Linux Audio

Check our new training course

Loading...
v6.9.4
    1// SPDX-License-Identifier: GPL-2.0-or-later
    2/*
    3 *      NET3    Protocol independent device support routines.
 
 
 
 
 
    4 *
    5 *	Derived from the non IP parts of dev.c 1.0.19
    6 *              Authors:	Ross Biro
    7 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
    8 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
    9 *
   10 *	Additional Authors:
   11 *		Florian la Roche <rzsfl@rz.uni-sb.de>
   12 *		Alan Cox <gw4pts@gw4pts.ampr.org>
   13 *		David Hinds <dahinds@users.sourceforge.net>
   14 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
   15 *		Adam Sulmicki <adam@cfar.umd.edu>
   16 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
   17 *
   18 *	Changes:
   19 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
   20 *                                      to 2 if register_netdev gets called
   21 *                                      before net_dev_init & also removed a
   22 *                                      few lines of code in the process.
   23 *		Alan Cox	:	device private ioctl copies fields back.
   24 *		Alan Cox	:	Transmit queue code does relevant
   25 *					stunts to keep the queue safe.
   26 *		Alan Cox	:	Fixed double lock.
   27 *		Alan Cox	:	Fixed promisc NULL pointer trap
   28 *		????????	:	Support the full private ioctl range
   29 *		Alan Cox	:	Moved ioctl permission check into
   30 *					drivers
   31 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
   32 *		Alan Cox	:	100 backlog just doesn't cut it when
   33 *					you start doing multicast video 8)
   34 *		Alan Cox	:	Rewrote net_bh and list manager.
   35 *              Alan Cox        :       Fix ETH_P_ALL echoback lengths.
   36 *		Alan Cox	:	Took out transmit every packet pass
   37 *					Saved a few bytes in the ioctl handler
   38 *		Alan Cox	:	Network driver sets packet type before
   39 *					calling netif_rx. Saves a function
   40 *					call a packet.
   41 *		Alan Cox	:	Hashed net_bh()
   42 *		Richard Kooijman:	Timestamp fixes.
   43 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
   44 *		Alan Cox	:	Device lock protection.
   45 *              Alan Cox        :       Fixed nasty side effect of device close
   46 *					changes.
   47 *		Rudi Cilibrasi	:	Pass the right thing to
   48 *					set_mac_address()
   49 *		Dave Miller	:	32bit quantity for the device lock to
   50 *					make it work out on a Sparc.
   51 *		Bjorn Ekwall	:	Added KERNELD hack.
   52 *		Alan Cox	:	Cleaned up the backlog initialise.
   53 *		Craig Metz	:	SIOCGIFCONF fix if space for under
   54 *					1 device.
   55 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
   56 *					is no device open function.
   57 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
   58 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
   59 *		Cyrus Durgin	:	Cleaned for KMOD
   60 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
   61 *					A network device unload needs to purge
   62 *					the backlog queue.
   63 *	Paul Rusty Russell	:	SIOCSIFNAME
   64 *              Pekka Riikonen  :	Netdev boot-time settings code
   65 *              Andrew Morton   :       Make unregister_netdevice wait
   66 *                                      indefinitely on dev->refcnt
   67 *              J Hadi Salim    :       - Backlog queue sampling
   68 *				        - netif_rx() feedback
   69 */
   70
   71#include <linux/uaccess.h>
   72#include <linux/bitmap.h>
   73#include <linux/capability.h>
   74#include <linux/cpu.h>
   75#include <linux/types.h>
   76#include <linux/kernel.h>
   77#include <linux/hash.h>
   78#include <linux/slab.h>
   79#include <linux/sched.h>
   80#include <linux/sched/mm.h>
   81#include <linux/mutex.h>
   82#include <linux/rwsem.h>
   83#include <linux/string.h>
   84#include <linux/mm.h>
   85#include <linux/socket.h>
   86#include <linux/sockios.h>
   87#include <linux/errno.h>
   88#include <linux/interrupt.h>
   89#include <linux/if_ether.h>
   90#include <linux/netdevice.h>
   91#include <linux/etherdevice.h>
   92#include <linux/ethtool.h>
 
   93#include <linux/skbuff.h>
   94#include <linux/kthread.h>
   95#include <linux/bpf.h>
   96#include <linux/bpf_trace.h>
   97#include <net/net_namespace.h>
   98#include <net/sock.h>
   99#include <net/busy_poll.h>
  100#include <linux/rtnetlink.h>
  101#include <linux/stat.h>
  102#include <net/dsa.h>
  103#include <net/dst.h>
  104#include <net/dst_metadata.h>
  105#include <net/gro.h>
  106#include <net/pkt_sched.h>
  107#include <net/pkt_cls.h>
  108#include <net/checksum.h>
  109#include <net/xfrm.h>
  110#include <net/tcx.h>
  111#include <linux/highmem.h>
  112#include <linux/init.h>
  113#include <linux/module.h>
  114#include <linux/netpoll.h>
  115#include <linux/rcupdate.h>
  116#include <linux/delay.h>
  117#include <net/iw_handler.h>
  118#include <asm/current.h>
  119#include <linux/audit.h>
  120#include <linux/dmaengine.h>
  121#include <linux/err.h>
  122#include <linux/ctype.h>
  123#include <linux/if_arp.h>
  124#include <linux/if_vlan.h>
  125#include <linux/ip.h>
  126#include <net/ip.h>
  127#include <net/mpls.h>
  128#include <linux/ipv6.h>
  129#include <linux/in.h>
  130#include <linux/jhash.h>
  131#include <linux/random.h>
  132#include <trace/events/napi.h>
  133#include <trace/events/net.h>
  134#include <trace/events/skb.h>
  135#include <trace/events/qdisc.h>
  136#include <trace/events/xdp.h>
  137#include <linux/inetdevice.h>
  138#include <linux/cpu_rmap.h>
  139#include <linux/static_key.h>
  140#include <linux/hashtable.h>
  141#include <linux/vmalloc.h>
  142#include <linux/if_macvlan.h>
  143#include <linux/errqueue.h>
  144#include <linux/hrtimer.h>
  145#include <linux/netfilter_netdev.h>
  146#include <linux/crash_dump.h>
  147#include <linux/sctp.h>
  148#include <net/udp_tunnel.h>
  149#include <linux/net_namespace.h>
  150#include <linux/indirect_call_wrapper.h>
  151#include <net/devlink.h>
  152#include <linux/pm_runtime.h>
  153#include <linux/prandom.h>
  154#include <linux/once_lite.h>
  155#include <net/netdev_rx_queue.h>
  156#include <net/page_pool/types.h>
  157#include <net/page_pool/helpers.h>
  158#include <net/rps.h>
  159
  160#include "dev.h"
  161#include "net-sysfs.h"
  162
 
 
 
 
 
 
  163static DEFINE_SPINLOCK(ptype_lock);
 
  164struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 
 
  165
  166static int netif_rx_internal(struct sk_buff *skb);
  167static int call_netdevice_notifiers_extack(unsigned long val,
  168					   struct net_device *dev,
  169					   struct netlink_ext_ack *extack);
  170
  171static DEFINE_MUTEX(ifalias_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  172
  173/* protects napi_hash addition/deletion and napi_gen_id */
  174static DEFINE_SPINLOCK(napi_hash_lock);
  175
  176static unsigned int napi_gen_id = NR_CPUS;
  177static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
  178
  179static DECLARE_RWSEM(devnet_rename_sem);
  180
  181static inline void dev_base_seq_inc(struct net *net)
  182{
  183	unsigned int val = net->dev_base_seq + 1;
  184
  185	WRITE_ONCE(net->dev_base_seq, val ?: 1);
  186}
  187
  188static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
  189{
  190	unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
  191
  192	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
  193}
  194
  195static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
  196{
  197	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
  198}
  199
  200static inline void rps_lock_irqsave(struct softnet_data *sd,
  201				    unsigned long *flags)
  202{
  203	if (IS_ENABLED(CONFIG_RPS))
  204		spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
  205	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  206		local_irq_save(*flags);
  207}
  208
  209static inline void rps_lock_irq_disable(struct softnet_data *sd)
  210{
  211	if (IS_ENABLED(CONFIG_RPS))
  212		spin_lock_irq(&sd->input_pkt_queue.lock);
  213	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  214		local_irq_disable();
  215}
  216
  217static inline void rps_unlock_irq_restore(struct softnet_data *sd,
  218					  unsigned long *flags)
  219{
  220	if (IS_ENABLED(CONFIG_RPS))
  221		spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
  222	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  223		local_irq_restore(*flags);
  224}
  225
  226static inline void rps_unlock_irq_enable(struct softnet_data *sd)
  227{
  228	if (IS_ENABLED(CONFIG_RPS))
  229		spin_unlock_irq(&sd->input_pkt_queue.lock);
  230	else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
  231		local_irq_enable();
  232}
  233
  234static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
  235						       const char *name)
  236{
  237	struct netdev_name_node *name_node;
  238
  239	name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
  240	if (!name_node)
  241		return NULL;
  242	INIT_HLIST_NODE(&name_node->hlist);
  243	name_node->dev = dev;
  244	name_node->name = name;
  245	return name_node;
  246}
  247
  248static struct netdev_name_node *
  249netdev_name_node_head_alloc(struct net_device *dev)
  250{
  251	struct netdev_name_node *name_node;
  252
  253	name_node = netdev_name_node_alloc(dev, dev->name);
  254	if (!name_node)
  255		return NULL;
  256	INIT_LIST_HEAD(&name_node->list);
  257	return name_node;
  258}
  259
  260static void netdev_name_node_free(struct netdev_name_node *name_node)
  261{
  262	kfree(name_node);
  263}
  264
  265static void netdev_name_node_add(struct net *net,
  266				 struct netdev_name_node *name_node)
  267{
  268	hlist_add_head_rcu(&name_node->hlist,
  269			   dev_name_hash(net, name_node->name));
  270}
  271
  272static void netdev_name_node_del(struct netdev_name_node *name_node)
  273{
  274	hlist_del_rcu(&name_node->hlist);
  275}
  276
  277static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
  278							const char *name)
  279{
  280	struct hlist_head *head = dev_name_hash(net, name);
  281	struct netdev_name_node *name_node;
  282
  283	hlist_for_each_entry(name_node, head, hlist)
  284		if (!strcmp(name_node->name, name))
  285			return name_node;
  286	return NULL;
  287}
  288
  289static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
  290							    const char *name)
  291{
  292	struct hlist_head *head = dev_name_hash(net, name);
  293	struct netdev_name_node *name_node;
  294
  295	hlist_for_each_entry_rcu(name_node, head, hlist)
  296		if (!strcmp(name_node->name, name))
  297			return name_node;
  298	return NULL;
  299}
  300
  301bool netdev_name_in_use(struct net *net, const char *name)
  302{
  303	return netdev_name_node_lookup(net, name);
  304}
  305EXPORT_SYMBOL(netdev_name_in_use);
  306
  307int netdev_name_node_alt_create(struct net_device *dev, const char *name)
  308{
  309	struct netdev_name_node *name_node;
  310	struct net *net = dev_net(dev);
  311
  312	name_node = netdev_name_node_lookup(net, name);
  313	if (name_node)
  314		return -EEXIST;
  315	name_node = netdev_name_node_alloc(dev, name);
  316	if (!name_node)
  317		return -ENOMEM;
  318	netdev_name_node_add(net, name_node);
  319	/* The node that holds dev->name acts as a head of per-device list. */
  320	list_add_tail_rcu(&name_node->list, &dev->name_node->list);
  321
  322	return 0;
  323}
  324
  325static void netdev_name_node_alt_free(struct rcu_head *head)
  326{
  327	struct netdev_name_node *name_node =
  328		container_of(head, struct netdev_name_node, rcu);
  329
  330	kfree(name_node->name);
  331	netdev_name_node_free(name_node);
  332}
  333
  334static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
  335{
  336	netdev_name_node_del(name_node);
  337	list_del(&name_node->list);
  338	call_rcu(&name_node->rcu, netdev_name_node_alt_free);
  339}
  340
  341int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
  342{
  343	struct netdev_name_node *name_node;
  344	struct net *net = dev_net(dev);
  345
  346	name_node = netdev_name_node_lookup(net, name);
  347	if (!name_node)
  348		return -ENOENT;
  349	/* lookup might have found our primary name or a name belonging
  350	 * to another device.
  351	 */
  352	if (name_node == dev->name_node || name_node->dev != dev)
  353		return -EINVAL;
  354
  355	__netdev_name_node_alt_destroy(name_node);
  356	return 0;
  357}
  358
  359static void netdev_name_node_alt_flush(struct net_device *dev)
  360{
  361	struct netdev_name_node *name_node, *tmp;
  362
  363	list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list) {
  364		list_del(&name_node->list);
  365		netdev_name_node_alt_free(&name_node->rcu);
  366	}
  367}
  368
  369/* Device list insertion */
  370static void list_netdevice(struct net_device *dev)
  371{
  372	struct netdev_name_node *name_node;
  373	struct net *net = dev_net(dev);
  374
  375	ASSERT_RTNL();
  376
 
  377	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
  378	netdev_name_node_add(net, dev->name_node);
  379	hlist_add_head_rcu(&dev->index_hlist,
  380			   dev_index_hash(net, dev->ifindex));
  381
  382	netdev_for_each_altname(dev, name_node)
  383		netdev_name_node_add(net, name_node);
  384
  385	/* We reserved the ifindex, this can't fail */
  386	WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
  387
  388	dev_base_seq_inc(net);
  389}
  390
  391/* Device list removal
  392 * caller must respect a RCU grace period before freeing/reusing dev
  393 */
  394static void unlist_netdevice(struct net_device *dev)
  395{
  396	struct netdev_name_node *name_node;
  397	struct net *net = dev_net(dev);
  398
  399	ASSERT_RTNL();
  400
  401	xa_erase(&net->dev_by_index, dev->ifindex);
  402
  403	netdev_for_each_altname(dev, name_node)
  404		netdev_name_node_del(name_node);
  405
  406	/* Unlink dev from the device chain */
 
  407	list_del_rcu(&dev->dev_list);
  408	netdev_name_node_del(dev->name_node);
  409	hlist_del_rcu(&dev->index_hlist);
 
  410
  411	dev_base_seq_inc(dev_net(dev));
  412}
  413
  414/*
  415 *	Our notifier list
  416 */
  417
  418static RAW_NOTIFIER_HEAD(netdev_chain);
  419
  420/*
  421 *	Device drivers call our routines to queue packets here. We empty the
  422 *	queue in the local softnet handler.
  423 */
  424
  425DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
  426EXPORT_PER_CPU_SYMBOL(softnet_data);
  427
  428/* Page_pool has a lockless array/stack to alloc/recycle pages.
  429 * PP consumers must pay attention to run APIs in the appropriate context
  430 * (e.g. NAPI context).
  431 */
  432static DEFINE_PER_CPU(struct page_pool *, system_page_pool);
  433
  434#ifdef CONFIG_LOCKDEP
  435/*
  436 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
  437 * according to dev->type
  438 */
  439static const unsigned short netdev_lock_type[] = {
  440	 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
  441	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
  442	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
  443	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
  444	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
  445	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
  446	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
  447	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
  448	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
  449	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
  450	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
  451	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
  452	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
  453	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
  454	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
  455
  456static const char *const netdev_lock_name[] = {
  457	"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
  458	"_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
  459	"_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
  460	"_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
  461	"_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
  462	"_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
  463	"_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
  464	"_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
  465	"_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
  466	"_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
  467	"_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
  468	"_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
  469	"_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
  470	"_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
  471	"_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
  472
  473static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
  474static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
  475
  476static inline unsigned short netdev_lock_pos(unsigned short dev_type)
  477{
  478	int i;
  479
  480	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
  481		if (netdev_lock_type[i] == dev_type)
  482			return i;
  483	/* the last key is used by default */
  484	return ARRAY_SIZE(netdev_lock_type) - 1;
  485}
  486
  487static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
  488						 unsigned short dev_type)
  489{
  490	int i;
  491
  492	i = netdev_lock_pos(dev_type);
  493	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
  494				   netdev_lock_name[i]);
  495}
  496
  497static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
  498{
  499	int i;
  500
  501	i = netdev_lock_pos(dev->type);
  502	lockdep_set_class_and_name(&dev->addr_list_lock,
  503				   &netdev_addr_lock_key[i],
  504				   netdev_lock_name[i]);
  505}
  506#else
  507static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
  508						 unsigned short dev_type)
  509{
  510}
  511
  512static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
  513{
  514}
  515#endif
  516
  517/*******************************************************************************
  518 *
  519 *		Protocol management and registration routines
  520 *
  521 *******************************************************************************/
  522
 
 
 
  523
  524/*
  525 *	Add a protocol ID to the list. Now that the input handler is
  526 *	smarter we can dispense with all the messy stuff that used to be
  527 *	here.
  528 *
  529 *	BEWARE!!! Protocol handlers, mangling input packets,
  530 *	MUST BE last in hash buckets and checking protocol handlers
  531 *	MUST start from promiscuous ptype_all chain in net_bh.
  532 *	It is true now, do not change it.
  533 *	Explanation follows: if protocol handler, mangling packet, will
  534 *	be the first on list, it is not able to sense, that packet
  535 *	is cloned and should be copied-on-write, so that it will
  536 *	change it and subsequent readers will get broken packet.
  537 *							--ANK (980803)
  538 */
  539
  540static inline struct list_head *ptype_head(const struct packet_type *pt)
  541{
  542	if (pt->type == htons(ETH_P_ALL))
  543		return pt->dev ? &pt->dev->ptype_all : &net_hotdata.ptype_all;
  544	else
  545		return pt->dev ? &pt->dev->ptype_specific :
  546				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
  547}
  548
  549/**
  550 *	dev_add_pack - add packet handler
  551 *	@pt: packet type declaration
  552 *
  553 *	Add a protocol handler to the networking stack. The passed &packet_type
  554 *	is linked into kernel lists and may not be freed until it has been
  555 *	removed from the kernel lists.
  556 *
  557 *	This call does not sleep therefore it can not
  558 *	guarantee all CPU's that are in middle of receiving packets
  559 *	will see the new packet type (until the next received packet).
  560 */
  561
  562void dev_add_pack(struct packet_type *pt)
  563{
  564	struct list_head *head = ptype_head(pt);
  565
  566	spin_lock(&ptype_lock);
  567	list_add_rcu(&pt->list, head);
  568	spin_unlock(&ptype_lock);
  569}
  570EXPORT_SYMBOL(dev_add_pack);
  571
  572/**
  573 *	__dev_remove_pack	 - remove packet handler
  574 *	@pt: packet type declaration
  575 *
  576 *	Remove a protocol handler that was previously added to the kernel
  577 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
  578 *	from the kernel lists and can be freed or reused once this function
  579 *	returns.
  580 *
  581 *      The packet type might still be in use by receivers
  582 *	and must not be freed until after all the CPU's have gone
  583 *	through a quiescent state.
  584 */
  585void __dev_remove_pack(struct packet_type *pt)
  586{
  587	struct list_head *head = ptype_head(pt);
  588	struct packet_type *pt1;
  589
  590	spin_lock(&ptype_lock);
  591
  592	list_for_each_entry(pt1, head, list) {
  593		if (pt == pt1) {
  594			list_del_rcu(&pt->list);
  595			goto out;
  596		}
  597	}
  598
  599	pr_warn("dev_remove_pack: %p not found\n", pt);
  600out:
  601	spin_unlock(&ptype_lock);
  602}
  603EXPORT_SYMBOL(__dev_remove_pack);
  604
  605/**
  606 *	dev_remove_pack	 - remove packet handler
  607 *	@pt: packet type declaration
  608 *
  609 *	Remove a protocol handler that was previously added to the kernel
  610 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
  611 *	from the kernel lists and can be freed or reused once this function
  612 *	returns.
  613 *
  614 *	This call sleeps to guarantee that no CPU is looking at the packet
  615 *	type after return.
  616 */
  617void dev_remove_pack(struct packet_type *pt)
  618{
  619	__dev_remove_pack(pt);
  620
  621	synchronize_net();
  622}
  623EXPORT_SYMBOL(dev_remove_pack);
  624
  625
  626/*******************************************************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  627 *
  628 *			    Device Interface Subroutines
 
 
 
  629 *
  630 *******************************************************************************/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  631
  632/**
  633 *	dev_get_iflink	- get 'iflink' value of a interface
  634 *	@dev: targeted interface
  635 *
  636 *	Indicates the ifindex the interface is linked to.
  637 *	Physical interfaces have the same 'ifindex' and 'iflink' values.
  638 */
  639
  640int dev_get_iflink(const struct net_device *dev)
  641{
  642	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
  643		return dev->netdev_ops->ndo_get_iflink(dev);
  644
  645	return READ_ONCE(dev->ifindex);
  646}
  647EXPORT_SYMBOL(dev_get_iflink);
  648
  649/**
  650 *	dev_fill_metadata_dst - Retrieve tunnel egress information.
  651 *	@dev: targeted interface
  652 *	@skb: The packet.
  653 *
  654 *	For better visibility of tunnel traffic OVS needs to retrieve
  655 *	egress tunnel information for a packet. Following API allows
  656 *	user to get this info.
  657 */
  658int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
  659{
  660	struct ip_tunnel_info *info;
  661
  662	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
  663		return -EINVAL;
  664
  665	info = skb_tunnel_info_unclone(skb);
  666	if (!info)
  667		return -ENOMEM;
  668	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
  669		return -EINVAL;
  670
  671	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
  672}
  673EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
  674
  675static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
  676{
  677	int k = stack->num_paths++;
  678
  679	if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
  680		return NULL;
  681
  682	return &stack->path[k];
  683}
  684
  685int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
  686			  struct net_device_path_stack *stack)
  687{
  688	const struct net_device *last_dev;
  689	struct net_device_path_ctx ctx = {
  690		.dev	= dev,
  691	};
  692	struct net_device_path *path;
  693	int ret = 0;
  694
  695	memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
  696	stack->num_paths = 0;
  697	while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
  698		last_dev = ctx.dev;
  699		path = dev_fwd_path(stack);
  700		if (!path)
  701			return -1;
  702
  703		memset(path, 0, sizeof(struct net_device_path));
  704		ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
  705		if (ret < 0)
  706			return -1;
  707
  708		if (WARN_ON_ONCE(last_dev == ctx.dev))
  709			return -1;
  710	}
  711
  712	if (!ctx.dev)
  713		return ret;
  714
  715	path = dev_fwd_path(stack);
  716	if (!path)
  717		return -1;
  718	path->type = DEV_PATH_ETHERNET;
  719	path->dev = ctx.dev;
  720
  721	return ret;
  722}
  723EXPORT_SYMBOL_GPL(dev_fill_forward_path);
  724
  725/**
  726 *	__dev_get_by_name	- find a device by its name
  727 *	@net: the applicable net namespace
  728 *	@name: name to find
  729 *
  730 *	Find an interface by name. Must be called under RTNL semaphore.
  731 *	If the name is found a pointer to the device is returned.
  732 *	If the name is not found then %NULL is returned. The
  733 *	reference counters are not incremented so the caller must be
  734 *	careful with locks.
  735 */
  736
  737struct net_device *__dev_get_by_name(struct net *net, const char *name)
  738{
  739	struct netdev_name_node *node_name;
 
  740
  741	node_name = netdev_name_node_lookup(net, name);
  742	return node_name ? node_name->dev : NULL;
 
 
 
  743}
  744EXPORT_SYMBOL(__dev_get_by_name);
  745
  746/**
  747 * dev_get_by_name_rcu	- find a device by its name
  748 * @net: the applicable net namespace
  749 * @name: name to find
  750 *
  751 * Find an interface by name.
  752 * If the name is found a pointer to the device is returned.
  753 * If the name is not found then %NULL is returned.
  754 * The reference counters are not incremented so the caller must be
  755 * careful with locks. The caller must hold RCU lock.
  756 */
  757
  758struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
  759{
  760	struct netdev_name_node *node_name;
  761
  762	node_name = netdev_name_node_lookup_rcu(net, name);
  763	return node_name ? node_name->dev : NULL;
  764}
  765EXPORT_SYMBOL(dev_get_by_name_rcu);
  766
  767/* Deprecated for new users, call netdev_get_by_name() instead */
  768struct net_device *dev_get_by_name(struct net *net, const char *name)
  769{
  770	struct net_device *dev;
 
  771
  772	rcu_read_lock();
  773	dev = dev_get_by_name_rcu(net, name);
  774	dev_hold(dev);
  775	rcu_read_unlock();
  776	return dev;
  777}
  778EXPORT_SYMBOL(dev_get_by_name);
  779
  780/**
  781 *	netdev_get_by_name() - find a device by its name
  782 *	@net: the applicable net namespace
  783 *	@name: name to find
  784 *	@tracker: tracking object for the acquired reference
  785 *	@gfp: allocation flags for the tracker
  786 *
  787 *	Find an interface by name. This can be called from any
  788 *	context and does its own locking. The returned handle has
  789 *	the usage count incremented and the caller must use netdev_put() to
  790 *	release it when it is no longer needed. %NULL is returned if no
  791 *	matching device is found.
  792 */
  793struct net_device *netdev_get_by_name(struct net *net, const char *name,
  794				      netdevice_tracker *tracker, gfp_t gfp)
  795{
  796	struct net_device *dev;
  797
  798	dev = dev_get_by_name(net, name);
 
  799	if (dev)
  800		netdev_tracker_alloc(dev, tracker, gfp);
 
  801	return dev;
  802}
  803EXPORT_SYMBOL(netdev_get_by_name);
  804
  805/**
  806 *	__dev_get_by_index - find a device by its ifindex
  807 *	@net: the applicable net namespace
  808 *	@ifindex: index of device
  809 *
  810 *	Search for an interface by index. Returns %NULL if the device
  811 *	is not found or a pointer to the device. The device has not
  812 *	had its reference counter increased so the caller must be careful
  813 *	about locking. The caller must hold the RTNL semaphore.
 
  814 */
  815
  816struct net_device *__dev_get_by_index(struct net *net, int ifindex)
  817{
  818	struct net_device *dev;
  819	struct hlist_head *head = dev_index_hash(net, ifindex);
  820
  821	hlist_for_each_entry(dev, head, index_hlist)
  822		if (dev->ifindex == ifindex)
  823			return dev;
  824
  825	return NULL;
  826}
  827EXPORT_SYMBOL(__dev_get_by_index);
  828
  829/**
  830 *	dev_get_by_index_rcu - find a device by its ifindex
  831 *	@net: the applicable net namespace
  832 *	@ifindex: index of device
  833 *
  834 *	Search for an interface by index. Returns %NULL if the device
  835 *	is not found or a pointer to the device. The device has not
  836 *	had its reference counter increased so the caller must be careful
  837 *	about locking. The caller must hold RCU lock.
  838 */
  839
  840struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
  841{
  842	struct net_device *dev;
  843	struct hlist_head *head = dev_index_hash(net, ifindex);
  844
  845	hlist_for_each_entry_rcu(dev, head, index_hlist)
  846		if (dev->ifindex == ifindex)
  847			return dev;
  848
  849	return NULL;
  850}
  851EXPORT_SYMBOL(dev_get_by_index_rcu);
  852
  853/* Deprecated for new users, call netdev_get_by_index() instead */
  854struct net_device *dev_get_by_index(struct net *net, int ifindex)
  855{
  856	struct net_device *dev;
  857
  858	rcu_read_lock();
  859	dev = dev_get_by_index_rcu(net, ifindex);
  860	dev_hold(dev);
  861	rcu_read_unlock();
  862	return dev;
  863}
  864EXPORT_SYMBOL(dev_get_by_index);
  865
  866/**
  867 *	netdev_get_by_index() - find a device by its ifindex
  868 *	@net: the applicable net namespace
  869 *	@ifindex: index of device
  870 *	@tracker: tracking object for the acquired reference
  871 *	@gfp: allocation flags for the tracker
  872 *
  873 *	Search for an interface by index. Returns NULL if the device
  874 *	is not found or a pointer to the device. The device returned has
  875 *	had a reference added and the pointer is safe until the user calls
  876 *	netdev_put() to indicate they have finished with it.
  877 */
  878struct net_device *netdev_get_by_index(struct net *net, int ifindex,
  879				       netdevice_tracker *tracker, gfp_t gfp)
  880{
  881	struct net_device *dev;
  882
  883	dev = dev_get_by_index(net, ifindex);
 
  884	if (dev)
  885		netdev_tracker_alloc(dev, tracker, gfp);
 
  886	return dev;
  887}
  888EXPORT_SYMBOL(netdev_get_by_index);
  889
  890/**
  891 *	dev_get_by_napi_id - find a device by napi_id
  892 *	@napi_id: ID of the NAPI struct
  893 *
  894 *	Search for an interface by NAPI ID. Returns %NULL if the device
  895 *	is not found or a pointer to the device. The device has not had
  896 *	its reference counter increased so the caller must be careful
  897 *	about locking. The caller must hold RCU lock.
  898 */
  899
  900struct net_device *dev_get_by_napi_id(unsigned int napi_id)
  901{
  902	struct napi_struct *napi;
  903
  904	WARN_ON_ONCE(!rcu_read_lock_held());
  905
  906	if (napi_id < MIN_NAPI_ID)
  907		return NULL;
  908
  909	napi = napi_by_id(napi_id);
  910
  911	return napi ? napi->dev : NULL;
  912}
  913EXPORT_SYMBOL(dev_get_by_napi_id);
  914
  915/**
  916 *	netdev_get_name - get a netdevice name, knowing its ifindex.
  917 *	@net: network namespace
  918 *	@name: a pointer to the buffer where the name will be stored.
  919 *	@ifindex: the ifindex of the interface to get the name from.
 
 
 
 
  920 */
  921int netdev_get_name(struct net *net, char *name, int ifindex)
  922{
  923	struct net_device *dev;
  924	int ret;
  925
  926	down_read(&devnet_rename_sem);
 
  927	rcu_read_lock();
  928
  929	dev = dev_get_by_index_rcu(net, ifindex);
  930	if (!dev) {
  931		ret = -ENODEV;
  932		goto out;
  933	}
  934
  935	strcpy(name, dev->name);
  936
  937	ret = 0;
  938out:
  939	rcu_read_unlock();
  940	up_read(&devnet_rename_sem);
  941	return ret;
 
 
 
 
  942}
  943
  944/**
  945 *	dev_getbyhwaddr_rcu - find a device by its hardware address
  946 *	@net: the applicable net namespace
  947 *	@type: media type of device
  948 *	@ha: hardware address
  949 *
  950 *	Search for an interface by MAC address. Returns NULL if the device
  951 *	is not found or a pointer to the device.
  952 *	The caller must hold RCU or RTNL.
  953 *	The returned device has not had its ref count increased
  954 *	and the caller must therefore be careful about locking
  955 *
  956 */
  957
  958struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
  959				       const char *ha)
  960{
  961	struct net_device *dev;
  962
  963	for_each_netdev_rcu(net, dev)
  964		if (dev->type == type &&
  965		    !memcmp(dev->dev_addr, ha, dev->addr_len))
  966			return dev;
  967
  968	return NULL;
  969}
  970EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
  971
 
 
 
 
 
 
 
 
 
 
 
 
 
  972struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
  973{
  974	struct net_device *dev, *ret = NULL;
  975
  976	rcu_read_lock();
  977	for_each_netdev_rcu(net, dev)
  978		if (dev->type == type) {
  979			dev_hold(dev);
  980			ret = dev;
  981			break;
  982		}
  983	rcu_read_unlock();
  984	return ret;
  985}
  986EXPORT_SYMBOL(dev_getfirstbyhwtype);
  987
  988/**
  989 *	__dev_get_by_flags - find any device with given flags
  990 *	@net: the applicable net namespace
  991 *	@if_flags: IFF_* values
  992 *	@mask: bitmask of bits in if_flags to check
  993 *
  994 *	Search for any interface with the given flags. Returns NULL if a device
  995 *	is not found or a pointer to the device. Must be called inside
  996 *	rtnl_lock(), and result refcount is unchanged.
  997 */
  998
  999struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
 1000				      unsigned short mask)
 1001{
 1002	struct net_device *dev, *ret;
 1003
 1004	ASSERT_RTNL();
 1005
 1006	ret = NULL;
 1007	for_each_netdev(net, dev) {
 1008		if (((dev->flags ^ if_flags) & mask) == 0) {
 1009			ret = dev;
 1010			break;
 1011		}
 1012	}
 1013	return ret;
 1014}
 1015EXPORT_SYMBOL(__dev_get_by_flags);
 1016
 1017/**
 1018 *	dev_valid_name - check if name is okay for network device
 1019 *	@name: name string
 1020 *
 1021 *	Network device names need to be valid file names to
 1022 *	allow sysfs to work.  We also disallow any kind of
 1023 *	whitespace.
 1024 */
 1025bool dev_valid_name(const char *name)
 1026{
 1027	if (*name == '\0')
 1028		return false;
 1029	if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
 1030		return false;
 1031	if (!strcmp(name, ".") || !strcmp(name, ".."))
 1032		return false;
 1033
 1034	while (*name) {
 1035		if (*name == '/' || *name == ':' || isspace(*name))
 1036			return false;
 1037		name++;
 1038	}
 1039	return true;
 1040}
 1041EXPORT_SYMBOL(dev_valid_name);
 1042
 1043/**
 1044 *	__dev_alloc_name - allocate a name for a device
 1045 *	@net: network namespace to allocate the device name in
 1046 *	@name: name format string
 1047 *	@res: result name string
 1048 *
 1049 *	Passed a format string - eg "lt%d" it will try and find a suitable
 1050 *	id. It scans list of devices to build up a free map, then chooses
 1051 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 1052 *	while allocating the name and adding the device in order to avoid
 1053 *	duplicates.
 1054 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 1055 *	Returns the number of the unit assigned or a negative errno code.
 1056 */
 1057
 1058static int __dev_alloc_name(struct net *net, const char *name, char *res)
 1059{
 1060	int i = 0;
 1061	const char *p;
 1062	const int max_netdevices = 8*PAGE_SIZE;
 1063	unsigned long *inuse;
 1064	struct net_device *d;
 1065	char buf[IFNAMSIZ];
 1066
 1067	/* Verify the string as this thing may have come from the user.
 1068	 * There must be one "%d" and no other "%" characters.
 1069	 */
 1070	p = strchr(name, '%');
 1071	if (!p || p[1] != 'd' || strchr(p + 2, '%'))
 1072		return -EINVAL;
 1073
 1074	/* Use one page as a bit array of possible slots */
 1075	inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
 1076	if (!inuse)
 1077		return -ENOMEM;
 
 
 
 
 
 1078
 1079	for_each_netdev(net, d) {
 1080		struct netdev_name_node *name_node;
 
 
 1081
 1082		netdev_for_each_altname(d, name_node) {
 1083			if (!sscanf(name_node->name, name, &i))
 1084				continue;
 1085			if (i < 0 || i >= max_netdevices)
 1086				continue;
 1087
 1088			/* avoid cases where sscanf is not exact inverse of printf */
 1089			snprintf(buf, IFNAMSIZ, name, i);
 1090			if (!strncmp(buf, name_node->name, IFNAMSIZ))
 1091				__set_bit(i, inuse);
 1092		}
 1093		if (!sscanf(d->name, name, &i))
 1094			continue;
 1095		if (i < 0 || i >= max_netdevices)
 1096			continue;
 1097
 1098		/* avoid cases where sscanf is not exact inverse of printf */
 1099		snprintf(buf, IFNAMSIZ, name, i);
 1100		if (!strncmp(buf, d->name, IFNAMSIZ))
 1101			__set_bit(i, inuse);
 1102	}
 1103
 1104	i = find_first_zero_bit(inuse, max_netdevices);
 1105	bitmap_free(inuse);
 1106	if (i == max_netdevices)
 1107		return -ENFILE;
 1108
 1109	/* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
 1110	strscpy(buf, name, IFNAMSIZ);
 1111	snprintf(res, IFNAMSIZ, buf, i);
 1112	return i;
 1113}
 1114
 1115/* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
 1116static int dev_prep_valid_name(struct net *net, struct net_device *dev,
 1117			       const char *want_name, char *out_name,
 1118			       int dup_errno)
 1119{
 1120	if (!dev_valid_name(want_name))
 1121		return -EINVAL;
 1122
 1123	if (strchr(want_name, '%'))
 1124		return __dev_alloc_name(net, want_name, out_name);
 1125
 1126	if (netdev_name_in_use(net, want_name))
 1127		return -dup_errno;
 1128	if (out_name != want_name)
 1129		strscpy(out_name, want_name, IFNAMSIZ);
 1130	return 0;
 1131}
 1132
 1133/**
 1134 *	dev_alloc_name - allocate a name for a device
 1135 *	@dev: device
 1136 *	@name: name format string
 1137 *
 1138 *	Passed a format string - eg "lt%d" it will try and find a suitable
 1139 *	id. It scans list of devices to build up a free map, then chooses
 1140 *	the first empty slot. The caller must hold the dev_base or rtnl lock
 1141 *	while allocating the name and adding the device in order to avoid
 1142 *	duplicates.
 1143 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
 1144 *	Returns the number of the unit assigned or a negative errno code.
 1145 */
 1146
 1147int dev_alloc_name(struct net_device *dev, const char *name)
 1148{
 1149	return dev_prep_valid_name(dev_net(dev), dev, name, dev->name, ENFILE);
 
 
 
 
 
 
 
 
 
 1150}
 1151EXPORT_SYMBOL(dev_alloc_name);
 1152
 1153static int dev_get_valid_name(struct net *net, struct net_device *dev,
 1154			      const char *name)
 
 1155{
 
 1156	int ret;
 1157
 1158	ret = dev_prep_valid_name(net, dev, name, dev->name, EEXIST);
 1159	return ret < 0 ? ret : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1160}
 1161
 1162/**
 1163 *	dev_change_name - change name of a device
 1164 *	@dev: device
 1165 *	@newname: name (or format string) must be at least IFNAMSIZ
 1166 *
 1167 *	Change name of a device, can pass format strings "eth%d".
 1168 *	for wildcarding.
 1169 */
 1170int dev_change_name(struct net_device *dev, const char *newname)
 1171{
 1172	unsigned char old_assign_type;
 1173	char oldname[IFNAMSIZ];
 1174	int err = 0;
 1175	int ret;
 1176	struct net *net;
 1177
 1178	ASSERT_RTNL();
 1179	BUG_ON(!dev_net(dev));
 1180
 1181	net = dev_net(dev);
 
 
 1182
 1183	down_write(&devnet_rename_sem);
 1184
 1185	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
 1186		up_write(&devnet_rename_sem);
 1187		return 0;
 1188	}
 1189
 1190	memcpy(oldname, dev->name, IFNAMSIZ);
 1191
 1192	err = dev_get_valid_name(net, dev, newname);
 1193	if (err < 0) {
 1194		up_write(&devnet_rename_sem);
 1195		return err;
 1196	}
 1197
 1198	if (oldname[0] && !strchr(oldname, '%'))
 1199		netdev_info(dev, "renamed from %s%s\n", oldname,
 1200			    dev->flags & IFF_UP ? " (while UP)" : "");
 1201
 1202	old_assign_type = dev->name_assign_type;
 1203	WRITE_ONCE(dev->name_assign_type, NET_NAME_RENAMED);
 1204
 1205rollback:
 1206	ret = device_rename(&dev->dev, dev->name);
 1207	if (ret) {
 1208		memcpy(dev->name, oldname, IFNAMSIZ);
 1209		WRITE_ONCE(dev->name_assign_type, old_assign_type);
 1210		up_write(&devnet_rename_sem);
 1211		return ret;
 1212	}
 1213
 1214	up_write(&devnet_rename_sem);
 1215
 1216	netdev_adjacent_rename_links(dev, oldname);
 1217
 1218	netdev_name_node_del(dev->name_node);
 1219
 1220	synchronize_net();
 1221
 1222	netdev_name_node_add(net, dev->name_node);
 
 
 
 
 1223
 1224	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
 1225	ret = notifier_to_errno(ret);
 1226
 1227	if (ret) {
 1228		/* err >= 0 after dev_alloc_name() or stores the first errno */
 1229		if (err >= 0) {
 1230			err = ret;
 1231			down_write(&devnet_rename_sem);
 1232			memcpy(dev->name, oldname, IFNAMSIZ);
 1233			memcpy(oldname, newname, IFNAMSIZ);
 1234			WRITE_ONCE(dev->name_assign_type, old_assign_type);
 1235			old_assign_type = NET_NAME_RENAMED;
 1236			goto rollback;
 1237		} else {
 1238			netdev_err(dev, "name change rollback failed: %d\n",
 1239				   ret);
 1240		}
 1241	}
 1242
 1243	return err;
 1244}
 1245
 1246/**
 1247 *	dev_set_alias - change ifalias of a device
 1248 *	@dev: device
 1249 *	@alias: name up to IFALIASZ
 1250 *	@len: limit of bytes to copy from info
 1251 *
 1252 *	Set ifalias for a device,
 1253 */
 1254int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
 1255{
 1256	struct dev_ifalias *new_alias = NULL;
 
 
 1257
 1258	if (len >= IFALIASZ)
 1259		return -EINVAL;
 1260
 1261	if (len) {
 1262		new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
 1263		if (!new_alias)
 1264			return -ENOMEM;
 1265
 1266		memcpy(new_alias->ifalias, alias, len);
 1267		new_alias->ifalias[len] = 0;
 1268	}
 1269
 1270	mutex_lock(&ifalias_mutex);
 1271	new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
 1272					mutex_is_locked(&ifalias_mutex));
 1273	mutex_unlock(&ifalias_mutex);
 1274
 1275	if (new_alias)
 1276		kfree_rcu(new_alias, rcuhead);
 1277
 
 1278	return len;
 1279}
 1280EXPORT_SYMBOL(dev_set_alias);
 1281
 1282/**
 1283 *	dev_get_alias - get ifalias of a device
 1284 *	@dev: device
 1285 *	@name: buffer to store name of ifalias
 1286 *	@len: size of buffer
 1287 *
 1288 *	get ifalias for a device.  Caller must make sure dev cannot go
 1289 *	away,  e.g. rcu read lock or own a reference count to device.
 1290 */
 1291int dev_get_alias(const struct net_device *dev, char *name, size_t len)
 1292{
 1293	const struct dev_ifalias *alias;
 1294	int ret = 0;
 1295
 1296	rcu_read_lock();
 1297	alias = rcu_dereference(dev->ifalias);
 1298	if (alias)
 1299		ret = snprintf(name, len, "%s", alias->ifalias);
 1300	rcu_read_unlock();
 1301
 1302	return ret;
 1303}
 1304
 1305/**
 1306 *	netdev_features_change - device changes features
 1307 *	@dev: device to cause notification
 1308 *
 1309 *	Called to indicate a device has changed features.
 1310 */
 1311void netdev_features_change(struct net_device *dev)
 1312{
 1313	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
 1314}
 1315EXPORT_SYMBOL(netdev_features_change);
 1316
 1317/**
 1318 *	netdev_state_change - device changes state
 1319 *	@dev: device to cause notification
 1320 *
 1321 *	Called to indicate a device has changed state. This function calls
 1322 *	the notifier chains for netdev_chain and sends a NEWLINK message
 1323 *	to the routing socket.
 1324 */
 1325void netdev_state_change(struct net_device *dev)
 1326{
 1327	if (dev->flags & IFF_UP) {
 1328		struct netdev_notifier_change_info change_info = {
 1329			.info.dev = dev,
 1330		};
 1331
 1332		call_netdevice_notifiers_info(NETDEV_CHANGE,
 
 1333					      &change_info.info);
 1334		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
 1335	}
 1336}
 1337EXPORT_SYMBOL(netdev_state_change);
 1338
 1339/**
 1340 * __netdev_notify_peers - notify network peers about existence of @dev,
 1341 * to be called when rtnl lock is already held.
 1342 * @dev: network device
 1343 *
 1344 * Generate traffic such that interested network peers are aware of
 1345 * @dev, such as by generating a gratuitous ARP. This may be used when
 1346 * a device wants to inform the rest of the network about some sort of
 1347 * reconfiguration such as a failover event or virtual machine
 1348 * migration.
 1349 */
 1350void __netdev_notify_peers(struct net_device *dev)
 1351{
 1352	ASSERT_RTNL();
 1353	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
 1354	call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
 1355}
 1356EXPORT_SYMBOL(__netdev_notify_peers);
 1357
 1358/**
 1359 * netdev_notify_peers - notify network peers about existence of @dev
 1360 * @dev: network device
 1361 *
 1362 * Generate traffic such that interested network peers are aware of
 1363 * @dev, such as by generating a gratuitous ARP. This may be used when
 1364 * a device wants to inform the rest of the network about some sort of
 1365 * reconfiguration such as a failover event or virtual machine
 1366 * migration.
 1367 */
 1368void netdev_notify_peers(struct net_device *dev)
 1369{
 1370	rtnl_lock();
 1371	__netdev_notify_peers(dev);
 1372	rtnl_unlock();
 1373}
 1374EXPORT_SYMBOL(netdev_notify_peers);
 1375
 1376static int napi_threaded_poll(void *data);
 1377
 1378static int napi_kthread_create(struct napi_struct *n)
 1379{
 1380	int err = 0;
 1381
 1382	/* Create and wake up the kthread once to put it in
 1383	 * TASK_INTERRUPTIBLE mode to avoid the blocked task
 1384	 * warning and work with loadavg.
 1385	 */
 1386	n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
 1387				n->dev->name, n->napi_id);
 1388	if (IS_ERR(n->thread)) {
 1389		err = PTR_ERR(n->thread);
 1390		pr_err("kthread_run failed with err %d\n", err);
 1391		n->thread = NULL;
 1392	}
 1393
 1394	return err;
 1395}
 1396
 1397static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
 1398{
 1399	const struct net_device_ops *ops = dev->netdev_ops;
 1400	int ret;
 1401
 1402	ASSERT_RTNL();
 1403	dev_addr_check(dev);
 1404
 1405	if (!netif_device_present(dev)) {
 1406		/* may be detached because parent is runtime-suspended */
 1407		if (dev->dev.parent)
 1408			pm_runtime_resume(dev->dev.parent);
 1409		if (!netif_device_present(dev))
 1410			return -ENODEV;
 1411	}
 1412
 1413	/* Block netpoll from trying to do any rx path servicing.
 1414	 * If we don't do this there is a chance ndo_poll_controller
 1415	 * or ndo_poll may be running while we open the device
 1416	 */
 1417	netpoll_poll_disable(dev);
 1418
 1419	ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
 1420	ret = notifier_to_errno(ret);
 1421	if (ret)
 1422		return ret;
 1423
 1424	set_bit(__LINK_STATE_START, &dev->state);
 1425
 1426	if (ops->ndo_validate_addr)
 1427		ret = ops->ndo_validate_addr(dev);
 1428
 1429	if (!ret && ops->ndo_open)
 1430		ret = ops->ndo_open(dev);
 1431
 1432	netpoll_poll_enable(dev);
 1433
 1434	if (ret)
 1435		clear_bit(__LINK_STATE_START, &dev->state);
 1436	else {
 1437		dev->flags |= IFF_UP;
 1438		dev_set_rx_mode(dev);
 1439		dev_activate(dev);
 1440		add_device_randomness(dev->dev_addr, dev->addr_len);
 1441	}
 1442
 1443	return ret;
 1444}
 1445
 1446/**
 1447 *	dev_open	- prepare an interface for use.
 1448 *	@dev: device to open
 1449 *	@extack: netlink extended ack
 1450 *
 1451 *	Takes a device from down to up state. The device's private open
 1452 *	function is invoked and then the multicast lists are loaded. Finally
 1453 *	the device is moved into the up state and a %NETDEV_UP message is
 1454 *	sent to the netdev notifier chain.
 1455 *
 1456 *	Calling this function on an active interface is a nop. On a failure
 1457 *	a negative errno code is returned.
 1458 */
 1459int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
 1460{
 1461	int ret;
 1462
 1463	if (dev->flags & IFF_UP)
 1464		return 0;
 1465
 1466	ret = __dev_open(dev, extack);
 1467	if (ret < 0)
 1468		return ret;
 1469
 1470	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
 1471	call_netdevice_notifiers(NETDEV_UP, dev);
 1472
 1473	return ret;
 1474}
 1475EXPORT_SYMBOL(dev_open);
 1476
 1477static void __dev_close_many(struct list_head *head)
 1478{
 1479	struct net_device *dev;
 1480
 1481	ASSERT_RTNL();
 1482	might_sleep();
 1483
 1484	list_for_each_entry(dev, head, close_list) {
 1485		/* Temporarily disable netpoll until the interface is down */
 1486		netpoll_poll_disable(dev);
 1487
 1488		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
 1489
 1490		clear_bit(__LINK_STATE_START, &dev->state);
 1491
 1492		/* Synchronize to scheduled poll. We cannot touch poll list, it
 1493		 * can be even on different cpu. So just clear netif_running().
 1494		 *
 1495		 * dev->stop() will invoke napi_disable() on all of it's
 1496		 * napi_struct instances on this device.
 1497		 */
 1498		smp_mb__after_atomic(); /* Commit netif_running(). */
 1499	}
 1500
 1501	dev_deactivate_many(head);
 1502
 1503	list_for_each_entry(dev, head, close_list) {
 1504		const struct net_device_ops *ops = dev->netdev_ops;
 1505
 1506		/*
 1507		 *	Call the device specific close. This cannot fail.
 1508		 *	Only if device is UP
 1509		 *
 1510		 *	We allow it to be called even after a DETACH hot-plug
 1511		 *	event.
 1512		 */
 1513		if (ops->ndo_stop)
 1514			ops->ndo_stop(dev);
 1515
 1516		dev->flags &= ~IFF_UP;
 1517		netpoll_poll_enable(dev);
 1518	}
 
 
 1519}
 1520
 1521static void __dev_close(struct net_device *dev)
 1522{
 
 1523	LIST_HEAD(single);
 1524
 1525	list_add(&dev->close_list, &single);
 1526	__dev_close_many(&single);
 1527	list_del(&single);
 
 
 1528}
 1529
 1530void dev_close_many(struct list_head *head, bool unlink)
 1531{
 1532	struct net_device *dev, *tmp;
 1533
 1534	/* Remove the devices that don't need to be closed */
 1535	list_for_each_entry_safe(dev, tmp, head, close_list)
 1536		if (!(dev->flags & IFF_UP))
 1537			list_del_init(&dev->close_list);
 1538
 1539	__dev_close_many(head);
 1540
 1541	list_for_each_entry_safe(dev, tmp, head, close_list) {
 1542		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
 1543		call_netdevice_notifiers(NETDEV_DOWN, dev);
 1544		if (unlink)
 1545			list_del_init(&dev->close_list);
 1546	}
 
 
 1547}
 1548EXPORT_SYMBOL(dev_close_many);
 1549
 1550/**
 1551 *	dev_close - shutdown an interface.
 1552 *	@dev: device to shutdown
 1553 *
 1554 *	This function moves an active device into down state. A
 1555 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
 1556 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
 1557 *	chain.
 1558 */
 1559void dev_close(struct net_device *dev)
 1560{
 1561	if (dev->flags & IFF_UP) {
 1562		LIST_HEAD(single);
 1563
 1564		list_add(&dev->close_list, &single);
 1565		dev_close_many(&single, true);
 1566		list_del(&single);
 1567	}
 
 1568}
 1569EXPORT_SYMBOL(dev_close);
 1570
 1571
 1572/**
 1573 *	dev_disable_lro - disable Large Receive Offload on a device
 1574 *	@dev: device
 1575 *
 1576 *	Disable Large Receive Offload (LRO) on a net device.  Must be
 1577 *	called under RTNL.  This is needed if received packets may be
 1578 *	forwarded to another interface.
 1579 */
 1580void dev_disable_lro(struct net_device *dev)
 1581{
 1582	struct net_device *lower_dev;
 1583	struct list_head *iter;
 1584
 1585	dev->wanted_features &= ~NETIF_F_LRO;
 1586	netdev_update_features(dev);
 1587
 1588	if (unlikely(dev->features & NETIF_F_LRO))
 1589		netdev_WARN(dev, "failed to disable LRO!\n");
 1590
 1591	netdev_for_each_lower_dev(dev, lower_dev, iter)
 1592		dev_disable_lro(lower_dev);
 1593}
 1594EXPORT_SYMBOL(dev_disable_lro);
 1595
 1596/**
 1597 *	dev_disable_gro_hw - disable HW Generic Receive Offload on a device
 1598 *	@dev: device
 1599 *
 1600 *	Disable HW Generic Receive Offload (GRO_HW) on a net device.  Must be
 1601 *	called under RTNL.  This is needed if Generic XDP is installed on
 1602 *	the device.
 1603 */
 1604static void dev_disable_gro_hw(struct net_device *dev)
 1605{
 1606	dev->wanted_features &= ~NETIF_F_GRO_HW;
 1607	netdev_update_features(dev);
 1608
 1609	if (unlikely(dev->features & NETIF_F_GRO_HW))
 1610		netdev_WARN(dev, "failed to disable GRO_HW!\n");
 1611}
 1612
 1613const char *netdev_cmd_to_name(enum netdev_cmd cmd)
 1614{
 1615#define N(val) 						\
 1616	case NETDEV_##val:				\
 1617		return "NETDEV_" __stringify(val);
 1618	switch (cmd) {
 1619	N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
 1620	N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
 1621	N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
 1622	N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
 1623	N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
 1624	N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
 1625	N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
 1626	N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
 1627	N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
 1628	N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
 1629	N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
 1630	N(XDP_FEAT_CHANGE)
 1631	}
 1632#undef N
 1633	return "UNKNOWN_NETDEV_EVENT";
 1634}
 1635EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
 1636
 1637static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
 1638				   struct net_device *dev)
 1639{
 1640	struct netdev_notifier_info info = {
 1641		.dev = dev,
 1642	};
 1643
 
 1644	return nb->notifier_call(nb, val, &info);
 1645}
 1646
 1647static int call_netdevice_register_notifiers(struct notifier_block *nb,
 1648					     struct net_device *dev)
 1649{
 1650	int err;
 1651
 1652	err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
 1653	err = notifier_to_errno(err);
 1654	if (err)
 1655		return err;
 1656
 1657	if (!(dev->flags & IFF_UP))
 1658		return 0;
 1659
 1660	call_netdevice_notifier(nb, NETDEV_UP, dev);
 1661	return 0;
 1662}
 1663
 1664static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
 1665						struct net_device *dev)
 1666{
 1667	if (dev->flags & IFF_UP) {
 1668		call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
 1669					dev);
 1670		call_netdevice_notifier(nb, NETDEV_DOWN, dev);
 1671	}
 1672	call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
 1673}
 1674
 1675static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
 1676						 struct net *net)
 1677{
 1678	struct net_device *dev;
 1679	int err;
 1680
 1681	for_each_netdev(net, dev) {
 1682		err = call_netdevice_register_notifiers(nb, dev);
 1683		if (err)
 1684			goto rollback;
 1685	}
 1686	return 0;
 1687
 1688rollback:
 1689	for_each_netdev_continue_reverse(net, dev)
 1690		call_netdevice_unregister_notifiers(nb, dev);
 1691	return err;
 1692}
 1693
 1694static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
 1695						    struct net *net)
 1696{
 1697	struct net_device *dev;
 1698
 1699	for_each_netdev(net, dev)
 1700		call_netdevice_unregister_notifiers(nb, dev);
 1701}
 1702
 1703static int dev_boot_phase = 1;
 1704
 1705/**
 1706 * register_netdevice_notifier - register a network notifier block
 1707 * @nb: notifier
 1708 *
 1709 * Register a notifier to be called when network device events occur.
 1710 * The notifier passed is linked into the kernel structures and must
 1711 * not be reused until it has been unregistered. A negative errno code
 1712 * is returned on a failure.
 1713 *
 1714 * When registered all registration and up events are replayed
 1715 * to the new notifier to allow device to have a race free
 1716 * view of the network device list.
 1717 */
 1718
 1719int register_netdevice_notifier(struct notifier_block *nb)
 1720{
 
 
 1721	struct net *net;
 1722	int err;
 1723
 1724	/* Close race with setup_net() and cleanup_net() */
 1725	down_write(&pernet_ops_rwsem);
 1726	rtnl_lock();
 1727	err = raw_notifier_chain_register(&netdev_chain, nb);
 1728	if (err)
 1729		goto unlock;
 1730	if (dev_boot_phase)
 1731		goto unlock;
 1732	for_each_net(net) {
 1733		err = call_netdevice_register_net_notifiers(nb, net);
 1734		if (err)
 1735			goto rollback;
 
 
 
 
 
 
 
 
 1736	}
 1737
 1738unlock:
 1739	rtnl_unlock();
 1740	up_write(&pernet_ops_rwsem);
 1741	return err;
 1742
 1743rollback:
 1744	for_each_net_continue_reverse(net)
 1745		call_netdevice_unregister_net_notifiers(nb, net);
 
 
 
 
 
 
 
 
 
 
 
 
 1746
 
 1747	raw_notifier_chain_unregister(&netdev_chain, nb);
 1748	goto unlock;
 1749}
 1750EXPORT_SYMBOL(register_netdevice_notifier);
 1751
 1752/**
 1753 * unregister_netdevice_notifier - unregister a network notifier block
 1754 * @nb: notifier
 1755 *
 1756 * Unregister a notifier previously registered by
 1757 * register_netdevice_notifier(). The notifier is unlinked into the
 1758 * kernel structures and may then be reused. A negative errno code
 1759 * is returned on a failure.
 1760 *
 1761 * After unregistering unregister and down device events are synthesized
 1762 * for all devices on the device list to the removed notifier to remove
 1763 * the need for special case cleanup code.
 1764 */
 1765
 1766int unregister_netdevice_notifier(struct notifier_block *nb)
 1767{
 
 1768	struct net *net;
 1769	int err;
 1770
 1771	/* Close race with setup_net() and cleanup_net() */
 1772	down_write(&pernet_ops_rwsem);
 1773	rtnl_lock();
 1774	err = raw_notifier_chain_unregister(&netdev_chain, nb);
 1775	if (err)
 1776		goto unlock;
 1777
 1778	for_each_net(net)
 1779		call_netdevice_unregister_net_notifiers(nb, net);
 1780
 
 
 
 
 
 
 
 1781unlock:
 1782	rtnl_unlock();
 1783	up_write(&pernet_ops_rwsem);
 1784	return err;
 1785}
 1786EXPORT_SYMBOL(unregister_netdevice_notifier);
 1787
 1788static int __register_netdevice_notifier_net(struct net *net,
 1789					     struct notifier_block *nb,
 1790					     bool ignore_call_fail)
 1791{
 1792	int err;
 1793
 1794	err = raw_notifier_chain_register(&net->netdev_chain, nb);
 1795	if (err)
 1796		return err;
 1797	if (dev_boot_phase)
 1798		return 0;
 1799
 1800	err = call_netdevice_register_net_notifiers(nb, net);
 1801	if (err && !ignore_call_fail)
 1802		goto chain_unregister;
 1803
 1804	return 0;
 1805
 1806chain_unregister:
 1807	raw_notifier_chain_unregister(&net->netdev_chain, nb);
 1808	return err;
 1809}
 1810
 1811static int __unregister_netdevice_notifier_net(struct net *net,
 1812					       struct notifier_block *nb)
 1813{
 1814	int err;
 1815
 1816	err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
 1817	if (err)
 1818		return err;
 1819
 1820	call_netdevice_unregister_net_notifiers(nb, net);
 1821	return 0;
 1822}
 1823
 1824/**
 1825 * register_netdevice_notifier_net - register a per-netns network notifier block
 1826 * @net: network namespace
 1827 * @nb: notifier
 1828 *
 1829 * Register a notifier to be called when network device events occur.
 1830 * The notifier passed is linked into the kernel structures and must
 1831 * not be reused until it has been unregistered. A negative errno code
 1832 * is returned on a failure.
 1833 *
 1834 * When registered all registration and up events are replayed
 1835 * to the new notifier to allow device to have a race free
 1836 * view of the network device list.
 1837 */
 1838
 1839int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
 1840{
 1841	int err;
 1842
 1843	rtnl_lock();
 1844	err = __register_netdevice_notifier_net(net, nb, false);
 1845	rtnl_unlock();
 1846	return err;
 1847}
 1848EXPORT_SYMBOL(register_netdevice_notifier_net);
 1849
 1850/**
 1851 * unregister_netdevice_notifier_net - unregister a per-netns
 1852 *                                     network notifier block
 1853 * @net: network namespace
 1854 * @nb: notifier
 1855 *
 1856 * Unregister a notifier previously registered by
 1857 * register_netdevice_notifier_net(). The notifier is unlinked from the
 1858 * kernel structures and may then be reused. A negative errno code
 1859 * is returned on a failure.
 1860 *
 1861 * After unregistering unregister and down device events are synthesized
 1862 * for all devices on the device list to the removed notifier to remove
 1863 * the need for special case cleanup code.
 1864 */
 1865
 1866int unregister_netdevice_notifier_net(struct net *net,
 1867				      struct notifier_block *nb)
 1868{
 1869	int err;
 1870
 1871	rtnl_lock();
 1872	err = __unregister_netdevice_notifier_net(net, nb);
 1873	rtnl_unlock();
 1874	return err;
 1875}
 1876EXPORT_SYMBOL(unregister_netdevice_notifier_net);
 1877
 1878static void __move_netdevice_notifier_net(struct net *src_net,
 1879					  struct net *dst_net,
 1880					  struct notifier_block *nb)
 1881{
 1882	__unregister_netdevice_notifier_net(src_net, nb);
 1883	__register_netdevice_notifier_net(dst_net, nb, true);
 1884}
 1885
 1886int register_netdevice_notifier_dev_net(struct net_device *dev,
 1887					struct notifier_block *nb,
 1888					struct netdev_net_notifier *nn)
 1889{
 1890	int err;
 1891
 1892	rtnl_lock();
 1893	err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
 1894	if (!err) {
 1895		nn->nb = nb;
 1896		list_add(&nn->list, &dev->net_notifier_list);
 1897	}
 1898	rtnl_unlock();
 1899	return err;
 1900}
 1901EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
 1902
 1903int unregister_netdevice_notifier_dev_net(struct net_device *dev,
 1904					  struct notifier_block *nb,
 1905					  struct netdev_net_notifier *nn)
 1906{
 1907	int err;
 1908
 1909	rtnl_lock();
 1910	list_del(&nn->list);
 1911	err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
 1912	rtnl_unlock();
 1913	return err;
 1914}
 1915EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
 1916
 1917static void move_netdevice_notifiers_dev_net(struct net_device *dev,
 1918					     struct net *net)
 1919{
 1920	struct netdev_net_notifier *nn;
 1921
 1922	list_for_each_entry(nn, &dev->net_notifier_list, list)
 1923		__move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
 1924}
 1925
 1926/**
 1927 *	call_netdevice_notifiers_info - call all network notifier blocks
 1928 *	@val: value passed unmodified to notifier function
 
 1929 *	@info: notifier information data
 1930 *
 1931 *	Call all network notifier blocks.  Parameters and return value
 1932 *	are as for raw_notifier_call_chain().
 1933 */
 1934
 1935int call_netdevice_notifiers_info(unsigned long val,
 1936				  struct netdev_notifier_info *info)
 
 1937{
 1938	struct net *net = dev_net(info->dev);
 1939	int ret;
 1940
 1941	ASSERT_RTNL();
 1942
 1943	/* Run per-netns notifier block chain first, then run the global one.
 1944	 * Hopefully, one day, the global one is going to be removed after
 1945	 * all notifier block registrators get converted to be per-netns.
 1946	 */
 1947	ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
 1948	if (ret & NOTIFY_STOP_MASK)
 1949		return ret;
 1950	return raw_notifier_call_chain(&netdev_chain, val, info);
 1951}
 1952
 1953/**
 1954 *	call_netdevice_notifiers_info_robust - call per-netns notifier blocks
 1955 *	                                       for and rollback on error
 1956 *	@val_up: value passed unmodified to notifier function
 1957 *	@val_down: value passed unmodified to the notifier function when
 1958 *	           recovering from an error on @val_up
 1959 *	@info: notifier information data
 1960 *
 1961 *	Call all per-netns network notifier blocks, but not notifier blocks on
 1962 *	the global notifier chain. Parameters and return value are as for
 1963 *	raw_notifier_call_chain_robust().
 1964 */
 1965
 1966static int
 1967call_netdevice_notifiers_info_robust(unsigned long val_up,
 1968				     unsigned long val_down,
 1969				     struct netdev_notifier_info *info)
 1970{
 1971	struct net *net = dev_net(info->dev);
 1972
 1973	ASSERT_RTNL();
 1974
 1975	return raw_notifier_call_chain_robust(&net->netdev_chain,
 1976					      val_up, val_down, info);
 1977}
 1978
 1979static int call_netdevice_notifiers_extack(unsigned long val,
 1980					   struct net_device *dev,
 1981					   struct netlink_ext_ack *extack)
 1982{
 1983	struct netdev_notifier_info info = {
 1984		.dev = dev,
 1985		.extack = extack,
 1986	};
 1987
 1988	return call_netdevice_notifiers_info(val, &info);
 1989}
 1990
 1991/**
 1992 *	call_netdevice_notifiers - call all network notifier blocks
 1993 *      @val: value passed unmodified to notifier function
 1994 *      @dev: net_device pointer passed unmodified to notifier function
 1995 *
 1996 *	Call all network notifier blocks.  Parameters and return value
 1997 *	are as for raw_notifier_call_chain().
 1998 */
 1999
 2000int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
 2001{
 2002	return call_netdevice_notifiers_extack(val, dev, NULL);
 2003}
 2004EXPORT_SYMBOL(call_netdevice_notifiers);
 2005
 2006/**
 2007 *	call_netdevice_notifiers_mtu - call all network notifier blocks
 2008 *	@val: value passed unmodified to notifier function
 2009 *	@dev: net_device pointer passed unmodified to notifier function
 2010 *	@arg: additional u32 argument passed to the notifier function
 2011 *
 2012 *	Call all network notifier blocks.  Parameters and return value
 2013 *	are as for raw_notifier_call_chain().
 2014 */
 2015static int call_netdevice_notifiers_mtu(unsigned long val,
 2016					struct net_device *dev, u32 arg)
 2017{
 2018	struct netdev_notifier_info_ext info = {
 2019		.info.dev = dev,
 2020		.ext.mtu = arg,
 2021	};
 2022
 2023	BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
 2024
 2025	return call_netdevice_notifiers_info(val, &info.info);
 2026}
 
 2027
 2028#ifdef CONFIG_NET_INGRESS
 2029static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
 2030
 2031void net_inc_ingress_queue(void)
 2032{
 2033	static_branch_inc(&ingress_needed_key);
 2034}
 2035EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
 2036
 2037void net_dec_ingress_queue(void)
 2038{
 2039	static_branch_dec(&ingress_needed_key);
 2040}
 2041EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
 2042#endif
 2043
 2044#ifdef CONFIG_NET_EGRESS
 2045static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
 2046
 2047void net_inc_egress_queue(void)
 2048{
 2049	static_branch_inc(&egress_needed_key);
 2050}
 2051EXPORT_SYMBOL_GPL(net_inc_egress_queue);
 2052
 2053void net_dec_egress_queue(void)
 2054{
 2055	static_branch_dec(&egress_needed_key);
 2056}
 2057EXPORT_SYMBOL_GPL(net_dec_egress_queue);
 2058#endif
 2059
 2060DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
 2061EXPORT_SYMBOL(netstamp_needed_key);
 2062#ifdef CONFIG_JUMP_LABEL
 
 
 
 2063static atomic_t netstamp_needed_deferred;
 2064static atomic_t netstamp_wanted;
 2065static void netstamp_clear(struct work_struct *work)
 2066{
 2067	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
 2068	int wanted;
 2069
 2070	wanted = atomic_add_return(deferred, &netstamp_wanted);
 2071	if (wanted > 0)
 2072		static_branch_enable(&netstamp_needed_key);
 2073	else
 2074		static_branch_disable(&netstamp_needed_key);
 2075}
 2076static DECLARE_WORK(netstamp_work, netstamp_clear);
 2077#endif
 2078
 2079void net_enable_timestamp(void)
 2080{
 2081#ifdef CONFIG_JUMP_LABEL
 2082	int wanted = atomic_read(&netstamp_wanted);
 2083
 2084	while (wanted > 0) {
 2085		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
 2086			return;
 
 2087	}
 2088	atomic_inc(&netstamp_needed_deferred);
 2089	schedule_work(&netstamp_work);
 2090#else
 2091	static_branch_inc(&netstamp_needed_key);
 2092#endif
 
 2093}
 2094EXPORT_SYMBOL(net_enable_timestamp);
 2095
 2096void net_disable_timestamp(void)
 2097{
 2098#ifdef CONFIG_JUMP_LABEL
 2099	int wanted = atomic_read(&netstamp_wanted);
 2100
 2101	while (wanted > 1) {
 2102		if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
 2103			return;
 2104	}
 2105	atomic_dec(&netstamp_needed_deferred);
 2106	schedule_work(&netstamp_work);
 2107#else
 2108	static_branch_dec(&netstamp_needed_key);
 2109#endif
 
 2110}
 2111EXPORT_SYMBOL(net_disable_timestamp);
 2112
 2113static inline void net_timestamp_set(struct sk_buff *skb)
 2114{
 2115	skb->tstamp = 0;
 2116	skb->mono_delivery_time = 0;
 2117	if (static_branch_unlikely(&netstamp_needed_key))
 2118		skb->tstamp = ktime_get_real();
 2119}
 2120
 2121#define net_timestamp_check(COND, SKB)				\
 2122	if (static_branch_unlikely(&netstamp_needed_key)) {	\
 2123		if ((COND) && !(SKB)->tstamp)			\
 2124			(SKB)->tstamp = ktime_get_real();	\
 2125	}							\
 2126
 2127bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
 2128{
 2129	return __is_skb_forwardable(dev, skb, true);
 2130}
 2131EXPORT_SYMBOL_GPL(is_skb_forwardable);
 2132
 2133static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
 2134			      bool check_mtu)
 2135{
 2136	int ret = ____dev_forward_skb(dev, skb, check_mtu);
 2137
 2138	if (likely(!ret)) {
 2139		skb->protocol = eth_type_trans(skb, dev);
 2140		skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
 2141	}
 2142
 2143	return ret;
 
 
 
 
 
 
 2144}
 
 2145
 2146int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
 2147{
 2148	return __dev_forward_skb2(dev, skb, true);
 
 
 
 
 
 
 
 
 
 
 
 
 2149}
 2150EXPORT_SYMBOL_GPL(__dev_forward_skb);
 2151
 2152/**
 2153 * dev_forward_skb - loopback an skb to another netif
 2154 *
 2155 * @dev: destination network device
 2156 * @skb: buffer to forward
 2157 *
 2158 * return values:
 2159 *	NET_RX_SUCCESS	(no congestion)
 2160 *	NET_RX_DROP     (packet was dropped, but freed)
 2161 *
 2162 * dev_forward_skb can be used for injecting an skb from the
 2163 * start_xmit function of one device into the receive queue
 2164 * of another device.
 2165 *
 2166 * The receiving device may be in another namespace, so
 2167 * we have to clear all information in the skb that could
 2168 * impact namespace isolation.
 2169 */
 2170int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
 2171{
 2172	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
 2173}
 2174EXPORT_SYMBOL_GPL(dev_forward_skb);
 2175
 2176int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
 2177{
 2178	return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
 2179}
 2180
 2181static inline int deliver_skb(struct sk_buff *skb,
 2182			      struct packet_type *pt_prev,
 2183			      struct net_device *orig_dev)
 2184{
 2185	if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
 2186		return -ENOMEM;
 2187	refcount_inc(&skb->users);
 2188	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
 2189}
 2190
 2191static inline void deliver_ptype_list_skb(struct sk_buff *skb,
 2192					  struct packet_type **pt,
 2193					  struct net_device *orig_dev,
 2194					  __be16 type,
 2195					  struct list_head *ptype_list)
 2196{
 2197	struct packet_type *ptype, *pt_prev = *pt;
 2198
 2199	list_for_each_entry_rcu(ptype, ptype_list, list) {
 2200		if (ptype->type != type)
 2201			continue;
 2202		if (pt_prev)
 2203			deliver_skb(skb, pt_prev, orig_dev);
 2204		pt_prev = ptype;
 2205	}
 2206	*pt = pt_prev;
 2207}
 2208
 2209static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
 2210{
 2211	if (!ptype->af_packet_priv || !skb->sk)
 2212		return false;
 2213
 2214	if (ptype->id_match)
 2215		return ptype->id_match(ptype, skb->sk);
 2216	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
 2217		return true;
 2218
 2219	return false;
 2220}
 2221
 2222/**
 2223 * dev_nit_active - return true if any network interface taps are in use
 2224 *
 2225 * @dev: network device to check for the presence of taps
 2226 */
 2227bool dev_nit_active(struct net_device *dev)
 2228{
 2229	return !list_empty(&net_hotdata.ptype_all) ||
 2230	       !list_empty(&dev->ptype_all);
 2231}
 2232EXPORT_SYMBOL_GPL(dev_nit_active);
 2233
 2234/*
 2235 *	Support routine. Sends outgoing frames to any network
 2236 *	taps currently in use.
 2237 */
 2238
 2239void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
 2240{
 2241	struct list_head *ptype_list = &net_hotdata.ptype_all;
 2242	struct packet_type *ptype, *pt_prev = NULL;
 2243	struct sk_buff *skb2 = NULL;
 
 
 2244
 2245	rcu_read_lock();
 2246again:
 2247	list_for_each_entry_rcu(ptype, ptype_list, list) {
 2248		if (READ_ONCE(ptype->ignore_outgoing))
 2249			continue;
 2250
 2251		/* Never send packets back to the socket
 2252		 * they originated from - MvS (miquels@drinkel.ow.org)
 2253		 */
 2254		if (skb_loop_sk(ptype, skb))
 2255			continue;
 2256
 2257		if (pt_prev) {
 2258			deliver_skb(skb2, pt_prev, skb->dev);
 2259			pt_prev = ptype;
 2260			continue;
 2261		}
 2262
 2263		/* need to clone skb, done only once */
 2264		skb2 = skb_clone(skb, GFP_ATOMIC);
 2265		if (!skb2)
 2266			goto out_unlock;
 2267
 2268		net_timestamp_set(skb2);
 2269
 2270		/* skb->nh should be correctly
 2271		 * set by sender, so that the second statement is
 2272		 * just protection against buggy protocols.
 2273		 */
 2274		skb_reset_mac_header(skb2);
 2275
 2276		if (skb_network_header(skb2) < skb2->data ||
 2277		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
 2278			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
 2279					     ntohs(skb2->protocol),
 2280					     dev->name);
 2281			skb_reset_network_header(skb2);
 2282		}
 2283
 2284		skb2->transport_header = skb2->network_header;
 2285		skb2->pkt_type = PACKET_OUTGOING;
 2286		pt_prev = ptype;
 2287	}
 2288
 2289	if (ptype_list == &net_hotdata.ptype_all) {
 2290		ptype_list = &dev->ptype_all;
 2291		goto again;
 2292	}
 2293out_unlock:
 2294	if (pt_prev) {
 2295		if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
 2296			pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
 2297		else
 2298			kfree_skb(skb2);
 2299	}
 2300	rcu_read_unlock();
 2301}
 2302EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
 2303
 2304/**
 2305 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
 2306 * @dev: Network device
 2307 * @txq: number of queues available
 2308 *
 2309 * If real_num_tx_queues is changed the tc mappings may no longer be
 2310 * valid. To resolve this verify the tc mapping remains valid and if
 2311 * not NULL the mapping. With no priorities mapping to this
 2312 * offset/count pair it will no longer be used. In the worst case TC0
 2313 * is invalid nothing can be done so disable priority mappings. If is
 2314 * expected that drivers will fix this mapping if they can before
 2315 * calling netif_set_real_num_tx_queues.
 2316 */
 2317static void netif_setup_tc(struct net_device *dev, unsigned int txq)
 2318{
 2319	int i;
 2320	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
 2321
 2322	/* If TC0 is invalidated disable TC mapping */
 2323	if (tc->offset + tc->count > txq) {
 2324		netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
 2325		dev->num_tc = 0;
 2326		return;
 2327	}
 2328
 2329	/* Invalidated prio to tc mappings set to TC0 */
 2330	for (i = 1; i < TC_BITMASK + 1; i++) {
 2331		int q = netdev_get_prio_tc_map(dev, i);
 2332
 2333		tc = &dev->tc_to_txq[q];
 2334		if (tc->offset + tc->count > txq) {
 2335			netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
 2336				    i, q);
 2337			netdev_set_prio_tc_map(dev, i, 0);
 2338		}
 2339	}
 2340}
 2341
 2342int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
 2343{
 2344	if (dev->num_tc) {
 2345		struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
 2346		int i;
 2347
 2348		/* walk through the TCs and see if it falls into any of them */
 2349		for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
 2350			if ((txq - tc->offset) < tc->count)
 2351				return i;
 2352		}
 2353
 2354		/* didn't find it, just return -1 to indicate no match */
 2355		return -1;
 2356	}
 2357
 2358	return 0;
 2359}
 2360EXPORT_SYMBOL(netdev_txq_to_tc);
 2361
 2362#ifdef CONFIG_XPS
 2363static struct static_key xps_needed __read_mostly;
 2364static struct static_key xps_rxqs_needed __read_mostly;
 2365static DEFINE_MUTEX(xps_map_mutex);
 2366#define xmap_dereference(P)		\
 2367	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
 2368
 2369static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
 2370			     struct xps_dev_maps *old_maps, int tci, u16 index)
 2371{
 2372	struct xps_map *map = NULL;
 2373	int pos;
 2374
 2375	map = xmap_dereference(dev_maps->attr_map[tci]);
 2376	if (!map)
 2377		return false;
 2378
 2379	for (pos = map->len; pos--;) {
 2380		if (map->queues[pos] != index)
 2381			continue;
 2382
 2383		if (map->len > 1) {
 2384			map->queues[pos] = map->queues[--map->len];
 
 
 
 2385			break;
 2386		}
 2387
 2388		if (old_maps)
 2389			RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
 2390		RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
 2391		kfree_rcu(map, rcu);
 2392		return false;
 2393	}
 2394
 2395	return true;
 2396}
 2397
 2398static bool remove_xps_queue_cpu(struct net_device *dev,
 2399				 struct xps_dev_maps *dev_maps,
 2400				 int cpu, u16 offset, u16 count)
 2401{
 2402	int num_tc = dev_maps->num_tc;
 
 2403	bool active = false;
 2404	int tci;
 2405
 2406	for (tci = cpu * num_tc; num_tc--; tci++) {
 2407		int i, j;
 
 
 
 2408
 2409		for (i = count, j = offset; i--; j++) {
 2410			if (!remove_xps_queue(dev_maps, NULL, tci, j))
 
 2411				break;
 2412		}
 2413
 2414		active |= i < 0;
 2415	}
 2416
 2417	return active;
 2418}
 2419
 2420static void reset_xps_maps(struct net_device *dev,
 2421			   struct xps_dev_maps *dev_maps,
 2422			   enum xps_map_type type)
 2423{
 2424	static_key_slow_dec_cpuslocked(&xps_needed);
 2425	if (type == XPS_RXQS)
 2426		static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
 2427
 2428	RCU_INIT_POINTER(dev->xps_maps[type], NULL);
 2429
 2430	kfree_rcu(dev_maps, rcu);
 2431}
 2432
 2433static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
 2434			   u16 offset, u16 count)
 2435{
 2436	struct xps_dev_maps *dev_maps;
 2437	bool active = false;
 2438	int i, j;
 2439
 2440	dev_maps = xmap_dereference(dev->xps_maps[type]);
 2441	if (!dev_maps)
 2442		return;
 2443
 2444	for (j = 0; j < dev_maps->nr_ids; j++)
 2445		active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
 2446	if (!active)
 2447		reset_xps_maps(dev, dev_maps, type);
 2448
 2449	if (type == XPS_CPUS) {
 2450		for (i = offset + (count - 1); count--; i--)
 2451			netdev_queue_numa_node_write(
 2452				netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
 2453	}
 2454}
 2455
 2456static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
 2457				   u16 count)
 2458{
 2459	if (!static_key_false(&xps_needed))
 2460		return;
 2461
 2462	cpus_read_lock();
 2463	mutex_lock(&xps_map_mutex);
 2464
 2465	if (static_key_false(&xps_rxqs_needed))
 2466		clean_xps_maps(dev, XPS_RXQS, offset, count);
 2467
 2468	clean_xps_maps(dev, XPS_CPUS, offset, count);
 2469
 
 2470	mutex_unlock(&xps_map_mutex);
 2471	cpus_read_unlock();
 2472}
 2473
 2474static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
 2475{
 2476	netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
 2477}
 2478
 2479static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
 2480				      u16 index, bool is_rxqs_map)
 2481{
 2482	struct xps_map *new_map;
 2483	int alloc_len = XPS_MIN_MAP_ALLOC;
 2484	int i, pos;
 2485
 2486	for (pos = 0; map && pos < map->len; pos++) {
 2487		if (map->queues[pos] != index)
 2488			continue;
 2489		return map;
 2490	}
 2491
 2492	/* Need to add tx-queue to this CPU's/rx-queue's existing map */
 2493	if (map) {
 2494		if (pos < map->alloc_len)
 2495			return map;
 2496
 2497		alloc_len = map->alloc_len * 2;
 2498	}
 2499
 2500	/* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
 2501	 *  map
 2502	 */
 2503	if (is_rxqs_map)
 2504		new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
 2505	else
 2506		new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
 2507				       cpu_to_node(attr_index));
 2508	if (!new_map)
 2509		return NULL;
 2510
 2511	for (i = 0; i < pos; i++)
 2512		new_map->queues[i] = map->queues[i];
 2513	new_map->alloc_len = alloc_len;
 2514	new_map->len = pos;
 2515
 2516	return new_map;
 2517}
 2518
 2519/* Copy xps maps at a given index */
 2520static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
 2521			      struct xps_dev_maps *new_dev_maps, int index,
 2522			      int tc, bool skip_tc)
 2523{
 2524	int i, tci = index * dev_maps->num_tc;
 2525	struct xps_map *map;
 2526
 2527	/* copy maps belonging to foreign traffic classes */
 2528	for (i = 0; i < dev_maps->num_tc; i++, tci++) {
 2529		if (i == tc && skip_tc)
 2530			continue;
 2531
 2532		/* fill in the new device map from the old device map */
 2533		map = xmap_dereference(dev_maps->attr_map[tci]);
 2534		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
 2535	}
 2536}
 2537
 2538/* Must be called under cpus_read_lock */
 2539int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
 2540			  u16 index, enum xps_map_type type)
 2541{
 2542	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
 2543	const unsigned long *online_mask = NULL;
 2544	bool active = false, copy = false;
 2545	int i, j, tci, numa_node_id = -2;
 2546	int maps_sz, num_tc = 1, tc = 0;
 2547	struct xps_map *map, *new_map;
 2548	unsigned int nr_ids;
 2549
 2550	WARN_ON_ONCE(index >= dev->num_tx_queues);
 2551
 2552	if (dev->num_tc) {
 2553		/* Do not allow XPS on subordinate device directly */
 2554		num_tc = dev->num_tc;
 2555		if (num_tc < 0)
 2556			return -EINVAL;
 2557
 2558		/* If queue belongs to subordinate dev use its map */
 2559		dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
 2560
 2561		tc = netdev_txq_to_tc(dev, index);
 2562		if (tc < 0)
 2563			return -EINVAL;
 2564	}
 2565
 2566	mutex_lock(&xps_map_mutex);
 2567
 2568	dev_maps = xmap_dereference(dev->xps_maps[type]);
 2569	if (type == XPS_RXQS) {
 2570		maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
 2571		nr_ids = dev->num_rx_queues;
 2572	} else {
 2573		maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
 2574		if (num_possible_cpus() > 1)
 2575			online_mask = cpumask_bits(cpu_online_mask);
 2576		nr_ids = nr_cpu_ids;
 2577	}
 2578
 2579	if (maps_sz < L1_CACHE_BYTES)
 2580		maps_sz = L1_CACHE_BYTES;
 2581
 2582	/* The old dev_maps could be larger or smaller than the one we're
 2583	 * setting up now, as dev->num_tc or nr_ids could have been updated in
 2584	 * between. We could try to be smart, but let's be safe instead and only
 2585	 * copy foreign traffic classes if the two map sizes match.
 2586	 */
 2587	if (dev_maps &&
 2588	    dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
 2589		copy = true;
 2590
 2591	/* allocate memory for queue storage */
 2592	for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
 2593	     j < nr_ids;) {
 2594		if (!new_dev_maps) {
 2595			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
 2596			if (!new_dev_maps) {
 2597				mutex_unlock(&xps_map_mutex);
 2598				return -ENOMEM;
 2599			}
 2600
 2601			new_dev_maps->nr_ids = nr_ids;
 2602			new_dev_maps->num_tc = num_tc;
 
 
 
 2603		}
 2604
 2605		tci = j * num_tc + tc;
 2606		map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
 2607
 2608		map = expand_xps_map(map, j, index, type == XPS_RXQS);
 2609		if (!map)
 2610			goto error;
 2611
 2612		RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
 2613	}
 2614
 2615	if (!new_dev_maps)
 2616		goto out_no_new_maps;
 2617
 2618	if (!dev_maps) {
 2619		/* Increment static keys at most once per type */
 2620		static_key_slow_inc_cpuslocked(&xps_needed);
 2621		if (type == XPS_RXQS)
 2622			static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
 2623	}
 2624
 2625	for (j = 0; j < nr_ids; j++) {
 2626		bool skip_tc = false;
 2627
 2628		tci = j * num_tc + tc;
 2629		if (netif_attr_test_mask(j, mask, nr_ids) &&
 2630		    netif_attr_test_online(j, online_mask, nr_ids)) {
 2631			/* add tx-queue to CPU/rx-queue maps */
 2632			int pos = 0;
 2633
 2634			skip_tc = true;
 2635
 2636			map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2637			while ((pos < map->len) && (map->queues[pos] != index))
 2638				pos++;
 2639
 2640			if (pos == map->len)
 2641				map->queues[map->len++] = index;
 2642#ifdef CONFIG_NUMA
 2643			if (type == XPS_CPUS) {
 2644				if (numa_node_id == -2)
 2645					numa_node_id = cpu_to_node(j);
 2646				else if (numa_node_id != cpu_to_node(j))
 2647					numa_node_id = -1;
 2648			}
 2649#endif
 
 
 
 
 2650		}
 2651
 2652		if (copy)
 2653			xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
 2654					  skip_tc);
 2655	}
 2656
 2657	rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
 2658
 2659	/* Cleanup old maps */
 2660	if (!dev_maps)
 2661		goto out_no_old_maps;
 2662
 2663	for (j = 0; j < dev_maps->nr_ids; j++) {
 2664		for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
 2665			map = xmap_dereference(dev_maps->attr_map[tci]);
 2666			if (!map)
 2667				continue;
 2668
 2669			if (copy) {
 2670				new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2671				if (map == new_map)
 2672					continue;
 2673			}
 2674
 2675			RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
 2676			kfree_rcu(map, rcu);
 2677		}
 2678	}
 2679
 2680	old_dev_maps = dev_maps;
 
 2681
 2682out_no_old_maps:
 2683	dev_maps = new_dev_maps;
 2684	active = true;
 2685
 2686out_no_new_maps:
 2687	if (type == XPS_CPUS)
 2688		/* update Tx queue numa node */
 2689		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
 2690					     (numa_node_id >= 0) ?
 2691					     numa_node_id : NUMA_NO_NODE);
 2692
 2693	if (!dev_maps)
 2694		goto out_no_maps;
 2695
 2696	/* removes tx-queue from unused CPUs/rx-queues */
 2697	for (j = 0; j < dev_maps->nr_ids; j++) {
 2698		tci = j * dev_maps->num_tc;
 2699
 2700		for (i = 0; i < dev_maps->num_tc; i++, tci++) {
 2701			if (i == tc &&
 2702			    netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
 2703			    netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
 2704				continue;
 2705
 2706			active |= remove_xps_queue(dev_maps,
 2707						   copy ? old_dev_maps : NULL,
 2708						   tci, index);
 2709		}
 2710	}
 2711
 2712	if (old_dev_maps)
 2713		kfree_rcu(old_dev_maps, rcu);
 2714
 2715	/* free map if not active */
 2716	if (!active)
 2717		reset_xps_maps(dev, dev_maps, type);
 
 
 2718
 2719out_no_maps:
 2720	mutex_unlock(&xps_map_mutex);
 2721
 2722	return 0;
 2723error:
 2724	/* remove any maps that we added */
 2725	for (j = 0; j < nr_ids; j++) {
 2726		for (i = num_tc, tci = j * num_tc; i--; tci++) {
 2727			new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
 2728			map = copy ?
 2729			      xmap_dereference(dev_maps->attr_map[tci]) :
 2730			      NULL;
 2731			if (new_map && new_map != map)
 2732				kfree(new_map);
 2733		}
 2734	}
 2735
 2736	mutex_unlock(&xps_map_mutex);
 2737
 2738	kfree(new_dev_maps);
 2739	return -ENOMEM;
 2740}
 2741EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
 2742
 2743int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
 2744			u16 index)
 2745{
 2746	int ret;
 2747
 2748	cpus_read_lock();
 2749	ret =  __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
 2750	cpus_read_unlock();
 2751
 2752	return ret;
 2753}
 2754EXPORT_SYMBOL(netif_set_xps_queue);
 2755
 2756#endif
 2757static void netdev_unbind_all_sb_channels(struct net_device *dev)
 2758{
 2759	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
 2760
 2761	/* Unbind any subordinate channels */
 2762	while (txq-- != &dev->_tx[0]) {
 2763		if (txq->sb_dev)
 2764			netdev_unbind_sb_channel(dev, txq->sb_dev);
 2765	}
 2766}
 2767
 2768void netdev_reset_tc(struct net_device *dev)
 2769{
 2770#ifdef CONFIG_XPS
 2771	netif_reset_xps_queues_gt(dev, 0);
 2772#endif
 2773	netdev_unbind_all_sb_channels(dev);
 2774
 2775	/* Reset TC configuration of device */
 2776	dev->num_tc = 0;
 2777	memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
 2778	memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
 2779}
 2780EXPORT_SYMBOL(netdev_reset_tc);
 2781
 2782int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
 2783{
 2784	if (tc >= dev->num_tc)
 2785		return -EINVAL;
 2786
 2787#ifdef CONFIG_XPS
 2788	netif_reset_xps_queues(dev, offset, count);
 2789#endif
 2790	dev->tc_to_txq[tc].count = count;
 2791	dev->tc_to_txq[tc].offset = offset;
 2792	return 0;
 2793}
 2794EXPORT_SYMBOL(netdev_set_tc_queue);
 2795
 2796int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
 2797{
 2798	if (num_tc > TC_MAX_QUEUE)
 2799		return -EINVAL;
 2800
 2801#ifdef CONFIG_XPS
 2802	netif_reset_xps_queues_gt(dev, 0);
 2803#endif
 2804	netdev_unbind_all_sb_channels(dev);
 2805
 2806	dev->num_tc = num_tc;
 2807	return 0;
 2808}
 2809EXPORT_SYMBOL(netdev_set_num_tc);
 2810
 2811void netdev_unbind_sb_channel(struct net_device *dev,
 2812			      struct net_device *sb_dev)
 2813{
 2814	struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
 2815
 2816#ifdef CONFIG_XPS
 2817	netif_reset_xps_queues_gt(sb_dev, 0);
 2818#endif
 2819	memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
 2820	memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
 2821
 2822	while (txq-- != &dev->_tx[0]) {
 2823		if (txq->sb_dev == sb_dev)
 2824			txq->sb_dev = NULL;
 2825	}
 2826}
 2827EXPORT_SYMBOL(netdev_unbind_sb_channel);
 2828
 2829int netdev_bind_sb_channel_queue(struct net_device *dev,
 2830				 struct net_device *sb_dev,
 2831				 u8 tc, u16 count, u16 offset)
 2832{
 2833	/* Make certain the sb_dev and dev are already configured */
 2834	if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
 2835		return -EINVAL;
 2836
 2837	/* We cannot hand out queues we don't have */
 2838	if ((offset + count) > dev->real_num_tx_queues)
 2839		return -EINVAL;
 2840
 2841	/* Record the mapping */
 2842	sb_dev->tc_to_txq[tc].count = count;
 2843	sb_dev->tc_to_txq[tc].offset = offset;
 2844
 2845	/* Provide a way for Tx queue to find the tc_to_txq map or
 2846	 * XPS map for itself.
 2847	 */
 2848	while (count--)
 2849		netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
 2850
 2851	return 0;
 2852}
 2853EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
 2854
 2855int netdev_set_sb_channel(struct net_device *dev, u16 channel)
 2856{
 2857	/* Do not use a multiqueue device to represent a subordinate channel */
 2858	if (netif_is_multiqueue(dev))
 2859		return -ENODEV;
 2860
 2861	/* We allow channels 1 - 32767 to be used for subordinate channels.
 2862	 * Channel 0 is meant to be "native" mode and used only to represent
 2863	 * the main root device. We allow writing 0 to reset the device back
 2864	 * to normal mode after being used as a subordinate channel.
 2865	 */
 2866	if (channel > S16_MAX)
 2867		return -EINVAL;
 2868
 2869	dev->num_tc = -channel;
 2870
 2871	return 0;
 2872}
 2873EXPORT_SYMBOL(netdev_set_sb_channel);
 2874
 2875/*
 2876 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
 2877 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
 2878 */
 2879int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
 2880{
 2881	bool disabling;
 2882	int rc;
 2883
 2884	disabling = txq < dev->real_num_tx_queues;
 2885
 2886	if (txq < 1 || txq > dev->num_tx_queues)
 2887		return -EINVAL;
 2888
 2889	if (dev->reg_state == NETREG_REGISTERED ||
 2890	    dev->reg_state == NETREG_UNREGISTERING) {
 2891		ASSERT_RTNL();
 2892
 2893		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
 2894						  txq);
 2895		if (rc)
 2896			return rc;
 2897
 2898		if (dev->num_tc)
 2899			netif_setup_tc(dev, txq);
 2900
 2901		dev_qdisc_change_real_num_tx(dev, txq);
 2902
 2903		dev->real_num_tx_queues = txq;
 2904
 2905		if (disabling) {
 2906			synchronize_net();
 2907			qdisc_reset_all_tx_gt(dev, txq);
 2908#ifdef CONFIG_XPS
 2909			netif_reset_xps_queues_gt(dev, txq);
 2910#endif
 2911		}
 2912	} else {
 2913		dev->real_num_tx_queues = txq;
 2914	}
 2915
 
 2916	return 0;
 2917}
 2918EXPORT_SYMBOL(netif_set_real_num_tx_queues);
 2919
 2920#ifdef CONFIG_SYSFS
 2921/**
 2922 *	netif_set_real_num_rx_queues - set actual number of RX queues used
 2923 *	@dev: Network device
 2924 *	@rxq: Actual number of RX queues
 2925 *
 2926 *	This must be called either with the rtnl_lock held or before
 2927 *	registration of the net device.  Returns 0 on success, or a
 2928 *	negative error code.  If called before registration, it always
 2929 *	succeeds.
 2930 */
 2931int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
 2932{
 2933	int rc;
 2934
 2935	if (rxq < 1 || rxq > dev->num_rx_queues)
 2936		return -EINVAL;
 2937
 2938	if (dev->reg_state == NETREG_REGISTERED) {
 2939		ASSERT_RTNL();
 2940
 2941		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
 2942						  rxq);
 2943		if (rc)
 2944			return rc;
 2945	}
 2946
 2947	dev->real_num_rx_queues = rxq;
 2948	return 0;
 2949}
 2950EXPORT_SYMBOL(netif_set_real_num_rx_queues);
 2951#endif
 2952
 2953/**
 2954 *	netif_set_real_num_queues - set actual number of RX and TX queues used
 2955 *	@dev: Network device
 2956 *	@txq: Actual number of TX queues
 2957 *	@rxq: Actual number of RX queues
 2958 *
 2959 *	Set the real number of both TX and RX queues.
 2960 *	Does nothing if the number of queues is already correct.
 2961 */
 2962int netif_set_real_num_queues(struct net_device *dev,
 2963			      unsigned int txq, unsigned int rxq)
 2964{
 2965	unsigned int old_rxq = dev->real_num_rx_queues;
 2966	int err;
 2967
 2968	if (txq < 1 || txq > dev->num_tx_queues ||
 2969	    rxq < 1 || rxq > dev->num_rx_queues)
 2970		return -EINVAL;
 2971
 2972	/* Start from increases, so the error path only does decreases -
 2973	 * decreases can't fail.
 2974	 */
 2975	if (rxq > dev->real_num_rx_queues) {
 2976		err = netif_set_real_num_rx_queues(dev, rxq);
 2977		if (err)
 2978			return err;
 2979	}
 2980	if (txq > dev->real_num_tx_queues) {
 2981		err = netif_set_real_num_tx_queues(dev, txq);
 2982		if (err)
 2983			goto undo_rx;
 2984	}
 2985	if (rxq < dev->real_num_rx_queues)
 2986		WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
 2987	if (txq < dev->real_num_tx_queues)
 2988		WARN_ON(netif_set_real_num_tx_queues(dev, txq));
 2989
 2990	return 0;
 2991undo_rx:
 2992	WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
 2993	return err;
 2994}
 2995EXPORT_SYMBOL(netif_set_real_num_queues);
 2996
 2997/**
 2998 * netif_set_tso_max_size() - set the max size of TSO frames supported
 2999 * @dev:	netdev to update
 3000 * @size:	max skb->len of a TSO frame
 3001 *
 3002 * Set the limit on the size of TSO super-frames the device can handle.
 3003 * Unless explicitly set the stack will assume the value of
 3004 * %GSO_LEGACY_MAX_SIZE.
 3005 */
 3006void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
 3007{
 3008	dev->tso_max_size = min(GSO_MAX_SIZE, size);
 3009	if (size < READ_ONCE(dev->gso_max_size))
 3010		netif_set_gso_max_size(dev, size);
 3011	if (size < READ_ONCE(dev->gso_ipv4_max_size))
 3012		netif_set_gso_ipv4_max_size(dev, size);
 3013}
 3014EXPORT_SYMBOL(netif_set_tso_max_size);
 3015
 3016/**
 3017 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
 3018 * @dev:	netdev to update
 3019 * @segs:	max number of TCP segments
 3020 *
 3021 * Set the limit on the number of TCP segments the device can generate from
 3022 * a single TSO super-frame.
 3023 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
 3024 */
 3025void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
 3026{
 3027	dev->tso_max_segs = segs;
 3028	if (segs < READ_ONCE(dev->gso_max_segs))
 3029		netif_set_gso_max_segs(dev, segs);
 3030}
 3031EXPORT_SYMBOL(netif_set_tso_max_segs);
 3032
 3033/**
 3034 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
 3035 * @to:		netdev to update
 3036 * @from:	netdev from which to copy the limits
 3037 */
 3038void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
 3039{
 3040	netif_set_tso_max_size(to, from->tso_max_size);
 3041	netif_set_tso_max_segs(to, from->tso_max_segs);
 3042}
 3043EXPORT_SYMBOL(netif_inherit_tso_max);
 3044
 3045/**
 3046 * netif_get_num_default_rss_queues - default number of RSS queues
 3047 *
 3048 * Default value is the number of physical cores if there are only 1 or 2, or
 3049 * divided by 2 if there are more.
 3050 */
 3051int netif_get_num_default_rss_queues(void)
 3052{
 3053	cpumask_var_t cpus;
 3054	int cpu, count = 0;
 3055
 3056	if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
 3057		return 1;
 3058
 3059	cpumask_copy(cpus, cpu_online_mask);
 3060	for_each_cpu(cpu, cpus) {
 3061		++count;
 3062		cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
 3063	}
 3064	free_cpumask_var(cpus);
 3065
 3066	return count > 2 ? DIV_ROUND_UP(count, 2) : count;
 3067}
 3068EXPORT_SYMBOL(netif_get_num_default_rss_queues);
 3069
 3070static void __netif_reschedule(struct Qdisc *q)
 3071{
 3072	struct softnet_data *sd;
 3073	unsigned long flags;
 3074
 3075	local_irq_save(flags);
 3076	sd = this_cpu_ptr(&softnet_data);
 3077	q->next_sched = NULL;
 3078	*sd->output_queue_tailp = q;
 3079	sd->output_queue_tailp = &q->next_sched;
 3080	raise_softirq_irqoff(NET_TX_SOFTIRQ);
 3081	local_irq_restore(flags);
 3082}
 3083
 3084void __netif_schedule(struct Qdisc *q)
 3085{
 3086	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
 3087		__netif_reschedule(q);
 3088}
 3089EXPORT_SYMBOL(__netif_schedule);
 3090
 3091struct dev_kfree_skb_cb {
 3092	enum skb_drop_reason reason;
 3093};
 3094
 3095static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
 3096{
 3097	return (struct dev_kfree_skb_cb *)skb->cb;
 3098}
 3099
 3100void netif_schedule_queue(struct netdev_queue *txq)
 3101{
 3102	rcu_read_lock();
 3103	if (!netif_xmit_stopped(txq)) {
 3104		struct Qdisc *q = rcu_dereference(txq->qdisc);
 3105
 3106		__netif_schedule(q);
 3107	}
 3108	rcu_read_unlock();
 3109}
 3110EXPORT_SYMBOL(netif_schedule_queue);
 3111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3112void netif_tx_wake_queue(struct netdev_queue *dev_queue)
 3113{
 3114	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
 3115		struct Qdisc *q;
 3116
 3117		rcu_read_lock();
 3118		q = rcu_dereference(dev_queue->qdisc);
 3119		__netif_schedule(q);
 3120		rcu_read_unlock();
 3121	}
 3122}
 3123EXPORT_SYMBOL(netif_tx_wake_queue);
 3124
 3125void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
 3126{
 3127	unsigned long flags;
 3128
 3129	if (unlikely(!skb))
 3130		return;
 3131
 3132	if (likely(refcount_read(&skb->users) == 1)) {
 3133		smp_rmb();
 3134		refcount_set(&skb->users, 0);
 3135	} else if (likely(!refcount_dec_and_test(&skb->users))) {
 3136		return;
 3137	}
 3138	get_kfree_skb_cb(skb)->reason = reason;
 3139	local_irq_save(flags);
 3140	skb->next = __this_cpu_read(softnet_data.completion_queue);
 3141	__this_cpu_write(softnet_data.completion_queue, skb);
 3142	raise_softirq_irqoff(NET_TX_SOFTIRQ);
 3143	local_irq_restore(flags);
 3144}
 3145EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
 3146
 3147void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
 3148{
 3149	if (in_hardirq() || irqs_disabled())
 3150		dev_kfree_skb_irq_reason(skb, reason);
 3151	else
 3152		kfree_skb_reason(skb, reason);
 3153}
 3154EXPORT_SYMBOL(dev_kfree_skb_any_reason);
 3155
 3156
 3157/**
 3158 * netif_device_detach - mark device as removed
 3159 * @dev: network device
 3160 *
 3161 * Mark device as removed from system and therefore no longer available.
 3162 */
 3163void netif_device_detach(struct net_device *dev)
 3164{
 3165	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
 3166	    netif_running(dev)) {
 3167		netif_tx_stop_all_queues(dev);
 3168	}
 3169}
 3170EXPORT_SYMBOL(netif_device_detach);
 3171
 3172/**
 3173 * netif_device_attach - mark device as attached
 3174 * @dev: network device
 3175 *
 3176 * Mark device as attached from system and restart if needed.
 3177 */
 3178void netif_device_attach(struct net_device *dev)
 3179{
 3180	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
 3181	    netif_running(dev)) {
 3182		netif_tx_wake_all_queues(dev);
 3183		__netdev_watchdog_up(dev);
 3184	}
 3185}
 3186EXPORT_SYMBOL(netif_device_attach);
 3187
 3188/*
 3189 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
 3190 * to be used as a distribution range.
 3191 */
 3192static u16 skb_tx_hash(const struct net_device *dev,
 3193		       const struct net_device *sb_dev,
 3194		       struct sk_buff *skb)
 3195{
 3196	u32 hash;
 3197	u16 qoffset = 0;
 3198	u16 qcount = dev->real_num_tx_queues;
 3199
 3200	if (dev->num_tc) {
 3201		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
 3202
 3203		qoffset = sb_dev->tc_to_txq[tc].offset;
 3204		qcount = sb_dev->tc_to_txq[tc].count;
 3205		if (unlikely(!qcount)) {
 3206			net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
 3207					     sb_dev->name, qoffset, tc);
 3208			qoffset = 0;
 3209			qcount = dev->real_num_tx_queues;
 3210		}
 3211	}
 3212
 3213	if (skb_rx_queue_recorded(skb)) {
 3214		DEBUG_NET_WARN_ON_ONCE(qcount == 0);
 3215		hash = skb_get_rx_queue(skb);
 3216		if (hash >= qoffset)
 3217			hash -= qoffset;
 3218		while (unlikely(hash >= qcount))
 3219			hash -= qcount;
 3220		return hash + qoffset;
 
 
 
 
 3221	}
 3222
 3223	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
 3224}
 
 3225
 3226void skb_warn_bad_offload(const struct sk_buff *skb)
 3227{
 3228	static const netdev_features_t null_features;
 3229	struct net_device *dev = skb->dev;
 3230	const char *name = "";
 3231
 3232	if (!net_ratelimit())
 3233		return;
 3234
 3235	if (dev) {
 3236		if (dev->dev.parent)
 3237			name = dev_driver_string(dev->dev.parent);
 3238		else
 3239			name = netdev_name(dev);
 3240	}
 3241	skb_dump(KERN_WARNING, skb, false);
 3242	WARN(1, "%s: caps=(%pNF, %pNF)\n",
 3243	     name, dev ? &dev->features : &null_features,
 3244	     skb->sk ? &skb->sk->sk_route_caps : &null_features);
 
 
 3245}
 3246
 3247/*
 3248 * Invalidate hardware checksum when packet is to be mangled, and
 3249 * complete checksum manually on outgoing path.
 3250 */
 3251int skb_checksum_help(struct sk_buff *skb)
 3252{
 3253	__wsum csum;
 3254	int ret = 0, offset;
 3255
 3256	if (skb->ip_summed == CHECKSUM_COMPLETE)
 3257		goto out_set_summed;
 3258
 3259	if (unlikely(skb_is_gso(skb))) {
 3260		skb_warn_bad_offload(skb);
 3261		return -EINVAL;
 3262	}
 3263
 3264	/* Before computing a checksum, we should make sure no frag could
 3265	 * be modified by an external entity : checksum could be wrong.
 3266	 */
 3267	if (skb_has_shared_frag(skb)) {
 3268		ret = __skb_linearize(skb);
 3269		if (ret)
 3270			goto out;
 3271	}
 3272
 3273	offset = skb_checksum_start_offset(skb);
 3274	ret = -EINVAL;
 3275	if (unlikely(offset >= skb_headlen(skb))) {
 3276		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
 3277		WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
 3278			  offset, skb_headlen(skb));
 3279		goto out;
 3280	}
 3281	csum = skb_checksum(skb, offset, skb->len - offset, 0);
 3282
 3283	offset += skb->csum_offset;
 3284	if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
 3285		DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
 3286		WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
 3287			  offset + sizeof(__sum16), skb_headlen(skb));
 3288		goto out;
 
 
 3289	}
 3290	ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
 3291	if (ret)
 3292		goto out;
 3293
 3294	*(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
 3295out_set_summed:
 3296	skb->ip_summed = CHECKSUM_NONE;
 3297out:
 3298	return ret;
 3299}
 3300EXPORT_SYMBOL(skb_checksum_help);
 3301
 3302int skb_crc32c_csum_help(struct sk_buff *skb)
 3303{
 3304	__le32 crc32c_csum;
 3305	int ret = 0, offset, start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3306
 3307	if (skb->ip_summed != CHECKSUM_PARTIAL)
 3308		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3309
 3310	if (unlikely(skb_is_gso(skb)))
 3311		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3312
 3313	/* Before computing a checksum, we should make sure no frag could
 3314	 * be modified by an external entity : checksum could be wrong.
 3315	 */
 3316	if (unlikely(skb_has_shared_frag(skb))) {
 3317		ret = __skb_linearize(skb);
 3318		if (ret)
 3319			goto out;
 3320	}
 3321	start = skb_checksum_start_offset(skb);
 3322	offset = start + offsetof(struct sctphdr, checksum);
 3323	if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
 3324		ret = -EINVAL;
 3325		goto out;
 3326	}
 3327
 3328	ret = skb_ensure_writable(skb, offset + sizeof(__le32));
 3329	if (ret)
 3330		goto out;
 3331
 3332	crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
 3333						  skb->len - start, ~(__u32)0,
 3334						  crc32c_csum_stub));
 3335	*(__le32 *)(skb->data + offset) = crc32c_csum;
 3336	skb_reset_csum_not_inet(skb);
 3337out:
 3338	return ret;
 3339}
 
 3340
 3341__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
 3342{
 3343	__be16 type = skb->protocol;
 3344
 3345	/* Tunnel gso handlers can set protocol to ethernet. */
 3346	if (type == htons(ETH_P_TEB)) {
 3347		struct ethhdr *eth;
 3348
 3349		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
 3350			return 0;
 3351
 3352		eth = (struct ethhdr *)skb->data;
 3353		type = eth->h_proto;
 3354	}
 3355
 3356	return vlan_get_protocol_and_depth(skb, type, depth);
 3357}
 3358
 
 
 
 
 
 
 
 
 
 
 
 
 3359
 3360/* Take action when hardware reception checksum errors are detected. */
 3361#ifdef CONFIG_BUG
 3362static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3363{
 3364	netdev_err(dev, "hw csum failure\n");
 3365	skb_dump(KERN_ERR, skb, true);
 3366	dump_stack();
 
 3367}
 3368
 3369void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3370{
 3371	DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 3372}
 3373EXPORT_SYMBOL(netdev_rx_csum_fault);
 3374#endif
 3375
 3376/* XXX: check that highmem exists at all on the given machine. */
 
 
 
 
 3377static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
 3378{
 3379#ifdef CONFIG_HIGHMEM
 3380	int i;
 3381
 3382	if (!(dev->features & NETIF_F_HIGHDMA)) {
 3383		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 3384			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 3385
 3386			if (PageHighMem(skb_frag_page(frag)))
 3387				return 1;
 3388		}
 3389	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 3390#endif
 3391	return 0;
 3392}
 3393
 3394/* If MPLS offload request, verify we are testing hardware MPLS features
 3395 * instead of standard features for the netdev.
 3396 */
 3397#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
 3398static netdev_features_t net_mpls_features(struct sk_buff *skb,
 3399					   netdev_features_t features,
 3400					   __be16 type)
 3401{
 3402	if (eth_p_mpls(type))
 3403		features &= skb->dev->mpls_features;
 3404
 3405	return features;
 3406}
 3407#else
 3408static netdev_features_t net_mpls_features(struct sk_buff *skb,
 3409					   netdev_features_t features,
 3410					   __be16 type)
 3411{
 3412	return features;
 3413}
 3414#endif
 3415
 3416static netdev_features_t harmonize_features(struct sk_buff *skb,
 3417	netdev_features_t features)
 3418{
 
 3419	__be16 type;
 3420
 3421	type = skb_network_protocol(skb, NULL);
 3422	features = net_mpls_features(skb, features, type);
 3423
 3424	if (skb->ip_summed != CHECKSUM_NONE &&
 3425	    !can_checksum_protocol(features, type)) {
 3426		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
 3427	}
 3428	if (illegal_highdma(skb->dev, skb))
 3429		features &= ~NETIF_F_SG;
 
 3430
 3431	return features;
 3432}
 3433
 3434netdev_features_t passthru_features_check(struct sk_buff *skb,
 3435					  struct net_device *dev,
 3436					  netdev_features_t features)
 3437{
 3438	return features;
 3439}
 3440EXPORT_SYMBOL(passthru_features_check);
 3441
 3442static netdev_features_t dflt_features_check(struct sk_buff *skb,
 3443					     struct net_device *dev,
 3444					     netdev_features_t features)
 3445{
 3446	return vlan_features_check(skb, features);
 3447}
 3448
 3449static netdev_features_t gso_features_check(const struct sk_buff *skb,
 3450					    struct net_device *dev,
 3451					    netdev_features_t features)
 3452{
 3453	u16 gso_segs = skb_shinfo(skb)->gso_segs;
 3454
 3455	if (gso_segs > READ_ONCE(dev->gso_max_segs))
 3456		return features & ~NETIF_F_GSO_MASK;
 3457
 3458	if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
 3459		return features & ~NETIF_F_GSO_MASK;
 3460
 3461	if (!skb_shinfo(skb)->gso_type) {
 3462		skb_warn_bad_offload(skb);
 3463		return features & ~NETIF_F_GSO_MASK;
 3464	}
 3465
 3466	/* Support for GSO partial features requires software
 3467	 * intervention before we can actually process the packets
 3468	 * so we need to strip support for any partial features now
 3469	 * and we can pull them back in after we have partially
 3470	 * segmented the frame.
 3471	 */
 3472	if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
 3473		features &= ~dev->gso_partial_features;
 3474
 3475	/* Make sure to clear the IPv4 ID mangling feature if the
 3476	 * IPv4 header has the potential to be fragmented.
 3477	 */
 3478	if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
 3479		struct iphdr *iph = skb->encapsulation ?
 3480				    inner_ip_hdr(skb) : ip_hdr(skb);
 3481
 3482		if (!(iph->frag_off & htons(IP_DF)))
 3483			features &= ~NETIF_F_TSO_MANGLEID;
 3484	}
 3485
 3486	return features;
 3487}
 3488
 3489netdev_features_t netif_skb_features(struct sk_buff *skb)
 3490{
 3491	struct net_device *dev = skb->dev;
 3492	netdev_features_t features = dev->features;
 
 3493
 3494	if (skb_is_gso(skb))
 3495		features = gso_features_check(skb, dev, features);
 3496
 3497	/* If encapsulation offload request, verify we are testing
 3498	 * hardware encapsulation features instead of standard
 3499	 * features for the netdev
 3500	 */
 3501	if (skb->encapsulation)
 3502		features &= dev->hw_enc_features;
 3503
 3504	if (skb_vlan_tagged(skb))
 3505		features = netdev_intersect_features(features,
 3506						     dev->vlan_features |
 3507						     NETIF_F_HW_VLAN_CTAG_TX |
 3508						     NETIF_F_HW_VLAN_STAG_TX);
 3509
 3510	if (dev->netdev_ops->ndo_features_check)
 3511		features &= dev->netdev_ops->ndo_features_check(skb, dev,
 3512								features);
 3513	else
 3514		features &= dflt_features_check(skb, dev, features);
 3515
 3516	return harmonize_features(skb, features);
 3517}
 3518EXPORT_SYMBOL(netif_skb_features);
 3519
 3520static int xmit_one(struct sk_buff *skb, struct net_device *dev,
 3521		    struct netdev_queue *txq, bool more)
 3522{
 3523	unsigned int len;
 3524	int rc;
 3525
 3526	if (dev_nit_active(dev))
 3527		dev_queue_xmit_nit(skb, dev);
 3528
 3529	len = skb->len;
 3530	trace_net_dev_start_xmit(skb, dev);
 3531	rc = netdev_start_xmit(skb, dev, txq, more);
 3532	trace_net_dev_xmit(skb, rc, dev, len);
 3533
 3534	return rc;
 3535}
 3536
 3537struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
 3538				    struct netdev_queue *txq, int *ret)
 3539{
 3540	struct sk_buff *skb = first;
 3541	int rc = NETDEV_TX_OK;
 3542
 3543	while (skb) {
 3544		struct sk_buff *next = skb->next;
 3545
 3546		skb_mark_not_on_list(skb);
 3547		rc = xmit_one(skb, dev, txq, next != NULL);
 3548		if (unlikely(!dev_xmit_complete(rc))) {
 3549			skb->next = next;
 3550			goto out;
 3551		}
 3552
 3553		skb = next;
 3554		if (netif_tx_queue_stopped(txq) && skb) {
 3555			rc = NETDEV_TX_BUSY;
 3556			break;
 3557		}
 3558	}
 3559
 3560out:
 3561	*ret = rc;
 3562	return skb;
 3563}
 3564
 3565static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
 3566					  netdev_features_t features)
 3567{
 3568	if (skb_vlan_tag_present(skb) &&
 3569	    !vlan_hw_offload_capable(features, skb->vlan_proto))
 3570		skb = __vlan_hwaccel_push_inside(skb);
 3571	return skb;
 3572}
 3573
 3574int skb_csum_hwoffload_help(struct sk_buff *skb,
 3575			    const netdev_features_t features)
 3576{
 3577	if (unlikely(skb_csum_is_sctp(skb)))
 3578		return !!(features & NETIF_F_SCTP_CRC) ? 0 :
 3579			skb_crc32c_csum_help(skb);
 3580
 3581	if (features & NETIF_F_HW_CSUM)
 3582		return 0;
 3583
 3584	if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
 3585		switch (skb->csum_offset) {
 3586		case offsetof(struct tcphdr, check):
 3587		case offsetof(struct udphdr, check):
 3588			return 0;
 3589		}
 3590	}
 3591
 3592	return skb_checksum_help(skb);
 3593}
 3594EXPORT_SYMBOL(skb_csum_hwoffload_help);
 3595
 3596static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
 3597{
 3598	netdev_features_t features;
 3599
 
 
 
 3600	features = netif_skb_features(skb);
 3601	skb = validate_xmit_vlan(skb, features);
 3602	if (unlikely(!skb))
 3603		goto out_null;
 3604
 3605	skb = sk_validate_xmit_skb(skb, dev);
 3606	if (unlikely(!skb))
 3607		goto out_null;
 3608
 3609	if (netif_needs_gso(skb, features)) {
 3610		struct sk_buff *segs;
 3611
 3612		segs = skb_gso_segment(skb, features);
 3613		if (IS_ERR(segs)) {
 3614			goto out_kfree_skb;
 3615		} else if (segs) {
 3616			consume_skb(skb);
 3617			skb = segs;
 3618		}
 3619	} else {
 3620		if (skb_needs_linearize(skb, features) &&
 3621		    __skb_linearize(skb))
 3622			goto out_kfree_skb;
 3623
 3624		/* If packet is not checksummed and device does not
 3625		 * support checksumming for this protocol, complete
 3626		 * checksumming here.
 3627		 */
 3628		if (skb->ip_summed == CHECKSUM_PARTIAL) {
 3629			if (skb->encapsulation)
 3630				skb_set_inner_transport_header(skb,
 3631							       skb_checksum_start_offset(skb));
 3632			else
 3633				skb_set_transport_header(skb,
 3634							 skb_checksum_start_offset(skb));
 3635			if (skb_csum_hwoffload_help(skb, features))
 
 3636				goto out_kfree_skb;
 3637		}
 3638	}
 3639
 3640	skb = validate_xmit_xfrm(skb, features, again);
 3641
 3642	return skb;
 3643
 3644out_kfree_skb:
 3645	kfree_skb(skb);
 3646out_null:
 3647	dev_core_stats_tx_dropped_inc(dev);
 3648	return NULL;
 3649}
 3650
 3651struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
 3652{
 3653	struct sk_buff *next, *head = NULL, *tail;
 3654
 3655	for (; skb != NULL; skb = next) {
 3656		next = skb->next;
 3657		skb_mark_not_on_list(skb);
 3658
 3659		/* in case skb wont be segmented, point to itself */
 3660		skb->prev = skb;
 3661
 3662		skb = validate_xmit_skb(skb, dev, again);
 3663		if (!skb)
 3664			continue;
 3665
 3666		if (!head)
 3667			head = skb;
 3668		else
 3669			tail->next = skb;
 3670		/* If skb was segmented, skb->prev points to
 3671		 * the last segment. If not, it still contains skb.
 3672		 */
 3673		tail = skb->prev;
 3674	}
 3675	return head;
 3676}
 3677EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
 3678
 3679static void qdisc_pkt_len_init(struct sk_buff *skb)
 3680{
 3681	const struct skb_shared_info *shinfo = skb_shinfo(skb);
 3682
 3683	qdisc_skb_cb(skb)->pkt_len = skb->len;
 3684
 3685	/* To get more precise estimation of bytes sent on wire,
 3686	 * we add to pkt_len the headers size of all segments
 3687	 */
 3688	if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
 3689		u16 gso_segs = shinfo->gso_segs;
 3690		unsigned int hdr_len;
 
 3691
 3692		/* mac layer + network layer */
 3693		hdr_len = skb_transport_offset(skb);
 3694
 3695		/* + transport layer */
 3696		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
 3697			const struct tcphdr *th;
 3698			struct tcphdr _tcphdr;
 3699
 3700			th = skb_header_pointer(skb, hdr_len,
 3701						sizeof(_tcphdr), &_tcphdr);
 3702			if (likely(th))
 3703				hdr_len += __tcp_hdrlen(th);
 3704		} else {
 3705			struct udphdr _udphdr;
 3706
 3707			if (skb_header_pointer(skb, hdr_len,
 3708					       sizeof(_udphdr), &_udphdr))
 3709				hdr_len += sizeof(struct udphdr);
 3710		}
 3711
 3712		if (shinfo->gso_type & SKB_GSO_DODGY)
 3713			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
 3714						shinfo->gso_size);
 3715
 3716		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
 3717	}
 3718}
 3719
 3720static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
 3721			     struct sk_buff **to_free,
 3722			     struct netdev_queue *txq)
 3723{
 3724	int rc;
 3725
 3726	rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
 3727	if (rc == NET_XMIT_SUCCESS)
 3728		trace_qdisc_enqueue(q, txq, skb);
 3729	return rc;
 3730}
 3731
 3732static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
 3733				 struct net_device *dev,
 3734				 struct netdev_queue *txq)
 3735{
 3736	spinlock_t *root_lock = qdisc_lock(q);
 3737	struct sk_buff *to_free = NULL;
 3738	bool contended;
 3739	int rc;
 3740
 3741	qdisc_calculate_pkt_len(skb, q);
 3742
 3743	tcf_set_drop_reason(skb, SKB_DROP_REASON_QDISC_DROP);
 3744
 3745	if (q->flags & TCQ_F_NOLOCK) {
 3746		if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
 3747		    qdisc_run_begin(q)) {
 3748			/* Retest nolock_qdisc_is_empty() within the protection
 3749			 * of q->seqlock to protect from racing with requeuing.
 3750			 */
 3751			if (unlikely(!nolock_qdisc_is_empty(q))) {
 3752				rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 3753				__qdisc_run(q);
 3754				qdisc_run_end(q);
 3755
 3756				goto no_lock_out;
 3757			}
 3758
 3759			qdisc_bstats_cpu_update(q, skb);
 3760			if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
 3761			    !nolock_qdisc_is_empty(q))
 3762				__qdisc_run(q);
 3763
 3764			qdisc_run_end(q);
 3765			return NET_XMIT_SUCCESS;
 3766		}
 3767
 3768		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 3769		qdisc_run(q);
 3770
 3771no_lock_out:
 3772		if (unlikely(to_free))
 3773			kfree_skb_list_reason(to_free,
 3774					      tcf_get_drop_reason(to_free));
 3775		return rc;
 3776	}
 3777
 3778	if (unlikely(READ_ONCE(q->owner) == smp_processor_id())) {
 3779		kfree_skb_reason(skb, SKB_DROP_REASON_TC_RECLASSIFY_LOOP);
 3780		return NET_XMIT_DROP;
 3781	}
 3782	/*
 3783	 * Heuristic to force contended enqueues to serialize on a
 3784	 * separate lock before trying to get qdisc main lock.
 3785	 * This permits qdisc->running owner to get the lock more
 3786	 * often and dequeue packets faster.
 3787	 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
 3788	 * and then other tasks will only enqueue packets. The packets will be
 3789	 * sent after the qdisc owner is scheduled again. To prevent this
 3790	 * scenario the task always serialize on the lock.
 3791	 */
 3792	contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
 3793	if (unlikely(contended))
 3794		spin_lock(&q->busylock);
 3795
 3796	spin_lock(root_lock);
 3797	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
 3798		__qdisc_drop(skb, &to_free);
 3799		rc = NET_XMIT_DROP;
 3800	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
 3801		   qdisc_run_begin(q)) {
 3802		/*
 3803		 * This is a work-conserving queue; there are no old skbs
 3804		 * waiting to be sent out; and the qdisc is not running -
 3805		 * xmit the skb directly.
 3806		 */
 3807
 3808		qdisc_bstats_update(q, skb);
 3809
 3810		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
 3811			if (unlikely(contended)) {
 3812				spin_unlock(&q->busylock);
 3813				contended = false;
 3814			}
 3815			__qdisc_run(q);
 3816		}
 
 3817
 3818		qdisc_run_end(q);
 3819		rc = NET_XMIT_SUCCESS;
 3820	} else {
 3821		WRITE_ONCE(q->owner, smp_processor_id());
 3822		rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
 3823		WRITE_ONCE(q->owner, -1);
 3824		if (qdisc_run_begin(q)) {
 3825			if (unlikely(contended)) {
 3826				spin_unlock(&q->busylock);
 3827				contended = false;
 3828			}
 3829			__qdisc_run(q);
 3830			qdisc_run_end(q);
 3831		}
 3832	}
 3833	spin_unlock(root_lock);
 3834	if (unlikely(to_free))
 3835		kfree_skb_list_reason(to_free,
 3836				      tcf_get_drop_reason(to_free));
 3837	if (unlikely(contended))
 3838		spin_unlock(&q->busylock);
 3839	return rc;
 3840}
 3841
 3842#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
 3843static void skb_update_prio(struct sk_buff *skb)
 3844{
 3845	const struct netprio_map *map;
 3846	const struct sock *sk;
 3847	unsigned int prioidx;
 3848
 3849	if (skb->priority)
 3850		return;
 3851	map = rcu_dereference_bh(skb->dev->priomap);
 3852	if (!map)
 3853		return;
 3854	sk = skb_to_full_sk(skb);
 3855	if (!sk)
 3856		return;
 3857
 3858	prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
 3859
 3860	if (prioidx < map->priomap_len)
 3861		skb->priority = map->priomap[prioidx];
 3862}
 3863#else
 3864#define skb_update_prio(skb)
 3865#endif
 3866
 
 
 
 
 
 3867/**
 3868 *	dev_loopback_xmit - loop back @skb
 3869 *	@net: network namespace this loopback is happening in
 3870 *	@sk:  sk needed to be a netfilter okfn
 3871 *	@skb: buffer to transmit
 3872 */
 3873int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
 3874{
 3875	skb_reset_mac_header(skb);
 3876	__skb_pull(skb, skb_network_offset(skb));
 3877	skb->pkt_type = PACKET_LOOPBACK;
 3878	if (skb->ip_summed == CHECKSUM_NONE)
 3879		skb->ip_summed = CHECKSUM_UNNECESSARY;
 3880	DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
 3881	skb_dst_force(skb);
 3882	netif_rx(skb);
 3883	return 0;
 3884}
 3885EXPORT_SYMBOL(dev_loopback_xmit);
 3886
 3887#ifdef CONFIG_NET_EGRESS
 3888static struct netdev_queue *
 3889netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
 3890{
 3891	int qm = skb_get_queue_mapping(skb);
 3892
 3893	return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
 3894}
 3895
 3896static bool netdev_xmit_txqueue_skipped(void)
 3897{
 3898	return __this_cpu_read(softnet_data.xmit.skip_txqueue);
 3899}
 3900
 3901void netdev_xmit_skip_txqueue(bool skip)
 3902{
 3903	__this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
 3904}
 3905EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
 3906#endif /* CONFIG_NET_EGRESS */
 3907
 3908#ifdef CONFIG_NET_XGRESS
 3909static int tc_run(struct tcx_entry *entry, struct sk_buff *skb,
 3910		  enum skb_drop_reason *drop_reason)
 3911{
 3912	int ret = TC_ACT_UNSPEC;
 3913#ifdef CONFIG_NET_CLS_ACT
 3914	struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
 3915	struct tcf_result res;
 3916
 3917	if (!miniq)
 3918		return ret;
 
 
 3919
 3920	tc_skb_cb(skb)->mru = 0;
 3921	tc_skb_cb(skb)->post_ct = false;
 3922	tcf_set_drop_reason(skb, *drop_reason);
 3923
 3924	mini_qdisc_bstats_cpu_update(miniq, skb);
 3925	ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
 3926	/* Only tcf related quirks below. */
 3927	switch (ret) {
 3928	case TC_ACT_SHOT:
 3929		*drop_reason = tcf_get_drop_reason(skb);
 3930		mini_qdisc_qstats_cpu_drop(miniq);
 3931		break;
 3932	case TC_ACT_OK:
 3933	case TC_ACT_RECLASSIFY:
 3934		skb->tc_index = TC_H_MIN(res.classid);
 3935		break;
 3936	}
 3937#endif /* CONFIG_NET_CLS_ACT */
 3938	return ret;
 3939}
 3940
 3941static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
 3942
 3943void tcx_inc(void)
 3944{
 3945	static_branch_inc(&tcx_needed_key);
 3946}
 3947
 3948void tcx_dec(void)
 3949{
 3950	static_branch_dec(&tcx_needed_key);
 3951}
 3952
 3953static __always_inline enum tcx_action_base
 3954tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
 3955	const bool needs_mac)
 3956{
 3957	const struct bpf_mprog_fp *fp;
 3958	const struct bpf_prog *prog;
 3959	int ret = TCX_NEXT;
 3960
 3961	if (needs_mac)
 3962		__skb_push(skb, skb->mac_len);
 3963	bpf_mprog_foreach_prog(entry, fp, prog) {
 3964		bpf_compute_data_pointers(skb);
 3965		ret = bpf_prog_run(prog, skb);
 3966		if (ret != TCX_NEXT)
 3967			break;
 3968	}
 3969	if (needs_mac)
 3970		__skb_pull(skb, skb->mac_len);
 3971	return tcx_action_code(skb, ret);
 3972}
 3973
 3974static __always_inline struct sk_buff *
 3975sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
 3976		   struct net_device *orig_dev, bool *another)
 3977{
 3978	struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
 3979	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_INGRESS;
 3980	int sch_ret;
 3981
 3982	if (!entry)
 3983		return skb;
 3984	if (*pt_prev) {
 3985		*ret = deliver_skb(skb, *pt_prev, orig_dev);
 3986		*pt_prev = NULL;
 3987	}
 3988
 3989	qdisc_skb_cb(skb)->pkt_len = skb->len;
 3990	tcx_set_ingress(skb, true);
 3991
 3992	if (static_branch_unlikely(&tcx_needed_key)) {
 3993		sch_ret = tcx_run(entry, skb, true);
 3994		if (sch_ret != TC_ACT_UNSPEC)
 3995			goto ingress_verdict;
 3996	}
 3997	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
 3998ingress_verdict:
 3999	switch (sch_ret) {
 4000	case TC_ACT_REDIRECT:
 4001		/* skb_mac_header check was done by BPF, so we can safely
 4002		 * push the L2 header back before redirecting to another
 4003		 * netdev.
 4004		 */
 4005		__skb_push(skb, skb->mac_len);
 4006		if (skb_do_redirect(skb) == -EAGAIN) {
 4007			__skb_pull(skb, skb->mac_len);
 4008			*another = true;
 4009			break;
 4010		}
 4011		*ret = NET_RX_SUCCESS;
 4012		return NULL;
 4013	case TC_ACT_SHOT:
 4014		kfree_skb_reason(skb, drop_reason);
 4015		*ret = NET_RX_DROP;
 4016		return NULL;
 4017	/* used by tc_run */
 4018	case TC_ACT_STOLEN:
 4019	case TC_ACT_QUEUED:
 4020	case TC_ACT_TRAP:
 4021		consume_skb(skb);
 4022		fallthrough;
 4023	case TC_ACT_CONSUMED:
 4024		*ret = NET_RX_SUCCESS;
 4025		return NULL;
 4026	}
 4027
 4028	return skb;
 4029}
 4030
 4031static __always_inline struct sk_buff *
 4032sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
 4033{
 4034	struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
 4035	enum skb_drop_reason drop_reason = SKB_DROP_REASON_TC_EGRESS;
 4036	int sch_ret;
 4037
 4038	if (!entry)
 4039		return skb;
 4040
 4041	/* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
 4042	 * already set by the caller.
 4043	 */
 4044	if (static_branch_unlikely(&tcx_needed_key)) {
 4045		sch_ret = tcx_run(entry, skb, false);
 4046		if (sch_ret != TC_ACT_UNSPEC)
 4047			goto egress_verdict;
 4048	}
 4049	sch_ret = tc_run(tcx_entry(entry), skb, &drop_reason);
 4050egress_verdict:
 4051	switch (sch_ret) {
 4052	case TC_ACT_REDIRECT:
 4053		/* No need to push/pop skb's mac_header here on egress! */
 4054		skb_do_redirect(skb);
 4055		*ret = NET_XMIT_SUCCESS;
 4056		return NULL;
 4057	case TC_ACT_SHOT:
 4058		kfree_skb_reason(skb, drop_reason);
 4059		*ret = NET_XMIT_DROP;
 4060		return NULL;
 4061	/* used by tc_run */
 4062	case TC_ACT_STOLEN:
 4063	case TC_ACT_QUEUED:
 4064	case TC_ACT_TRAP:
 4065		consume_skb(skb);
 4066		fallthrough;
 4067	case TC_ACT_CONSUMED:
 4068		*ret = NET_XMIT_SUCCESS;
 4069		return NULL;
 4070	}
 4071
 4072	return skb;
 4073}
 4074#else
 4075static __always_inline struct sk_buff *
 4076sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
 4077		   struct net_device *orig_dev, bool *another)
 4078{
 4079	return skb;
 4080}
 4081
 4082static __always_inline struct sk_buff *
 4083sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
 4084{
 4085	return skb;
 4086}
 4087#endif /* CONFIG_NET_XGRESS */
 4088
 4089#ifdef CONFIG_XPS
 4090static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
 4091			       struct xps_dev_maps *dev_maps, unsigned int tci)
 4092{
 4093	int tc = netdev_get_prio_tc_map(dev, skb->priority);
 4094	struct xps_map *map;
 4095	int queue_index = -1;
 4096
 4097	if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
 4098		return queue_index;
 4099
 4100	tci *= dev_maps->num_tc;
 4101	tci += tc;
 4102
 4103	map = rcu_dereference(dev_maps->attr_map[tci]);
 4104	if (map) {
 4105		if (map->len == 1)
 4106			queue_index = map->queues[0];
 4107		else
 4108			queue_index = map->queues[reciprocal_scale(
 4109						skb_get_hash(skb), map->len)];
 4110		if (unlikely(queue_index >= dev->real_num_tx_queues))
 4111			queue_index = -1;
 4112	}
 4113	return queue_index;
 4114}
 4115#endif
 4116
 4117static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
 4118			 struct sk_buff *skb)
 4119{
 4120#ifdef CONFIG_XPS
 4121	struct xps_dev_maps *dev_maps;
 4122	struct sock *sk = skb->sk;
 4123	int queue_index = -1;
 4124
 4125	if (!static_key_false(&xps_needed))
 4126		return -1;
 4127
 4128	rcu_read_lock();
 4129	if (!static_key_false(&xps_rxqs_needed))
 4130		goto get_cpus_map;
 4131
 4132	dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
 4133	if (dev_maps) {
 4134		int tci = sk_rx_queue_get(sk);
 4135
 4136		if (tci >= 0)
 4137			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
 4138							  tci);
 4139	}
 4140
 4141get_cpus_map:
 4142	if (queue_index < 0) {
 4143		dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
 4144		if (dev_maps) {
 4145			unsigned int tci = skb->sender_cpu - 1;
 4146
 4147			queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
 4148							  tci);
 4149		}
 4150	}
 4151	rcu_read_unlock();
 4152
 4153	return queue_index;
 4154#else
 4155	return -1;
 4156#endif
 4157}
 4158
 4159u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
 4160		     struct net_device *sb_dev)
 4161{
 4162	return 0;
 4163}
 4164EXPORT_SYMBOL(dev_pick_tx_zero);
 4165
 4166u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
 4167		       struct net_device *sb_dev)
 4168{
 4169	return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
 4170}
 4171EXPORT_SYMBOL(dev_pick_tx_cpu_id);
 4172
 4173u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
 4174		     struct net_device *sb_dev)
 4175{
 4176	struct sock *sk = skb->sk;
 4177	int queue_index = sk_tx_queue_get(sk);
 4178
 4179	sb_dev = sb_dev ? : dev;
 4180
 4181	if (queue_index < 0 || skb->ooo_okay ||
 4182	    queue_index >= dev->real_num_tx_queues) {
 4183		int new_index = get_xps_queue(dev, sb_dev, skb);
 4184
 4185		if (new_index < 0)
 4186			new_index = skb_tx_hash(dev, sb_dev, skb);
 4187
 4188		if (queue_index != new_index && sk &&
 4189		    sk_fullsock(sk) &&
 4190		    rcu_access_pointer(sk->sk_dst_cache))
 4191			sk_tx_queue_set(sk, new_index);
 4192
 4193		queue_index = new_index;
 4194	}
 4195
 4196	return queue_index;
 4197}
 4198EXPORT_SYMBOL(netdev_pick_tx);
 4199
 4200struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
 4201					 struct sk_buff *skb,
 4202					 struct net_device *sb_dev)
 4203{
 4204	int queue_index = 0;
 4205
 4206#ifdef CONFIG_XPS
 4207	u32 sender_cpu = skb->sender_cpu - 1;
 4208
 4209	if (sender_cpu >= (u32)NR_CPUS)
 4210		skb->sender_cpu = raw_smp_processor_id() + 1;
 4211#endif
 4212
 4213	if (dev->real_num_tx_queues != 1) {
 4214		const struct net_device_ops *ops = dev->netdev_ops;
 4215
 4216		if (ops->ndo_select_queue)
 4217			queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
 
 4218		else
 4219			queue_index = netdev_pick_tx(dev, skb, sb_dev);
 4220
 4221		queue_index = netdev_cap_txqueue(dev, queue_index);
 
 4222	}
 4223
 4224	skb_set_queue_mapping(skb, queue_index);
 4225	return netdev_get_tx_queue(dev, queue_index);
 4226}
 4227
 4228/**
 4229 * __dev_queue_xmit() - transmit a buffer
 4230 * @skb:	buffer to transmit
 4231 * @sb_dev:	suboordinate device used for L2 forwarding offload
 4232 *
 4233 * Queue a buffer for transmission to a network device. The caller must
 4234 * have set the device and priority and built the buffer before calling
 4235 * this function. The function can be called from an interrupt.
 4236 *
 4237 * When calling this method, interrupts MUST be enabled. This is because
 4238 * the BH enable code must have IRQs enabled so that it will not deadlock.
 4239 *
 4240 * Regardless of the return value, the skb is consumed, so it is currently
 4241 * difficult to retry a send to this method. (You can bump the ref count
 4242 * before sending to hold a reference for retry if you are careful.)
 4243 *
 4244 * Return:
 4245 * * 0				- buffer successfully transmitted
 4246 * * positive qdisc return code	- NET_XMIT_DROP etc.
 4247 * * negative errno		- other errors
 
 
 
 
 
 4248 */
 4249int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
 4250{
 4251	struct net_device *dev = skb->dev;
 4252	struct netdev_queue *txq = NULL;
 4253	struct Qdisc *q;
 4254	int rc = -ENOMEM;
 4255	bool again = false;
 4256
 4257	skb_reset_mac_header(skb);
 4258	skb_assert_len(skb);
 4259
 4260	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
 4261		__skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
 4262
 4263	/* Disable soft irqs for various locks below. Also
 4264	 * stops preemption for RCU.
 4265	 */
 4266	rcu_read_lock_bh();
 4267
 4268	skb_update_prio(skb);
 4269
 4270	qdisc_pkt_len_init(skb);
 4271	tcx_set_ingress(skb, false);
 4272#ifdef CONFIG_NET_EGRESS
 4273	if (static_branch_unlikely(&egress_needed_key)) {
 4274		if (nf_hook_egress_active()) {
 4275			skb = nf_hook_egress(skb, &rc, dev);
 4276			if (!skb)
 4277				goto out;
 4278		}
 4279
 4280		netdev_xmit_skip_txqueue(false);
 4281
 4282		nf_skip_egress(skb, true);
 4283		skb = sch_handle_egress(skb, &rc, dev);
 4284		if (!skb)
 4285			goto out;
 4286		nf_skip_egress(skb, false);
 4287
 4288		if (netdev_xmit_txqueue_skipped())
 4289			txq = netdev_tx_queue_mapping(dev, skb);
 4290	}
 
 4291#endif
 4292	/* If device/qdisc don't need skb->dst, release it right now while
 4293	 * its hot in this cpu cache.
 4294	 */
 4295	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
 4296		skb_dst_drop(skb);
 4297	else
 4298		skb_dst_force(skb);
 4299
 4300	if (!txq)
 4301		txq = netdev_core_pick_tx(dev, skb, sb_dev);
 
 
 
 
 
 
 
 4302
 
 4303	q = rcu_dereference_bh(txq->qdisc);
 4304
 4305	trace_net_dev_queue(skb);
 4306	if (q->enqueue) {
 4307		rc = __dev_xmit_skb(skb, q, dev, txq);
 4308		goto out;
 4309	}
 4310
 4311	/* The device has no queue. Common case for software devices:
 4312	 * loopback, all the sorts of tunnels...
 4313
 4314	 * Really, it is unlikely that netif_tx_lock protection is necessary
 4315	 * here.  (f.e. loopback and IP tunnels are clean ignoring statistics
 4316	 * counters.)
 4317	 * However, it is possible, that they rely on protection
 4318	 * made by us here.
 4319
 4320	 * Check this and shot the lock. It is not prone from deadlocks.
 4321	 *Either shot noqueue qdisc, it is even simpler 8)
 4322	 */
 4323	if (dev->flags & IFF_UP) {
 4324		int cpu = smp_processor_id(); /* ok because BHs are off */
 4325
 4326		/* Other cpus might concurrently change txq->xmit_lock_owner
 4327		 * to -1 or to their cpu id, but not to our id.
 4328		 */
 4329		if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
 4330			if (dev_xmit_recursion())
 4331				goto recursion_alert;
 4332
 4333			skb = validate_xmit_skb(skb, dev, &again);
 4334			if (!skb)
 4335				goto out;
 4336
 4337			HARD_TX_LOCK(dev, txq, cpu);
 4338
 4339			if (!netif_xmit_stopped(txq)) {
 4340				dev_xmit_recursion_inc();
 4341				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
 4342				dev_xmit_recursion_dec();
 4343				if (dev_xmit_complete(rc)) {
 4344					HARD_TX_UNLOCK(dev, txq);
 4345					goto out;
 4346				}
 4347			}
 4348			HARD_TX_UNLOCK(dev, txq);
 4349			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
 4350					     dev->name);
 4351		} else {
 4352			/* Recursion is detected! It is possible,
 4353			 * unfortunately
 4354			 */
 4355recursion_alert:
 4356			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
 4357					     dev->name);
 4358		}
 4359	}
 4360
 4361	rc = -ENETDOWN;
 
 4362	rcu_read_unlock_bh();
 4363
 4364	dev_core_stats_tx_dropped_inc(dev);
 4365	kfree_skb_list(skb);
 4366	return rc;
 4367out:
 4368	rcu_read_unlock_bh();
 4369	return rc;
 4370}
 4371EXPORT_SYMBOL(__dev_queue_xmit);
 4372
 4373int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
 4374{
 4375	struct net_device *dev = skb->dev;
 4376	struct sk_buff *orig_skb = skb;
 4377	struct netdev_queue *txq;
 4378	int ret = NETDEV_TX_BUSY;
 4379	bool again = false;
 4380
 4381	if (unlikely(!netif_running(dev) ||
 4382		     !netif_carrier_ok(dev)))
 4383		goto drop;
 4384
 4385	skb = validate_xmit_skb_list(skb, dev, &again);
 4386	if (skb != orig_skb)
 4387		goto drop;
 
 
 4388
 4389	skb_set_queue_mapping(skb, queue_id);
 4390	txq = skb_get_tx_queue(dev, skb);
 4391
 4392	local_bh_disable();
 
 
 4393
 4394	dev_xmit_recursion_inc();
 4395	HARD_TX_LOCK(dev, txq, smp_processor_id());
 4396	if (!netif_xmit_frozen_or_drv_stopped(txq))
 4397		ret = netdev_start_xmit(skb, dev, txq, false);
 4398	HARD_TX_UNLOCK(dev, txq);
 4399	dev_xmit_recursion_dec();
 4400
 4401	local_bh_enable();
 4402	return ret;
 4403drop:
 4404	dev_core_stats_tx_dropped_inc(dev);
 4405	kfree_skb_list(skb);
 4406	return NET_XMIT_DROP;
 4407}
 4408EXPORT_SYMBOL(__dev_direct_xmit);
 4409
 4410/*************************************************************************
 4411 *			Receiver routines
 4412 *************************************************************************/
 4413
 4414unsigned int sysctl_skb_defer_max __read_mostly = 64;
 4415int weight_p __read_mostly = 64;           /* old backlog weight */
 4416int dev_weight_rx_bias __read_mostly = 1;  /* bias for backlog weight */
 4417int dev_weight_tx_bias __read_mostly = 1;  /* bias for output_queue quota */
 4418
 4419/* Called with irq disabled */
 4420static inline void ____napi_schedule(struct softnet_data *sd,
 4421				     struct napi_struct *napi)
 4422{
 4423	struct task_struct *thread;
 4424
 4425	lockdep_assert_irqs_disabled();
 4426
 4427	if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
 4428		/* Paired with smp_mb__before_atomic() in
 4429		 * napi_enable()/dev_set_threaded().
 4430		 * Use READ_ONCE() to guarantee a complete
 4431		 * read on napi->thread. Only call
 4432		 * wake_up_process() when it's not NULL.
 4433		 */
 4434		thread = READ_ONCE(napi->thread);
 4435		if (thread) {
 4436			/* Avoid doing set_bit() if the thread is in
 4437			 * INTERRUPTIBLE state, cause napi_thread_wait()
 4438			 * makes sure to proceed with napi polling
 4439			 * if the thread is explicitly woken from here.
 4440			 */
 4441			if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
 4442				set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
 4443			wake_up_process(thread);
 4444			return;
 4445		}
 4446	}
 4447
 4448	list_add_tail(&napi->poll_list, &sd->poll_list);
 4449	WRITE_ONCE(napi->list_owner, smp_processor_id());
 4450	/* If not called from net_rx_action()
 4451	 * we have to raise NET_RX_SOFTIRQ.
 4452	 */
 4453	if (!sd->in_net_rx_action)
 4454		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 4455}
 4456
 4457#ifdef CONFIG_RPS
 4458
 4459struct static_key_false rps_needed __read_mostly;
 4460EXPORT_SYMBOL(rps_needed);
 4461struct static_key_false rfs_needed __read_mostly;
 4462EXPORT_SYMBOL(rfs_needed);
 
 
 
 4463
 4464static struct rps_dev_flow *
 4465set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
 4466	    struct rps_dev_flow *rflow, u16 next_cpu)
 4467{
 4468	if (next_cpu < nr_cpu_ids) {
 4469#ifdef CONFIG_RFS_ACCEL
 4470		struct netdev_rx_queue *rxqueue;
 4471		struct rps_dev_flow_table *flow_table;
 4472		struct rps_dev_flow *old_rflow;
 4473		u32 flow_id;
 4474		u16 rxq_index;
 4475		int rc;
 4476
 4477		/* Should we steer this flow to a different hardware queue? */
 4478		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
 4479		    !(dev->features & NETIF_F_NTUPLE))
 4480			goto out;
 4481		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
 4482		if (rxq_index == skb_get_rx_queue(skb))
 4483			goto out;
 4484
 4485		rxqueue = dev->_rx + rxq_index;
 4486		flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4487		if (!flow_table)
 4488			goto out;
 4489		flow_id = skb_get_hash(skb) & flow_table->mask;
 4490		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
 4491							rxq_index, flow_id);
 4492		if (rc < 0)
 4493			goto out;
 4494		old_rflow = rflow;
 4495		rflow = &flow_table->flows[flow_id];
 4496		rflow->filter = rc;
 4497		if (old_rflow->filter == rflow->filter)
 4498			old_rflow->filter = RPS_NO_FILTER;
 4499	out:
 4500#endif
 4501		rflow->last_qtail =
 4502			per_cpu(softnet_data, next_cpu).input_queue_head;
 4503	}
 4504
 4505	rflow->cpu = next_cpu;
 4506	return rflow;
 4507}
 4508
 4509/*
 4510 * get_rps_cpu is called from netif_receive_skb and returns the target
 4511 * CPU from the RPS map of the receiving queue for a given skb.
 4512 * rcu_read_lock must be held on entry.
 4513 */
 4514static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
 4515		       struct rps_dev_flow **rflowp)
 4516{
 4517	const struct rps_sock_flow_table *sock_flow_table;
 4518	struct netdev_rx_queue *rxqueue = dev->_rx;
 4519	struct rps_dev_flow_table *flow_table;
 4520	struct rps_map *map;
 4521	int cpu = -1;
 4522	u32 tcpu;
 4523	u32 hash;
 4524
 4525	if (skb_rx_queue_recorded(skb)) {
 4526		u16 index = skb_get_rx_queue(skb);
 4527
 4528		if (unlikely(index >= dev->real_num_rx_queues)) {
 4529			WARN_ONCE(dev->real_num_rx_queues > 1,
 4530				  "%s received packet on queue %u, but number "
 4531				  "of RX queues is %u\n",
 4532				  dev->name, index, dev->real_num_rx_queues);
 4533			goto done;
 4534		}
 4535		rxqueue += index;
 4536	}
 4537
 4538	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
 4539
 4540	flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4541	map = rcu_dereference(rxqueue->rps_map);
 4542	if (!flow_table && !map)
 4543		goto done;
 4544
 4545	skb_reset_network_header(skb);
 4546	hash = skb_get_hash(skb);
 4547	if (!hash)
 4548		goto done;
 4549
 4550	sock_flow_table = rcu_dereference(net_hotdata.rps_sock_flow_table);
 4551	if (flow_table && sock_flow_table) {
 4552		struct rps_dev_flow *rflow;
 4553		u32 next_cpu;
 4554		u32 ident;
 4555
 4556		/* First check into global flow table if there is a match.
 4557		 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
 4558		 */
 4559		ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
 4560		if ((ident ^ hash) & ~net_hotdata.rps_cpu_mask)
 4561			goto try_rps;
 4562
 4563		next_cpu = ident & net_hotdata.rps_cpu_mask;
 4564
 4565		/* OK, now we know there is a match,
 4566		 * we can look at the local (per receive queue) flow table
 4567		 */
 4568		rflow = &flow_table->flows[hash & flow_table->mask];
 4569		tcpu = rflow->cpu;
 4570
 4571		/*
 4572		 * If the desired CPU (where last recvmsg was done) is
 4573		 * different from current CPU (one in the rx-queue flow
 4574		 * table entry), switch if one of the following holds:
 4575		 *   - Current CPU is unset (>= nr_cpu_ids).
 4576		 *   - Current CPU is offline.
 4577		 *   - The current CPU's queue tail has advanced beyond the
 4578		 *     last packet that was enqueued using this table entry.
 4579		 *     This guarantees that all previous packets for the flow
 4580		 *     have been dequeued, thus preserving in order delivery.
 4581		 */
 4582		if (unlikely(tcpu != next_cpu) &&
 4583		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
 4584		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
 4585		      rflow->last_qtail)) >= 0)) {
 4586			tcpu = next_cpu;
 4587			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
 4588		}
 4589
 4590		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
 4591			*rflowp = rflow;
 4592			cpu = tcpu;
 4593			goto done;
 4594		}
 4595	}
 4596
 4597try_rps:
 4598
 4599	if (map) {
 4600		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
 4601		if (cpu_online(tcpu)) {
 4602			cpu = tcpu;
 4603			goto done;
 4604		}
 4605	}
 4606
 4607done:
 4608	return cpu;
 4609}
 4610
 4611#ifdef CONFIG_RFS_ACCEL
 4612
 4613/**
 4614 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
 4615 * @dev: Device on which the filter was set
 4616 * @rxq_index: RX queue index
 4617 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
 4618 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
 4619 *
 4620 * Drivers that implement ndo_rx_flow_steer() should periodically call
 4621 * this function for each installed filter and remove the filters for
 4622 * which it returns %true.
 4623 */
 4624bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
 4625			 u32 flow_id, u16 filter_id)
 4626{
 4627	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
 4628	struct rps_dev_flow_table *flow_table;
 4629	struct rps_dev_flow *rflow;
 4630	bool expire = true;
 4631	unsigned int cpu;
 4632
 4633	rcu_read_lock();
 4634	flow_table = rcu_dereference(rxqueue->rps_flow_table);
 4635	if (flow_table && flow_id <= flow_table->mask) {
 4636		rflow = &flow_table->flows[flow_id];
 4637		cpu = READ_ONCE(rflow->cpu);
 4638		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
 4639		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
 4640			   rflow->last_qtail) <
 4641		     (int)(10 * flow_table->mask)))
 4642			expire = false;
 4643	}
 4644	rcu_read_unlock();
 4645	return expire;
 4646}
 4647EXPORT_SYMBOL(rps_may_expire_flow);
 4648
 4649#endif /* CONFIG_RFS_ACCEL */
 4650
 4651/* Called from hardirq (IPI) context */
 4652static void rps_trigger_softirq(void *data)
 4653{
 4654	struct softnet_data *sd = data;
 4655
 4656	____napi_schedule(sd, &sd->backlog);
 4657	sd->received_rps++;
 4658}
 4659
 4660#endif /* CONFIG_RPS */
 4661
 4662/* Called from hardirq (IPI) context */
 4663static void trigger_rx_softirq(void *data)
 4664{
 4665	struct softnet_data *sd = data;
 4666
 4667	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 4668	smp_store_release(&sd->defer_ipi_scheduled, 0);
 4669}
 4670
 4671/*
 4672 * After we queued a packet into sd->input_pkt_queue,
 4673 * we need to make sure this queue is serviced soon.
 4674 *
 4675 * - If this is another cpu queue, link it to our rps_ipi_list,
 4676 *   and make sure we will process rps_ipi_list from net_rx_action().
 4677 *
 4678 * - If this is our own queue, NAPI schedule our backlog.
 4679 *   Note that this also raises NET_RX_SOFTIRQ.
 4680 */
 4681static void napi_schedule_rps(struct softnet_data *sd)
 4682{
 
 4683	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
 4684
 4685#ifdef CONFIG_RPS
 4686	if (sd != mysd) {
 4687		sd->rps_ipi_next = mysd->rps_ipi_list;
 4688		mysd->rps_ipi_list = sd;
 4689
 4690		/* If not called from net_rx_action() or napi_threaded_poll()
 4691		 * we have to raise NET_RX_SOFTIRQ.
 4692		 */
 4693		if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
 4694			__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 4695		return;
 4696	}
 4697#endif /* CONFIG_RPS */
 4698	__napi_schedule_irqoff(&mysd->backlog);
 4699}
 4700
 4701#ifdef CONFIG_NET_FLOW_LIMIT
 4702int netdev_flow_limit_table_len __read_mostly = (1 << 12);
 4703#endif
 4704
 4705static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
 4706{
 4707#ifdef CONFIG_NET_FLOW_LIMIT
 4708	struct sd_flow_limit *fl;
 4709	struct softnet_data *sd;
 4710	unsigned int old_flow, new_flow;
 4711
 4712	if (qlen < (READ_ONCE(net_hotdata.max_backlog) >> 1))
 4713		return false;
 4714
 4715	sd = this_cpu_ptr(&softnet_data);
 4716
 4717	rcu_read_lock();
 4718	fl = rcu_dereference(sd->flow_limit);
 4719	if (fl) {
 4720		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
 4721		old_flow = fl->history[fl->history_head];
 4722		fl->history[fl->history_head] = new_flow;
 4723
 4724		fl->history_head++;
 4725		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
 4726
 4727		if (likely(fl->buckets[old_flow]))
 4728			fl->buckets[old_flow]--;
 4729
 4730		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
 4731			fl->count++;
 4732			rcu_read_unlock();
 4733			return true;
 4734		}
 4735	}
 4736	rcu_read_unlock();
 4737#endif
 4738	return false;
 4739}
 4740
 4741/*
 4742 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
 4743 * queue (may be a remote CPU queue).
 4744 */
 4745static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
 4746			      unsigned int *qtail)
 4747{
 4748	enum skb_drop_reason reason;
 4749	struct softnet_data *sd;
 4750	unsigned long flags;
 4751	unsigned int qlen;
 4752
 4753	reason = SKB_DROP_REASON_NOT_SPECIFIED;
 4754	sd = &per_cpu(softnet_data, cpu);
 4755
 4756	rps_lock_irqsave(sd, &flags);
 
 
 4757	if (!netif_running(skb->dev))
 4758		goto drop;
 4759	qlen = skb_queue_len(&sd->input_pkt_queue);
 4760	if (qlen <= READ_ONCE(net_hotdata.max_backlog) &&
 4761	    !skb_flow_limit(skb, qlen)) {
 4762		if (qlen) {
 4763enqueue:
 4764			__skb_queue_tail(&sd->input_pkt_queue, skb);
 4765			input_queue_tail_incr_save(sd, qtail);
 4766			rps_unlock_irq_restore(sd, &flags);
 
 4767			return NET_RX_SUCCESS;
 4768		}
 4769
 4770		/* Schedule NAPI for backlog device
 4771		 * We can use non atomic operation since we own the queue lock
 4772		 */
 4773		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
 4774			napi_schedule_rps(sd);
 
 
 4775		goto enqueue;
 4776	}
 4777	reason = SKB_DROP_REASON_CPU_BACKLOG;
 4778
 4779drop:
 4780	sd->dropped++;
 4781	rps_unlock_irq_restore(sd, &flags);
 4782
 4783	dev_core_stats_rx_dropped_inc(skb->dev);
 4784	kfree_skb_reason(skb, reason);
 4785	return NET_RX_DROP;
 4786}
 4787
 4788static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
 4789{
 4790	struct net_device *dev = skb->dev;
 4791	struct netdev_rx_queue *rxqueue;
 4792
 4793	rxqueue = dev->_rx;
 4794
 4795	if (skb_rx_queue_recorded(skb)) {
 4796		u16 index = skb_get_rx_queue(skb);
 4797
 4798		if (unlikely(index >= dev->real_num_rx_queues)) {
 4799			WARN_ONCE(dev->real_num_rx_queues > 1,
 4800				  "%s received packet on queue %u, but number "
 4801				  "of RX queues is %u\n",
 4802				  dev->name, index, dev->real_num_rx_queues);
 4803
 4804			return rxqueue; /* Return first rxqueue */
 4805		}
 4806		rxqueue += index;
 4807	}
 4808	return rxqueue;
 4809}
 4810
 4811u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
 4812			     struct bpf_prog *xdp_prog)
 4813{
 4814	void *orig_data, *orig_data_end, *hard_start;
 4815	struct netdev_rx_queue *rxqueue;
 4816	bool orig_bcast, orig_host;
 4817	u32 mac_len, frame_sz;
 4818	__be16 orig_eth_type;
 4819	struct ethhdr *eth;
 4820	u32 metalen, act;
 4821	int off;
 4822
 4823	/* The XDP program wants to see the packet starting at the MAC
 4824	 * header.
 4825	 */
 4826	mac_len = skb->data - skb_mac_header(skb);
 4827	hard_start = skb->data - skb_headroom(skb);
 4828
 4829	/* SKB "head" area always have tailroom for skb_shared_info */
 4830	frame_sz = (void *)skb_end_pointer(skb) - hard_start;
 4831	frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 4832
 4833	rxqueue = netif_get_rxqueue(skb);
 4834	xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
 4835	xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
 4836			 skb_headlen(skb) + mac_len, true);
 4837	if (skb_is_nonlinear(skb)) {
 4838		skb_shinfo(skb)->xdp_frags_size = skb->data_len;
 4839		xdp_buff_set_frags_flag(xdp);
 4840	} else {
 4841		xdp_buff_clear_frags_flag(xdp);
 4842	}
 4843
 4844	orig_data_end = xdp->data_end;
 4845	orig_data = xdp->data;
 4846	eth = (struct ethhdr *)xdp->data;
 4847	orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
 4848	orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
 4849	orig_eth_type = eth->h_proto;
 4850
 4851	act = bpf_prog_run_xdp(xdp_prog, xdp);
 4852
 4853	/* check if bpf_xdp_adjust_head was used */
 4854	off = xdp->data - orig_data;
 4855	if (off) {
 4856		if (off > 0)
 4857			__skb_pull(skb, off);
 4858		else if (off < 0)
 4859			__skb_push(skb, -off);
 4860
 4861		skb->mac_header += off;
 4862		skb_reset_network_header(skb);
 4863	}
 4864
 4865	/* check if bpf_xdp_adjust_tail was used */
 4866	off = xdp->data_end - orig_data_end;
 4867	if (off != 0) {
 4868		skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
 4869		skb->len += off; /* positive on grow, negative on shrink */
 4870	}
 4871
 4872	/* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
 4873	 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
 4874	 */
 4875	if (xdp_buff_has_frags(xdp))
 4876		skb->data_len = skb_shinfo(skb)->xdp_frags_size;
 4877	else
 4878		skb->data_len = 0;
 4879
 4880	/* check if XDP changed eth hdr such SKB needs update */
 4881	eth = (struct ethhdr *)xdp->data;
 4882	if ((orig_eth_type != eth->h_proto) ||
 4883	    (orig_host != ether_addr_equal_64bits(eth->h_dest,
 4884						  skb->dev->dev_addr)) ||
 4885	    (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
 4886		__skb_push(skb, ETH_HLEN);
 4887		skb->pkt_type = PACKET_HOST;
 4888		skb->protocol = eth_type_trans(skb, skb->dev);
 4889	}
 4890
 4891	/* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
 4892	 * before calling us again on redirect path. We do not call do_redirect
 4893	 * as we leave that up to the caller.
 4894	 *
 4895	 * Caller is responsible for managing lifetime of skb (i.e. calling
 4896	 * kfree_skb in response to actions it cannot handle/XDP_DROP).
 4897	 */
 4898	switch (act) {
 4899	case XDP_REDIRECT:
 4900	case XDP_TX:
 4901		__skb_push(skb, mac_len);
 4902		break;
 4903	case XDP_PASS:
 4904		metalen = xdp->data - xdp->data_meta;
 4905		if (metalen)
 4906			skb_metadata_set(skb, metalen);
 4907		break;
 4908	}
 4909
 4910	return act;
 4911}
 4912
 4913static int
 4914netif_skb_check_for_xdp(struct sk_buff **pskb, struct bpf_prog *prog)
 4915{
 4916	struct sk_buff *skb = *pskb;
 4917	int err, hroom, troom;
 4918
 4919	if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool), pskb, prog))
 4920		return 0;
 4921
 4922	/* In case we have to go down the path and also linearize,
 4923	 * then lets do the pskb_expand_head() work just once here.
 4924	 */
 4925	hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
 4926	troom = skb->tail + skb->data_len - skb->end;
 4927	err = pskb_expand_head(skb,
 4928			       hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
 4929			       troom > 0 ? troom + 128 : 0, GFP_ATOMIC);
 4930	if (err)
 4931		return err;
 4932
 4933	return skb_linearize(skb);
 4934}
 4935
 4936static u32 netif_receive_generic_xdp(struct sk_buff **pskb,
 4937				     struct xdp_buff *xdp,
 4938				     struct bpf_prog *xdp_prog)
 4939{
 4940	struct sk_buff *skb = *pskb;
 4941	u32 mac_len, act = XDP_DROP;
 4942
 4943	/* Reinjected packets coming from act_mirred or similar should
 4944	 * not get XDP generic processing.
 4945	 */
 4946	if (skb_is_redirected(skb))
 4947		return XDP_PASS;
 4948
 4949	/* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
 4950	 * bytes. This is the guarantee that also native XDP provides,
 4951	 * thus we need to do it here as well.
 4952	 */
 4953	mac_len = skb->data - skb_mac_header(skb);
 4954	__skb_push(skb, mac_len);
 4955
 4956	if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
 4957	    skb_headroom(skb) < XDP_PACKET_HEADROOM) {
 4958		if (netif_skb_check_for_xdp(pskb, xdp_prog))
 4959			goto do_drop;
 4960	}
 4961
 4962	__skb_pull(*pskb, mac_len);
 4963
 4964	act = bpf_prog_run_generic_xdp(*pskb, xdp, xdp_prog);
 4965	switch (act) {
 4966	case XDP_REDIRECT:
 4967	case XDP_TX:
 4968	case XDP_PASS:
 4969		break;
 4970	default:
 4971		bpf_warn_invalid_xdp_action((*pskb)->dev, xdp_prog, act);
 4972		fallthrough;
 4973	case XDP_ABORTED:
 4974		trace_xdp_exception((*pskb)->dev, xdp_prog, act);
 4975		fallthrough;
 4976	case XDP_DROP:
 4977	do_drop:
 4978		kfree_skb(*pskb);
 4979		break;
 4980	}
 4981
 4982	return act;
 4983}
 4984
 4985/* When doing generic XDP we have to bypass the qdisc layer and the
 4986 * network taps in order to match in-driver-XDP behavior. This also means
 4987 * that XDP packets are able to starve other packets going through a qdisc,
 4988 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
 4989 * queues, so they do not have this starvation issue.
 4990 */
 4991void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
 4992{
 4993	struct net_device *dev = skb->dev;
 4994	struct netdev_queue *txq;
 4995	bool free_skb = true;
 4996	int cpu, rc;
 4997
 4998	txq = netdev_core_pick_tx(dev, skb, NULL);
 4999	cpu = smp_processor_id();
 5000	HARD_TX_LOCK(dev, txq, cpu);
 5001	if (!netif_xmit_frozen_or_drv_stopped(txq)) {
 5002		rc = netdev_start_xmit(skb, dev, txq, 0);
 5003		if (dev_xmit_complete(rc))
 5004			free_skb = false;
 5005	}
 5006	HARD_TX_UNLOCK(dev, txq);
 5007	if (free_skb) {
 5008		trace_xdp_exception(dev, xdp_prog, XDP_TX);
 5009		dev_core_stats_tx_dropped_inc(dev);
 5010		kfree_skb(skb);
 5011	}
 5012}
 5013
 5014static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
 5015
 5016int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff **pskb)
 5017{
 5018	if (xdp_prog) {
 5019		struct xdp_buff xdp;
 5020		u32 act;
 5021		int err;
 5022
 5023		act = netif_receive_generic_xdp(pskb, &xdp, xdp_prog);
 5024		if (act != XDP_PASS) {
 5025			switch (act) {
 5026			case XDP_REDIRECT:
 5027				err = xdp_do_generic_redirect((*pskb)->dev, *pskb,
 5028							      &xdp, xdp_prog);
 5029				if (err)
 5030					goto out_redir;
 5031				break;
 5032			case XDP_TX:
 5033				generic_xdp_tx(*pskb, xdp_prog);
 5034				break;
 5035			}
 5036			return XDP_DROP;
 5037		}
 5038	}
 5039	return XDP_PASS;
 5040out_redir:
 5041	kfree_skb_reason(*pskb, SKB_DROP_REASON_XDP);
 5042	return XDP_DROP;
 5043}
 5044EXPORT_SYMBOL_GPL(do_xdp_generic);
 5045
 5046static int netif_rx_internal(struct sk_buff *skb)
 5047{
 5048	int ret;
 5049
 5050	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
 5051
 5052	trace_netif_rx(skb);
 5053
 5054#ifdef CONFIG_RPS
 5055	if (static_branch_unlikely(&rps_needed)) {
 5056		struct rps_dev_flow voidflow, *rflow = &voidflow;
 5057		int cpu;
 5058
 
 5059		rcu_read_lock();
 5060
 5061		cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5062		if (cpu < 0)
 5063			cpu = smp_processor_id();
 5064
 5065		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5066
 5067		rcu_read_unlock();
 
 5068	} else
 5069#endif
 5070	{
 5071		unsigned int qtail;
 5072
 5073		ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
 5074	}
 5075	return ret;
 5076}
 5077
 5078/**
 5079 *	__netif_rx	-	Slightly optimized version of netif_rx
 5080 *	@skb: buffer to post
 5081 *
 5082 *	This behaves as netif_rx except that it does not disable bottom halves.
 5083 *	As a result this function may only be invoked from the interrupt context
 5084 *	(either hard or soft interrupt).
 5085 */
 5086int __netif_rx(struct sk_buff *skb)
 5087{
 5088	int ret;
 5089
 5090	lockdep_assert_once(hardirq_count() | softirq_count());
 5091
 5092	trace_netif_rx_entry(skb);
 5093	ret = netif_rx_internal(skb);
 5094	trace_netif_rx_exit(ret);
 5095	return ret;
 5096}
 5097EXPORT_SYMBOL(__netif_rx);
 5098
 5099/**
 5100 *	netif_rx	-	post buffer to the network code
 5101 *	@skb: buffer to post
 5102 *
 5103 *	This function receives a packet from a device driver and queues it for
 5104 *	the upper (protocol) levels to process via the backlog NAPI device. It
 5105 *	always succeeds. The buffer may be dropped during processing for
 5106 *	congestion control or by the protocol layers.
 5107 *	The network buffer is passed via the backlog NAPI device. Modern NIC
 5108 *	driver should use NAPI and GRO.
 5109 *	This function can used from interrupt and from process context. The
 5110 *	caller from process context must not disable interrupts before invoking
 5111 *	this function.
 5112 *
 5113 *	return values:
 5114 *	NET_RX_SUCCESS	(no congestion)
 5115 *	NET_RX_DROP     (packet was dropped)
 5116 *
 5117 */
 
 5118int netif_rx(struct sk_buff *skb)
 5119{
 5120	bool need_bh_off = !(hardirq_count() | softirq_count());
 5121	int ret;
 5122
 5123	if (need_bh_off)
 5124		local_bh_disable();
 5125	trace_netif_rx_entry(skb);
 5126	ret = netif_rx_internal(skb);
 5127	trace_netif_rx_exit(ret);
 5128	if (need_bh_off)
 5129		local_bh_enable();
 5130	return ret;
 5131}
 5132EXPORT_SYMBOL(netif_rx);
 5133
 5134static __latent_entropy void net_tx_action(struct softirq_action *h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5135{
 5136	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
 5137
 5138	if (sd->completion_queue) {
 5139		struct sk_buff *clist;
 5140
 5141		local_irq_disable();
 5142		clist = sd->completion_queue;
 5143		sd->completion_queue = NULL;
 5144		local_irq_enable();
 5145
 5146		while (clist) {
 5147			struct sk_buff *skb = clist;
 5148
 5149			clist = clist->next;
 5150
 5151			WARN_ON(refcount_read(&skb->users));
 5152			if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
 5153				trace_consume_skb(skb, net_tx_action);
 5154			else
 5155				trace_kfree_skb(skb, net_tx_action,
 5156						get_kfree_skb_cb(skb)->reason);
 5157
 5158			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
 5159				__kfree_skb(skb);
 5160			else
 5161				__napi_kfree_skb(skb,
 5162						 get_kfree_skb_cb(skb)->reason);
 5163		}
 
 
 5164	}
 5165
 5166	if (sd->output_queue) {
 5167		struct Qdisc *head;
 5168
 5169		local_irq_disable();
 5170		head = sd->output_queue;
 5171		sd->output_queue = NULL;
 5172		sd->output_queue_tailp = &sd->output_queue;
 5173		local_irq_enable();
 5174
 5175		rcu_read_lock();
 5176
 5177		while (head) {
 5178			struct Qdisc *q = head;
 5179			spinlock_t *root_lock = NULL;
 5180
 5181			head = head->next_sched;
 5182
 5183			/* We need to make sure head->next_sched is read
 5184			 * before clearing __QDISC_STATE_SCHED
 5185			 */
 5186			smp_mb__before_atomic();
 5187
 5188			if (!(q->flags & TCQ_F_NOLOCK)) {
 5189				root_lock = qdisc_lock(q);
 5190				spin_lock(root_lock);
 5191			} else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
 5192						     &q->state))) {
 5193				/* There is a synchronize_net() between
 5194				 * STATE_DEACTIVATED flag being set and
 5195				 * qdisc_reset()/some_qdisc_is_busy() in
 5196				 * dev_deactivate(), so we can safely bail out
 5197				 * early here to avoid data race between
 5198				 * qdisc_deactivate() and some_qdisc_is_busy()
 5199				 * for lockless qdisc.
 5200				 */
 5201				clear_bit(__QDISC_STATE_SCHED, &q->state);
 5202				continue;
 5203			}
 5204
 5205			clear_bit(__QDISC_STATE_SCHED, &q->state);
 5206			qdisc_run(q);
 5207			if (root_lock)
 5208				spin_unlock(root_lock);
 
 
 
 
 
 
 
 
 
 
 5209		}
 5210
 5211		rcu_read_unlock();
 5212	}
 5213
 5214	xfrm_dev_backlog(sd);
 5215}
 5216
 5217#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
 
 5218/* This hook is defined here for ATM LANE */
 5219int (*br_fdb_test_addr_hook)(struct net_device *dev,
 5220			     unsigned char *addr) __read_mostly;
 5221EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
 5222#endif
 5223
 5224/**
 5225 *	netdev_is_rx_handler_busy - check if receive handler is registered
 5226 *	@dev: device to check
 5227 *
 5228 *	Check if a receive handler is already registered for a given device.
 5229 *	Return true if there one.
 5230 *
 5231 *	The caller must hold the rtnl_mutex.
 5232 */
 5233bool netdev_is_rx_handler_busy(struct net_device *dev)
 5234{
 5235	ASSERT_RTNL();
 5236	return dev && rtnl_dereference(dev->rx_handler);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5237}
 5238EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
 5239
 5240/**
 5241 *	netdev_rx_handler_register - register receive handler
 5242 *	@dev: device to register a handler for
 5243 *	@rx_handler: receive handler to register
 5244 *	@rx_handler_data: data pointer that is used by rx handler
 5245 *
 5246 *	Register a receive handler for a device. This handler will then be
 5247 *	called from __netif_receive_skb. A negative errno code is returned
 5248 *	on a failure.
 5249 *
 5250 *	The caller must hold the rtnl_mutex.
 5251 *
 5252 *	For a general description of rx_handler, see enum rx_handler_result.
 5253 */
 5254int netdev_rx_handler_register(struct net_device *dev,
 5255			       rx_handler_func_t *rx_handler,
 5256			       void *rx_handler_data)
 5257{
 5258	if (netdev_is_rx_handler_busy(dev))
 5259		return -EBUSY;
 5260
 5261	if (dev->priv_flags & IFF_NO_RX_HANDLER)
 5262		return -EINVAL;
 5263
 5264	/* Note: rx_handler_data must be set before rx_handler */
 5265	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
 5266	rcu_assign_pointer(dev->rx_handler, rx_handler);
 5267
 5268	return 0;
 5269}
 5270EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
 5271
 5272/**
 5273 *	netdev_rx_handler_unregister - unregister receive handler
 5274 *	@dev: device to unregister a handler from
 5275 *
 5276 *	Unregister a receive handler from a device.
 5277 *
 5278 *	The caller must hold the rtnl_mutex.
 5279 */
 5280void netdev_rx_handler_unregister(struct net_device *dev)
 5281{
 5282
 5283	ASSERT_RTNL();
 5284	RCU_INIT_POINTER(dev->rx_handler, NULL);
 5285	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
 5286	 * section has a guarantee to see a non NULL rx_handler_data
 5287	 * as well.
 5288	 */
 5289	synchronize_net();
 5290	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
 5291}
 5292EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
 5293
 5294/*
 5295 * Limit the use of PFMEMALLOC reserves to those protocols that implement
 5296 * the special handling of PFMEMALLOC skbs.
 5297 */
 5298static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
 5299{
 5300	switch (skb->protocol) {
 5301	case htons(ETH_P_ARP):
 5302	case htons(ETH_P_IP):
 5303	case htons(ETH_P_IPV6):
 5304	case htons(ETH_P_8021Q):
 5305	case htons(ETH_P_8021AD):
 5306		return true;
 5307	default:
 5308		return false;
 5309	}
 5310}
 5311
 5312static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
 5313			     int *ret, struct net_device *orig_dev)
 5314{
 
 5315	if (nf_hook_ingress_active(skb)) {
 5316		int ingress_retval;
 5317
 5318		if (*pt_prev) {
 5319			*ret = deliver_skb(skb, *pt_prev, orig_dev);
 5320			*pt_prev = NULL;
 5321		}
 5322
 5323		rcu_read_lock();
 5324		ingress_retval = nf_hook_ingress(skb);
 5325		rcu_read_unlock();
 5326		return ingress_retval;
 5327	}
 
 5328	return 0;
 5329}
 5330
 5331static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
 5332				    struct packet_type **ppt_prev)
 5333{
 5334	struct packet_type *ptype, *pt_prev;
 5335	rx_handler_func_t *rx_handler;
 5336	struct sk_buff *skb = *pskb;
 5337	struct net_device *orig_dev;
 5338	bool deliver_exact = false;
 5339	int ret = NET_RX_DROP;
 5340	__be16 type;
 5341
 5342	net_timestamp_check(!READ_ONCE(net_hotdata.tstamp_prequeue), skb);
 5343
 5344	trace_netif_receive_skb(skb);
 5345
 5346	orig_dev = skb->dev;
 5347
 5348	skb_reset_network_header(skb);
 5349	if (!skb_transport_header_was_set(skb))
 5350		skb_reset_transport_header(skb);
 5351	skb_reset_mac_len(skb);
 5352
 5353	pt_prev = NULL;
 5354
 5355another_round:
 5356	skb->skb_iif = skb->dev->ifindex;
 5357
 5358	__this_cpu_inc(softnet_data.processed);
 5359
 5360	if (static_branch_unlikely(&generic_xdp_needed_key)) {
 5361		int ret2;
 5362
 5363		migrate_disable();
 5364		ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog),
 5365				      &skb);
 5366		migrate_enable();
 5367
 5368		if (ret2 != XDP_PASS) {
 5369			ret = NET_RX_DROP;
 5370			goto out;
 5371		}
 5372	}
 5373
 5374	if (eth_type_vlan(skb->protocol)) {
 5375		skb = skb_vlan_untag(skb);
 5376		if (unlikely(!skb))
 5377			goto out;
 5378	}
 5379
 5380	if (skb_skip_tc_classify(skb))
 5381		goto skip_classify;
 
 
 
 
 5382
 5383	if (pfmemalloc)
 5384		goto skip_taps;
 5385
 5386	list_for_each_entry_rcu(ptype, &net_hotdata.ptype_all, list) {
 5387		if (pt_prev)
 5388			ret = deliver_skb(skb, pt_prev, orig_dev);
 5389		pt_prev = ptype;
 5390	}
 5391
 5392	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
 5393		if (pt_prev)
 5394			ret = deliver_skb(skb, pt_prev, orig_dev);
 5395		pt_prev = ptype;
 5396	}
 5397
 5398skip_taps:
 5399#ifdef CONFIG_NET_INGRESS
 5400	if (static_branch_unlikely(&ingress_needed_key)) {
 5401		bool another = false;
 5402
 5403		nf_skip_egress(skb, true);
 5404		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
 5405					 &another);
 5406		if (another)
 5407			goto another_round;
 5408		if (!skb)
 5409			goto out;
 5410
 5411		nf_skip_egress(skb, false);
 5412		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
 5413			goto out;
 5414	}
 5415#endif
 5416	skb_reset_redirect(skb);
 5417skip_classify:
 
 
 5418	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
 5419		goto drop;
 5420
 5421	if (skb_vlan_tag_present(skb)) {
 5422		if (pt_prev) {
 5423			ret = deliver_skb(skb, pt_prev, orig_dev);
 5424			pt_prev = NULL;
 5425		}
 5426		if (vlan_do_receive(&skb))
 5427			goto another_round;
 5428		else if (unlikely(!skb))
 5429			goto out;
 5430	}
 5431
 5432	rx_handler = rcu_dereference(skb->dev->rx_handler);
 5433	if (rx_handler) {
 5434		if (pt_prev) {
 5435			ret = deliver_skb(skb, pt_prev, orig_dev);
 5436			pt_prev = NULL;
 5437		}
 5438		switch (rx_handler(&skb)) {
 5439		case RX_HANDLER_CONSUMED:
 5440			ret = NET_RX_SUCCESS;
 5441			goto out;
 5442		case RX_HANDLER_ANOTHER:
 5443			goto another_round;
 5444		case RX_HANDLER_EXACT:
 5445			deliver_exact = true;
 5446			break;
 5447		case RX_HANDLER_PASS:
 5448			break;
 5449		default:
 5450			BUG();
 5451		}
 5452	}
 5453
 5454	if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
 5455check_vlan_id:
 5456		if (skb_vlan_tag_get_id(skb)) {
 5457			/* Vlan id is non 0 and vlan_do_receive() above couldn't
 5458			 * find vlan device.
 5459			 */
 5460			skb->pkt_type = PACKET_OTHERHOST;
 5461		} else if (eth_type_vlan(skb->protocol)) {
 5462			/* Outer header is 802.1P with vlan 0, inner header is
 5463			 * 802.1Q or 802.1AD and vlan_do_receive() above could
 5464			 * not find vlan dev for vlan id 0.
 5465			 */
 5466			__vlan_hwaccel_clear_tag(skb);
 5467			skb = skb_vlan_untag(skb);
 5468			if (unlikely(!skb))
 5469				goto out;
 5470			if (vlan_do_receive(&skb))
 5471				/* After stripping off 802.1P header with vlan 0
 5472				 * vlan dev is found for inner header.
 5473				 */
 5474				goto another_round;
 5475			else if (unlikely(!skb))
 5476				goto out;
 5477			else
 5478				/* We have stripped outer 802.1P vlan 0 header.
 5479				 * But could not find vlan dev.
 5480				 * check again for vlan id to set OTHERHOST.
 5481				 */
 5482				goto check_vlan_id;
 5483		}
 5484		/* Note: we might in the future use prio bits
 5485		 * and set skb->priority like in vlan_do_receive()
 5486		 * For the time being, just ignore Priority Code Point
 5487		 */
 5488		__vlan_hwaccel_clear_tag(skb);
 5489	}
 5490
 5491	type = skb->protocol;
 5492
 5493	/* deliver only exact match when indicated */
 5494	if (likely(!deliver_exact)) {
 5495		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5496				       &ptype_base[ntohs(type) &
 5497						   PTYPE_HASH_MASK]);
 5498	}
 5499
 5500	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5501			       &orig_dev->ptype_specific);
 5502
 5503	if (unlikely(skb->dev != orig_dev)) {
 5504		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
 5505				       &skb->dev->ptype_specific);
 5506	}
 5507
 5508	if (pt_prev) {
 5509		if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
 5510			goto drop;
 5511		*ppt_prev = pt_prev;
 
 5512	} else {
 5513drop:
 5514		if (!deliver_exact)
 5515			dev_core_stats_rx_dropped_inc(skb->dev);
 5516		else
 5517			dev_core_stats_rx_nohandler_inc(skb->dev);
 5518		kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
 5519		/* Jamal, now you will not able to escape explaining
 5520		 * me how you were going to use this. :-)
 5521		 */
 5522		ret = NET_RX_DROP;
 5523	}
 5524
 5525out:
 5526	/* The invariant here is that if *ppt_prev is not NULL
 5527	 * then skb should also be non-NULL.
 5528	 *
 5529	 * Apparently *ppt_prev assignment above holds this invariant due to
 5530	 * skb dereferencing near it.
 5531	 */
 5532	*pskb = skb;
 5533	return ret;
 5534}
 5535
 5536static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
 5537{
 5538	struct net_device *orig_dev = skb->dev;
 5539	struct packet_type *pt_prev = NULL;
 5540	int ret;
 5541
 5542	ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
 5543	if (pt_prev)
 5544		ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
 5545					 skb->dev, pt_prev, orig_dev);
 5546	return ret;
 5547}
 5548
 5549/**
 5550 *	netif_receive_skb_core - special purpose version of netif_receive_skb
 5551 *	@skb: buffer to process
 5552 *
 5553 *	More direct receive version of netif_receive_skb().  It should
 5554 *	only be used by callers that have a need to skip RPS and Generic XDP.
 5555 *	Caller must also take care of handling if ``(page_is_)pfmemalloc``.
 5556 *
 5557 *	This function may only be called from softirq context and interrupts
 5558 *	should be enabled.
 5559 *
 5560 *	Return values (usually ignored):
 5561 *	NET_RX_SUCCESS: no congestion
 5562 *	NET_RX_DROP: packet was dropped
 5563 */
 5564int netif_receive_skb_core(struct sk_buff *skb)
 5565{
 5566	int ret;
 5567
 5568	rcu_read_lock();
 5569	ret = __netif_receive_skb_one_core(skb, false);
 5570	rcu_read_unlock();
 5571
 5572	return ret;
 5573}
 5574EXPORT_SYMBOL(netif_receive_skb_core);
 5575
 5576static inline void __netif_receive_skb_list_ptype(struct list_head *head,
 5577						  struct packet_type *pt_prev,
 5578						  struct net_device *orig_dev)
 5579{
 5580	struct sk_buff *skb, *next;
 5581
 5582	if (!pt_prev)
 5583		return;
 5584	if (list_empty(head))
 5585		return;
 5586	if (pt_prev->list_func != NULL)
 5587		INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
 5588				   ip_list_rcv, head, pt_prev, orig_dev);
 5589	else
 5590		list_for_each_entry_safe(skb, next, head, list) {
 5591			skb_list_del_init(skb);
 5592			pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
 5593		}
 5594}
 5595
 5596static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
 5597{
 5598	/* Fast-path assumptions:
 5599	 * - There is no RX handler.
 5600	 * - Only one packet_type matches.
 5601	 * If either of these fails, we will end up doing some per-packet
 5602	 * processing in-line, then handling the 'last ptype' for the whole
 5603	 * sublist.  This can't cause out-of-order delivery to any single ptype,
 5604	 * because the 'last ptype' must be constant across the sublist, and all
 5605	 * other ptypes are handled per-packet.
 5606	 */
 5607	/* Current (common) ptype of sublist */
 5608	struct packet_type *pt_curr = NULL;
 5609	/* Current (common) orig_dev of sublist */
 5610	struct net_device *od_curr = NULL;
 5611	struct list_head sublist;
 5612	struct sk_buff *skb, *next;
 5613
 5614	INIT_LIST_HEAD(&sublist);
 5615	list_for_each_entry_safe(skb, next, head, list) {
 5616		struct net_device *orig_dev = skb->dev;
 5617		struct packet_type *pt_prev = NULL;
 5618
 5619		skb_list_del_init(skb);
 5620		__netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
 5621		if (!pt_prev)
 5622			continue;
 5623		if (pt_curr != pt_prev || od_curr != orig_dev) {
 5624			/* dispatch old sublist */
 5625			__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
 5626			/* start new sublist */
 5627			INIT_LIST_HEAD(&sublist);
 5628			pt_curr = pt_prev;
 5629			od_curr = orig_dev;
 5630		}
 5631		list_add_tail(&skb->list, &sublist);
 5632	}
 5633
 5634	/* dispatch final sublist */
 5635	__netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
 5636}
 5637
 5638static int __netif_receive_skb(struct sk_buff *skb)
 5639{
 5640	int ret;
 5641
 5642	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
 5643		unsigned int noreclaim_flag;
 5644
 5645		/*
 5646		 * PFMEMALLOC skbs are special, they should
 5647		 * - be delivered to SOCK_MEMALLOC sockets only
 5648		 * - stay away from userspace
 5649		 * - have bounded memory usage
 5650		 *
 5651		 * Use PF_MEMALLOC as this saves us from propagating the allocation
 5652		 * context down to all allocation sites.
 5653		 */
 5654		noreclaim_flag = memalloc_noreclaim_save();
 5655		ret = __netif_receive_skb_one_core(skb, true);
 5656		memalloc_noreclaim_restore(noreclaim_flag);
 5657	} else
 5658		ret = __netif_receive_skb_one_core(skb, false);
 5659
 5660	return ret;
 5661}
 5662
 5663static void __netif_receive_skb_list(struct list_head *head)
 5664{
 5665	unsigned long noreclaim_flag = 0;
 5666	struct sk_buff *skb, *next;
 5667	bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
 5668
 5669	list_for_each_entry_safe(skb, next, head, list) {
 5670		if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
 5671			struct list_head sublist;
 5672
 5673			/* Handle the previous sublist */
 5674			list_cut_before(&sublist, head, &skb->list);
 5675			if (!list_empty(&sublist))
 5676				__netif_receive_skb_list_core(&sublist, pfmemalloc);
 5677			pfmemalloc = !pfmemalloc;
 5678			/* See comments in __netif_receive_skb */
 5679			if (pfmemalloc)
 5680				noreclaim_flag = memalloc_noreclaim_save();
 5681			else
 5682				memalloc_noreclaim_restore(noreclaim_flag);
 5683		}
 5684	}
 5685	/* Handle the remaining sublist */
 5686	if (!list_empty(head))
 5687		__netif_receive_skb_list_core(head, pfmemalloc);
 5688	/* Restore pflags */
 5689	if (pfmemalloc)
 5690		memalloc_noreclaim_restore(noreclaim_flag);
 5691}
 5692
 5693static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
 5694{
 5695	struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
 5696	struct bpf_prog *new = xdp->prog;
 5697	int ret = 0;
 5698
 5699	switch (xdp->command) {
 5700	case XDP_SETUP_PROG:
 5701		rcu_assign_pointer(dev->xdp_prog, new);
 5702		if (old)
 5703			bpf_prog_put(old);
 5704
 5705		if (old && !new) {
 5706			static_branch_dec(&generic_xdp_needed_key);
 5707		} else if (new && !old) {
 5708			static_branch_inc(&generic_xdp_needed_key);
 5709			dev_disable_lro(dev);
 5710			dev_disable_gro_hw(dev);
 5711		}
 5712		break;
 5713
 5714	default:
 5715		ret = -EINVAL;
 5716		break;
 5717	}
 5718
 5719	return ret;
 5720}
 5721
 5722static int netif_receive_skb_internal(struct sk_buff *skb)
 5723{
 5724	int ret;
 5725
 5726	net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue), skb);
 5727
 5728	if (skb_defer_rx_timestamp(skb))
 5729		return NET_RX_SUCCESS;
 5730
 5731	rcu_read_lock();
 
 5732#ifdef CONFIG_RPS
 5733	if (static_branch_unlikely(&rps_needed)) {
 5734		struct rps_dev_flow voidflow, *rflow = &voidflow;
 5735		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5736
 5737		if (cpu >= 0) {
 5738			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5739			rcu_read_unlock();
 5740			return ret;
 5741		}
 5742	}
 5743#endif
 5744	ret = __netif_receive_skb(skb);
 5745	rcu_read_unlock();
 5746	return ret;
 5747}
 5748
 5749void netif_receive_skb_list_internal(struct list_head *head)
 5750{
 5751	struct sk_buff *skb, *next;
 5752	struct list_head sublist;
 5753
 5754	INIT_LIST_HEAD(&sublist);
 5755	list_for_each_entry_safe(skb, next, head, list) {
 5756		net_timestamp_check(READ_ONCE(net_hotdata.tstamp_prequeue),
 5757				    skb);
 5758		skb_list_del_init(skb);
 5759		if (!skb_defer_rx_timestamp(skb))
 5760			list_add_tail(&skb->list, &sublist);
 5761	}
 5762	list_splice_init(&sublist, head);
 5763
 5764	rcu_read_lock();
 5765#ifdef CONFIG_RPS
 5766	if (static_branch_unlikely(&rps_needed)) {
 5767		list_for_each_entry_safe(skb, next, head, list) {
 5768			struct rps_dev_flow voidflow, *rflow = &voidflow;
 5769			int cpu = get_rps_cpu(skb->dev, skb, &rflow);
 5770
 5771			if (cpu >= 0) {
 5772				/* Will be handled, remove from list */
 5773				skb_list_del_init(skb);
 5774				enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
 5775			}
 5776		}
 5777	}
 5778#endif
 5779	__netif_receive_skb_list(head);
 5780	rcu_read_unlock();
 5781}
 5782
 5783/**
 5784 *	netif_receive_skb - process receive buffer from network
 5785 *	@skb: buffer to process
 5786 *
 5787 *	netif_receive_skb() is the main receive data processing function.
 5788 *	It always succeeds. The buffer may be dropped during processing
 5789 *	for congestion control or by the protocol layers.
 5790 *
 5791 *	This function may only be called from softirq context and interrupts
 5792 *	should be enabled.
 5793 *
 5794 *	Return values (usually ignored):
 5795 *	NET_RX_SUCCESS: no congestion
 5796 *	NET_RX_DROP: packet was dropped
 5797 */
 5798int netif_receive_skb(struct sk_buff *skb)
 5799{
 5800	int ret;
 5801
 5802	trace_netif_receive_skb_entry(skb);
 5803
 5804	ret = netif_receive_skb_internal(skb);
 5805	trace_netif_receive_skb_exit(ret);
 5806
 5807	return ret;
 5808}
 5809EXPORT_SYMBOL(netif_receive_skb);
 5810
 5811/**
 5812 *	netif_receive_skb_list - process many receive buffers from network
 5813 *	@head: list of skbs to process.
 5814 *
 5815 *	Since return value of netif_receive_skb() is normally ignored, and
 5816 *	wouldn't be meaningful for a list, this function returns void.
 5817 *
 5818 *	This function may only be called from softirq context and interrupts
 5819 *	should be enabled.
 5820 */
 5821void netif_receive_skb_list(struct list_head *head)
 5822{
 5823	struct sk_buff *skb;
 5824
 5825	if (list_empty(head))
 5826		return;
 5827	if (trace_netif_receive_skb_list_entry_enabled()) {
 5828		list_for_each_entry(skb, head, list)
 5829			trace_netif_receive_skb_list_entry(skb);
 5830	}
 5831	netif_receive_skb_list_internal(head);
 5832	trace_netif_receive_skb_list_exit(0);
 5833}
 5834EXPORT_SYMBOL(netif_receive_skb_list);
 5835
 5836static DEFINE_PER_CPU(struct work_struct, flush_works);
 5837
 5838/* Network device is going away, flush any packets still pending */
 5839static void flush_backlog(struct work_struct *work)
 5840{
 
 
 5841	struct sk_buff *skb, *tmp;
 5842	struct softnet_data *sd;
 5843
 5844	local_bh_disable();
 5845	sd = this_cpu_ptr(&softnet_data);
 5846
 5847	rps_lock_irq_disable(sd);
 5848	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
 5849		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
 5850			__skb_unlink(skb, &sd->input_pkt_queue);
 5851			dev_kfree_skb_irq(skb);
 5852			input_queue_head_incr(sd);
 5853		}
 5854	}
 5855	rps_unlock_irq_enable(sd);
 5856
 5857	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
 5858		if (skb->dev->reg_state == NETREG_UNREGISTERING) {
 5859			__skb_unlink(skb, &sd->process_queue);
 5860			kfree_skb(skb);
 5861			input_queue_head_incr(sd);
 5862		}
 5863	}
 5864	local_bh_enable();
 5865}
 5866
 5867static bool flush_required(int cpu)
 5868{
 5869#if IS_ENABLED(CONFIG_RPS)
 5870	struct softnet_data *sd = &per_cpu(softnet_data, cpu);
 5871	bool do_flush;
 
 5872
 5873	rps_lock_irq_disable(sd);
 5874
 5875	/* as insertion into process_queue happens with the rps lock held,
 5876	 * process_queue access may race only with dequeue
 5877	 */
 5878	do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
 5879		   !skb_queue_empty_lockless(&sd->process_queue);
 5880	rps_unlock_irq_enable(sd);
 5881
 5882	return do_flush;
 5883#endif
 5884	/* without RPS we can't safely check input_pkt_queue: during a
 5885	 * concurrent remote skb_queue_splice() we can detect as empty both
 5886	 * input_pkt_queue and process_queue even if the latter could end-up
 5887	 * containing a lot of packets.
 5888	 */
 5889	return true;
 
 
 
 
 
 
 
 
 
 
 5890}
 5891
 5892static void flush_all_backlogs(void)
 
 
 
 
 5893{
 5894	static cpumask_t flush_cpus;
 5895	unsigned int cpu;
 5896
 5897	/* since we are under rtnl lock protection we can use static data
 5898	 * for the cpumask and avoid allocating on stack the possibly
 5899	 * large mask
 5900	 */
 5901	ASSERT_RTNL();
 5902
 5903	cpus_read_lock();
 
 5904
 5905	cpumask_clear(&flush_cpus);
 5906	for_each_online_cpu(cpu) {
 5907		if (flush_required(cpu)) {
 5908			queue_work_on(cpu, system_highpri_wq,
 5909				      per_cpu_ptr(&flush_works, cpu));
 5910			cpumask_set_cpu(cpu, &flush_cpus);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5911		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5912	}
 5913
 5914	/* we can have in flight packet[s] on the cpus we are not flushing,
 5915	 * synchronize_net() in unregister_netdevice_many() will take care of
 5916	 * them
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 5917	 */
 5918	for_each_cpu(cpu, &flush_cpus)
 5919		flush_work(per_cpu_ptr(&flush_works, cpu));
 5920
 5921	cpus_read_unlock();
 5922}
 5923
 5924static void net_rps_send_ipi(struct softnet_data *remsd)
 5925{
 5926#ifdef CONFIG_RPS
 5927	while (remsd) {
 5928		struct softnet_data *next = remsd->rps_ipi_next;
 
 
 
 
 
 
 
 5929
 5930		if (cpu_online(remsd->cpu))
 5931			smp_call_function_single_async(remsd->cpu, &remsd->csd);
 5932		remsd = next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 5933	}
 5934#endif
 
 
 
 
 5935}
 
 5936
 5937/*
 5938 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
 5939 * Note: called with local irq disabled, but exits with local irq enabled.
 5940 */
 5941static void net_rps_action_and_irq_enable(struct softnet_data *sd)
 5942{
 5943#ifdef CONFIG_RPS
 5944	struct softnet_data *remsd = sd->rps_ipi_list;
 5945
 5946	if (remsd) {
 5947		sd->rps_ipi_list = NULL;
 5948
 5949		local_irq_enable();
 5950
 5951		/* Send pending IPI's to kick RPS processing on remote cpus. */
 5952		net_rps_send_ipi(remsd);
 
 
 
 
 
 
 
 5953	} else
 5954#endif
 5955		local_irq_enable();
 5956}
 5957
 5958static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
 5959{
 5960#ifdef CONFIG_RPS
 5961	return sd->rps_ipi_list != NULL;
 5962#else
 5963	return false;
 5964#endif
 5965}
 5966
 5967static int process_backlog(struct napi_struct *napi, int quota)
 5968{
 5969	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
 5970	bool again = true;
 5971	int work = 0;
 
 5972
 5973	/* Check if we have pending ipi, its better to send them now,
 5974	 * not waiting net_rx_action() end.
 5975	 */
 5976	if (sd_has_rps_ipi_waiting(sd)) {
 5977		local_irq_disable();
 5978		net_rps_action_and_irq_enable(sd);
 5979	}
 5980
 5981	napi->weight = READ_ONCE(net_hotdata.dev_rx_weight);
 5982	while (again) {
 
 5983		struct sk_buff *skb;
 5984
 5985		while ((skb = __skb_dequeue(&sd->process_queue))) {
 5986			rcu_read_lock();
 
 5987			__netif_receive_skb(skb);
 5988			rcu_read_unlock();
 
 5989			input_queue_head_incr(sd);
 5990			if (++work >= quota)
 
 5991				return work;
 5992
 5993		}
 5994
 5995		rps_lock_irq_disable(sd);
 5996		if (skb_queue_empty(&sd->input_pkt_queue)) {
 5997			/*
 5998			 * Inline a custom version of __napi_complete().
 5999			 * only current cpu owns and manipulates this napi,
 6000			 * and NAPI_STATE_SCHED is the only possible flag set
 6001			 * on backlog.
 6002			 * We can use a plain write instead of clear_bit(),
 6003			 * and we dont need an smp_mb() memory barrier.
 6004			 */
 6005			napi->state = 0;
 6006			again = false;
 6007		} else {
 6008			skb_queue_splice_tail_init(&sd->input_pkt_queue,
 6009						   &sd->process_queue);
 6010		}
 6011		rps_unlock_irq_enable(sd);
 
 
 
 6012	}
 
 6013
 6014	return work;
 6015}
 6016
 6017/**
 6018 * __napi_schedule - schedule for receive
 6019 * @n: entry to schedule
 6020 *
 6021 * The entry's receive function will be scheduled to run.
 6022 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
 6023 */
 6024void __napi_schedule(struct napi_struct *n)
 6025{
 6026	unsigned long flags;
 6027
 6028	local_irq_save(flags);
 6029	____napi_schedule(this_cpu_ptr(&softnet_data), n);
 6030	local_irq_restore(flags);
 6031}
 6032EXPORT_SYMBOL(__napi_schedule);
 6033
 6034/**
 6035 *	napi_schedule_prep - check if napi can be scheduled
 6036 *	@n: napi context
 6037 *
 6038 * Test if NAPI routine is already running, and if not mark
 6039 * it as running.  This is used as a condition variable to
 6040 * insure only one NAPI poll instance runs.  We also make
 6041 * sure there is no pending NAPI disable.
 6042 */
 6043bool napi_schedule_prep(struct napi_struct *n)
 6044{
 6045	unsigned long new, val = READ_ONCE(n->state);
 6046
 6047	do {
 6048		if (unlikely(val & NAPIF_STATE_DISABLE))
 6049			return false;
 6050		new = val | NAPIF_STATE_SCHED;
 6051
 6052		/* Sets STATE_MISSED bit if STATE_SCHED was already set
 6053		 * This was suggested by Alexander Duyck, as compiler
 6054		 * emits better code than :
 6055		 * if (val & NAPIF_STATE_SCHED)
 6056		 *     new |= NAPIF_STATE_MISSED;
 6057		 */
 6058		new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
 6059						   NAPIF_STATE_MISSED;
 6060	} while (!try_cmpxchg(&n->state, &val, new));
 6061
 6062	return !(val & NAPIF_STATE_SCHED);
 6063}
 6064EXPORT_SYMBOL(napi_schedule_prep);
 6065
 6066/**
 6067 * __napi_schedule_irqoff - schedule for receive
 6068 * @n: entry to schedule
 6069 *
 6070 * Variant of __napi_schedule() assuming hard irqs are masked.
 6071 *
 6072 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
 6073 * because the interrupt disabled assumption might not be true
 6074 * due to force-threaded interrupts and spinlock substitution.
 6075 */
 6076void __napi_schedule_irqoff(struct napi_struct *n)
 6077{
 6078	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6079		____napi_schedule(this_cpu_ptr(&softnet_data), n);
 6080	else
 6081		__napi_schedule(n);
 6082}
 6083EXPORT_SYMBOL(__napi_schedule_irqoff);
 6084
 6085bool napi_complete_done(struct napi_struct *n, int work_done)
 6086{
 6087	unsigned long flags, val, new, timeout = 0;
 6088	bool ret = true;
 
 
 
 
 
 
 
 
 
 6089
 6090	/*
 6091	 * 1) Don't let napi dequeue from the cpu poll list
 6092	 *    just in case its running on a different cpu.
 6093	 * 2) If we are busy polling, do nothing here, we have
 6094	 *    the guarantee we will be called later.
 6095	 */
 6096	if (unlikely(n->state & (NAPIF_STATE_NPSVC |
 6097				 NAPIF_STATE_IN_BUSY_POLL)))
 6098		return false;
 6099
 6100	if (work_done) {
 6101		if (n->gro_bitmask)
 6102			timeout = READ_ONCE(n->dev->gro_flush_timeout);
 6103		n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
 6104	}
 6105	if (n->defer_hard_irqs_count > 0) {
 6106		n->defer_hard_irqs_count--;
 6107		timeout = READ_ONCE(n->dev->gro_flush_timeout);
 6108		if (timeout)
 6109			ret = false;
 6110	}
 6111	if (n->gro_bitmask) {
 6112		/* When the NAPI instance uses a timeout and keeps postponing
 6113		 * it, we need to bound somehow the time packets are kept in
 6114		 * the GRO layer
 6115		 */
 6116		napi_gro_flush(n, !!timeout);
 6117	}
 6118
 6119	gro_normal_list(n);
 
 6120
 6121	if (unlikely(!list_empty(&n->poll_list))) {
 
 
 
 
 
 
 
 
 6122		/* If n->poll_list is not empty, we need to mask irqs */
 6123		local_irq_save(flags);
 6124		list_del_init(&n->poll_list);
 6125		local_irq_restore(flags);
 6126	}
 6127	WRITE_ONCE(n->list_owner, -1);
 6128
 6129	val = READ_ONCE(n->state);
 6130	do {
 6131		WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
 6132
 6133		new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
 6134			      NAPIF_STATE_SCHED_THREADED |
 6135			      NAPIF_STATE_PREFER_BUSY_POLL);
 6136
 6137		/* If STATE_MISSED was set, leave STATE_SCHED set,
 6138		 * because we will call napi->poll() one more time.
 6139		 * This C code was suggested by Alexander Duyck to help gcc.
 6140		 */
 6141		new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
 6142						    NAPIF_STATE_SCHED;
 6143	} while (!try_cmpxchg(&n->state, &val, new));
 6144
 6145	if (unlikely(val & NAPIF_STATE_MISSED)) {
 6146		__napi_schedule(n);
 6147		return false;
 6148	}
 6149
 6150	if (timeout)
 6151		hrtimer_start(&n->timer, ns_to_ktime(timeout),
 6152			      HRTIMER_MODE_REL_PINNED);
 6153	return ret;
 6154}
 6155EXPORT_SYMBOL(napi_complete_done);
 6156
 6157/* must be called under rcu_read_lock(), as we dont take a reference */
 6158struct napi_struct *napi_by_id(unsigned int napi_id)
 6159{
 6160	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
 6161	struct napi_struct *napi;
 6162
 6163	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
 6164		if (napi->napi_id == napi_id)
 6165			return napi;
 6166
 6167	return NULL;
 6168}
 6169
 6170static void skb_defer_free_flush(struct softnet_data *sd)
 6171{
 6172	struct sk_buff *skb, *next;
 6173
 6174	/* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
 6175	if (!READ_ONCE(sd->defer_list))
 6176		return;
 6177
 6178	spin_lock(&sd->defer_lock);
 6179	skb = sd->defer_list;
 6180	sd->defer_list = NULL;
 6181	sd->defer_count = 0;
 6182	spin_unlock(&sd->defer_lock);
 6183
 6184	while (skb != NULL) {
 6185		next = skb->next;
 6186		napi_consume_skb(skb, 1);
 6187		skb = next;
 6188	}
 6189}
 6190
 6191#if defined(CONFIG_NET_RX_BUSY_POLL)
 6192
 6193static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
 6194{
 6195	if (!skip_schedule) {
 6196		gro_normal_list(napi);
 6197		__napi_schedule(napi);
 6198		return;
 6199	}
 6200
 6201	if (napi->gro_bitmask) {
 6202		/* flush too old packets
 6203		 * If HZ < 1000, flush all packets.
 6204		 */
 6205		napi_gro_flush(napi, HZ >= 1000);
 6206	}
 6207
 6208	gro_normal_list(napi);
 6209	clear_bit(NAPI_STATE_SCHED, &napi->state);
 6210}
 6211
 6212enum {
 6213	NAPI_F_PREFER_BUSY_POLL	= 1,
 6214	NAPI_F_END_ON_RESCHED	= 2,
 6215};
 6216
 6217static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock,
 6218			   unsigned flags, u16 budget)
 6219{
 6220	bool skip_schedule = false;
 6221	unsigned long timeout;
 6222	int rc;
 6223
 6224	/* Busy polling means there is a high chance device driver hard irq
 6225	 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
 6226	 * set in napi_schedule_prep().
 6227	 * Since we are about to call napi->poll() once more, we can safely
 6228	 * clear NAPI_STATE_MISSED.
 6229	 *
 6230	 * Note: x86 could use a single "lock and ..." instruction
 6231	 * to perform these two clear_bit()
 6232	 */
 6233	clear_bit(NAPI_STATE_MISSED, &napi->state);
 6234	clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
 6235
 6236	local_bh_disable();
 6237
 6238	if (flags & NAPI_F_PREFER_BUSY_POLL) {
 6239		napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
 6240		timeout = READ_ONCE(napi->dev->gro_flush_timeout);
 6241		if (napi->defer_hard_irqs_count && timeout) {
 6242			hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
 6243			skip_schedule = true;
 6244		}
 6245	}
 6246
 6247	/* All we really want here is to re-enable device interrupts.
 6248	 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
 6249	 */
 6250	rc = napi->poll(napi, budget);
 6251	/* We can't gro_normal_list() here, because napi->poll() might have
 6252	 * rearmed the napi (napi_complete_done()) in which case it could
 6253	 * already be running on another CPU.
 6254	 */
 6255	trace_napi_poll(napi, rc, budget);
 6256	netpoll_poll_unlock(have_poll_lock);
 6257	if (rc == budget)
 6258		__busy_poll_stop(napi, skip_schedule);
 6259	local_bh_enable();
 6260}
 6261
 6262static void __napi_busy_loop(unsigned int napi_id,
 6263		      bool (*loop_end)(void *, unsigned long),
 6264		      void *loop_end_arg, unsigned flags, u16 budget)
 6265{
 6266	unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
 6267	int (*napi_poll)(struct napi_struct *napi, int budget);
 6268	void *have_poll_lock = NULL;
 6269	struct napi_struct *napi;
 
 6270
 6271	WARN_ON_ONCE(!rcu_read_lock_held());
 6272
 6273restart:
 6274	napi_poll = NULL;
 6275
 6276	napi = napi_by_id(napi_id);
 6277	if (!napi)
 6278		return;
 6279
 6280	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6281		preempt_disable();
 6282	for (;;) {
 6283		int work = 0;
 6284
 
 
 6285		local_bh_disable();
 6286		if (!napi_poll) {
 6287			unsigned long val = READ_ONCE(napi->state);
 6288
 6289			/* If multiple threads are competing for this napi,
 6290			 * we avoid dirtying napi->state as much as we can.
 6291			 */
 6292			if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
 6293				   NAPIF_STATE_IN_BUSY_POLL)) {
 6294				if (flags & NAPI_F_PREFER_BUSY_POLL)
 6295					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6296				goto count;
 6297			}
 6298			if (cmpxchg(&napi->state, val,
 6299				    val | NAPIF_STATE_IN_BUSY_POLL |
 6300					  NAPIF_STATE_SCHED) != val) {
 6301				if (flags & NAPI_F_PREFER_BUSY_POLL)
 6302					set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6303				goto count;
 6304			}
 6305			have_poll_lock = netpoll_poll_lock(napi);
 6306			napi_poll = napi->poll;
 6307		}
 6308		work = napi_poll(napi, budget);
 6309		trace_napi_poll(napi, work, budget);
 6310		gro_normal_list(napi);
 6311count:
 6312		if (work > 0)
 6313			__NET_ADD_STATS(dev_net(napi->dev),
 6314					LINUX_MIB_BUSYPOLLRXPACKETS, work);
 6315		skb_defer_free_flush(this_cpu_ptr(&softnet_data));
 6316		local_bh_enable();
 6317
 6318		if (!loop_end || loop_end(loop_end_arg, start_time))
 6319			break;
 6320
 6321		if (unlikely(need_resched())) {
 6322			if (flags & NAPI_F_END_ON_RESCHED)
 6323				break;
 6324			if (napi_poll)
 6325				busy_poll_stop(napi, have_poll_lock, flags, budget);
 6326			if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6327				preempt_enable();
 6328			rcu_read_unlock();
 6329			cond_resched();
 6330			rcu_read_lock();
 6331			if (loop_end(loop_end_arg, start_time))
 6332				return;
 6333			goto restart;
 6334		}
 6335		cpu_relax();
 6336	}
 6337	if (napi_poll)
 6338		busy_poll_stop(napi, have_poll_lock, flags, budget);
 6339	if (!IS_ENABLED(CONFIG_PREEMPT_RT))
 6340		preempt_enable();
 6341}
 6342
 6343void napi_busy_loop_rcu(unsigned int napi_id,
 6344			bool (*loop_end)(void *, unsigned long),
 6345			void *loop_end_arg, bool prefer_busy_poll, u16 budget)
 6346{
 6347	unsigned flags = NAPI_F_END_ON_RESCHED;
 6348
 6349	if (prefer_busy_poll)
 6350		flags |= NAPI_F_PREFER_BUSY_POLL;
 6351
 6352	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
 6353}
 6354
 6355void napi_busy_loop(unsigned int napi_id,
 6356		    bool (*loop_end)(void *, unsigned long),
 6357		    void *loop_end_arg, bool prefer_busy_poll, u16 budget)
 6358{
 6359	unsigned flags = prefer_busy_poll ? NAPI_F_PREFER_BUSY_POLL : 0;
 6360
 6361	rcu_read_lock();
 6362	__napi_busy_loop(napi_id, loop_end, loop_end_arg, flags, budget);
 6363	rcu_read_unlock();
 
 6364}
 6365EXPORT_SYMBOL(napi_busy_loop);
 6366
 6367#endif /* CONFIG_NET_RX_BUSY_POLL */
 6368
 6369static void napi_hash_add(struct napi_struct *napi)
 6370{
 6371	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
 
 6372		return;
 6373
 6374	spin_lock(&napi_hash_lock);
 6375
 6376	/* 0..NR_CPUS range is reserved for sender_cpu use */
 6377	do {
 6378		if (unlikely(++napi_gen_id < MIN_NAPI_ID))
 6379			napi_gen_id = MIN_NAPI_ID;
 6380	} while (napi_by_id(napi_gen_id));
 6381	napi->napi_id = napi_gen_id;
 6382
 6383	hlist_add_head_rcu(&napi->napi_hash_node,
 6384			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
 6385
 6386	spin_unlock(&napi_hash_lock);
 6387}
 
 6388
 6389/* Warning : caller is responsible to make sure rcu grace period
 6390 * is respected before freeing memory containing @napi
 6391 */
 6392static void napi_hash_del(struct napi_struct *napi)
 6393{
 6394	spin_lock(&napi_hash_lock);
 6395
 6396	hlist_del_init_rcu(&napi->napi_hash_node);
 6397
 
 
 
 
 6398	spin_unlock(&napi_hash_lock);
 
 6399}
 
 6400
 6401static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
 6402{
 6403	struct napi_struct *napi;
 6404
 6405	napi = container_of(timer, struct napi_struct, timer);
 6406
 6407	/* Note : we use a relaxed variant of napi_schedule_prep() not setting
 6408	 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
 6409	 */
 6410	if (!napi_disable_pending(napi) &&
 6411	    !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
 6412		clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
 6413		__napi_schedule_irqoff(napi);
 6414	}
 6415
 6416	return HRTIMER_NORESTART;
 6417}
 6418
 6419static void init_gro_hash(struct napi_struct *napi)
 
 6420{
 6421	int i;
 6422
 6423	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
 6424		INIT_LIST_HEAD(&napi->gro_hash[i].list);
 6425		napi->gro_hash[i].count = 0;
 6426	}
 6427	napi->gro_bitmask = 0;
 6428}
 6429
 6430int dev_set_threaded(struct net_device *dev, bool threaded)
 6431{
 6432	struct napi_struct *napi;
 6433	int err = 0;
 6434
 6435	if (dev->threaded == threaded)
 6436		return 0;
 6437
 6438	if (threaded) {
 6439		list_for_each_entry(napi, &dev->napi_list, dev_list) {
 6440			if (!napi->thread) {
 6441				err = napi_kthread_create(napi);
 6442				if (err) {
 6443					threaded = false;
 6444					break;
 6445				}
 6446			}
 6447		}
 6448	}
 6449
 6450	dev->threaded = threaded;
 6451
 6452	/* Make sure kthread is created before THREADED bit
 6453	 * is set.
 6454	 */
 6455	smp_mb__before_atomic();
 6456
 6457	/* Setting/unsetting threaded mode on a napi might not immediately
 6458	 * take effect, if the current napi instance is actively being
 6459	 * polled. In this case, the switch between threaded mode and
 6460	 * softirq mode will happen in the next round of napi_schedule().
 6461	 * This should not cause hiccups/stalls to the live traffic.
 6462	 */
 6463	list_for_each_entry(napi, &dev->napi_list, dev_list)
 6464		assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
 6465
 6466	return err;
 6467}
 6468EXPORT_SYMBOL(dev_set_threaded);
 6469
 6470/**
 6471 * netif_queue_set_napi - Associate queue with the napi
 6472 * @dev: device to which NAPI and queue belong
 6473 * @queue_index: Index of queue
 6474 * @type: queue type as RX or TX
 6475 * @napi: NAPI context, pass NULL to clear previously set NAPI
 6476 *
 6477 * Set queue with its corresponding napi context. This should be done after
 6478 * registering the NAPI handler for the queue-vector and the queues have been
 6479 * mapped to the corresponding interrupt vector.
 6480 */
 6481void netif_queue_set_napi(struct net_device *dev, unsigned int queue_index,
 6482			  enum netdev_queue_type type, struct napi_struct *napi)
 6483{
 6484	struct netdev_rx_queue *rxq;
 6485	struct netdev_queue *txq;
 6486
 6487	if (WARN_ON_ONCE(napi && !napi->dev))
 6488		return;
 6489	if (dev->reg_state >= NETREG_REGISTERED)
 6490		ASSERT_RTNL();
 6491
 6492	switch (type) {
 6493	case NETDEV_QUEUE_TYPE_RX:
 6494		rxq = __netif_get_rx_queue(dev, queue_index);
 6495		rxq->napi = napi;
 6496		return;
 6497	case NETDEV_QUEUE_TYPE_TX:
 6498		txq = netdev_get_tx_queue(dev, queue_index);
 6499		txq->napi = napi;
 6500		return;
 6501	default:
 6502		return;
 6503	}
 6504}
 6505EXPORT_SYMBOL(netif_queue_set_napi);
 6506
 6507void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
 6508			   int (*poll)(struct napi_struct *, int), int weight)
 6509{
 6510	if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
 6511		return;
 6512
 6513	INIT_LIST_HEAD(&napi->poll_list);
 6514	INIT_HLIST_NODE(&napi->napi_hash_node);
 6515	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
 6516	napi->timer.function = napi_watchdog;
 6517	init_gro_hash(napi);
 
 6518	napi->skb = NULL;
 6519	INIT_LIST_HEAD(&napi->rx_list);
 6520	napi->rx_count = 0;
 6521	napi->poll = poll;
 6522	if (weight > NAPI_POLL_WEIGHT)
 6523		netdev_err_once(dev, "%s() called with weight %d\n", __func__,
 6524				weight);
 6525	napi->weight = weight;
 
 6526	napi->dev = dev;
 6527#ifdef CONFIG_NETPOLL
 
 6528	napi->poll_owner = -1;
 6529#endif
 6530	napi->list_owner = -1;
 6531	set_bit(NAPI_STATE_SCHED, &napi->state);
 6532	set_bit(NAPI_STATE_NPSVC, &napi->state);
 6533	list_add_rcu(&napi->dev_list, &dev->napi_list);
 6534	napi_hash_add(napi);
 6535	napi_get_frags_check(napi);
 6536	/* Create kthread for this napi if dev->threaded is set.
 6537	 * Clear dev->threaded if kthread creation failed so that
 6538	 * threaded mode will not be enabled in napi_enable().
 6539	 */
 6540	if (dev->threaded && napi_kthread_create(napi))
 6541		dev->threaded = 0;
 6542	netif_napi_set_irq(napi, -1);
 6543}
 6544EXPORT_SYMBOL(netif_napi_add_weight);
 6545
 6546void napi_disable(struct napi_struct *n)
 6547{
 6548	unsigned long val, new;
 6549
 6550	might_sleep();
 6551	set_bit(NAPI_STATE_DISABLE, &n->state);
 6552
 6553	val = READ_ONCE(n->state);
 6554	do {
 6555		while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
 6556			usleep_range(20, 200);
 6557			val = READ_ONCE(n->state);
 6558		}
 6559
 6560		new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
 6561		new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
 6562	} while (!try_cmpxchg(&n->state, &val, new));
 6563
 6564	hrtimer_cancel(&n->timer);
 6565
 6566	clear_bit(NAPI_STATE_DISABLE, &n->state);
 6567}
 6568EXPORT_SYMBOL(napi_disable);
 6569
 6570/**
 6571 *	napi_enable - enable NAPI scheduling
 6572 *	@n: NAPI context
 6573 *
 6574 * Resume NAPI from being scheduled on this context.
 6575 * Must be paired with napi_disable.
 6576 */
 6577void napi_enable(struct napi_struct *n)
 6578{
 6579	unsigned long new, val = READ_ONCE(n->state);
 6580
 6581	do {
 6582		BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
 6583
 6584		new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
 6585		if (n->dev->threaded && n->thread)
 6586			new |= NAPIF_STATE_THREADED;
 6587	} while (!try_cmpxchg(&n->state, &val, new));
 6588}
 6589EXPORT_SYMBOL(napi_enable);
 6590
 6591static void flush_gro_hash(struct napi_struct *napi)
 6592{
 6593	int i;
 6594
 6595	for (i = 0; i < GRO_HASH_BUCKETS; i++) {
 6596		struct sk_buff *skb, *n;
 6597
 6598		list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
 6599			kfree_skb(skb);
 6600		napi->gro_hash[i].count = 0;
 6601	}
 6602}
 6603
 6604/* Must be called in process context */
 6605void __netif_napi_del(struct napi_struct *napi)
 6606{
 6607	if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
 6608		return;
 6609
 6610	napi_hash_del(napi);
 6611	list_del_rcu(&napi->dev_list);
 6612	napi_free_frags(napi);
 6613
 6614	flush_gro_hash(napi);
 6615	napi->gro_bitmask = 0;
 6616
 6617	if (napi->thread) {
 6618		kthread_stop(napi->thread);
 6619		napi->thread = NULL;
 6620	}
 6621}
 6622EXPORT_SYMBOL(__netif_napi_del);
 6623
 6624static int __napi_poll(struct napi_struct *n, bool *repoll)
 6625{
 
 6626	int work, weight;
 6627
 
 
 
 
 6628	weight = n->weight;
 6629
 6630	/* This NAPI_STATE_SCHED test is for avoiding a race
 6631	 * with netpoll's poll_napi().  Only the entity which
 6632	 * obtains the lock and sees NAPI_STATE_SCHED set will
 6633	 * actually make the ->poll() call.  Therefore we avoid
 6634	 * accidentally calling ->poll() when NAPI is not scheduled.
 6635	 */
 6636	work = 0;
 6637	if (napi_is_scheduled(n)) {
 6638		work = n->poll(n, weight);
 6639		trace_napi_poll(n, work, weight);
 6640
 6641		xdp_do_check_flushed(n);
 6642	}
 6643
 6644	if (unlikely(work > weight))
 6645		netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
 6646				n->poll, work, weight);
 6647
 6648	if (likely(work < weight))
 6649		return work;
 6650
 6651	/* Drivers must not modify the NAPI state if they
 6652	 * consume the entire weight.  In such cases this code
 6653	 * still "owns" the NAPI instance and therefore can
 6654	 * move the instance around on the list at-will.
 6655	 */
 6656	if (unlikely(napi_disable_pending(n))) {
 6657		napi_complete(n);
 6658		return work;
 6659	}
 6660
 6661	/* The NAPI context has more processing work, but busy-polling
 6662	 * is preferred. Exit early.
 6663	 */
 6664	if (napi_prefer_busy_poll(n)) {
 6665		if (napi_complete_done(n, work)) {
 6666			/* If timeout is not set, we need to make sure
 6667			 * that the NAPI is re-scheduled.
 6668			 */
 6669			napi_schedule(n);
 6670		}
 6671		return work;
 6672	}
 6673
 6674	if (n->gro_bitmask) {
 6675		/* flush too old packets
 6676		 * If HZ < 1000, flush all packets.
 6677		 */
 6678		napi_gro_flush(n, HZ >= 1000);
 6679	}
 6680
 6681	gro_normal_list(n);
 6682
 6683	/* Some drivers may have called napi_schedule
 6684	 * prior to exhausting their budget.
 6685	 */
 6686	if (unlikely(!list_empty(&n->poll_list))) {
 6687		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
 6688			     n->dev ? n->dev->name : "backlog");
 6689		return work;
 6690	}
 6691
 6692	*repoll = true;
 6693
 6694	return work;
 6695}
 6696
 6697static int napi_poll(struct napi_struct *n, struct list_head *repoll)
 6698{
 6699	bool do_repoll = false;
 6700	void *have;
 6701	int work;
 6702
 6703	list_del_init(&n->poll_list);
 6704
 6705	have = netpoll_poll_lock(n);
 6706
 6707	work = __napi_poll(n, &do_repoll);
 6708
 6709	if (do_repoll)
 6710		list_add_tail(&n->poll_list, repoll);
 6711
 
 6712	netpoll_poll_unlock(have);
 6713
 6714	return work;
 6715}
 6716
 6717static int napi_thread_wait(struct napi_struct *napi)
 6718{
 6719	bool woken = false;
 6720
 6721	set_current_state(TASK_INTERRUPTIBLE);
 6722
 6723	while (!kthread_should_stop()) {
 6724		/* Testing SCHED_THREADED bit here to make sure the current
 6725		 * kthread owns this napi and could poll on this napi.
 6726		 * Testing SCHED bit is not enough because SCHED bit might be
 6727		 * set by some other busy poll thread or by napi_disable().
 6728		 */
 6729		if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
 6730			WARN_ON(!list_empty(&napi->poll_list));
 6731			__set_current_state(TASK_RUNNING);
 6732			return 0;
 6733		}
 6734
 6735		schedule();
 6736		/* woken being true indicates this thread owns this napi. */
 6737		woken = true;
 6738		set_current_state(TASK_INTERRUPTIBLE);
 6739	}
 6740	__set_current_state(TASK_RUNNING);
 6741
 6742	return -1;
 6743}
 6744
 6745static int napi_threaded_poll(void *data)
 6746{
 6747	struct napi_struct *napi = data;
 6748	struct softnet_data *sd;
 6749	void *have;
 6750
 6751	while (!napi_thread_wait(napi)) {
 6752		unsigned long last_qs = jiffies;
 6753
 6754		for (;;) {
 6755			bool repoll = false;
 6756
 6757			local_bh_disable();
 6758			sd = this_cpu_ptr(&softnet_data);
 6759			sd->in_napi_threaded_poll = true;
 6760
 6761			have = netpoll_poll_lock(napi);
 6762			__napi_poll(napi, &repoll);
 6763			netpoll_poll_unlock(have);
 6764
 6765			sd->in_napi_threaded_poll = false;
 6766			barrier();
 6767
 6768			if (sd_has_rps_ipi_waiting(sd)) {
 6769				local_irq_disable();
 6770				net_rps_action_and_irq_enable(sd);
 6771			}
 6772			skb_defer_free_flush(sd);
 6773			local_bh_enable();
 6774
 6775			if (!repoll)
 6776				break;
 6777
 6778			rcu_softirq_qs_periodic(last_qs);
 6779			cond_resched();
 6780		}
 6781	}
 6782	return 0;
 6783}
 6784
 6785static __latent_entropy void net_rx_action(struct softirq_action *h)
 6786{
 6787	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
 6788	unsigned long time_limit = jiffies +
 6789		usecs_to_jiffies(READ_ONCE(net_hotdata.netdev_budget_usecs));
 6790	int budget = READ_ONCE(net_hotdata.netdev_budget);
 6791	LIST_HEAD(list);
 6792	LIST_HEAD(repoll);
 6793
 6794start:
 6795	sd->in_net_rx_action = true;
 6796	local_irq_disable();
 6797	list_splice_init(&sd->poll_list, &list);
 6798	local_irq_enable();
 6799
 6800	for (;;) {
 6801		struct napi_struct *n;
 6802
 6803		skb_defer_free_flush(sd);
 6804
 6805		if (list_empty(&list)) {
 6806			if (list_empty(&repoll)) {
 6807				sd->in_net_rx_action = false;
 6808				barrier();
 6809				/* We need to check if ____napi_schedule()
 6810				 * had refilled poll_list while
 6811				 * sd->in_net_rx_action was true.
 6812				 */
 6813				if (!list_empty(&sd->poll_list))
 6814					goto start;
 6815				if (!sd_has_rps_ipi_waiting(sd))
 6816					goto end;
 6817			}
 6818			break;
 6819		}
 6820
 6821		n = list_first_entry(&list, struct napi_struct, poll_list);
 6822		budget -= napi_poll(n, &repoll);
 6823
 6824		/* If softirq window is exhausted then punt.
 6825		 * Allow this to run for 2 jiffies since which will allow
 6826		 * an average latency of 1.5/HZ.
 6827		 */
 6828		if (unlikely(budget <= 0 ||
 6829			     time_after_eq(jiffies, time_limit))) {
 6830			sd->time_squeeze++;
 6831			break;
 6832		}
 6833	}
 6834
 
 6835	local_irq_disable();
 6836
 6837	list_splice_tail_init(&sd->poll_list, &list);
 6838	list_splice_tail(&repoll, &list);
 6839	list_splice(&list, &sd->poll_list);
 6840	if (!list_empty(&sd->poll_list))
 6841		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 6842	else
 6843		sd->in_net_rx_action = false;
 6844
 6845	net_rps_action_and_irq_enable(sd);
 6846end:;
 6847}
 6848
 6849struct netdev_adjacent {
 6850	struct net_device *dev;
 6851	netdevice_tracker dev_tracker;
 6852
 6853	/* upper master flag, there can only be one master device per list */
 6854	bool master;
 6855
 6856	/* lookup ignore flag */
 6857	bool ignore;
 6858
 6859	/* counter for the number of times this device was added to us */
 6860	u16 ref_nr;
 6861
 6862	/* private field for the users */
 6863	void *private;
 6864
 6865	struct list_head list;
 6866	struct rcu_head rcu;
 6867};
 6868
 6869static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
 6870						 struct list_head *adj_list)
 6871{
 6872	struct netdev_adjacent *adj;
 6873
 6874	list_for_each_entry(adj, adj_list, list) {
 6875		if (adj->dev == adj_dev)
 6876			return adj;
 6877	}
 6878	return NULL;
 6879}
 6880
 6881static int ____netdev_has_upper_dev(struct net_device *upper_dev,
 6882				    struct netdev_nested_priv *priv)
 6883{
 6884	struct net_device *dev = (struct net_device *)priv->data;
 6885
 6886	return upper_dev == dev;
 6887}
 6888
 6889/**
 6890 * netdev_has_upper_dev - Check if device is linked to an upper device
 6891 * @dev: device
 6892 * @upper_dev: upper device to check
 6893 *
 6894 * Find out if a device is linked to specified upper device and return true
 6895 * in case it is. Note that this checks only immediate upper device,
 6896 * not through a complete stack of devices. The caller must hold the RTNL lock.
 6897 */
 6898bool netdev_has_upper_dev(struct net_device *dev,
 6899			  struct net_device *upper_dev)
 6900{
 6901	struct netdev_nested_priv priv = {
 6902		.data = (void *)upper_dev,
 6903	};
 6904
 6905	ASSERT_RTNL();
 6906
 6907	return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
 6908					     &priv);
 6909}
 6910EXPORT_SYMBOL(netdev_has_upper_dev);
 6911
 6912/**
 6913 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
 6914 * @dev: device
 6915 * @upper_dev: upper device to check
 6916 *
 6917 * Find out if a device is linked to specified upper device and return true
 6918 * in case it is. Note that this checks the entire upper device chain.
 6919 * The caller must hold rcu lock.
 6920 */
 6921
 6922bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
 6923				  struct net_device *upper_dev)
 6924{
 6925	struct netdev_nested_priv priv = {
 6926		.data = (void *)upper_dev,
 6927	};
 6928
 6929	return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
 6930					       &priv);
 6931}
 6932EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
 6933
 6934/**
 6935 * netdev_has_any_upper_dev - Check if device is linked to some device
 6936 * @dev: device
 6937 *
 6938 * Find out if a device is linked to an upper device and return true in case
 6939 * it is. The caller must hold the RTNL lock.
 6940 */
 6941bool netdev_has_any_upper_dev(struct net_device *dev)
 6942{
 6943	ASSERT_RTNL();
 6944
 6945	return !list_empty(&dev->adj_list.upper);
 6946}
 6947EXPORT_SYMBOL(netdev_has_any_upper_dev);
 6948
 6949/**
 6950 * netdev_master_upper_dev_get - Get master upper device
 6951 * @dev: device
 6952 *
 6953 * Find a master upper device and return pointer to it or NULL in case
 6954 * it's not there. The caller must hold the RTNL lock.
 6955 */
 6956struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
 6957{
 6958	struct netdev_adjacent *upper;
 6959
 6960	ASSERT_RTNL();
 6961
 6962	if (list_empty(&dev->adj_list.upper))
 6963		return NULL;
 6964
 6965	upper = list_first_entry(&dev->adj_list.upper,
 6966				 struct netdev_adjacent, list);
 6967	if (likely(upper->master))
 6968		return upper->dev;
 6969	return NULL;
 6970}
 6971EXPORT_SYMBOL(netdev_master_upper_dev_get);
 6972
 6973static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
 6974{
 6975	struct netdev_adjacent *upper;
 6976
 6977	ASSERT_RTNL();
 6978
 6979	if (list_empty(&dev->adj_list.upper))
 6980		return NULL;
 6981
 6982	upper = list_first_entry(&dev->adj_list.upper,
 6983				 struct netdev_adjacent, list);
 6984	if (likely(upper->master) && !upper->ignore)
 6985		return upper->dev;
 6986	return NULL;
 6987}
 6988
 6989/**
 6990 * netdev_has_any_lower_dev - Check if device is linked to some device
 6991 * @dev: device
 6992 *
 6993 * Find out if a device is linked to a lower device and return true in case
 6994 * it is. The caller must hold the RTNL lock.
 6995 */
 6996static bool netdev_has_any_lower_dev(struct net_device *dev)
 6997{
 6998	ASSERT_RTNL();
 6999
 7000	return !list_empty(&dev->adj_list.lower);
 7001}
 7002
 7003void *netdev_adjacent_get_private(struct list_head *adj_list)
 7004{
 7005	struct netdev_adjacent *adj;
 7006
 7007	adj = list_entry(adj_list, struct netdev_adjacent, list);
 7008
 7009	return adj->private;
 7010}
 7011EXPORT_SYMBOL(netdev_adjacent_get_private);
 7012
 7013/**
 7014 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
 7015 * @dev: device
 7016 * @iter: list_head ** of the current position
 7017 *
 7018 * Gets the next device from the dev's upper list, starting from iter
 7019 * position. The caller must hold RCU read lock.
 7020 */
 7021struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
 7022						 struct list_head **iter)
 7023{
 7024	struct netdev_adjacent *upper;
 7025
 7026	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
 7027
 7028	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7029
 7030	if (&upper->list == &dev->adj_list.upper)
 7031		return NULL;
 7032
 7033	*iter = &upper->list;
 7034
 7035	return upper->dev;
 7036}
 7037EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
 7038
 7039static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
 7040						  struct list_head **iter,
 7041						  bool *ignore)
 7042{
 7043	struct netdev_adjacent *upper;
 7044
 7045	upper = list_entry((*iter)->next, struct netdev_adjacent, list);
 7046
 7047	if (&upper->list == &dev->adj_list.upper)
 7048		return NULL;
 7049
 7050	*iter = &upper->list;
 7051	*ignore = upper->ignore;
 7052
 7053	return upper->dev;
 7054}
 7055
 7056static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
 7057						    struct list_head **iter)
 7058{
 7059	struct netdev_adjacent *upper;
 7060
 7061	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
 7062
 7063	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7064
 7065	if (&upper->list == &dev->adj_list.upper)
 7066		return NULL;
 7067
 7068	*iter = &upper->list;
 7069
 7070	return upper->dev;
 7071}
 7072
 7073static int __netdev_walk_all_upper_dev(struct net_device *dev,
 7074				       int (*fn)(struct net_device *dev,
 7075					 struct netdev_nested_priv *priv),
 7076				       struct netdev_nested_priv *priv)
 7077{
 7078	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7079	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7080	int ret, cur = 0;
 7081	bool ignore;
 7082
 7083	now = dev;
 7084	iter = &dev->adj_list.upper;
 7085
 7086	while (1) {
 7087		if (now != dev) {
 7088			ret = fn(now, priv);
 7089			if (ret)
 7090				return ret;
 7091		}
 7092
 7093		next = NULL;
 7094		while (1) {
 7095			udev = __netdev_next_upper_dev(now, &iter, &ignore);
 7096			if (!udev)
 7097				break;
 7098			if (ignore)
 7099				continue;
 7100
 7101			next = udev;
 7102			niter = &udev->adj_list.upper;
 7103			dev_stack[cur] = now;
 7104			iter_stack[cur++] = iter;
 7105			break;
 7106		}
 7107
 7108		if (!next) {
 7109			if (!cur)
 7110				return 0;
 7111			next = dev_stack[--cur];
 7112			niter = iter_stack[cur];
 7113		}
 7114
 7115		now = next;
 7116		iter = niter;
 7117	}
 7118
 7119	return 0;
 7120}
 7121
 7122int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
 7123				  int (*fn)(struct net_device *dev,
 7124					    struct netdev_nested_priv *priv),
 7125				  struct netdev_nested_priv *priv)
 7126{
 7127	struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7128	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7129	int ret, cur = 0;
 7130
 7131	now = dev;
 7132	iter = &dev->adj_list.upper;
 7133
 7134	while (1) {
 7135		if (now != dev) {
 7136			ret = fn(now, priv);
 7137			if (ret)
 7138				return ret;
 7139		}
 7140
 7141		next = NULL;
 7142		while (1) {
 7143			udev = netdev_next_upper_dev_rcu(now, &iter);
 7144			if (!udev)
 7145				break;
 7146
 7147			next = udev;
 7148			niter = &udev->adj_list.upper;
 7149			dev_stack[cur] = now;
 7150			iter_stack[cur++] = iter;
 7151			break;
 7152		}
 7153
 7154		if (!next) {
 7155			if (!cur)
 7156				return 0;
 7157			next = dev_stack[--cur];
 7158			niter = iter_stack[cur];
 7159		}
 7160
 7161		now = next;
 7162		iter = niter;
 7163	}
 7164
 7165	return 0;
 7166}
 7167EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
 7168
 7169static bool __netdev_has_upper_dev(struct net_device *dev,
 7170				   struct net_device *upper_dev)
 7171{
 7172	struct netdev_nested_priv priv = {
 7173		.flags = 0,
 7174		.data = (void *)upper_dev,
 7175	};
 7176
 7177	ASSERT_RTNL();
 7178
 7179	return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
 7180					   &priv);
 7181}
 7182
 7183/**
 7184 * netdev_lower_get_next_private - Get the next ->private from the
 7185 *				   lower neighbour list
 7186 * @dev: device
 7187 * @iter: list_head ** of the current position
 7188 *
 7189 * Gets the next netdev_adjacent->private from the dev's lower neighbour
 7190 * list, starting from iter position. The caller must hold either hold the
 7191 * RTNL lock or its own locking that guarantees that the neighbour lower
 7192 * list will remain unchanged.
 7193 */
 7194void *netdev_lower_get_next_private(struct net_device *dev,
 7195				    struct list_head **iter)
 7196{
 7197	struct netdev_adjacent *lower;
 7198
 7199	lower = list_entry(*iter, struct netdev_adjacent, list);
 7200
 7201	if (&lower->list == &dev->adj_list.lower)
 7202		return NULL;
 7203
 7204	*iter = lower->list.next;
 7205
 7206	return lower->private;
 7207}
 7208EXPORT_SYMBOL(netdev_lower_get_next_private);
 7209
 7210/**
 7211 * netdev_lower_get_next_private_rcu - Get the next ->private from the
 7212 *				       lower neighbour list, RCU
 7213 *				       variant
 7214 * @dev: device
 7215 * @iter: list_head ** of the current position
 7216 *
 7217 * Gets the next netdev_adjacent->private from the dev's lower neighbour
 7218 * list, starting from iter position. The caller must hold RCU read lock.
 7219 */
 7220void *netdev_lower_get_next_private_rcu(struct net_device *dev,
 7221					struct list_head **iter)
 7222{
 7223	struct netdev_adjacent *lower;
 7224
 7225	WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
 7226
 7227	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7228
 7229	if (&lower->list == &dev->adj_list.lower)
 7230		return NULL;
 7231
 7232	*iter = &lower->list;
 7233
 7234	return lower->private;
 7235}
 7236EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
 7237
 7238/**
 7239 * netdev_lower_get_next - Get the next device from the lower neighbour
 7240 *                         list
 7241 * @dev: device
 7242 * @iter: list_head ** of the current position
 7243 *
 7244 * Gets the next netdev_adjacent from the dev's lower neighbour
 7245 * list, starting from iter position. The caller must hold RTNL lock or
 7246 * its own locking that guarantees that the neighbour lower
 7247 * list will remain unchanged.
 7248 */
 7249void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
 7250{
 7251	struct netdev_adjacent *lower;
 7252
 7253	lower = list_entry(*iter, struct netdev_adjacent, list);
 7254
 7255	if (&lower->list == &dev->adj_list.lower)
 7256		return NULL;
 7257
 7258	*iter = lower->list.next;
 7259
 7260	return lower->dev;
 7261}
 7262EXPORT_SYMBOL(netdev_lower_get_next);
 7263
 7264static struct net_device *netdev_next_lower_dev(struct net_device *dev,
 7265						struct list_head **iter)
 7266{
 7267	struct netdev_adjacent *lower;
 7268
 7269	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
 7270
 7271	if (&lower->list == &dev->adj_list.lower)
 7272		return NULL;
 7273
 7274	*iter = &lower->list;
 7275
 7276	return lower->dev;
 7277}
 7278
 7279static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
 7280						  struct list_head **iter,
 7281						  bool *ignore)
 7282{
 7283	struct netdev_adjacent *lower;
 7284
 7285	lower = list_entry((*iter)->next, struct netdev_adjacent, list);
 7286
 7287	if (&lower->list == &dev->adj_list.lower)
 7288		return NULL;
 7289
 7290	*iter = &lower->list;
 7291	*ignore = lower->ignore;
 7292
 7293	return lower->dev;
 7294}
 7295
 7296int netdev_walk_all_lower_dev(struct net_device *dev,
 7297			      int (*fn)(struct net_device *dev,
 7298					struct netdev_nested_priv *priv),
 7299			      struct netdev_nested_priv *priv)
 7300{
 7301	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7302	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7303	int ret, cur = 0;
 7304
 7305	now = dev;
 7306	iter = &dev->adj_list.lower;
 7307
 7308	while (1) {
 7309		if (now != dev) {
 7310			ret = fn(now, priv);
 7311			if (ret)
 7312				return ret;
 7313		}
 7314
 7315		next = NULL;
 7316		while (1) {
 7317			ldev = netdev_next_lower_dev(now, &iter);
 7318			if (!ldev)
 7319				break;
 7320
 7321			next = ldev;
 7322			niter = &ldev->adj_list.lower;
 7323			dev_stack[cur] = now;
 7324			iter_stack[cur++] = iter;
 7325			break;
 7326		}
 7327
 7328		if (!next) {
 7329			if (!cur)
 7330				return 0;
 7331			next = dev_stack[--cur];
 7332			niter = iter_stack[cur];
 7333		}
 7334
 7335		now = next;
 7336		iter = niter;
 7337	}
 7338
 7339	return 0;
 7340}
 7341EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
 7342
 7343static int __netdev_walk_all_lower_dev(struct net_device *dev,
 7344				       int (*fn)(struct net_device *dev,
 7345					 struct netdev_nested_priv *priv),
 7346				       struct netdev_nested_priv *priv)
 7347{
 7348	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7349	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7350	int ret, cur = 0;
 7351	bool ignore;
 7352
 7353	now = dev;
 7354	iter = &dev->adj_list.lower;
 7355
 7356	while (1) {
 7357		if (now != dev) {
 7358			ret = fn(now, priv);
 7359			if (ret)
 7360				return ret;
 7361		}
 7362
 7363		next = NULL;
 7364		while (1) {
 7365			ldev = __netdev_next_lower_dev(now, &iter, &ignore);
 7366			if (!ldev)
 7367				break;
 7368			if (ignore)
 7369				continue;
 7370
 7371			next = ldev;
 7372			niter = &ldev->adj_list.lower;
 7373			dev_stack[cur] = now;
 7374			iter_stack[cur++] = iter;
 7375			break;
 7376		}
 7377
 7378		if (!next) {
 7379			if (!cur)
 7380				return 0;
 7381			next = dev_stack[--cur];
 7382			niter = iter_stack[cur];
 7383		}
 7384
 7385		now = next;
 7386		iter = niter;
 7387	}
 7388
 7389	return 0;
 7390}
 7391
 7392struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
 7393					     struct list_head **iter)
 7394{
 7395	struct netdev_adjacent *lower;
 7396
 7397	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
 7398	if (&lower->list == &dev->adj_list.lower)
 7399		return NULL;
 7400
 7401	*iter = &lower->list;
 7402
 7403	return lower->dev;
 7404}
 7405EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
 7406
 7407static u8 __netdev_upper_depth(struct net_device *dev)
 7408{
 7409	struct net_device *udev;
 7410	struct list_head *iter;
 7411	u8 max_depth = 0;
 7412	bool ignore;
 7413
 7414	for (iter = &dev->adj_list.upper,
 7415	     udev = __netdev_next_upper_dev(dev, &iter, &ignore);
 7416	     udev;
 7417	     udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
 7418		if (ignore)
 7419			continue;
 7420		if (max_depth < udev->upper_level)
 7421			max_depth = udev->upper_level;
 7422	}
 7423
 7424	return max_depth;
 7425}
 7426
 7427static u8 __netdev_lower_depth(struct net_device *dev)
 7428{
 7429	struct net_device *ldev;
 7430	struct list_head *iter;
 7431	u8 max_depth = 0;
 7432	bool ignore;
 7433
 7434	for (iter = &dev->adj_list.lower,
 7435	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
 7436	     ldev;
 7437	     ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
 7438		if (ignore)
 7439			continue;
 7440		if (max_depth < ldev->lower_level)
 7441			max_depth = ldev->lower_level;
 7442	}
 7443
 7444	return max_depth;
 7445}
 7446
 7447static int __netdev_update_upper_level(struct net_device *dev,
 7448				       struct netdev_nested_priv *__unused)
 7449{
 7450	dev->upper_level = __netdev_upper_depth(dev) + 1;
 7451	return 0;
 7452}
 7453
 7454#ifdef CONFIG_LOCKDEP
 7455static LIST_HEAD(net_unlink_list);
 7456
 7457static void net_unlink_todo(struct net_device *dev)
 7458{
 7459	if (list_empty(&dev->unlink_list))
 7460		list_add_tail(&dev->unlink_list, &net_unlink_list);
 7461}
 7462#endif
 7463
 7464static int __netdev_update_lower_level(struct net_device *dev,
 7465				       struct netdev_nested_priv *priv)
 7466{
 7467	dev->lower_level = __netdev_lower_depth(dev) + 1;
 7468
 7469#ifdef CONFIG_LOCKDEP
 7470	if (!priv)
 7471		return 0;
 7472
 7473	if (priv->flags & NESTED_SYNC_IMM)
 7474		dev->nested_level = dev->lower_level - 1;
 7475	if (priv->flags & NESTED_SYNC_TODO)
 7476		net_unlink_todo(dev);
 7477#endif
 7478	return 0;
 7479}
 7480
 7481int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
 7482				  int (*fn)(struct net_device *dev,
 7483					    struct netdev_nested_priv *priv),
 7484				  struct netdev_nested_priv *priv)
 7485{
 7486	struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
 7487	struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
 7488	int ret, cur = 0;
 7489
 7490	now = dev;
 7491	iter = &dev->adj_list.lower;
 7492
 7493	while (1) {
 7494		if (now != dev) {
 7495			ret = fn(now, priv);
 7496			if (ret)
 7497				return ret;
 7498		}
 7499
 7500		next = NULL;
 7501		while (1) {
 7502			ldev = netdev_next_lower_dev_rcu(now, &iter);
 7503			if (!ldev)
 7504				break;
 7505
 7506			next = ldev;
 7507			niter = &ldev->adj_list.lower;
 7508			dev_stack[cur] = now;
 7509			iter_stack[cur++] = iter;
 7510			break;
 7511		}
 7512
 7513		if (!next) {
 7514			if (!cur)
 7515				return 0;
 7516			next = dev_stack[--cur];
 7517			niter = iter_stack[cur];
 7518		}
 7519
 7520		now = next;
 7521		iter = niter;
 7522	}
 7523
 7524	return 0;
 7525}
 7526EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
 7527
 7528/**
 7529 * netdev_lower_get_first_private_rcu - Get the first ->private from the
 7530 *				       lower neighbour list, RCU
 7531 *				       variant
 7532 * @dev: device
 7533 *
 7534 * Gets the first netdev_adjacent->private from the dev's lower neighbour
 7535 * list. The caller must hold RCU read lock.
 7536 */
 7537void *netdev_lower_get_first_private_rcu(struct net_device *dev)
 7538{
 7539	struct netdev_adjacent *lower;
 7540
 7541	lower = list_first_or_null_rcu(&dev->adj_list.lower,
 7542			struct netdev_adjacent, list);
 7543	if (lower)
 7544		return lower->private;
 7545	return NULL;
 7546}
 7547EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
 7548
 7549/**
 7550 * netdev_master_upper_dev_get_rcu - Get master upper device
 7551 * @dev: device
 7552 *
 7553 * Find a master upper device and return pointer to it or NULL in case
 7554 * it's not there. The caller must hold the RCU read lock.
 7555 */
 7556struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
 7557{
 7558	struct netdev_adjacent *upper;
 7559
 7560	upper = list_first_or_null_rcu(&dev->adj_list.upper,
 7561				       struct netdev_adjacent, list);
 7562	if (upper && likely(upper->master))
 7563		return upper->dev;
 7564	return NULL;
 7565}
 7566EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
 7567
 7568static int netdev_adjacent_sysfs_add(struct net_device *dev,
 7569			      struct net_device *adj_dev,
 7570			      struct list_head *dev_list)
 7571{
 7572	char linkname[IFNAMSIZ+7];
 7573
 7574	sprintf(linkname, dev_list == &dev->adj_list.upper ?
 7575		"upper_%s" : "lower_%s", adj_dev->name);
 7576	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
 7577				 linkname);
 7578}
 7579static void netdev_adjacent_sysfs_del(struct net_device *dev,
 7580			       char *name,
 7581			       struct list_head *dev_list)
 7582{
 7583	char linkname[IFNAMSIZ+7];
 7584
 7585	sprintf(linkname, dev_list == &dev->adj_list.upper ?
 7586		"upper_%s" : "lower_%s", name);
 7587	sysfs_remove_link(&(dev->dev.kobj), linkname);
 7588}
 7589
 7590static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
 7591						 struct net_device *adj_dev,
 7592						 struct list_head *dev_list)
 7593{
 7594	return (dev_list == &dev->adj_list.upper ||
 7595		dev_list == &dev->adj_list.lower) &&
 7596		net_eq(dev_net(dev), dev_net(adj_dev));
 7597}
 7598
 7599static int __netdev_adjacent_dev_insert(struct net_device *dev,
 7600					struct net_device *adj_dev,
 7601					struct list_head *dev_list,
 7602					void *private, bool master)
 7603{
 7604	struct netdev_adjacent *adj;
 7605	int ret;
 7606
 7607	adj = __netdev_find_adj(adj_dev, dev_list);
 7608
 7609	if (adj) {
 7610		adj->ref_nr += 1;
 7611		pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
 7612			 dev->name, adj_dev->name, adj->ref_nr);
 7613
 7614		return 0;
 7615	}
 7616
 7617	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
 7618	if (!adj)
 7619		return -ENOMEM;
 7620
 7621	adj->dev = adj_dev;
 7622	adj->master = master;
 7623	adj->ref_nr = 1;
 7624	adj->private = private;
 7625	adj->ignore = false;
 7626	netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
 7627
 7628	pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
 7629		 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
 7630
 7631	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
 7632		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
 7633		if (ret)
 7634			goto free_adj;
 7635	}
 7636
 7637	/* Ensure that master link is always the first item in list. */
 7638	if (master) {
 7639		ret = sysfs_create_link(&(dev->dev.kobj),
 7640					&(adj_dev->dev.kobj), "master");
 7641		if (ret)
 7642			goto remove_symlinks;
 7643
 7644		list_add_rcu(&adj->list, dev_list);
 7645	} else {
 7646		list_add_tail_rcu(&adj->list, dev_list);
 7647	}
 7648
 7649	return 0;
 7650
 7651remove_symlinks:
 7652	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
 7653		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
 7654free_adj:
 7655	netdev_put(adj_dev, &adj->dev_tracker);
 7656	kfree(adj);
 
 7657
 7658	return ret;
 7659}
 7660
 7661static void __netdev_adjacent_dev_remove(struct net_device *dev,
 7662					 struct net_device *adj_dev,
 7663					 u16 ref_nr,
 7664					 struct list_head *dev_list)
 7665{
 7666	struct netdev_adjacent *adj;
 7667
 7668	pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
 7669		 dev->name, adj_dev->name, ref_nr);
 7670
 7671	adj = __netdev_find_adj(adj_dev, dev_list);
 7672
 7673	if (!adj) {
 7674		pr_err("Adjacency does not exist for device %s from %s\n",
 7675		       dev->name, adj_dev->name);
 7676		WARN_ON(1);
 7677		return;
 7678	}
 7679
 7680	if (adj->ref_nr > ref_nr) {
 7681		pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
 7682			 dev->name, adj_dev->name, ref_nr,
 7683			 adj->ref_nr - ref_nr);
 7684		adj->ref_nr -= ref_nr;
 7685		return;
 7686	}
 7687
 7688	if (adj->master)
 7689		sysfs_remove_link(&(dev->dev.kobj), "master");
 7690
 7691	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
 7692		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
 7693
 7694	list_del_rcu(&adj->list);
 7695	pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
 7696		 adj_dev->name, dev->name, adj_dev->name);
 7697	netdev_put(adj_dev, &adj->dev_tracker);
 7698	kfree_rcu(adj, rcu);
 7699}
 7700
 7701static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
 7702					    struct net_device *upper_dev,
 7703					    struct list_head *up_list,
 7704					    struct list_head *down_list,
 7705					    void *private, bool master)
 7706{
 7707	int ret;
 7708
 7709	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
 7710					   private, master);
 7711	if (ret)
 7712		return ret;
 7713
 7714	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
 7715					   private, false);
 7716	if (ret) {
 7717		__netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
 7718		return ret;
 7719	}
 7720
 7721	return 0;
 7722}
 7723
 
 
 
 
 
 
 
 
 
 7724static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
 7725					       struct net_device *upper_dev,
 7726					       u16 ref_nr,
 7727					       struct list_head *up_list,
 7728					       struct list_head *down_list)
 7729{
 7730	__netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
 7731	__netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
 
 
 
 
 
 
 
 
 7732}
 7733
 7734static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
 7735						struct net_device *upper_dev,
 7736						void *private, bool master)
 7737{
 7738	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
 7739						&dev->adj_list.upper,
 7740						&upper_dev->adj_list.lower,
 7741						private, master);
 
 
 
 
 
 
 
 
 
 
 
 7742}
 7743
 7744static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
 7745						   struct net_device *upper_dev)
 7746{
 7747	__netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
 
 7748					   &dev->adj_list.upper,
 7749					   &upper_dev->adj_list.lower);
 7750}
 7751
 7752static int __netdev_upper_dev_link(struct net_device *dev,
 7753				   struct net_device *upper_dev, bool master,
 7754				   void *upper_priv, void *upper_info,
 7755				   struct netdev_nested_priv *priv,
 7756				   struct netlink_ext_ack *extack)
 7757{
 7758	struct netdev_notifier_changeupper_info changeupper_info = {
 7759		.info = {
 7760			.dev = dev,
 7761			.extack = extack,
 7762		},
 7763		.upper_dev = upper_dev,
 7764		.master = master,
 7765		.linking = true,
 7766		.upper_info = upper_info,
 7767	};
 7768	struct net_device *master_dev;
 7769	int ret = 0;
 7770
 7771	ASSERT_RTNL();
 7772
 7773	if (dev == upper_dev)
 7774		return -EBUSY;
 7775
 7776	/* To prevent loops, check if dev is not upper device to upper_dev. */
 7777	if (__netdev_has_upper_dev(upper_dev, dev))
 7778		return -EBUSY;
 7779
 7780	if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
 7781		return -EMLINK;
 7782
 7783	if (!master) {
 7784		if (__netdev_has_upper_dev(dev, upper_dev))
 7785			return -EEXIST;
 7786	} else {
 7787		master_dev = __netdev_master_upper_dev_get(dev);
 7788		if (master_dev)
 7789			return master_dev == upper_dev ? -EEXIST : -EBUSY;
 7790	}
 7791
 7792	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
 7793					    &changeupper_info.info);
 7794	ret = notifier_to_errno(ret);
 7795	if (ret)
 7796		return ret;
 7797
 7798	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
 7799						   master);
 7800	if (ret)
 7801		return ret;
 7802
 7803	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7804					    &changeupper_info.info);
 7805	ret = notifier_to_errno(ret);
 7806	if (ret)
 7807		goto rollback;
 7808
 7809	__netdev_update_upper_level(dev, NULL);
 7810	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
 7811
 7812	__netdev_update_lower_level(upper_dev, priv);
 7813	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
 7814				    priv);
 
 
 
 
 7815
 7816	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 7817
 7818rollback:
 7819	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
 7820
 7821	return ret;
 7822}
 7823
 7824/**
 7825 * netdev_upper_dev_link - Add a link to the upper device
 7826 * @dev: device
 7827 * @upper_dev: new upper device
 7828 * @extack: netlink extended ack
 7829 *
 7830 * Adds a link to device which is upper to this one. The caller must hold
 7831 * the RTNL lock. On a failure a negative errno code is returned.
 7832 * On success the reference counts are adjusted and the function
 7833 * returns zero.
 7834 */
 7835int netdev_upper_dev_link(struct net_device *dev,
 7836			  struct net_device *upper_dev,
 7837			  struct netlink_ext_ack *extack)
 7838{
 7839	struct netdev_nested_priv priv = {
 7840		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7841		.data = NULL,
 7842	};
 7843
 7844	return __netdev_upper_dev_link(dev, upper_dev, false,
 7845				       NULL, NULL, &priv, extack);
 7846}
 7847EXPORT_SYMBOL(netdev_upper_dev_link);
 7848
 7849/**
 7850 * netdev_master_upper_dev_link - Add a master link to the upper device
 7851 * @dev: device
 7852 * @upper_dev: new upper device
 7853 * @upper_priv: upper device private
 7854 * @upper_info: upper info to be passed down via notifier
 7855 * @extack: netlink extended ack
 7856 *
 7857 * Adds a link to device which is upper to this one. In this case, only
 7858 * one master upper device can be linked, although other non-master devices
 7859 * might be linked as well. The caller must hold the RTNL lock.
 7860 * On a failure a negative errno code is returned. On success the reference
 7861 * counts are adjusted and the function returns zero.
 7862 */
 7863int netdev_master_upper_dev_link(struct net_device *dev,
 7864				 struct net_device *upper_dev,
 7865				 void *upper_priv, void *upper_info,
 7866				 struct netlink_ext_ack *extack)
 7867{
 7868	struct netdev_nested_priv priv = {
 7869		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7870		.data = NULL,
 7871	};
 7872
 7873	return __netdev_upper_dev_link(dev, upper_dev, true,
 7874				       upper_priv, upper_info, &priv, extack);
 7875}
 7876EXPORT_SYMBOL(netdev_master_upper_dev_link);
 7877
 7878static void __netdev_upper_dev_unlink(struct net_device *dev,
 7879				      struct net_device *upper_dev,
 7880				      struct netdev_nested_priv *priv)
 7881{
 7882	struct netdev_notifier_changeupper_info changeupper_info = {
 7883		.info = {
 7884			.dev = dev,
 7885		},
 7886		.upper_dev = upper_dev,
 7887		.linking = false,
 7888	};
 7889
 7890	ASSERT_RTNL();
 7891
 7892	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
 7893
 7894	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
 7895				      &changeupper_info.info);
 7896
 7897	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
 7898
 7899	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
 7900				      &changeupper_info.info);
 7901
 7902	__netdev_update_upper_level(dev, NULL);
 7903	__netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
 7904
 7905	__netdev_update_lower_level(upper_dev, priv);
 7906	__netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
 7907				    priv);
 7908}
 7909
 7910/**
 7911 * netdev_upper_dev_unlink - Removes a link to upper device
 7912 * @dev: device
 7913 * @upper_dev: new upper device
 7914 *
 7915 * Removes a link to device which is upper to this one. The caller must hold
 7916 * the RTNL lock.
 7917 */
 7918void netdev_upper_dev_unlink(struct net_device *dev,
 7919			     struct net_device *upper_dev)
 7920{
 7921	struct netdev_nested_priv priv = {
 7922		.flags = NESTED_SYNC_TODO,
 7923		.data = NULL,
 7924	};
 7925
 7926	__netdev_upper_dev_unlink(dev, upper_dev, &priv);
 7927}
 7928EXPORT_SYMBOL(netdev_upper_dev_unlink);
 7929
 7930static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
 7931				      struct net_device *lower_dev,
 7932				      bool val)
 7933{
 7934	struct netdev_adjacent *adj;
 7935
 7936	adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
 7937	if (adj)
 7938		adj->ignore = val;
 7939
 7940	adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
 7941	if (adj)
 7942		adj->ignore = val;
 7943}
 7944
 7945static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
 7946					struct net_device *lower_dev)
 7947{
 7948	__netdev_adjacent_dev_set(upper_dev, lower_dev, true);
 7949}
 7950
 7951static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
 7952				       struct net_device *lower_dev)
 7953{
 7954	__netdev_adjacent_dev_set(upper_dev, lower_dev, false);
 7955}
 7956
 7957int netdev_adjacent_change_prepare(struct net_device *old_dev,
 7958				   struct net_device *new_dev,
 7959				   struct net_device *dev,
 7960				   struct netlink_ext_ack *extack)
 7961{
 7962	struct netdev_nested_priv priv = {
 7963		.flags = 0,
 7964		.data = NULL,
 7965	};
 7966	int err;
 7967
 7968	if (!new_dev)
 7969		return 0;
 7970
 7971	if (old_dev && new_dev != old_dev)
 7972		netdev_adjacent_dev_disable(dev, old_dev);
 7973	err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
 7974				      extack);
 7975	if (err) {
 7976		if (old_dev && new_dev != old_dev)
 7977			netdev_adjacent_dev_enable(dev, old_dev);
 7978		return err;
 7979	}
 7980
 7981	return 0;
 7982}
 7983EXPORT_SYMBOL(netdev_adjacent_change_prepare);
 7984
 7985void netdev_adjacent_change_commit(struct net_device *old_dev,
 7986				   struct net_device *new_dev,
 7987				   struct net_device *dev)
 7988{
 7989	struct netdev_nested_priv priv = {
 7990		.flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
 7991		.data = NULL,
 7992	};
 7993
 7994	if (!new_dev || !old_dev)
 7995		return;
 
 7996
 7997	if (new_dev == old_dev)
 7998		return;
 7999
 8000	netdev_adjacent_dev_enable(dev, old_dev);
 8001	__netdev_upper_dev_unlink(old_dev, dev, &priv);
 8002}
 8003EXPORT_SYMBOL(netdev_adjacent_change_commit);
 8004
 8005void netdev_adjacent_change_abort(struct net_device *old_dev,
 8006				  struct net_device *new_dev,
 8007				  struct net_device *dev)
 8008{
 8009	struct netdev_nested_priv priv = {
 8010		.flags = 0,
 8011		.data = NULL,
 8012	};
 8013
 8014	if (!new_dev)
 8015		return;
 
 
 
 8016
 8017	if (old_dev && new_dev != old_dev)
 8018		netdev_adjacent_dev_enable(dev, old_dev);
 8019
 8020	__netdev_upper_dev_unlink(new_dev, dev, &priv);
 
 8021}
 8022EXPORT_SYMBOL(netdev_adjacent_change_abort);
 8023
 8024/**
 8025 * netdev_bonding_info_change - Dispatch event about slave change
 8026 * @dev: device
 8027 * @bonding_info: info to dispatch
 8028 *
 8029 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
 8030 * The caller must hold the RTNL lock.
 8031 */
 8032void netdev_bonding_info_change(struct net_device *dev,
 8033				struct netdev_bonding_info *bonding_info)
 8034{
 8035	struct netdev_notifier_bonding_info info = {
 8036		.info.dev = dev,
 8037	};
 8038
 8039	memcpy(&info.bonding_info, bonding_info,
 8040	       sizeof(struct netdev_bonding_info));
 8041	call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
 8042				      &info.info);
 8043}
 8044EXPORT_SYMBOL(netdev_bonding_info_change);
 8045
 8046static int netdev_offload_xstats_enable_l3(struct net_device *dev,
 8047					   struct netlink_ext_ack *extack)
 8048{
 8049	struct netdev_notifier_offload_xstats_info info = {
 8050		.info.dev = dev,
 8051		.info.extack = extack,
 8052		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
 8053	};
 8054	int err;
 8055	int rc;
 8056
 8057	dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
 8058					 GFP_KERNEL);
 8059	if (!dev->offload_xstats_l3)
 8060		return -ENOMEM;
 8061
 8062	rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
 8063						  NETDEV_OFFLOAD_XSTATS_DISABLE,
 8064						  &info.info);
 8065	err = notifier_to_errno(rc);
 8066	if (err)
 8067		goto free_stats;
 8068
 8069	return 0;
 8070
 8071free_stats:
 8072	kfree(dev->offload_xstats_l3);
 8073	dev->offload_xstats_l3 = NULL;
 8074	return err;
 8075}
 8076
 8077int netdev_offload_xstats_enable(struct net_device *dev,
 8078				 enum netdev_offload_xstats_type type,
 8079				 struct netlink_ext_ack *extack)
 8080{
 8081	ASSERT_RTNL();
 8082
 8083	if (netdev_offload_xstats_enabled(dev, type))
 8084		return -EALREADY;
 8085
 8086	switch (type) {
 8087	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8088		return netdev_offload_xstats_enable_l3(dev, extack);
 8089	}
 8090
 8091	WARN_ON(1);
 8092	return -EINVAL;
 8093}
 8094EXPORT_SYMBOL(netdev_offload_xstats_enable);
 8095
 8096static void netdev_offload_xstats_disable_l3(struct net_device *dev)
 8097{
 8098	struct netdev_notifier_offload_xstats_info info = {
 8099		.info.dev = dev,
 8100		.type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
 8101	};
 8102
 8103	call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
 8104				      &info.info);
 8105	kfree(dev->offload_xstats_l3);
 8106	dev->offload_xstats_l3 = NULL;
 8107}
 8108
 8109int netdev_offload_xstats_disable(struct net_device *dev,
 8110				  enum netdev_offload_xstats_type type)
 8111{
 8112	ASSERT_RTNL();
 8113
 8114	if (!netdev_offload_xstats_enabled(dev, type))
 8115		return -EALREADY;
 8116
 8117	switch (type) {
 8118	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8119		netdev_offload_xstats_disable_l3(dev);
 8120		return 0;
 8121	}
 8122
 8123	WARN_ON(1);
 8124	return -EINVAL;
 8125}
 8126EXPORT_SYMBOL(netdev_offload_xstats_disable);
 8127
 8128static void netdev_offload_xstats_disable_all(struct net_device *dev)
 8129{
 8130	netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
 8131}
 8132
 8133static struct rtnl_hw_stats64 *
 8134netdev_offload_xstats_get_ptr(const struct net_device *dev,
 8135			      enum netdev_offload_xstats_type type)
 8136{
 8137	switch (type) {
 8138	case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
 8139		return dev->offload_xstats_l3;
 8140	}
 8141
 8142	WARN_ON(1);
 8143	return NULL;
 8144}
 8145
 8146bool netdev_offload_xstats_enabled(const struct net_device *dev,
 8147				   enum netdev_offload_xstats_type type)
 8148{
 8149	ASSERT_RTNL();
 8150
 8151	return netdev_offload_xstats_get_ptr(dev, type);
 8152}
 8153EXPORT_SYMBOL(netdev_offload_xstats_enabled);
 8154
 8155struct netdev_notifier_offload_xstats_ru {
 8156	bool used;
 8157};
 8158
 8159struct netdev_notifier_offload_xstats_rd {
 8160	struct rtnl_hw_stats64 stats;
 8161	bool used;
 8162};
 8163
 8164static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
 8165				  const struct rtnl_hw_stats64 *src)
 8166{
 8167	dest->rx_packets	  += src->rx_packets;
 8168	dest->tx_packets	  += src->tx_packets;
 8169	dest->rx_bytes		  += src->rx_bytes;
 8170	dest->tx_bytes		  += src->tx_bytes;
 8171	dest->rx_errors		  += src->rx_errors;
 8172	dest->tx_errors		  += src->tx_errors;
 8173	dest->rx_dropped	  += src->rx_dropped;
 8174	dest->tx_dropped	  += src->tx_dropped;
 8175	dest->multicast		  += src->multicast;
 8176}
 8177
 8178static int netdev_offload_xstats_get_used(struct net_device *dev,
 8179					  enum netdev_offload_xstats_type type,
 8180					  bool *p_used,
 8181					  struct netlink_ext_ack *extack)
 8182{
 8183	struct netdev_notifier_offload_xstats_ru report_used = {};
 8184	struct netdev_notifier_offload_xstats_info info = {
 8185		.info.dev = dev,
 8186		.info.extack = extack,
 8187		.type = type,
 8188		.report_used = &report_used,
 8189	};
 8190	int rc;
 8191
 8192	WARN_ON(!netdev_offload_xstats_enabled(dev, type));
 8193	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
 8194					   &info.info);
 8195	*p_used = report_used.used;
 8196	return notifier_to_errno(rc);
 8197}
 8198
 8199static int netdev_offload_xstats_get_stats(struct net_device *dev,
 8200					   enum netdev_offload_xstats_type type,
 8201					   struct rtnl_hw_stats64 *p_stats,
 8202					   bool *p_used,
 8203					   struct netlink_ext_ack *extack)
 8204{
 8205	struct netdev_notifier_offload_xstats_rd report_delta = {};
 8206	struct netdev_notifier_offload_xstats_info info = {
 8207		.info.dev = dev,
 8208		.info.extack = extack,
 8209		.type = type,
 8210		.report_delta = &report_delta,
 8211	};
 8212	struct rtnl_hw_stats64 *stats;
 8213	int rc;
 8214
 8215	stats = netdev_offload_xstats_get_ptr(dev, type);
 8216	if (WARN_ON(!stats))
 8217		return -EINVAL;
 8218
 8219	rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
 8220					   &info.info);
 8221
 8222	/* Cache whatever we got, even if there was an error, otherwise the
 8223	 * successful stats retrievals would get lost.
 8224	 */
 8225	netdev_hw_stats64_add(stats, &report_delta.stats);
 8226
 8227	if (p_stats)
 8228		*p_stats = *stats;
 8229	*p_used = report_delta.used;
 8230
 8231	return notifier_to_errno(rc);
 8232}
 8233
 8234int netdev_offload_xstats_get(struct net_device *dev,
 8235			      enum netdev_offload_xstats_type type,
 8236			      struct rtnl_hw_stats64 *p_stats, bool *p_used,
 8237			      struct netlink_ext_ack *extack)
 8238{
 8239	ASSERT_RTNL();
 8240
 8241	if (p_stats)
 8242		return netdev_offload_xstats_get_stats(dev, type, p_stats,
 8243						       p_used, extack);
 8244	else
 8245		return netdev_offload_xstats_get_used(dev, type, p_used,
 8246						      extack);
 8247}
 8248EXPORT_SYMBOL(netdev_offload_xstats_get);
 8249
 8250void
 8251netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
 8252				   const struct rtnl_hw_stats64 *stats)
 8253{
 8254	report_delta->used = true;
 8255	netdev_hw_stats64_add(&report_delta->stats, stats);
 8256}
 8257EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
 8258
 8259void
 8260netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
 8261{
 8262	report_used->used = true;
 8263}
 8264EXPORT_SYMBOL(netdev_offload_xstats_report_used);
 8265
 8266void netdev_offload_xstats_push_delta(struct net_device *dev,
 8267				      enum netdev_offload_xstats_type type,
 8268				      const struct rtnl_hw_stats64 *p_stats)
 8269{
 8270	struct rtnl_hw_stats64 *stats;
 8271
 8272	ASSERT_RTNL();
 8273
 8274	stats = netdev_offload_xstats_get_ptr(dev, type);
 8275	if (WARN_ON(!stats))
 8276		return;
 8277
 8278	netdev_hw_stats64_add(stats, p_stats);
 8279}
 8280EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
 8281
 8282/**
 8283 * netdev_get_xmit_slave - Get the xmit slave of master device
 8284 * @dev: device
 8285 * @skb: The packet
 8286 * @all_slaves: assume all the slaves are active
 8287 *
 8288 * The reference counters are not incremented so the caller must be
 8289 * careful with locks. The caller must hold RCU lock.
 8290 * %NULL is returned if no slave is found.
 8291 */
 8292
 8293struct net_device *netdev_get_xmit_slave(struct net_device *dev,
 8294					 struct sk_buff *skb,
 8295					 bool all_slaves)
 8296{
 8297	const struct net_device_ops *ops = dev->netdev_ops;
 8298
 8299	if (!ops->ndo_get_xmit_slave)
 8300		return NULL;
 8301	return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
 8302}
 8303EXPORT_SYMBOL(netdev_get_xmit_slave);
 8304
 8305static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
 8306						  struct sock *sk)
 8307{
 8308	const struct net_device_ops *ops = dev->netdev_ops;
 8309
 8310	if (!ops->ndo_sk_get_lower_dev)
 8311		return NULL;
 8312	return ops->ndo_sk_get_lower_dev(dev, sk);
 8313}
 8314
 8315/**
 8316 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
 8317 * @dev: device
 8318 * @sk: the socket
 8319 *
 8320 * %NULL is returned if no lower device is found.
 8321 */
 8322
 8323struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
 8324					    struct sock *sk)
 8325{
 8326	struct net_device *lower;
 8327
 8328	lower = netdev_sk_get_lower_dev(dev, sk);
 8329	while (lower) {
 8330		dev = lower;
 8331		lower = netdev_sk_get_lower_dev(dev, sk);
 8332	}
 8333
 8334	return dev;
 8335}
 8336EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
 8337
 8338static void netdev_adjacent_add_links(struct net_device *dev)
 8339{
 8340	struct netdev_adjacent *iter;
 8341
 8342	struct net *net = dev_net(dev);
 8343
 8344	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8345		if (!net_eq(net, dev_net(iter->dev)))
 8346			continue;
 8347		netdev_adjacent_sysfs_add(iter->dev, dev,
 8348					  &iter->dev->adj_list.lower);
 8349		netdev_adjacent_sysfs_add(dev, iter->dev,
 8350					  &dev->adj_list.upper);
 8351	}
 8352
 8353	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8354		if (!net_eq(net, dev_net(iter->dev)))
 8355			continue;
 8356		netdev_adjacent_sysfs_add(iter->dev, dev,
 8357					  &iter->dev->adj_list.upper);
 8358		netdev_adjacent_sysfs_add(dev, iter->dev,
 8359					  &dev->adj_list.lower);
 8360	}
 8361}
 8362
 8363static void netdev_adjacent_del_links(struct net_device *dev)
 8364{
 8365	struct netdev_adjacent *iter;
 8366
 8367	struct net *net = dev_net(dev);
 8368
 8369	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8370		if (!net_eq(net, dev_net(iter->dev)))
 8371			continue;
 8372		netdev_adjacent_sysfs_del(iter->dev, dev->name,
 8373					  &iter->dev->adj_list.lower);
 8374		netdev_adjacent_sysfs_del(dev, iter->dev->name,
 8375					  &dev->adj_list.upper);
 8376	}
 8377
 8378	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8379		if (!net_eq(net, dev_net(iter->dev)))
 8380			continue;
 8381		netdev_adjacent_sysfs_del(iter->dev, dev->name,
 8382					  &iter->dev->adj_list.upper);
 8383		netdev_adjacent_sysfs_del(dev, iter->dev->name,
 8384					  &dev->adj_list.lower);
 8385	}
 8386}
 8387
 8388void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
 8389{
 8390	struct netdev_adjacent *iter;
 8391
 8392	struct net *net = dev_net(dev);
 8393
 8394	list_for_each_entry(iter, &dev->adj_list.upper, list) {
 8395		if (!net_eq(net, dev_net(iter->dev)))
 8396			continue;
 8397		netdev_adjacent_sysfs_del(iter->dev, oldname,
 8398					  &iter->dev->adj_list.lower);
 8399		netdev_adjacent_sysfs_add(iter->dev, dev,
 8400					  &iter->dev->adj_list.lower);
 8401	}
 8402
 8403	list_for_each_entry(iter, &dev->adj_list.lower, list) {
 8404		if (!net_eq(net, dev_net(iter->dev)))
 8405			continue;
 8406		netdev_adjacent_sysfs_del(iter->dev, oldname,
 8407					  &iter->dev->adj_list.upper);
 8408		netdev_adjacent_sysfs_add(iter->dev, dev,
 8409					  &iter->dev->adj_list.upper);
 8410	}
 8411}
 8412
 8413void *netdev_lower_dev_get_private(struct net_device *dev,
 8414				   struct net_device *lower_dev)
 8415{
 8416	struct netdev_adjacent *lower;
 8417
 8418	if (!lower_dev)
 8419		return NULL;
 8420	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
 8421	if (!lower)
 8422		return NULL;
 8423
 8424	return lower->private;
 8425}
 8426EXPORT_SYMBOL(netdev_lower_dev_get_private);
 8427
 8428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 8429/**
 8430 * netdev_lower_state_changed - Dispatch event about lower device state change
 8431 * @lower_dev: device
 8432 * @lower_state_info: state to dispatch
 8433 *
 8434 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
 8435 * The caller must hold the RTNL lock.
 8436 */
 8437void netdev_lower_state_changed(struct net_device *lower_dev,
 8438				void *lower_state_info)
 8439{
 8440	struct netdev_notifier_changelowerstate_info changelowerstate_info = {
 8441		.info.dev = lower_dev,
 8442	};
 8443
 8444	ASSERT_RTNL();
 8445	changelowerstate_info.lower_state_info = lower_state_info;
 8446	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
 8447				      &changelowerstate_info.info);
 8448}
 8449EXPORT_SYMBOL(netdev_lower_state_changed);
 8450
 8451static void dev_change_rx_flags(struct net_device *dev, int flags)
 8452{
 8453	const struct net_device_ops *ops = dev->netdev_ops;
 8454
 8455	if (ops->ndo_change_rx_flags)
 8456		ops->ndo_change_rx_flags(dev, flags);
 8457}
 8458
 8459static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
 8460{
 8461	unsigned int old_flags = dev->flags;
 8462	kuid_t uid;
 8463	kgid_t gid;
 8464
 8465	ASSERT_RTNL();
 8466
 8467	dev->flags |= IFF_PROMISC;
 8468	dev->promiscuity += inc;
 8469	if (dev->promiscuity == 0) {
 8470		/*
 8471		 * Avoid overflow.
 8472		 * If inc causes overflow, untouch promisc and return error.
 8473		 */
 8474		if (inc < 0)
 8475			dev->flags &= ~IFF_PROMISC;
 8476		else {
 8477			dev->promiscuity -= inc;
 8478			netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
 
 8479			return -EOVERFLOW;
 8480		}
 8481	}
 8482	if (dev->flags != old_flags) {
 8483		netdev_info(dev, "%s promiscuous mode\n",
 8484			    dev->flags & IFF_PROMISC ? "entered" : "left");
 
 8485		if (audit_enabled) {
 8486			current_uid_gid(&uid, &gid);
 8487			audit_log(audit_context(), GFP_ATOMIC,
 8488				  AUDIT_ANOM_PROMISCUOUS,
 8489				  "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
 8490				  dev->name, (dev->flags & IFF_PROMISC),
 8491				  (old_flags & IFF_PROMISC),
 8492				  from_kuid(&init_user_ns, audit_get_loginuid(current)),
 8493				  from_kuid(&init_user_ns, uid),
 8494				  from_kgid(&init_user_ns, gid),
 8495				  audit_get_sessionid(current));
 8496		}
 8497
 8498		dev_change_rx_flags(dev, IFF_PROMISC);
 8499	}
 8500	if (notify)
 8501		__dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
 8502	return 0;
 8503}
 8504
 8505/**
 8506 *	dev_set_promiscuity	- update promiscuity count on a device
 8507 *	@dev: device
 8508 *	@inc: modifier
 8509 *
 8510 *	Add or remove promiscuity from a device. While the count in the device
 8511 *	remains above zero the interface remains promiscuous. Once it hits zero
 8512 *	the device reverts back to normal filtering operation. A negative inc
 8513 *	value is used to drop promiscuity on the device.
 8514 *	Return 0 if successful or a negative errno code on error.
 8515 */
 8516int dev_set_promiscuity(struct net_device *dev, int inc)
 8517{
 8518	unsigned int old_flags = dev->flags;
 8519	int err;
 8520
 8521	err = __dev_set_promiscuity(dev, inc, true);
 8522	if (err < 0)
 8523		return err;
 8524	if (dev->flags != old_flags)
 8525		dev_set_rx_mode(dev);
 8526	return err;
 8527}
 8528EXPORT_SYMBOL(dev_set_promiscuity);
 8529
 8530static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
 8531{
 8532	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
 8533
 8534	ASSERT_RTNL();
 8535
 8536	dev->flags |= IFF_ALLMULTI;
 8537	dev->allmulti += inc;
 8538	if (dev->allmulti == 0) {
 8539		/*
 8540		 * Avoid overflow.
 8541		 * If inc causes overflow, untouch allmulti and return error.
 8542		 */
 8543		if (inc < 0)
 8544			dev->flags &= ~IFF_ALLMULTI;
 8545		else {
 8546			dev->allmulti -= inc;
 8547			netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
 
 8548			return -EOVERFLOW;
 8549		}
 8550	}
 8551	if (dev->flags ^ old_flags) {
 8552		netdev_info(dev, "%s allmulticast mode\n",
 8553			    dev->flags & IFF_ALLMULTI ? "entered" : "left");
 8554		dev_change_rx_flags(dev, IFF_ALLMULTI);
 8555		dev_set_rx_mode(dev);
 8556		if (notify)
 8557			__dev_notify_flags(dev, old_flags,
 8558					   dev->gflags ^ old_gflags, 0, NULL);
 8559	}
 8560	return 0;
 8561}
 8562
 8563/**
 8564 *	dev_set_allmulti	- update allmulti count on a device
 8565 *	@dev: device
 8566 *	@inc: modifier
 8567 *
 8568 *	Add or remove reception of all multicast frames to a device. While the
 8569 *	count in the device remains above zero the interface remains listening
 8570 *	to all interfaces. Once it hits zero the device reverts back to normal
 8571 *	filtering operation. A negative @inc value is used to drop the counter
 8572 *	when releasing a resource needing all multicasts.
 8573 *	Return 0 if successful or a negative errno code on error.
 8574 */
 8575
 8576int dev_set_allmulti(struct net_device *dev, int inc)
 8577{
 8578	return __dev_set_allmulti(dev, inc, true);
 8579}
 8580EXPORT_SYMBOL(dev_set_allmulti);
 8581
 8582/*
 8583 *	Upload unicast and multicast address lists to device and
 8584 *	configure RX filtering. When the device doesn't support unicast
 8585 *	filtering it is put in promiscuous mode while unicast addresses
 8586 *	are present.
 8587 */
 8588void __dev_set_rx_mode(struct net_device *dev)
 8589{
 8590	const struct net_device_ops *ops = dev->netdev_ops;
 8591
 8592	/* dev_open will call this function so the list will stay sane. */
 8593	if (!(dev->flags&IFF_UP))
 8594		return;
 8595
 8596	if (!netif_device_present(dev))
 8597		return;
 8598
 8599	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
 8600		/* Unicast addresses changes may only happen under the rtnl,
 8601		 * therefore calling __dev_set_promiscuity here is safe.
 8602		 */
 8603		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
 8604			__dev_set_promiscuity(dev, 1, false);
 8605			dev->uc_promisc = true;
 8606		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
 8607			__dev_set_promiscuity(dev, -1, false);
 8608			dev->uc_promisc = false;
 8609		}
 8610	}
 8611
 8612	if (ops->ndo_set_rx_mode)
 8613		ops->ndo_set_rx_mode(dev);
 8614}
 8615
 8616void dev_set_rx_mode(struct net_device *dev)
 8617{
 8618	netif_addr_lock_bh(dev);
 8619	__dev_set_rx_mode(dev);
 8620	netif_addr_unlock_bh(dev);
 8621}
 8622
 8623/**
 8624 *	dev_get_flags - get flags reported to userspace
 8625 *	@dev: device
 8626 *
 8627 *	Get the combination of flag bits exported through APIs to userspace.
 8628 */
 8629unsigned int dev_get_flags(const struct net_device *dev)
 8630{
 8631	unsigned int flags;
 8632
 8633	flags = (READ_ONCE(dev->flags) & ~(IFF_PROMISC |
 8634				IFF_ALLMULTI |
 8635				IFF_RUNNING |
 8636				IFF_LOWER_UP |
 8637				IFF_DORMANT)) |
 8638		(READ_ONCE(dev->gflags) & (IFF_PROMISC |
 8639				IFF_ALLMULTI));
 8640
 8641	if (netif_running(dev)) {
 8642		if (netif_oper_up(dev))
 8643			flags |= IFF_RUNNING;
 8644		if (netif_carrier_ok(dev))
 8645			flags |= IFF_LOWER_UP;
 8646		if (netif_dormant(dev))
 8647			flags |= IFF_DORMANT;
 8648	}
 8649
 8650	return flags;
 8651}
 8652EXPORT_SYMBOL(dev_get_flags);
 8653
 8654int __dev_change_flags(struct net_device *dev, unsigned int flags,
 8655		       struct netlink_ext_ack *extack)
 8656{
 8657	unsigned int old_flags = dev->flags;
 8658	int ret;
 8659
 8660	ASSERT_RTNL();
 8661
 8662	/*
 8663	 *	Set the flags on our device.
 8664	 */
 8665
 8666	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
 8667			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
 8668			       IFF_AUTOMEDIA)) |
 8669		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
 8670				    IFF_ALLMULTI));
 8671
 8672	/*
 8673	 *	Load in the correct multicast list now the flags have changed.
 8674	 */
 8675
 8676	if ((old_flags ^ flags) & IFF_MULTICAST)
 8677		dev_change_rx_flags(dev, IFF_MULTICAST);
 8678
 8679	dev_set_rx_mode(dev);
 8680
 8681	/*
 8682	 *	Have we downed the interface. We handle IFF_UP ourselves
 8683	 *	according to user attempts to set it, rather than blindly
 8684	 *	setting it.
 8685	 */
 8686
 8687	ret = 0;
 8688	if ((old_flags ^ flags) & IFF_UP) {
 8689		if (old_flags & IFF_UP)
 8690			__dev_close(dev);
 8691		else
 8692			ret = __dev_open(dev, extack);
 8693	}
 8694
 8695	if ((flags ^ dev->gflags) & IFF_PROMISC) {
 8696		int inc = (flags & IFF_PROMISC) ? 1 : -1;
 8697		unsigned int old_flags = dev->flags;
 8698
 8699		dev->gflags ^= IFF_PROMISC;
 8700
 8701		if (__dev_set_promiscuity(dev, inc, false) >= 0)
 8702			if (dev->flags != old_flags)
 8703				dev_set_rx_mode(dev);
 8704	}
 8705
 8706	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
 8707	 * is important. Some (broken) drivers set IFF_PROMISC, when
 8708	 * IFF_ALLMULTI is requested not asking us and not reporting.
 8709	 */
 8710	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
 8711		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
 8712
 8713		dev->gflags ^= IFF_ALLMULTI;
 8714		__dev_set_allmulti(dev, inc, false);
 8715	}
 8716
 8717	return ret;
 8718}
 8719
 8720void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
 8721			unsigned int gchanges, u32 portid,
 8722			const struct nlmsghdr *nlh)
 8723{
 8724	unsigned int changes = dev->flags ^ old_flags;
 8725
 8726	if (gchanges)
 8727		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
 8728
 8729	if (changes & IFF_UP) {
 8730		if (dev->flags & IFF_UP)
 8731			call_netdevice_notifiers(NETDEV_UP, dev);
 8732		else
 8733			call_netdevice_notifiers(NETDEV_DOWN, dev);
 8734	}
 8735
 8736	if (dev->flags & IFF_UP &&
 8737	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
 8738		struct netdev_notifier_change_info change_info = {
 8739			.info = {
 8740				.dev = dev,
 8741			},
 8742			.flags_changed = changes,
 8743		};
 8744
 8745		call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
 
 
 8746	}
 8747}
 8748
 8749/**
 8750 *	dev_change_flags - change device settings
 8751 *	@dev: device
 8752 *	@flags: device state flags
 8753 *	@extack: netlink extended ack
 8754 *
 8755 *	Change settings on device based state flags. The flags are
 8756 *	in the userspace exported format.
 8757 */
 8758int dev_change_flags(struct net_device *dev, unsigned int flags,
 8759		     struct netlink_ext_ack *extack)
 8760{
 8761	int ret;
 8762	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
 8763
 8764	ret = __dev_change_flags(dev, flags, extack);
 8765	if (ret < 0)
 8766		return ret;
 8767
 8768	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
 8769	__dev_notify_flags(dev, old_flags, changes, 0, NULL);
 8770	return ret;
 8771}
 8772EXPORT_SYMBOL(dev_change_flags);
 8773
 8774int __dev_set_mtu(struct net_device *dev, int new_mtu)
 8775{
 8776	const struct net_device_ops *ops = dev->netdev_ops;
 8777
 8778	if (ops->ndo_change_mtu)
 8779		return ops->ndo_change_mtu(dev, new_mtu);
 8780
 8781	/* Pairs with all the lockless reads of dev->mtu in the stack */
 8782	WRITE_ONCE(dev->mtu, new_mtu);
 8783	return 0;
 8784}
 8785EXPORT_SYMBOL(__dev_set_mtu);
 8786
 8787int dev_validate_mtu(struct net_device *dev, int new_mtu,
 8788		     struct netlink_ext_ack *extack)
 8789{
 8790	/* MTU must be positive, and in range */
 8791	if (new_mtu < 0 || new_mtu < dev->min_mtu) {
 8792		NL_SET_ERR_MSG(extack, "mtu less than device minimum");
 8793		return -EINVAL;
 8794	}
 8795
 8796	if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
 8797		NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
 8798		return -EINVAL;
 8799	}
 8800	return 0;
 8801}
 8802
 8803/**
 8804 *	dev_set_mtu_ext - Change maximum transfer unit
 8805 *	@dev: device
 8806 *	@new_mtu: new transfer unit
 8807 *	@extack: netlink extended ack
 8808 *
 8809 *	Change the maximum transfer size of the network device.
 8810 */
 8811int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
 8812		    struct netlink_ext_ack *extack)
 8813{
 8814	int err, orig_mtu;
 8815
 8816	if (new_mtu == dev->mtu)
 8817		return 0;
 8818
 8819	err = dev_validate_mtu(dev, new_mtu, extack);
 8820	if (err)
 8821		return err;
 8822
 8823	if (!netif_device_present(dev))
 8824		return -ENODEV;
 8825
 8826	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
 8827	err = notifier_to_errno(err);
 8828	if (err)
 8829		return err;
 8830
 8831	orig_mtu = dev->mtu;
 8832	err = __dev_set_mtu(dev, new_mtu);
 8833
 8834	if (!err) {
 8835		err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
 8836						   orig_mtu);
 8837		err = notifier_to_errno(err);
 8838		if (err) {
 8839			/* setting mtu back and notifying everyone again,
 8840			 * so that they have a chance to revert changes.
 8841			 */
 8842			__dev_set_mtu(dev, orig_mtu);
 8843			call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
 8844						     new_mtu);
 8845		}
 8846	}
 8847	return err;
 8848}
 8849
 8850int dev_set_mtu(struct net_device *dev, int new_mtu)
 8851{
 8852	struct netlink_ext_ack extack;
 8853	int err;
 8854
 8855	memset(&extack, 0, sizeof(extack));
 8856	err = dev_set_mtu_ext(dev, new_mtu, &extack);
 8857	if (err && extack._msg)
 8858		net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
 8859	return err;
 8860}
 8861EXPORT_SYMBOL(dev_set_mtu);
 8862
 8863/**
 8864 *	dev_change_tx_queue_len - Change TX queue length of a netdevice
 8865 *	@dev: device
 8866 *	@new_len: new tx queue length
 8867 */
 8868int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
 8869{
 8870	unsigned int orig_len = dev->tx_queue_len;
 8871	int res;
 8872
 8873	if (new_len != (unsigned int)new_len)
 8874		return -ERANGE;
 8875
 8876	if (new_len != orig_len) {
 8877		dev->tx_queue_len = new_len;
 8878		res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
 8879		res = notifier_to_errno(res);
 8880		if (res)
 8881			goto err_rollback;
 8882		res = dev_qdisc_change_tx_queue_len(dev);
 8883		if (res)
 8884			goto err_rollback;
 8885	}
 8886
 8887	return 0;
 8888
 8889err_rollback:
 8890	netdev_err(dev, "refused to change device tx_queue_len\n");
 8891	dev->tx_queue_len = orig_len;
 8892	return res;
 8893}
 8894
 8895/**
 8896 *	dev_set_group - Change group this device belongs to
 8897 *	@dev: device
 8898 *	@new_group: group this device should belong to
 8899 */
 8900void dev_set_group(struct net_device *dev, int new_group)
 8901{
 8902	dev->group = new_group;
 8903}
 8904
 8905/**
 8906 *	dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
 8907 *	@dev: device
 8908 *	@addr: new address
 8909 *	@extack: netlink extended ack
 8910 */
 8911int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
 8912			      struct netlink_ext_ack *extack)
 8913{
 8914	struct netdev_notifier_pre_changeaddr_info info = {
 8915		.info.dev = dev,
 8916		.info.extack = extack,
 8917		.dev_addr = addr,
 8918	};
 8919	int rc;
 8920
 8921	rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
 8922	return notifier_to_errno(rc);
 8923}
 8924EXPORT_SYMBOL(dev_pre_changeaddr_notify);
 8925
 8926/**
 8927 *	dev_set_mac_address - Change Media Access Control Address
 8928 *	@dev: device
 8929 *	@sa: new address
 8930 *	@extack: netlink extended ack
 8931 *
 8932 *	Change the hardware (MAC) address of the device
 8933 */
 8934int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
 8935			struct netlink_ext_ack *extack)
 8936{
 8937	const struct net_device_ops *ops = dev->netdev_ops;
 8938	int err;
 8939
 8940	if (!ops->ndo_set_mac_address)
 8941		return -EOPNOTSUPP;
 8942	if (sa->sa_family != dev->type)
 8943		return -EINVAL;
 8944	if (!netif_device_present(dev))
 8945		return -ENODEV;
 8946	err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
 8947	if (err)
 8948		return err;
 8949	if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
 8950		err = ops->ndo_set_mac_address(dev, sa);
 8951		if (err)
 8952			return err;
 8953	}
 8954	dev->addr_assign_type = NET_ADDR_SET;
 8955	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
 8956	add_device_randomness(dev->dev_addr, dev->addr_len);
 8957	return 0;
 8958}
 8959EXPORT_SYMBOL(dev_set_mac_address);
 8960
 8961DECLARE_RWSEM(dev_addr_sem);
 8962
 8963int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
 8964			     struct netlink_ext_ack *extack)
 8965{
 8966	int ret;
 8967
 8968	down_write(&dev_addr_sem);
 8969	ret = dev_set_mac_address(dev, sa, extack);
 8970	up_write(&dev_addr_sem);
 8971	return ret;
 8972}
 8973EXPORT_SYMBOL(dev_set_mac_address_user);
 8974
 8975int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
 8976{
 8977	size_t size = sizeof(sa->sa_data_min);
 8978	struct net_device *dev;
 8979	int ret = 0;
 8980
 8981	down_read(&dev_addr_sem);
 8982	rcu_read_lock();
 8983
 8984	dev = dev_get_by_name_rcu(net, dev_name);
 8985	if (!dev) {
 8986		ret = -ENODEV;
 8987		goto unlock;
 8988	}
 8989	if (!dev->addr_len)
 8990		memset(sa->sa_data, 0, size);
 8991	else
 8992		memcpy(sa->sa_data, dev->dev_addr,
 8993		       min_t(size_t, size, dev->addr_len));
 8994	sa->sa_family = dev->type;
 8995
 8996unlock:
 8997	rcu_read_unlock();
 8998	up_read(&dev_addr_sem);
 8999	return ret;
 9000}
 9001EXPORT_SYMBOL(dev_get_mac_address);
 9002
 9003/**
 9004 *	dev_change_carrier - Change device carrier
 9005 *	@dev: device
 9006 *	@new_carrier: new value
 9007 *
 9008 *	Change device carrier
 9009 */
 9010int dev_change_carrier(struct net_device *dev, bool new_carrier)
 9011{
 9012	const struct net_device_ops *ops = dev->netdev_ops;
 9013
 9014	if (!ops->ndo_change_carrier)
 9015		return -EOPNOTSUPP;
 9016	if (!netif_device_present(dev))
 9017		return -ENODEV;
 9018	return ops->ndo_change_carrier(dev, new_carrier);
 9019}
 
 9020
 9021/**
 9022 *	dev_get_phys_port_id - Get device physical port ID
 9023 *	@dev: device
 9024 *	@ppid: port ID
 9025 *
 9026 *	Get device physical port ID
 9027 */
 9028int dev_get_phys_port_id(struct net_device *dev,
 9029			 struct netdev_phys_item_id *ppid)
 9030{
 9031	const struct net_device_ops *ops = dev->netdev_ops;
 9032
 9033	if (!ops->ndo_get_phys_port_id)
 9034		return -EOPNOTSUPP;
 9035	return ops->ndo_get_phys_port_id(dev, ppid);
 9036}
 
 9037
 9038/**
 9039 *	dev_get_phys_port_name - Get device physical port name
 9040 *	@dev: device
 9041 *	@name: port name
 9042 *	@len: limit of bytes to copy to name
 9043 *
 9044 *	Get device physical port name
 9045 */
 9046int dev_get_phys_port_name(struct net_device *dev,
 9047			   char *name, size_t len)
 9048{
 9049	const struct net_device_ops *ops = dev->netdev_ops;
 9050	int err;
 9051
 9052	if (ops->ndo_get_phys_port_name) {
 9053		err = ops->ndo_get_phys_port_name(dev, name, len);
 9054		if (err != -EOPNOTSUPP)
 9055			return err;
 9056	}
 9057	return devlink_compat_phys_port_name_get(dev, name, len);
 9058}
 9059
 9060/**
 9061 *	dev_get_port_parent_id - Get the device's port parent identifier
 9062 *	@dev: network device
 9063 *	@ppid: pointer to a storage for the port's parent identifier
 9064 *	@recurse: allow/disallow recursion to lower devices
 9065 *
 9066 *	Get the devices's port parent identifier
 9067 */
 9068int dev_get_port_parent_id(struct net_device *dev,
 9069			   struct netdev_phys_item_id *ppid,
 9070			   bool recurse)
 9071{
 9072	const struct net_device_ops *ops = dev->netdev_ops;
 9073	struct netdev_phys_item_id first = { };
 9074	struct net_device *lower_dev;
 9075	struct list_head *iter;
 9076	int err;
 9077
 9078	if (ops->ndo_get_port_parent_id) {
 9079		err = ops->ndo_get_port_parent_id(dev, ppid);
 9080		if (err != -EOPNOTSUPP)
 9081			return err;
 9082	}
 9083
 9084	err = devlink_compat_switch_id_get(dev, ppid);
 9085	if (!recurse || err != -EOPNOTSUPP)
 9086		return err;
 9087
 9088	netdev_for_each_lower_dev(dev, lower_dev, iter) {
 9089		err = dev_get_port_parent_id(lower_dev, ppid, true);
 9090		if (err)
 9091			break;
 9092		if (!first.id_len)
 9093			first = *ppid;
 9094		else if (memcmp(&first, ppid, sizeof(*ppid)))
 9095			return -EOPNOTSUPP;
 9096	}
 9097
 9098	return err;
 9099}
 9100EXPORT_SYMBOL(dev_get_port_parent_id);
 9101
 9102/**
 9103 *	netdev_port_same_parent_id - Indicate if two network devices have
 9104 *	the same port parent identifier
 9105 *	@a: first network device
 9106 *	@b: second network device
 9107 */
 9108bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
 9109{
 9110	struct netdev_phys_item_id a_id = { };
 9111	struct netdev_phys_item_id b_id = { };
 9112
 9113	if (dev_get_port_parent_id(a, &a_id, true) ||
 9114	    dev_get_port_parent_id(b, &b_id, true))
 9115		return false;
 9116
 9117	return netdev_phys_item_id_same(&a_id, &b_id);
 9118}
 9119EXPORT_SYMBOL(netdev_port_same_parent_id);
 9120
 9121/**
 9122 *	dev_change_proto_down - set carrier according to proto_down.
 9123 *
 9124 *	@dev: device
 9125 *	@proto_down: new value
 
 
 
 9126 */
 9127int dev_change_proto_down(struct net_device *dev, bool proto_down)
 9128{
 9129	if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
 
 
 9130		return -EOPNOTSUPP;
 9131	if (!netif_device_present(dev))
 9132		return -ENODEV;
 9133	if (proto_down)
 9134		netif_carrier_off(dev);
 9135	else
 9136		netif_carrier_on(dev);
 9137	dev->proto_down = proto_down;
 9138	return 0;
 9139}
 
 9140
 9141/**
 9142 *	dev_change_proto_down_reason - proto down reason
 
 9143 *
 9144 *	@dev: device
 9145 *	@mask: proto down mask
 9146 *	@value: proto down value
 9147 */
 9148void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
 9149				  u32 value)
 9150{
 9151	int b;
 9152
 9153	if (!mask) {
 9154		dev->proto_down_reason = value;
 9155	} else {
 9156		for_each_set_bit(b, &mask, 32) {
 9157			if (value & (1 << b))
 9158				dev->proto_down_reason |= BIT(b);
 9159			else
 9160				dev->proto_down_reason &= ~BIT(b);
 9161		}
 9162	}
 9163}
 9164
 9165struct bpf_xdp_link {
 9166	struct bpf_link link;
 9167	struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
 9168	int flags;
 9169};
 9170
 9171static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
 9172{
 9173	if (flags & XDP_FLAGS_HW_MODE)
 9174		return XDP_MODE_HW;
 9175	if (flags & XDP_FLAGS_DRV_MODE)
 9176		return XDP_MODE_DRV;
 9177	if (flags & XDP_FLAGS_SKB_MODE)
 9178		return XDP_MODE_SKB;
 9179	return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
 9180}
 9181
 9182static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
 9183{
 9184	switch (mode) {
 9185	case XDP_MODE_SKB:
 9186		return generic_xdp_install;
 9187	case XDP_MODE_DRV:
 9188	case XDP_MODE_HW:
 9189		return dev->netdev_ops->ndo_bpf;
 9190	default:
 9191		return NULL;
 9192	}
 9193}
 9194
 9195static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
 9196					 enum bpf_xdp_mode mode)
 9197{
 9198	return dev->xdp_state[mode].link;
 9199}
 9200
 9201static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
 9202				     enum bpf_xdp_mode mode)
 9203{
 9204	struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
 9205
 9206	if (link)
 9207		return link->link.prog;
 9208	return dev->xdp_state[mode].prog;
 9209}
 9210
 9211u8 dev_xdp_prog_count(struct net_device *dev)
 9212{
 9213	u8 count = 0;
 9214	int i;
 9215
 9216	for (i = 0; i < __MAX_XDP_MODE; i++)
 9217		if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
 9218			count++;
 9219	return count;
 9220}
 9221EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
 9222
 9223u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
 9224{
 9225	struct bpf_prog *prog = dev_xdp_prog(dev, mode);
 9226
 9227	return prog ? prog->aux->id : 0;
 9228}
 9229
 9230static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
 9231			     struct bpf_xdp_link *link)
 9232{
 9233	dev->xdp_state[mode].link = link;
 9234	dev->xdp_state[mode].prog = NULL;
 9235}
 9236
 9237static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
 9238			     struct bpf_prog *prog)
 9239{
 9240	dev->xdp_state[mode].link = NULL;
 9241	dev->xdp_state[mode].prog = prog;
 9242}
 9243
 9244static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
 9245			   bpf_op_t bpf_op, struct netlink_ext_ack *extack,
 9246			   u32 flags, struct bpf_prog *prog)
 9247{
 9248	struct netdev_bpf xdp;
 9249	int err;
 9250
 9251	memset(&xdp, 0, sizeof(xdp));
 9252	xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
 9253	xdp.extack = extack;
 9254	xdp.flags = flags;
 9255	xdp.prog = prog;
 9256
 9257	/* Drivers assume refcnt is already incremented (i.e, prog pointer is
 9258	 * "moved" into driver), so they don't increment it on their own, but
 9259	 * they do decrement refcnt when program is detached or replaced.
 9260	 * Given net_device also owns link/prog, we need to bump refcnt here
 9261	 * to prevent drivers from underflowing it.
 9262	 */
 9263	if (prog)
 9264		bpf_prog_inc(prog);
 9265	err = bpf_op(dev, &xdp);
 9266	if (err) {
 9267		if (prog)
 9268			bpf_prog_put(prog);
 9269		return err;
 9270	}
 9271
 9272	if (mode != XDP_MODE_HW)
 9273		bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
 9274
 9275	return 0;
 9276}
 9277
 9278static void dev_xdp_uninstall(struct net_device *dev)
 9279{
 9280	struct bpf_xdp_link *link;
 9281	struct bpf_prog *prog;
 9282	enum bpf_xdp_mode mode;
 9283	bpf_op_t bpf_op;
 9284
 
 9285	ASSERT_RTNL();
 9286
 9287	for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
 9288		prog = dev_xdp_prog(dev, mode);
 9289		if (!prog)
 9290			continue;
 
 
 
 
 9291
 9292		bpf_op = dev_xdp_bpf_op(dev, mode);
 9293		if (!bpf_op)
 9294			continue;
 9295
 9296		WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
 9297
 9298		/* auto-detach link from net device */
 9299		link = dev_xdp_link(dev, mode);
 9300		if (link)
 9301			link->dev = NULL;
 9302		else
 9303			bpf_prog_put(prog);
 9304
 9305		dev_xdp_set_link(dev, mode, NULL);
 9306	}
 9307}
 9308
 9309static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
 9310			  struct bpf_xdp_link *link, struct bpf_prog *new_prog,
 9311			  struct bpf_prog *old_prog, u32 flags)
 9312{
 9313	unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
 9314	struct bpf_prog *cur_prog;
 9315	struct net_device *upper;
 9316	struct list_head *iter;
 9317	enum bpf_xdp_mode mode;
 9318	bpf_op_t bpf_op;
 9319	int err;
 9320
 9321	ASSERT_RTNL();
 9322
 9323	/* either link or prog attachment, never both */
 9324	if (link && (new_prog || old_prog))
 9325		return -EINVAL;
 9326	/* link supports only XDP mode flags */
 9327	if (link && (flags & ~XDP_FLAGS_MODES)) {
 9328		NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
 9329		return -EINVAL;
 9330	}
 9331	/* just one XDP mode bit should be set, zero defaults to drv/skb mode */
 9332	if (num_modes > 1) {
 9333		NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
 9334		return -EINVAL;
 9335	}
 9336	/* avoid ambiguity if offload + drv/skb mode progs are both loaded */
 9337	if (!num_modes && dev_xdp_prog_count(dev) > 1) {
 9338		NL_SET_ERR_MSG(extack,
 9339			       "More than one program loaded, unset mode is ambiguous");
 9340		return -EINVAL;
 9341	}
 9342	/* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
 9343	if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
 9344		NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
 9345		return -EINVAL;
 9346	}
 9347
 9348	mode = dev_xdp_mode(dev, flags);
 9349	/* can't replace attached link */
 9350	if (dev_xdp_link(dev, mode)) {
 9351		NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
 9352		return -EBUSY;
 9353	}
 9354
 9355	/* don't allow if an upper device already has a program */
 9356	netdev_for_each_upper_dev_rcu(dev, upper, iter) {
 9357		if (dev_xdp_prog_count(upper) > 0) {
 9358			NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
 9359			return -EEXIST;
 9360		}
 9361	}
 9362
 9363	cur_prog = dev_xdp_prog(dev, mode);
 9364	/* can't replace attached prog with link */
 9365	if (link && cur_prog) {
 9366		NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
 9367		return -EBUSY;
 9368	}
 9369	if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
 9370		NL_SET_ERR_MSG(extack, "Active program does not match expected");
 9371		return -EEXIST;
 9372	}
 9373
 9374	/* put effective new program into new_prog */
 9375	if (link)
 9376		new_prog = link->link.prog;
 9377
 9378	if (new_prog) {
 9379		bool offload = mode == XDP_MODE_HW;
 9380		enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
 9381					       ? XDP_MODE_DRV : XDP_MODE_SKB;
 9382
 9383		if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
 9384			NL_SET_ERR_MSG(extack, "XDP program already attached");
 9385			return -EBUSY;
 9386		}
 9387		if (!offload && dev_xdp_prog(dev, other_mode)) {
 9388			NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
 9389			return -EEXIST;
 9390		}
 9391		if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
 9392			NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
 9393			return -EINVAL;
 9394		}
 9395		if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
 9396			NL_SET_ERR_MSG(extack, "Program bound to different device");
 9397			return -EINVAL;
 9398		}
 9399		if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
 9400			NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
 9401			return -EINVAL;
 9402		}
 9403		if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
 9404			NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
 9405			return -EINVAL;
 9406		}
 
 
 9407	}
 9408
 9409	/* don't call drivers if the effective program didn't change */
 9410	if (new_prog != cur_prog) {
 9411		bpf_op = dev_xdp_bpf_op(dev, mode);
 9412		if (!bpf_op) {
 9413			NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
 9414			return -EOPNOTSUPP;
 9415		}
 9416
 9417		err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
 9418		if (err)
 9419			return err;
 9420	}
 9421
 9422	if (link)
 9423		dev_xdp_set_link(dev, mode, link);
 9424	else
 9425		dev_xdp_set_prog(dev, mode, new_prog);
 9426	if (cur_prog)
 9427		bpf_prog_put(cur_prog);
 9428
 9429	return 0;
 9430}
 9431
 9432static int dev_xdp_attach_link(struct net_device *dev,
 9433			       struct netlink_ext_ack *extack,
 9434			       struct bpf_xdp_link *link)
 9435{
 9436	return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
 9437}
 9438
 9439static int dev_xdp_detach_link(struct net_device *dev,
 9440			       struct netlink_ext_ack *extack,
 9441			       struct bpf_xdp_link *link)
 9442{
 9443	enum bpf_xdp_mode mode;
 9444	bpf_op_t bpf_op;
 9445
 9446	ASSERT_RTNL();
 9447
 9448	mode = dev_xdp_mode(dev, link->flags);
 9449	if (dev_xdp_link(dev, mode) != link)
 9450		return -EINVAL;
 9451
 9452	bpf_op = dev_xdp_bpf_op(dev, mode);
 9453	WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
 9454	dev_xdp_set_link(dev, mode, NULL);
 9455	return 0;
 9456}
 9457
 9458static void bpf_xdp_link_release(struct bpf_link *link)
 9459{
 9460	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9461
 9462	rtnl_lock();
 9463
 9464	/* if racing with net_device's tear down, xdp_link->dev might be
 9465	 * already NULL, in which case link was already auto-detached
 9466	 */
 9467	if (xdp_link->dev) {
 9468		WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
 9469		xdp_link->dev = NULL;
 9470	}
 9471
 9472	rtnl_unlock();
 9473}
 9474
 9475static int bpf_xdp_link_detach(struct bpf_link *link)
 9476{
 9477	bpf_xdp_link_release(link);
 9478	return 0;
 9479}
 9480
 9481static void bpf_xdp_link_dealloc(struct bpf_link *link)
 9482{
 9483	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9484
 9485	kfree(xdp_link);
 9486}
 9487
 9488static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
 9489				     struct seq_file *seq)
 9490{
 9491	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9492	u32 ifindex = 0;
 9493
 9494	rtnl_lock();
 9495	if (xdp_link->dev)
 9496		ifindex = xdp_link->dev->ifindex;
 9497	rtnl_unlock();
 9498
 9499	seq_printf(seq, "ifindex:\t%u\n", ifindex);
 9500}
 9501
 9502static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
 9503				       struct bpf_link_info *info)
 9504{
 9505	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9506	u32 ifindex = 0;
 9507
 9508	rtnl_lock();
 9509	if (xdp_link->dev)
 9510		ifindex = xdp_link->dev->ifindex;
 9511	rtnl_unlock();
 9512
 9513	info->xdp.ifindex = ifindex;
 9514	return 0;
 9515}
 9516
 9517static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
 9518			       struct bpf_prog *old_prog)
 9519{
 9520	struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
 9521	enum bpf_xdp_mode mode;
 9522	bpf_op_t bpf_op;
 9523	int err = 0;
 9524
 9525	rtnl_lock();
 9526
 9527	/* link might have been auto-released already, so fail */
 9528	if (!xdp_link->dev) {
 9529		err = -ENOLINK;
 9530		goto out_unlock;
 9531	}
 9532
 9533	if (old_prog && link->prog != old_prog) {
 9534		err = -EPERM;
 9535		goto out_unlock;
 9536	}
 9537	old_prog = link->prog;
 9538	if (old_prog->type != new_prog->type ||
 9539	    old_prog->expected_attach_type != new_prog->expected_attach_type) {
 9540		err = -EINVAL;
 9541		goto out_unlock;
 9542	}
 9543
 9544	if (old_prog == new_prog) {
 9545		/* no-op, don't disturb drivers */
 9546		bpf_prog_put(new_prog);
 9547		goto out_unlock;
 9548	}
 9549
 9550	mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
 9551	bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
 9552	err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
 9553			      xdp_link->flags, new_prog);
 9554	if (err)
 9555		goto out_unlock;
 9556
 9557	old_prog = xchg(&link->prog, new_prog);
 9558	bpf_prog_put(old_prog);
 9559
 9560out_unlock:
 9561	rtnl_unlock();
 9562	return err;
 9563}
 9564
 9565static const struct bpf_link_ops bpf_xdp_link_lops = {
 9566	.release = bpf_xdp_link_release,
 9567	.dealloc = bpf_xdp_link_dealloc,
 9568	.detach = bpf_xdp_link_detach,
 9569	.show_fdinfo = bpf_xdp_link_show_fdinfo,
 9570	.fill_link_info = bpf_xdp_link_fill_link_info,
 9571	.update_prog = bpf_xdp_link_update,
 9572};
 9573
 9574int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
 9575{
 9576	struct net *net = current->nsproxy->net_ns;
 9577	struct bpf_link_primer link_primer;
 9578	struct netlink_ext_ack extack = {};
 9579	struct bpf_xdp_link *link;
 9580	struct net_device *dev;
 9581	int err, fd;
 9582
 9583	rtnl_lock();
 9584	dev = dev_get_by_index(net, attr->link_create.target_ifindex);
 9585	if (!dev) {
 9586		rtnl_unlock();
 9587		return -EINVAL;
 9588	}
 9589
 9590	link = kzalloc(sizeof(*link), GFP_USER);
 9591	if (!link) {
 9592		err = -ENOMEM;
 9593		goto unlock;
 9594	}
 9595
 9596	bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
 9597	link->dev = dev;
 9598	link->flags = attr->link_create.flags;
 9599
 9600	err = bpf_link_prime(&link->link, &link_primer);
 9601	if (err) {
 9602		kfree(link);
 9603		goto unlock;
 9604	}
 9605
 9606	err = dev_xdp_attach_link(dev, &extack, link);
 9607	rtnl_unlock();
 9608
 9609	if (err) {
 9610		link->dev = NULL;
 9611		bpf_link_cleanup(&link_primer);
 9612		trace_bpf_xdp_link_attach_failed(extack._msg);
 9613		goto out_put_dev;
 9614	}
 9615
 9616	fd = bpf_link_settle(&link_primer);
 9617	/* link itself doesn't hold dev's refcnt to not complicate shutdown */
 9618	dev_put(dev);
 9619	return fd;
 9620
 9621unlock:
 9622	rtnl_unlock();
 9623
 9624out_put_dev:
 9625	dev_put(dev);
 9626	return err;
 9627}
 9628
 9629/**
 9630 *	dev_change_xdp_fd - set or clear a bpf program for a device rx path
 9631 *	@dev: device
 9632 *	@extack: netlink extended ack
 9633 *	@fd: new program fd or negative value to clear
 9634 *	@expected_fd: old program fd that userspace expects to replace or clear
 9635 *	@flags: xdp-related flags
 9636 *
 9637 *	Set or clear a bpf program for a device
 9638 */
 9639int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
 9640		      int fd, int expected_fd, u32 flags)
 9641{
 9642	enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
 9643	struct bpf_prog *new_prog = NULL, *old_prog = NULL;
 9644	int err;
 9645
 9646	ASSERT_RTNL();
 
 
 
 
 9647
 9648	if (fd >= 0) {
 9649		new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
 9650						 mode != XDP_MODE_SKB);
 9651		if (IS_ERR(new_prog))
 9652			return PTR_ERR(new_prog);
 9653	}
 9654
 9655	if (expected_fd >= 0) {
 9656		old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
 9657						 mode != XDP_MODE_SKB);
 9658		if (IS_ERR(old_prog)) {
 9659			err = PTR_ERR(old_prog);
 9660			old_prog = NULL;
 9661			goto err_out;
 9662		}
 9663	}
 9664
 9665	err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
 9666
 9667err_out:
 9668	if (err && new_prog)
 9669		bpf_prog_put(new_prog);
 9670	if (old_prog)
 9671		bpf_prog_put(old_prog);
 9672	return err;
 9673}
 9674
 9675/**
 9676 * dev_index_reserve() - allocate an ifindex in a namespace
 9677 * @net: the applicable net namespace
 9678 * @ifindex: requested ifindex, pass %0 to get one allocated
 9679 *
 9680 * Allocate a ifindex for a new device. Caller must either use the ifindex
 9681 * to store the device (via list_netdevice()) or call dev_index_release()
 9682 * to give the index up.
 9683 *
 9684 * Return: a suitable unique value for a new device interface number or -errno.
 9685 */
 9686static int dev_index_reserve(struct net *net, u32 ifindex)
 9687{
 9688	int err;
 9689
 9690	if (ifindex > INT_MAX) {
 9691		DEBUG_NET_WARN_ON_ONCE(1);
 9692		return -EINVAL;
 
 
 
 9693	}
 9694
 9695	if (!ifindex)
 9696		err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
 9697				      xa_limit_31b, &net->ifindex, GFP_KERNEL);
 9698	else
 9699		err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
 9700	if (err < 0)
 9701		return err;
 9702
 9703	return ifindex;
 
 9704}
 9705
 9706static void dev_index_release(struct net *net, int ifindex)
 9707{
 9708	/* Expect only unused indexes, unlist_netdevice() removes the used */
 9709	WARN_ON(xa_erase(&net->dev_by_index, ifindex));
 9710}
 9711
 9712/* Delayed registration/unregisteration */
 9713LIST_HEAD(net_todo_list);
 9714DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
 9715atomic_t dev_unreg_count = ATOMIC_INIT(0);
 9716
 9717static void net_set_todo(struct net_device *dev)
 9718{
 9719	list_add_tail(&dev->todo_list, &net_todo_list);
 9720}
 9721
 9722static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
 9723	struct net_device *upper, netdev_features_t features)
 9724{
 9725	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
 9726	netdev_features_t feature;
 9727	int feature_bit;
 9728
 9729	for_each_netdev_feature(upper_disables, feature_bit) {
 9730		feature = __NETIF_F_BIT(feature_bit);
 9731		if (!(upper->wanted_features & feature)
 9732		    && (features & feature)) {
 9733			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
 9734				   &feature, upper->name);
 9735			features &= ~feature;
 9736		}
 9737	}
 9738
 9739	return features;
 9740}
 9741
 9742static void netdev_sync_lower_features(struct net_device *upper,
 9743	struct net_device *lower, netdev_features_t features)
 9744{
 9745	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
 9746	netdev_features_t feature;
 9747	int feature_bit;
 9748
 9749	for_each_netdev_feature(upper_disables, feature_bit) {
 9750		feature = __NETIF_F_BIT(feature_bit);
 9751		if (!(features & feature) && (lower->features & feature)) {
 9752			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
 9753				   &feature, lower->name);
 9754			lower->wanted_features &= ~feature;
 9755			__netdev_update_features(lower);
 9756
 9757			if (unlikely(lower->features & feature))
 9758				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
 9759					    &feature, lower->name);
 9760			else
 9761				netdev_features_change(lower);
 9762		}
 9763	}
 9764}
 9765
 9766static netdev_features_t netdev_fix_features(struct net_device *dev,
 9767	netdev_features_t features)
 9768{
 9769	/* Fix illegal checksum combinations */
 9770	if ((features & NETIF_F_HW_CSUM) &&
 9771	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
 9772		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
 9773		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
 9774	}
 9775
 9776	/* TSO requires that SG is present as well. */
 9777	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
 9778		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
 9779		features &= ~NETIF_F_ALL_TSO;
 9780	}
 9781
 9782	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
 9783					!(features & NETIF_F_IP_CSUM)) {
 9784		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
 9785		features &= ~NETIF_F_TSO;
 9786		features &= ~NETIF_F_TSO_ECN;
 9787	}
 9788
 9789	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
 9790					 !(features & NETIF_F_IPV6_CSUM)) {
 9791		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
 9792		features &= ~NETIF_F_TSO6;
 9793	}
 9794
 9795	/* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
 9796	if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
 9797		features &= ~NETIF_F_TSO_MANGLEID;
 9798
 9799	/* TSO ECN requires that TSO is present as well. */
 9800	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
 9801		features &= ~NETIF_F_TSO_ECN;
 9802
 9803	/* Software GSO depends on SG. */
 9804	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
 9805		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
 9806		features &= ~NETIF_F_GSO;
 9807	}
 9808
 9809	/* GSO partial features require GSO partial be set */
 9810	if ((features & dev->gso_partial_features) &&
 9811	    !(features & NETIF_F_GSO_PARTIAL)) {
 9812		netdev_dbg(dev,
 9813			   "Dropping partially supported GSO features since no GSO partial.\n");
 9814		features &= ~dev->gso_partial_features;
 9815	}
 9816
 9817	if (!(features & NETIF_F_RXCSUM)) {
 9818		/* NETIF_F_GRO_HW implies doing RXCSUM since every packet
 9819		 * successfully merged by hardware must also have the
 9820		 * checksum verified by hardware.  If the user does not
 9821		 * want to enable RXCSUM, logically, we should disable GRO_HW.
 9822		 */
 9823		if (features & NETIF_F_GRO_HW) {
 9824			netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
 9825			features &= ~NETIF_F_GRO_HW;
 9826		}
 9827	}
 9828
 9829	/* LRO/HW-GRO features cannot be combined with RX-FCS */
 9830	if (features & NETIF_F_RXFCS) {
 9831		if (features & NETIF_F_LRO) {
 9832			netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
 9833			features &= ~NETIF_F_LRO;
 9834		}
 9835
 9836		if (features & NETIF_F_GRO_HW) {
 9837			netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
 9838			features &= ~NETIF_F_GRO_HW;
 9839		}
 9840	}
 9841
 9842	if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
 9843		netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
 9844		features &= ~NETIF_F_LRO;
 9845	}
 9846
 9847	if (features & NETIF_F_HW_TLS_TX) {
 9848		bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
 9849			(NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
 9850		bool hw_csum = features & NETIF_F_HW_CSUM;
 9851
 9852		if (!ip_csum && !hw_csum) {
 9853			netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
 9854			features &= ~NETIF_F_HW_TLS_TX;
 9855		}
 9856	}
 9857
 9858	if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
 9859		netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
 9860		features &= ~NETIF_F_HW_TLS_RX;
 9861	}
 9862
 9863	return features;
 9864}
 9865
 9866int __netdev_update_features(struct net_device *dev)
 9867{
 9868	struct net_device *upper, *lower;
 9869	netdev_features_t features;
 9870	struct list_head *iter;
 9871	int err = -1;
 9872
 9873	ASSERT_RTNL();
 9874
 9875	features = netdev_get_wanted_features(dev);
 9876
 9877	if (dev->netdev_ops->ndo_fix_features)
 9878		features = dev->netdev_ops->ndo_fix_features(dev, features);
 9879
 9880	/* driver might be less strict about feature dependencies */
 9881	features = netdev_fix_features(dev, features);
 9882
 9883	/* some features can't be enabled if they're off on an upper device */
 9884	netdev_for_each_upper_dev_rcu(dev, upper, iter)
 9885		features = netdev_sync_upper_features(dev, upper, features);
 9886
 9887	if (dev->features == features)
 9888		goto sync_lower;
 9889
 9890	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
 9891		&dev->features, &features);
 9892
 9893	if (dev->netdev_ops->ndo_set_features)
 9894		err = dev->netdev_ops->ndo_set_features(dev, features);
 9895	else
 9896		err = 0;
 9897
 9898	if (unlikely(err < 0)) {
 9899		netdev_err(dev,
 9900			"set_features() failed (%d); wanted %pNF, left %pNF\n",
 9901			err, &features, &dev->features);
 9902		/* return non-0 since some features might have changed and
 9903		 * it's better to fire a spurious notification than miss it
 9904		 */
 9905		return -1;
 9906	}
 9907
 9908sync_lower:
 9909	/* some features must be disabled on lower devices when disabled
 9910	 * on an upper device (think: bonding master or bridge)
 9911	 */
 9912	netdev_for_each_lower_dev(dev, lower, iter)
 9913		netdev_sync_lower_features(dev, lower, features);
 9914
 9915	if (!err) {
 9916		netdev_features_t diff = features ^ dev->features;
 9917
 9918		if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
 9919			/* udp_tunnel_{get,drop}_rx_info both need
 9920			 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
 9921			 * device, or they won't do anything.
 9922			 * Thus we need to update dev->features
 9923			 * *before* calling udp_tunnel_get_rx_info,
 9924			 * but *after* calling udp_tunnel_drop_rx_info.
 9925			 */
 9926			if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
 9927				dev->features = features;
 9928				udp_tunnel_get_rx_info(dev);
 9929			} else {
 9930				udp_tunnel_drop_rx_info(dev);
 9931			}
 9932		}
 9933
 9934		if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
 9935			if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
 9936				dev->features = features;
 9937				err |= vlan_get_rx_ctag_filter_info(dev);
 9938			} else {
 9939				vlan_drop_rx_ctag_filter_info(dev);
 9940			}
 9941		}
 9942
 9943		if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
 9944			if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
 9945				dev->features = features;
 9946				err |= vlan_get_rx_stag_filter_info(dev);
 9947			} else {
 9948				vlan_drop_rx_stag_filter_info(dev);
 9949			}
 9950		}
 9951
 9952		dev->features = features;
 9953	}
 9954
 9955	return err < 0 ? 0 : 1;
 9956}
 9957
 9958/**
 9959 *	netdev_update_features - recalculate device features
 9960 *	@dev: the device to check
 9961 *
 9962 *	Recalculate dev->features set and send notifications if it
 9963 *	has changed. Should be called after driver or hardware dependent
 9964 *	conditions might have changed that influence the features.
 9965 */
 9966void netdev_update_features(struct net_device *dev)
 9967{
 9968	if (__netdev_update_features(dev))
 9969		netdev_features_change(dev);
 9970}
 9971EXPORT_SYMBOL(netdev_update_features);
 9972
 9973/**
 9974 *	netdev_change_features - recalculate device features
 9975 *	@dev: the device to check
 9976 *
 9977 *	Recalculate dev->features set and send notifications even
 9978 *	if they have not changed. Should be called instead of
 9979 *	netdev_update_features() if also dev->vlan_features might
 9980 *	have changed to allow the changes to be propagated to stacked
 9981 *	VLAN devices.
 9982 */
 9983void netdev_change_features(struct net_device *dev)
 9984{
 9985	__netdev_update_features(dev);
 9986	netdev_features_change(dev);
 9987}
 9988EXPORT_SYMBOL(netdev_change_features);
 9989
 9990/**
 9991 *	netif_stacked_transfer_operstate -	transfer operstate
 9992 *	@rootdev: the root or lower level device to transfer state from
 9993 *	@dev: the device to transfer operstate to
 9994 *
 9995 *	Transfer operational state from root to device. This is normally
 9996 *	called when a stacking relationship exists between the root
 9997 *	device and the device(a leaf device).
 9998 */
 9999void netif_stacked_transfer_operstate(const struct net_device *rootdev,
10000					struct net_device *dev)
10001{
10002	if (rootdev->operstate == IF_OPER_DORMANT)
10003		netif_dormant_on(dev);
10004	else
10005		netif_dormant_off(dev);
10006
10007	if (rootdev->operstate == IF_OPER_TESTING)
10008		netif_testing_on(dev);
10009	else
10010		netif_testing_off(dev);
10011
10012	if (netif_carrier_ok(rootdev))
10013		netif_carrier_on(dev);
10014	else
10015		netif_carrier_off(dev);
10016}
10017EXPORT_SYMBOL(netif_stacked_transfer_operstate);
10018
 
10019static int netif_alloc_rx_queues(struct net_device *dev)
10020{
10021	unsigned int i, count = dev->num_rx_queues;
10022	struct netdev_rx_queue *rx;
10023	size_t sz = count * sizeof(*rx);
10024	int err = 0;
10025
10026	BUG_ON(count < 1);
10027
10028	rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10029	if (!rx)
10030		return -ENOMEM;
10031
 
 
10032	dev->_rx = rx;
10033
10034	for (i = 0; i < count; i++) {
10035		rx[i].dev = dev;
10036
10037		/* XDP RX-queue setup */
10038		err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
10039		if (err < 0)
10040			goto err_rxq_info;
10041	}
10042	return 0;
10043
10044err_rxq_info:
10045	/* Rollback successful reg's and free other resources */
10046	while (i--)
10047		xdp_rxq_info_unreg(&rx[i].xdp_rxq);
10048	kvfree(dev->_rx);
10049	dev->_rx = NULL;
10050	return err;
10051}
10052
10053static void netif_free_rx_queues(struct net_device *dev)
10054{
10055	unsigned int i, count = dev->num_rx_queues;
10056
10057	/* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10058	if (!dev->_rx)
10059		return;
10060
10061	for (i = 0; i < count; i++)
10062		xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10063
10064	kvfree(dev->_rx);
10065}
 
10066
10067static void netdev_init_one_queue(struct net_device *dev,
10068				  struct netdev_queue *queue, void *_unused)
10069{
10070	/* Initialize queue lock */
10071	spin_lock_init(&queue->_xmit_lock);
10072	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10073	queue->xmit_lock_owner = -1;
10074	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10075	queue->dev = dev;
10076#ifdef CONFIG_BQL
10077	dql_init(&queue->dql, HZ);
10078#endif
10079}
10080
10081static void netif_free_tx_queues(struct net_device *dev)
10082{
10083	kvfree(dev->_tx);
10084}
10085
10086static int netif_alloc_netdev_queues(struct net_device *dev)
10087{
10088	unsigned int count = dev->num_tx_queues;
10089	struct netdev_queue *tx;
10090	size_t sz = count * sizeof(*tx);
10091
10092	if (count < 1 || count > 0xffff)
10093		return -EINVAL;
10094
10095	tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10096	if (!tx)
10097		return -ENOMEM;
10098
 
 
10099	dev->_tx = tx;
10100
10101	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10102	spin_lock_init(&dev->tx_global_lock);
10103
10104	return 0;
10105}
10106
10107void netif_tx_stop_all_queues(struct net_device *dev)
10108{
10109	unsigned int i;
10110
10111	for (i = 0; i < dev->num_tx_queues; i++) {
10112		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10113
10114		netif_tx_stop_queue(txq);
10115	}
10116}
10117EXPORT_SYMBOL(netif_tx_stop_all_queues);
10118
10119static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10120{
10121	void __percpu *v;
10122
10123	/* Drivers implementing ndo_get_peer_dev must support tstat
10124	 * accounting, so that skb_do_redirect() can bump the dev's
10125	 * RX stats upon network namespace switch.
10126	 */
10127	if (dev->netdev_ops->ndo_get_peer_dev &&
10128	    dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10129		return -EOPNOTSUPP;
10130
10131	switch (dev->pcpu_stat_type) {
10132	case NETDEV_PCPU_STAT_NONE:
10133		return 0;
10134	case NETDEV_PCPU_STAT_LSTATS:
10135		v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10136		break;
10137	case NETDEV_PCPU_STAT_TSTATS:
10138		v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10139		break;
10140	case NETDEV_PCPU_STAT_DSTATS:
10141		v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10142		break;
10143	default:
10144		return -EINVAL;
10145	}
10146
10147	return v ? 0 : -ENOMEM;
10148}
10149
10150static void netdev_do_free_pcpu_stats(struct net_device *dev)
10151{
10152	switch (dev->pcpu_stat_type) {
10153	case NETDEV_PCPU_STAT_NONE:
10154		return;
10155	case NETDEV_PCPU_STAT_LSTATS:
10156		free_percpu(dev->lstats);
10157		break;
10158	case NETDEV_PCPU_STAT_TSTATS:
10159		free_percpu(dev->tstats);
10160		break;
10161	case NETDEV_PCPU_STAT_DSTATS:
10162		free_percpu(dev->dstats);
10163		break;
10164	}
10165}
10166
10167/**
10168 * register_netdevice() - register a network device
10169 * @dev: device to register
10170 *
10171 * Take a prepared network device structure and make it externally accessible.
10172 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10173 * Callers must hold the rtnl lock - you may want register_netdev()
10174 * instead of this.
 
 
 
 
 
 
 
10175 */
 
10176int register_netdevice(struct net_device *dev)
10177{
10178	int ret;
10179	struct net *net = dev_net(dev);
10180
10181	BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10182		     NETDEV_FEATURE_COUNT);
10183	BUG_ON(dev_boot_phase);
10184	ASSERT_RTNL();
10185
10186	might_sleep();
10187
10188	/* When net_device's are persistent, this will be fatal. */
10189	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10190	BUG_ON(!net);
10191
10192	ret = ethtool_check_ops(dev->ethtool_ops);
10193	if (ret)
10194		return ret;
10195
10196	spin_lock_init(&dev->addr_list_lock);
10197	netdev_set_addr_lockdep_class(dev);
10198
10199	ret = dev_get_valid_name(net, dev, dev->name);
10200	if (ret < 0)
10201		goto out;
10202
10203	ret = -ENOMEM;
10204	dev->name_node = netdev_name_node_head_alloc(dev);
10205	if (!dev->name_node)
10206		goto out;
10207
10208	/* Init, if this function is available */
10209	if (dev->netdev_ops->ndo_init) {
10210		ret = dev->netdev_ops->ndo_init(dev);
10211		if (ret) {
10212			if (ret > 0)
10213				ret = -EIO;
10214			goto err_free_name;
10215		}
10216	}
10217
10218	if (((dev->hw_features | dev->features) &
10219	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
10220	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10221	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10222		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10223		ret = -EINVAL;
10224		goto err_uninit;
10225	}
10226
10227	ret = netdev_do_alloc_pcpu_stats(dev);
10228	if (ret)
 
 
10229		goto err_uninit;
10230
10231	ret = dev_index_reserve(net, dev->ifindex);
10232	if (ret < 0)
10233		goto err_free_pcpu;
10234	dev->ifindex = ret;
10235
10236	/* Transfer changeable features to wanted_features and enable
10237	 * software offloads (GSO and GRO).
10238	 */
10239	dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10240	dev->features |= NETIF_F_SOFT_FEATURES;
10241
10242	if (dev->udp_tunnel_nic_info) {
10243		dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10244		dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10245	}
10246
10247	dev->wanted_features = dev->features & dev->hw_features;
10248
10249	if (!(dev->flags & IFF_LOOPBACK))
10250		dev->hw_features |= NETIF_F_NOCACHE_COPY;
10251
10252	/* If IPv4 TCP segmentation offload is supported we should also
10253	 * allow the device to enable segmenting the frame with the option
10254	 * of ignoring a static IP ID value.  This doesn't enable the
10255	 * feature itself but allows the user to enable it later.
10256	 */
10257	if (dev->hw_features & NETIF_F_TSO)
10258		dev->hw_features |= NETIF_F_TSO_MANGLEID;
10259	if (dev->vlan_features & NETIF_F_TSO)
10260		dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10261	if (dev->mpls_features & NETIF_F_TSO)
10262		dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10263	if (dev->hw_enc_features & NETIF_F_TSO)
10264		dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10265
10266	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10267	 */
10268	dev->vlan_features |= NETIF_F_HIGHDMA;
10269
10270	/* Make NETIF_F_SG inheritable to tunnel devices.
10271	 */
10272	dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10273
10274	/* Make NETIF_F_SG inheritable to MPLS.
10275	 */
10276	dev->mpls_features |= NETIF_F_SG;
10277
10278	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10279	ret = notifier_to_errno(ret);
10280	if (ret)
10281		goto err_ifindex_release;
10282
10283	ret = netdev_register_kobject(dev);
10284
10285	WRITE_ONCE(dev->reg_state, ret ? NETREG_UNREGISTERED : NETREG_REGISTERED);
10286
10287	if (ret)
10288		goto err_uninit_notify;
 
10289
10290	__netdev_update_features(dev);
10291
10292	/*
10293	 *	Default initial state at registry is that the
10294	 *	device is present.
10295	 */
10296
10297	set_bit(__LINK_STATE_PRESENT, &dev->state);
10298
10299	linkwatch_init_dev(dev);
10300
10301	dev_init_scheduler(dev);
10302
10303	netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10304	list_netdevice(dev);
10305
10306	add_device_randomness(dev->dev_addr, dev->addr_len);
10307
10308	/* If the device has permanent device address, driver should
10309	 * set dev_addr and also addr_assign_type should be set to
10310	 * NET_ADDR_PERM (default value).
10311	 */
10312	if (dev->addr_assign_type == NET_ADDR_PERM)
10313		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10314
10315	/* Notify protocols, that a new device appeared. */
10316	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10317	ret = notifier_to_errno(ret);
10318	if (ret) {
10319		/* Expect explicit free_netdev() on failure */
10320		dev->needs_free_netdev = false;
10321		unregister_netdevice_queue(dev, NULL);
10322		goto out;
10323	}
10324	/*
10325	 *	Prevent userspace races by waiting until the network
10326	 *	device is fully setup before sending notifications.
10327	 */
10328	if (!dev->rtnl_link_ops ||
10329	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10330		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10331
10332out:
10333	return ret;
10334
10335err_uninit_notify:
10336	call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10337err_ifindex_release:
10338	dev_index_release(net, dev->ifindex);
10339err_free_pcpu:
10340	netdev_do_free_pcpu_stats(dev);
10341err_uninit:
10342	if (dev->netdev_ops->ndo_uninit)
10343		dev->netdev_ops->ndo_uninit(dev);
10344	if (dev->priv_destructor)
10345		dev->priv_destructor(dev);
10346err_free_name:
10347	netdev_name_node_free(dev->name_node);
10348	goto out;
10349}
10350EXPORT_SYMBOL(register_netdevice);
10351
10352/**
10353 *	init_dummy_netdev	- init a dummy network device for NAPI
10354 *	@dev: device to init
10355 *
10356 *	This takes a network device structure and initialize the minimum
10357 *	amount of fields so it can be used to schedule NAPI polls without
10358 *	registering a full blown interface. This is to be used by drivers
10359 *	that need to tie several hardware interfaces to a single NAPI
10360 *	poll scheduler due to HW limitations.
10361 */
10362void init_dummy_netdev(struct net_device *dev)
10363{
10364	/* Clear everything. Note we don't initialize spinlocks
10365	 * are they aren't supposed to be taken by any of the
10366	 * NAPI code and this dummy netdev is supposed to be
10367	 * only ever used for NAPI polls
10368	 */
10369	memset(dev, 0, sizeof(struct net_device));
10370
10371	/* make sure we BUG if trying to hit standard
10372	 * register/unregister code path
10373	 */
10374	dev->reg_state = NETREG_DUMMY;
10375
10376	/* NAPI wants this */
10377	INIT_LIST_HEAD(&dev->napi_list);
10378
10379	/* a dummy interface is started by default */
10380	set_bit(__LINK_STATE_PRESENT, &dev->state);
10381	set_bit(__LINK_STATE_START, &dev->state);
10382
10383	/* napi_busy_loop stats accounting wants this */
10384	dev_net_set(dev, &init_net);
10385
10386	/* Note : We dont allocate pcpu_refcnt for dummy devices,
10387	 * because users of this 'device' dont need to change
10388	 * its refcount.
10389	 */
 
 
10390}
10391EXPORT_SYMBOL_GPL(init_dummy_netdev);
10392
10393
10394/**
10395 *	register_netdev	- register a network device
10396 *	@dev: device to register
10397 *
10398 *	Take a completed network device structure and add it to the kernel
10399 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10400 *	chain. 0 is returned on success. A negative errno code is returned
10401 *	on a failure to set up the device, or if the name is a duplicate.
10402 *
10403 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
10404 *	and expands the device name if you passed a format string to
10405 *	alloc_netdev.
10406 */
10407int register_netdev(struct net_device *dev)
10408{
10409	int err;
10410
10411	if (rtnl_lock_killable())
10412		return -EINTR;
10413	err = register_netdevice(dev);
10414	rtnl_unlock();
10415	return err;
10416}
10417EXPORT_SYMBOL(register_netdev);
10418
10419int netdev_refcnt_read(const struct net_device *dev)
10420{
10421#ifdef CONFIG_PCPU_DEV_REFCNT
10422	int i, refcnt = 0;
10423
10424	for_each_possible_cpu(i)
10425		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10426	return refcnt;
10427#else
10428	return refcount_read(&dev->dev_refcnt);
10429#endif
10430}
10431EXPORT_SYMBOL(netdev_refcnt_read);
10432
10433int netdev_unregister_timeout_secs __read_mostly = 10;
10434
10435#define WAIT_REFS_MIN_MSECS 1
10436#define WAIT_REFS_MAX_MSECS 250
10437/**
10438 * netdev_wait_allrefs_any - wait until all references are gone.
10439 * @list: list of net_devices to wait on
10440 *
10441 * This is called when unregistering network devices.
10442 *
10443 * Any protocol or device that holds a reference should register
10444 * for netdevice notification, and cleanup and put back the
10445 * reference if they receive an UNREGISTER event.
10446 * We can get stuck here if buggy protocols don't correctly
10447 * call dev_put.
10448 */
10449static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10450{
10451	unsigned long rebroadcast_time, warning_time;
10452	struct net_device *dev;
10453	int wait = 0;
10454
10455	rebroadcast_time = warning_time = jiffies;
10456
10457	list_for_each_entry(dev, list, todo_list)
10458		if (netdev_refcnt_read(dev) == 1)
10459			return dev;
10460
10461	while (true) {
10462		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10463			rtnl_lock();
10464
10465			/* Rebroadcast unregister notification */
10466			list_for_each_entry(dev, list, todo_list)
10467				call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10468
10469			__rtnl_unlock();
10470			rcu_barrier();
10471			rtnl_lock();
10472
10473			list_for_each_entry(dev, list, todo_list)
10474				if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10475					     &dev->state)) {
10476					/* We must not have linkwatch events
10477					 * pending on unregister. If this
10478					 * happens, we simply run the queue
10479					 * unscheduled, resulting in a noop
10480					 * for this device.
10481					 */
10482					linkwatch_run_queue();
10483					break;
10484				}
10485
10486			__rtnl_unlock();
10487
10488			rebroadcast_time = jiffies;
10489		}
10490
10491		rcu_barrier();
10492
10493		if (!wait) {
10494			wait = WAIT_REFS_MIN_MSECS;
10495		} else {
10496			msleep(wait);
10497			wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10498		}
10499
10500		list_for_each_entry(dev, list, todo_list)
10501			if (netdev_refcnt_read(dev) == 1)
10502				return dev;
10503
10504		if (time_after(jiffies, warning_time +
10505			       READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10506			list_for_each_entry(dev, list, todo_list) {
10507				pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10508					 dev->name, netdev_refcnt_read(dev));
10509				ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10510			}
10511
 
 
 
10512			warning_time = jiffies;
10513		}
10514	}
10515}
10516
10517/* The sequence is:
10518 *
10519 *	rtnl_lock();
10520 *	...
10521 *	register_netdevice(x1);
10522 *	register_netdevice(x2);
10523 *	...
10524 *	unregister_netdevice(y1);
10525 *	unregister_netdevice(y2);
10526 *      ...
10527 *	rtnl_unlock();
10528 *	free_netdev(y1);
10529 *	free_netdev(y2);
10530 *
10531 * We are invoked by rtnl_unlock().
10532 * This allows us to deal with problems:
10533 * 1) We can delete sysfs objects which invoke hotplug
10534 *    without deadlocking with linkwatch via keventd.
10535 * 2) Since we run with the RTNL semaphore not held, we can sleep
10536 *    safely in order to wait for the netdev refcnt to drop to zero.
10537 *
10538 * We must not return until all unregister events added during
10539 * the interval the lock was held have been completed.
10540 */
10541void netdev_run_todo(void)
10542{
10543	struct net_device *dev, *tmp;
10544	struct list_head list;
10545	int cnt;
10546#ifdef CONFIG_LOCKDEP
10547	struct list_head unlink_list;
10548
10549	list_replace_init(&net_unlink_list, &unlink_list);
10550
10551	while (!list_empty(&unlink_list)) {
10552		struct net_device *dev = list_first_entry(&unlink_list,
10553							  struct net_device,
10554							  unlink_list);
10555		list_del_init(&dev->unlink_list);
10556		dev->nested_level = dev->lower_level - 1;
10557	}
10558#endif
10559
10560	/* Snapshot list, allow later requests */
10561	list_replace_init(&net_todo_list, &list);
10562
10563	__rtnl_unlock();
10564
 
10565	/* Wait for rcu callbacks to finish before next phase */
10566	if (!list_empty(&list))
10567		rcu_barrier();
10568
10569	list_for_each_entry_safe(dev, tmp, &list, todo_list) {
 
 
 
 
 
 
 
 
10570		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10571			netdev_WARN(dev, "run_todo but not unregistering\n");
10572			list_del(&dev->todo_list);
 
10573			continue;
10574		}
10575
10576		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERED);
10577		linkwatch_sync_dev(dev);
10578	}
10579
10580	cnt = 0;
10581	while (!list_empty(&list)) {
10582		dev = netdev_wait_allrefs_any(&list);
10583		list_del(&dev->todo_list);
10584
10585		/* paranoia */
10586		BUG_ON(netdev_refcnt_read(dev) != 1);
10587		BUG_ON(!list_empty(&dev->ptype_all));
10588		BUG_ON(!list_empty(&dev->ptype_specific));
10589		WARN_ON(rcu_access_pointer(dev->ip_ptr));
10590		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
 
10591
10592		netdev_do_free_pcpu_stats(dev);
10593		if (dev->priv_destructor)
10594			dev->priv_destructor(dev);
10595		if (dev->needs_free_netdev)
10596			free_netdev(dev);
10597
10598		cnt++;
 
 
 
 
10599
10600		/* Free network device */
10601		kobject_put(&dev->dev.kobj);
10602	}
10603	if (cnt && atomic_sub_and_test(cnt, &dev_unreg_count))
10604		wake_up(&netdev_unregistering_wq);
10605}
10606
10607/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10608 * all the same fields in the same order as net_device_stats, with only
10609 * the type differing, but rtnl_link_stats64 may have additional fields
10610 * at the end for newer counters.
10611 */
10612void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10613			     const struct net_device_stats *netdev_stats)
10614{
10615	size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10616	const atomic_long_t *src = (atomic_long_t *)netdev_stats;
 
 
 
 
 
 
 
10617	u64 *dst = (u64 *)stats64;
10618
10619	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10620	for (i = 0; i < n; i++)
10621		dst[i] = (unsigned long)atomic_long_read(&src[i]);
10622	/* zero out counters that only exist in rtnl_link_stats64 */
10623	memset((char *)stats64 + n * sizeof(u64), 0,
10624	       sizeof(*stats64) - n * sizeof(u64));
 
10625}
10626EXPORT_SYMBOL(netdev_stats_to_stats64);
10627
10628static __cold struct net_device_core_stats __percpu *netdev_core_stats_alloc(
10629		struct net_device *dev)
10630{
10631	struct net_device_core_stats __percpu *p;
10632
10633	p = alloc_percpu_gfp(struct net_device_core_stats,
10634			     GFP_ATOMIC | __GFP_NOWARN);
10635
10636	if (p && cmpxchg(&dev->core_stats, NULL, p))
10637		free_percpu(p);
10638
10639	/* This READ_ONCE() pairs with the cmpxchg() above */
10640	return READ_ONCE(dev->core_stats);
10641}
10642
10643noinline void netdev_core_stats_inc(struct net_device *dev, u32 offset)
10644{
10645	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10646	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
10647	unsigned long __percpu *field;
10648
10649	if (unlikely(!p)) {
10650		p = netdev_core_stats_alloc(dev);
10651		if (!p)
10652			return;
10653	}
10654
10655	field = (__force unsigned long __percpu *)((__force void *)p + offset);
10656	this_cpu_inc(*field);
10657}
10658EXPORT_SYMBOL_GPL(netdev_core_stats_inc);
10659
10660/**
10661 *	dev_get_stats	- get network device statistics
10662 *	@dev: device to get statistics from
10663 *	@storage: place to store stats
10664 *
10665 *	Get network statistics from device. Return @storage.
10666 *	The device driver may provide its own method by setting
10667 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10668 *	otherwise the internal statistics structure is used.
10669 */
10670struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10671					struct rtnl_link_stats64 *storage)
10672{
10673	const struct net_device_ops *ops = dev->netdev_ops;
10674	const struct net_device_core_stats __percpu *p;
10675
10676	if (ops->ndo_get_stats64) {
10677		memset(storage, 0, sizeof(*storage));
10678		ops->ndo_get_stats64(dev, storage);
10679	} else if (ops->ndo_get_stats) {
10680		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10681	} else if (dev->pcpu_stat_type == NETDEV_PCPU_STAT_TSTATS) {
10682		dev_get_tstats64(dev, storage);
10683	} else {
10684		netdev_stats_to_stats64(storage, &dev->stats);
10685	}
10686
10687	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10688	p = READ_ONCE(dev->core_stats);
10689	if (p) {
10690		const struct net_device_core_stats *core_stats;
10691		int i;
10692
10693		for_each_possible_cpu(i) {
10694			core_stats = per_cpu_ptr(p, i);
10695			storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10696			storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10697			storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10698			storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10699		}
10700	}
10701	return storage;
10702}
10703EXPORT_SYMBOL(dev_get_stats);
10704
10705/**
10706 *	dev_fetch_sw_netstats - get per-cpu network device statistics
10707 *	@s: place to store stats
10708 *	@netstats: per-cpu network stats to read from
10709 *
10710 *	Read per-cpu network statistics and populate the related fields in @s.
10711 */
10712void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10713			   const struct pcpu_sw_netstats __percpu *netstats)
10714{
10715	int cpu;
10716
10717	for_each_possible_cpu(cpu) {
10718		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10719		const struct pcpu_sw_netstats *stats;
10720		unsigned int start;
10721
10722		stats = per_cpu_ptr(netstats, cpu);
10723		do {
10724			start = u64_stats_fetch_begin(&stats->syncp);
10725			rx_packets = u64_stats_read(&stats->rx_packets);
10726			rx_bytes   = u64_stats_read(&stats->rx_bytes);
10727			tx_packets = u64_stats_read(&stats->tx_packets);
10728			tx_bytes   = u64_stats_read(&stats->tx_bytes);
10729		} while (u64_stats_fetch_retry(&stats->syncp, start));
10730
10731		s->rx_packets += rx_packets;
10732		s->rx_bytes   += rx_bytes;
10733		s->tx_packets += tx_packets;
10734		s->tx_bytes   += tx_bytes;
10735	}
10736}
10737EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10738
10739/**
10740 *	dev_get_tstats64 - ndo_get_stats64 implementation
10741 *	@dev: device to get statistics from
10742 *	@s: place to store stats
10743 *
10744 *	Populate @s from dev->stats and dev->tstats. Can be used as
10745 *	ndo_get_stats64() callback.
10746 */
10747void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10748{
10749	netdev_stats_to_stats64(s, &dev->stats);
10750	dev_fetch_sw_netstats(s, dev->tstats);
10751}
10752EXPORT_SYMBOL_GPL(dev_get_tstats64);
10753
10754struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10755{
10756	struct netdev_queue *queue = dev_ingress_queue(dev);
10757
10758#ifdef CONFIG_NET_CLS_ACT
10759	if (queue)
10760		return queue;
10761	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10762	if (!queue)
10763		return NULL;
10764	netdev_init_one_queue(dev, queue, NULL);
10765	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10766	RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10767	rcu_assign_pointer(dev->ingress_queue, queue);
10768#endif
10769	return queue;
10770}
10771
10772static const struct ethtool_ops default_ethtool_ops;
10773
10774void netdev_set_default_ethtool_ops(struct net_device *dev,
10775				    const struct ethtool_ops *ops)
10776{
10777	if (dev->ethtool_ops == &default_ethtool_ops)
10778		dev->ethtool_ops = ops;
10779}
10780EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10781
10782/**
10783 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10784 * @dev: netdev to enable the IRQ coalescing on
10785 *
10786 * Sets a conservative default for SW IRQ coalescing. Users can use
10787 * sysfs attributes to override the default values.
10788 */
10789void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10790{
10791	WARN_ON(dev->reg_state == NETREG_REGISTERED);
10792
10793	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10794		dev->gro_flush_timeout = 20000;
10795		dev->napi_defer_hard_irqs = 1;
10796	}
10797}
10798EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10799
10800void netdev_freemem(struct net_device *dev)
10801{
10802	char *addr = (char *)dev - dev->padded;
10803
10804	kvfree(addr);
10805}
10806
10807/**
10808 * alloc_netdev_mqs - allocate network device
10809 * @sizeof_priv: size of private data to allocate space for
10810 * @name: device name format string
10811 * @name_assign_type: origin of device name
10812 * @setup: callback to initialize device
10813 * @txqs: the number of TX subqueues to allocate
10814 * @rxqs: the number of RX subqueues to allocate
10815 *
10816 * Allocates a struct net_device with private data area for driver use
10817 * and performs basic initialization.  Also allocates subqueue structs
10818 * for each queue on the device.
10819 */
10820struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10821		unsigned char name_assign_type,
10822		void (*setup)(struct net_device *),
10823		unsigned int txqs, unsigned int rxqs)
10824{
10825	struct net_device *dev;
10826	unsigned int alloc_size;
10827	struct net_device *p;
10828
10829	BUG_ON(strlen(name) >= sizeof(dev->name));
10830
10831	if (txqs < 1) {
10832		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10833		return NULL;
10834	}
10835
 
10836	if (rxqs < 1) {
10837		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10838		return NULL;
10839	}
 
10840
10841	alloc_size = sizeof(struct net_device);
10842	if (sizeof_priv) {
10843		/* ensure 32-byte alignment of private area */
10844		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10845		alloc_size += sizeof_priv;
10846	}
10847	/* ensure 32-byte alignment of whole construct */
10848	alloc_size += NETDEV_ALIGN - 1;
10849
10850	p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
 
 
10851	if (!p)
10852		return NULL;
10853
10854	dev = PTR_ALIGN(p, NETDEV_ALIGN);
10855	dev->padded = (char *)dev - (char *)p;
10856
10857	ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10858#ifdef CONFIG_PCPU_DEV_REFCNT
10859	dev->pcpu_refcnt = alloc_percpu(int);
10860	if (!dev->pcpu_refcnt)
10861		goto free_dev;
10862	__dev_hold(dev);
10863#else
10864	refcount_set(&dev->dev_refcnt, 1);
10865#endif
10866
10867	if (dev_addr_init(dev))
10868		goto free_pcpu;
10869
10870	dev_mc_init(dev);
10871	dev_uc_init(dev);
10872
10873	dev_net_set(dev, &init_net);
10874
10875	dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10876	dev->xdp_zc_max_segs = 1;
10877	dev->gso_max_segs = GSO_MAX_SEGS;
10878	dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10879	dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10880	dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10881	dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10882	dev->tso_max_segs = TSO_MAX_SEGS;
10883	dev->upper_level = 1;
10884	dev->lower_level = 1;
10885#ifdef CONFIG_LOCKDEP
10886	dev->nested_level = 0;
10887	INIT_LIST_HEAD(&dev->unlink_list);
10888#endif
10889
10890	INIT_LIST_HEAD(&dev->napi_list);
10891	INIT_LIST_HEAD(&dev->unreg_list);
10892	INIT_LIST_HEAD(&dev->close_list);
10893	INIT_LIST_HEAD(&dev->link_watch_list);
10894	INIT_LIST_HEAD(&dev->adj_list.upper);
10895	INIT_LIST_HEAD(&dev->adj_list.lower);
 
 
10896	INIT_LIST_HEAD(&dev->ptype_all);
10897	INIT_LIST_HEAD(&dev->ptype_specific);
10898	INIT_LIST_HEAD(&dev->net_notifier_list);
10899#ifdef CONFIG_NET_SCHED
10900	hash_init(dev->qdisc_hash);
10901#endif
10902	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10903	setup(dev);
10904
10905	if (!dev->tx_queue_len) {
10906		dev->priv_flags |= IFF_NO_QUEUE;
10907		dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10908	}
10909
10910	dev->num_tx_queues = txqs;
10911	dev->real_num_tx_queues = txqs;
10912	if (netif_alloc_netdev_queues(dev))
10913		goto free_all;
10914
 
10915	dev->num_rx_queues = rxqs;
10916	dev->real_num_rx_queues = rxqs;
10917	if (netif_alloc_rx_queues(dev))
10918		goto free_all;
 
10919
10920	strcpy(dev->name, name);
10921	dev->name_assign_type = name_assign_type;
10922	dev->group = INIT_NETDEV_GROUP;
10923	if (!dev->ethtool_ops)
10924		dev->ethtool_ops = &default_ethtool_ops;
10925
10926	nf_hook_netdev_init(dev);
10927
10928	return dev;
10929
10930free_all:
10931	free_netdev(dev);
10932	return NULL;
10933
10934free_pcpu:
10935#ifdef CONFIG_PCPU_DEV_REFCNT
10936	free_percpu(dev->pcpu_refcnt);
10937free_dev:
10938#endif
10939	netdev_freemem(dev);
10940	return NULL;
10941}
10942EXPORT_SYMBOL(alloc_netdev_mqs);
10943
10944/**
10945 * free_netdev - free network device
10946 * @dev: device
10947 *
10948 * This function does the last stage of destroying an allocated device
10949 * interface. The reference to the device object is released. If this
10950 * is the last reference then it will be freed.Must be called in process
10951 * context.
10952 */
10953void free_netdev(struct net_device *dev)
10954{
10955	struct napi_struct *p, *n;
10956
10957	might_sleep();
10958
10959	/* When called immediately after register_netdevice() failed the unwind
10960	 * handling may still be dismantling the device. Handle that case by
10961	 * deferring the free.
10962	 */
10963	if (dev->reg_state == NETREG_UNREGISTERING) {
10964		ASSERT_RTNL();
10965		dev->needs_free_netdev = true;
10966		return;
10967	}
10968
10969	netif_free_tx_queues(dev);
10970	netif_free_rx_queues(dev);
 
 
10971
10972	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10973
10974	/* Flush device addresses */
10975	dev_addr_flush(dev);
10976
10977	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10978		netif_napi_del(p);
10979
10980	ref_tracker_dir_exit(&dev->refcnt_tracker);
10981#ifdef CONFIG_PCPU_DEV_REFCNT
10982	free_percpu(dev->pcpu_refcnt);
10983	dev->pcpu_refcnt = NULL;
10984#endif
10985	free_percpu(dev->core_stats);
10986	dev->core_stats = NULL;
10987	free_percpu(dev->xdp_bulkq);
10988	dev->xdp_bulkq = NULL;
10989
10990	/*  Compatibility with error handling in drivers */
10991	if (dev->reg_state == NETREG_UNINITIALIZED) {
10992		netdev_freemem(dev);
10993		return;
10994	}
10995
10996	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10997	WRITE_ONCE(dev->reg_state, NETREG_RELEASED);
10998
10999	/* will free via device release */
11000	put_device(&dev->dev);
11001}
11002EXPORT_SYMBOL(free_netdev);
11003
11004/**
11005 *	synchronize_net -  Synchronize with packet receive processing
11006 *
11007 *	Wait for packets currently being received to be done.
11008 *	Does not block later packets from starting.
11009 */
11010void synchronize_net(void)
11011{
11012	might_sleep();
11013	if (rtnl_is_locked())
11014		synchronize_rcu_expedited();
11015	else
11016		synchronize_rcu();
11017}
11018EXPORT_SYMBOL(synchronize_net);
11019
11020/**
11021 *	unregister_netdevice_queue - remove device from the kernel
11022 *	@dev: device
11023 *	@head: list
11024 *
11025 *	This function shuts down a device interface and removes it
11026 *	from the kernel tables.
11027 *	If head not NULL, device is queued to be unregistered later.
11028 *
11029 *	Callers must hold the rtnl semaphore.  You may want
11030 *	unregister_netdev() instead of this.
11031 */
11032
11033void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
11034{
11035	ASSERT_RTNL();
11036
11037	if (head) {
11038		list_move_tail(&dev->unreg_list, head);
11039	} else {
11040		LIST_HEAD(single);
11041
11042		list_add(&dev->unreg_list, &single);
11043		unregister_netdevice_many(&single);
11044	}
11045}
11046EXPORT_SYMBOL(unregister_netdevice_queue);
11047
11048void unregister_netdevice_many_notify(struct list_head *head,
11049				      u32 portid, const struct nlmsghdr *nlh)
11050{
11051	struct net_device *dev, *tmp;
11052	LIST_HEAD(close_head);
11053	int cnt = 0;
11054
11055	BUG_ON(dev_boot_phase);
11056	ASSERT_RTNL();
11057
11058	if (list_empty(head))
11059		return;
11060
11061	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
11062		/* Some devices call without registering
11063		 * for initialization unwind. Remove those
11064		 * devices and proceed with the remaining.
11065		 */
11066		if (dev->reg_state == NETREG_UNINITIALIZED) {
11067			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11068				 dev->name, dev);
11069
11070			WARN_ON(1);
11071			list_del(&dev->unreg_list);
11072			continue;
11073		}
11074		dev->dismantle = true;
11075		BUG_ON(dev->reg_state != NETREG_REGISTERED);
11076	}
11077
11078	/* If device is running, close it first. */
11079	list_for_each_entry(dev, head, unreg_list)
11080		list_add_tail(&dev->close_list, &close_head);
11081	dev_close_many(&close_head, true);
11082
11083	list_for_each_entry(dev, head, unreg_list) {
11084		/* And unlink it from device chain. */
11085		unlist_netdevice(dev);
11086		WRITE_ONCE(dev->reg_state, NETREG_UNREGISTERING);
11087	}
11088	flush_all_backlogs();
11089
11090	synchronize_net();
11091
11092	list_for_each_entry(dev, head, unreg_list) {
11093		struct sk_buff *skb = NULL;
11094
11095		/* Shutdown queueing discipline. */
11096		dev_shutdown(dev);
11097		dev_tcx_uninstall(dev);
11098		dev_xdp_uninstall(dev);
11099		bpf_dev_bound_netdev_unregister(dev);
11100
11101		netdev_offload_xstats_disable_all(dev);
11102
11103		/* Notify protocols, that we are about to destroy
11104		 * this device. They should clean all the things.
11105		 */
11106		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11107
11108		if (!dev->rtnl_link_ops ||
11109		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11110			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11111						     GFP_KERNEL, NULL, 0,
11112						     portid, nlh);
11113
11114		/*
11115		 *	Flush the unicast and multicast chains
11116		 */
11117		dev_uc_flush(dev);
11118		dev_mc_flush(dev);
11119
11120		netdev_name_node_alt_flush(dev);
11121		netdev_name_node_free(dev->name_node);
11122
11123		call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11124
11125		if (dev->netdev_ops->ndo_uninit)
11126			dev->netdev_ops->ndo_uninit(dev);
11127
11128		if (skb)
11129			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11130
11131		/* Notifier chain MUST detach us all upper devices. */
11132		WARN_ON(netdev_has_any_upper_dev(dev));
11133		WARN_ON(netdev_has_any_lower_dev(dev));
11134
11135		/* Remove entries from kobject tree */
11136		netdev_unregister_kobject(dev);
11137#ifdef CONFIG_XPS
11138		/* Remove XPS queueing entries */
11139		netif_reset_xps_queues_gt(dev, 0);
11140#endif
11141	}
11142
11143	synchronize_net();
11144
11145	list_for_each_entry(dev, head, unreg_list) {
11146		netdev_put(dev, &dev->dev_registered_tracker);
11147		net_set_todo(dev);
11148		cnt++;
11149	}
11150	atomic_add(cnt, &dev_unreg_count);
11151
11152	list_del(head);
11153}
 
11154
11155/**
11156 *	unregister_netdevice_many - unregister many devices
11157 *	@head: list of devices
11158 *
11159 *  Note: As most callers use a stack allocated list_head,
11160 *  we force a list_del() to make sure stack wont be corrupted later.
11161 */
11162void unregister_netdevice_many(struct list_head *head)
11163{
11164	unregister_netdevice_many_notify(head, 0, NULL);
 
 
 
 
 
 
 
11165}
11166EXPORT_SYMBOL(unregister_netdevice_many);
11167
11168/**
11169 *	unregister_netdev - remove device from the kernel
11170 *	@dev: device
11171 *
11172 *	This function shuts down a device interface and removes it
11173 *	from the kernel tables.
11174 *
11175 *	This is just a wrapper for unregister_netdevice that takes
11176 *	the rtnl semaphore.  In general you want to use this and not
11177 *	unregister_netdevice.
11178 */
11179void unregister_netdev(struct net_device *dev)
11180{
11181	rtnl_lock();
11182	unregister_netdevice(dev);
11183	rtnl_unlock();
11184}
11185EXPORT_SYMBOL(unregister_netdev);
11186
11187/**
11188 *	__dev_change_net_namespace - move device to different nethost namespace
11189 *	@dev: device
11190 *	@net: network namespace
11191 *	@pat: If not NULL name pattern to try if the current device name
11192 *	      is already taken in the destination network namespace.
11193 *	@new_ifindex: If not zero, specifies device index in the target
11194 *	              namespace.
11195 *
11196 *	This function shuts down a device interface and moves it
11197 *	to a new network namespace. On success 0 is returned, on
11198 *	a failure a netagive errno code is returned.
11199 *
11200 *	Callers must hold the rtnl semaphore.
11201 */
11202
11203int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11204			       const char *pat, int new_ifindex)
11205{
11206	struct netdev_name_node *name_node;
11207	struct net *net_old = dev_net(dev);
11208	char new_name[IFNAMSIZ] = {};
11209	int err, new_nsid;
11210
11211	ASSERT_RTNL();
11212
11213	/* Don't allow namespace local devices to be moved. */
11214	err = -EINVAL;
11215	if (dev->features & NETIF_F_NETNS_LOCAL)
11216		goto out;
11217
11218	/* Ensure the device has been registrered */
11219	if (dev->reg_state != NETREG_REGISTERED)
11220		goto out;
11221
11222	/* Get out if there is nothing todo */
11223	err = 0;
11224	if (net_eq(net_old, net))
11225		goto out;
11226
11227	/* Pick the destination device name, and ensure
11228	 * we can use it in the destination network namespace.
11229	 */
11230	err = -EEXIST;
11231	if (netdev_name_in_use(net, dev->name)) {
11232		/* We get here if we can't use the current device name */
11233		if (!pat)
11234			goto out;
11235		err = dev_prep_valid_name(net, dev, pat, new_name, EEXIST);
11236		if (err < 0)
11237			goto out;
11238	}
11239	/* Check that none of the altnames conflicts. */
11240	err = -EEXIST;
11241	netdev_for_each_altname(dev, name_node)
11242		if (netdev_name_in_use(net, name_node->name))
11243			goto out;
11244
11245	/* Check that new_ifindex isn't used yet. */
11246	if (new_ifindex) {
11247		err = dev_index_reserve(net, new_ifindex);
11248		if (err < 0)
11249			goto out;
11250	} else {
11251		/* If there is an ifindex conflict assign a new one */
11252		err = dev_index_reserve(net, dev->ifindex);
11253		if (err == -EBUSY)
11254			err = dev_index_reserve(net, 0);
11255		if (err < 0)
11256			goto out;
11257		new_ifindex = err;
11258	}
11259
11260	/*
11261	 * And now a mini version of register_netdevice unregister_netdevice.
11262	 */
11263
11264	/* If device is running close it first. */
11265	dev_close(dev);
11266
11267	/* And unlink it from device chain */
 
11268	unlist_netdevice(dev);
11269
11270	synchronize_net();
11271
11272	/* Shutdown queueing discipline. */
11273	dev_shutdown(dev);
11274
11275	/* Notify protocols, that we are about to destroy
11276	 * this device. They should clean all the things.
11277	 *
11278	 * Note that dev->reg_state stays at NETREG_REGISTERED.
11279	 * This is wanted because this way 8021q and macvlan know
11280	 * the device is just moving and can keep their slaves up.
11281	 */
11282	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11283	rcu_barrier();
11284
11285	new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11286
11287	rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11288			    new_ifindex);
11289
11290	/*
11291	 *	Flush the unicast and multicast chains
11292	 */
11293	dev_uc_flush(dev);
11294	dev_mc_flush(dev);
11295
11296	/* Send a netdev-removed uevent to the old namespace */
11297	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11298	netdev_adjacent_del_links(dev);
11299
11300	/* Move per-net netdevice notifiers that are following the netdevice */
11301	move_netdevice_notifiers_dev_net(dev, net);
11302
11303	/* Actually switch the network namespace */
11304	dev_net_set(dev, net);
11305	dev->ifindex = new_ifindex;
11306
11307	if (new_name[0]) /* Rename the netdev to prepared name */
11308		strscpy(dev->name, new_name, IFNAMSIZ);
11309
11310	/* Fixup kobjects */
11311	dev_set_uevent_suppress(&dev->dev, 1);
11312	err = device_rename(&dev->dev, dev->name);
11313	dev_set_uevent_suppress(&dev->dev, 0);
11314	WARN_ON(err);
11315
11316	/* Send a netdev-add uevent to the new namespace */
11317	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11318	netdev_adjacent_add_links(dev);
11319
11320	/* Adapt owner in case owning user namespace of target network
11321	 * namespace is different from the original one.
11322	 */
11323	err = netdev_change_owner(dev, net_old, net);
11324	WARN_ON(err);
11325
11326	/* Add the device back in the hashes */
11327	list_netdevice(dev);
11328
11329	/* Notify protocols, that a new device appeared. */
11330	call_netdevice_notifiers(NETDEV_REGISTER, dev);
11331
11332	/*
11333	 *	Prevent userspace races by waiting until the network
11334	 *	device is fully setup before sending notifications.
11335	 */
11336	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11337
11338	synchronize_net();
11339	err = 0;
11340out:
11341	return err;
11342}
11343EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11344
11345static int dev_cpu_dead(unsigned int oldcpu)
 
 
11346{
11347	struct sk_buff **list_skb;
11348	struct sk_buff *skb;
11349	unsigned int cpu;
11350	struct softnet_data *sd, *oldsd, *remsd = NULL;
 
 
 
11351
11352	local_irq_disable();
11353	cpu = smp_processor_id();
11354	sd = &per_cpu(softnet_data, cpu);
11355	oldsd = &per_cpu(softnet_data, oldcpu);
11356
11357	/* Find end of our completion_queue. */
11358	list_skb = &sd->completion_queue;
11359	while (*list_skb)
11360		list_skb = &(*list_skb)->next;
11361	/* Append completion queue from offline CPU. */
11362	*list_skb = oldsd->completion_queue;
11363	oldsd->completion_queue = NULL;
11364
11365	/* Append output queue from offline CPU. */
11366	if (oldsd->output_queue) {
11367		*sd->output_queue_tailp = oldsd->output_queue;
11368		sd->output_queue_tailp = oldsd->output_queue_tailp;
11369		oldsd->output_queue = NULL;
11370		oldsd->output_queue_tailp = &oldsd->output_queue;
11371	}
11372	/* Append NAPI poll list from offline CPU, with one exception :
11373	 * process_backlog() must be called by cpu owning percpu backlog.
11374	 * We properly handle process_queue & input_pkt_queue later.
11375	 */
11376	while (!list_empty(&oldsd->poll_list)) {
11377		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11378							    struct napi_struct,
11379							    poll_list);
11380
11381		list_del_init(&napi->poll_list);
11382		if (napi->poll == process_backlog)
11383			napi->state = 0;
11384		else
11385			____napi_schedule(sd, napi);
11386	}
11387
11388	raise_softirq_irqoff(NET_TX_SOFTIRQ);
11389	local_irq_enable();
11390
11391#ifdef CONFIG_RPS
11392	remsd = oldsd->rps_ipi_list;
11393	oldsd->rps_ipi_list = NULL;
11394#endif
11395	/* send out pending IPI's on offline CPU */
11396	net_rps_send_ipi(remsd);
11397
11398	/* Process offline CPU's input_pkt_queue */
11399	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11400		netif_rx(skb);
11401		input_queue_head_incr(oldsd);
11402	}
11403	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11404		netif_rx(skb);
11405		input_queue_head_incr(oldsd);
11406	}
11407
11408	return 0;
11409}
11410
 
11411/**
11412 *	netdev_increment_features - increment feature set by one
11413 *	@all: current feature set
11414 *	@one: new feature set
11415 *	@mask: mask feature set
11416 *
11417 *	Computes a new feature set after adding a device with feature set
11418 *	@one to the master device with current feature set @all.  Will not
11419 *	enable anything that is off in @mask. Returns the new feature set.
11420 */
11421netdev_features_t netdev_increment_features(netdev_features_t all,
11422	netdev_features_t one, netdev_features_t mask)
11423{
11424	if (mask & NETIF_F_HW_CSUM)
11425		mask |= NETIF_F_CSUM_MASK;
11426	mask |= NETIF_F_VLAN_CHALLENGED;
11427
11428	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11429	all &= one | ~NETIF_F_ALL_FOR_ALL;
11430
11431	/* If one device supports hw checksumming, set for all. */
11432	if (all & NETIF_F_HW_CSUM)
11433		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11434
11435	return all;
11436}
11437EXPORT_SYMBOL(netdev_increment_features);
11438
11439static struct hlist_head * __net_init netdev_create_hash(void)
11440{
11441	int i;
11442	struct hlist_head *hash;
11443
11444	hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11445	if (hash != NULL)
11446		for (i = 0; i < NETDEV_HASHENTRIES; i++)
11447			INIT_HLIST_HEAD(&hash[i]);
11448
11449	return hash;
11450}
11451
11452/* Initialize per network namespace state */
11453static int __net_init netdev_init(struct net *net)
11454{
11455	BUILD_BUG_ON(GRO_HASH_BUCKETS >
11456		     8 * sizeof_field(struct napi_struct, gro_bitmask));
11457
11458	INIT_LIST_HEAD(&net->dev_base_head);
11459
11460	net->dev_name_head = netdev_create_hash();
11461	if (net->dev_name_head == NULL)
11462		goto err_name;
11463
11464	net->dev_index_head = netdev_create_hash();
11465	if (net->dev_index_head == NULL)
11466		goto err_idx;
11467
11468	xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11469
11470	RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11471
11472	return 0;
11473
11474err_idx:
11475	kfree(net->dev_name_head);
11476err_name:
11477	return -ENOMEM;
11478}
11479
11480/**
11481 *	netdev_drivername - network driver for the device
11482 *	@dev: network device
11483 *
11484 *	Determine network driver for device.
11485 */
11486const char *netdev_drivername(const struct net_device *dev)
11487{
11488	const struct device_driver *driver;
11489	const struct device *parent;
11490	const char *empty = "";
11491
11492	parent = dev->dev.parent;
11493	if (!parent)
11494		return empty;
11495
11496	driver = parent->driver;
11497	if (driver && driver->name)
11498		return driver->name;
11499	return empty;
11500}
11501
11502static void __netdev_printk(const char *level, const struct net_device *dev,
11503			    struct va_format *vaf)
11504{
11505	if (dev && dev->dev.parent) {
11506		dev_printk_emit(level[1] - '0',
11507				dev->dev.parent,
11508				"%s %s %s%s: %pV",
11509				dev_driver_string(dev->dev.parent),
11510				dev_name(dev->dev.parent),
11511				netdev_name(dev), netdev_reg_state(dev),
11512				vaf);
11513	} else if (dev) {
11514		printk("%s%s%s: %pV",
11515		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
11516	} else {
11517		printk("%s(NULL net_device): %pV", level, vaf);
11518	}
11519}
11520
11521void netdev_printk(const char *level, const struct net_device *dev,
11522		   const char *format, ...)
11523{
11524	struct va_format vaf;
11525	va_list args;
11526
11527	va_start(args, format);
11528
11529	vaf.fmt = format;
11530	vaf.va = &args;
11531
11532	__netdev_printk(level, dev, &vaf);
11533
11534	va_end(args);
11535}
11536EXPORT_SYMBOL(netdev_printk);
11537
11538#define define_netdev_printk_level(func, level)			\
11539void func(const struct net_device *dev, const char *fmt, ...)	\
11540{								\
11541	struct va_format vaf;					\
11542	va_list args;						\
11543								\
11544	va_start(args, fmt);					\
11545								\
11546	vaf.fmt = fmt;						\
11547	vaf.va = &args;						\
11548								\
11549	__netdev_printk(level, dev, &vaf);			\
11550								\
11551	va_end(args);						\
11552}								\
11553EXPORT_SYMBOL(func);
11554
11555define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11556define_netdev_printk_level(netdev_alert, KERN_ALERT);
11557define_netdev_printk_level(netdev_crit, KERN_CRIT);
11558define_netdev_printk_level(netdev_err, KERN_ERR);
11559define_netdev_printk_level(netdev_warn, KERN_WARNING);
11560define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11561define_netdev_printk_level(netdev_info, KERN_INFO);
11562
11563static void __net_exit netdev_exit(struct net *net)
11564{
11565	kfree(net->dev_name_head);
11566	kfree(net->dev_index_head);
11567	xa_destroy(&net->dev_by_index);
11568	if (net != &init_net)
11569		WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11570}
11571
11572static struct pernet_operations __net_initdata netdev_net_ops = {
11573	.init = netdev_init,
11574	.exit = netdev_exit,
11575};
11576
11577static void __net_exit default_device_exit_net(struct net *net)
11578{
11579	struct netdev_name_node *name_node, *tmp;
11580	struct net_device *dev, *aux;
11581	/*
11582	 * Push all migratable network devices back to the
11583	 * initial network namespace
11584	 */
11585	ASSERT_RTNL();
11586	for_each_netdev_safe(net, dev, aux) {
11587		int err;
11588		char fb_name[IFNAMSIZ];
11589
11590		/* Ignore unmoveable devices (i.e. loopback) */
11591		if (dev->features & NETIF_F_NETNS_LOCAL)
11592			continue;
11593
11594		/* Leave virtual devices for the generic cleanup */
11595		if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11596			continue;
11597
11598		/* Push remaining network devices to init_net */
11599		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11600		if (netdev_name_in_use(&init_net, fb_name))
11601			snprintf(fb_name, IFNAMSIZ, "dev%%d");
11602
11603		netdev_for_each_altname_safe(dev, name_node, tmp)
11604			if (netdev_name_in_use(&init_net, name_node->name))
11605				__netdev_name_node_alt_destroy(name_node);
11606
11607		err = dev_change_net_namespace(dev, &init_net, fb_name);
11608		if (err) {
11609			pr_emerg("%s: failed to move %s to init_net: %d\n",
11610				 __func__, dev->name, err);
11611			BUG();
11612		}
11613	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11614}
11615
11616static void __net_exit default_device_exit_batch(struct list_head *net_list)
11617{
11618	/* At exit all network devices most be removed from a network
11619	 * namespace.  Do this in the reverse order of registration.
11620	 * Do this across as many network namespaces as possible to
11621	 * improve batching efficiency.
11622	 */
11623	struct net_device *dev;
11624	struct net *net;
11625	LIST_HEAD(dev_kill_list);
11626
11627	rtnl_lock();
11628	list_for_each_entry(net, net_list, exit_list) {
11629		default_device_exit_net(net);
11630		cond_resched();
11631	}
11632
 
 
 
 
 
 
11633	list_for_each_entry(net, net_list, exit_list) {
11634		for_each_netdev_reverse(net, dev) {
11635			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11636				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11637			else
11638				unregister_netdevice_queue(dev, &dev_kill_list);
11639		}
11640	}
11641	unregister_netdevice_many(&dev_kill_list);
11642	rtnl_unlock();
11643}
11644
11645static struct pernet_operations __net_initdata default_device_ops = {
 
11646	.exit_batch = default_device_exit_batch,
11647};
11648
11649static void __init net_dev_struct_check(void)
11650{
11651	/* TX read-mostly hotpath */
11652	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, priv_flags);
11653	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, netdev_ops);
11654	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, header_ops);
11655	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, _tx);
11656	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, real_num_tx_queues);
11657	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_size);
11658	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_ipv4_max_size);
11659	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_max_segs);
11660	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, gso_partial_features);
11661	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, num_tc);
11662	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, mtu);
11663	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, needed_headroom);
11664	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tc_to_txq);
11665#ifdef CONFIG_XPS
11666	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, xps_maps);
11667#endif
11668#ifdef CONFIG_NETFILTER_EGRESS
11669	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, nf_hooks_egress);
11670#endif
11671#ifdef CONFIG_NET_XGRESS
11672	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_tx, tcx_egress);
11673#endif
11674	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_tx, 160);
11675
11676	/* TXRX read-mostly hotpath */
11677	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, lstats);
11678	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, state);
11679	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, flags);
11680	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, hard_header_len);
11681	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, features);
11682	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_txrx, ip6_ptr);
11683	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_txrx, 46);
11684
11685	/* RX read-mostly hotpath */
11686	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ptype_specific);
11687	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, ifindex);
11688	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, real_num_rx_queues);
11689	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, _rx);
11690	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_flush_timeout);
11691	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, napi_defer_hard_irqs);
11692	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_max_size);
11693	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, gro_ipv4_max_size);
11694	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler);
11695	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, rx_handler_data);
11696	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, nd_net);
11697#ifdef CONFIG_NETPOLL
11698	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, npinfo);
11699#endif
11700#ifdef CONFIG_NET_XGRESS
11701	CACHELINE_ASSERT_GROUP_MEMBER(struct net_device, net_device_read_rx, tcx_ingress);
11702#endif
11703	CACHELINE_ASSERT_GROUP_SIZE(struct net_device, net_device_read_rx, 104);
11704}
11705
11706/*
11707 *	Initialize the DEV module. At boot time this walks the device list and
11708 *	unhooks any devices that fail to initialise (normally hardware not
11709 *	present) and leaves us with a valid list of present and active devices.
11710 *
11711 */
11712
11713/* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
11714#define SYSTEM_PERCPU_PAGE_POOL_SIZE	((1 << 20) / PAGE_SIZE)
11715
11716static int net_page_pool_create(int cpuid)
11717{
11718#if IS_ENABLED(CONFIG_PAGE_POOL)
11719	struct page_pool_params page_pool_params = {
11720		.pool_size = SYSTEM_PERCPU_PAGE_POOL_SIZE,
11721		.flags = PP_FLAG_SYSTEM_POOL,
11722		.nid = NUMA_NO_NODE,
11723	};
11724	struct page_pool *pp_ptr;
11725
11726	pp_ptr = page_pool_create_percpu(&page_pool_params, cpuid);
11727	if (IS_ERR(pp_ptr))
11728		return -ENOMEM;
11729
11730	per_cpu(system_page_pool, cpuid) = pp_ptr;
11731#endif
11732	return 0;
11733}
11734
11735/*
11736 *       This is called single threaded during boot, so no need
11737 *       to take the rtnl semaphore.
11738 */
11739static int __init net_dev_init(void)
11740{
11741	int i, rc = -ENOMEM;
11742
11743	BUG_ON(!dev_boot_phase);
11744
11745	net_dev_struct_check();
11746
11747	if (dev_proc_init())
11748		goto out;
11749
11750	if (netdev_kobject_init())
11751		goto out;
11752
 
11753	for (i = 0; i < PTYPE_HASH_SIZE; i++)
11754		INIT_LIST_HEAD(&ptype_base[i]);
11755
 
 
11756	if (register_pernet_subsys(&netdev_net_ops))
11757		goto out;
11758
11759	/*
11760	 *	Initialise the packet receive queues.
11761	 */
11762
11763	for_each_possible_cpu(i) {
11764		struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11765		struct softnet_data *sd = &per_cpu(softnet_data, i);
11766
11767		INIT_WORK(flush, flush_backlog);
11768
11769		skb_queue_head_init(&sd->input_pkt_queue);
11770		skb_queue_head_init(&sd->process_queue);
11771#ifdef CONFIG_XFRM_OFFLOAD
11772		skb_queue_head_init(&sd->xfrm_backlog);
11773#endif
11774		INIT_LIST_HEAD(&sd->poll_list);
11775		sd->output_queue_tailp = &sd->output_queue;
11776#ifdef CONFIG_RPS
11777		INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
 
11778		sd->cpu = i;
11779#endif
11780		INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11781		spin_lock_init(&sd->defer_lock);
11782
11783		init_gro_hash(&sd->backlog);
11784		sd->backlog.poll = process_backlog;
11785		sd->backlog.weight = weight_p;
11786
11787		if (net_page_pool_create(i))
11788			goto out;
11789	}
11790
11791	dev_boot_phase = 0;
11792
11793	/* The loopback device is special if any other network devices
11794	 * is present in a network namespace the loopback device must
11795	 * be present. Since we now dynamically allocate and free the
11796	 * loopback device ensure this invariant is maintained by
11797	 * keeping the loopback device as the first device on the
11798	 * list of network devices.  Ensuring the loopback devices
11799	 * is the first device that appears and the last network device
11800	 * that disappears.
11801	 */
11802	if (register_pernet_device(&loopback_net_ops))
11803		goto out;
11804
11805	if (register_pernet_device(&default_device_ops))
11806		goto out;
11807
11808	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11809	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11810
11811	rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11812				       NULL, dev_cpu_dead);
11813	WARN_ON(rc < 0);
11814	rc = 0;
11815out:
11816	if (rc < 0) {
11817		for_each_possible_cpu(i) {
11818			struct page_pool *pp_ptr;
11819
11820			pp_ptr = per_cpu(system_page_pool, i);
11821			if (!pp_ptr)
11822				continue;
11823
11824			page_pool_destroy(pp_ptr);
11825			per_cpu(system_page_pool, i) = NULL;
11826		}
11827	}
11828
11829	return rc;
11830}
11831
11832subsys_initcall(net_dev_init);
v4.6
 
   1/*
   2 * 	NET3	Protocol independent device support routines.
   3 *
   4 *		This program is free software; you can redistribute it and/or
   5 *		modify it under the terms of the GNU General Public License
   6 *		as published by the Free Software Foundation; either version
   7 *		2 of the License, or (at your option) any later version.
   8 *
   9 *	Derived from the non IP parts of dev.c 1.0.19
  10 * 		Authors:	Ross Biro
  11 *				Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  12 *				Mark Evans, <evansmp@uhura.aston.ac.uk>
  13 *
  14 *	Additional Authors:
  15 *		Florian la Roche <rzsfl@rz.uni-sb.de>
  16 *		Alan Cox <gw4pts@gw4pts.ampr.org>
  17 *		David Hinds <dahinds@users.sourceforge.net>
  18 *		Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
  19 *		Adam Sulmicki <adam@cfar.umd.edu>
  20 *              Pekka Riikonen <priikone@poesidon.pspt.fi>
  21 *
  22 *	Changes:
  23 *              D.J. Barrow     :       Fixed bug where dev->refcnt gets set
  24 *              			to 2 if register_netdev gets called
  25 *              			before net_dev_init & also removed a
  26 *              			few lines of code in the process.
  27 *		Alan Cox	:	device private ioctl copies fields back.
  28 *		Alan Cox	:	Transmit queue code does relevant
  29 *					stunts to keep the queue safe.
  30 *		Alan Cox	:	Fixed double lock.
  31 *		Alan Cox	:	Fixed promisc NULL pointer trap
  32 *		????????	:	Support the full private ioctl range
  33 *		Alan Cox	:	Moved ioctl permission check into
  34 *					drivers
  35 *		Tim Kordas	:	SIOCADDMULTI/SIOCDELMULTI
  36 *		Alan Cox	:	100 backlog just doesn't cut it when
  37 *					you start doing multicast video 8)
  38 *		Alan Cox	:	Rewrote net_bh and list manager.
  39 *		Alan Cox	: 	Fix ETH_P_ALL echoback lengths.
  40 *		Alan Cox	:	Took out transmit every packet pass
  41 *					Saved a few bytes in the ioctl handler
  42 *		Alan Cox	:	Network driver sets packet type before
  43 *					calling netif_rx. Saves a function
  44 *					call a packet.
  45 *		Alan Cox	:	Hashed net_bh()
  46 *		Richard Kooijman:	Timestamp fixes.
  47 *		Alan Cox	:	Wrong field in SIOCGIFDSTADDR
  48 *		Alan Cox	:	Device lock protection.
  49 *		Alan Cox	: 	Fixed nasty side effect of device close
  50 *					changes.
  51 *		Rudi Cilibrasi	:	Pass the right thing to
  52 *					set_mac_address()
  53 *		Dave Miller	:	32bit quantity for the device lock to
  54 *					make it work out on a Sparc.
  55 *		Bjorn Ekwall	:	Added KERNELD hack.
  56 *		Alan Cox	:	Cleaned up the backlog initialise.
  57 *		Craig Metz	:	SIOCGIFCONF fix if space for under
  58 *					1 device.
  59 *	    Thomas Bogendoerfer :	Return ENODEV for dev_open, if there
  60 *					is no device open function.
  61 *		Andi Kleen	:	Fix error reporting for SIOCGIFCONF
  62 *	    Michael Chastain	:	Fix signed/unsigned for SIOCGIFCONF
  63 *		Cyrus Durgin	:	Cleaned for KMOD
  64 *		Adam Sulmicki   :	Bug Fix : Network Device Unload
  65 *					A network device unload needs to purge
  66 *					the backlog queue.
  67 *	Paul Rusty Russell	:	SIOCSIFNAME
  68 *              Pekka Riikonen  :	Netdev boot-time settings code
  69 *              Andrew Morton   :       Make unregister_netdevice wait
  70 *              			indefinitely on dev->refcnt
  71 * 		J Hadi Salim	:	- Backlog queue sampling
  72 *				        - netif_rx() feedback
  73 */
  74
  75#include <asm/uaccess.h>
  76#include <linux/bitops.h>
  77#include <linux/capability.h>
  78#include <linux/cpu.h>
  79#include <linux/types.h>
  80#include <linux/kernel.h>
  81#include <linux/hash.h>
  82#include <linux/slab.h>
  83#include <linux/sched.h>
 
  84#include <linux/mutex.h>
 
  85#include <linux/string.h>
  86#include <linux/mm.h>
  87#include <linux/socket.h>
  88#include <linux/sockios.h>
  89#include <linux/errno.h>
  90#include <linux/interrupt.h>
  91#include <linux/if_ether.h>
  92#include <linux/netdevice.h>
  93#include <linux/etherdevice.h>
  94#include <linux/ethtool.h>
  95#include <linux/notifier.h>
  96#include <linux/skbuff.h>
 
 
 
  97#include <net/net_namespace.h>
  98#include <net/sock.h>
  99#include <net/busy_poll.h>
 100#include <linux/rtnetlink.h>
 101#include <linux/stat.h>
 
 102#include <net/dst.h>
 103#include <net/dst_metadata.h>
 
 104#include <net/pkt_sched.h>
 
 105#include <net/checksum.h>
 106#include <net/xfrm.h>
 
 107#include <linux/highmem.h>
 108#include <linux/init.h>
 109#include <linux/module.h>
 110#include <linux/netpoll.h>
 111#include <linux/rcupdate.h>
 112#include <linux/delay.h>
 113#include <net/iw_handler.h>
 114#include <asm/current.h>
 115#include <linux/audit.h>
 116#include <linux/dmaengine.h>
 117#include <linux/err.h>
 118#include <linux/ctype.h>
 119#include <linux/if_arp.h>
 120#include <linux/if_vlan.h>
 121#include <linux/ip.h>
 122#include <net/ip.h>
 123#include <net/mpls.h>
 124#include <linux/ipv6.h>
 125#include <linux/in.h>
 126#include <linux/jhash.h>
 127#include <linux/random.h>
 128#include <trace/events/napi.h>
 129#include <trace/events/net.h>
 130#include <trace/events/skb.h>
 131#include <linux/pci.h>
 
 132#include <linux/inetdevice.h>
 133#include <linux/cpu_rmap.h>
 134#include <linux/static_key.h>
 135#include <linux/hashtable.h>
 136#include <linux/vmalloc.h>
 137#include <linux/if_macvlan.h>
 138#include <linux/errqueue.h>
 139#include <linux/hrtimer.h>
 140#include <linux/netfilter_ingress.h>
 
 141#include <linux/sctp.h>
 
 
 
 
 
 
 
 
 
 
 
 142
 
 143#include "net-sysfs.h"
 144
 145/* Instead of increasing this, you should create a hash table. */
 146#define MAX_GRO_SKBS 8
 147
 148/* This should be increased if a protocol with a bigger head is added. */
 149#define GRO_MAX_HEAD (MAX_HEADER + 128)
 150
 151static DEFINE_SPINLOCK(ptype_lock);
 152static DEFINE_SPINLOCK(offload_lock);
 153struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
 154struct list_head ptype_all __read_mostly;	/* Taps */
 155static struct list_head offload_base __read_mostly;
 156
 157static int netif_rx_internal(struct sk_buff *skb);
 158static int call_netdevice_notifiers_info(unsigned long val,
 159					 struct net_device *dev,
 160					 struct netdev_notifier_info *info);
 161
 162/*
 163 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
 164 * semaphore.
 165 *
 166 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
 167 *
 168 * Writers must hold the rtnl semaphore while they loop through the
 169 * dev_base_head list, and hold dev_base_lock for writing when they do the
 170 * actual updates.  This allows pure readers to access the list even
 171 * while a writer is preparing to update it.
 172 *
 173 * To put it another way, dev_base_lock is held for writing only to
 174 * protect against pure readers; the rtnl semaphore provides the
 175 * protection against other writers.
 176 *
 177 * See, for example usages, register_netdevice() and
 178 * unregister_netdevice(), which must be called with the rtnl
 179 * semaphore held.
 180 */
 181DEFINE_RWLOCK(dev_base_lock);
 182EXPORT_SYMBOL(dev_base_lock);
 183
 184/* protects napi_hash addition/deletion and napi_gen_id */
 185static DEFINE_SPINLOCK(napi_hash_lock);
 186
 187static unsigned int napi_gen_id = NR_CPUS;
 188static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
 189
 190static seqcount_t devnet_rename_seq;
 191
 192static inline void dev_base_seq_inc(struct net *net)
 193{
 194	while (++net->dev_base_seq == 0);
 
 
 195}
 196
 197static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
 198{
 199	unsigned int hash = full_name_hash(name, strnlen(name, IFNAMSIZ));
 200
 201	return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
 202}
 203
 204static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
 205{
 206	return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
 207}
 208
 209static inline void rps_lock(struct softnet_data *sd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 210{
 211#ifdef CONFIG_RPS
 212	spin_lock(&sd->input_pkt_queue.lock);
 213#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214}
 215
 216static inline void rps_unlock(struct softnet_data *sd)
 217{
 218#ifdef CONFIG_RPS
 219	spin_unlock(&sd->input_pkt_queue.lock);
 220#endif
 
 
 
 221}
 222
 223/* Device list insertion */
 224static void list_netdevice(struct net_device *dev)
 225{
 
 226	struct net *net = dev_net(dev);
 227
 228	ASSERT_RTNL();
 229
 230	write_lock_bh(&dev_base_lock);
 231	list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
 232	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
 233	hlist_add_head_rcu(&dev->index_hlist,
 234			   dev_index_hash(net, dev->ifindex));
 235	write_unlock_bh(&dev_base_lock);
 
 
 
 
 
 236
 237	dev_base_seq_inc(net);
 238}
 239
 240/* Device list removal
 241 * caller must respect a RCU grace period before freeing/reusing dev
 242 */
 243static void unlist_netdevice(struct net_device *dev)
 244{
 
 
 
 245	ASSERT_RTNL();
 246
 
 
 
 
 
 247	/* Unlink dev from the device chain */
 248	write_lock_bh(&dev_base_lock);
 249	list_del_rcu(&dev->dev_list);
 250	hlist_del_rcu(&dev->name_hlist);
 251	hlist_del_rcu(&dev->index_hlist);
 252	write_unlock_bh(&dev_base_lock);
 253
 254	dev_base_seq_inc(dev_net(dev));
 255}
 256
 257/*
 258 *	Our notifier list
 259 */
 260
 261static RAW_NOTIFIER_HEAD(netdev_chain);
 262
 263/*
 264 *	Device drivers call our routines to queue packets here. We empty the
 265 *	queue in the local softnet handler.
 266 */
 267
 268DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
 269EXPORT_PER_CPU_SYMBOL(softnet_data);
 270
 
 
 
 
 
 
 271#ifdef CONFIG_LOCKDEP
 272/*
 273 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
 274 * according to dev->type
 275 */
 276static const unsigned short netdev_lock_type[] =
 277	{ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
 278	 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
 279	 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
 280	 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
 281	 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
 282	 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
 283	 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
 284	 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
 285	 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
 286	 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
 287	 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
 288	 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
 289	 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
 290	 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
 291	 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
 292
 293static const char *const netdev_lock_name[] =
 294	{"_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
 295	 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
 296	 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
 297	 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
 298	 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
 299	 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
 300	 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
 301	 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
 302	 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
 303	 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
 304	 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
 305	 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
 306	 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
 307	 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
 308	 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
 309
 310static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
 311static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
 312
 313static inline unsigned short netdev_lock_pos(unsigned short dev_type)
 314{
 315	int i;
 316
 317	for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
 318		if (netdev_lock_type[i] == dev_type)
 319			return i;
 320	/* the last key is used by default */
 321	return ARRAY_SIZE(netdev_lock_type) - 1;
 322}
 323
 324static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 325						 unsigned short dev_type)
 326{
 327	int i;
 328
 329	i = netdev_lock_pos(dev_type);
 330	lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
 331				   netdev_lock_name[i]);
 332}
 333
 334static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 335{
 336	int i;
 337
 338	i = netdev_lock_pos(dev->type);
 339	lockdep_set_class_and_name(&dev->addr_list_lock,
 340				   &netdev_addr_lock_key[i],
 341				   netdev_lock_name[i]);
 342}
 343#else
 344static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
 345						 unsigned short dev_type)
 346{
 347}
 
 348static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
 349{
 350}
 351#endif
 352
 353/*******************************************************************************
 
 
 
 
 354
 355		Protocol management and registration routines
 356
 357*******************************************************************************/
 358
 359/*
 360 *	Add a protocol ID to the list. Now that the input handler is
 361 *	smarter we can dispense with all the messy stuff that used to be
 362 *	here.
 363 *
 364 *	BEWARE!!! Protocol handlers, mangling input packets,
 365 *	MUST BE last in hash buckets and checking protocol handlers
 366 *	MUST start from promiscuous ptype_all chain in net_bh.
 367 *	It is true now, do not change it.
 368 *	Explanation follows: if protocol handler, mangling packet, will
 369 *	be the first on list, it is not able to sense, that packet
 370 *	is cloned and should be copied-on-write, so that it will
 371 *	change it and subsequent readers will get broken packet.
 372 *							--ANK (980803)
 373 */
 374
 375static inline struct list_head *ptype_head(const struct packet_type *pt)
 376{
 377	if (pt->type == htons(ETH_P_ALL))
 378		return pt->dev ? &pt->dev->ptype_all : &ptype_all;
 379	else
 380		return pt->dev ? &pt->dev->ptype_specific :
 381				 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
 382}
 383
 384/**
 385 *	dev_add_pack - add packet handler
 386 *	@pt: packet type declaration
 387 *
 388 *	Add a protocol handler to the networking stack. The passed &packet_type
 389 *	is linked into kernel lists and may not be freed until it has been
 390 *	removed from the kernel lists.
 391 *
 392 *	This call does not sleep therefore it can not
 393 *	guarantee all CPU's that are in middle of receiving packets
 394 *	will see the new packet type (until the next received packet).
 395 */
 396
 397void dev_add_pack(struct packet_type *pt)
 398{
 399	struct list_head *head = ptype_head(pt);
 400
 401	spin_lock(&ptype_lock);
 402	list_add_rcu(&pt->list, head);
 403	spin_unlock(&ptype_lock);
 404}
 405EXPORT_SYMBOL(dev_add_pack);
 406
 407/**
 408 *	__dev_remove_pack	 - remove packet handler
 409 *	@pt: packet type declaration
 410 *
 411 *	Remove a protocol handler that was previously added to the kernel
 412 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 413 *	from the kernel lists and can be freed or reused once this function
 414 *	returns.
 415 *
 416 *      The packet type might still be in use by receivers
 417 *	and must not be freed until after all the CPU's have gone
 418 *	through a quiescent state.
 419 */
 420void __dev_remove_pack(struct packet_type *pt)
 421{
 422	struct list_head *head = ptype_head(pt);
 423	struct packet_type *pt1;
 424
 425	spin_lock(&ptype_lock);
 426
 427	list_for_each_entry(pt1, head, list) {
 428		if (pt == pt1) {
 429			list_del_rcu(&pt->list);
 430			goto out;
 431		}
 432	}
 433
 434	pr_warn("dev_remove_pack: %p not found\n", pt);
 435out:
 436	spin_unlock(&ptype_lock);
 437}
 438EXPORT_SYMBOL(__dev_remove_pack);
 439
 440/**
 441 *	dev_remove_pack	 - remove packet handler
 442 *	@pt: packet type declaration
 443 *
 444 *	Remove a protocol handler that was previously added to the kernel
 445 *	protocol handlers by dev_add_pack(). The passed &packet_type is removed
 446 *	from the kernel lists and can be freed or reused once this function
 447 *	returns.
 448 *
 449 *	This call sleeps to guarantee that no CPU is looking at the packet
 450 *	type after return.
 451 */
 452void dev_remove_pack(struct packet_type *pt)
 453{
 454	__dev_remove_pack(pt);
 455
 456	synchronize_net();
 457}
 458EXPORT_SYMBOL(dev_remove_pack);
 459
 460
 461/**
 462 *	dev_add_offload - register offload handlers
 463 *	@po: protocol offload declaration
 464 *
 465 *	Add protocol offload handlers to the networking stack. The passed
 466 *	&proto_offload is linked into kernel lists and may not be freed until
 467 *	it has been removed from the kernel lists.
 468 *
 469 *	This call does not sleep therefore it can not
 470 *	guarantee all CPU's that are in middle of receiving packets
 471 *	will see the new offload handlers (until the next received packet).
 472 */
 473void dev_add_offload(struct packet_offload *po)
 474{
 475	struct packet_offload *elem;
 476
 477	spin_lock(&offload_lock);
 478	list_for_each_entry(elem, &offload_base, list) {
 479		if (po->priority < elem->priority)
 480			break;
 481	}
 482	list_add_rcu(&po->list, elem->list.prev);
 483	spin_unlock(&offload_lock);
 484}
 485EXPORT_SYMBOL(dev_add_offload);
 486
 487/**
 488 *	__dev_remove_offload	 - remove offload handler
 489 *	@po: packet offload declaration
 490 *
 491 *	Remove a protocol offload handler that was previously added to the
 492 *	kernel offload handlers by dev_add_offload(). The passed &offload_type
 493 *	is removed from the kernel lists and can be freed or reused once this
 494 *	function returns.
 495 *
 496 *      The packet type might still be in use by receivers
 497 *	and must not be freed until after all the CPU's have gone
 498 *	through a quiescent state.
 499 */
 500static void __dev_remove_offload(struct packet_offload *po)
 501{
 502	struct list_head *head = &offload_base;
 503	struct packet_offload *po1;
 504
 505	spin_lock(&offload_lock);
 506
 507	list_for_each_entry(po1, head, list) {
 508		if (po == po1) {
 509			list_del_rcu(&po->list);
 510			goto out;
 511		}
 512	}
 513
 514	pr_warn("dev_remove_offload: %p not found\n", po);
 515out:
 516	spin_unlock(&offload_lock);
 517}
 518
 519/**
 520 *	dev_remove_offload	 - remove packet offload handler
 521 *	@po: packet offload declaration
 522 *
 523 *	Remove a packet offload handler that was previously added to the kernel
 524 *	offload handlers by dev_add_offload(). The passed &offload_type is
 525 *	removed from the kernel lists and can be freed or reused once this
 526 *	function returns.
 527 *
 528 *	This call sleeps to guarantee that no CPU is looking at the packet
 529 *	type after return.
 530 */
 531void dev_remove_offload(struct packet_offload *po)
 532{
 533	__dev_remove_offload(po);
 534
 535	synchronize_net();
 536}
 537EXPORT_SYMBOL(dev_remove_offload);
 538
 539/******************************************************************************
 540
 541		      Device Boot-time Settings Routines
 542
 543*******************************************************************************/
 544
 545/* Boot time configuration table */
 546static struct netdev_boot_setup dev_boot_setup[NETDEV_BOOT_SETUP_MAX];
 547
 548/**
 549 *	netdev_boot_setup_add	- add new setup entry
 550 *	@name: name of the device
 551 *	@map: configured settings for the device
 552 *
 553 *	Adds new setup entry to the dev_boot_setup list.  The function
 554 *	returns 0 on error and 1 on success.  This is a generic routine to
 555 *	all netdevices.
 556 */
 557static int netdev_boot_setup_add(char *name, struct ifmap *map)
 558{
 559	struct netdev_boot_setup *s;
 560	int i;
 561
 562	s = dev_boot_setup;
 563	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 564		if (s[i].name[0] == '\0' || s[i].name[0] == ' ') {
 565			memset(s[i].name, 0, sizeof(s[i].name));
 566			strlcpy(s[i].name, name, IFNAMSIZ);
 567			memcpy(&s[i].map, map, sizeof(s[i].map));
 568			break;
 569		}
 570	}
 571
 572	return i >= NETDEV_BOOT_SETUP_MAX ? 0 : 1;
 573}
 574
 575/**
 576 *	netdev_boot_setup_check	- check boot time settings
 577 *	@dev: the netdevice
 578 *
 579 * 	Check boot time settings for the device.
 580 *	The found settings are set for the device to be used
 581 *	later in the device probing.
 582 *	Returns 0 if no settings found, 1 if they are.
 583 */
 584int netdev_boot_setup_check(struct net_device *dev)
 585{
 586	struct netdev_boot_setup *s = dev_boot_setup;
 587	int i;
 588
 589	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++) {
 590		if (s[i].name[0] != '\0' && s[i].name[0] != ' ' &&
 591		    !strcmp(dev->name, s[i].name)) {
 592			dev->irq 	= s[i].map.irq;
 593			dev->base_addr 	= s[i].map.base_addr;
 594			dev->mem_start 	= s[i].map.mem_start;
 595			dev->mem_end 	= s[i].map.mem_end;
 596			return 1;
 597		}
 598	}
 599	return 0;
 600}
 601EXPORT_SYMBOL(netdev_boot_setup_check);
 602
 603
 604/**
 605 *	netdev_boot_base	- get address from boot time settings
 606 *	@prefix: prefix for network device
 607 *	@unit: id for network device
 608 *
 609 * 	Check boot time settings for the base address of device.
 610 *	The found settings are set for the device to be used
 611 *	later in the device probing.
 612 *	Returns 0 if no settings found.
 613 */
 614unsigned long netdev_boot_base(const char *prefix, int unit)
 615{
 616	const struct netdev_boot_setup *s = dev_boot_setup;
 617	char name[IFNAMSIZ];
 618	int i;
 619
 620	sprintf(name, "%s%d", prefix, unit);
 621
 622	/*
 623	 * If device already registered then return base of 1
 624	 * to indicate not to probe for this interface
 625	 */
 626	if (__dev_get_by_name(&init_net, name))
 627		return 1;
 628
 629	for (i = 0; i < NETDEV_BOOT_SETUP_MAX; i++)
 630		if (!strcmp(name, s[i].name))
 631			return s[i].map.base_addr;
 632	return 0;
 633}
 634
 635/*
 636 * Saves at boot time configured settings for any netdevice.
 637 */
 638int __init netdev_boot_setup(char *str)
 639{
 640	int ints[5];
 641	struct ifmap map;
 642
 643	str = get_options(str, ARRAY_SIZE(ints), ints);
 644	if (!str || !*str)
 645		return 0;
 646
 647	/* Save settings */
 648	memset(&map, 0, sizeof(map));
 649	if (ints[0] > 0)
 650		map.irq = ints[1];
 651	if (ints[0] > 1)
 652		map.base_addr = ints[2];
 653	if (ints[0] > 2)
 654		map.mem_start = ints[3];
 655	if (ints[0] > 3)
 656		map.mem_end = ints[4];
 657
 658	/* Add new entry to the list */
 659	return netdev_boot_setup_add(str, &map);
 660}
 661
 662__setup("netdev=", netdev_boot_setup);
 663
 664/*******************************************************************************
 665
 666			    Device Interface Subroutines
 667
 668*******************************************************************************/
 669
 670/**
 671 *	dev_get_iflink	- get 'iflink' value of a interface
 672 *	@dev: targeted interface
 673 *
 674 *	Indicates the ifindex the interface is linked to.
 675 *	Physical interfaces have the same 'ifindex' and 'iflink' values.
 676 */
 677
 678int dev_get_iflink(const struct net_device *dev)
 679{
 680	if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
 681		return dev->netdev_ops->ndo_get_iflink(dev);
 682
 683	return dev->ifindex;
 684}
 685EXPORT_SYMBOL(dev_get_iflink);
 686
 687/**
 688 *	dev_fill_metadata_dst - Retrieve tunnel egress information.
 689 *	@dev: targeted interface
 690 *	@skb: The packet.
 691 *
 692 *	For better visibility of tunnel traffic OVS needs to retrieve
 693 *	egress tunnel information for a packet. Following API allows
 694 *	user to get this info.
 695 */
 696int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
 697{
 698	struct ip_tunnel_info *info;
 699
 700	if (!dev->netdev_ops  || !dev->netdev_ops->ndo_fill_metadata_dst)
 701		return -EINVAL;
 702
 703	info = skb_tunnel_info_unclone(skb);
 704	if (!info)
 705		return -ENOMEM;
 706	if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
 707		return -EINVAL;
 708
 709	return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
 710}
 711EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
 712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713/**
 714 *	__dev_get_by_name	- find a device by its name
 715 *	@net: the applicable net namespace
 716 *	@name: name to find
 717 *
 718 *	Find an interface by name. Must be called under RTNL semaphore
 719 *	or @dev_base_lock. If the name is found a pointer to the device
 720 *	is returned. If the name is not found then %NULL is returned. The
 721 *	reference counters are not incremented so the caller must be
 722 *	careful with locks.
 723 */
 724
 725struct net_device *__dev_get_by_name(struct net *net, const char *name)
 726{
 727	struct net_device *dev;
 728	struct hlist_head *head = dev_name_hash(net, name);
 729
 730	hlist_for_each_entry(dev, head, name_hlist)
 731		if (!strncmp(dev->name, name, IFNAMSIZ))
 732			return dev;
 733
 734	return NULL;
 735}
 736EXPORT_SYMBOL(__dev_get_by_name);
 737
 738/**
 739 *	dev_get_by_name_rcu	- find a device by its name
 740 *	@net: the applicable net namespace
 741 *	@name: name to find
 742 *
 743 *	Find an interface by name.
 744 *	If the name is found a pointer to the device is returned.
 745 * 	If the name is not found then %NULL is returned.
 746 *	The reference counters are not incremented so the caller must be
 747 *	careful with locks. The caller must hold RCU lock.
 748 */
 749
 750struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
 751{
 
 
 
 
 
 
 
 
 
 
 752	struct net_device *dev;
 753	struct hlist_head *head = dev_name_hash(net, name);
 754
 755	hlist_for_each_entry_rcu(dev, head, name_hlist)
 756		if (!strncmp(dev->name, name, IFNAMSIZ))
 757			return dev;
 758
 759	return NULL;
 760}
 761EXPORT_SYMBOL(dev_get_by_name_rcu);
 762
 763/**
 764 *	dev_get_by_name		- find a device by its name
 765 *	@net: the applicable net namespace
 766 *	@name: name to find
 
 
 767 *
 768 *	Find an interface by name. This can be called from any
 769 *	context and does its own locking. The returned handle has
 770 *	the usage count incremented and the caller must use dev_put() to
 771 *	release it when it is no longer needed. %NULL is returned if no
 772 *	matching device is found.
 773 */
 774
 775struct net_device *dev_get_by_name(struct net *net, const char *name)
 776{
 777	struct net_device *dev;
 778
 779	rcu_read_lock();
 780	dev = dev_get_by_name_rcu(net, name);
 781	if (dev)
 782		dev_hold(dev);
 783	rcu_read_unlock();
 784	return dev;
 785}
 786EXPORT_SYMBOL(dev_get_by_name);
 787
 788/**
 789 *	__dev_get_by_index - find a device by its ifindex
 790 *	@net: the applicable net namespace
 791 *	@ifindex: index of device
 792 *
 793 *	Search for an interface by index. Returns %NULL if the device
 794 *	is not found or a pointer to the device. The device has not
 795 *	had its reference counter increased so the caller must be careful
 796 *	about locking. The caller must hold either the RTNL semaphore
 797 *	or @dev_base_lock.
 798 */
 799
 800struct net_device *__dev_get_by_index(struct net *net, int ifindex)
 801{
 802	struct net_device *dev;
 803	struct hlist_head *head = dev_index_hash(net, ifindex);
 804
 805	hlist_for_each_entry(dev, head, index_hlist)
 806		if (dev->ifindex == ifindex)
 807			return dev;
 808
 809	return NULL;
 810}
 811EXPORT_SYMBOL(__dev_get_by_index);
 812
 813/**
 814 *	dev_get_by_index_rcu - find a device by its ifindex
 815 *	@net: the applicable net namespace
 816 *	@ifindex: index of device
 817 *
 818 *	Search for an interface by index. Returns %NULL if the device
 819 *	is not found or a pointer to the device. The device has not
 820 *	had its reference counter increased so the caller must be careful
 821 *	about locking. The caller must hold RCU lock.
 822 */
 823
 824struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
 825{
 826	struct net_device *dev;
 827	struct hlist_head *head = dev_index_hash(net, ifindex);
 828
 829	hlist_for_each_entry_rcu(dev, head, index_hlist)
 830		if (dev->ifindex == ifindex)
 831			return dev;
 832
 833	return NULL;
 834}
 835EXPORT_SYMBOL(dev_get_by_index_rcu);
 836
 
 
 
 
 
 
 
 
 
 
 
 
 837
 838/**
 839 *	dev_get_by_index - find a device by its ifindex
 840 *	@net: the applicable net namespace
 841 *	@ifindex: index of device
 
 
 842 *
 843 *	Search for an interface by index. Returns NULL if the device
 844 *	is not found or a pointer to the device. The device returned has
 845 *	had a reference added and the pointer is safe until the user calls
 846 *	dev_put to indicate they have finished with it.
 847 */
 848
 849struct net_device *dev_get_by_index(struct net *net, int ifindex)
 850{
 851	struct net_device *dev;
 852
 853	rcu_read_lock();
 854	dev = dev_get_by_index_rcu(net, ifindex);
 855	if (dev)
 856		dev_hold(dev);
 857	rcu_read_unlock();
 858	return dev;
 859}
 860EXPORT_SYMBOL(dev_get_by_index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 861
 862/**
 863 *	netdev_get_name - get a netdevice name, knowing its ifindex.
 864 *	@net: network namespace
 865 *	@name: a pointer to the buffer where the name will be stored.
 866 *	@ifindex: the ifindex of the interface to get the name from.
 867 *
 868 *	The use of raw_seqcount_begin() and cond_resched() before
 869 *	retrying is required as we want to give the writers a chance
 870 *	to complete when CONFIG_PREEMPT is not set.
 871 */
 872int netdev_get_name(struct net *net, char *name, int ifindex)
 873{
 874	struct net_device *dev;
 875	unsigned int seq;
 876
 877retry:
 878	seq = raw_seqcount_begin(&devnet_rename_seq);
 879	rcu_read_lock();
 
 880	dev = dev_get_by_index_rcu(net, ifindex);
 881	if (!dev) {
 882		rcu_read_unlock();
 883		return -ENODEV;
 884	}
 885
 886	strcpy(name, dev->name);
 
 
 
 887	rcu_read_unlock();
 888	if (read_seqcount_retry(&devnet_rename_seq, seq)) {
 889		cond_resched();
 890		goto retry;
 891	}
 892
 893	return 0;
 894}
 895
 896/**
 897 *	dev_getbyhwaddr_rcu - find a device by its hardware address
 898 *	@net: the applicable net namespace
 899 *	@type: media type of device
 900 *	@ha: hardware address
 901 *
 902 *	Search for an interface by MAC address. Returns NULL if the device
 903 *	is not found or a pointer to the device.
 904 *	The caller must hold RCU or RTNL.
 905 *	The returned device has not had its ref count increased
 906 *	and the caller must therefore be careful about locking
 907 *
 908 */
 909
 910struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
 911				       const char *ha)
 912{
 913	struct net_device *dev;
 914
 915	for_each_netdev_rcu(net, dev)
 916		if (dev->type == type &&
 917		    !memcmp(dev->dev_addr, ha, dev->addr_len))
 918			return dev;
 919
 920	return NULL;
 921}
 922EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
 923
 924struct net_device *__dev_getfirstbyhwtype(struct net *net, unsigned short type)
 925{
 926	struct net_device *dev;
 927
 928	ASSERT_RTNL();
 929	for_each_netdev(net, dev)
 930		if (dev->type == type)
 931			return dev;
 932
 933	return NULL;
 934}
 935EXPORT_SYMBOL(__dev_getfirstbyhwtype);
 936
 937struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
 938{
 939	struct net_device *dev, *ret = NULL;
 940
 941	rcu_read_lock();
 942	for_each_netdev_rcu(net, dev)
 943		if (dev->type == type) {
 944			dev_hold(dev);
 945			ret = dev;
 946			break;
 947		}
 948	rcu_read_unlock();
 949	return ret;
 950}
 951EXPORT_SYMBOL(dev_getfirstbyhwtype);
 952
 953/**
 954 *	__dev_get_by_flags - find any device with given flags
 955 *	@net: the applicable net namespace
 956 *	@if_flags: IFF_* values
 957 *	@mask: bitmask of bits in if_flags to check
 958 *
 959 *	Search for any interface with the given flags. Returns NULL if a device
 960 *	is not found or a pointer to the device. Must be called inside
 961 *	rtnl_lock(), and result refcount is unchanged.
 962 */
 963
 964struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
 965				      unsigned short mask)
 966{
 967	struct net_device *dev, *ret;
 968
 969	ASSERT_RTNL();
 970
 971	ret = NULL;
 972	for_each_netdev(net, dev) {
 973		if (((dev->flags ^ if_flags) & mask) == 0) {
 974			ret = dev;
 975			break;
 976		}
 977	}
 978	return ret;
 979}
 980EXPORT_SYMBOL(__dev_get_by_flags);
 981
 982/**
 983 *	dev_valid_name - check if name is okay for network device
 984 *	@name: name string
 985 *
 986 *	Network device names need to be valid file names to
 987 *	to allow sysfs to work.  We also disallow any kind of
 988 *	whitespace.
 989 */
 990bool dev_valid_name(const char *name)
 991{
 992	if (*name == '\0')
 993		return false;
 994	if (strlen(name) >= IFNAMSIZ)
 995		return false;
 996	if (!strcmp(name, ".") || !strcmp(name, ".."))
 997		return false;
 998
 999	while (*name) {
1000		if (*name == '/' || *name == ':' || isspace(*name))
1001			return false;
1002		name++;
1003	}
1004	return true;
1005}
1006EXPORT_SYMBOL(dev_valid_name);
1007
1008/**
1009 *	__dev_alloc_name - allocate a name for a device
1010 *	@net: network namespace to allocate the device name in
1011 *	@name: name format string
1012 *	@buf:  scratch buffer and result name string
1013 *
1014 *	Passed a format string - eg "lt%d" it will try and find a suitable
1015 *	id. It scans list of devices to build up a free map, then chooses
1016 *	the first empty slot. The caller must hold the dev_base or rtnl lock
1017 *	while allocating the name and adding the device in order to avoid
1018 *	duplicates.
1019 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1020 *	Returns the number of the unit assigned or a negative errno code.
1021 */
1022
1023static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1024{
1025	int i = 0;
1026	const char *p;
1027	const int max_netdevices = 8*PAGE_SIZE;
1028	unsigned long *inuse;
1029	struct net_device *d;
 
 
 
 
 
 
 
 
1030
1031	p = strnchr(name, IFNAMSIZ-1, '%');
1032	if (p) {
1033		/*
1034		 * Verify the string as this thing may have come from
1035		 * the user.  There must be either one "%d" and no other "%"
1036		 * characters.
1037		 */
1038		if (p[1] != 'd' || strchr(p + 2, '%'))
1039			return -EINVAL;
1040
1041		/* Use one page as a bit array of possible slots */
1042		inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1043		if (!inuse)
1044			return -ENOMEM;
1045
1046		for_each_netdev(net, d) {
1047			if (!sscanf(d->name, name, &i))
1048				continue;
1049			if (i < 0 || i >= max_netdevices)
1050				continue;
1051
1052			/*  avoid cases where sscanf is not exact inverse of printf */
1053			snprintf(buf, IFNAMSIZ, name, i);
1054			if (!strncmp(buf, d->name, IFNAMSIZ))
1055				set_bit(i, inuse);
1056		}
 
 
 
 
1057
1058		i = find_first_zero_bit(inuse, max_netdevices);
1059		free_page((unsigned long) inuse);
 
 
1060	}
1061
1062	if (buf != name)
1063		snprintf(buf, IFNAMSIZ, name, i);
1064	if (!__dev_get_by_name(net, buf))
1065		return i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1066
1067	/* It is possible to run out of possible slots
1068	 * when the name is long and there isn't enough space left
1069	 * for the digits, or if all bits are used.
1070	 */
1071	return -ENFILE;
1072}
1073
1074/**
1075 *	dev_alloc_name - allocate a name for a device
1076 *	@dev: device
1077 *	@name: name format string
1078 *
1079 *	Passed a format string - eg "lt%d" it will try and find a suitable
1080 *	id. It scans list of devices to build up a free map, then chooses
1081 *	the first empty slot. The caller must hold the dev_base or rtnl lock
1082 *	while allocating the name and adding the device in order to avoid
1083 *	duplicates.
1084 *	Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1085 *	Returns the number of the unit assigned or a negative errno code.
1086 */
1087
1088int dev_alloc_name(struct net_device *dev, const char *name)
1089{
1090	char buf[IFNAMSIZ];
1091	struct net *net;
1092	int ret;
1093
1094	BUG_ON(!dev_net(dev));
1095	net = dev_net(dev);
1096	ret = __dev_alloc_name(net, name, buf);
1097	if (ret >= 0)
1098		strlcpy(dev->name, buf, IFNAMSIZ);
1099	return ret;
1100}
1101EXPORT_SYMBOL(dev_alloc_name);
1102
1103static int dev_alloc_name_ns(struct net *net,
1104			     struct net_device *dev,
1105			     const char *name)
1106{
1107	char buf[IFNAMSIZ];
1108	int ret;
1109
1110	ret = __dev_alloc_name(net, name, buf);
1111	if (ret >= 0)
1112		strlcpy(dev->name, buf, IFNAMSIZ);
1113	return ret;
1114}
1115
1116static int dev_get_valid_name(struct net *net,
1117			      struct net_device *dev,
1118			      const char *name)
1119{
1120	BUG_ON(!net);
1121
1122	if (!dev_valid_name(name))
1123		return -EINVAL;
1124
1125	if (strchr(name, '%'))
1126		return dev_alloc_name_ns(net, dev, name);
1127	else if (__dev_get_by_name(net, name))
1128		return -EEXIST;
1129	else if (dev->name != name)
1130		strlcpy(dev->name, name, IFNAMSIZ);
1131
1132	return 0;
1133}
1134
1135/**
1136 *	dev_change_name - change name of a device
1137 *	@dev: device
1138 *	@newname: name (or format string) must be at least IFNAMSIZ
1139 *
1140 *	Change name of a device, can pass format strings "eth%d".
1141 *	for wildcarding.
1142 */
1143int dev_change_name(struct net_device *dev, const char *newname)
1144{
1145	unsigned char old_assign_type;
1146	char oldname[IFNAMSIZ];
1147	int err = 0;
1148	int ret;
1149	struct net *net;
1150
1151	ASSERT_RTNL();
1152	BUG_ON(!dev_net(dev));
1153
1154	net = dev_net(dev);
1155	if (dev->flags & IFF_UP)
1156		return -EBUSY;
1157
1158	write_seqcount_begin(&devnet_rename_seq);
1159
1160	if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1161		write_seqcount_end(&devnet_rename_seq);
1162		return 0;
1163	}
1164
1165	memcpy(oldname, dev->name, IFNAMSIZ);
1166
1167	err = dev_get_valid_name(net, dev, newname);
1168	if (err < 0) {
1169		write_seqcount_end(&devnet_rename_seq);
1170		return err;
1171	}
1172
1173	if (oldname[0] && !strchr(oldname, '%'))
1174		netdev_info(dev, "renamed from %s\n", oldname);
 
1175
1176	old_assign_type = dev->name_assign_type;
1177	dev->name_assign_type = NET_NAME_RENAMED;
1178
1179rollback:
1180	ret = device_rename(&dev->dev, dev->name);
1181	if (ret) {
1182		memcpy(dev->name, oldname, IFNAMSIZ);
1183		dev->name_assign_type = old_assign_type;
1184		write_seqcount_end(&devnet_rename_seq);
1185		return ret;
1186	}
1187
1188	write_seqcount_end(&devnet_rename_seq);
1189
1190	netdev_adjacent_rename_links(dev, oldname);
1191
1192	write_lock_bh(&dev_base_lock);
1193	hlist_del_rcu(&dev->name_hlist);
1194	write_unlock_bh(&dev_base_lock);
1195
1196	synchronize_rcu();
1197
1198	write_lock_bh(&dev_base_lock);
1199	hlist_add_head_rcu(&dev->name_hlist, dev_name_hash(net, dev->name));
1200	write_unlock_bh(&dev_base_lock);
1201
1202	ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1203	ret = notifier_to_errno(ret);
1204
1205	if (ret) {
1206		/* err >= 0 after dev_alloc_name() or stores the first errno */
1207		if (err >= 0) {
1208			err = ret;
1209			write_seqcount_begin(&devnet_rename_seq);
1210			memcpy(dev->name, oldname, IFNAMSIZ);
1211			memcpy(oldname, newname, IFNAMSIZ);
1212			dev->name_assign_type = old_assign_type;
1213			old_assign_type = NET_NAME_RENAMED;
1214			goto rollback;
1215		} else {
1216			pr_err("%s: name change rollback failed: %d\n",
1217			       dev->name, ret);
1218		}
1219	}
1220
1221	return err;
1222}
1223
1224/**
1225 *	dev_set_alias - change ifalias of a device
1226 *	@dev: device
1227 *	@alias: name up to IFALIASZ
1228 *	@len: limit of bytes to copy from info
1229 *
1230 *	Set ifalias for a device,
1231 */
1232int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1233{
1234	char *new_ifalias;
1235
1236	ASSERT_RTNL();
1237
1238	if (len >= IFALIASZ)
1239		return -EINVAL;
1240
1241	if (!len) {
1242		kfree(dev->ifalias);
1243		dev->ifalias = NULL;
1244		return 0;
 
 
 
1245	}
1246
1247	new_ifalias = krealloc(dev->ifalias, len + 1, GFP_KERNEL);
1248	if (!new_ifalias)
1249		return -ENOMEM;
1250	dev->ifalias = new_ifalias;
 
 
 
1251
1252	strlcpy(dev->ifalias, alias, len+1);
1253	return len;
1254}
 
1255
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1256
1257/**
1258 *	netdev_features_change - device changes features
1259 *	@dev: device to cause notification
1260 *
1261 *	Called to indicate a device has changed features.
1262 */
1263void netdev_features_change(struct net_device *dev)
1264{
1265	call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1266}
1267EXPORT_SYMBOL(netdev_features_change);
1268
1269/**
1270 *	netdev_state_change - device changes state
1271 *	@dev: device to cause notification
1272 *
1273 *	Called to indicate a device has changed state. This function calls
1274 *	the notifier chains for netdev_chain and sends a NEWLINK message
1275 *	to the routing socket.
1276 */
1277void netdev_state_change(struct net_device *dev)
1278{
1279	if (dev->flags & IFF_UP) {
1280		struct netdev_notifier_change_info change_info;
 
 
1281
1282		change_info.flags_changed = 0;
1283		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
1284					      &change_info.info);
1285		rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL);
1286	}
1287}
1288EXPORT_SYMBOL(netdev_state_change);
1289
1290/**
1291 * 	netdev_notify_peers - notify network peers about existence of @dev
1292 * 	@dev: network device
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293 *
1294 * Generate traffic such that interested network peers are aware of
1295 * @dev, such as by generating a gratuitous ARP. This may be used when
1296 * a device wants to inform the rest of the network about some sort of
1297 * reconfiguration such as a failover event or virtual machine
1298 * migration.
1299 */
1300void netdev_notify_peers(struct net_device *dev)
1301{
1302	rtnl_lock();
1303	call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1304	rtnl_unlock();
1305}
1306EXPORT_SYMBOL(netdev_notify_peers);
1307
1308static int __dev_open(struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309{
1310	const struct net_device_ops *ops = dev->netdev_ops;
1311	int ret;
1312
1313	ASSERT_RTNL();
 
1314
1315	if (!netif_device_present(dev))
1316		return -ENODEV;
 
 
 
 
 
1317
1318	/* Block netpoll from trying to do any rx path servicing.
1319	 * If we don't do this there is a chance ndo_poll_controller
1320	 * or ndo_poll may be running while we open the device
1321	 */
1322	netpoll_poll_disable(dev);
1323
1324	ret = call_netdevice_notifiers(NETDEV_PRE_UP, dev);
1325	ret = notifier_to_errno(ret);
1326	if (ret)
1327		return ret;
1328
1329	set_bit(__LINK_STATE_START, &dev->state);
1330
1331	if (ops->ndo_validate_addr)
1332		ret = ops->ndo_validate_addr(dev);
1333
1334	if (!ret && ops->ndo_open)
1335		ret = ops->ndo_open(dev);
1336
1337	netpoll_poll_enable(dev);
1338
1339	if (ret)
1340		clear_bit(__LINK_STATE_START, &dev->state);
1341	else {
1342		dev->flags |= IFF_UP;
1343		dev_set_rx_mode(dev);
1344		dev_activate(dev);
1345		add_device_randomness(dev->dev_addr, dev->addr_len);
1346	}
1347
1348	return ret;
1349}
1350
1351/**
1352 *	dev_open	- prepare an interface for use.
1353 *	@dev:	device to open
 
1354 *
1355 *	Takes a device from down to up state. The device's private open
1356 *	function is invoked and then the multicast lists are loaded. Finally
1357 *	the device is moved into the up state and a %NETDEV_UP message is
1358 *	sent to the netdev notifier chain.
1359 *
1360 *	Calling this function on an active interface is a nop. On a failure
1361 *	a negative errno code is returned.
1362 */
1363int dev_open(struct net_device *dev)
1364{
1365	int ret;
1366
1367	if (dev->flags & IFF_UP)
1368		return 0;
1369
1370	ret = __dev_open(dev);
1371	if (ret < 0)
1372		return ret;
1373
1374	rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1375	call_netdevice_notifiers(NETDEV_UP, dev);
1376
1377	return ret;
1378}
1379EXPORT_SYMBOL(dev_open);
1380
1381static int __dev_close_many(struct list_head *head)
1382{
1383	struct net_device *dev;
1384
1385	ASSERT_RTNL();
1386	might_sleep();
1387
1388	list_for_each_entry(dev, head, close_list) {
1389		/* Temporarily disable netpoll until the interface is down */
1390		netpoll_poll_disable(dev);
1391
1392		call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1393
1394		clear_bit(__LINK_STATE_START, &dev->state);
1395
1396		/* Synchronize to scheduled poll. We cannot touch poll list, it
1397		 * can be even on different cpu. So just clear netif_running().
1398		 *
1399		 * dev->stop() will invoke napi_disable() on all of it's
1400		 * napi_struct instances on this device.
1401		 */
1402		smp_mb__after_atomic(); /* Commit netif_running(). */
1403	}
1404
1405	dev_deactivate_many(head);
1406
1407	list_for_each_entry(dev, head, close_list) {
1408		const struct net_device_ops *ops = dev->netdev_ops;
1409
1410		/*
1411		 *	Call the device specific close. This cannot fail.
1412		 *	Only if device is UP
1413		 *
1414		 *	We allow it to be called even after a DETACH hot-plug
1415		 *	event.
1416		 */
1417		if (ops->ndo_stop)
1418			ops->ndo_stop(dev);
1419
1420		dev->flags &= ~IFF_UP;
1421		netpoll_poll_enable(dev);
1422	}
1423
1424	return 0;
1425}
1426
1427static int __dev_close(struct net_device *dev)
1428{
1429	int retval;
1430	LIST_HEAD(single);
1431
1432	list_add(&dev->close_list, &single);
1433	retval = __dev_close_many(&single);
1434	list_del(&single);
1435
1436	return retval;
1437}
1438
1439int dev_close_many(struct list_head *head, bool unlink)
1440{
1441	struct net_device *dev, *tmp;
1442
1443	/* Remove the devices that don't need to be closed */
1444	list_for_each_entry_safe(dev, tmp, head, close_list)
1445		if (!(dev->flags & IFF_UP))
1446			list_del_init(&dev->close_list);
1447
1448	__dev_close_many(head);
1449
1450	list_for_each_entry_safe(dev, tmp, head, close_list) {
1451		rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP|IFF_RUNNING, GFP_KERNEL);
1452		call_netdevice_notifiers(NETDEV_DOWN, dev);
1453		if (unlink)
1454			list_del_init(&dev->close_list);
1455	}
1456
1457	return 0;
1458}
1459EXPORT_SYMBOL(dev_close_many);
1460
1461/**
1462 *	dev_close - shutdown an interface.
1463 *	@dev: device to shutdown
1464 *
1465 *	This function moves an active device into down state. A
1466 *	%NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1467 *	is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1468 *	chain.
1469 */
1470int dev_close(struct net_device *dev)
1471{
1472	if (dev->flags & IFF_UP) {
1473		LIST_HEAD(single);
1474
1475		list_add(&dev->close_list, &single);
1476		dev_close_many(&single, true);
1477		list_del(&single);
1478	}
1479	return 0;
1480}
1481EXPORT_SYMBOL(dev_close);
1482
1483
1484/**
1485 *	dev_disable_lro - disable Large Receive Offload on a device
1486 *	@dev: device
1487 *
1488 *	Disable Large Receive Offload (LRO) on a net device.  Must be
1489 *	called under RTNL.  This is needed if received packets may be
1490 *	forwarded to another interface.
1491 */
1492void dev_disable_lro(struct net_device *dev)
1493{
1494	struct net_device *lower_dev;
1495	struct list_head *iter;
1496
1497	dev->wanted_features &= ~NETIF_F_LRO;
1498	netdev_update_features(dev);
1499
1500	if (unlikely(dev->features & NETIF_F_LRO))
1501		netdev_WARN(dev, "failed to disable LRO!\n");
1502
1503	netdev_for_each_lower_dev(dev, lower_dev, iter)
1504		dev_disable_lro(lower_dev);
1505}
1506EXPORT_SYMBOL(dev_disable_lro);
1507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1509				   struct net_device *dev)
1510{
1511	struct netdev_notifier_info info;
 
 
1512
1513	netdev_notifier_info_init(&info, dev);
1514	return nb->notifier_call(nb, val, &info);
1515}
1516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1517static int dev_boot_phase = 1;
1518
1519/**
1520 *	register_netdevice_notifier - register a network notifier block
1521 *	@nb: notifier
1522 *
1523 *	Register a notifier to be called when network device events occur.
1524 *	The notifier passed is linked into the kernel structures and must
1525 *	not be reused until it has been unregistered. A negative errno code
1526 *	is returned on a failure.
1527 *
1528 * 	When registered all registration and up events are replayed
1529 *	to the new notifier to allow device to have a race free
1530 *	view of the network device list.
1531 */
1532
1533int register_netdevice_notifier(struct notifier_block *nb)
1534{
1535	struct net_device *dev;
1536	struct net_device *last;
1537	struct net *net;
1538	int err;
1539
 
 
1540	rtnl_lock();
1541	err = raw_notifier_chain_register(&netdev_chain, nb);
1542	if (err)
1543		goto unlock;
1544	if (dev_boot_phase)
1545		goto unlock;
1546	for_each_net(net) {
1547		for_each_netdev(net, dev) {
1548			err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1549			err = notifier_to_errno(err);
1550			if (err)
1551				goto rollback;
1552
1553			if (!(dev->flags & IFF_UP))
1554				continue;
1555
1556			call_netdevice_notifier(nb, NETDEV_UP, dev);
1557		}
1558	}
1559
1560unlock:
1561	rtnl_unlock();
 
1562	return err;
1563
1564rollback:
1565	last = dev;
1566	for_each_net(net) {
1567		for_each_netdev(net, dev) {
1568			if (dev == last)
1569				goto outroll;
1570
1571			if (dev->flags & IFF_UP) {
1572				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1573							dev);
1574				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1575			}
1576			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1577		}
1578	}
1579
1580outroll:
1581	raw_notifier_chain_unregister(&netdev_chain, nb);
1582	goto unlock;
1583}
1584EXPORT_SYMBOL(register_netdevice_notifier);
1585
1586/**
1587 *	unregister_netdevice_notifier - unregister a network notifier block
1588 *	@nb: notifier
1589 *
1590 *	Unregister a notifier previously registered by
1591 *	register_netdevice_notifier(). The notifier is unlinked into the
1592 *	kernel structures and may then be reused. A negative errno code
1593 *	is returned on a failure.
1594 *
1595 * 	After unregistering unregister and down device events are synthesized
1596 *	for all devices on the device list to the removed notifier to remove
1597 *	the need for special case cleanup code.
1598 */
1599
1600int unregister_netdevice_notifier(struct notifier_block *nb)
1601{
1602	struct net_device *dev;
1603	struct net *net;
1604	int err;
1605
 
 
1606	rtnl_lock();
1607	err = raw_notifier_chain_unregister(&netdev_chain, nb);
1608	if (err)
1609		goto unlock;
1610
1611	for_each_net(net) {
1612		for_each_netdev(net, dev) {
1613			if (dev->flags & IFF_UP) {
1614				call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1615							dev);
1616				call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1617			}
1618			call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1619		}
1620	}
1621unlock:
1622	rtnl_unlock();
 
1623	return err;
1624}
1625EXPORT_SYMBOL(unregister_netdevice_notifier);
1626
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627/**
1628 *	call_netdevice_notifiers_info - call all network notifier blocks
1629 *	@val: value passed unmodified to notifier function
1630 *	@dev: net_device pointer passed unmodified to notifier function
1631 *	@info: notifier information data
1632 *
1633 *	Call all network notifier blocks.  Parameters and return value
1634 *	are as for raw_notifier_call_chain().
1635 */
1636
1637static int call_netdevice_notifiers_info(unsigned long val,
1638					 struct net_device *dev,
1639					 struct netdev_notifier_info *info)
1640{
 
 
 
1641	ASSERT_RTNL();
1642	netdev_notifier_info_init(info, dev);
 
 
 
 
 
 
 
1643	return raw_notifier_call_chain(&netdev_chain, val, info);
1644}
1645
1646/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1647 *	call_netdevice_notifiers - call all network notifier blocks
1648 *      @val: value passed unmodified to notifier function
1649 *      @dev: net_device pointer passed unmodified to notifier function
1650 *
1651 *	Call all network notifier blocks.  Parameters and return value
1652 *	are as for raw_notifier_call_chain().
1653 */
1654
1655int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1656{
1657	struct netdev_notifier_info info;
 
 
1658
1659	return call_netdevice_notifiers_info(val, dev, &info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1660}
1661EXPORT_SYMBOL(call_netdevice_notifiers);
1662
1663#ifdef CONFIG_NET_INGRESS
1664static struct static_key ingress_needed __read_mostly;
1665
1666void net_inc_ingress_queue(void)
1667{
1668	static_key_slow_inc(&ingress_needed);
1669}
1670EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
1671
1672void net_dec_ingress_queue(void)
1673{
1674	static_key_slow_dec(&ingress_needed);
1675}
1676EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
1677#endif
1678
1679#ifdef CONFIG_NET_EGRESS
1680static struct static_key egress_needed __read_mostly;
1681
1682void net_inc_egress_queue(void)
1683{
1684	static_key_slow_inc(&egress_needed);
1685}
1686EXPORT_SYMBOL_GPL(net_inc_egress_queue);
1687
1688void net_dec_egress_queue(void)
1689{
1690	static_key_slow_dec(&egress_needed);
1691}
1692EXPORT_SYMBOL_GPL(net_dec_egress_queue);
1693#endif
1694
1695static struct static_key netstamp_needed __read_mostly;
1696#ifdef HAVE_JUMP_LABEL
1697/* We are not allowed to call static_key_slow_dec() from irq context
1698 * If net_disable_timestamp() is called from irq context, defer the
1699 * static_key_slow_dec() calls.
1700 */
1701static atomic_t netstamp_needed_deferred;
 
 
 
 
 
 
 
 
 
 
 
 
 
1702#endif
1703
1704void net_enable_timestamp(void)
1705{
1706#ifdef HAVE_JUMP_LABEL
1707	int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
1708
1709	if (deferred) {
1710		while (--deferred)
1711			static_key_slow_dec(&netstamp_needed);
1712		return;
1713	}
 
 
 
 
1714#endif
1715	static_key_slow_inc(&netstamp_needed);
1716}
1717EXPORT_SYMBOL(net_enable_timestamp);
1718
1719void net_disable_timestamp(void)
1720{
1721#ifdef HAVE_JUMP_LABEL
1722	if (in_interrupt()) {
1723		atomic_inc(&netstamp_needed_deferred);
1724		return;
 
 
1725	}
 
 
 
 
1726#endif
1727	static_key_slow_dec(&netstamp_needed);
1728}
1729EXPORT_SYMBOL(net_disable_timestamp);
1730
1731static inline void net_timestamp_set(struct sk_buff *skb)
1732{
1733	skb->tstamp.tv64 = 0;
1734	if (static_key_false(&netstamp_needed))
1735		__net_timestamp(skb);
 
1736}
1737
1738#define net_timestamp_check(COND, SKB)			\
1739	if (static_key_false(&netstamp_needed)) {		\
1740		if ((COND) && !(SKB)->tstamp.tv64)	\
1741			__net_timestamp(SKB);		\
1742	}						\
1743
1744bool is_skb_forwardable(struct net_device *dev, struct sk_buff *skb)
1745{
1746	unsigned int len;
 
 
1747
1748	if (!(dev->flags & IFF_UP))
1749		return false;
 
 
1750
1751	len = dev->mtu + dev->hard_header_len + VLAN_HLEN;
1752	if (skb->len <= len)
1753		return true;
 
1754
1755	/* if TSO is enabled, we don't care about the length as the packet
1756	 * could be forwarded without being segmented before
1757	 */
1758	if (skb_is_gso(skb))
1759		return true;
1760
1761	return false;
1762}
1763EXPORT_SYMBOL_GPL(is_skb_forwardable);
1764
1765int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1766{
1767	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
1768	    unlikely(!is_skb_forwardable(dev, skb))) {
1769		atomic_long_inc(&dev->rx_dropped);
1770		kfree_skb(skb);
1771		return NET_RX_DROP;
1772	}
1773
1774	skb_scrub_packet(skb, true);
1775	skb->priority = 0;
1776	skb->protocol = eth_type_trans(skb, dev);
1777	skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
1778
1779	return 0;
1780}
1781EXPORT_SYMBOL_GPL(__dev_forward_skb);
1782
1783/**
1784 * dev_forward_skb - loopback an skb to another netif
1785 *
1786 * @dev: destination network device
1787 * @skb: buffer to forward
1788 *
1789 * return values:
1790 *	NET_RX_SUCCESS	(no congestion)
1791 *	NET_RX_DROP     (packet was dropped, but freed)
1792 *
1793 * dev_forward_skb can be used for injecting an skb from the
1794 * start_xmit function of one device into the receive queue
1795 * of another device.
1796 *
1797 * The receiving device may be in another namespace, so
1798 * we have to clear all information in the skb that could
1799 * impact namespace isolation.
1800 */
1801int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
1802{
1803	return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
1804}
1805EXPORT_SYMBOL_GPL(dev_forward_skb);
1806
 
 
 
 
 
1807static inline int deliver_skb(struct sk_buff *skb,
1808			      struct packet_type *pt_prev,
1809			      struct net_device *orig_dev)
1810{
1811	if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
1812		return -ENOMEM;
1813	atomic_inc(&skb->users);
1814	return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
1815}
1816
1817static inline void deliver_ptype_list_skb(struct sk_buff *skb,
1818					  struct packet_type **pt,
1819					  struct net_device *orig_dev,
1820					  __be16 type,
1821					  struct list_head *ptype_list)
1822{
1823	struct packet_type *ptype, *pt_prev = *pt;
1824
1825	list_for_each_entry_rcu(ptype, ptype_list, list) {
1826		if (ptype->type != type)
1827			continue;
1828		if (pt_prev)
1829			deliver_skb(skb, pt_prev, orig_dev);
1830		pt_prev = ptype;
1831	}
1832	*pt = pt_prev;
1833}
1834
1835static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
1836{
1837	if (!ptype->af_packet_priv || !skb->sk)
1838		return false;
1839
1840	if (ptype->id_match)
1841		return ptype->id_match(ptype, skb->sk);
1842	else if ((struct sock *)ptype->af_packet_priv == skb->sk)
1843		return true;
1844
1845	return false;
1846}
1847
 
 
 
 
 
 
 
 
 
 
 
 
1848/*
1849 *	Support routine. Sends outgoing frames to any network
1850 *	taps currently in use.
1851 */
1852
1853static void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
1854{
1855	struct packet_type *ptype;
 
1856	struct sk_buff *skb2 = NULL;
1857	struct packet_type *pt_prev = NULL;
1858	struct list_head *ptype_list = &ptype_all;
1859
1860	rcu_read_lock();
1861again:
1862	list_for_each_entry_rcu(ptype, ptype_list, list) {
 
 
 
1863		/* Never send packets back to the socket
1864		 * they originated from - MvS (miquels@drinkel.ow.org)
1865		 */
1866		if (skb_loop_sk(ptype, skb))
1867			continue;
1868
1869		if (pt_prev) {
1870			deliver_skb(skb2, pt_prev, skb->dev);
1871			pt_prev = ptype;
1872			continue;
1873		}
1874
1875		/* need to clone skb, done only once */
1876		skb2 = skb_clone(skb, GFP_ATOMIC);
1877		if (!skb2)
1878			goto out_unlock;
1879
1880		net_timestamp_set(skb2);
1881
1882		/* skb->nh should be correctly
1883		 * set by sender, so that the second statement is
1884		 * just protection against buggy protocols.
1885		 */
1886		skb_reset_mac_header(skb2);
1887
1888		if (skb_network_header(skb2) < skb2->data ||
1889		    skb_network_header(skb2) > skb_tail_pointer(skb2)) {
1890			net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
1891					     ntohs(skb2->protocol),
1892					     dev->name);
1893			skb_reset_network_header(skb2);
1894		}
1895
1896		skb2->transport_header = skb2->network_header;
1897		skb2->pkt_type = PACKET_OUTGOING;
1898		pt_prev = ptype;
1899	}
1900
1901	if (ptype_list == &ptype_all) {
1902		ptype_list = &dev->ptype_all;
1903		goto again;
1904	}
1905out_unlock:
1906	if (pt_prev)
1907		pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
 
 
 
 
1908	rcu_read_unlock();
1909}
 
1910
1911/**
1912 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
1913 * @dev: Network device
1914 * @txq: number of queues available
1915 *
1916 * If real_num_tx_queues is changed the tc mappings may no longer be
1917 * valid. To resolve this verify the tc mapping remains valid and if
1918 * not NULL the mapping. With no priorities mapping to this
1919 * offset/count pair it will no longer be used. In the worst case TC0
1920 * is invalid nothing can be done so disable priority mappings. If is
1921 * expected that drivers will fix this mapping if they can before
1922 * calling netif_set_real_num_tx_queues.
1923 */
1924static void netif_setup_tc(struct net_device *dev, unsigned int txq)
1925{
1926	int i;
1927	struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
1928
1929	/* If TC0 is invalidated disable TC mapping */
1930	if (tc->offset + tc->count > txq) {
1931		pr_warn("Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
1932		dev->num_tc = 0;
1933		return;
1934	}
1935
1936	/* Invalidated prio to tc mappings set to TC0 */
1937	for (i = 1; i < TC_BITMASK + 1; i++) {
1938		int q = netdev_get_prio_tc_map(dev, i);
1939
1940		tc = &dev->tc_to_txq[q];
1941		if (tc->offset + tc->count > txq) {
1942			pr_warn("Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
1943				i, q);
1944			netdev_set_prio_tc_map(dev, i, 0);
1945		}
1946	}
1947}
1948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1949#ifdef CONFIG_XPS
 
 
1950static DEFINE_MUTEX(xps_map_mutex);
1951#define xmap_dereference(P)		\
1952	rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
1953
1954static struct xps_map *remove_xps_queue(struct xps_dev_maps *dev_maps,
1955					int cpu, u16 index)
1956{
1957	struct xps_map *map = NULL;
1958	int pos;
1959
1960	if (dev_maps)
1961		map = xmap_dereference(dev_maps->cpu_map[cpu]);
 
1962
1963	for (pos = 0; map && pos < map->len; pos++) {
1964		if (map->queues[pos] == index) {
1965			if (map->len > 1) {
1966				map->queues[pos] = map->queues[--map->len];
1967			} else {
1968				RCU_INIT_POINTER(dev_maps->cpu_map[cpu], NULL);
1969				kfree_rcu(map, rcu);
1970				map = NULL;
1971			}
1972			break;
1973		}
 
 
 
 
 
 
1974	}
1975
1976	return map;
1977}
1978
1979static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
 
 
1980{
1981	struct xps_dev_maps *dev_maps;
1982	int cpu, i;
1983	bool active = false;
 
1984
1985	mutex_lock(&xps_map_mutex);
1986	dev_maps = xmap_dereference(dev->xps_maps);
1987
1988	if (!dev_maps)
1989		goto out_no_maps;
1990
1991	for_each_possible_cpu(cpu) {
1992		for (i = index; i < dev->num_tx_queues; i++) {
1993			if (!remove_xps_queue(dev_maps, cpu, i))
1994				break;
1995		}
1996		if (i == dev->num_tx_queues)
1997			active = true;
1998	}
1999
2000	if (!active) {
2001		RCU_INIT_POINTER(dev->xps_maps, NULL);
2002		kfree_rcu(dev_maps, rcu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2003	}
 
2004
2005	for (i = index; i < dev->num_tx_queues; i++)
2006		netdev_queue_numa_node_write(netdev_get_tx_queue(dev, i),
2007					     NUMA_NO_NODE);
 
 
 
 
 
 
 
 
 
 
2008
2009out_no_maps:
2010	mutex_unlock(&xps_map_mutex);
 
 
 
 
 
 
2011}
2012
2013static struct xps_map *expand_xps_map(struct xps_map *map,
2014				      int cpu, u16 index)
2015{
2016	struct xps_map *new_map;
2017	int alloc_len = XPS_MIN_MAP_ALLOC;
2018	int i, pos;
2019
2020	for (pos = 0; map && pos < map->len; pos++) {
2021		if (map->queues[pos] != index)
2022			continue;
2023		return map;
2024	}
2025
2026	/* Need to add queue to this CPU's existing map */
2027	if (map) {
2028		if (pos < map->alloc_len)
2029			return map;
2030
2031		alloc_len = map->alloc_len * 2;
2032	}
2033
2034	/* Need to allocate new map to store queue on this CPU's map */
2035	new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2036			       cpu_to_node(cpu));
 
 
 
 
 
2037	if (!new_map)
2038		return NULL;
2039
2040	for (i = 0; i < pos; i++)
2041		new_map->queues[i] = map->queues[i];
2042	new_map->alloc_len = alloc_len;
2043	new_map->len = pos;
2044
2045	return new_map;
2046}
2047
2048int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2049			u16 index)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2050{
2051	struct xps_dev_maps *dev_maps, *new_dev_maps = NULL;
 
 
 
 
2052	struct xps_map *map, *new_map;
2053	int maps_sz = max_t(unsigned int, XPS_DEV_MAPS_SIZE, L1_CACHE_BYTES);
2054	int cpu, numa_node_id = -2;
2055	bool active = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2056
2057	mutex_lock(&xps_map_mutex);
2058
2059	dev_maps = xmap_dereference(dev->xps_maps);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2060
2061	/* allocate memory for queue storage */
2062	for_each_online_cpu(cpu) {
2063		if (!cpumask_test_cpu(cpu, mask))
2064			continue;
 
 
 
 
 
2065
2066		if (!new_dev_maps)
2067			new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2068		if (!new_dev_maps) {
2069			mutex_unlock(&xps_map_mutex);
2070			return -ENOMEM;
2071		}
2072
2073		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2074				 NULL;
2075
2076		map = expand_xps_map(map, cpu, index);
2077		if (!map)
2078			goto error;
2079
2080		RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2081	}
2082
2083	if (!new_dev_maps)
2084		goto out_no_new_maps;
2085
2086	for_each_possible_cpu(cpu) {
2087		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu)) {
2088			/* add queue to CPU maps */
 
 
 
 
 
 
 
 
 
 
 
2089			int pos = 0;
2090
2091			map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
 
 
2092			while ((pos < map->len) && (map->queues[pos] != index))
2093				pos++;
2094
2095			if (pos == map->len)
2096				map->queues[map->len++] = index;
2097#ifdef CONFIG_NUMA
2098			if (numa_node_id == -2)
2099				numa_node_id = cpu_to_node(cpu);
2100			else if (numa_node_id != cpu_to_node(cpu))
2101				numa_node_id = -1;
 
 
2102#endif
2103		} else if (dev_maps) {
2104			/* fill in the new device map from the old device map */
2105			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2106			RCU_INIT_POINTER(new_dev_maps->cpu_map[cpu], map);
2107		}
2108
 
 
 
2109	}
2110
2111	rcu_assign_pointer(dev->xps_maps, new_dev_maps);
2112
2113	/* Cleanup old maps */
2114	if (dev_maps) {
2115		for_each_possible_cpu(cpu) {
2116			new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2117			map = xmap_dereference(dev_maps->cpu_map[cpu]);
2118			if (map && map != new_map)
2119				kfree_rcu(map, rcu);
 
 
 
 
 
 
 
 
 
 
 
2120		}
 
2121
2122		kfree_rcu(dev_maps, rcu);
2123	}
2124
 
2125	dev_maps = new_dev_maps;
2126	active = true;
2127
2128out_no_new_maps:
2129	/* update Tx queue numa node */
2130	netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2131				     (numa_node_id >= 0) ? numa_node_id :
2132				     NUMA_NO_NODE);
 
2133
2134	if (!dev_maps)
2135		goto out_no_maps;
2136
2137	/* removes queue from unused CPUs */
2138	for_each_possible_cpu(cpu) {
2139		if (cpumask_test_cpu(cpu, mask) && cpu_online(cpu))
2140			continue;
 
 
 
 
 
2141
2142		if (remove_xps_queue(dev_maps, cpu, index))
2143			active = true;
 
 
2144	}
2145
 
 
 
2146	/* free map if not active */
2147	if (!active) {
2148		RCU_INIT_POINTER(dev->xps_maps, NULL);
2149		kfree_rcu(dev_maps, rcu);
2150	}
2151
2152out_no_maps:
2153	mutex_unlock(&xps_map_mutex);
2154
2155	return 0;
2156error:
2157	/* remove any maps that we added */
2158	for_each_possible_cpu(cpu) {
2159		new_map = xmap_dereference(new_dev_maps->cpu_map[cpu]);
2160		map = dev_maps ? xmap_dereference(dev_maps->cpu_map[cpu]) :
2161				 NULL;
2162		if (new_map && new_map != map)
2163			kfree(new_map);
 
 
 
2164	}
2165
2166	mutex_unlock(&xps_map_mutex);
2167
2168	kfree(new_dev_maps);
2169	return -ENOMEM;
2170}
 
 
 
 
 
 
 
 
 
 
 
 
 
2171EXPORT_SYMBOL(netif_set_xps_queue);
2172
2173#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174/*
2175 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2176 * greater then real_num_tx_queues stale skbs on the qdisc must be flushed.
2177 */
2178int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2179{
 
2180	int rc;
2181
 
 
2182	if (txq < 1 || txq > dev->num_tx_queues)
2183		return -EINVAL;
2184
2185	if (dev->reg_state == NETREG_REGISTERED ||
2186	    dev->reg_state == NETREG_UNREGISTERING) {
2187		ASSERT_RTNL();
2188
2189		rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2190						  txq);
2191		if (rc)
2192			return rc;
2193
2194		if (dev->num_tc)
2195			netif_setup_tc(dev, txq);
2196
2197		if (txq < dev->real_num_tx_queues) {
 
 
 
 
 
2198			qdisc_reset_all_tx_gt(dev, txq);
2199#ifdef CONFIG_XPS
2200			netif_reset_xps_queues_gt(dev, txq);
2201#endif
2202		}
 
 
2203	}
2204
2205	dev->real_num_tx_queues = txq;
2206	return 0;
2207}
2208EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2209
2210#ifdef CONFIG_SYSFS
2211/**
2212 *	netif_set_real_num_rx_queues - set actual number of RX queues used
2213 *	@dev: Network device
2214 *	@rxq: Actual number of RX queues
2215 *
2216 *	This must be called either with the rtnl_lock held or before
2217 *	registration of the net device.  Returns 0 on success, or a
2218 *	negative error code.  If called before registration, it always
2219 *	succeeds.
2220 */
2221int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2222{
2223	int rc;
2224
2225	if (rxq < 1 || rxq > dev->num_rx_queues)
2226		return -EINVAL;
2227
2228	if (dev->reg_state == NETREG_REGISTERED) {
2229		ASSERT_RTNL();
2230
2231		rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2232						  rxq);
2233		if (rc)
2234			return rc;
2235	}
2236
2237	dev->real_num_rx_queues = rxq;
2238	return 0;
2239}
2240EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2241#endif
2242
2243/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2244 * netif_get_num_default_rss_queues - default number of RSS queues
2245 *
2246 * This routine should set an upper limit on the number of RSS queues
2247 * used by default by multiqueue devices.
2248 */
2249int netif_get_num_default_rss_queues(void)
2250{
2251	return min_t(int, DEFAULT_MAX_NUM_RSS_QUEUES, num_online_cpus());
 
 
 
 
 
 
 
 
 
 
 
 
 
2252}
2253EXPORT_SYMBOL(netif_get_num_default_rss_queues);
2254
2255static inline void __netif_reschedule(struct Qdisc *q)
2256{
2257	struct softnet_data *sd;
2258	unsigned long flags;
2259
2260	local_irq_save(flags);
2261	sd = this_cpu_ptr(&softnet_data);
2262	q->next_sched = NULL;
2263	*sd->output_queue_tailp = q;
2264	sd->output_queue_tailp = &q->next_sched;
2265	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2266	local_irq_restore(flags);
2267}
2268
2269void __netif_schedule(struct Qdisc *q)
2270{
2271	if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
2272		__netif_reschedule(q);
2273}
2274EXPORT_SYMBOL(__netif_schedule);
2275
2276struct dev_kfree_skb_cb {
2277	enum skb_free_reason reason;
2278};
2279
2280static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
2281{
2282	return (struct dev_kfree_skb_cb *)skb->cb;
2283}
2284
2285void netif_schedule_queue(struct netdev_queue *txq)
2286{
2287	rcu_read_lock();
2288	if (!(txq->state & QUEUE_STATE_ANY_XOFF)) {
2289		struct Qdisc *q = rcu_dereference(txq->qdisc);
2290
2291		__netif_schedule(q);
2292	}
2293	rcu_read_unlock();
2294}
2295EXPORT_SYMBOL(netif_schedule_queue);
2296
2297/**
2298 *	netif_wake_subqueue - allow sending packets on subqueue
2299 *	@dev: network device
2300 *	@queue_index: sub queue index
2301 *
2302 * Resume individual transmit queue of a device with multiple transmit queues.
2303 */
2304void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
2305{
2306	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
2307
2308	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &txq->state)) {
2309		struct Qdisc *q;
2310
2311		rcu_read_lock();
2312		q = rcu_dereference(txq->qdisc);
2313		__netif_schedule(q);
2314		rcu_read_unlock();
2315	}
2316}
2317EXPORT_SYMBOL(netif_wake_subqueue);
2318
2319void netif_tx_wake_queue(struct netdev_queue *dev_queue)
2320{
2321	if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
2322		struct Qdisc *q;
2323
2324		rcu_read_lock();
2325		q = rcu_dereference(dev_queue->qdisc);
2326		__netif_schedule(q);
2327		rcu_read_unlock();
2328	}
2329}
2330EXPORT_SYMBOL(netif_tx_wake_queue);
2331
2332void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason)
2333{
2334	unsigned long flags;
2335
2336	if (likely(atomic_read(&skb->users) == 1)) {
 
 
 
2337		smp_rmb();
2338		atomic_set(&skb->users, 0);
2339	} else if (likely(!atomic_dec_and_test(&skb->users))) {
2340		return;
2341	}
2342	get_kfree_skb_cb(skb)->reason = reason;
2343	local_irq_save(flags);
2344	skb->next = __this_cpu_read(softnet_data.completion_queue);
2345	__this_cpu_write(softnet_data.completion_queue, skb);
2346	raise_softirq_irqoff(NET_TX_SOFTIRQ);
2347	local_irq_restore(flags);
2348}
2349EXPORT_SYMBOL(__dev_kfree_skb_irq);
2350
2351void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason)
2352{
2353	if (in_irq() || irqs_disabled())
2354		__dev_kfree_skb_irq(skb, reason);
2355	else
2356		dev_kfree_skb(skb);
2357}
2358EXPORT_SYMBOL(__dev_kfree_skb_any);
2359
2360
2361/**
2362 * netif_device_detach - mark device as removed
2363 * @dev: network device
2364 *
2365 * Mark device as removed from system and therefore no longer available.
2366 */
2367void netif_device_detach(struct net_device *dev)
2368{
2369	if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
2370	    netif_running(dev)) {
2371		netif_tx_stop_all_queues(dev);
2372	}
2373}
2374EXPORT_SYMBOL(netif_device_detach);
2375
2376/**
2377 * netif_device_attach - mark device as attached
2378 * @dev: network device
2379 *
2380 * Mark device as attached from system and restart if needed.
2381 */
2382void netif_device_attach(struct net_device *dev)
2383{
2384	if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
2385	    netif_running(dev)) {
2386		netif_tx_wake_all_queues(dev);
2387		__netdev_watchdog_up(dev);
2388	}
2389}
2390EXPORT_SYMBOL(netif_device_attach);
2391
2392/*
2393 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
2394 * to be used as a distribution range.
2395 */
2396u16 __skb_tx_hash(const struct net_device *dev, struct sk_buff *skb,
2397		  unsigned int num_tx_queues)
 
2398{
2399	u32 hash;
2400	u16 qoffset = 0;
2401	u16 qcount = num_tx_queues;
 
 
 
 
 
 
 
 
 
 
 
 
 
2402
2403	if (skb_rx_queue_recorded(skb)) {
 
2404		hash = skb_get_rx_queue(skb);
2405		while (unlikely(hash >= num_tx_queues))
2406			hash -= num_tx_queues;
2407		return hash;
2408	}
2409
2410	if (dev->num_tc) {
2411		u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
2412		qoffset = dev->tc_to_txq[tc].offset;
2413		qcount = dev->tc_to_txq[tc].count;
2414	}
2415
2416	return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
2417}
2418EXPORT_SYMBOL(__skb_tx_hash);
2419
2420static void skb_warn_bad_offload(const struct sk_buff *skb)
2421{
2422	static const netdev_features_t null_features = 0;
2423	struct net_device *dev = skb->dev;
2424	const char *name = "";
2425
2426	if (!net_ratelimit())
2427		return;
2428
2429	if (dev) {
2430		if (dev->dev.parent)
2431			name = dev_driver_string(dev->dev.parent);
2432		else
2433			name = netdev_name(dev);
2434	}
2435	WARN(1, "%s: caps=(%pNF, %pNF) len=%d data_len=%d gso_size=%d "
2436	     "gso_type=%d ip_summed=%d\n",
2437	     name, dev ? &dev->features : &null_features,
2438	     skb->sk ? &skb->sk->sk_route_caps : &null_features,
2439	     skb->len, skb->data_len, skb_shinfo(skb)->gso_size,
2440	     skb_shinfo(skb)->gso_type, skb->ip_summed);
2441}
2442
2443/*
2444 * Invalidate hardware checksum when packet is to be mangled, and
2445 * complete checksum manually on outgoing path.
2446 */
2447int skb_checksum_help(struct sk_buff *skb)
2448{
2449	__wsum csum;
2450	int ret = 0, offset;
2451
2452	if (skb->ip_summed == CHECKSUM_COMPLETE)
2453		goto out_set_summed;
2454
2455	if (unlikely(skb_shinfo(skb)->gso_size)) {
2456		skb_warn_bad_offload(skb);
2457		return -EINVAL;
2458	}
2459
2460	/* Before computing a checksum, we should make sure no frag could
2461	 * be modified by an external entity : checksum could be wrong.
2462	 */
2463	if (skb_has_shared_frag(skb)) {
2464		ret = __skb_linearize(skb);
2465		if (ret)
2466			goto out;
2467	}
2468
2469	offset = skb_checksum_start_offset(skb);
2470	BUG_ON(offset >= skb_headlen(skb));
 
 
 
 
 
 
2471	csum = skb_checksum(skb, offset, skb->len - offset, 0);
2472
2473	offset += skb->csum_offset;
2474	BUG_ON(offset + sizeof(__sum16) > skb_headlen(skb));
2475
2476	if (skb_cloned(skb) &&
2477	    !skb_clone_writable(skb, offset + sizeof(__sum16))) {
2478		ret = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2479		if (ret)
2480			goto out;
2481	}
 
 
 
2482
2483	*(__sum16 *)(skb->data + offset) = csum_fold(csum);
2484out_set_summed:
2485	skb->ip_summed = CHECKSUM_NONE;
2486out:
2487	return ret;
2488}
2489EXPORT_SYMBOL(skb_checksum_help);
2490
2491/* skb_csum_offload_check - Driver helper function to determine if a device
2492 * with limited checksum offload capabilities is able to offload the checksum
2493 * for a given packet.
2494 *
2495 * Arguments:
2496 *   skb - sk_buff for the packet in question
2497 *   spec - contains the description of what device can offload
2498 *   csum_encapped - returns true if the checksum being offloaded is
2499 *	      encpasulated. That is it is checksum for the transport header
2500 *	      in the inner headers.
2501 *   checksum_help - when set indicates that helper function should
2502 *	      call skb_checksum_help if offload checks fail
2503 *
2504 * Returns:
2505 *   true: Packet has passed the checksum checks and should be offloadable to
2506 *	   the device (a driver may still need to check for additional
2507 *	   restrictions of its device)
2508 *   false: Checksum is not offloadable. If checksum_help was set then
2509 *	   skb_checksum_help was called to resolve checksum for non-GSO
2510 *	   packets and when IP protocol is not SCTP
2511 */
2512bool __skb_csum_offload_chk(struct sk_buff *skb,
2513			    const struct skb_csum_offl_spec *spec,
2514			    bool *csum_encapped,
2515			    bool csum_help)
2516{
2517	struct iphdr *iph;
2518	struct ipv6hdr *ipv6;
2519	void *nhdr;
2520	int protocol;
2521	u8 ip_proto;
2522
2523	if (skb->protocol == htons(ETH_P_8021Q) ||
2524	    skb->protocol == htons(ETH_P_8021AD)) {
2525		if (!spec->vlan_okay)
2526			goto need_help;
2527	}
2528
2529	/* We check whether the checksum refers to a transport layer checksum in
2530	 * the outermost header or an encapsulated transport layer checksum that
2531	 * corresponds to the inner headers of the skb. If the checksum is for
2532	 * something else in the packet we need help.
2533	 */
2534	if (skb_checksum_start_offset(skb) == skb_transport_offset(skb)) {
2535		/* Non-encapsulated checksum */
2536		protocol = eproto_to_ipproto(vlan_get_protocol(skb));
2537		nhdr = skb_network_header(skb);
2538		*csum_encapped = false;
2539		if (spec->no_not_encapped)
2540			goto need_help;
2541	} else if (skb->encapsulation && spec->encap_okay &&
2542		   skb_checksum_start_offset(skb) ==
2543		   skb_inner_transport_offset(skb)) {
2544		/* Encapsulated checksum */
2545		*csum_encapped = true;
2546		switch (skb->inner_protocol_type) {
2547		case ENCAP_TYPE_ETHER:
2548			protocol = eproto_to_ipproto(skb->inner_protocol);
2549			break;
2550		case ENCAP_TYPE_IPPROTO:
2551			protocol = skb->inner_protocol;
2552			break;
2553		}
2554		nhdr = skb_inner_network_header(skb);
2555	} else {
2556		goto need_help;
2557	}
2558
2559	switch (protocol) {
2560	case IPPROTO_IP:
2561		if (!spec->ipv4_okay)
2562			goto need_help;
2563		iph = nhdr;
2564		ip_proto = iph->protocol;
2565		if (iph->ihl != 5 && !spec->ip_options_okay)
2566			goto need_help;
2567		break;
2568	case IPPROTO_IPV6:
2569		if (!spec->ipv6_okay)
2570			goto need_help;
2571		if (spec->no_encapped_ipv6 && *csum_encapped)
2572			goto need_help;
2573		ipv6 = nhdr;
2574		nhdr += sizeof(*ipv6);
2575		ip_proto = ipv6->nexthdr;
2576		break;
2577	default:
2578		goto need_help;
2579	}
2580
2581ip_proto_again:
2582	switch (ip_proto) {
2583	case IPPROTO_TCP:
2584		if (!spec->tcp_okay ||
2585		    skb->csum_offset != offsetof(struct tcphdr, check))
2586			goto need_help;
2587		break;
2588	case IPPROTO_UDP:
2589		if (!spec->udp_okay ||
2590		    skb->csum_offset != offsetof(struct udphdr, check))
2591			goto need_help;
2592		break;
2593	case IPPROTO_SCTP:
2594		if (!spec->sctp_okay ||
2595		    skb->csum_offset != offsetof(struct sctphdr, checksum))
2596			goto cant_help;
2597		break;
2598	case NEXTHDR_HOP:
2599	case NEXTHDR_ROUTING:
2600	case NEXTHDR_DEST: {
2601		u8 *opthdr = nhdr;
2602
2603		if (protocol != IPPROTO_IPV6 || !spec->ext_hdrs_okay)
2604			goto need_help;
2605
2606		ip_proto = opthdr[0];
2607		nhdr += (opthdr[1] + 1) << 3;
2608
2609		goto ip_proto_again;
2610	}
2611	default:
2612		goto need_help;
 
 
 
2613	}
2614
2615	/* Passed the tests for offloading checksum */
2616	return true;
 
2617
2618need_help:
2619	if (csum_help && !skb_shinfo(skb)->gso_size)
2620		skb_checksum_help(skb);
2621cant_help:
2622	return false;
 
 
2623}
2624EXPORT_SYMBOL(__skb_csum_offload_chk);
2625
2626__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
2627{
2628	__be16 type = skb->protocol;
2629
2630	/* Tunnel gso handlers can set protocol to ethernet. */
2631	if (type == htons(ETH_P_TEB)) {
2632		struct ethhdr *eth;
2633
2634		if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
2635			return 0;
2636
2637		eth = (struct ethhdr *)skb_mac_header(skb);
2638		type = eth->h_proto;
2639	}
2640
2641	return __vlan_get_protocol(skb, type, depth);
2642}
2643
2644/**
2645 *	skb_mac_gso_segment - mac layer segmentation handler.
2646 *	@skb: buffer to segment
2647 *	@features: features for the output path (see dev->features)
2648 */
2649struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
2650				    netdev_features_t features)
2651{
2652	struct sk_buff *segs = ERR_PTR(-EPROTONOSUPPORT);
2653	struct packet_offload *ptype;
2654	int vlan_depth = skb->mac_len;
2655	__be16 type = skb_network_protocol(skb, &vlan_depth);
2656
2657	if (unlikely(!type))
2658		return ERR_PTR(-EINVAL);
2659
2660	__skb_pull(skb, vlan_depth);
2661
2662	rcu_read_lock();
2663	list_for_each_entry_rcu(ptype, &offload_base, list) {
2664		if (ptype->type == type && ptype->callbacks.gso_segment) {
2665			segs = ptype->callbacks.gso_segment(skb, features);
2666			break;
2667		}
2668	}
2669	rcu_read_unlock();
2670
2671	__skb_push(skb, skb->data - skb_mac_header(skb));
2672
2673	return segs;
2674}
2675EXPORT_SYMBOL(skb_mac_gso_segment);
2676
2677
2678/* openvswitch calls this on rx path, so we need a different check.
2679 */
2680static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
2681{
2682	if (tx_path)
2683		return skb->ip_summed != CHECKSUM_PARTIAL;
2684	else
2685		return skb->ip_summed == CHECKSUM_NONE;
2686}
2687
2688/**
2689 *	__skb_gso_segment - Perform segmentation on skb.
2690 *	@skb: buffer to segment
2691 *	@features: features for the output path (see dev->features)
2692 *	@tx_path: whether it is called in TX path
2693 *
2694 *	This function segments the given skb and returns a list of segments.
2695 *
2696 *	It may return NULL if the skb requires no segmentation.  This is
2697 *	only possible when GSO is used for verifying header integrity.
2698 *
2699 *	Segmentation preserves SKB_SGO_CB_OFFSET bytes of previous skb cb.
2700 */
2701struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
2702				  netdev_features_t features, bool tx_path)
2703{
2704	if (unlikely(skb_needs_check(skb, tx_path))) {
2705		int err;
2706
2707		skb_warn_bad_offload(skb);
2708
2709		err = skb_cow_head(skb, 0);
2710		if (err < 0)
2711			return ERR_PTR(err);
2712	}
2713
2714	BUILD_BUG_ON(SKB_SGO_CB_OFFSET +
2715		     sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
2716
2717	SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
2718	SKB_GSO_CB(skb)->encap_level = 0;
2719
2720	skb_reset_mac_header(skb);
2721	skb_reset_mac_len(skb);
2722
2723	return skb_mac_gso_segment(skb, features);
2724}
2725EXPORT_SYMBOL(__skb_gso_segment);
2726
2727/* Take action when hardware reception checksum errors are detected. */
2728#ifdef CONFIG_BUG
2729void netdev_rx_csum_fault(struct net_device *dev)
2730{
2731	if (net_ratelimit()) {
2732		pr_err("%s: hw csum failure\n", dev ? dev->name : "<unknown>");
2733		dump_stack();
2734	}
2735}
2736EXPORT_SYMBOL(netdev_rx_csum_fault);
2737#endif
2738
2739/* Actually, we should eliminate this check as soon as we know, that:
2740 * 1. IOMMU is present and allows to map all the memory.
2741 * 2. No high memory really exists on this machine.
2742 */
2743
2744static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
2745{
2746#ifdef CONFIG_HIGHMEM
2747	int i;
 
2748	if (!(dev->features & NETIF_F_HIGHDMA)) {
2749		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2750			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 
2751			if (PageHighMem(skb_frag_page(frag)))
2752				return 1;
2753		}
2754	}
2755
2756	if (PCI_DMA_BUS_IS_PHYS) {
2757		struct device *pdev = dev->dev.parent;
2758
2759		if (!pdev)
2760			return 0;
2761		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2762			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2763			dma_addr_t addr = page_to_phys(skb_frag_page(frag));
2764			if (!pdev->dma_mask || addr + PAGE_SIZE - 1 > *pdev->dma_mask)
2765				return 1;
2766		}
2767	}
2768#endif
2769	return 0;
2770}
2771
2772/* If MPLS offload request, verify we are testing hardware MPLS features
2773 * instead of standard features for the netdev.
2774 */
2775#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
2776static netdev_features_t net_mpls_features(struct sk_buff *skb,
2777					   netdev_features_t features,
2778					   __be16 type)
2779{
2780	if (eth_p_mpls(type))
2781		features &= skb->dev->mpls_features;
2782
2783	return features;
2784}
2785#else
2786static netdev_features_t net_mpls_features(struct sk_buff *skb,
2787					   netdev_features_t features,
2788					   __be16 type)
2789{
2790	return features;
2791}
2792#endif
2793
2794static netdev_features_t harmonize_features(struct sk_buff *skb,
2795	netdev_features_t features)
2796{
2797	int tmp;
2798	__be16 type;
2799
2800	type = skb_network_protocol(skb, &tmp);
2801	features = net_mpls_features(skb, features, type);
2802
2803	if (skb->ip_summed != CHECKSUM_NONE &&
2804	    !can_checksum_protocol(features, type)) {
2805		features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
2806	} else if (illegal_highdma(skb->dev, skb)) {
 
2807		features &= ~NETIF_F_SG;
2808	}
2809
2810	return features;
2811}
2812
2813netdev_features_t passthru_features_check(struct sk_buff *skb,
2814					  struct net_device *dev,
2815					  netdev_features_t features)
2816{
2817	return features;
2818}
2819EXPORT_SYMBOL(passthru_features_check);
2820
2821static netdev_features_t dflt_features_check(const struct sk_buff *skb,
2822					     struct net_device *dev,
2823					     netdev_features_t features)
2824{
2825	return vlan_features_check(skb, features);
2826}
2827
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2828netdev_features_t netif_skb_features(struct sk_buff *skb)
2829{
2830	struct net_device *dev = skb->dev;
2831	netdev_features_t features = dev->features;
2832	u16 gso_segs = skb_shinfo(skb)->gso_segs;
2833
2834	if (gso_segs > dev->gso_max_segs || gso_segs < dev->gso_min_segs)
2835		features &= ~NETIF_F_GSO_MASK;
2836
2837	/* If encapsulation offload request, verify we are testing
2838	 * hardware encapsulation features instead of standard
2839	 * features for the netdev
2840	 */
2841	if (skb->encapsulation)
2842		features &= dev->hw_enc_features;
2843
2844	if (skb_vlan_tagged(skb))
2845		features = netdev_intersect_features(features,
2846						     dev->vlan_features |
2847						     NETIF_F_HW_VLAN_CTAG_TX |
2848						     NETIF_F_HW_VLAN_STAG_TX);
2849
2850	if (dev->netdev_ops->ndo_features_check)
2851		features &= dev->netdev_ops->ndo_features_check(skb, dev,
2852								features);
2853	else
2854		features &= dflt_features_check(skb, dev, features);
2855
2856	return harmonize_features(skb, features);
2857}
2858EXPORT_SYMBOL(netif_skb_features);
2859
2860static int xmit_one(struct sk_buff *skb, struct net_device *dev,
2861		    struct netdev_queue *txq, bool more)
2862{
2863	unsigned int len;
2864	int rc;
2865
2866	if (!list_empty(&ptype_all) || !list_empty(&dev->ptype_all))
2867		dev_queue_xmit_nit(skb, dev);
2868
2869	len = skb->len;
2870	trace_net_dev_start_xmit(skb, dev);
2871	rc = netdev_start_xmit(skb, dev, txq, more);
2872	trace_net_dev_xmit(skb, rc, dev, len);
2873
2874	return rc;
2875}
2876
2877struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
2878				    struct netdev_queue *txq, int *ret)
2879{
2880	struct sk_buff *skb = first;
2881	int rc = NETDEV_TX_OK;
2882
2883	while (skb) {
2884		struct sk_buff *next = skb->next;
2885
2886		skb->next = NULL;
2887		rc = xmit_one(skb, dev, txq, next != NULL);
2888		if (unlikely(!dev_xmit_complete(rc))) {
2889			skb->next = next;
2890			goto out;
2891		}
2892
2893		skb = next;
2894		if (netif_xmit_stopped(txq) && skb) {
2895			rc = NETDEV_TX_BUSY;
2896			break;
2897		}
2898	}
2899
2900out:
2901	*ret = rc;
2902	return skb;
2903}
2904
2905static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
2906					  netdev_features_t features)
2907{
2908	if (skb_vlan_tag_present(skb) &&
2909	    !vlan_hw_offload_capable(features, skb->vlan_proto))
2910		skb = __vlan_hwaccel_push_inside(skb);
2911	return skb;
2912}
2913
2914static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2915{
2916	netdev_features_t features;
2917
2918	if (skb->next)
2919		return skb;
2920
2921	features = netif_skb_features(skb);
2922	skb = validate_xmit_vlan(skb, features);
2923	if (unlikely(!skb))
2924		goto out_null;
2925
 
 
 
 
2926	if (netif_needs_gso(skb, features)) {
2927		struct sk_buff *segs;
2928
2929		segs = skb_gso_segment(skb, features);
2930		if (IS_ERR(segs)) {
2931			goto out_kfree_skb;
2932		} else if (segs) {
2933			consume_skb(skb);
2934			skb = segs;
2935		}
2936	} else {
2937		if (skb_needs_linearize(skb, features) &&
2938		    __skb_linearize(skb))
2939			goto out_kfree_skb;
2940
2941		/* If packet is not checksummed and device does not
2942		 * support checksumming for this protocol, complete
2943		 * checksumming here.
2944		 */
2945		if (skb->ip_summed == CHECKSUM_PARTIAL) {
2946			if (skb->encapsulation)
2947				skb_set_inner_transport_header(skb,
2948							       skb_checksum_start_offset(skb));
2949			else
2950				skb_set_transport_header(skb,
2951							 skb_checksum_start_offset(skb));
2952			if (!(features & NETIF_F_CSUM_MASK) &&
2953			    skb_checksum_help(skb))
2954				goto out_kfree_skb;
2955		}
2956	}
2957
 
 
2958	return skb;
2959
2960out_kfree_skb:
2961	kfree_skb(skb);
2962out_null:
 
2963	return NULL;
2964}
2965
2966struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev)
2967{
2968	struct sk_buff *next, *head = NULL, *tail;
2969
2970	for (; skb != NULL; skb = next) {
2971		next = skb->next;
2972		skb->next = NULL;
2973
2974		/* in case skb wont be segmented, point to itself */
2975		skb->prev = skb;
2976
2977		skb = validate_xmit_skb(skb, dev);
2978		if (!skb)
2979			continue;
2980
2981		if (!head)
2982			head = skb;
2983		else
2984			tail->next = skb;
2985		/* If skb was segmented, skb->prev points to
2986		 * the last segment. If not, it still contains skb.
2987		 */
2988		tail = skb->prev;
2989	}
2990	return head;
2991}
 
2992
2993static void qdisc_pkt_len_init(struct sk_buff *skb)
2994{
2995	const struct skb_shared_info *shinfo = skb_shinfo(skb);
2996
2997	qdisc_skb_cb(skb)->pkt_len = skb->len;
2998
2999	/* To get more precise estimation of bytes sent on wire,
3000	 * we add to pkt_len the headers size of all segments
3001	 */
3002	if (shinfo->gso_size)  {
 
3003		unsigned int hdr_len;
3004		u16 gso_segs = shinfo->gso_segs;
3005
3006		/* mac layer + network layer */
3007		hdr_len = skb_transport_header(skb) - skb_mac_header(skb);
3008
3009		/* + transport layer */
3010		if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)))
3011			hdr_len += tcp_hdrlen(skb);
3012		else
3013			hdr_len += sizeof(struct udphdr);
 
 
 
 
 
 
 
 
 
 
 
3014
3015		if (shinfo->gso_type & SKB_GSO_DODGY)
3016			gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3017						shinfo->gso_size);
3018
3019		qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3020	}
3021}
3022
 
 
 
 
 
 
 
 
 
 
 
 
3023static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3024				 struct net_device *dev,
3025				 struct netdev_queue *txq)
3026{
3027	spinlock_t *root_lock = qdisc_lock(q);
 
3028	bool contended;
3029	int rc;
3030
3031	qdisc_calculate_pkt_len(skb, q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032	/*
3033	 * Heuristic to force contended enqueues to serialize on a
3034	 * separate lock before trying to get qdisc main lock.
3035	 * This permits __QDISC___STATE_RUNNING owner to get the lock more
3036	 * often and dequeue packets faster.
 
 
 
 
3037	 */
3038	contended = qdisc_is_running(q);
3039	if (unlikely(contended))
3040		spin_lock(&q->busylock);
3041
3042	spin_lock(root_lock);
3043	if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3044		kfree_skb(skb);
3045		rc = NET_XMIT_DROP;
3046	} else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3047		   qdisc_run_begin(q)) {
3048		/*
3049		 * This is a work-conserving queue; there are no old skbs
3050		 * waiting to be sent out; and the qdisc is not running -
3051		 * xmit the skb directly.
3052		 */
3053
3054		qdisc_bstats_update(q, skb);
3055
3056		if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3057			if (unlikely(contended)) {
3058				spin_unlock(&q->busylock);
3059				contended = false;
3060			}
3061			__qdisc_run(q);
3062		} else
3063			qdisc_run_end(q);
3064
 
3065		rc = NET_XMIT_SUCCESS;
3066	} else {
3067		rc = q->enqueue(skb, q) & NET_XMIT_MASK;
 
 
3068		if (qdisc_run_begin(q)) {
3069			if (unlikely(contended)) {
3070				spin_unlock(&q->busylock);
3071				contended = false;
3072			}
3073			__qdisc_run(q);
 
3074		}
3075	}
3076	spin_unlock(root_lock);
 
 
 
3077	if (unlikely(contended))
3078		spin_unlock(&q->busylock);
3079	return rc;
3080}
3081
3082#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3083static void skb_update_prio(struct sk_buff *skb)
3084{
3085	struct netprio_map *map = rcu_dereference_bh(skb->dev->priomap);
 
 
3086
3087	if (!skb->priority && skb->sk && map) {
3088		unsigned int prioidx =
3089			sock_cgroup_prioidx(&skb->sk->sk_cgrp_data);
 
 
 
 
 
3090
3091		if (prioidx < map->priomap_len)
3092			skb->priority = map->priomap[prioidx];
3093	}
 
3094}
3095#else
3096#define skb_update_prio(skb)
3097#endif
3098
3099DEFINE_PER_CPU(int, xmit_recursion);
3100EXPORT_SYMBOL(xmit_recursion);
3101
3102#define RECURSION_LIMIT 10
3103
3104/**
3105 *	dev_loopback_xmit - loop back @skb
3106 *	@net: network namespace this loopback is happening in
3107 *	@sk:  sk needed to be a netfilter okfn
3108 *	@skb: buffer to transmit
3109 */
3110int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3111{
3112	skb_reset_mac_header(skb);
3113	__skb_pull(skb, skb_network_offset(skb));
3114	skb->pkt_type = PACKET_LOOPBACK;
3115	skb->ip_summed = CHECKSUM_UNNECESSARY;
3116	WARN_ON(!skb_dst(skb));
 
3117	skb_dst_force(skb);
3118	netif_rx_ni(skb);
3119	return 0;
3120}
3121EXPORT_SYMBOL(dev_loopback_xmit);
3122
3123#ifdef CONFIG_NET_EGRESS
3124static struct sk_buff *
3125sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
3126{
3127	struct tcf_proto *cl = rcu_dereference_bh(dev->egress_cl_list);
3128	struct tcf_result cl_res;
 
 
3129
3130	if (!cl)
3131		return skb;
 
 
 
 
 
 
3132
3133	/* skb->tc_verd and qdisc_skb_cb(skb)->pkt_len were already set
3134	 * earlier by the caller.
3135	 */
3136	qdisc_bstats_cpu_update(cl->q, skb);
3137
3138	switch (tc_classify(skb, cl, &cl_res, false)) {
 
 
 
 
 
 
 
 
 
 
 
3139	case TC_ACT_OK:
3140	case TC_ACT_RECLASSIFY:
3141		skb->tc_index = TC_H_MIN(cl_res.classid);
3142		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3143	case TC_ACT_SHOT:
3144		qdisc_qstats_cpu_drop(cl->q);
3145		*ret = NET_XMIT_DROP;
3146		goto drop;
 
3147	case TC_ACT_STOLEN:
3148	case TC_ACT_QUEUED:
3149		*ret = NET_XMIT_SUCCESS;
3150drop:
3151		kfree_skb(skb);
 
 
3152		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3153	case TC_ACT_REDIRECT:
3154		/* No need to push/pop skb's mac_header here on egress! */
3155		skb_do_redirect(skb);
3156		*ret = NET_XMIT_SUCCESS;
3157		return NULL;
3158	default:
3159		break;
 
 
 
 
 
 
 
 
 
 
 
3160	}
3161
3162	return skb;
3163}
3164#endif /* CONFIG_NET_EGRESS */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3165
3166static inline int get_xps_queue(struct net_device *dev, struct sk_buff *skb)
 
3167{
3168#ifdef CONFIG_XPS
3169	struct xps_dev_maps *dev_maps;
3170	struct xps_map *map;
3171	int queue_index = -1;
3172
 
 
 
3173	rcu_read_lock();
3174	dev_maps = rcu_dereference(dev->xps_maps);
 
 
 
3175	if (dev_maps) {
3176		map = rcu_dereference(
3177		    dev_maps->cpu_map[skb->sender_cpu - 1]);
3178		if (map) {
3179			if (map->len == 1)
3180				queue_index = map->queues[0];
3181			else
3182				queue_index = map->queues[reciprocal_scale(skb_get_hash(skb),
3183									   map->len)];
3184			if (unlikely(queue_index >= dev->real_num_tx_queues))
3185				queue_index = -1;
 
 
 
 
 
3186		}
3187	}
3188	rcu_read_unlock();
3189
3190	return queue_index;
3191#else
3192	return -1;
3193#endif
3194}
3195
3196static u16 __netdev_pick_tx(struct net_device *dev, struct sk_buff *skb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3197{
3198	struct sock *sk = skb->sk;
3199	int queue_index = sk_tx_queue_get(sk);
3200
 
 
3201	if (queue_index < 0 || skb->ooo_okay ||
3202	    queue_index >= dev->real_num_tx_queues) {
3203		int new_index = get_xps_queue(dev, skb);
 
3204		if (new_index < 0)
3205			new_index = skb_tx_hash(dev, skb);
3206
3207		if (queue_index != new_index && sk &&
3208		    sk_fullsock(sk) &&
3209		    rcu_access_pointer(sk->sk_dst_cache))
3210			sk_tx_queue_set(sk, new_index);
3211
3212		queue_index = new_index;
3213	}
3214
3215	return queue_index;
3216}
 
3217
3218struct netdev_queue *netdev_pick_tx(struct net_device *dev,
3219				    struct sk_buff *skb,
3220				    void *accel_priv)
3221{
3222	int queue_index = 0;
3223
3224#ifdef CONFIG_XPS
3225	u32 sender_cpu = skb->sender_cpu - 1;
3226
3227	if (sender_cpu >= (u32)NR_CPUS)
3228		skb->sender_cpu = raw_smp_processor_id() + 1;
3229#endif
3230
3231	if (dev->real_num_tx_queues != 1) {
3232		const struct net_device_ops *ops = dev->netdev_ops;
 
3233		if (ops->ndo_select_queue)
3234			queue_index = ops->ndo_select_queue(dev, skb, accel_priv,
3235							    __netdev_pick_tx);
3236		else
3237			queue_index = __netdev_pick_tx(dev, skb);
3238
3239		if (!accel_priv)
3240			queue_index = netdev_cap_txqueue(dev, queue_index);
3241	}
3242
3243	skb_set_queue_mapping(skb, queue_index);
3244	return netdev_get_tx_queue(dev, queue_index);
3245}
3246
3247/**
3248 *	__dev_queue_xmit - transmit a buffer
3249 *	@skb: buffer to transmit
3250 *	@accel_priv: private data used for L2 forwarding offload
3251 *
3252 *	Queue a buffer for transmission to a network device. The caller must
3253 *	have set the device and priority and built the buffer before calling
3254 *	this function. The function can be called from an interrupt.
3255 *
3256 *	A negative errno code is returned on a failure. A success does not
3257 *	guarantee the frame will be transmitted as it may be dropped due
3258 *	to congestion or traffic shaping.
3259 *
3260 * -----------------------------------------------------------------------------------
3261 *      I notice this method can also return errors from the queue disciplines,
3262 *      including NET_XMIT_DROP, which is a positive value.  So, errors can also
3263 *      be positive.
3264 *
3265 *      Regardless of the return value, the skb is consumed, so it is currently
3266 *      difficult to retry a send to this method.  (You can bump the ref count
3267 *      before sending to hold a reference for retry if you are careful.)
3268 *
3269 *      When calling this method, interrupts MUST be enabled.  This is because
3270 *      the BH enable code must have IRQs enabled so that it will not deadlock.
3271 *          --BLG
3272 */
3273static int __dev_queue_xmit(struct sk_buff *skb, void *accel_priv)
3274{
3275	struct net_device *dev = skb->dev;
3276	struct netdev_queue *txq;
3277	struct Qdisc *q;
3278	int rc = -ENOMEM;
 
3279
3280	skb_reset_mac_header(skb);
 
3281
3282	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
3283		__skb_tstamp_tx(skb, NULL, skb->sk, SCM_TSTAMP_SCHED);
3284
3285	/* Disable soft irqs for various locks below. Also
3286	 * stops preemption for RCU.
3287	 */
3288	rcu_read_lock_bh();
3289
3290	skb_update_prio(skb);
3291
3292	qdisc_pkt_len_init(skb);
3293#ifdef CONFIG_NET_CLS_ACT
3294	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_EGRESS);
3295# ifdef CONFIG_NET_EGRESS
3296	if (static_key_false(&egress_needed)) {
 
 
 
 
 
 
 
 
3297		skb = sch_handle_egress(skb, &rc, dev);
3298		if (!skb)
3299			goto out;
 
 
 
 
3300	}
3301# endif
3302#endif
3303	/* If device/qdisc don't need skb->dst, release it right now while
3304	 * its hot in this cpu cache.
3305	 */
3306	if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
3307		skb_dst_drop(skb);
3308	else
3309		skb_dst_force(skb);
3310
3311#ifdef CONFIG_NET_SWITCHDEV
3312	/* Don't forward if offload device already forwarded */
3313	if (skb->offload_fwd_mark &&
3314	    skb->offload_fwd_mark == dev->offload_fwd_mark) {
3315		consume_skb(skb);
3316		rc = NET_XMIT_SUCCESS;
3317		goto out;
3318	}
3319#endif
3320
3321	txq = netdev_pick_tx(dev, skb, accel_priv);
3322	q = rcu_dereference_bh(txq->qdisc);
3323
3324	trace_net_dev_queue(skb);
3325	if (q->enqueue) {
3326		rc = __dev_xmit_skb(skb, q, dev, txq);
3327		goto out;
3328	}
3329
3330	/* The device has no queue. Common case for software devices:
3331	   loopback, all the sorts of tunnels...
3332
3333	   Really, it is unlikely that netif_tx_lock protection is necessary
3334	   here.  (f.e. loopback and IP tunnels are clean ignoring statistics
3335	   counters.)
3336	   However, it is possible, that they rely on protection
3337	   made by us here.
3338
3339	   Check this and shot the lock. It is not prone from deadlocks.
3340	   Either shot noqueue qdisc, it is even simpler 8)
3341	 */
3342	if (dev->flags & IFF_UP) {
3343		int cpu = smp_processor_id(); /* ok because BHs are off */
3344
3345		if (txq->xmit_lock_owner != cpu) {
3346
3347			if (__this_cpu_read(xmit_recursion) > RECURSION_LIMIT)
 
 
3348				goto recursion_alert;
3349
3350			skb = validate_xmit_skb(skb, dev);
3351			if (!skb)
3352				goto drop;
3353
3354			HARD_TX_LOCK(dev, txq, cpu);
3355
3356			if (!netif_xmit_stopped(txq)) {
3357				__this_cpu_inc(xmit_recursion);
3358				skb = dev_hard_start_xmit(skb, dev, txq, &rc);
3359				__this_cpu_dec(xmit_recursion);
3360				if (dev_xmit_complete(rc)) {
3361					HARD_TX_UNLOCK(dev, txq);
3362					goto out;
3363				}
3364			}
3365			HARD_TX_UNLOCK(dev, txq);
3366			net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
3367					     dev->name);
3368		} else {
3369			/* Recursion is detected! It is possible,
3370			 * unfortunately
3371			 */
3372recursion_alert:
3373			net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
3374					     dev->name);
3375		}
3376	}
3377
3378	rc = -ENETDOWN;
3379drop:
3380	rcu_read_unlock_bh();
3381
3382	atomic_long_inc(&dev->tx_dropped);
3383	kfree_skb_list(skb);
3384	return rc;
3385out:
3386	rcu_read_unlock_bh();
3387	return rc;
3388}
 
3389
3390int dev_queue_xmit(struct sk_buff *skb)
3391{
3392	return __dev_queue_xmit(skb, NULL);
3393}
3394EXPORT_SYMBOL(dev_queue_xmit);
 
 
 
 
 
 
3395
3396int dev_queue_xmit_accel(struct sk_buff *skb, void *accel_priv)
3397{
3398	return __dev_queue_xmit(skb, accel_priv);
3399}
3400EXPORT_SYMBOL(dev_queue_xmit_accel);
3401
 
 
3402
3403/*=======================================================================
3404			Receiver routines
3405  =======================================================================*/
3406
3407int netdev_max_backlog __read_mostly = 1000;
3408EXPORT_SYMBOL(netdev_max_backlog);
 
 
 
 
3409
3410int netdev_tstamp_prequeue __read_mostly = 1;
3411int netdev_budget __read_mostly = 300;
3412int weight_p __read_mostly = 64;            /* old backlog weight */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3413
3414/* Called with irq disabled */
3415static inline void ____napi_schedule(struct softnet_data *sd,
3416				     struct napi_struct *napi)
3417{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3418	list_add_tail(&napi->poll_list, &sd->poll_list);
3419	__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 
 
 
 
 
3420}
3421
3422#ifdef CONFIG_RPS
3423
3424/* One global table that all flow-based protocols share. */
3425struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
3426EXPORT_SYMBOL(rps_sock_flow_table);
3427u32 rps_cpu_mask __read_mostly;
3428EXPORT_SYMBOL(rps_cpu_mask);
3429
3430struct static_key rps_needed __read_mostly;
3431
3432static struct rps_dev_flow *
3433set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3434	    struct rps_dev_flow *rflow, u16 next_cpu)
3435{
3436	if (next_cpu < nr_cpu_ids) {
3437#ifdef CONFIG_RFS_ACCEL
3438		struct netdev_rx_queue *rxqueue;
3439		struct rps_dev_flow_table *flow_table;
3440		struct rps_dev_flow *old_rflow;
3441		u32 flow_id;
3442		u16 rxq_index;
3443		int rc;
3444
3445		/* Should we steer this flow to a different hardware queue? */
3446		if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
3447		    !(dev->features & NETIF_F_NTUPLE))
3448			goto out;
3449		rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
3450		if (rxq_index == skb_get_rx_queue(skb))
3451			goto out;
3452
3453		rxqueue = dev->_rx + rxq_index;
3454		flow_table = rcu_dereference(rxqueue->rps_flow_table);
3455		if (!flow_table)
3456			goto out;
3457		flow_id = skb_get_hash(skb) & flow_table->mask;
3458		rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
3459							rxq_index, flow_id);
3460		if (rc < 0)
3461			goto out;
3462		old_rflow = rflow;
3463		rflow = &flow_table->flows[flow_id];
3464		rflow->filter = rc;
3465		if (old_rflow->filter == rflow->filter)
3466			old_rflow->filter = RPS_NO_FILTER;
3467	out:
3468#endif
3469		rflow->last_qtail =
3470			per_cpu(softnet_data, next_cpu).input_queue_head;
3471	}
3472
3473	rflow->cpu = next_cpu;
3474	return rflow;
3475}
3476
3477/*
3478 * get_rps_cpu is called from netif_receive_skb and returns the target
3479 * CPU from the RPS map of the receiving queue for a given skb.
3480 * rcu_read_lock must be held on entry.
3481 */
3482static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
3483		       struct rps_dev_flow **rflowp)
3484{
3485	const struct rps_sock_flow_table *sock_flow_table;
3486	struct netdev_rx_queue *rxqueue = dev->_rx;
3487	struct rps_dev_flow_table *flow_table;
3488	struct rps_map *map;
3489	int cpu = -1;
3490	u32 tcpu;
3491	u32 hash;
3492
3493	if (skb_rx_queue_recorded(skb)) {
3494		u16 index = skb_get_rx_queue(skb);
3495
3496		if (unlikely(index >= dev->real_num_rx_queues)) {
3497			WARN_ONCE(dev->real_num_rx_queues > 1,
3498				  "%s received packet on queue %u, but number "
3499				  "of RX queues is %u\n",
3500				  dev->name, index, dev->real_num_rx_queues);
3501			goto done;
3502		}
3503		rxqueue += index;
3504	}
3505
3506	/* Avoid computing hash if RFS/RPS is not active for this rxqueue */
3507
3508	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3509	map = rcu_dereference(rxqueue->rps_map);
3510	if (!flow_table && !map)
3511		goto done;
3512
3513	skb_reset_network_header(skb);
3514	hash = skb_get_hash(skb);
3515	if (!hash)
3516		goto done;
3517
3518	sock_flow_table = rcu_dereference(rps_sock_flow_table);
3519	if (flow_table && sock_flow_table) {
3520		struct rps_dev_flow *rflow;
3521		u32 next_cpu;
3522		u32 ident;
3523
3524		/* First check into global flow table if there is a match */
3525		ident = sock_flow_table->ents[hash & sock_flow_table->mask];
3526		if ((ident ^ hash) & ~rps_cpu_mask)
 
 
3527			goto try_rps;
3528
3529		next_cpu = ident & rps_cpu_mask;
3530
3531		/* OK, now we know there is a match,
3532		 * we can look at the local (per receive queue) flow table
3533		 */
3534		rflow = &flow_table->flows[hash & flow_table->mask];
3535		tcpu = rflow->cpu;
3536
3537		/*
3538		 * If the desired CPU (where last recvmsg was done) is
3539		 * different from current CPU (one in the rx-queue flow
3540		 * table entry), switch if one of the following holds:
3541		 *   - Current CPU is unset (>= nr_cpu_ids).
3542		 *   - Current CPU is offline.
3543		 *   - The current CPU's queue tail has advanced beyond the
3544		 *     last packet that was enqueued using this table entry.
3545		 *     This guarantees that all previous packets for the flow
3546		 *     have been dequeued, thus preserving in order delivery.
3547		 */
3548		if (unlikely(tcpu != next_cpu) &&
3549		    (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
3550		     ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
3551		      rflow->last_qtail)) >= 0)) {
3552			tcpu = next_cpu;
3553			rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
3554		}
3555
3556		if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
3557			*rflowp = rflow;
3558			cpu = tcpu;
3559			goto done;
3560		}
3561	}
3562
3563try_rps:
3564
3565	if (map) {
3566		tcpu = map->cpus[reciprocal_scale(hash, map->len)];
3567		if (cpu_online(tcpu)) {
3568			cpu = tcpu;
3569			goto done;
3570		}
3571	}
3572
3573done:
3574	return cpu;
3575}
3576
3577#ifdef CONFIG_RFS_ACCEL
3578
3579/**
3580 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
3581 * @dev: Device on which the filter was set
3582 * @rxq_index: RX queue index
3583 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
3584 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
3585 *
3586 * Drivers that implement ndo_rx_flow_steer() should periodically call
3587 * this function for each installed filter and remove the filters for
3588 * which it returns %true.
3589 */
3590bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
3591			 u32 flow_id, u16 filter_id)
3592{
3593	struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
3594	struct rps_dev_flow_table *flow_table;
3595	struct rps_dev_flow *rflow;
3596	bool expire = true;
3597	unsigned int cpu;
3598
3599	rcu_read_lock();
3600	flow_table = rcu_dereference(rxqueue->rps_flow_table);
3601	if (flow_table && flow_id <= flow_table->mask) {
3602		rflow = &flow_table->flows[flow_id];
3603		cpu = ACCESS_ONCE(rflow->cpu);
3604		if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
3605		    ((int)(per_cpu(softnet_data, cpu).input_queue_head -
3606			   rflow->last_qtail) <
3607		     (int)(10 * flow_table->mask)))
3608			expire = false;
3609	}
3610	rcu_read_unlock();
3611	return expire;
3612}
3613EXPORT_SYMBOL(rps_may_expire_flow);
3614
3615#endif /* CONFIG_RFS_ACCEL */
3616
3617/* Called from hardirq (IPI) context */
3618static void rps_trigger_softirq(void *data)
3619{
3620	struct softnet_data *sd = data;
3621
3622	____napi_schedule(sd, &sd->backlog);
3623	sd->received_rps++;
3624}
3625
3626#endif /* CONFIG_RPS */
3627
 
 
 
 
 
 
 
 
 
3628/*
3629 * Check if this softnet_data structure is another cpu one
3630 * If yes, queue it to our IPI list and return 1
3631 * If no, return 0
 
 
 
 
 
3632 */
3633static int rps_ipi_queued(struct softnet_data *sd)
3634{
3635#ifdef CONFIG_RPS
3636	struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
3637
 
3638	if (sd != mysd) {
3639		sd->rps_ipi_next = mysd->rps_ipi_list;
3640		mysd->rps_ipi_list = sd;
3641
3642		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
3643		return 1;
 
 
 
 
3644	}
3645#endif /* CONFIG_RPS */
3646	return 0;
3647}
3648
3649#ifdef CONFIG_NET_FLOW_LIMIT
3650int netdev_flow_limit_table_len __read_mostly = (1 << 12);
3651#endif
3652
3653static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
3654{
3655#ifdef CONFIG_NET_FLOW_LIMIT
3656	struct sd_flow_limit *fl;
3657	struct softnet_data *sd;
3658	unsigned int old_flow, new_flow;
3659
3660	if (qlen < (netdev_max_backlog >> 1))
3661		return false;
3662
3663	sd = this_cpu_ptr(&softnet_data);
3664
3665	rcu_read_lock();
3666	fl = rcu_dereference(sd->flow_limit);
3667	if (fl) {
3668		new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
3669		old_flow = fl->history[fl->history_head];
3670		fl->history[fl->history_head] = new_flow;
3671
3672		fl->history_head++;
3673		fl->history_head &= FLOW_LIMIT_HISTORY - 1;
3674
3675		if (likely(fl->buckets[old_flow]))
3676			fl->buckets[old_flow]--;
3677
3678		if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
3679			fl->count++;
3680			rcu_read_unlock();
3681			return true;
3682		}
3683	}
3684	rcu_read_unlock();
3685#endif
3686	return false;
3687}
3688
3689/*
3690 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
3691 * queue (may be a remote CPU queue).
3692 */
3693static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
3694			      unsigned int *qtail)
3695{
 
3696	struct softnet_data *sd;
3697	unsigned long flags;
3698	unsigned int qlen;
3699
 
3700	sd = &per_cpu(softnet_data, cpu);
3701
3702	local_irq_save(flags);
3703
3704	rps_lock(sd);
3705	if (!netif_running(skb->dev))
3706		goto drop;
3707	qlen = skb_queue_len(&sd->input_pkt_queue);
3708	if (qlen <= netdev_max_backlog && !skb_flow_limit(skb, qlen)) {
 
3709		if (qlen) {
3710enqueue:
3711			__skb_queue_tail(&sd->input_pkt_queue, skb);
3712			input_queue_tail_incr_save(sd, qtail);
3713			rps_unlock(sd);
3714			local_irq_restore(flags);
3715			return NET_RX_SUCCESS;
3716		}
3717
3718		/* Schedule NAPI for backlog device
3719		 * We can use non atomic operation since we own the queue lock
3720		 */
3721		if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state)) {
3722			if (!rps_ipi_queued(sd))
3723				____napi_schedule(sd, &sd->backlog);
3724		}
3725		goto enqueue;
3726	}
 
3727
3728drop:
3729	sd->dropped++;
3730	rps_unlock(sd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3731
3732	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3733
3734	atomic_long_inc(&skb->dev->rx_dropped);
3735	kfree_skb(skb);
3736	return NET_RX_DROP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3737}
 
3738
3739static int netif_rx_internal(struct sk_buff *skb)
3740{
3741	int ret;
3742
3743	net_timestamp_check(netdev_tstamp_prequeue, skb);
3744
3745	trace_netif_rx(skb);
 
3746#ifdef CONFIG_RPS
3747	if (static_key_false(&rps_needed)) {
3748		struct rps_dev_flow voidflow, *rflow = &voidflow;
3749		int cpu;
3750
3751		preempt_disable();
3752		rcu_read_lock();
3753
3754		cpu = get_rps_cpu(skb->dev, skb, &rflow);
3755		if (cpu < 0)
3756			cpu = smp_processor_id();
3757
3758		ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
3759
3760		rcu_read_unlock();
3761		preempt_enable();
3762	} else
3763#endif
3764	{
3765		unsigned int qtail;
3766		ret = enqueue_to_backlog(skb, get_cpu(), &qtail);
3767		put_cpu();
3768	}
3769	return ret;
3770}
3771
3772/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3773 *	netif_rx	-	post buffer to the network code
3774 *	@skb: buffer to post
3775 *
3776 *	This function receives a packet from a device driver and queues it for
3777 *	the upper (protocol) levels to process.  It always succeeds. The buffer
3778 *	may be dropped during processing for congestion control or by the
3779 *	protocol layers.
 
 
 
 
 
3780 *
3781 *	return values:
3782 *	NET_RX_SUCCESS	(no congestion)
3783 *	NET_RX_DROP     (packet was dropped)
3784 *
3785 */
3786
3787int netif_rx(struct sk_buff *skb)
3788{
 
 
 
 
 
3789	trace_netif_rx_entry(skb);
3790
3791	return netif_rx_internal(skb);
 
 
 
3792}
3793EXPORT_SYMBOL(netif_rx);
3794
3795int netif_rx_ni(struct sk_buff *skb)
3796{
3797	int err;
3798
3799	trace_netif_rx_ni_entry(skb);
3800
3801	preempt_disable();
3802	err = netif_rx_internal(skb);
3803	if (local_softirq_pending())
3804		do_softirq();
3805	preempt_enable();
3806
3807	return err;
3808}
3809EXPORT_SYMBOL(netif_rx_ni);
3810
3811static void net_tx_action(struct softirq_action *h)
3812{
3813	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
3814
3815	if (sd->completion_queue) {
3816		struct sk_buff *clist;
3817
3818		local_irq_disable();
3819		clist = sd->completion_queue;
3820		sd->completion_queue = NULL;
3821		local_irq_enable();
3822
3823		while (clist) {
3824			struct sk_buff *skb = clist;
 
3825			clist = clist->next;
3826
3827			WARN_ON(atomic_read(&skb->users));
3828			if (likely(get_kfree_skb_cb(skb)->reason == SKB_REASON_CONSUMED))
3829				trace_consume_skb(skb);
3830			else
3831				trace_kfree_skb(skb, net_tx_action);
 
3832
3833			if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
3834				__kfree_skb(skb);
3835			else
3836				__kfree_skb_defer(skb);
 
3837		}
3838
3839		__kfree_skb_flush();
3840	}
3841
3842	if (sd->output_queue) {
3843		struct Qdisc *head;
3844
3845		local_irq_disable();
3846		head = sd->output_queue;
3847		sd->output_queue = NULL;
3848		sd->output_queue_tailp = &sd->output_queue;
3849		local_irq_enable();
3850
 
 
3851		while (head) {
3852			struct Qdisc *q = head;
3853			spinlock_t *root_lock;
3854
3855			head = head->next_sched;
3856
3857			root_lock = qdisc_lock(q);
3858			if (spin_trylock(root_lock)) {
3859				smp_mb__before_atomic();
3860				clear_bit(__QDISC_STATE_SCHED,
3861					  &q->state);
3862				qdisc_run(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3863				spin_unlock(root_lock);
3864			} else {
3865				if (!test_bit(__QDISC_STATE_DEACTIVATED,
3866					      &q->state)) {
3867					__netif_reschedule(q);
3868				} else {
3869					smp_mb__before_atomic();
3870					clear_bit(__QDISC_STATE_SCHED,
3871						  &q->state);
3872				}
3873			}
3874		}
 
 
3875	}
 
 
3876}
3877
3878#if (defined(CONFIG_BRIDGE) || defined(CONFIG_BRIDGE_MODULE)) && \
3879    (defined(CONFIG_ATM_LANE) || defined(CONFIG_ATM_LANE_MODULE))
3880/* This hook is defined here for ATM LANE */
3881int (*br_fdb_test_addr_hook)(struct net_device *dev,
3882			     unsigned char *addr) __read_mostly;
3883EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
3884#endif
3885
3886static inline struct sk_buff *
3887sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
3888		   struct net_device *orig_dev)
 
 
 
 
 
 
 
3889{
3890#ifdef CONFIG_NET_CLS_ACT
3891	struct tcf_proto *cl = rcu_dereference_bh(skb->dev->ingress_cl_list);
3892	struct tcf_result cl_res;
3893
3894	/* If there's at least one ingress present somewhere (so
3895	 * we get here via enabled static key), remaining devices
3896	 * that are not configured with an ingress qdisc will bail
3897	 * out here.
3898	 */
3899	if (!cl)
3900		return skb;
3901	if (*pt_prev) {
3902		*ret = deliver_skb(skb, *pt_prev, orig_dev);
3903		*pt_prev = NULL;
3904	}
3905
3906	qdisc_skb_cb(skb)->pkt_len = skb->len;
3907	skb->tc_verd = SET_TC_AT(skb->tc_verd, AT_INGRESS);
3908	qdisc_bstats_cpu_update(cl->q, skb);
3909
3910	switch (tc_classify(skb, cl, &cl_res, false)) {
3911	case TC_ACT_OK:
3912	case TC_ACT_RECLASSIFY:
3913		skb->tc_index = TC_H_MIN(cl_res.classid);
3914		break;
3915	case TC_ACT_SHOT:
3916		qdisc_qstats_cpu_drop(cl->q);
3917	case TC_ACT_STOLEN:
3918	case TC_ACT_QUEUED:
3919		kfree_skb(skb);
3920		return NULL;
3921	case TC_ACT_REDIRECT:
3922		/* skb_mac_header check was done by cls/act_bpf, so
3923		 * we can safely push the L2 header back before
3924		 * redirecting to another netdev
3925		 */
3926		__skb_push(skb, skb->mac_len);
3927		skb_do_redirect(skb);
3928		return NULL;
3929	default:
3930		break;
3931	}
3932#endif /* CONFIG_NET_CLS_ACT */
3933	return skb;
3934}
 
3935
3936/**
3937 *	netdev_rx_handler_register - register receive handler
3938 *	@dev: device to register a handler for
3939 *	@rx_handler: receive handler to register
3940 *	@rx_handler_data: data pointer that is used by rx handler
3941 *
3942 *	Register a receive handler for a device. This handler will then be
3943 *	called from __netif_receive_skb. A negative errno code is returned
3944 *	on a failure.
3945 *
3946 *	The caller must hold the rtnl_mutex.
3947 *
3948 *	For a general description of rx_handler, see enum rx_handler_result.
3949 */
3950int netdev_rx_handler_register(struct net_device *dev,
3951			       rx_handler_func_t *rx_handler,
3952			       void *rx_handler_data)
3953{
3954	ASSERT_RTNL();
 
3955
3956	if (dev->rx_handler)
3957		return -EBUSY;
3958
3959	/* Note: rx_handler_data must be set before rx_handler */
3960	rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
3961	rcu_assign_pointer(dev->rx_handler, rx_handler);
3962
3963	return 0;
3964}
3965EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
3966
3967/**
3968 *	netdev_rx_handler_unregister - unregister receive handler
3969 *	@dev: device to unregister a handler from
3970 *
3971 *	Unregister a receive handler from a device.
3972 *
3973 *	The caller must hold the rtnl_mutex.
3974 */
3975void netdev_rx_handler_unregister(struct net_device *dev)
3976{
3977
3978	ASSERT_RTNL();
3979	RCU_INIT_POINTER(dev->rx_handler, NULL);
3980	/* a reader seeing a non NULL rx_handler in a rcu_read_lock()
3981	 * section has a guarantee to see a non NULL rx_handler_data
3982	 * as well.
3983	 */
3984	synchronize_net();
3985	RCU_INIT_POINTER(dev->rx_handler_data, NULL);
3986}
3987EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
3988
3989/*
3990 * Limit the use of PFMEMALLOC reserves to those protocols that implement
3991 * the special handling of PFMEMALLOC skbs.
3992 */
3993static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
3994{
3995	switch (skb->protocol) {
3996	case htons(ETH_P_ARP):
3997	case htons(ETH_P_IP):
3998	case htons(ETH_P_IPV6):
3999	case htons(ETH_P_8021Q):
4000	case htons(ETH_P_8021AD):
4001		return true;
4002	default:
4003		return false;
4004	}
4005}
4006
4007static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
4008			     int *ret, struct net_device *orig_dev)
4009{
4010#ifdef CONFIG_NETFILTER_INGRESS
4011	if (nf_hook_ingress_active(skb)) {
 
 
4012		if (*pt_prev) {
4013			*ret = deliver_skb(skb, *pt_prev, orig_dev);
4014			*pt_prev = NULL;
4015		}
4016
4017		return nf_hook_ingress(skb);
 
 
 
4018	}
4019#endif /* CONFIG_NETFILTER_INGRESS */
4020	return 0;
4021}
4022
4023static int __netif_receive_skb_core(struct sk_buff *skb, bool pfmemalloc)
 
4024{
4025	struct packet_type *ptype, *pt_prev;
4026	rx_handler_func_t *rx_handler;
 
4027	struct net_device *orig_dev;
4028	bool deliver_exact = false;
4029	int ret = NET_RX_DROP;
4030	__be16 type;
4031
4032	net_timestamp_check(!netdev_tstamp_prequeue, skb);
4033
4034	trace_netif_receive_skb(skb);
4035
4036	orig_dev = skb->dev;
4037
4038	skb_reset_network_header(skb);
4039	if (!skb_transport_header_was_set(skb))
4040		skb_reset_transport_header(skb);
4041	skb_reset_mac_len(skb);
4042
4043	pt_prev = NULL;
4044
4045another_round:
4046	skb->skb_iif = skb->dev->ifindex;
4047
4048	__this_cpu_inc(softnet_data.processed);
4049
4050	if (skb->protocol == cpu_to_be16(ETH_P_8021Q) ||
4051	    skb->protocol == cpu_to_be16(ETH_P_8021AD)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
4052		skb = skb_vlan_untag(skb);
4053		if (unlikely(!skb))
4054			goto out;
4055	}
4056
4057#ifdef CONFIG_NET_CLS_ACT
4058	if (skb->tc_verd & TC_NCLS) {
4059		skb->tc_verd = CLR_TC_NCLS(skb->tc_verd);
4060		goto ncls;
4061	}
4062#endif
4063
4064	if (pfmemalloc)
4065		goto skip_taps;
4066
4067	list_for_each_entry_rcu(ptype, &ptype_all, list) {
4068		if (pt_prev)
4069			ret = deliver_skb(skb, pt_prev, orig_dev);
4070		pt_prev = ptype;
4071	}
4072
4073	list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
4074		if (pt_prev)
4075			ret = deliver_skb(skb, pt_prev, orig_dev);
4076		pt_prev = ptype;
4077	}
4078
4079skip_taps:
4080#ifdef CONFIG_NET_INGRESS
4081	if (static_key_false(&ingress_needed)) {
4082		skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev);
 
 
 
 
 
 
4083		if (!skb)
4084			goto out;
4085
 
4086		if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
4087			goto out;
4088	}
4089#endif
4090#ifdef CONFIG_NET_CLS_ACT
4091	skb->tc_verd = 0;
4092ncls:
4093#endif
4094	if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
4095		goto drop;
4096
4097	if (skb_vlan_tag_present(skb)) {
4098		if (pt_prev) {
4099			ret = deliver_skb(skb, pt_prev, orig_dev);
4100			pt_prev = NULL;
4101		}
4102		if (vlan_do_receive(&skb))
4103			goto another_round;
4104		else if (unlikely(!skb))
4105			goto out;
4106	}
4107
4108	rx_handler = rcu_dereference(skb->dev->rx_handler);
4109	if (rx_handler) {
4110		if (pt_prev) {
4111			ret = deliver_skb(skb, pt_prev, orig_dev);
4112			pt_prev = NULL;
4113		}
4114		switch (rx_handler(&skb)) {
4115		case RX_HANDLER_CONSUMED:
4116			ret = NET_RX_SUCCESS;
4117			goto out;
4118		case RX_HANDLER_ANOTHER:
4119			goto another_round;
4120		case RX_HANDLER_EXACT:
4121			deliver_exact = true;
 
4122		case RX_HANDLER_PASS:
4123			break;
4124		default:
4125			BUG();
4126		}
4127	}
4128
4129	if (unlikely(skb_vlan_tag_present(skb))) {
4130		if (skb_vlan_tag_get_id(skb))
 
 
 
 
4131			skb->pkt_type = PACKET_OTHERHOST;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4132		/* Note: we might in the future use prio bits
4133		 * and set skb->priority like in vlan_do_receive()
4134		 * For the time being, just ignore Priority Code Point
4135		 */
4136		skb->vlan_tci = 0;
4137	}
4138
4139	type = skb->protocol;
4140
4141	/* deliver only exact match when indicated */
4142	if (likely(!deliver_exact)) {
4143		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4144				       &ptype_base[ntohs(type) &
4145						   PTYPE_HASH_MASK]);
4146	}
4147
4148	deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4149			       &orig_dev->ptype_specific);
4150
4151	if (unlikely(skb->dev != orig_dev)) {
4152		deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
4153				       &skb->dev->ptype_specific);
4154	}
4155
4156	if (pt_prev) {
4157		if (unlikely(skb_orphan_frags(skb, GFP_ATOMIC)))
4158			goto drop;
4159		else
4160			ret = pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
4161	} else {
4162drop:
4163		if (!deliver_exact)
4164			atomic_long_inc(&skb->dev->rx_dropped);
4165		else
4166			atomic_long_inc(&skb->dev->rx_nohandler);
4167		kfree_skb(skb);
4168		/* Jamal, now you will not able to escape explaining
4169		 * me how you were going to use this. :-)
4170		 */
4171		ret = NET_RX_DROP;
4172	}
4173
4174out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4175	return ret;
4176}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4177
4178static int __netif_receive_skb(struct sk_buff *skb)
4179{
4180	int ret;
4181
4182	if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
4183		unsigned long pflags = current->flags;
4184
4185		/*
4186		 * PFMEMALLOC skbs are special, they should
4187		 * - be delivered to SOCK_MEMALLOC sockets only
4188		 * - stay away from userspace
4189		 * - have bounded memory usage
4190		 *
4191		 * Use PF_MEMALLOC as this saves us from propagating the allocation
4192		 * context down to all allocation sites.
4193		 */
4194		current->flags |= PF_MEMALLOC;
4195		ret = __netif_receive_skb_core(skb, true);
4196		tsk_restore_flags(current, pflags, PF_MEMALLOC);
4197	} else
4198		ret = __netif_receive_skb_core(skb, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4199
4200	return ret;
4201}
4202
4203static int netif_receive_skb_internal(struct sk_buff *skb)
4204{
4205	int ret;
4206
4207	net_timestamp_check(netdev_tstamp_prequeue, skb);
4208
4209	if (skb_defer_rx_timestamp(skb))
4210		return NET_RX_SUCCESS;
4211
4212	rcu_read_lock();
4213
4214#ifdef CONFIG_RPS
4215	if (static_key_false(&rps_needed)) {
4216		struct rps_dev_flow voidflow, *rflow = &voidflow;
4217		int cpu = get_rps_cpu(skb->dev, skb, &rflow);
4218
4219		if (cpu >= 0) {
4220			ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4221			rcu_read_unlock();
4222			return ret;
4223		}
4224	}
4225#endif
4226	ret = __netif_receive_skb(skb);
4227	rcu_read_unlock();
4228	return ret;
4229}
4230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4231/**
4232 *	netif_receive_skb - process receive buffer from network
4233 *	@skb: buffer to process
4234 *
4235 *	netif_receive_skb() is the main receive data processing function.
4236 *	It always succeeds. The buffer may be dropped during processing
4237 *	for congestion control or by the protocol layers.
4238 *
4239 *	This function may only be called from softirq context and interrupts
4240 *	should be enabled.
4241 *
4242 *	Return values (usually ignored):
4243 *	NET_RX_SUCCESS: no congestion
4244 *	NET_RX_DROP: packet was dropped
4245 */
4246int netif_receive_skb(struct sk_buff *skb)
4247{
 
 
4248	trace_netif_receive_skb_entry(skb);
4249
4250	return netif_receive_skb_internal(skb);
 
 
 
4251}
4252EXPORT_SYMBOL(netif_receive_skb);
4253
4254/* Network device is going away, flush any packets still pending
4255 * Called with irqs disabled.
 
 
 
 
 
 
 
4256 */
4257static void flush_backlog(void *arg)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4258{
4259	struct net_device *dev = arg;
4260	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
4261	struct sk_buff *skb, *tmp;
 
 
 
 
4262
4263	rps_lock(sd);
4264	skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
4265		if (skb->dev == dev) {
4266			__skb_unlink(skb, &sd->input_pkt_queue);
4267			kfree_skb(skb);
4268			input_queue_head_incr(sd);
4269		}
4270	}
4271	rps_unlock(sd);
4272
4273	skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
4274		if (skb->dev == dev) {
4275			__skb_unlink(skb, &sd->process_queue);
4276			kfree_skb(skb);
4277			input_queue_head_incr(sd);
4278		}
4279	}
 
4280}
4281
4282static int napi_gro_complete(struct sk_buff *skb)
4283{
4284	struct packet_offload *ptype;
4285	__be16 type = skb->protocol;
4286	struct list_head *head = &offload_base;
4287	int err = -ENOENT;
4288
4289	BUILD_BUG_ON(sizeof(struct napi_gro_cb) > sizeof(skb->cb));
4290
4291	if (NAPI_GRO_CB(skb)->count == 1) {
4292		skb_shinfo(skb)->gso_size = 0;
4293		goto out;
4294	}
 
 
4295
4296	rcu_read_lock();
4297	list_for_each_entry_rcu(ptype, head, list) {
4298		if (ptype->type != type || !ptype->callbacks.gro_complete)
4299			continue;
4300
4301		err = ptype->callbacks.gro_complete(skb, 0);
4302		break;
4303	}
4304	rcu_read_unlock();
4305
4306	if (err) {
4307		WARN_ON(&ptype->list == head);
4308		kfree_skb(skb);
4309		return NET_RX_SUCCESS;
4310	}
4311
4312out:
4313	return netif_receive_skb_internal(skb);
4314}
4315
4316/* napi->gro_list contains packets ordered by age.
4317 * youngest packets at the head of it.
4318 * Complete skbs in reverse order to reduce latencies.
4319 */
4320void napi_gro_flush(struct napi_struct *napi, bool flush_old)
4321{
4322	struct sk_buff *skb, *prev = NULL;
 
4323
4324	/* scan list and build reverse chain */
4325	for (skb = napi->gro_list; skb != NULL; skb = skb->next) {
4326		skb->prev = prev;
4327		prev = skb;
4328	}
4329
4330	for (skb = prev; skb; skb = prev) {
4331		skb->next = NULL;
4332
4333		if (flush_old && NAPI_GRO_CB(skb)->age == jiffies)
4334			return;
4335
4336		prev = skb->prev;
4337		napi_gro_complete(skb);
4338		napi->gro_count--;
4339	}
4340
4341	napi->gro_list = NULL;
4342}
4343EXPORT_SYMBOL(napi_gro_flush);
4344
4345static void gro_list_prepare(struct napi_struct *napi, struct sk_buff *skb)
4346{
4347	struct sk_buff *p;
4348	unsigned int maclen = skb->dev->hard_header_len;
4349	u32 hash = skb_get_hash_raw(skb);
4350
4351	for (p = napi->gro_list; p; p = p->next) {
4352		unsigned long diffs;
4353
4354		NAPI_GRO_CB(p)->flush = 0;
4355
4356		if (hash != skb_get_hash_raw(p)) {
4357			NAPI_GRO_CB(p)->same_flow = 0;
4358			continue;
4359		}
4360
4361		diffs = (unsigned long)p->dev ^ (unsigned long)skb->dev;
4362		diffs |= p->vlan_tci ^ skb->vlan_tci;
4363		diffs |= skb_metadata_dst_cmp(p, skb);
4364		if (maclen == ETH_HLEN)
4365			diffs |= compare_ether_header(skb_mac_header(p),
4366						      skb_mac_header(skb));
4367		else if (!diffs)
4368			diffs = memcmp(skb_mac_header(p),
4369				       skb_mac_header(skb),
4370				       maclen);
4371		NAPI_GRO_CB(p)->same_flow = !diffs;
4372	}
4373}
4374
4375static void skb_gro_reset_offset(struct sk_buff *skb)
4376{
4377	const struct skb_shared_info *pinfo = skb_shinfo(skb);
4378	const skb_frag_t *frag0 = &pinfo->frags[0];
4379
4380	NAPI_GRO_CB(skb)->data_offset = 0;
4381	NAPI_GRO_CB(skb)->frag0 = NULL;
4382	NAPI_GRO_CB(skb)->frag0_len = 0;
4383
4384	if (skb_mac_header(skb) == skb_tail_pointer(skb) &&
4385	    pinfo->nr_frags &&
4386	    !PageHighMem(skb_frag_page(frag0))) {
4387		NAPI_GRO_CB(skb)->frag0 = skb_frag_address(frag0);
4388		NAPI_GRO_CB(skb)->frag0_len = skb_frag_size(frag0);
4389	}
4390}
4391
4392static void gro_pull_from_frag0(struct sk_buff *skb, int grow)
4393{
4394	struct skb_shared_info *pinfo = skb_shinfo(skb);
4395
4396	BUG_ON(skb->end - skb->tail < grow);
4397
4398	memcpy(skb_tail_pointer(skb), NAPI_GRO_CB(skb)->frag0, grow);
4399
4400	skb->data_len -= grow;
4401	skb->tail += grow;
4402
4403	pinfo->frags[0].page_offset += grow;
4404	skb_frag_size_sub(&pinfo->frags[0], grow);
4405
4406	if (unlikely(!skb_frag_size(&pinfo->frags[0]))) {
4407		skb_frag_unref(skb, 0);
4408		memmove(pinfo->frags, pinfo->frags + 1,
4409			--pinfo->nr_frags * sizeof(pinfo->frags[0]));
4410	}
4411}
4412
4413static enum gro_result dev_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4414{
4415	struct sk_buff **pp = NULL;
4416	struct packet_offload *ptype;
4417	__be16 type = skb->protocol;
4418	struct list_head *head = &offload_base;
4419	int same_flow;
4420	enum gro_result ret;
4421	int grow;
4422
4423	if (!(skb->dev->features & NETIF_F_GRO))
4424		goto normal;
4425
4426	if (skb_is_gso(skb) || skb_has_frag_list(skb) || skb->csum_bad)
4427		goto normal;
4428
4429	gro_list_prepare(napi, skb);
4430
4431	rcu_read_lock();
4432	list_for_each_entry_rcu(ptype, head, list) {
4433		if (ptype->type != type || !ptype->callbacks.gro_receive)
4434			continue;
4435
4436		skb_set_network_header(skb, skb_gro_offset(skb));
4437		skb_reset_mac_len(skb);
4438		NAPI_GRO_CB(skb)->same_flow = 0;
4439		NAPI_GRO_CB(skb)->flush = 0;
4440		NAPI_GRO_CB(skb)->free = 0;
4441		NAPI_GRO_CB(skb)->encap_mark = 0;
4442		NAPI_GRO_CB(skb)->is_fou = 0;
4443		NAPI_GRO_CB(skb)->gro_remcsum_start = 0;
4444
4445		/* Setup for GRO checksum validation */
4446		switch (skb->ip_summed) {
4447		case CHECKSUM_COMPLETE:
4448			NAPI_GRO_CB(skb)->csum = skb->csum;
4449			NAPI_GRO_CB(skb)->csum_valid = 1;
4450			NAPI_GRO_CB(skb)->csum_cnt = 0;
4451			break;
4452		case CHECKSUM_UNNECESSARY:
4453			NAPI_GRO_CB(skb)->csum_cnt = skb->csum_level + 1;
4454			NAPI_GRO_CB(skb)->csum_valid = 0;
4455			break;
4456		default:
4457			NAPI_GRO_CB(skb)->csum_cnt = 0;
4458			NAPI_GRO_CB(skb)->csum_valid = 0;
4459		}
4460
4461		pp = ptype->callbacks.gro_receive(&napi->gro_list, skb);
4462		break;
4463	}
4464	rcu_read_unlock();
4465
4466	if (&ptype->list == head)
4467		goto normal;
4468
4469	same_flow = NAPI_GRO_CB(skb)->same_flow;
4470	ret = NAPI_GRO_CB(skb)->free ? GRO_MERGED_FREE : GRO_MERGED;
4471
4472	if (pp) {
4473		struct sk_buff *nskb = *pp;
4474
4475		*pp = nskb->next;
4476		nskb->next = NULL;
4477		napi_gro_complete(nskb);
4478		napi->gro_count--;
4479	}
4480
4481	if (same_flow)
4482		goto ok;
4483
4484	if (NAPI_GRO_CB(skb)->flush)
4485		goto normal;
4486
4487	if (unlikely(napi->gro_count >= MAX_GRO_SKBS)) {
4488		struct sk_buff *nskb = napi->gro_list;
4489
4490		/* locate the end of the list to select the 'oldest' flow */
4491		while (nskb->next) {
4492			pp = &nskb->next;
4493			nskb = *pp;
4494		}
4495		*pp = NULL;
4496		nskb->next = NULL;
4497		napi_gro_complete(nskb);
4498	} else {
4499		napi->gro_count++;
4500	}
4501	NAPI_GRO_CB(skb)->count = 1;
4502	NAPI_GRO_CB(skb)->age = jiffies;
4503	NAPI_GRO_CB(skb)->last = skb;
4504	skb_shinfo(skb)->gso_size = skb_gro_len(skb);
4505	skb->next = napi->gro_list;
4506	napi->gro_list = skb;
4507	ret = GRO_HELD;
4508
4509pull:
4510	grow = skb_gro_offset(skb) - skb_headlen(skb);
4511	if (grow > 0)
4512		gro_pull_from_frag0(skb, grow);
4513ok:
4514	return ret;
4515
4516normal:
4517	ret = GRO_NORMAL;
4518	goto pull;
4519}
4520
4521struct packet_offload *gro_find_receive_by_type(__be16 type)
4522{
4523	struct list_head *offload_head = &offload_base;
4524	struct packet_offload *ptype;
4525
4526	list_for_each_entry_rcu(ptype, offload_head, list) {
4527		if (ptype->type != type || !ptype->callbacks.gro_receive)
4528			continue;
4529		return ptype;
4530	}
4531	return NULL;
4532}
4533EXPORT_SYMBOL(gro_find_receive_by_type);
4534
4535struct packet_offload *gro_find_complete_by_type(__be16 type)
4536{
4537	struct list_head *offload_head = &offload_base;
4538	struct packet_offload *ptype;
4539
4540	list_for_each_entry_rcu(ptype, offload_head, list) {
4541		if (ptype->type != type || !ptype->callbacks.gro_complete)
4542			continue;
4543		return ptype;
4544	}
4545	return NULL;
4546}
4547EXPORT_SYMBOL(gro_find_complete_by_type);
4548
4549static gro_result_t napi_skb_finish(gro_result_t ret, struct sk_buff *skb)
4550{
4551	switch (ret) {
4552	case GRO_NORMAL:
4553		if (netif_receive_skb_internal(skb))
4554			ret = GRO_DROP;
4555		break;
4556
4557	case GRO_DROP:
4558		kfree_skb(skb);
4559		break;
4560
4561	case GRO_MERGED_FREE:
4562		if (NAPI_GRO_CB(skb)->free == NAPI_GRO_FREE_STOLEN_HEAD) {
4563			skb_dst_drop(skb);
4564			kmem_cache_free(skbuff_head_cache, skb);
4565		} else {
4566			__kfree_skb(skb);
4567		}
4568		break;
4569
4570	case GRO_HELD:
4571	case GRO_MERGED:
4572		break;
4573	}
4574
4575	return ret;
4576}
4577
4578gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb)
4579{
4580	skb_mark_napi_id(skb, napi);
4581	trace_napi_gro_receive_entry(skb);
4582
4583	skb_gro_reset_offset(skb);
4584
4585	return napi_skb_finish(dev_gro_receive(napi, skb), skb);
4586}
4587EXPORT_SYMBOL(napi_gro_receive);
4588
4589static void napi_reuse_skb(struct napi_struct *napi, struct sk_buff *skb)
4590{
4591	if (unlikely(skb->pfmemalloc)) {
4592		consume_skb(skb);
4593		return;
4594	}
4595	__skb_pull(skb, skb_headlen(skb));
4596	/* restore the reserve we had after netdev_alloc_skb_ip_align() */
4597	skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN - skb_headroom(skb));
4598	skb->vlan_tci = 0;
4599	skb->dev = napi->dev;
4600	skb->skb_iif = 0;
4601	skb->encapsulation = 0;
4602	skb_shinfo(skb)->gso_type = 0;
4603	skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
4604
4605	napi->skb = skb;
4606}
4607
4608struct sk_buff *napi_get_frags(struct napi_struct *napi)
4609{
4610	struct sk_buff *skb = napi->skb;
4611
4612	if (!skb) {
4613		skb = napi_alloc_skb(napi, GRO_MAX_HEAD);
4614		if (skb) {
4615			napi->skb = skb;
4616			skb_mark_napi_id(skb, napi);
4617		}
4618	}
4619	return skb;
4620}
4621EXPORT_SYMBOL(napi_get_frags);
4622
4623static gro_result_t napi_frags_finish(struct napi_struct *napi,
4624				      struct sk_buff *skb,
4625				      gro_result_t ret)
4626{
4627	switch (ret) {
4628	case GRO_NORMAL:
4629	case GRO_HELD:
4630		__skb_push(skb, ETH_HLEN);
4631		skb->protocol = eth_type_trans(skb, skb->dev);
4632		if (ret == GRO_NORMAL && netif_receive_skb_internal(skb))
4633			ret = GRO_DROP;
4634		break;
4635
4636	case GRO_DROP:
4637	case GRO_MERGED_FREE:
4638		napi_reuse_skb(napi, skb);
4639		break;
4640
4641	case GRO_MERGED:
4642		break;
4643	}
4644
4645	return ret;
4646}
4647
4648/* Upper GRO stack assumes network header starts at gro_offset=0
4649 * Drivers could call both napi_gro_frags() and napi_gro_receive()
4650 * We copy ethernet header into skb->data to have a common layout.
4651 */
4652static struct sk_buff *napi_frags_skb(struct napi_struct *napi)
4653{
4654	struct sk_buff *skb = napi->skb;
4655	const struct ethhdr *eth;
4656	unsigned int hlen = sizeof(*eth);
4657
4658	napi->skb = NULL;
4659
4660	skb_reset_mac_header(skb);
4661	skb_gro_reset_offset(skb);
4662
4663	eth = skb_gro_header_fast(skb, 0);
4664	if (unlikely(skb_gro_header_hard(skb, hlen))) {
4665		eth = skb_gro_header_slow(skb, hlen, 0);
4666		if (unlikely(!eth)) {
4667			napi_reuse_skb(napi, skb);
4668			return NULL;
4669		}
4670	} else {
4671		gro_pull_from_frag0(skb, hlen);
4672		NAPI_GRO_CB(skb)->frag0 += hlen;
4673		NAPI_GRO_CB(skb)->frag0_len -= hlen;
4674	}
4675	__skb_pull(skb, hlen);
4676
4677	/*
4678	 * This works because the only protocols we care about don't require
4679	 * special handling.
4680	 * We'll fix it up properly in napi_frags_finish()
4681	 */
4682	skb->protocol = eth->h_proto;
 
4683
4684	return skb;
4685}
4686
4687gro_result_t napi_gro_frags(struct napi_struct *napi)
4688{
4689	struct sk_buff *skb = napi_frags_skb(napi);
4690
4691	if (!skb)
4692		return GRO_DROP;
4693
4694	trace_napi_gro_frags_entry(skb);
4695
4696	return napi_frags_finish(napi, skb, dev_gro_receive(napi, skb));
4697}
4698EXPORT_SYMBOL(napi_gro_frags);
4699
4700/* Compute the checksum from gro_offset and return the folded value
4701 * after adding in any pseudo checksum.
4702 */
4703__sum16 __skb_gro_checksum_complete(struct sk_buff *skb)
4704{
4705	__wsum wsum;
4706	__sum16 sum;
4707
4708	wsum = skb_checksum(skb, skb_gro_offset(skb), skb_gro_len(skb), 0);
4709
4710	/* NAPI_GRO_CB(skb)->csum holds pseudo checksum */
4711	sum = csum_fold(csum_add(NAPI_GRO_CB(skb)->csum, wsum));
4712	if (likely(!sum)) {
4713		if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
4714		    !skb->csum_complete_sw)
4715			netdev_rx_csum_fault(skb->dev);
4716	}
4717
4718	NAPI_GRO_CB(skb)->csum = wsum;
4719	NAPI_GRO_CB(skb)->csum_valid = 1;
4720
4721	return sum;
4722}
4723EXPORT_SYMBOL(__skb_gro_checksum_complete);
4724
4725/*
4726 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
4727 * Note: called with local irq disabled, but exits with local irq enabled.
4728 */
4729static void net_rps_action_and_irq_enable(struct softnet_data *sd)
4730{
4731#ifdef CONFIG_RPS
4732	struct softnet_data *remsd = sd->rps_ipi_list;
4733
4734	if (remsd) {
4735		sd->rps_ipi_list = NULL;
4736
4737		local_irq_enable();
4738
4739		/* Send pending IPI's to kick RPS processing on remote cpus. */
4740		while (remsd) {
4741			struct softnet_data *next = remsd->rps_ipi_next;
4742
4743			if (cpu_online(remsd->cpu))
4744				smp_call_function_single_async(remsd->cpu,
4745							   &remsd->csd);
4746			remsd = next;
4747		}
4748	} else
4749#endif
4750		local_irq_enable();
4751}
4752
4753static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
4754{
4755#ifdef CONFIG_RPS
4756	return sd->rps_ipi_list != NULL;
4757#else
4758	return false;
4759#endif
4760}
4761
4762static int process_backlog(struct napi_struct *napi, int quota)
4763{
 
 
4764	int work = 0;
4765	struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
4766
4767	/* Check if we have pending ipi, its better to send them now,
4768	 * not waiting net_rx_action() end.
4769	 */
4770	if (sd_has_rps_ipi_waiting(sd)) {
4771		local_irq_disable();
4772		net_rps_action_and_irq_enable(sd);
4773	}
4774
4775	napi->weight = weight_p;
4776	local_irq_disable();
4777	while (1) {
4778		struct sk_buff *skb;
4779
4780		while ((skb = __skb_dequeue(&sd->process_queue))) {
4781			rcu_read_lock();
4782			local_irq_enable();
4783			__netif_receive_skb(skb);
4784			rcu_read_unlock();
4785			local_irq_disable();
4786			input_queue_head_incr(sd);
4787			if (++work >= quota) {
4788				local_irq_enable();
4789				return work;
4790			}
4791		}
4792
4793		rps_lock(sd);
4794		if (skb_queue_empty(&sd->input_pkt_queue)) {
4795			/*
4796			 * Inline a custom version of __napi_complete().
4797			 * only current cpu owns and manipulates this napi,
4798			 * and NAPI_STATE_SCHED is the only possible flag set
4799			 * on backlog.
4800			 * We can use a plain write instead of clear_bit(),
4801			 * and we dont need an smp_mb() memory barrier.
4802			 */
4803			napi->state = 0;
4804			rps_unlock(sd);
4805
4806			break;
 
4807		}
4808
4809		skb_queue_splice_tail_init(&sd->input_pkt_queue,
4810					   &sd->process_queue);
4811		rps_unlock(sd);
4812	}
4813	local_irq_enable();
4814
4815	return work;
4816}
4817
4818/**
4819 * __napi_schedule - schedule for receive
4820 * @n: entry to schedule
4821 *
4822 * The entry's receive function will be scheduled to run.
4823 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
4824 */
4825void __napi_schedule(struct napi_struct *n)
4826{
4827	unsigned long flags;
4828
4829	local_irq_save(flags);
4830	____napi_schedule(this_cpu_ptr(&softnet_data), n);
4831	local_irq_restore(flags);
4832}
4833EXPORT_SYMBOL(__napi_schedule);
4834
4835/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4836 * __napi_schedule_irqoff - schedule for receive
4837 * @n: entry to schedule
4838 *
4839 * Variant of __napi_schedule() assuming hard irqs are masked
 
 
 
 
4840 */
4841void __napi_schedule_irqoff(struct napi_struct *n)
4842{
4843	____napi_schedule(this_cpu_ptr(&softnet_data), n);
 
 
 
4844}
4845EXPORT_SYMBOL(__napi_schedule_irqoff);
4846
4847void __napi_complete(struct napi_struct *n)
4848{
4849	BUG_ON(!test_bit(NAPI_STATE_SCHED, &n->state));
4850
4851	list_del_init(&n->poll_list);
4852	smp_mb__before_atomic();
4853	clear_bit(NAPI_STATE_SCHED, &n->state);
4854}
4855EXPORT_SYMBOL(__napi_complete);
4856
4857void napi_complete_done(struct napi_struct *n, int work_done)
4858{
4859	unsigned long flags;
4860
4861	/*
4862	 * don't let napi dequeue from the cpu poll list
4863	 * just in case its running on a different cpu
 
 
4864	 */
4865	if (unlikely(test_bit(NAPI_STATE_NPSVC, &n->state)))
4866		return;
 
4867
4868	if (n->gro_list) {
4869		unsigned long timeout = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4870
4871		if (work_done)
4872			timeout = n->dev->gro_flush_timeout;
4873
4874		if (timeout)
4875			hrtimer_start(&n->timer, ns_to_ktime(timeout),
4876				      HRTIMER_MODE_REL_PINNED);
4877		else
4878			napi_gro_flush(n, false);
4879	}
4880	if (likely(list_empty(&n->poll_list))) {
4881		WARN_ON_ONCE(!test_and_clear_bit(NAPI_STATE_SCHED, &n->state));
4882	} else {
4883		/* If n->poll_list is not empty, we need to mask irqs */
4884		local_irq_save(flags);
4885		__napi_complete(n);
4886		local_irq_restore(flags);
4887	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4888}
4889EXPORT_SYMBOL(napi_complete_done);
4890
4891/* must be called under rcu_read_lock(), as we dont take a reference */
4892static struct napi_struct *napi_by_id(unsigned int napi_id)
4893{
4894	unsigned int hash = napi_id % HASH_SIZE(napi_hash);
4895	struct napi_struct *napi;
4896
4897	hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
4898		if (napi->napi_id == napi_id)
4899			return napi;
4900
4901	return NULL;
4902}
4903
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4904#if defined(CONFIG_NET_RX_BUSY_POLL)
4905#define BUSY_POLL_BUDGET 8
4906bool sk_busy_loop(struct sock *sk, int nonblock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4907{
4908	unsigned long end_time = !nonblock ? sk_busy_loop_end_time(sk) : 0;
4909	int (*busy_poll)(struct napi_struct *dev);
 
4910	struct napi_struct *napi;
4911	int rc = false;
4912
4913	rcu_read_lock();
 
 
 
4914
4915	napi = napi_by_id(sk->sk_napi_id);
4916	if (!napi)
4917		goto out;
4918
4919	/* Note: ndo_busy_poll method is optional in linux-4.5 */
4920	busy_poll = napi->dev->netdev_ops->ndo_busy_poll;
 
 
4921
4922	do {
4923		rc = 0;
4924		local_bh_disable();
4925		if (busy_poll) {
4926			rc = busy_poll(napi);
4927		} else if (napi_schedule_prep(napi)) {
4928			void *have = netpoll_poll_lock(napi);
4929
4930			if (test_bit(NAPI_STATE_SCHED, &napi->state)) {
4931				rc = napi->poll(napi, BUSY_POLL_BUDGET);
4932				trace_napi_poll(napi);
4933				if (rc == BUSY_POLL_BUDGET) {
4934					napi_complete_done(napi, rc);
4935					napi_schedule(napi);
4936				}
 
 
 
 
 
 
4937			}
4938			netpoll_poll_unlock(have);
 
4939		}
4940		if (rc > 0)
4941			NET_ADD_STATS_BH(sock_net(sk),
4942					 LINUX_MIB_BUSYPOLLRXPACKETS, rc);
 
 
 
 
 
4943		local_bh_enable();
4944
4945		if (rc == LL_FLUSH_FAILED)
4946			break; /* permanent failure */
4947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4948		cpu_relax();
4949	} while (!nonblock && skb_queue_empty(&sk->sk_receive_queue) &&
4950		 !need_resched() && !busy_loop_timeout(end_time));
 
 
 
 
4951
4952	rc = !skb_queue_empty(&sk->sk_receive_queue);
4953out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4954	rcu_read_unlock();
4955	return rc;
4956}
4957EXPORT_SYMBOL(sk_busy_loop);
4958
4959#endif /* CONFIG_NET_RX_BUSY_POLL */
4960
4961void napi_hash_add(struct napi_struct *napi)
4962{
4963	if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state) ||
4964	    test_and_set_bit(NAPI_STATE_HASHED, &napi->state))
4965		return;
4966
4967	spin_lock(&napi_hash_lock);
4968
4969	/* 0..NR_CPUS+1 range is reserved for sender_cpu use */
4970	do {
4971		if (unlikely(++napi_gen_id < NR_CPUS + 1))
4972			napi_gen_id = NR_CPUS + 1;
4973	} while (napi_by_id(napi_gen_id));
4974	napi->napi_id = napi_gen_id;
4975
4976	hlist_add_head_rcu(&napi->napi_hash_node,
4977			   &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
4978
4979	spin_unlock(&napi_hash_lock);
4980}
4981EXPORT_SYMBOL_GPL(napi_hash_add);
4982
4983/* Warning : caller is responsible to make sure rcu grace period
4984 * is respected before freeing memory containing @napi
4985 */
4986bool napi_hash_del(struct napi_struct *napi)
4987{
4988	bool rcu_sync_needed = false;
4989
4990	spin_lock(&napi_hash_lock);
4991
4992	if (test_and_clear_bit(NAPI_STATE_HASHED, &napi->state)) {
4993		rcu_sync_needed = true;
4994		hlist_del_rcu(&napi->napi_hash_node);
4995	}
4996	spin_unlock(&napi_hash_lock);
4997	return rcu_sync_needed;
4998}
4999EXPORT_SYMBOL_GPL(napi_hash_del);
5000
5001static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
5002{
5003	struct napi_struct *napi;
5004
5005	napi = container_of(timer, struct napi_struct, timer);
5006	if (napi->gro_list)
5007		napi_schedule(napi);
 
 
 
 
 
 
 
5008
5009	return HRTIMER_NORESTART;
5010}
5011
5012void netif_napi_add(struct net_device *dev, struct napi_struct *napi,
5013		    int (*poll)(struct napi_struct *, int), int weight)
5014{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5015	INIT_LIST_HEAD(&napi->poll_list);
 
5016	hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
5017	napi->timer.function = napi_watchdog;
5018	napi->gro_count = 0;
5019	napi->gro_list = NULL;
5020	napi->skb = NULL;
 
 
5021	napi->poll = poll;
5022	if (weight > NAPI_POLL_WEIGHT)
5023		pr_err_once("netif_napi_add() called with weight %d on device %s\n",
5024			    weight, dev->name);
5025	napi->weight = weight;
5026	list_add(&napi->dev_list, &dev->napi_list);
5027	napi->dev = dev;
5028#ifdef CONFIG_NETPOLL
5029	spin_lock_init(&napi->poll_lock);
5030	napi->poll_owner = -1;
5031#endif
 
5032	set_bit(NAPI_STATE_SCHED, &napi->state);
 
 
5033	napi_hash_add(napi);
 
 
 
 
 
 
 
 
5034}
5035EXPORT_SYMBOL(netif_napi_add);
5036
5037void napi_disable(struct napi_struct *n)
5038{
 
 
5039	might_sleep();
5040	set_bit(NAPI_STATE_DISABLE, &n->state);
5041
5042	while (test_and_set_bit(NAPI_STATE_SCHED, &n->state))
5043		msleep(1);
5044	while (test_and_set_bit(NAPI_STATE_NPSVC, &n->state))
5045		msleep(1);
 
 
 
 
 
 
5046
5047	hrtimer_cancel(&n->timer);
5048
5049	clear_bit(NAPI_STATE_DISABLE, &n->state);
5050}
5051EXPORT_SYMBOL(napi_disable);
5052
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5053/* Must be called in process context */
5054void netif_napi_del(struct napi_struct *napi)
5055{
5056	might_sleep();
5057	if (napi_hash_del(napi))
5058		synchronize_net();
5059	list_del_init(&napi->dev_list);
 
5060	napi_free_frags(napi);
5061
5062	kfree_skb_list(napi->gro_list);
5063	napi->gro_list = NULL;
5064	napi->gro_count = 0;
 
 
 
 
5065}
5066EXPORT_SYMBOL(netif_napi_del);
5067
5068static int napi_poll(struct napi_struct *n, struct list_head *repoll)
5069{
5070	void *have;
5071	int work, weight;
5072
5073	list_del_init(&n->poll_list);
5074
5075	have = netpoll_poll_lock(n);
5076
5077	weight = n->weight;
5078
5079	/* This NAPI_STATE_SCHED test is for avoiding a race
5080	 * with netpoll's poll_napi().  Only the entity which
5081	 * obtains the lock and sees NAPI_STATE_SCHED set will
5082	 * actually make the ->poll() call.  Therefore we avoid
5083	 * accidentally calling ->poll() when NAPI is not scheduled.
5084	 */
5085	work = 0;
5086	if (test_bit(NAPI_STATE_SCHED, &n->state)) {
5087		work = n->poll(n, weight);
5088		trace_napi_poll(n);
 
 
5089	}
5090
5091	WARN_ON_ONCE(work > weight);
 
 
5092
5093	if (likely(work < weight))
5094		goto out_unlock;
5095
5096	/* Drivers must not modify the NAPI state if they
5097	 * consume the entire weight.  In such cases this code
5098	 * still "owns" the NAPI instance and therefore can
5099	 * move the instance around on the list at-will.
5100	 */
5101	if (unlikely(napi_disable_pending(n))) {
5102		napi_complete(n);
5103		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
5104	}
5105
5106	if (n->gro_list) {
5107		/* flush too old packets
5108		 * If HZ < 1000, flush all packets.
5109		 */
5110		napi_gro_flush(n, HZ >= 1000);
5111	}
5112
 
 
5113	/* Some drivers may have called napi_schedule
5114	 * prior to exhausting their budget.
5115	 */
5116	if (unlikely(!list_empty(&n->poll_list))) {
5117		pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
5118			     n->dev ? n->dev->name : "backlog");
5119		goto out_unlock;
5120	}
5121
5122	list_add_tail(&n->poll_list, repoll);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5123
5124out_unlock:
5125	netpoll_poll_unlock(have);
5126
5127	return work;
5128}
5129
5130static void net_rx_action(struct softirq_action *h)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5131{
5132	struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5133	unsigned long time_limit = jiffies + 2;
5134	int budget = netdev_budget;
 
5135	LIST_HEAD(list);
5136	LIST_HEAD(repoll);
5137
 
 
5138	local_irq_disable();
5139	list_splice_init(&sd->poll_list, &list);
5140	local_irq_enable();
5141
5142	for (;;) {
5143		struct napi_struct *n;
5144
 
 
5145		if (list_empty(&list)) {
5146			if (!sd_has_rps_ipi_waiting(sd) && list_empty(&repoll))
5147				return;
 
 
 
 
 
 
 
 
 
 
5148			break;
5149		}
5150
5151		n = list_first_entry(&list, struct napi_struct, poll_list);
5152		budget -= napi_poll(n, &repoll);
5153
5154		/* If softirq window is exhausted then punt.
5155		 * Allow this to run for 2 jiffies since which will allow
5156		 * an average latency of 1.5/HZ.
5157		 */
5158		if (unlikely(budget <= 0 ||
5159			     time_after_eq(jiffies, time_limit))) {
5160			sd->time_squeeze++;
5161			break;
5162		}
5163	}
5164
5165	__kfree_skb_flush();
5166	local_irq_disable();
5167
5168	list_splice_tail_init(&sd->poll_list, &list);
5169	list_splice_tail(&repoll, &list);
5170	list_splice(&list, &sd->poll_list);
5171	if (!list_empty(&sd->poll_list))
5172		__raise_softirq_irqoff(NET_RX_SOFTIRQ);
 
 
5173
5174	net_rps_action_and_irq_enable(sd);
 
5175}
5176
5177struct netdev_adjacent {
5178	struct net_device *dev;
 
5179
5180	/* upper master flag, there can only be one master device per list */
5181	bool master;
5182
 
 
 
5183	/* counter for the number of times this device was added to us */
5184	u16 ref_nr;
5185
5186	/* private field for the users */
5187	void *private;
5188
5189	struct list_head list;
5190	struct rcu_head rcu;
5191};
5192
5193static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
5194						 struct list_head *adj_list)
5195{
5196	struct netdev_adjacent *adj;
5197
5198	list_for_each_entry(adj, adj_list, list) {
5199		if (adj->dev == adj_dev)
5200			return adj;
5201	}
5202	return NULL;
5203}
5204
 
 
 
 
 
 
 
 
5205/**
5206 * netdev_has_upper_dev - Check if device is linked to an upper device
5207 * @dev: device
5208 * @upper_dev: upper device to check
5209 *
5210 * Find out if a device is linked to specified upper device and return true
5211 * in case it is. Note that this checks only immediate upper device,
5212 * not through a complete stack of devices. The caller must hold the RTNL lock.
5213 */
5214bool netdev_has_upper_dev(struct net_device *dev,
5215			  struct net_device *upper_dev)
5216{
 
 
 
 
5217	ASSERT_RTNL();
5218
5219	return __netdev_find_adj(upper_dev, &dev->all_adj_list.upper);
 
5220}
5221EXPORT_SYMBOL(netdev_has_upper_dev);
5222
5223/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5224 * netdev_has_any_upper_dev - Check if device is linked to some device
5225 * @dev: device
5226 *
5227 * Find out if a device is linked to an upper device and return true in case
5228 * it is. The caller must hold the RTNL lock.
5229 */
5230static bool netdev_has_any_upper_dev(struct net_device *dev)
5231{
5232	ASSERT_RTNL();
5233
5234	return !list_empty(&dev->all_adj_list.upper);
5235}
 
5236
5237/**
5238 * netdev_master_upper_dev_get - Get master upper device
5239 * @dev: device
5240 *
5241 * Find a master upper device and return pointer to it or NULL in case
5242 * it's not there. The caller must hold the RTNL lock.
5243 */
5244struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
5245{
5246	struct netdev_adjacent *upper;
5247
5248	ASSERT_RTNL();
5249
5250	if (list_empty(&dev->adj_list.upper))
5251		return NULL;
5252
5253	upper = list_first_entry(&dev->adj_list.upper,
5254				 struct netdev_adjacent, list);
5255	if (likely(upper->master))
5256		return upper->dev;
5257	return NULL;
5258}
5259EXPORT_SYMBOL(netdev_master_upper_dev_get);
5260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5261void *netdev_adjacent_get_private(struct list_head *adj_list)
5262{
5263	struct netdev_adjacent *adj;
5264
5265	adj = list_entry(adj_list, struct netdev_adjacent, list);
5266
5267	return adj->private;
5268}
5269EXPORT_SYMBOL(netdev_adjacent_get_private);
5270
5271/**
5272 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
5273 * @dev: device
5274 * @iter: list_head ** of the current position
5275 *
5276 * Gets the next device from the dev's upper list, starting from iter
5277 * position. The caller must hold RCU read lock.
5278 */
5279struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
5280						 struct list_head **iter)
5281{
5282	struct netdev_adjacent *upper;
5283
5284	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5285
5286	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5287
5288	if (&upper->list == &dev->adj_list.upper)
5289		return NULL;
5290
5291	*iter = &upper->list;
5292
5293	return upper->dev;
5294}
5295EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
5296
5297/**
5298 * netdev_all_upper_get_next_dev_rcu - Get the next dev from upper list
5299 * @dev: device
5300 * @iter: list_head ** of the current position
5301 *
5302 * Gets the next device from the dev's upper list, starting from iter
5303 * position. The caller must hold RCU read lock.
5304 */
5305struct net_device *netdev_all_upper_get_next_dev_rcu(struct net_device *dev,
5306						     struct list_head **iter)
 
 
 
 
 
 
 
 
 
5307{
5308	struct netdev_adjacent *upper;
5309
5310	WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
5311
5312	upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5313
5314	if (&upper->list == &dev->all_adj_list.upper)
5315		return NULL;
5316
5317	*iter = &upper->list;
5318
5319	return upper->dev;
5320}
5321EXPORT_SYMBOL(netdev_all_upper_get_next_dev_rcu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5322
5323/**
5324 * netdev_lower_get_next_private - Get the next ->private from the
5325 *				   lower neighbour list
5326 * @dev: device
5327 * @iter: list_head ** of the current position
5328 *
5329 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5330 * list, starting from iter position. The caller must hold either hold the
5331 * RTNL lock or its own locking that guarantees that the neighbour lower
5332 * list will remain unchanged.
5333 */
5334void *netdev_lower_get_next_private(struct net_device *dev,
5335				    struct list_head **iter)
5336{
5337	struct netdev_adjacent *lower;
5338
5339	lower = list_entry(*iter, struct netdev_adjacent, list);
5340
5341	if (&lower->list == &dev->adj_list.lower)
5342		return NULL;
5343
5344	*iter = lower->list.next;
5345
5346	return lower->private;
5347}
5348EXPORT_SYMBOL(netdev_lower_get_next_private);
5349
5350/**
5351 * netdev_lower_get_next_private_rcu - Get the next ->private from the
5352 *				       lower neighbour list, RCU
5353 *				       variant
5354 * @dev: device
5355 * @iter: list_head ** of the current position
5356 *
5357 * Gets the next netdev_adjacent->private from the dev's lower neighbour
5358 * list, starting from iter position. The caller must hold RCU read lock.
5359 */
5360void *netdev_lower_get_next_private_rcu(struct net_device *dev,
5361					struct list_head **iter)
5362{
5363	struct netdev_adjacent *lower;
5364
5365	WARN_ON_ONCE(!rcu_read_lock_held());
5366
5367	lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
5368
5369	if (&lower->list == &dev->adj_list.lower)
5370		return NULL;
5371
5372	*iter = &lower->list;
5373
5374	return lower->private;
5375}
5376EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
5377
5378/**
5379 * netdev_lower_get_next - Get the next device from the lower neighbour
5380 *                         list
5381 * @dev: device
5382 * @iter: list_head ** of the current position
5383 *
5384 * Gets the next netdev_adjacent from the dev's lower neighbour
5385 * list, starting from iter position. The caller must hold RTNL lock or
5386 * its own locking that guarantees that the neighbour lower
5387 * list will remain unchanged.
5388 */
5389void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
5390{
5391	struct netdev_adjacent *lower;
5392
5393	lower = list_entry(*iter, struct netdev_adjacent, list);
5394
5395	if (&lower->list == &dev->adj_list.lower)
5396		return NULL;
5397
5398	*iter = lower->list.next;
5399
5400	return lower->dev;
5401}
5402EXPORT_SYMBOL(netdev_lower_get_next);
5403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5404/**
5405 * netdev_lower_get_first_private_rcu - Get the first ->private from the
5406 *				       lower neighbour list, RCU
5407 *				       variant
5408 * @dev: device
5409 *
5410 * Gets the first netdev_adjacent->private from the dev's lower neighbour
5411 * list. The caller must hold RCU read lock.
5412 */
5413void *netdev_lower_get_first_private_rcu(struct net_device *dev)
5414{
5415	struct netdev_adjacent *lower;
5416
5417	lower = list_first_or_null_rcu(&dev->adj_list.lower,
5418			struct netdev_adjacent, list);
5419	if (lower)
5420		return lower->private;
5421	return NULL;
5422}
5423EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
5424
5425/**
5426 * netdev_master_upper_dev_get_rcu - Get master upper device
5427 * @dev: device
5428 *
5429 * Find a master upper device and return pointer to it or NULL in case
5430 * it's not there. The caller must hold the RCU read lock.
5431 */
5432struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
5433{
5434	struct netdev_adjacent *upper;
5435
5436	upper = list_first_or_null_rcu(&dev->adj_list.upper,
5437				       struct netdev_adjacent, list);
5438	if (upper && likely(upper->master))
5439		return upper->dev;
5440	return NULL;
5441}
5442EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
5443
5444static int netdev_adjacent_sysfs_add(struct net_device *dev,
5445			      struct net_device *adj_dev,
5446			      struct list_head *dev_list)
5447{
5448	char linkname[IFNAMSIZ+7];
 
5449	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5450		"upper_%s" : "lower_%s", adj_dev->name);
5451	return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
5452				 linkname);
5453}
5454static void netdev_adjacent_sysfs_del(struct net_device *dev,
5455			       char *name,
5456			       struct list_head *dev_list)
5457{
5458	char linkname[IFNAMSIZ+7];
 
5459	sprintf(linkname, dev_list == &dev->adj_list.upper ?
5460		"upper_%s" : "lower_%s", name);
5461	sysfs_remove_link(&(dev->dev.kobj), linkname);
5462}
5463
5464static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
5465						 struct net_device *adj_dev,
5466						 struct list_head *dev_list)
5467{
5468	return (dev_list == &dev->adj_list.upper ||
5469		dev_list == &dev->adj_list.lower) &&
5470		net_eq(dev_net(dev), dev_net(adj_dev));
5471}
5472
5473static int __netdev_adjacent_dev_insert(struct net_device *dev,
5474					struct net_device *adj_dev,
5475					struct list_head *dev_list,
5476					void *private, bool master)
5477{
5478	struct netdev_adjacent *adj;
5479	int ret;
5480
5481	adj = __netdev_find_adj(adj_dev, dev_list);
5482
5483	if (adj) {
5484		adj->ref_nr++;
 
 
 
5485		return 0;
5486	}
5487
5488	adj = kmalloc(sizeof(*adj), GFP_KERNEL);
5489	if (!adj)
5490		return -ENOMEM;
5491
5492	adj->dev = adj_dev;
5493	adj->master = master;
5494	adj->ref_nr = 1;
5495	adj->private = private;
5496	dev_hold(adj_dev);
 
5497
5498	pr_debug("dev_hold for %s, because of link added from %s to %s\n",
5499		 adj_dev->name, dev->name, adj_dev->name);
5500
5501	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
5502		ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
5503		if (ret)
5504			goto free_adj;
5505	}
5506
5507	/* Ensure that master link is always the first item in list. */
5508	if (master) {
5509		ret = sysfs_create_link(&(dev->dev.kobj),
5510					&(adj_dev->dev.kobj), "master");
5511		if (ret)
5512			goto remove_symlinks;
5513
5514		list_add_rcu(&adj->list, dev_list);
5515	} else {
5516		list_add_tail_rcu(&adj->list, dev_list);
5517	}
5518
5519	return 0;
5520
5521remove_symlinks:
5522	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5523		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5524free_adj:
 
5525	kfree(adj);
5526	dev_put(adj_dev);
5527
5528	return ret;
5529}
5530
5531static void __netdev_adjacent_dev_remove(struct net_device *dev,
5532					 struct net_device *adj_dev,
 
5533					 struct list_head *dev_list)
5534{
5535	struct netdev_adjacent *adj;
5536
 
 
 
5537	adj = __netdev_find_adj(adj_dev, dev_list);
5538
5539	if (!adj) {
5540		pr_err("tried to remove device %s from %s\n",
5541		       dev->name, adj_dev->name);
5542		BUG();
 
5543	}
5544
5545	if (adj->ref_nr > 1) {
5546		pr_debug("%s to %s ref_nr-- = %d\n", dev->name, adj_dev->name,
5547			 adj->ref_nr-1);
5548		adj->ref_nr--;
 
5549		return;
5550	}
5551
5552	if (adj->master)
5553		sysfs_remove_link(&(dev->dev.kobj), "master");
5554
5555	if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
5556		netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
5557
5558	list_del_rcu(&adj->list);
5559	pr_debug("dev_put for %s, because link removed from %s to %s\n",
5560		 adj_dev->name, dev->name, adj_dev->name);
5561	dev_put(adj_dev);
5562	kfree_rcu(adj, rcu);
5563}
5564
5565static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
5566					    struct net_device *upper_dev,
5567					    struct list_head *up_list,
5568					    struct list_head *down_list,
5569					    void *private, bool master)
5570{
5571	int ret;
5572
5573	ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list, private,
5574					   master);
5575	if (ret)
5576		return ret;
5577
5578	ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list, private,
5579					   false);
5580	if (ret) {
5581		__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5582		return ret;
5583	}
5584
5585	return 0;
5586}
5587
5588static int __netdev_adjacent_dev_link(struct net_device *dev,
5589				      struct net_device *upper_dev)
5590{
5591	return __netdev_adjacent_dev_link_lists(dev, upper_dev,
5592						&dev->all_adj_list.upper,
5593						&upper_dev->all_adj_list.lower,
5594						NULL, false);
5595}
5596
5597static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
5598					       struct net_device *upper_dev,
 
5599					       struct list_head *up_list,
5600					       struct list_head *down_list)
5601{
5602	__netdev_adjacent_dev_remove(dev, upper_dev, up_list);
5603	__netdev_adjacent_dev_remove(upper_dev, dev, down_list);
5604}
5605
5606static void __netdev_adjacent_dev_unlink(struct net_device *dev,
5607					 struct net_device *upper_dev)
5608{
5609	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5610					   &dev->all_adj_list.upper,
5611					   &upper_dev->all_adj_list.lower);
5612}
5613
5614static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
5615						struct net_device *upper_dev,
5616						void *private, bool master)
5617{
5618	int ret = __netdev_adjacent_dev_link(dev, upper_dev);
5619
5620	if (ret)
5621		return ret;
5622
5623	ret = __netdev_adjacent_dev_link_lists(dev, upper_dev,
5624					       &dev->adj_list.upper,
5625					       &upper_dev->adj_list.lower,
5626					       private, master);
5627	if (ret) {
5628		__netdev_adjacent_dev_unlink(dev, upper_dev);
5629		return ret;
5630	}
5631
5632	return 0;
5633}
5634
5635static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
5636						   struct net_device *upper_dev)
5637{
5638	__netdev_adjacent_dev_unlink(dev, upper_dev);
5639	__netdev_adjacent_dev_unlink_lists(dev, upper_dev,
5640					   &dev->adj_list.upper,
5641					   &upper_dev->adj_list.lower);
5642}
5643
5644static int __netdev_upper_dev_link(struct net_device *dev,
5645				   struct net_device *upper_dev, bool master,
5646				   void *upper_priv, void *upper_info)
5647{
5648	struct netdev_notifier_changeupper_info changeupper_info;
5649	struct netdev_adjacent *i, *j, *to_i, *to_j;
 
 
 
 
 
 
 
 
 
 
 
5650	int ret = 0;
5651
5652	ASSERT_RTNL();
5653
5654	if (dev == upper_dev)
5655		return -EBUSY;
5656
5657	/* To prevent loops, check if dev is not upper device to upper_dev. */
5658	if (__netdev_find_adj(dev, &upper_dev->all_adj_list.upper))
5659		return -EBUSY;
5660
5661	if (__netdev_find_adj(upper_dev, &dev->adj_list.upper))
5662		return -EEXIST;
5663
5664	if (master && netdev_master_upper_dev_get(dev))
5665		return -EBUSY;
5666
5667	changeupper_info.upper_dev = upper_dev;
5668	changeupper_info.master = master;
5669	changeupper_info.linking = true;
5670	changeupper_info.upper_info = upper_info;
 
5671
5672	ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5673					    &changeupper_info.info);
5674	ret = notifier_to_errno(ret);
5675	if (ret)
5676		return ret;
5677
5678	ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
5679						   master);
5680	if (ret)
5681		return ret;
5682
5683	/* Now that we linked these devs, make all the upper_dev's
5684	 * all_adj_list.upper visible to every dev's all_adj_list.lower an
5685	 * versa, and don't forget the devices itself. All of these
5686	 * links are non-neighbours.
5687	 */
5688	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5689		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5690			pr_debug("Interlinking %s with %s, non-neighbour\n",
5691				 i->dev->name, j->dev->name);
5692			ret = __netdev_adjacent_dev_link(i->dev, j->dev);
5693			if (ret)
5694				goto rollback_mesh;
5695		}
5696	}
5697
5698	/* add dev to every upper_dev's upper device */
5699	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5700		pr_debug("linking %s's upper device %s with %s\n",
5701			 upper_dev->name, i->dev->name, dev->name);
5702		ret = __netdev_adjacent_dev_link(dev, i->dev);
5703		if (ret)
5704			goto rollback_upper_mesh;
5705	}
5706
5707	/* add upper_dev to every dev's lower device */
5708	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5709		pr_debug("linking %s's lower device %s with %s\n", dev->name,
5710			 i->dev->name, upper_dev->name);
5711		ret = __netdev_adjacent_dev_link(i->dev, upper_dev);
5712		if (ret)
5713			goto rollback_lower_mesh;
5714	}
5715
5716	ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5717					    &changeupper_info.info);
5718	ret = notifier_to_errno(ret);
5719	if (ret)
5720		goto rollback_lower_mesh;
5721
5722	return 0;
 
5723
5724rollback_lower_mesh:
5725	to_i = i;
5726	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5727		if (i == to_i)
5728			break;
5729		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5730	}
5731
5732	i = NULL;
5733
5734rollback_upper_mesh:
5735	to_i = i;
5736	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list) {
5737		if (i == to_i)
5738			break;
5739		__netdev_adjacent_dev_unlink(dev, i->dev);
5740	}
5741
5742	i = j = NULL;
5743
5744rollback_mesh:
5745	to_i = i;
5746	to_j = j;
5747	list_for_each_entry(i, &dev->all_adj_list.lower, list) {
5748		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list) {
5749			if (i == to_i && j == to_j)
5750				break;
5751			__netdev_adjacent_dev_unlink(i->dev, j->dev);
5752		}
5753		if (i == to_i)
5754			break;
5755	}
5756
 
5757	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
5758
5759	return ret;
5760}
5761
5762/**
5763 * netdev_upper_dev_link - Add a link to the upper device
5764 * @dev: device
5765 * @upper_dev: new upper device
 
5766 *
5767 * Adds a link to device which is upper to this one. The caller must hold
5768 * the RTNL lock. On a failure a negative errno code is returned.
5769 * On success the reference counts are adjusted and the function
5770 * returns zero.
5771 */
5772int netdev_upper_dev_link(struct net_device *dev,
5773			  struct net_device *upper_dev)
 
5774{
5775	return __netdev_upper_dev_link(dev, upper_dev, false, NULL, NULL);
 
 
 
 
 
 
5776}
5777EXPORT_SYMBOL(netdev_upper_dev_link);
5778
5779/**
5780 * netdev_master_upper_dev_link - Add a master link to the upper device
5781 * @dev: device
5782 * @upper_dev: new upper device
5783 * @upper_priv: upper device private
5784 * @upper_info: upper info to be passed down via notifier
 
5785 *
5786 * Adds a link to device which is upper to this one. In this case, only
5787 * one master upper device can be linked, although other non-master devices
5788 * might be linked as well. The caller must hold the RTNL lock.
5789 * On a failure a negative errno code is returned. On success the reference
5790 * counts are adjusted and the function returns zero.
5791 */
5792int netdev_master_upper_dev_link(struct net_device *dev,
5793				 struct net_device *upper_dev,
5794				 void *upper_priv, void *upper_info)
 
5795{
 
 
 
 
 
5796	return __netdev_upper_dev_link(dev, upper_dev, true,
5797				       upper_priv, upper_info);
5798}
5799EXPORT_SYMBOL(netdev_master_upper_dev_link);
5800
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5801/**
5802 * netdev_upper_dev_unlink - Removes a link to upper device
5803 * @dev: device
5804 * @upper_dev: new upper device
5805 *
5806 * Removes a link to device which is upper to this one. The caller must hold
5807 * the RTNL lock.
5808 */
5809void netdev_upper_dev_unlink(struct net_device *dev,
5810			     struct net_device *upper_dev)
5811{
5812	struct netdev_notifier_changeupper_info changeupper_info;
5813	struct netdev_adjacent *i, *j;
5814	ASSERT_RTNL();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5815
5816	changeupper_info.upper_dev = upper_dev;
5817	changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
5818	changeupper_info.linking = false;
5819
5820	call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER, dev,
5821				      &changeupper_info.info);
5822
5823	__netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
 
 
 
5824
5825	/* Here is the tricky part. We must remove all dev's lower
5826	 * devices from all upper_dev's upper devices and vice
5827	 * versa, to maintain the graph relationship.
5828	 */
5829	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5830		list_for_each_entry(j, &upper_dev->all_adj_list.upper, list)
5831			__netdev_adjacent_dev_unlink(i->dev, j->dev);
 
5832
5833	/* remove also the devices itself from lower/upper device
5834	 * list
5835	 */
5836	list_for_each_entry(i, &dev->all_adj_list.lower, list)
5837		__netdev_adjacent_dev_unlink(i->dev, upper_dev);
5838
5839	list_for_each_entry(i, &upper_dev->all_adj_list.upper, list)
5840		__netdev_adjacent_dev_unlink(dev, i->dev);
5841
5842	call_netdevice_notifiers_info(NETDEV_CHANGEUPPER, dev,
5843				      &changeupper_info.info);
5844}
5845EXPORT_SYMBOL(netdev_upper_dev_unlink);
5846
5847/**
5848 * netdev_bonding_info_change - Dispatch event about slave change
5849 * @dev: device
5850 * @bonding_info: info to dispatch
5851 *
5852 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
5853 * The caller must hold the RTNL lock.
5854 */
5855void netdev_bonding_info_change(struct net_device *dev,
5856				struct netdev_bonding_info *bonding_info)
5857{
5858	struct netdev_notifier_bonding_info	info;
 
 
5859
5860	memcpy(&info.bonding_info, bonding_info,
5861	       sizeof(struct netdev_bonding_info));
5862	call_netdevice_notifiers_info(NETDEV_BONDING_INFO, dev,
5863				      &info.info);
5864}
5865EXPORT_SYMBOL(netdev_bonding_info_change);
5866
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5867static void netdev_adjacent_add_links(struct net_device *dev)
5868{
5869	struct netdev_adjacent *iter;
5870
5871	struct net *net = dev_net(dev);
5872
5873	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5874		if (!net_eq(net,dev_net(iter->dev)))
5875			continue;
5876		netdev_adjacent_sysfs_add(iter->dev, dev,
5877					  &iter->dev->adj_list.lower);
5878		netdev_adjacent_sysfs_add(dev, iter->dev,
5879					  &dev->adj_list.upper);
5880	}
5881
5882	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5883		if (!net_eq(net,dev_net(iter->dev)))
5884			continue;
5885		netdev_adjacent_sysfs_add(iter->dev, dev,
5886					  &iter->dev->adj_list.upper);
5887		netdev_adjacent_sysfs_add(dev, iter->dev,
5888					  &dev->adj_list.lower);
5889	}
5890}
5891
5892static void netdev_adjacent_del_links(struct net_device *dev)
5893{
5894	struct netdev_adjacent *iter;
5895
5896	struct net *net = dev_net(dev);
5897
5898	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5899		if (!net_eq(net,dev_net(iter->dev)))
5900			continue;
5901		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5902					  &iter->dev->adj_list.lower);
5903		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5904					  &dev->adj_list.upper);
5905	}
5906
5907	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5908		if (!net_eq(net,dev_net(iter->dev)))
5909			continue;
5910		netdev_adjacent_sysfs_del(iter->dev, dev->name,
5911					  &iter->dev->adj_list.upper);
5912		netdev_adjacent_sysfs_del(dev, iter->dev->name,
5913					  &dev->adj_list.lower);
5914	}
5915}
5916
5917void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
5918{
5919	struct netdev_adjacent *iter;
5920
5921	struct net *net = dev_net(dev);
5922
5923	list_for_each_entry(iter, &dev->adj_list.upper, list) {
5924		if (!net_eq(net,dev_net(iter->dev)))
5925			continue;
5926		netdev_adjacent_sysfs_del(iter->dev, oldname,
5927					  &iter->dev->adj_list.lower);
5928		netdev_adjacent_sysfs_add(iter->dev, dev,
5929					  &iter->dev->adj_list.lower);
5930	}
5931
5932	list_for_each_entry(iter, &dev->adj_list.lower, list) {
5933		if (!net_eq(net,dev_net(iter->dev)))
5934			continue;
5935		netdev_adjacent_sysfs_del(iter->dev, oldname,
5936					  &iter->dev->adj_list.upper);
5937		netdev_adjacent_sysfs_add(iter->dev, dev,
5938					  &iter->dev->adj_list.upper);
5939	}
5940}
5941
5942void *netdev_lower_dev_get_private(struct net_device *dev,
5943				   struct net_device *lower_dev)
5944{
5945	struct netdev_adjacent *lower;
5946
5947	if (!lower_dev)
5948		return NULL;
5949	lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
5950	if (!lower)
5951		return NULL;
5952
5953	return lower->private;
5954}
5955EXPORT_SYMBOL(netdev_lower_dev_get_private);
5956
5957
5958int dev_get_nest_level(struct net_device *dev,
5959		       bool (*type_check)(const struct net_device *dev))
5960{
5961	struct net_device *lower = NULL;
5962	struct list_head *iter;
5963	int max_nest = -1;
5964	int nest;
5965
5966	ASSERT_RTNL();
5967
5968	netdev_for_each_lower_dev(dev, lower, iter) {
5969		nest = dev_get_nest_level(lower, type_check);
5970		if (max_nest < nest)
5971			max_nest = nest;
5972	}
5973
5974	if (type_check(dev))
5975		max_nest++;
5976
5977	return max_nest;
5978}
5979EXPORT_SYMBOL(dev_get_nest_level);
5980
5981/**
5982 * netdev_lower_change - Dispatch event about lower device state change
5983 * @lower_dev: device
5984 * @lower_state_info: state to dispatch
5985 *
5986 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
5987 * The caller must hold the RTNL lock.
5988 */
5989void netdev_lower_state_changed(struct net_device *lower_dev,
5990				void *lower_state_info)
5991{
5992	struct netdev_notifier_changelowerstate_info changelowerstate_info;
 
 
5993
5994	ASSERT_RTNL();
5995	changelowerstate_info.lower_state_info = lower_state_info;
5996	call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE, lower_dev,
5997				      &changelowerstate_info.info);
5998}
5999EXPORT_SYMBOL(netdev_lower_state_changed);
6000
6001static void dev_change_rx_flags(struct net_device *dev, int flags)
6002{
6003	const struct net_device_ops *ops = dev->netdev_ops;
6004
6005	if (ops->ndo_change_rx_flags)
6006		ops->ndo_change_rx_flags(dev, flags);
6007}
6008
6009static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
6010{
6011	unsigned int old_flags = dev->flags;
6012	kuid_t uid;
6013	kgid_t gid;
6014
6015	ASSERT_RTNL();
6016
6017	dev->flags |= IFF_PROMISC;
6018	dev->promiscuity += inc;
6019	if (dev->promiscuity == 0) {
6020		/*
6021		 * Avoid overflow.
6022		 * If inc causes overflow, untouch promisc and return error.
6023		 */
6024		if (inc < 0)
6025			dev->flags &= ~IFF_PROMISC;
6026		else {
6027			dev->promiscuity -= inc;
6028			pr_warn("%s: promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n",
6029				dev->name);
6030			return -EOVERFLOW;
6031		}
6032	}
6033	if (dev->flags != old_flags) {
6034		pr_info("device %s %s promiscuous mode\n",
6035			dev->name,
6036			dev->flags & IFF_PROMISC ? "entered" : "left");
6037		if (audit_enabled) {
6038			current_uid_gid(&uid, &gid);
6039			audit_log(current->audit_context, GFP_ATOMIC,
6040				AUDIT_ANOM_PROMISCUOUS,
6041				"dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
6042				dev->name, (dev->flags & IFF_PROMISC),
6043				(old_flags & IFF_PROMISC),
6044				from_kuid(&init_user_ns, audit_get_loginuid(current)),
6045				from_kuid(&init_user_ns, uid),
6046				from_kgid(&init_user_ns, gid),
6047				audit_get_sessionid(current));
6048		}
6049
6050		dev_change_rx_flags(dev, IFF_PROMISC);
6051	}
6052	if (notify)
6053		__dev_notify_flags(dev, old_flags, IFF_PROMISC);
6054	return 0;
6055}
6056
6057/**
6058 *	dev_set_promiscuity	- update promiscuity count on a device
6059 *	@dev: device
6060 *	@inc: modifier
6061 *
6062 *	Add or remove promiscuity from a device. While the count in the device
6063 *	remains above zero the interface remains promiscuous. Once it hits zero
6064 *	the device reverts back to normal filtering operation. A negative inc
6065 *	value is used to drop promiscuity on the device.
6066 *	Return 0 if successful or a negative errno code on error.
6067 */
6068int dev_set_promiscuity(struct net_device *dev, int inc)
6069{
6070	unsigned int old_flags = dev->flags;
6071	int err;
6072
6073	err = __dev_set_promiscuity(dev, inc, true);
6074	if (err < 0)
6075		return err;
6076	if (dev->flags != old_flags)
6077		dev_set_rx_mode(dev);
6078	return err;
6079}
6080EXPORT_SYMBOL(dev_set_promiscuity);
6081
6082static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
6083{
6084	unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
6085
6086	ASSERT_RTNL();
6087
6088	dev->flags |= IFF_ALLMULTI;
6089	dev->allmulti += inc;
6090	if (dev->allmulti == 0) {
6091		/*
6092		 * Avoid overflow.
6093		 * If inc causes overflow, untouch allmulti and return error.
6094		 */
6095		if (inc < 0)
6096			dev->flags &= ~IFF_ALLMULTI;
6097		else {
6098			dev->allmulti -= inc;
6099			pr_warn("%s: allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n",
6100				dev->name);
6101			return -EOVERFLOW;
6102		}
6103	}
6104	if (dev->flags ^ old_flags) {
 
 
6105		dev_change_rx_flags(dev, IFF_ALLMULTI);
6106		dev_set_rx_mode(dev);
6107		if (notify)
6108			__dev_notify_flags(dev, old_flags,
6109					   dev->gflags ^ old_gflags);
6110	}
6111	return 0;
6112}
6113
6114/**
6115 *	dev_set_allmulti	- update allmulti count on a device
6116 *	@dev: device
6117 *	@inc: modifier
6118 *
6119 *	Add or remove reception of all multicast frames to a device. While the
6120 *	count in the device remains above zero the interface remains listening
6121 *	to all interfaces. Once it hits zero the device reverts back to normal
6122 *	filtering operation. A negative @inc value is used to drop the counter
6123 *	when releasing a resource needing all multicasts.
6124 *	Return 0 if successful or a negative errno code on error.
6125 */
6126
6127int dev_set_allmulti(struct net_device *dev, int inc)
6128{
6129	return __dev_set_allmulti(dev, inc, true);
6130}
6131EXPORT_SYMBOL(dev_set_allmulti);
6132
6133/*
6134 *	Upload unicast and multicast address lists to device and
6135 *	configure RX filtering. When the device doesn't support unicast
6136 *	filtering it is put in promiscuous mode while unicast addresses
6137 *	are present.
6138 */
6139void __dev_set_rx_mode(struct net_device *dev)
6140{
6141	const struct net_device_ops *ops = dev->netdev_ops;
6142
6143	/* dev_open will call this function so the list will stay sane. */
6144	if (!(dev->flags&IFF_UP))
6145		return;
6146
6147	if (!netif_device_present(dev))
6148		return;
6149
6150	if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
6151		/* Unicast addresses changes may only happen under the rtnl,
6152		 * therefore calling __dev_set_promiscuity here is safe.
6153		 */
6154		if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
6155			__dev_set_promiscuity(dev, 1, false);
6156			dev->uc_promisc = true;
6157		} else if (netdev_uc_empty(dev) && dev->uc_promisc) {
6158			__dev_set_promiscuity(dev, -1, false);
6159			dev->uc_promisc = false;
6160		}
6161	}
6162
6163	if (ops->ndo_set_rx_mode)
6164		ops->ndo_set_rx_mode(dev);
6165}
6166
6167void dev_set_rx_mode(struct net_device *dev)
6168{
6169	netif_addr_lock_bh(dev);
6170	__dev_set_rx_mode(dev);
6171	netif_addr_unlock_bh(dev);
6172}
6173
6174/**
6175 *	dev_get_flags - get flags reported to userspace
6176 *	@dev: device
6177 *
6178 *	Get the combination of flag bits exported through APIs to userspace.
6179 */
6180unsigned int dev_get_flags(const struct net_device *dev)
6181{
6182	unsigned int flags;
6183
6184	flags = (dev->flags & ~(IFF_PROMISC |
6185				IFF_ALLMULTI |
6186				IFF_RUNNING |
6187				IFF_LOWER_UP |
6188				IFF_DORMANT)) |
6189		(dev->gflags & (IFF_PROMISC |
6190				IFF_ALLMULTI));
6191
6192	if (netif_running(dev)) {
6193		if (netif_oper_up(dev))
6194			flags |= IFF_RUNNING;
6195		if (netif_carrier_ok(dev))
6196			flags |= IFF_LOWER_UP;
6197		if (netif_dormant(dev))
6198			flags |= IFF_DORMANT;
6199	}
6200
6201	return flags;
6202}
6203EXPORT_SYMBOL(dev_get_flags);
6204
6205int __dev_change_flags(struct net_device *dev, unsigned int flags)
 
6206{
6207	unsigned int old_flags = dev->flags;
6208	int ret;
6209
6210	ASSERT_RTNL();
6211
6212	/*
6213	 *	Set the flags on our device.
6214	 */
6215
6216	dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
6217			       IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
6218			       IFF_AUTOMEDIA)) |
6219		     (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
6220				    IFF_ALLMULTI));
6221
6222	/*
6223	 *	Load in the correct multicast list now the flags have changed.
6224	 */
6225
6226	if ((old_flags ^ flags) & IFF_MULTICAST)
6227		dev_change_rx_flags(dev, IFF_MULTICAST);
6228
6229	dev_set_rx_mode(dev);
6230
6231	/*
6232	 *	Have we downed the interface. We handle IFF_UP ourselves
6233	 *	according to user attempts to set it, rather than blindly
6234	 *	setting it.
6235	 */
6236
6237	ret = 0;
6238	if ((old_flags ^ flags) & IFF_UP)
6239		ret = ((old_flags & IFF_UP) ? __dev_close : __dev_open)(dev);
 
 
 
 
6240
6241	if ((flags ^ dev->gflags) & IFF_PROMISC) {
6242		int inc = (flags & IFF_PROMISC) ? 1 : -1;
6243		unsigned int old_flags = dev->flags;
6244
6245		dev->gflags ^= IFF_PROMISC;
6246
6247		if (__dev_set_promiscuity(dev, inc, false) >= 0)
6248			if (dev->flags != old_flags)
6249				dev_set_rx_mode(dev);
6250	}
6251
6252	/* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
6253	   is important. Some (broken) drivers set IFF_PROMISC, when
6254	   IFF_ALLMULTI is requested not asking us and not reporting.
6255	 */
6256	if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
6257		int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
6258
6259		dev->gflags ^= IFF_ALLMULTI;
6260		__dev_set_allmulti(dev, inc, false);
6261	}
6262
6263	return ret;
6264}
6265
6266void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
6267			unsigned int gchanges)
 
6268{
6269	unsigned int changes = dev->flags ^ old_flags;
6270
6271	if (gchanges)
6272		rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC);
6273
6274	if (changes & IFF_UP) {
6275		if (dev->flags & IFF_UP)
6276			call_netdevice_notifiers(NETDEV_UP, dev);
6277		else
6278			call_netdevice_notifiers(NETDEV_DOWN, dev);
6279	}
6280
6281	if (dev->flags & IFF_UP &&
6282	    (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
6283		struct netdev_notifier_change_info change_info;
 
 
 
 
 
6284
6285		change_info.flags_changed = changes;
6286		call_netdevice_notifiers_info(NETDEV_CHANGE, dev,
6287					      &change_info.info);
6288	}
6289}
6290
6291/**
6292 *	dev_change_flags - change device settings
6293 *	@dev: device
6294 *	@flags: device state flags
 
6295 *
6296 *	Change settings on device based state flags. The flags are
6297 *	in the userspace exported format.
6298 */
6299int dev_change_flags(struct net_device *dev, unsigned int flags)
 
6300{
6301	int ret;
6302	unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
6303
6304	ret = __dev_change_flags(dev, flags);
6305	if (ret < 0)
6306		return ret;
6307
6308	changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
6309	__dev_notify_flags(dev, old_flags, changes);
6310	return ret;
6311}
6312EXPORT_SYMBOL(dev_change_flags);
6313
6314static int __dev_set_mtu(struct net_device *dev, int new_mtu)
6315{
6316	const struct net_device_ops *ops = dev->netdev_ops;
6317
6318	if (ops->ndo_change_mtu)
6319		return ops->ndo_change_mtu(dev, new_mtu);
6320
6321	dev->mtu = new_mtu;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6322	return 0;
6323}
6324
6325/**
6326 *	dev_set_mtu - Change maximum transfer unit
6327 *	@dev: device
6328 *	@new_mtu: new transfer unit
 
6329 *
6330 *	Change the maximum transfer size of the network device.
6331 */
6332int dev_set_mtu(struct net_device *dev, int new_mtu)
 
6333{
6334	int err, orig_mtu;
6335
6336	if (new_mtu == dev->mtu)
6337		return 0;
6338
6339	/*	MTU must be positive.	 */
6340	if (new_mtu < 0)
6341		return -EINVAL;
6342
6343	if (!netif_device_present(dev))
6344		return -ENODEV;
6345
6346	err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
6347	err = notifier_to_errno(err);
6348	if (err)
6349		return err;
6350
6351	orig_mtu = dev->mtu;
6352	err = __dev_set_mtu(dev, new_mtu);
6353
6354	if (!err) {
6355		err = call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
 
6356		err = notifier_to_errno(err);
6357		if (err) {
6358			/* setting mtu back and notifying everyone again,
6359			 * so that they have a chance to revert changes.
6360			 */
6361			__dev_set_mtu(dev, orig_mtu);
6362			call_netdevice_notifiers(NETDEV_CHANGEMTU, dev);
 
6363		}
6364	}
6365	return err;
6366}
 
 
 
 
 
 
 
 
 
 
 
 
6367EXPORT_SYMBOL(dev_set_mtu);
6368
6369/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6370 *	dev_set_group - Change group this device belongs to
6371 *	@dev: device
6372 *	@new_group: group this device should belong to
6373 */
6374void dev_set_group(struct net_device *dev, int new_group)
6375{
6376	dev->group = new_group;
6377}
6378EXPORT_SYMBOL(dev_set_group);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6379
6380/**
6381 *	dev_set_mac_address - Change Media Access Control Address
6382 *	@dev: device
6383 *	@sa: new address
 
6384 *
6385 *	Change the hardware (MAC) address of the device
6386 */
6387int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa)
 
6388{
6389	const struct net_device_ops *ops = dev->netdev_ops;
6390	int err;
6391
6392	if (!ops->ndo_set_mac_address)
6393		return -EOPNOTSUPP;
6394	if (sa->sa_family != dev->type)
6395		return -EINVAL;
6396	if (!netif_device_present(dev))
6397		return -ENODEV;
6398	err = ops->ndo_set_mac_address(dev, sa);
6399	if (err)
6400		return err;
 
 
 
 
 
6401	dev->addr_assign_type = NET_ADDR_SET;
6402	call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
6403	add_device_randomness(dev->dev_addr, dev->addr_len);
6404	return 0;
6405}
6406EXPORT_SYMBOL(dev_set_mac_address);
6407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6408/**
6409 *	dev_change_carrier - Change device carrier
6410 *	@dev: device
6411 *	@new_carrier: new value
6412 *
6413 *	Change device carrier
6414 */
6415int dev_change_carrier(struct net_device *dev, bool new_carrier)
6416{
6417	const struct net_device_ops *ops = dev->netdev_ops;
6418
6419	if (!ops->ndo_change_carrier)
6420		return -EOPNOTSUPP;
6421	if (!netif_device_present(dev))
6422		return -ENODEV;
6423	return ops->ndo_change_carrier(dev, new_carrier);
6424}
6425EXPORT_SYMBOL(dev_change_carrier);
6426
6427/**
6428 *	dev_get_phys_port_id - Get device physical port ID
6429 *	@dev: device
6430 *	@ppid: port ID
6431 *
6432 *	Get device physical port ID
6433 */
6434int dev_get_phys_port_id(struct net_device *dev,
6435			 struct netdev_phys_item_id *ppid)
6436{
6437	const struct net_device_ops *ops = dev->netdev_ops;
6438
6439	if (!ops->ndo_get_phys_port_id)
6440		return -EOPNOTSUPP;
6441	return ops->ndo_get_phys_port_id(dev, ppid);
6442}
6443EXPORT_SYMBOL(dev_get_phys_port_id);
6444
6445/**
6446 *	dev_get_phys_port_name - Get device physical port name
6447 *	@dev: device
6448 *	@name: port name
6449 *	@len: limit of bytes to copy to name
6450 *
6451 *	Get device physical port name
6452 */
6453int dev_get_phys_port_name(struct net_device *dev,
6454			   char *name, size_t len)
6455{
6456	const struct net_device_ops *ops = dev->netdev_ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6457
6458	if (!ops->ndo_get_phys_port_name)
6459		return -EOPNOTSUPP;
6460	return ops->ndo_get_phys_port_name(dev, name, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6461}
6462EXPORT_SYMBOL(dev_get_phys_port_name);
6463
6464/**
6465 *	dev_change_proto_down - update protocol port state information
 
6466 *	@dev: device
6467 *	@proto_down: new value
6468 *
6469 *	This info can be used by switch drivers to set the phys state of the
6470 *	port.
6471 */
6472int dev_change_proto_down(struct net_device *dev, bool proto_down)
6473{
6474	const struct net_device_ops *ops = dev->netdev_ops;
6475
6476	if (!ops->ndo_change_proto_down)
6477		return -EOPNOTSUPP;
6478	if (!netif_device_present(dev))
6479		return -ENODEV;
6480	return ops->ndo_change_proto_down(dev, proto_down);
 
 
 
 
 
6481}
6482EXPORT_SYMBOL(dev_change_proto_down);
6483
6484/**
6485 *	dev_new_index	-	allocate an ifindex
6486 *	@net: the applicable net namespace
6487 *
6488 *	Returns a suitable unique value for a new device interface
6489 *	number.  The caller must hold the rtnl semaphore or the
6490 *	dev_base_lock to be sure it remains unique.
6491 */
6492static int dev_new_index(struct net *net)
 
6493{
6494	int ifindex = net->ifindex;
6495	for (;;) {
6496		if (++ifindex <= 0)
6497			ifindex = 1;
6498		if (!__dev_get_by_index(net, ifindex))
6499			return net->ifindex = ifindex;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6500	}
6501}
6502
6503/* Delayed registration/unregisteration */
6504static LIST_HEAD(net_todo_list);
6505DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6506
6507static void net_set_todo(struct net_device *dev)
 
 
6508{
6509	list_add_tail(&dev->todo_list, &net_todo_list);
6510	dev_net(dev)->dev_unreg_count++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6511}
6512
6513static void rollback_registered_many(struct list_head *head)
6514{
6515	struct net_device *dev, *tmp;
6516	LIST_HEAD(close_head);
 
 
6517
6518	BUG_ON(dev_boot_phase);
6519	ASSERT_RTNL();
6520
6521	list_for_each_entry_safe(dev, tmp, head, unreg_list) {
6522		/* Some devices call without registering
6523		 * for initialization unwind. Remove those
6524		 * devices and proceed with the remaining.
6525		 */
6526		if (dev->reg_state == NETREG_UNINITIALIZED) {
6527			pr_debug("unregister_netdevice: device %s/%p never was registered\n",
6528				 dev->name, dev);
6529
6530			WARN_ON(1);
6531			list_del(&dev->unreg_list);
6532			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6533		}
6534		dev->dismantle = true;
6535		BUG_ON(dev->reg_state != NETREG_REGISTERED);
6536	}
6537
6538	/* If device is running, close it first. */
6539	list_for_each_entry(dev, head, unreg_list)
6540		list_add_tail(&dev->close_list, &close_head);
6541	dev_close_many(&close_head, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6542
6543	list_for_each_entry(dev, head, unreg_list) {
6544		/* And unlink it from device chain. */
6545		unlist_netdevice(dev);
6546
6547		dev->reg_state = NETREG_UNREGISTERING;
6548		on_each_cpu(flush_backlog, dev, 1);
 
 
6549	}
6550
6551	synchronize_net();
 
6552
6553	list_for_each_entry(dev, head, unreg_list) {
6554		struct sk_buff *skb = NULL;
 
 
 
 
6555
6556		/* Shutdown queueing discipline. */
6557		dev_shutdown(dev);
 
 
6558
 
 
6559
6560		/* Notify protocols, that we are about to destroy
6561		   this device. They should clean all the things.
6562		*/
6563		call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
6564
6565		if (!dev->rtnl_link_ops ||
6566		    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
6567			skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U,
6568						     GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
6569
6570		/*
6571		 *	Flush the unicast and multicast chains
6572		 */
6573		dev_uc_flush(dev);
6574		dev_mc_flush(dev);
6575
6576		if (dev->netdev_ops->ndo_uninit)
6577			dev->netdev_ops->ndo_uninit(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6578
6579		if (skb)
6580			rtmsg_ifinfo_send(skb, dev, GFP_KERNEL);
 
 
 
 
 
 
 
6581
6582		/* Notifier chain MUST detach us all upper devices. */
6583		WARN_ON(netdev_has_any_upper_dev(dev));
 
 
 
 
 
 
 
 
 
 
 
 
6584
6585		/* Remove entries from kobject tree */
6586		netdev_unregister_kobject(dev);
6587#ifdef CONFIG_XPS
6588		/* Remove XPS queueing entries */
6589		netif_reset_xps_queues_gt(dev, 0);
6590#endif
6591	}
6592
6593	synchronize_net();
 
 
 
 
 
 
6594
6595	list_for_each_entry(dev, head, unreg_list)
6596		dev_put(dev);
6597}
6598
6599static void rollback_registered(struct net_device *dev)
6600{
6601	LIST_HEAD(single);
 
 
 
 
 
 
 
6602
6603	list_add(&dev->unreg_list, &single);
6604	rollback_registered_many(&single);
6605	list_del(&single);
6606}
6607
6608static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
6609	struct net_device *upper, netdev_features_t features)
6610{
6611	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6612	netdev_features_t feature;
6613	int feature_bit;
6614
6615	for_each_netdev_feature(&upper_disables, feature_bit) {
6616		feature = __NETIF_F_BIT(feature_bit);
6617		if (!(upper->wanted_features & feature)
6618		    && (features & feature)) {
6619			netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
6620				   &feature, upper->name);
6621			features &= ~feature;
6622		}
6623	}
6624
6625	return features;
6626}
6627
6628static void netdev_sync_lower_features(struct net_device *upper,
6629	struct net_device *lower, netdev_features_t features)
6630{
6631	netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
6632	netdev_features_t feature;
6633	int feature_bit;
6634
6635	for_each_netdev_feature(&upper_disables, feature_bit) {
6636		feature = __NETIF_F_BIT(feature_bit);
6637		if (!(features & feature) && (lower->features & feature)) {
6638			netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
6639				   &feature, lower->name);
6640			lower->wanted_features &= ~feature;
6641			netdev_update_features(lower);
6642
6643			if (unlikely(lower->features & feature))
6644				netdev_WARN(upper, "failed to disable %pNF on %s!\n",
6645					    &feature, lower->name);
 
 
6646		}
6647	}
6648}
6649
6650static netdev_features_t netdev_fix_features(struct net_device *dev,
6651	netdev_features_t features)
6652{
6653	/* Fix illegal checksum combinations */
6654	if ((features & NETIF_F_HW_CSUM) &&
6655	    (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
6656		netdev_warn(dev, "mixed HW and IP checksum settings.\n");
6657		features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
6658	}
6659
6660	/* TSO requires that SG is present as well. */
6661	if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
6662		netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
6663		features &= ~NETIF_F_ALL_TSO;
6664	}
6665
6666	if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
6667					!(features & NETIF_F_IP_CSUM)) {
6668		netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
6669		features &= ~NETIF_F_TSO;
6670		features &= ~NETIF_F_TSO_ECN;
6671	}
6672
6673	if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
6674					 !(features & NETIF_F_IPV6_CSUM)) {
6675		netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
6676		features &= ~NETIF_F_TSO6;
6677	}
6678
 
 
 
 
6679	/* TSO ECN requires that TSO is present as well. */
6680	if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
6681		features &= ~NETIF_F_TSO_ECN;
6682
6683	/* Software GSO depends on SG. */
6684	if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
6685		netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
6686		features &= ~NETIF_F_GSO;
6687	}
6688
6689	/* UFO needs SG and checksumming */
6690	if (features & NETIF_F_UFO) {
6691		/* maybe split UFO into V4 and V6? */
6692		if (!(features & NETIF_F_HW_CSUM) &&
6693		    ((features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) !=
6694		     (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM))) {
6695			netdev_dbg(dev,
6696				"Dropping NETIF_F_UFO since no checksum offload features.\n");
6697			features &= ~NETIF_F_UFO;
6698		}
6699
6700		if (!(features & NETIF_F_SG)) {
6701			netdev_dbg(dev,
6702				"Dropping NETIF_F_UFO since no NETIF_F_SG feature.\n");
6703			features &= ~NETIF_F_UFO;
 
 
6704		}
6705	}
6706
6707#ifdef CONFIG_NET_RX_BUSY_POLL
6708	if (dev->netdev_ops->ndo_busy_poll)
6709		features |= NETIF_F_BUSY_POLL;
6710	else
6711#endif
6712		features &= ~NETIF_F_BUSY_POLL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6713
6714	return features;
6715}
6716
6717int __netdev_update_features(struct net_device *dev)
6718{
6719	struct net_device *upper, *lower;
6720	netdev_features_t features;
6721	struct list_head *iter;
6722	int err = -1;
6723
6724	ASSERT_RTNL();
6725
6726	features = netdev_get_wanted_features(dev);
6727
6728	if (dev->netdev_ops->ndo_fix_features)
6729		features = dev->netdev_ops->ndo_fix_features(dev, features);
6730
6731	/* driver might be less strict about feature dependencies */
6732	features = netdev_fix_features(dev, features);
6733
6734	/* some features can't be enabled if they're off an an upper device */
6735	netdev_for_each_upper_dev_rcu(dev, upper, iter)
6736		features = netdev_sync_upper_features(dev, upper, features);
6737
6738	if (dev->features == features)
6739		goto sync_lower;
6740
6741	netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
6742		&dev->features, &features);
6743
6744	if (dev->netdev_ops->ndo_set_features)
6745		err = dev->netdev_ops->ndo_set_features(dev, features);
6746	else
6747		err = 0;
6748
6749	if (unlikely(err < 0)) {
6750		netdev_err(dev,
6751			"set_features() failed (%d); wanted %pNF, left %pNF\n",
6752			err, &features, &dev->features);
6753		/* return non-0 since some features might have changed and
6754		 * it's better to fire a spurious notification than miss it
6755		 */
6756		return -1;
6757	}
6758
6759sync_lower:
6760	/* some features must be disabled on lower devices when disabled
6761	 * on an upper device (think: bonding master or bridge)
6762	 */
6763	netdev_for_each_lower_dev(dev, lower, iter)
6764		netdev_sync_lower_features(dev, lower, features);
6765
6766	if (!err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6767		dev->features = features;
 
6768
6769	return err < 0 ? 0 : 1;
6770}
6771
6772/**
6773 *	netdev_update_features - recalculate device features
6774 *	@dev: the device to check
6775 *
6776 *	Recalculate dev->features set and send notifications if it
6777 *	has changed. Should be called after driver or hardware dependent
6778 *	conditions might have changed that influence the features.
6779 */
6780void netdev_update_features(struct net_device *dev)
6781{
6782	if (__netdev_update_features(dev))
6783		netdev_features_change(dev);
6784}
6785EXPORT_SYMBOL(netdev_update_features);
6786
6787/**
6788 *	netdev_change_features - recalculate device features
6789 *	@dev: the device to check
6790 *
6791 *	Recalculate dev->features set and send notifications even
6792 *	if they have not changed. Should be called instead of
6793 *	netdev_update_features() if also dev->vlan_features might
6794 *	have changed to allow the changes to be propagated to stacked
6795 *	VLAN devices.
6796 */
6797void netdev_change_features(struct net_device *dev)
6798{
6799	__netdev_update_features(dev);
6800	netdev_features_change(dev);
6801}
6802EXPORT_SYMBOL(netdev_change_features);
6803
6804/**
6805 *	netif_stacked_transfer_operstate -	transfer operstate
6806 *	@rootdev: the root or lower level device to transfer state from
6807 *	@dev: the device to transfer operstate to
6808 *
6809 *	Transfer operational state from root to device. This is normally
6810 *	called when a stacking relationship exists between the root
6811 *	device and the device(a leaf device).
6812 */
6813void netif_stacked_transfer_operstate(const struct net_device *rootdev,
6814					struct net_device *dev)
6815{
6816	if (rootdev->operstate == IF_OPER_DORMANT)
6817		netif_dormant_on(dev);
6818	else
6819		netif_dormant_off(dev);
6820
6821	if (netif_carrier_ok(rootdev)) {
6822		if (!netif_carrier_ok(dev))
6823			netif_carrier_on(dev);
6824	} else {
6825		if (netif_carrier_ok(dev))
6826			netif_carrier_off(dev);
6827	}
 
 
6828}
6829EXPORT_SYMBOL(netif_stacked_transfer_operstate);
6830
6831#ifdef CONFIG_SYSFS
6832static int netif_alloc_rx_queues(struct net_device *dev)
6833{
6834	unsigned int i, count = dev->num_rx_queues;
6835	struct netdev_rx_queue *rx;
6836	size_t sz = count * sizeof(*rx);
 
6837
6838	BUG_ON(count < 1);
6839
6840	rx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6841	if (!rx) {
6842		rx = vzalloc(sz);
6843		if (!rx)
6844			return -ENOMEM;
6845	}
6846	dev->_rx = rx;
6847
6848	for (i = 0; i < count; i++)
6849		rx[i].dev = dev;
 
 
 
 
 
 
6850	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6851}
6852#endif
6853
6854static void netdev_init_one_queue(struct net_device *dev,
6855				  struct netdev_queue *queue, void *_unused)
6856{
6857	/* Initialize queue lock */
6858	spin_lock_init(&queue->_xmit_lock);
6859	netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
6860	queue->xmit_lock_owner = -1;
6861	netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
6862	queue->dev = dev;
6863#ifdef CONFIG_BQL
6864	dql_init(&queue->dql, HZ);
6865#endif
6866}
6867
6868static void netif_free_tx_queues(struct net_device *dev)
6869{
6870	kvfree(dev->_tx);
6871}
6872
6873static int netif_alloc_netdev_queues(struct net_device *dev)
6874{
6875	unsigned int count = dev->num_tx_queues;
6876	struct netdev_queue *tx;
6877	size_t sz = count * sizeof(*tx);
6878
6879	if (count < 1 || count > 0xffff)
6880		return -EINVAL;
6881
6882	tx = kzalloc(sz, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
6883	if (!tx) {
6884		tx = vzalloc(sz);
6885		if (!tx)
6886			return -ENOMEM;
6887	}
6888	dev->_tx = tx;
6889
6890	netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
6891	spin_lock_init(&dev->tx_global_lock);
6892
6893	return 0;
6894}
6895
6896void netif_tx_stop_all_queues(struct net_device *dev)
6897{
6898	unsigned int i;
6899
6900	for (i = 0; i < dev->num_tx_queues; i++) {
6901		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
 
6902		netif_tx_stop_queue(txq);
6903	}
6904}
6905EXPORT_SYMBOL(netif_tx_stop_all_queues);
6906
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6907/**
6908 *	register_netdevice	- register a network device
6909 *	@dev: device to register
6910 *
6911 *	Take a completed network device structure and add it to the kernel
6912 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
6913 *	chain. 0 is returned on success. A negative errno code is returned
6914 *	on a failure to set up the device, or if the name is a duplicate.
6915 *
6916 *	Callers must hold the rtnl semaphore. You may want
6917 *	register_netdev() instead of this.
6918 *
6919 *	BUGS:
6920 *	The locking appears insufficient to guarantee two parallel registers
6921 *	will not get the same name.
6922 */
6923
6924int register_netdevice(struct net_device *dev)
6925{
6926	int ret;
6927	struct net *net = dev_net(dev);
6928
 
 
6929	BUG_ON(dev_boot_phase);
6930	ASSERT_RTNL();
6931
6932	might_sleep();
6933
6934	/* When net_device's are persistent, this will be fatal. */
6935	BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
6936	BUG_ON(!net);
6937
 
 
 
 
6938	spin_lock_init(&dev->addr_list_lock);
6939	netdev_set_addr_lockdep_class(dev);
6940
6941	ret = dev_get_valid_name(net, dev, dev->name);
6942	if (ret < 0)
6943		goto out;
6944
 
 
 
 
 
6945	/* Init, if this function is available */
6946	if (dev->netdev_ops->ndo_init) {
6947		ret = dev->netdev_ops->ndo_init(dev);
6948		if (ret) {
6949			if (ret > 0)
6950				ret = -EIO;
6951			goto out;
6952		}
6953	}
6954
6955	if (((dev->hw_features | dev->features) &
6956	     NETIF_F_HW_VLAN_CTAG_FILTER) &&
6957	    (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
6958	     !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
6959		netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
6960		ret = -EINVAL;
6961		goto err_uninit;
6962	}
6963
6964	ret = -EBUSY;
6965	if (!dev->ifindex)
6966		dev->ifindex = dev_new_index(net);
6967	else if (__dev_get_by_index(net, dev->ifindex))
6968		goto err_uninit;
6969
 
 
 
 
 
6970	/* Transfer changeable features to wanted_features and enable
6971	 * software offloads (GSO and GRO).
6972	 */
6973	dev->hw_features |= NETIF_F_SOFT_FEATURES;
6974	dev->features |= NETIF_F_SOFT_FEATURES;
 
 
 
 
 
 
6975	dev->wanted_features = dev->features & dev->hw_features;
6976
6977	if (!(dev->flags & IFF_LOOPBACK)) {
6978		dev->hw_features |= NETIF_F_NOCACHE_COPY;
6979	}
 
 
 
 
 
 
 
 
 
 
 
 
 
6980
6981	/* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
6982	 */
6983	dev->vlan_features |= NETIF_F_HIGHDMA;
6984
6985	/* Make NETIF_F_SG inheritable to tunnel devices.
6986	 */
6987	dev->hw_enc_features |= NETIF_F_SG;
6988
6989	/* Make NETIF_F_SG inheritable to MPLS.
6990	 */
6991	dev->mpls_features |= NETIF_F_SG;
6992
6993	ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
6994	ret = notifier_to_errno(ret);
6995	if (ret)
6996		goto err_uninit;
6997
6998	ret = netdev_register_kobject(dev);
 
 
 
6999	if (ret)
7000		goto err_uninit;
7001	dev->reg_state = NETREG_REGISTERED;
7002
7003	__netdev_update_features(dev);
7004
7005	/*
7006	 *	Default initial state at registry is that the
7007	 *	device is present.
7008	 */
7009
7010	set_bit(__LINK_STATE_PRESENT, &dev->state);
7011
7012	linkwatch_init_dev(dev);
7013
7014	dev_init_scheduler(dev);
7015	dev_hold(dev);
 
7016	list_netdevice(dev);
 
7017	add_device_randomness(dev->dev_addr, dev->addr_len);
7018
7019	/* If the device has permanent device address, driver should
7020	 * set dev_addr and also addr_assign_type should be set to
7021	 * NET_ADDR_PERM (default value).
7022	 */
7023	if (dev->addr_assign_type == NET_ADDR_PERM)
7024		memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
7025
7026	/* Notify protocols, that a new device appeared. */
7027	ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
7028	ret = notifier_to_errno(ret);
7029	if (ret) {
7030		rollback_registered(dev);
7031		dev->reg_state = NETREG_UNREGISTERED;
 
 
7032	}
7033	/*
7034	 *	Prevent userspace races by waiting until the network
7035	 *	device is fully setup before sending notifications.
7036	 */
7037	if (!dev->rtnl_link_ops ||
7038	    dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
7039		rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7040
7041out:
7042	return ret;
7043
 
 
 
 
 
 
7044err_uninit:
7045	if (dev->netdev_ops->ndo_uninit)
7046		dev->netdev_ops->ndo_uninit(dev);
 
 
 
 
7047	goto out;
7048}
7049EXPORT_SYMBOL(register_netdevice);
7050
7051/**
7052 *	init_dummy_netdev	- init a dummy network device for NAPI
7053 *	@dev: device to init
7054 *
7055 *	This takes a network device structure and initialize the minimum
7056 *	amount of fields so it can be used to schedule NAPI polls without
7057 *	registering a full blown interface. This is to be used by drivers
7058 *	that need to tie several hardware interfaces to a single NAPI
7059 *	poll scheduler due to HW limitations.
7060 */
7061int init_dummy_netdev(struct net_device *dev)
7062{
7063	/* Clear everything. Note we don't initialize spinlocks
7064	 * are they aren't supposed to be taken by any of the
7065	 * NAPI code and this dummy netdev is supposed to be
7066	 * only ever used for NAPI polls
7067	 */
7068	memset(dev, 0, sizeof(struct net_device));
7069
7070	/* make sure we BUG if trying to hit standard
7071	 * register/unregister code path
7072	 */
7073	dev->reg_state = NETREG_DUMMY;
7074
7075	/* NAPI wants this */
7076	INIT_LIST_HEAD(&dev->napi_list);
7077
7078	/* a dummy interface is started by default */
7079	set_bit(__LINK_STATE_PRESENT, &dev->state);
7080	set_bit(__LINK_STATE_START, &dev->state);
7081
 
 
 
7082	/* Note : We dont allocate pcpu_refcnt for dummy devices,
7083	 * because users of this 'device' dont need to change
7084	 * its refcount.
7085	 */
7086
7087	return 0;
7088}
7089EXPORT_SYMBOL_GPL(init_dummy_netdev);
7090
7091
7092/**
7093 *	register_netdev	- register a network device
7094 *	@dev: device to register
7095 *
7096 *	Take a completed network device structure and add it to the kernel
7097 *	interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
7098 *	chain. 0 is returned on success. A negative errno code is returned
7099 *	on a failure to set up the device, or if the name is a duplicate.
7100 *
7101 *	This is a wrapper around register_netdevice that takes the rtnl semaphore
7102 *	and expands the device name if you passed a format string to
7103 *	alloc_netdev.
7104 */
7105int register_netdev(struct net_device *dev)
7106{
7107	int err;
7108
7109	rtnl_lock();
 
7110	err = register_netdevice(dev);
7111	rtnl_unlock();
7112	return err;
7113}
7114EXPORT_SYMBOL(register_netdev);
7115
7116int netdev_refcnt_read(const struct net_device *dev)
7117{
 
7118	int i, refcnt = 0;
7119
7120	for_each_possible_cpu(i)
7121		refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
7122	return refcnt;
 
 
 
7123}
7124EXPORT_SYMBOL(netdev_refcnt_read);
7125
 
 
 
 
7126/**
7127 * netdev_wait_allrefs - wait until all references are gone.
7128 * @dev: target net_device
7129 *
7130 * This is called when unregistering network devices.
7131 *
7132 * Any protocol or device that holds a reference should register
7133 * for netdevice notification, and cleanup and put back the
7134 * reference if they receive an UNREGISTER event.
7135 * We can get stuck here if buggy protocols don't correctly
7136 * call dev_put.
7137 */
7138static void netdev_wait_allrefs(struct net_device *dev)
7139{
7140	unsigned long rebroadcast_time, warning_time;
7141	int refcnt;
 
7142
7143	linkwatch_forget_dev(dev);
7144
7145	rebroadcast_time = warning_time = jiffies;
7146	refcnt = netdev_refcnt_read(dev);
 
7147
7148	while (refcnt != 0) {
7149		if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
7150			rtnl_lock();
7151
7152			/* Rebroadcast unregister notification */
7153			call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
 
7154
7155			__rtnl_unlock();
7156			rcu_barrier();
7157			rtnl_lock();
7158
7159			call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7160			if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
7161				     &dev->state)) {
7162				/* We must not have linkwatch events
7163				 * pending on unregister. If this
7164				 * happens, we simply run the queue
7165				 * unscheduled, resulting in a noop
7166				 * for this device.
7167				 */
7168				linkwatch_run_queue();
7169			}
 
7170
7171			__rtnl_unlock();
7172
7173			rebroadcast_time = jiffies;
7174		}
7175
7176		msleep(250);
7177
7178		refcnt = netdev_refcnt_read(dev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7179
7180		if (time_after(jiffies, warning_time + 10 * HZ)) {
7181			pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
7182				 dev->name, refcnt);
7183			warning_time = jiffies;
7184		}
7185	}
7186}
7187
7188/* The sequence is:
7189 *
7190 *	rtnl_lock();
7191 *	...
7192 *	register_netdevice(x1);
7193 *	register_netdevice(x2);
7194 *	...
7195 *	unregister_netdevice(y1);
7196 *	unregister_netdevice(y2);
7197 *      ...
7198 *	rtnl_unlock();
7199 *	free_netdev(y1);
7200 *	free_netdev(y2);
7201 *
7202 * We are invoked by rtnl_unlock().
7203 * This allows us to deal with problems:
7204 * 1) We can delete sysfs objects which invoke hotplug
7205 *    without deadlocking with linkwatch via keventd.
7206 * 2) Since we run with the RTNL semaphore not held, we can sleep
7207 *    safely in order to wait for the netdev refcnt to drop to zero.
7208 *
7209 * We must not return until all unregister events added during
7210 * the interval the lock was held have been completed.
7211 */
7212void netdev_run_todo(void)
7213{
 
7214	struct list_head list;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7215
7216	/* Snapshot list, allow later requests */
7217	list_replace_init(&net_todo_list, &list);
7218
7219	__rtnl_unlock();
7220
7221
7222	/* Wait for rcu callbacks to finish before next phase */
7223	if (!list_empty(&list))
7224		rcu_barrier();
7225
7226	while (!list_empty(&list)) {
7227		struct net_device *dev
7228			= list_first_entry(&list, struct net_device, todo_list);
7229		list_del(&dev->todo_list);
7230
7231		rtnl_lock();
7232		call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7233		__rtnl_unlock();
7234
7235		if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
7236			pr_err("network todo '%s' but state %d\n",
7237			       dev->name, dev->reg_state);
7238			dump_stack();
7239			continue;
7240		}
7241
7242		dev->reg_state = NETREG_UNREGISTERED;
 
 
7243
7244		netdev_wait_allrefs(dev);
 
 
 
7245
7246		/* paranoia */
7247		BUG_ON(netdev_refcnt_read(dev));
7248		BUG_ON(!list_empty(&dev->ptype_all));
7249		BUG_ON(!list_empty(&dev->ptype_specific));
7250		WARN_ON(rcu_access_pointer(dev->ip_ptr));
7251		WARN_ON(rcu_access_pointer(dev->ip6_ptr));
7252		WARN_ON(dev->dn_ptr);
7253
7254		if (dev->destructor)
7255			dev->destructor(dev);
 
 
 
7256
7257		/* Report a network device has been unregistered */
7258		rtnl_lock();
7259		dev_net(dev)->dev_unreg_count--;
7260		__rtnl_unlock();
7261		wake_up(&netdev_unregistering_wq);
7262
7263		/* Free network device */
7264		kobject_put(&dev->dev.kobj);
7265	}
 
 
7266}
7267
7268/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
7269 * all the same fields in the same order as net_device_stats, with only
7270 * the type differing, but rtnl_link_stats64 may have additional fields
7271 * at the end for newer counters.
7272 */
7273void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
7274			     const struct net_device_stats *netdev_stats)
7275{
7276#if BITS_PER_LONG == 64
7277	BUILD_BUG_ON(sizeof(*stats64) < sizeof(*netdev_stats));
7278	memcpy(stats64, netdev_stats, sizeof(*stats64));
7279	/* zero out counters that only exist in rtnl_link_stats64 */
7280	memset((char *)stats64 + sizeof(*netdev_stats), 0,
7281	       sizeof(*stats64) - sizeof(*netdev_stats));
7282#else
7283	size_t i, n = sizeof(*netdev_stats) / sizeof(unsigned long);
7284	const unsigned long *src = (const unsigned long *)netdev_stats;
7285	u64 *dst = (u64 *)stats64;
7286
7287	BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
7288	for (i = 0; i < n; i++)
7289		dst[i] = src[i];
7290	/* zero out counters that only exist in rtnl_link_stats64 */
7291	memset((char *)stats64 + n * sizeof(u64), 0,
7292	       sizeof(*stats64) - n * sizeof(u64));
7293#endif
7294}
7295EXPORT_SYMBOL(netdev_stats_to_stats64);
7296
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7297/**
7298 *	dev_get_stats	- get network device statistics
7299 *	@dev: device to get statistics from
7300 *	@storage: place to store stats
7301 *
7302 *	Get network statistics from device. Return @storage.
7303 *	The device driver may provide its own method by setting
7304 *	dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
7305 *	otherwise the internal statistics structure is used.
7306 */
7307struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
7308					struct rtnl_link_stats64 *storage)
7309{
7310	const struct net_device_ops *ops = dev->netdev_ops;
 
7311
7312	if (ops->ndo_get_stats64) {
7313		memset(storage, 0, sizeof(*storage));
7314		ops->ndo_get_stats64(dev, storage);
7315	} else if (ops->ndo_get_stats) {
7316		netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
 
 
7317	} else {
7318		netdev_stats_to_stats64(storage, &dev->stats);
7319	}
7320	storage->rx_dropped += atomic_long_read(&dev->rx_dropped);
7321	storage->tx_dropped += atomic_long_read(&dev->tx_dropped);
7322	storage->rx_nohandler += atomic_long_read(&dev->rx_nohandler);
 
 
 
 
 
 
 
 
 
 
 
 
7323	return storage;
7324}
7325EXPORT_SYMBOL(dev_get_stats);
7326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7327struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
7328{
7329	struct netdev_queue *queue = dev_ingress_queue(dev);
7330
7331#ifdef CONFIG_NET_CLS_ACT
7332	if (queue)
7333		return queue;
7334	queue = kzalloc(sizeof(*queue), GFP_KERNEL);
7335	if (!queue)
7336		return NULL;
7337	netdev_init_one_queue(dev, queue, NULL);
7338	RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
7339	queue->qdisc_sleeping = &noop_qdisc;
7340	rcu_assign_pointer(dev->ingress_queue, queue);
7341#endif
7342	return queue;
7343}
7344
7345static const struct ethtool_ops default_ethtool_ops;
7346
7347void netdev_set_default_ethtool_ops(struct net_device *dev,
7348				    const struct ethtool_ops *ops)
7349{
7350	if (dev->ethtool_ops == &default_ethtool_ops)
7351		dev->ethtool_ops = ops;
7352}
7353EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
7354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7355void netdev_freemem(struct net_device *dev)
7356{
7357	char *addr = (char *)dev - dev->padded;
7358
7359	kvfree(addr);
7360}
7361
7362/**
7363 *	alloc_netdev_mqs - allocate network device
7364 *	@sizeof_priv:		size of private data to allocate space for
7365 *	@name:			device name format string
7366 *	@name_assign_type: 	origin of device name
7367 *	@setup:			callback to initialize device
7368 *	@txqs:			the number of TX subqueues to allocate
7369 *	@rxqs:			the number of RX subqueues to allocate
7370 *
7371 *	Allocates a struct net_device with private data area for driver use
7372 *	and performs basic initialization.  Also allocates subqueue structs
7373 *	for each queue on the device.
7374 */
7375struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
7376		unsigned char name_assign_type,
7377		void (*setup)(struct net_device *),
7378		unsigned int txqs, unsigned int rxqs)
7379{
7380	struct net_device *dev;
7381	size_t alloc_size;
7382	struct net_device *p;
7383
7384	BUG_ON(strlen(name) >= sizeof(dev->name));
7385
7386	if (txqs < 1) {
7387		pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
7388		return NULL;
7389	}
7390
7391#ifdef CONFIG_SYSFS
7392	if (rxqs < 1) {
7393		pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
7394		return NULL;
7395	}
7396#endif
7397
7398	alloc_size = sizeof(struct net_device);
7399	if (sizeof_priv) {
7400		/* ensure 32-byte alignment of private area */
7401		alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
7402		alloc_size += sizeof_priv;
7403	}
7404	/* ensure 32-byte alignment of whole construct */
7405	alloc_size += NETDEV_ALIGN - 1;
7406
7407	p = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT);
7408	if (!p)
7409		p = vzalloc(alloc_size);
7410	if (!p)
7411		return NULL;
7412
7413	dev = PTR_ALIGN(p, NETDEV_ALIGN);
7414	dev->padded = (char *)dev - (char *)p;
7415
 
 
7416	dev->pcpu_refcnt = alloc_percpu(int);
7417	if (!dev->pcpu_refcnt)
7418		goto free_dev;
 
 
 
 
7419
7420	if (dev_addr_init(dev))
7421		goto free_pcpu;
7422
7423	dev_mc_init(dev);
7424	dev_uc_init(dev);
7425
7426	dev_net_set(dev, &init_net);
7427
7428	dev->gso_max_size = GSO_MAX_SIZE;
 
7429	dev->gso_max_segs = GSO_MAX_SEGS;
7430	dev->gso_min_segs = 0;
 
 
 
 
 
 
 
 
 
 
7431
7432	INIT_LIST_HEAD(&dev->napi_list);
7433	INIT_LIST_HEAD(&dev->unreg_list);
7434	INIT_LIST_HEAD(&dev->close_list);
7435	INIT_LIST_HEAD(&dev->link_watch_list);
7436	INIT_LIST_HEAD(&dev->adj_list.upper);
7437	INIT_LIST_HEAD(&dev->adj_list.lower);
7438	INIT_LIST_HEAD(&dev->all_adj_list.upper);
7439	INIT_LIST_HEAD(&dev->all_adj_list.lower);
7440	INIT_LIST_HEAD(&dev->ptype_all);
7441	INIT_LIST_HEAD(&dev->ptype_specific);
 
 
 
 
7442	dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
7443	setup(dev);
7444
7445	if (!dev->tx_queue_len) {
7446		dev->priv_flags |= IFF_NO_QUEUE;
7447		dev->tx_queue_len = 1;
7448	}
7449
7450	dev->num_tx_queues = txqs;
7451	dev->real_num_tx_queues = txqs;
7452	if (netif_alloc_netdev_queues(dev))
7453		goto free_all;
7454
7455#ifdef CONFIG_SYSFS
7456	dev->num_rx_queues = rxqs;
7457	dev->real_num_rx_queues = rxqs;
7458	if (netif_alloc_rx_queues(dev))
7459		goto free_all;
7460#endif
7461
7462	strcpy(dev->name, name);
7463	dev->name_assign_type = name_assign_type;
7464	dev->group = INIT_NETDEV_GROUP;
7465	if (!dev->ethtool_ops)
7466		dev->ethtool_ops = &default_ethtool_ops;
7467
7468	nf_hook_ingress_init(dev);
7469
7470	return dev;
7471
7472free_all:
7473	free_netdev(dev);
7474	return NULL;
7475
7476free_pcpu:
 
7477	free_percpu(dev->pcpu_refcnt);
7478free_dev:
 
7479	netdev_freemem(dev);
7480	return NULL;
7481}
7482EXPORT_SYMBOL(alloc_netdev_mqs);
7483
7484/**
7485 *	free_netdev - free network device
7486 *	@dev: device
7487 *
7488 *	This function does the last stage of destroying an allocated device
7489 * 	interface. The reference to the device object is released.
7490 *	If this is the last reference then it will be freed.
7491 *	Must be called in process context.
7492 */
7493void free_netdev(struct net_device *dev)
7494{
7495	struct napi_struct *p, *n;
7496
7497	might_sleep();
 
 
 
 
 
 
 
 
 
 
 
7498	netif_free_tx_queues(dev);
7499#ifdef CONFIG_SYSFS
7500	kvfree(dev->_rx);
7501#endif
7502
7503	kfree(rcu_dereference_protected(dev->ingress_queue, 1));
7504
7505	/* Flush device addresses */
7506	dev_addr_flush(dev);
7507
7508	list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
7509		netif_napi_del(p);
7510
 
 
7511	free_percpu(dev->pcpu_refcnt);
7512	dev->pcpu_refcnt = NULL;
 
 
 
 
 
7513
7514	/*  Compatibility with error handling in drivers */
7515	if (dev->reg_state == NETREG_UNINITIALIZED) {
7516		netdev_freemem(dev);
7517		return;
7518	}
7519
7520	BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
7521	dev->reg_state = NETREG_RELEASED;
7522
7523	/* will free via device release */
7524	put_device(&dev->dev);
7525}
7526EXPORT_SYMBOL(free_netdev);
7527
7528/**
7529 *	synchronize_net -  Synchronize with packet receive processing
7530 *
7531 *	Wait for packets currently being received to be done.
7532 *	Does not block later packets from starting.
7533 */
7534void synchronize_net(void)
7535{
7536	might_sleep();
7537	if (rtnl_is_locked())
7538		synchronize_rcu_expedited();
7539	else
7540		synchronize_rcu();
7541}
7542EXPORT_SYMBOL(synchronize_net);
7543
7544/**
7545 *	unregister_netdevice_queue - remove device from the kernel
7546 *	@dev: device
7547 *	@head: list
7548 *
7549 *	This function shuts down a device interface and removes it
7550 *	from the kernel tables.
7551 *	If head not NULL, device is queued to be unregistered later.
7552 *
7553 *	Callers must hold the rtnl semaphore.  You may want
7554 *	unregister_netdev() instead of this.
7555 */
7556
7557void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
7558{
7559	ASSERT_RTNL();
7560
7561	if (head) {
7562		list_move_tail(&dev->unreg_list, head);
7563	} else {
7564		rollback_registered(dev);
7565		/* Finish processing unregister after unlock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7566		net_set_todo(dev);
 
7567	}
 
 
 
7568}
7569EXPORT_SYMBOL(unregister_netdevice_queue);
7570
7571/**
7572 *	unregister_netdevice_many - unregister many devices
7573 *	@head: list of devices
7574 *
7575 *  Note: As most callers use a stack allocated list_head,
7576 *  we force a list_del() to make sure stack wont be corrupted later.
7577 */
7578void unregister_netdevice_many(struct list_head *head)
7579{
7580	struct net_device *dev;
7581
7582	if (!list_empty(head)) {
7583		rollback_registered_many(head);
7584		list_for_each_entry(dev, head, unreg_list)
7585			net_set_todo(dev);
7586		list_del(head);
7587	}
7588}
7589EXPORT_SYMBOL(unregister_netdevice_many);
7590
7591/**
7592 *	unregister_netdev - remove device from the kernel
7593 *	@dev: device
7594 *
7595 *	This function shuts down a device interface and removes it
7596 *	from the kernel tables.
7597 *
7598 *	This is just a wrapper for unregister_netdevice that takes
7599 *	the rtnl semaphore.  In general you want to use this and not
7600 *	unregister_netdevice.
7601 */
7602void unregister_netdev(struct net_device *dev)
7603{
7604	rtnl_lock();
7605	unregister_netdevice(dev);
7606	rtnl_unlock();
7607}
7608EXPORT_SYMBOL(unregister_netdev);
7609
7610/**
7611 *	dev_change_net_namespace - move device to different nethost namespace
7612 *	@dev: device
7613 *	@net: network namespace
7614 *	@pat: If not NULL name pattern to try if the current device name
7615 *	      is already taken in the destination network namespace.
 
 
7616 *
7617 *	This function shuts down a device interface and moves it
7618 *	to a new network namespace. On success 0 is returned, on
7619 *	a failure a netagive errno code is returned.
7620 *
7621 *	Callers must hold the rtnl semaphore.
7622 */
7623
7624int dev_change_net_namespace(struct net_device *dev, struct net *net, const char *pat)
 
7625{
7626	int err;
 
 
 
7627
7628	ASSERT_RTNL();
7629
7630	/* Don't allow namespace local devices to be moved. */
7631	err = -EINVAL;
7632	if (dev->features & NETIF_F_NETNS_LOCAL)
7633		goto out;
7634
7635	/* Ensure the device has been registrered */
7636	if (dev->reg_state != NETREG_REGISTERED)
7637		goto out;
7638
7639	/* Get out if there is nothing todo */
7640	err = 0;
7641	if (net_eq(dev_net(dev), net))
7642		goto out;
7643
7644	/* Pick the destination device name, and ensure
7645	 * we can use it in the destination network namespace.
7646	 */
7647	err = -EEXIST;
7648	if (__dev_get_by_name(net, dev->name)) {
7649		/* We get here if we can't use the current device name */
7650		if (!pat)
7651			goto out;
7652		if (dev_get_valid_name(net, dev, pat) < 0)
 
7653			goto out;
7654	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7655
7656	/*
7657	 * And now a mini version of register_netdevice unregister_netdevice.
7658	 */
7659
7660	/* If device is running close it first. */
7661	dev_close(dev);
7662
7663	/* And unlink it from device chain */
7664	err = -ENODEV;
7665	unlist_netdevice(dev);
7666
7667	synchronize_net();
7668
7669	/* Shutdown queueing discipline. */
7670	dev_shutdown(dev);
7671
7672	/* Notify protocols, that we are about to destroy
7673	   this device. They should clean all the things.
7674
7675	   Note that dev->reg_state stays at NETREG_REGISTERED.
7676	   This is wanted because this way 8021q and macvlan know
7677	   the device is just moving and can keep their slaves up.
7678	*/
7679	call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
7680	rcu_barrier();
7681	call_netdevice_notifiers(NETDEV_UNREGISTER_FINAL, dev);
7682	rtmsg_ifinfo(RTM_DELLINK, dev, ~0U, GFP_KERNEL);
 
 
 
7683
7684	/*
7685	 *	Flush the unicast and multicast chains
7686	 */
7687	dev_uc_flush(dev);
7688	dev_mc_flush(dev);
7689
7690	/* Send a netdev-removed uevent to the old namespace */
7691	kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
7692	netdev_adjacent_del_links(dev);
7693
 
 
 
7694	/* Actually switch the network namespace */
7695	dev_net_set(dev, net);
 
7696
7697	/* If there is an ifindex conflict assign a new one */
7698	if (__dev_get_by_index(net, dev->ifindex))
7699		dev->ifindex = dev_new_index(net);
 
 
 
 
 
7700
7701	/* Send a netdev-add uevent to the new namespace */
7702	kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
7703	netdev_adjacent_add_links(dev);
7704
7705	/* Fixup kobjects */
7706	err = device_rename(&dev->dev, dev->name);
 
 
7707	WARN_ON(err);
7708
7709	/* Add the device back in the hashes */
7710	list_netdevice(dev);
7711
7712	/* Notify protocols, that a new device appeared. */
7713	call_netdevice_notifiers(NETDEV_REGISTER, dev);
7714
7715	/*
7716	 *	Prevent userspace races by waiting until the network
7717	 *	device is fully setup before sending notifications.
7718	 */
7719	rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL);
7720
7721	synchronize_net();
7722	err = 0;
7723out:
7724	return err;
7725}
7726EXPORT_SYMBOL_GPL(dev_change_net_namespace);
7727
7728static int dev_cpu_callback(struct notifier_block *nfb,
7729			    unsigned long action,
7730			    void *ocpu)
7731{
7732	struct sk_buff **list_skb;
7733	struct sk_buff *skb;
7734	unsigned int cpu, oldcpu = (unsigned long)ocpu;
7735	struct softnet_data *sd, *oldsd;
7736
7737	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
7738		return NOTIFY_OK;
7739
7740	local_irq_disable();
7741	cpu = smp_processor_id();
7742	sd = &per_cpu(softnet_data, cpu);
7743	oldsd = &per_cpu(softnet_data, oldcpu);
7744
7745	/* Find end of our completion_queue. */
7746	list_skb = &sd->completion_queue;
7747	while (*list_skb)
7748		list_skb = &(*list_skb)->next;
7749	/* Append completion queue from offline CPU. */
7750	*list_skb = oldsd->completion_queue;
7751	oldsd->completion_queue = NULL;
7752
7753	/* Append output queue from offline CPU. */
7754	if (oldsd->output_queue) {
7755		*sd->output_queue_tailp = oldsd->output_queue;
7756		sd->output_queue_tailp = oldsd->output_queue_tailp;
7757		oldsd->output_queue = NULL;
7758		oldsd->output_queue_tailp = &oldsd->output_queue;
7759	}
7760	/* Append NAPI poll list from offline CPU, with one exception :
7761	 * process_backlog() must be called by cpu owning percpu backlog.
7762	 * We properly handle process_queue & input_pkt_queue later.
7763	 */
7764	while (!list_empty(&oldsd->poll_list)) {
7765		struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
7766							    struct napi_struct,
7767							    poll_list);
7768
7769		list_del_init(&napi->poll_list);
7770		if (napi->poll == process_backlog)
7771			napi->state = 0;
7772		else
7773			____napi_schedule(sd, napi);
7774	}
7775
7776	raise_softirq_irqoff(NET_TX_SOFTIRQ);
7777	local_irq_enable();
7778
 
 
 
 
 
 
 
7779	/* Process offline CPU's input_pkt_queue */
7780	while ((skb = __skb_dequeue(&oldsd->process_queue))) {
7781		netif_rx_ni(skb);
7782		input_queue_head_incr(oldsd);
7783	}
7784	while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
7785		netif_rx_ni(skb);
7786		input_queue_head_incr(oldsd);
7787	}
7788
7789	return NOTIFY_OK;
7790}
7791
7792
7793/**
7794 *	netdev_increment_features - increment feature set by one
7795 *	@all: current feature set
7796 *	@one: new feature set
7797 *	@mask: mask feature set
7798 *
7799 *	Computes a new feature set after adding a device with feature set
7800 *	@one to the master device with current feature set @all.  Will not
7801 *	enable anything that is off in @mask. Returns the new feature set.
7802 */
7803netdev_features_t netdev_increment_features(netdev_features_t all,
7804	netdev_features_t one, netdev_features_t mask)
7805{
7806	if (mask & NETIF_F_HW_CSUM)
7807		mask |= NETIF_F_CSUM_MASK;
7808	mask |= NETIF_F_VLAN_CHALLENGED;
7809
7810	all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
7811	all &= one | ~NETIF_F_ALL_FOR_ALL;
7812
7813	/* If one device supports hw checksumming, set for all. */
7814	if (all & NETIF_F_HW_CSUM)
7815		all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
7816
7817	return all;
7818}
7819EXPORT_SYMBOL(netdev_increment_features);
7820
7821static struct hlist_head * __net_init netdev_create_hash(void)
7822{
7823	int i;
7824	struct hlist_head *hash;
7825
7826	hash = kmalloc(sizeof(*hash) * NETDEV_HASHENTRIES, GFP_KERNEL);
7827	if (hash != NULL)
7828		for (i = 0; i < NETDEV_HASHENTRIES; i++)
7829			INIT_HLIST_HEAD(&hash[i]);
7830
7831	return hash;
7832}
7833
7834/* Initialize per network namespace state */
7835static int __net_init netdev_init(struct net *net)
7836{
7837	if (net != &init_net)
7838		INIT_LIST_HEAD(&net->dev_base_head);
 
 
7839
7840	net->dev_name_head = netdev_create_hash();
7841	if (net->dev_name_head == NULL)
7842		goto err_name;
7843
7844	net->dev_index_head = netdev_create_hash();
7845	if (net->dev_index_head == NULL)
7846		goto err_idx;
7847
 
 
 
 
7848	return 0;
7849
7850err_idx:
7851	kfree(net->dev_name_head);
7852err_name:
7853	return -ENOMEM;
7854}
7855
7856/**
7857 *	netdev_drivername - network driver for the device
7858 *	@dev: network device
7859 *
7860 *	Determine network driver for device.
7861 */
7862const char *netdev_drivername(const struct net_device *dev)
7863{
7864	const struct device_driver *driver;
7865	const struct device *parent;
7866	const char *empty = "";
7867
7868	parent = dev->dev.parent;
7869	if (!parent)
7870		return empty;
7871
7872	driver = parent->driver;
7873	if (driver && driver->name)
7874		return driver->name;
7875	return empty;
7876}
7877
7878static void __netdev_printk(const char *level, const struct net_device *dev,
7879			    struct va_format *vaf)
7880{
7881	if (dev && dev->dev.parent) {
7882		dev_printk_emit(level[1] - '0',
7883				dev->dev.parent,
7884				"%s %s %s%s: %pV",
7885				dev_driver_string(dev->dev.parent),
7886				dev_name(dev->dev.parent),
7887				netdev_name(dev), netdev_reg_state(dev),
7888				vaf);
7889	} else if (dev) {
7890		printk("%s%s%s: %pV",
7891		       level, netdev_name(dev), netdev_reg_state(dev), vaf);
7892	} else {
7893		printk("%s(NULL net_device): %pV", level, vaf);
7894	}
7895}
7896
7897void netdev_printk(const char *level, const struct net_device *dev,
7898		   const char *format, ...)
7899{
7900	struct va_format vaf;
7901	va_list args;
7902
7903	va_start(args, format);
7904
7905	vaf.fmt = format;
7906	vaf.va = &args;
7907
7908	__netdev_printk(level, dev, &vaf);
7909
7910	va_end(args);
7911}
7912EXPORT_SYMBOL(netdev_printk);
7913
7914#define define_netdev_printk_level(func, level)			\
7915void func(const struct net_device *dev, const char *fmt, ...)	\
7916{								\
7917	struct va_format vaf;					\
7918	va_list args;						\
7919								\
7920	va_start(args, fmt);					\
7921								\
7922	vaf.fmt = fmt;						\
7923	vaf.va = &args;						\
7924								\
7925	__netdev_printk(level, dev, &vaf);			\
7926								\
7927	va_end(args);						\
7928}								\
7929EXPORT_SYMBOL(func);
7930
7931define_netdev_printk_level(netdev_emerg, KERN_EMERG);
7932define_netdev_printk_level(netdev_alert, KERN_ALERT);
7933define_netdev_printk_level(netdev_crit, KERN_CRIT);
7934define_netdev_printk_level(netdev_err, KERN_ERR);
7935define_netdev_printk_level(netdev_warn, KERN_WARNING);
7936define_netdev_printk_level(netdev_notice, KERN_NOTICE);
7937define_netdev_printk_level(netdev_info, KERN_INFO);
7938
7939static void __net_exit netdev_exit(struct net *net)
7940{
7941	kfree(net->dev_name_head);
7942	kfree(net->dev_index_head);
 
 
 
7943}
7944
7945static struct pernet_operations __net_initdata netdev_net_ops = {
7946	.init = netdev_init,
7947	.exit = netdev_exit,
7948};
7949
7950static void __net_exit default_device_exit(struct net *net)
7951{
 
7952	struct net_device *dev, *aux;
7953	/*
7954	 * Push all migratable network devices back to the
7955	 * initial network namespace
7956	 */
7957	rtnl_lock();
7958	for_each_netdev_safe(net, dev, aux) {
7959		int err;
7960		char fb_name[IFNAMSIZ];
7961
7962		/* Ignore unmoveable devices (i.e. loopback) */
7963		if (dev->features & NETIF_F_NETNS_LOCAL)
7964			continue;
7965
7966		/* Leave virtual devices for the generic cleanup */
7967		if (dev->rtnl_link_ops)
7968			continue;
7969
7970		/* Push remaining network devices to init_net */
7971		snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
 
 
 
 
 
 
 
7972		err = dev_change_net_namespace(dev, &init_net, fb_name);
7973		if (err) {
7974			pr_emerg("%s: failed to move %s to init_net: %d\n",
7975				 __func__, dev->name, err);
7976			BUG();
7977		}
7978	}
7979	rtnl_unlock();
7980}
7981
7982static void __net_exit rtnl_lock_unregistering(struct list_head *net_list)
7983{
7984	/* Return with the rtnl_lock held when there are no network
7985	 * devices unregistering in any network namespace in net_list.
7986	 */
7987	struct net *net;
7988	bool unregistering;
7989	DEFINE_WAIT_FUNC(wait, woken_wake_function);
7990
7991	add_wait_queue(&netdev_unregistering_wq, &wait);
7992	for (;;) {
7993		unregistering = false;
7994		rtnl_lock();
7995		list_for_each_entry(net, net_list, exit_list) {
7996			if (net->dev_unreg_count > 0) {
7997				unregistering = true;
7998				break;
7999			}
8000		}
8001		if (!unregistering)
8002			break;
8003		__rtnl_unlock();
8004
8005		wait_woken(&wait, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
8006	}
8007	remove_wait_queue(&netdev_unregistering_wq, &wait);
8008}
8009
8010static void __net_exit default_device_exit_batch(struct list_head *net_list)
8011{
8012	/* At exit all network devices most be removed from a network
8013	 * namespace.  Do this in the reverse order of registration.
8014	 * Do this across as many network namespaces as possible to
8015	 * improve batching efficiency.
8016	 */
8017	struct net_device *dev;
8018	struct net *net;
8019	LIST_HEAD(dev_kill_list);
8020
8021	/* To prevent network device cleanup code from dereferencing
8022	 * loopback devices or network devices that have been freed
8023	 * wait here for all pending unregistrations to complete,
8024	 * before unregistring the loopback device and allowing the
8025	 * network namespace be freed.
8026	 *
8027	 * The netdev todo list containing all network devices
8028	 * unregistrations that happen in default_device_exit_batch
8029	 * will run in the rtnl_unlock() at the end of
8030	 * default_device_exit_batch.
8031	 */
8032	rtnl_lock_unregistering(net_list);
8033	list_for_each_entry(net, net_list, exit_list) {
8034		for_each_netdev_reverse(net, dev) {
8035			if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
8036				dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
8037			else
8038				unregister_netdevice_queue(dev, &dev_kill_list);
8039		}
8040	}
8041	unregister_netdevice_many(&dev_kill_list);
8042	rtnl_unlock();
8043}
8044
8045static struct pernet_operations __net_initdata default_device_ops = {
8046	.exit = default_device_exit,
8047	.exit_batch = default_device_exit_batch,
8048};
8049
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8050/*
8051 *	Initialize the DEV module. At boot time this walks the device list and
8052 *	unhooks any devices that fail to initialise (normally hardware not
8053 *	present) and leaves us with a valid list of present and active devices.
8054 *
8055 */
8056
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8057/*
8058 *       This is called single threaded during boot, so no need
8059 *       to take the rtnl semaphore.
8060 */
8061static int __init net_dev_init(void)
8062{
8063	int i, rc = -ENOMEM;
8064
8065	BUG_ON(!dev_boot_phase);
8066
 
 
8067	if (dev_proc_init())
8068		goto out;
8069
8070	if (netdev_kobject_init())
8071		goto out;
8072
8073	INIT_LIST_HEAD(&ptype_all);
8074	for (i = 0; i < PTYPE_HASH_SIZE; i++)
8075		INIT_LIST_HEAD(&ptype_base[i]);
8076
8077	INIT_LIST_HEAD(&offload_base);
8078
8079	if (register_pernet_subsys(&netdev_net_ops))
8080		goto out;
8081
8082	/*
8083	 *	Initialise the packet receive queues.
8084	 */
8085
8086	for_each_possible_cpu(i) {
 
8087		struct softnet_data *sd = &per_cpu(softnet_data, i);
8088
 
 
8089		skb_queue_head_init(&sd->input_pkt_queue);
8090		skb_queue_head_init(&sd->process_queue);
 
 
 
8091		INIT_LIST_HEAD(&sd->poll_list);
8092		sd->output_queue_tailp = &sd->output_queue;
8093#ifdef CONFIG_RPS
8094		sd->csd.func = rps_trigger_softirq;
8095		sd->csd.info = sd;
8096		sd->cpu = i;
8097#endif
 
 
8098
 
8099		sd->backlog.poll = process_backlog;
8100		sd->backlog.weight = weight_p;
 
 
 
8101	}
8102
8103	dev_boot_phase = 0;
8104
8105	/* The loopback device is special if any other network devices
8106	 * is present in a network namespace the loopback device must
8107	 * be present. Since we now dynamically allocate and free the
8108	 * loopback device ensure this invariant is maintained by
8109	 * keeping the loopback device as the first device on the
8110	 * list of network devices.  Ensuring the loopback devices
8111	 * is the first device that appears and the last network device
8112	 * that disappears.
8113	 */
8114	if (register_pernet_device(&loopback_net_ops))
8115		goto out;
8116
8117	if (register_pernet_device(&default_device_ops))
8118		goto out;
8119
8120	open_softirq(NET_TX_SOFTIRQ, net_tx_action);
8121	open_softirq(NET_RX_SOFTIRQ, net_rx_action);
8122
8123	hotcpu_notifier(dev_cpu_callback, 0);
8124	dst_subsys_init();
 
8125	rc = 0;
8126out:
 
 
 
 
 
 
 
 
 
 
 
 
 
8127	return rc;
8128}
8129
8130subsys_initcall(net_dev_init);