Linux Audio

Check our new training course

Loading...
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/kernel/setup.c
  4 *
  5 * Copyright (C) 1995-2001 Russell King
  6 * Copyright (C) 2012 ARM Ltd.
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/export.h>
 11#include <linux/kernel.h>
 12#include <linux/stddef.h>
 13#include <linux/ioport.h>
 14#include <linux/delay.h>
 15#include <linux/initrd.h>
 16#include <linux/console.h>
 17#include <linux/cache.h>
 18#include <linux/screen_info.h>
 19#include <linux/init.h>
 20#include <linux/kexec.h>
 21#include <linux/root_dev.h>
 22#include <linux/cpu.h>
 23#include <linux/interrupt.h>
 24#include <linux/smp.h>
 25#include <linux/fs.h>
 26#include <linux/panic_notifier.h>
 27#include <linux/proc_fs.h>
 28#include <linux/memblock.h>
 29#include <linux/of_fdt.h>
 30#include <linux/efi.h>
 31#include <linux/psci.h>
 32#include <linux/sched/task.h>
 33#include <linux/scs.h>
 34#include <linux/mm.h>
 35
 36#include <asm/acpi.h>
 37#include <asm/fixmap.h>
 38#include <asm/cpu.h>
 39#include <asm/cputype.h>
 40#include <asm/daifflags.h>
 41#include <asm/elf.h>
 42#include <asm/cpufeature.h>
 43#include <asm/cpu_ops.h>
 44#include <asm/kasan.h>
 45#include <asm/numa.h>
 46#include <asm/scs.h>
 47#include <asm/sections.h>
 48#include <asm/setup.h>
 49#include <asm/smp_plat.h>
 50#include <asm/cacheflush.h>
 51#include <asm/tlbflush.h>
 52#include <asm/traps.h>
 53#include <asm/efi.h>
 54#include <asm/xen/hypervisor.h>
 55#include <asm/mmu_context.h>
 56
 57static int num_standard_resources;
 58static struct resource *standard_resources;
 59
 60phys_addr_t __fdt_pointer __initdata;
 61u64 mmu_enabled_at_boot __initdata;
 62
 63/*
 64 * Standard memory resources
 65 */
 66static struct resource mem_res[] = {
 67	{
 68		.name = "Kernel code",
 69		.start = 0,
 70		.end = 0,
 71		.flags = IORESOURCE_SYSTEM_RAM
 72	},
 73	{
 74		.name = "Kernel data",
 75		.start = 0,
 76		.end = 0,
 77		.flags = IORESOURCE_SYSTEM_RAM
 78	}
 79};
 80
 81#define kernel_code mem_res[0]
 82#define kernel_data mem_res[1]
 83
 84/*
 85 * The recorded values of x0 .. x3 upon kernel entry.
 86 */
 87u64 __cacheline_aligned boot_args[4];
 88
 89void __init smp_setup_processor_id(void)
 90{
 91	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
 92	set_cpu_logical_map(0, mpidr);
 93
 94	pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
 95		(unsigned long)mpidr, read_cpuid_id());
 96}
 97
 98bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
 99{
100	return phys_id == cpu_logical_map(cpu);
101}
102
103struct mpidr_hash mpidr_hash;
104/**
105 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
106 *			  level in order to build a linear index from an
107 *			  MPIDR value. Resulting algorithm is a collision
108 *			  free hash carried out through shifting and ORing
109 */
110static void __init smp_build_mpidr_hash(void)
111{
112	u32 i, affinity, fs[4], bits[4], ls;
113	u64 mask = 0;
114	/*
115	 * Pre-scan the list of MPIDRS and filter out bits that do
116	 * not contribute to affinity levels, ie they never toggle.
117	 */
118	for_each_possible_cpu(i)
119		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
120	pr_debug("mask of set bits %#llx\n", mask);
121	/*
122	 * Find and stash the last and first bit set at all affinity levels to
123	 * check how many bits are required to represent them.
124	 */
125	for (i = 0; i < 4; i++) {
126		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
127		/*
128		 * Find the MSB bit and LSB bits position
129		 * to determine how many bits are required
130		 * to express the affinity level.
131		 */
132		ls = fls(affinity);
133		fs[i] = affinity ? ffs(affinity) - 1 : 0;
134		bits[i] = ls - fs[i];
135	}
136	/*
137	 * An index can be created from the MPIDR_EL1 by isolating the
138	 * significant bits at each affinity level and by shifting
139	 * them in order to compress the 32 bits values space to a
140	 * compressed set of values. This is equivalent to hashing
141	 * the MPIDR_EL1 through shifting and ORing. It is a collision free
142	 * hash though not minimal since some levels might contain a number
143	 * of CPUs that is not an exact power of 2 and their bit
144	 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
145	 */
146	mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
147	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
148	mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
149						(bits[1] + bits[0]);
150	mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
151				  fs[3] - (bits[2] + bits[1] + bits[0]);
152	mpidr_hash.mask = mask;
153	mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
154	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
155		mpidr_hash.shift_aff[0],
156		mpidr_hash.shift_aff[1],
157		mpidr_hash.shift_aff[2],
158		mpidr_hash.shift_aff[3],
159		mpidr_hash.mask,
160		mpidr_hash.bits);
161	/*
162	 * 4x is an arbitrary value used to warn on a hash table much bigger
163	 * than expected on most systems.
164	 */
165	if (mpidr_hash_size() > 4 * num_possible_cpus())
166		pr_warn("Large number of MPIDR hash buckets detected\n");
167}
168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
169static void __init setup_machine_fdt(phys_addr_t dt_phys)
170{
171	int size;
172	void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
173	const char *name;
174
175	if (dt_virt)
176		memblock_reserve(dt_phys, size);
177
178	if (!dt_virt || !early_init_dt_scan(dt_virt)) {
179		pr_crit("\n"
180			"Error: invalid device tree blob at physical address %pa (virtual address 0x%px)\n"
181			"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
182			"\nPlease check your bootloader.",
183			&dt_phys, dt_virt);
184
185		/*
186		 * Note that in this _really_ early stage we cannot even BUG()
187		 * or oops, so the least terrible thing to do is cpu_relax(),
188		 * or else we could end-up printing non-initialized data, etc.
189		 */
190		while (true)
191			cpu_relax();
192	}
193
194	/* Early fixups are done, map the FDT as read-only now */
195	fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
196
197	name = of_flat_dt_get_machine_name();
198	if (!name)
199		return;
200
201	pr_info("Machine model: %s\n", name);
202	dump_stack_set_arch_desc("%s (DT)", name);
203}
204
205static void __init request_standard_resources(void)
206{
207	struct memblock_region *region;
208	struct resource *res;
209	unsigned long i = 0;
210	size_t res_size;
211
212	kernel_code.start   = __pa_symbol(_stext);
213	kernel_code.end     = __pa_symbol(__init_begin - 1);
214	kernel_data.start   = __pa_symbol(_sdata);
215	kernel_data.end     = __pa_symbol(_end - 1);
216	insert_resource(&iomem_resource, &kernel_code);
217	insert_resource(&iomem_resource, &kernel_data);
218
219	num_standard_resources = memblock.memory.cnt;
220	res_size = num_standard_resources * sizeof(*standard_resources);
221	standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
222	if (!standard_resources)
223		panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
224
225	for_each_mem_region(region) {
226		res = &standard_resources[i++];
227		if (memblock_is_nomap(region)) {
228			res->name  = "reserved";
229			res->flags = IORESOURCE_MEM;
230			res->start = __pfn_to_phys(memblock_region_reserved_base_pfn(region));
231			res->end = __pfn_to_phys(memblock_region_reserved_end_pfn(region)) - 1;
232		} else {
233			res->name  = "System RAM";
234			res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
235			res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
236			res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
237		}
 
 
 
 
238
239		insert_resource(&iomem_resource, res);
 
 
 
 
 
 
 
 
 
 
 
240	}
241}
242
243static int __init reserve_memblock_reserved_regions(void)
244{
245	u64 i, j;
246
247	for (i = 0; i < num_standard_resources; ++i) {
248		struct resource *mem = &standard_resources[i];
249		phys_addr_t r_start, r_end, mem_size = resource_size(mem);
250
251		if (!memblock_is_region_reserved(mem->start, mem_size))
252			continue;
253
254		for_each_reserved_mem_range(j, &r_start, &r_end) {
255			resource_size_t start, end;
256
257			start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
258			end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
259
260			if (start > mem->end || end < mem->start)
261				continue;
262
263			reserve_region_with_split(mem, start, end, "reserved");
264		}
265	}
266
267	return 0;
268}
269arch_initcall(reserve_memblock_reserved_regions);
270
271u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
272
273u64 cpu_logical_map(unsigned int cpu)
274{
275	return __cpu_logical_map[cpu];
276}
277
278void __init __no_sanitize_address setup_arch(char **cmdline_p)
279{
280	setup_initial_init_mm(_stext, _etext, _edata, _end);
281
282	*cmdline_p = boot_command_line;
283
284	kaslr_init();
 
 
 
 
 
285
286	early_fixmap_init();
287	early_ioremap_init();
288
289	setup_machine_fdt(__fdt_pointer);
290
291	/*
292	 * Initialise the static keys early as they may be enabled by the
293	 * cpufeature code and early parameters.
294	 */
295	jump_label_init();
296	parse_early_param();
297
298	dynamic_scs_init();
299
300	/*
301	 * Unmask SError as soon as possible after initializing earlycon so
302	 * that we can report any SErrors immediately.
 
303	 */
304	local_daif_restore(DAIF_PROCCTX_NOIRQ);
305
306	/*
307	 * TTBR0 is only used for the identity mapping at this stage. Make it
308	 * point to zero page to avoid speculatively fetching new entries.
309	 */
310	cpu_uninstall_idmap();
311
312	xen_early_init();
313	efi_init();
314
315	if (!efi_enabled(EFI_BOOT)) {
316		if ((u64)_text % MIN_KIMG_ALIGN)
317			pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
318		WARN_TAINT(mmu_enabled_at_boot, TAINT_FIRMWARE_WORKAROUND,
319			   FW_BUG "Booted with MMU enabled!");
320	}
321
322	arm64_memblock_init();
323
324	paging_init();
325
326	acpi_table_upgrade();
327
328	/* Parse the ACPI tables for possible boot-time configuration */
329	acpi_boot_table_init();
330
331	if (acpi_disabled)
332		unflatten_device_tree();
333
334	bootmem_init();
335
336	kasan_init();
337
338	request_standard_resources();
339
340	early_ioremap_reset();
341
342	if (acpi_disabled)
343		psci_dt_init();
344	else
345		psci_acpi_init();
346
347	init_bootcpu_ops();
348	smp_init_cpus();
349	smp_build_mpidr_hash();
350
351	/* Init percpu seeds for random tags after cpus are set up. */
352	kasan_init_sw_tags();
353
354#ifdef CONFIG_ARM64_SW_TTBR0_PAN
355	/*
356	 * Make sure init_thread_info.ttbr0 always generates translation
357	 * faults in case uaccess_enable() is inadvertently called by the init
358	 * thread.
359	 */
360	init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
361#endif
362
363	if (boot_args[1] || boot_args[2] || boot_args[3]) {
364		pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
365			"\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
366			"This indicates a broken bootloader or old kernel\n",
367			boot_args[1], boot_args[2], boot_args[3]);
368	}
369}
370
371static inline bool cpu_can_disable(unsigned int cpu)
372{
373#ifdef CONFIG_HOTPLUG_CPU
374	const struct cpu_operations *ops = get_cpu_ops(cpu);
375
376	if (ops && ops->cpu_can_disable)
377		return ops->cpu_can_disable(cpu);
378#endif
379	return false;
380}
381
382bool arch_cpu_is_hotpluggable(int num)
383{
384	return cpu_can_disable(num);
 
 
 
 
 
 
 
 
 
 
 
385}
 
386
387static void dump_kernel_offset(void)
388{
389	const unsigned long offset = kaslr_offset();
390
391	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
392		pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
393			 offset, KIMAGE_VADDR);
394		pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
395	} else {
396		pr_emerg("Kernel Offset: disabled\n");
397	}
398}
399
400static int arm64_panic_block_dump(struct notifier_block *self,
401				  unsigned long v, void *p)
402{
403	dump_kernel_offset();
404	dump_cpu_features();
405	dump_mem_limit();
406	return 0;
407}
408
409static struct notifier_block arm64_panic_block = {
410	.notifier_call = arm64_panic_block_dump
411};
412
413static int __init register_arm64_panic_block(void)
414{
415	atomic_notifier_chain_register(&panic_notifier_list,
416				       &arm64_panic_block);
417	return 0;
418}
419device_initcall(register_arm64_panic_block);
420
421static int __init check_mmu_enabled_at_boot(void)
422{
423	if (!efi_enabled(EFI_BOOT) && mmu_enabled_at_boot)
424		panic("Non-EFI boot detected with MMU and caches enabled");
425	return 0;
426}
427device_initcall_sync(check_mmu_enabled_at_boot);
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Based on arch/arm/kernel/setup.c
  4 *
  5 * Copyright (C) 1995-2001 Russell King
  6 * Copyright (C) 2012 ARM Ltd.
  7 */
  8
  9#include <linux/acpi.h>
 10#include <linux/export.h>
 11#include <linux/kernel.h>
 12#include <linux/stddef.h>
 13#include <linux/ioport.h>
 14#include <linux/delay.h>
 15#include <linux/initrd.h>
 16#include <linux/console.h>
 17#include <linux/cache.h>
 18#include <linux/screen_info.h>
 19#include <linux/init.h>
 20#include <linux/kexec.h>
 21#include <linux/root_dev.h>
 22#include <linux/cpu.h>
 23#include <linux/interrupt.h>
 24#include <linux/smp.h>
 25#include <linux/fs.h>
 26#include <linux/panic_notifier.h>
 27#include <linux/proc_fs.h>
 28#include <linux/memblock.h>
 29#include <linux/of_fdt.h>
 30#include <linux/efi.h>
 31#include <linux/psci.h>
 32#include <linux/sched/task.h>
 
 33#include <linux/mm.h>
 34
 35#include <asm/acpi.h>
 36#include <asm/fixmap.h>
 37#include <asm/cpu.h>
 38#include <asm/cputype.h>
 39#include <asm/daifflags.h>
 40#include <asm/elf.h>
 41#include <asm/cpufeature.h>
 42#include <asm/cpu_ops.h>
 43#include <asm/kasan.h>
 44#include <asm/numa.h>
 
 45#include <asm/sections.h>
 46#include <asm/setup.h>
 47#include <asm/smp_plat.h>
 48#include <asm/cacheflush.h>
 49#include <asm/tlbflush.h>
 50#include <asm/traps.h>
 51#include <asm/efi.h>
 52#include <asm/xen/hypervisor.h>
 53#include <asm/mmu_context.h>
 54
 55static int num_standard_resources;
 56static struct resource *standard_resources;
 57
 58phys_addr_t __fdt_pointer __initdata;
 
 59
 60/*
 61 * Standard memory resources
 62 */
 63static struct resource mem_res[] = {
 64	{
 65		.name = "Kernel code",
 66		.start = 0,
 67		.end = 0,
 68		.flags = IORESOURCE_SYSTEM_RAM
 69	},
 70	{
 71		.name = "Kernel data",
 72		.start = 0,
 73		.end = 0,
 74		.flags = IORESOURCE_SYSTEM_RAM
 75	}
 76};
 77
 78#define kernel_code mem_res[0]
 79#define kernel_data mem_res[1]
 80
 81/*
 82 * The recorded values of x0 .. x3 upon kernel entry.
 83 */
 84u64 __cacheline_aligned boot_args[4];
 85
 86void __init smp_setup_processor_id(void)
 87{
 88	u64 mpidr = read_cpuid_mpidr() & MPIDR_HWID_BITMASK;
 89	set_cpu_logical_map(0, mpidr);
 90
 91	pr_info("Booting Linux on physical CPU 0x%010lx [0x%08x]\n",
 92		(unsigned long)mpidr, read_cpuid_id());
 93}
 94
 95bool arch_match_cpu_phys_id(int cpu, u64 phys_id)
 96{
 97	return phys_id == cpu_logical_map(cpu);
 98}
 99
100struct mpidr_hash mpidr_hash;
101/**
102 * smp_build_mpidr_hash - Pre-compute shifts required at each affinity
103 *			  level in order to build a linear index from an
104 *			  MPIDR value. Resulting algorithm is a collision
105 *			  free hash carried out through shifting and ORing
106 */
107static void __init smp_build_mpidr_hash(void)
108{
109	u32 i, affinity, fs[4], bits[4], ls;
110	u64 mask = 0;
111	/*
112	 * Pre-scan the list of MPIDRS and filter out bits that do
113	 * not contribute to affinity levels, ie they never toggle.
114	 */
115	for_each_possible_cpu(i)
116		mask |= (cpu_logical_map(i) ^ cpu_logical_map(0));
117	pr_debug("mask of set bits %#llx\n", mask);
118	/*
119	 * Find and stash the last and first bit set at all affinity levels to
120	 * check how many bits are required to represent them.
121	 */
122	for (i = 0; i < 4; i++) {
123		affinity = MPIDR_AFFINITY_LEVEL(mask, i);
124		/*
125		 * Find the MSB bit and LSB bits position
126		 * to determine how many bits are required
127		 * to express the affinity level.
128		 */
129		ls = fls(affinity);
130		fs[i] = affinity ? ffs(affinity) - 1 : 0;
131		bits[i] = ls - fs[i];
132	}
133	/*
134	 * An index can be created from the MPIDR_EL1 by isolating the
135	 * significant bits at each affinity level and by shifting
136	 * them in order to compress the 32 bits values space to a
137	 * compressed set of values. This is equivalent to hashing
138	 * the MPIDR_EL1 through shifting and ORing. It is a collision free
139	 * hash though not minimal since some levels might contain a number
140	 * of CPUs that is not an exact power of 2 and their bit
141	 * representation might contain holes, eg MPIDR_EL1[7:0] = {0x2, 0x80}.
142	 */
143	mpidr_hash.shift_aff[0] = MPIDR_LEVEL_SHIFT(0) + fs[0];
144	mpidr_hash.shift_aff[1] = MPIDR_LEVEL_SHIFT(1) + fs[1] - bits[0];
145	mpidr_hash.shift_aff[2] = MPIDR_LEVEL_SHIFT(2) + fs[2] -
146						(bits[1] + bits[0]);
147	mpidr_hash.shift_aff[3] = MPIDR_LEVEL_SHIFT(3) +
148				  fs[3] - (bits[2] + bits[1] + bits[0]);
149	mpidr_hash.mask = mask;
150	mpidr_hash.bits = bits[3] + bits[2] + bits[1] + bits[0];
151	pr_debug("MPIDR hash: aff0[%u] aff1[%u] aff2[%u] aff3[%u] mask[%#llx] bits[%u]\n",
152		mpidr_hash.shift_aff[0],
153		mpidr_hash.shift_aff[1],
154		mpidr_hash.shift_aff[2],
155		mpidr_hash.shift_aff[3],
156		mpidr_hash.mask,
157		mpidr_hash.bits);
158	/*
159	 * 4x is an arbitrary value used to warn on a hash table much bigger
160	 * than expected on most systems.
161	 */
162	if (mpidr_hash_size() > 4 * num_possible_cpus())
163		pr_warn("Large number of MPIDR hash buckets detected\n");
164}
165
166static void *early_fdt_ptr __initdata;
167
168void __init *get_early_fdt_ptr(void)
169{
170	return early_fdt_ptr;
171}
172
173asmlinkage void __init early_fdt_map(u64 dt_phys)
174{
175	int fdt_size;
176
177	early_fixmap_init();
178	early_fdt_ptr = fixmap_remap_fdt(dt_phys, &fdt_size, PAGE_KERNEL);
179}
180
181static void __init setup_machine_fdt(phys_addr_t dt_phys)
182{
183	int size;
184	void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL);
185	const char *name;
186
187	if (dt_virt)
188		memblock_reserve(dt_phys, size);
189
190	if (!dt_virt || !early_init_dt_scan(dt_virt)) {
191		pr_crit("\n"
192			"Error: invalid device tree blob at physical address %pa (virtual address 0x%p)\n"
193			"The dtb must be 8-byte aligned and must not exceed 2 MB in size\n"
194			"\nPlease check your bootloader.",
195			&dt_phys, dt_virt);
196
 
 
 
 
 
197		while (true)
198			cpu_relax();
199	}
200
201	/* Early fixups are done, map the FDT as read-only now */
202	fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL_RO);
203
204	name = of_flat_dt_get_machine_name();
205	if (!name)
206		return;
207
208	pr_info("Machine model: %s\n", name);
209	dump_stack_set_arch_desc("%s (DT)", name);
210}
211
212static void __init request_standard_resources(void)
213{
214	struct memblock_region *region;
215	struct resource *res;
216	unsigned long i = 0;
217	size_t res_size;
218
219	kernel_code.start   = __pa_symbol(_stext);
220	kernel_code.end     = __pa_symbol(__init_begin - 1);
221	kernel_data.start   = __pa_symbol(_sdata);
222	kernel_data.end     = __pa_symbol(_end - 1);
 
 
223
224	num_standard_resources = memblock.memory.cnt;
225	res_size = num_standard_resources * sizeof(*standard_resources);
226	standard_resources = memblock_alloc(res_size, SMP_CACHE_BYTES);
227	if (!standard_resources)
228		panic("%s: Failed to allocate %zu bytes\n", __func__, res_size);
229
230	for_each_mem_region(region) {
231		res = &standard_resources[i++];
232		if (memblock_is_nomap(region)) {
233			res->name  = "reserved";
234			res->flags = IORESOURCE_MEM;
 
 
235		} else {
236			res->name  = "System RAM";
237			res->flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
 
 
238		}
239		res->start = __pfn_to_phys(memblock_region_memory_base_pfn(region));
240		res->end = __pfn_to_phys(memblock_region_memory_end_pfn(region)) - 1;
241
242		request_resource(&iomem_resource, res);
243
244		if (kernel_code.start >= res->start &&
245		    kernel_code.end <= res->end)
246			request_resource(res, &kernel_code);
247		if (kernel_data.start >= res->start &&
248		    kernel_data.end <= res->end)
249			request_resource(res, &kernel_data);
250#ifdef CONFIG_KEXEC_CORE
251		/* Userspace will find "Crash kernel" region in /proc/iomem. */
252		if (crashk_res.end && crashk_res.start >= res->start &&
253		    crashk_res.end <= res->end)
254			request_resource(res, &crashk_res);
255#endif
256	}
257}
258
259static int __init reserve_memblock_reserved_regions(void)
260{
261	u64 i, j;
262
263	for (i = 0; i < num_standard_resources; ++i) {
264		struct resource *mem = &standard_resources[i];
265		phys_addr_t r_start, r_end, mem_size = resource_size(mem);
266
267		if (!memblock_is_region_reserved(mem->start, mem_size))
268			continue;
269
270		for_each_reserved_mem_range(j, &r_start, &r_end) {
271			resource_size_t start, end;
272
273			start = max(PFN_PHYS(PFN_DOWN(r_start)), mem->start);
274			end = min(PFN_PHYS(PFN_UP(r_end)) - 1, mem->end);
275
276			if (start > mem->end || end < mem->start)
277				continue;
278
279			reserve_region_with_split(mem, start, end, "reserved");
280		}
281	}
282
283	return 0;
284}
285arch_initcall(reserve_memblock_reserved_regions);
286
287u64 __cpu_logical_map[NR_CPUS] = { [0 ... NR_CPUS-1] = INVALID_HWID };
288
289u64 cpu_logical_map(unsigned int cpu)
290{
291	return __cpu_logical_map[cpu];
292}
293
294void __init __no_sanitize_address setup_arch(char **cmdline_p)
295{
296	setup_initial_init_mm(_stext, _etext, _edata, _end);
297
298	*cmdline_p = boot_command_line;
299
300	/*
301	 * If know now we are going to need KPTI then use non-global
302	 * mappings from the start, avoiding the cost of rewriting
303	 * everything later.
304	 */
305	arm64_use_ng_mappings = kaslr_requires_kpti();
306
307	early_fixmap_init();
308	early_ioremap_init();
309
310	setup_machine_fdt(__fdt_pointer);
311
312	/*
313	 * Initialise the static keys early as they may be enabled by the
314	 * cpufeature code and early parameters.
315	 */
316	jump_label_init();
317	parse_early_param();
318
 
 
319	/*
320	 * Unmask asynchronous aborts and fiq after bringing up possible
321	 * earlycon. (Report possible System Errors once we can report this
322	 * occurred).
323	 */
324	local_daif_restore(DAIF_PROCCTX_NOIRQ);
325
326	/*
327	 * TTBR0 is only used for the identity mapping at this stage. Make it
328	 * point to zero page to avoid speculatively fetching new entries.
329	 */
330	cpu_uninstall_idmap();
331
332	xen_early_init();
333	efi_init();
334
335	if (!efi_enabled(EFI_BOOT) && ((u64)_text % MIN_KIMG_ALIGN) != 0)
336	     pr_warn(FW_BUG "Kernel image misaligned at boot, please fix your bootloader!");
 
 
 
 
337
338	arm64_memblock_init();
339
340	paging_init();
341
342	acpi_table_upgrade();
343
344	/* Parse the ACPI tables for possible boot-time configuration */
345	acpi_boot_table_init();
346
347	if (acpi_disabled)
348		unflatten_device_tree();
349
350	bootmem_init();
351
352	kasan_init();
353
354	request_standard_resources();
355
356	early_ioremap_reset();
357
358	if (acpi_disabled)
359		psci_dt_init();
360	else
361		psci_acpi_init();
362
363	init_bootcpu_ops();
364	smp_init_cpus();
365	smp_build_mpidr_hash();
366
367	/* Init percpu seeds for random tags after cpus are set up. */
368	kasan_init_sw_tags();
369
370#ifdef CONFIG_ARM64_SW_TTBR0_PAN
371	/*
372	 * Make sure init_thread_info.ttbr0 always generates translation
373	 * faults in case uaccess_enable() is inadvertently called by the init
374	 * thread.
375	 */
376	init_task.thread_info.ttbr0 = phys_to_ttbr(__pa_symbol(reserved_pg_dir));
377#endif
378
379	if (boot_args[1] || boot_args[2] || boot_args[3]) {
380		pr_err("WARNING: x1-x3 nonzero in violation of boot protocol:\n"
381			"\tx1: %016llx\n\tx2: %016llx\n\tx3: %016llx\n"
382			"This indicates a broken bootloader or old kernel\n",
383			boot_args[1], boot_args[2], boot_args[3]);
384	}
385}
386
387static inline bool cpu_can_disable(unsigned int cpu)
388{
389#ifdef CONFIG_HOTPLUG_CPU
390	const struct cpu_operations *ops = get_cpu_ops(cpu);
391
392	if (ops && ops->cpu_can_disable)
393		return ops->cpu_can_disable(cpu);
394#endif
395	return false;
396}
397
398static int __init topology_init(void)
399{
400	int i;
401
402	for_each_online_node(i)
403		register_one_node(i);
404
405	for_each_possible_cpu(i) {
406		struct cpu *cpu = &per_cpu(cpu_data.cpu, i);
407		cpu->hotpluggable = cpu_can_disable(i);
408		register_cpu(cpu, i);
409	}
410
411	return 0;
412}
413subsys_initcall(topology_init);
414
415static void dump_kernel_offset(void)
416{
417	const unsigned long offset = kaslr_offset();
418
419	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && offset > 0) {
420		pr_emerg("Kernel Offset: 0x%lx from 0x%lx\n",
421			 offset, KIMAGE_VADDR);
422		pr_emerg("PHYS_OFFSET: 0x%llx\n", PHYS_OFFSET);
423	} else {
424		pr_emerg("Kernel Offset: disabled\n");
425	}
426}
427
428static int arm64_panic_block_dump(struct notifier_block *self,
429				  unsigned long v, void *p)
430{
431	dump_kernel_offset();
432	dump_cpu_features();
433	dump_mem_limit();
434	return 0;
435}
436
437static struct notifier_block arm64_panic_block = {
438	.notifier_call = arm64_panic_block_dump
439};
440
441static int __init register_arm64_panic_block(void)
442{
443	atomic_notifier_chain_register(&panic_notifier_list,
444				       &arm64_panic_block);
445	return 0;
446}
447device_initcall(register_arm64_panic_block);