOW |
340 BTRFS_INODE_NODATASUM);
341 } else {
342 binode_flags &= ~BTRFS_INODE_NODATACOW;
343 }
344 }
345
346 /*
347 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
348 * flag may be changed automatically if compression code won't make
349 * things smaller.
350 */
351 if (fsflags & FS_NOCOMP_FL) {
352 binode_flags &= ~BTRFS_INODE_COMPRESS;
353 binode_flags |= BTRFS_INODE_NOCOMPRESS;
354 } else if (fsflags & FS_COMPR_FL) {
355
356 if (IS_SWAPFILE(inode))
357 return -ETXTBSY;
358
359 binode_flags |= BTRFS_INODE_COMPRESS;
360 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
361
362 comp = btrfs_compress_type2str(fs_info->compress_type);
363 if (!comp || comp[0] == 0)
364 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
365 } else {
366 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
367 }
368
369 /*
370 * 1 for inode item
371 * 2 for properties
372 */
373 trans = btrfs_start_transaction(root, 3);
374 if (IS_ERR(trans))
375 return PTR_ERR(trans);
376
377 if (comp) {
378 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
379 strlen(comp), 0);
380 if (ret) {
381 btrfs_abort_transaction(trans, ret);
382 goto out_end_trans;
383 }
384 } else {
385 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
386 0, 0);
387 if (ret && ret != -ENODATA) {
388 btrfs_abort_transaction(trans, ret);
389 goto out_end_trans;
390 }
391 }
392
393update_flags:
394 binode->flags = binode_flags;
395 btrfs_sync_inode_flags_to_i_flags(inode);
396 inode_inc_iversion(inode);
397 inode_set_ctime_current(inode);
398 ret = btrfs_update_inode(trans, BTRFS_I(inode));
399
400 out_end_trans:
401 btrfs_end_transaction(trans);
402 return ret;
403}
404
405/*
406 * Start exclusive operation @type, return true on success
407 */
408bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
409 enum btrfs_exclusive_operation type)
410{
411 bool ret = false;
412
413 spin_lock(&fs_info->super_lock);
414 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
415 fs_info->exclusive_operation = type;
416 ret = true;
417 }
418 spin_unlock(&fs_info->super_lock);
419
420 return ret;
421}
422
423/*
424 * Conditionally allow to enter the exclusive operation in case it's compatible
425 * with the running one. This must be paired with btrfs_exclop_start_unlock and
426 * btrfs_exclop_finish.
427 *
428 * Compatibility:
429 * - the same type is already running
430 * - when trying to add a device and balance has been paused
431 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
432 * must check the condition first that would allow none -> @type
433 */
434bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
435 enum btrfs_exclusive_operation type)
436{
437 spin_lock(&fs_info->super_lock);
438 if (fs_info->exclusive_operation == type ||
439 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
440 type == BTRFS_EXCLOP_DEV_ADD))
441 return true;
442
443 spin_unlock(&fs_info->super_lock);
444 return false;
445}
446
447void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
448{
449 spin_unlock(&fs_info->super_lock);
450}
451
452void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
453{
454 spin_lock(&fs_info->super_lock);
455 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
456 spin_unlock(&fs_info->super_lock);
457 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
458}
459
460void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
461 enum btrfs_exclusive_operation op)
462{
463 switch (op) {
464 case BTRFS_EXCLOP_BALANCE_PAUSED:
465 spin_lock(&fs_info->super_lock);
466 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
467 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
468 fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
469 fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
470 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
471 spin_unlock(&fs_info->super_lock);
472 break;
473 case BTRFS_EXCLOP_BALANCE:
474 spin_lock(&fs_info->super_lock);
475 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
476 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
477 spin_unlock(&fs_info->super_lock);
478 break;
479 default:
480 btrfs_warn(fs_info,
481 "invalid exclop balance operation %d requested", op);
482 }
483}
484
485static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
486{
487 return put_user(inode->i_generation, arg);
488}
489
490static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
491 void __user *arg)
492{
493 struct btrfs_device *device;
494 struct fstrim_range range;
495 u64 minlen = ULLONG_MAX;
496 u64 num_devices = 0;
497 int ret;
498
499 if (!capable(CAP_SYS_ADMIN))
500 return -EPERM;
501
502 /*
503 * btrfs_trim_block_group() depends on space cache, which is not
504 * available in zoned filesystem. So, disallow fitrim on a zoned
505 * filesystem for now.
506 */
507 if (btrfs_is_zoned(fs_info))
508 return -EOPNOTSUPP;
509
510 /*
511 * If the fs is mounted with nologreplay, which requires it to be
512 * mounted in RO mode as well, we can not allow discard on free space
513 * inside block groups, because log trees refer to extents that are not
514 * pinned in a block group's free space cache (pinning the extents is
515 * precisely the first phase of replaying a log tree).
516 */
517 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
518 return -EROFS;
519
520 rcu_read_lock();
521 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
522 dev_list) {
523 if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
524 continue;
525 num_devices++;
526 minlen = min_t(u64, bdev_discard_granularity(device->bdev),
527 minlen);
528 }
529 rcu_read_unlock();
530
531 if (!num_devices)
532 return -EOPNOTSUPP;
533 if (copy_from_user(&range, arg, sizeof(range)))
534 return -EFAULT;
535
536 /*
537 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
538 * block group is in the logical address space, which can be any
539 * sectorsize aligned bytenr in the range [0, U64_MAX].
540 */
541 if (range.len < fs_info->sectorsize)
542 return -EINVAL;
543
544 range.minlen = max(range.minlen, minlen);
545 ret = btrfs_trim_fs(fs_info, &range);
546 if (ret < 0)
547 return ret;
548
549 if (copy_to_user(arg, &range, sizeof(range)))
550 return -EFAULT;
551
552 return 0;
553}
554
555int __pure btrfs_is_empty_uuid(u8 *uuid)
556{
557 int i;
558
559 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
560 if (uuid[i])
561 return 0;
562 }
563 return 1;
564}
565
566/*
567 * Calculate the number of transaction items to reserve for creating a subvolume
568 * or snapshot, not including the inode, directory entries, or parent directory.
569 */
570static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
571{
572 /*
573 * 1 to add root block
574 * 1 to add root item
575 * 1 to add root ref
576 * 1 to add root backref
577 * 1 to add UUID item
578 * 1 to add qgroup info
579 * 1 to add qgroup limit
580 *
581 * Ideally the last two would only be accounted if qgroups are enabled,
582 * but that can change between now and the time we would insert them.
583 */
584 unsigned int num_items = 7;
585
586 if (inherit) {
587 /* 2 to add qgroup relations for each inherited qgroup */
588 num_items += 2 * inherit->num_qgroups;
589 }
590 return num_items;
591}
592
593static noinline int create_subvol(struct mnt_idmap *idmap,
594 struct inode *dir, struct dentry *dentry,
595 struct btrfs_qgroup_inherit *inherit)
596{
597 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
598 struct btrfs_trans_handle *trans;
599 struct btrfs_key key;
600 struct btrfs_root_item *root_item;
601 struct btrfs_inode_item *inode_item;
602 struct extent_buffer *leaf;
603 struct btrfs_root *root = BTRFS_I(dir)->root;
604 struct btrfs_root *new_root;
605 struct btrfs_block_rsv block_rsv;
606 struct timespec64 cur_time = current_time(dir);
607 struct btrfs_new_inode_args new_inode_args = {
608 .dir = dir,
609 .dentry = dentry,
610 .subvol = true,
611 };
612 unsigned int trans_num_items;
613 int ret;
614 dev_t anon_dev;
615 u64 objectid;
616 u64 qgroup_reserved = 0;
617
618 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
619 if (!root_item)
620 return -ENOMEM;
621
622 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
623 if (ret)
624 goto out_root_item;
625
626 /*
627 * Don't create subvolume whose level is not zero. Or qgroup will be
628 * screwed up since it assumes subvolume qgroup's level to be 0.
629 */
630 if (btrfs_qgroup_level(objectid)) {
631 ret = -ENOSPC;
632 goto out_root_item;
633 }
634
635 ret = get_anon_bdev(&anon_dev);
636 if (ret < 0)
637 goto out_root_item;
638
639 new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
640 if (!new_inode_args.inode) {
641 ret = -ENOMEM;
642 goto out_anon_dev;
643 }
644 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
645 if (ret)
646 goto out_inode;
647 trans_num_items += create_subvol_num_items(inherit);
648
649 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
650 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
651 trans_num_items, false);
652 if (ret)
653 goto out_new_inode_args;
654 qgroup_reserved = block_rsv.qgroup_rsv_reserved;
655
656 trans = btrfs_start_transaction(root, 0);
657 if (IS_ERR(trans)) {
658 ret = PTR_ERR(trans);
659 goto out_release_rsv;
660 }
661 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
662 if (ret)
663 goto out;
664 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
665 qgroup_reserved = 0;
666 trans->block_rsv = &block_rsv;
667 trans->bytes_reserved = block_rsv.size;
668 /* Tree log can't currently deal with an inode which is a new root. */
669 btrfs_set_log_full_commit(trans);
670
671 ret = btrfs_qgroup_inherit(trans, 0, objectid, root->root_key.objectid, inherit);
672 if (ret)
673 goto out;
674
675 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
676 0, BTRFS_NESTING_NORMAL);
677 if (IS_ERR(leaf)) {
678 ret = PTR_ERR(leaf);
679 goto out;
680 }
681
682 btrfs_mark_buffer_dirty(trans, leaf);
683
684 inode_item = &root_item->inode;
685 btrfs_set_stack_inode_generation(inode_item, 1);
686 btrfs_set_stack_inode_size(inode_item, 3);
687 btrfs_set_stack_inode_nlink(inode_item, 1);
688 btrfs_set_stack_inode_nbytes(inode_item,
689 fs_info->nodesize);
690 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
691
692 btrfs_set_root_flags(root_item, 0);
693 btrfs_set_root_limit(root_item, 0);
694 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
695
696 btrfs_set_root_bytenr(root_item, leaf->start);
697 btrfs_set_root_generation(root_item, trans->transid);
698 btrfs_set_root_level(root_item, 0);
699 btrfs_set_root_refs(root_item, 1);
700 btrfs_set_root_used(root_item, leaf->len);
701 btrfs_set_root_last_snapshot(root_item, 0);
702
703 btrfs_set_root_generation_v2(root_item,
704 btrfs_root_generation(root_item));
705 generate_random_guid(root_item->uuid);
706 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
707 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
708 root_item->ctime = root_item->otime;
709 btrfs_set_root_ctransid(root_item, trans->transid);
710 btrfs_set_root_otransid(root_item, trans->transid);
711
712 btrfs_tree_unlock(leaf);
713
714 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
715
716 key.objectid = objectid;
717 key.offset = 0;
718 key.type = BTRFS_ROOT_ITEM_KEY;
719 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
720 root_item);
721 if (ret) {
722 /*
723 * Since we don't abort the transaction in this case, free the
724 * tree block so that we don't leak space and leave the
725 * filesystem in an inconsistent state (an extent item in the
726 * extent tree with a backreference for a root that does not
727 * exists).
728 */
729 btrfs_tree_lock(leaf);
730 btrfs_clear_buffer_dirty(trans, leaf);
731 btrfs_tree_unlock(leaf);
732 btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
733 free_extent_buffer(leaf);
734 goto out;
735 }
736
737 free_extent_buffer(leaf);
738 leaf = NULL;
739
740 new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
741 if (IS_ERR(new_root)) {
742 ret = PTR_ERR(new_root);
743 btrfs_abort_transaction(trans, ret);
744 goto out;
745 }
746 /* anon_dev is owned by new_root now. */
747 anon_dev = 0;
748 BTRFS_I(new_inode_args.inode)->root = new_root;
749 /* ... and new_root is owned by new_inode_args.inode now. */
750
751 ret = btrfs_record_root_in_trans(trans, new_root);
752 if (ret) {
753 btrfs_abort_transaction(trans, ret);
754 goto out;
755 }
756
757 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
758 BTRFS_UUID_KEY_SUBVOL, objectid);
759 if (ret) {
760 btrfs_abort_transaction(trans, ret);
761 goto out;
762 }
763
764 ret = btrfs_create_new_inode(trans, &new_inode_args);
765 if (ret) {
766 btrfs_abort_transaction(trans, ret);
767 goto out;
768 }
769
770 d_instantiate_new(dentry, new_inode_args.inode);
771 new_inode_args.inode = NULL;
772
773out:
774 trans->block_rsv = NULL;
775 trans->bytes_reserved = 0;
776 btrfs_end_transaction(trans);
777out_release_rsv:
778 btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
779 if (qgroup_reserved)
780 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
781out_new_inode_args:
782 btrfs_new_inode_args_destroy(&new_inode_args);
783out_inode:
784 iput(new_inode_args.inode);
785out_anon_dev:
786 if (anon_dev)
787 free_anon_bdev(anon_dev);
788out_root_item:
789 kfree(root_item);
790 return ret;
791}
792
793static int create_snapshot(struct btrfs_root *root, struct inode *dir,
794 struct dentry *dentry, bool readonly,
795 struct btrfs_qgroup_inherit *inherit)
796{
797 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
798 struct inode *inode;
799 struct btrfs_pending_snapshot *pending_snapshot;
800 unsigned int trans_num_items;
801 struct btrfs_trans_handle *trans;
802 struct btrfs_block_rsv *block_rsv;
803 u64 qgroup_reserved = 0;
804 int ret;
805
806 /* We do not support snapshotting right now. */
807 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
808 btrfs_warn(fs_info,
809 "extent tree v2 doesn't support snapshotting yet");
810 return -EOPNOTSUPP;
811 }
812
813 if (btrfs_root_refs(&root->root_item) == 0)
814 return -ENOENT;
815
816 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
817 return -EINVAL;
818
819 if (atomic_read(&root->nr_swapfiles)) {
820 btrfs_warn(fs_info,
821 "cannot snapshot subvolume with active swapfile");
822 return -ETXTBSY;
823 }
824
825 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
826 if (!pending_snapshot)
827 return -ENOMEM;
828
829 ret = get_anon_bdev(&pending_snapshot->anon_dev);
830 if (ret < 0)
831 goto free_pending;
832 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
833 GFP_KERNEL);
834 pending_snapshot->path = btrfs_alloc_path();
835 if (!pending_snapshot->root_item || !pending_snapshot->path) {
836 ret = -ENOMEM;
837 goto free_pending;
838 }
839
840 block_rsv = &pending_snapshot->block_rsv;
841 btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
842 /*
843 * 1 to add dir item
844 * 1 to add dir index
845 * 1 to update parent inode item
846 */
847 trans_num_items = create_subvol_num_items(inherit) + 3;
848 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
849 trans_num_items, false);
850 if (ret)
851 goto free_pending;
852 qgroup_reserved = block_rsv->qgroup_rsv_reserved;
853
854 pending_snapshot->dentry = dentry;
855 pending_snapshot->root = root;
856 pending_snapshot->readonly = readonly;
857 pending_snapshot->dir = dir;
858 pending_snapshot->inherit = inherit;
859
860 trans = btrfs_start_transaction(root, 0);
861 if (IS_ERR(trans)) {
862 ret = PTR_ERR(trans);
863 goto fail;
864 }
865 ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
866 if (ret) {
867 btrfs_end_transaction(trans);
868 goto fail;
869 }
870 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
871 qgroup_reserved = 0;
872
873 trans->pending_snapshot = pending_snapshot;
874
875 ret = btrfs_commit_transaction(trans);
876 if (ret)
877 goto fail;
878
879 ret = pending_snapshot->error;
880 if (ret)
881 goto fail;
882
883 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
884 if (ret)
885 goto fail;
886
887 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
888 if (IS_ERR(inode)) {
889 ret = PTR_ERR(inode);
890 goto fail;
891 }
892
893 d_instantiate(dentry, inode);
894 ret = 0;
895 pending_snapshot->anon_dev = 0;
896fail:
897 /* Prevent double freeing of anon_dev */
898 if (ret && pending_snapshot->snap)
899 pending_snapshot->snap->anon_dev = 0;
900 btrfs_put_root(pending_snapshot->snap);
901 btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
902 if (qgroup_reserved)
903 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
904free_pending:
905 if (pending_snapshot->anon_dev)
906 free_anon_bdev(pending_snapshot->anon_dev);
907 kfree(pending_snapshot->root_item);
908 btrfs_free_path(pending_snapshot->path);
909 kfree(pending_snapshot);
910
911 return ret;
912}
913
914/* copy of may_delete in fs/namei.c()
915 * Check whether we can remove a link victim from directory dir, check
916 * whether the type of victim is right.
917 * 1. We can't do it if dir is read-only (done in permission())
918 * 2. We should have write and exec permissions on dir
919 * 3. We can't remove anything from append-only dir
920 * 4. We can't do anything with immutable dir (done in permission())
921 * 5. If the sticky bit on dir is set we should either
922 * a. be owner of dir, or
923 * b. be owner of victim, or
924 * c. have CAP_FOWNER capability
925 * 6. If the victim is append-only or immutable we can't do anything with
926 * links pointing to it.
927 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
928 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
929 * 9. We can't remove a root or mountpoint.
930 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
931 * nfs_async_unlink().
932 */
933
934static int btrfs_may_delete(struct mnt_idmap *idmap,
935 struct inode *dir, struct dentry *victim, int isdir)
936{
937 int error;
938
939 if (d_really_is_negative(victim))
940 return -ENOENT;
941
942 /* The @victim is not inside @dir. */
943 if (d_inode(victim->d_parent) != dir)
944 return -EINVAL;
945 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
946
947 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
948 if (error)
949 return error;
950 if (IS_APPEND(dir))
951 return -EPERM;
952 if (check_sticky(idmap, dir, d_inode(victim)) ||
953 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
954 IS_SWAPFILE(d_inode(victim)))
955 return -EPERM;
956 if (isdir) {
957 if (!d_is_dir(victim))
958 return -ENOTDIR;
959 if (IS_ROOT(victim))
960 return -EBUSY;
961 } else if (d_is_dir(victim))
962 return -EISDIR;
963 if (IS_DEADDIR(dir))
964 return -ENOENT;
965 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
966 return -EBUSY;
967 return 0;
968}
969
970/* copy of may_create in fs/namei.c() */
971static inline int btrfs_may_create(struct mnt_idmap *idmap,
972 struct inode *dir, struct dentry *child)
973{
974 if (d_really_is_positive(child))
975 return -EEXIST;
976 if (IS_DEADDIR(dir))
977 return -ENOENT;
978 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
979 return -EOVERFLOW;
980 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
981}
982
983/*
984 * Create a new subvolume below @parent. This is largely modeled after
985 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
986 * inside this filesystem so it's quite a bit simpler.
987 */
988static noinline int btrfs_mksubvol(const struct path *parent,
989 struct mnt_idmap *idmap,
990 const char *name, int namelen,
991 struct btrfs_root *snap_src,
992 bool readonly,
993 struct btrfs_qgroup_inherit *inherit)
994{
995 struct inode *dir = d_inode(parent->dentry);
996 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
997 struct dentry *dentry;
998 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
999 int error;
1000
1001 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1002 if (error == -EINTR)
1003 return error;
1004
1005 dentry = lookup_one(idmap, name, parent->dentry, namelen);
1006 error = PTR_ERR(dentry);
1007 if (IS_ERR(dentry))
1008 goto out_unlock;
1009
1010 error = btrfs_may_create(idmap, dir, dentry);
1011 if (error)
1012 goto out_dput;
1013
1014 /*
1015 * even if this name doesn't exist, we may get hash collisions.
1016 * check for them now when we can safely fail
1017 */
1018 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1019 dir->i_ino, &name_str);
1020 if (error)
1021 goto out_dput;
1022
1023 down_read(&fs_info->subvol_sem);
1024
1025 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1026 goto out_up_read;
1027
1028 if (snap_src)
1029 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1030 else
1031 error = create_subvol(idmap, dir, dentry, inherit);
1032
1033 if (!error)
1034 fsnotify_mkdir(dir, dentry);
1035out_up_read:
1036 up_read(&fs_info->subvol_sem);
1037out_dput:
1038 dput(dentry);
1039out_unlock:
1040 btrfs_inode_unlock(BTRFS_I(dir), 0);
1041 return error;
1042}
1043
1044static noinline int btrfs_mksnapshot(const struct path *parent,
1045 struct mnt_idmap *idmap,
1046 const char *name, int namelen,
1047 struct btrfs_root *root,
1048 bool readonly,
1049 struct btrfs_qgroup_inherit *inherit)
1050{
1051 int ret;
1052 bool snapshot_force_cow = false;
1053
1054 /*
1055 * Force new buffered writes to reserve space even when NOCOW is
1056 * possible. This is to avoid later writeback (running dealloc) to
1057 * fallback to COW mode and unexpectedly fail with ENOSPC.
1058 */
1059 btrfs_drew_read_lock(&root->snapshot_lock);
1060
1061 ret = btrfs_start_delalloc_snapshot(root, false);
1062 if (ret)
1063 goto out;
1064
1065 /*
1066 * All previous writes have started writeback in NOCOW mode, so now
1067 * we force future writes to fallback to COW mode during snapshot
1068 * creation.
1069 */
1070 atomic_inc(&root->snapshot_force_cow);
1071 snapshot_force_cow = true;
1072
1073 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1074
1075 ret = btrfs_mksubvol(parent, idmap, name, namelen,
1076 root, readonly, inherit);
1077out:
1078 if (snapshot_force_cow)
1079 atomic_dec(&root->snapshot_force_cow);
1080 btrfs_drew_read_unlock(&root->snapshot_lock);
1081 return ret;
1082}
1083
1084/*
1085 * Try to start exclusive operation @type or cancel it if it's running.
1086 *
1087 * Return:
1088 * 0 - normal mode, newly claimed op started
1089 * >0 - normal mode, something else is running,
1090 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1091 * ECANCELED - cancel mode, successful cancel
1092 * ENOTCONN - cancel mode, operation not running anymore
1093 */
1094static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1095 enum btrfs_exclusive_operation type, bool cancel)
1096{
1097 if (!cancel) {
1098 /* Start normal op */
1099 if (!btrfs_exclop_start(fs_info, type))
1100 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1101 /* Exclusive operation is now claimed */
1102 return 0;
1103 }
1104
1105 /* Cancel running op */
1106 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1107 /*
1108 * This blocks any exclop finish from setting it to NONE, so we
1109 * request cancellation. Either it runs and we will wait for it,
1110 * or it has finished and no waiting will happen.
1111 */
1112 atomic_inc(&fs_info->reloc_cancel_req);
1113 btrfs_exclop_start_unlock(fs_info);
1114
1115 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1116 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1117 TASK_INTERRUPTIBLE);
1118
1119 return -ECANCELED;
1120 }
1121
1122 /* Something else is running or none */
1123 return -ENOTCONN;
1124}
1125
1126static noinline int btrfs_ioctl_resize(struct file *file,
1127 void __user *arg)
1128{
1129 BTRFS_DEV_LOOKUP_ARGS(args);
1130 struct inode *inode = file_inode(file);
1131 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1132 u64 new_size;
1133 u64 old_size;
1134 u64 devid = 1;
1135 struct btrfs_root *root = BTRFS_I(inode)->root;
1136 struct btrfs_ioctl_vol_args *vol_args;
1137 struct btrfs_trans_handle *trans;
1138 struct btrfs_device *device = NULL;
1139 char *sizestr;
1140 char *retptr;
1141 char *devstr = NULL;
1142 int ret = 0;
1143 int mod = 0;
1144 bool cancel;
1145
1146 if (!capable(CAP_SYS_ADMIN))
1147 return -EPERM;
1148
1149 ret = mnt_want_write_file(file);
1150 if (ret)
1151 return ret;
1152
1153 /*
1154 * Read the arguments before checking exclusivity to be able to
1155 * distinguish regular resize and cancel
1156 */
1157 vol_args = memdup_user(arg, sizeof(*vol_args));
1158 if (IS_ERR(vol_args)) {
1159 ret = PTR_ERR(vol_args);
1160 goto out_drop;
1161 }
1162 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1163 if (ret < 0)
1164 goto out_free;
1165
1166 sizestr = vol_args->name;
1167 cancel = (strcmp("cancel", sizestr) == 0);
1168 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1169 if (ret)
1170 goto out_free;
1171 /* Exclusive operation is now claimed */
1172
1173 devstr = strchr(sizestr, ':');
1174 if (devstr) {
1175 sizestr = devstr + 1;
1176 *devstr = '\0';
1177 devstr = vol_args->name;
1178 ret = kstrtoull(devstr, 10, &devid);
1179 if (ret)
1180 goto out_finish;
1181 if (!devid) {
1182 ret = -EINVAL;
1183 goto out_finish;
1184 }
1185 btrfs_info(fs_info, "resizing devid %llu", devid);
1186 }
1187
1188 args.devid = devid;
1189 device = btrfs_find_device(fs_info->fs_devices, &args);
1190 if (!device) {
1191 btrfs_info(fs_info, "resizer unable to find device %llu",
1192 devid);
1193 ret = -ENODEV;
1194 goto out_finish;
1195 }
1196
1197 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1198 btrfs_info(fs_info,
1199 "resizer unable to apply on readonly device %llu",
1200 devid);
1201 ret = -EPERM;
1202 goto out_finish;
1203 }
1204
1205 if (!strcmp(sizestr, "max"))
1206 new_size = bdev_nr_bytes(device->bdev);
1207 else {
1208 if (sizestr[0] == '-') {
1209 mod = -1;
1210 sizestr++;
1211 } else if (sizestr[0] == '+') {
1212 mod = 1;
1213 sizestr++;
1214 }
1215 new_size = memparse(sizestr, &retptr);
1216 if (*retptr != '\0' || new_size == 0) {
1217 ret = -EINVAL;
1218 goto out_finish;
1219 }
1220 }
1221
1222 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1223 ret = -EPERM;
1224 goto out_finish;
1225 }
1226
1227 old_size = btrfs_device_get_total_bytes(device);
1228
1229 if (mod < 0) {
1230 if (new_size > old_size) {
1231 ret = -EINVAL;
1232 goto out_finish;
1233 }
1234 new_size = old_size - new_size;
1235 } else if (mod > 0) {
1236 if (new_size > ULLONG_MAX - old_size) {
1237 ret = -ERANGE;
1238 goto out_finish;
1239 }
1240 new_size = old_size + new_size;
1241 }
1242
1243 if (new_size < SZ_256M) {
1244 ret = -EINVAL;
1245 goto out_finish;
1246 }
1247 if (new_size > bdev_nr_bytes(device->bdev)) {
1248 ret = -EFBIG;
1249 goto out_finish;
1250 }
1251
1252 new_size = round_down(new_size, fs_info->sectorsize);
1253
1254 if (new_size > old_size) {
1255 trans = btrfs_start_transaction(root, 0);
1256 if (IS_ERR(trans)) {
1257 ret = PTR_ERR(trans);
1258 goto out_finish;
1259 }
1260 ret = btrfs_grow_device(trans, device, new_size);
1261 btrfs_commit_transaction(trans);
1262 } else if (new_size < old_size) {
1263 ret = btrfs_shrink_device(device, new_size);
1264 } /* equal, nothing need to do */
1265
1266 if (ret == 0 && new_size != old_size)
1267 btrfs_info_in_rcu(fs_info,
1268 "resize device %s (devid %llu) from %llu to %llu",
1269 btrfs_dev_name(device), device->devid,
1270 old_size, new_size);
1271out_finish:
1272 btrfs_exclop_finish(fs_info);
1273out_free:
1274 kfree(vol_args);
1275out_drop:
1276 mnt_drop_write_file(file);
1277 return ret;
1278}
1279
1280static noinline int __btrfs_ioctl_snap_create(struct file *file,
1281 struct mnt_idmap *idmap,
1282 const char *name, unsigned long fd, int subvol,
1283 bool readonly,
1284 struct btrfs_qgroup_inherit *inherit)
1285{
1286 int namelen;
1287 int ret = 0;
1288
1289 if (!S_ISDIR(file_inode(file)->i_mode))
1290 return -ENOTDIR;
1291
1292 ret = mnt_want_write_file(file);
1293 if (ret)
1294 goto out;
1295
1296 namelen = strlen(name);
1297 if (strchr(name, '/')) {
1298 ret = -EINVAL;
1299 goto out_drop_write;
1300 }
1301
1302 if (name[0] == '.' &&
1303 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1304 ret = -EEXIST;
1305 goto out_drop_write;
1306 }
1307
1308 if (subvol) {
1309 ret = btrfs_mksubvol(&file->f_path, idmap, name,
1310 namelen, NULL, readonly, inherit);
1311 } else {
1312 struct fd src = fdget(fd);
1313 struct inode *src_inode;
1314 if (!src.file) {
1315 ret = -EINVAL;
1316 goto out_drop_write;
1317 }
1318
1319 src_inode = file_inode(src.file);
1320 if (src_inode->i_sb != file_inode(file)->i_sb) {
1321 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1322 "Snapshot src from another FS");
1323 ret = -EXDEV;
1324 } else if (!inode_owner_or_capable(idmap, src_inode)) {
1325 /*
1326 * Subvolume creation is not restricted, but snapshots
1327 * are limited to own subvolumes only
1328 */
1329 ret = -EPERM;
1330 } else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1331 /*
1332 * Snapshots must be made with the src_inode referring
1333 * to the subvolume inode, otherwise the permission
1334 * checking above is useless because we may have
1335 * permission on a lower directory but not the subvol
1336 * itself.
1337 */
1338 ret = -EINVAL;
1339 } else {
1340 ret = btrfs_mksnapshot(&file->f_path, idmap,
1341 name, namelen,
1342 BTRFS_I(src_inode)->root,
1343 readonly, inherit);
1344 }
1345 fdput(src);
1346 }
1347out_drop_write:
1348 mnt_drop_write_file(file);
1349out:
1350 return ret;
1351}
1352
1353static noinline int btrfs_ioctl_snap_create(struct file *file,
1354 void __user *arg, int subvol)
1355{
1356 struct btrfs_ioctl_vol_args *vol_args;
1357 int ret;
1358
1359 if (!S_ISDIR(file_inode(file)->i_mode))
1360 return -ENOTDIR;
1361
1362 vol_args = memdup_user(arg, sizeof(*vol_args));
1363 if (IS_ERR(vol_args))
1364 return PTR_ERR(vol_args);
1365 ret = btrfs_check_ioctl_vol_args_path(vol_args);
1366 if (ret < 0)
1367 goto out;
1368
1369 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1370 vol_args->name, vol_args->fd, subvol,
1371 false, NULL);
1372
1373out:
1374 kfree(vol_args);
1375 return ret;
1376}
1377
1378static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1379 void __user *arg, int subvol)
1380{
1381 struct btrfs_ioctl_vol_args_v2 *vol_args;
1382 int ret;
1383 bool readonly = false;
1384 struct btrfs_qgroup_inherit *inherit = NULL;
1385
1386 if (!S_ISDIR(file_inode(file)->i_mode))
1387 return -ENOTDIR;
1388
1389 vol_args = memdup_user(arg, sizeof(*vol_args));
1390 if (IS_ERR(vol_args))
1391 return PTR_ERR(vol_args);
1392 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1393 if (ret < 0)
1394 goto free_args;
1395
1396 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1397 ret = -EOPNOTSUPP;
1398 goto free_args;
1399 }
1400
1401 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1402 readonly = true;
1403 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1404 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1405
1406 if (vol_args->size < sizeof(*inherit) ||
1407 vol_args->size > PAGE_SIZE) {
1408 ret = -EINVAL;
1409 goto free_args;
1410 }
1411 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1412 if (IS_ERR(inherit)) {
1413 ret = PTR_ERR(inherit);
1414 goto free_args;
1415 }
1416
1417 ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1418 if (ret < 0)
1419 goto free_inherit;
1420 }
1421
1422 ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1423 vol_args->name, vol_args->fd, subvol,
1424 readonly, inherit);
1425 if (ret)
1426 goto free_inherit;
1427free_inherit:
1428 kfree(inherit);
1429free_args:
1430 kfree(vol_args);
1431 return ret;
1432}
1433
1434static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1435 void __user *arg)
1436{
1437 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1438 struct btrfs_root *root = BTRFS_I(inode)->root;
1439 int ret = 0;
1440 u64 flags = 0;
1441
1442 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1443 return -EINVAL;
1444
1445 down_read(&fs_info->subvol_sem);
1446 if (btrfs_root_readonly(root))
1447 flags |= BTRFS_SUBVOL_RDONLY;
1448 up_read(&fs_info->subvol_sem);
1449
1450 if (copy_to_user(arg, &flags, sizeof(flags)))
1451 ret = -EFAULT;
1452
1453 return ret;
1454}
1455
1456static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1457 void __user *arg)
1458{
1459 struct inode *inode = file_inode(file);
1460 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1461 struct btrfs_root *root = BTRFS_I(inode)->root;
1462 struct btrfs_trans_handle *trans;
1463 u64 root_flags;
1464 u64 flags;
1465 int ret = 0;
1466
1467 if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1468 return -EPERM;
1469
1470 ret = mnt_want_write_file(file);
1471 if (ret)
1472 goto out;
1473
1474 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1475 ret = -EINVAL;
1476 goto out_drop_write;
1477 }
1478
1479 if (copy_from_user(&flags, arg, sizeof(flags))) {
1480 ret = -EFAULT;
1481 goto out_drop_write;
1482 }
1483
1484 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1485 ret = -EOPNOTSUPP;
1486 goto out_drop_write;
1487 }
1488
1489 down_write(&fs_info->subvol_sem);
1490
1491 /* nothing to do */
1492 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1493 goto out_drop_sem;
1494
1495 root_flags = btrfs_root_flags(&root->root_item);
1496 if (flags & BTRFS_SUBVOL_RDONLY) {
1497 btrfs_set_root_flags(&root->root_item,
1498 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1499 } else {
1500 /*
1501 * Block RO -> RW transition if this subvolume is involved in
1502 * send
1503 */
1504 spin_lock(&root->root_item_lock);
1505 if (root->send_in_progress == 0) {
1506 btrfs_set_root_flags(&root->root_item,
1507 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1508 spin_unlock(&root->root_item_lock);
1509 } else {
1510 spin_unlock(&root->root_item_lock);
1511 btrfs_warn(fs_info,
1512 "Attempt to set subvolume %llu read-write during send",
1513 root->root_key.objectid);
1514 ret = -EPERM;
1515 goto out_drop_sem;
1516 }
1517 }
1518
1519 trans = btrfs_start_transaction(root, 1);
1520 if (IS_ERR(trans)) {
1521 ret = PTR_ERR(trans);
1522 goto out_reset;
1523 }
1524
1525 ret = btrfs_update_root(trans, fs_info->tree_root,
1526 &root->root_key, &root->root_item);
1527 if (ret < 0) {
1528 btrfs_end_transaction(trans);
1529 goto out_reset;
1530 }
1531
1532 ret = btrfs_commit_transaction(trans);
1533
1534out_reset:
1535 if (ret)
1536 btrfs_set_root_flags(&root->root_item, root_flags);
1537out_drop_sem:
1538 up_write(&fs_info->subvol_sem);
1539out_drop_write:
1540 mnt_drop_write_file(file);
1541out:
1542 return ret;
1543}
1544
1545static noinline int key_in_sk(struct btrfs_key *key,
1546 struct btrfs_ioctl_search_key *sk)
1547{
1548 struct btrfs_key test;
1549 int ret;
1550
1551 test.objectid = sk->min_objectid;
1552 test.type = sk->min_type;
1553 test.offset = sk->min_offset;
1554
1555 ret = btrfs_comp_cpu_keys(key, &test);
1556 if (ret < 0)
1557 return 0;
1558
1559 test.objectid = sk->max_objectid;
1560 test.type = sk->max_type;
1561 test.offset = sk->max_offset;
1562
1563 ret = btrfs_comp_cpu_keys(key, &test);
1564 if (ret > 0)
1565 return 0;
1566 return 1;
1567}
1568
1569static noinline int copy_to_sk(struct btrfs_path *path,
1570 struct btrfs_key *key,
1571 struct btrfs_ioctl_search_key *sk,
1572 u64 *buf_size,
1573 char __user *ubuf,
1574 unsigned long *sk_offset,
1575 int *num_found)
1576{
1577 u64 found_transid;
1578 struct extent_buffer *leaf;
1579 struct btrfs_ioctl_search_header sh;
1580 struct btrfs_key test;
1581 unsigned long item_off;
1582 unsigned long item_len;
1583 int nritems;
1584 int i;
1585 int slot;
1586 int ret = 0;
1587
1588 leaf = path->nodes[0];
1589 slot = path->slots[0];
1590 nritems = btrfs_header_nritems(leaf);
1591
1592 if (btrfs_header_generation(leaf) > sk->max_transid) {
1593 i = nritems;
1594 goto advance_key;
1595 }
1596 found_transid = btrfs_header_generation(leaf);
1597
1598 for (i = slot; i < nritems; i++) {
1599 item_off = btrfs_item_ptr_offset(leaf, i);
1600 item_len = btrfs_item_size(leaf, i);
1601
1602 btrfs_item_key_to_cpu(leaf, key, i);
1603 if (!key_in_sk(key, sk))
1604 continue;
1605
1606 if (sizeof(sh) + item_len > *buf_size) {
1607 if (*num_found) {
1608 ret = 1;
1609 goto out;
1610 }
1611
1612 /*
1613 * return one empty item back for v1, which does not
1614 * handle -EOVERFLOW
1615 */
1616
1617 *buf_size = sizeof(sh) + item_len;
1618 item_len = 0;
1619 ret = -EOVERFLOW;
1620 }
1621
1622 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1623 ret = 1;
1624 goto out;
1625 }
1626
1627 sh.objectid = key->objectid;
1628 sh.offset = key->offset;
1629 sh.type = key->type;
1630 sh.len = item_len;
1631 sh.transid = found_transid;
1632
1633 /*
1634 * Copy search result header. If we fault then loop again so we
1635 * can fault in the pages and -EFAULT there if there's a
1636 * problem. Otherwise we'll fault and then copy the buffer in
1637 * properly this next time through
1638 */
1639 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1640 ret = 0;
1641 goto out;
1642 }
1643
1644 *sk_offset += sizeof(sh);
1645
1646 if (item_len) {
1647 char __user *up = ubuf + *sk_offset;
1648 /*
1649 * Copy the item, same behavior as above, but reset the
1650 * * sk_offset so we copy the full thing again.
1651 */
1652 if (read_extent_buffer_to_user_nofault(leaf, up,
1653 item_off, item_len)) {
1654 ret = 0;
1655 *sk_offset -= sizeof(sh);
1656 goto out;
1657 }
1658
1659 *sk_offset += item_len;
1660 }
1661 (*num_found)++;
1662
1663 if (ret) /* -EOVERFLOW from above */
1664 goto out;
1665
1666 if (*num_found >= sk->nr_items) {
1667 ret = 1;
1668 goto out;
1669 }
1670 }
1671advance_key:
1672 ret = 0;
1673 test.objectid = sk->max_objectid;
1674 test.type = sk->max_type;
1675 test.offset = sk->max_offset;
1676 if (btrfs_comp_cpu_keys(key, &test) >= 0)
1677 ret = 1;
1678 else if (key->offset < (u64)-1)
1679 key->offset++;
1680 else if (key->type < (u8)-1) {
1681 key->offset = 0;
1682 key->type++;
1683 } else if (key->objectid < (u64)-1) {
1684 key->offset = 0;
1685 key->type = 0;
1686 key->objectid++;
1687 } else
1688 ret = 1;
1689out:
1690 /*
1691 * 0: all items from this leaf copied, continue with next
1692 * 1: * more items can be copied, but unused buffer is too small
1693 * * all items were found
1694 * Either way, it will stops the loop which iterates to the next
1695 * leaf
1696 * -EOVERFLOW: item was to large for buffer
1697 * -EFAULT: could not copy extent buffer back to userspace
1698 */
1699 return ret;
1700}
1701
1702static noinline int search_ioctl(struct inode *inode,
1703 struct btrfs_ioctl_search_key *sk,
1704 u64 *buf_size,
1705 char __user *ubuf)
1706{
1707 struct btrfs_fs_info *info = inode_to_fs_info(inode);
1708 struct btrfs_root *root;
1709 struct btrfs_key key;
1710 struct btrfs_path *path;
1711 int ret;
1712 int num_found = 0;
1713 unsigned long sk_offset = 0;
1714
1715 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1716 *buf_size = sizeof(struct btrfs_ioctl_search_header);
1717 return -EOVERFLOW;
1718 }
1719
1720 path = btrfs_alloc_path();
1721 if (!path)
1722 return -ENOMEM;
1723
1724 if (sk->tree_id == 0) {
1725 /* search the root of the inode that was passed */
1726 root = btrfs_grab_root(BTRFS_I(inode)->root);
1727 } else {
1728 root = btrfs_get_fs_root(info, sk->tree_id, true);
1729 if (IS_ERR(root)) {
1730 btrfs_free_path(path);
1731 return PTR_ERR(root);
1732 }
1733 }
1734
1735 key.objectid = sk->min_objectid;
1736 key.type = sk->min_type;
1737 key.offset = sk->min_offset;
1738
1739 while (1) {
1740 ret = -EFAULT;
1741 /*
1742 * Ensure that the whole user buffer is faulted in at sub-page
1743 * granularity, otherwise the loop may live-lock.
1744 */
1745 if (fault_in_subpage_writeable(ubuf + sk_offset,
1746 *buf_size - sk_offset))
1747 break;
1748
1749 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1750 if (ret != 0) {
1751 if (ret > 0)
1752 ret = 0;
1753 goto err;
1754 }
1755 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1756 &sk_offset, &num_found);
1757 btrfs_release_path(path);
1758 if (ret)
1759 break;
1760
1761 }
1762 if (ret > 0)
1763 ret = 0;
1764err:
1765 sk->nr_items = num_found;
1766 btrfs_put_root(root);
1767 btrfs_free_path(path);
1768 return ret;
1769}
1770
1771static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1772 void __user *argp)
1773{
1774 struct btrfs_ioctl_search_args __user *uargs = argp;
1775 struct btrfs_ioctl_search_key sk;
1776 int ret;
1777 u64 buf_size;
1778
1779 if (!capable(CAP_SYS_ADMIN))
1780 return -EPERM;
1781
1782 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1783 return -EFAULT;
1784
1785 buf_size = sizeof(uargs->buf);
1786
1787 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1788
1789 /*
1790 * In the origin implementation an overflow is handled by returning a
1791 * search header with a len of zero, so reset ret.
1792 */
1793 if (ret == -EOVERFLOW)
1794 ret = 0;
1795
1796 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1797 ret = -EFAULT;
1798 return ret;
1799}
1800
1801static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1802 void __user *argp)
1803{
1804 struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1805 struct btrfs_ioctl_search_args_v2 args;
1806 int ret;
1807 u64 buf_size;
1808 const u64 buf_limit = SZ_16M;
1809
1810 if (!capable(CAP_SYS_ADMIN))
1811 return -EPERM;
1812
1813 /* copy search header and buffer size */
1814 if (copy_from_user(&args, uarg, sizeof(args)))
1815 return -EFAULT;
1816
1817 buf_size = args.buf_size;
1818
1819 /* limit result size to 16MB */
1820 if (buf_size > buf_limit)
1821 buf_size = buf_limit;
1822
1823 ret = search_ioctl(inode, &args.key, &buf_size,
1824 (char __user *)(&uarg->buf[0]));
1825 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1826 ret = -EFAULT;
1827 else if (ret == -EOVERFLOW &&
1828 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1829 ret = -EFAULT;
1830
1831 return ret;
1832}
1833
1834/*
1835 * Search INODE_REFs to identify path name of 'dirid' directory
1836 * in a 'tree_id' tree. and sets path name to 'name'.
1837 */
1838static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1839 u64 tree_id, u64 dirid, char *name)
1840{
1841 struct btrfs_root *root;
1842 struct btrfs_key key;
1843 char *ptr;
1844 int ret = -1;
1845 int slot;
1846 int len;
1847 int total_len = 0;
1848 struct btrfs_inode_ref *iref;
1849 struct extent_buffer *l;
1850 struct btrfs_path *path;
1851
1852 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1853 name[0]='\0';
1854 return 0;
1855 }
1856
1857 path = btrfs_alloc_path();
1858 if (!path)
1859 return -ENOMEM;
1860
1861 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1862
1863 root = btrfs_get_fs_root(info, tree_id, true);
1864 if (IS_ERR(root)) {
1865 ret = PTR_ERR(root);
1866 root = NULL;
1867 goto out;
1868 }
1869
1870 key.objectid = dirid;
1871 key.type = BTRFS_INODE_REF_KEY;
1872 key.offset = (u64)-1;
1873
1874 while (1) {
1875 ret = btrfs_search_backwards(root, &key, path);
1876 if (ret < 0)
1877 goto out;
1878 else if (ret > 0) {
1879 ret = -ENOENT;
1880 goto out;
1881 }
1882
1883 l = path->nodes[0];
1884 slot = path->slots[0];
1885
1886 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1887 len = btrfs_inode_ref_name_len(l, iref);
1888 ptr -= len + 1;
1889 total_len += len + 1;
1890 if (ptr < name) {
1891 ret = -ENAMETOOLONG;
1892 goto out;
1893 }
1894
1895 *(ptr + len) = '/';
1896 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1897
1898 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1899 break;
1900
1901 btrfs_release_path(path);
1902 key.objectid = key.offset;
1903 key.offset = (u64)-1;
1904 dirid = key.objectid;
1905 }
1906 memmove(name, ptr, total_len);
1907 name[total_len] = '\0';
1908 ret = 0;
1909out:
1910 btrfs_put_root(root);
1911 btrfs_free_path(path);
1912 return ret;
1913}
1914
1915static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1916 struct inode *inode,
1917 struct btrfs_ioctl_ino_lookup_user_args *args)
1918{
1919 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1920 struct super_block *sb = inode->i_sb;
1921 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1922 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1923 u64 dirid = args->dirid;
1924 unsigned long item_off;
1925 unsigned long item_len;
1926 struct btrfs_inode_ref *iref;
1927 struct btrfs_root_ref *rref;
1928 struct btrfs_root *root = NULL;
1929 struct btrfs_path *path;
1930 struct btrfs_key key, key2;
1931 struct extent_buffer *leaf;
1932 struct inode *temp_inode;
1933 char *ptr;
1934 int slot;
1935 int len;
1936 int total_len = 0;
1937 int ret;
1938
1939 path = btrfs_alloc_path();
1940 if (!path)
1941 return -ENOMEM;
1942
1943 /*
1944 * If the bottom subvolume does not exist directly under upper_limit,
1945 * construct the path in from the bottom up.
1946 */
1947 if (dirid != upper_limit.objectid) {
1948 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1949
1950 root = btrfs_get_fs_root(fs_info, treeid, true);
1951 if (IS_ERR(root)) {
1952 ret = PTR_ERR(root);
1953 goto out;
1954 }
1955
1956 key.objectid = dirid;
1957 key.type = BTRFS_INODE_REF_KEY;
1958 key.offset = (u64)-1;
1959 while (1) {
1960 ret = btrfs_search_backwards(root, &key, path);
1961 if (ret < 0)
1962 goto out_put;
1963 else if (ret > 0) {
1964 ret = -ENOENT;
1965 goto out_put;
1966 }
1967
1968 leaf = path->nodes[0];
1969 slot = path->slots[0];
1970
1971 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1972 len = btrfs_inode_ref_name_len(leaf, iref);
1973 ptr -= len + 1;
1974 total_len += len + 1;
1975 if (ptr < args->path) {
1976 ret = -ENAMETOOLONG;
1977 goto out_put;
1978 }
1979
1980 *(ptr + len) = '/';
1981 read_extent_buffer(leaf, ptr,
1982 (unsigned long)(iref + 1), len);
1983
1984 /* Check the read+exec permission of this directory */
1985 ret = btrfs_previous_item(root, path, dirid,
1986 BTRFS_INODE_ITEM_KEY);
1987 if (ret < 0) {
1988 goto out_put;
1989 } else if (ret > 0) {
1990 ret = -ENOENT;
1991 goto out_put;
1992 }
1993
1994 leaf = path->nodes[0];
1995 slot = path->slots[0];
1996 btrfs_item_key_to_cpu(leaf, &key2, slot);
1997 if (key2.objectid != dirid) {
1998 ret = -ENOENT;
1999 goto out_put;
2000 }
2001
2002 /*
2003 * We don't need the path anymore, so release it and
2004 * avoid deadlocks and lockdep warnings in case
2005 * btrfs_iget() needs to lookup the inode from its root
2006 * btree and lock the same leaf.
2007 */
2008 btrfs_release_path(path);
2009 temp_inode = btrfs_iget(sb, key2.objectid, root);
2010 if (IS_ERR(temp_inode)) {
2011 ret = PTR_ERR(temp_inode);
2012 goto out_put;
2013 }
2014 ret = inode_permission(idmap, temp_inode,
2015 MAY_READ | MAY_EXEC);
2016 iput(temp_inode);
2017 if (ret) {
2018 ret = -EACCES;
2019 goto out_put;
2020 }
2021
2022 if (key.offset == upper_limit.objectid)
2023 break;
2024 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2025 ret = -EACCES;
2026 goto out_put;
2027 }
2028
2029 key.objectid = key.offset;
2030 key.offset = (u64)-1;
2031 dirid = key.objectid;
2032 }
2033
2034 memmove(args->path, ptr, total_len);
2035 args->path[total_len] = '\0';
2036 btrfs_put_root(root);
2037 root = NULL;
2038 btrfs_release_path(path);
2039 }
2040
2041 /* Get the bottom subvolume's name from ROOT_REF */
2042 key.objectid = treeid;
2043 key.type = BTRFS_ROOT_REF_KEY;
2044 key.offset = args->treeid;
2045 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2046 if (ret < 0) {
2047 goto out;
2048 } else if (ret > 0) {
2049 ret = -ENOENT;
2050 goto out;
2051 }
2052
2053 leaf = path->nodes[0];
2054 slot = path->slots[0];
2055 btrfs_item_key_to_cpu(leaf, &key, slot);
2056
2057 item_off = btrfs_item_ptr_offset(leaf, slot);
2058 item_len = btrfs_item_size(leaf, slot);
2059 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2060 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2061 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2062 ret = -EINVAL;
2063 goto out;
2064 }
2065
2066 /* Copy subvolume's name */
2067 item_off += sizeof(struct btrfs_root_ref);
2068 item_len -= sizeof(struct btrfs_root_ref);
2069 read_extent_buffer(leaf, args->name, item_off, item_len);
2070 args->name[item_len] = 0;
2071
2072out_put:
2073 btrfs_put_root(root);
2074out:
2075 btrfs_free_path(path);
2076 return ret;
2077}
2078
2079static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2080 void __user *argp)
2081{
2082 struct btrfs_ioctl_ino_lookup_args *args;
2083 int ret = 0;
2084
2085 args = memdup_user(argp, sizeof(*args));
2086 if (IS_ERR(args))
2087 return PTR_ERR(args);
2088
2089 /*
2090 * Unprivileged query to obtain the containing subvolume root id. The
2091 * path is reset so it's consistent with btrfs_search_path_in_tree.
2092 */
2093 if (args->treeid == 0)
2094 args->treeid = root->root_key.objectid;
2095
2096 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2097 args->name[0] = 0;
2098 goto out;
2099 }
2100
2101 if (!capable(CAP_SYS_ADMIN)) {
2102 ret = -EPERM;
2103 goto out;
2104 }
2105
2106 ret = btrfs_search_path_in_tree(root->fs_info,
2107 args->treeid, args->objectid,
2108 args->name);
2109
2110out:
2111 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2112 ret = -EFAULT;
2113
2114 kfree(args);
2115 return ret;
2116}
2117
2118/*
2119 * Version of ino_lookup ioctl (unprivileged)
2120 *
2121 * The main differences from ino_lookup ioctl are:
2122 *
2123 * 1. Read + Exec permission will be checked using inode_permission() during
2124 * path construction. -EACCES will be returned in case of failure.
2125 * 2. Path construction will be stopped at the inode number which corresponds
2126 * to the fd with which this ioctl is called. If constructed path does not
2127 * exist under fd's inode, -EACCES will be returned.
2128 * 3. The name of bottom subvolume is also searched and filled.
2129 */
2130static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2131{
2132 struct btrfs_ioctl_ino_lookup_user_args *args;
2133 struct inode *inode;
2134 int ret;
2135
2136 args = memdup_user(argp, sizeof(*args));
2137 if (IS_ERR(args))
2138 return PTR_ERR(args);
2139
2140 inode = file_inode(file);
2141
2142 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2143 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2144 /*
2145 * The subvolume does not exist under fd with which this is
2146 * called
2147 */
2148 kfree(args);
2149 return -EACCES;
2150 }
2151
2152 ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2153
2154 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2155 ret = -EFAULT;
2156
2157 kfree(args);
2158 return ret;
2159}
2160
2161/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2162static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2163{
2164 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2165 struct btrfs_fs_info *fs_info;
2166 struct btrfs_root *root;
2167 struct btrfs_path *path;
2168 struct btrfs_key key;
2169 struct btrfs_root_item *root_item;
2170 struct btrfs_root_ref *rref;
2171 struct extent_buffer *leaf;
2172 unsigned long item_off;
2173 unsigned long item_len;
2174 int slot;
2175 int ret = 0;
2176
2177 path = btrfs_alloc_path();
2178 if (!path)
2179 return -ENOMEM;
2180
2181 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2182 if (!subvol_info) {
2183 btrfs_free_path(path);
2184 return -ENOMEM;
2185 }
2186
2187 fs_info = BTRFS_I(inode)->root->fs_info;
2188
2189 /* Get root_item of inode's subvolume */
2190 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2191 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2192 if (IS_ERR(root)) {
2193 ret = PTR_ERR(root);
2194 goto out_free;
2195 }
2196 root_item = &root->root_item;
2197
2198 subvol_info->treeid = key.objectid;
2199
2200 subvol_info->generation = btrfs_root_generation(root_item);
2201 subvol_info->flags = btrfs_root_flags(root_item);
2202
2203 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2204 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2205 BTRFS_UUID_SIZE);
2206 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2207 BTRFS_UUID_SIZE);
2208
2209 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2210 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2211 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2212
2213 subvol_info->otransid = btrfs_root_otransid(root_item);
2214 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2215 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2216
2217 subvol_info->stransid = btrfs_root_stransid(root_item);
2218 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2219 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2220
2221 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2222 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2223 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2224
2225 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2226 /* Search root tree for ROOT_BACKREF of this subvolume */
2227 key.type = BTRFS_ROOT_BACKREF_KEY;
2228 key.offset = 0;
2229 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2230 if (ret < 0) {
2231 goto out;
2232 } else if (path->slots[0] >=
2233 btrfs_header_nritems(path->nodes[0])) {
2234 ret = btrfs_next_leaf(fs_info->tree_root, path);
2235 if (ret < 0) {
2236 goto out;
2237 } else if (ret > 0) {
2238 ret = -EUCLEAN;
2239 goto out;
2240 }
2241 }
2242
2243 leaf = path->nodes[0];
2244 slot = path->slots[0];
2245 btrfs_item_key_to_cpu(leaf, &key, slot);
2246 if (key.objectid == subvol_info->treeid &&
2247 key.type == BTRFS_ROOT_BACKREF_KEY) {
2248 subvol_info->parent_id = key.offset;
2249
2250 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2251 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2252
2253 item_off = btrfs_item_ptr_offset(leaf, slot)
2254 + sizeof(struct btrfs_root_ref);
2255 item_len = btrfs_item_size(leaf, slot)
2256 - sizeof(struct btrfs_root_ref);
2257 read_extent_buffer(leaf, subvol_info->name,
2258 item_off, item_len);
2259 } else {
2260 ret = -ENOENT;
2261 goto out;
2262 }
2263 }
2264
2265 btrfs_free_path(path);
2266 path = NULL;
2267 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2268 ret = -EFAULT;
2269
2270out:
2271 btrfs_put_root(root);
2272out_free:
2273 btrfs_free_path(path);
2274 kfree(subvol_info);
2275 return ret;
2276}
2277
2278/*
2279 * Return ROOT_REF information of the subvolume containing this inode
2280 * except the subvolume name.
2281 */
2282static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2283 void __user *argp)
2284{
2285 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2286 struct btrfs_root_ref *rref;
2287 struct btrfs_path *path;
2288 struct btrfs_key key;
2289 struct extent_buffer *leaf;
2290 u64 objectid;
2291 int slot;
2292 int ret;
2293 u8 found;
2294
2295 path = btrfs_alloc_path();
2296 if (!path)
2297 return -ENOMEM;
2298
2299 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2300 if (IS_ERR(rootrefs)) {
2301 btrfs_free_path(path);
2302 return PTR_ERR(rootrefs);
2303 }
2304
2305 objectid = root->root_key.objectid;
2306 key.objectid = objectid;
2307 key.type = BTRFS_ROOT_REF_KEY;
2308 key.offset = rootrefs->min_treeid;
2309 found = 0;
2310
2311 root = root->fs_info->tree_root;
2312 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2313 if (ret < 0) {
2314 goto out;
2315 } else if (path->slots[0] >=
2316 btrfs_header_nritems(path->nodes[0])) {
2317 ret = btrfs_next_leaf(root, path);
2318 if (ret < 0) {
2319 goto out;
2320 } else if (ret > 0) {
2321 ret = -EUCLEAN;
2322 goto out;
2323 }
2324 }
2325 while (1) {
2326 leaf = path->nodes[0];
2327 slot = path->slots[0];
2328
2329 btrfs_item_key_to_cpu(leaf, &key, slot);
2330 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2331 ret = 0;
2332 goto out;
2333 }
2334
2335 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2336 ret = -EOVERFLOW;
2337 goto out;
2338 }
2339
2340 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2341 rootrefs->rootref[found].treeid = key.offset;
2342 rootrefs->rootref[found].dirid =
2343 btrfs_root_ref_dirid(leaf, rref);
2344 found++;
2345
2346 ret = btrfs_next_item(root, path);
2347 if (ret < 0) {
2348 goto out;
2349 } else if (ret > 0) {
2350 ret = -EUCLEAN;
2351 goto out;
2352 }
2353 }
2354
2355out:
2356 btrfs_free_path(path);
2357
2358 if (!ret || ret == -EOVERFLOW) {
2359 rootrefs->num_items = found;
2360 /* update min_treeid for next search */
2361 if (found)
2362 rootrefs->min_treeid =
2363 rootrefs->rootref[found - 1].treeid + 1;
2364 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2365 ret = -EFAULT;
2366 }
2367
2368 kfree(rootrefs);
2369
2370 return ret;
2371}
2372
2373static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2374 void __user *arg,
2375 bool destroy_v2)
2376{
2377 struct dentry *parent = file->f_path.dentry;
2378 struct dentry *dentry;
2379 struct inode *dir = d_inode(parent);
2380 struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2381 struct inode *inode;
2382 struct btrfs_root *root = BTRFS_I(dir)->root;
2383 struct btrfs_root *dest = NULL;
2384 struct btrfs_ioctl_vol_args *vol_args = NULL;
2385 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2386 struct mnt_idmap *idmap = file_mnt_idmap(file);
2387 char *subvol_name, *subvol_name_ptr = NULL;
2388 int subvol_namelen;
2389 int err = 0;
2390 bool destroy_parent = false;
2391
2392 /* We don't support snapshots with extent tree v2 yet. */
2393 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2394 btrfs_err(fs_info,
2395 "extent tree v2 doesn't support snapshot deletion yet");
2396 return -EOPNOTSUPP;
2397 }
2398
2399 if (destroy_v2) {
2400 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2401 if (IS_ERR(vol_args2))
2402 return PTR_ERR(vol_args2);
2403
2404 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2405 err = -EOPNOTSUPP;
2406 goto out;
2407 }
2408
2409 /*
2410 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2411 * name, same as v1 currently does.
2412 */
2413 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2414 err = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2415 if (err < 0)
2416 goto out;
2417 subvol_name = vol_args2->name;
2418
2419 err = mnt_want_write_file(file);
2420 if (err)
2421 goto out;
2422 } else {
2423 struct inode *old_dir;
2424
2425 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2426 err = -EINVAL;
2427 goto out;
2428 }
2429
2430 err = mnt_want_write_file(file);
2431 if (err)
2432 goto out;
2433
2434 dentry = btrfs_get_dentry(fs_info->sb,
2435 BTRFS_FIRST_FREE_OBJECTID,
2436 vol_args2->subvolid, 0);
2437 if (IS_ERR(dentry)) {
2438 err = PTR_ERR(dentry);
2439 goto out_drop_write;
2440 }
2441
2442 /*
2443 * Change the default parent since the subvolume being
2444 * deleted can be outside of the current mount point.
2445 */
2446 parent = btrfs_get_parent(dentry);
2447
2448 /*
2449 * At this point dentry->d_name can point to '/' if the
2450 * subvolume we want to destroy is outsite of the
2451 * current mount point, so we need to release the
2452 * current dentry and execute the lookup to return a new
2453 * one with ->d_name pointing to the
2454 * <mount point>/subvol_name.
2455 */
2456 dput(dentry);
2457 if (IS_ERR(parent)) {
2458 err = PTR_ERR(parent);
2459 goto out_drop_write;
2460 }
2461 old_dir = dir;
2462 dir = d_inode(parent);
2463
2464 /*
2465 * If v2 was used with SPEC_BY_ID, a new parent was
2466 * allocated since the subvolume can be outside of the
2467 * current mount point. Later on we need to release this
2468 * new parent dentry.
2469 */
2470 destroy_parent = true;
2471
2472 /*
2473 * On idmapped mounts, deletion via subvolid is
2474 * restricted to subvolumes that are immediate
2475 * ancestors of the inode referenced by the file
2476 * descriptor in the ioctl. Otherwise the idmapping
2477 * could potentially be abused to delete subvolumes
2478 * anywhere in the filesystem the user wouldn't be able
2479 * to delete without an idmapped mount.
2480 */
2481 if (old_dir != dir && idmap != &nop_mnt_idmap) {
2482 err = -EOPNOTSUPP;
2483 goto free_parent;
2484 }
2485
2486 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2487 fs_info, vol_args2->subvolid);
2488 if (IS_ERR(subvol_name_ptr)) {
2489 err = PTR_ERR(subvol_name_ptr);
2490 goto free_parent;
2491 }
2492 /* subvol_name_ptr is already nul terminated */
2493 subvol_name = (char *)kbasename(subvol_name_ptr);
2494 }
2495 } else {
2496 vol_args = memdup_user(arg, sizeof(*vol_args));
2497 if (IS_ERR(vol_args))
2498 return PTR_ERR(vol_args);
2499
2500 err = btrfs_check_ioctl_vol_args_path(vol_args);
2501 if (err < 0)
2502 goto out;
2503
2504 subvol_name = vol_args->name;
2505
2506 err = mnt_want_write_file(file);
2507 if (err)
2508 goto out;
2509 }
2510
2511 subvol_namelen = strlen(subvol_name);
2512
2513 if (strchr(subvol_name, '/') ||
2514 strncmp(subvol_name, "..", subvol_namelen) == 0) {
2515 err = -EINVAL;
2516 goto free_subvol_name;
2517 }
2518
2519 if (!S_ISDIR(dir->i_mode)) {
2520 err = -ENOTDIR;
2521 goto free_subvol_name;
2522 }
2523
2524 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2525 if (err == -EINTR)
2526 goto free_subvol_name;
2527 dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2528 if (IS_ERR(dentry)) {
2529 err = PTR_ERR(dentry);
2530 goto out_unlock_dir;
2531 }
2532
2533 if (d_really_is_negative(dentry)) {
2534 err = -ENOENT;
2535 goto out_dput;
2536 }
2537
2538 inode = d_inode(dentry);
2539 dest = BTRFS_I(inode)->root;
2540 if (!capable(CAP_SYS_ADMIN)) {
2541 /*
2542 * Regular user. Only allow this with a special mount
2543 * option, when the user has write+exec access to the
2544 * subvol root, and when rmdir(2) would have been
2545 * allowed.
2546 *
2547 * Note that this is _not_ check that the subvol is
2548 * empty or doesn't contain data that we wouldn't
2549 * otherwise be able to delete.
2550 *
2551 * Users who want to delete empty subvols should try
2552 * rmdir(2).
2553 */
2554 err = -EPERM;
2555 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2556 goto out_dput;
2557
2558 /*
2559 * Do not allow deletion if the parent dir is the same
2560 * as the dir to be deleted. That means the ioctl
2561 * must be called on the dentry referencing the root
2562 * of the subvol, not a random directory contained
2563 * within it.
2564 */
2565 err = -EINVAL;
2566 if (root == dest)
2567 goto out_dput;
2568
2569 err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
2570 if (err)
2571 goto out_dput;
2572 }
2573
2574 /* check if subvolume may be deleted by a user */
2575 err = btrfs_may_delete(idmap, dir, dentry, 1);
2576 if (err)
2577 goto out_dput;
2578
2579 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2580 err = -EINVAL;
2581 goto out_dput;
2582 }
2583
2584 btrfs_inode_lock(BTRFS_I(inode), 0);
2585 err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2586 btrfs_inode_unlock(BTRFS_I(inode), 0);
2587 if (!err)
2588 d_delete_notify(dir, dentry);
2589
2590out_dput:
2591 dput(dentry);
2592out_unlock_dir:
2593 btrfs_inode_unlock(BTRFS_I(dir), 0);
2594free_subvol_name:
2595 kfree(subvol_name_ptr);
2596free_parent:
2597 if (destroy_parent)
2598 dput(parent);
2599out_drop_write:
2600 mnt_drop_write_file(file);
2601out:
2602 kfree(vol_args2);
2603 kfree(vol_args);
2604 return err;
2605}
2606
2607static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2608{
2609 struct inode *inode = file_inode(file);
2610 struct btrfs_root *root = BTRFS_I(inode)->root;
2611 struct btrfs_ioctl_defrag_range_args range = {0};
2612 int ret;
2613
2614 ret = mnt_want_write_file(file);
2615 if (ret)
2616 return ret;
2617
2618 if (btrfs_root_readonly(root)) {
2619 ret = -EROFS;
2620 goto out;
2621 }
2622
2623 switch (inode->i_mode & S_IFMT) {
2624 case S_IFDIR:
2625 if (!capable(CAP_SYS_ADMIN)) {
2626 ret = -EPERM;
2627 goto out;
2628 }
2629 ret = btrfs_defrag_root(root);
2630 break;
2631 case S_IFREG:
2632 /*
2633 * Note that this does not check the file descriptor for write
2634 * access. This prevents defragmenting executables that are
2635 * running and allows defrag on files open in read-only mode.
2636 */
2637 if (!capable(CAP_SYS_ADMIN) &&
2638 inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2639 ret = -EPERM;
2640 goto out;
2641 }
2642
2643 if (argp) {
2644 if (copy_from_user(&range, argp, sizeof(range))) {
2645 ret = -EFAULT;
2646 goto out;
2647 }
2648 if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2649 ret = -EOPNOTSUPP;
2650 goto out;
2651 }
2652 /* compression requires us to start the IO */
2653 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2654 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2655 range.extent_thresh = (u32)-1;
2656 }
2657 } else {
2658 /* the rest are all set to zero by kzalloc */
2659 range.len = (u64)-1;
2660 }
2661 ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2662 &range, BTRFS_OLDEST_GENERATION, 0);
2663 if (ret > 0)
2664 ret = 0;
2665 break;
2666 default:
2667 ret = -EINVAL;
2668 }
2669out:
2670 mnt_drop_write_file(file);
2671 return ret;
2672}
2673
2674static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2675{
2676 struct btrfs_ioctl_vol_args *vol_args;
2677 bool restore_op = false;
2678 int ret;
2679
2680 if (!capable(CAP_SYS_ADMIN))
2681 return -EPERM;
2682
2683 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2684 btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2685 return -EINVAL;
2686 }
2687
2688 if (fs_info->fs_devices->temp_fsid) {
2689 btrfs_err(fs_info,
2690 "device add not supported on cloned temp-fsid mount");
2691 return -EINVAL;
2692 }
2693
2694 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2695 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2696 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2697
2698 /*
2699 * We can do the device add because we have a paused balanced,
2700 * change the exclusive op type and remember we should bring
2701 * back the paused balance
2702 */
2703 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2704 btrfs_exclop_start_unlock(fs_info);
2705 restore_op = true;
2706 }
2707
2708 vol_args = memdup_user(arg, sizeof(*vol_args));
2709 if (IS_ERR(vol_args)) {
2710 ret = PTR_ERR(vol_args);
2711 goto out;
2712 }
2713
2714 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2715 if (ret < 0)
2716 goto out_free;
2717
2718 ret = btrfs_init_new_device(fs_info, vol_args->name);
2719
2720 if (!ret)
2721 btrfs_info(fs_info, "disk added %s", vol_args->name);
2722
2723out_free:
2724 kfree(vol_args);
2725out:
2726 if (restore_op)
2727 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2728 else
2729 btrfs_exclop_finish(fs_info);
2730 return ret;
2731}
2732
2733static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2734{
2735 BTRFS_DEV_LOOKUP_ARGS(args);
2736 struct inode *inode = file_inode(file);
2737 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2738 struct btrfs_ioctl_vol_args_v2 *vol_args;
2739 struct file *bdev_file = NULL;
2740 int ret;
2741 bool cancel = false;
2742
2743 if (!capable(CAP_SYS_ADMIN))
2744 return -EPERM;
2745
2746 vol_args = memdup_user(arg, sizeof(*vol_args));
2747 if (IS_ERR(vol_args))
2748 return PTR_ERR(vol_args);
2749
2750 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2751 ret = -EOPNOTSUPP;
2752 goto out;
2753 }
2754
2755 ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2756 if (ret < 0)
2757 goto out;
2758
2759 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2760 args.devid = vol_args->devid;
2761 } else if (!strcmp("cancel", vol_args->name)) {
2762 cancel = true;
2763 } else {
2764 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2765 if (ret)
2766 goto out;
2767 }
2768
2769 ret = mnt_want_write_file(file);
2770 if (ret)
2771 goto out;
2772
2773 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2774 cancel);
2775 if (ret)
2776 goto err_drop;
2777
2778 /* Exclusive operation is now claimed */
2779 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2780
2781 btrfs_exclop_finish(fs_info);
2782
2783 if (!ret) {
2784 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2785 btrfs_info(fs_info, "device deleted: id %llu",
2786 vol_args->devid);
2787 else
2788 btrfs_info(fs_info, "device deleted: %s",
2789 vol_args->name);
2790 }
2791err_drop:
2792 mnt_drop_write_file(file);
2793 if (bdev_file)
2794 fput(bdev_file);
2795out:
2796 btrfs_put_dev_args_from_path(&args);
2797 kfree(vol_args);
2798 return ret;
2799}
2800
2801static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2802{
2803 BTRFS_DEV_LOOKUP_ARGS(args);
2804 struct inode *inode = file_inode(file);
2805 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2806 struct btrfs_ioctl_vol_args *vol_args;
2807 struct file *bdev_file = NULL;
2808 int ret;
2809 bool cancel = false;
2810
2811 if (!capable(CAP_SYS_ADMIN))
2812 return -EPERM;
2813
2814 vol_args = memdup_user(arg, sizeof(*vol_args));
2815 if (IS_ERR(vol_args))
2816 return PTR_ERR(vol_args);
2817
2818 ret = btrfs_check_ioctl_vol_args_path(vol_args);
2819 if (ret < 0)
2820 goto out_free;
2821
2822 if (!strcmp("cancel", vol_args->name)) {
2823 cancel = true;
2824 } else {
2825 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2826 if (ret)
2827 goto out;
2828 }
2829
2830 ret = mnt_want_write_file(file);
2831 if (ret)
2832 goto out;
2833
2834 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2835 cancel);
2836 if (ret == 0) {
2837 ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2838 if (!ret)
2839 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2840 btrfs_exclop_finish(fs_info);
2841 }
2842
2843 mnt_drop_write_file(file);
2844 if (bdev_file)
2845 fput(bdev_file);
2846out:
2847 btrfs_put_dev_args_from_path(&args);
2848out_free:
2849 kfree(vol_args);
2850 return ret;
2851}
2852
2853static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2854 void __user *arg)
2855{
2856 struct btrfs_ioctl_fs_info_args *fi_args;
2857 struct btrfs_device *device;
2858 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2859 u64 flags_in;
2860 int ret = 0;
2861
2862 fi_args = memdup_user(arg, sizeof(*fi_args));
2863 if (IS_ERR(fi_args))
2864 return PTR_ERR(fi_args);
2865
2866 flags_in = fi_args->flags;
2867 memset(fi_args, 0, sizeof(*fi_args));
2868
2869 rcu_read_lock();
2870 fi_args->num_devices = fs_devices->num_devices;
2871
2872 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2873 if (device->devid > fi_args->max_id)
2874 fi_args->max_id = device->devid;
2875 }
2876 rcu_read_unlock();
2877
2878 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2879 fi_args->nodesize = fs_info->nodesize;
2880 fi_args->sectorsize = fs_info->sectorsize;
2881 fi_args->clone_alignment = fs_info->sectorsize;
2882
2883 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2884 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2885 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2886 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2887 }
2888
2889 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2890 fi_args->generation = btrfs_get_fs_generation(fs_info);
2891 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2892 }
2893
2894 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2895 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2896 sizeof(fi_args->metadata_uuid));
2897 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2898 }
2899
2900 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2901 ret = -EFAULT;
2902
2903 kfree(fi_args);
2904 return ret;
2905}
2906
2907static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2908 void __user *arg)
2909{
2910 BTRFS_DEV_LOOKUP_ARGS(args);
2911 struct btrfs_ioctl_dev_info_args *di_args;
2912 struct btrfs_device *dev;
2913 int ret = 0;
2914
2915 di_args = memdup_user(arg, sizeof(*di_args));
2916 if (IS_ERR(di_args))
2917 return PTR_ERR(di_args);
2918
2919 args.devid = di_args->devid;
2920 if (!btrfs_is_empty_uuid(di_args->uuid))
2921 args.uuid = di_args->uuid;
2922
2923 rcu_read_lock();
2924 dev = btrfs_find_device(fs_info->fs_devices, &args);
2925 if (!dev) {
2926 ret = -ENODEV;
2927 goto out;
2928 }
2929
2930 di_args->devid = dev->devid;
2931 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2932 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2933 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2934 memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2935 if (dev->name)
2936 strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2937 else
2938 di_args->path[0] = '\0';
2939
2940out:
2941 rcu_read_unlock();
2942 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2943 ret = -EFAULT;
2944
2945 kfree(di_args);
2946 return ret;
2947}
2948
2949static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2950{
2951 struct inode *inode = file_inode(file);
2952 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2953 struct btrfs_root *root = BTRFS_I(inode)->root;
2954 struct btrfs_root *new_root;
2955 struct btrfs_dir_item *di;
2956 struct btrfs_trans_handle *trans;
2957 struct btrfs_path *path = NULL;
2958 struct btrfs_disk_key disk_key;
2959 struct fscrypt_str name = FSTR_INIT("default", 7);
2960 u64 objectid = 0;
2961 u64 dir_id;
2962 int ret;
2963
2964 if (!capable(CAP_SYS_ADMIN))
2965 return -EPERM;
2966
2967 ret = mnt_want_write_file(file);
2968 if (ret)
2969 return ret;
2970
2971 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2972 ret = -EFAULT;
2973 goto out;
2974 }
2975
2976 if (!objectid)
2977 objectid = BTRFS_FS_TREE_OBJECTID;
2978
2979 new_root = btrfs_get_fs_root(fs_info, objectid, true);
2980 if (IS_ERR(new_root)) {
2981 ret = PTR_ERR(new_root);
2982 goto out;
2983 }
2984 if (!is_fstree(new_root->root_key.objectid)) {
2985 ret = -ENOENT;
2986 goto out_free;
2987 }
2988
2989 path = btrfs_alloc_path();
2990 if (!path) {
2991 ret = -ENOMEM;
2992 goto out_free;
2993 }
2994
2995 trans = btrfs_start_transaction(root, 1);
2996 if (IS_ERR(trans)) {
2997 ret = PTR_ERR(trans);
2998 goto out_free;
2999 }
3000
3001 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3002 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3003 dir_id, &name, 1);
3004 if (IS_ERR_OR_NULL(di)) {
3005 btrfs_release_path(path);
3006 btrfs_end_transaction(trans);
3007 btrfs_err(fs_info,
3008 "Umm, you don't have the default diritem, this isn't going to work");
3009 ret = -ENOENT;
3010 goto out_free;
3011 }
3012
3013 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3014 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3015 btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3016 btrfs_release_path(path);
3017
3018 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3019 btrfs_end_transaction(trans);
3020out_free:
3021 btrfs_put_root(new_root);
3022 btrfs_free_path(path);
3023out:
3024 mnt_drop_write_file(file);
3025 return ret;
3026}
3027
3028static void get_block_group_info(struct list_head *groups_list,
3029 struct btrfs_ioctl_space_info *space)
3030{
3031 struct btrfs_block_group *block_group;
3032
3033 space->total_bytes = 0;
3034 space->used_bytes = 0;
3035 space->flags = 0;
3036 list_for_each_entry(block_group, groups_list, list) {
3037 space->flags = block_group->flags;
3038 space->total_bytes += block_group->length;
3039 space->used_bytes += block_group->used;
3040 }
3041}
3042
3043static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3044 void __user *arg)
3045{
3046 struct btrfs_ioctl_space_args space_args = { 0 };
3047 struct btrfs_ioctl_space_info space;
3048 struct btrfs_ioctl_space_info *dest;
3049 struct btrfs_ioctl_space_info *dest_orig;
3050 struct btrfs_ioctl_space_info __user *user_dest;
3051 struct btrfs_space_info *info;
3052 static const u64 types[] = {
3053 BTRFS_BLOCK_GROUP_DATA,
3054 BTRFS_BLOCK_GROUP_SYSTEM,
3055 BTRFS_BLOCK_GROUP_METADATA,
3056 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3057 };
3058 int num_types = 4;
3059 int alloc_size;
3060 int ret = 0;
3061 u64 slot_count = 0;
3062 int i, c;
3063
3064 if (copy_from_user(&space_args,
3065 (struct btrfs_ioctl_space_args __user *)arg,
3066 sizeof(space_args)))
3067 return -EFAULT;
3068
3069 for (i = 0; i < num_types; i++) {
3070 struct btrfs_space_info *tmp;
3071
3072 info = NULL;
3073 list_for_each_entry(tmp, &fs_info->space_info, list) {
3074 if (tmp->flags == types[i]) {
3075 info = tmp;
3076 break;
3077 }
3078 }
3079
3080 if (!info)
3081 continue;
3082
3083 down_read(&info->groups_sem);
3084 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3085 if (!list_empty(&info->block_groups[c]))
3086 slot_count++;
3087 }
3088 up_read(&info->groups_sem);
3089 }
3090
3091 /*
3092 * Global block reserve, exported as a space_info
3093 */
3094 slot_count++;
3095
3096 /* space_slots == 0 means they are asking for a count */
3097 if (space_args.space_slots == 0) {
3098 space_args.total_spaces = slot_count;
3099 goto out;
3100 }
3101
3102 slot_count = min_t(u64, space_args.space_slots, slot_count);
3103
3104 alloc_size = sizeof(*dest) * slot_count;
3105
3106 /* we generally have at most 6 or so space infos, one for each raid
3107 * level. So, a whole page should be more than enough for everyone
3108 */
3109 if (alloc_size > PAGE_SIZE)
3110 return -ENOMEM;
3111
3112 space_args.total_spaces = 0;
3113 dest = kmalloc(alloc_size, GFP_KERNEL);
3114 if (!dest)
3115 return -ENOMEM;
3116 dest_orig = dest;
3117
3118 /* now we have a buffer to copy into */
3119 for (i = 0; i < num_types; i++) {
3120 struct btrfs_space_info *tmp;
3121
3122 if (!slot_count)
3123 break;
3124
3125 info = NULL;
3126 list_for_each_entry(tmp, &fs_info->space_info, list) {
3127 if (tmp->flags == types[i]) {
3128 info = tmp;
3129 break;
3130 }
3131 }
3132
3133 if (!info)
3134 continue;
3135 down_read(&info->groups_sem);
3136 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3137 if (!list_empty(&info->block_groups[c])) {
3138 get_block_group_info(&info->block_groups[c],
3139 &space);
3140 memcpy(dest, &space, sizeof(space));
3141 dest++;
3142 space_args.total_spaces++;
3143 slot_count--;
3144 }
3145 if (!slot_count)
3146 break;
3147 }
3148 up_read(&info->groups_sem);
3149 }
3150
3151 /*
3152 * Add global block reserve
3153 */
3154 if (slot_count) {
3155 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3156
3157 spin_lock(&block_rsv->lock);
3158 space.total_bytes = block_rsv->size;
3159 space.used_bytes = block_rsv->size - block_rsv->reserved;
3160 spin_unlock(&block_rsv->lock);
3161 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3162 memcpy(dest, &space, sizeof(space));
3163 space_args.total_spaces++;
3164 }
3165
3166 user_dest = (struct btrfs_ioctl_space_info __user *)
3167 (arg + sizeof(struct btrfs_ioctl_space_args));
3168
3169 if (copy_to_user(user_dest, dest_orig, alloc_size))
3170 ret = -EFAULT;
3171
3172 kfree(dest_orig);
3173out:
3174 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3175 ret = -EFAULT;
3176
3177 return ret;
3178}
3179
3180static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3181 void __user *argp)
3182{
3183 struct btrfs_trans_handle *trans;
3184 u64 transid;
3185
3186 /*
3187 * Start orphan cleanup here for the given root in case it hasn't been
3188 * started already by other means. Errors are handled in the other
3189 * functions during transaction commit.
3190 */
3191 btrfs_orphan_cleanup(root);
3192
3193 trans = btrfs_attach_transaction_barrier(root);
3194 if (IS_ERR(trans)) {
3195 if (PTR_ERR(trans) != -ENOENT)
3196 return PTR_ERR(trans);
3197
3198 /* No running transaction, don't bother */
3199 transid = btrfs_get_last_trans_committed(root->fs_info);
3200 goto out;
3201 }
3202 transid = trans->transid;
3203 btrfs_commit_transaction_async(trans);
3204out:
3205 if (argp)
3206 if (copy_to_user(argp, &transid, sizeof(transid)))
3207 return -EFAULT;
3208 return 0;
3209}
3210
3211static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3212 void __user *argp)
3213{
3214 /* By default wait for the current transaction. */
3215 u64 transid = 0;
3216
3217 if (argp)
3218 if (copy_from_user(&transid, argp, sizeof(transid)))
3219 return -EFAULT;
3220
3221 return btrfs_wait_for_commit(fs_info, transid);
3222}
3223
3224static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3225{
3226 struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3227 struct btrfs_ioctl_scrub_args *sa;
3228 int ret;
3229
3230 if (!capable(CAP_SYS_ADMIN))
3231 return -EPERM;
3232
3233 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3234 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3235 return -EINVAL;
3236 }
3237
3238 sa = memdup_user(arg, sizeof(*sa));
3239 if (IS_ERR(sa))
3240 return PTR_ERR(sa);
3241
3242 if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3243 ret = -EOPNOTSUPP;
3244 goto out;
3245 }
3246
3247 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3248 ret = mnt_want_write_file(file);
3249 if (ret)
3250 goto out;
3251 }
3252
3253 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3254 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3255 0);
3256
3257 /*
3258 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3259 * error. This is important as it allows user space to know how much
3260 * progress scrub has done. For example, if scrub is canceled we get
3261 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3262 * space. Later user space can inspect the progress from the structure
3263 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3264 * previously (btrfs-progs does this).
3265 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3266 * then return -EFAULT to signal the structure was not copied or it may
3267 * be corrupt and unreliable due to a partial copy.
3268 */
3269 if (copy_to_user(arg, sa, sizeof(*sa)))
3270 ret = -EFAULT;
3271
3272 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3273 mnt_drop_write_file(file);
3274out:
3275 kfree(sa);
3276 return ret;
3277}
3278
3279static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3280{
3281 if (!capable(CAP_SYS_ADMIN))
3282 return -EPERM;
3283
3284 return btrfs_scrub_cancel(fs_info);
3285}
3286
3287static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3288 void __user *arg)
3289{
3290 struct btrfs_ioctl_scrub_args *sa;
3291 int ret;
3292
3293 if (!capable(CAP_SYS_ADMIN))
3294 return -EPERM;
3295
3296 sa = memdup_user(arg, sizeof(*sa));
3297 if (IS_ERR(sa))
3298 return PTR_ERR(sa);
3299
3300 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3301
3302 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3303 ret = -EFAULT;
3304
3305 kfree(sa);
3306 return ret;
3307}
3308
3309static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3310 void __user *arg)
3311{
3312 struct btrfs_ioctl_get_dev_stats *sa;
3313 int ret;
3314
3315 sa = memdup_user(arg, sizeof(*sa));
3316 if (IS_ERR(sa))
3317 return PTR_ERR(sa);
3318
3319 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3320 kfree(sa);
3321 return -EPERM;
3322 }
3323
3324 ret = btrfs_get_dev_stats(fs_info, sa);
3325
3326 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3327 ret = -EFAULT;
3328
3329 kfree(sa);
3330 return ret;
3331}
3332
3333static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3334 void __user *arg)
3335{
3336 struct btrfs_ioctl_dev_replace_args *p;
3337 int ret;
3338
3339 if (!capable(CAP_SYS_ADMIN))
3340 return -EPERM;
3341
3342 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3343 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3344 return -EINVAL;
3345 }
3346
3347 p = memdup_user(arg, sizeof(*p));
3348 if (IS_ERR(p))
3349 return PTR_ERR(p);
3350
3351 switch (p->cmd) {
3352 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3353 if (sb_rdonly(fs_info->sb)) {
3354 ret = -EROFS;
3355 goto out;
3356 }
3357 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3358 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3359 } else {
3360 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3361 btrfs_exclop_finish(fs_info);
3362 }
3363 break;
3364 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3365 btrfs_dev_replace_status(fs_info, p);
3366 ret = 0;
3367 break;
3368 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3369 p->result = btrfs_dev_replace_cancel(fs_info);
3370 ret = 0;
3371 break;
3372 default:
3373 ret = -EINVAL;
3374 break;
3375 }
3376
3377 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3378 ret = -EFAULT;
3379out:
3380 kfree(p);
3381 return ret;
3382}
3383
3384static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3385{
3386 int ret = 0;
3387 int i;
3388 u64 rel_ptr;
3389 int size;
3390 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3391 struct inode_fs_paths *ipath = NULL;
3392 struct btrfs_path *path;
3393
3394 if (!capable(CAP_DAC_READ_SEARCH))
3395 return -EPERM;
3396
3397 path = btrfs_alloc_path();
3398 if (!path) {
3399 ret = -ENOMEM;
3400 goto out;
3401 }
3402
3403 ipa = memdup_user(arg, sizeof(*ipa));
3404 if (IS_ERR(ipa)) {
3405 ret = PTR_ERR(ipa);
3406 ipa = NULL;
3407 goto out;
3408 }
3409
3410 size = min_t(u32, ipa->size, 4096);
3411 ipath = init_ipath(size, root, path);
3412 if (IS_ERR(ipath)) {
3413 ret = PTR_ERR(ipath);
3414 ipath = NULL;
3415 goto out;
3416 }
3417
3418 ret = paths_from_inode(ipa->inum, ipath);
3419 if (ret < 0)
3420 goto out;
3421
3422 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3423 rel_ptr = ipath->fspath->val[i] -
3424 (u64)(unsigned long)ipath->fspath->val;
3425 ipath->fspath->val[i] = rel_ptr;
3426 }
3427
3428 btrfs_free_path(path);
3429 path = NULL;
3430 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3431 ipath->fspath, size);
3432 if (ret) {
3433 ret = -EFAULT;
3434 goto out;
3435 }
3436
3437out:
3438 btrfs_free_path(path);
3439 free_ipath(ipath);
3440 kfree(ipa);
3441
3442 return ret;
3443}
3444
3445static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3446 void __user *arg, int version)
3447{
3448 int ret = 0;
3449 int size;
3450 struct btrfs_ioctl_logical_ino_args *loi;
3451 struct btrfs_data_container *inodes = NULL;
3452 struct btrfs_path *path = NULL;
3453 bool ignore_offset;
3454
3455 if (!capable(CAP_SYS_ADMIN))
3456 return -EPERM;
3457
3458 loi = memdup_user(arg, sizeof(*loi));
3459 if (IS_ERR(loi))
3460 return PTR_ERR(loi);
3461
3462 if (version == 1) {
3463 ignore_offset = false;
3464 size = min_t(u32, loi->size, SZ_64K);
3465 } else {
3466 /* All reserved bits must be 0 for now */
3467 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3468 ret = -EINVAL;
3469 goto out_loi;
3470 }
3471 /* Only accept flags we have defined so far */
3472 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3473 ret = -EINVAL;
3474 goto out_loi;
3475 }
3476 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3477 size = min_t(u32, loi->size, SZ_16M);
3478 }
3479
3480 inodes = init_data_container(size);
3481 if (IS_ERR(inodes)) {
3482 ret = PTR_ERR(inodes);
3483 goto out_loi;
3484 }
3485
3486 path = btrfs_alloc_path();
3487 if (!path) {
3488 ret = -ENOMEM;
3489 goto out;
3490 }
3491 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3492 inodes, ignore_offset);
3493 btrfs_free_path(path);
3494 if (ret == -EINVAL)
3495 ret = -ENOENT;
3496 if (ret < 0)
3497 goto out;
3498
3499 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3500 size);
3501 if (ret)
3502 ret = -EFAULT;
3503
3504out:
3505 kvfree(inodes);
3506out_loi:
3507 kfree(loi);
3508
3509 return ret;
3510}
3511
3512void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3513 struct btrfs_ioctl_balance_args *bargs)
3514{
3515 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3516
3517 bargs->flags = bctl->flags;
3518
3519 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3520 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3521 if (atomic_read(&fs_info->balance_pause_req))
3522 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3523 if (atomic_read(&fs_info->balance_cancel_req))
3524 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3525
3526 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3527 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3528 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3529
3530 spin_lock(&fs_info->balance_lock);
3531 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3532 spin_unlock(&fs_info->balance_lock);
3533}
3534
3535/*
3536 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3537 * required.
3538 *
3539 * @fs_info: the filesystem
3540 * @excl_acquired: ptr to boolean value which is set to false in case balance
3541 * is being resumed
3542 *
3543 * Return 0 on success in which case both fs_info::balance is acquired as well
3544 * as exclusive ops are blocked. In case of failure return an error code.
3545 */
3546static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3547{
3548 int ret;
3549
3550 /*
3551 * Exclusive operation is locked. Three possibilities:
3552 * (1) some other op is running
3553 * (2) balance is running
3554 * (3) balance is paused -- special case (think resume)
3555 */
3556 while (1) {
3557 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3558 *excl_acquired = true;
3559 mutex_lock(&fs_info->balance_mutex);
3560 return 0;
3561 }
3562
3563 mutex_lock(&fs_info->balance_mutex);
3564 if (fs_info->balance_ctl) {
3565 /* This is either (2) or (3) */
3566 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3567 /* This is (2) */
3568 ret = -EINPROGRESS;
3569 goto out_failure;
3570
3571 } else {
3572 mutex_unlock(&fs_info->balance_mutex);
3573 /*
3574 * Lock released to allow other waiters to
3575 * continue, we'll reexamine the status again.
3576 */
3577 mutex_lock(&fs_info->balance_mutex);
3578
3579 if (fs_info->balance_ctl &&
3580 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3581 /* This is (3) */
3582 *excl_acquired = false;
3583 return 0;
3584 }
3585 }
3586 } else {
3587 /* This is (1) */
3588 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3589 goto out_failure;
3590 }
3591
3592 mutex_unlock(&fs_info->balance_mutex);
3593 }
3594
3595out_failure:
3596 mutex_unlock(&fs_info->balance_mutex);
3597 *excl_acquired = false;
3598 return ret;
3599}
3600
3601static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3602{
3603 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3604 struct btrfs_fs_info *fs_info = root->fs_info;
3605 struct btrfs_ioctl_balance_args *bargs;
3606 struct btrfs_balance_control *bctl;
3607 bool need_unlock = true;
3608 int ret;
3609
3610 if (!capable(CAP_SYS_ADMIN))
3611 return -EPERM;
3612
3613 ret = mnt_want_write_file(file);
3614 if (ret)
3615 return ret;
3616
3617 bargs = memdup_user(arg, sizeof(*bargs));
3618 if (IS_ERR(bargs)) {
3619 ret = PTR_ERR(bargs);
3620 bargs = NULL;
3621 goto out;
3622 }
3623
3624 ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3625 if (ret)
3626 goto out;
3627
3628 lockdep_assert_held(&fs_info->balance_mutex);
3629
3630 if (bargs->flags & BTRFS_BALANCE_RESUME) {
3631 if (!fs_info->balance_ctl) {
3632 ret = -ENOTCONN;
3633 goto out_unlock;
3634 }
3635
3636 bctl = fs_info->balance_ctl;
3637 spin_lock(&fs_info->balance_lock);
3638 bctl->flags |= BTRFS_BALANCE_RESUME;
3639 spin_unlock(&fs_info->balance_lock);
3640 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3641
3642 goto do_balance;
3643 }
3644
3645 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3646 ret = -EINVAL;
3647 goto out_unlock;
3648 }
3649
3650 if (fs_info->balance_ctl) {
3651 ret = -EINPROGRESS;
3652 goto out_unlock;
3653 }
3654
3655 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3656 if (!bctl) {
3657 ret = -ENOMEM;
3658 goto out_unlock;
3659 }
3660
3661 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3662 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3663 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3664
3665 bctl->flags = bargs->flags;
3666do_balance:
3667 /*
3668 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3669 * bctl is freed in reset_balance_state, or, if restriper was paused
3670 * all the way until unmount, in free_fs_info. The flag should be
3671 * cleared after reset_balance_state.
3672 */
3673 need_unlock = false;
3674
3675 ret = btrfs_balance(fs_info, bctl, bargs);
3676 bctl = NULL;
3677
3678 if (ret == 0 || ret == -ECANCELED) {
3679 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3680 ret = -EFAULT;
3681 }
3682
3683 kfree(bctl);
3684out_unlock:
3685 mutex_unlock(&fs_info->balance_mutex);
3686 if (need_unlock)
3687 btrfs_exclop_finish(fs_info);
3688out:
3689 mnt_drop_write_file(file);
3690 kfree(bargs);
3691 return ret;
3692}
3693
3694static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3695{
3696 if (!capable(CAP_SYS_ADMIN))
3697 return -EPERM;
3698
3699 switch (cmd) {
3700 case BTRFS_BALANCE_CTL_PAUSE:
3701 return btrfs_pause_balance(fs_info);
3702 case BTRFS_BALANCE_CTL_CANCEL:
3703 return btrfs_cancel_balance(fs_info);
3704 }
3705
3706 return -EINVAL;
3707}
3708
3709static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3710 void __user *arg)
3711{
3712 struct btrfs_ioctl_balance_args *bargs;
3713 int ret = 0;
3714
3715 if (!capable(CAP_SYS_ADMIN))
3716 return -EPERM;
3717
3718 mutex_lock(&fs_info->balance_mutex);
3719 if (!fs_info->balance_ctl) {
3720 ret = -ENOTCONN;
3721 goto out;
3722 }
3723
3724 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3725 if (!bargs) {
3726 ret = -ENOMEM;
3727 goto out;
3728 }
3729
3730 btrfs_update_ioctl_balance_args(fs_info, bargs);
3731
3732 if (copy_to_user(arg, bargs, sizeof(*bargs)))
3733 ret = -EFAULT;
3734
3735 kfree(bargs);
3736out:
3737 mutex_unlock(&fs_info->balance_mutex);
3738 return ret;
3739}
3740
3741static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3742{
3743 struct inode *inode = file_inode(file);
3744 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3745 struct btrfs_ioctl_quota_ctl_args *sa;
3746 int ret;
3747
3748 if (!capable(CAP_SYS_ADMIN))
3749 return -EPERM;
3750
3751 ret = mnt_want_write_file(file);
3752 if (ret)
3753 return ret;
3754
3755 sa = memdup_user(arg, sizeof(*sa));
3756 if (IS_ERR(sa)) {
3757 ret = PTR_ERR(sa);
3758 goto drop_write;
3759 }
3760
3761 switch (sa->cmd) {
3762 case BTRFS_QUOTA_CTL_ENABLE:
3763 case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3764 down_write(&fs_info->subvol_sem);
3765 ret = btrfs_quota_enable(fs_info, sa);
3766 up_write(&fs_info->subvol_sem);
3767 break;
3768 case BTRFS_QUOTA_CTL_DISABLE:
3769 /*
3770 * Lock the cleaner mutex to prevent races with concurrent
3771 * relocation, because relocation may be building backrefs for
3772 * blocks of the quota root while we are deleting the root. This
3773 * is like dropping fs roots of deleted snapshots/subvolumes, we
3774 * need the same protection.
3775 *
3776 * This also prevents races between concurrent tasks trying to
3777 * disable quotas, because we will unlock and relock
3778 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3779 *
3780 * We take this here because we have the dependency of
3781 *
3782 * inode_lock -> subvol_sem
3783 *
3784 * because of rename. With relocation we can prealloc extents,
3785 * so that makes the dependency chain
3786 *
3787 * cleaner_mutex -> inode_lock -> subvol_sem
3788 *
3789 * so we must take the cleaner_mutex here before we take the
3790 * subvol_sem. The deadlock can't actually happen, but this
3791 * quiets lockdep.
3792 */
3793 mutex_lock(&fs_info->cleaner_mutex);
3794 down_write(&fs_info->subvol_sem);
3795 ret = btrfs_quota_disable(fs_info);
3796 up_write(&fs_info->subvol_sem);
3797 mutex_unlock(&fs_info->cleaner_mutex);
3798 break;
3799 default:
3800 ret = -EINVAL;
3801 break;
3802 }
3803
3804 kfree(sa);
3805drop_write:
3806 mnt_drop_write_file(file);
3807 return ret;
3808}
3809
3810static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3811{
3812 struct inode *inode = file_inode(file);
3813 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3814 struct btrfs_root *root = BTRFS_I(inode)->root;
3815 struct btrfs_ioctl_qgroup_assign_args *sa;
3816 struct btrfs_trans_handle *trans;
3817 int ret;
3818 int err;
3819
3820 if (!capable(CAP_SYS_ADMIN))
3821 return -EPERM;
3822
3823 ret = mnt_want_write_file(file);
3824 if (ret)
3825 return ret;
3826
3827 sa = memdup_user(arg, sizeof(*sa));
3828 if (IS_ERR(sa)) {
3829 ret = PTR_ERR(sa);
3830 goto drop_write;
3831 }
3832
3833 trans = btrfs_join_transaction(root);
3834 if (IS_ERR(trans)) {
3835 ret = PTR_ERR(trans);
3836 goto out;
3837 }
3838
3839 if (sa->assign) {
3840 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3841 } else {
3842 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3843 }
3844
3845 /* update qgroup status and info */
3846 mutex_lock(&fs_info->qgroup_ioctl_lock);
3847 err = btrfs_run_qgroups(trans);
3848 mutex_unlock(&fs_info->qgroup_ioctl_lock);
3849 if (err < 0)
3850 btrfs_handle_fs_error(fs_info, err,
3851 "failed to update qgroup status and info");
3852 err = btrfs_end_transaction(trans);
3853 if (err && !ret)
3854 ret = err;
3855
3856out:
3857 kfree(sa);
3858drop_write:
3859 mnt_drop_write_file(file);
3860 return ret;
3861}
3862
3863static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3864{
3865 struct inode *inode = file_inode(file);
3866 struct btrfs_root *root = BTRFS_I(inode)->root;
3867 struct btrfs_ioctl_qgroup_create_args *sa;
3868 struct btrfs_trans_handle *trans;
3869 int ret;
3870 int err;
3871
3872 if (!capable(CAP_SYS_ADMIN))
3873 return -EPERM;
3874
3875 ret = mnt_want_write_file(file);
3876 if (ret)
3877 return ret;
3878
3879 sa = memdup_user(arg, sizeof(*sa));
3880 if (IS_ERR(sa)) {
3881 ret = PTR_ERR(sa);
3882 goto drop_write;
3883 }
3884
3885 if (!sa->qgroupid) {
3886 ret = -EINVAL;
3887 goto out;
3888 }
3889
3890 if (sa->create && is_fstree(sa->qgroupid)) {
3891 ret = -EINVAL;
3892 goto out;
3893 }
3894
3895 trans = btrfs_join_transaction(root);
3896 if (IS_ERR(trans)) {
3897 ret = PTR_ERR(trans);
3898 goto out;
3899 }
3900
3901 if (sa->create) {
3902 ret = btrfs_create_qgroup(trans, sa->qgroupid);
3903 } else {
3904 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3905 }
3906
3907 err = btrfs_end_transaction(trans);
3908 if (err && !ret)
3909 ret = err;
3910
3911out:
3912 kfree(sa);
3913drop_write:
3914 mnt_drop_write_file(file);
3915 return ret;
3916}
3917
3918static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3919{
3920 struct inode *inode = file_inode(file);
3921 struct btrfs_root *root = BTRFS_I(inode)->root;
3922 struct btrfs_ioctl_qgroup_limit_args *sa;
3923 struct btrfs_trans_handle *trans;
3924 int ret;
3925 int err;
3926 u64 qgroupid;
3927
3928 if (!capable(CAP_SYS_ADMIN))
3929 return -EPERM;
3930
3931 ret = mnt_want_write_file(file);
3932 if (ret)
3933 return ret;
3934
3935 sa = memdup_user(arg, sizeof(*sa));
3936 if (IS_ERR(sa)) {
3937 ret = PTR_ERR(sa);
3938 goto drop_write;
3939 }
3940
3941 trans = btrfs_join_transaction(root);
3942 if (IS_ERR(trans)) {
3943 ret = PTR_ERR(trans);
3944 goto out;
3945 }
3946
3947 qgroupid = sa->qgroupid;
3948 if (!qgroupid) {
3949 /* take the current subvol as qgroup */
3950 qgroupid = root->root_key.objectid;
3951 }
3952
3953 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3954
3955 err = btrfs_end_transaction(trans);
3956 if (err && !ret)
3957 ret = err;
3958
3959out:
3960 kfree(sa);
3961drop_write:
3962 mnt_drop_write_file(file);
3963 return ret;
3964}
3965
3966static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3967{
3968 struct inode *inode = file_inode(file);
3969 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3970 struct btrfs_ioctl_quota_rescan_args *qsa;
3971 int ret;
3972
3973 if (!capable(CAP_SYS_ADMIN))
3974 return -EPERM;
3975
3976 ret = mnt_want_write_file(file);
3977 if (ret)
3978 return ret;
3979
3980 qsa = memdup_user(arg, sizeof(*qsa));
3981 if (IS_ERR(qsa)) {
3982 ret = PTR_ERR(qsa);
3983 goto drop_write;
3984 }
3985
3986 if (qsa->flags) {
3987 ret = -EINVAL;
3988 goto out;
3989 }
3990
3991 ret = btrfs_qgroup_rescan(fs_info);
3992
3993out:
3994 kfree(qsa);
3995drop_write:
3996 mnt_drop_write_file(file);
3997 return ret;
3998}
3999
4000static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4001 void __user *arg)
4002{
4003 struct btrfs_ioctl_quota_rescan_args qsa = {0};
4004
4005 if (!capable(CAP_SYS_ADMIN))
4006 return -EPERM;
4007
4008 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4009 qsa.flags = 1;
4010 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4011 }
4012
4013 if (copy_to_user(arg, &qsa, sizeof(qsa)))
4014 return -EFAULT;
4015
4016 return 0;
4017}
4018
4019static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4020 void __user *arg)
4021{
4022 if (!capable(CAP_SYS_ADMIN))
4023 return -EPERM;
4024
4025 return btrfs_qgroup_wait_for_completion(fs_info, true);
4026}
4027
4028static long _btrfs_ioctl_set_received_subvol(struct file *file,
4029 struct mnt_idmap *idmap,
4030 struct btrfs_ioctl_received_subvol_args *sa)
4031{
4032 struct inode *inode = file_inode(file);
4033 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4034 struct btrfs_root *root = BTRFS_I(inode)->root;
4035 struct btrfs_root_item *root_item = &root->root_item;
4036 struct btrfs_trans_handle *trans;
4037 struct timespec64 ct = current_time(inode);
4038 int ret = 0;
4039 int received_uuid_changed;
4040
4041 if (!inode_owner_or_capable(idmap, inode))
4042 return -EPERM;
4043
4044 ret = mnt_want_write_file(file);
4045 if (ret < 0)
4046 return ret;
4047
4048 down_write(&fs_info->subvol_sem);
4049
4050 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4051 ret = -EINVAL;
4052 goto out;
4053 }
4054
4055 if (btrfs_root_readonly(root)) {
4056 ret = -EROFS;
4057 goto out;
4058 }
4059
4060 /*
4061 * 1 - root item
4062 * 2 - uuid items (received uuid + subvol uuid)
4063 */
4064 trans = btrfs_start_transaction(root, 3);
4065 if (IS_ERR(trans)) {
4066 ret = PTR_ERR(trans);
4067 trans = NULL;
4068 goto out;
4069 }
4070
4071 sa->rtransid = trans->transid;
4072 sa->rtime.sec = ct.tv_sec;
4073 sa->rtime.nsec = ct.tv_nsec;
4074
4075 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4076 BTRFS_UUID_SIZE);
4077 if (received_uuid_changed &&
4078 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4079 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4080 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4081 root->root_key.objectid);
4082 if (ret && ret != -ENOENT) {
4083 btrfs_abort_transaction(trans, ret);
4084 btrfs_end_transaction(trans);
4085 goto out;
4086 }
4087 }
4088 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4089 btrfs_set_root_stransid(root_item, sa->stransid);
4090 btrfs_set_root_rtransid(root_item, sa->rtransid);
4091 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4092 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4093 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4094 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4095
4096 ret = btrfs_update_root(trans, fs_info->tree_root,
4097 &root->root_key, &root->root_item);
4098 if (ret < 0) {
4099 btrfs_end_transaction(trans);
4100 goto out;
4101 }
4102 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4103 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4104 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4105 root->root_key.objectid);
4106 if (ret < 0 && ret != -EEXIST) {
4107 btrfs_abort_transaction(trans, ret);
4108 btrfs_end_transaction(trans);
4109 goto out;
4110 }
4111 }
4112 ret = btrfs_commit_transaction(trans);
4113out:
4114 up_write(&fs_info->subvol_sem);
4115 mnt_drop_write_file(file);
4116 return ret;
4117}
4118
4119#ifdef CONFIG_64BIT
4120static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4121 void __user *arg)
4122{
4123 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4124 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4125 int ret = 0;
4126
4127 args32 = memdup_user(arg, sizeof(*args32));
4128 if (IS_ERR(args32))
4129 return PTR_ERR(args32);
4130
4131 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4132 if (!args64) {
4133 ret = -ENOMEM;
4134 goto out;
4135 }
4136
4137 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4138 args64->stransid = args32->stransid;
4139 args64->rtransid = args32->rtransid;
4140 args64->stime.sec = args32->stime.sec;
4141 args64->stime.nsec = args32->stime.nsec;
4142 args64->rtime.sec = args32->rtime.sec;
4143 args64->rtime.nsec = args32->rtime.nsec;
4144 args64->flags = args32->flags;
4145
4146 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4147 if (ret)
4148 goto out;
4149
4150 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4151 args32->stransid = args64->stransid;
4152 args32->rtransid = args64->rtransid;
4153 args32->stime.sec = args64->stime.sec;
4154 args32->stime.nsec = args64->stime.nsec;
4155 args32->rtime.sec = args64->rtime.sec;
4156 args32->rtime.nsec = args64->rtime.nsec;
4157 args32->flags = args64->flags;
4158
4159 ret = copy_to_user(arg, args32, sizeof(*args32));
4160 if (ret)
4161 ret = -EFAULT;
4162
4163out:
4164 kfree(args32);
4165 kfree(args64);
4166 return ret;
4167}
4168#endif
4169
4170static long btrfs_ioctl_set_received_subvol(struct file *file,
4171 void __user *arg)
4172{
4173 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4174 int ret = 0;
4175
4176 sa = memdup_user(arg, sizeof(*sa));
4177 if (IS_ERR(sa))
4178 return PTR_ERR(sa);
4179
4180 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4181
4182 if (ret)
4183 goto out;
4184
4185 ret = copy_to_user(arg, sa, sizeof(*sa));
4186 if (ret)
4187 ret = -EFAULT;
4188
4189out:
4190 kfree(sa);
4191 return ret;
4192}
4193
4194static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4195 void __user *arg)
4196{
4197 size_t len;
4198 int ret;
4199 char label[BTRFS_LABEL_SIZE];
4200
4201 spin_lock(&fs_info->super_lock);
4202 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4203 spin_unlock(&fs_info->super_lock);
4204
4205 len = strnlen(label, BTRFS_LABEL_SIZE);
4206
4207 if (len == BTRFS_LABEL_SIZE) {
4208 btrfs_warn(fs_info,
4209 "label is too long, return the first %zu bytes",
4210 --len);
4211 }
4212
4213 ret = copy_to_user(arg, label, len);
4214
4215 return ret ? -EFAULT : 0;
4216}
4217
4218static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4219{
4220 struct inode *inode = file_inode(file);
4221 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4222 struct btrfs_root *root = BTRFS_I(inode)->root;
4223 struct btrfs_super_block *super_block = fs_info->super_copy;
4224 struct btrfs_trans_handle *trans;
4225 char label[BTRFS_LABEL_SIZE];
4226 int ret;
4227
4228 if (!capable(CAP_SYS_ADMIN))
4229 return -EPERM;
4230
4231 if (copy_from_user(label, arg, sizeof(label)))
4232 return -EFAULT;
4233
4234 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4235 btrfs_err(fs_info,
4236 "unable to set label with more than %d bytes",
4237 BTRFS_LABEL_SIZE - 1);
4238 return -EINVAL;
4239 }
4240
4241 ret = mnt_want_write_file(file);
4242 if (ret)
4243 return ret;
4244
4245 trans = btrfs_start_transaction(root, 0);
4246 if (IS_ERR(trans)) {
4247 ret = PTR_ERR(trans);
4248 goto out_unlock;
4249 }
4250
4251 spin_lock(&fs_info->super_lock);
4252 strcpy(super_block->label, label);
4253 spin_unlock(&fs_info->super_lock);
4254 ret = btrfs_commit_transaction(trans);
4255
4256out_unlock:
4257 mnt_drop_write_file(file);
4258 return ret;
4259}
4260
4261#define INIT_FEATURE_FLAGS(suffix) \
4262 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4263 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4264 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4265
4266int btrfs_ioctl_get_supported_features(void __user *arg)
4267{
4268 static const struct btrfs_ioctl_feature_flags features[3] = {
4269 INIT_FEATURE_FLAGS(SUPP),
4270 INIT_FEATURE_FLAGS(SAFE_SET),
4271 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4272 };
4273
4274 if (copy_to_user(arg, &features, sizeof(features)))
4275 return -EFAULT;
4276
4277 return 0;
4278}
4279
4280static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4281 void __user *arg)
4282{
4283 struct btrfs_super_block *super_block = fs_info->super_copy;
4284 struct btrfs_ioctl_feature_flags features;
4285
4286 features.compat_flags = btrfs_super_compat_flags(super_block);
4287 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4288 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4289
4290 if (copy_to_user(arg, &features, sizeof(features)))
4291 return -EFAULT;
4292
4293 return 0;
4294}
4295
4296static int check_feature_bits(struct btrfs_fs_info *fs_info,
4297 enum btrfs_feature_set set,
4298 u64 change_mask, u64 flags, u64 supported_flags,
4299 u64 safe_set, u64 safe_clear)
4300{
4301 const char *type = btrfs_feature_set_name(set);
4302 char *names;
4303 u64 disallowed, unsupported;
4304 u64 set_mask = flags & change_mask;
4305 u64 clear_mask = ~flags & change_mask;
4306
4307 unsupported = set_mask & ~supported_flags;
4308 if (unsupported) {
4309 names = btrfs_printable_features(set, unsupported);
4310 if (names) {
4311 btrfs_warn(fs_info,
4312 "this kernel does not support the %s feature bit%s",
4313 names, strchr(names, ',') ? "s" : "");
4314 kfree(names);
4315 } else
4316 btrfs_warn(fs_info,
4317 "this kernel does not support %s bits 0x%llx",
4318 type, unsupported);
4319 return -EOPNOTSUPP;
4320 }
4321
4322 disallowed = set_mask & ~safe_set;
4323 if (disallowed) {
4324 names = btrfs_printable_features(set, disallowed);
4325 if (names) {
4326 btrfs_warn(fs_info,
4327 "can't set the %s feature bit%s while mounted",
4328 names, strchr(names, ',') ? "s" : "");
4329 kfree(names);
4330 } else
4331 btrfs_warn(fs_info,
4332 "can't set %s bits 0x%llx while mounted",
4333 type, disallowed);
4334 return -EPERM;
4335 }
4336
4337 disallowed = clear_mask & ~safe_clear;
4338 if (disallowed) {
4339 names = btrfs_printable_features(set, disallowed);
4340 if (names) {
4341 btrfs_warn(fs_info,
4342 "can't clear the %s feature bit%s while mounted",
4343 names, strchr(names, ',') ? "s" : "");
4344 kfree(names);
4345 } else
4346 btrfs_warn(fs_info,
4347 "can't clear %s bits 0x%llx while mounted",
4348 type, disallowed);
4349 return -EPERM;
4350 }
4351
4352 return 0;
4353}
4354
4355#define check_feature(fs_info, change_mask, flags, mask_base) \
4356check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4357 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4358 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4359 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4360
4361static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4362{
4363 struct inode *inode = file_inode(file);
4364 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4365 struct btrfs_root *root = BTRFS_I(inode)->root;
4366 struct btrfs_super_block *super_block = fs_info->super_copy;
4367 struct btrfs_ioctl_feature_flags flags[2];
4368 struct btrfs_trans_handle *trans;
4369 u64 newflags;
4370 int ret;
4371
4372 if (!capable(CAP_SYS_ADMIN))
4373 return -EPERM;
4374
4375 if (copy_from_user(flags, arg, sizeof(flags)))
4376 return -EFAULT;
4377
4378 /* Nothing to do */
4379 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4380 !flags[0].incompat_flags)
4381 return 0;
4382
4383 ret = check_feature(fs_info, flags[0].compat_flags,
4384 flags[1].compat_flags, COMPAT);
4385 if (ret)
4386 return ret;
4387
4388 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4389 flags[1].compat_ro_flags, COMPAT_RO);
4390 if (ret)
4391 return ret;
4392
4393 ret = check_feature(fs_info, flags[0].incompat_flags,
4394 flags[1].incompat_flags, INCOMPAT);
4395 if (ret)
4396 return ret;
4397
4398 ret = mnt_want_write_file(file);
4399 if (ret)
4400 return ret;
4401
4402 trans = btrfs_start_transaction(root, 0);
4403 if (IS_ERR(trans)) {
4404 ret = PTR_ERR(trans);
4405 goto out_drop_write;
4406 }
4407
4408 spin_lock(&fs_info->super_lock);
4409 newflags = btrfs_super_compat_flags(super_block);
4410 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4411 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4412 btrfs_set_super_compat_flags(super_block, newflags);
4413
4414 newflags = btrfs_super_compat_ro_flags(super_block);
4415 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4416 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4417 btrfs_set_super_compat_ro_flags(super_block, newflags);
4418
4419 newflags = btrfs_super_incompat_flags(super_block);
4420 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4421 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4422 btrfs_set_super_incompat_flags(super_block, newflags);
4423 spin_unlock(&fs_info->super_lock);
4424
4425 ret = btrfs_commit_transaction(trans);
4426out_drop_write:
4427 mnt_drop_write_file(file);
4428
4429 return ret;
4430}
4431
4432static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4433{
4434 struct btrfs_ioctl_send_args *arg;
4435 int ret;
4436
4437 if (compat) {
4438#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4439 struct btrfs_ioctl_send_args_32 args32 = { 0 };
4440
4441 ret = copy_from_user(&args32, argp, sizeof(args32));
4442 if (ret)
4443 return -EFAULT;
4444 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4445 if (!arg)
4446 return -ENOMEM;
4447 arg->send_fd = args32.send_fd;
4448 arg->clone_sources_count = args32.clone_sources_count;
4449 arg->clone_sources = compat_ptr(args32.clone_sources);
4450 arg->parent_root = args32.parent_root;
4451 arg->flags = args32.flags;
4452 arg->version = args32.version;
4453 memcpy(arg->reserved, args32.reserved,
4454 sizeof(args32.reserved));
4455#else
4456 return -ENOTTY;
4457#endif
4458 } else {
4459 arg = memdup_user(argp, sizeof(*arg));
4460 if (IS_ERR(arg))
4461 return PTR_ERR(arg);
4462 }
4463 ret = btrfs_ioctl_send(inode, arg);
4464 kfree(arg);
4465 return ret;
4466}
4467
4468static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4469 bool compat)
4470{
4471 struct btrfs_ioctl_encoded_io_args args = { 0 };
4472 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4473 flags);
4474 size_t copy_end;
4475 struct iovec iovstack[UIO_FASTIOV];
4476 struct iovec *iov = iovstack;
4477 struct iov_iter iter;
4478 loff_t pos;
4479 struct kiocb kiocb;
4480 ssize_t ret;
4481
4482 if (!capable(CAP_SYS_ADMIN)) {
4483 ret = -EPERM;
4484 goto out_acct;
4485 }
4486
4487 if (compat) {
4488#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4489 struct btrfs_ioctl_encoded_io_args_32 args32;
4490
4491 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4492 flags);
4493 if (copy_from_user(&args32, argp, copy_end)) {
4494 ret = -EFAULT;
4495 goto out_acct;
4496 }
4497 args.iov = compat_ptr(args32.iov);
4498 args.iovcnt = args32.iovcnt;
4499 args.offset = args32.offset;
4500 args.flags = args32.flags;
4501#else
4502 return -ENOTTY;
4503#endif
4504 } else {
4505 copy_end = copy_end_kernel;
4506 if (copy_from_user(&args, argp, copy_end)) {
4507 ret = -EFAULT;
4508 goto out_acct;
4509 }
4510 }
4511 if (args.flags != 0) {
4512 ret = -EINVAL;
4513 goto out_acct;
4514 }
4515
4516 ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4517 &iov, &iter);
4518 if (ret < 0)
4519 goto out_acct;
4520
4521 if (iov_iter_count(&iter) == 0) {
4522 ret = 0;
4523 goto out_iov;
4524 }
4525 pos = args.offset;
4526 ret = rw_verify_area(READ, file, &pos, args.len);
4527 if (ret < 0)
4528 goto out_iov;
4529
4530 init_sync_kiocb(&kiocb, file);
4531 kiocb.ki_pos = pos;
4532
4533 ret = btrfs_encoded_read(&kiocb, &iter, &args);
4534 if (ret >= 0) {
4535 fsnotify_access(file);
4536 if (copy_to_user(argp + copy_end,
4537 (char *)&args + copy_end_kernel,
4538 sizeof(args) - copy_end_kernel))
4539 ret = -EFAULT;
4540 }
4541
4542out_iov:
4543 kfree(iov);
4544out_acct:
4545 if (ret > 0)
4546 add_rchar(current, ret);
4547 inc_syscr(current);
4548 return ret;
4549}
4550
4551static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4552{
4553 struct btrfs_ioctl_encoded_io_args args;
4554 struct iovec iovstack[UIO_FASTIOV];
4555 struct iovec *iov = iovstack;
4556 struct iov_iter iter;
4557 loff_t pos;
4558 struct kiocb kiocb;
4559 ssize_t ret;
4560
4561 if (!capable(CAP_SYS_ADMIN)) {
4562 ret = -EPERM;
4563 goto out_acct;
4564 }
4565
4566 if (!(file->f_mode & FMODE_WRITE)) {
4567 ret = -EBADF;
4568 goto out_acct;
4569 }
4570
4571 if (compat) {
4572#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4573 struct btrfs_ioctl_encoded_io_args_32 args32;
4574
4575 if (copy_from_user(&args32, argp, sizeof(args32))) {
4576 ret = -EFAULT;
4577 goto out_acct;
4578 }
4579 args.iov = compat_ptr(args32.iov);
4580 args.iovcnt = args32.iovcnt;
4581 args.offset = args32.offset;
4582 args.flags = args32.flags;
4583 args.len = args32.len;
4584 args.unencoded_len = args32.unencoded_len;
4585 args.unencoded_offset = args32.unencoded_offset;
4586 args.compression = args32.compression;
4587 args.encryption = args32.encryption;
4588 memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4589#else
4590 return -ENOTTY;
4591#endif
4592 } else {
4593 if (copy_from_user(&args, argp, sizeof(args))) {
4594 ret = -EFAULT;
4595 goto out_acct;
4596 }
4597 }
4598
4599 ret = -EINVAL;
4600 if (args.flags != 0)
4601 goto out_acct;
4602 if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4603 goto out_acct;
4604 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4605 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4606 goto out_acct;
4607 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4608 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4609 goto out_acct;
4610 if (args.unencoded_offset > args.unencoded_len)
4611 goto out_acct;
4612 if (args.len > args.unencoded_len - args.unencoded_offset)
4613 goto out_acct;
4614
4615 ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4616 &iov, &iter);
4617 if (ret < 0)
4618 goto out_acct;
4619
4620 if (iov_iter_count(&iter) == 0) {
4621 ret = 0;
4622 goto out_iov;
4623 }
4624 pos = args.offset;
4625 ret = rw_verify_area(WRITE, file, &pos, args.len);
4626 if (ret < 0)
4627 goto out_iov;
4628
4629 init_sync_kiocb(&kiocb, file);
4630 ret = kiocb_set_rw_flags(&kiocb, 0);
4631 if (ret)
4632 goto out_iov;
4633 kiocb.ki_pos = pos;
4634
4635 file_start_write(file);
4636
4637 ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4638 if (ret > 0)
4639 fsnotify_modify(file);
4640
4641 file_end_write(file);
4642out_iov:
4643 kfree(iov);
4644out_acct:
4645 if (ret > 0)
4646 add_wchar(current, ret);
4647 inc_syscw(current);
4648 return ret;
4649}
4650
4651long btrfs_ioctl(struct file *file, unsigned int
4652 cmd, unsigned long arg)
4653{
4654 struct inode *inode = file_inode(file);
4655 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4656 struct btrfs_root *root = BTRFS_I(inode)->root;
4657 void __user *argp = (void __user *)arg;
4658
4659 switch (cmd) {
4660 case FS_IOC_GETVERSION:
4661 return btrfs_ioctl_getversion(inode, argp);
4662 case FS_IOC_GETFSLABEL:
4663 return btrfs_ioctl_get_fslabel(fs_info, argp);
4664 case FS_IOC_SETFSLABEL:
4665 return btrfs_ioctl_set_fslabel(file, argp);
4666 case FITRIM:
4667 return btrfs_ioctl_fitrim(fs_info, argp);
4668 case BTRFS_IOC_SNAP_CREATE:
4669 return btrfs_ioctl_snap_create(file, argp, 0);
4670 case BTRFS_IOC_SNAP_CREATE_V2:
4671 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4672 case BTRFS_IOC_SUBVOL_CREATE:
4673 return btrfs_ioctl_snap_create(file, argp, 1);
4674 case BTRFS_IOC_SUBVOL_CREATE_V2:
4675 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4676 case BTRFS_IOC_SNAP_DESTROY:
4677 return btrfs_ioctl_snap_destroy(file, argp, false);
4678 case BTRFS_IOC_SNAP_DESTROY_V2:
4679 return btrfs_ioctl_snap_destroy(file, argp, true);
4680 case BTRFS_IOC_SUBVOL_GETFLAGS:
4681 return btrfs_ioctl_subvol_getflags(inode, argp);
4682 case BTRFS_IOC_SUBVOL_SETFLAGS:
4683 return btrfs_ioctl_subvol_setflags(file, argp);
4684 case BTRFS_IOC_DEFAULT_SUBVOL:
4685 return btrfs_ioctl_default_subvol(file, argp);
4686 case BTRFS_IOC_DEFRAG:
4687 return btrfs_ioctl_defrag(file, NULL);
4688 case BTRFS_IOC_DEFRAG_RANGE:
4689 return btrfs_ioctl_defrag(file, argp);
4690 case BTRFS_IOC_RESIZE:
4691 return btrfs_ioctl_resize(file, argp);
4692 case BTRFS_IOC_ADD_DEV:
4693 return btrfs_ioctl_add_dev(fs_info, argp);
4694 case BTRFS_IOC_RM_DEV:
4695 return btrfs_ioctl_rm_dev(file, argp);
4696 case BTRFS_IOC_RM_DEV_V2:
4697 return btrfs_ioctl_rm_dev_v2(file, argp);
4698 case BTRFS_IOC_FS_INFO:
4699 return btrfs_ioctl_fs_info(fs_info, argp);
4700 case BTRFS_IOC_DEV_INFO:
4701 return btrfs_ioctl_dev_info(fs_info, argp);
4702 case BTRFS_IOC_TREE_SEARCH:
4703 return btrfs_ioctl_tree_search(inode, argp);
4704 case BTRFS_IOC_TREE_SEARCH_V2:
4705 return btrfs_ioctl_tree_search_v2(inode, argp);
4706 case BTRFS_IOC_INO_LOOKUP:
4707 return btrfs_ioctl_ino_lookup(root, argp);
4708 case BTRFS_IOC_INO_PATHS:
4709 return btrfs_ioctl_ino_to_path(root, argp);
4710 case BTRFS_IOC_LOGICAL_INO:
4711 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4712 case BTRFS_IOC_LOGICAL_INO_V2:
4713 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4714 case BTRFS_IOC_SPACE_INFO:
4715 return btrfs_ioctl_space_info(fs_info, argp);
4716 case BTRFS_IOC_SYNC: {
4717 int ret;
4718
4719 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4720 if (ret)
4721 return ret;
4722 ret = btrfs_sync_fs(inode->i_sb, 1);
4723 /*
4724 * The transaction thread may want to do more work,
4725 * namely it pokes the cleaner kthread that will start
4726 * processing uncleaned subvols.
4727 */
4728 wake_up_process(fs_info->transaction_kthread);
4729 return ret;
4730 }
4731 case BTRFS_IOC_START_SYNC:
4732 return btrfs_ioctl_start_sync(root, argp);
4733 case BTRFS_IOC_WAIT_SYNC:
4734 return btrfs_ioctl_wait_sync(fs_info, argp);
4735 case BTRFS_IOC_SCRUB:
4736 return btrfs_ioctl_scrub(file, argp);
4737 case BTRFS_IOC_SCRUB_CANCEL:
4738 return btrfs_ioctl_scrub_cancel(fs_info);
4739 case BTRFS_IOC_SCRUB_PROGRESS:
4740 return btrfs_ioctl_scrub_progress(fs_info, argp);
4741 case BTRFS_IOC_BALANCE_V2:
4742 return btrfs_ioctl_balance(file, argp);
4743 case BTRFS_IOC_BALANCE_CTL:
4744 return btrfs_ioctl_balance_ctl(fs_info, arg);
4745 case BTRFS_IOC_BALANCE_PROGRESS:
4746 return btrfs_ioctl_balance_progress(fs_info, argp);
4747 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4748 return btrfs_ioctl_set_received_subvol(file, argp);
4749#ifdef CONFIG_64BIT
4750 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4751 return btrfs_ioctl_set_received_subvol_32(file, argp);
4752#endif
4753 case BTRFS_IOC_SEND:
4754 return _btrfs_ioctl_send(inode, argp, false);
4755#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4756 case BTRFS_IOC_SEND_32:
4757 return _btrfs_ioctl_send(inode, argp, true);
4758#endif
4759 case BTRFS_IOC_GET_DEV_STATS:
4760 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4761 case BTRFS_IOC_QUOTA_CTL:
4762 return btrfs_ioctl_quota_ctl(file, argp);
4763 case BTRFS_IOC_QGROUP_ASSIGN:
4764 return btrfs_ioctl_qgroup_assign(file, argp);
4765 case BTRFS_IOC_QGROUP_CREATE:
4766 return btrfs_ioctl_qgroup_create(file, argp);
4767 case BTRFS_IOC_QGROUP_LIMIT:
4768 return btrfs_ioctl_qgroup_limit(file, argp);
4769 case BTRFS_IOC_QUOTA_RESCAN:
4770 return btrfs_ioctl_quota_rescan(file, argp);
4771 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4772 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4773 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4774 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4775 case BTRFS_IOC_DEV_REPLACE:
4776 return btrfs_ioctl_dev_replace(fs_info, argp);
4777 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4778 return btrfs_ioctl_get_supported_features(argp);
4779 case BTRFS_IOC_GET_FEATURES:
4780 return btrfs_ioctl_get_features(fs_info, argp);
4781 case BTRFS_IOC_SET_FEATURES:
4782 return btrfs_ioctl_set_features(file, argp);
4783 case BTRFS_IOC_GET_SUBVOL_INFO:
4784 return btrfs_ioctl_get_subvol_info(inode, argp);
4785 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4786 return btrfs_ioctl_get_subvol_rootref(root, argp);
4787 case BTRFS_IOC_INO_LOOKUP_USER:
4788 return btrfs_ioctl_ino_lookup_user(file, argp);
4789 case FS_IOC_ENABLE_VERITY:
4790 return fsverity_ioctl_enable(file, (const void __user *)argp);
4791 case FS_IOC_MEASURE_VERITY:
4792 return fsverity_ioctl_measure(file, argp);
4793 case BTRFS_IOC_ENCODED_READ:
4794 return btrfs_ioctl_encoded_read(file, argp, false);
4795 case BTRFS_IOC_ENCODED_WRITE:
4796 return btrfs_ioctl_encoded_write(file, argp, false);
4797#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4798 case BTRFS_IOC_ENCODED_READ_32:
4799 return btrfs_ioctl_encoded_read(file, argp, true);
4800 case BTRFS_IOC_ENCODED_WRITE_32:
4801 return btrfs_ioctl_encoded_write(file, argp, true);
4802#endif
4803 }
4804
4805 return -ENOTTY;
4806}
4807
4808#ifdef CONFIG_COMPAT
4809long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4810{
4811 /*
4812 * These all access 32-bit values anyway so no further
4813 * handling is necessary.
4814 */
4815 switch (cmd) {
4816 case FS_IOC32_GETVERSION:
4817 cmd = FS_IOC_GETVERSION;
4818 break;
4819 }
4820
4821 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4822}
4823#endif
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/fsnotify.h>
11#include <linux/pagemap.h>
12#include <linux/highmem.h>
13#include <linux/time.h>
14#include <linux/string.h>
15#include <linux/backing-dev.h>
16#include <linux/mount.h>
17#include <linux/namei.h>
18#include <linux/writeback.h>
19#include <linux/compat.h>
20#include <linux/security.h>
21#include <linux/xattr.h>
22#include <linux/mm.h>
23#include <linux/slab.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include <linux/btrfs.h>
27#include <linux/uaccess.h>
28#include <linux/iversion.h>
29#include <linux/fileattr.h>
30#include "ctree.h"
31#include "disk-io.h"
32#include "export.h"
33#include "transaction.h"
34#include "btrfs_inode.h"
35#include "print-tree.h"
36#include "volumes.h"
37#include "locking.h"
38#include "backref.h"
39#include "rcu-string.h"
40#include "send.h"
41#include "dev-replace.h"
42#include "props.h"
43#include "sysfs.h"
44#include "qgroup.h"
45#include "tree-log.h"
46#include "compression.h"
47#include "space-info.h"
48#include "delalloc-space.h"
49#include "block-group.h"
50
51#ifdef CONFIG_64BIT
52/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53 * structures are incorrect, as the timespec structure from userspace
54 * is 4 bytes too small. We define these alternatives here to teach
55 * the kernel about the 32-bit struct packing.
56 */
57struct btrfs_ioctl_timespec_32 {
58 __u64 sec;
59 __u32 nsec;
60} __attribute__ ((__packed__));
61
62struct btrfs_ioctl_received_subvol_args_32 {
63 char uuid[BTRFS_UUID_SIZE]; /* in */
64 __u64 stransid; /* in */
65 __u64 rtransid; /* out */
66 struct btrfs_ioctl_timespec_32 stime; /* in */
67 struct btrfs_ioctl_timespec_32 rtime; /* out */
68 __u64 flags; /* in */
69 __u64 reserved[16]; /* in */
70} __attribute__ ((__packed__));
71
72#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 struct btrfs_ioctl_received_subvol_args_32)
74#endif
75
76#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77struct btrfs_ioctl_send_args_32 {
78 __s64 send_fd; /* in */
79 __u64 clone_sources_count; /* in */
80 compat_uptr_t clone_sources; /* in */
81 __u64 parent_root; /* in */
82 __u64 flags; /* in */
83 __u64 reserved[4]; /* in */
84} __attribute__ ((__packed__));
85
86#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 struct btrfs_ioctl_send_args_32)
88#endif
89
90/* Mask out flags that are inappropriate for the given type of inode. */
91static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 unsigned int flags)
93{
94 if (S_ISDIR(inode->i_mode))
95 return flags;
96 else if (S_ISREG(inode->i_mode))
97 return flags & ~FS_DIRSYNC_FL;
98 else
99 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100}
101
102/*
103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104 * ioctl.
105 */
106static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107{
108 unsigned int iflags = 0;
109
110 if (flags & BTRFS_INODE_SYNC)
111 iflags |= FS_SYNC_FL;
112 if (flags & BTRFS_INODE_IMMUTABLE)
113 iflags |= FS_IMMUTABLE_FL;
114 if (flags & BTRFS_INODE_APPEND)
115 iflags |= FS_APPEND_FL;
116 if (flags & BTRFS_INODE_NODUMP)
117 iflags |= FS_NODUMP_FL;
118 if (flags & BTRFS_INODE_NOATIME)
119 iflags |= FS_NOATIME_FL;
120 if (flags & BTRFS_INODE_DIRSYNC)
121 iflags |= FS_DIRSYNC_FL;
122 if (flags & BTRFS_INODE_NODATACOW)
123 iflags |= FS_NOCOW_FL;
124
125 if (flags & BTRFS_INODE_NOCOMPRESS)
126 iflags |= FS_NOCOMP_FL;
127 else if (flags & BTRFS_INODE_COMPRESS)
128 iflags |= FS_COMPR_FL;
129
130 return iflags;
131}
132
133/*
134 * Update inode->i_flags based on the btrfs internal flags.
135 */
136void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137{
138 struct btrfs_inode *binode = BTRFS_I(inode);
139 unsigned int new_fl = 0;
140
141 if (binode->flags & BTRFS_INODE_SYNC)
142 new_fl |= S_SYNC;
143 if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 new_fl |= S_IMMUTABLE;
145 if (binode->flags & BTRFS_INODE_APPEND)
146 new_fl |= S_APPEND;
147 if (binode->flags & BTRFS_INODE_NOATIME)
148 new_fl |= S_NOATIME;
149 if (binode->flags & BTRFS_INODE_DIRSYNC)
150 new_fl |= S_DIRSYNC;
151
152 set_mask_bits(&inode->i_flags,
153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 new_fl);
155}
156
157/*
158 * Check if @flags are a supported and valid set of FS_*_FL flags and that
159 * the old and new flags are not conflicting
160 */
161static int check_fsflags(unsigned int old_flags, unsigned int flags)
162{
163 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
164 FS_NOATIME_FL | FS_NODUMP_FL | \
165 FS_SYNC_FL | FS_DIRSYNC_FL | \
166 FS_NOCOMP_FL | FS_COMPR_FL |
167 FS_NOCOW_FL))
168 return -EOPNOTSUPP;
169
170 /* COMPR and NOCOMP on new/old are valid */
171 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
172 return -EINVAL;
173
174 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
175 return -EINVAL;
176
177 /* NOCOW and compression options are mutually exclusive */
178 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
179 return -EINVAL;
180 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
181 return -EINVAL;
182
183 return 0;
184}
185
186static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
187 unsigned int flags)
188{
189 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
190 return -EPERM;
191
192 return 0;
193}
194
195/*
196 * Set flags/xflags from the internal inode flags. The remaining items of
197 * fsxattr are zeroed.
198 */
199int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
200{
201 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
202
203 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode->flags));
204 return 0;
205}
206
207int btrfs_fileattr_set(struct user_namespace *mnt_userns,
208 struct dentry *dentry, struct fileattr *fa)
209{
210 struct inode *inode = d_inode(dentry);
211 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
212 struct btrfs_inode *binode = BTRFS_I(inode);
213 struct btrfs_root *root = binode->root;
214 struct btrfs_trans_handle *trans;
215 unsigned int fsflags, old_fsflags;
216 int ret;
217 const char *comp = NULL;
218 u32 binode_flags;
219
220 if (btrfs_root_readonly(root))
221 return -EROFS;
222
223 if (fileattr_has_fsx(fa))
224 return -EOPNOTSUPP;
225
226 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
227 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
228 ret = check_fsflags(old_fsflags, fsflags);
229 if (ret)
230 return ret;
231
232 ret = check_fsflags_compatible(fs_info, fsflags);
233 if (ret)
234 return ret;
235
236 binode_flags = binode->flags;
237 if (fsflags & FS_SYNC_FL)
238 binode_flags |= BTRFS_INODE_SYNC;
239 else
240 binode_flags &= ~BTRFS_INODE_SYNC;
241 if (fsflags & FS_IMMUTABLE_FL)
242 binode_flags |= BTRFS_INODE_IMMUTABLE;
243 else
244 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
245 if (fsflags & FS_APPEND_FL)
246 binode_flags |= BTRFS_INODE_APPEND;
247 else
248 binode_flags &= ~BTRFS_INODE_APPEND;
249 if (fsflags & FS_NODUMP_FL)
250 binode_flags |= BTRFS_INODE_NODUMP;
251 else
252 binode_flags &= ~BTRFS_INODE_NODUMP;
253 if (fsflags & FS_NOATIME_FL)
254 binode_flags |= BTRFS_INODE_NOATIME;
255 else
256 binode_flags &= ~BTRFS_INODE_NOATIME;
257
258 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
259 if (!fa->flags_valid) {
260 /* 1 item for the inode */
261 trans = btrfs_start_transaction(root, 1);
262 if (IS_ERR(trans))
263 return PTR_ERR(trans);
264 goto update_flags;
265 }
266
267 if (fsflags & FS_DIRSYNC_FL)
268 binode_flags |= BTRFS_INODE_DIRSYNC;
269 else
270 binode_flags &= ~BTRFS_INODE_DIRSYNC;
271 if (fsflags & FS_NOCOW_FL) {
272 if (S_ISREG(inode->i_mode)) {
273 /*
274 * It's safe to turn csums off here, no extents exist.
275 * Otherwise we want the flag to reflect the real COW
276 * status of the file and will not set it.
277 */
278 if (inode->i_size == 0)
279 binode_flags |= BTRFS_INODE_NODATACOW |
280 BTRFS_INODE_NODATASUM;
281 } else {
282 binode_flags |= BTRFS_INODE_NODATACOW;
283 }
284 } else {
285 /*
286 * Revert back under same assumptions as above
287 */
288 if (S_ISREG(inode->i_mode)) {
289 if (inode->i_size == 0)
290 binode_flags &= ~(BTRFS_INODE_NODATACOW |
291 BTRFS_INODE_NODATASUM);
292 } else {
293 binode_flags &= ~BTRFS_INODE_NODATACOW;
294 }
295 }
296
297 /*
298 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
299 * flag may be changed automatically if compression code won't make
300 * things smaller.
301 */
302 if (fsflags & FS_NOCOMP_FL) {
303 binode_flags &= ~BTRFS_INODE_COMPRESS;
304 binode_flags |= BTRFS_INODE_NOCOMPRESS;
305 } else if (fsflags & FS_COMPR_FL) {
306
307 if (IS_SWAPFILE(inode))
308 return -ETXTBSY;
309
310 binode_flags |= BTRFS_INODE_COMPRESS;
311 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
312
313 comp = btrfs_compress_type2str(fs_info->compress_type);
314 if (!comp || comp[0] == 0)
315 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
316 } else {
317 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
318 }
319
320 /*
321 * 1 for inode item
322 * 2 for properties
323 */
324 trans = btrfs_start_transaction(root, 3);
325 if (IS_ERR(trans))
326 return PTR_ERR(trans);
327
328 if (comp) {
329 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
330 strlen(comp), 0);
331 if (ret) {
332 btrfs_abort_transaction(trans, ret);
333 goto out_end_trans;
334 }
335 } else {
336 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
337 0, 0);
338 if (ret && ret != -ENODATA) {
339 btrfs_abort_transaction(trans, ret);
340 goto out_end_trans;
341 }
342 }
343
344update_flags:
345 binode->flags = binode_flags;
346 btrfs_sync_inode_flags_to_i_flags(inode);
347 inode_inc_iversion(inode);
348 inode->i_ctime = current_time(inode);
349 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
350
351 out_end_trans:
352 btrfs_end_transaction(trans);
353 return ret;
354}
355
356/*
357 * Start exclusive operation @type, return true on success
358 */
359bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
360 enum btrfs_exclusive_operation type)
361{
362 bool ret = false;
363
364 spin_lock(&fs_info->super_lock);
365 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
366 fs_info->exclusive_operation = type;
367 ret = true;
368 }
369 spin_unlock(&fs_info->super_lock);
370
371 return ret;
372}
373
374/*
375 * Conditionally allow to enter the exclusive operation in case it's compatible
376 * with the running one. This must be paired with btrfs_exclop_start_unlock and
377 * btrfs_exclop_finish.
378 *
379 * Compatibility:
380 * - the same type is already running
381 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
382 * must check the condition first that would allow none -> @type
383 */
384bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
385 enum btrfs_exclusive_operation type)
386{
387 spin_lock(&fs_info->super_lock);
388 if (fs_info->exclusive_operation == type)
389 return true;
390
391 spin_unlock(&fs_info->super_lock);
392 return false;
393}
394
395void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
396{
397 spin_unlock(&fs_info->super_lock);
398}
399
400void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
401{
402 spin_lock(&fs_info->super_lock);
403 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
404 spin_unlock(&fs_info->super_lock);
405 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
406}
407
408static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
409{
410 struct inode *inode = file_inode(file);
411
412 return put_user(inode->i_generation, arg);
413}
414
415static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
416 void __user *arg)
417{
418 struct btrfs_device *device;
419 struct request_queue *q;
420 struct fstrim_range range;
421 u64 minlen = ULLONG_MAX;
422 u64 num_devices = 0;
423 int ret;
424
425 if (!capable(CAP_SYS_ADMIN))
426 return -EPERM;
427
428 /*
429 * btrfs_trim_block_group() depends on space cache, which is not
430 * available in zoned filesystem. So, disallow fitrim on a zoned
431 * filesystem for now.
432 */
433 if (btrfs_is_zoned(fs_info))
434 return -EOPNOTSUPP;
435
436 /*
437 * If the fs is mounted with nologreplay, which requires it to be
438 * mounted in RO mode as well, we can not allow discard on free space
439 * inside block groups, because log trees refer to extents that are not
440 * pinned in a block group's free space cache (pinning the extents is
441 * precisely the first phase of replaying a log tree).
442 */
443 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
444 return -EROFS;
445
446 rcu_read_lock();
447 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
448 dev_list) {
449 if (!device->bdev)
450 continue;
451 q = bdev_get_queue(device->bdev);
452 if (blk_queue_discard(q)) {
453 num_devices++;
454 minlen = min_t(u64, q->limits.discard_granularity,
455 minlen);
456 }
457 }
458 rcu_read_unlock();
459
460 if (!num_devices)
461 return -EOPNOTSUPP;
462 if (copy_from_user(&range, arg, sizeof(range)))
463 return -EFAULT;
464
465 /*
466 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
467 * block group is in the logical address space, which can be any
468 * sectorsize aligned bytenr in the range [0, U64_MAX].
469 */
470 if (range.len < fs_info->sb->s_blocksize)
471 return -EINVAL;
472
473 range.minlen = max(range.minlen, minlen);
474 ret = btrfs_trim_fs(fs_info, &range);
475 if (ret < 0)
476 return ret;
477
478 if (copy_to_user(arg, &range, sizeof(range)))
479 return -EFAULT;
480
481 return 0;
482}
483
484int __pure btrfs_is_empty_uuid(u8 *uuid)
485{
486 int i;
487
488 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
489 if (uuid[i])
490 return 0;
491 }
492 return 1;
493}
494
495static noinline int create_subvol(struct inode *dir,
496 struct dentry *dentry,
497 const char *name, int namelen,
498 struct btrfs_qgroup_inherit *inherit)
499{
500 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
501 struct btrfs_trans_handle *trans;
502 struct btrfs_key key;
503 struct btrfs_root_item *root_item;
504 struct btrfs_inode_item *inode_item;
505 struct extent_buffer *leaf;
506 struct btrfs_root *root = BTRFS_I(dir)->root;
507 struct btrfs_root *new_root;
508 struct btrfs_block_rsv block_rsv;
509 struct timespec64 cur_time = current_time(dir);
510 struct inode *inode;
511 int ret;
512 int err;
513 dev_t anon_dev = 0;
514 u64 objectid;
515 u64 index = 0;
516
517 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
518 if (!root_item)
519 return -ENOMEM;
520
521 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
522 if (ret)
523 goto fail_free;
524
525 ret = get_anon_bdev(&anon_dev);
526 if (ret < 0)
527 goto fail_free;
528
529 /*
530 * Don't create subvolume whose level is not zero. Or qgroup will be
531 * screwed up since it assumes subvolume qgroup's level to be 0.
532 */
533 if (btrfs_qgroup_level(objectid)) {
534 ret = -ENOSPC;
535 goto fail_free;
536 }
537
538 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
539 /*
540 * The same as the snapshot creation, please see the comment
541 * of create_snapshot().
542 */
543 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
544 if (ret)
545 goto fail_free;
546
547 trans = btrfs_start_transaction(root, 0);
548 if (IS_ERR(trans)) {
549 ret = PTR_ERR(trans);
550 btrfs_subvolume_release_metadata(root, &block_rsv);
551 goto fail_free;
552 }
553 trans->block_rsv = &block_rsv;
554 trans->bytes_reserved = block_rsv.size;
555
556 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
557 if (ret)
558 goto fail;
559
560 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
561 BTRFS_NESTING_NORMAL);
562 if (IS_ERR(leaf)) {
563 ret = PTR_ERR(leaf);
564 goto fail;
565 }
566
567 btrfs_mark_buffer_dirty(leaf);
568
569 inode_item = &root_item->inode;
570 btrfs_set_stack_inode_generation(inode_item, 1);
571 btrfs_set_stack_inode_size(inode_item, 3);
572 btrfs_set_stack_inode_nlink(inode_item, 1);
573 btrfs_set_stack_inode_nbytes(inode_item,
574 fs_info->nodesize);
575 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
576
577 btrfs_set_root_flags(root_item, 0);
578 btrfs_set_root_limit(root_item, 0);
579 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
580
581 btrfs_set_root_bytenr(root_item, leaf->start);
582 btrfs_set_root_generation(root_item, trans->transid);
583 btrfs_set_root_level(root_item, 0);
584 btrfs_set_root_refs(root_item, 1);
585 btrfs_set_root_used(root_item, leaf->len);
586 btrfs_set_root_last_snapshot(root_item, 0);
587
588 btrfs_set_root_generation_v2(root_item,
589 btrfs_root_generation(root_item));
590 generate_random_guid(root_item->uuid);
591 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
592 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
593 root_item->ctime = root_item->otime;
594 btrfs_set_root_ctransid(root_item, trans->transid);
595 btrfs_set_root_otransid(root_item, trans->transid);
596
597 btrfs_tree_unlock(leaf);
598
599 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
600
601 key.objectid = objectid;
602 key.offset = 0;
603 key.type = BTRFS_ROOT_ITEM_KEY;
604 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
605 root_item);
606 if (ret) {
607 /*
608 * Since we don't abort the transaction in this case, free the
609 * tree block so that we don't leak space and leave the
610 * filesystem in an inconsistent state (an extent item in the
611 * extent tree without backreferences). Also no need to have
612 * the tree block locked since it is not in any tree at this
613 * point, so no other task can find it and use it.
614 */
615 btrfs_free_tree_block(trans, root, leaf, 0, 1);
616 free_extent_buffer(leaf);
617 goto fail;
618 }
619
620 free_extent_buffer(leaf);
621 leaf = NULL;
622
623 key.offset = (u64)-1;
624 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
625 if (IS_ERR(new_root)) {
626 free_anon_bdev(anon_dev);
627 ret = PTR_ERR(new_root);
628 btrfs_abort_transaction(trans, ret);
629 goto fail;
630 }
631 /* Freeing will be done in btrfs_put_root() of new_root */
632 anon_dev = 0;
633
634 ret = btrfs_record_root_in_trans(trans, new_root);
635 if (ret) {
636 btrfs_put_root(new_root);
637 btrfs_abort_transaction(trans, ret);
638 goto fail;
639 }
640
641 ret = btrfs_create_subvol_root(trans, new_root, root);
642 btrfs_put_root(new_root);
643 if (ret) {
644 /* We potentially lose an unused inode item here */
645 btrfs_abort_transaction(trans, ret);
646 goto fail;
647 }
648
649 /*
650 * insert the directory item
651 */
652 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
653 if (ret) {
654 btrfs_abort_transaction(trans, ret);
655 goto fail;
656 }
657
658 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
659 BTRFS_FT_DIR, index);
660 if (ret) {
661 btrfs_abort_transaction(trans, ret);
662 goto fail;
663 }
664
665 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
666 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
667 if (ret) {
668 btrfs_abort_transaction(trans, ret);
669 goto fail;
670 }
671
672 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
673 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
674 if (ret) {
675 btrfs_abort_transaction(trans, ret);
676 goto fail;
677 }
678
679 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
680 BTRFS_UUID_KEY_SUBVOL, objectid);
681 if (ret)
682 btrfs_abort_transaction(trans, ret);
683
684fail:
685 kfree(root_item);
686 trans->block_rsv = NULL;
687 trans->bytes_reserved = 0;
688 btrfs_subvolume_release_metadata(root, &block_rsv);
689
690 err = btrfs_commit_transaction(trans);
691 if (err && !ret)
692 ret = err;
693
694 if (!ret) {
695 inode = btrfs_lookup_dentry(dir, dentry);
696 if (IS_ERR(inode))
697 return PTR_ERR(inode);
698 d_instantiate(dentry, inode);
699 }
700 return ret;
701
702fail_free:
703 if (anon_dev)
704 free_anon_bdev(anon_dev);
705 kfree(root_item);
706 return ret;
707}
708
709static int create_snapshot(struct btrfs_root *root, struct inode *dir,
710 struct dentry *dentry, bool readonly,
711 struct btrfs_qgroup_inherit *inherit)
712{
713 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
714 struct inode *inode;
715 struct btrfs_pending_snapshot *pending_snapshot;
716 struct btrfs_trans_handle *trans;
717 int ret;
718
719 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
720 return -EINVAL;
721
722 if (atomic_read(&root->nr_swapfiles)) {
723 btrfs_warn(fs_info,
724 "cannot snapshot subvolume with active swapfile");
725 return -ETXTBSY;
726 }
727
728 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
729 if (!pending_snapshot)
730 return -ENOMEM;
731
732 ret = get_anon_bdev(&pending_snapshot->anon_dev);
733 if (ret < 0)
734 goto free_pending;
735 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
736 GFP_KERNEL);
737 pending_snapshot->path = btrfs_alloc_path();
738 if (!pending_snapshot->root_item || !pending_snapshot->path) {
739 ret = -ENOMEM;
740 goto free_pending;
741 }
742
743 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
744 BTRFS_BLOCK_RSV_TEMP);
745 /*
746 * 1 - parent dir inode
747 * 2 - dir entries
748 * 1 - root item
749 * 2 - root ref/backref
750 * 1 - root of snapshot
751 * 1 - UUID item
752 */
753 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
754 &pending_snapshot->block_rsv, 8,
755 false);
756 if (ret)
757 goto free_pending;
758
759 pending_snapshot->dentry = dentry;
760 pending_snapshot->root = root;
761 pending_snapshot->readonly = readonly;
762 pending_snapshot->dir = dir;
763 pending_snapshot->inherit = inherit;
764
765 trans = btrfs_start_transaction(root, 0);
766 if (IS_ERR(trans)) {
767 ret = PTR_ERR(trans);
768 goto fail;
769 }
770
771 spin_lock(&fs_info->trans_lock);
772 list_add(&pending_snapshot->list,
773 &trans->transaction->pending_snapshots);
774 spin_unlock(&fs_info->trans_lock);
775
776 ret = btrfs_commit_transaction(trans);
777 if (ret)
778 goto fail;
779
780 ret = pending_snapshot->error;
781 if (ret)
782 goto fail;
783
784 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
785 if (ret)
786 goto fail;
787
788 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
789 if (IS_ERR(inode)) {
790 ret = PTR_ERR(inode);
791 goto fail;
792 }
793
794 d_instantiate(dentry, inode);
795 ret = 0;
796 pending_snapshot->anon_dev = 0;
797fail:
798 /* Prevent double freeing of anon_dev */
799 if (ret && pending_snapshot->snap)
800 pending_snapshot->snap->anon_dev = 0;
801 btrfs_put_root(pending_snapshot->snap);
802 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
803free_pending:
804 if (pending_snapshot->anon_dev)
805 free_anon_bdev(pending_snapshot->anon_dev);
806 kfree(pending_snapshot->root_item);
807 btrfs_free_path(pending_snapshot->path);
808 kfree(pending_snapshot);
809
810 return ret;
811}
812
813/* copy of may_delete in fs/namei.c()
814 * Check whether we can remove a link victim from directory dir, check
815 * whether the type of victim is right.
816 * 1. We can't do it if dir is read-only (done in permission())
817 * 2. We should have write and exec permissions on dir
818 * 3. We can't remove anything from append-only dir
819 * 4. We can't do anything with immutable dir (done in permission())
820 * 5. If the sticky bit on dir is set we should either
821 * a. be owner of dir, or
822 * b. be owner of victim, or
823 * c. have CAP_FOWNER capability
824 * 6. If the victim is append-only or immutable we can't do anything with
825 * links pointing to it.
826 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
827 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
828 * 9. We can't remove a root or mountpoint.
829 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
830 * nfs_async_unlink().
831 */
832
833static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
834{
835 int error;
836
837 if (d_really_is_negative(victim))
838 return -ENOENT;
839
840 BUG_ON(d_inode(victim->d_parent) != dir);
841 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
842
843 error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
844 if (error)
845 return error;
846 if (IS_APPEND(dir))
847 return -EPERM;
848 if (check_sticky(&init_user_ns, dir, d_inode(victim)) ||
849 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
850 IS_SWAPFILE(d_inode(victim)))
851 return -EPERM;
852 if (isdir) {
853 if (!d_is_dir(victim))
854 return -ENOTDIR;
855 if (IS_ROOT(victim))
856 return -EBUSY;
857 } else if (d_is_dir(victim))
858 return -EISDIR;
859 if (IS_DEADDIR(dir))
860 return -ENOENT;
861 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
862 return -EBUSY;
863 return 0;
864}
865
866/* copy of may_create in fs/namei.c() */
867static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
868{
869 if (d_really_is_positive(child))
870 return -EEXIST;
871 if (IS_DEADDIR(dir))
872 return -ENOENT;
873 return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
874}
875
876/*
877 * Create a new subvolume below @parent. This is largely modeled after
878 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
879 * inside this filesystem so it's quite a bit simpler.
880 */
881static noinline int btrfs_mksubvol(const struct path *parent,
882 const char *name, int namelen,
883 struct btrfs_root *snap_src,
884 bool readonly,
885 struct btrfs_qgroup_inherit *inherit)
886{
887 struct inode *dir = d_inode(parent->dentry);
888 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
889 struct dentry *dentry;
890 int error;
891
892 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
893 if (error == -EINTR)
894 return error;
895
896 dentry = lookup_one_len(name, parent->dentry, namelen);
897 error = PTR_ERR(dentry);
898 if (IS_ERR(dentry))
899 goto out_unlock;
900
901 error = btrfs_may_create(dir, dentry);
902 if (error)
903 goto out_dput;
904
905 /*
906 * even if this name doesn't exist, we may get hash collisions.
907 * check for them now when we can safely fail
908 */
909 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
910 dir->i_ino, name,
911 namelen);
912 if (error)
913 goto out_dput;
914
915 down_read(&fs_info->subvol_sem);
916
917 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
918 goto out_up_read;
919
920 if (snap_src)
921 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
922 else
923 error = create_subvol(dir, dentry, name, namelen, inherit);
924
925 if (!error)
926 fsnotify_mkdir(dir, dentry);
927out_up_read:
928 up_read(&fs_info->subvol_sem);
929out_dput:
930 dput(dentry);
931out_unlock:
932 btrfs_inode_unlock(dir, 0);
933 return error;
934}
935
936static noinline int btrfs_mksnapshot(const struct path *parent,
937 const char *name, int namelen,
938 struct btrfs_root *root,
939 bool readonly,
940 struct btrfs_qgroup_inherit *inherit)
941{
942 int ret;
943 bool snapshot_force_cow = false;
944
945 /*
946 * Force new buffered writes to reserve space even when NOCOW is
947 * possible. This is to avoid later writeback (running dealloc) to
948 * fallback to COW mode and unexpectedly fail with ENOSPC.
949 */
950 btrfs_drew_read_lock(&root->snapshot_lock);
951
952 ret = btrfs_start_delalloc_snapshot(root, false);
953 if (ret)
954 goto out;
955
956 /*
957 * All previous writes have started writeback in NOCOW mode, so now
958 * we force future writes to fallback to COW mode during snapshot
959 * creation.
960 */
961 atomic_inc(&root->snapshot_force_cow);
962 snapshot_force_cow = true;
963
964 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
965
966 ret = btrfs_mksubvol(parent, name, namelen,
967 root, readonly, inherit);
968out:
969 if (snapshot_force_cow)
970 atomic_dec(&root->snapshot_force_cow);
971 btrfs_drew_read_unlock(&root->snapshot_lock);
972 return ret;
973}
974
975/*
976 * When we're defragging a range, we don't want to kick it off again
977 * if it is really just waiting for delalloc to send it down.
978 * If we find a nice big extent or delalloc range for the bytes in the
979 * file you want to defrag, we return 0 to let you know to skip this
980 * part of the file
981 */
982static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
983{
984 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
985 struct extent_map *em = NULL;
986 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
987 u64 end;
988
989 read_lock(&em_tree->lock);
990 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
991 read_unlock(&em_tree->lock);
992
993 if (em) {
994 end = extent_map_end(em);
995 free_extent_map(em);
996 if (end - offset > thresh)
997 return 0;
998 }
999 /* if we already have a nice delalloc here, just stop */
1000 thresh /= 2;
1001 end = count_range_bits(io_tree, &offset, offset + thresh,
1002 thresh, EXTENT_DELALLOC, 1);
1003 if (end >= thresh)
1004 return 0;
1005 return 1;
1006}
1007
1008/*
1009 * helper function to walk through a file and find extents
1010 * newer than a specific transid, and smaller than thresh.
1011 *
1012 * This is used by the defragging code to find new and small
1013 * extents
1014 */
1015static int find_new_extents(struct btrfs_root *root,
1016 struct inode *inode, u64 newer_than,
1017 u64 *off, u32 thresh)
1018{
1019 struct btrfs_path *path;
1020 struct btrfs_key min_key;
1021 struct extent_buffer *leaf;
1022 struct btrfs_file_extent_item *extent;
1023 int type;
1024 int ret;
1025 u64 ino = btrfs_ino(BTRFS_I(inode));
1026
1027 path = btrfs_alloc_path();
1028 if (!path)
1029 return -ENOMEM;
1030
1031 min_key.objectid = ino;
1032 min_key.type = BTRFS_EXTENT_DATA_KEY;
1033 min_key.offset = *off;
1034
1035 while (1) {
1036 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1037 if (ret != 0)
1038 goto none;
1039process_slot:
1040 if (min_key.objectid != ino)
1041 goto none;
1042 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1043 goto none;
1044
1045 leaf = path->nodes[0];
1046 extent = btrfs_item_ptr(leaf, path->slots[0],
1047 struct btrfs_file_extent_item);
1048
1049 type = btrfs_file_extent_type(leaf, extent);
1050 if (type == BTRFS_FILE_EXTENT_REG &&
1051 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1052 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1053 *off = min_key.offset;
1054 btrfs_free_path(path);
1055 return 0;
1056 }
1057
1058 path->slots[0]++;
1059 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1060 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1061 goto process_slot;
1062 }
1063
1064 if (min_key.offset == (u64)-1)
1065 goto none;
1066
1067 min_key.offset++;
1068 btrfs_release_path(path);
1069 }
1070none:
1071 btrfs_free_path(path);
1072 return -ENOENT;
1073}
1074
1075static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1076{
1077 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1078 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1079 struct extent_map *em;
1080 u64 len = PAGE_SIZE;
1081
1082 /*
1083 * hopefully we have this extent in the tree already, try without
1084 * the full extent lock
1085 */
1086 read_lock(&em_tree->lock);
1087 em = lookup_extent_mapping(em_tree, start, len);
1088 read_unlock(&em_tree->lock);
1089
1090 if (!em) {
1091 struct extent_state *cached = NULL;
1092 u64 end = start + len - 1;
1093
1094 /* get the big lock and read metadata off disk */
1095 lock_extent_bits(io_tree, start, end, &cached);
1096 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1097 unlock_extent_cached(io_tree, start, end, &cached);
1098
1099 if (IS_ERR(em))
1100 return NULL;
1101 }
1102
1103 return em;
1104}
1105
1106static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1107{
1108 struct extent_map *next;
1109 bool ret = true;
1110
1111 /* this is the last extent */
1112 if (em->start + em->len >= i_size_read(inode))
1113 return false;
1114
1115 next = defrag_lookup_extent(inode, em->start + em->len);
1116 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1117 ret = false;
1118 else if ((em->block_start + em->block_len == next->block_start) &&
1119 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1120 ret = false;
1121
1122 free_extent_map(next);
1123 return ret;
1124}
1125
1126static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1127 u64 *last_len, u64 *skip, u64 *defrag_end,
1128 int compress)
1129{
1130 struct extent_map *em;
1131 int ret = 1;
1132 bool next_mergeable = true;
1133 bool prev_mergeable = true;
1134
1135 /*
1136 * make sure that once we start defragging an extent, we keep on
1137 * defragging it
1138 */
1139 if (start < *defrag_end)
1140 return 1;
1141
1142 *skip = 0;
1143
1144 em = defrag_lookup_extent(inode, start);
1145 if (!em)
1146 return 0;
1147
1148 /* this will cover holes, and inline extents */
1149 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1150 ret = 0;
1151 goto out;
1152 }
1153
1154 if (!*defrag_end)
1155 prev_mergeable = false;
1156
1157 next_mergeable = defrag_check_next_extent(inode, em);
1158 /*
1159 * we hit a real extent, if it is big or the next extent is not a
1160 * real extent, don't bother defragging it
1161 */
1162 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1163 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1164 ret = 0;
1165out:
1166 /*
1167 * last_len ends up being a counter of how many bytes we've defragged.
1168 * every time we choose not to defrag an extent, we reset *last_len
1169 * so that the next tiny extent will force a defrag.
1170 *
1171 * The end result of this is that tiny extents before a single big
1172 * extent will force at least part of that big extent to be defragged.
1173 */
1174 if (ret) {
1175 *defrag_end = extent_map_end(em);
1176 } else {
1177 *last_len = 0;
1178 *skip = extent_map_end(em);
1179 *defrag_end = 0;
1180 }
1181
1182 free_extent_map(em);
1183 return ret;
1184}
1185
1186/*
1187 * it doesn't do much good to defrag one or two pages
1188 * at a time. This pulls in a nice chunk of pages
1189 * to COW and defrag.
1190 *
1191 * It also makes sure the delalloc code has enough
1192 * dirty data to avoid making new small extents as part
1193 * of the defrag
1194 *
1195 * It's a good idea to start RA on this range
1196 * before calling this.
1197 */
1198static int cluster_pages_for_defrag(struct inode *inode,
1199 struct page **pages,
1200 unsigned long start_index,
1201 unsigned long num_pages)
1202{
1203 unsigned long file_end;
1204 u64 isize = i_size_read(inode);
1205 u64 page_start;
1206 u64 page_end;
1207 u64 page_cnt;
1208 u64 start = (u64)start_index << PAGE_SHIFT;
1209 u64 search_start;
1210 int ret;
1211 int i;
1212 int i_done;
1213 struct btrfs_ordered_extent *ordered;
1214 struct extent_state *cached_state = NULL;
1215 struct extent_io_tree *tree;
1216 struct extent_changeset *data_reserved = NULL;
1217 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1218
1219 file_end = (isize - 1) >> PAGE_SHIFT;
1220 if (!isize || start_index > file_end)
1221 return 0;
1222
1223 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1224
1225 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1226 start, page_cnt << PAGE_SHIFT);
1227 if (ret)
1228 return ret;
1229 i_done = 0;
1230 tree = &BTRFS_I(inode)->io_tree;
1231
1232 /* step one, lock all the pages */
1233 for (i = 0; i < page_cnt; i++) {
1234 struct page *page;
1235again:
1236 page = find_or_create_page(inode->i_mapping,
1237 start_index + i, mask);
1238 if (!page)
1239 break;
1240
1241 ret = set_page_extent_mapped(page);
1242 if (ret < 0) {
1243 unlock_page(page);
1244 put_page(page);
1245 break;
1246 }
1247
1248 page_start = page_offset(page);
1249 page_end = page_start + PAGE_SIZE - 1;
1250 while (1) {
1251 lock_extent_bits(tree, page_start, page_end,
1252 &cached_state);
1253 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1254 page_start);
1255 unlock_extent_cached(tree, page_start, page_end,
1256 &cached_state);
1257 if (!ordered)
1258 break;
1259
1260 unlock_page(page);
1261 btrfs_start_ordered_extent(ordered, 1);
1262 btrfs_put_ordered_extent(ordered);
1263 lock_page(page);
1264 /*
1265 * we unlocked the page above, so we need check if
1266 * it was released or not.
1267 */
1268 if (page->mapping != inode->i_mapping) {
1269 unlock_page(page);
1270 put_page(page);
1271 goto again;
1272 }
1273 }
1274
1275 if (!PageUptodate(page)) {
1276 btrfs_readpage(NULL, page);
1277 lock_page(page);
1278 if (!PageUptodate(page)) {
1279 unlock_page(page);
1280 put_page(page);
1281 ret = -EIO;
1282 break;
1283 }
1284 }
1285
1286 if (page->mapping != inode->i_mapping) {
1287 unlock_page(page);
1288 put_page(page);
1289 goto again;
1290 }
1291
1292 pages[i] = page;
1293 i_done++;
1294 }
1295 if (!i_done || ret)
1296 goto out;
1297
1298 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1299 goto out;
1300
1301 /*
1302 * so now we have a nice long stream of locked
1303 * and up to date pages, lets wait on them
1304 */
1305 for (i = 0; i < i_done; i++)
1306 wait_on_page_writeback(pages[i]);
1307
1308 page_start = page_offset(pages[0]);
1309 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1310
1311 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1312 page_start, page_end - 1, &cached_state);
1313
1314 /*
1315 * When defragmenting we skip ranges that have holes or inline extents,
1316 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1317 * space. At btrfs_defrag_file(), we check if a range should be defragged
1318 * before locking the inode and then, if it should, we trigger a sync
1319 * page cache readahead - we lock the inode only after that to avoid
1320 * blocking for too long other tasks that possibly want to operate on
1321 * other file ranges. But before we were able to get the inode lock,
1322 * some other task may have punched a hole in the range, or we may have
1323 * now an inline extent, in which case we should not defrag. So check
1324 * for that here, where we have the inode and the range locked, and bail
1325 * out if that happened.
1326 */
1327 search_start = page_start;
1328 while (search_start < page_end) {
1329 struct extent_map *em;
1330
1331 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1332 page_end - search_start);
1333 if (IS_ERR(em)) {
1334 ret = PTR_ERR(em);
1335 goto out_unlock_range;
1336 }
1337 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1338 free_extent_map(em);
1339 /* Ok, 0 means we did not defrag anything */
1340 ret = 0;
1341 goto out_unlock_range;
1342 }
1343 search_start = extent_map_end(em);
1344 free_extent_map(em);
1345 }
1346
1347 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1348 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1349 EXTENT_DEFRAG, 0, 0, &cached_state);
1350
1351 if (i_done != page_cnt) {
1352 spin_lock(&BTRFS_I(inode)->lock);
1353 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1354 spin_unlock(&BTRFS_I(inode)->lock);
1355 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1356 start, (page_cnt - i_done) << PAGE_SHIFT, true);
1357 }
1358
1359
1360 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1361 &cached_state);
1362
1363 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1364 page_start, page_end - 1, &cached_state);
1365
1366 for (i = 0; i < i_done; i++) {
1367 clear_page_dirty_for_io(pages[i]);
1368 ClearPageChecked(pages[i]);
1369 set_page_dirty(pages[i]);
1370 unlock_page(pages[i]);
1371 put_page(pages[i]);
1372 }
1373 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1374 extent_changeset_free(data_reserved);
1375 return i_done;
1376
1377out_unlock_range:
1378 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1379 page_start, page_end - 1, &cached_state);
1380out:
1381 for (i = 0; i < i_done; i++) {
1382 unlock_page(pages[i]);
1383 put_page(pages[i]);
1384 }
1385 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1386 start, page_cnt << PAGE_SHIFT, true);
1387 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1388 extent_changeset_free(data_reserved);
1389 return ret;
1390
1391}
1392
1393int btrfs_defrag_file(struct inode *inode, struct file *file,
1394 struct btrfs_ioctl_defrag_range_args *range,
1395 u64 newer_than, unsigned long max_to_defrag)
1396{
1397 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1398 struct btrfs_root *root = BTRFS_I(inode)->root;
1399 struct file_ra_state *ra = NULL;
1400 unsigned long last_index;
1401 u64 isize = i_size_read(inode);
1402 u64 last_len = 0;
1403 u64 skip = 0;
1404 u64 defrag_end = 0;
1405 u64 newer_off = range->start;
1406 unsigned long i;
1407 unsigned long ra_index = 0;
1408 int ret;
1409 int defrag_count = 0;
1410 int compress_type = BTRFS_COMPRESS_ZLIB;
1411 u32 extent_thresh = range->extent_thresh;
1412 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1413 unsigned long cluster = max_cluster;
1414 u64 new_align = ~((u64)SZ_128K - 1);
1415 struct page **pages = NULL;
1416 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1417
1418 if (isize == 0)
1419 return 0;
1420
1421 if (range->start >= isize)
1422 return -EINVAL;
1423
1424 if (do_compress) {
1425 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1426 return -EINVAL;
1427 if (range->compress_type)
1428 compress_type = range->compress_type;
1429 }
1430
1431 if (extent_thresh == 0)
1432 extent_thresh = SZ_256K;
1433
1434 /*
1435 * If we were not given a file, allocate a readahead context. As
1436 * readahead is just an optimization, defrag will work without it so
1437 * we don't error out.
1438 */
1439 if (!file) {
1440 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1441 if (ra)
1442 file_ra_state_init(ra, inode->i_mapping);
1443 } else {
1444 ra = &file->f_ra;
1445 }
1446
1447 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1448 if (!pages) {
1449 ret = -ENOMEM;
1450 goto out_ra;
1451 }
1452
1453 /* find the last page to defrag */
1454 if (range->start + range->len > range->start) {
1455 last_index = min_t(u64, isize - 1,
1456 range->start + range->len - 1) >> PAGE_SHIFT;
1457 } else {
1458 last_index = (isize - 1) >> PAGE_SHIFT;
1459 }
1460
1461 if (newer_than) {
1462 ret = find_new_extents(root, inode, newer_than,
1463 &newer_off, SZ_64K);
1464 if (!ret) {
1465 range->start = newer_off;
1466 /*
1467 * we always align our defrag to help keep
1468 * the extents in the file evenly spaced
1469 */
1470 i = (newer_off & new_align) >> PAGE_SHIFT;
1471 } else
1472 goto out_ra;
1473 } else {
1474 i = range->start >> PAGE_SHIFT;
1475 }
1476 if (!max_to_defrag)
1477 max_to_defrag = last_index - i + 1;
1478
1479 /*
1480 * make writeback starts from i, so the defrag range can be
1481 * written sequentially.
1482 */
1483 if (i < inode->i_mapping->writeback_index)
1484 inode->i_mapping->writeback_index = i;
1485
1486 while (i <= last_index && defrag_count < max_to_defrag &&
1487 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1488 /*
1489 * make sure we stop running if someone unmounts
1490 * the FS
1491 */
1492 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1493 break;
1494
1495 if (btrfs_defrag_cancelled(fs_info)) {
1496 btrfs_debug(fs_info, "defrag_file cancelled");
1497 ret = -EAGAIN;
1498 goto error;
1499 }
1500
1501 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1502 extent_thresh, &last_len, &skip,
1503 &defrag_end, do_compress)){
1504 unsigned long next;
1505 /*
1506 * the should_defrag function tells us how much to skip
1507 * bump our counter by the suggested amount
1508 */
1509 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1510 i = max(i + 1, next);
1511 continue;
1512 }
1513
1514 if (!newer_than) {
1515 cluster = (PAGE_ALIGN(defrag_end) >>
1516 PAGE_SHIFT) - i;
1517 cluster = min(cluster, max_cluster);
1518 } else {
1519 cluster = max_cluster;
1520 }
1521
1522 if (i + cluster > ra_index) {
1523 ra_index = max(i, ra_index);
1524 if (ra)
1525 page_cache_sync_readahead(inode->i_mapping, ra,
1526 file, ra_index, cluster);
1527 ra_index += cluster;
1528 }
1529
1530 btrfs_inode_lock(inode, 0);
1531 if (IS_SWAPFILE(inode)) {
1532 ret = -ETXTBSY;
1533 } else {
1534 if (do_compress)
1535 BTRFS_I(inode)->defrag_compress = compress_type;
1536 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1537 }
1538 if (ret < 0) {
1539 btrfs_inode_unlock(inode, 0);
1540 goto out_ra;
1541 }
1542
1543 defrag_count += ret;
1544 balance_dirty_pages_ratelimited(inode->i_mapping);
1545 btrfs_inode_unlock(inode, 0);
1546
1547 if (newer_than) {
1548 if (newer_off == (u64)-1)
1549 break;
1550
1551 if (ret > 0)
1552 i += ret;
1553
1554 newer_off = max(newer_off + 1,
1555 (u64)i << PAGE_SHIFT);
1556
1557 ret = find_new_extents(root, inode, newer_than,
1558 &newer_off, SZ_64K);
1559 if (!ret) {
1560 range->start = newer_off;
1561 i = (newer_off & new_align) >> PAGE_SHIFT;
1562 } else {
1563 break;
1564 }
1565 } else {
1566 if (ret > 0) {
1567 i += ret;
1568 last_len += ret << PAGE_SHIFT;
1569 } else {
1570 i++;
1571 last_len = 0;
1572 }
1573 }
1574 }
1575
1576 ret = defrag_count;
1577error:
1578 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1579 filemap_flush(inode->i_mapping);
1580 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1581 &BTRFS_I(inode)->runtime_flags))
1582 filemap_flush(inode->i_mapping);
1583 }
1584
1585 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1586 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1587 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1588 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1589 }
1590
1591out_ra:
1592 if (do_compress) {
1593 btrfs_inode_lock(inode, 0);
1594 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1595 btrfs_inode_unlock(inode, 0);
1596 }
1597 if (!file)
1598 kfree(ra);
1599 kfree(pages);
1600 return ret;
1601}
1602
1603/*
1604 * Try to start exclusive operation @type or cancel it if it's running.
1605 *
1606 * Return:
1607 * 0 - normal mode, newly claimed op started
1608 * >0 - normal mode, something else is running,
1609 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1610 * ECANCELED - cancel mode, successful cancel
1611 * ENOTCONN - cancel mode, operation not running anymore
1612 */
1613static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1614 enum btrfs_exclusive_operation type, bool cancel)
1615{
1616 if (!cancel) {
1617 /* Start normal op */
1618 if (!btrfs_exclop_start(fs_info, type))
1619 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1620 /* Exclusive operation is now claimed */
1621 return 0;
1622 }
1623
1624 /* Cancel running op */
1625 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1626 /*
1627 * This blocks any exclop finish from setting it to NONE, so we
1628 * request cancellation. Either it runs and we will wait for it,
1629 * or it has finished and no waiting will happen.
1630 */
1631 atomic_inc(&fs_info->reloc_cancel_req);
1632 btrfs_exclop_start_unlock(fs_info);
1633
1634 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1635 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1636 TASK_INTERRUPTIBLE);
1637
1638 return -ECANCELED;
1639 }
1640
1641 /* Something else is running or none */
1642 return -ENOTCONN;
1643}
1644
1645static noinline int btrfs_ioctl_resize(struct file *file,
1646 void __user *arg)
1647{
1648 struct inode *inode = file_inode(file);
1649 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1650 u64 new_size;
1651 u64 old_size;
1652 u64 devid = 1;
1653 struct btrfs_root *root = BTRFS_I(inode)->root;
1654 struct btrfs_ioctl_vol_args *vol_args;
1655 struct btrfs_trans_handle *trans;
1656 struct btrfs_device *device = NULL;
1657 char *sizestr;
1658 char *retptr;
1659 char *devstr = NULL;
1660 int ret = 0;
1661 int mod = 0;
1662 bool cancel;
1663
1664 if (!capable(CAP_SYS_ADMIN))
1665 return -EPERM;
1666
1667 ret = mnt_want_write_file(file);
1668 if (ret)
1669 return ret;
1670
1671 /*
1672 * Read the arguments before checking exclusivity to be able to
1673 * distinguish regular resize and cancel
1674 */
1675 vol_args = memdup_user(arg, sizeof(*vol_args));
1676 if (IS_ERR(vol_args)) {
1677 ret = PTR_ERR(vol_args);
1678 goto out_drop;
1679 }
1680 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1681 sizestr = vol_args->name;
1682 cancel = (strcmp("cancel", sizestr) == 0);
1683 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1684 if (ret)
1685 goto out_free;
1686 /* Exclusive operation is now claimed */
1687
1688 devstr = strchr(sizestr, ':');
1689 if (devstr) {
1690 sizestr = devstr + 1;
1691 *devstr = '\0';
1692 devstr = vol_args->name;
1693 ret = kstrtoull(devstr, 10, &devid);
1694 if (ret)
1695 goto out_finish;
1696 if (!devid) {
1697 ret = -EINVAL;
1698 goto out_finish;
1699 }
1700 btrfs_info(fs_info, "resizing devid %llu", devid);
1701 }
1702
1703 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1704 if (!device) {
1705 btrfs_info(fs_info, "resizer unable to find device %llu",
1706 devid);
1707 ret = -ENODEV;
1708 goto out_finish;
1709 }
1710
1711 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1712 btrfs_info(fs_info,
1713 "resizer unable to apply on readonly device %llu",
1714 devid);
1715 ret = -EPERM;
1716 goto out_finish;
1717 }
1718
1719 if (!strcmp(sizestr, "max"))
1720 new_size = device->bdev->bd_inode->i_size;
1721 else {
1722 if (sizestr[0] == '-') {
1723 mod = -1;
1724 sizestr++;
1725 } else if (sizestr[0] == '+') {
1726 mod = 1;
1727 sizestr++;
1728 }
1729 new_size = memparse(sizestr, &retptr);
1730 if (*retptr != '\0' || new_size == 0) {
1731 ret = -EINVAL;
1732 goto out_finish;
1733 }
1734 }
1735
1736 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1737 ret = -EPERM;
1738 goto out_finish;
1739 }
1740
1741 old_size = btrfs_device_get_total_bytes(device);
1742
1743 if (mod < 0) {
1744 if (new_size > old_size) {
1745 ret = -EINVAL;
1746 goto out_finish;
1747 }
1748 new_size = old_size - new_size;
1749 } else if (mod > 0) {
1750 if (new_size > ULLONG_MAX - old_size) {
1751 ret = -ERANGE;
1752 goto out_finish;
1753 }
1754 new_size = old_size + new_size;
1755 }
1756
1757 if (new_size < SZ_256M) {
1758 ret = -EINVAL;
1759 goto out_finish;
1760 }
1761 if (new_size > device->bdev->bd_inode->i_size) {
1762 ret = -EFBIG;
1763 goto out_finish;
1764 }
1765
1766 new_size = round_down(new_size, fs_info->sectorsize);
1767
1768 if (new_size > old_size) {
1769 trans = btrfs_start_transaction(root, 0);
1770 if (IS_ERR(trans)) {
1771 ret = PTR_ERR(trans);
1772 goto out_finish;
1773 }
1774 ret = btrfs_grow_device(trans, device, new_size);
1775 btrfs_commit_transaction(trans);
1776 } else if (new_size < old_size) {
1777 ret = btrfs_shrink_device(device, new_size);
1778 } /* equal, nothing need to do */
1779
1780 if (ret == 0 && new_size != old_size)
1781 btrfs_info_in_rcu(fs_info,
1782 "resize device %s (devid %llu) from %llu to %llu",
1783 rcu_str_deref(device->name), device->devid,
1784 old_size, new_size);
1785out_finish:
1786 btrfs_exclop_finish(fs_info);
1787out_free:
1788 kfree(vol_args);
1789out_drop:
1790 mnt_drop_write_file(file);
1791 return ret;
1792}
1793
1794static noinline int __btrfs_ioctl_snap_create(struct file *file,
1795 const char *name, unsigned long fd, int subvol,
1796 bool readonly,
1797 struct btrfs_qgroup_inherit *inherit)
1798{
1799 int namelen;
1800 int ret = 0;
1801
1802 if (!S_ISDIR(file_inode(file)->i_mode))
1803 return -ENOTDIR;
1804
1805 ret = mnt_want_write_file(file);
1806 if (ret)
1807 goto out;
1808
1809 namelen = strlen(name);
1810 if (strchr(name, '/')) {
1811 ret = -EINVAL;
1812 goto out_drop_write;
1813 }
1814
1815 if (name[0] == '.' &&
1816 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1817 ret = -EEXIST;
1818 goto out_drop_write;
1819 }
1820
1821 if (subvol) {
1822 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1823 NULL, readonly, inherit);
1824 } else {
1825 struct fd src = fdget(fd);
1826 struct inode *src_inode;
1827 if (!src.file) {
1828 ret = -EINVAL;
1829 goto out_drop_write;
1830 }
1831
1832 src_inode = file_inode(src.file);
1833 if (src_inode->i_sb != file_inode(file)->i_sb) {
1834 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1835 "Snapshot src from another FS");
1836 ret = -EXDEV;
1837 } else if (!inode_owner_or_capable(&init_user_ns, src_inode)) {
1838 /*
1839 * Subvolume creation is not restricted, but snapshots
1840 * are limited to own subvolumes only
1841 */
1842 ret = -EPERM;
1843 } else {
1844 ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1845 BTRFS_I(src_inode)->root,
1846 readonly, inherit);
1847 }
1848 fdput(src);
1849 }
1850out_drop_write:
1851 mnt_drop_write_file(file);
1852out:
1853 return ret;
1854}
1855
1856static noinline int btrfs_ioctl_snap_create(struct file *file,
1857 void __user *arg, int subvol)
1858{
1859 struct btrfs_ioctl_vol_args *vol_args;
1860 int ret;
1861
1862 if (!S_ISDIR(file_inode(file)->i_mode))
1863 return -ENOTDIR;
1864
1865 vol_args = memdup_user(arg, sizeof(*vol_args));
1866 if (IS_ERR(vol_args))
1867 return PTR_ERR(vol_args);
1868 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1869
1870 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1871 subvol, false, NULL);
1872
1873 kfree(vol_args);
1874 return ret;
1875}
1876
1877static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1878 void __user *arg, int subvol)
1879{
1880 struct btrfs_ioctl_vol_args_v2 *vol_args;
1881 int ret;
1882 bool readonly = false;
1883 struct btrfs_qgroup_inherit *inherit = NULL;
1884
1885 if (!S_ISDIR(file_inode(file)->i_mode))
1886 return -ENOTDIR;
1887
1888 vol_args = memdup_user(arg, sizeof(*vol_args));
1889 if (IS_ERR(vol_args))
1890 return PTR_ERR(vol_args);
1891 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1892
1893 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1894 ret = -EOPNOTSUPP;
1895 goto free_args;
1896 }
1897
1898 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1899 readonly = true;
1900 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1901 u64 nums;
1902
1903 if (vol_args->size < sizeof(*inherit) ||
1904 vol_args->size > PAGE_SIZE) {
1905 ret = -EINVAL;
1906 goto free_args;
1907 }
1908 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1909 if (IS_ERR(inherit)) {
1910 ret = PTR_ERR(inherit);
1911 goto free_args;
1912 }
1913
1914 if (inherit->num_qgroups > PAGE_SIZE ||
1915 inherit->num_ref_copies > PAGE_SIZE ||
1916 inherit->num_excl_copies > PAGE_SIZE) {
1917 ret = -EINVAL;
1918 goto free_inherit;
1919 }
1920
1921 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1922 2 * inherit->num_excl_copies;
1923 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1924 ret = -EINVAL;
1925 goto free_inherit;
1926 }
1927 }
1928
1929 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1930 subvol, readonly, inherit);
1931 if (ret)
1932 goto free_inherit;
1933free_inherit:
1934 kfree(inherit);
1935free_args:
1936 kfree(vol_args);
1937 return ret;
1938}
1939
1940static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1941 void __user *arg)
1942{
1943 struct inode *inode = file_inode(file);
1944 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1945 struct btrfs_root *root = BTRFS_I(inode)->root;
1946 int ret = 0;
1947 u64 flags = 0;
1948
1949 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1950 return -EINVAL;
1951
1952 down_read(&fs_info->subvol_sem);
1953 if (btrfs_root_readonly(root))
1954 flags |= BTRFS_SUBVOL_RDONLY;
1955 up_read(&fs_info->subvol_sem);
1956
1957 if (copy_to_user(arg, &flags, sizeof(flags)))
1958 ret = -EFAULT;
1959
1960 return ret;
1961}
1962
1963static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1964 void __user *arg)
1965{
1966 struct inode *inode = file_inode(file);
1967 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1968 struct btrfs_root *root = BTRFS_I(inode)->root;
1969 struct btrfs_trans_handle *trans;
1970 u64 root_flags;
1971 u64 flags;
1972 int ret = 0;
1973
1974 if (!inode_owner_or_capable(&init_user_ns, inode))
1975 return -EPERM;
1976
1977 ret = mnt_want_write_file(file);
1978 if (ret)
1979 goto out;
1980
1981 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1982 ret = -EINVAL;
1983 goto out_drop_write;
1984 }
1985
1986 if (copy_from_user(&flags, arg, sizeof(flags))) {
1987 ret = -EFAULT;
1988 goto out_drop_write;
1989 }
1990
1991 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1992 ret = -EOPNOTSUPP;
1993 goto out_drop_write;
1994 }
1995
1996 down_write(&fs_info->subvol_sem);
1997
1998 /* nothing to do */
1999 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2000 goto out_drop_sem;
2001
2002 root_flags = btrfs_root_flags(&root->root_item);
2003 if (flags & BTRFS_SUBVOL_RDONLY) {
2004 btrfs_set_root_flags(&root->root_item,
2005 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2006 } else {
2007 /*
2008 * Block RO -> RW transition if this subvolume is involved in
2009 * send
2010 */
2011 spin_lock(&root->root_item_lock);
2012 if (root->send_in_progress == 0) {
2013 btrfs_set_root_flags(&root->root_item,
2014 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2015 spin_unlock(&root->root_item_lock);
2016 } else {
2017 spin_unlock(&root->root_item_lock);
2018 btrfs_warn(fs_info,
2019 "Attempt to set subvolume %llu read-write during send",
2020 root->root_key.objectid);
2021 ret = -EPERM;
2022 goto out_drop_sem;
2023 }
2024 }
2025
2026 trans = btrfs_start_transaction(root, 1);
2027 if (IS_ERR(trans)) {
2028 ret = PTR_ERR(trans);
2029 goto out_reset;
2030 }
2031
2032 ret = btrfs_update_root(trans, fs_info->tree_root,
2033 &root->root_key, &root->root_item);
2034 if (ret < 0) {
2035 btrfs_end_transaction(trans);
2036 goto out_reset;
2037 }
2038
2039 ret = btrfs_commit_transaction(trans);
2040
2041out_reset:
2042 if (ret)
2043 btrfs_set_root_flags(&root->root_item, root_flags);
2044out_drop_sem:
2045 up_write(&fs_info->subvol_sem);
2046out_drop_write:
2047 mnt_drop_write_file(file);
2048out:
2049 return ret;
2050}
2051
2052static noinline int key_in_sk(struct btrfs_key *key,
2053 struct btrfs_ioctl_search_key *sk)
2054{
2055 struct btrfs_key test;
2056 int ret;
2057
2058 test.objectid = sk->min_objectid;
2059 test.type = sk->min_type;
2060 test.offset = sk->min_offset;
2061
2062 ret = btrfs_comp_cpu_keys(key, &test);
2063 if (ret < 0)
2064 return 0;
2065
2066 test.objectid = sk->max_objectid;
2067 test.type = sk->max_type;
2068 test.offset = sk->max_offset;
2069
2070 ret = btrfs_comp_cpu_keys(key, &test);
2071 if (ret > 0)
2072 return 0;
2073 return 1;
2074}
2075
2076static noinline int copy_to_sk(struct btrfs_path *path,
2077 struct btrfs_key *key,
2078 struct btrfs_ioctl_search_key *sk,
2079 size_t *buf_size,
2080 char __user *ubuf,
2081 unsigned long *sk_offset,
2082 int *num_found)
2083{
2084 u64 found_transid;
2085 struct extent_buffer *leaf;
2086 struct btrfs_ioctl_search_header sh;
2087 struct btrfs_key test;
2088 unsigned long item_off;
2089 unsigned long item_len;
2090 int nritems;
2091 int i;
2092 int slot;
2093 int ret = 0;
2094
2095 leaf = path->nodes[0];
2096 slot = path->slots[0];
2097 nritems = btrfs_header_nritems(leaf);
2098
2099 if (btrfs_header_generation(leaf) > sk->max_transid) {
2100 i = nritems;
2101 goto advance_key;
2102 }
2103 found_transid = btrfs_header_generation(leaf);
2104
2105 for (i = slot; i < nritems; i++) {
2106 item_off = btrfs_item_ptr_offset(leaf, i);
2107 item_len = btrfs_item_size_nr(leaf, i);
2108
2109 btrfs_item_key_to_cpu(leaf, key, i);
2110 if (!key_in_sk(key, sk))
2111 continue;
2112
2113 if (sizeof(sh) + item_len > *buf_size) {
2114 if (*num_found) {
2115 ret = 1;
2116 goto out;
2117 }
2118
2119 /*
2120 * return one empty item back for v1, which does not
2121 * handle -EOVERFLOW
2122 */
2123
2124 *buf_size = sizeof(sh) + item_len;
2125 item_len = 0;
2126 ret = -EOVERFLOW;
2127 }
2128
2129 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2130 ret = 1;
2131 goto out;
2132 }
2133
2134 sh.objectid = key->objectid;
2135 sh.offset = key->offset;
2136 sh.type = key->type;
2137 sh.len = item_len;
2138 sh.transid = found_transid;
2139
2140 /*
2141 * Copy search result header. If we fault then loop again so we
2142 * can fault in the pages and -EFAULT there if there's a
2143 * problem. Otherwise we'll fault and then copy the buffer in
2144 * properly this next time through
2145 */
2146 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2147 ret = 0;
2148 goto out;
2149 }
2150
2151 *sk_offset += sizeof(sh);
2152
2153 if (item_len) {
2154 char __user *up = ubuf + *sk_offset;
2155 /*
2156 * Copy the item, same behavior as above, but reset the
2157 * * sk_offset so we copy the full thing again.
2158 */
2159 if (read_extent_buffer_to_user_nofault(leaf, up,
2160 item_off, item_len)) {
2161 ret = 0;
2162 *sk_offset -= sizeof(sh);
2163 goto out;
2164 }
2165
2166 *sk_offset += item_len;
2167 }
2168 (*num_found)++;
2169
2170 if (ret) /* -EOVERFLOW from above */
2171 goto out;
2172
2173 if (*num_found >= sk->nr_items) {
2174 ret = 1;
2175 goto out;
2176 }
2177 }
2178advance_key:
2179 ret = 0;
2180 test.objectid = sk->max_objectid;
2181 test.type = sk->max_type;
2182 test.offset = sk->max_offset;
2183 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2184 ret = 1;
2185 else if (key->offset < (u64)-1)
2186 key->offset++;
2187 else if (key->type < (u8)-1) {
2188 key->offset = 0;
2189 key->type++;
2190 } else if (key->objectid < (u64)-1) {
2191 key->offset = 0;
2192 key->type = 0;
2193 key->objectid++;
2194 } else
2195 ret = 1;
2196out:
2197 /*
2198 * 0: all items from this leaf copied, continue with next
2199 * 1: * more items can be copied, but unused buffer is too small
2200 * * all items were found
2201 * Either way, it will stops the loop which iterates to the next
2202 * leaf
2203 * -EOVERFLOW: item was to large for buffer
2204 * -EFAULT: could not copy extent buffer back to userspace
2205 */
2206 return ret;
2207}
2208
2209static noinline int search_ioctl(struct inode *inode,
2210 struct btrfs_ioctl_search_key *sk,
2211 size_t *buf_size,
2212 char __user *ubuf)
2213{
2214 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2215 struct btrfs_root *root;
2216 struct btrfs_key key;
2217 struct btrfs_path *path;
2218 int ret;
2219 int num_found = 0;
2220 unsigned long sk_offset = 0;
2221
2222 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2223 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2224 return -EOVERFLOW;
2225 }
2226
2227 path = btrfs_alloc_path();
2228 if (!path)
2229 return -ENOMEM;
2230
2231 if (sk->tree_id == 0) {
2232 /* search the root of the inode that was passed */
2233 root = btrfs_grab_root(BTRFS_I(inode)->root);
2234 } else {
2235 root = btrfs_get_fs_root(info, sk->tree_id, true);
2236 if (IS_ERR(root)) {
2237 btrfs_free_path(path);
2238 return PTR_ERR(root);
2239 }
2240 }
2241
2242 key.objectid = sk->min_objectid;
2243 key.type = sk->min_type;
2244 key.offset = sk->min_offset;
2245
2246 while (1) {
2247 ret = fault_in_pages_writeable(ubuf + sk_offset,
2248 *buf_size - sk_offset);
2249 if (ret)
2250 break;
2251
2252 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2253 if (ret != 0) {
2254 if (ret > 0)
2255 ret = 0;
2256 goto err;
2257 }
2258 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2259 &sk_offset, &num_found);
2260 btrfs_release_path(path);
2261 if (ret)
2262 break;
2263
2264 }
2265 if (ret > 0)
2266 ret = 0;
2267err:
2268 sk->nr_items = num_found;
2269 btrfs_put_root(root);
2270 btrfs_free_path(path);
2271 return ret;
2272}
2273
2274static noinline int btrfs_ioctl_tree_search(struct file *file,
2275 void __user *argp)
2276{
2277 struct btrfs_ioctl_search_args __user *uargs;
2278 struct btrfs_ioctl_search_key sk;
2279 struct inode *inode;
2280 int ret;
2281 size_t buf_size;
2282
2283 if (!capable(CAP_SYS_ADMIN))
2284 return -EPERM;
2285
2286 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2287
2288 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2289 return -EFAULT;
2290
2291 buf_size = sizeof(uargs->buf);
2292
2293 inode = file_inode(file);
2294 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2295
2296 /*
2297 * In the origin implementation an overflow is handled by returning a
2298 * search header with a len of zero, so reset ret.
2299 */
2300 if (ret == -EOVERFLOW)
2301 ret = 0;
2302
2303 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2304 ret = -EFAULT;
2305 return ret;
2306}
2307
2308static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2309 void __user *argp)
2310{
2311 struct btrfs_ioctl_search_args_v2 __user *uarg;
2312 struct btrfs_ioctl_search_args_v2 args;
2313 struct inode *inode;
2314 int ret;
2315 size_t buf_size;
2316 const size_t buf_limit = SZ_16M;
2317
2318 if (!capable(CAP_SYS_ADMIN))
2319 return -EPERM;
2320
2321 /* copy search header and buffer size */
2322 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2323 if (copy_from_user(&args, uarg, sizeof(args)))
2324 return -EFAULT;
2325
2326 buf_size = args.buf_size;
2327
2328 /* limit result size to 16MB */
2329 if (buf_size > buf_limit)
2330 buf_size = buf_limit;
2331
2332 inode = file_inode(file);
2333 ret = search_ioctl(inode, &args.key, &buf_size,
2334 (char __user *)(&uarg->buf[0]));
2335 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2336 ret = -EFAULT;
2337 else if (ret == -EOVERFLOW &&
2338 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2339 ret = -EFAULT;
2340
2341 return ret;
2342}
2343
2344/*
2345 * Search INODE_REFs to identify path name of 'dirid' directory
2346 * in a 'tree_id' tree. and sets path name to 'name'.
2347 */
2348static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2349 u64 tree_id, u64 dirid, char *name)
2350{
2351 struct btrfs_root *root;
2352 struct btrfs_key key;
2353 char *ptr;
2354 int ret = -1;
2355 int slot;
2356 int len;
2357 int total_len = 0;
2358 struct btrfs_inode_ref *iref;
2359 struct extent_buffer *l;
2360 struct btrfs_path *path;
2361
2362 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2363 name[0]='\0';
2364 return 0;
2365 }
2366
2367 path = btrfs_alloc_path();
2368 if (!path)
2369 return -ENOMEM;
2370
2371 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2372
2373 root = btrfs_get_fs_root(info, tree_id, true);
2374 if (IS_ERR(root)) {
2375 ret = PTR_ERR(root);
2376 root = NULL;
2377 goto out;
2378 }
2379
2380 key.objectid = dirid;
2381 key.type = BTRFS_INODE_REF_KEY;
2382 key.offset = (u64)-1;
2383
2384 while (1) {
2385 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2386 if (ret < 0)
2387 goto out;
2388 else if (ret > 0) {
2389 ret = btrfs_previous_item(root, path, dirid,
2390 BTRFS_INODE_REF_KEY);
2391 if (ret < 0)
2392 goto out;
2393 else if (ret > 0) {
2394 ret = -ENOENT;
2395 goto out;
2396 }
2397 }
2398
2399 l = path->nodes[0];
2400 slot = path->slots[0];
2401 btrfs_item_key_to_cpu(l, &key, slot);
2402
2403 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2404 len = btrfs_inode_ref_name_len(l, iref);
2405 ptr -= len + 1;
2406 total_len += len + 1;
2407 if (ptr < name) {
2408 ret = -ENAMETOOLONG;
2409 goto out;
2410 }
2411
2412 *(ptr + len) = '/';
2413 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2414
2415 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2416 break;
2417
2418 btrfs_release_path(path);
2419 key.objectid = key.offset;
2420 key.offset = (u64)-1;
2421 dirid = key.objectid;
2422 }
2423 memmove(name, ptr, total_len);
2424 name[total_len] = '\0';
2425 ret = 0;
2426out:
2427 btrfs_put_root(root);
2428 btrfs_free_path(path);
2429 return ret;
2430}
2431
2432static int btrfs_search_path_in_tree_user(struct inode *inode,
2433 struct btrfs_ioctl_ino_lookup_user_args *args)
2434{
2435 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2436 struct super_block *sb = inode->i_sb;
2437 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2438 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2439 u64 dirid = args->dirid;
2440 unsigned long item_off;
2441 unsigned long item_len;
2442 struct btrfs_inode_ref *iref;
2443 struct btrfs_root_ref *rref;
2444 struct btrfs_root *root = NULL;
2445 struct btrfs_path *path;
2446 struct btrfs_key key, key2;
2447 struct extent_buffer *leaf;
2448 struct inode *temp_inode;
2449 char *ptr;
2450 int slot;
2451 int len;
2452 int total_len = 0;
2453 int ret;
2454
2455 path = btrfs_alloc_path();
2456 if (!path)
2457 return -ENOMEM;
2458
2459 /*
2460 * If the bottom subvolume does not exist directly under upper_limit,
2461 * construct the path in from the bottom up.
2462 */
2463 if (dirid != upper_limit.objectid) {
2464 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2465
2466 root = btrfs_get_fs_root(fs_info, treeid, true);
2467 if (IS_ERR(root)) {
2468 ret = PTR_ERR(root);
2469 goto out;
2470 }
2471
2472 key.objectid = dirid;
2473 key.type = BTRFS_INODE_REF_KEY;
2474 key.offset = (u64)-1;
2475 while (1) {
2476 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2477 if (ret < 0) {
2478 goto out_put;
2479 } else if (ret > 0) {
2480 ret = btrfs_previous_item(root, path, dirid,
2481 BTRFS_INODE_REF_KEY);
2482 if (ret < 0) {
2483 goto out_put;
2484 } else if (ret > 0) {
2485 ret = -ENOENT;
2486 goto out_put;
2487 }
2488 }
2489
2490 leaf = path->nodes[0];
2491 slot = path->slots[0];
2492 btrfs_item_key_to_cpu(leaf, &key, slot);
2493
2494 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2495 len = btrfs_inode_ref_name_len(leaf, iref);
2496 ptr -= len + 1;
2497 total_len += len + 1;
2498 if (ptr < args->path) {
2499 ret = -ENAMETOOLONG;
2500 goto out_put;
2501 }
2502
2503 *(ptr + len) = '/';
2504 read_extent_buffer(leaf, ptr,
2505 (unsigned long)(iref + 1), len);
2506
2507 /* Check the read+exec permission of this directory */
2508 ret = btrfs_previous_item(root, path, dirid,
2509 BTRFS_INODE_ITEM_KEY);
2510 if (ret < 0) {
2511 goto out_put;
2512 } else if (ret > 0) {
2513 ret = -ENOENT;
2514 goto out_put;
2515 }
2516
2517 leaf = path->nodes[0];
2518 slot = path->slots[0];
2519 btrfs_item_key_to_cpu(leaf, &key2, slot);
2520 if (key2.objectid != dirid) {
2521 ret = -ENOENT;
2522 goto out_put;
2523 }
2524
2525 temp_inode = btrfs_iget(sb, key2.objectid, root);
2526 if (IS_ERR(temp_inode)) {
2527 ret = PTR_ERR(temp_inode);
2528 goto out_put;
2529 }
2530 ret = inode_permission(&init_user_ns, temp_inode,
2531 MAY_READ | MAY_EXEC);
2532 iput(temp_inode);
2533 if (ret) {
2534 ret = -EACCES;
2535 goto out_put;
2536 }
2537
2538 if (key.offset == upper_limit.objectid)
2539 break;
2540 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2541 ret = -EACCES;
2542 goto out_put;
2543 }
2544
2545 btrfs_release_path(path);
2546 key.objectid = key.offset;
2547 key.offset = (u64)-1;
2548 dirid = key.objectid;
2549 }
2550
2551 memmove(args->path, ptr, total_len);
2552 args->path[total_len] = '\0';
2553 btrfs_put_root(root);
2554 root = NULL;
2555 btrfs_release_path(path);
2556 }
2557
2558 /* Get the bottom subvolume's name from ROOT_REF */
2559 key.objectid = treeid;
2560 key.type = BTRFS_ROOT_REF_KEY;
2561 key.offset = args->treeid;
2562 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2563 if (ret < 0) {
2564 goto out;
2565 } else if (ret > 0) {
2566 ret = -ENOENT;
2567 goto out;
2568 }
2569
2570 leaf = path->nodes[0];
2571 slot = path->slots[0];
2572 btrfs_item_key_to_cpu(leaf, &key, slot);
2573
2574 item_off = btrfs_item_ptr_offset(leaf, slot);
2575 item_len = btrfs_item_size_nr(leaf, slot);
2576 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2577 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2578 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2579 ret = -EINVAL;
2580 goto out;
2581 }
2582
2583 /* Copy subvolume's name */
2584 item_off += sizeof(struct btrfs_root_ref);
2585 item_len -= sizeof(struct btrfs_root_ref);
2586 read_extent_buffer(leaf, args->name, item_off, item_len);
2587 args->name[item_len] = 0;
2588
2589out_put:
2590 btrfs_put_root(root);
2591out:
2592 btrfs_free_path(path);
2593 return ret;
2594}
2595
2596static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2597 void __user *argp)
2598{
2599 struct btrfs_ioctl_ino_lookup_args *args;
2600 struct inode *inode;
2601 int ret = 0;
2602
2603 args = memdup_user(argp, sizeof(*args));
2604 if (IS_ERR(args))
2605 return PTR_ERR(args);
2606
2607 inode = file_inode(file);
2608
2609 /*
2610 * Unprivileged query to obtain the containing subvolume root id. The
2611 * path is reset so it's consistent with btrfs_search_path_in_tree.
2612 */
2613 if (args->treeid == 0)
2614 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2615
2616 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2617 args->name[0] = 0;
2618 goto out;
2619 }
2620
2621 if (!capable(CAP_SYS_ADMIN)) {
2622 ret = -EPERM;
2623 goto out;
2624 }
2625
2626 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2627 args->treeid, args->objectid,
2628 args->name);
2629
2630out:
2631 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2632 ret = -EFAULT;
2633
2634 kfree(args);
2635 return ret;
2636}
2637
2638/*
2639 * Version of ino_lookup ioctl (unprivileged)
2640 *
2641 * The main differences from ino_lookup ioctl are:
2642 *
2643 * 1. Read + Exec permission will be checked using inode_permission() during
2644 * path construction. -EACCES will be returned in case of failure.
2645 * 2. Path construction will be stopped at the inode number which corresponds
2646 * to the fd with which this ioctl is called. If constructed path does not
2647 * exist under fd's inode, -EACCES will be returned.
2648 * 3. The name of bottom subvolume is also searched and filled.
2649 */
2650static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2651{
2652 struct btrfs_ioctl_ino_lookup_user_args *args;
2653 struct inode *inode;
2654 int ret;
2655
2656 args = memdup_user(argp, sizeof(*args));
2657 if (IS_ERR(args))
2658 return PTR_ERR(args);
2659
2660 inode = file_inode(file);
2661
2662 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2663 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2664 /*
2665 * The subvolume does not exist under fd with which this is
2666 * called
2667 */
2668 kfree(args);
2669 return -EACCES;
2670 }
2671
2672 ret = btrfs_search_path_in_tree_user(inode, args);
2673
2674 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2675 ret = -EFAULT;
2676
2677 kfree(args);
2678 return ret;
2679}
2680
2681/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2682static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2683{
2684 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2685 struct btrfs_fs_info *fs_info;
2686 struct btrfs_root *root;
2687 struct btrfs_path *path;
2688 struct btrfs_key key;
2689 struct btrfs_root_item *root_item;
2690 struct btrfs_root_ref *rref;
2691 struct extent_buffer *leaf;
2692 unsigned long item_off;
2693 unsigned long item_len;
2694 struct inode *inode;
2695 int slot;
2696 int ret = 0;
2697
2698 path = btrfs_alloc_path();
2699 if (!path)
2700 return -ENOMEM;
2701
2702 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2703 if (!subvol_info) {
2704 btrfs_free_path(path);
2705 return -ENOMEM;
2706 }
2707
2708 inode = file_inode(file);
2709 fs_info = BTRFS_I(inode)->root->fs_info;
2710
2711 /* Get root_item of inode's subvolume */
2712 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2713 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2714 if (IS_ERR(root)) {
2715 ret = PTR_ERR(root);
2716 goto out_free;
2717 }
2718 root_item = &root->root_item;
2719
2720 subvol_info->treeid = key.objectid;
2721
2722 subvol_info->generation = btrfs_root_generation(root_item);
2723 subvol_info->flags = btrfs_root_flags(root_item);
2724
2725 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2726 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2727 BTRFS_UUID_SIZE);
2728 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2729 BTRFS_UUID_SIZE);
2730
2731 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2732 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2733 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2734
2735 subvol_info->otransid = btrfs_root_otransid(root_item);
2736 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2737 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2738
2739 subvol_info->stransid = btrfs_root_stransid(root_item);
2740 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2741 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2742
2743 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2744 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2745 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2746
2747 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2748 /* Search root tree for ROOT_BACKREF of this subvolume */
2749 key.type = BTRFS_ROOT_BACKREF_KEY;
2750 key.offset = 0;
2751 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2752 if (ret < 0) {
2753 goto out;
2754 } else if (path->slots[0] >=
2755 btrfs_header_nritems(path->nodes[0])) {
2756 ret = btrfs_next_leaf(fs_info->tree_root, path);
2757 if (ret < 0) {
2758 goto out;
2759 } else if (ret > 0) {
2760 ret = -EUCLEAN;
2761 goto out;
2762 }
2763 }
2764
2765 leaf = path->nodes[0];
2766 slot = path->slots[0];
2767 btrfs_item_key_to_cpu(leaf, &key, slot);
2768 if (key.objectid == subvol_info->treeid &&
2769 key.type == BTRFS_ROOT_BACKREF_KEY) {
2770 subvol_info->parent_id = key.offset;
2771
2772 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2773 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2774
2775 item_off = btrfs_item_ptr_offset(leaf, slot)
2776 + sizeof(struct btrfs_root_ref);
2777 item_len = btrfs_item_size_nr(leaf, slot)
2778 - sizeof(struct btrfs_root_ref);
2779 read_extent_buffer(leaf, subvol_info->name,
2780 item_off, item_len);
2781 } else {
2782 ret = -ENOENT;
2783 goto out;
2784 }
2785 }
2786
2787 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2788 ret = -EFAULT;
2789
2790out:
2791 btrfs_put_root(root);
2792out_free:
2793 btrfs_free_path(path);
2794 kfree(subvol_info);
2795 return ret;
2796}
2797
2798/*
2799 * Return ROOT_REF information of the subvolume containing this inode
2800 * except the subvolume name.
2801 */
2802static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2803{
2804 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2805 struct btrfs_root_ref *rref;
2806 struct btrfs_root *root;
2807 struct btrfs_path *path;
2808 struct btrfs_key key;
2809 struct extent_buffer *leaf;
2810 struct inode *inode;
2811 u64 objectid;
2812 int slot;
2813 int ret;
2814 u8 found;
2815
2816 path = btrfs_alloc_path();
2817 if (!path)
2818 return -ENOMEM;
2819
2820 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2821 if (IS_ERR(rootrefs)) {
2822 btrfs_free_path(path);
2823 return PTR_ERR(rootrefs);
2824 }
2825
2826 inode = file_inode(file);
2827 root = BTRFS_I(inode)->root->fs_info->tree_root;
2828 objectid = BTRFS_I(inode)->root->root_key.objectid;
2829
2830 key.objectid = objectid;
2831 key.type = BTRFS_ROOT_REF_KEY;
2832 key.offset = rootrefs->min_treeid;
2833 found = 0;
2834
2835 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2836 if (ret < 0) {
2837 goto out;
2838 } else if (path->slots[0] >=
2839 btrfs_header_nritems(path->nodes[0])) {
2840 ret = btrfs_next_leaf(root, path);
2841 if (ret < 0) {
2842 goto out;
2843 } else if (ret > 0) {
2844 ret = -EUCLEAN;
2845 goto out;
2846 }
2847 }
2848 while (1) {
2849 leaf = path->nodes[0];
2850 slot = path->slots[0];
2851
2852 btrfs_item_key_to_cpu(leaf, &key, slot);
2853 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2854 ret = 0;
2855 goto out;
2856 }
2857
2858 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2859 ret = -EOVERFLOW;
2860 goto out;
2861 }
2862
2863 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2864 rootrefs->rootref[found].treeid = key.offset;
2865 rootrefs->rootref[found].dirid =
2866 btrfs_root_ref_dirid(leaf, rref);
2867 found++;
2868
2869 ret = btrfs_next_item(root, path);
2870 if (ret < 0) {
2871 goto out;
2872 } else if (ret > 0) {
2873 ret = -EUCLEAN;
2874 goto out;
2875 }
2876 }
2877
2878out:
2879 if (!ret || ret == -EOVERFLOW) {
2880 rootrefs->num_items = found;
2881 /* update min_treeid for next search */
2882 if (found)
2883 rootrefs->min_treeid =
2884 rootrefs->rootref[found - 1].treeid + 1;
2885 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2886 ret = -EFAULT;
2887 }
2888
2889 kfree(rootrefs);
2890 btrfs_free_path(path);
2891
2892 return ret;
2893}
2894
2895static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2896 void __user *arg,
2897 bool destroy_v2)
2898{
2899 struct dentry *parent = file->f_path.dentry;
2900 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2901 struct dentry *dentry;
2902 struct inode *dir = d_inode(parent);
2903 struct inode *inode;
2904 struct btrfs_root *root = BTRFS_I(dir)->root;
2905 struct btrfs_root *dest = NULL;
2906 struct btrfs_ioctl_vol_args *vol_args = NULL;
2907 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2908 char *subvol_name, *subvol_name_ptr = NULL;
2909 int subvol_namelen;
2910 int err = 0;
2911 bool destroy_parent = false;
2912
2913 if (destroy_v2) {
2914 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2915 if (IS_ERR(vol_args2))
2916 return PTR_ERR(vol_args2);
2917
2918 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2919 err = -EOPNOTSUPP;
2920 goto out;
2921 }
2922
2923 /*
2924 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2925 * name, same as v1 currently does.
2926 */
2927 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2928 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2929 subvol_name = vol_args2->name;
2930
2931 err = mnt_want_write_file(file);
2932 if (err)
2933 goto out;
2934 } else {
2935 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2936 err = -EINVAL;
2937 goto out;
2938 }
2939
2940 err = mnt_want_write_file(file);
2941 if (err)
2942 goto out;
2943
2944 dentry = btrfs_get_dentry(fs_info->sb,
2945 BTRFS_FIRST_FREE_OBJECTID,
2946 vol_args2->subvolid, 0, 0);
2947 if (IS_ERR(dentry)) {
2948 err = PTR_ERR(dentry);
2949 goto out_drop_write;
2950 }
2951
2952 /*
2953 * Change the default parent since the subvolume being
2954 * deleted can be outside of the current mount point.
2955 */
2956 parent = btrfs_get_parent(dentry);
2957
2958 /*
2959 * At this point dentry->d_name can point to '/' if the
2960 * subvolume we want to destroy is outsite of the
2961 * current mount point, so we need to release the
2962 * current dentry and execute the lookup to return a new
2963 * one with ->d_name pointing to the
2964 * <mount point>/subvol_name.
2965 */
2966 dput(dentry);
2967 if (IS_ERR(parent)) {
2968 err = PTR_ERR(parent);
2969 goto out_drop_write;
2970 }
2971 dir = d_inode(parent);
2972
2973 /*
2974 * If v2 was used with SPEC_BY_ID, a new parent was
2975 * allocated since the subvolume can be outside of the
2976 * current mount point. Later on we need to release this
2977 * new parent dentry.
2978 */
2979 destroy_parent = true;
2980
2981 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2982 fs_info, vol_args2->subvolid);
2983 if (IS_ERR(subvol_name_ptr)) {
2984 err = PTR_ERR(subvol_name_ptr);
2985 goto free_parent;
2986 }
2987 /* subvol_name_ptr is already nul terminated */
2988 subvol_name = (char *)kbasename(subvol_name_ptr);
2989 }
2990 } else {
2991 vol_args = memdup_user(arg, sizeof(*vol_args));
2992 if (IS_ERR(vol_args))
2993 return PTR_ERR(vol_args);
2994
2995 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2996 subvol_name = vol_args->name;
2997
2998 err = mnt_want_write_file(file);
2999 if (err)
3000 goto out;
3001 }
3002
3003 subvol_namelen = strlen(subvol_name);
3004
3005 if (strchr(subvol_name, '/') ||
3006 strncmp(subvol_name, "..", subvol_namelen) == 0) {
3007 err = -EINVAL;
3008 goto free_subvol_name;
3009 }
3010
3011 if (!S_ISDIR(dir->i_mode)) {
3012 err = -ENOTDIR;
3013 goto free_subvol_name;
3014 }
3015
3016 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3017 if (err == -EINTR)
3018 goto free_subvol_name;
3019 dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3020 if (IS_ERR(dentry)) {
3021 err = PTR_ERR(dentry);
3022 goto out_unlock_dir;
3023 }
3024
3025 if (d_really_is_negative(dentry)) {
3026 err = -ENOENT;
3027 goto out_dput;
3028 }
3029
3030 inode = d_inode(dentry);
3031 dest = BTRFS_I(inode)->root;
3032 if (!capable(CAP_SYS_ADMIN)) {
3033 /*
3034 * Regular user. Only allow this with a special mount
3035 * option, when the user has write+exec access to the
3036 * subvol root, and when rmdir(2) would have been
3037 * allowed.
3038 *
3039 * Note that this is _not_ check that the subvol is
3040 * empty or doesn't contain data that we wouldn't
3041 * otherwise be able to delete.
3042 *
3043 * Users who want to delete empty subvols should try
3044 * rmdir(2).
3045 */
3046 err = -EPERM;
3047 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3048 goto out_dput;
3049
3050 /*
3051 * Do not allow deletion if the parent dir is the same
3052 * as the dir to be deleted. That means the ioctl
3053 * must be called on the dentry referencing the root
3054 * of the subvol, not a random directory contained
3055 * within it.
3056 */
3057 err = -EINVAL;
3058 if (root == dest)
3059 goto out_dput;
3060
3061 err = inode_permission(&init_user_ns, inode,
3062 MAY_WRITE | MAY_EXEC);
3063 if (err)
3064 goto out_dput;
3065 }
3066
3067 /* check if subvolume may be deleted by a user */
3068 err = btrfs_may_delete(dir, dentry, 1);
3069 if (err)
3070 goto out_dput;
3071
3072 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3073 err = -EINVAL;
3074 goto out_dput;
3075 }
3076
3077 btrfs_inode_lock(inode, 0);
3078 err = btrfs_delete_subvolume(dir, dentry);
3079 btrfs_inode_unlock(inode, 0);
3080 if (!err) {
3081 fsnotify_rmdir(dir, dentry);
3082 d_delete(dentry);
3083 }
3084
3085out_dput:
3086 dput(dentry);
3087out_unlock_dir:
3088 btrfs_inode_unlock(dir, 0);
3089free_subvol_name:
3090 kfree(subvol_name_ptr);
3091free_parent:
3092 if (destroy_parent)
3093 dput(parent);
3094out_drop_write:
3095 mnt_drop_write_file(file);
3096out:
3097 kfree(vol_args2);
3098 kfree(vol_args);
3099 return err;
3100}
3101
3102static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3103{
3104 struct inode *inode = file_inode(file);
3105 struct btrfs_root *root = BTRFS_I(inode)->root;
3106 struct btrfs_ioctl_defrag_range_args *range;
3107 int ret;
3108
3109 ret = mnt_want_write_file(file);
3110 if (ret)
3111 return ret;
3112
3113 if (btrfs_root_readonly(root)) {
3114 ret = -EROFS;
3115 goto out;
3116 }
3117
3118 switch (inode->i_mode & S_IFMT) {
3119 case S_IFDIR:
3120 if (!capable(CAP_SYS_ADMIN)) {
3121 ret = -EPERM;
3122 goto out;
3123 }
3124 ret = btrfs_defrag_root(root);
3125 break;
3126 case S_IFREG:
3127 /*
3128 * Note that this does not check the file descriptor for write
3129 * access. This prevents defragmenting executables that are
3130 * running and allows defrag on files open in read-only mode.
3131 */
3132 if (!capable(CAP_SYS_ADMIN) &&
3133 inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3134 ret = -EPERM;
3135 goto out;
3136 }
3137
3138 range = kzalloc(sizeof(*range), GFP_KERNEL);
3139 if (!range) {
3140 ret = -ENOMEM;
3141 goto out;
3142 }
3143
3144 if (argp) {
3145 if (copy_from_user(range, argp,
3146 sizeof(*range))) {
3147 ret = -EFAULT;
3148 kfree(range);
3149 goto out;
3150 }
3151 /* compression requires us to start the IO */
3152 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3153 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3154 range->extent_thresh = (u32)-1;
3155 }
3156 } else {
3157 /* the rest are all set to zero by kzalloc */
3158 range->len = (u64)-1;
3159 }
3160 ret = btrfs_defrag_file(file_inode(file), file,
3161 range, BTRFS_OLDEST_GENERATION, 0);
3162 if (ret > 0)
3163 ret = 0;
3164 kfree(range);
3165 break;
3166 default:
3167 ret = -EINVAL;
3168 }
3169out:
3170 mnt_drop_write_file(file);
3171 return ret;
3172}
3173
3174static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3175{
3176 struct btrfs_ioctl_vol_args *vol_args;
3177 int ret;
3178
3179 if (!capable(CAP_SYS_ADMIN))
3180 return -EPERM;
3181
3182 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3183 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3184
3185 vol_args = memdup_user(arg, sizeof(*vol_args));
3186 if (IS_ERR(vol_args)) {
3187 ret = PTR_ERR(vol_args);
3188 goto out;
3189 }
3190
3191 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3192 ret = btrfs_init_new_device(fs_info, vol_args->name);
3193
3194 if (!ret)
3195 btrfs_info(fs_info, "disk added %s", vol_args->name);
3196
3197 kfree(vol_args);
3198out:
3199 btrfs_exclop_finish(fs_info);
3200 return ret;
3201}
3202
3203static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3204{
3205 struct inode *inode = file_inode(file);
3206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3207 struct btrfs_ioctl_vol_args_v2 *vol_args;
3208 struct block_device *bdev = NULL;
3209 fmode_t mode;
3210 int ret;
3211 bool cancel = false;
3212
3213 if (!capable(CAP_SYS_ADMIN))
3214 return -EPERM;
3215
3216 ret = mnt_want_write_file(file);
3217 if (ret)
3218 return ret;
3219
3220 vol_args = memdup_user(arg, sizeof(*vol_args));
3221 if (IS_ERR(vol_args)) {
3222 ret = PTR_ERR(vol_args);
3223 goto err_drop;
3224 }
3225
3226 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3227 ret = -EOPNOTSUPP;
3228 goto out;
3229 }
3230 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3231 if (!(vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) &&
3232 strcmp("cancel", vol_args->name) == 0)
3233 cancel = true;
3234
3235 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3236 cancel);
3237 if (ret)
3238 goto out;
3239 /* Exclusive operation is now claimed */
3240
3241 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3242 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid, &bdev, &mode);
3243 else
3244 ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3245
3246 btrfs_exclop_finish(fs_info);
3247
3248 if (!ret) {
3249 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3250 btrfs_info(fs_info, "device deleted: id %llu",
3251 vol_args->devid);
3252 else
3253 btrfs_info(fs_info, "device deleted: %s",
3254 vol_args->name);
3255 }
3256out:
3257 kfree(vol_args);
3258err_drop:
3259 mnt_drop_write_file(file);
3260 if (bdev)
3261 blkdev_put(bdev, mode);
3262 return ret;
3263}
3264
3265static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3266{
3267 struct inode *inode = file_inode(file);
3268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3269 struct btrfs_ioctl_vol_args *vol_args;
3270 struct block_device *bdev = NULL;
3271 fmode_t mode;
3272 int ret;
3273 bool cancel;
3274
3275 if (!capable(CAP_SYS_ADMIN))
3276 return -EPERM;
3277
3278 ret = mnt_want_write_file(file);
3279 if (ret)
3280 return ret;
3281
3282 vol_args = memdup_user(arg, sizeof(*vol_args));
3283 if (IS_ERR(vol_args)) {
3284 ret = PTR_ERR(vol_args);
3285 goto out_drop_write;
3286 }
3287 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3288 cancel = (strcmp("cancel", vol_args->name) == 0);
3289
3290 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3291 cancel);
3292 if (ret == 0) {
3293 ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3294 if (!ret)
3295 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3296 btrfs_exclop_finish(fs_info);
3297 }
3298
3299 kfree(vol_args);
3300out_drop_write:
3301 mnt_drop_write_file(file);
3302 if (bdev)
3303 blkdev_put(bdev, mode);
3304 return ret;
3305}
3306
3307static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3308 void __user *arg)
3309{
3310 struct btrfs_ioctl_fs_info_args *fi_args;
3311 struct btrfs_device *device;
3312 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3313 u64 flags_in;
3314 int ret = 0;
3315
3316 fi_args = memdup_user(arg, sizeof(*fi_args));
3317 if (IS_ERR(fi_args))
3318 return PTR_ERR(fi_args);
3319
3320 flags_in = fi_args->flags;
3321 memset(fi_args, 0, sizeof(*fi_args));
3322
3323 rcu_read_lock();
3324 fi_args->num_devices = fs_devices->num_devices;
3325
3326 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3327 if (device->devid > fi_args->max_id)
3328 fi_args->max_id = device->devid;
3329 }
3330 rcu_read_unlock();
3331
3332 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3333 fi_args->nodesize = fs_info->nodesize;
3334 fi_args->sectorsize = fs_info->sectorsize;
3335 fi_args->clone_alignment = fs_info->sectorsize;
3336
3337 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3338 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3339 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3340 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3341 }
3342
3343 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3344 fi_args->generation = fs_info->generation;
3345 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3346 }
3347
3348 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3349 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3350 sizeof(fi_args->metadata_uuid));
3351 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3352 }
3353
3354 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3355 ret = -EFAULT;
3356
3357 kfree(fi_args);
3358 return ret;
3359}
3360
3361static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3362 void __user *arg)
3363{
3364 struct btrfs_ioctl_dev_info_args *di_args;
3365 struct btrfs_device *dev;
3366 int ret = 0;
3367 char *s_uuid = NULL;
3368
3369 di_args = memdup_user(arg, sizeof(*di_args));
3370 if (IS_ERR(di_args))
3371 return PTR_ERR(di_args);
3372
3373 if (!btrfs_is_empty_uuid(di_args->uuid))
3374 s_uuid = di_args->uuid;
3375
3376 rcu_read_lock();
3377 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3378 NULL);
3379
3380 if (!dev) {
3381 ret = -ENODEV;
3382 goto out;
3383 }
3384
3385 di_args->devid = dev->devid;
3386 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3387 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3388 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3389 if (dev->name) {
3390 strncpy(di_args->path, rcu_str_deref(dev->name),
3391 sizeof(di_args->path) - 1);
3392 di_args->path[sizeof(di_args->path) - 1] = 0;
3393 } else {
3394 di_args->path[0] = '\0';
3395 }
3396
3397out:
3398 rcu_read_unlock();
3399 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3400 ret = -EFAULT;
3401
3402 kfree(di_args);
3403 return ret;
3404}
3405
3406static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3407{
3408 struct inode *inode = file_inode(file);
3409 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3410 struct btrfs_root *root = BTRFS_I(inode)->root;
3411 struct btrfs_root *new_root;
3412 struct btrfs_dir_item *di;
3413 struct btrfs_trans_handle *trans;
3414 struct btrfs_path *path = NULL;
3415 struct btrfs_disk_key disk_key;
3416 u64 objectid = 0;
3417 u64 dir_id;
3418 int ret;
3419
3420 if (!capable(CAP_SYS_ADMIN))
3421 return -EPERM;
3422
3423 ret = mnt_want_write_file(file);
3424 if (ret)
3425 return ret;
3426
3427 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3428 ret = -EFAULT;
3429 goto out;
3430 }
3431
3432 if (!objectid)
3433 objectid = BTRFS_FS_TREE_OBJECTID;
3434
3435 new_root = btrfs_get_fs_root(fs_info, objectid, true);
3436 if (IS_ERR(new_root)) {
3437 ret = PTR_ERR(new_root);
3438 goto out;
3439 }
3440 if (!is_fstree(new_root->root_key.objectid)) {
3441 ret = -ENOENT;
3442 goto out_free;
3443 }
3444
3445 path = btrfs_alloc_path();
3446 if (!path) {
3447 ret = -ENOMEM;
3448 goto out_free;
3449 }
3450
3451 trans = btrfs_start_transaction(root, 1);
3452 if (IS_ERR(trans)) {
3453 ret = PTR_ERR(trans);
3454 goto out_free;
3455 }
3456
3457 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3458 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3459 dir_id, "default", 7, 1);
3460 if (IS_ERR_OR_NULL(di)) {
3461 btrfs_release_path(path);
3462 btrfs_end_transaction(trans);
3463 btrfs_err(fs_info,
3464 "Umm, you don't have the default diritem, this isn't going to work");
3465 ret = -ENOENT;
3466 goto out_free;
3467 }
3468
3469 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3470 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3471 btrfs_mark_buffer_dirty(path->nodes[0]);
3472 btrfs_release_path(path);
3473
3474 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3475 btrfs_end_transaction(trans);
3476out_free:
3477 btrfs_put_root(new_root);
3478 btrfs_free_path(path);
3479out:
3480 mnt_drop_write_file(file);
3481 return ret;
3482}
3483
3484static void get_block_group_info(struct list_head *groups_list,
3485 struct btrfs_ioctl_space_info *space)
3486{
3487 struct btrfs_block_group *block_group;
3488
3489 space->total_bytes = 0;
3490 space->used_bytes = 0;
3491 space->flags = 0;
3492 list_for_each_entry(block_group, groups_list, list) {
3493 space->flags = block_group->flags;
3494 space->total_bytes += block_group->length;
3495 space->used_bytes += block_group->used;
3496 }
3497}
3498
3499static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3500 void __user *arg)
3501{
3502 struct btrfs_ioctl_space_args space_args;
3503 struct btrfs_ioctl_space_info space;
3504 struct btrfs_ioctl_space_info *dest;
3505 struct btrfs_ioctl_space_info *dest_orig;
3506 struct btrfs_ioctl_space_info __user *user_dest;
3507 struct btrfs_space_info *info;
3508 static const u64 types[] = {
3509 BTRFS_BLOCK_GROUP_DATA,
3510 BTRFS_BLOCK_GROUP_SYSTEM,
3511 BTRFS_BLOCK_GROUP_METADATA,
3512 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3513 };
3514 int num_types = 4;
3515 int alloc_size;
3516 int ret = 0;
3517 u64 slot_count = 0;
3518 int i, c;
3519
3520 if (copy_from_user(&space_args,
3521 (struct btrfs_ioctl_space_args __user *)arg,
3522 sizeof(space_args)))
3523 return -EFAULT;
3524
3525 for (i = 0; i < num_types; i++) {
3526 struct btrfs_space_info *tmp;
3527
3528 info = NULL;
3529 list_for_each_entry(tmp, &fs_info->space_info, list) {
3530 if (tmp->flags == types[i]) {
3531 info = tmp;
3532 break;
3533 }
3534 }
3535
3536 if (!info)
3537 continue;
3538
3539 down_read(&info->groups_sem);
3540 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3541 if (!list_empty(&info->block_groups[c]))
3542 slot_count++;
3543 }
3544 up_read(&info->groups_sem);
3545 }
3546
3547 /*
3548 * Global block reserve, exported as a space_info
3549 */
3550 slot_count++;
3551
3552 /* space_slots == 0 means they are asking for a count */
3553 if (space_args.space_slots == 0) {
3554 space_args.total_spaces = slot_count;
3555 goto out;
3556 }
3557
3558 slot_count = min_t(u64, space_args.space_slots, slot_count);
3559
3560 alloc_size = sizeof(*dest) * slot_count;
3561
3562 /* we generally have at most 6 or so space infos, one for each raid
3563 * level. So, a whole page should be more than enough for everyone
3564 */
3565 if (alloc_size > PAGE_SIZE)
3566 return -ENOMEM;
3567
3568 space_args.total_spaces = 0;
3569 dest = kmalloc(alloc_size, GFP_KERNEL);
3570 if (!dest)
3571 return -ENOMEM;
3572 dest_orig = dest;
3573
3574 /* now we have a buffer to copy into */
3575 for (i = 0; i < num_types; i++) {
3576 struct btrfs_space_info *tmp;
3577
3578 if (!slot_count)
3579 break;
3580
3581 info = NULL;
3582 list_for_each_entry(tmp, &fs_info->space_info, list) {
3583 if (tmp->flags == types[i]) {
3584 info = tmp;
3585 break;
3586 }
3587 }
3588
3589 if (!info)
3590 continue;
3591 down_read(&info->groups_sem);
3592 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3593 if (!list_empty(&info->block_groups[c])) {
3594 get_block_group_info(&info->block_groups[c],
3595 &space);
3596 memcpy(dest, &space, sizeof(space));
3597 dest++;
3598 space_args.total_spaces++;
3599 slot_count--;
3600 }
3601 if (!slot_count)
3602 break;
3603 }
3604 up_read(&info->groups_sem);
3605 }
3606
3607 /*
3608 * Add global block reserve
3609 */
3610 if (slot_count) {
3611 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3612
3613 spin_lock(&block_rsv->lock);
3614 space.total_bytes = block_rsv->size;
3615 space.used_bytes = block_rsv->size - block_rsv->reserved;
3616 spin_unlock(&block_rsv->lock);
3617 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3618 memcpy(dest, &space, sizeof(space));
3619 space_args.total_spaces++;
3620 }
3621
3622 user_dest = (struct btrfs_ioctl_space_info __user *)
3623 (arg + sizeof(struct btrfs_ioctl_space_args));
3624
3625 if (copy_to_user(user_dest, dest_orig, alloc_size))
3626 ret = -EFAULT;
3627
3628 kfree(dest_orig);
3629out:
3630 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3631 ret = -EFAULT;
3632
3633 return ret;
3634}
3635
3636static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3637 void __user *argp)
3638{
3639 struct btrfs_trans_handle *trans;
3640 u64 transid;
3641 int ret;
3642
3643 trans = btrfs_attach_transaction_barrier(root);
3644 if (IS_ERR(trans)) {
3645 if (PTR_ERR(trans) != -ENOENT)
3646 return PTR_ERR(trans);
3647
3648 /* No running transaction, don't bother */
3649 transid = root->fs_info->last_trans_committed;
3650 goto out;
3651 }
3652 transid = trans->transid;
3653 ret = btrfs_commit_transaction_async(trans);
3654 if (ret) {
3655 btrfs_end_transaction(trans);
3656 return ret;
3657 }
3658out:
3659 if (argp)
3660 if (copy_to_user(argp, &transid, sizeof(transid)))
3661 return -EFAULT;
3662 return 0;
3663}
3664
3665static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3666 void __user *argp)
3667{
3668 u64 transid;
3669
3670 if (argp) {
3671 if (copy_from_user(&transid, argp, sizeof(transid)))
3672 return -EFAULT;
3673 } else {
3674 transid = 0; /* current trans */
3675 }
3676 return btrfs_wait_for_commit(fs_info, transid);
3677}
3678
3679static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3680{
3681 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3682 struct btrfs_ioctl_scrub_args *sa;
3683 int ret;
3684
3685 if (!capable(CAP_SYS_ADMIN))
3686 return -EPERM;
3687
3688 sa = memdup_user(arg, sizeof(*sa));
3689 if (IS_ERR(sa))
3690 return PTR_ERR(sa);
3691
3692 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3693 ret = mnt_want_write_file(file);
3694 if (ret)
3695 goto out;
3696 }
3697
3698 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3699 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3700 0);
3701
3702 /*
3703 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3704 * error. This is important as it allows user space to know how much
3705 * progress scrub has done. For example, if scrub is canceled we get
3706 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3707 * space. Later user space can inspect the progress from the structure
3708 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3709 * previously (btrfs-progs does this).
3710 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3711 * then return -EFAULT to signal the structure was not copied or it may
3712 * be corrupt and unreliable due to a partial copy.
3713 */
3714 if (copy_to_user(arg, sa, sizeof(*sa)))
3715 ret = -EFAULT;
3716
3717 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3718 mnt_drop_write_file(file);
3719out:
3720 kfree(sa);
3721 return ret;
3722}
3723
3724static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3725{
3726 if (!capable(CAP_SYS_ADMIN))
3727 return -EPERM;
3728
3729 return btrfs_scrub_cancel(fs_info);
3730}
3731
3732static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3733 void __user *arg)
3734{
3735 struct btrfs_ioctl_scrub_args *sa;
3736 int ret;
3737
3738 if (!capable(CAP_SYS_ADMIN))
3739 return -EPERM;
3740
3741 sa = memdup_user(arg, sizeof(*sa));
3742 if (IS_ERR(sa))
3743 return PTR_ERR(sa);
3744
3745 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3746
3747 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3748 ret = -EFAULT;
3749
3750 kfree(sa);
3751 return ret;
3752}
3753
3754static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3755 void __user *arg)
3756{
3757 struct btrfs_ioctl_get_dev_stats *sa;
3758 int ret;
3759
3760 sa = memdup_user(arg, sizeof(*sa));
3761 if (IS_ERR(sa))
3762 return PTR_ERR(sa);
3763
3764 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3765 kfree(sa);
3766 return -EPERM;
3767 }
3768
3769 ret = btrfs_get_dev_stats(fs_info, sa);
3770
3771 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3772 ret = -EFAULT;
3773
3774 kfree(sa);
3775 return ret;
3776}
3777
3778static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3779 void __user *arg)
3780{
3781 struct btrfs_ioctl_dev_replace_args *p;
3782 int ret;
3783
3784 if (!capable(CAP_SYS_ADMIN))
3785 return -EPERM;
3786
3787 p = memdup_user(arg, sizeof(*p));
3788 if (IS_ERR(p))
3789 return PTR_ERR(p);
3790
3791 switch (p->cmd) {
3792 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3793 if (sb_rdonly(fs_info->sb)) {
3794 ret = -EROFS;
3795 goto out;
3796 }
3797 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3798 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3799 } else {
3800 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3801 btrfs_exclop_finish(fs_info);
3802 }
3803 break;
3804 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3805 btrfs_dev_replace_status(fs_info, p);
3806 ret = 0;
3807 break;
3808 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3809 p->result = btrfs_dev_replace_cancel(fs_info);
3810 ret = 0;
3811 break;
3812 default:
3813 ret = -EINVAL;
3814 break;
3815 }
3816
3817 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3818 ret = -EFAULT;
3819out:
3820 kfree(p);
3821 return ret;
3822}
3823
3824static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3825{
3826 int ret = 0;
3827 int i;
3828 u64 rel_ptr;
3829 int size;
3830 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3831 struct inode_fs_paths *ipath = NULL;
3832 struct btrfs_path *path;
3833
3834 if (!capable(CAP_DAC_READ_SEARCH))
3835 return -EPERM;
3836
3837 path = btrfs_alloc_path();
3838 if (!path) {
3839 ret = -ENOMEM;
3840 goto out;
3841 }
3842
3843 ipa = memdup_user(arg, sizeof(*ipa));
3844 if (IS_ERR(ipa)) {
3845 ret = PTR_ERR(ipa);
3846 ipa = NULL;
3847 goto out;
3848 }
3849
3850 size = min_t(u32, ipa->size, 4096);
3851 ipath = init_ipath(size, root, path);
3852 if (IS_ERR(ipath)) {
3853 ret = PTR_ERR(ipath);
3854 ipath = NULL;
3855 goto out;
3856 }
3857
3858 ret = paths_from_inode(ipa->inum, ipath);
3859 if (ret < 0)
3860 goto out;
3861
3862 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3863 rel_ptr = ipath->fspath->val[i] -
3864 (u64)(unsigned long)ipath->fspath->val;
3865 ipath->fspath->val[i] = rel_ptr;
3866 }
3867
3868 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3869 ipath->fspath, size);
3870 if (ret) {
3871 ret = -EFAULT;
3872 goto out;
3873 }
3874
3875out:
3876 btrfs_free_path(path);
3877 free_ipath(ipath);
3878 kfree(ipa);
3879
3880 return ret;
3881}
3882
3883static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3884{
3885 struct btrfs_data_container *inodes = ctx;
3886 const size_t c = 3 * sizeof(u64);
3887
3888 if (inodes->bytes_left >= c) {
3889 inodes->bytes_left -= c;
3890 inodes->val[inodes->elem_cnt] = inum;
3891 inodes->val[inodes->elem_cnt + 1] = offset;
3892 inodes->val[inodes->elem_cnt + 2] = root;
3893 inodes->elem_cnt += 3;
3894 } else {
3895 inodes->bytes_missing += c - inodes->bytes_left;
3896 inodes->bytes_left = 0;
3897 inodes->elem_missed += 3;
3898 }
3899
3900 return 0;
3901}
3902
3903static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3904 void __user *arg, int version)
3905{
3906 int ret = 0;
3907 int size;
3908 struct btrfs_ioctl_logical_ino_args *loi;
3909 struct btrfs_data_container *inodes = NULL;
3910 struct btrfs_path *path = NULL;
3911 bool ignore_offset;
3912
3913 if (!capable(CAP_SYS_ADMIN))
3914 return -EPERM;
3915
3916 loi = memdup_user(arg, sizeof(*loi));
3917 if (IS_ERR(loi))
3918 return PTR_ERR(loi);
3919
3920 if (version == 1) {
3921 ignore_offset = false;
3922 size = min_t(u32, loi->size, SZ_64K);
3923 } else {
3924 /* All reserved bits must be 0 for now */
3925 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3926 ret = -EINVAL;
3927 goto out_loi;
3928 }
3929 /* Only accept flags we have defined so far */
3930 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3931 ret = -EINVAL;
3932 goto out_loi;
3933 }
3934 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3935 size = min_t(u32, loi->size, SZ_16M);
3936 }
3937
3938 path = btrfs_alloc_path();
3939 if (!path) {
3940 ret = -ENOMEM;
3941 goto out;
3942 }
3943
3944 inodes = init_data_container(size);
3945 if (IS_ERR(inodes)) {
3946 ret = PTR_ERR(inodes);
3947 inodes = NULL;
3948 goto out;
3949 }
3950
3951 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3952 build_ino_list, inodes, ignore_offset);
3953 if (ret == -EINVAL)
3954 ret = -ENOENT;
3955 if (ret < 0)
3956 goto out;
3957
3958 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3959 size);
3960 if (ret)
3961 ret = -EFAULT;
3962
3963out:
3964 btrfs_free_path(path);
3965 kvfree(inodes);
3966out_loi:
3967 kfree(loi);
3968
3969 return ret;
3970}
3971
3972void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3973 struct btrfs_ioctl_balance_args *bargs)
3974{
3975 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3976
3977 bargs->flags = bctl->flags;
3978
3979 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3980 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3981 if (atomic_read(&fs_info->balance_pause_req))
3982 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3983 if (atomic_read(&fs_info->balance_cancel_req))
3984 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3985
3986 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3987 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3988 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3989
3990 spin_lock(&fs_info->balance_lock);
3991 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3992 spin_unlock(&fs_info->balance_lock);
3993}
3994
3995static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3996{
3997 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3998 struct btrfs_fs_info *fs_info = root->fs_info;
3999 struct btrfs_ioctl_balance_args *bargs;
4000 struct btrfs_balance_control *bctl;
4001 bool need_unlock; /* for mut. excl. ops lock */
4002 int ret;
4003
4004 if (!capable(CAP_SYS_ADMIN))
4005 return -EPERM;
4006
4007 ret = mnt_want_write_file(file);
4008 if (ret)
4009 return ret;
4010
4011again:
4012 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4013 mutex_lock(&fs_info->balance_mutex);
4014 need_unlock = true;
4015 goto locked;
4016 }
4017
4018 /*
4019 * mut. excl. ops lock is locked. Three possibilities:
4020 * (1) some other op is running
4021 * (2) balance is running
4022 * (3) balance is paused -- special case (think resume)
4023 */
4024 mutex_lock(&fs_info->balance_mutex);
4025 if (fs_info->balance_ctl) {
4026 /* this is either (2) or (3) */
4027 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4028 mutex_unlock(&fs_info->balance_mutex);
4029 /*
4030 * Lock released to allow other waiters to continue,
4031 * we'll reexamine the status again.
4032 */
4033 mutex_lock(&fs_info->balance_mutex);
4034
4035 if (fs_info->balance_ctl &&
4036 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4037 /* this is (3) */
4038 need_unlock = false;
4039 goto locked;
4040 }
4041
4042 mutex_unlock(&fs_info->balance_mutex);
4043 goto again;
4044 } else {
4045 /* this is (2) */
4046 mutex_unlock(&fs_info->balance_mutex);
4047 ret = -EINPROGRESS;
4048 goto out;
4049 }
4050 } else {
4051 /* this is (1) */
4052 mutex_unlock(&fs_info->balance_mutex);
4053 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4054 goto out;
4055 }
4056
4057locked:
4058
4059 if (arg) {
4060 bargs = memdup_user(arg, sizeof(*bargs));
4061 if (IS_ERR(bargs)) {
4062 ret = PTR_ERR(bargs);
4063 goto out_unlock;
4064 }
4065
4066 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4067 if (!fs_info->balance_ctl) {
4068 ret = -ENOTCONN;
4069 goto out_bargs;
4070 }
4071
4072 bctl = fs_info->balance_ctl;
4073 spin_lock(&fs_info->balance_lock);
4074 bctl->flags |= BTRFS_BALANCE_RESUME;
4075 spin_unlock(&fs_info->balance_lock);
4076
4077 goto do_balance;
4078 }
4079 } else {
4080 bargs = NULL;
4081 }
4082
4083 if (fs_info->balance_ctl) {
4084 ret = -EINPROGRESS;
4085 goto out_bargs;
4086 }
4087
4088 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4089 if (!bctl) {
4090 ret = -ENOMEM;
4091 goto out_bargs;
4092 }
4093
4094 if (arg) {
4095 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4096 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4097 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4098
4099 bctl->flags = bargs->flags;
4100 } else {
4101 /* balance everything - no filters */
4102 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4103 }
4104
4105 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4106 ret = -EINVAL;
4107 goto out_bctl;
4108 }
4109
4110do_balance:
4111 /*
4112 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4113 * bctl is freed in reset_balance_state, or, if restriper was paused
4114 * all the way until unmount, in free_fs_info. The flag should be
4115 * cleared after reset_balance_state.
4116 */
4117 need_unlock = false;
4118
4119 ret = btrfs_balance(fs_info, bctl, bargs);
4120 bctl = NULL;
4121
4122 if ((ret == 0 || ret == -ECANCELED) && arg) {
4123 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4124 ret = -EFAULT;
4125 }
4126
4127out_bctl:
4128 kfree(bctl);
4129out_bargs:
4130 kfree(bargs);
4131out_unlock:
4132 mutex_unlock(&fs_info->balance_mutex);
4133 if (need_unlock)
4134 btrfs_exclop_finish(fs_info);
4135out:
4136 mnt_drop_write_file(file);
4137 return ret;
4138}
4139
4140static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4141{
4142 if (!capable(CAP_SYS_ADMIN))
4143 return -EPERM;
4144
4145 switch (cmd) {
4146 case BTRFS_BALANCE_CTL_PAUSE:
4147 return btrfs_pause_balance(fs_info);
4148 case BTRFS_BALANCE_CTL_CANCEL:
4149 return btrfs_cancel_balance(fs_info);
4150 }
4151
4152 return -EINVAL;
4153}
4154
4155static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4156 void __user *arg)
4157{
4158 struct btrfs_ioctl_balance_args *bargs;
4159 int ret = 0;
4160
4161 if (!capable(CAP_SYS_ADMIN))
4162 return -EPERM;
4163
4164 mutex_lock(&fs_info->balance_mutex);
4165 if (!fs_info->balance_ctl) {
4166 ret = -ENOTCONN;
4167 goto out;
4168 }
4169
4170 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4171 if (!bargs) {
4172 ret = -ENOMEM;
4173 goto out;
4174 }
4175
4176 btrfs_update_ioctl_balance_args(fs_info, bargs);
4177
4178 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4179 ret = -EFAULT;
4180
4181 kfree(bargs);
4182out:
4183 mutex_unlock(&fs_info->balance_mutex);
4184 return ret;
4185}
4186
4187static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4188{
4189 struct inode *inode = file_inode(file);
4190 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4191 struct btrfs_ioctl_quota_ctl_args *sa;
4192 int ret;
4193
4194 if (!capable(CAP_SYS_ADMIN))
4195 return -EPERM;
4196
4197 ret = mnt_want_write_file(file);
4198 if (ret)
4199 return ret;
4200
4201 sa = memdup_user(arg, sizeof(*sa));
4202 if (IS_ERR(sa)) {
4203 ret = PTR_ERR(sa);
4204 goto drop_write;
4205 }
4206
4207 down_write(&fs_info->subvol_sem);
4208
4209 switch (sa->cmd) {
4210 case BTRFS_QUOTA_CTL_ENABLE:
4211 ret = btrfs_quota_enable(fs_info);
4212 break;
4213 case BTRFS_QUOTA_CTL_DISABLE:
4214 ret = btrfs_quota_disable(fs_info);
4215 break;
4216 default:
4217 ret = -EINVAL;
4218 break;
4219 }
4220
4221 kfree(sa);
4222 up_write(&fs_info->subvol_sem);
4223drop_write:
4224 mnt_drop_write_file(file);
4225 return ret;
4226}
4227
4228static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4229{
4230 struct inode *inode = file_inode(file);
4231 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4232 struct btrfs_root *root = BTRFS_I(inode)->root;
4233 struct btrfs_ioctl_qgroup_assign_args *sa;
4234 struct btrfs_trans_handle *trans;
4235 int ret;
4236 int err;
4237
4238 if (!capable(CAP_SYS_ADMIN))
4239 return -EPERM;
4240
4241 ret = mnt_want_write_file(file);
4242 if (ret)
4243 return ret;
4244
4245 sa = memdup_user(arg, sizeof(*sa));
4246 if (IS_ERR(sa)) {
4247 ret = PTR_ERR(sa);
4248 goto drop_write;
4249 }
4250
4251 trans = btrfs_join_transaction(root);
4252 if (IS_ERR(trans)) {
4253 ret = PTR_ERR(trans);
4254 goto out;
4255 }
4256
4257 if (sa->assign) {
4258 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4259 } else {
4260 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4261 }
4262
4263 /* update qgroup status and info */
4264 err = btrfs_run_qgroups(trans);
4265 if (err < 0)
4266 btrfs_handle_fs_error(fs_info, err,
4267 "failed to update qgroup status and info");
4268 err = btrfs_end_transaction(trans);
4269 if (err && !ret)
4270 ret = err;
4271
4272out:
4273 kfree(sa);
4274drop_write:
4275 mnt_drop_write_file(file);
4276 return ret;
4277}
4278
4279static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4280{
4281 struct inode *inode = file_inode(file);
4282 struct btrfs_root *root = BTRFS_I(inode)->root;
4283 struct btrfs_ioctl_qgroup_create_args *sa;
4284 struct btrfs_trans_handle *trans;
4285 int ret;
4286 int err;
4287
4288 if (!capable(CAP_SYS_ADMIN))
4289 return -EPERM;
4290
4291 ret = mnt_want_write_file(file);
4292 if (ret)
4293 return ret;
4294
4295 sa = memdup_user(arg, sizeof(*sa));
4296 if (IS_ERR(sa)) {
4297 ret = PTR_ERR(sa);
4298 goto drop_write;
4299 }
4300
4301 if (!sa->qgroupid) {
4302 ret = -EINVAL;
4303 goto out;
4304 }
4305
4306 trans = btrfs_join_transaction(root);
4307 if (IS_ERR(trans)) {
4308 ret = PTR_ERR(trans);
4309 goto out;
4310 }
4311
4312 if (sa->create) {
4313 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4314 } else {
4315 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4316 }
4317
4318 err = btrfs_end_transaction(trans);
4319 if (err && !ret)
4320 ret = err;
4321
4322out:
4323 kfree(sa);
4324drop_write:
4325 mnt_drop_write_file(file);
4326 return ret;
4327}
4328
4329static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4330{
4331 struct inode *inode = file_inode(file);
4332 struct btrfs_root *root = BTRFS_I(inode)->root;
4333 struct btrfs_ioctl_qgroup_limit_args *sa;
4334 struct btrfs_trans_handle *trans;
4335 int ret;
4336 int err;
4337 u64 qgroupid;
4338
4339 if (!capable(CAP_SYS_ADMIN))
4340 return -EPERM;
4341
4342 ret = mnt_want_write_file(file);
4343 if (ret)
4344 return ret;
4345
4346 sa = memdup_user(arg, sizeof(*sa));
4347 if (IS_ERR(sa)) {
4348 ret = PTR_ERR(sa);
4349 goto drop_write;
4350 }
4351
4352 trans = btrfs_join_transaction(root);
4353 if (IS_ERR(trans)) {
4354 ret = PTR_ERR(trans);
4355 goto out;
4356 }
4357
4358 qgroupid = sa->qgroupid;
4359 if (!qgroupid) {
4360 /* take the current subvol as qgroup */
4361 qgroupid = root->root_key.objectid;
4362 }
4363
4364 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4365
4366 err = btrfs_end_transaction(trans);
4367 if (err && !ret)
4368 ret = err;
4369
4370out:
4371 kfree(sa);
4372drop_write:
4373 mnt_drop_write_file(file);
4374 return ret;
4375}
4376
4377static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4378{
4379 struct inode *inode = file_inode(file);
4380 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4381 struct btrfs_ioctl_quota_rescan_args *qsa;
4382 int ret;
4383
4384 if (!capable(CAP_SYS_ADMIN))
4385 return -EPERM;
4386
4387 ret = mnt_want_write_file(file);
4388 if (ret)
4389 return ret;
4390
4391 qsa = memdup_user(arg, sizeof(*qsa));
4392 if (IS_ERR(qsa)) {
4393 ret = PTR_ERR(qsa);
4394 goto drop_write;
4395 }
4396
4397 if (qsa->flags) {
4398 ret = -EINVAL;
4399 goto out;
4400 }
4401
4402 ret = btrfs_qgroup_rescan(fs_info);
4403
4404out:
4405 kfree(qsa);
4406drop_write:
4407 mnt_drop_write_file(file);
4408 return ret;
4409}
4410
4411static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4412 void __user *arg)
4413{
4414 struct btrfs_ioctl_quota_rescan_args *qsa;
4415 int ret = 0;
4416
4417 if (!capable(CAP_SYS_ADMIN))
4418 return -EPERM;
4419
4420 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4421 if (!qsa)
4422 return -ENOMEM;
4423
4424 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4425 qsa->flags = 1;
4426 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4427 }
4428
4429 if (copy_to_user(arg, qsa, sizeof(*qsa)))
4430 ret = -EFAULT;
4431
4432 kfree(qsa);
4433 return ret;
4434}
4435
4436static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4437 void __user *arg)
4438{
4439 if (!capable(CAP_SYS_ADMIN))
4440 return -EPERM;
4441
4442 return btrfs_qgroup_wait_for_completion(fs_info, true);
4443}
4444
4445static long _btrfs_ioctl_set_received_subvol(struct file *file,
4446 struct btrfs_ioctl_received_subvol_args *sa)
4447{
4448 struct inode *inode = file_inode(file);
4449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4450 struct btrfs_root *root = BTRFS_I(inode)->root;
4451 struct btrfs_root_item *root_item = &root->root_item;
4452 struct btrfs_trans_handle *trans;
4453 struct timespec64 ct = current_time(inode);
4454 int ret = 0;
4455 int received_uuid_changed;
4456
4457 if (!inode_owner_or_capable(&init_user_ns, inode))
4458 return -EPERM;
4459
4460 ret = mnt_want_write_file(file);
4461 if (ret < 0)
4462 return ret;
4463
4464 down_write(&fs_info->subvol_sem);
4465
4466 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4467 ret = -EINVAL;
4468 goto out;
4469 }
4470
4471 if (btrfs_root_readonly(root)) {
4472 ret = -EROFS;
4473 goto out;
4474 }
4475
4476 /*
4477 * 1 - root item
4478 * 2 - uuid items (received uuid + subvol uuid)
4479 */
4480 trans = btrfs_start_transaction(root, 3);
4481 if (IS_ERR(trans)) {
4482 ret = PTR_ERR(trans);
4483 trans = NULL;
4484 goto out;
4485 }
4486
4487 sa->rtransid = trans->transid;
4488 sa->rtime.sec = ct.tv_sec;
4489 sa->rtime.nsec = ct.tv_nsec;
4490
4491 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4492 BTRFS_UUID_SIZE);
4493 if (received_uuid_changed &&
4494 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4495 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4496 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4497 root->root_key.objectid);
4498 if (ret && ret != -ENOENT) {
4499 btrfs_abort_transaction(trans, ret);
4500 btrfs_end_transaction(trans);
4501 goto out;
4502 }
4503 }
4504 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4505 btrfs_set_root_stransid(root_item, sa->stransid);
4506 btrfs_set_root_rtransid(root_item, sa->rtransid);
4507 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4508 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4509 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4510 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4511
4512 ret = btrfs_update_root(trans, fs_info->tree_root,
4513 &root->root_key, &root->root_item);
4514 if (ret < 0) {
4515 btrfs_end_transaction(trans);
4516 goto out;
4517 }
4518 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4519 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4520 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4521 root->root_key.objectid);
4522 if (ret < 0 && ret != -EEXIST) {
4523 btrfs_abort_transaction(trans, ret);
4524 btrfs_end_transaction(trans);
4525 goto out;
4526 }
4527 }
4528 ret = btrfs_commit_transaction(trans);
4529out:
4530 up_write(&fs_info->subvol_sem);
4531 mnt_drop_write_file(file);
4532 return ret;
4533}
4534
4535#ifdef CONFIG_64BIT
4536static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4537 void __user *arg)
4538{
4539 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4540 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4541 int ret = 0;
4542
4543 args32 = memdup_user(arg, sizeof(*args32));
4544 if (IS_ERR(args32))
4545 return PTR_ERR(args32);
4546
4547 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4548 if (!args64) {
4549 ret = -ENOMEM;
4550 goto out;
4551 }
4552
4553 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4554 args64->stransid = args32->stransid;
4555 args64->rtransid = args32->rtransid;
4556 args64->stime.sec = args32->stime.sec;
4557 args64->stime.nsec = args32->stime.nsec;
4558 args64->rtime.sec = args32->rtime.sec;
4559 args64->rtime.nsec = args32->rtime.nsec;
4560 args64->flags = args32->flags;
4561
4562 ret = _btrfs_ioctl_set_received_subvol(file, args64);
4563 if (ret)
4564 goto out;
4565
4566 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4567 args32->stransid = args64->stransid;
4568 args32->rtransid = args64->rtransid;
4569 args32->stime.sec = args64->stime.sec;
4570 args32->stime.nsec = args64->stime.nsec;
4571 args32->rtime.sec = args64->rtime.sec;
4572 args32->rtime.nsec = args64->rtime.nsec;
4573 args32->flags = args64->flags;
4574
4575 ret = copy_to_user(arg, args32, sizeof(*args32));
4576 if (ret)
4577 ret = -EFAULT;
4578
4579out:
4580 kfree(args32);
4581 kfree(args64);
4582 return ret;
4583}
4584#endif
4585
4586static long btrfs_ioctl_set_received_subvol(struct file *file,
4587 void __user *arg)
4588{
4589 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4590 int ret = 0;
4591
4592 sa = memdup_user(arg, sizeof(*sa));
4593 if (IS_ERR(sa))
4594 return PTR_ERR(sa);
4595
4596 ret = _btrfs_ioctl_set_received_subvol(file, sa);
4597
4598 if (ret)
4599 goto out;
4600
4601 ret = copy_to_user(arg, sa, sizeof(*sa));
4602 if (ret)
4603 ret = -EFAULT;
4604
4605out:
4606 kfree(sa);
4607 return ret;
4608}
4609
4610static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4611 void __user *arg)
4612{
4613 size_t len;
4614 int ret;
4615 char label[BTRFS_LABEL_SIZE];
4616
4617 spin_lock(&fs_info->super_lock);
4618 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4619 spin_unlock(&fs_info->super_lock);
4620
4621 len = strnlen(label, BTRFS_LABEL_SIZE);
4622
4623 if (len == BTRFS_LABEL_SIZE) {
4624 btrfs_warn(fs_info,
4625 "label is too long, return the first %zu bytes",
4626 --len);
4627 }
4628
4629 ret = copy_to_user(arg, label, len);
4630
4631 return ret ? -EFAULT : 0;
4632}
4633
4634static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4635{
4636 struct inode *inode = file_inode(file);
4637 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4638 struct btrfs_root *root = BTRFS_I(inode)->root;
4639 struct btrfs_super_block *super_block = fs_info->super_copy;
4640 struct btrfs_trans_handle *trans;
4641 char label[BTRFS_LABEL_SIZE];
4642 int ret;
4643
4644 if (!capable(CAP_SYS_ADMIN))
4645 return -EPERM;
4646
4647 if (copy_from_user(label, arg, sizeof(label)))
4648 return -EFAULT;
4649
4650 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4651 btrfs_err(fs_info,
4652 "unable to set label with more than %d bytes",
4653 BTRFS_LABEL_SIZE - 1);
4654 return -EINVAL;
4655 }
4656
4657 ret = mnt_want_write_file(file);
4658 if (ret)
4659 return ret;
4660
4661 trans = btrfs_start_transaction(root, 0);
4662 if (IS_ERR(trans)) {
4663 ret = PTR_ERR(trans);
4664 goto out_unlock;
4665 }
4666
4667 spin_lock(&fs_info->super_lock);
4668 strcpy(super_block->label, label);
4669 spin_unlock(&fs_info->super_lock);
4670 ret = btrfs_commit_transaction(trans);
4671
4672out_unlock:
4673 mnt_drop_write_file(file);
4674 return ret;
4675}
4676
4677#define INIT_FEATURE_FLAGS(suffix) \
4678 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4679 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4680 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4681
4682int btrfs_ioctl_get_supported_features(void __user *arg)
4683{
4684 static const struct btrfs_ioctl_feature_flags features[3] = {
4685 INIT_FEATURE_FLAGS(SUPP),
4686 INIT_FEATURE_FLAGS(SAFE_SET),
4687 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4688 };
4689
4690 if (copy_to_user(arg, &features, sizeof(features)))
4691 return -EFAULT;
4692
4693 return 0;
4694}
4695
4696static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4697 void __user *arg)
4698{
4699 struct btrfs_super_block *super_block = fs_info->super_copy;
4700 struct btrfs_ioctl_feature_flags features;
4701
4702 features.compat_flags = btrfs_super_compat_flags(super_block);
4703 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4704 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4705
4706 if (copy_to_user(arg, &features, sizeof(features)))
4707 return -EFAULT;
4708
4709 return 0;
4710}
4711
4712static int check_feature_bits(struct btrfs_fs_info *fs_info,
4713 enum btrfs_feature_set set,
4714 u64 change_mask, u64 flags, u64 supported_flags,
4715 u64 safe_set, u64 safe_clear)
4716{
4717 const char *type = btrfs_feature_set_name(set);
4718 char *names;
4719 u64 disallowed, unsupported;
4720 u64 set_mask = flags & change_mask;
4721 u64 clear_mask = ~flags & change_mask;
4722
4723 unsupported = set_mask & ~supported_flags;
4724 if (unsupported) {
4725 names = btrfs_printable_features(set, unsupported);
4726 if (names) {
4727 btrfs_warn(fs_info,
4728 "this kernel does not support the %s feature bit%s",
4729 names, strchr(names, ',') ? "s" : "");
4730 kfree(names);
4731 } else
4732 btrfs_warn(fs_info,
4733 "this kernel does not support %s bits 0x%llx",
4734 type, unsupported);
4735 return -EOPNOTSUPP;
4736 }
4737
4738 disallowed = set_mask & ~safe_set;
4739 if (disallowed) {
4740 names = btrfs_printable_features(set, disallowed);
4741 if (names) {
4742 btrfs_warn(fs_info,
4743 "can't set the %s feature bit%s while mounted",
4744 names, strchr(names, ',') ? "s" : "");
4745 kfree(names);
4746 } else
4747 btrfs_warn(fs_info,
4748 "can't set %s bits 0x%llx while mounted",
4749 type, disallowed);
4750 return -EPERM;
4751 }
4752
4753 disallowed = clear_mask & ~safe_clear;
4754 if (disallowed) {
4755 names = btrfs_printable_features(set, disallowed);
4756 if (names) {
4757 btrfs_warn(fs_info,
4758 "can't clear the %s feature bit%s while mounted",
4759 names, strchr(names, ',') ? "s" : "");
4760 kfree(names);
4761 } else
4762 btrfs_warn(fs_info,
4763 "can't clear %s bits 0x%llx while mounted",
4764 type, disallowed);
4765 return -EPERM;
4766 }
4767
4768 return 0;
4769}
4770
4771#define check_feature(fs_info, change_mask, flags, mask_base) \
4772check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4773 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4774 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4775 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4776
4777static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4778{
4779 struct inode *inode = file_inode(file);
4780 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4781 struct btrfs_root *root = BTRFS_I(inode)->root;
4782 struct btrfs_super_block *super_block = fs_info->super_copy;
4783 struct btrfs_ioctl_feature_flags flags[2];
4784 struct btrfs_trans_handle *trans;
4785 u64 newflags;
4786 int ret;
4787
4788 if (!capable(CAP_SYS_ADMIN))
4789 return -EPERM;
4790
4791 if (copy_from_user(flags, arg, sizeof(flags)))
4792 return -EFAULT;
4793
4794 /* Nothing to do */
4795 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4796 !flags[0].incompat_flags)
4797 return 0;
4798
4799 ret = check_feature(fs_info, flags[0].compat_flags,
4800 flags[1].compat_flags, COMPAT);
4801 if (ret)
4802 return ret;
4803
4804 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4805 flags[1].compat_ro_flags, COMPAT_RO);
4806 if (ret)
4807 return ret;
4808
4809 ret = check_feature(fs_info, flags[0].incompat_flags,
4810 flags[1].incompat_flags, INCOMPAT);
4811 if (ret)
4812 return ret;
4813
4814 ret = mnt_want_write_file(file);
4815 if (ret)
4816 return ret;
4817
4818 trans = btrfs_start_transaction(root, 0);
4819 if (IS_ERR(trans)) {
4820 ret = PTR_ERR(trans);
4821 goto out_drop_write;
4822 }
4823
4824 spin_lock(&fs_info->super_lock);
4825 newflags = btrfs_super_compat_flags(super_block);
4826 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4827 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4828 btrfs_set_super_compat_flags(super_block, newflags);
4829
4830 newflags = btrfs_super_compat_ro_flags(super_block);
4831 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4832 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4833 btrfs_set_super_compat_ro_flags(super_block, newflags);
4834
4835 newflags = btrfs_super_incompat_flags(super_block);
4836 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4837 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4838 btrfs_set_super_incompat_flags(super_block, newflags);
4839 spin_unlock(&fs_info->super_lock);
4840
4841 ret = btrfs_commit_transaction(trans);
4842out_drop_write:
4843 mnt_drop_write_file(file);
4844
4845 return ret;
4846}
4847
4848static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4849{
4850 struct btrfs_ioctl_send_args *arg;
4851 int ret;
4852
4853 if (compat) {
4854#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4855 struct btrfs_ioctl_send_args_32 args32;
4856
4857 ret = copy_from_user(&args32, argp, sizeof(args32));
4858 if (ret)
4859 return -EFAULT;
4860 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4861 if (!arg)
4862 return -ENOMEM;
4863 arg->send_fd = args32.send_fd;
4864 arg->clone_sources_count = args32.clone_sources_count;
4865 arg->clone_sources = compat_ptr(args32.clone_sources);
4866 arg->parent_root = args32.parent_root;
4867 arg->flags = args32.flags;
4868 memcpy(arg->reserved, args32.reserved,
4869 sizeof(args32.reserved));
4870#else
4871 return -ENOTTY;
4872#endif
4873 } else {
4874 arg = memdup_user(argp, sizeof(*arg));
4875 if (IS_ERR(arg))
4876 return PTR_ERR(arg);
4877 }
4878 ret = btrfs_ioctl_send(file, arg);
4879 kfree(arg);
4880 return ret;
4881}
4882
4883long btrfs_ioctl(struct file *file, unsigned int
4884 cmd, unsigned long arg)
4885{
4886 struct inode *inode = file_inode(file);
4887 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4888 struct btrfs_root *root = BTRFS_I(inode)->root;
4889 void __user *argp = (void __user *)arg;
4890
4891 switch (cmd) {
4892 case FS_IOC_GETVERSION:
4893 return btrfs_ioctl_getversion(file, argp);
4894 case FS_IOC_GETFSLABEL:
4895 return btrfs_ioctl_get_fslabel(fs_info, argp);
4896 case FS_IOC_SETFSLABEL:
4897 return btrfs_ioctl_set_fslabel(file, argp);
4898 case FITRIM:
4899 return btrfs_ioctl_fitrim(fs_info, argp);
4900 case BTRFS_IOC_SNAP_CREATE:
4901 return btrfs_ioctl_snap_create(file, argp, 0);
4902 case BTRFS_IOC_SNAP_CREATE_V2:
4903 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4904 case BTRFS_IOC_SUBVOL_CREATE:
4905 return btrfs_ioctl_snap_create(file, argp, 1);
4906 case BTRFS_IOC_SUBVOL_CREATE_V2:
4907 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4908 case BTRFS_IOC_SNAP_DESTROY:
4909 return btrfs_ioctl_snap_destroy(file, argp, false);
4910 case BTRFS_IOC_SNAP_DESTROY_V2:
4911 return btrfs_ioctl_snap_destroy(file, argp, true);
4912 case BTRFS_IOC_SUBVOL_GETFLAGS:
4913 return btrfs_ioctl_subvol_getflags(file, argp);
4914 case BTRFS_IOC_SUBVOL_SETFLAGS:
4915 return btrfs_ioctl_subvol_setflags(file, argp);
4916 case BTRFS_IOC_DEFAULT_SUBVOL:
4917 return btrfs_ioctl_default_subvol(file, argp);
4918 case BTRFS_IOC_DEFRAG:
4919 return btrfs_ioctl_defrag(file, NULL);
4920 case BTRFS_IOC_DEFRAG_RANGE:
4921 return btrfs_ioctl_defrag(file, argp);
4922 case BTRFS_IOC_RESIZE:
4923 return btrfs_ioctl_resize(file, argp);
4924 case BTRFS_IOC_ADD_DEV:
4925 return btrfs_ioctl_add_dev(fs_info, argp);
4926 case BTRFS_IOC_RM_DEV:
4927 return btrfs_ioctl_rm_dev(file, argp);
4928 case BTRFS_IOC_RM_DEV_V2:
4929 return btrfs_ioctl_rm_dev_v2(file, argp);
4930 case BTRFS_IOC_FS_INFO:
4931 return btrfs_ioctl_fs_info(fs_info, argp);
4932 case BTRFS_IOC_DEV_INFO:
4933 return btrfs_ioctl_dev_info(fs_info, argp);
4934 case BTRFS_IOC_BALANCE:
4935 return btrfs_ioctl_balance(file, NULL);
4936 case BTRFS_IOC_TREE_SEARCH:
4937 return btrfs_ioctl_tree_search(file, argp);
4938 case BTRFS_IOC_TREE_SEARCH_V2:
4939 return btrfs_ioctl_tree_search_v2(file, argp);
4940 case BTRFS_IOC_INO_LOOKUP:
4941 return btrfs_ioctl_ino_lookup(file, argp);
4942 case BTRFS_IOC_INO_PATHS:
4943 return btrfs_ioctl_ino_to_path(root, argp);
4944 case BTRFS_IOC_LOGICAL_INO:
4945 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4946 case BTRFS_IOC_LOGICAL_INO_V2:
4947 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4948 case BTRFS_IOC_SPACE_INFO:
4949 return btrfs_ioctl_space_info(fs_info, argp);
4950 case BTRFS_IOC_SYNC: {
4951 int ret;
4952
4953 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4954 if (ret)
4955 return ret;
4956 ret = btrfs_sync_fs(inode->i_sb, 1);
4957 /*
4958 * The transaction thread may want to do more work,
4959 * namely it pokes the cleaner kthread that will start
4960 * processing uncleaned subvols.
4961 */
4962 wake_up_process(fs_info->transaction_kthread);
4963 return ret;
4964 }
4965 case BTRFS_IOC_START_SYNC:
4966 return btrfs_ioctl_start_sync(root, argp);
4967 case BTRFS_IOC_WAIT_SYNC:
4968 return btrfs_ioctl_wait_sync(fs_info, argp);
4969 case BTRFS_IOC_SCRUB:
4970 return btrfs_ioctl_scrub(file, argp);
4971 case BTRFS_IOC_SCRUB_CANCEL:
4972 return btrfs_ioctl_scrub_cancel(fs_info);
4973 case BTRFS_IOC_SCRUB_PROGRESS:
4974 return btrfs_ioctl_scrub_progress(fs_info, argp);
4975 case BTRFS_IOC_BALANCE_V2:
4976 return btrfs_ioctl_balance(file, argp);
4977 case BTRFS_IOC_BALANCE_CTL:
4978 return btrfs_ioctl_balance_ctl(fs_info, arg);
4979 case BTRFS_IOC_BALANCE_PROGRESS:
4980 return btrfs_ioctl_balance_progress(fs_info, argp);
4981 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4982 return btrfs_ioctl_set_received_subvol(file, argp);
4983#ifdef CONFIG_64BIT
4984 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4985 return btrfs_ioctl_set_received_subvol_32(file, argp);
4986#endif
4987 case BTRFS_IOC_SEND:
4988 return _btrfs_ioctl_send(file, argp, false);
4989#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4990 case BTRFS_IOC_SEND_32:
4991 return _btrfs_ioctl_send(file, argp, true);
4992#endif
4993 case BTRFS_IOC_GET_DEV_STATS:
4994 return btrfs_ioctl_get_dev_stats(fs_info, argp);
4995 case BTRFS_IOC_QUOTA_CTL:
4996 return btrfs_ioctl_quota_ctl(file, argp);
4997 case BTRFS_IOC_QGROUP_ASSIGN:
4998 return btrfs_ioctl_qgroup_assign(file, argp);
4999 case BTRFS_IOC_QGROUP_CREATE:
5000 return btrfs_ioctl_qgroup_create(file, argp);
5001 case BTRFS_IOC_QGROUP_LIMIT:
5002 return btrfs_ioctl_qgroup_limit(file, argp);
5003 case BTRFS_IOC_QUOTA_RESCAN:
5004 return btrfs_ioctl_quota_rescan(file, argp);
5005 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5006 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5007 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5008 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5009 case BTRFS_IOC_DEV_REPLACE:
5010 return btrfs_ioctl_dev_replace(fs_info, argp);
5011 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5012 return btrfs_ioctl_get_supported_features(argp);
5013 case BTRFS_IOC_GET_FEATURES:
5014 return btrfs_ioctl_get_features(fs_info, argp);
5015 case BTRFS_IOC_SET_FEATURES:
5016 return btrfs_ioctl_set_features(file, argp);
5017 case BTRFS_IOC_GET_SUBVOL_INFO:
5018 return btrfs_ioctl_get_subvol_info(file, argp);
5019 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5020 return btrfs_ioctl_get_subvol_rootref(file, argp);
5021 case BTRFS_IOC_INO_LOOKUP_USER:
5022 return btrfs_ioctl_ino_lookup_user(file, argp);
5023 }
5024
5025 return -ENOTTY;
5026}
5027
5028#ifdef CONFIG_COMPAT
5029long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5030{
5031 /*
5032 * These all access 32-bit values anyway so no further
5033 * handling is necessary.
5034 */
5035 switch (cmd) {
5036 case FS_IOC32_GETVERSION:
5037 cmd = FS_IOC_GETVERSION;
5038 break;
5039 }
5040
5041 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5042}
5043#endif