Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/namei.h>
  18#include <linux/writeback.h>
  19#include <linux/compat.h>
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include <linux/fileattr.h>
  30#include <linux/fsverity.h>
  31#include <linux/sched/xacct.h>
  32#include "ctree.h"
  33#include "disk-io.h"
  34#include "export.h"
  35#include "transaction.h"
  36#include "btrfs_inode.h"
 
  37#include "volumes.h"
  38#include "locking.h"
  39#include "backref.h"
 
  40#include "send.h"
  41#include "dev-replace.h"
  42#include "props.h"
  43#include "sysfs.h"
  44#include "qgroup.h"
  45#include "tree-log.h"
  46#include "compression.h"
  47#include "space-info.h"
 
  48#include "block-group.h"
  49#include "fs.h"
  50#include "accessors.h"
  51#include "extent-tree.h"
  52#include "root-tree.h"
  53#include "defrag.h"
  54#include "dir-item.h"
  55#include "uuid-tree.h"
  56#include "ioctl.h"
  57#include "file.h"
  58#include "scrub.h"
  59#include "super.h"
  60
  61#ifdef CONFIG_64BIT
  62/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  63 * structures are incorrect, as the timespec structure from userspace
  64 * is 4 bytes too small. We define these alternatives here to teach
  65 * the kernel about the 32-bit struct packing.
  66 */
  67struct btrfs_ioctl_timespec_32 {
  68	__u64 sec;
  69	__u32 nsec;
  70} __attribute__ ((__packed__));
  71
  72struct btrfs_ioctl_received_subvol_args_32 {
  73	char	uuid[BTRFS_UUID_SIZE];	/* in */
  74	__u64	stransid;		/* in */
  75	__u64	rtransid;		/* out */
  76	struct btrfs_ioctl_timespec_32 stime; /* in */
  77	struct btrfs_ioctl_timespec_32 rtime; /* out */
  78	__u64	flags;			/* in */
  79	__u64	reserved[16];		/* in */
  80} __attribute__ ((__packed__));
  81
  82#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  83				struct btrfs_ioctl_received_subvol_args_32)
  84#endif
  85
  86#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  87struct btrfs_ioctl_send_args_32 {
  88	__s64 send_fd;			/* in */
  89	__u64 clone_sources_count;	/* in */
  90	compat_uptr_t clone_sources;	/* in */
  91	__u64 parent_root;		/* in */
  92	__u64 flags;			/* in */
  93	__u32 version;			/* in */
  94	__u8  reserved[28];		/* in */
  95} __attribute__ ((__packed__));
  96
  97#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  98			       struct btrfs_ioctl_send_args_32)
  99
 100struct btrfs_ioctl_encoded_io_args_32 {
 101	compat_uptr_t iov;
 102	compat_ulong_t iovcnt;
 103	__s64 offset;
 104	__u64 flags;
 105	__u64 len;
 106	__u64 unencoded_len;
 107	__u64 unencoded_offset;
 108	__u32 compression;
 109	__u32 encryption;
 110	__u8 reserved[64];
 111};
 112
 113#define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \
 114				       struct btrfs_ioctl_encoded_io_args_32)
 115#define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \
 116					struct btrfs_ioctl_encoded_io_args_32)
 117#endif
 118
 119/* Mask out flags that are inappropriate for the given type of inode. */
 120static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
 121		unsigned int flags)
 122{
 123	if (S_ISDIR(inode->i_mode))
 124		return flags;
 125	else if (S_ISREG(inode->i_mode))
 126		return flags & ~FS_DIRSYNC_FL;
 127	else
 128		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 129}
 130
 131/*
 132 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 133 * ioctl.
 134 */
 135static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
 136{
 137	unsigned int iflags = 0;
 138	u32 flags = binode->flags;
 139	u32 ro_flags = binode->ro_flags;
 140
 141	if (flags & BTRFS_INODE_SYNC)
 142		iflags |= FS_SYNC_FL;
 143	if (flags & BTRFS_INODE_IMMUTABLE)
 144		iflags |= FS_IMMUTABLE_FL;
 145	if (flags & BTRFS_INODE_APPEND)
 146		iflags |= FS_APPEND_FL;
 147	if (flags & BTRFS_INODE_NODUMP)
 148		iflags |= FS_NODUMP_FL;
 149	if (flags & BTRFS_INODE_NOATIME)
 150		iflags |= FS_NOATIME_FL;
 151	if (flags & BTRFS_INODE_DIRSYNC)
 152		iflags |= FS_DIRSYNC_FL;
 153	if (flags & BTRFS_INODE_NODATACOW)
 154		iflags |= FS_NOCOW_FL;
 155	if (ro_flags & BTRFS_INODE_RO_VERITY)
 156		iflags |= FS_VERITY_FL;
 157
 158	if (flags & BTRFS_INODE_NOCOMPRESS)
 159		iflags |= FS_NOCOMP_FL;
 160	else if (flags & BTRFS_INODE_COMPRESS)
 161		iflags |= FS_COMPR_FL;
 162
 163	return iflags;
 164}
 165
 166/*
 167 * Update inode->i_flags based on the btrfs internal flags.
 168 */
 169void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 170{
 171	struct btrfs_inode *binode = BTRFS_I(inode);
 172	unsigned int new_fl = 0;
 173
 174	if (binode->flags & BTRFS_INODE_SYNC)
 175		new_fl |= S_SYNC;
 176	if (binode->flags & BTRFS_INODE_IMMUTABLE)
 177		new_fl |= S_IMMUTABLE;
 178	if (binode->flags & BTRFS_INODE_APPEND)
 179		new_fl |= S_APPEND;
 180	if (binode->flags & BTRFS_INODE_NOATIME)
 181		new_fl |= S_NOATIME;
 182	if (binode->flags & BTRFS_INODE_DIRSYNC)
 183		new_fl |= S_DIRSYNC;
 184	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
 185		new_fl |= S_VERITY;
 186
 187	set_mask_bits(&inode->i_flags,
 188		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
 189		      S_VERITY, new_fl);
 190}
 191
 192/*
 193 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 194 * the old and new flags are not conflicting
 195 */
 196static int check_fsflags(unsigned int old_flags, unsigned int flags)
 197{
 198	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 199		      FS_NOATIME_FL | FS_NODUMP_FL | \
 200		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 201		      FS_NOCOMP_FL | FS_COMPR_FL |
 202		      FS_NOCOW_FL))
 203		return -EOPNOTSUPP;
 204
 205	/* COMPR and NOCOMP on new/old are valid */
 206	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 207		return -EINVAL;
 208
 209	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 210		return -EINVAL;
 211
 212	/* NOCOW and compression options are mutually exclusive */
 213	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 214		return -EINVAL;
 215	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 216		return -EINVAL;
 217
 218	return 0;
 219}
 220
 221static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
 222				    unsigned int flags)
 223{
 224	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
 225		return -EPERM;
 226
 227	return 0;
 228}
 229
 230int btrfs_check_ioctl_vol_args_path(const struct btrfs_ioctl_vol_args *vol_args)
 231{
 232	if (memchr(vol_args->name, 0, sizeof(vol_args->name)) == NULL)
 233		return -ENAMETOOLONG;
 234	return 0;
 235}
 236
 237static int btrfs_check_ioctl_vol_args2_subvol_name(const struct btrfs_ioctl_vol_args_v2 *vol_args2)
 238{
 239	if (memchr(vol_args2->name, 0, sizeof(vol_args2->name)) == NULL)
 240		return -ENAMETOOLONG;
 241	return 0;
 242}
 243
 244/*
 245 * Set flags/xflags from the internal inode flags. The remaining items of
 246 * fsxattr are zeroed.
 247 */
 248int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 249{
 250	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
 251
 252	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
 253	return 0;
 254}
 255
 256int btrfs_fileattr_set(struct mnt_idmap *idmap,
 257		       struct dentry *dentry, struct fileattr *fa)
 258{
 259	struct inode *inode = d_inode(dentry);
 260	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 261	struct btrfs_inode *binode = BTRFS_I(inode);
 262	struct btrfs_root *root = binode->root;
 263	struct btrfs_trans_handle *trans;
 264	unsigned int fsflags, old_fsflags;
 265	int ret;
 266	const char *comp = NULL;
 267	u32 binode_flags;
 268
 269	if (btrfs_root_readonly(root))
 270		return -EROFS;
 271
 272	if (fileattr_has_fsx(fa))
 273		return -EOPNOTSUPP;
 274
 275	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
 276	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
 277	ret = check_fsflags(old_fsflags, fsflags);
 278	if (ret)
 279		return ret;
 280
 281	ret = check_fsflags_compatible(fs_info, fsflags);
 282	if (ret)
 283		return ret;
 284
 285	binode_flags = binode->flags;
 286	if (fsflags & FS_SYNC_FL)
 287		binode_flags |= BTRFS_INODE_SYNC;
 288	else
 289		binode_flags &= ~BTRFS_INODE_SYNC;
 290	if (fsflags & FS_IMMUTABLE_FL)
 291		binode_flags |= BTRFS_INODE_IMMUTABLE;
 292	else
 293		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 294	if (fsflags & FS_APPEND_FL)
 295		binode_flags |= BTRFS_INODE_APPEND;
 296	else
 297		binode_flags &= ~BTRFS_INODE_APPEND;
 298	if (fsflags & FS_NODUMP_FL)
 299		binode_flags |= BTRFS_INODE_NODUMP;
 300	else
 301		binode_flags &= ~BTRFS_INODE_NODUMP;
 302	if (fsflags & FS_NOATIME_FL)
 303		binode_flags |= BTRFS_INODE_NOATIME;
 304	else
 305		binode_flags &= ~BTRFS_INODE_NOATIME;
 306
 307	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
 308	if (!fa->flags_valid) {
 309		/* 1 item for the inode */
 310		trans = btrfs_start_transaction(root, 1);
 311		if (IS_ERR(trans))
 312			return PTR_ERR(trans);
 313		goto update_flags;
 314	}
 315
 316	if (fsflags & FS_DIRSYNC_FL)
 317		binode_flags |= BTRFS_INODE_DIRSYNC;
 318	else
 319		binode_flags &= ~BTRFS_INODE_DIRSYNC;
 320	if (fsflags & FS_NOCOW_FL) {
 321		if (S_ISREG(inode->i_mode)) {
 322			/*
 323			 * It's safe to turn csums off here, no extents exist.
 324			 * Otherwise we want the flag to reflect the real COW
 325			 * status of the file and will not set it.
 326			 */
 327			if (inode->i_size == 0)
 328				binode_flags |= BTRFS_INODE_NODATACOW |
 329						BTRFS_INODE_NODATASUM;
 330		} else {
 331			binode_flags |= BTRFS_INODE_NODATACOW;
 332		}
 333	} else {
 334		/*
 335		 * Revert back under same assumptions as above
 336		 */
 337		if (S_ISREG(inode->i_mode)) {
 338			if (inode->i_size == 0)
 339				binode_flags &= ~(BTRFS_INODE_NODATACOW |
 340						  BTRFS_INODE_NODATASUM);
 341		} else {
 342			binode_flags &= ~BTRFS_INODE_NODATACOW;
 343		}
 344	}
 345
 346	/*
 347	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 348	 * flag may be changed automatically if compression code won't make
 349	 * things smaller.
 350	 */
 351	if (fsflags & FS_NOCOMP_FL) {
 352		binode_flags &= ~BTRFS_INODE_COMPRESS;
 353		binode_flags |= BTRFS_INODE_NOCOMPRESS;
 354	} else if (fsflags & FS_COMPR_FL) {
 355
 356		if (IS_SWAPFILE(inode))
 357			return -ETXTBSY;
 358
 359		binode_flags |= BTRFS_INODE_COMPRESS;
 360		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 361
 362		comp = btrfs_compress_type2str(fs_info->compress_type);
 363		if (!comp || comp[0] == 0)
 364			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 365	} else {
 366		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 367	}
 368
 369	/*
 370	 * 1 for inode item
 371	 * 2 for properties
 372	 */
 373	trans = btrfs_start_transaction(root, 3);
 374	if (IS_ERR(trans))
 375		return PTR_ERR(trans);
 376
 377	if (comp) {
 378		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 379				     strlen(comp), 0);
 380		if (ret) {
 381			btrfs_abort_transaction(trans, ret);
 382			goto out_end_trans;
 383		}
 384	} else {
 385		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 386				     0, 0);
 387		if (ret && ret != -ENODATA) {
 388			btrfs_abort_transaction(trans, ret);
 389			goto out_end_trans;
 390		}
 391	}
 392
 393update_flags:
 394	binode->flags = binode_flags;
 395	btrfs_sync_inode_flags_to_i_flags(inode);
 396	inode_inc_iversion(inode);
 397	inode_set_ctime_current(inode);
 398	ret = btrfs_update_inode(trans, BTRFS_I(inode));
 399
 400 out_end_trans:
 401	btrfs_end_transaction(trans);
 402	return ret;
 403}
 404
 405/*
 406 * Start exclusive operation @type, return true on success
 407 */
 408bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
 409			enum btrfs_exclusive_operation type)
 410{
 411	bool ret = false;
 412
 413	spin_lock(&fs_info->super_lock);
 414	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
 415		fs_info->exclusive_operation = type;
 416		ret = true;
 417	}
 418	spin_unlock(&fs_info->super_lock);
 419
 420	return ret;
 421}
 422
 423/*
 424 * Conditionally allow to enter the exclusive operation in case it's compatible
 425 * with the running one.  This must be paired with btrfs_exclop_start_unlock and
 426 * btrfs_exclop_finish.
 427 *
 428 * Compatibility:
 429 * - the same type is already running
 430 * - when trying to add a device and balance has been paused
 431 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
 432 *   must check the condition first that would allow none -> @type
 433 */
 434bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
 435				 enum btrfs_exclusive_operation type)
 436{
 437	spin_lock(&fs_info->super_lock);
 438	if (fs_info->exclusive_operation == type ||
 439	    (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED &&
 440	     type == BTRFS_EXCLOP_DEV_ADD))
 441		return true;
 442
 443	spin_unlock(&fs_info->super_lock);
 444	return false;
 445}
 446
 447void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
 448{
 449	spin_unlock(&fs_info->super_lock);
 450}
 451
 452void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
 453{
 454	spin_lock(&fs_info->super_lock);
 455	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
 456	spin_unlock(&fs_info->super_lock);
 457	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
 458}
 459
 460void btrfs_exclop_balance(struct btrfs_fs_info *fs_info,
 461			  enum btrfs_exclusive_operation op)
 462{
 463	switch (op) {
 464	case BTRFS_EXCLOP_BALANCE_PAUSED:
 465		spin_lock(&fs_info->super_lock);
 466		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE ||
 467		       fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD ||
 468		       fs_info->exclusive_operation == BTRFS_EXCLOP_NONE ||
 469		       fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
 470		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED;
 471		spin_unlock(&fs_info->super_lock);
 472		break;
 473	case BTRFS_EXCLOP_BALANCE:
 474		spin_lock(&fs_info->super_lock);
 475		ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED);
 476		fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE;
 477		spin_unlock(&fs_info->super_lock);
 478		break;
 479	default:
 480		btrfs_warn(fs_info,
 481			"invalid exclop balance operation %d requested", op);
 482	}
 483}
 484
 485static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg)
 486{
 487	return put_user(inode->i_generation, arg);
 488}
 489
 490static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 491					void __user *arg)
 492{
 493	struct btrfs_device *device;
 
 494	struct fstrim_range range;
 495	u64 minlen = ULLONG_MAX;
 496	u64 num_devices = 0;
 497	int ret;
 498
 499	if (!capable(CAP_SYS_ADMIN))
 500		return -EPERM;
 501
 502	/*
 503	 * btrfs_trim_block_group() depends on space cache, which is not
 504	 * available in zoned filesystem. So, disallow fitrim on a zoned
 505	 * filesystem for now.
 506	 */
 507	if (btrfs_is_zoned(fs_info))
 508		return -EOPNOTSUPP;
 509
 510	/*
 511	 * If the fs is mounted with nologreplay, which requires it to be
 512	 * mounted in RO mode as well, we can not allow discard on free space
 513	 * inside block groups, because log trees refer to extents that are not
 514	 * pinned in a block group's free space cache (pinning the extents is
 515	 * precisely the first phase of replaying a log tree).
 516	 */
 517	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 518		return -EROFS;
 519
 520	rcu_read_lock();
 521	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 522				dev_list) {
 523		if (!device->bdev || !bdev_max_discard_sectors(device->bdev))
 524			continue;
 525		num_devices++;
 526		minlen = min_t(u64, bdev_discard_granularity(device->bdev),
 527				    minlen);
 
 
 
 528	}
 529	rcu_read_unlock();
 530
 531	if (!num_devices)
 532		return -EOPNOTSUPP;
 533	if (copy_from_user(&range, arg, sizeof(range)))
 534		return -EFAULT;
 535
 536	/*
 537	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 538	 * block group is in the logical address space, which can be any
 539	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
 540	 */
 541	if (range.len < fs_info->sectorsize)
 542		return -EINVAL;
 543
 544	range.minlen = max(range.minlen, minlen);
 545	ret = btrfs_trim_fs(fs_info, &range);
 546	if (ret < 0)
 547		return ret;
 548
 549	if (copy_to_user(arg, &range, sizeof(range)))
 550		return -EFAULT;
 551
 552	return 0;
 553}
 554
 555int __pure btrfs_is_empty_uuid(u8 *uuid)
 556{
 557	int i;
 558
 559	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 560		if (uuid[i])
 561			return 0;
 562	}
 563	return 1;
 564}
 565
 566/*
 567 * Calculate the number of transaction items to reserve for creating a subvolume
 568 * or snapshot, not including the inode, directory entries, or parent directory.
 569 */
 570static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit)
 571{
 572	/*
 573	 * 1 to add root block
 574	 * 1 to add root item
 575	 * 1 to add root ref
 576	 * 1 to add root backref
 577	 * 1 to add UUID item
 578	 * 1 to add qgroup info
 579	 * 1 to add qgroup limit
 580	 *
 581	 * Ideally the last two would only be accounted if qgroups are enabled,
 582	 * but that can change between now and the time we would insert them.
 583	 */
 584	unsigned int num_items = 7;
 585
 586	if (inherit) {
 587		/* 2 to add qgroup relations for each inherited qgroup */
 588		num_items += 2 * inherit->num_qgroups;
 589	}
 590	return num_items;
 591}
 592
 593static noinline int create_subvol(struct mnt_idmap *idmap,
 594				  struct inode *dir, struct dentry *dentry,
 595				  struct btrfs_qgroup_inherit *inherit)
 596{
 597	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
 598	struct btrfs_trans_handle *trans;
 599	struct btrfs_key key;
 600	struct btrfs_root_item *root_item;
 601	struct btrfs_inode_item *inode_item;
 602	struct extent_buffer *leaf;
 603	struct btrfs_root *root = BTRFS_I(dir)->root;
 604	struct btrfs_root *new_root;
 605	struct btrfs_block_rsv block_rsv;
 606	struct timespec64 cur_time = current_time(dir);
 607	struct btrfs_new_inode_args new_inode_args = {
 608		.dir = dir,
 609		.dentry = dentry,
 610		.subvol = true,
 611	};
 612	unsigned int trans_num_items;
 613	int ret;
 614	dev_t anon_dev;
 
 615	u64 objectid;
 616	u64 qgroup_reserved = 0;
 617
 618	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 619	if (!root_item)
 620		return -ENOMEM;
 621
 622	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
 623	if (ret)
 624		goto out_root_item;
 
 
 
 
 625
 626	/*
 627	 * Don't create subvolume whose level is not zero. Or qgroup will be
 628	 * screwed up since it assumes subvolume qgroup's level to be 0.
 629	 */
 630	if (btrfs_qgroup_level(objectid)) {
 631		ret = -ENOSPC;
 632		goto out_root_item;
 633	}
 634
 635	ret = get_anon_bdev(&anon_dev);
 636	if (ret < 0)
 637		goto out_root_item;
 638
 639	new_inode_args.inode = btrfs_new_subvol_inode(idmap, dir);
 640	if (!new_inode_args.inode) {
 641		ret = -ENOMEM;
 642		goto out_anon_dev;
 643	}
 644	ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items);
 645	if (ret)
 646		goto out_inode;
 647	trans_num_items += create_subvol_num_items(inherit);
 648
 649	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 650	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
 651					       trans_num_items, false);
 
 
 
 652	if (ret)
 653		goto out_new_inode_args;
 654	qgroup_reserved = block_rsv.qgroup_rsv_reserved;
 655
 656	trans = btrfs_start_transaction(root, 0);
 657	if (IS_ERR(trans)) {
 658		ret = PTR_ERR(trans);
 659		goto out_release_rsv;
 
 660	}
 661	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
 662	if (ret)
 663		goto out;
 664	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
 665	qgroup_reserved = 0;
 666	trans->block_rsv = &block_rsv;
 667	trans->bytes_reserved = block_rsv.size;
 668	/* Tree log can't currently deal with an inode which is a new root. */
 669	btrfs_set_log_full_commit(trans);
 670
 671	ret = btrfs_qgroup_inherit(trans, 0, objectid, root->root_key.objectid, inherit);
 672	if (ret)
 673		goto out;
 674
 675	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 676				      0, BTRFS_NESTING_NORMAL);
 677	if (IS_ERR(leaf)) {
 678		ret = PTR_ERR(leaf);
 679		goto out;
 680	}
 681
 682	btrfs_mark_buffer_dirty(trans, leaf);
 683
 684	inode_item = &root_item->inode;
 685	btrfs_set_stack_inode_generation(inode_item, 1);
 686	btrfs_set_stack_inode_size(inode_item, 3);
 687	btrfs_set_stack_inode_nlink(inode_item, 1);
 688	btrfs_set_stack_inode_nbytes(inode_item,
 689				     fs_info->nodesize);
 690	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 691
 692	btrfs_set_root_flags(root_item, 0);
 693	btrfs_set_root_limit(root_item, 0);
 694	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 695
 696	btrfs_set_root_bytenr(root_item, leaf->start);
 697	btrfs_set_root_generation(root_item, trans->transid);
 698	btrfs_set_root_level(root_item, 0);
 699	btrfs_set_root_refs(root_item, 1);
 700	btrfs_set_root_used(root_item, leaf->len);
 701	btrfs_set_root_last_snapshot(root_item, 0);
 702
 703	btrfs_set_root_generation_v2(root_item,
 704			btrfs_root_generation(root_item));
 705	generate_random_guid(root_item->uuid);
 706	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 707	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 708	root_item->ctime = root_item->otime;
 709	btrfs_set_root_ctransid(root_item, trans->transid);
 710	btrfs_set_root_otransid(root_item, trans->transid);
 711
 712	btrfs_tree_unlock(leaf);
 713
 714	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
 715
 716	key.objectid = objectid;
 717	key.offset = 0;
 718	key.type = BTRFS_ROOT_ITEM_KEY;
 719	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 720				root_item);
 721	if (ret) {
 722		/*
 723		 * Since we don't abort the transaction in this case, free the
 724		 * tree block so that we don't leak space and leave the
 725		 * filesystem in an inconsistent state (an extent item in the
 726		 * extent tree with a backreference for a root that does not
 727		 * exists).
 
 728		 */
 729		btrfs_tree_lock(leaf);
 730		btrfs_clear_buffer_dirty(trans, leaf);
 731		btrfs_tree_unlock(leaf);
 732		btrfs_free_tree_block(trans, objectid, leaf, 0, 1);
 733		free_extent_buffer(leaf);
 734		goto out;
 735	}
 736
 737	free_extent_buffer(leaf);
 738	leaf = NULL;
 739
 740	new_root = btrfs_get_new_fs_root(fs_info, objectid, &anon_dev);
 
 741	if (IS_ERR(new_root)) {
 
 742		ret = PTR_ERR(new_root);
 743		btrfs_abort_transaction(trans, ret);
 744		goto out;
 745	}
 746	/* anon_dev is owned by new_root now. */
 747	anon_dev = 0;
 748	BTRFS_I(new_inode_args.inode)->root = new_root;
 749	/* ... and new_root is owned by new_inode_args.inode now. */
 750
 751	ret = btrfs_record_root_in_trans(trans, new_root);
 752	if (ret) {
 
 753		btrfs_abort_transaction(trans, ret);
 754		goto out;
 755	}
 756
 757	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 758				  BTRFS_UUID_KEY_SUBVOL, objectid);
 759	if (ret) {
 
 760		btrfs_abort_transaction(trans, ret);
 761		goto out;
 762	}
 763
 764	ret = btrfs_create_new_inode(trans, &new_inode_args);
 
 
 
 765	if (ret) {
 766		btrfs_abort_transaction(trans, ret);
 767		goto out;
 
 
 
 
 
 
 
 768	}
 769
 770	d_instantiate_new(dentry, new_inode_args.inode);
 771	new_inode_args.inode = NULL;
 
 
 
 
 772
 773out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 774	trans->block_rsv = NULL;
 775	trans->bytes_reserved = 0;
 776	btrfs_end_transaction(trans);
 777out_release_rsv:
 778	btrfs_block_rsv_release(fs_info, &block_rsv, (u64)-1, NULL);
 779	if (qgroup_reserved)
 780		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
 781out_new_inode_args:
 782	btrfs_new_inode_args_destroy(&new_inode_args);
 783out_inode:
 784	iput(new_inode_args.inode);
 785out_anon_dev:
 
 
 
 
 
 786	if (anon_dev)
 787		free_anon_bdev(anon_dev);
 788out_root_item:
 789	kfree(root_item);
 790	return ret;
 791}
 792
 793static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 794			   struct dentry *dentry, bool readonly,
 795			   struct btrfs_qgroup_inherit *inherit)
 796{
 797	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
 798	struct inode *inode;
 799	struct btrfs_pending_snapshot *pending_snapshot;
 800	unsigned int trans_num_items;
 801	struct btrfs_trans_handle *trans;
 802	struct btrfs_block_rsv *block_rsv;
 803	u64 qgroup_reserved = 0;
 804	int ret;
 805
 806	/* We do not support snapshotting right now. */
 807	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
 808		btrfs_warn(fs_info,
 809			   "extent tree v2 doesn't support snapshotting yet");
 810		return -EOPNOTSUPP;
 811	}
 812
 813	if (btrfs_root_refs(&root->root_item) == 0)
 814		return -ENOENT;
 815
 816	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 817		return -EINVAL;
 818
 819	if (atomic_read(&root->nr_swapfiles)) {
 820		btrfs_warn(fs_info,
 821			   "cannot snapshot subvolume with active swapfile");
 822		return -ETXTBSY;
 823	}
 824
 825	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 826	if (!pending_snapshot)
 827		return -ENOMEM;
 828
 829	ret = get_anon_bdev(&pending_snapshot->anon_dev);
 830	if (ret < 0)
 831		goto free_pending;
 832	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 833			GFP_KERNEL);
 834	pending_snapshot->path = btrfs_alloc_path();
 835	if (!pending_snapshot->root_item || !pending_snapshot->path) {
 836		ret = -ENOMEM;
 837		goto free_pending;
 838	}
 839
 840	block_rsv = &pending_snapshot->block_rsv;
 841	btrfs_init_block_rsv(block_rsv, BTRFS_BLOCK_RSV_TEMP);
 842	/*
 843	 * 1 to add dir item
 844	 * 1 to add dir index
 845	 * 1 to update parent inode item
 
 
 
 846	 */
 847	trans_num_items = create_subvol_num_items(inherit) + 3;
 848	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, block_rsv,
 849					       trans_num_items, false);
 850	if (ret)
 851		goto free_pending;
 852	qgroup_reserved = block_rsv->qgroup_rsv_reserved;
 853
 854	pending_snapshot->dentry = dentry;
 855	pending_snapshot->root = root;
 856	pending_snapshot->readonly = readonly;
 857	pending_snapshot->dir = dir;
 858	pending_snapshot->inherit = inherit;
 859
 860	trans = btrfs_start_transaction(root, 0);
 861	if (IS_ERR(trans)) {
 862		ret = PTR_ERR(trans);
 863		goto fail;
 864	}
 865	ret = btrfs_record_root_in_trans(trans, BTRFS_I(dir)->root);
 866	if (ret) {
 867		btrfs_end_transaction(trans);
 868		goto fail;
 869	}
 870	btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
 871	qgroup_reserved = 0;
 872
 873	trans->pending_snapshot = pending_snapshot;
 
 
 
 874
 875	ret = btrfs_commit_transaction(trans);
 876	if (ret)
 877		goto fail;
 878
 879	ret = pending_snapshot->error;
 880	if (ret)
 881		goto fail;
 882
 883	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 884	if (ret)
 885		goto fail;
 886
 887	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 888	if (IS_ERR(inode)) {
 889		ret = PTR_ERR(inode);
 890		goto fail;
 891	}
 892
 893	d_instantiate(dentry, inode);
 894	ret = 0;
 895	pending_snapshot->anon_dev = 0;
 896fail:
 897	/* Prevent double freeing of anon_dev */
 898	if (ret && pending_snapshot->snap)
 899		pending_snapshot->snap->anon_dev = 0;
 900	btrfs_put_root(pending_snapshot->snap);
 901	btrfs_block_rsv_release(fs_info, block_rsv, (u64)-1, NULL);
 902	if (qgroup_reserved)
 903		btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
 904free_pending:
 905	if (pending_snapshot->anon_dev)
 906		free_anon_bdev(pending_snapshot->anon_dev);
 907	kfree(pending_snapshot->root_item);
 908	btrfs_free_path(pending_snapshot->path);
 909	kfree(pending_snapshot);
 910
 911	return ret;
 912}
 913
 914/*  copy of may_delete in fs/namei.c()
 915 *	Check whether we can remove a link victim from directory dir, check
 916 *  whether the type of victim is right.
 917 *  1. We can't do it if dir is read-only (done in permission())
 918 *  2. We should have write and exec permissions on dir
 919 *  3. We can't remove anything from append-only dir
 920 *  4. We can't do anything with immutable dir (done in permission())
 921 *  5. If the sticky bit on dir is set we should either
 922 *	a. be owner of dir, or
 923 *	b. be owner of victim, or
 924 *	c. have CAP_FOWNER capability
 925 *  6. If the victim is append-only or immutable we can't do anything with
 926 *     links pointing to it.
 927 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 928 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 929 *  9. We can't remove a root or mountpoint.
 930 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 931 *     nfs_async_unlink().
 932 */
 933
 934static int btrfs_may_delete(struct mnt_idmap *idmap,
 935			    struct inode *dir, struct dentry *victim, int isdir)
 936{
 937	int error;
 938
 939	if (d_really_is_negative(victim))
 940		return -ENOENT;
 941
 942	/* The @victim is not inside @dir. */
 943	if (d_inode(victim->d_parent) != dir)
 944		return -EINVAL;
 945	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 946
 947	error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
 948	if (error)
 949		return error;
 950	if (IS_APPEND(dir))
 951		return -EPERM;
 952	if (check_sticky(idmap, dir, d_inode(victim)) ||
 953	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
 954	    IS_SWAPFILE(d_inode(victim)))
 955		return -EPERM;
 956	if (isdir) {
 957		if (!d_is_dir(victim))
 958			return -ENOTDIR;
 959		if (IS_ROOT(victim))
 960			return -EBUSY;
 961	} else if (d_is_dir(victim))
 962		return -EISDIR;
 963	if (IS_DEADDIR(dir))
 964		return -ENOENT;
 965	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 966		return -EBUSY;
 967	return 0;
 968}
 969
 970/* copy of may_create in fs/namei.c() */
 971static inline int btrfs_may_create(struct mnt_idmap *idmap,
 972				   struct inode *dir, struct dentry *child)
 973{
 974	if (d_really_is_positive(child))
 975		return -EEXIST;
 976	if (IS_DEADDIR(dir))
 977		return -ENOENT;
 978	if (!fsuidgid_has_mapping(dir->i_sb, idmap))
 979		return -EOVERFLOW;
 980	return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
 981}
 982
 983/*
 984 * Create a new subvolume below @parent.  This is largely modeled after
 985 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 986 * inside this filesystem so it's quite a bit simpler.
 987 */
 988static noinline int btrfs_mksubvol(const struct path *parent,
 989				   struct mnt_idmap *idmap,
 990				   const char *name, int namelen,
 991				   struct btrfs_root *snap_src,
 992				   bool readonly,
 993				   struct btrfs_qgroup_inherit *inherit)
 994{
 995	struct inode *dir = d_inode(parent->dentry);
 996	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
 997	struct dentry *dentry;
 998	struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen);
 999	int error;
1000
1001	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
1002	if (error == -EINTR)
1003		return error;
1004
1005	dentry = lookup_one(idmap, name, parent->dentry, namelen);
1006	error = PTR_ERR(dentry);
1007	if (IS_ERR(dentry))
1008		goto out_unlock;
1009
1010	error = btrfs_may_create(idmap, dir, dentry);
1011	if (error)
1012		goto out_dput;
1013
1014	/*
1015	 * even if this name doesn't exist, we may get hash collisions.
1016	 * check for them now when we can safely fail
1017	 */
1018	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
1019					       dir->i_ino, &name_str);
 
1020	if (error)
1021		goto out_dput;
1022
1023	down_read(&fs_info->subvol_sem);
1024
1025	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
1026		goto out_up_read;
1027
1028	if (snap_src)
1029		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
1030	else
1031		error = create_subvol(idmap, dir, dentry, inherit);
1032
1033	if (!error)
1034		fsnotify_mkdir(dir, dentry);
1035out_up_read:
1036	up_read(&fs_info->subvol_sem);
1037out_dput:
1038	dput(dentry);
1039out_unlock:
1040	btrfs_inode_unlock(BTRFS_I(dir), 0);
1041	return error;
1042}
1043
1044static noinline int btrfs_mksnapshot(const struct path *parent,
1045				   struct mnt_idmap *idmap,
1046				   const char *name, int namelen,
1047				   struct btrfs_root *root,
1048				   bool readonly,
1049				   struct btrfs_qgroup_inherit *inherit)
1050{
1051	int ret;
1052	bool snapshot_force_cow = false;
1053
1054	/*
1055	 * Force new buffered writes to reserve space even when NOCOW is
1056	 * possible. This is to avoid later writeback (running dealloc) to
1057	 * fallback to COW mode and unexpectedly fail with ENOSPC.
1058	 */
1059	btrfs_drew_read_lock(&root->snapshot_lock);
1060
1061	ret = btrfs_start_delalloc_snapshot(root, false);
1062	if (ret)
1063		goto out;
1064
1065	/*
1066	 * All previous writes have started writeback in NOCOW mode, so now
1067	 * we force future writes to fallback to COW mode during snapshot
1068	 * creation.
1069	 */
1070	atomic_inc(&root->snapshot_force_cow);
1071	snapshot_force_cow = true;
1072
1073	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
1074
1075	ret = btrfs_mksubvol(parent, idmap, name, namelen,
1076			     root, readonly, inherit);
1077out:
1078	if (snapshot_force_cow)
1079		atomic_dec(&root->snapshot_force_cow);
1080	btrfs_drew_read_unlock(&root->snapshot_lock);
1081	return ret;
1082}
1083
1084/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1085 * Try to start exclusive operation @type or cancel it if it's running.
1086 *
1087 * Return:
1088 *   0        - normal mode, newly claimed op started
1089 *  >0        - normal mode, something else is running,
1090 *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1091 * ECANCELED  - cancel mode, successful cancel
1092 * ENOTCONN   - cancel mode, operation not running anymore
1093 */
1094static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1095			enum btrfs_exclusive_operation type, bool cancel)
1096{
1097	if (!cancel) {
1098		/* Start normal op */
1099		if (!btrfs_exclop_start(fs_info, type))
1100			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1101		/* Exclusive operation is now claimed */
1102		return 0;
1103	}
1104
1105	/* Cancel running op */
1106	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1107		/*
1108		 * This blocks any exclop finish from setting it to NONE, so we
1109		 * request cancellation. Either it runs and we will wait for it,
1110		 * or it has finished and no waiting will happen.
1111		 */
1112		atomic_inc(&fs_info->reloc_cancel_req);
1113		btrfs_exclop_start_unlock(fs_info);
1114
1115		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1116			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1117				    TASK_INTERRUPTIBLE);
1118
1119		return -ECANCELED;
1120	}
1121
1122	/* Something else is running or none */
1123	return -ENOTCONN;
1124}
1125
1126static noinline int btrfs_ioctl_resize(struct file *file,
1127					void __user *arg)
1128{
1129	BTRFS_DEV_LOOKUP_ARGS(args);
1130	struct inode *inode = file_inode(file);
1131	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1132	u64 new_size;
1133	u64 old_size;
1134	u64 devid = 1;
1135	struct btrfs_root *root = BTRFS_I(inode)->root;
1136	struct btrfs_ioctl_vol_args *vol_args;
1137	struct btrfs_trans_handle *trans;
1138	struct btrfs_device *device = NULL;
1139	char *sizestr;
1140	char *retptr;
1141	char *devstr = NULL;
1142	int ret = 0;
1143	int mod = 0;
1144	bool cancel;
1145
1146	if (!capable(CAP_SYS_ADMIN))
1147		return -EPERM;
1148
1149	ret = mnt_want_write_file(file);
1150	if (ret)
1151		return ret;
1152
1153	/*
1154	 * Read the arguments before checking exclusivity to be able to
1155	 * distinguish regular resize and cancel
1156	 */
1157	vol_args = memdup_user(arg, sizeof(*vol_args));
1158	if (IS_ERR(vol_args)) {
1159		ret = PTR_ERR(vol_args);
1160		goto out_drop;
1161	}
1162	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1163	if (ret < 0)
1164		goto out_free;
1165
1166	sizestr = vol_args->name;
1167	cancel = (strcmp("cancel", sizestr) == 0);
1168	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1169	if (ret)
1170		goto out_free;
1171	/* Exclusive operation is now claimed */
1172
1173	devstr = strchr(sizestr, ':');
1174	if (devstr) {
1175		sizestr = devstr + 1;
1176		*devstr = '\0';
1177		devstr = vol_args->name;
1178		ret = kstrtoull(devstr, 10, &devid);
1179		if (ret)
1180			goto out_finish;
1181		if (!devid) {
1182			ret = -EINVAL;
1183			goto out_finish;
1184		}
1185		btrfs_info(fs_info, "resizing devid %llu", devid);
1186	}
1187
1188	args.devid = devid;
1189	device = btrfs_find_device(fs_info->fs_devices, &args);
1190	if (!device) {
1191		btrfs_info(fs_info, "resizer unable to find device %llu",
1192			   devid);
1193		ret = -ENODEV;
1194		goto out_finish;
1195	}
1196
1197	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1198		btrfs_info(fs_info,
1199			   "resizer unable to apply on readonly device %llu",
1200		       devid);
1201		ret = -EPERM;
1202		goto out_finish;
1203	}
1204
1205	if (!strcmp(sizestr, "max"))
1206		new_size = bdev_nr_bytes(device->bdev);
1207	else {
1208		if (sizestr[0] == '-') {
1209			mod = -1;
1210			sizestr++;
1211		} else if (sizestr[0] == '+') {
1212			mod = 1;
1213			sizestr++;
1214		}
1215		new_size = memparse(sizestr, &retptr);
1216		if (*retptr != '\0' || new_size == 0) {
1217			ret = -EINVAL;
1218			goto out_finish;
1219		}
1220	}
1221
1222	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1223		ret = -EPERM;
1224		goto out_finish;
1225	}
1226
1227	old_size = btrfs_device_get_total_bytes(device);
1228
1229	if (mod < 0) {
1230		if (new_size > old_size) {
1231			ret = -EINVAL;
1232			goto out_finish;
1233		}
1234		new_size = old_size - new_size;
1235	} else if (mod > 0) {
1236		if (new_size > ULLONG_MAX - old_size) {
1237			ret = -ERANGE;
1238			goto out_finish;
1239		}
1240		new_size = old_size + new_size;
1241	}
1242
1243	if (new_size < SZ_256M) {
1244		ret = -EINVAL;
1245		goto out_finish;
1246	}
1247	if (new_size > bdev_nr_bytes(device->bdev)) {
1248		ret = -EFBIG;
1249		goto out_finish;
1250	}
1251
1252	new_size = round_down(new_size, fs_info->sectorsize);
1253
1254	if (new_size > old_size) {
1255		trans = btrfs_start_transaction(root, 0);
1256		if (IS_ERR(trans)) {
1257			ret = PTR_ERR(trans);
1258			goto out_finish;
1259		}
1260		ret = btrfs_grow_device(trans, device, new_size);
1261		btrfs_commit_transaction(trans);
1262	} else if (new_size < old_size) {
1263		ret = btrfs_shrink_device(device, new_size);
1264	} /* equal, nothing need to do */
1265
1266	if (ret == 0 && new_size != old_size)
1267		btrfs_info_in_rcu(fs_info,
1268			"resize device %s (devid %llu) from %llu to %llu",
1269			btrfs_dev_name(device), device->devid,
1270			old_size, new_size);
1271out_finish:
1272	btrfs_exclop_finish(fs_info);
1273out_free:
1274	kfree(vol_args);
1275out_drop:
1276	mnt_drop_write_file(file);
1277	return ret;
1278}
1279
1280static noinline int __btrfs_ioctl_snap_create(struct file *file,
1281				struct mnt_idmap *idmap,
1282				const char *name, unsigned long fd, int subvol,
1283				bool readonly,
1284				struct btrfs_qgroup_inherit *inherit)
1285{
1286	int namelen;
1287	int ret = 0;
1288
1289	if (!S_ISDIR(file_inode(file)->i_mode))
1290		return -ENOTDIR;
1291
1292	ret = mnt_want_write_file(file);
1293	if (ret)
1294		goto out;
1295
1296	namelen = strlen(name);
1297	if (strchr(name, '/')) {
1298		ret = -EINVAL;
1299		goto out_drop_write;
1300	}
1301
1302	if (name[0] == '.' &&
1303	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1304		ret = -EEXIST;
1305		goto out_drop_write;
1306	}
1307
1308	if (subvol) {
1309		ret = btrfs_mksubvol(&file->f_path, idmap, name,
1310				     namelen, NULL, readonly, inherit);
1311	} else {
1312		struct fd src = fdget(fd);
1313		struct inode *src_inode;
1314		if (!src.file) {
1315			ret = -EINVAL;
1316			goto out_drop_write;
1317		}
1318
1319		src_inode = file_inode(src.file);
1320		if (src_inode->i_sb != file_inode(file)->i_sb) {
1321			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1322				   "Snapshot src from another FS");
1323			ret = -EXDEV;
1324		} else if (!inode_owner_or_capable(idmap, src_inode)) {
1325			/*
1326			 * Subvolume creation is not restricted, but snapshots
1327			 * are limited to own subvolumes only
1328			 */
1329			ret = -EPERM;
1330		} else if (btrfs_ino(BTRFS_I(src_inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1331			/*
1332			 * Snapshots must be made with the src_inode referring
1333			 * to the subvolume inode, otherwise the permission
1334			 * checking above is useless because we may have
1335			 * permission on a lower directory but not the subvol
1336			 * itself.
1337			 */
1338			ret = -EINVAL;
1339		} else {
1340			ret = btrfs_mksnapshot(&file->f_path, idmap,
1341					       name, namelen,
1342					       BTRFS_I(src_inode)->root,
1343					       readonly, inherit);
1344		}
1345		fdput(src);
1346	}
1347out_drop_write:
1348	mnt_drop_write_file(file);
1349out:
1350	return ret;
1351}
1352
1353static noinline int btrfs_ioctl_snap_create(struct file *file,
1354					    void __user *arg, int subvol)
1355{
1356	struct btrfs_ioctl_vol_args *vol_args;
1357	int ret;
1358
1359	if (!S_ISDIR(file_inode(file)->i_mode))
1360		return -ENOTDIR;
1361
1362	vol_args = memdup_user(arg, sizeof(*vol_args));
1363	if (IS_ERR(vol_args))
1364		return PTR_ERR(vol_args);
1365	ret = btrfs_check_ioctl_vol_args_path(vol_args);
1366	if (ret < 0)
1367		goto out;
1368
1369	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1370					vol_args->name, vol_args->fd, subvol,
1371					false, NULL);
1372
1373out:
1374	kfree(vol_args);
1375	return ret;
1376}
1377
1378static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1379					       void __user *arg, int subvol)
1380{
1381	struct btrfs_ioctl_vol_args_v2 *vol_args;
1382	int ret;
1383	bool readonly = false;
1384	struct btrfs_qgroup_inherit *inherit = NULL;
1385
1386	if (!S_ISDIR(file_inode(file)->i_mode))
1387		return -ENOTDIR;
1388
1389	vol_args = memdup_user(arg, sizeof(*vol_args));
1390	if (IS_ERR(vol_args))
1391		return PTR_ERR(vol_args);
1392	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
1393	if (ret < 0)
1394		goto free_args;
1395
1396	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1397		ret = -EOPNOTSUPP;
1398		goto free_args;
1399	}
1400
1401	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1402		readonly = true;
1403	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1404		struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
1405
1406		if (vol_args->size < sizeof(*inherit) ||
1407		    vol_args->size > PAGE_SIZE) {
1408			ret = -EINVAL;
1409			goto free_args;
1410		}
1411		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1412		if (IS_ERR(inherit)) {
1413			ret = PTR_ERR(inherit);
1414			goto free_args;
1415		}
1416
1417		ret = btrfs_qgroup_check_inherit(fs_info, inherit, vol_args->size);
1418		if (ret < 0)
 
 
 
 
 
 
 
 
 
1419			goto free_inherit;
 
1420	}
1421
1422	ret = __btrfs_ioctl_snap_create(file, file_mnt_idmap(file),
1423					vol_args->name, vol_args->fd, subvol,
1424					readonly, inherit);
1425	if (ret)
1426		goto free_inherit;
1427free_inherit:
1428	kfree(inherit);
1429free_args:
1430	kfree(vol_args);
1431	return ret;
1432}
1433
1434static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode,
1435						void __user *arg)
1436{
1437	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 
1438	struct btrfs_root *root = BTRFS_I(inode)->root;
1439	int ret = 0;
1440	u64 flags = 0;
1441
1442	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1443		return -EINVAL;
1444
1445	down_read(&fs_info->subvol_sem);
1446	if (btrfs_root_readonly(root))
1447		flags |= BTRFS_SUBVOL_RDONLY;
1448	up_read(&fs_info->subvol_sem);
1449
1450	if (copy_to_user(arg, &flags, sizeof(flags)))
1451		ret = -EFAULT;
1452
1453	return ret;
1454}
1455
1456static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1457					      void __user *arg)
1458{
1459	struct inode *inode = file_inode(file);
1460	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
1461	struct btrfs_root *root = BTRFS_I(inode)->root;
1462	struct btrfs_trans_handle *trans;
1463	u64 root_flags;
1464	u64 flags;
1465	int ret = 0;
1466
1467	if (!inode_owner_or_capable(file_mnt_idmap(file), inode))
1468		return -EPERM;
1469
1470	ret = mnt_want_write_file(file);
1471	if (ret)
1472		goto out;
1473
1474	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1475		ret = -EINVAL;
1476		goto out_drop_write;
1477	}
1478
1479	if (copy_from_user(&flags, arg, sizeof(flags))) {
1480		ret = -EFAULT;
1481		goto out_drop_write;
1482	}
1483
1484	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1485		ret = -EOPNOTSUPP;
1486		goto out_drop_write;
1487	}
1488
1489	down_write(&fs_info->subvol_sem);
1490
1491	/* nothing to do */
1492	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1493		goto out_drop_sem;
1494
1495	root_flags = btrfs_root_flags(&root->root_item);
1496	if (flags & BTRFS_SUBVOL_RDONLY) {
1497		btrfs_set_root_flags(&root->root_item,
1498				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1499	} else {
1500		/*
1501		 * Block RO -> RW transition if this subvolume is involved in
1502		 * send
1503		 */
1504		spin_lock(&root->root_item_lock);
1505		if (root->send_in_progress == 0) {
1506			btrfs_set_root_flags(&root->root_item,
1507				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1508			spin_unlock(&root->root_item_lock);
1509		} else {
1510			spin_unlock(&root->root_item_lock);
1511			btrfs_warn(fs_info,
1512				   "Attempt to set subvolume %llu read-write during send",
1513				   root->root_key.objectid);
1514			ret = -EPERM;
1515			goto out_drop_sem;
1516		}
1517	}
1518
1519	trans = btrfs_start_transaction(root, 1);
1520	if (IS_ERR(trans)) {
1521		ret = PTR_ERR(trans);
1522		goto out_reset;
1523	}
1524
1525	ret = btrfs_update_root(trans, fs_info->tree_root,
1526				&root->root_key, &root->root_item);
1527	if (ret < 0) {
1528		btrfs_end_transaction(trans);
1529		goto out_reset;
1530	}
1531
1532	ret = btrfs_commit_transaction(trans);
1533
1534out_reset:
1535	if (ret)
1536		btrfs_set_root_flags(&root->root_item, root_flags);
1537out_drop_sem:
1538	up_write(&fs_info->subvol_sem);
1539out_drop_write:
1540	mnt_drop_write_file(file);
1541out:
1542	return ret;
1543}
1544
1545static noinline int key_in_sk(struct btrfs_key *key,
1546			      struct btrfs_ioctl_search_key *sk)
1547{
1548	struct btrfs_key test;
1549	int ret;
1550
1551	test.objectid = sk->min_objectid;
1552	test.type = sk->min_type;
1553	test.offset = sk->min_offset;
1554
1555	ret = btrfs_comp_cpu_keys(key, &test);
1556	if (ret < 0)
1557		return 0;
1558
1559	test.objectid = sk->max_objectid;
1560	test.type = sk->max_type;
1561	test.offset = sk->max_offset;
1562
1563	ret = btrfs_comp_cpu_keys(key, &test);
1564	if (ret > 0)
1565		return 0;
1566	return 1;
1567}
1568
1569static noinline int copy_to_sk(struct btrfs_path *path,
1570			       struct btrfs_key *key,
1571			       struct btrfs_ioctl_search_key *sk,
1572			       u64 *buf_size,
1573			       char __user *ubuf,
1574			       unsigned long *sk_offset,
1575			       int *num_found)
1576{
1577	u64 found_transid;
1578	struct extent_buffer *leaf;
1579	struct btrfs_ioctl_search_header sh;
1580	struct btrfs_key test;
1581	unsigned long item_off;
1582	unsigned long item_len;
1583	int nritems;
1584	int i;
1585	int slot;
1586	int ret = 0;
1587
1588	leaf = path->nodes[0];
1589	slot = path->slots[0];
1590	nritems = btrfs_header_nritems(leaf);
1591
1592	if (btrfs_header_generation(leaf) > sk->max_transid) {
1593		i = nritems;
1594		goto advance_key;
1595	}
1596	found_transid = btrfs_header_generation(leaf);
1597
1598	for (i = slot; i < nritems; i++) {
1599		item_off = btrfs_item_ptr_offset(leaf, i);
1600		item_len = btrfs_item_size(leaf, i);
1601
1602		btrfs_item_key_to_cpu(leaf, key, i);
1603		if (!key_in_sk(key, sk))
1604			continue;
1605
1606		if (sizeof(sh) + item_len > *buf_size) {
1607			if (*num_found) {
1608				ret = 1;
1609				goto out;
1610			}
1611
1612			/*
1613			 * return one empty item back for v1, which does not
1614			 * handle -EOVERFLOW
1615			 */
1616
1617			*buf_size = sizeof(sh) + item_len;
1618			item_len = 0;
1619			ret = -EOVERFLOW;
1620		}
1621
1622		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1623			ret = 1;
1624			goto out;
1625		}
1626
1627		sh.objectid = key->objectid;
1628		sh.offset = key->offset;
1629		sh.type = key->type;
1630		sh.len = item_len;
1631		sh.transid = found_transid;
1632
1633		/*
1634		 * Copy search result header. If we fault then loop again so we
1635		 * can fault in the pages and -EFAULT there if there's a
1636		 * problem. Otherwise we'll fault and then copy the buffer in
1637		 * properly this next time through
1638		 */
1639		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
1640			ret = 0;
1641			goto out;
1642		}
1643
1644		*sk_offset += sizeof(sh);
1645
1646		if (item_len) {
1647			char __user *up = ubuf + *sk_offset;
1648			/*
1649			 * Copy the item, same behavior as above, but reset the
1650			 * * sk_offset so we copy the full thing again.
1651			 */
1652			if (read_extent_buffer_to_user_nofault(leaf, up,
1653						item_off, item_len)) {
1654				ret = 0;
1655				*sk_offset -= sizeof(sh);
1656				goto out;
1657			}
1658
1659			*sk_offset += item_len;
1660		}
1661		(*num_found)++;
1662
1663		if (ret) /* -EOVERFLOW from above */
1664			goto out;
1665
1666		if (*num_found >= sk->nr_items) {
1667			ret = 1;
1668			goto out;
1669		}
1670	}
1671advance_key:
1672	ret = 0;
1673	test.objectid = sk->max_objectid;
1674	test.type = sk->max_type;
1675	test.offset = sk->max_offset;
1676	if (btrfs_comp_cpu_keys(key, &test) >= 0)
1677		ret = 1;
1678	else if (key->offset < (u64)-1)
1679		key->offset++;
1680	else if (key->type < (u8)-1) {
1681		key->offset = 0;
1682		key->type++;
1683	} else if (key->objectid < (u64)-1) {
1684		key->offset = 0;
1685		key->type = 0;
1686		key->objectid++;
1687	} else
1688		ret = 1;
1689out:
1690	/*
1691	 *  0: all items from this leaf copied, continue with next
1692	 *  1: * more items can be copied, but unused buffer is too small
1693	 *     * all items were found
1694	 *     Either way, it will stops the loop which iterates to the next
1695	 *     leaf
1696	 *  -EOVERFLOW: item was to large for buffer
1697	 *  -EFAULT: could not copy extent buffer back to userspace
1698	 */
1699	return ret;
1700}
1701
1702static noinline int search_ioctl(struct inode *inode,
1703				 struct btrfs_ioctl_search_key *sk,
1704				 u64 *buf_size,
1705				 char __user *ubuf)
1706{
1707	struct btrfs_fs_info *info = inode_to_fs_info(inode);
1708	struct btrfs_root *root;
1709	struct btrfs_key key;
1710	struct btrfs_path *path;
1711	int ret;
1712	int num_found = 0;
1713	unsigned long sk_offset = 0;
1714
1715	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
1716		*buf_size = sizeof(struct btrfs_ioctl_search_header);
1717		return -EOVERFLOW;
1718	}
1719
1720	path = btrfs_alloc_path();
1721	if (!path)
1722		return -ENOMEM;
1723
1724	if (sk->tree_id == 0) {
1725		/* search the root of the inode that was passed */
1726		root = btrfs_grab_root(BTRFS_I(inode)->root);
1727	} else {
1728		root = btrfs_get_fs_root(info, sk->tree_id, true);
1729		if (IS_ERR(root)) {
1730			btrfs_free_path(path);
1731			return PTR_ERR(root);
1732		}
1733	}
1734
1735	key.objectid = sk->min_objectid;
1736	key.type = sk->min_type;
1737	key.offset = sk->min_offset;
1738
1739	while (1) {
1740		ret = -EFAULT;
1741		/*
1742		 * Ensure that the whole user buffer is faulted in at sub-page
1743		 * granularity, otherwise the loop may live-lock.
1744		 */
1745		if (fault_in_subpage_writeable(ubuf + sk_offset,
1746					       *buf_size - sk_offset))
1747			break;
1748
1749		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
1750		if (ret != 0) {
1751			if (ret > 0)
1752				ret = 0;
1753			goto err;
1754		}
1755		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
1756				 &sk_offset, &num_found);
1757		btrfs_release_path(path);
1758		if (ret)
1759			break;
1760
1761	}
1762	if (ret > 0)
1763		ret = 0;
1764err:
1765	sk->nr_items = num_found;
1766	btrfs_put_root(root);
1767	btrfs_free_path(path);
1768	return ret;
1769}
1770
1771static noinline int btrfs_ioctl_tree_search(struct inode *inode,
1772					    void __user *argp)
1773{
1774	struct btrfs_ioctl_search_args __user *uargs = argp;
1775	struct btrfs_ioctl_search_key sk;
 
1776	int ret;
1777	u64 buf_size;
1778
1779	if (!capable(CAP_SYS_ADMIN))
1780		return -EPERM;
1781
 
 
1782	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
1783		return -EFAULT;
1784
1785	buf_size = sizeof(uargs->buf);
1786
 
1787	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
1788
1789	/*
1790	 * In the origin implementation an overflow is handled by returning a
1791	 * search header with a len of zero, so reset ret.
1792	 */
1793	if (ret == -EOVERFLOW)
1794		ret = 0;
1795
1796	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
1797		ret = -EFAULT;
1798	return ret;
1799}
1800
1801static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode,
1802					       void __user *argp)
1803{
1804	struct btrfs_ioctl_search_args_v2 __user *uarg = argp;
1805	struct btrfs_ioctl_search_args_v2 args;
 
1806	int ret;
1807	u64 buf_size;
1808	const u64 buf_limit = SZ_16M;
1809
1810	if (!capable(CAP_SYS_ADMIN))
1811		return -EPERM;
1812
1813	/* copy search header and buffer size */
 
1814	if (copy_from_user(&args, uarg, sizeof(args)))
1815		return -EFAULT;
1816
1817	buf_size = args.buf_size;
1818
1819	/* limit result size to 16MB */
1820	if (buf_size > buf_limit)
1821		buf_size = buf_limit;
1822
 
1823	ret = search_ioctl(inode, &args.key, &buf_size,
1824			   (char __user *)(&uarg->buf[0]));
1825	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
1826		ret = -EFAULT;
1827	else if (ret == -EOVERFLOW &&
1828		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
1829		ret = -EFAULT;
1830
1831	return ret;
1832}
1833
1834/*
1835 * Search INODE_REFs to identify path name of 'dirid' directory
1836 * in a 'tree_id' tree. and sets path name to 'name'.
1837 */
1838static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1839				u64 tree_id, u64 dirid, char *name)
1840{
1841	struct btrfs_root *root;
1842	struct btrfs_key key;
1843	char *ptr;
1844	int ret = -1;
1845	int slot;
1846	int len;
1847	int total_len = 0;
1848	struct btrfs_inode_ref *iref;
1849	struct extent_buffer *l;
1850	struct btrfs_path *path;
1851
1852	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1853		name[0]='\0';
1854		return 0;
1855	}
1856
1857	path = btrfs_alloc_path();
1858	if (!path)
1859		return -ENOMEM;
1860
1861	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
1862
1863	root = btrfs_get_fs_root(info, tree_id, true);
1864	if (IS_ERR(root)) {
1865		ret = PTR_ERR(root);
1866		root = NULL;
1867		goto out;
1868	}
1869
1870	key.objectid = dirid;
1871	key.type = BTRFS_INODE_REF_KEY;
1872	key.offset = (u64)-1;
1873
1874	while (1) {
1875		ret = btrfs_search_backwards(root, &key, path);
1876		if (ret < 0)
1877			goto out;
1878		else if (ret > 0) {
1879			ret = -ENOENT;
1880			goto out;
 
 
 
 
 
 
1881		}
1882
1883		l = path->nodes[0];
1884		slot = path->slots[0];
 
1885
1886		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1887		len = btrfs_inode_ref_name_len(l, iref);
1888		ptr -= len + 1;
1889		total_len += len + 1;
1890		if (ptr < name) {
1891			ret = -ENAMETOOLONG;
1892			goto out;
1893		}
1894
1895		*(ptr + len) = '/';
1896		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
1897
1898		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1899			break;
1900
1901		btrfs_release_path(path);
1902		key.objectid = key.offset;
1903		key.offset = (u64)-1;
1904		dirid = key.objectid;
1905	}
1906	memmove(name, ptr, total_len);
1907	name[total_len] = '\0';
1908	ret = 0;
1909out:
1910	btrfs_put_root(root);
1911	btrfs_free_path(path);
1912	return ret;
1913}
1914
1915static int btrfs_search_path_in_tree_user(struct mnt_idmap *idmap,
1916				struct inode *inode,
1917				struct btrfs_ioctl_ino_lookup_user_args *args)
1918{
1919	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1920	struct super_block *sb = inode->i_sb;
1921	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
1922	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
1923	u64 dirid = args->dirid;
1924	unsigned long item_off;
1925	unsigned long item_len;
1926	struct btrfs_inode_ref *iref;
1927	struct btrfs_root_ref *rref;
1928	struct btrfs_root *root = NULL;
1929	struct btrfs_path *path;
1930	struct btrfs_key key, key2;
1931	struct extent_buffer *leaf;
1932	struct inode *temp_inode;
1933	char *ptr;
1934	int slot;
1935	int len;
1936	int total_len = 0;
1937	int ret;
1938
1939	path = btrfs_alloc_path();
1940	if (!path)
1941		return -ENOMEM;
1942
1943	/*
1944	 * If the bottom subvolume does not exist directly under upper_limit,
1945	 * construct the path in from the bottom up.
1946	 */
1947	if (dirid != upper_limit.objectid) {
1948		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
1949
1950		root = btrfs_get_fs_root(fs_info, treeid, true);
1951		if (IS_ERR(root)) {
1952			ret = PTR_ERR(root);
1953			goto out;
1954		}
1955
1956		key.objectid = dirid;
1957		key.type = BTRFS_INODE_REF_KEY;
1958		key.offset = (u64)-1;
1959		while (1) {
1960			ret = btrfs_search_backwards(root, &key, path);
1961			if (ret < 0)
1962				goto out_put;
1963			else if (ret > 0) {
1964				ret = -ENOENT;
1965				goto out_put;
 
 
 
 
 
 
 
 
 
1966			}
1967
1968			leaf = path->nodes[0];
1969			slot = path->slots[0];
 
1970
1971			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
1972			len = btrfs_inode_ref_name_len(leaf, iref);
1973			ptr -= len + 1;
1974			total_len += len + 1;
1975			if (ptr < args->path) {
1976				ret = -ENAMETOOLONG;
1977				goto out_put;
1978			}
1979
1980			*(ptr + len) = '/';
1981			read_extent_buffer(leaf, ptr,
1982					(unsigned long)(iref + 1), len);
1983
1984			/* Check the read+exec permission of this directory */
1985			ret = btrfs_previous_item(root, path, dirid,
1986						  BTRFS_INODE_ITEM_KEY);
1987			if (ret < 0) {
1988				goto out_put;
1989			} else if (ret > 0) {
1990				ret = -ENOENT;
1991				goto out_put;
1992			}
1993
1994			leaf = path->nodes[0];
1995			slot = path->slots[0];
1996			btrfs_item_key_to_cpu(leaf, &key2, slot);
1997			if (key2.objectid != dirid) {
1998				ret = -ENOENT;
1999				goto out_put;
2000			}
2001
2002			/*
2003			 * We don't need the path anymore, so release it and
2004			 * avoid deadlocks and lockdep warnings in case
2005			 * btrfs_iget() needs to lookup the inode from its root
2006			 * btree and lock the same leaf.
2007			 */
2008			btrfs_release_path(path);
2009			temp_inode = btrfs_iget(sb, key2.objectid, root);
2010			if (IS_ERR(temp_inode)) {
2011				ret = PTR_ERR(temp_inode);
2012				goto out_put;
2013			}
2014			ret = inode_permission(idmap, temp_inode,
2015					       MAY_READ | MAY_EXEC);
2016			iput(temp_inode);
2017			if (ret) {
2018				ret = -EACCES;
2019				goto out_put;
2020			}
2021
2022			if (key.offset == upper_limit.objectid)
2023				break;
2024			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2025				ret = -EACCES;
2026				goto out_put;
2027			}
2028
 
2029			key.objectid = key.offset;
2030			key.offset = (u64)-1;
2031			dirid = key.objectid;
2032		}
2033
2034		memmove(args->path, ptr, total_len);
2035		args->path[total_len] = '\0';
2036		btrfs_put_root(root);
2037		root = NULL;
2038		btrfs_release_path(path);
2039	}
2040
2041	/* Get the bottom subvolume's name from ROOT_REF */
2042	key.objectid = treeid;
2043	key.type = BTRFS_ROOT_REF_KEY;
2044	key.offset = args->treeid;
2045	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2046	if (ret < 0) {
2047		goto out;
2048	} else if (ret > 0) {
2049		ret = -ENOENT;
2050		goto out;
2051	}
2052
2053	leaf = path->nodes[0];
2054	slot = path->slots[0];
2055	btrfs_item_key_to_cpu(leaf, &key, slot);
2056
2057	item_off = btrfs_item_ptr_offset(leaf, slot);
2058	item_len = btrfs_item_size(leaf, slot);
2059	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2060	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2061	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2062		ret = -EINVAL;
2063		goto out;
2064	}
2065
2066	/* Copy subvolume's name */
2067	item_off += sizeof(struct btrfs_root_ref);
2068	item_len -= sizeof(struct btrfs_root_ref);
2069	read_extent_buffer(leaf, args->name, item_off, item_len);
2070	args->name[item_len] = 0;
2071
2072out_put:
2073	btrfs_put_root(root);
2074out:
2075	btrfs_free_path(path);
2076	return ret;
2077}
2078
2079static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root,
2080					   void __user *argp)
2081{
2082	struct btrfs_ioctl_ino_lookup_args *args;
 
2083	int ret = 0;
2084
2085	args = memdup_user(argp, sizeof(*args));
2086	if (IS_ERR(args))
2087		return PTR_ERR(args);
2088
 
 
2089	/*
2090	 * Unprivileged query to obtain the containing subvolume root id. The
2091	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2092	 */
2093	if (args->treeid == 0)
2094		args->treeid = root->root_key.objectid;
2095
2096	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2097		args->name[0] = 0;
2098		goto out;
2099	}
2100
2101	if (!capable(CAP_SYS_ADMIN)) {
2102		ret = -EPERM;
2103		goto out;
2104	}
2105
2106	ret = btrfs_search_path_in_tree(root->fs_info,
2107					args->treeid, args->objectid,
2108					args->name);
2109
2110out:
2111	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2112		ret = -EFAULT;
2113
2114	kfree(args);
2115	return ret;
2116}
2117
2118/*
2119 * Version of ino_lookup ioctl (unprivileged)
2120 *
2121 * The main differences from ino_lookup ioctl are:
2122 *
2123 *   1. Read + Exec permission will be checked using inode_permission() during
2124 *      path construction. -EACCES will be returned in case of failure.
2125 *   2. Path construction will be stopped at the inode number which corresponds
2126 *      to the fd with which this ioctl is called. If constructed path does not
2127 *      exist under fd's inode, -EACCES will be returned.
2128 *   3. The name of bottom subvolume is also searched and filled.
2129 */
2130static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2131{
2132	struct btrfs_ioctl_ino_lookup_user_args *args;
2133	struct inode *inode;
2134	int ret;
2135
2136	args = memdup_user(argp, sizeof(*args));
2137	if (IS_ERR(args))
2138		return PTR_ERR(args);
2139
2140	inode = file_inode(file);
2141
2142	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2143	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2144		/*
2145		 * The subvolume does not exist under fd with which this is
2146		 * called
2147		 */
2148		kfree(args);
2149		return -EACCES;
2150	}
2151
2152	ret = btrfs_search_path_in_tree_user(file_mnt_idmap(file), inode, args);
2153
2154	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2155		ret = -EFAULT;
2156
2157	kfree(args);
2158	return ret;
2159}
2160
2161/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2162static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp)
2163{
2164	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2165	struct btrfs_fs_info *fs_info;
2166	struct btrfs_root *root;
2167	struct btrfs_path *path;
2168	struct btrfs_key key;
2169	struct btrfs_root_item *root_item;
2170	struct btrfs_root_ref *rref;
2171	struct extent_buffer *leaf;
2172	unsigned long item_off;
2173	unsigned long item_len;
 
2174	int slot;
2175	int ret = 0;
2176
2177	path = btrfs_alloc_path();
2178	if (!path)
2179		return -ENOMEM;
2180
2181	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2182	if (!subvol_info) {
2183		btrfs_free_path(path);
2184		return -ENOMEM;
2185	}
2186
 
2187	fs_info = BTRFS_I(inode)->root->fs_info;
2188
2189	/* Get root_item of inode's subvolume */
2190	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2191	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2192	if (IS_ERR(root)) {
2193		ret = PTR_ERR(root);
2194		goto out_free;
2195	}
2196	root_item = &root->root_item;
2197
2198	subvol_info->treeid = key.objectid;
2199
2200	subvol_info->generation = btrfs_root_generation(root_item);
2201	subvol_info->flags = btrfs_root_flags(root_item);
2202
2203	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2204	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2205						    BTRFS_UUID_SIZE);
2206	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2207						    BTRFS_UUID_SIZE);
2208
2209	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2210	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2211	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2212
2213	subvol_info->otransid = btrfs_root_otransid(root_item);
2214	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2215	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2216
2217	subvol_info->stransid = btrfs_root_stransid(root_item);
2218	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2219	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2220
2221	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2222	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2223	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2224
2225	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2226		/* Search root tree for ROOT_BACKREF of this subvolume */
2227		key.type = BTRFS_ROOT_BACKREF_KEY;
2228		key.offset = 0;
2229		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2230		if (ret < 0) {
2231			goto out;
2232		} else if (path->slots[0] >=
2233			   btrfs_header_nritems(path->nodes[0])) {
2234			ret = btrfs_next_leaf(fs_info->tree_root, path);
2235			if (ret < 0) {
2236				goto out;
2237			} else if (ret > 0) {
2238				ret = -EUCLEAN;
2239				goto out;
2240			}
2241		}
2242
2243		leaf = path->nodes[0];
2244		slot = path->slots[0];
2245		btrfs_item_key_to_cpu(leaf, &key, slot);
2246		if (key.objectid == subvol_info->treeid &&
2247		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2248			subvol_info->parent_id = key.offset;
2249
2250			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2251			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2252
2253			item_off = btrfs_item_ptr_offset(leaf, slot)
2254					+ sizeof(struct btrfs_root_ref);
2255			item_len = btrfs_item_size(leaf, slot)
2256					- sizeof(struct btrfs_root_ref);
2257			read_extent_buffer(leaf, subvol_info->name,
2258					   item_off, item_len);
2259		} else {
2260			ret = -ENOENT;
2261			goto out;
2262		}
2263	}
2264
2265	btrfs_free_path(path);
2266	path = NULL;
2267	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2268		ret = -EFAULT;
2269
2270out:
2271	btrfs_put_root(root);
2272out_free:
2273	btrfs_free_path(path);
2274	kfree(subvol_info);
2275	return ret;
2276}
2277
2278/*
2279 * Return ROOT_REF information of the subvolume containing this inode
2280 * except the subvolume name.
2281 */
2282static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root,
2283					  void __user *argp)
2284{
2285	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2286	struct btrfs_root_ref *rref;
 
2287	struct btrfs_path *path;
2288	struct btrfs_key key;
2289	struct extent_buffer *leaf;
 
2290	u64 objectid;
2291	int slot;
2292	int ret;
2293	u8 found;
2294
2295	path = btrfs_alloc_path();
2296	if (!path)
2297		return -ENOMEM;
2298
2299	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2300	if (IS_ERR(rootrefs)) {
2301		btrfs_free_path(path);
2302		return PTR_ERR(rootrefs);
2303	}
2304
2305	objectid = root->root_key.objectid;
 
 
 
2306	key.objectid = objectid;
2307	key.type = BTRFS_ROOT_REF_KEY;
2308	key.offset = rootrefs->min_treeid;
2309	found = 0;
2310
2311	root = root->fs_info->tree_root;
2312	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2313	if (ret < 0) {
2314		goto out;
2315	} else if (path->slots[0] >=
2316		   btrfs_header_nritems(path->nodes[0])) {
2317		ret = btrfs_next_leaf(root, path);
2318		if (ret < 0) {
2319			goto out;
2320		} else if (ret > 0) {
2321			ret = -EUCLEAN;
2322			goto out;
2323		}
2324	}
2325	while (1) {
2326		leaf = path->nodes[0];
2327		slot = path->slots[0];
2328
2329		btrfs_item_key_to_cpu(leaf, &key, slot);
2330		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2331			ret = 0;
2332			goto out;
2333		}
2334
2335		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2336			ret = -EOVERFLOW;
2337			goto out;
2338		}
2339
2340		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2341		rootrefs->rootref[found].treeid = key.offset;
2342		rootrefs->rootref[found].dirid =
2343				  btrfs_root_ref_dirid(leaf, rref);
2344		found++;
2345
2346		ret = btrfs_next_item(root, path);
2347		if (ret < 0) {
2348			goto out;
2349		} else if (ret > 0) {
2350			ret = -EUCLEAN;
2351			goto out;
2352		}
2353	}
2354
2355out:
2356	btrfs_free_path(path);
2357
2358	if (!ret || ret == -EOVERFLOW) {
2359		rootrefs->num_items = found;
2360		/* update min_treeid for next search */
2361		if (found)
2362			rootrefs->min_treeid =
2363				rootrefs->rootref[found - 1].treeid + 1;
2364		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2365			ret = -EFAULT;
2366	}
2367
2368	kfree(rootrefs);
 
2369
2370	return ret;
2371}
2372
2373static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2374					     void __user *arg,
2375					     bool destroy_v2)
2376{
2377	struct dentry *parent = file->f_path.dentry;
 
2378	struct dentry *dentry;
2379	struct inode *dir = d_inode(parent);
2380	struct btrfs_fs_info *fs_info = inode_to_fs_info(dir);
2381	struct inode *inode;
2382	struct btrfs_root *root = BTRFS_I(dir)->root;
2383	struct btrfs_root *dest = NULL;
2384	struct btrfs_ioctl_vol_args *vol_args = NULL;
2385	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2386	struct mnt_idmap *idmap = file_mnt_idmap(file);
2387	char *subvol_name, *subvol_name_ptr = NULL;
2388	int subvol_namelen;
2389	int err = 0;
2390	bool destroy_parent = false;
2391
2392	/* We don't support snapshots with extent tree v2 yet. */
2393	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2394		btrfs_err(fs_info,
2395			  "extent tree v2 doesn't support snapshot deletion yet");
2396		return -EOPNOTSUPP;
2397	}
2398
2399	if (destroy_v2) {
2400		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2401		if (IS_ERR(vol_args2))
2402			return PTR_ERR(vol_args2);
2403
2404		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2405			err = -EOPNOTSUPP;
2406			goto out;
2407		}
2408
2409		/*
2410		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2411		 * name, same as v1 currently does.
2412		 */
2413		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2414			err = btrfs_check_ioctl_vol_args2_subvol_name(vol_args2);
2415			if (err < 0)
2416				goto out;
2417			subvol_name = vol_args2->name;
2418
2419			err = mnt_want_write_file(file);
2420			if (err)
2421				goto out;
2422		} else {
2423			struct inode *old_dir;
2424
2425			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2426				err = -EINVAL;
2427				goto out;
2428			}
2429
2430			err = mnt_want_write_file(file);
2431			if (err)
2432				goto out;
2433
2434			dentry = btrfs_get_dentry(fs_info->sb,
2435					BTRFS_FIRST_FREE_OBJECTID,
2436					vol_args2->subvolid, 0);
2437			if (IS_ERR(dentry)) {
2438				err = PTR_ERR(dentry);
2439				goto out_drop_write;
2440			}
2441
2442			/*
2443			 * Change the default parent since the subvolume being
2444			 * deleted can be outside of the current mount point.
2445			 */
2446			parent = btrfs_get_parent(dentry);
2447
2448			/*
2449			 * At this point dentry->d_name can point to '/' if the
2450			 * subvolume we want to destroy is outsite of the
2451			 * current mount point, so we need to release the
2452			 * current dentry and execute the lookup to return a new
2453			 * one with ->d_name pointing to the
2454			 * <mount point>/subvol_name.
2455			 */
2456			dput(dentry);
2457			if (IS_ERR(parent)) {
2458				err = PTR_ERR(parent);
2459				goto out_drop_write;
2460			}
2461			old_dir = dir;
2462			dir = d_inode(parent);
2463
2464			/*
2465			 * If v2 was used with SPEC_BY_ID, a new parent was
2466			 * allocated since the subvolume can be outside of the
2467			 * current mount point. Later on we need to release this
2468			 * new parent dentry.
2469			 */
2470			destroy_parent = true;
2471
2472			/*
2473			 * On idmapped mounts, deletion via subvolid is
2474			 * restricted to subvolumes that are immediate
2475			 * ancestors of the inode referenced by the file
2476			 * descriptor in the ioctl. Otherwise the idmapping
2477			 * could potentially be abused to delete subvolumes
2478			 * anywhere in the filesystem the user wouldn't be able
2479			 * to delete without an idmapped mount.
2480			 */
2481			if (old_dir != dir && idmap != &nop_mnt_idmap) {
2482				err = -EOPNOTSUPP;
2483				goto free_parent;
2484			}
2485
2486			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2487						fs_info, vol_args2->subvolid);
2488			if (IS_ERR(subvol_name_ptr)) {
2489				err = PTR_ERR(subvol_name_ptr);
2490				goto free_parent;
2491			}
2492			/* subvol_name_ptr is already nul terminated */
2493			subvol_name = (char *)kbasename(subvol_name_ptr);
2494		}
2495	} else {
2496		vol_args = memdup_user(arg, sizeof(*vol_args));
2497		if (IS_ERR(vol_args))
2498			return PTR_ERR(vol_args);
2499
2500		err = btrfs_check_ioctl_vol_args_path(vol_args);
2501		if (err < 0)
2502			goto out;
2503
2504		subvol_name = vol_args->name;
2505
2506		err = mnt_want_write_file(file);
2507		if (err)
2508			goto out;
2509	}
2510
2511	subvol_namelen = strlen(subvol_name);
2512
2513	if (strchr(subvol_name, '/') ||
2514	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2515		err = -EINVAL;
2516		goto free_subvol_name;
2517	}
2518
2519	if (!S_ISDIR(dir->i_mode)) {
2520		err = -ENOTDIR;
2521		goto free_subvol_name;
2522	}
2523
2524	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2525	if (err == -EINTR)
2526		goto free_subvol_name;
2527	dentry = lookup_one(idmap, subvol_name, parent, subvol_namelen);
2528	if (IS_ERR(dentry)) {
2529		err = PTR_ERR(dentry);
2530		goto out_unlock_dir;
2531	}
2532
2533	if (d_really_is_negative(dentry)) {
2534		err = -ENOENT;
2535		goto out_dput;
2536	}
2537
2538	inode = d_inode(dentry);
2539	dest = BTRFS_I(inode)->root;
2540	if (!capable(CAP_SYS_ADMIN)) {
2541		/*
2542		 * Regular user.  Only allow this with a special mount
2543		 * option, when the user has write+exec access to the
2544		 * subvol root, and when rmdir(2) would have been
2545		 * allowed.
2546		 *
2547		 * Note that this is _not_ check that the subvol is
2548		 * empty or doesn't contain data that we wouldn't
2549		 * otherwise be able to delete.
2550		 *
2551		 * Users who want to delete empty subvols should try
2552		 * rmdir(2).
2553		 */
2554		err = -EPERM;
2555		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2556			goto out_dput;
2557
2558		/*
2559		 * Do not allow deletion if the parent dir is the same
2560		 * as the dir to be deleted.  That means the ioctl
2561		 * must be called on the dentry referencing the root
2562		 * of the subvol, not a random directory contained
2563		 * within it.
2564		 */
2565		err = -EINVAL;
2566		if (root == dest)
2567			goto out_dput;
2568
2569		err = inode_permission(idmap, inode, MAY_WRITE | MAY_EXEC);
 
2570		if (err)
2571			goto out_dput;
2572	}
2573
2574	/* check if subvolume may be deleted by a user */
2575	err = btrfs_may_delete(idmap, dir, dentry, 1);
2576	if (err)
2577		goto out_dput;
2578
2579	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2580		err = -EINVAL;
2581		goto out_dput;
2582	}
2583
2584	btrfs_inode_lock(BTRFS_I(inode), 0);
2585	err = btrfs_delete_subvolume(BTRFS_I(dir), dentry);
2586	btrfs_inode_unlock(BTRFS_I(inode), 0);
2587	if (!err)
2588		d_delete_notify(dir, dentry);
 
 
2589
2590out_dput:
2591	dput(dentry);
2592out_unlock_dir:
2593	btrfs_inode_unlock(BTRFS_I(dir), 0);
2594free_subvol_name:
2595	kfree(subvol_name_ptr);
2596free_parent:
2597	if (destroy_parent)
2598		dput(parent);
2599out_drop_write:
2600	mnt_drop_write_file(file);
2601out:
2602	kfree(vol_args2);
2603	kfree(vol_args);
2604	return err;
2605}
2606
2607static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2608{
2609	struct inode *inode = file_inode(file);
2610	struct btrfs_root *root = BTRFS_I(inode)->root;
2611	struct btrfs_ioctl_defrag_range_args range = {0};
2612	int ret;
2613
2614	ret = mnt_want_write_file(file);
2615	if (ret)
2616		return ret;
2617
2618	if (btrfs_root_readonly(root)) {
2619		ret = -EROFS;
2620		goto out;
2621	}
2622
2623	switch (inode->i_mode & S_IFMT) {
2624	case S_IFDIR:
2625		if (!capable(CAP_SYS_ADMIN)) {
2626			ret = -EPERM;
2627			goto out;
2628		}
2629		ret = btrfs_defrag_root(root);
2630		break;
2631	case S_IFREG:
2632		/*
2633		 * Note that this does not check the file descriptor for write
2634		 * access. This prevents defragmenting executables that are
2635		 * running and allows defrag on files open in read-only mode.
2636		 */
2637		if (!capable(CAP_SYS_ADMIN) &&
2638		    inode_permission(&nop_mnt_idmap, inode, MAY_WRITE)) {
2639			ret = -EPERM;
2640			goto out;
2641		}
2642
 
 
 
 
 
 
2643		if (argp) {
2644			if (copy_from_user(&range, argp, sizeof(range))) {
 
2645				ret = -EFAULT;
2646				goto out;
2647			}
2648			if (range.flags & ~BTRFS_DEFRAG_RANGE_FLAGS_SUPP) {
2649				ret = -EOPNOTSUPP;
2650				goto out;
2651			}
2652			/* compression requires us to start the IO */
2653			if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2654				range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
2655				range.extent_thresh = (u32)-1;
2656			}
2657		} else {
2658			/* the rest are all set to zero by kzalloc */
2659			range.len = (u64)-1;
2660		}
2661		ret = btrfs_defrag_file(file_inode(file), &file->f_ra,
2662					&range, BTRFS_OLDEST_GENERATION, 0);
2663		if (ret > 0)
2664			ret = 0;
 
2665		break;
2666	default:
2667		ret = -EINVAL;
2668	}
2669out:
2670	mnt_drop_write_file(file);
2671	return ret;
2672}
2673
2674static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2675{
2676	struct btrfs_ioctl_vol_args *vol_args;
2677	bool restore_op = false;
2678	int ret;
2679
2680	if (!capable(CAP_SYS_ADMIN))
2681		return -EPERM;
2682
2683	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2684		btrfs_err(fs_info, "device add not supported on extent tree v2 yet");
2685		return -EINVAL;
2686	}
2687
2688	if (fs_info->fs_devices->temp_fsid) {
2689		btrfs_err(fs_info,
2690			  "device add not supported on cloned temp-fsid mount");
2691		return -EINVAL;
2692	}
2693
2694	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) {
2695		if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD))
2696			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2697
2698		/*
2699		 * We can do the device add because we have a paused balanced,
2700		 * change the exclusive op type and remember we should bring
2701		 * back the paused balance
2702		 */
2703		fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD;
2704		btrfs_exclop_start_unlock(fs_info);
2705		restore_op = true;
2706	}
2707
2708	vol_args = memdup_user(arg, sizeof(*vol_args));
2709	if (IS_ERR(vol_args)) {
2710		ret = PTR_ERR(vol_args);
2711		goto out;
2712	}
2713
2714	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2715	if (ret < 0)
2716		goto out_free;
2717
2718	ret = btrfs_init_new_device(fs_info, vol_args->name);
2719
2720	if (!ret)
2721		btrfs_info(fs_info, "disk added %s", vol_args->name);
2722
2723out_free:
2724	kfree(vol_args);
2725out:
2726	if (restore_op)
2727		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED);
2728	else
2729		btrfs_exclop_finish(fs_info);
2730	return ret;
2731}
2732
2733static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2734{
2735	BTRFS_DEV_LOOKUP_ARGS(args);
2736	struct inode *inode = file_inode(file);
2737	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2738	struct btrfs_ioctl_vol_args_v2 *vol_args;
2739	struct file *bdev_file = NULL;
 
2740	int ret;
2741	bool cancel = false;
2742
2743	if (!capable(CAP_SYS_ADMIN))
2744		return -EPERM;
2745
 
 
 
 
2746	vol_args = memdup_user(arg, sizeof(*vol_args));
2747	if (IS_ERR(vol_args))
2748		return PTR_ERR(vol_args);
 
 
2749
2750	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
2751		ret = -EOPNOTSUPP;
2752		goto out;
2753	}
2754
2755	ret = btrfs_check_ioctl_vol_args2_subvol_name(vol_args);
2756	if (ret < 0)
2757		goto out;
2758
2759	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2760		args.devid = vol_args->devid;
2761	} else if (!strcmp("cancel", vol_args->name)) {
2762		cancel = true;
2763	} else {
2764		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2765		if (ret)
2766			goto out;
2767	}
2768
2769	ret = mnt_want_write_file(file);
2770	if (ret)
2771		goto out;
2772
2773	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2774					   cancel);
2775	if (ret)
2776		goto err_drop;
2777
2778	/* Exclusive operation is now claimed */
2779	ret = btrfs_rm_device(fs_info, &args, &bdev_file);
 
 
 
 
2780
2781	btrfs_exclop_finish(fs_info);
2782
2783	if (!ret) {
2784		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2785			btrfs_info(fs_info, "device deleted: id %llu",
2786					vol_args->devid);
2787		else
2788			btrfs_info(fs_info, "device deleted: %s",
2789					vol_args->name);
2790	}
2791err_drop:
2792	mnt_drop_write_file(file);
2793	if (bdev_file)
2794		fput(bdev_file);
2795out:
2796	btrfs_put_dev_args_from_path(&args);
2797	kfree(vol_args);
 
 
 
 
2798	return ret;
2799}
2800
2801static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2802{
2803	BTRFS_DEV_LOOKUP_ARGS(args);
2804	struct inode *inode = file_inode(file);
2805	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2806	struct btrfs_ioctl_vol_args *vol_args;
2807	struct file *bdev_file = NULL;
 
2808	int ret;
2809	bool cancel = false;
2810
2811	if (!capable(CAP_SYS_ADMIN))
2812		return -EPERM;
2813
2814	vol_args = memdup_user(arg, sizeof(*vol_args));
2815	if (IS_ERR(vol_args))
2816		return PTR_ERR(vol_args);
2817
2818	ret = btrfs_check_ioctl_vol_args_path(vol_args);
2819	if (ret < 0)
2820		goto out_free;
2821
2822	if (!strcmp("cancel", vol_args->name)) {
2823		cancel = true;
2824	} else {
2825		ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name);
2826		if (ret)
2827			goto out;
2828	}
2829
2830	ret = mnt_want_write_file(file);
2831	if (ret)
2832		goto out;
 
 
 
 
 
 
 
 
2833
2834	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
2835					   cancel);
2836	if (ret == 0) {
2837		ret = btrfs_rm_device(fs_info, &args, &bdev_file);
2838		if (!ret)
2839			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2840		btrfs_exclop_finish(fs_info);
2841	}
2842
2843	mnt_drop_write_file(file);
2844	if (bdev_file)
2845		fput(bdev_file);
2846out:
2847	btrfs_put_dev_args_from_path(&args);
2848out_free:
2849	kfree(vol_args);
 
 
 
 
2850	return ret;
2851}
2852
2853static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2854				void __user *arg)
2855{
2856	struct btrfs_ioctl_fs_info_args *fi_args;
2857	struct btrfs_device *device;
2858	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2859	u64 flags_in;
2860	int ret = 0;
2861
2862	fi_args = memdup_user(arg, sizeof(*fi_args));
2863	if (IS_ERR(fi_args))
2864		return PTR_ERR(fi_args);
2865
2866	flags_in = fi_args->flags;
2867	memset(fi_args, 0, sizeof(*fi_args));
2868
2869	rcu_read_lock();
2870	fi_args->num_devices = fs_devices->num_devices;
2871
2872	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2873		if (device->devid > fi_args->max_id)
2874			fi_args->max_id = device->devid;
2875	}
2876	rcu_read_unlock();
2877
2878	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
2879	fi_args->nodesize = fs_info->nodesize;
2880	fi_args->sectorsize = fs_info->sectorsize;
2881	fi_args->clone_alignment = fs_info->sectorsize;
2882
2883	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
2884		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
2885		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
2886		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
2887	}
2888
2889	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
2890		fi_args->generation = btrfs_get_fs_generation(fs_info);
2891		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
2892	}
2893
2894	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
2895		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
2896		       sizeof(fi_args->metadata_uuid));
2897		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
2898	}
2899
2900	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2901		ret = -EFAULT;
2902
2903	kfree(fi_args);
2904	return ret;
2905}
2906
2907static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2908				 void __user *arg)
2909{
2910	BTRFS_DEV_LOOKUP_ARGS(args);
2911	struct btrfs_ioctl_dev_info_args *di_args;
2912	struct btrfs_device *dev;
2913	int ret = 0;
 
2914
2915	di_args = memdup_user(arg, sizeof(*di_args));
2916	if (IS_ERR(di_args))
2917		return PTR_ERR(di_args);
2918
2919	args.devid = di_args->devid;
2920	if (!btrfs_is_empty_uuid(di_args->uuid))
2921		args.uuid = di_args->uuid;
2922
2923	rcu_read_lock();
2924	dev = btrfs_find_device(fs_info->fs_devices, &args);
 
 
2925	if (!dev) {
2926		ret = -ENODEV;
2927		goto out;
2928	}
2929
2930	di_args->devid = dev->devid;
2931	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2932	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2933	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2934	memcpy(di_args->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2935	if (dev->name)
2936		strscpy(di_args->path, btrfs_dev_name(dev), sizeof(di_args->path));
2937	else
 
2938		di_args->path[0] = '\0';
 
2939
2940out:
2941	rcu_read_unlock();
2942	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2943		ret = -EFAULT;
2944
2945	kfree(di_args);
2946	return ret;
2947}
2948
2949static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2950{
2951	struct inode *inode = file_inode(file);
2952	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2953	struct btrfs_root *root = BTRFS_I(inode)->root;
2954	struct btrfs_root *new_root;
2955	struct btrfs_dir_item *di;
2956	struct btrfs_trans_handle *trans;
2957	struct btrfs_path *path = NULL;
2958	struct btrfs_disk_key disk_key;
2959	struct fscrypt_str name = FSTR_INIT("default", 7);
2960	u64 objectid = 0;
2961	u64 dir_id;
2962	int ret;
2963
2964	if (!capable(CAP_SYS_ADMIN))
2965		return -EPERM;
2966
2967	ret = mnt_want_write_file(file);
2968	if (ret)
2969		return ret;
2970
2971	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
2972		ret = -EFAULT;
2973		goto out;
2974	}
2975
2976	if (!objectid)
2977		objectid = BTRFS_FS_TREE_OBJECTID;
2978
2979	new_root = btrfs_get_fs_root(fs_info, objectid, true);
2980	if (IS_ERR(new_root)) {
2981		ret = PTR_ERR(new_root);
2982		goto out;
2983	}
2984	if (!is_fstree(new_root->root_key.objectid)) {
2985		ret = -ENOENT;
2986		goto out_free;
2987	}
2988
2989	path = btrfs_alloc_path();
2990	if (!path) {
2991		ret = -ENOMEM;
2992		goto out_free;
2993	}
2994
2995	trans = btrfs_start_transaction(root, 1);
2996	if (IS_ERR(trans)) {
2997		ret = PTR_ERR(trans);
2998		goto out_free;
2999	}
3000
3001	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3002	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3003				   dir_id, &name, 1);
3004	if (IS_ERR_OR_NULL(di)) {
3005		btrfs_release_path(path);
3006		btrfs_end_transaction(trans);
3007		btrfs_err(fs_info,
3008			  "Umm, you don't have the default diritem, this isn't going to work");
3009		ret = -ENOENT;
3010		goto out_free;
3011	}
3012
3013	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3014	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3015	btrfs_mark_buffer_dirty(trans, path->nodes[0]);
3016	btrfs_release_path(path);
3017
3018	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3019	btrfs_end_transaction(trans);
3020out_free:
3021	btrfs_put_root(new_root);
3022	btrfs_free_path(path);
3023out:
3024	mnt_drop_write_file(file);
3025	return ret;
3026}
3027
3028static void get_block_group_info(struct list_head *groups_list,
3029				 struct btrfs_ioctl_space_info *space)
3030{
3031	struct btrfs_block_group *block_group;
3032
3033	space->total_bytes = 0;
3034	space->used_bytes = 0;
3035	space->flags = 0;
3036	list_for_each_entry(block_group, groups_list, list) {
3037		space->flags = block_group->flags;
3038		space->total_bytes += block_group->length;
3039		space->used_bytes += block_group->used;
3040	}
3041}
3042
3043static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3044				   void __user *arg)
3045{
3046	struct btrfs_ioctl_space_args space_args = { 0 };
3047	struct btrfs_ioctl_space_info space;
3048	struct btrfs_ioctl_space_info *dest;
3049	struct btrfs_ioctl_space_info *dest_orig;
3050	struct btrfs_ioctl_space_info __user *user_dest;
3051	struct btrfs_space_info *info;
3052	static const u64 types[] = {
3053		BTRFS_BLOCK_GROUP_DATA,
3054		BTRFS_BLOCK_GROUP_SYSTEM,
3055		BTRFS_BLOCK_GROUP_METADATA,
3056		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3057	};
3058	int num_types = 4;
3059	int alloc_size;
3060	int ret = 0;
3061	u64 slot_count = 0;
3062	int i, c;
3063
3064	if (copy_from_user(&space_args,
3065			   (struct btrfs_ioctl_space_args __user *)arg,
3066			   sizeof(space_args)))
3067		return -EFAULT;
3068
3069	for (i = 0; i < num_types; i++) {
3070		struct btrfs_space_info *tmp;
3071
3072		info = NULL;
3073		list_for_each_entry(tmp, &fs_info->space_info, list) {
3074			if (tmp->flags == types[i]) {
3075				info = tmp;
3076				break;
3077			}
3078		}
3079
3080		if (!info)
3081			continue;
3082
3083		down_read(&info->groups_sem);
3084		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3085			if (!list_empty(&info->block_groups[c]))
3086				slot_count++;
3087		}
3088		up_read(&info->groups_sem);
3089	}
3090
3091	/*
3092	 * Global block reserve, exported as a space_info
3093	 */
3094	slot_count++;
3095
3096	/* space_slots == 0 means they are asking for a count */
3097	if (space_args.space_slots == 0) {
3098		space_args.total_spaces = slot_count;
3099		goto out;
3100	}
3101
3102	slot_count = min_t(u64, space_args.space_slots, slot_count);
3103
3104	alloc_size = sizeof(*dest) * slot_count;
3105
3106	/* we generally have at most 6 or so space infos, one for each raid
3107	 * level.  So, a whole page should be more than enough for everyone
3108	 */
3109	if (alloc_size > PAGE_SIZE)
3110		return -ENOMEM;
3111
3112	space_args.total_spaces = 0;
3113	dest = kmalloc(alloc_size, GFP_KERNEL);
3114	if (!dest)
3115		return -ENOMEM;
3116	dest_orig = dest;
3117
3118	/* now we have a buffer to copy into */
3119	for (i = 0; i < num_types; i++) {
3120		struct btrfs_space_info *tmp;
3121
3122		if (!slot_count)
3123			break;
3124
3125		info = NULL;
3126		list_for_each_entry(tmp, &fs_info->space_info, list) {
3127			if (tmp->flags == types[i]) {
3128				info = tmp;
3129				break;
3130			}
3131		}
3132
3133		if (!info)
3134			continue;
3135		down_read(&info->groups_sem);
3136		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3137			if (!list_empty(&info->block_groups[c])) {
3138				get_block_group_info(&info->block_groups[c],
3139						     &space);
3140				memcpy(dest, &space, sizeof(space));
3141				dest++;
3142				space_args.total_spaces++;
3143				slot_count--;
3144			}
3145			if (!slot_count)
3146				break;
3147		}
3148		up_read(&info->groups_sem);
3149	}
3150
3151	/*
3152	 * Add global block reserve
3153	 */
3154	if (slot_count) {
3155		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3156
3157		spin_lock(&block_rsv->lock);
3158		space.total_bytes = block_rsv->size;
3159		space.used_bytes = block_rsv->size - block_rsv->reserved;
3160		spin_unlock(&block_rsv->lock);
3161		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3162		memcpy(dest, &space, sizeof(space));
3163		space_args.total_spaces++;
3164	}
3165
3166	user_dest = (struct btrfs_ioctl_space_info __user *)
3167		(arg + sizeof(struct btrfs_ioctl_space_args));
3168
3169	if (copy_to_user(user_dest, dest_orig, alloc_size))
3170		ret = -EFAULT;
3171
3172	kfree(dest_orig);
3173out:
3174	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3175		ret = -EFAULT;
3176
3177	return ret;
3178}
3179
3180static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3181					    void __user *argp)
3182{
3183	struct btrfs_trans_handle *trans;
3184	u64 transid;
3185
3186	/*
3187	 * Start orphan cleanup here for the given root in case it hasn't been
3188	 * started already by other means. Errors are handled in the other
3189	 * functions during transaction commit.
3190	 */
3191	btrfs_orphan_cleanup(root);
3192
3193	trans = btrfs_attach_transaction_barrier(root);
3194	if (IS_ERR(trans)) {
3195		if (PTR_ERR(trans) != -ENOENT)
3196			return PTR_ERR(trans);
3197
3198		/* No running transaction, don't bother */
3199		transid = btrfs_get_last_trans_committed(root->fs_info);
3200		goto out;
3201	}
3202	transid = trans->transid;
3203	btrfs_commit_transaction_async(trans);
 
 
 
 
3204out:
3205	if (argp)
3206		if (copy_to_user(argp, &transid, sizeof(transid)))
3207			return -EFAULT;
3208	return 0;
3209}
3210
3211static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3212					   void __user *argp)
3213{
3214	/* By default wait for the current transaction. */
3215	u64 transid = 0;
3216
3217	if (argp)
3218		if (copy_from_user(&transid, argp, sizeof(transid)))
3219			return -EFAULT;
3220
 
 
3221	return btrfs_wait_for_commit(fs_info, transid);
3222}
3223
3224static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3225{
3226	struct btrfs_fs_info *fs_info = inode_to_fs_info(file_inode(file));
3227	struct btrfs_ioctl_scrub_args *sa;
3228	int ret;
3229
3230	if (!capable(CAP_SYS_ADMIN))
3231		return -EPERM;
3232
3233	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3234		btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet");
3235		return -EINVAL;
3236	}
3237
3238	sa = memdup_user(arg, sizeof(*sa));
3239	if (IS_ERR(sa))
3240		return PTR_ERR(sa);
3241
3242	if (sa->flags & ~BTRFS_SCRUB_SUPPORTED_FLAGS) {
3243		ret = -EOPNOTSUPP;
3244		goto out;
3245	}
3246
3247	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3248		ret = mnt_want_write_file(file);
3249		if (ret)
3250			goto out;
3251	}
3252
3253	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3254			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3255			      0);
3256
3257	/*
3258	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3259	 * error. This is important as it allows user space to know how much
3260	 * progress scrub has done. For example, if scrub is canceled we get
3261	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3262	 * space. Later user space can inspect the progress from the structure
3263	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3264	 * previously (btrfs-progs does this).
3265	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3266	 * then return -EFAULT to signal the structure was not copied or it may
3267	 * be corrupt and unreliable due to a partial copy.
3268	 */
3269	if (copy_to_user(arg, sa, sizeof(*sa)))
3270		ret = -EFAULT;
3271
3272	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3273		mnt_drop_write_file(file);
3274out:
3275	kfree(sa);
3276	return ret;
3277}
3278
3279static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3280{
3281	if (!capable(CAP_SYS_ADMIN))
3282		return -EPERM;
3283
3284	return btrfs_scrub_cancel(fs_info);
3285}
3286
3287static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3288				       void __user *arg)
3289{
3290	struct btrfs_ioctl_scrub_args *sa;
3291	int ret;
3292
3293	if (!capable(CAP_SYS_ADMIN))
3294		return -EPERM;
3295
3296	sa = memdup_user(arg, sizeof(*sa));
3297	if (IS_ERR(sa))
3298		return PTR_ERR(sa);
3299
3300	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3301
3302	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3303		ret = -EFAULT;
3304
3305	kfree(sa);
3306	return ret;
3307}
3308
3309static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3310				      void __user *arg)
3311{
3312	struct btrfs_ioctl_get_dev_stats *sa;
3313	int ret;
3314
3315	sa = memdup_user(arg, sizeof(*sa));
3316	if (IS_ERR(sa))
3317		return PTR_ERR(sa);
3318
3319	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3320		kfree(sa);
3321		return -EPERM;
3322	}
3323
3324	ret = btrfs_get_dev_stats(fs_info, sa);
3325
3326	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3327		ret = -EFAULT;
3328
3329	kfree(sa);
3330	return ret;
3331}
3332
3333static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3334				    void __user *arg)
3335{
3336	struct btrfs_ioctl_dev_replace_args *p;
3337	int ret;
3338
3339	if (!capable(CAP_SYS_ADMIN))
3340		return -EPERM;
3341
3342	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
3343		btrfs_err(fs_info, "device replace not supported on extent tree v2 yet");
3344		return -EINVAL;
3345	}
3346
3347	p = memdup_user(arg, sizeof(*p));
3348	if (IS_ERR(p))
3349		return PTR_ERR(p);
3350
3351	switch (p->cmd) {
3352	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3353		if (sb_rdonly(fs_info->sb)) {
3354			ret = -EROFS;
3355			goto out;
3356		}
3357		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3358			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3359		} else {
3360			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3361			btrfs_exclop_finish(fs_info);
3362		}
3363		break;
3364	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3365		btrfs_dev_replace_status(fs_info, p);
3366		ret = 0;
3367		break;
3368	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3369		p->result = btrfs_dev_replace_cancel(fs_info);
3370		ret = 0;
3371		break;
3372	default:
3373		ret = -EINVAL;
3374		break;
3375	}
3376
3377	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3378		ret = -EFAULT;
3379out:
3380	kfree(p);
3381	return ret;
3382}
3383
3384static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3385{
3386	int ret = 0;
3387	int i;
3388	u64 rel_ptr;
3389	int size;
3390	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3391	struct inode_fs_paths *ipath = NULL;
3392	struct btrfs_path *path;
3393
3394	if (!capable(CAP_DAC_READ_SEARCH))
3395		return -EPERM;
3396
3397	path = btrfs_alloc_path();
3398	if (!path) {
3399		ret = -ENOMEM;
3400		goto out;
3401	}
3402
3403	ipa = memdup_user(arg, sizeof(*ipa));
3404	if (IS_ERR(ipa)) {
3405		ret = PTR_ERR(ipa);
3406		ipa = NULL;
3407		goto out;
3408	}
3409
3410	size = min_t(u32, ipa->size, 4096);
3411	ipath = init_ipath(size, root, path);
3412	if (IS_ERR(ipath)) {
3413		ret = PTR_ERR(ipath);
3414		ipath = NULL;
3415		goto out;
3416	}
3417
3418	ret = paths_from_inode(ipa->inum, ipath);
3419	if (ret < 0)
3420		goto out;
3421
3422	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3423		rel_ptr = ipath->fspath->val[i] -
3424			  (u64)(unsigned long)ipath->fspath->val;
3425		ipath->fspath->val[i] = rel_ptr;
3426	}
3427
3428	btrfs_free_path(path);
3429	path = NULL;
3430	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3431			   ipath->fspath, size);
3432	if (ret) {
3433		ret = -EFAULT;
3434		goto out;
3435	}
3436
3437out:
3438	btrfs_free_path(path);
3439	free_ipath(ipath);
3440	kfree(ipa);
3441
3442	return ret;
3443}
3444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3445static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3446					void __user *arg, int version)
3447{
3448	int ret = 0;
3449	int size;
3450	struct btrfs_ioctl_logical_ino_args *loi;
3451	struct btrfs_data_container *inodes = NULL;
3452	struct btrfs_path *path = NULL;
3453	bool ignore_offset;
3454
3455	if (!capable(CAP_SYS_ADMIN))
3456		return -EPERM;
3457
3458	loi = memdup_user(arg, sizeof(*loi));
3459	if (IS_ERR(loi))
3460		return PTR_ERR(loi);
3461
3462	if (version == 1) {
3463		ignore_offset = false;
3464		size = min_t(u32, loi->size, SZ_64K);
3465	} else {
3466		/* All reserved bits must be 0 for now */
3467		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3468			ret = -EINVAL;
3469			goto out_loi;
3470		}
3471		/* Only accept flags we have defined so far */
3472		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3473			ret = -EINVAL;
3474			goto out_loi;
3475		}
3476		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3477		size = min_t(u32, loi->size, SZ_16M);
3478	}
3479
3480	inodes = init_data_container(size);
3481	if (IS_ERR(inodes)) {
3482		ret = PTR_ERR(inodes);
3483		goto out_loi;
3484	}
3485
3486	path = btrfs_alloc_path();
3487	if (!path) {
3488		ret = -ENOMEM;
3489		goto out;
3490	}
 
 
 
 
 
 
 
 
3491	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3492					  inodes, ignore_offset);
3493	btrfs_free_path(path);
3494	if (ret == -EINVAL)
3495		ret = -ENOENT;
3496	if (ret < 0)
3497		goto out;
3498
3499	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3500			   size);
3501	if (ret)
3502		ret = -EFAULT;
3503
3504out:
 
3505	kvfree(inodes);
3506out_loi:
3507	kfree(loi);
3508
3509	return ret;
3510}
3511
3512void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3513			       struct btrfs_ioctl_balance_args *bargs)
3514{
3515	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3516
3517	bargs->flags = bctl->flags;
3518
3519	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3520		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3521	if (atomic_read(&fs_info->balance_pause_req))
3522		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3523	if (atomic_read(&fs_info->balance_cancel_req))
3524		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3525
3526	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3527	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3528	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3529
3530	spin_lock(&fs_info->balance_lock);
3531	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3532	spin_unlock(&fs_info->balance_lock);
3533}
3534
3535/*
3536 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as
3537 * required.
3538 *
3539 * @fs_info:       the filesystem
3540 * @excl_acquired: ptr to boolean value which is set to false in case balance
3541 *                 is being resumed
3542 *
3543 * Return 0 on success in which case both fs_info::balance is acquired as well
3544 * as exclusive ops are blocked. In case of failure return an error code.
3545 */
3546static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired)
3547{
3548	int ret;
3549
3550	/*
3551	 * Exclusive operation is locked. Three possibilities:
3552	 *   (1) some other op is running
3553	 *   (2) balance is running
3554	 *   (3) balance is paused -- special case (think resume)
3555	 */
3556	while (1) {
3557		if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3558			*excl_acquired = true;
3559			mutex_lock(&fs_info->balance_mutex);
3560			return 0;
3561		}
3562
3563		mutex_lock(&fs_info->balance_mutex);
3564		if (fs_info->balance_ctl) {
3565			/* This is either (2) or (3) */
3566			if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3567				/* This is (2) */
3568				ret = -EINPROGRESS;
3569				goto out_failure;
3570
3571			} else {
3572				mutex_unlock(&fs_info->balance_mutex);
3573				/*
3574				 * Lock released to allow other waiters to
3575				 * continue, we'll reexamine the status again.
3576				 */
3577				mutex_lock(&fs_info->balance_mutex);
3578
3579				if (fs_info->balance_ctl &&
3580				    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3581					/* This is (3) */
3582					*excl_acquired = false;
3583					return 0;
3584				}
3585			}
3586		} else {
3587			/* This is (1) */
3588			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3589			goto out_failure;
3590		}
3591
3592		mutex_unlock(&fs_info->balance_mutex);
3593	}
3594
3595out_failure:
3596	mutex_unlock(&fs_info->balance_mutex);
3597	*excl_acquired = false;
3598	return ret;
3599}
3600
3601static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3602{
3603	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3604	struct btrfs_fs_info *fs_info = root->fs_info;
3605	struct btrfs_ioctl_balance_args *bargs;
3606	struct btrfs_balance_control *bctl;
3607	bool need_unlock = true;
3608	int ret;
3609
3610	if (!capable(CAP_SYS_ADMIN))
3611		return -EPERM;
3612
3613	ret = mnt_want_write_file(file);
3614	if (ret)
3615		return ret;
3616
3617	bargs = memdup_user(arg, sizeof(*bargs));
3618	if (IS_ERR(bargs)) {
3619		ret = PTR_ERR(bargs);
3620		bargs = NULL;
3621		goto out;
3622	}
3623
3624	ret = btrfs_try_lock_balance(fs_info, &need_unlock);
3625	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3626		goto out;
 
3627
3628	lockdep_assert_held(&fs_info->balance_mutex);
3629
3630	if (bargs->flags & BTRFS_BALANCE_RESUME) {
3631		if (!fs_info->balance_ctl) {
3632			ret = -ENOTCONN;
 
3633			goto out_unlock;
3634		}
3635
3636		bctl = fs_info->balance_ctl;
3637		spin_lock(&fs_info->balance_lock);
3638		bctl->flags |= BTRFS_BALANCE_RESUME;
3639		spin_unlock(&fs_info->balance_lock);
3640		btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE);
3641
3642		goto do_balance;
3643	}
 
 
3644
3645	if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
3646		ret = -EINVAL;
3647		goto out_unlock;
 
3648	}
3649
3650	if (fs_info->balance_ctl) {
3651		ret = -EINPROGRESS;
3652		goto out_unlock;
3653	}
3654
3655	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3656	if (!bctl) {
3657		ret = -ENOMEM;
3658		goto out_unlock;
3659	}
3660
3661	memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3662	memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3663	memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
 
 
 
 
 
 
 
 
 
 
 
 
3664
3665	bctl->flags = bargs->flags;
3666do_balance:
3667	/*
3668	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
3669	 * bctl is freed in reset_balance_state, or, if restriper was paused
3670	 * all the way until unmount, in free_fs_info.  The flag should be
3671	 * cleared after reset_balance_state.
3672	 */
3673	need_unlock = false;
3674
3675	ret = btrfs_balance(fs_info, bctl, bargs);
3676	bctl = NULL;
3677
3678	if (ret == 0 || ret == -ECANCELED) {
3679		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3680			ret = -EFAULT;
3681	}
3682
 
3683	kfree(bctl);
 
 
3684out_unlock:
3685	mutex_unlock(&fs_info->balance_mutex);
3686	if (need_unlock)
3687		btrfs_exclop_finish(fs_info);
3688out:
3689	mnt_drop_write_file(file);
3690	kfree(bargs);
3691	return ret;
3692}
3693
3694static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
3695{
3696	if (!capable(CAP_SYS_ADMIN))
3697		return -EPERM;
3698
3699	switch (cmd) {
3700	case BTRFS_BALANCE_CTL_PAUSE:
3701		return btrfs_pause_balance(fs_info);
3702	case BTRFS_BALANCE_CTL_CANCEL:
3703		return btrfs_cancel_balance(fs_info);
3704	}
3705
3706	return -EINVAL;
3707}
3708
3709static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
3710					 void __user *arg)
3711{
3712	struct btrfs_ioctl_balance_args *bargs;
3713	int ret = 0;
3714
3715	if (!capable(CAP_SYS_ADMIN))
3716		return -EPERM;
3717
3718	mutex_lock(&fs_info->balance_mutex);
3719	if (!fs_info->balance_ctl) {
3720		ret = -ENOTCONN;
3721		goto out;
3722	}
3723
3724	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
3725	if (!bargs) {
3726		ret = -ENOMEM;
3727		goto out;
3728	}
3729
3730	btrfs_update_ioctl_balance_args(fs_info, bargs);
3731
3732	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3733		ret = -EFAULT;
3734
3735	kfree(bargs);
3736out:
3737	mutex_unlock(&fs_info->balance_mutex);
3738	return ret;
3739}
3740
3741static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
3742{
3743	struct inode *inode = file_inode(file);
3744	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3745	struct btrfs_ioctl_quota_ctl_args *sa;
3746	int ret;
3747
3748	if (!capable(CAP_SYS_ADMIN))
3749		return -EPERM;
3750
3751	ret = mnt_want_write_file(file);
3752	if (ret)
3753		return ret;
3754
3755	sa = memdup_user(arg, sizeof(*sa));
3756	if (IS_ERR(sa)) {
3757		ret = PTR_ERR(sa);
3758		goto drop_write;
3759	}
3760
 
 
3761	switch (sa->cmd) {
3762	case BTRFS_QUOTA_CTL_ENABLE:
3763	case BTRFS_QUOTA_CTL_ENABLE_SIMPLE_QUOTA:
3764		down_write(&fs_info->subvol_sem);
3765		ret = btrfs_quota_enable(fs_info, sa);
3766		up_write(&fs_info->subvol_sem);
3767		break;
3768	case BTRFS_QUOTA_CTL_DISABLE:
3769		/*
3770		 * Lock the cleaner mutex to prevent races with concurrent
3771		 * relocation, because relocation may be building backrefs for
3772		 * blocks of the quota root while we are deleting the root. This
3773		 * is like dropping fs roots of deleted snapshots/subvolumes, we
3774		 * need the same protection.
3775		 *
3776		 * This also prevents races between concurrent tasks trying to
3777		 * disable quotas, because we will unlock and relock
3778		 * qgroup_ioctl_lock across BTRFS_FS_QUOTA_ENABLED changes.
3779		 *
3780		 * We take this here because we have the dependency of
3781		 *
3782		 * inode_lock -> subvol_sem
3783		 *
3784		 * because of rename.  With relocation we can prealloc extents,
3785		 * so that makes the dependency chain
3786		 *
3787		 * cleaner_mutex -> inode_lock -> subvol_sem
3788		 *
3789		 * so we must take the cleaner_mutex here before we take the
3790		 * subvol_sem.  The deadlock can't actually happen, but this
3791		 * quiets lockdep.
3792		 */
3793		mutex_lock(&fs_info->cleaner_mutex);
3794		down_write(&fs_info->subvol_sem);
3795		ret = btrfs_quota_disable(fs_info);
3796		up_write(&fs_info->subvol_sem);
3797		mutex_unlock(&fs_info->cleaner_mutex);
3798		break;
3799	default:
3800		ret = -EINVAL;
3801		break;
3802	}
3803
3804	kfree(sa);
 
3805drop_write:
3806	mnt_drop_write_file(file);
3807	return ret;
3808}
3809
3810static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
3811{
3812	struct inode *inode = file_inode(file);
3813	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3814	struct btrfs_root *root = BTRFS_I(inode)->root;
3815	struct btrfs_ioctl_qgroup_assign_args *sa;
3816	struct btrfs_trans_handle *trans;
3817	int ret;
3818	int err;
3819
3820	if (!capable(CAP_SYS_ADMIN))
3821		return -EPERM;
3822
3823	ret = mnt_want_write_file(file);
3824	if (ret)
3825		return ret;
3826
3827	sa = memdup_user(arg, sizeof(*sa));
3828	if (IS_ERR(sa)) {
3829		ret = PTR_ERR(sa);
3830		goto drop_write;
3831	}
3832
3833	trans = btrfs_join_transaction(root);
3834	if (IS_ERR(trans)) {
3835		ret = PTR_ERR(trans);
3836		goto out;
3837	}
3838
3839	if (sa->assign) {
3840		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
3841	} else {
3842		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
3843	}
3844
3845	/* update qgroup status and info */
3846	mutex_lock(&fs_info->qgroup_ioctl_lock);
3847	err = btrfs_run_qgroups(trans);
3848	mutex_unlock(&fs_info->qgroup_ioctl_lock);
3849	if (err < 0)
3850		btrfs_handle_fs_error(fs_info, err,
3851				      "failed to update qgroup status and info");
3852	err = btrfs_end_transaction(trans);
3853	if (err && !ret)
3854		ret = err;
3855
3856out:
3857	kfree(sa);
3858drop_write:
3859	mnt_drop_write_file(file);
3860	return ret;
3861}
3862
3863static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
3864{
3865	struct inode *inode = file_inode(file);
3866	struct btrfs_root *root = BTRFS_I(inode)->root;
3867	struct btrfs_ioctl_qgroup_create_args *sa;
3868	struct btrfs_trans_handle *trans;
3869	int ret;
3870	int err;
3871
3872	if (!capable(CAP_SYS_ADMIN))
3873		return -EPERM;
3874
3875	ret = mnt_want_write_file(file);
3876	if (ret)
3877		return ret;
3878
3879	sa = memdup_user(arg, sizeof(*sa));
3880	if (IS_ERR(sa)) {
3881		ret = PTR_ERR(sa);
3882		goto drop_write;
3883	}
3884
3885	if (!sa->qgroupid) {
3886		ret = -EINVAL;
3887		goto out;
3888	}
3889
3890	if (sa->create && is_fstree(sa->qgroupid)) {
3891		ret = -EINVAL;
3892		goto out;
3893	}
3894
3895	trans = btrfs_join_transaction(root);
3896	if (IS_ERR(trans)) {
3897		ret = PTR_ERR(trans);
3898		goto out;
3899	}
3900
3901	if (sa->create) {
3902		ret = btrfs_create_qgroup(trans, sa->qgroupid);
3903	} else {
3904		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
3905	}
3906
3907	err = btrfs_end_transaction(trans);
3908	if (err && !ret)
3909		ret = err;
3910
3911out:
3912	kfree(sa);
3913drop_write:
3914	mnt_drop_write_file(file);
3915	return ret;
3916}
3917
3918static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
3919{
3920	struct inode *inode = file_inode(file);
3921	struct btrfs_root *root = BTRFS_I(inode)->root;
3922	struct btrfs_ioctl_qgroup_limit_args *sa;
3923	struct btrfs_trans_handle *trans;
3924	int ret;
3925	int err;
3926	u64 qgroupid;
3927
3928	if (!capable(CAP_SYS_ADMIN))
3929		return -EPERM;
3930
3931	ret = mnt_want_write_file(file);
3932	if (ret)
3933		return ret;
3934
3935	sa = memdup_user(arg, sizeof(*sa));
3936	if (IS_ERR(sa)) {
3937		ret = PTR_ERR(sa);
3938		goto drop_write;
3939	}
3940
3941	trans = btrfs_join_transaction(root);
3942	if (IS_ERR(trans)) {
3943		ret = PTR_ERR(trans);
3944		goto out;
3945	}
3946
3947	qgroupid = sa->qgroupid;
3948	if (!qgroupid) {
3949		/* take the current subvol as qgroup */
3950		qgroupid = root->root_key.objectid;
3951	}
3952
3953	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
3954
3955	err = btrfs_end_transaction(trans);
3956	if (err && !ret)
3957		ret = err;
3958
3959out:
3960	kfree(sa);
3961drop_write:
3962	mnt_drop_write_file(file);
3963	return ret;
3964}
3965
3966static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
3967{
3968	struct inode *inode = file_inode(file);
3969	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
3970	struct btrfs_ioctl_quota_rescan_args *qsa;
3971	int ret;
3972
3973	if (!capable(CAP_SYS_ADMIN))
3974		return -EPERM;
3975
3976	ret = mnt_want_write_file(file);
3977	if (ret)
3978		return ret;
3979
3980	qsa = memdup_user(arg, sizeof(*qsa));
3981	if (IS_ERR(qsa)) {
3982		ret = PTR_ERR(qsa);
3983		goto drop_write;
3984	}
3985
3986	if (qsa->flags) {
3987		ret = -EINVAL;
3988		goto out;
3989	}
3990
3991	ret = btrfs_qgroup_rescan(fs_info);
3992
3993out:
3994	kfree(qsa);
3995drop_write:
3996	mnt_drop_write_file(file);
3997	return ret;
3998}
3999
4000static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4001						void __user *arg)
4002{
4003	struct btrfs_ioctl_quota_rescan_args qsa = {0};
 
4004
4005	if (!capable(CAP_SYS_ADMIN))
4006		return -EPERM;
4007
 
 
 
 
4008	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4009		qsa.flags = 1;
4010		qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4011	}
4012
4013	if (copy_to_user(arg, &qsa, sizeof(qsa)))
4014		return -EFAULT;
4015
4016	return 0;
 
4017}
4018
4019static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4020						void __user *arg)
4021{
4022	if (!capable(CAP_SYS_ADMIN))
4023		return -EPERM;
4024
4025	return btrfs_qgroup_wait_for_completion(fs_info, true);
4026}
4027
4028static long _btrfs_ioctl_set_received_subvol(struct file *file,
4029					    struct mnt_idmap *idmap,
4030					    struct btrfs_ioctl_received_subvol_args *sa)
4031{
4032	struct inode *inode = file_inode(file);
4033	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4034	struct btrfs_root *root = BTRFS_I(inode)->root;
4035	struct btrfs_root_item *root_item = &root->root_item;
4036	struct btrfs_trans_handle *trans;
4037	struct timespec64 ct = current_time(inode);
4038	int ret = 0;
4039	int received_uuid_changed;
4040
4041	if (!inode_owner_or_capable(idmap, inode))
4042		return -EPERM;
4043
4044	ret = mnt_want_write_file(file);
4045	if (ret < 0)
4046		return ret;
4047
4048	down_write(&fs_info->subvol_sem);
4049
4050	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4051		ret = -EINVAL;
4052		goto out;
4053	}
4054
4055	if (btrfs_root_readonly(root)) {
4056		ret = -EROFS;
4057		goto out;
4058	}
4059
4060	/*
4061	 * 1 - root item
4062	 * 2 - uuid items (received uuid + subvol uuid)
4063	 */
4064	trans = btrfs_start_transaction(root, 3);
4065	if (IS_ERR(trans)) {
4066		ret = PTR_ERR(trans);
4067		trans = NULL;
4068		goto out;
4069	}
4070
4071	sa->rtransid = trans->transid;
4072	sa->rtime.sec = ct.tv_sec;
4073	sa->rtime.nsec = ct.tv_nsec;
4074
4075	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4076				       BTRFS_UUID_SIZE);
4077	if (received_uuid_changed &&
4078	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4079		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4080					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4081					  root->root_key.objectid);
4082		if (ret && ret != -ENOENT) {
4083		        btrfs_abort_transaction(trans, ret);
4084		        btrfs_end_transaction(trans);
4085		        goto out;
4086		}
4087	}
4088	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4089	btrfs_set_root_stransid(root_item, sa->stransid);
4090	btrfs_set_root_rtransid(root_item, sa->rtransid);
4091	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4092	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4093	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4094	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4095
4096	ret = btrfs_update_root(trans, fs_info->tree_root,
4097				&root->root_key, &root->root_item);
4098	if (ret < 0) {
4099		btrfs_end_transaction(trans);
4100		goto out;
4101	}
4102	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4103		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4104					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4105					  root->root_key.objectid);
4106		if (ret < 0 && ret != -EEXIST) {
4107			btrfs_abort_transaction(trans, ret);
4108			btrfs_end_transaction(trans);
4109			goto out;
4110		}
4111	}
4112	ret = btrfs_commit_transaction(trans);
4113out:
4114	up_write(&fs_info->subvol_sem);
4115	mnt_drop_write_file(file);
4116	return ret;
4117}
4118
4119#ifdef CONFIG_64BIT
4120static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4121						void __user *arg)
4122{
4123	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4124	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4125	int ret = 0;
4126
4127	args32 = memdup_user(arg, sizeof(*args32));
4128	if (IS_ERR(args32))
4129		return PTR_ERR(args32);
4130
4131	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4132	if (!args64) {
4133		ret = -ENOMEM;
4134		goto out;
4135	}
4136
4137	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4138	args64->stransid = args32->stransid;
4139	args64->rtransid = args32->rtransid;
4140	args64->stime.sec = args32->stime.sec;
4141	args64->stime.nsec = args32->stime.nsec;
4142	args64->rtime.sec = args32->rtime.sec;
4143	args64->rtime.nsec = args32->rtime.nsec;
4144	args64->flags = args32->flags;
4145
4146	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), args64);
4147	if (ret)
4148		goto out;
4149
4150	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4151	args32->stransid = args64->stransid;
4152	args32->rtransid = args64->rtransid;
4153	args32->stime.sec = args64->stime.sec;
4154	args32->stime.nsec = args64->stime.nsec;
4155	args32->rtime.sec = args64->rtime.sec;
4156	args32->rtime.nsec = args64->rtime.nsec;
4157	args32->flags = args64->flags;
4158
4159	ret = copy_to_user(arg, args32, sizeof(*args32));
4160	if (ret)
4161		ret = -EFAULT;
4162
4163out:
4164	kfree(args32);
4165	kfree(args64);
4166	return ret;
4167}
4168#endif
4169
4170static long btrfs_ioctl_set_received_subvol(struct file *file,
4171					    void __user *arg)
4172{
4173	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4174	int ret = 0;
4175
4176	sa = memdup_user(arg, sizeof(*sa));
4177	if (IS_ERR(sa))
4178		return PTR_ERR(sa);
4179
4180	ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_idmap(file), sa);
4181
4182	if (ret)
4183		goto out;
4184
4185	ret = copy_to_user(arg, sa, sizeof(*sa));
4186	if (ret)
4187		ret = -EFAULT;
4188
4189out:
4190	kfree(sa);
4191	return ret;
4192}
4193
4194static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4195					void __user *arg)
4196{
4197	size_t len;
4198	int ret;
4199	char label[BTRFS_LABEL_SIZE];
4200
4201	spin_lock(&fs_info->super_lock);
4202	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4203	spin_unlock(&fs_info->super_lock);
4204
4205	len = strnlen(label, BTRFS_LABEL_SIZE);
4206
4207	if (len == BTRFS_LABEL_SIZE) {
4208		btrfs_warn(fs_info,
4209			   "label is too long, return the first %zu bytes",
4210			   --len);
4211	}
4212
4213	ret = copy_to_user(arg, label, len);
4214
4215	return ret ? -EFAULT : 0;
4216}
4217
4218static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4219{
4220	struct inode *inode = file_inode(file);
4221	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4222	struct btrfs_root *root = BTRFS_I(inode)->root;
4223	struct btrfs_super_block *super_block = fs_info->super_copy;
4224	struct btrfs_trans_handle *trans;
4225	char label[BTRFS_LABEL_SIZE];
4226	int ret;
4227
4228	if (!capable(CAP_SYS_ADMIN))
4229		return -EPERM;
4230
4231	if (copy_from_user(label, arg, sizeof(label)))
4232		return -EFAULT;
4233
4234	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4235		btrfs_err(fs_info,
4236			  "unable to set label with more than %d bytes",
4237			  BTRFS_LABEL_SIZE - 1);
4238		return -EINVAL;
4239	}
4240
4241	ret = mnt_want_write_file(file);
4242	if (ret)
4243		return ret;
4244
4245	trans = btrfs_start_transaction(root, 0);
4246	if (IS_ERR(trans)) {
4247		ret = PTR_ERR(trans);
4248		goto out_unlock;
4249	}
4250
4251	spin_lock(&fs_info->super_lock);
4252	strcpy(super_block->label, label);
4253	spin_unlock(&fs_info->super_lock);
4254	ret = btrfs_commit_transaction(trans);
4255
4256out_unlock:
4257	mnt_drop_write_file(file);
4258	return ret;
4259}
4260
4261#define INIT_FEATURE_FLAGS(suffix) \
4262	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4263	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4264	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4265
4266int btrfs_ioctl_get_supported_features(void __user *arg)
4267{
4268	static const struct btrfs_ioctl_feature_flags features[3] = {
4269		INIT_FEATURE_FLAGS(SUPP),
4270		INIT_FEATURE_FLAGS(SAFE_SET),
4271		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4272	};
4273
4274	if (copy_to_user(arg, &features, sizeof(features)))
4275		return -EFAULT;
4276
4277	return 0;
4278}
4279
4280static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4281					void __user *arg)
4282{
4283	struct btrfs_super_block *super_block = fs_info->super_copy;
4284	struct btrfs_ioctl_feature_flags features;
4285
4286	features.compat_flags = btrfs_super_compat_flags(super_block);
4287	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4288	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4289
4290	if (copy_to_user(arg, &features, sizeof(features)))
4291		return -EFAULT;
4292
4293	return 0;
4294}
4295
4296static int check_feature_bits(struct btrfs_fs_info *fs_info,
4297			      enum btrfs_feature_set set,
4298			      u64 change_mask, u64 flags, u64 supported_flags,
4299			      u64 safe_set, u64 safe_clear)
4300{
4301	const char *type = btrfs_feature_set_name(set);
4302	char *names;
4303	u64 disallowed, unsupported;
4304	u64 set_mask = flags & change_mask;
4305	u64 clear_mask = ~flags & change_mask;
4306
4307	unsupported = set_mask & ~supported_flags;
4308	if (unsupported) {
4309		names = btrfs_printable_features(set, unsupported);
4310		if (names) {
4311			btrfs_warn(fs_info,
4312				   "this kernel does not support the %s feature bit%s",
4313				   names, strchr(names, ',') ? "s" : "");
4314			kfree(names);
4315		} else
4316			btrfs_warn(fs_info,
4317				   "this kernel does not support %s bits 0x%llx",
4318				   type, unsupported);
4319		return -EOPNOTSUPP;
4320	}
4321
4322	disallowed = set_mask & ~safe_set;
4323	if (disallowed) {
4324		names = btrfs_printable_features(set, disallowed);
4325		if (names) {
4326			btrfs_warn(fs_info,
4327				   "can't set the %s feature bit%s while mounted",
4328				   names, strchr(names, ',') ? "s" : "");
4329			kfree(names);
4330		} else
4331			btrfs_warn(fs_info,
4332				   "can't set %s bits 0x%llx while mounted",
4333				   type, disallowed);
4334		return -EPERM;
4335	}
4336
4337	disallowed = clear_mask & ~safe_clear;
4338	if (disallowed) {
4339		names = btrfs_printable_features(set, disallowed);
4340		if (names) {
4341			btrfs_warn(fs_info,
4342				   "can't clear the %s feature bit%s while mounted",
4343				   names, strchr(names, ',') ? "s" : "");
4344			kfree(names);
4345		} else
4346			btrfs_warn(fs_info,
4347				   "can't clear %s bits 0x%llx while mounted",
4348				   type, disallowed);
4349		return -EPERM;
4350	}
4351
4352	return 0;
4353}
4354
4355#define check_feature(fs_info, change_mask, flags, mask_base)	\
4356check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4357		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4358		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4359		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4360
4361static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4362{
4363	struct inode *inode = file_inode(file);
4364	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4365	struct btrfs_root *root = BTRFS_I(inode)->root;
4366	struct btrfs_super_block *super_block = fs_info->super_copy;
4367	struct btrfs_ioctl_feature_flags flags[2];
4368	struct btrfs_trans_handle *trans;
4369	u64 newflags;
4370	int ret;
4371
4372	if (!capable(CAP_SYS_ADMIN))
4373		return -EPERM;
4374
4375	if (copy_from_user(flags, arg, sizeof(flags)))
4376		return -EFAULT;
4377
4378	/* Nothing to do */
4379	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4380	    !flags[0].incompat_flags)
4381		return 0;
4382
4383	ret = check_feature(fs_info, flags[0].compat_flags,
4384			    flags[1].compat_flags, COMPAT);
4385	if (ret)
4386		return ret;
4387
4388	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4389			    flags[1].compat_ro_flags, COMPAT_RO);
4390	if (ret)
4391		return ret;
4392
4393	ret = check_feature(fs_info, flags[0].incompat_flags,
4394			    flags[1].incompat_flags, INCOMPAT);
4395	if (ret)
4396		return ret;
4397
4398	ret = mnt_want_write_file(file);
4399	if (ret)
4400		return ret;
4401
4402	trans = btrfs_start_transaction(root, 0);
4403	if (IS_ERR(trans)) {
4404		ret = PTR_ERR(trans);
4405		goto out_drop_write;
4406	}
4407
4408	spin_lock(&fs_info->super_lock);
4409	newflags = btrfs_super_compat_flags(super_block);
4410	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4411	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4412	btrfs_set_super_compat_flags(super_block, newflags);
4413
4414	newflags = btrfs_super_compat_ro_flags(super_block);
4415	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4416	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4417	btrfs_set_super_compat_ro_flags(super_block, newflags);
4418
4419	newflags = btrfs_super_incompat_flags(super_block);
4420	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4421	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4422	btrfs_set_super_incompat_flags(super_block, newflags);
4423	spin_unlock(&fs_info->super_lock);
4424
4425	ret = btrfs_commit_transaction(trans);
4426out_drop_write:
4427	mnt_drop_write_file(file);
4428
4429	return ret;
4430}
4431
4432static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat)
4433{
4434	struct btrfs_ioctl_send_args *arg;
4435	int ret;
4436
4437	if (compat) {
4438#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4439		struct btrfs_ioctl_send_args_32 args32 = { 0 };
4440
4441		ret = copy_from_user(&args32, argp, sizeof(args32));
4442		if (ret)
4443			return -EFAULT;
4444		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4445		if (!arg)
4446			return -ENOMEM;
4447		arg->send_fd = args32.send_fd;
4448		arg->clone_sources_count = args32.clone_sources_count;
4449		arg->clone_sources = compat_ptr(args32.clone_sources);
4450		arg->parent_root = args32.parent_root;
4451		arg->flags = args32.flags;
4452		arg->version = args32.version;
4453		memcpy(arg->reserved, args32.reserved,
4454		       sizeof(args32.reserved));
4455#else
4456		return -ENOTTY;
4457#endif
4458	} else {
4459		arg = memdup_user(argp, sizeof(*arg));
4460		if (IS_ERR(arg))
4461			return PTR_ERR(arg);
4462	}
4463	ret = btrfs_ioctl_send(inode, arg);
4464	kfree(arg);
4465	return ret;
4466}
4467
4468static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp,
4469				    bool compat)
4470{
4471	struct btrfs_ioctl_encoded_io_args args = { 0 };
4472	size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args,
4473					     flags);
4474	size_t copy_end;
4475	struct iovec iovstack[UIO_FASTIOV];
4476	struct iovec *iov = iovstack;
4477	struct iov_iter iter;
4478	loff_t pos;
4479	struct kiocb kiocb;
4480	ssize_t ret;
4481
4482	if (!capable(CAP_SYS_ADMIN)) {
4483		ret = -EPERM;
4484		goto out_acct;
4485	}
4486
4487	if (compat) {
4488#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4489		struct btrfs_ioctl_encoded_io_args_32 args32;
4490
4491		copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32,
4492				       flags);
4493		if (copy_from_user(&args32, argp, copy_end)) {
4494			ret = -EFAULT;
4495			goto out_acct;
4496		}
4497		args.iov = compat_ptr(args32.iov);
4498		args.iovcnt = args32.iovcnt;
4499		args.offset = args32.offset;
4500		args.flags = args32.flags;
4501#else
4502		return -ENOTTY;
4503#endif
4504	} else {
4505		copy_end = copy_end_kernel;
4506		if (copy_from_user(&args, argp, copy_end)) {
4507			ret = -EFAULT;
4508			goto out_acct;
4509		}
4510	}
4511	if (args.flags != 0) {
4512		ret = -EINVAL;
4513		goto out_acct;
4514	}
4515
4516	ret = import_iovec(ITER_DEST, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4517			   &iov, &iter);
4518	if (ret < 0)
4519		goto out_acct;
4520
4521	if (iov_iter_count(&iter) == 0) {
4522		ret = 0;
4523		goto out_iov;
4524	}
4525	pos = args.offset;
4526	ret = rw_verify_area(READ, file, &pos, args.len);
4527	if (ret < 0)
4528		goto out_iov;
4529
4530	init_sync_kiocb(&kiocb, file);
4531	kiocb.ki_pos = pos;
4532
4533	ret = btrfs_encoded_read(&kiocb, &iter, &args);
4534	if (ret >= 0) {
4535		fsnotify_access(file);
4536		if (copy_to_user(argp + copy_end,
4537				 (char *)&args + copy_end_kernel,
4538				 sizeof(args) - copy_end_kernel))
4539			ret = -EFAULT;
4540	}
4541
4542out_iov:
4543	kfree(iov);
4544out_acct:
4545	if (ret > 0)
4546		add_rchar(current, ret);
4547	inc_syscr(current);
4548	return ret;
4549}
4550
4551static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat)
4552{
4553	struct btrfs_ioctl_encoded_io_args args;
4554	struct iovec iovstack[UIO_FASTIOV];
4555	struct iovec *iov = iovstack;
4556	struct iov_iter iter;
4557	loff_t pos;
4558	struct kiocb kiocb;
4559	ssize_t ret;
4560
4561	if (!capable(CAP_SYS_ADMIN)) {
4562		ret = -EPERM;
4563		goto out_acct;
4564	}
4565
4566	if (!(file->f_mode & FMODE_WRITE)) {
4567		ret = -EBADF;
4568		goto out_acct;
4569	}
4570
4571	if (compat) {
4572#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4573		struct btrfs_ioctl_encoded_io_args_32 args32;
4574
4575		if (copy_from_user(&args32, argp, sizeof(args32))) {
4576			ret = -EFAULT;
4577			goto out_acct;
4578		}
4579		args.iov = compat_ptr(args32.iov);
4580		args.iovcnt = args32.iovcnt;
4581		args.offset = args32.offset;
4582		args.flags = args32.flags;
4583		args.len = args32.len;
4584		args.unencoded_len = args32.unencoded_len;
4585		args.unencoded_offset = args32.unencoded_offset;
4586		args.compression = args32.compression;
4587		args.encryption = args32.encryption;
4588		memcpy(args.reserved, args32.reserved, sizeof(args.reserved));
4589#else
4590		return -ENOTTY;
4591#endif
4592	} else {
4593		if (copy_from_user(&args, argp, sizeof(args))) {
4594			ret = -EFAULT;
4595			goto out_acct;
4596		}
4597	}
4598
4599	ret = -EINVAL;
4600	if (args.flags != 0)
4601		goto out_acct;
4602	if (memchr_inv(args.reserved, 0, sizeof(args.reserved)))
4603		goto out_acct;
4604	if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE &&
4605	    args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE)
4606		goto out_acct;
4607	if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES ||
4608	    args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES)
4609		goto out_acct;
4610	if (args.unencoded_offset > args.unencoded_len)
4611		goto out_acct;
4612	if (args.len > args.unencoded_len - args.unencoded_offset)
4613		goto out_acct;
4614
4615	ret = import_iovec(ITER_SOURCE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack),
4616			   &iov, &iter);
4617	if (ret < 0)
4618		goto out_acct;
4619
4620	if (iov_iter_count(&iter) == 0) {
4621		ret = 0;
4622		goto out_iov;
4623	}
4624	pos = args.offset;
4625	ret = rw_verify_area(WRITE, file, &pos, args.len);
4626	if (ret < 0)
4627		goto out_iov;
4628
4629	init_sync_kiocb(&kiocb, file);
4630	ret = kiocb_set_rw_flags(&kiocb, 0);
4631	if (ret)
4632		goto out_iov;
4633	kiocb.ki_pos = pos;
4634
4635	file_start_write(file);
4636
4637	ret = btrfs_do_write_iter(&kiocb, &iter, &args);
4638	if (ret > 0)
4639		fsnotify_modify(file);
4640
4641	file_end_write(file);
4642out_iov:
4643	kfree(iov);
4644out_acct:
4645	if (ret > 0)
4646		add_wchar(current, ret);
4647	inc_syscw(current);
4648	return ret;
4649}
4650
4651long btrfs_ioctl(struct file *file, unsigned int
4652		cmd, unsigned long arg)
4653{
4654	struct inode *inode = file_inode(file);
4655	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
4656	struct btrfs_root *root = BTRFS_I(inode)->root;
4657	void __user *argp = (void __user *)arg;
4658
4659	switch (cmd) {
4660	case FS_IOC_GETVERSION:
4661		return btrfs_ioctl_getversion(inode, argp);
4662	case FS_IOC_GETFSLABEL:
4663		return btrfs_ioctl_get_fslabel(fs_info, argp);
4664	case FS_IOC_SETFSLABEL:
4665		return btrfs_ioctl_set_fslabel(file, argp);
4666	case FITRIM:
4667		return btrfs_ioctl_fitrim(fs_info, argp);
4668	case BTRFS_IOC_SNAP_CREATE:
4669		return btrfs_ioctl_snap_create(file, argp, 0);
4670	case BTRFS_IOC_SNAP_CREATE_V2:
4671		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4672	case BTRFS_IOC_SUBVOL_CREATE:
4673		return btrfs_ioctl_snap_create(file, argp, 1);
4674	case BTRFS_IOC_SUBVOL_CREATE_V2:
4675		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4676	case BTRFS_IOC_SNAP_DESTROY:
4677		return btrfs_ioctl_snap_destroy(file, argp, false);
4678	case BTRFS_IOC_SNAP_DESTROY_V2:
4679		return btrfs_ioctl_snap_destroy(file, argp, true);
4680	case BTRFS_IOC_SUBVOL_GETFLAGS:
4681		return btrfs_ioctl_subvol_getflags(inode, argp);
4682	case BTRFS_IOC_SUBVOL_SETFLAGS:
4683		return btrfs_ioctl_subvol_setflags(file, argp);
4684	case BTRFS_IOC_DEFAULT_SUBVOL:
4685		return btrfs_ioctl_default_subvol(file, argp);
4686	case BTRFS_IOC_DEFRAG:
4687		return btrfs_ioctl_defrag(file, NULL);
4688	case BTRFS_IOC_DEFRAG_RANGE:
4689		return btrfs_ioctl_defrag(file, argp);
4690	case BTRFS_IOC_RESIZE:
4691		return btrfs_ioctl_resize(file, argp);
4692	case BTRFS_IOC_ADD_DEV:
4693		return btrfs_ioctl_add_dev(fs_info, argp);
4694	case BTRFS_IOC_RM_DEV:
4695		return btrfs_ioctl_rm_dev(file, argp);
4696	case BTRFS_IOC_RM_DEV_V2:
4697		return btrfs_ioctl_rm_dev_v2(file, argp);
4698	case BTRFS_IOC_FS_INFO:
4699		return btrfs_ioctl_fs_info(fs_info, argp);
4700	case BTRFS_IOC_DEV_INFO:
4701		return btrfs_ioctl_dev_info(fs_info, argp);
 
 
4702	case BTRFS_IOC_TREE_SEARCH:
4703		return btrfs_ioctl_tree_search(inode, argp);
4704	case BTRFS_IOC_TREE_SEARCH_V2:
4705		return btrfs_ioctl_tree_search_v2(inode, argp);
4706	case BTRFS_IOC_INO_LOOKUP:
4707		return btrfs_ioctl_ino_lookup(root, argp);
4708	case BTRFS_IOC_INO_PATHS:
4709		return btrfs_ioctl_ino_to_path(root, argp);
4710	case BTRFS_IOC_LOGICAL_INO:
4711		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4712	case BTRFS_IOC_LOGICAL_INO_V2:
4713		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4714	case BTRFS_IOC_SPACE_INFO:
4715		return btrfs_ioctl_space_info(fs_info, argp);
4716	case BTRFS_IOC_SYNC: {
4717		int ret;
4718
4719		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4720		if (ret)
4721			return ret;
4722		ret = btrfs_sync_fs(inode->i_sb, 1);
4723		/*
4724		 * The transaction thread may want to do more work,
4725		 * namely it pokes the cleaner kthread that will start
4726		 * processing uncleaned subvols.
4727		 */
4728		wake_up_process(fs_info->transaction_kthread);
4729		return ret;
4730	}
4731	case BTRFS_IOC_START_SYNC:
4732		return btrfs_ioctl_start_sync(root, argp);
4733	case BTRFS_IOC_WAIT_SYNC:
4734		return btrfs_ioctl_wait_sync(fs_info, argp);
4735	case BTRFS_IOC_SCRUB:
4736		return btrfs_ioctl_scrub(file, argp);
4737	case BTRFS_IOC_SCRUB_CANCEL:
4738		return btrfs_ioctl_scrub_cancel(fs_info);
4739	case BTRFS_IOC_SCRUB_PROGRESS:
4740		return btrfs_ioctl_scrub_progress(fs_info, argp);
4741	case BTRFS_IOC_BALANCE_V2:
4742		return btrfs_ioctl_balance(file, argp);
4743	case BTRFS_IOC_BALANCE_CTL:
4744		return btrfs_ioctl_balance_ctl(fs_info, arg);
4745	case BTRFS_IOC_BALANCE_PROGRESS:
4746		return btrfs_ioctl_balance_progress(fs_info, argp);
4747	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4748		return btrfs_ioctl_set_received_subvol(file, argp);
4749#ifdef CONFIG_64BIT
4750	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4751		return btrfs_ioctl_set_received_subvol_32(file, argp);
4752#endif
4753	case BTRFS_IOC_SEND:
4754		return _btrfs_ioctl_send(inode, argp, false);
4755#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4756	case BTRFS_IOC_SEND_32:
4757		return _btrfs_ioctl_send(inode, argp, true);
4758#endif
4759	case BTRFS_IOC_GET_DEV_STATS:
4760		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4761	case BTRFS_IOC_QUOTA_CTL:
4762		return btrfs_ioctl_quota_ctl(file, argp);
4763	case BTRFS_IOC_QGROUP_ASSIGN:
4764		return btrfs_ioctl_qgroup_assign(file, argp);
4765	case BTRFS_IOC_QGROUP_CREATE:
4766		return btrfs_ioctl_qgroup_create(file, argp);
4767	case BTRFS_IOC_QGROUP_LIMIT:
4768		return btrfs_ioctl_qgroup_limit(file, argp);
4769	case BTRFS_IOC_QUOTA_RESCAN:
4770		return btrfs_ioctl_quota_rescan(file, argp);
4771	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4772		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4773	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4774		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4775	case BTRFS_IOC_DEV_REPLACE:
4776		return btrfs_ioctl_dev_replace(fs_info, argp);
4777	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4778		return btrfs_ioctl_get_supported_features(argp);
4779	case BTRFS_IOC_GET_FEATURES:
4780		return btrfs_ioctl_get_features(fs_info, argp);
4781	case BTRFS_IOC_SET_FEATURES:
4782		return btrfs_ioctl_set_features(file, argp);
4783	case BTRFS_IOC_GET_SUBVOL_INFO:
4784		return btrfs_ioctl_get_subvol_info(inode, argp);
4785	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4786		return btrfs_ioctl_get_subvol_rootref(root, argp);
4787	case BTRFS_IOC_INO_LOOKUP_USER:
4788		return btrfs_ioctl_ino_lookup_user(file, argp);
4789	case FS_IOC_ENABLE_VERITY:
4790		return fsverity_ioctl_enable(file, (const void __user *)argp);
4791	case FS_IOC_MEASURE_VERITY:
4792		return fsverity_ioctl_measure(file, argp);
4793	case BTRFS_IOC_ENCODED_READ:
4794		return btrfs_ioctl_encoded_read(file, argp, false);
4795	case BTRFS_IOC_ENCODED_WRITE:
4796		return btrfs_ioctl_encoded_write(file, argp, false);
4797#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4798	case BTRFS_IOC_ENCODED_READ_32:
4799		return btrfs_ioctl_encoded_read(file, argp, true);
4800	case BTRFS_IOC_ENCODED_WRITE_32:
4801		return btrfs_ioctl_encoded_write(file, argp, true);
4802#endif
4803	}
4804
4805	return -ENOTTY;
4806}
4807
4808#ifdef CONFIG_COMPAT
4809long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4810{
4811	/*
4812	 * These all access 32-bit values anyway so no further
4813	 * handling is necessary.
4814	 */
4815	switch (cmd) {
4816	case FS_IOC32_GETVERSION:
4817		cmd = FS_IOC_GETVERSION;
4818		break;
4819	}
4820
4821	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4822}
4823#endif
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/fsnotify.h>
  11#include <linux/pagemap.h>
  12#include <linux/highmem.h>
  13#include <linux/time.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/mount.h>
  17#include <linux/namei.h>
  18#include <linux/writeback.h>
  19#include <linux/compat.h>
  20#include <linux/security.h>
  21#include <linux/xattr.h>
  22#include <linux/mm.h>
  23#include <linux/slab.h>
  24#include <linux/blkdev.h>
  25#include <linux/uuid.h>
  26#include <linux/btrfs.h>
  27#include <linux/uaccess.h>
  28#include <linux/iversion.h>
  29#include <linux/fileattr.h>
 
 
  30#include "ctree.h"
  31#include "disk-io.h"
  32#include "export.h"
  33#include "transaction.h"
  34#include "btrfs_inode.h"
  35#include "print-tree.h"
  36#include "volumes.h"
  37#include "locking.h"
  38#include "backref.h"
  39#include "rcu-string.h"
  40#include "send.h"
  41#include "dev-replace.h"
  42#include "props.h"
  43#include "sysfs.h"
  44#include "qgroup.h"
  45#include "tree-log.h"
  46#include "compression.h"
  47#include "space-info.h"
  48#include "delalloc-space.h"
  49#include "block-group.h"
 
 
 
 
 
 
 
 
 
 
 
  50
  51#ifdef CONFIG_64BIT
  52/* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
  53 * structures are incorrect, as the timespec structure from userspace
  54 * is 4 bytes too small. We define these alternatives here to teach
  55 * the kernel about the 32-bit struct packing.
  56 */
  57struct btrfs_ioctl_timespec_32 {
  58	__u64 sec;
  59	__u32 nsec;
  60} __attribute__ ((__packed__));
  61
  62struct btrfs_ioctl_received_subvol_args_32 {
  63	char	uuid[BTRFS_UUID_SIZE];	/* in */
  64	__u64	stransid;		/* in */
  65	__u64	rtransid;		/* out */
  66	struct btrfs_ioctl_timespec_32 stime; /* in */
  67	struct btrfs_ioctl_timespec_32 rtime; /* out */
  68	__u64	flags;			/* in */
  69	__u64	reserved[16];		/* in */
  70} __attribute__ ((__packed__));
  71
  72#define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
  73				struct btrfs_ioctl_received_subvol_args_32)
  74#endif
  75
  76#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
  77struct btrfs_ioctl_send_args_32 {
  78	__s64 send_fd;			/* in */
  79	__u64 clone_sources_count;	/* in */
  80	compat_uptr_t clone_sources;	/* in */
  81	__u64 parent_root;		/* in */
  82	__u64 flags;			/* in */
  83	__u64 reserved[4];		/* in */
 
  84} __attribute__ ((__packed__));
  85
  86#define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
  87			       struct btrfs_ioctl_send_args_32)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88#endif
  89
  90/* Mask out flags that are inappropriate for the given type of inode. */
  91static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
  92		unsigned int flags)
  93{
  94	if (S_ISDIR(inode->i_mode))
  95		return flags;
  96	else if (S_ISREG(inode->i_mode))
  97		return flags & ~FS_DIRSYNC_FL;
  98	else
  99		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
 100}
 101
 102/*
 103 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
 104 * ioctl.
 105 */
 106static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
 107{
 108	unsigned int iflags = 0;
 
 
 109
 110	if (flags & BTRFS_INODE_SYNC)
 111		iflags |= FS_SYNC_FL;
 112	if (flags & BTRFS_INODE_IMMUTABLE)
 113		iflags |= FS_IMMUTABLE_FL;
 114	if (flags & BTRFS_INODE_APPEND)
 115		iflags |= FS_APPEND_FL;
 116	if (flags & BTRFS_INODE_NODUMP)
 117		iflags |= FS_NODUMP_FL;
 118	if (flags & BTRFS_INODE_NOATIME)
 119		iflags |= FS_NOATIME_FL;
 120	if (flags & BTRFS_INODE_DIRSYNC)
 121		iflags |= FS_DIRSYNC_FL;
 122	if (flags & BTRFS_INODE_NODATACOW)
 123		iflags |= FS_NOCOW_FL;
 
 
 124
 125	if (flags & BTRFS_INODE_NOCOMPRESS)
 126		iflags |= FS_NOCOMP_FL;
 127	else if (flags & BTRFS_INODE_COMPRESS)
 128		iflags |= FS_COMPR_FL;
 129
 130	return iflags;
 131}
 132
 133/*
 134 * Update inode->i_flags based on the btrfs internal flags.
 135 */
 136void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
 137{
 138	struct btrfs_inode *binode = BTRFS_I(inode);
 139	unsigned int new_fl = 0;
 140
 141	if (binode->flags & BTRFS_INODE_SYNC)
 142		new_fl |= S_SYNC;
 143	if (binode->flags & BTRFS_INODE_IMMUTABLE)
 144		new_fl |= S_IMMUTABLE;
 145	if (binode->flags & BTRFS_INODE_APPEND)
 146		new_fl |= S_APPEND;
 147	if (binode->flags & BTRFS_INODE_NOATIME)
 148		new_fl |= S_NOATIME;
 149	if (binode->flags & BTRFS_INODE_DIRSYNC)
 150		new_fl |= S_DIRSYNC;
 
 
 151
 152	set_mask_bits(&inode->i_flags,
 153		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
 154		      new_fl);
 155}
 156
 157/*
 158 * Check if @flags are a supported and valid set of FS_*_FL flags and that
 159 * the old and new flags are not conflicting
 160 */
 161static int check_fsflags(unsigned int old_flags, unsigned int flags)
 162{
 163	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
 164		      FS_NOATIME_FL | FS_NODUMP_FL | \
 165		      FS_SYNC_FL | FS_DIRSYNC_FL | \
 166		      FS_NOCOMP_FL | FS_COMPR_FL |
 167		      FS_NOCOW_FL))
 168		return -EOPNOTSUPP;
 169
 170	/* COMPR and NOCOMP on new/old are valid */
 171	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
 172		return -EINVAL;
 173
 174	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
 175		return -EINVAL;
 176
 177	/* NOCOW and compression options are mutually exclusive */
 178	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 179		return -EINVAL;
 180	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
 181		return -EINVAL;
 182
 183	return 0;
 184}
 185
 186static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
 187				    unsigned int flags)
 188{
 189	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
 190		return -EPERM;
 191
 192	return 0;
 193}
 194
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 195/*
 196 * Set flags/xflags from the internal inode flags. The remaining items of
 197 * fsxattr are zeroed.
 198 */
 199int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
 200{
 201	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
 202
 203	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode->flags));
 204	return 0;
 205}
 206
 207int btrfs_fileattr_set(struct user_namespace *mnt_userns,
 208		       struct dentry *dentry, struct fileattr *fa)
 209{
 210	struct inode *inode = d_inode(dentry);
 211	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 212	struct btrfs_inode *binode = BTRFS_I(inode);
 213	struct btrfs_root *root = binode->root;
 214	struct btrfs_trans_handle *trans;
 215	unsigned int fsflags, old_fsflags;
 216	int ret;
 217	const char *comp = NULL;
 218	u32 binode_flags;
 219
 220	if (btrfs_root_readonly(root))
 221		return -EROFS;
 222
 223	if (fileattr_has_fsx(fa))
 224		return -EOPNOTSUPP;
 225
 226	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
 227	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
 228	ret = check_fsflags(old_fsflags, fsflags);
 229	if (ret)
 230		return ret;
 231
 232	ret = check_fsflags_compatible(fs_info, fsflags);
 233	if (ret)
 234		return ret;
 235
 236	binode_flags = binode->flags;
 237	if (fsflags & FS_SYNC_FL)
 238		binode_flags |= BTRFS_INODE_SYNC;
 239	else
 240		binode_flags &= ~BTRFS_INODE_SYNC;
 241	if (fsflags & FS_IMMUTABLE_FL)
 242		binode_flags |= BTRFS_INODE_IMMUTABLE;
 243	else
 244		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
 245	if (fsflags & FS_APPEND_FL)
 246		binode_flags |= BTRFS_INODE_APPEND;
 247	else
 248		binode_flags &= ~BTRFS_INODE_APPEND;
 249	if (fsflags & FS_NODUMP_FL)
 250		binode_flags |= BTRFS_INODE_NODUMP;
 251	else
 252		binode_flags &= ~BTRFS_INODE_NODUMP;
 253	if (fsflags & FS_NOATIME_FL)
 254		binode_flags |= BTRFS_INODE_NOATIME;
 255	else
 256		binode_flags &= ~BTRFS_INODE_NOATIME;
 257
 258	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
 259	if (!fa->flags_valid) {
 260		/* 1 item for the inode */
 261		trans = btrfs_start_transaction(root, 1);
 262		if (IS_ERR(trans))
 263			return PTR_ERR(trans);
 264		goto update_flags;
 265	}
 266
 267	if (fsflags & FS_DIRSYNC_FL)
 268		binode_flags |= BTRFS_INODE_DIRSYNC;
 269	else
 270		binode_flags &= ~BTRFS_INODE_DIRSYNC;
 271	if (fsflags & FS_NOCOW_FL) {
 272		if (S_ISREG(inode->i_mode)) {
 273			/*
 274			 * It's safe to turn csums off here, no extents exist.
 275			 * Otherwise we want the flag to reflect the real COW
 276			 * status of the file and will not set it.
 277			 */
 278			if (inode->i_size == 0)
 279				binode_flags |= BTRFS_INODE_NODATACOW |
 280						BTRFS_INODE_NODATASUM;
 281		} else {
 282			binode_flags |= BTRFS_INODE_NODATACOW;
 283		}
 284	} else {
 285		/*
 286		 * Revert back under same assumptions as above
 287		 */
 288		if (S_ISREG(inode->i_mode)) {
 289			if (inode->i_size == 0)
 290				binode_flags &= ~(BTRFS_INODE_NODATACOW |
 291						  BTRFS_INODE_NODATASUM);
 292		} else {
 293			binode_flags &= ~BTRFS_INODE_NODATACOW;
 294		}
 295	}
 296
 297	/*
 298	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
 299	 * flag may be changed automatically if compression code won't make
 300	 * things smaller.
 301	 */
 302	if (fsflags & FS_NOCOMP_FL) {
 303		binode_flags &= ~BTRFS_INODE_COMPRESS;
 304		binode_flags |= BTRFS_INODE_NOCOMPRESS;
 305	} else if (fsflags & FS_COMPR_FL) {
 306
 307		if (IS_SWAPFILE(inode))
 308			return -ETXTBSY;
 309
 310		binode_flags |= BTRFS_INODE_COMPRESS;
 311		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
 312
 313		comp = btrfs_compress_type2str(fs_info->compress_type);
 314		if (!comp || comp[0] == 0)
 315			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
 316	} else {
 317		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
 318	}
 319
 320	/*
 321	 * 1 for inode item
 322	 * 2 for properties
 323	 */
 324	trans = btrfs_start_transaction(root, 3);
 325	if (IS_ERR(trans))
 326		return PTR_ERR(trans);
 327
 328	if (comp) {
 329		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
 330				     strlen(comp), 0);
 331		if (ret) {
 332			btrfs_abort_transaction(trans, ret);
 333			goto out_end_trans;
 334		}
 335	} else {
 336		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
 337				     0, 0);
 338		if (ret && ret != -ENODATA) {
 339			btrfs_abort_transaction(trans, ret);
 340			goto out_end_trans;
 341		}
 342	}
 343
 344update_flags:
 345	binode->flags = binode_flags;
 346	btrfs_sync_inode_flags_to_i_flags(inode);
 347	inode_inc_iversion(inode);
 348	inode->i_ctime = current_time(inode);
 349	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
 350
 351 out_end_trans:
 352	btrfs_end_transaction(trans);
 353	return ret;
 354}
 355
 356/*
 357 * Start exclusive operation @type, return true on success
 358 */
 359bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
 360			enum btrfs_exclusive_operation type)
 361{
 362	bool ret = false;
 363
 364	spin_lock(&fs_info->super_lock);
 365	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
 366		fs_info->exclusive_operation = type;
 367		ret = true;
 368	}
 369	spin_unlock(&fs_info->super_lock);
 370
 371	return ret;
 372}
 373
 374/*
 375 * Conditionally allow to enter the exclusive operation in case it's compatible
 376 * with the running one.  This must be paired with btrfs_exclop_start_unlock and
 377 * btrfs_exclop_finish.
 378 *
 379 * Compatibility:
 380 * - the same type is already running
 
 381 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
 382 *   must check the condition first that would allow none -> @type
 383 */
 384bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
 385				 enum btrfs_exclusive_operation type)
 386{
 387	spin_lock(&fs_info->super_lock);
 388	if (fs_info->exclusive_operation == type)
 
 
 389		return true;
 390
 391	spin_unlock(&fs_info->super_lock);
 392	return false;
 393}
 394
 395void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
 396{
 397	spin_unlock(&fs_info->super_lock);
 398}
 399
 400void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
 401{
 402	spin_lock(&fs_info->super_lock);
 403	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
 404	spin_unlock(&fs_info->super_lock);
 405	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
 406}
 407
 408static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
 
 409{
 410	struct inode *inode = file_inode(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411
 
 
 412	return put_user(inode->i_generation, arg);
 413}
 414
 415static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
 416					void __user *arg)
 417{
 418	struct btrfs_device *device;
 419	struct request_queue *q;
 420	struct fstrim_range range;
 421	u64 minlen = ULLONG_MAX;
 422	u64 num_devices = 0;
 423	int ret;
 424
 425	if (!capable(CAP_SYS_ADMIN))
 426		return -EPERM;
 427
 428	/*
 429	 * btrfs_trim_block_group() depends on space cache, which is not
 430	 * available in zoned filesystem. So, disallow fitrim on a zoned
 431	 * filesystem for now.
 432	 */
 433	if (btrfs_is_zoned(fs_info))
 434		return -EOPNOTSUPP;
 435
 436	/*
 437	 * If the fs is mounted with nologreplay, which requires it to be
 438	 * mounted in RO mode as well, we can not allow discard on free space
 439	 * inside block groups, because log trees refer to extents that are not
 440	 * pinned in a block group's free space cache (pinning the extents is
 441	 * precisely the first phase of replaying a log tree).
 442	 */
 443	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
 444		return -EROFS;
 445
 446	rcu_read_lock();
 447	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
 448				dev_list) {
 449		if (!device->bdev)
 450			continue;
 451		q = bdev_get_queue(device->bdev);
 452		if (blk_queue_discard(q)) {
 453			num_devices++;
 454			minlen = min_t(u64, q->limits.discard_granularity,
 455				     minlen);
 456		}
 457	}
 458	rcu_read_unlock();
 459
 460	if (!num_devices)
 461		return -EOPNOTSUPP;
 462	if (copy_from_user(&range, arg, sizeof(range)))
 463		return -EFAULT;
 464
 465	/*
 466	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
 467	 * block group is in the logical address space, which can be any
 468	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
 469	 */
 470	if (range.len < fs_info->sb->s_blocksize)
 471		return -EINVAL;
 472
 473	range.minlen = max(range.minlen, minlen);
 474	ret = btrfs_trim_fs(fs_info, &range);
 475	if (ret < 0)
 476		return ret;
 477
 478	if (copy_to_user(arg, &range, sizeof(range)))
 479		return -EFAULT;
 480
 481	return 0;
 482}
 483
 484int __pure btrfs_is_empty_uuid(u8 *uuid)
 485{
 486	int i;
 487
 488	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
 489		if (uuid[i])
 490			return 0;
 491	}
 492	return 1;
 493}
 494
 495static noinline int create_subvol(struct inode *dir,
 496				  struct dentry *dentry,
 497				  const char *name, int namelen,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498				  struct btrfs_qgroup_inherit *inherit)
 499{
 500	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 501	struct btrfs_trans_handle *trans;
 502	struct btrfs_key key;
 503	struct btrfs_root_item *root_item;
 504	struct btrfs_inode_item *inode_item;
 505	struct extent_buffer *leaf;
 506	struct btrfs_root *root = BTRFS_I(dir)->root;
 507	struct btrfs_root *new_root;
 508	struct btrfs_block_rsv block_rsv;
 509	struct timespec64 cur_time = current_time(dir);
 510	struct inode *inode;
 
 
 
 
 
 511	int ret;
 512	int err;
 513	dev_t anon_dev = 0;
 514	u64 objectid;
 515	u64 index = 0;
 516
 517	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
 518	if (!root_item)
 519		return -ENOMEM;
 520
 521	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
 522	if (ret)
 523		goto fail_free;
 524
 525	ret = get_anon_bdev(&anon_dev);
 526	if (ret < 0)
 527		goto fail_free;
 528
 529	/*
 530	 * Don't create subvolume whose level is not zero. Or qgroup will be
 531	 * screwed up since it assumes subvolume qgroup's level to be 0.
 532	 */
 533	if (btrfs_qgroup_level(objectid)) {
 534		ret = -ENOSPC;
 535		goto fail_free;
 536	}
 537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 538	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
 539	/*
 540	 * The same as the snapshot creation, please see the comment
 541	 * of create_snapshot().
 542	 */
 543	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
 544	if (ret)
 545		goto fail_free;
 
 546
 547	trans = btrfs_start_transaction(root, 0);
 548	if (IS_ERR(trans)) {
 549		ret = PTR_ERR(trans);
 550		btrfs_subvolume_release_metadata(root, &block_rsv);
 551		goto fail_free;
 552	}
 
 
 
 
 
 553	trans->block_rsv = &block_rsv;
 554	trans->bytes_reserved = block_rsv.size;
 
 
 555
 556	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
 557	if (ret)
 558		goto fail;
 559
 560	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
 561				      BTRFS_NESTING_NORMAL);
 562	if (IS_ERR(leaf)) {
 563		ret = PTR_ERR(leaf);
 564		goto fail;
 565	}
 566
 567	btrfs_mark_buffer_dirty(leaf);
 568
 569	inode_item = &root_item->inode;
 570	btrfs_set_stack_inode_generation(inode_item, 1);
 571	btrfs_set_stack_inode_size(inode_item, 3);
 572	btrfs_set_stack_inode_nlink(inode_item, 1);
 573	btrfs_set_stack_inode_nbytes(inode_item,
 574				     fs_info->nodesize);
 575	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
 576
 577	btrfs_set_root_flags(root_item, 0);
 578	btrfs_set_root_limit(root_item, 0);
 579	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
 580
 581	btrfs_set_root_bytenr(root_item, leaf->start);
 582	btrfs_set_root_generation(root_item, trans->transid);
 583	btrfs_set_root_level(root_item, 0);
 584	btrfs_set_root_refs(root_item, 1);
 585	btrfs_set_root_used(root_item, leaf->len);
 586	btrfs_set_root_last_snapshot(root_item, 0);
 587
 588	btrfs_set_root_generation_v2(root_item,
 589			btrfs_root_generation(root_item));
 590	generate_random_guid(root_item->uuid);
 591	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
 592	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
 593	root_item->ctime = root_item->otime;
 594	btrfs_set_root_ctransid(root_item, trans->transid);
 595	btrfs_set_root_otransid(root_item, trans->transid);
 596
 597	btrfs_tree_unlock(leaf);
 598
 599	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
 600
 601	key.objectid = objectid;
 602	key.offset = 0;
 603	key.type = BTRFS_ROOT_ITEM_KEY;
 604	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
 605				root_item);
 606	if (ret) {
 607		/*
 608		 * Since we don't abort the transaction in this case, free the
 609		 * tree block so that we don't leak space and leave the
 610		 * filesystem in an inconsistent state (an extent item in the
 611		 * extent tree without backreferences). Also no need to have
 612		 * the tree block locked since it is not in any tree at this
 613		 * point, so no other task can find it and use it.
 614		 */
 615		btrfs_free_tree_block(trans, root, leaf, 0, 1);
 
 
 
 616		free_extent_buffer(leaf);
 617		goto fail;
 618	}
 619
 620	free_extent_buffer(leaf);
 621	leaf = NULL;
 622
 623	key.offset = (u64)-1;
 624	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
 625	if (IS_ERR(new_root)) {
 626		free_anon_bdev(anon_dev);
 627		ret = PTR_ERR(new_root);
 628		btrfs_abort_transaction(trans, ret);
 629		goto fail;
 630	}
 631	/* Freeing will be done in btrfs_put_root() of new_root */
 632	anon_dev = 0;
 
 
 633
 634	ret = btrfs_record_root_in_trans(trans, new_root);
 635	if (ret) {
 636		btrfs_put_root(new_root);
 637		btrfs_abort_transaction(trans, ret);
 638		goto fail;
 639	}
 640
 641	ret = btrfs_create_subvol_root(trans, new_root, root);
 642	btrfs_put_root(new_root);
 643	if (ret) {
 644		/* We potentially lose an unused inode item here */
 645		btrfs_abort_transaction(trans, ret);
 646		goto fail;
 647	}
 648
 649	/*
 650	 * insert the directory item
 651	 */
 652	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
 653	if (ret) {
 654		btrfs_abort_transaction(trans, ret);
 655		goto fail;
 656	}
 657
 658	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
 659				    BTRFS_FT_DIR, index);
 660	if (ret) {
 661		btrfs_abort_transaction(trans, ret);
 662		goto fail;
 663	}
 664
 665	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
 666	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
 667	if (ret) {
 668		btrfs_abort_transaction(trans, ret);
 669		goto fail;
 670	}
 671
 672	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
 673				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
 674	if (ret) {
 675		btrfs_abort_transaction(trans, ret);
 676		goto fail;
 677	}
 678
 679	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
 680				  BTRFS_UUID_KEY_SUBVOL, objectid);
 681	if (ret)
 682		btrfs_abort_transaction(trans, ret);
 683
 684fail:
 685	kfree(root_item);
 686	trans->block_rsv = NULL;
 687	trans->bytes_reserved = 0;
 688	btrfs_subvolume_release_metadata(root, &block_rsv);
 689
 690	err = btrfs_commit_transaction(trans);
 691	if (err && !ret)
 692		ret = err;
 693
 694	if (!ret) {
 695		inode = btrfs_lookup_dentry(dir, dentry);
 696		if (IS_ERR(inode))
 697			return PTR_ERR(inode);
 698		d_instantiate(dentry, inode);
 699	}
 700	return ret;
 701
 702fail_free:
 703	if (anon_dev)
 704		free_anon_bdev(anon_dev);
 
 705	kfree(root_item);
 706	return ret;
 707}
 708
 709static int create_snapshot(struct btrfs_root *root, struct inode *dir,
 710			   struct dentry *dentry, bool readonly,
 711			   struct btrfs_qgroup_inherit *inherit)
 712{
 713	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 714	struct inode *inode;
 715	struct btrfs_pending_snapshot *pending_snapshot;
 
 716	struct btrfs_trans_handle *trans;
 
 
 717	int ret;
 718
 
 
 
 
 
 
 
 
 
 
 719	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
 720		return -EINVAL;
 721
 722	if (atomic_read(&root->nr_swapfiles)) {
 723		btrfs_warn(fs_info,
 724			   "cannot snapshot subvolume with active swapfile");
 725		return -ETXTBSY;
 726	}
 727
 728	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
 729	if (!pending_snapshot)
 730		return -ENOMEM;
 731
 732	ret = get_anon_bdev(&pending_snapshot->anon_dev);
 733	if (ret < 0)
 734		goto free_pending;
 735	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
 736			GFP_KERNEL);
 737	pending_snapshot->path = btrfs_alloc_path();
 738	if (!pending_snapshot->root_item || !pending_snapshot->path) {
 739		ret = -ENOMEM;
 740		goto free_pending;
 741	}
 742
 743	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
 744			     BTRFS_BLOCK_RSV_TEMP);
 745	/*
 746	 * 1 - parent dir inode
 747	 * 2 - dir entries
 748	 * 1 - root item
 749	 * 2 - root ref/backref
 750	 * 1 - root of snapshot
 751	 * 1 - UUID item
 752	 */
 753	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
 754					&pending_snapshot->block_rsv, 8,
 755					false);
 756	if (ret)
 757		goto free_pending;
 
 758
 759	pending_snapshot->dentry = dentry;
 760	pending_snapshot->root = root;
 761	pending_snapshot->readonly = readonly;
 762	pending_snapshot->dir = dir;
 763	pending_snapshot->inherit = inherit;
 764
 765	trans = btrfs_start_transaction(root, 0);
 766	if (IS_ERR(trans)) {
 767		ret = PTR_ERR(trans);
 768		goto fail;
 769	}
 
 
 
 
 
 
 
 770
 771	spin_lock(&fs_info->trans_lock);
 772	list_add(&pending_snapshot->list,
 773		 &trans->transaction->pending_snapshots);
 774	spin_unlock(&fs_info->trans_lock);
 775
 776	ret = btrfs_commit_transaction(trans);
 777	if (ret)
 778		goto fail;
 779
 780	ret = pending_snapshot->error;
 781	if (ret)
 782		goto fail;
 783
 784	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
 785	if (ret)
 786		goto fail;
 787
 788	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
 789	if (IS_ERR(inode)) {
 790		ret = PTR_ERR(inode);
 791		goto fail;
 792	}
 793
 794	d_instantiate(dentry, inode);
 795	ret = 0;
 796	pending_snapshot->anon_dev = 0;
 797fail:
 798	/* Prevent double freeing of anon_dev */
 799	if (ret && pending_snapshot->snap)
 800		pending_snapshot->snap->anon_dev = 0;
 801	btrfs_put_root(pending_snapshot->snap);
 802	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
 
 
 803free_pending:
 804	if (pending_snapshot->anon_dev)
 805		free_anon_bdev(pending_snapshot->anon_dev);
 806	kfree(pending_snapshot->root_item);
 807	btrfs_free_path(pending_snapshot->path);
 808	kfree(pending_snapshot);
 809
 810	return ret;
 811}
 812
 813/*  copy of may_delete in fs/namei.c()
 814 *	Check whether we can remove a link victim from directory dir, check
 815 *  whether the type of victim is right.
 816 *  1. We can't do it if dir is read-only (done in permission())
 817 *  2. We should have write and exec permissions on dir
 818 *  3. We can't remove anything from append-only dir
 819 *  4. We can't do anything with immutable dir (done in permission())
 820 *  5. If the sticky bit on dir is set we should either
 821 *	a. be owner of dir, or
 822 *	b. be owner of victim, or
 823 *	c. have CAP_FOWNER capability
 824 *  6. If the victim is append-only or immutable we can't do anything with
 825 *     links pointing to it.
 826 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
 827 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
 828 *  9. We can't remove a root or mountpoint.
 829 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
 830 *     nfs_async_unlink().
 831 */
 832
 833static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
 
 834{
 835	int error;
 836
 837	if (d_really_is_negative(victim))
 838		return -ENOENT;
 839
 840	BUG_ON(d_inode(victim->d_parent) != dir);
 
 
 841	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
 842
 843	error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
 844	if (error)
 845		return error;
 846	if (IS_APPEND(dir))
 847		return -EPERM;
 848	if (check_sticky(&init_user_ns, dir, d_inode(victim)) ||
 849	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
 850	    IS_SWAPFILE(d_inode(victim)))
 851		return -EPERM;
 852	if (isdir) {
 853		if (!d_is_dir(victim))
 854			return -ENOTDIR;
 855		if (IS_ROOT(victim))
 856			return -EBUSY;
 857	} else if (d_is_dir(victim))
 858		return -EISDIR;
 859	if (IS_DEADDIR(dir))
 860		return -ENOENT;
 861	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
 862		return -EBUSY;
 863	return 0;
 864}
 865
 866/* copy of may_create in fs/namei.c() */
 867static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
 
 868{
 869	if (d_really_is_positive(child))
 870		return -EEXIST;
 871	if (IS_DEADDIR(dir))
 872		return -ENOENT;
 873	return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
 
 
 874}
 875
 876/*
 877 * Create a new subvolume below @parent.  This is largely modeled after
 878 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
 879 * inside this filesystem so it's quite a bit simpler.
 880 */
 881static noinline int btrfs_mksubvol(const struct path *parent,
 
 882				   const char *name, int namelen,
 883				   struct btrfs_root *snap_src,
 884				   bool readonly,
 885				   struct btrfs_qgroup_inherit *inherit)
 886{
 887	struct inode *dir = d_inode(parent->dentry);
 888	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
 889	struct dentry *dentry;
 
 890	int error;
 891
 892	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
 893	if (error == -EINTR)
 894		return error;
 895
 896	dentry = lookup_one_len(name, parent->dentry, namelen);
 897	error = PTR_ERR(dentry);
 898	if (IS_ERR(dentry))
 899		goto out_unlock;
 900
 901	error = btrfs_may_create(dir, dentry);
 902	if (error)
 903		goto out_dput;
 904
 905	/*
 906	 * even if this name doesn't exist, we may get hash collisions.
 907	 * check for them now when we can safely fail
 908	 */
 909	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
 910					       dir->i_ino, name,
 911					       namelen);
 912	if (error)
 913		goto out_dput;
 914
 915	down_read(&fs_info->subvol_sem);
 916
 917	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
 918		goto out_up_read;
 919
 920	if (snap_src)
 921		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
 922	else
 923		error = create_subvol(dir, dentry, name, namelen, inherit);
 924
 925	if (!error)
 926		fsnotify_mkdir(dir, dentry);
 927out_up_read:
 928	up_read(&fs_info->subvol_sem);
 929out_dput:
 930	dput(dentry);
 931out_unlock:
 932	btrfs_inode_unlock(dir, 0);
 933	return error;
 934}
 935
 936static noinline int btrfs_mksnapshot(const struct path *parent,
 
 937				   const char *name, int namelen,
 938				   struct btrfs_root *root,
 939				   bool readonly,
 940				   struct btrfs_qgroup_inherit *inherit)
 941{
 942	int ret;
 943	bool snapshot_force_cow = false;
 944
 945	/*
 946	 * Force new buffered writes to reserve space even when NOCOW is
 947	 * possible. This is to avoid later writeback (running dealloc) to
 948	 * fallback to COW mode and unexpectedly fail with ENOSPC.
 949	 */
 950	btrfs_drew_read_lock(&root->snapshot_lock);
 951
 952	ret = btrfs_start_delalloc_snapshot(root, false);
 953	if (ret)
 954		goto out;
 955
 956	/*
 957	 * All previous writes have started writeback in NOCOW mode, so now
 958	 * we force future writes to fallback to COW mode during snapshot
 959	 * creation.
 960	 */
 961	atomic_inc(&root->snapshot_force_cow);
 962	snapshot_force_cow = true;
 963
 964	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
 965
 966	ret = btrfs_mksubvol(parent, name, namelen,
 967			     root, readonly, inherit);
 968out:
 969	if (snapshot_force_cow)
 970		atomic_dec(&root->snapshot_force_cow);
 971	btrfs_drew_read_unlock(&root->snapshot_lock);
 972	return ret;
 973}
 974
 975/*
 976 * When we're defragging a range, we don't want to kick it off again
 977 * if it is really just waiting for delalloc to send it down.
 978 * If we find a nice big extent or delalloc range for the bytes in the
 979 * file you want to defrag, we return 0 to let you know to skip this
 980 * part of the file
 981 */
 982static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
 983{
 984	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 985	struct extent_map *em = NULL;
 986	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 987	u64 end;
 988
 989	read_lock(&em_tree->lock);
 990	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
 991	read_unlock(&em_tree->lock);
 992
 993	if (em) {
 994		end = extent_map_end(em);
 995		free_extent_map(em);
 996		if (end - offset > thresh)
 997			return 0;
 998	}
 999	/* if we already have a nice delalloc here, just stop */
1000	thresh /= 2;
1001	end = count_range_bits(io_tree, &offset, offset + thresh,
1002			       thresh, EXTENT_DELALLOC, 1);
1003	if (end >= thresh)
1004		return 0;
1005	return 1;
1006}
1007
1008/*
1009 * helper function to walk through a file and find extents
1010 * newer than a specific transid, and smaller than thresh.
1011 *
1012 * This is used by the defragging code to find new and small
1013 * extents
1014 */
1015static int find_new_extents(struct btrfs_root *root,
1016			    struct inode *inode, u64 newer_than,
1017			    u64 *off, u32 thresh)
1018{
1019	struct btrfs_path *path;
1020	struct btrfs_key min_key;
1021	struct extent_buffer *leaf;
1022	struct btrfs_file_extent_item *extent;
1023	int type;
1024	int ret;
1025	u64 ino = btrfs_ino(BTRFS_I(inode));
1026
1027	path = btrfs_alloc_path();
1028	if (!path)
1029		return -ENOMEM;
1030
1031	min_key.objectid = ino;
1032	min_key.type = BTRFS_EXTENT_DATA_KEY;
1033	min_key.offset = *off;
1034
1035	while (1) {
1036		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1037		if (ret != 0)
1038			goto none;
1039process_slot:
1040		if (min_key.objectid != ino)
1041			goto none;
1042		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1043			goto none;
1044
1045		leaf = path->nodes[0];
1046		extent = btrfs_item_ptr(leaf, path->slots[0],
1047					struct btrfs_file_extent_item);
1048
1049		type = btrfs_file_extent_type(leaf, extent);
1050		if (type == BTRFS_FILE_EXTENT_REG &&
1051		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1052		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1053			*off = min_key.offset;
1054			btrfs_free_path(path);
1055			return 0;
1056		}
1057
1058		path->slots[0]++;
1059		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1060			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1061			goto process_slot;
1062		}
1063
1064		if (min_key.offset == (u64)-1)
1065			goto none;
1066
1067		min_key.offset++;
1068		btrfs_release_path(path);
1069	}
1070none:
1071	btrfs_free_path(path);
1072	return -ENOENT;
1073}
1074
1075static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1076{
1077	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1078	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1079	struct extent_map *em;
1080	u64 len = PAGE_SIZE;
1081
1082	/*
1083	 * hopefully we have this extent in the tree already, try without
1084	 * the full extent lock
1085	 */
1086	read_lock(&em_tree->lock);
1087	em = lookup_extent_mapping(em_tree, start, len);
1088	read_unlock(&em_tree->lock);
1089
1090	if (!em) {
1091		struct extent_state *cached = NULL;
1092		u64 end = start + len - 1;
1093
1094		/* get the big lock and read metadata off disk */
1095		lock_extent_bits(io_tree, start, end, &cached);
1096		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1097		unlock_extent_cached(io_tree, start, end, &cached);
1098
1099		if (IS_ERR(em))
1100			return NULL;
1101	}
1102
1103	return em;
1104}
1105
1106static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1107{
1108	struct extent_map *next;
1109	bool ret = true;
1110
1111	/* this is the last extent */
1112	if (em->start + em->len >= i_size_read(inode))
1113		return false;
1114
1115	next = defrag_lookup_extent(inode, em->start + em->len);
1116	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1117		ret = false;
1118	else if ((em->block_start + em->block_len == next->block_start) &&
1119		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1120		ret = false;
1121
1122	free_extent_map(next);
1123	return ret;
1124}
1125
1126static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1127			       u64 *last_len, u64 *skip, u64 *defrag_end,
1128			       int compress)
1129{
1130	struct extent_map *em;
1131	int ret = 1;
1132	bool next_mergeable = true;
1133	bool prev_mergeable = true;
1134
1135	/*
1136	 * make sure that once we start defragging an extent, we keep on
1137	 * defragging it
1138	 */
1139	if (start < *defrag_end)
1140		return 1;
1141
1142	*skip = 0;
1143
1144	em = defrag_lookup_extent(inode, start);
1145	if (!em)
1146		return 0;
1147
1148	/* this will cover holes, and inline extents */
1149	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1150		ret = 0;
1151		goto out;
1152	}
1153
1154	if (!*defrag_end)
1155		prev_mergeable = false;
1156
1157	next_mergeable = defrag_check_next_extent(inode, em);
1158	/*
1159	 * we hit a real extent, if it is big or the next extent is not a
1160	 * real extent, don't bother defragging it
1161	 */
1162	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1163	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1164		ret = 0;
1165out:
1166	/*
1167	 * last_len ends up being a counter of how many bytes we've defragged.
1168	 * every time we choose not to defrag an extent, we reset *last_len
1169	 * so that the next tiny extent will force a defrag.
1170	 *
1171	 * The end result of this is that tiny extents before a single big
1172	 * extent will force at least part of that big extent to be defragged.
1173	 */
1174	if (ret) {
1175		*defrag_end = extent_map_end(em);
1176	} else {
1177		*last_len = 0;
1178		*skip = extent_map_end(em);
1179		*defrag_end = 0;
1180	}
1181
1182	free_extent_map(em);
1183	return ret;
1184}
1185
1186/*
1187 * it doesn't do much good to defrag one or two pages
1188 * at a time.  This pulls in a nice chunk of pages
1189 * to COW and defrag.
1190 *
1191 * It also makes sure the delalloc code has enough
1192 * dirty data to avoid making new small extents as part
1193 * of the defrag
1194 *
1195 * It's a good idea to start RA on this range
1196 * before calling this.
1197 */
1198static int cluster_pages_for_defrag(struct inode *inode,
1199				    struct page **pages,
1200				    unsigned long start_index,
1201				    unsigned long num_pages)
1202{
1203	unsigned long file_end;
1204	u64 isize = i_size_read(inode);
1205	u64 page_start;
1206	u64 page_end;
1207	u64 page_cnt;
1208	u64 start = (u64)start_index << PAGE_SHIFT;
1209	u64 search_start;
1210	int ret;
1211	int i;
1212	int i_done;
1213	struct btrfs_ordered_extent *ordered;
1214	struct extent_state *cached_state = NULL;
1215	struct extent_io_tree *tree;
1216	struct extent_changeset *data_reserved = NULL;
1217	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1218
1219	file_end = (isize - 1) >> PAGE_SHIFT;
1220	if (!isize || start_index > file_end)
1221		return 0;
1222
1223	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1224
1225	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1226			start, page_cnt << PAGE_SHIFT);
1227	if (ret)
1228		return ret;
1229	i_done = 0;
1230	tree = &BTRFS_I(inode)->io_tree;
1231
1232	/* step one, lock all the pages */
1233	for (i = 0; i < page_cnt; i++) {
1234		struct page *page;
1235again:
1236		page = find_or_create_page(inode->i_mapping,
1237					   start_index + i, mask);
1238		if (!page)
1239			break;
1240
1241		ret = set_page_extent_mapped(page);
1242		if (ret < 0) {
1243			unlock_page(page);
1244			put_page(page);
1245			break;
1246		}
1247
1248		page_start = page_offset(page);
1249		page_end = page_start + PAGE_SIZE - 1;
1250		while (1) {
1251			lock_extent_bits(tree, page_start, page_end,
1252					 &cached_state);
1253			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1254							      page_start);
1255			unlock_extent_cached(tree, page_start, page_end,
1256					     &cached_state);
1257			if (!ordered)
1258				break;
1259
1260			unlock_page(page);
1261			btrfs_start_ordered_extent(ordered, 1);
1262			btrfs_put_ordered_extent(ordered);
1263			lock_page(page);
1264			/*
1265			 * we unlocked the page above, so we need check if
1266			 * it was released or not.
1267			 */
1268			if (page->mapping != inode->i_mapping) {
1269				unlock_page(page);
1270				put_page(page);
1271				goto again;
1272			}
1273		}
1274
1275		if (!PageUptodate(page)) {
1276			btrfs_readpage(NULL, page);
1277			lock_page(page);
1278			if (!PageUptodate(page)) {
1279				unlock_page(page);
1280				put_page(page);
1281				ret = -EIO;
1282				break;
1283			}
1284		}
1285
1286		if (page->mapping != inode->i_mapping) {
1287			unlock_page(page);
1288			put_page(page);
1289			goto again;
1290		}
1291
1292		pages[i] = page;
1293		i_done++;
1294	}
1295	if (!i_done || ret)
1296		goto out;
1297
1298	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1299		goto out;
1300
1301	/*
1302	 * so now we have a nice long stream of locked
1303	 * and up to date pages, lets wait on them
1304	 */
1305	for (i = 0; i < i_done; i++)
1306		wait_on_page_writeback(pages[i]);
1307
1308	page_start = page_offset(pages[0]);
1309	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1310
1311	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1312			 page_start, page_end - 1, &cached_state);
1313
1314	/*
1315	 * When defragmenting we skip ranges that have holes or inline extents,
1316	 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1317	 * space. At btrfs_defrag_file(), we check if a range should be defragged
1318	 * before locking the inode and then, if it should, we trigger a sync
1319	 * page cache readahead - we lock the inode only after that to avoid
1320	 * blocking for too long other tasks that possibly want to operate on
1321	 * other file ranges. But before we were able to get the inode lock,
1322	 * some other task may have punched a hole in the range, or we may have
1323	 * now an inline extent, in which case we should not defrag. So check
1324	 * for that here, where we have the inode and the range locked, and bail
1325	 * out if that happened.
1326	 */
1327	search_start = page_start;
1328	while (search_start < page_end) {
1329		struct extent_map *em;
1330
1331		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1332				      page_end - search_start);
1333		if (IS_ERR(em)) {
1334			ret = PTR_ERR(em);
1335			goto out_unlock_range;
1336		}
1337		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1338			free_extent_map(em);
1339			/* Ok, 0 means we did not defrag anything */
1340			ret = 0;
1341			goto out_unlock_range;
1342		}
1343		search_start = extent_map_end(em);
1344		free_extent_map(em);
1345	}
1346
1347	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1348			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1349			  EXTENT_DEFRAG, 0, 0, &cached_state);
1350
1351	if (i_done != page_cnt) {
1352		spin_lock(&BTRFS_I(inode)->lock);
1353		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1354		spin_unlock(&BTRFS_I(inode)->lock);
1355		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1356				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1357	}
1358
1359
1360	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1361			  &cached_state);
1362
1363	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1364			     page_start, page_end - 1, &cached_state);
1365
1366	for (i = 0; i < i_done; i++) {
1367		clear_page_dirty_for_io(pages[i]);
1368		ClearPageChecked(pages[i]);
1369		set_page_dirty(pages[i]);
1370		unlock_page(pages[i]);
1371		put_page(pages[i]);
1372	}
1373	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1374	extent_changeset_free(data_reserved);
1375	return i_done;
1376
1377out_unlock_range:
1378	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1379			     page_start, page_end - 1, &cached_state);
1380out:
1381	for (i = 0; i < i_done; i++) {
1382		unlock_page(pages[i]);
1383		put_page(pages[i]);
1384	}
1385	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1386			start, page_cnt << PAGE_SHIFT, true);
1387	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1388	extent_changeset_free(data_reserved);
1389	return ret;
1390
1391}
1392
1393int btrfs_defrag_file(struct inode *inode, struct file *file,
1394		      struct btrfs_ioctl_defrag_range_args *range,
1395		      u64 newer_than, unsigned long max_to_defrag)
1396{
1397	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1398	struct btrfs_root *root = BTRFS_I(inode)->root;
1399	struct file_ra_state *ra = NULL;
1400	unsigned long last_index;
1401	u64 isize = i_size_read(inode);
1402	u64 last_len = 0;
1403	u64 skip = 0;
1404	u64 defrag_end = 0;
1405	u64 newer_off = range->start;
1406	unsigned long i;
1407	unsigned long ra_index = 0;
1408	int ret;
1409	int defrag_count = 0;
1410	int compress_type = BTRFS_COMPRESS_ZLIB;
1411	u32 extent_thresh = range->extent_thresh;
1412	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1413	unsigned long cluster = max_cluster;
1414	u64 new_align = ~((u64)SZ_128K - 1);
1415	struct page **pages = NULL;
1416	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1417
1418	if (isize == 0)
1419		return 0;
1420
1421	if (range->start >= isize)
1422		return -EINVAL;
1423
1424	if (do_compress) {
1425		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1426			return -EINVAL;
1427		if (range->compress_type)
1428			compress_type = range->compress_type;
1429	}
1430
1431	if (extent_thresh == 0)
1432		extent_thresh = SZ_256K;
1433
1434	/*
1435	 * If we were not given a file, allocate a readahead context. As
1436	 * readahead is just an optimization, defrag will work without it so
1437	 * we don't error out.
1438	 */
1439	if (!file) {
1440		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1441		if (ra)
1442			file_ra_state_init(ra, inode->i_mapping);
1443	} else {
1444		ra = &file->f_ra;
1445	}
1446
1447	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1448	if (!pages) {
1449		ret = -ENOMEM;
1450		goto out_ra;
1451	}
1452
1453	/* find the last page to defrag */
1454	if (range->start + range->len > range->start) {
1455		last_index = min_t(u64, isize - 1,
1456			 range->start + range->len - 1) >> PAGE_SHIFT;
1457	} else {
1458		last_index = (isize - 1) >> PAGE_SHIFT;
1459	}
1460
1461	if (newer_than) {
1462		ret = find_new_extents(root, inode, newer_than,
1463				       &newer_off, SZ_64K);
1464		if (!ret) {
1465			range->start = newer_off;
1466			/*
1467			 * we always align our defrag to help keep
1468			 * the extents in the file evenly spaced
1469			 */
1470			i = (newer_off & new_align) >> PAGE_SHIFT;
1471		} else
1472			goto out_ra;
1473	} else {
1474		i = range->start >> PAGE_SHIFT;
1475	}
1476	if (!max_to_defrag)
1477		max_to_defrag = last_index - i + 1;
1478
1479	/*
1480	 * make writeback starts from i, so the defrag range can be
1481	 * written sequentially.
1482	 */
1483	if (i < inode->i_mapping->writeback_index)
1484		inode->i_mapping->writeback_index = i;
1485
1486	while (i <= last_index && defrag_count < max_to_defrag &&
1487	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1488		/*
1489		 * make sure we stop running if someone unmounts
1490		 * the FS
1491		 */
1492		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1493			break;
1494
1495		if (btrfs_defrag_cancelled(fs_info)) {
1496			btrfs_debug(fs_info, "defrag_file cancelled");
1497			ret = -EAGAIN;
1498			goto error;
1499		}
1500
1501		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1502					 extent_thresh, &last_len, &skip,
1503					 &defrag_end, do_compress)){
1504			unsigned long next;
1505			/*
1506			 * the should_defrag function tells us how much to skip
1507			 * bump our counter by the suggested amount
1508			 */
1509			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1510			i = max(i + 1, next);
1511			continue;
1512		}
1513
1514		if (!newer_than) {
1515			cluster = (PAGE_ALIGN(defrag_end) >>
1516				   PAGE_SHIFT) - i;
1517			cluster = min(cluster, max_cluster);
1518		} else {
1519			cluster = max_cluster;
1520		}
1521
1522		if (i + cluster > ra_index) {
1523			ra_index = max(i, ra_index);
1524			if (ra)
1525				page_cache_sync_readahead(inode->i_mapping, ra,
1526						file, ra_index, cluster);
1527			ra_index += cluster;
1528		}
1529
1530		btrfs_inode_lock(inode, 0);
1531		if (IS_SWAPFILE(inode)) {
1532			ret = -ETXTBSY;
1533		} else {
1534			if (do_compress)
1535				BTRFS_I(inode)->defrag_compress = compress_type;
1536			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1537		}
1538		if (ret < 0) {
1539			btrfs_inode_unlock(inode, 0);
1540			goto out_ra;
1541		}
1542
1543		defrag_count += ret;
1544		balance_dirty_pages_ratelimited(inode->i_mapping);
1545		btrfs_inode_unlock(inode, 0);
1546
1547		if (newer_than) {
1548			if (newer_off == (u64)-1)
1549				break;
1550
1551			if (ret > 0)
1552				i += ret;
1553
1554			newer_off = max(newer_off + 1,
1555					(u64)i << PAGE_SHIFT);
1556
1557			ret = find_new_extents(root, inode, newer_than,
1558					       &newer_off, SZ_64K);
1559			if (!ret) {
1560				range->start = newer_off;
1561				i = (newer_off & new_align) >> PAGE_SHIFT;
1562			} else {
1563				break;
1564			}
1565		} else {
1566			if (ret > 0) {
1567				i += ret;
1568				last_len += ret << PAGE_SHIFT;
1569			} else {
1570				i++;
1571				last_len = 0;
1572			}
1573		}
1574	}
1575
1576	ret = defrag_count;
1577error:
1578	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1579		filemap_flush(inode->i_mapping);
1580		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1581			     &BTRFS_I(inode)->runtime_flags))
1582			filemap_flush(inode->i_mapping);
1583	}
1584
1585	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1586		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1587	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1588		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1589	}
1590
1591out_ra:
1592	if (do_compress) {
1593		btrfs_inode_lock(inode, 0);
1594		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1595		btrfs_inode_unlock(inode, 0);
1596	}
1597	if (!file)
1598		kfree(ra);
1599	kfree(pages);
1600	return ret;
1601}
1602
1603/*
1604 * Try to start exclusive operation @type or cancel it if it's running.
1605 *
1606 * Return:
1607 *   0        - normal mode, newly claimed op started
1608 *  >0        - normal mode, something else is running,
1609 *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1610 * ECANCELED  - cancel mode, successful cancel
1611 * ENOTCONN   - cancel mode, operation not running anymore
1612 */
1613static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1614			enum btrfs_exclusive_operation type, bool cancel)
1615{
1616	if (!cancel) {
1617		/* Start normal op */
1618		if (!btrfs_exclop_start(fs_info, type))
1619			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1620		/* Exclusive operation is now claimed */
1621		return 0;
1622	}
1623
1624	/* Cancel running op */
1625	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1626		/*
1627		 * This blocks any exclop finish from setting it to NONE, so we
1628		 * request cancellation. Either it runs and we will wait for it,
1629		 * or it has finished and no waiting will happen.
1630		 */
1631		atomic_inc(&fs_info->reloc_cancel_req);
1632		btrfs_exclop_start_unlock(fs_info);
1633
1634		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1635			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1636				    TASK_INTERRUPTIBLE);
1637
1638		return -ECANCELED;
1639	}
1640
1641	/* Something else is running or none */
1642	return -ENOTCONN;
1643}
1644
1645static noinline int btrfs_ioctl_resize(struct file *file,
1646					void __user *arg)
1647{
 
1648	struct inode *inode = file_inode(file);
1649	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1650	u64 new_size;
1651	u64 old_size;
1652	u64 devid = 1;
1653	struct btrfs_root *root = BTRFS_I(inode)->root;
1654	struct btrfs_ioctl_vol_args *vol_args;
1655	struct btrfs_trans_handle *trans;
1656	struct btrfs_device *device = NULL;
1657	char *sizestr;
1658	char *retptr;
1659	char *devstr = NULL;
1660	int ret = 0;
1661	int mod = 0;
1662	bool cancel;
1663
1664	if (!capable(CAP_SYS_ADMIN))
1665		return -EPERM;
1666
1667	ret = mnt_want_write_file(file);
1668	if (ret)
1669		return ret;
1670
1671	/*
1672	 * Read the arguments before checking exclusivity to be able to
1673	 * distinguish regular resize and cancel
1674	 */
1675	vol_args = memdup_user(arg, sizeof(*vol_args));
1676	if (IS_ERR(vol_args)) {
1677		ret = PTR_ERR(vol_args);
1678		goto out_drop;
1679	}
1680	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
 
1681	sizestr = vol_args->name;
1682	cancel = (strcmp("cancel", sizestr) == 0);
1683	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1684	if (ret)
1685		goto out_free;
1686	/* Exclusive operation is now claimed */
1687
1688	devstr = strchr(sizestr, ':');
1689	if (devstr) {
1690		sizestr = devstr + 1;
1691		*devstr = '\0';
1692		devstr = vol_args->name;
1693		ret = kstrtoull(devstr, 10, &devid);
1694		if (ret)
1695			goto out_finish;
1696		if (!devid) {
1697			ret = -EINVAL;
1698			goto out_finish;
1699		}
1700		btrfs_info(fs_info, "resizing devid %llu", devid);
1701	}
1702
1703	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
 
1704	if (!device) {
1705		btrfs_info(fs_info, "resizer unable to find device %llu",
1706			   devid);
1707		ret = -ENODEV;
1708		goto out_finish;
1709	}
1710
1711	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1712		btrfs_info(fs_info,
1713			   "resizer unable to apply on readonly device %llu",
1714		       devid);
1715		ret = -EPERM;
1716		goto out_finish;
1717	}
1718
1719	if (!strcmp(sizestr, "max"))
1720		new_size = device->bdev->bd_inode->i_size;
1721	else {
1722		if (sizestr[0] == '-') {
1723			mod = -1;
1724			sizestr++;
1725		} else if (sizestr[0] == '+') {
1726			mod = 1;
1727			sizestr++;
1728		}
1729		new_size = memparse(sizestr, &retptr);
1730		if (*retptr != '\0' || new_size == 0) {
1731			ret = -EINVAL;
1732			goto out_finish;
1733		}
1734	}
1735
1736	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1737		ret = -EPERM;
1738		goto out_finish;
1739	}
1740
1741	old_size = btrfs_device_get_total_bytes(device);
1742
1743	if (mod < 0) {
1744		if (new_size > old_size) {
1745			ret = -EINVAL;
1746			goto out_finish;
1747		}
1748		new_size = old_size - new_size;
1749	} else if (mod > 0) {
1750		if (new_size > ULLONG_MAX - old_size) {
1751			ret = -ERANGE;
1752			goto out_finish;
1753		}
1754		new_size = old_size + new_size;
1755	}
1756
1757	if (new_size < SZ_256M) {
1758		ret = -EINVAL;
1759		goto out_finish;
1760	}
1761	if (new_size > device->bdev->bd_inode->i_size) {
1762		ret = -EFBIG;
1763		goto out_finish;
1764	}
1765
1766	new_size = round_down(new_size, fs_info->sectorsize);
1767
1768	if (new_size > old_size) {
1769		trans = btrfs_start_transaction(root, 0);
1770		if (IS_ERR(trans)) {
1771			ret = PTR_ERR(trans);
1772			goto out_finish;
1773		}
1774		ret = btrfs_grow_device(trans, device, new_size);
1775		btrfs_commit_transaction(trans);
1776	} else if (new_size < old_size) {
1777		ret = btrfs_shrink_device(device, new_size);
1778	} /* equal, nothing need to do */
1779
1780	if (ret == 0 && new_size != old_size)
1781		btrfs_info_in_rcu(fs_info,
1782			"resize device %s (devid %llu) from %llu to %llu",
1783			rcu_str_deref(device->name), device->devid,
1784			old_size, new_size);
1785out_finish:
1786	btrfs_exclop_finish(fs_info);
1787out_free:
1788	kfree(vol_args);
1789out_drop:
1790	mnt_drop_write_file(file);
1791	return ret;
1792}
1793
1794static noinline int __btrfs_ioctl_snap_create(struct file *file,
 
1795				const char *name, unsigned long fd, int subvol,
1796				bool readonly,
1797				struct btrfs_qgroup_inherit *inherit)
1798{
1799	int namelen;
1800	int ret = 0;
1801
1802	if (!S_ISDIR(file_inode(file)->i_mode))
1803		return -ENOTDIR;
1804
1805	ret = mnt_want_write_file(file);
1806	if (ret)
1807		goto out;
1808
1809	namelen = strlen(name);
1810	if (strchr(name, '/')) {
1811		ret = -EINVAL;
1812		goto out_drop_write;
1813	}
1814
1815	if (name[0] == '.' &&
1816	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1817		ret = -EEXIST;
1818		goto out_drop_write;
1819	}
1820
1821	if (subvol) {
1822		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1823				     NULL, readonly, inherit);
1824	} else {
1825		struct fd src = fdget(fd);
1826		struct inode *src_inode;
1827		if (!src.file) {
1828			ret = -EINVAL;
1829			goto out_drop_write;
1830		}
1831
1832		src_inode = file_inode(src.file);
1833		if (src_inode->i_sb != file_inode(file)->i_sb) {
1834			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1835				   "Snapshot src from another FS");
1836			ret = -EXDEV;
1837		} else if (!inode_owner_or_capable(&init_user_ns, src_inode)) {
1838			/*
1839			 * Subvolume creation is not restricted, but snapshots
1840			 * are limited to own subvolumes only
1841			 */
1842			ret = -EPERM;
 
 
 
 
 
 
 
 
 
1843		} else {
1844			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1845					     BTRFS_I(src_inode)->root,
1846					     readonly, inherit);
 
1847		}
1848		fdput(src);
1849	}
1850out_drop_write:
1851	mnt_drop_write_file(file);
1852out:
1853	return ret;
1854}
1855
1856static noinline int btrfs_ioctl_snap_create(struct file *file,
1857					    void __user *arg, int subvol)
1858{
1859	struct btrfs_ioctl_vol_args *vol_args;
1860	int ret;
1861
1862	if (!S_ISDIR(file_inode(file)->i_mode))
1863		return -ENOTDIR;
1864
1865	vol_args = memdup_user(arg, sizeof(*vol_args));
1866	if (IS_ERR(vol_args))
1867		return PTR_ERR(vol_args);
1868	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
1869
1870	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1871					subvol, false, NULL);
 
1872
 
1873	kfree(vol_args);
1874	return ret;
1875}
1876
1877static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1878					       void __user *arg, int subvol)
1879{
1880	struct btrfs_ioctl_vol_args_v2 *vol_args;
1881	int ret;
1882	bool readonly = false;
1883	struct btrfs_qgroup_inherit *inherit = NULL;
1884
1885	if (!S_ISDIR(file_inode(file)->i_mode))
1886		return -ENOTDIR;
1887
1888	vol_args = memdup_user(arg, sizeof(*vol_args));
1889	if (IS_ERR(vol_args))
1890		return PTR_ERR(vol_args);
1891	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
 
 
1892
1893	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1894		ret = -EOPNOTSUPP;
1895		goto free_args;
1896	}
1897
1898	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1899		readonly = true;
1900	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1901		u64 nums;
1902
1903		if (vol_args->size < sizeof(*inherit) ||
1904		    vol_args->size > PAGE_SIZE) {
1905			ret = -EINVAL;
1906			goto free_args;
1907		}
1908		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1909		if (IS_ERR(inherit)) {
1910			ret = PTR_ERR(inherit);
1911			goto free_args;
1912		}
1913
1914		if (inherit->num_qgroups > PAGE_SIZE ||
1915		    inherit->num_ref_copies > PAGE_SIZE ||
1916		    inherit->num_excl_copies > PAGE_SIZE) {
1917			ret = -EINVAL;
1918			goto free_inherit;
1919		}
1920
1921		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1922		       2 * inherit->num_excl_copies;
1923		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1924			ret = -EINVAL;
1925			goto free_inherit;
1926		}
1927	}
1928
1929	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1930					subvol, readonly, inherit);
 
1931	if (ret)
1932		goto free_inherit;
1933free_inherit:
1934	kfree(inherit);
1935free_args:
1936	kfree(vol_args);
1937	return ret;
1938}
1939
1940static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1941						void __user *arg)
1942{
1943	struct inode *inode = file_inode(file);
1944	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1945	struct btrfs_root *root = BTRFS_I(inode)->root;
1946	int ret = 0;
1947	u64 flags = 0;
1948
1949	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1950		return -EINVAL;
1951
1952	down_read(&fs_info->subvol_sem);
1953	if (btrfs_root_readonly(root))
1954		flags |= BTRFS_SUBVOL_RDONLY;
1955	up_read(&fs_info->subvol_sem);
1956
1957	if (copy_to_user(arg, &flags, sizeof(flags)))
1958		ret = -EFAULT;
1959
1960	return ret;
1961}
1962
1963static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1964					      void __user *arg)
1965{
1966	struct inode *inode = file_inode(file);
1967	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1968	struct btrfs_root *root = BTRFS_I(inode)->root;
1969	struct btrfs_trans_handle *trans;
1970	u64 root_flags;
1971	u64 flags;
1972	int ret = 0;
1973
1974	if (!inode_owner_or_capable(&init_user_ns, inode))
1975		return -EPERM;
1976
1977	ret = mnt_want_write_file(file);
1978	if (ret)
1979		goto out;
1980
1981	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1982		ret = -EINVAL;
1983		goto out_drop_write;
1984	}
1985
1986	if (copy_from_user(&flags, arg, sizeof(flags))) {
1987		ret = -EFAULT;
1988		goto out_drop_write;
1989	}
1990
1991	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1992		ret = -EOPNOTSUPP;
1993		goto out_drop_write;
1994	}
1995
1996	down_write(&fs_info->subvol_sem);
1997
1998	/* nothing to do */
1999	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2000		goto out_drop_sem;
2001
2002	root_flags = btrfs_root_flags(&root->root_item);
2003	if (flags & BTRFS_SUBVOL_RDONLY) {
2004		btrfs_set_root_flags(&root->root_item,
2005				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2006	} else {
2007		/*
2008		 * Block RO -> RW transition if this subvolume is involved in
2009		 * send
2010		 */
2011		spin_lock(&root->root_item_lock);
2012		if (root->send_in_progress == 0) {
2013			btrfs_set_root_flags(&root->root_item,
2014				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2015			spin_unlock(&root->root_item_lock);
2016		} else {
2017			spin_unlock(&root->root_item_lock);
2018			btrfs_warn(fs_info,
2019				   "Attempt to set subvolume %llu read-write during send",
2020				   root->root_key.objectid);
2021			ret = -EPERM;
2022			goto out_drop_sem;
2023		}
2024	}
2025
2026	trans = btrfs_start_transaction(root, 1);
2027	if (IS_ERR(trans)) {
2028		ret = PTR_ERR(trans);
2029		goto out_reset;
2030	}
2031
2032	ret = btrfs_update_root(trans, fs_info->tree_root,
2033				&root->root_key, &root->root_item);
2034	if (ret < 0) {
2035		btrfs_end_transaction(trans);
2036		goto out_reset;
2037	}
2038
2039	ret = btrfs_commit_transaction(trans);
2040
2041out_reset:
2042	if (ret)
2043		btrfs_set_root_flags(&root->root_item, root_flags);
2044out_drop_sem:
2045	up_write(&fs_info->subvol_sem);
2046out_drop_write:
2047	mnt_drop_write_file(file);
2048out:
2049	return ret;
2050}
2051
2052static noinline int key_in_sk(struct btrfs_key *key,
2053			      struct btrfs_ioctl_search_key *sk)
2054{
2055	struct btrfs_key test;
2056	int ret;
2057
2058	test.objectid = sk->min_objectid;
2059	test.type = sk->min_type;
2060	test.offset = sk->min_offset;
2061
2062	ret = btrfs_comp_cpu_keys(key, &test);
2063	if (ret < 0)
2064		return 0;
2065
2066	test.objectid = sk->max_objectid;
2067	test.type = sk->max_type;
2068	test.offset = sk->max_offset;
2069
2070	ret = btrfs_comp_cpu_keys(key, &test);
2071	if (ret > 0)
2072		return 0;
2073	return 1;
2074}
2075
2076static noinline int copy_to_sk(struct btrfs_path *path,
2077			       struct btrfs_key *key,
2078			       struct btrfs_ioctl_search_key *sk,
2079			       size_t *buf_size,
2080			       char __user *ubuf,
2081			       unsigned long *sk_offset,
2082			       int *num_found)
2083{
2084	u64 found_transid;
2085	struct extent_buffer *leaf;
2086	struct btrfs_ioctl_search_header sh;
2087	struct btrfs_key test;
2088	unsigned long item_off;
2089	unsigned long item_len;
2090	int nritems;
2091	int i;
2092	int slot;
2093	int ret = 0;
2094
2095	leaf = path->nodes[0];
2096	slot = path->slots[0];
2097	nritems = btrfs_header_nritems(leaf);
2098
2099	if (btrfs_header_generation(leaf) > sk->max_transid) {
2100		i = nritems;
2101		goto advance_key;
2102	}
2103	found_transid = btrfs_header_generation(leaf);
2104
2105	for (i = slot; i < nritems; i++) {
2106		item_off = btrfs_item_ptr_offset(leaf, i);
2107		item_len = btrfs_item_size_nr(leaf, i);
2108
2109		btrfs_item_key_to_cpu(leaf, key, i);
2110		if (!key_in_sk(key, sk))
2111			continue;
2112
2113		if (sizeof(sh) + item_len > *buf_size) {
2114			if (*num_found) {
2115				ret = 1;
2116				goto out;
2117			}
2118
2119			/*
2120			 * return one empty item back for v1, which does not
2121			 * handle -EOVERFLOW
2122			 */
2123
2124			*buf_size = sizeof(sh) + item_len;
2125			item_len = 0;
2126			ret = -EOVERFLOW;
2127		}
2128
2129		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2130			ret = 1;
2131			goto out;
2132		}
2133
2134		sh.objectid = key->objectid;
2135		sh.offset = key->offset;
2136		sh.type = key->type;
2137		sh.len = item_len;
2138		sh.transid = found_transid;
2139
2140		/*
2141		 * Copy search result header. If we fault then loop again so we
2142		 * can fault in the pages and -EFAULT there if there's a
2143		 * problem. Otherwise we'll fault and then copy the buffer in
2144		 * properly this next time through
2145		 */
2146		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2147			ret = 0;
2148			goto out;
2149		}
2150
2151		*sk_offset += sizeof(sh);
2152
2153		if (item_len) {
2154			char __user *up = ubuf + *sk_offset;
2155			/*
2156			 * Copy the item, same behavior as above, but reset the
2157			 * * sk_offset so we copy the full thing again.
2158			 */
2159			if (read_extent_buffer_to_user_nofault(leaf, up,
2160						item_off, item_len)) {
2161				ret = 0;
2162				*sk_offset -= sizeof(sh);
2163				goto out;
2164			}
2165
2166			*sk_offset += item_len;
2167		}
2168		(*num_found)++;
2169
2170		if (ret) /* -EOVERFLOW from above */
2171			goto out;
2172
2173		if (*num_found >= sk->nr_items) {
2174			ret = 1;
2175			goto out;
2176		}
2177	}
2178advance_key:
2179	ret = 0;
2180	test.objectid = sk->max_objectid;
2181	test.type = sk->max_type;
2182	test.offset = sk->max_offset;
2183	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2184		ret = 1;
2185	else if (key->offset < (u64)-1)
2186		key->offset++;
2187	else if (key->type < (u8)-1) {
2188		key->offset = 0;
2189		key->type++;
2190	} else if (key->objectid < (u64)-1) {
2191		key->offset = 0;
2192		key->type = 0;
2193		key->objectid++;
2194	} else
2195		ret = 1;
2196out:
2197	/*
2198	 *  0: all items from this leaf copied, continue with next
2199	 *  1: * more items can be copied, but unused buffer is too small
2200	 *     * all items were found
2201	 *     Either way, it will stops the loop which iterates to the next
2202	 *     leaf
2203	 *  -EOVERFLOW: item was to large for buffer
2204	 *  -EFAULT: could not copy extent buffer back to userspace
2205	 */
2206	return ret;
2207}
2208
2209static noinline int search_ioctl(struct inode *inode,
2210				 struct btrfs_ioctl_search_key *sk,
2211				 size_t *buf_size,
2212				 char __user *ubuf)
2213{
2214	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2215	struct btrfs_root *root;
2216	struct btrfs_key key;
2217	struct btrfs_path *path;
2218	int ret;
2219	int num_found = 0;
2220	unsigned long sk_offset = 0;
2221
2222	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2223		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2224		return -EOVERFLOW;
2225	}
2226
2227	path = btrfs_alloc_path();
2228	if (!path)
2229		return -ENOMEM;
2230
2231	if (sk->tree_id == 0) {
2232		/* search the root of the inode that was passed */
2233		root = btrfs_grab_root(BTRFS_I(inode)->root);
2234	} else {
2235		root = btrfs_get_fs_root(info, sk->tree_id, true);
2236		if (IS_ERR(root)) {
2237			btrfs_free_path(path);
2238			return PTR_ERR(root);
2239		}
2240	}
2241
2242	key.objectid = sk->min_objectid;
2243	key.type = sk->min_type;
2244	key.offset = sk->min_offset;
2245
2246	while (1) {
2247		ret = fault_in_pages_writeable(ubuf + sk_offset,
2248					       *buf_size - sk_offset);
2249		if (ret)
 
 
 
 
2250			break;
2251
2252		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2253		if (ret != 0) {
2254			if (ret > 0)
2255				ret = 0;
2256			goto err;
2257		}
2258		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2259				 &sk_offset, &num_found);
2260		btrfs_release_path(path);
2261		if (ret)
2262			break;
2263
2264	}
2265	if (ret > 0)
2266		ret = 0;
2267err:
2268	sk->nr_items = num_found;
2269	btrfs_put_root(root);
2270	btrfs_free_path(path);
2271	return ret;
2272}
2273
2274static noinline int btrfs_ioctl_tree_search(struct file *file,
2275					   void __user *argp)
2276{
2277	struct btrfs_ioctl_search_args __user *uargs;
2278	struct btrfs_ioctl_search_key sk;
2279	struct inode *inode;
2280	int ret;
2281	size_t buf_size;
2282
2283	if (!capable(CAP_SYS_ADMIN))
2284		return -EPERM;
2285
2286	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2287
2288	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2289		return -EFAULT;
2290
2291	buf_size = sizeof(uargs->buf);
2292
2293	inode = file_inode(file);
2294	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2295
2296	/*
2297	 * In the origin implementation an overflow is handled by returning a
2298	 * search header with a len of zero, so reset ret.
2299	 */
2300	if (ret == -EOVERFLOW)
2301		ret = 0;
2302
2303	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2304		ret = -EFAULT;
2305	return ret;
2306}
2307
2308static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2309					       void __user *argp)
2310{
2311	struct btrfs_ioctl_search_args_v2 __user *uarg;
2312	struct btrfs_ioctl_search_args_v2 args;
2313	struct inode *inode;
2314	int ret;
2315	size_t buf_size;
2316	const size_t buf_limit = SZ_16M;
2317
2318	if (!capable(CAP_SYS_ADMIN))
2319		return -EPERM;
2320
2321	/* copy search header and buffer size */
2322	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2323	if (copy_from_user(&args, uarg, sizeof(args)))
2324		return -EFAULT;
2325
2326	buf_size = args.buf_size;
2327
2328	/* limit result size to 16MB */
2329	if (buf_size > buf_limit)
2330		buf_size = buf_limit;
2331
2332	inode = file_inode(file);
2333	ret = search_ioctl(inode, &args.key, &buf_size,
2334			   (char __user *)(&uarg->buf[0]));
2335	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2336		ret = -EFAULT;
2337	else if (ret == -EOVERFLOW &&
2338		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2339		ret = -EFAULT;
2340
2341	return ret;
2342}
2343
2344/*
2345 * Search INODE_REFs to identify path name of 'dirid' directory
2346 * in a 'tree_id' tree. and sets path name to 'name'.
2347 */
2348static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2349				u64 tree_id, u64 dirid, char *name)
2350{
2351	struct btrfs_root *root;
2352	struct btrfs_key key;
2353	char *ptr;
2354	int ret = -1;
2355	int slot;
2356	int len;
2357	int total_len = 0;
2358	struct btrfs_inode_ref *iref;
2359	struct extent_buffer *l;
2360	struct btrfs_path *path;
2361
2362	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2363		name[0]='\0';
2364		return 0;
2365	}
2366
2367	path = btrfs_alloc_path();
2368	if (!path)
2369		return -ENOMEM;
2370
2371	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2372
2373	root = btrfs_get_fs_root(info, tree_id, true);
2374	if (IS_ERR(root)) {
2375		ret = PTR_ERR(root);
2376		root = NULL;
2377		goto out;
2378	}
2379
2380	key.objectid = dirid;
2381	key.type = BTRFS_INODE_REF_KEY;
2382	key.offset = (u64)-1;
2383
2384	while (1) {
2385		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2386		if (ret < 0)
2387			goto out;
2388		else if (ret > 0) {
2389			ret = btrfs_previous_item(root, path, dirid,
2390						  BTRFS_INODE_REF_KEY);
2391			if (ret < 0)
2392				goto out;
2393			else if (ret > 0) {
2394				ret = -ENOENT;
2395				goto out;
2396			}
2397		}
2398
2399		l = path->nodes[0];
2400		slot = path->slots[0];
2401		btrfs_item_key_to_cpu(l, &key, slot);
2402
2403		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2404		len = btrfs_inode_ref_name_len(l, iref);
2405		ptr -= len + 1;
2406		total_len += len + 1;
2407		if (ptr < name) {
2408			ret = -ENAMETOOLONG;
2409			goto out;
2410		}
2411
2412		*(ptr + len) = '/';
2413		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2414
2415		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2416			break;
2417
2418		btrfs_release_path(path);
2419		key.objectid = key.offset;
2420		key.offset = (u64)-1;
2421		dirid = key.objectid;
2422	}
2423	memmove(name, ptr, total_len);
2424	name[total_len] = '\0';
2425	ret = 0;
2426out:
2427	btrfs_put_root(root);
2428	btrfs_free_path(path);
2429	return ret;
2430}
2431
2432static int btrfs_search_path_in_tree_user(struct inode *inode,
 
2433				struct btrfs_ioctl_ino_lookup_user_args *args)
2434{
2435	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2436	struct super_block *sb = inode->i_sb;
2437	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2438	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2439	u64 dirid = args->dirid;
2440	unsigned long item_off;
2441	unsigned long item_len;
2442	struct btrfs_inode_ref *iref;
2443	struct btrfs_root_ref *rref;
2444	struct btrfs_root *root = NULL;
2445	struct btrfs_path *path;
2446	struct btrfs_key key, key2;
2447	struct extent_buffer *leaf;
2448	struct inode *temp_inode;
2449	char *ptr;
2450	int slot;
2451	int len;
2452	int total_len = 0;
2453	int ret;
2454
2455	path = btrfs_alloc_path();
2456	if (!path)
2457		return -ENOMEM;
2458
2459	/*
2460	 * If the bottom subvolume does not exist directly under upper_limit,
2461	 * construct the path in from the bottom up.
2462	 */
2463	if (dirid != upper_limit.objectid) {
2464		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2465
2466		root = btrfs_get_fs_root(fs_info, treeid, true);
2467		if (IS_ERR(root)) {
2468			ret = PTR_ERR(root);
2469			goto out;
2470		}
2471
2472		key.objectid = dirid;
2473		key.type = BTRFS_INODE_REF_KEY;
2474		key.offset = (u64)-1;
2475		while (1) {
2476			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2477			if (ret < 0) {
 
 
 
2478				goto out_put;
2479			} else if (ret > 0) {
2480				ret = btrfs_previous_item(root, path, dirid,
2481							  BTRFS_INODE_REF_KEY);
2482				if (ret < 0) {
2483					goto out_put;
2484				} else if (ret > 0) {
2485					ret = -ENOENT;
2486					goto out_put;
2487				}
2488			}
2489
2490			leaf = path->nodes[0];
2491			slot = path->slots[0];
2492			btrfs_item_key_to_cpu(leaf, &key, slot);
2493
2494			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2495			len = btrfs_inode_ref_name_len(leaf, iref);
2496			ptr -= len + 1;
2497			total_len += len + 1;
2498			if (ptr < args->path) {
2499				ret = -ENAMETOOLONG;
2500				goto out_put;
2501			}
2502
2503			*(ptr + len) = '/';
2504			read_extent_buffer(leaf, ptr,
2505					(unsigned long)(iref + 1), len);
2506
2507			/* Check the read+exec permission of this directory */
2508			ret = btrfs_previous_item(root, path, dirid,
2509						  BTRFS_INODE_ITEM_KEY);
2510			if (ret < 0) {
2511				goto out_put;
2512			} else if (ret > 0) {
2513				ret = -ENOENT;
2514				goto out_put;
2515			}
2516
2517			leaf = path->nodes[0];
2518			slot = path->slots[0];
2519			btrfs_item_key_to_cpu(leaf, &key2, slot);
2520			if (key2.objectid != dirid) {
2521				ret = -ENOENT;
2522				goto out_put;
2523			}
2524
 
 
 
 
 
 
 
2525			temp_inode = btrfs_iget(sb, key2.objectid, root);
2526			if (IS_ERR(temp_inode)) {
2527				ret = PTR_ERR(temp_inode);
2528				goto out_put;
2529			}
2530			ret = inode_permission(&init_user_ns, temp_inode,
2531					       MAY_READ | MAY_EXEC);
2532			iput(temp_inode);
2533			if (ret) {
2534				ret = -EACCES;
2535				goto out_put;
2536			}
2537
2538			if (key.offset == upper_limit.objectid)
2539				break;
2540			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2541				ret = -EACCES;
2542				goto out_put;
2543			}
2544
2545			btrfs_release_path(path);
2546			key.objectid = key.offset;
2547			key.offset = (u64)-1;
2548			dirid = key.objectid;
2549		}
2550
2551		memmove(args->path, ptr, total_len);
2552		args->path[total_len] = '\0';
2553		btrfs_put_root(root);
2554		root = NULL;
2555		btrfs_release_path(path);
2556	}
2557
2558	/* Get the bottom subvolume's name from ROOT_REF */
2559	key.objectid = treeid;
2560	key.type = BTRFS_ROOT_REF_KEY;
2561	key.offset = args->treeid;
2562	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2563	if (ret < 0) {
2564		goto out;
2565	} else if (ret > 0) {
2566		ret = -ENOENT;
2567		goto out;
2568	}
2569
2570	leaf = path->nodes[0];
2571	slot = path->slots[0];
2572	btrfs_item_key_to_cpu(leaf, &key, slot);
2573
2574	item_off = btrfs_item_ptr_offset(leaf, slot);
2575	item_len = btrfs_item_size_nr(leaf, slot);
2576	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2577	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2578	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2579		ret = -EINVAL;
2580		goto out;
2581	}
2582
2583	/* Copy subvolume's name */
2584	item_off += sizeof(struct btrfs_root_ref);
2585	item_len -= sizeof(struct btrfs_root_ref);
2586	read_extent_buffer(leaf, args->name, item_off, item_len);
2587	args->name[item_len] = 0;
2588
2589out_put:
2590	btrfs_put_root(root);
2591out:
2592	btrfs_free_path(path);
2593	return ret;
2594}
2595
2596static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2597					   void __user *argp)
2598{
2599	struct btrfs_ioctl_ino_lookup_args *args;
2600	struct inode *inode;
2601	int ret = 0;
2602
2603	args = memdup_user(argp, sizeof(*args));
2604	if (IS_ERR(args))
2605		return PTR_ERR(args);
2606
2607	inode = file_inode(file);
2608
2609	/*
2610	 * Unprivileged query to obtain the containing subvolume root id. The
2611	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2612	 */
2613	if (args->treeid == 0)
2614		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2615
2616	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2617		args->name[0] = 0;
2618		goto out;
2619	}
2620
2621	if (!capable(CAP_SYS_ADMIN)) {
2622		ret = -EPERM;
2623		goto out;
2624	}
2625
2626	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2627					args->treeid, args->objectid,
2628					args->name);
2629
2630out:
2631	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2632		ret = -EFAULT;
2633
2634	kfree(args);
2635	return ret;
2636}
2637
2638/*
2639 * Version of ino_lookup ioctl (unprivileged)
2640 *
2641 * The main differences from ino_lookup ioctl are:
2642 *
2643 *   1. Read + Exec permission will be checked using inode_permission() during
2644 *      path construction. -EACCES will be returned in case of failure.
2645 *   2. Path construction will be stopped at the inode number which corresponds
2646 *      to the fd with which this ioctl is called. If constructed path does not
2647 *      exist under fd's inode, -EACCES will be returned.
2648 *   3. The name of bottom subvolume is also searched and filled.
2649 */
2650static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2651{
2652	struct btrfs_ioctl_ino_lookup_user_args *args;
2653	struct inode *inode;
2654	int ret;
2655
2656	args = memdup_user(argp, sizeof(*args));
2657	if (IS_ERR(args))
2658		return PTR_ERR(args);
2659
2660	inode = file_inode(file);
2661
2662	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2663	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2664		/*
2665		 * The subvolume does not exist under fd with which this is
2666		 * called
2667		 */
2668		kfree(args);
2669		return -EACCES;
2670	}
2671
2672	ret = btrfs_search_path_in_tree_user(inode, args);
2673
2674	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2675		ret = -EFAULT;
2676
2677	kfree(args);
2678	return ret;
2679}
2680
2681/* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2682static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2683{
2684	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2685	struct btrfs_fs_info *fs_info;
2686	struct btrfs_root *root;
2687	struct btrfs_path *path;
2688	struct btrfs_key key;
2689	struct btrfs_root_item *root_item;
2690	struct btrfs_root_ref *rref;
2691	struct extent_buffer *leaf;
2692	unsigned long item_off;
2693	unsigned long item_len;
2694	struct inode *inode;
2695	int slot;
2696	int ret = 0;
2697
2698	path = btrfs_alloc_path();
2699	if (!path)
2700		return -ENOMEM;
2701
2702	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2703	if (!subvol_info) {
2704		btrfs_free_path(path);
2705		return -ENOMEM;
2706	}
2707
2708	inode = file_inode(file);
2709	fs_info = BTRFS_I(inode)->root->fs_info;
2710
2711	/* Get root_item of inode's subvolume */
2712	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2713	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2714	if (IS_ERR(root)) {
2715		ret = PTR_ERR(root);
2716		goto out_free;
2717	}
2718	root_item = &root->root_item;
2719
2720	subvol_info->treeid = key.objectid;
2721
2722	subvol_info->generation = btrfs_root_generation(root_item);
2723	subvol_info->flags = btrfs_root_flags(root_item);
2724
2725	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2726	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2727						    BTRFS_UUID_SIZE);
2728	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2729						    BTRFS_UUID_SIZE);
2730
2731	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2732	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2733	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2734
2735	subvol_info->otransid = btrfs_root_otransid(root_item);
2736	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2737	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2738
2739	subvol_info->stransid = btrfs_root_stransid(root_item);
2740	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2741	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2742
2743	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2744	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2745	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2746
2747	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2748		/* Search root tree for ROOT_BACKREF of this subvolume */
2749		key.type = BTRFS_ROOT_BACKREF_KEY;
2750		key.offset = 0;
2751		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2752		if (ret < 0) {
2753			goto out;
2754		} else if (path->slots[0] >=
2755			   btrfs_header_nritems(path->nodes[0])) {
2756			ret = btrfs_next_leaf(fs_info->tree_root, path);
2757			if (ret < 0) {
2758				goto out;
2759			} else if (ret > 0) {
2760				ret = -EUCLEAN;
2761				goto out;
2762			}
2763		}
2764
2765		leaf = path->nodes[0];
2766		slot = path->slots[0];
2767		btrfs_item_key_to_cpu(leaf, &key, slot);
2768		if (key.objectid == subvol_info->treeid &&
2769		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2770			subvol_info->parent_id = key.offset;
2771
2772			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2773			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2774
2775			item_off = btrfs_item_ptr_offset(leaf, slot)
2776					+ sizeof(struct btrfs_root_ref);
2777			item_len = btrfs_item_size_nr(leaf, slot)
2778					- sizeof(struct btrfs_root_ref);
2779			read_extent_buffer(leaf, subvol_info->name,
2780					   item_off, item_len);
2781		} else {
2782			ret = -ENOENT;
2783			goto out;
2784		}
2785	}
2786
 
 
2787	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2788		ret = -EFAULT;
2789
2790out:
2791	btrfs_put_root(root);
2792out_free:
2793	btrfs_free_path(path);
2794	kfree(subvol_info);
2795	return ret;
2796}
2797
2798/*
2799 * Return ROOT_REF information of the subvolume containing this inode
2800 * except the subvolume name.
2801 */
2802static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
 
2803{
2804	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2805	struct btrfs_root_ref *rref;
2806	struct btrfs_root *root;
2807	struct btrfs_path *path;
2808	struct btrfs_key key;
2809	struct extent_buffer *leaf;
2810	struct inode *inode;
2811	u64 objectid;
2812	int slot;
2813	int ret;
2814	u8 found;
2815
2816	path = btrfs_alloc_path();
2817	if (!path)
2818		return -ENOMEM;
2819
2820	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2821	if (IS_ERR(rootrefs)) {
2822		btrfs_free_path(path);
2823		return PTR_ERR(rootrefs);
2824	}
2825
2826	inode = file_inode(file);
2827	root = BTRFS_I(inode)->root->fs_info->tree_root;
2828	objectid = BTRFS_I(inode)->root->root_key.objectid;
2829
2830	key.objectid = objectid;
2831	key.type = BTRFS_ROOT_REF_KEY;
2832	key.offset = rootrefs->min_treeid;
2833	found = 0;
2834
 
2835	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2836	if (ret < 0) {
2837		goto out;
2838	} else if (path->slots[0] >=
2839		   btrfs_header_nritems(path->nodes[0])) {
2840		ret = btrfs_next_leaf(root, path);
2841		if (ret < 0) {
2842			goto out;
2843		} else if (ret > 0) {
2844			ret = -EUCLEAN;
2845			goto out;
2846		}
2847	}
2848	while (1) {
2849		leaf = path->nodes[0];
2850		slot = path->slots[0];
2851
2852		btrfs_item_key_to_cpu(leaf, &key, slot);
2853		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2854			ret = 0;
2855			goto out;
2856		}
2857
2858		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2859			ret = -EOVERFLOW;
2860			goto out;
2861		}
2862
2863		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2864		rootrefs->rootref[found].treeid = key.offset;
2865		rootrefs->rootref[found].dirid =
2866				  btrfs_root_ref_dirid(leaf, rref);
2867		found++;
2868
2869		ret = btrfs_next_item(root, path);
2870		if (ret < 0) {
2871			goto out;
2872		} else if (ret > 0) {
2873			ret = -EUCLEAN;
2874			goto out;
2875		}
2876	}
2877
2878out:
 
 
2879	if (!ret || ret == -EOVERFLOW) {
2880		rootrefs->num_items = found;
2881		/* update min_treeid for next search */
2882		if (found)
2883			rootrefs->min_treeid =
2884				rootrefs->rootref[found - 1].treeid + 1;
2885		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2886			ret = -EFAULT;
2887	}
2888
2889	kfree(rootrefs);
2890	btrfs_free_path(path);
2891
2892	return ret;
2893}
2894
2895static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2896					     void __user *arg,
2897					     bool destroy_v2)
2898{
2899	struct dentry *parent = file->f_path.dentry;
2900	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2901	struct dentry *dentry;
2902	struct inode *dir = d_inode(parent);
 
2903	struct inode *inode;
2904	struct btrfs_root *root = BTRFS_I(dir)->root;
2905	struct btrfs_root *dest = NULL;
2906	struct btrfs_ioctl_vol_args *vol_args = NULL;
2907	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
 
2908	char *subvol_name, *subvol_name_ptr = NULL;
2909	int subvol_namelen;
2910	int err = 0;
2911	bool destroy_parent = false;
2912
 
 
 
 
 
 
 
2913	if (destroy_v2) {
2914		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2915		if (IS_ERR(vol_args2))
2916			return PTR_ERR(vol_args2);
2917
2918		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2919			err = -EOPNOTSUPP;
2920			goto out;
2921		}
2922
2923		/*
2924		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2925		 * name, same as v1 currently does.
2926		 */
2927		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2928			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
 
 
2929			subvol_name = vol_args2->name;
2930
2931			err = mnt_want_write_file(file);
2932			if (err)
2933				goto out;
2934		} else {
 
 
2935			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2936				err = -EINVAL;
2937				goto out;
2938			}
2939
2940			err = mnt_want_write_file(file);
2941			if (err)
2942				goto out;
2943
2944			dentry = btrfs_get_dentry(fs_info->sb,
2945					BTRFS_FIRST_FREE_OBJECTID,
2946					vol_args2->subvolid, 0, 0);
2947			if (IS_ERR(dentry)) {
2948				err = PTR_ERR(dentry);
2949				goto out_drop_write;
2950			}
2951
2952			/*
2953			 * Change the default parent since the subvolume being
2954			 * deleted can be outside of the current mount point.
2955			 */
2956			parent = btrfs_get_parent(dentry);
2957
2958			/*
2959			 * At this point dentry->d_name can point to '/' if the
2960			 * subvolume we want to destroy is outsite of the
2961			 * current mount point, so we need to release the
2962			 * current dentry and execute the lookup to return a new
2963			 * one with ->d_name pointing to the
2964			 * <mount point>/subvol_name.
2965			 */
2966			dput(dentry);
2967			if (IS_ERR(parent)) {
2968				err = PTR_ERR(parent);
2969				goto out_drop_write;
2970			}
 
2971			dir = d_inode(parent);
2972
2973			/*
2974			 * If v2 was used with SPEC_BY_ID, a new parent was
2975			 * allocated since the subvolume can be outside of the
2976			 * current mount point. Later on we need to release this
2977			 * new parent dentry.
2978			 */
2979			destroy_parent = true;
2980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2981			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2982						fs_info, vol_args2->subvolid);
2983			if (IS_ERR(subvol_name_ptr)) {
2984				err = PTR_ERR(subvol_name_ptr);
2985				goto free_parent;
2986			}
2987			/* subvol_name_ptr is already nul terminated */
2988			subvol_name = (char *)kbasename(subvol_name_ptr);
2989		}
2990	} else {
2991		vol_args = memdup_user(arg, sizeof(*vol_args));
2992		if (IS_ERR(vol_args))
2993			return PTR_ERR(vol_args);
2994
2995		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
 
 
 
2996		subvol_name = vol_args->name;
2997
2998		err = mnt_want_write_file(file);
2999		if (err)
3000			goto out;
3001	}
3002
3003	subvol_namelen = strlen(subvol_name);
3004
3005	if (strchr(subvol_name, '/') ||
3006	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3007		err = -EINVAL;
3008		goto free_subvol_name;
3009	}
3010
3011	if (!S_ISDIR(dir->i_mode)) {
3012		err = -ENOTDIR;
3013		goto free_subvol_name;
3014	}
3015
3016	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3017	if (err == -EINTR)
3018		goto free_subvol_name;
3019	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3020	if (IS_ERR(dentry)) {
3021		err = PTR_ERR(dentry);
3022		goto out_unlock_dir;
3023	}
3024
3025	if (d_really_is_negative(dentry)) {
3026		err = -ENOENT;
3027		goto out_dput;
3028	}
3029
3030	inode = d_inode(dentry);
3031	dest = BTRFS_I(inode)->root;
3032	if (!capable(CAP_SYS_ADMIN)) {
3033		/*
3034		 * Regular user.  Only allow this with a special mount
3035		 * option, when the user has write+exec access to the
3036		 * subvol root, and when rmdir(2) would have been
3037		 * allowed.
3038		 *
3039		 * Note that this is _not_ check that the subvol is
3040		 * empty or doesn't contain data that we wouldn't
3041		 * otherwise be able to delete.
3042		 *
3043		 * Users who want to delete empty subvols should try
3044		 * rmdir(2).
3045		 */
3046		err = -EPERM;
3047		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3048			goto out_dput;
3049
3050		/*
3051		 * Do not allow deletion if the parent dir is the same
3052		 * as the dir to be deleted.  That means the ioctl
3053		 * must be called on the dentry referencing the root
3054		 * of the subvol, not a random directory contained
3055		 * within it.
3056		 */
3057		err = -EINVAL;
3058		if (root == dest)
3059			goto out_dput;
3060
3061		err = inode_permission(&init_user_ns, inode,
3062				       MAY_WRITE | MAY_EXEC);
3063		if (err)
3064			goto out_dput;
3065	}
3066
3067	/* check if subvolume may be deleted by a user */
3068	err = btrfs_may_delete(dir, dentry, 1);
3069	if (err)
3070		goto out_dput;
3071
3072	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3073		err = -EINVAL;
3074		goto out_dput;
3075	}
3076
3077	btrfs_inode_lock(inode, 0);
3078	err = btrfs_delete_subvolume(dir, dentry);
3079	btrfs_inode_unlock(inode, 0);
3080	if (!err) {
3081		fsnotify_rmdir(dir, dentry);
3082		d_delete(dentry);
3083	}
3084
3085out_dput:
3086	dput(dentry);
3087out_unlock_dir:
3088	btrfs_inode_unlock(dir, 0);
3089free_subvol_name:
3090	kfree(subvol_name_ptr);
3091free_parent:
3092	if (destroy_parent)
3093		dput(parent);
3094out_drop_write:
3095	mnt_drop_write_file(file);
3096out:
3097	kfree(vol_args2);
3098	kfree(vol_args);
3099	return err;
3100}
3101
3102static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3103{
3104	struct inode *inode = file_inode(file);
3105	struct btrfs_root *root = BTRFS_I(inode)->root;
3106	struct btrfs_ioctl_defrag_range_args *range;
3107	int ret;
3108
3109	ret = mnt_want_write_file(file);
3110	if (ret)
3111		return ret;
3112
3113	if (btrfs_root_readonly(root)) {
3114		ret = -EROFS;
3115		goto out;
3116	}
3117
3118	switch (inode->i_mode & S_IFMT) {
3119	case S_IFDIR:
3120		if (!capable(CAP_SYS_ADMIN)) {
3121			ret = -EPERM;
3122			goto out;
3123		}
3124		ret = btrfs_defrag_root(root);
3125		break;
3126	case S_IFREG:
3127		/*
3128		 * Note that this does not check the file descriptor for write
3129		 * access. This prevents defragmenting executables that are
3130		 * running and allows defrag on files open in read-only mode.
3131		 */
3132		if (!capable(CAP_SYS_ADMIN) &&
3133		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3134			ret = -EPERM;
3135			goto out;
3136		}
3137
3138		range = kzalloc(sizeof(*range), GFP_KERNEL);
3139		if (!range) {
3140			ret = -ENOMEM;
3141			goto out;
3142		}
3143
3144		if (argp) {
3145			if (copy_from_user(range, argp,
3146					   sizeof(*range))) {
3147				ret = -EFAULT;
3148				kfree(range);
 
 
 
3149				goto out;
3150			}
3151			/* compression requires us to start the IO */
3152			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3153				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3154				range->extent_thresh = (u32)-1;
3155			}
3156		} else {
3157			/* the rest are all set to zero by kzalloc */
3158			range->len = (u64)-1;
3159		}
3160		ret = btrfs_defrag_file(file_inode(file), file,
3161					range, BTRFS_OLDEST_GENERATION, 0);
3162		if (ret > 0)
3163			ret = 0;
3164		kfree(range);
3165		break;
3166	default:
3167		ret = -EINVAL;
3168	}
3169out:
3170	mnt_drop_write_file(file);
3171	return ret;
3172}
3173
3174static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3175{
3176	struct btrfs_ioctl_vol_args *vol_args;
 
3177	int ret;
3178
3179	if (!capable(CAP_SYS_ADMIN))
3180		return -EPERM;
3181
3182	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3183		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3184
3185	vol_args = memdup_user(arg, sizeof(*vol_args));
3186	if (IS_ERR(vol_args)) {
3187		ret = PTR_ERR(vol_args);
3188		goto out;
3189	}
3190
3191	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
 
 
 
3192	ret = btrfs_init_new_device(fs_info, vol_args->name);
3193
3194	if (!ret)
3195		btrfs_info(fs_info, "disk added %s", vol_args->name);
3196
 
3197	kfree(vol_args);
3198out:
3199	btrfs_exclop_finish(fs_info);
 
 
 
3200	return ret;
3201}
3202
3203static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3204{
 
3205	struct inode *inode = file_inode(file);
3206	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3207	struct btrfs_ioctl_vol_args_v2 *vol_args;
3208	struct block_device *bdev = NULL;
3209	fmode_t mode;
3210	int ret;
3211	bool cancel = false;
3212
3213	if (!capable(CAP_SYS_ADMIN))
3214		return -EPERM;
3215
3216	ret = mnt_want_write_file(file);
3217	if (ret)
3218		return ret;
3219
3220	vol_args = memdup_user(arg, sizeof(*vol_args));
3221	if (IS_ERR(vol_args)) {
3222		ret = PTR_ERR(vol_args);
3223		goto err_drop;
3224	}
3225
3226	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3227		ret = -EOPNOTSUPP;
3228		goto out;
3229	}
3230	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3231	if (!(vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) &&
3232	    strcmp("cancel", vol_args->name) == 0)
 
 
 
 
 
3233		cancel = true;
 
 
 
 
 
 
 
 
 
3234
3235	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3236					   cancel);
3237	if (ret)
3238		goto out;
 
3239	/* Exclusive operation is now claimed */
3240
3241	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3242		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid, &bdev, &mode);
3243	else
3244		ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3245
3246	btrfs_exclop_finish(fs_info);
3247
3248	if (!ret) {
3249		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3250			btrfs_info(fs_info, "device deleted: id %llu",
3251					vol_args->devid);
3252		else
3253			btrfs_info(fs_info, "device deleted: %s",
3254					vol_args->name);
3255	}
 
 
 
 
3256out:
 
3257	kfree(vol_args);
3258err_drop:
3259	mnt_drop_write_file(file);
3260	if (bdev)
3261		blkdev_put(bdev, mode);
3262	return ret;
3263}
3264
3265static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3266{
 
3267	struct inode *inode = file_inode(file);
3268	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3269	struct btrfs_ioctl_vol_args *vol_args;
3270	struct block_device *bdev = NULL;
3271	fmode_t mode;
3272	int ret;
3273	bool cancel;
3274
3275	if (!capable(CAP_SYS_ADMIN))
3276		return -EPERM;
3277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3278	ret = mnt_want_write_file(file);
3279	if (ret)
3280		return ret;
3281
3282	vol_args = memdup_user(arg, sizeof(*vol_args));
3283	if (IS_ERR(vol_args)) {
3284		ret = PTR_ERR(vol_args);
3285		goto out_drop_write;
3286	}
3287	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3288	cancel = (strcmp("cancel", vol_args->name) == 0);
3289
3290	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3291					   cancel);
3292	if (ret == 0) {
3293		ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3294		if (!ret)
3295			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3296		btrfs_exclop_finish(fs_info);
3297	}
3298
 
 
 
 
 
 
3299	kfree(vol_args);
3300out_drop_write:
3301	mnt_drop_write_file(file);
3302	if (bdev)
3303		blkdev_put(bdev, mode);
3304	return ret;
3305}
3306
3307static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3308				void __user *arg)
3309{
3310	struct btrfs_ioctl_fs_info_args *fi_args;
3311	struct btrfs_device *device;
3312	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3313	u64 flags_in;
3314	int ret = 0;
3315
3316	fi_args = memdup_user(arg, sizeof(*fi_args));
3317	if (IS_ERR(fi_args))
3318		return PTR_ERR(fi_args);
3319
3320	flags_in = fi_args->flags;
3321	memset(fi_args, 0, sizeof(*fi_args));
3322
3323	rcu_read_lock();
3324	fi_args->num_devices = fs_devices->num_devices;
3325
3326	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3327		if (device->devid > fi_args->max_id)
3328			fi_args->max_id = device->devid;
3329	}
3330	rcu_read_unlock();
3331
3332	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3333	fi_args->nodesize = fs_info->nodesize;
3334	fi_args->sectorsize = fs_info->sectorsize;
3335	fi_args->clone_alignment = fs_info->sectorsize;
3336
3337	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3338		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3339		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3340		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3341	}
3342
3343	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3344		fi_args->generation = fs_info->generation;
3345		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3346	}
3347
3348	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3349		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3350		       sizeof(fi_args->metadata_uuid));
3351		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3352	}
3353
3354	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3355		ret = -EFAULT;
3356
3357	kfree(fi_args);
3358	return ret;
3359}
3360
3361static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3362				 void __user *arg)
3363{
 
3364	struct btrfs_ioctl_dev_info_args *di_args;
3365	struct btrfs_device *dev;
3366	int ret = 0;
3367	char *s_uuid = NULL;
3368
3369	di_args = memdup_user(arg, sizeof(*di_args));
3370	if (IS_ERR(di_args))
3371		return PTR_ERR(di_args);
3372
 
3373	if (!btrfs_is_empty_uuid(di_args->uuid))
3374		s_uuid = di_args->uuid;
3375
3376	rcu_read_lock();
3377	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3378				NULL);
3379
3380	if (!dev) {
3381		ret = -ENODEV;
3382		goto out;
3383	}
3384
3385	di_args->devid = dev->devid;
3386	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3387	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3388	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3389	if (dev->name) {
3390		strncpy(di_args->path, rcu_str_deref(dev->name),
3391				sizeof(di_args->path) - 1);
3392		di_args->path[sizeof(di_args->path) - 1] = 0;
3393	} else {
3394		di_args->path[0] = '\0';
3395	}
3396
3397out:
3398	rcu_read_unlock();
3399	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3400		ret = -EFAULT;
3401
3402	kfree(di_args);
3403	return ret;
3404}
3405
3406static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3407{
3408	struct inode *inode = file_inode(file);
3409	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3410	struct btrfs_root *root = BTRFS_I(inode)->root;
3411	struct btrfs_root *new_root;
3412	struct btrfs_dir_item *di;
3413	struct btrfs_trans_handle *trans;
3414	struct btrfs_path *path = NULL;
3415	struct btrfs_disk_key disk_key;
 
3416	u64 objectid = 0;
3417	u64 dir_id;
3418	int ret;
3419
3420	if (!capable(CAP_SYS_ADMIN))
3421		return -EPERM;
3422
3423	ret = mnt_want_write_file(file);
3424	if (ret)
3425		return ret;
3426
3427	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3428		ret = -EFAULT;
3429		goto out;
3430	}
3431
3432	if (!objectid)
3433		objectid = BTRFS_FS_TREE_OBJECTID;
3434
3435	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3436	if (IS_ERR(new_root)) {
3437		ret = PTR_ERR(new_root);
3438		goto out;
3439	}
3440	if (!is_fstree(new_root->root_key.objectid)) {
3441		ret = -ENOENT;
3442		goto out_free;
3443	}
3444
3445	path = btrfs_alloc_path();
3446	if (!path) {
3447		ret = -ENOMEM;
3448		goto out_free;
3449	}
3450
3451	trans = btrfs_start_transaction(root, 1);
3452	if (IS_ERR(trans)) {
3453		ret = PTR_ERR(trans);
3454		goto out_free;
3455	}
3456
3457	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3458	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3459				   dir_id, "default", 7, 1);
3460	if (IS_ERR_OR_NULL(di)) {
3461		btrfs_release_path(path);
3462		btrfs_end_transaction(trans);
3463		btrfs_err(fs_info,
3464			  "Umm, you don't have the default diritem, this isn't going to work");
3465		ret = -ENOENT;
3466		goto out_free;
3467	}
3468
3469	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3470	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3471	btrfs_mark_buffer_dirty(path->nodes[0]);
3472	btrfs_release_path(path);
3473
3474	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3475	btrfs_end_transaction(trans);
3476out_free:
3477	btrfs_put_root(new_root);
3478	btrfs_free_path(path);
3479out:
3480	mnt_drop_write_file(file);
3481	return ret;
3482}
3483
3484static void get_block_group_info(struct list_head *groups_list,
3485				 struct btrfs_ioctl_space_info *space)
3486{
3487	struct btrfs_block_group *block_group;
3488
3489	space->total_bytes = 0;
3490	space->used_bytes = 0;
3491	space->flags = 0;
3492	list_for_each_entry(block_group, groups_list, list) {
3493		space->flags = block_group->flags;
3494		space->total_bytes += block_group->length;
3495		space->used_bytes += block_group->used;
3496	}
3497}
3498
3499static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3500				   void __user *arg)
3501{
3502	struct btrfs_ioctl_space_args space_args;
3503	struct btrfs_ioctl_space_info space;
3504	struct btrfs_ioctl_space_info *dest;
3505	struct btrfs_ioctl_space_info *dest_orig;
3506	struct btrfs_ioctl_space_info __user *user_dest;
3507	struct btrfs_space_info *info;
3508	static const u64 types[] = {
3509		BTRFS_BLOCK_GROUP_DATA,
3510		BTRFS_BLOCK_GROUP_SYSTEM,
3511		BTRFS_BLOCK_GROUP_METADATA,
3512		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3513	};
3514	int num_types = 4;
3515	int alloc_size;
3516	int ret = 0;
3517	u64 slot_count = 0;
3518	int i, c;
3519
3520	if (copy_from_user(&space_args,
3521			   (struct btrfs_ioctl_space_args __user *)arg,
3522			   sizeof(space_args)))
3523		return -EFAULT;
3524
3525	for (i = 0; i < num_types; i++) {
3526		struct btrfs_space_info *tmp;
3527
3528		info = NULL;
3529		list_for_each_entry(tmp, &fs_info->space_info, list) {
3530			if (tmp->flags == types[i]) {
3531				info = tmp;
3532				break;
3533			}
3534		}
3535
3536		if (!info)
3537			continue;
3538
3539		down_read(&info->groups_sem);
3540		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3541			if (!list_empty(&info->block_groups[c]))
3542				slot_count++;
3543		}
3544		up_read(&info->groups_sem);
3545	}
3546
3547	/*
3548	 * Global block reserve, exported as a space_info
3549	 */
3550	slot_count++;
3551
3552	/* space_slots == 0 means they are asking for a count */
3553	if (space_args.space_slots == 0) {
3554		space_args.total_spaces = slot_count;
3555		goto out;
3556	}
3557
3558	slot_count = min_t(u64, space_args.space_slots, slot_count);
3559
3560	alloc_size = sizeof(*dest) * slot_count;
3561
3562	/* we generally have at most 6 or so space infos, one for each raid
3563	 * level.  So, a whole page should be more than enough for everyone
3564	 */
3565	if (alloc_size > PAGE_SIZE)
3566		return -ENOMEM;
3567
3568	space_args.total_spaces = 0;
3569	dest = kmalloc(alloc_size, GFP_KERNEL);
3570	if (!dest)
3571		return -ENOMEM;
3572	dest_orig = dest;
3573
3574	/* now we have a buffer to copy into */
3575	for (i = 0; i < num_types; i++) {
3576		struct btrfs_space_info *tmp;
3577
3578		if (!slot_count)
3579			break;
3580
3581		info = NULL;
3582		list_for_each_entry(tmp, &fs_info->space_info, list) {
3583			if (tmp->flags == types[i]) {
3584				info = tmp;
3585				break;
3586			}
3587		}
3588
3589		if (!info)
3590			continue;
3591		down_read(&info->groups_sem);
3592		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3593			if (!list_empty(&info->block_groups[c])) {
3594				get_block_group_info(&info->block_groups[c],
3595						     &space);
3596				memcpy(dest, &space, sizeof(space));
3597				dest++;
3598				space_args.total_spaces++;
3599				slot_count--;
3600			}
3601			if (!slot_count)
3602				break;
3603		}
3604		up_read(&info->groups_sem);
3605	}
3606
3607	/*
3608	 * Add global block reserve
3609	 */
3610	if (slot_count) {
3611		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3612
3613		spin_lock(&block_rsv->lock);
3614		space.total_bytes = block_rsv->size;
3615		space.used_bytes = block_rsv->size - block_rsv->reserved;
3616		spin_unlock(&block_rsv->lock);
3617		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3618		memcpy(dest, &space, sizeof(space));
3619		space_args.total_spaces++;
3620	}
3621
3622	user_dest = (struct btrfs_ioctl_space_info __user *)
3623		(arg + sizeof(struct btrfs_ioctl_space_args));
3624
3625	if (copy_to_user(user_dest, dest_orig, alloc_size))
3626		ret = -EFAULT;
3627
3628	kfree(dest_orig);
3629out:
3630	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3631		ret = -EFAULT;
3632
3633	return ret;
3634}
3635
3636static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3637					    void __user *argp)
3638{
3639	struct btrfs_trans_handle *trans;
3640	u64 transid;
3641	int ret;
 
 
 
 
 
 
3642
3643	trans = btrfs_attach_transaction_barrier(root);
3644	if (IS_ERR(trans)) {
3645		if (PTR_ERR(trans) != -ENOENT)
3646			return PTR_ERR(trans);
3647
3648		/* No running transaction, don't bother */
3649		transid = root->fs_info->last_trans_committed;
3650		goto out;
3651	}
3652	transid = trans->transid;
3653	ret = btrfs_commit_transaction_async(trans);
3654	if (ret) {
3655		btrfs_end_transaction(trans);
3656		return ret;
3657	}
3658out:
3659	if (argp)
3660		if (copy_to_user(argp, &transid, sizeof(transid)))
3661			return -EFAULT;
3662	return 0;
3663}
3664
3665static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3666					   void __user *argp)
3667{
3668	u64 transid;
 
3669
3670	if (argp) {
3671		if (copy_from_user(&transid, argp, sizeof(transid)))
3672			return -EFAULT;
3673	} else {
3674		transid = 0;  /* current trans */
3675	}
3676	return btrfs_wait_for_commit(fs_info, transid);
3677}
3678
3679static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3680{
3681	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3682	struct btrfs_ioctl_scrub_args *sa;
3683	int ret;
3684
3685	if (!capable(CAP_SYS_ADMIN))
3686		return -EPERM;
3687
 
 
 
 
 
3688	sa = memdup_user(arg, sizeof(*sa));
3689	if (IS_ERR(sa))
3690		return PTR_ERR(sa);
3691
 
 
 
 
 
3692	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3693		ret = mnt_want_write_file(file);
3694		if (ret)
3695			goto out;
3696	}
3697
3698	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3699			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3700			      0);
3701
3702	/*
3703	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3704	 * error. This is important as it allows user space to know how much
3705	 * progress scrub has done. For example, if scrub is canceled we get
3706	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3707	 * space. Later user space can inspect the progress from the structure
3708	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3709	 * previously (btrfs-progs does this).
3710	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3711	 * then return -EFAULT to signal the structure was not copied or it may
3712	 * be corrupt and unreliable due to a partial copy.
3713	 */
3714	if (copy_to_user(arg, sa, sizeof(*sa)))
3715		ret = -EFAULT;
3716
3717	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3718		mnt_drop_write_file(file);
3719out:
3720	kfree(sa);
3721	return ret;
3722}
3723
3724static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3725{
3726	if (!capable(CAP_SYS_ADMIN))
3727		return -EPERM;
3728
3729	return btrfs_scrub_cancel(fs_info);
3730}
3731
3732static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3733				       void __user *arg)
3734{
3735	struct btrfs_ioctl_scrub_args *sa;
3736	int ret;
3737
3738	if (!capable(CAP_SYS_ADMIN))
3739		return -EPERM;
3740
3741	sa = memdup_user(arg, sizeof(*sa));
3742	if (IS_ERR(sa))
3743		return PTR_ERR(sa);
3744
3745	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3746
3747	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3748		ret = -EFAULT;
3749
3750	kfree(sa);
3751	return ret;
3752}
3753
3754static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3755				      void __user *arg)
3756{
3757	struct btrfs_ioctl_get_dev_stats *sa;
3758	int ret;
3759
3760	sa = memdup_user(arg, sizeof(*sa));
3761	if (IS_ERR(sa))
3762		return PTR_ERR(sa);
3763
3764	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3765		kfree(sa);
3766		return -EPERM;
3767	}
3768
3769	ret = btrfs_get_dev_stats(fs_info, sa);
3770
3771	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3772		ret = -EFAULT;
3773
3774	kfree(sa);
3775	return ret;
3776}
3777
3778static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3779				    void __user *arg)
3780{
3781	struct btrfs_ioctl_dev_replace_args *p;
3782	int ret;
3783
3784	if (!capable(CAP_SYS_ADMIN))
3785		return -EPERM;
3786
 
 
 
 
 
3787	p = memdup_user(arg, sizeof(*p));
3788	if (IS_ERR(p))
3789		return PTR_ERR(p);
3790
3791	switch (p->cmd) {
3792	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3793		if (sb_rdonly(fs_info->sb)) {
3794			ret = -EROFS;
3795			goto out;
3796		}
3797		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3798			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3799		} else {
3800			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3801			btrfs_exclop_finish(fs_info);
3802		}
3803		break;
3804	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3805		btrfs_dev_replace_status(fs_info, p);
3806		ret = 0;
3807		break;
3808	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3809		p->result = btrfs_dev_replace_cancel(fs_info);
3810		ret = 0;
3811		break;
3812	default:
3813		ret = -EINVAL;
3814		break;
3815	}
3816
3817	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3818		ret = -EFAULT;
3819out:
3820	kfree(p);
3821	return ret;
3822}
3823
3824static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3825{
3826	int ret = 0;
3827	int i;
3828	u64 rel_ptr;
3829	int size;
3830	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3831	struct inode_fs_paths *ipath = NULL;
3832	struct btrfs_path *path;
3833
3834	if (!capable(CAP_DAC_READ_SEARCH))
3835		return -EPERM;
3836
3837	path = btrfs_alloc_path();
3838	if (!path) {
3839		ret = -ENOMEM;
3840		goto out;
3841	}
3842
3843	ipa = memdup_user(arg, sizeof(*ipa));
3844	if (IS_ERR(ipa)) {
3845		ret = PTR_ERR(ipa);
3846		ipa = NULL;
3847		goto out;
3848	}
3849
3850	size = min_t(u32, ipa->size, 4096);
3851	ipath = init_ipath(size, root, path);
3852	if (IS_ERR(ipath)) {
3853		ret = PTR_ERR(ipath);
3854		ipath = NULL;
3855		goto out;
3856	}
3857
3858	ret = paths_from_inode(ipa->inum, ipath);
3859	if (ret < 0)
3860		goto out;
3861
3862	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3863		rel_ptr = ipath->fspath->val[i] -
3864			  (u64)(unsigned long)ipath->fspath->val;
3865		ipath->fspath->val[i] = rel_ptr;
3866	}
3867
 
 
3868	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3869			   ipath->fspath, size);
3870	if (ret) {
3871		ret = -EFAULT;
3872		goto out;
3873	}
3874
3875out:
3876	btrfs_free_path(path);
3877	free_ipath(ipath);
3878	kfree(ipa);
3879
3880	return ret;
3881}
3882
3883static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3884{
3885	struct btrfs_data_container *inodes = ctx;
3886	const size_t c = 3 * sizeof(u64);
3887
3888	if (inodes->bytes_left >= c) {
3889		inodes->bytes_left -= c;
3890		inodes->val[inodes->elem_cnt] = inum;
3891		inodes->val[inodes->elem_cnt + 1] = offset;
3892		inodes->val[inodes->elem_cnt + 2] = root;
3893		inodes->elem_cnt += 3;
3894	} else {
3895		inodes->bytes_missing += c - inodes->bytes_left;
3896		inodes->bytes_left = 0;
3897		inodes->elem_missed += 3;
3898	}
3899
3900	return 0;
3901}
3902
3903static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3904					void __user *arg, int version)
3905{
3906	int ret = 0;
3907	int size;
3908	struct btrfs_ioctl_logical_ino_args *loi;
3909	struct btrfs_data_container *inodes = NULL;
3910	struct btrfs_path *path = NULL;
3911	bool ignore_offset;
3912
3913	if (!capable(CAP_SYS_ADMIN))
3914		return -EPERM;
3915
3916	loi = memdup_user(arg, sizeof(*loi));
3917	if (IS_ERR(loi))
3918		return PTR_ERR(loi);
3919
3920	if (version == 1) {
3921		ignore_offset = false;
3922		size = min_t(u32, loi->size, SZ_64K);
3923	} else {
3924		/* All reserved bits must be 0 for now */
3925		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3926			ret = -EINVAL;
3927			goto out_loi;
3928		}
3929		/* Only accept flags we have defined so far */
3930		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3931			ret = -EINVAL;
3932			goto out_loi;
3933		}
3934		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3935		size = min_t(u32, loi->size, SZ_16M);
3936	}
3937
 
 
 
 
 
 
3938	path = btrfs_alloc_path();
3939	if (!path) {
3940		ret = -ENOMEM;
3941		goto out;
3942	}
3943
3944	inodes = init_data_container(size);
3945	if (IS_ERR(inodes)) {
3946		ret = PTR_ERR(inodes);
3947		inodes = NULL;
3948		goto out;
3949	}
3950
3951	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3952					  build_ino_list, inodes, ignore_offset);
 
3953	if (ret == -EINVAL)
3954		ret = -ENOENT;
3955	if (ret < 0)
3956		goto out;
3957
3958	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3959			   size);
3960	if (ret)
3961		ret = -EFAULT;
3962
3963out:
3964	btrfs_free_path(path);
3965	kvfree(inodes);
3966out_loi:
3967	kfree(loi);
3968
3969	return ret;
3970}
3971
3972void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3973			       struct btrfs_ioctl_balance_args *bargs)
3974{
3975	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3976
3977	bargs->flags = bctl->flags;
3978
3979	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3980		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3981	if (atomic_read(&fs_info->balance_pause_req))
3982		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3983	if (atomic_read(&fs_info->balance_cancel_req))
3984		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3985
3986	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3987	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3988	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3989
3990	spin_lock(&fs_info->balance_lock);
3991	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3992	spin_unlock(&fs_info->balance_lock);
3993}
3994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3995static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3996{
3997	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3998	struct btrfs_fs_info *fs_info = root->fs_info;
3999	struct btrfs_ioctl_balance_args *bargs;
4000	struct btrfs_balance_control *bctl;
4001	bool need_unlock; /* for mut. excl. ops lock */
4002	int ret;
4003
4004	if (!capable(CAP_SYS_ADMIN))
4005		return -EPERM;
4006
4007	ret = mnt_want_write_file(file);
4008	if (ret)
4009		return ret;
4010
4011again:
4012	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4013		mutex_lock(&fs_info->balance_mutex);
4014		need_unlock = true;
4015		goto locked;
4016	}
4017
4018	/*
4019	 * mut. excl. ops lock is locked.  Three possibilities:
4020	 *   (1) some other op is running
4021	 *   (2) balance is running
4022	 *   (3) balance is paused -- special case (think resume)
4023	 */
4024	mutex_lock(&fs_info->balance_mutex);
4025	if (fs_info->balance_ctl) {
4026		/* this is either (2) or (3) */
4027		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4028			mutex_unlock(&fs_info->balance_mutex);
4029			/*
4030			 * Lock released to allow other waiters to continue,
4031			 * we'll reexamine the status again.
4032			 */
4033			mutex_lock(&fs_info->balance_mutex);
4034
4035			if (fs_info->balance_ctl &&
4036			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4037				/* this is (3) */
4038				need_unlock = false;
4039				goto locked;
4040			}
4041
4042			mutex_unlock(&fs_info->balance_mutex);
4043			goto again;
4044		} else {
4045			/* this is (2) */
4046			mutex_unlock(&fs_info->balance_mutex);
4047			ret = -EINPROGRESS;
4048			goto out;
4049		}
4050	} else {
4051		/* this is (1) */
4052		mutex_unlock(&fs_info->balance_mutex);
4053		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4054		goto out;
4055	}
4056
4057locked:
4058
4059	if (arg) {
4060		bargs = memdup_user(arg, sizeof(*bargs));
4061		if (IS_ERR(bargs)) {
4062			ret = PTR_ERR(bargs);
4063			goto out_unlock;
4064		}
4065
4066		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4067			if (!fs_info->balance_ctl) {
4068				ret = -ENOTCONN;
4069				goto out_bargs;
4070			}
4071
4072			bctl = fs_info->balance_ctl;
4073			spin_lock(&fs_info->balance_lock);
4074			bctl->flags |= BTRFS_BALANCE_RESUME;
4075			spin_unlock(&fs_info->balance_lock);
4076
4077			goto do_balance;
4078		}
4079	} else {
4080		bargs = NULL;
4081	}
4082
4083	if (fs_info->balance_ctl) {
4084		ret = -EINPROGRESS;
4085		goto out_bargs;
4086	}
4087
4088	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4089	if (!bctl) {
4090		ret = -ENOMEM;
4091		goto out_bargs;
4092	}
4093
4094	if (arg) {
4095		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4096		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4097		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4098
4099		bctl->flags = bargs->flags;
4100	} else {
4101		/* balance everything - no filters */
4102		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4103	}
4104
4105	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4106		ret = -EINVAL;
4107		goto out_bctl;
4108	}
4109
 
4110do_balance:
4111	/*
4112	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4113	 * bctl is freed in reset_balance_state, or, if restriper was paused
4114	 * all the way until unmount, in free_fs_info.  The flag should be
4115	 * cleared after reset_balance_state.
4116	 */
4117	need_unlock = false;
4118
4119	ret = btrfs_balance(fs_info, bctl, bargs);
4120	bctl = NULL;
4121
4122	if ((ret == 0 || ret == -ECANCELED) && arg) {
4123		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4124			ret = -EFAULT;
4125	}
4126
4127out_bctl:
4128	kfree(bctl);
4129out_bargs:
4130	kfree(bargs);
4131out_unlock:
4132	mutex_unlock(&fs_info->balance_mutex);
4133	if (need_unlock)
4134		btrfs_exclop_finish(fs_info);
4135out:
4136	mnt_drop_write_file(file);
 
4137	return ret;
4138}
4139
4140static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4141{
4142	if (!capable(CAP_SYS_ADMIN))
4143		return -EPERM;
4144
4145	switch (cmd) {
4146	case BTRFS_BALANCE_CTL_PAUSE:
4147		return btrfs_pause_balance(fs_info);
4148	case BTRFS_BALANCE_CTL_CANCEL:
4149		return btrfs_cancel_balance(fs_info);
4150	}
4151
4152	return -EINVAL;
4153}
4154
4155static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4156					 void __user *arg)
4157{
4158	struct btrfs_ioctl_balance_args *bargs;
4159	int ret = 0;
4160
4161	if (!capable(CAP_SYS_ADMIN))
4162		return -EPERM;
4163
4164	mutex_lock(&fs_info->balance_mutex);
4165	if (!fs_info->balance_ctl) {
4166		ret = -ENOTCONN;
4167		goto out;
4168	}
4169
4170	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4171	if (!bargs) {
4172		ret = -ENOMEM;
4173		goto out;
4174	}
4175
4176	btrfs_update_ioctl_balance_args(fs_info, bargs);
4177
4178	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4179		ret = -EFAULT;
4180
4181	kfree(bargs);
4182out:
4183	mutex_unlock(&fs_info->balance_mutex);
4184	return ret;
4185}
4186
4187static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4188{
4189	struct inode *inode = file_inode(file);
4190	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4191	struct btrfs_ioctl_quota_ctl_args *sa;
4192	int ret;
4193
4194	if (!capable(CAP_SYS_ADMIN))
4195		return -EPERM;
4196
4197	ret = mnt_want_write_file(file);
4198	if (ret)
4199		return ret;
4200
4201	sa = memdup_user(arg, sizeof(*sa));
4202	if (IS_ERR(sa)) {
4203		ret = PTR_ERR(sa);
4204		goto drop_write;
4205	}
4206
4207	down_write(&fs_info->subvol_sem);
4208
4209	switch (sa->cmd) {
4210	case BTRFS_QUOTA_CTL_ENABLE:
4211		ret = btrfs_quota_enable(fs_info);
 
 
 
4212		break;
4213	case BTRFS_QUOTA_CTL_DISABLE:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4214		ret = btrfs_quota_disable(fs_info);
 
 
4215		break;
4216	default:
4217		ret = -EINVAL;
4218		break;
4219	}
4220
4221	kfree(sa);
4222	up_write(&fs_info->subvol_sem);
4223drop_write:
4224	mnt_drop_write_file(file);
4225	return ret;
4226}
4227
4228static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4229{
4230	struct inode *inode = file_inode(file);
4231	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4232	struct btrfs_root *root = BTRFS_I(inode)->root;
4233	struct btrfs_ioctl_qgroup_assign_args *sa;
4234	struct btrfs_trans_handle *trans;
4235	int ret;
4236	int err;
4237
4238	if (!capable(CAP_SYS_ADMIN))
4239		return -EPERM;
4240
4241	ret = mnt_want_write_file(file);
4242	if (ret)
4243		return ret;
4244
4245	sa = memdup_user(arg, sizeof(*sa));
4246	if (IS_ERR(sa)) {
4247		ret = PTR_ERR(sa);
4248		goto drop_write;
4249	}
4250
4251	trans = btrfs_join_transaction(root);
4252	if (IS_ERR(trans)) {
4253		ret = PTR_ERR(trans);
4254		goto out;
4255	}
4256
4257	if (sa->assign) {
4258		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4259	} else {
4260		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4261	}
4262
4263	/* update qgroup status and info */
 
4264	err = btrfs_run_qgroups(trans);
 
4265	if (err < 0)
4266		btrfs_handle_fs_error(fs_info, err,
4267				      "failed to update qgroup status and info");
4268	err = btrfs_end_transaction(trans);
4269	if (err && !ret)
4270		ret = err;
4271
4272out:
4273	kfree(sa);
4274drop_write:
4275	mnt_drop_write_file(file);
4276	return ret;
4277}
4278
4279static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4280{
4281	struct inode *inode = file_inode(file);
4282	struct btrfs_root *root = BTRFS_I(inode)->root;
4283	struct btrfs_ioctl_qgroup_create_args *sa;
4284	struct btrfs_trans_handle *trans;
4285	int ret;
4286	int err;
4287
4288	if (!capable(CAP_SYS_ADMIN))
4289		return -EPERM;
4290
4291	ret = mnt_want_write_file(file);
4292	if (ret)
4293		return ret;
4294
4295	sa = memdup_user(arg, sizeof(*sa));
4296	if (IS_ERR(sa)) {
4297		ret = PTR_ERR(sa);
4298		goto drop_write;
4299	}
4300
4301	if (!sa->qgroupid) {
4302		ret = -EINVAL;
4303		goto out;
4304	}
4305
 
 
 
 
 
4306	trans = btrfs_join_transaction(root);
4307	if (IS_ERR(trans)) {
4308		ret = PTR_ERR(trans);
4309		goto out;
4310	}
4311
4312	if (sa->create) {
4313		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4314	} else {
4315		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4316	}
4317
4318	err = btrfs_end_transaction(trans);
4319	if (err && !ret)
4320		ret = err;
4321
4322out:
4323	kfree(sa);
4324drop_write:
4325	mnt_drop_write_file(file);
4326	return ret;
4327}
4328
4329static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4330{
4331	struct inode *inode = file_inode(file);
4332	struct btrfs_root *root = BTRFS_I(inode)->root;
4333	struct btrfs_ioctl_qgroup_limit_args *sa;
4334	struct btrfs_trans_handle *trans;
4335	int ret;
4336	int err;
4337	u64 qgroupid;
4338
4339	if (!capable(CAP_SYS_ADMIN))
4340		return -EPERM;
4341
4342	ret = mnt_want_write_file(file);
4343	if (ret)
4344		return ret;
4345
4346	sa = memdup_user(arg, sizeof(*sa));
4347	if (IS_ERR(sa)) {
4348		ret = PTR_ERR(sa);
4349		goto drop_write;
4350	}
4351
4352	trans = btrfs_join_transaction(root);
4353	if (IS_ERR(trans)) {
4354		ret = PTR_ERR(trans);
4355		goto out;
4356	}
4357
4358	qgroupid = sa->qgroupid;
4359	if (!qgroupid) {
4360		/* take the current subvol as qgroup */
4361		qgroupid = root->root_key.objectid;
4362	}
4363
4364	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4365
4366	err = btrfs_end_transaction(trans);
4367	if (err && !ret)
4368		ret = err;
4369
4370out:
4371	kfree(sa);
4372drop_write:
4373	mnt_drop_write_file(file);
4374	return ret;
4375}
4376
4377static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4378{
4379	struct inode *inode = file_inode(file);
4380	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4381	struct btrfs_ioctl_quota_rescan_args *qsa;
4382	int ret;
4383
4384	if (!capable(CAP_SYS_ADMIN))
4385		return -EPERM;
4386
4387	ret = mnt_want_write_file(file);
4388	if (ret)
4389		return ret;
4390
4391	qsa = memdup_user(arg, sizeof(*qsa));
4392	if (IS_ERR(qsa)) {
4393		ret = PTR_ERR(qsa);
4394		goto drop_write;
4395	}
4396
4397	if (qsa->flags) {
4398		ret = -EINVAL;
4399		goto out;
4400	}
4401
4402	ret = btrfs_qgroup_rescan(fs_info);
4403
4404out:
4405	kfree(qsa);
4406drop_write:
4407	mnt_drop_write_file(file);
4408	return ret;
4409}
4410
4411static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4412						void __user *arg)
4413{
4414	struct btrfs_ioctl_quota_rescan_args *qsa;
4415	int ret = 0;
4416
4417	if (!capable(CAP_SYS_ADMIN))
4418		return -EPERM;
4419
4420	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4421	if (!qsa)
4422		return -ENOMEM;
4423
4424	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4425		qsa->flags = 1;
4426		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4427	}
4428
4429	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4430		ret = -EFAULT;
4431
4432	kfree(qsa);
4433	return ret;
4434}
4435
4436static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4437						void __user *arg)
4438{
4439	if (!capable(CAP_SYS_ADMIN))
4440		return -EPERM;
4441
4442	return btrfs_qgroup_wait_for_completion(fs_info, true);
4443}
4444
4445static long _btrfs_ioctl_set_received_subvol(struct file *file,
 
4446					    struct btrfs_ioctl_received_subvol_args *sa)
4447{
4448	struct inode *inode = file_inode(file);
4449	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4450	struct btrfs_root *root = BTRFS_I(inode)->root;
4451	struct btrfs_root_item *root_item = &root->root_item;
4452	struct btrfs_trans_handle *trans;
4453	struct timespec64 ct = current_time(inode);
4454	int ret = 0;
4455	int received_uuid_changed;
4456
4457	if (!inode_owner_or_capable(&init_user_ns, inode))
4458		return -EPERM;
4459
4460	ret = mnt_want_write_file(file);
4461	if (ret < 0)
4462		return ret;
4463
4464	down_write(&fs_info->subvol_sem);
4465
4466	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4467		ret = -EINVAL;
4468		goto out;
4469	}
4470
4471	if (btrfs_root_readonly(root)) {
4472		ret = -EROFS;
4473		goto out;
4474	}
4475
4476	/*
4477	 * 1 - root item
4478	 * 2 - uuid items (received uuid + subvol uuid)
4479	 */
4480	trans = btrfs_start_transaction(root, 3);
4481	if (IS_ERR(trans)) {
4482		ret = PTR_ERR(trans);
4483		trans = NULL;
4484		goto out;
4485	}
4486
4487	sa->rtransid = trans->transid;
4488	sa->rtime.sec = ct.tv_sec;
4489	sa->rtime.nsec = ct.tv_nsec;
4490
4491	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4492				       BTRFS_UUID_SIZE);
4493	if (received_uuid_changed &&
4494	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4495		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4496					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4497					  root->root_key.objectid);
4498		if (ret && ret != -ENOENT) {
4499		        btrfs_abort_transaction(trans, ret);
4500		        btrfs_end_transaction(trans);
4501		        goto out;
4502		}
4503	}
4504	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4505	btrfs_set_root_stransid(root_item, sa->stransid);
4506	btrfs_set_root_rtransid(root_item, sa->rtransid);
4507	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4508	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4509	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4510	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4511
4512	ret = btrfs_update_root(trans, fs_info->tree_root,
4513				&root->root_key, &root->root_item);
4514	if (ret < 0) {
4515		btrfs_end_transaction(trans);
4516		goto out;
4517	}
4518	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4519		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4520					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4521					  root->root_key.objectid);
4522		if (ret < 0 && ret != -EEXIST) {
4523			btrfs_abort_transaction(trans, ret);
4524			btrfs_end_transaction(trans);
4525			goto out;
4526		}
4527	}
4528	ret = btrfs_commit_transaction(trans);
4529out:
4530	up_write(&fs_info->subvol_sem);
4531	mnt_drop_write_file(file);
4532	return ret;
4533}
4534
4535#ifdef CONFIG_64BIT
4536static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4537						void __user *arg)
4538{
4539	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4540	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4541	int ret = 0;
4542
4543	args32 = memdup_user(arg, sizeof(*args32));
4544	if (IS_ERR(args32))
4545		return PTR_ERR(args32);
4546
4547	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4548	if (!args64) {
4549		ret = -ENOMEM;
4550		goto out;
4551	}
4552
4553	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4554	args64->stransid = args32->stransid;
4555	args64->rtransid = args32->rtransid;
4556	args64->stime.sec = args32->stime.sec;
4557	args64->stime.nsec = args32->stime.nsec;
4558	args64->rtime.sec = args32->rtime.sec;
4559	args64->rtime.nsec = args32->rtime.nsec;
4560	args64->flags = args32->flags;
4561
4562	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4563	if (ret)
4564		goto out;
4565
4566	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4567	args32->stransid = args64->stransid;
4568	args32->rtransid = args64->rtransid;
4569	args32->stime.sec = args64->stime.sec;
4570	args32->stime.nsec = args64->stime.nsec;
4571	args32->rtime.sec = args64->rtime.sec;
4572	args32->rtime.nsec = args64->rtime.nsec;
4573	args32->flags = args64->flags;
4574
4575	ret = copy_to_user(arg, args32, sizeof(*args32));
4576	if (ret)
4577		ret = -EFAULT;
4578
4579out:
4580	kfree(args32);
4581	kfree(args64);
4582	return ret;
4583}
4584#endif
4585
4586static long btrfs_ioctl_set_received_subvol(struct file *file,
4587					    void __user *arg)
4588{
4589	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4590	int ret = 0;
4591
4592	sa = memdup_user(arg, sizeof(*sa));
4593	if (IS_ERR(sa))
4594		return PTR_ERR(sa);
4595
4596	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4597
4598	if (ret)
4599		goto out;
4600
4601	ret = copy_to_user(arg, sa, sizeof(*sa));
4602	if (ret)
4603		ret = -EFAULT;
4604
4605out:
4606	kfree(sa);
4607	return ret;
4608}
4609
4610static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4611					void __user *arg)
4612{
4613	size_t len;
4614	int ret;
4615	char label[BTRFS_LABEL_SIZE];
4616
4617	spin_lock(&fs_info->super_lock);
4618	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4619	spin_unlock(&fs_info->super_lock);
4620
4621	len = strnlen(label, BTRFS_LABEL_SIZE);
4622
4623	if (len == BTRFS_LABEL_SIZE) {
4624		btrfs_warn(fs_info,
4625			   "label is too long, return the first %zu bytes",
4626			   --len);
4627	}
4628
4629	ret = copy_to_user(arg, label, len);
4630
4631	return ret ? -EFAULT : 0;
4632}
4633
4634static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4635{
4636	struct inode *inode = file_inode(file);
4637	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4638	struct btrfs_root *root = BTRFS_I(inode)->root;
4639	struct btrfs_super_block *super_block = fs_info->super_copy;
4640	struct btrfs_trans_handle *trans;
4641	char label[BTRFS_LABEL_SIZE];
4642	int ret;
4643
4644	if (!capable(CAP_SYS_ADMIN))
4645		return -EPERM;
4646
4647	if (copy_from_user(label, arg, sizeof(label)))
4648		return -EFAULT;
4649
4650	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4651		btrfs_err(fs_info,
4652			  "unable to set label with more than %d bytes",
4653			  BTRFS_LABEL_SIZE - 1);
4654		return -EINVAL;
4655	}
4656
4657	ret = mnt_want_write_file(file);
4658	if (ret)
4659		return ret;
4660
4661	trans = btrfs_start_transaction(root, 0);
4662	if (IS_ERR(trans)) {
4663		ret = PTR_ERR(trans);
4664		goto out_unlock;
4665	}
4666
4667	spin_lock(&fs_info->super_lock);
4668	strcpy(super_block->label, label);
4669	spin_unlock(&fs_info->super_lock);
4670	ret = btrfs_commit_transaction(trans);
4671
4672out_unlock:
4673	mnt_drop_write_file(file);
4674	return ret;
4675}
4676
4677#define INIT_FEATURE_FLAGS(suffix) \
4678	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4679	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4680	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4681
4682int btrfs_ioctl_get_supported_features(void __user *arg)
4683{
4684	static const struct btrfs_ioctl_feature_flags features[3] = {
4685		INIT_FEATURE_FLAGS(SUPP),
4686		INIT_FEATURE_FLAGS(SAFE_SET),
4687		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4688	};
4689
4690	if (copy_to_user(arg, &features, sizeof(features)))
4691		return -EFAULT;
4692
4693	return 0;
4694}
4695
4696static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4697					void __user *arg)
4698{
4699	struct btrfs_super_block *super_block = fs_info->super_copy;
4700	struct btrfs_ioctl_feature_flags features;
4701
4702	features.compat_flags = btrfs_super_compat_flags(super_block);
4703	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4704	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4705
4706	if (copy_to_user(arg, &features, sizeof(features)))
4707		return -EFAULT;
4708
4709	return 0;
4710}
4711
4712static int check_feature_bits(struct btrfs_fs_info *fs_info,
4713			      enum btrfs_feature_set set,
4714			      u64 change_mask, u64 flags, u64 supported_flags,
4715			      u64 safe_set, u64 safe_clear)
4716{
4717	const char *type = btrfs_feature_set_name(set);
4718	char *names;
4719	u64 disallowed, unsupported;
4720	u64 set_mask = flags & change_mask;
4721	u64 clear_mask = ~flags & change_mask;
4722
4723	unsupported = set_mask & ~supported_flags;
4724	if (unsupported) {
4725		names = btrfs_printable_features(set, unsupported);
4726		if (names) {
4727			btrfs_warn(fs_info,
4728				   "this kernel does not support the %s feature bit%s",
4729				   names, strchr(names, ',') ? "s" : "");
4730			kfree(names);
4731		} else
4732			btrfs_warn(fs_info,
4733				   "this kernel does not support %s bits 0x%llx",
4734				   type, unsupported);
4735		return -EOPNOTSUPP;
4736	}
4737
4738	disallowed = set_mask & ~safe_set;
4739	if (disallowed) {
4740		names = btrfs_printable_features(set, disallowed);
4741		if (names) {
4742			btrfs_warn(fs_info,
4743				   "can't set the %s feature bit%s while mounted",
4744				   names, strchr(names, ',') ? "s" : "");
4745			kfree(names);
4746		} else
4747			btrfs_warn(fs_info,
4748				   "can't set %s bits 0x%llx while mounted",
4749				   type, disallowed);
4750		return -EPERM;
4751	}
4752
4753	disallowed = clear_mask & ~safe_clear;
4754	if (disallowed) {
4755		names = btrfs_printable_features(set, disallowed);
4756		if (names) {
4757			btrfs_warn(fs_info,
4758				   "can't clear the %s feature bit%s while mounted",
4759				   names, strchr(names, ',') ? "s" : "");
4760			kfree(names);
4761		} else
4762			btrfs_warn(fs_info,
4763				   "can't clear %s bits 0x%llx while mounted",
4764				   type, disallowed);
4765		return -EPERM;
4766	}
4767
4768	return 0;
4769}
4770
4771#define check_feature(fs_info, change_mask, flags, mask_base)	\
4772check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4773		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4774		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4775		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4776
4777static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4778{
4779	struct inode *inode = file_inode(file);
4780	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4781	struct btrfs_root *root = BTRFS_I(inode)->root;
4782	struct btrfs_super_block *super_block = fs_info->super_copy;
4783	struct btrfs_ioctl_feature_flags flags[2];
4784	struct btrfs_trans_handle *trans;
4785	u64 newflags;
4786	int ret;
4787
4788	if (!capable(CAP_SYS_ADMIN))
4789		return -EPERM;
4790
4791	if (copy_from_user(flags, arg, sizeof(flags)))
4792		return -EFAULT;
4793
4794	/* Nothing to do */
4795	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4796	    !flags[0].incompat_flags)
4797		return 0;
4798
4799	ret = check_feature(fs_info, flags[0].compat_flags,
4800			    flags[1].compat_flags, COMPAT);
4801	if (ret)
4802		return ret;
4803
4804	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4805			    flags[1].compat_ro_flags, COMPAT_RO);
4806	if (ret)
4807		return ret;
4808
4809	ret = check_feature(fs_info, flags[0].incompat_flags,
4810			    flags[1].incompat_flags, INCOMPAT);
4811	if (ret)
4812		return ret;
4813
4814	ret = mnt_want_write_file(file);
4815	if (ret)
4816		return ret;
4817
4818	trans = btrfs_start_transaction(root, 0);
4819	if (IS_ERR(trans)) {
4820		ret = PTR_ERR(trans);
4821		goto out_drop_write;
4822	}
4823
4824	spin_lock(&fs_info->super_lock);
4825	newflags = btrfs_super_compat_flags(super_block);
4826	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4827	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4828	btrfs_set_super_compat_flags(super_block, newflags);
4829
4830	newflags = btrfs_super_compat_ro_flags(super_block);
4831	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4832	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4833	btrfs_set_super_compat_ro_flags(super_block, newflags);
4834
4835	newflags = btrfs_super_incompat_flags(super_block);
4836	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4837	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4838	btrfs_set_super_incompat_flags(super_block, newflags);
4839	spin_unlock(&fs_info->super_lock);
4840
4841	ret = btrfs_commit_transaction(trans);
4842out_drop_write:
4843	mnt_drop_write_file(file);
4844
4845	return ret;
4846}
4847
4848static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4849{
4850	struct btrfs_ioctl_send_args *arg;
4851	int ret;
4852
4853	if (compat) {
4854#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4855		struct btrfs_ioctl_send_args_32 args32;
4856
4857		ret = copy_from_user(&args32, argp, sizeof(args32));
4858		if (ret)
4859			return -EFAULT;
4860		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4861		if (!arg)
4862			return -ENOMEM;
4863		arg->send_fd = args32.send_fd;
4864		arg->clone_sources_count = args32.clone_sources_count;
4865		arg->clone_sources = compat_ptr(args32.clone_sources);
4866		arg->parent_root = args32.parent_root;
4867		arg->flags = args32.flags;
 
4868		memcpy(arg->reserved, args32.reserved,
4869		       sizeof(args32.reserved));
4870#else
4871		return -ENOTTY;
4872#endif
4873	} else {
4874		arg = memdup_user(argp, sizeof(*arg));
4875		if (IS_ERR(arg))
4876			return PTR_ERR(arg);
4877	}
4878	ret = btrfs_ioctl_send(file, arg);
4879	kfree(arg);
4880	return ret;
4881}
4882
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4883long btrfs_ioctl(struct file *file, unsigned int
4884		cmd, unsigned long arg)
4885{
4886	struct inode *inode = file_inode(file);
4887	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4888	struct btrfs_root *root = BTRFS_I(inode)->root;
4889	void __user *argp = (void __user *)arg;
4890
4891	switch (cmd) {
4892	case FS_IOC_GETVERSION:
4893		return btrfs_ioctl_getversion(file, argp);
4894	case FS_IOC_GETFSLABEL:
4895		return btrfs_ioctl_get_fslabel(fs_info, argp);
4896	case FS_IOC_SETFSLABEL:
4897		return btrfs_ioctl_set_fslabel(file, argp);
4898	case FITRIM:
4899		return btrfs_ioctl_fitrim(fs_info, argp);
4900	case BTRFS_IOC_SNAP_CREATE:
4901		return btrfs_ioctl_snap_create(file, argp, 0);
4902	case BTRFS_IOC_SNAP_CREATE_V2:
4903		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4904	case BTRFS_IOC_SUBVOL_CREATE:
4905		return btrfs_ioctl_snap_create(file, argp, 1);
4906	case BTRFS_IOC_SUBVOL_CREATE_V2:
4907		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4908	case BTRFS_IOC_SNAP_DESTROY:
4909		return btrfs_ioctl_snap_destroy(file, argp, false);
4910	case BTRFS_IOC_SNAP_DESTROY_V2:
4911		return btrfs_ioctl_snap_destroy(file, argp, true);
4912	case BTRFS_IOC_SUBVOL_GETFLAGS:
4913		return btrfs_ioctl_subvol_getflags(file, argp);
4914	case BTRFS_IOC_SUBVOL_SETFLAGS:
4915		return btrfs_ioctl_subvol_setflags(file, argp);
4916	case BTRFS_IOC_DEFAULT_SUBVOL:
4917		return btrfs_ioctl_default_subvol(file, argp);
4918	case BTRFS_IOC_DEFRAG:
4919		return btrfs_ioctl_defrag(file, NULL);
4920	case BTRFS_IOC_DEFRAG_RANGE:
4921		return btrfs_ioctl_defrag(file, argp);
4922	case BTRFS_IOC_RESIZE:
4923		return btrfs_ioctl_resize(file, argp);
4924	case BTRFS_IOC_ADD_DEV:
4925		return btrfs_ioctl_add_dev(fs_info, argp);
4926	case BTRFS_IOC_RM_DEV:
4927		return btrfs_ioctl_rm_dev(file, argp);
4928	case BTRFS_IOC_RM_DEV_V2:
4929		return btrfs_ioctl_rm_dev_v2(file, argp);
4930	case BTRFS_IOC_FS_INFO:
4931		return btrfs_ioctl_fs_info(fs_info, argp);
4932	case BTRFS_IOC_DEV_INFO:
4933		return btrfs_ioctl_dev_info(fs_info, argp);
4934	case BTRFS_IOC_BALANCE:
4935		return btrfs_ioctl_balance(file, NULL);
4936	case BTRFS_IOC_TREE_SEARCH:
4937		return btrfs_ioctl_tree_search(file, argp);
4938	case BTRFS_IOC_TREE_SEARCH_V2:
4939		return btrfs_ioctl_tree_search_v2(file, argp);
4940	case BTRFS_IOC_INO_LOOKUP:
4941		return btrfs_ioctl_ino_lookup(file, argp);
4942	case BTRFS_IOC_INO_PATHS:
4943		return btrfs_ioctl_ino_to_path(root, argp);
4944	case BTRFS_IOC_LOGICAL_INO:
4945		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4946	case BTRFS_IOC_LOGICAL_INO_V2:
4947		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4948	case BTRFS_IOC_SPACE_INFO:
4949		return btrfs_ioctl_space_info(fs_info, argp);
4950	case BTRFS_IOC_SYNC: {
4951		int ret;
4952
4953		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4954		if (ret)
4955			return ret;
4956		ret = btrfs_sync_fs(inode->i_sb, 1);
4957		/*
4958		 * The transaction thread may want to do more work,
4959		 * namely it pokes the cleaner kthread that will start
4960		 * processing uncleaned subvols.
4961		 */
4962		wake_up_process(fs_info->transaction_kthread);
4963		return ret;
4964	}
4965	case BTRFS_IOC_START_SYNC:
4966		return btrfs_ioctl_start_sync(root, argp);
4967	case BTRFS_IOC_WAIT_SYNC:
4968		return btrfs_ioctl_wait_sync(fs_info, argp);
4969	case BTRFS_IOC_SCRUB:
4970		return btrfs_ioctl_scrub(file, argp);
4971	case BTRFS_IOC_SCRUB_CANCEL:
4972		return btrfs_ioctl_scrub_cancel(fs_info);
4973	case BTRFS_IOC_SCRUB_PROGRESS:
4974		return btrfs_ioctl_scrub_progress(fs_info, argp);
4975	case BTRFS_IOC_BALANCE_V2:
4976		return btrfs_ioctl_balance(file, argp);
4977	case BTRFS_IOC_BALANCE_CTL:
4978		return btrfs_ioctl_balance_ctl(fs_info, arg);
4979	case BTRFS_IOC_BALANCE_PROGRESS:
4980		return btrfs_ioctl_balance_progress(fs_info, argp);
4981	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4982		return btrfs_ioctl_set_received_subvol(file, argp);
4983#ifdef CONFIG_64BIT
4984	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4985		return btrfs_ioctl_set_received_subvol_32(file, argp);
4986#endif
4987	case BTRFS_IOC_SEND:
4988		return _btrfs_ioctl_send(file, argp, false);
4989#if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4990	case BTRFS_IOC_SEND_32:
4991		return _btrfs_ioctl_send(file, argp, true);
4992#endif
4993	case BTRFS_IOC_GET_DEV_STATS:
4994		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4995	case BTRFS_IOC_QUOTA_CTL:
4996		return btrfs_ioctl_quota_ctl(file, argp);
4997	case BTRFS_IOC_QGROUP_ASSIGN:
4998		return btrfs_ioctl_qgroup_assign(file, argp);
4999	case BTRFS_IOC_QGROUP_CREATE:
5000		return btrfs_ioctl_qgroup_create(file, argp);
5001	case BTRFS_IOC_QGROUP_LIMIT:
5002		return btrfs_ioctl_qgroup_limit(file, argp);
5003	case BTRFS_IOC_QUOTA_RESCAN:
5004		return btrfs_ioctl_quota_rescan(file, argp);
5005	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5006		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5007	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5008		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5009	case BTRFS_IOC_DEV_REPLACE:
5010		return btrfs_ioctl_dev_replace(fs_info, argp);
5011	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5012		return btrfs_ioctl_get_supported_features(argp);
5013	case BTRFS_IOC_GET_FEATURES:
5014		return btrfs_ioctl_get_features(fs_info, argp);
5015	case BTRFS_IOC_SET_FEATURES:
5016		return btrfs_ioctl_set_features(file, argp);
5017	case BTRFS_IOC_GET_SUBVOL_INFO:
5018		return btrfs_ioctl_get_subvol_info(file, argp);
5019	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5020		return btrfs_ioctl_get_subvol_rootref(file, argp);
5021	case BTRFS_IOC_INO_LOOKUP_USER:
5022		return btrfs_ioctl_ino_lookup_user(file, argp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5023	}
5024
5025	return -ENOTTY;
5026}
5027
5028#ifdef CONFIG_COMPAT
5029long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5030{
5031	/*
5032	 * These all access 32-bit values anyway so no further
5033	 * handling is necessary.
5034	 */
5035	switch (cmd) {
5036	case FS_IOC32_GETVERSION:
5037		cmd = FS_IOC_GETVERSION;
5038		break;
5039	}
5040
5041	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5042}
5043#endif