Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11/*
12 * This file implements UBIFS initialization and VFS superblock operations. Some
13 * initialization stuff which is rather large and complex is placed at
14 * corresponding subsystems, but most of it is here.
15 */
16
17#include <linux/init.h>
18#include <linux/slab.h>
19#include <linux/module.h>
20#include <linux/ctype.h>
21#include <linux/kthread.h>
22#include <linux/parser.h>
23#include <linux/seq_file.h>
24#include <linux/mount.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include "ubifs.h"
28
29static int ubifs_default_version_set(const char *val, const struct kernel_param *kp)
30{
31 int n = 0, ret;
32
33 ret = kstrtoint(val, 10, &n);
34 if (ret != 0 || n < 4 || n > UBIFS_FORMAT_VERSION)
35 return -EINVAL;
36 return param_set_int(val, kp);
37}
38
39static const struct kernel_param_ops ubifs_default_version_ops = {
40 .set = ubifs_default_version_set,
41 .get = param_get_int,
42};
43
44int ubifs_default_version = UBIFS_FORMAT_VERSION;
45module_param_cb(default_version, &ubifs_default_version_ops, &ubifs_default_version, 0600);
46
47/*
48 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
49 * allocating too much.
50 */
51#define UBIFS_KMALLOC_OK (128*1024)
52
53/* Slab cache for UBIFS inodes */
54static struct kmem_cache *ubifs_inode_slab;
55
56/* UBIFS TNC shrinker description */
57static struct shrinker *ubifs_shrinker_info;
58
59/**
60 * validate_inode - validate inode.
61 * @c: UBIFS file-system description object
62 * @inode: the inode to validate
63 *
64 * This is a helper function for 'ubifs_iget()' which validates various fields
65 * of a newly built inode to make sure they contain sane values and prevent
66 * possible vulnerabilities. Returns zero if the inode is all right and
67 * a non-zero error code if not.
68 */
69static int validate_inode(struct ubifs_info *c, const struct inode *inode)
70{
71 int err;
72 const struct ubifs_inode *ui = ubifs_inode(inode);
73
74 if (inode->i_size > c->max_inode_sz) {
75 ubifs_err(c, "inode is too large (%lld)",
76 (long long)inode->i_size);
77 return 1;
78 }
79
80 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
81 ubifs_err(c, "unknown compression type %d", ui->compr_type);
82 return 2;
83 }
84
85 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
86 return 3;
87
88 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
89 return 4;
90
91 if (ui->xattr && !S_ISREG(inode->i_mode))
92 return 5;
93
94 if (!ubifs_compr_present(c, ui->compr_type)) {
95 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
96 inode->i_ino, ubifs_compr_name(c, ui->compr_type));
97 }
98
99 err = dbg_check_dir(c, inode);
100 return err;
101}
102
103struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
104{
105 int err;
106 union ubifs_key key;
107 struct ubifs_ino_node *ino;
108 struct ubifs_info *c = sb->s_fs_info;
109 struct inode *inode;
110 struct ubifs_inode *ui;
111
112 dbg_gen("inode %lu", inum);
113
114 inode = iget_locked(sb, inum);
115 if (!inode)
116 return ERR_PTR(-ENOMEM);
117 if (!(inode->i_state & I_NEW))
118 return inode;
119 ui = ubifs_inode(inode);
120
121 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
122 if (!ino) {
123 err = -ENOMEM;
124 goto out;
125 }
126
127 ino_key_init(c, &key, inode->i_ino);
128
129 err = ubifs_tnc_lookup(c, &key, ino);
130 if (err)
131 goto out_ino;
132
133 inode->i_flags |= S_NOCMTIME;
134
135 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
136 inode->i_flags |= S_NOATIME;
137
138 set_nlink(inode, le32_to_cpu(ino->nlink));
139 i_uid_write(inode, le32_to_cpu(ino->uid));
140 i_gid_write(inode, le32_to_cpu(ino->gid));
141 inode_set_atime(inode, (int64_t)le64_to_cpu(ino->atime_sec),
142 le32_to_cpu(ino->atime_nsec));
143 inode_set_mtime(inode, (int64_t)le64_to_cpu(ino->mtime_sec),
144 le32_to_cpu(ino->mtime_nsec));
145 inode_set_ctime(inode, (int64_t)le64_to_cpu(ino->ctime_sec),
146 le32_to_cpu(ino->ctime_nsec));
147 inode->i_mode = le32_to_cpu(ino->mode);
148 inode->i_size = le64_to_cpu(ino->size);
149
150 ui->data_len = le32_to_cpu(ino->data_len);
151 ui->flags = le32_to_cpu(ino->flags);
152 ui->compr_type = le16_to_cpu(ino->compr_type);
153 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
154 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
155 ui->xattr_size = le32_to_cpu(ino->xattr_size);
156 ui->xattr_names = le32_to_cpu(ino->xattr_names);
157 ui->synced_i_size = ui->ui_size = inode->i_size;
158
159 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
160
161 err = validate_inode(c, inode);
162 if (err)
163 goto out_invalid;
164
165 switch (inode->i_mode & S_IFMT) {
166 case S_IFREG:
167 inode->i_mapping->a_ops = &ubifs_file_address_operations;
168 inode->i_op = &ubifs_file_inode_operations;
169 inode->i_fop = &ubifs_file_operations;
170 if (ui->xattr) {
171 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
172 if (!ui->data) {
173 err = -ENOMEM;
174 goto out_ino;
175 }
176 memcpy(ui->data, ino->data, ui->data_len);
177 ((char *)ui->data)[ui->data_len] = '\0';
178 } else if (ui->data_len != 0) {
179 err = 10;
180 goto out_invalid;
181 }
182 break;
183 case S_IFDIR:
184 inode->i_op = &ubifs_dir_inode_operations;
185 inode->i_fop = &ubifs_dir_operations;
186 if (ui->data_len != 0) {
187 err = 11;
188 goto out_invalid;
189 }
190 break;
191 case S_IFLNK:
192 inode->i_op = &ubifs_symlink_inode_operations;
193 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
194 err = 12;
195 goto out_invalid;
196 }
197 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
198 if (!ui->data) {
199 err = -ENOMEM;
200 goto out_ino;
201 }
202 memcpy(ui->data, ino->data, ui->data_len);
203 ((char *)ui->data)[ui->data_len] = '\0';
204 break;
205 case S_IFBLK:
206 case S_IFCHR:
207 {
208 dev_t rdev;
209 union ubifs_dev_desc *dev;
210
211 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
212 if (!ui->data) {
213 err = -ENOMEM;
214 goto out_ino;
215 }
216
217 dev = (union ubifs_dev_desc *)ino->data;
218 if (ui->data_len == sizeof(dev->new))
219 rdev = new_decode_dev(le32_to_cpu(dev->new));
220 else if (ui->data_len == sizeof(dev->huge))
221 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
222 else {
223 err = 13;
224 goto out_invalid;
225 }
226 memcpy(ui->data, ino->data, ui->data_len);
227 inode->i_op = &ubifs_file_inode_operations;
228 init_special_inode(inode, inode->i_mode, rdev);
229 break;
230 }
231 case S_IFSOCK:
232 case S_IFIFO:
233 inode->i_op = &ubifs_file_inode_operations;
234 init_special_inode(inode, inode->i_mode, 0);
235 if (ui->data_len != 0) {
236 err = 14;
237 goto out_invalid;
238 }
239 break;
240 default:
241 err = 15;
242 goto out_invalid;
243 }
244
245 kfree(ino);
246 ubifs_set_inode_flags(inode);
247 unlock_new_inode(inode);
248 return inode;
249
250out_invalid:
251 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
252 ubifs_dump_node(c, ino, UBIFS_MAX_INO_NODE_SZ);
253 ubifs_dump_inode(c, inode);
254 err = -EINVAL;
255out_ino:
256 kfree(ino);
257out:
258 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
259 iget_failed(inode);
260 return ERR_PTR(err);
261}
262
263static struct inode *ubifs_alloc_inode(struct super_block *sb)
264{
265 struct ubifs_inode *ui;
266
267 ui = alloc_inode_sb(sb, ubifs_inode_slab, GFP_NOFS);
268 if (!ui)
269 return NULL;
270
271 memset((void *)ui + sizeof(struct inode), 0,
272 sizeof(struct ubifs_inode) - sizeof(struct inode));
273 mutex_init(&ui->ui_mutex);
274 init_rwsem(&ui->xattr_sem);
275 spin_lock_init(&ui->ui_lock);
276 return &ui->vfs_inode;
277};
278
279static void ubifs_free_inode(struct inode *inode)
280{
281 struct ubifs_inode *ui = ubifs_inode(inode);
282
283 kfree(ui->data);
284 fscrypt_free_inode(inode);
285
286 kmem_cache_free(ubifs_inode_slab, ui);
287}
288
289/*
290 * Note, Linux write-back code calls this without 'i_mutex'.
291 */
292static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
293{
294 int err = 0;
295 struct ubifs_info *c = inode->i_sb->s_fs_info;
296 struct ubifs_inode *ui = ubifs_inode(inode);
297
298 ubifs_assert(c, !ui->xattr);
299 if (is_bad_inode(inode))
300 return 0;
301
302 mutex_lock(&ui->ui_mutex);
303 /*
304 * Due to races between write-back forced by budgeting
305 * (see 'sync_some_inodes()') and background write-back, the inode may
306 * have already been synchronized, do not do this again. This might
307 * also happen if it was synchronized in an VFS operation, e.g.
308 * 'ubifs_link()'.
309 */
310 if (!ui->dirty) {
311 mutex_unlock(&ui->ui_mutex);
312 return 0;
313 }
314
315 /*
316 * As an optimization, do not write orphan inodes to the media just
317 * because this is not needed.
318 */
319 dbg_gen("inode %lu, mode %#x, nlink %u",
320 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
321 if (inode->i_nlink) {
322 err = ubifs_jnl_write_inode(c, inode);
323 if (err)
324 ubifs_err(c, "can't write inode %lu, error %d",
325 inode->i_ino, err);
326 else
327 err = dbg_check_inode_size(c, inode, ui->ui_size);
328 }
329
330 ui->dirty = 0;
331 mutex_unlock(&ui->ui_mutex);
332 ubifs_release_dirty_inode_budget(c, ui);
333 return err;
334}
335
336static int ubifs_drop_inode(struct inode *inode)
337{
338 int drop = generic_drop_inode(inode);
339
340 if (!drop)
341 drop = fscrypt_drop_inode(inode);
342
343 return drop;
344}
345
346static void ubifs_evict_inode(struct inode *inode)
347{
348 int err;
349 struct ubifs_info *c = inode->i_sb->s_fs_info;
350 struct ubifs_inode *ui = ubifs_inode(inode);
351
352 if (ui->xattr)
353 /*
354 * Extended attribute inode deletions are fully handled in
355 * 'ubifs_removexattr()'. These inodes are special and have
356 * limited usage, so there is nothing to do here.
357 */
358 goto out;
359
360 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
361 ubifs_assert(c, !atomic_read(&inode->i_count));
362
363 truncate_inode_pages_final(&inode->i_data);
364
365 if (inode->i_nlink)
366 goto done;
367
368 if (is_bad_inode(inode))
369 goto out;
370
371 ui->ui_size = inode->i_size = 0;
372 err = ubifs_jnl_delete_inode(c, inode);
373 if (err)
374 /*
375 * Worst case we have a lost orphan inode wasting space, so a
376 * simple error message is OK here.
377 */
378 ubifs_err(c, "can't delete inode %lu, error %d",
379 inode->i_ino, err);
380
381out:
382 if (ui->dirty)
383 ubifs_release_dirty_inode_budget(c, ui);
384 else {
385 /* We've deleted something - clean the "no space" flags */
386 c->bi.nospace = c->bi.nospace_rp = 0;
387 smp_wmb();
388 }
389done:
390 clear_inode(inode);
391 fscrypt_put_encryption_info(inode);
392}
393
394static void ubifs_dirty_inode(struct inode *inode, int flags)
395{
396 struct ubifs_info *c = inode->i_sb->s_fs_info;
397 struct ubifs_inode *ui = ubifs_inode(inode);
398
399 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
400 if (!ui->dirty) {
401 ui->dirty = 1;
402 dbg_gen("inode %lu", inode->i_ino);
403 }
404}
405
406static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
407{
408 struct ubifs_info *c = dentry->d_sb->s_fs_info;
409 unsigned long long free;
410 __le32 *uuid = (__le32 *)c->uuid;
411
412 free = ubifs_get_free_space(c);
413 dbg_gen("free space %lld bytes (%lld blocks)",
414 free, free >> UBIFS_BLOCK_SHIFT);
415
416 buf->f_type = UBIFS_SUPER_MAGIC;
417 buf->f_bsize = UBIFS_BLOCK_SIZE;
418 buf->f_blocks = c->block_cnt;
419 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
420 if (free > c->report_rp_size)
421 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
422 else
423 buf->f_bavail = 0;
424 buf->f_files = 0;
425 buf->f_ffree = 0;
426 buf->f_namelen = UBIFS_MAX_NLEN;
427 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
428 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
429 ubifs_assert(c, buf->f_bfree <= c->block_cnt);
430 return 0;
431}
432
433static int ubifs_show_options(struct seq_file *s, struct dentry *root)
434{
435 struct ubifs_info *c = root->d_sb->s_fs_info;
436
437 if (c->mount_opts.unmount_mode == 2)
438 seq_puts(s, ",fast_unmount");
439 else if (c->mount_opts.unmount_mode == 1)
440 seq_puts(s, ",norm_unmount");
441
442 if (c->mount_opts.bulk_read == 2)
443 seq_puts(s, ",bulk_read");
444 else if (c->mount_opts.bulk_read == 1)
445 seq_puts(s, ",no_bulk_read");
446
447 if (c->mount_opts.chk_data_crc == 2)
448 seq_puts(s, ",chk_data_crc");
449 else if (c->mount_opts.chk_data_crc == 1)
450 seq_puts(s, ",no_chk_data_crc");
451
452 if (c->mount_opts.override_compr) {
453 seq_printf(s, ",compr=%s",
454 ubifs_compr_name(c, c->mount_opts.compr_type));
455 }
456
457 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c));
458 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id);
459
460 return 0;
461}
462
463static int ubifs_sync_fs(struct super_block *sb, int wait)
464{
465 int i, err;
466 struct ubifs_info *c = sb->s_fs_info;
467
468 /*
469 * Zero @wait is just an advisory thing to help the file system shove
470 * lots of data into the queues, and there will be the second
471 * '->sync_fs()' call, with non-zero @wait.
472 */
473 if (!wait)
474 return 0;
475
476 /*
477 * Synchronize write buffers, because 'ubifs_run_commit()' does not
478 * do this if it waits for an already running commit.
479 */
480 for (i = 0; i < c->jhead_cnt; i++) {
481 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
482 if (err)
483 return err;
484 }
485
486 /*
487 * Strictly speaking, it is not necessary to commit the journal here,
488 * synchronizing write-buffers would be enough. But committing makes
489 * UBIFS free space predictions much more accurate, so we want to let
490 * the user be able to get more accurate results of 'statfs()' after
491 * they synchronize the file system.
492 */
493 err = ubifs_run_commit(c);
494 if (err)
495 return err;
496
497 return ubi_sync(c->vi.ubi_num);
498}
499
500/**
501 * init_constants_early - initialize UBIFS constants.
502 * @c: UBIFS file-system description object
503 *
504 * This function initialize UBIFS constants which do not need the superblock to
505 * be read. It also checks that the UBI volume satisfies basic UBIFS
506 * requirements. Returns zero in case of success and a negative error code in
507 * case of failure.
508 */
509static int init_constants_early(struct ubifs_info *c)
510{
511 if (c->vi.corrupted) {
512 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
513 c->ro_media = 1;
514 }
515
516 if (c->di.ro_mode) {
517 ubifs_msg(c, "read-only UBI device");
518 c->ro_media = 1;
519 }
520
521 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
522 ubifs_msg(c, "static UBI volume - read-only mode");
523 c->ro_media = 1;
524 }
525
526 c->leb_cnt = c->vi.size;
527 c->leb_size = c->vi.usable_leb_size;
528 c->leb_start = c->di.leb_start;
529 c->half_leb_size = c->leb_size / 2;
530 c->min_io_size = c->di.min_io_size;
531 c->min_io_shift = fls(c->min_io_size) - 1;
532 c->max_write_size = c->di.max_write_size;
533 c->max_write_shift = fls(c->max_write_size) - 1;
534
535 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
536 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes",
537 c->leb_size, UBIFS_MIN_LEB_SZ);
538 return -EINVAL;
539 }
540
541 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
542 ubifs_errc(c, "too few LEBs (%d), min. is %d",
543 c->leb_cnt, UBIFS_MIN_LEB_CNT);
544 return -EINVAL;
545 }
546
547 if (!is_power_of_2(c->min_io_size)) {
548 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size);
549 return -EINVAL;
550 }
551
552 /*
553 * Maximum write size has to be greater or equivalent to min. I/O
554 * size, and be multiple of min. I/O size.
555 */
556 if (c->max_write_size < c->min_io_size ||
557 c->max_write_size % c->min_io_size ||
558 !is_power_of_2(c->max_write_size)) {
559 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit",
560 c->max_write_size, c->min_io_size);
561 return -EINVAL;
562 }
563
564 /*
565 * UBIFS aligns all node to 8-byte boundary, so to make function in
566 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
567 * less than 8.
568 */
569 if (c->min_io_size < 8) {
570 c->min_io_size = 8;
571 c->min_io_shift = 3;
572 if (c->max_write_size < c->min_io_size) {
573 c->max_write_size = c->min_io_size;
574 c->max_write_shift = c->min_io_shift;
575 }
576 }
577
578 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
579 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
580
581 /*
582 * Initialize node length ranges which are mostly needed for node
583 * length validation.
584 */
585 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
586 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
587 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
588 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
589 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
590 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
591 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ;
592 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ +
593 UBIFS_MAX_HMAC_LEN;
594 c->ranges[UBIFS_SIG_NODE].min_len = UBIFS_SIG_NODE_SZ;
595 c->ranges[UBIFS_SIG_NODE].max_len = c->leb_size - UBIFS_SB_NODE_SZ;
596
597 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
598 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
599 c->ranges[UBIFS_ORPH_NODE].min_len =
600 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
601 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
602 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
603 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
604 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
605 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
606 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
607 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
608 /*
609 * Minimum indexing node size is amended later when superblock is
610 * read and the key length is known.
611 */
612 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
613 /*
614 * Maximum indexing node size is amended later when superblock is
615 * read and the fanout is known.
616 */
617 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
618
619 /*
620 * Initialize dead and dark LEB space watermarks. See gc.c for comments
621 * about these values.
622 */
623 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
624 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
625
626 /*
627 * Calculate how many bytes would be wasted at the end of LEB if it was
628 * fully filled with data nodes of maximum size. This is used in
629 * calculations when reporting free space.
630 */
631 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
632
633 /* Buffer size for bulk-reads */
634 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
635 if (c->max_bu_buf_len > c->leb_size)
636 c->max_bu_buf_len = c->leb_size;
637
638 /* Log is ready, preserve one LEB for commits. */
639 c->min_log_bytes = c->leb_size;
640
641 return 0;
642}
643
644/**
645 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
646 * @c: UBIFS file-system description object
647 * @lnum: LEB the write-buffer was synchronized to
648 * @free: how many free bytes left in this LEB
649 * @pad: how many bytes were padded
650 *
651 * This is a callback function which is called by the I/O unit when the
652 * write-buffer is synchronized. We need this to correctly maintain space
653 * accounting in bud logical eraseblocks. This function returns zero in case of
654 * success and a negative error code in case of failure.
655 *
656 * This function actually belongs to the journal, but we keep it here because
657 * we want to keep it static.
658 */
659static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
660{
661 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
662}
663
664/*
665 * init_constants_sb - initialize UBIFS constants.
666 * @c: UBIFS file-system description object
667 *
668 * This is a helper function which initializes various UBIFS constants after
669 * the superblock has been read. It also checks various UBIFS parameters and
670 * makes sure they are all right. Returns zero in case of success and a
671 * negative error code in case of failure.
672 */
673static int init_constants_sb(struct ubifs_info *c)
674{
675 int tmp, err;
676 long long tmp64;
677
678 c->main_bytes = (long long)c->main_lebs * c->leb_size;
679 c->max_znode_sz = sizeof(struct ubifs_znode) +
680 c->fanout * sizeof(struct ubifs_zbranch);
681
682 tmp = ubifs_idx_node_sz(c, 1);
683 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
684 c->min_idx_node_sz = ALIGN(tmp, 8);
685
686 tmp = ubifs_idx_node_sz(c, c->fanout);
687 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
688 c->max_idx_node_sz = ALIGN(tmp, 8);
689
690 /* Make sure LEB size is large enough to fit full commit */
691 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
692 tmp = ALIGN(tmp, c->min_io_size);
693 if (tmp > c->leb_size) {
694 ubifs_err(c, "too small LEB size %d, at least %d needed",
695 c->leb_size, tmp);
696 return -EINVAL;
697 }
698
699 /*
700 * Make sure that the log is large enough to fit reference nodes for
701 * all buds plus one reserved LEB.
702 */
703 tmp64 = c->max_bud_bytes + c->leb_size - 1;
704 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
705 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
706 tmp /= c->leb_size;
707 tmp += 1;
708 if (c->log_lebs < tmp) {
709 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
710 c->log_lebs, tmp);
711 return -EINVAL;
712 }
713
714 /*
715 * When budgeting we assume worst-case scenarios when the pages are not
716 * be compressed and direntries are of the maximum size.
717 *
718 * Note, data, which may be stored in inodes is budgeted separately, so
719 * it is not included into 'c->bi.inode_budget'.
720 */
721 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
722 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
723 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
724
725 /*
726 * When the amount of flash space used by buds becomes
727 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
728 * The writers are unblocked when the commit is finished. To avoid
729 * writers to be blocked UBIFS initiates background commit in advance,
730 * when number of bud bytes becomes above the limit defined below.
731 */
732 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
733
734 /*
735 * Ensure minimum journal size. All the bytes in the journal heads are
736 * considered to be used, when calculating the current journal usage.
737 * Consequently, if the journal is too small, UBIFS will treat it as
738 * always full.
739 */
740 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
741 if (c->bg_bud_bytes < tmp64)
742 c->bg_bud_bytes = tmp64;
743 if (c->max_bud_bytes < tmp64 + c->leb_size)
744 c->max_bud_bytes = tmp64 + c->leb_size;
745
746 err = ubifs_calc_lpt_geom(c);
747 if (err)
748 return err;
749
750 /* Initialize effective LEB size used in budgeting calculations */
751 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
752 return 0;
753}
754
755/*
756 * init_constants_master - initialize UBIFS constants.
757 * @c: UBIFS file-system description object
758 *
759 * This is a helper function which initializes various UBIFS constants after
760 * the master node has been read. It also checks various UBIFS parameters and
761 * makes sure they are all right.
762 */
763static void init_constants_master(struct ubifs_info *c)
764{
765 long long tmp64;
766
767 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
768 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
769
770 /*
771 * Calculate total amount of FS blocks. This number is not used
772 * internally because it does not make much sense for UBIFS, but it is
773 * necessary to report something for the 'statfs()' call.
774 *
775 * Subtract the LEB reserved for GC, the LEB which is reserved for
776 * deletions, minimum LEBs for the index, and assume only one journal
777 * head is available.
778 */
779 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
780 tmp64 *= (long long)c->leb_size - c->leb_overhead;
781 tmp64 = ubifs_reported_space(c, tmp64);
782 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
783}
784
785/**
786 * take_gc_lnum - reserve GC LEB.
787 * @c: UBIFS file-system description object
788 *
789 * This function ensures that the LEB reserved for garbage collection is marked
790 * as "taken" in lprops. We also have to set free space to LEB size and dirty
791 * space to zero, because lprops may contain out-of-date information if the
792 * file-system was un-mounted before it has been committed. This function
793 * returns zero in case of success and a negative error code in case of
794 * failure.
795 */
796static int take_gc_lnum(struct ubifs_info *c)
797{
798 int err;
799
800 if (c->gc_lnum == -1) {
801 ubifs_err(c, "no LEB for GC");
802 return -EINVAL;
803 }
804
805 /* And we have to tell lprops that this LEB is taken */
806 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
807 LPROPS_TAKEN, 0, 0);
808 return err;
809}
810
811/**
812 * alloc_wbufs - allocate write-buffers.
813 * @c: UBIFS file-system description object
814 *
815 * This helper function allocates and initializes UBIFS write-buffers. Returns
816 * zero in case of success and %-ENOMEM in case of failure.
817 */
818static int alloc_wbufs(struct ubifs_info *c)
819{
820 int i, err;
821
822 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
823 GFP_KERNEL);
824 if (!c->jheads)
825 return -ENOMEM;
826
827 /* Initialize journal heads */
828 for (i = 0; i < c->jhead_cnt; i++) {
829 INIT_LIST_HEAD(&c->jheads[i].buds_list);
830 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
831 if (err)
832 goto out_wbuf;
833
834 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
835 c->jheads[i].wbuf.jhead = i;
836 c->jheads[i].grouped = 1;
837 c->jheads[i].log_hash = ubifs_hash_get_desc(c);
838 if (IS_ERR(c->jheads[i].log_hash)) {
839 err = PTR_ERR(c->jheads[i].log_hash);
840 goto out_log_hash;
841 }
842 }
843
844 /*
845 * Garbage Collector head does not need to be synchronized by timer.
846 * Also GC head nodes are not grouped.
847 */
848 c->jheads[GCHD].wbuf.no_timer = 1;
849 c->jheads[GCHD].grouped = 0;
850
851 return 0;
852
853out_log_hash:
854 kfree(c->jheads[i].wbuf.buf);
855 kfree(c->jheads[i].wbuf.inodes);
856
857out_wbuf:
858 while (i--) {
859 kfree(c->jheads[i].wbuf.buf);
860 kfree(c->jheads[i].wbuf.inodes);
861 kfree(c->jheads[i].log_hash);
862 }
863 kfree(c->jheads);
864 c->jheads = NULL;
865
866 return err;
867}
868
869/**
870 * free_wbufs - free write-buffers.
871 * @c: UBIFS file-system description object
872 */
873static void free_wbufs(struct ubifs_info *c)
874{
875 int i;
876
877 if (c->jheads) {
878 for (i = 0; i < c->jhead_cnt; i++) {
879 kfree(c->jheads[i].wbuf.buf);
880 kfree(c->jheads[i].wbuf.inodes);
881 kfree(c->jheads[i].log_hash);
882 }
883 kfree(c->jheads);
884 c->jheads = NULL;
885 }
886}
887
888/**
889 * free_orphans - free orphans.
890 * @c: UBIFS file-system description object
891 */
892static void free_orphans(struct ubifs_info *c)
893{
894 struct ubifs_orphan *orph;
895
896 while (c->orph_dnext) {
897 orph = c->orph_dnext;
898 c->orph_dnext = orph->dnext;
899 list_del(&orph->list);
900 kfree(orph);
901 }
902
903 while (!list_empty(&c->orph_list)) {
904 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
905 list_del(&orph->list);
906 kfree(orph);
907 ubifs_err(c, "orphan list not empty at unmount");
908 }
909
910 vfree(c->orph_buf);
911 c->orph_buf = NULL;
912}
913
914/**
915 * free_buds - free per-bud objects.
916 * @c: UBIFS file-system description object
917 */
918static void free_buds(struct ubifs_info *c)
919{
920 struct ubifs_bud *bud, *n;
921
922 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) {
923 kfree(bud->log_hash);
924 kfree(bud);
925 }
926}
927
928/**
929 * check_volume_empty - check if the UBI volume is empty.
930 * @c: UBIFS file-system description object
931 *
932 * This function checks if the UBIFS volume is empty by looking if its LEBs are
933 * mapped or not. The result of checking is stored in the @c->empty variable.
934 * Returns zero in case of success and a negative error code in case of
935 * failure.
936 */
937static int check_volume_empty(struct ubifs_info *c)
938{
939 int lnum, err;
940
941 c->empty = 1;
942 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
943 err = ubifs_is_mapped(c, lnum);
944 if (unlikely(err < 0))
945 return err;
946 if (err == 1) {
947 c->empty = 0;
948 break;
949 }
950
951 cond_resched();
952 }
953
954 return 0;
955}
956
957/*
958 * UBIFS mount options.
959 *
960 * Opt_fast_unmount: do not run a journal commit before un-mounting
961 * Opt_norm_unmount: run a journal commit before un-mounting
962 * Opt_bulk_read: enable bulk-reads
963 * Opt_no_bulk_read: disable bulk-reads
964 * Opt_chk_data_crc: check CRCs when reading data nodes
965 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
966 * Opt_override_compr: override default compressor
967 * Opt_assert: set ubifs_assert() action
968 * Opt_auth_key: The key name used for authentication
969 * Opt_auth_hash_name: The hash type used for authentication
970 * Opt_err: just end of array marker
971 */
972enum {
973 Opt_fast_unmount,
974 Opt_norm_unmount,
975 Opt_bulk_read,
976 Opt_no_bulk_read,
977 Opt_chk_data_crc,
978 Opt_no_chk_data_crc,
979 Opt_override_compr,
980 Opt_assert,
981 Opt_auth_key,
982 Opt_auth_hash_name,
983 Opt_ignore,
984 Opt_err,
985};
986
987static const match_table_t tokens = {
988 {Opt_fast_unmount, "fast_unmount"},
989 {Opt_norm_unmount, "norm_unmount"},
990 {Opt_bulk_read, "bulk_read"},
991 {Opt_no_bulk_read, "no_bulk_read"},
992 {Opt_chk_data_crc, "chk_data_crc"},
993 {Opt_no_chk_data_crc, "no_chk_data_crc"},
994 {Opt_override_compr, "compr=%s"},
995 {Opt_auth_key, "auth_key=%s"},
996 {Opt_auth_hash_name, "auth_hash_name=%s"},
997 {Opt_ignore, "ubi=%s"},
998 {Opt_ignore, "vol=%s"},
999 {Opt_assert, "assert=%s"},
1000 {Opt_err, NULL},
1001};
1002
1003/**
1004 * parse_standard_option - parse a standard mount option.
1005 * @option: the option to parse
1006 *
1007 * Normally, standard mount options like "sync" are passed to file-systems as
1008 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
1009 * be present in the options string. This function tries to deal with this
1010 * situation and parse standard options. Returns 0 if the option was not
1011 * recognized, and the corresponding integer flag if it was.
1012 *
1013 * UBIFS is only interested in the "sync" option, so do not check for anything
1014 * else.
1015 */
1016static int parse_standard_option(const char *option)
1017{
1018
1019 pr_notice("UBIFS: parse %s\n", option);
1020 if (!strcmp(option, "sync"))
1021 return SB_SYNCHRONOUS;
1022 return 0;
1023}
1024
1025/**
1026 * ubifs_parse_options - parse mount parameters.
1027 * @c: UBIFS file-system description object
1028 * @options: parameters to parse
1029 * @is_remount: non-zero if this is FS re-mount
1030 *
1031 * This function parses UBIFS mount options and returns zero in case success
1032 * and a negative error code in case of failure.
1033 */
1034static int ubifs_parse_options(struct ubifs_info *c, char *options,
1035 int is_remount)
1036{
1037 char *p;
1038 substring_t args[MAX_OPT_ARGS];
1039
1040 if (!options)
1041 return 0;
1042
1043 while ((p = strsep(&options, ","))) {
1044 int token;
1045
1046 if (!*p)
1047 continue;
1048
1049 token = match_token(p, tokens, args);
1050 switch (token) {
1051 /*
1052 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
1053 * We accept them in order to be backward-compatible. But this
1054 * should be removed at some point.
1055 */
1056 case Opt_fast_unmount:
1057 c->mount_opts.unmount_mode = 2;
1058 break;
1059 case Opt_norm_unmount:
1060 c->mount_opts.unmount_mode = 1;
1061 break;
1062 case Opt_bulk_read:
1063 c->mount_opts.bulk_read = 2;
1064 c->bulk_read = 1;
1065 break;
1066 case Opt_no_bulk_read:
1067 c->mount_opts.bulk_read = 1;
1068 c->bulk_read = 0;
1069 break;
1070 case Opt_chk_data_crc:
1071 c->mount_opts.chk_data_crc = 2;
1072 c->no_chk_data_crc = 0;
1073 break;
1074 case Opt_no_chk_data_crc:
1075 c->mount_opts.chk_data_crc = 1;
1076 c->no_chk_data_crc = 1;
1077 break;
1078 case Opt_override_compr:
1079 {
1080 char *name = match_strdup(&args[0]);
1081
1082 if (!name)
1083 return -ENOMEM;
1084 if (!strcmp(name, "none"))
1085 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1086 else if (!strcmp(name, "lzo"))
1087 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1088 else if (!strcmp(name, "zlib"))
1089 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1090 else if (!strcmp(name, "zstd"))
1091 c->mount_opts.compr_type = UBIFS_COMPR_ZSTD;
1092 else {
1093 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1094 kfree(name);
1095 return -EINVAL;
1096 }
1097 kfree(name);
1098 c->mount_opts.override_compr = 1;
1099 c->default_compr = c->mount_opts.compr_type;
1100 break;
1101 }
1102 case Opt_assert:
1103 {
1104 char *act = match_strdup(&args[0]);
1105
1106 if (!act)
1107 return -ENOMEM;
1108 if (!strcmp(act, "report"))
1109 c->assert_action = ASSACT_REPORT;
1110 else if (!strcmp(act, "read-only"))
1111 c->assert_action = ASSACT_RO;
1112 else if (!strcmp(act, "panic"))
1113 c->assert_action = ASSACT_PANIC;
1114 else {
1115 ubifs_err(c, "unknown assert action \"%s\"", act);
1116 kfree(act);
1117 return -EINVAL;
1118 }
1119 kfree(act);
1120 break;
1121 }
1122 case Opt_auth_key:
1123 if (!is_remount) {
1124 c->auth_key_name = kstrdup(args[0].from,
1125 GFP_KERNEL);
1126 if (!c->auth_key_name)
1127 return -ENOMEM;
1128 }
1129 break;
1130 case Opt_auth_hash_name:
1131 if (!is_remount) {
1132 c->auth_hash_name = kstrdup(args[0].from,
1133 GFP_KERNEL);
1134 if (!c->auth_hash_name)
1135 return -ENOMEM;
1136 }
1137 break;
1138 case Opt_ignore:
1139 break;
1140 default:
1141 {
1142 unsigned long flag;
1143 struct super_block *sb = c->vfs_sb;
1144
1145 flag = parse_standard_option(p);
1146 if (!flag) {
1147 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1148 p);
1149 return -EINVAL;
1150 }
1151 sb->s_flags |= flag;
1152 break;
1153 }
1154 }
1155 }
1156
1157 return 0;
1158}
1159
1160/*
1161 * ubifs_release_options - release mount parameters which have been dumped.
1162 * @c: UBIFS file-system description object
1163 */
1164static void ubifs_release_options(struct ubifs_info *c)
1165{
1166 kfree(c->auth_key_name);
1167 c->auth_key_name = NULL;
1168 kfree(c->auth_hash_name);
1169 c->auth_hash_name = NULL;
1170}
1171
1172/**
1173 * destroy_journal - destroy journal data structures.
1174 * @c: UBIFS file-system description object
1175 *
1176 * This function destroys journal data structures including those that may have
1177 * been created by recovery functions.
1178 */
1179static void destroy_journal(struct ubifs_info *c)
1180{
1181 while (!list_empty(&c->unclean_leb_list)) {
1182 struct ubifs_unclean_leb *ucleb;
1183
1184 ucleb = list_entry(c->unclean_leb_list.next,
1185 struct ubifs_unclean_leb, list);
1186 list_del(&ucleb->list);
1187 kfree(ucleb);
1188 }
1189 while (!list_empty(&c->old_buds)) {
1190 struct ubifs_bud *bud;
1191
1192 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1193 list_del(&bud->list);
1194 kfree(bud->log_hash);
1195 kfree(bud);
1196 }
1197 ubifs_destroy_idx_gc(c);
1198 ubifs_destroy_size_tree(c);
1199 ubifs_tnc_close(c);
1200 free_buds(c);
1201}
1202
1203/**
1204 * bu_init - initialize bulk-read information.
1205 * @c: UBIFS file-system description object
1206 */
1207static void bu_init(struct ubifs_info *c)
1208{
1209 ubifs_assert(c, c->bulk_read == 1);
1210
1211 if (c->bu.buf)
1212 return; /* Already initialized */
1213
1214again:
1215 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1216 if (!c->bu.buf) {
1217 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1218 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1219 goto again;
1220 }
1221
1222 /* Just disable bulk-read */
1223 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1224 c->max_bu_buf_len);
1225 c->mount_opts.bulk_read = 1;
1226 c->bulk_read = 0;
1227 return;
1228 }
1229}
1230
1231/**
1232 * check_free_space - check if there is enough free space to mount.
1233 * @c: UBIFS file-system description object
1234 *
1235 * This function makes sure UBIFS has enough free space to be mounted in
1236 * read/write mode. UBIFS must always have some free space to allow deletions.
1237 */
1238static int check_free_space(struct ubifs_info *c)
1239{
1240 ubifs_assert(c, c->dark_wm > 0);
1241 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1242 ubifs_err(c, "insufficient free space to mount in R/W mode");
1243 ubifs_dump_budg(c, &c->bi);
1244 ubifs_dump_lprops(c);
1245 return -ENOSPC;
1246 }
1247 return 0;
1248}
1249
1250/**
1251 * mount_ubifs - mount UBIFS file-system.
1252 * @c: UBIFS file-system description object
1253 *
1254 * This function mounts UBIFS file system. Returns zero in case of success and
1255 * a negative error code in case of failure.
1256 */
1257static int mount_ubifs(struct ubifs_info *c)
1258{
1259 int err;
1260 long long x, y;
1261 size_t sz;
1262
1263 c->ro_mount = !!sb_rdonly(c->vfs_sb);
1264 /* Suppress error messages while probing if SB_SILENT is set */
1265 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT);
1266
1267 err = init_constants_early(c);
1268 if (err)
1269 return err;
1270
1271 err = ubifs_debugging_init(c);
1272 if (err)
1273 return err;
1274
1275 err = ubifs_sysfs_register(c);
1276 if (err)
1277 goto out_debugging;
1278
1279 err = check_volume_empty(c);
1280 if (err)
1281 goto out_free;
1282
1283 if (c->empty && (c->ro_mount || c->ro_media)) {
1284 /*
1285 * This UBI volume is empty, and read-only, or the file system
1286 * is mounted read-only - we cannot format it.
1287 */
1288 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1289 c->ro_media ? "UBI volume" : "mount");
1290 err = -EROFS;
1291 goto out_free;
1292 }
1293
1294 if (c->ro_media && !c->ro_mount) {
1295 ubifs_err(c, "cannot mount read-write - read-only media");
1296 err = -EROFS;
1297 goto out_free;
1298 }
1299
1300 /*
1301 * The requirement for the buffer is that it should fit indexing B-tree
1302 * height amount of integers. We assume the height if the TNC tree will
1303 * never exceed 64.
1304 */
1305 err = -ENOMEM;
1306 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int),
1307 GFP_KERNEL);
1308 if (!c->bottom_up_buf)
1309 goto out_free;
1310
1311 c->sbuf = vmalloc(c->leb_size);
1312 if (!c->sbuf)
1313 goto out_free;
1314
1315 if (!c->ro_mount) {
1316 c->ileb_buf = vmalloc(c->leb_size);
1317 if (!c->ileb_buf)
1318 goto out_free;
1319 }
1320
1321 if (c->bulk_read == 1)
1322 bu_init(c);
1323
1324 if (!c->ro_mount) {
1325 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1326 UBIFS_CIPHER_BLOCK_SIZE,
1327 GFP_KERNEL);
1328 if (!c->write_reserve_buf)
1329 goto out_free;
1330 }
1331
1332 c->mounting = 1;
1333
1334 if (c->auth_key_name) {
1335 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) {
1336 err = ubifs_init_authentication(c);
1337 if (err)
1338 goto out_free;
1339 } else {
1340 ubifs_err(c, "auth_key_name, but UBIFS is built without"
1341 " authentication support");
1342 err = -EINVAL;
1343 goto out_free;
1344 }
1345 }
1346
1347 err = ubifs_read_superblock(c);
1348 if (err)
1349 goto out_auth;
1350
1351 c->probing = 0;
1352
1353 /*
1354 * Make sure the compressor which is set as default in the superblock
1355 * or overridden by mount options is actually compiled in.
1356 */
1357 if (!ubifs_compr_present(c, c->default_compr)) {
1358 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1359 ubifs_compr_name(c, c->default_compr));
1360 err = -ENOTSUPP;
1361 goto out_auth;
1362 }
1363
1364 err = init_constants_sb(c);
1365 if (err)
1366 goto out_auth;
1367
1368 sz = ALIGN(c->max_idx_node_sz, c->min_io_size) * 2;
1369 c->cbuf = kmalloc(sz, GFP_NOFS);
1370 if (!c->cbuf) {
1371 err = -ENOMEM;
1372 goto out_auth;
1373 }
1374
1375 err = alloc_wbufs(c);
1376 if (err)
1377 goto out_cbuf;
1378
1379 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1380 if (!c->ro_mount) {
1381 /* Create background thread */
1382 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1383 if (IS_ERR(c->bgt)) {
1384 err = PTR_ERR(c->bgt);
1385 c->bgt = NULL;
1386 ubifs_err(c, "cannot spawn \"%s\", error %d",
1387 c->bgt_name, err);
1388 goto out_wbufs;
1389 }
1390 }
1391
1392 err = ubifs_read_master(c);
1393 if (err)
1394 goto out_master;
1395
1396 init_constants_master(c);
1397
1398 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1399 ubifs_msg(c, "recovery needed");
1400 c->need_recovery = 1;
1401 }
1402
1403 if (c->need_recovery && !c->ro_mount) {
1404 err = ubifs_recover_inl_heads(c, c->sbuf);
1405 if (err)
1406 goto out_master;
1407 }
1408
1409 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1410 if (err)
1411 goto out_master;
1412
1413 if (!c->ro_mount && c->space_fixup) {
1414 err = ubifs_fixup_free_space(c);
1415 if (err)
1416 goto out_lpt;
1417 }
1418
1419 if (!c->ro_mount && !c->need_recovery) {
1420 /*
1421 * Set the "dirty" flag so that if we reboot uncleanly we
1422 * will notice this immediately on the next mount.
1423 */
1424 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1425 err = ubifs_write_master(c);
1426 if (err)
1427 goto out_lpt;
1428 }
1429
1430 /*
1431 * Handle offline signed images: Now that the master node is
1432 * written and its validation no longer depends on the hash
1433 * in the superblock, we can update the offline signed
1434 * superblock with a HMAC version,
1435 */
1436 if (ubifs_authenticated(c) && ubifs_hmac_zero(c, c->sup_node->hmac)) {
1437 err = ubifs_hmac_wkm(c, c->sup_node->hmac_wkm);
1438 if (err)
1439 goto out_lpt;
1440 c->superblock_need_write = 1;
1441 }
1442
1443 if (!c->ro_mount && c->superblock_need_write) {
1444 err = ubifs_write_sb_node(c, c->sup_node);
1445 if (err)
1446 goto out_lpt;
1447 c->superblock_need_write = 0;
1448 }
1449
1450 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1451 if (err)
1452 goto out_lpt;
1453
1454 err = ubifs_replay_journal(c);
1455 if (err)
1456 goto out_journal;
1457
1458 /* Calculate 'min_idx_lebs' after journal replay */
1459 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1460
1461 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1462 if (err)
1463 goto out_orphans;
1464
1465 if (!c->ro_mount) {
1466 int lnum;
1467
1468 err = check_free_space(c);
1469 if (err)
1470 goto out_orphans;
1471
1472 /* Check for enough log space */
1473 lnum = c->lhead_lnum + 1;
1474 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1475 lnum = UBIFS_LOG_LNUM;
1476 if (lnum == c->ltail_lnum) {
1477 err = ubifs_consolidate_log(c);
1478 if (err)
1479 goto out_orphans;
1480 }
1481
1482 if (c->need_recovery) {
1483 if (!ubifs_authenticated(c)) {
1484 err = ubifs_recover_size(c, true);
1485 if (err)
1486 goto out_orphans;
1487 }
1488
1489 err = ubifs_rcvry_gc_commit(c);
1490 if (err)
1491 goto out_orphans;
1492
1493 if (ubifs_authenticated(c)) {
1494 err = ubifs_recover_size(c, false);
1495 if (err)
1496 goto out_orphans;
1497 }
1498 } else {
1499 err = take_gc_lnum(c);
1500 if (err)
1501 goto out_orphans;
1502
1503 /*
1504 * GC LEB may contain garbage if there was an unclean
1505 * reboot, and it should be un-mapped.
1506 */
1507 err = ubifs_leb_unmap(c, c->gc_lnum);
1508 if (err)
1509 goto out_orphans;
1510 }
1511
1512 err = dbg_check_lprops(c);
1513 if (err)
1514 goto out_orphans;
1515 } else if (c->need_recovery) {
1516 err = ubifs_recover_size(c, false);
1517 if (err)
1518 goto out_orphans;
1519 } else {
1520 /*
1521 * Even if we mount read-only, we have to set space in GC LEB
1522 * to proper value because this affects UBIFS free space
1523 * reporting. We do not want to have a situation when
1524 * re-mounting from R/O to R/W changes amount of free space.
1525 */
1526 err = take_gc_lnum(c);
1527 if (err)
1528 goto out_orphans;
1529 }
1530
1531 spin_lock(&ubifs_infos_lock);
1532 list_add_tail(&c->infos_list, &ubifs_infos);
1533 spin_unlock(&ubifs_infos_lock);
1534
1535 if (c->need_recovery) {
1536 if (c->ro_mount)
1537 ubifs_msg(c, "recovery deferred");
1538 else {
1539 c->need_recovery = 0;
1540 ubifs_msg(c, "recovery completed");
1541 /*
1542 * GC LEB has to be empty and taken at this point. But
1543 * the journal head LEBs may also be accounted as
1544 * "empty taken" if they are empty.
1545 */
1546 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1547 }
1548 } else
1549 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
1550
1551 err = dbg_check_filesystem(c);
1552 if (err)
1553 goto out_infos;
1554
1555 dbg_debugfs_init_fs(c);
1556
1557 c->mounting = 0;
1558
1559 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1560 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1561 c->ro_mount ? ", R/O mode" : "");
1562 x = (long long)c->main_lebs * c->leb_size;
1563 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1564 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1565 c->leb_size, c->leb_size >> 10, c->min_io_size,
1566 c->max_write_size);
1567 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), max %d LEBs, journal size %lld bytes (%lld MiB, %d LEBs)",
1568 x, x >> 20, c->main_lebs, c->max_leb_cnt,
1569 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1570 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1571 c->report_rp_size, c->report_rp_size >> 10);
1572 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1573 c->fmt_version, c->ro_compat_version,
1574 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1575 c->big_lpt ? ", big LPT model" : ", small LPT model");
1576
1577 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr));
1578 dbg_gen("data journal heads: %d",
1579 c->jhead_cnt - NONDATA_JHEADS_CNT);
1580 dbg_gen("log LEBs: %d (%d - %d)",
1581 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1582 dbg_gen("LPT area LEBs: %d (%d - %d)",
1583 c->lpt_lebs, c->lpt_first, c->lpt_last);
1584 dbg_gen("orphan area LEBs: %d (%d - %d)",
1585 c->orph_lebs, c->orph_first, c->orph_last);
1586 dbg_gen("main area LEBs: %d (%d - %d)",
1587 c->main_lebs, c->main_first, c->leb_cnt - 1);
1588 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1589 dbg_gen("total index bytes: %llu (%llu KiB, %llu MiB)",
1590 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1591 c->bi.old_idx_sz >> 20);
1592 dbg_gen("key hash type: %d", c->key_hash_type);
1593 dbg_gen("tree fanout: %d", c->fanout);
1594 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1595 dbg_gen("max. znode size %d", c->max_znode_sz);
1596 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1597 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1598 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1599 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1600 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1601 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1602 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1603 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1604 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1605 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1606 dbg_gen("dead watermark: %d", c->dead_wm);
1607 dbg_gen("dark watermark: %d", c->dark_wm);
1608 dbg_gen("LEB overhead: %d", c->leb_overhead);
1609 x = (long long)c->main_lebs * c->dark_wm;
1610 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1611 x, x >> 10, x >> 20);
1612 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1613 c->max_bud_bytes, c->max_bud_bytes >> 10,
1614 c->max_bud_bytes >> 20);
1615 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1616 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1617 c->bg_bud_bytes >> 20);
1618 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1619 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1620 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1621 dbg_gen("commit number: %llu", c->cmt_no);
1622 dbg_gen("max. xattrs per inode: %d", ubifs_xattr_max_cnt(c));
1623 dbg_gen("max orphans: %d", c->max_orphans);
1624
1625 return 0;
1626
1627out_infos:
1628 spin_lock(&ubifs_infos_lock);
1629 list_del(&c->infos_list);
1630 spin_unlock(&ubifs_infos_lock);
1631out_orphans:
1632 free_orphans(c);
1633out_journal:
1634 destroy_journal(c);
1635out_lpt:
1636 ubifs_lpt_free(c, 0);
1637out_master:
1638 kfree(c->mst_node);
1639 kfree(c->rcvrd_mst_node);
1640 if (c->bgt)
1641 kthread_stop(c->bgt);
1642out_wbufs:
1643 free_wbufs(c);
1644out_cbuf:
1645 kfree(c->cbuf);
1646out_auth:
1647 ubifs_exit_authentication(c);
1648out_free:
1649 kfree(c->write_reserve_buf);
1650 kfree(c->bu.buf);
1651 vfree(c->ileb_buf);
1652 vfree(c->sbuf);
1653 kfree(c->bottom_up_buf);
1654 kfree(c->sup_node);
1655 ubifs_sysfs_unregister(c);
1656out_debugging:
1657 ubifs_debugging_exit(c);
1658 return err;
1659}
1660
1661/**
1662 * ubifs_umount - un-mount UBIFS file-system.
1663 * @c: UBIFS file-system description object
1664 *
1665 * Note, this function is called to free allocated resourced when un-mounting,
1666 * as well as free resources when an error occurred while we were half way
1667 * through mounting (error path cleanup function). So it has to make sure the
1668 * resource was actually allocated before freeing it.
1669 */
1670static void ubifs_umount(struct ubifs_info *c)
1671{
1672 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1673 c->vi.vol_id);
1674
1675 dbg_debugfs_exit_fs(c);
1676 spin_lock(&ubifs_infos_lock);
1677 list_del(&c->infos_list);
1678 spin_unlock(&ubifs_infos_lock);
1679
1680 if (c->bgt)
1681 kthread_stop(c->bgt);
1682
1683 destroy_journal(c);
1684 free_wbufs(c);
1685 free_orphans(c);
1686 ubifs_lpt_free(c, 0);
1687 ubifs_exit_authentication(c);
1688
1689 ubifs_release_options(c);
1690 kfree(c->cbuf);
1691 kfree(c->rcvrd_mst_node);
1692 kfree(c->mst_node);
1693 kfree(c->write_reserve_buf);
1694 kfree(c->bu.buf);
1695 vfree(c->ileb_buf);
1696 vfree(c->sbuf);
1697 kfree(c->bottom_up_buf);
1698 kfree(c->sup_node);
1699 ubifs_debugging_exit(c);
1700 ubifs_sysfs_unregister(c);
1701}
1702
1703/**
1704 * ubifs_remount_rw - re-mount in read-write mode.
1705 * @c: UBIFS file-system description object
1706 *
1707 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1708 * mode. This function allocates the needed resources and re-mounts UBIFS in
1709 * read-write mode.
1710 */
1711static int ubifs_remount_rw(struct ubifs_info *c)
1712{
1713 int err, lnum;
1714
1715 if (c->rw_incompat) {
1716 ubifs_err(c, "the file-system is not R/W-compatible");
1717 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1718 c->fmt_version, c->ro_compat_version,
1719 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1720 return -EROFS;
1721 }
1722
1723 mutex_lock(&c->umount_mutex);
1724 dbg_save_space_info(c);
1725 c->remounting_rw = 1;
1726 c->ro_mount = 0;
1727
1728 if (c->space_fixup) {
1729 err = ubifs_fixup_free_space(c);
1730 if (err)
1731 goto out;
1732 }
1733
1734 err = check_free_space(c);
1735 if (err)
1736 goto out;
1737
1738 if (c->need_recovery) {
1739 ubifs_msg(c, "completing deferred recovery");
1740 err = ubifs_write_rcvrd_mst_node(c);
1741 if (err)
1742 goto out;
1743 if (!ubifs_authenticated(c)) {
1744 err = ubifs_recover_size(c, true);
1745 if (err)
1746 goto out;
1747 }
1748 err = ubifs_clean_lebs(c, c->sbuf);
1749 if (err)
1750 goto out;
1751 err = ubifs_recover_inl_heads(c, c->sbuf);
1752 if (err)
1753 goto out;
1754 } else {
1755 /* A readonly mount is not allowed to have orphans */
1756 ubifs_assert(c, c->tot_orphans == 0);
1757 err = ubifs_clear_orphans(c);
1758 if (err)
1759 goto out;
1760 }
1761
1762 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1763 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1764 err = ubifs_write_master(c);
1765 if (err)
1766 goto out;
1767 }
1768
1769 if (c->superblock_need_write) {
1770 struct ubifs_sb_node *sup = c->sup_node;
1771
1772 err = ubifs_write_sb_node(c, sup);
1773 if (err)
1774 goto out;
1775
1776 c->superblock_need_write = 0;
1777 }
1778
1779 c->ileb_buf = vmalloc(c->leb_size);
1780 if (!c->ileb_buf) {
1781 err = -ENOMEM;
1782 goto out;
1783 }
1784
1785 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \
1786 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL);
1787 if (!c->write_reserve_buf) {
1788 err = -ENOMEM;
1789 goto out;
1790 }
1791
1792 err = ubifs_lpt_init(c, 0, 1);
1793 if (err)
1794 goto out;
1795
1796 /* Create background thread */
1797 c->bgt = kthread_run(ubifs_bg_thread, c, "%s", c->bgt_name);
1798 if (IS_ERR(c->bgt)) {
1799 err = PTR_ERR(c->bgt);
1800 c->bgt = NULL;
1801 ubifs_err(c, "cannot spawn \"%s\", error %d",
1802 c->bgt_name, err);
1803 goto out;
1804 }
1805
1806 c->orph_buf = vmalloc(c->leb_size);
1807 if (!c->orph_buf) {
1808 err = -ENOMEM;
1809 goto out;
1810 }
1811
1812 /* Check for enough log space */
1813 lnum = c->lhead_lnum + 1;
1814 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1815 lnum = UBIFS_LOG_LNUM;
1816 if (lnum == c->ltail_lnum) {
1817 err = ubifs_consolidate_log(c);
1818 if (err)
1819 goto out;
1820 }
1821
1822 if (c->need_recovery) {
1823 err = ubifs_rcvry_gc_commit(c);
1824 if (err)
1825 goto out;
1826
1827 if (ubifs_authenticated(c)) {
1828 err = ubifs_recover_size(c, false);
1829 if (err)
1830 goto out;
1831 }
1832 } else {
1833 err = ubifs_leb_unmap(c, c->gc_lnum);
1834 }
1835 if (err)
1836 goto out;
1837
1838 dbg_gen("re-mounted read-write");
1839 c->remounting_rw = 0;
1840
1841 if (c->need_recovery) {
1842 c->need_recovery = 0;
1843 ubifs_msg(c, "deferred recovery completed");
1844 } else {
1845 /*
1846 * Do not run the debugging space check if the were doing
1847 * recovery, because when we saved the information we had the
1848 * file-system in a state where the TNC and lprops has been
1849 * modified in memory, but all the I/O operations (including a
1850 * commit) were deferred. So the file-system was in
1851 * "non-committed" state. Now the file-system is in committed
1852 * state, and of course the amount of free space will change
1853 * because, for example, the old index size was imprecise.
1854 */
1855 err = dbg_check_space_info(c);
1856 }
1857
1858 mutex_unlock(&c->umount_mutex);
1859 return err;
1860
1861out:
1862 c->ro_mount = 1;
1863 vfree(c->orph_buf);
1864 c->orph_buf = NULL;
1865 if (c->bgt) {
1866 kthread_stop(c->bgt);
1867 c->bgt = NULL;
1868 }
1869 kfree(c->write_reserve_buf);
1870 c->write_reserve_buf = NULL;
1871 vfree(c->ileb_buf);
1872 c->ileb_buf = NULL;
1873 ubifs_lpt_free(c, 1);
1874 c->remounting_rw = 0;
1875 mutex_unlock(&c->umount_mutex);
1876 return err;
1877}
1878
1879/**
1880 * ubifs_remount_ro - re-mount in read-only mode.
1881 * @c: UBIFS file-system description object
1882 *
1883 * We assume VFS has stopped writing. Possibly the background thread could be
1884 * running a commit, however kthread_stop will wait in that case.
1885 */
1886static void ubifs_remount_ro(struct ubifs_info *c)
1887{
1888 int i, err;
1889
1890 ubifs_assert(c, !c->need_recovery);
1891 ubifs_assert(c, !c->ro_mount);
1892
1893 mutex_lock(&c->umount_mutex);
1894 if (c->bgt) {
1895 kthread_stop(c->bgt);
1896 c->bgt = NULL;
1897 }
1898
1899 dbg_save_space_info(c);
1900
1901 for (i = 0; i < c->jhead_cnt; i++) {
1902 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1903 if (err)
1904 ubifs_ro_mode(c, err);
1905 }
1906
1907 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1908 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1909 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1910 err = ubifs_write_master(c);
1911 if (err)
1912 ubifs_ro_mode(c, err);
1913
1914 vfree(c->orph_buf);
1915 c->orph_buf = NULL;
1916 kfree(c->write_reserve_buf);
1917 c->write_reserve_buf = NULL;
1918 vfree(c->ileb_buf);
1919 c->ileb_buf = NULL;
1920 ubifs_lpt_free(c, 1);
1921 c->ro_mount = 1;
1922 err = dbg_check_space_info(c);
1923 if (err)
1924 ubifs_ro_mode(c, err);
1925 mutex_unlock(&c->umount_mutex);
1926}
1927
1928static void ubifs_put_super(struct super_block *sb)
1929{
1930 int i;
1931 struct ubifs_info *c = sb->s_fs_info;
1932
1933 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1934
1935 /*
1936 * The following asserts are only valid if there has not been a failure
1937 * of the media. For example, there will be dirty inodes if we failed
1938 * to write them back because of I/O errors.
1939 */
1940 if (!c->ro_error) {
1941 ubifs_assert(c, c->bi.idx_growth == 0);
1942 ubifs_assert(c, c->bi.dd_growth == 0);
1943 ubifs_assert(c, c->bi.data_growth == 0);
1944 }
1945
1946 /*
1947 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1948 * and file system un-mount. Namely, it prevents the shrinker from
1949 * picking this superblock for shrinking - it will be just skipped if
1950 * the mutex is locked.
1951 */
1952 mutex_lock(&c->umount_mutex);
1953 if (!c->ro_mount) {
1954 /*
1955 * First of all kill the background thread to make sure it does
1956 * not interfere with un-mounting and freeing resources.
1957 */
1958 if (c->bgt) {
1959 kthread_stop(c->bgt);
1960 c->bgt = NULL;
1961 }
1962
1963 /*
1964 * On fatal errors c->ro_error is set to 1, in which case we do
1965 * not write the master node.
1966 */
1967 if (!c->ro_error) {
1968 int err;
1969
1970 /* Synchronize write-buffers */
1971 for (i = 0; i < c->jhead_cnt; i++) {
1972 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
1973 if (err)
1974 ubifs_ro_mode(c, err);
1975 }
1976
1977 /*
1978 * We are being cleanly unmounted which means the
1979 * orphans were killed - indicate this in the master
1980 * node. Also save the reserved GC LEB number.
1981 */
1982 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1983 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1984 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1985 err = ubifs_write_master(c);
1986 if (err)
1987 /*
1988 * Recovery will attempt to fix the master area
1989 * next mount, so we just print a message and
1990 * continue to unmount normally.
1991 */
1992 ubifs_err(c, "failed to write master node, error %d",
1993 err);
1994 } else {
1995 for (i = 0; i < c->jhead_cnt; i++)
1996 /* Make sure write-buffer timers are canceled */
1997 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1998 }
1999 }
2000
2001 ubifs_umount(c);
2002 ubi_close_volume(c->ubi);
2003 mutex_unlock(&c->umount_mutex);
2004}
2005
2006static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
2007{
2008 int err;
2009 struct ubifs_info *c = sb->s_fs_info;
2010
2011 sync_filesystem(sb);
2012 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
2013
2014 err = ubifs_parse_options(c, data, 1);
2015 if (err) {
2016 ubifs_err(c, "invalid or unknown remount parameter");
2017 return err;
2018 }
2019
2020 if (c->ro_mount && !(*flags & SB_RDONLY)) {
2021 if (c->ro_error) {
2022 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
2023 return -EROFS;
2024 }
2025 if (c->ro_media) {
2026 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
2027 return -EROFS;
2028 }
2029 err = ubifs_remount_rw(c);
2030 if (err)
2031 return err;
2032 } else if (!c->ro_mount && (*flags & SB_RDONLY)) {
2033 if (c->ro_error) {
2034 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
2035 return -EROFS;
2036 }
2037 ubifs_remount_ro(c);
2038 }
2039
2040 if (c->bulk_read == 1)
2041 bu_init(c);
2042 else {
2043 dbg_gen("disable bulk-read");
2044 mutex_lock(&c->bu_mutex);
2045 kfree(c->bu.buf);
2046 c->bu.buf = NULL;
2047 mutex_unlock(&c->bu_mutex);
2048 }
2049
2050 if (!c->need_recovery)
2051 ubifs_assert(c, c->lst.taken_empty_lebs > 0);
2052
2053 return 0;
2054}
2055
2056const struct super_operations ubifs_super_operations = {
2057 .alloc_inode = ubifs_alloc_inode,
2058 .free_inode = ubifs_free_inode,
2059 .put_super = ubifs_put_super,
2060 .write_inode = ubifs_write_inode,
2061 .drop_inode = ubifs_drop_inode,
2062 .evict_inode = ubifs_evict_inode,
2063 .statfs = ubifs_statfs,
2064 .dirty_inode = ubifs_dirty_inode,
2065 .remount_fs = ubifs_remount_fs,
2066 .show_options = ubifs_show_options,
2067 .sync_fs = ubifs_sync_fs,
2068};
2069
2070/**
2071 * open_ubi - parse UBI device name string and open the UBI device.
2072 * @name: UBI volume name
2073 * @mode: UBI volume open mode
2074 *
2075 * The primary method of mounting UBIFS is by specifying the UBI volume
2076 * character device node path. However, UBIFS may also be mounted without any
2077 * character device node using one of the following methods:
2078 *
2079 * o ubiX_Y - mount UBI device number X, volume Y;
2080 * o ubiY - mount UBI device number 0, volume Y;
2081 * o ubiX:NAME - mount UBI device X, volume with name NAME;
2082 * o ubi:NAME - mount UBI device 0, volume with name NAME.
2083 *
2084 * Alternative '!' separator may be used instead of ':' (because some shells
2085 * like busybox may interpret ':' as an NFS host name separator). This function
2086 * returns UBI volume description object in case of success and a negative
2087 * error code in case of failure.
2088 */
2089static struct ubi_volume_desc *open_ubi(const char *name, int mode)
2090{
2091 struct ubi_volume_desc *ubi;
2092 int dev, vol;
2093 char *endptr;
2094
2095 if (!name || !*name)
2096 return ERR_PTR(-EINVAL);
2097
2098 /* First, try to open using the device node path method */
2099 ubi = ubi_open_volume_path(name, mode);
2100 if (!IS_ERR(ubi))
2101 return ubi;
2102
2103 /* Try the "nodev" method */
2104 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
2105 return ERR_PTR(-EINVAL);
2106
2107 /* ubi:NAME method */
2108 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
2109 return ubi_open_volume_nm(0, name + 4, mode);
2110
2111 if (!isdigit(name[3]))
2112 return ERR_PTR(-EINVAL);
2113
2114 dev = simple_strtoul(name + 3, &endptr, 0);
2115
2116 /* ubiY method */
2117 if (*endptr == '\0')
2118 return ubi_open_volume(0, dev, mode);
2119
2120 /* ubiX_Y method */
2121 if (*endptr == '_' && isdigit(endptr[1])) {
2122 vol = simple_strtoul(endptr + 1, &endptr, 0);
2123 if (*endptr != '\0')
2124 return ERR_PTR(-EINVAL);
2125 return ubi_open_volume(dev, vol, mode);
2126 }
2127
2128 /* ubiX:NAME method */
2129 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
2130 return ubi_open_volume_nm(dev, ++endptr, mode);
2131
2132 return ERR_PTR(-EINVAL);
2133}
2134
2135static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
2136{
2137 struct ubifs_info *c;
2138
2139 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
2140 if (c) {
2141 spin_lock_init(&c->cnt_lock);
2142 spin_lock_init(&c->cs_lock);
2143 spin_lock_init(&c->buds_lock);
2144 spin_lock_init(&c->space_lock);
2145 spin_lock_init(&c->orphan_lock);
2146 init_rwsem(&c->commit_sem);
2147 mutex_init(&c->lp_mutex);
2148 mutex_init(&c->tnc_mutex);
2149 mutex_init(&c->log_mutex);
2150 mutex_init(&c->umount_mutex);
2151 mutex_init(&c->bu_mutex);
2152 mutex_init(&c->write_reserve_mutex);
2153 init_waitqueue_head(&c->cmt_wq);
2154 init_waitqueue_head(&c->reserve_space_wq);
2155 atomic_set(&c->need_wait_space, 0);
2156 c->buds = RB_ROOT;
2157 c->old_idx = RB_ROOT;
2158 c->size_tree = RB_ROOT;
2159 c->orph_tree = RB_ROOT;
2160 INIT_LIST_HEAD(&c->infos_list);
2161 INIT_LIST_HEAD(&c->idx_gc);
2162 INIT_LIST_HEAD(&c->replay_list);
2163 INIT_LIST_HEAD(&c->replay_buds);
2164 INIT_LIST_HEAD(&c->uncat_list);
2165 INIT_LIST_HEAD(&c->empty_list);
2166 INIT_LIST_HEAD(&c->freeable_list);
2167 INIT_LIST_HEAD(&c->frdi_idx_list);
2168 INIT_LIST_HEAD(&c->unclean_leb_list);
2169 INIT_LIST_HEAD(&c->old_buds);
2170 INIT_LIST_HEAD(&c->orph_list);
2171 INIT_LIST_HEAD(&c->orph_new);
2172 c->no_chk_data_crc = 1;
2173 c->assert_action = ASSACT_RO;
2174
2175 c->highest_inum = UBIFS_FIRST_INO;
2176 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
2177
2178 ubi_get_volume_info(ubi, &c->vi);
2179 ubi_get_device_info(c->vi.ubi_num, &c->di);
2180 }
2181 return c;
2182}
2183
2184static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
2185{
2186 struct ubifs_info *c = sb->s_fs_info;
2187 struct inode *root;
2188 int err;
2189
2190 c->vfs_sb = sb;
2191 /* Re-open the UBI device in read-write mode */
2192 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2193 if (IS_ERR(c->ubi)) {
2194 err = PTR_ERR(c->ubi);
2195 goto out;
2196 }
2197
2198 err = ubifs_parse_options(c, data, 0);
2199 if (err)
2200 goto out_close;
2201
2202 /*
2203 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2204 * UBIFS, I/O is not deferred, it is done immediately in read_folio,
2205 * which means the user would have to wait not just for their own I/O
2206 * but the read-ahead I/O as well i.e. completely pointless.
2207 *
2208 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also
2209 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any
2210 * writeback happening.
2211 */
2212 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num,
2213 c->vi.vol_id);
2214 if (err)
2215 goto out_close;
2216 sb->s_bdi->ra_pages = 0;
2217 sb->s_bdi->io_pages = 0;
2218
2219 sb->s_fs_info = c;
2220 sb->s_magic = UBIFS_SUPER_MAGIC;
2221 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2222 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2223 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2224 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2225 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2226 sb->s_op = &ubifs_super_operations;
2227 sb->s_xattr = ubifs_xattr_handlers;
2228 fscrypt_set_ops(sb, &ubifs_crypt_operations);
2229
2230 mutex_lock(&c->umount_mutex);
2231 err = mount_ubifs(c);
2232 if (err) {
2233 ubifs_assert(c, err < 0);
2234 goto out_unlock;
2235 }
2236
2237 /* Read the root inode */
2238 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2239 if (IS_ERR(root)) {
2240 err = PTR_ERR(root);
2241 goto out_umount;
2242 }
2243
2244 generic_set_sb_d_ops(sb);
2245 sb->s_root = d_make_root(root);
2246 if (!sb->s_root) {
2247 err = -ENOMEM;
2248 goto out_umount;
2249 }
2250
2251 super_set_uuid(sb, c->uuid, sizeof(c->uuid));
2252
2253 mutex_unlock(&c->umount_mutex);
2254 return 0;
2255
2256out_umount:
2257 ubifs_umount(c);
2258out_unlock:
2259 mutex_unlock(&c->umount_mutex);
2260out_close:
2261 ubifs_release_options(c);
2262 ubi_close_volume(c->ubi);
2263out:
2264 return err;
2265}
2266
2267static int sb_test(struct super_block *sb, void *data)
2268{
2269 struct ubifs_info *c1 = data;
2270 struct ubifs_info *c = sb->s_fs_info;
2271
2272 return c->vi.cdev == c1->vi.cdev;
2273}
2274
2275static int sb_set(struct super_block *sb, void *data)
2276{
2277 sb->s_fs_info = data;
2278 return set_anon_super(sb, NULL);
2279}
2280
2281static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2282 const char *name, void *data)
2283{
2284 struct ubi_volume_desc *ubi;
2285 struct ubifs_info *c;
2286 struct super_block *sb;
2287 int err;
2288
2289 dbg_gen("name %s, flags %#x", name, flags);
2290
2291 /*
2292 * Get UBI device number and volume ID. Mount it read-only so far
2293 * because this might be a new mount point, and UBI allows only one
2294 * read-write user at a time.
2295 */
2296 ubi = open_ubi(name, UBI_READONLY);
2297 if (IS_ERR(ubi)) {
2298 if (!(flags & SB_SILENT))
2299 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2300 current->pid, name, (int)PTR_ERR(ubi));
2301 return ERR_CAST(ubi);
2302 }
2303
2304 c = alloc_ubifs_info(ubi);
2305 if (!c) {
2306 err = -ENOMEM;
2307 goto out_close;
2308 }
2309
2310 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2311
2312 sb = sget(fs_type, sb_test, sb_set, flags, c);
2313 if (IS_ERR(sb)) {
2314 err = PTR_ERR(sb);
2315 kfree(c);
2316 goto out_close;
2317 }
2318
2319 if (sb->s_root) {
2320 struct ubifs_info *c1 = sb->s_fs_info;
2321 kfree(c);
2322 /* A new mount point for already mounted UBIFS */
2323 dbg_gen("this ubi volume is already mounted");
2324 if (!!(flags & SB_RDONLY) != c1->ro_mount) {
2325 err = -EBUSY;
2326 goto out_deact;
2327 }
2328 } else {
2329 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0);
2330 if (err)
2331 goto out_deact;
2332 /* We do not support atime */
2333 sb->s_flags |= SB_ACTIVE;
2334 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
2335 ubifs_msg(c, "full atime support is enabled.");
2336 else
2337 sb->s_flags |= SB_NOATIME;
2338 }
2339
2340 /* 'fill_super()' opens ubi again so we must close it here */
2341 ubi_close_volume(ubi);
2342
2343 return dget(sb->s_root);
2344
2345out_deact:
2346 deactivate_locked_super(sb);
2347out_close:
2348 ubi_close_volume(ubi);
2349 return ERR_PTR(err);
2350}
2351
2352static void kill_ubifs_super(struct super_block *s)
2353{
2354 struct ubifs_info *c = s->s_fs_info;
2355 kill_anon_super(s);
2356 kfree(c);
2357}
2358
2359static struct file_system_type ubifs_fs_type = {
2360 .name = "ubifs",
2361 .owner = THIS_MODULE,
2362 .mount = ubifs_mount,
2363 .kill_sb = kill_ubifs_super,
2364};
2365MODULE_ALIAS_FS("ubifs");
2366
2367/*
2368 * Inode slab cache constructor.
2369 */
2370static void inode_slab_ctor(void *obj)
2371{
2372 struct ubifs_inode *ui = obj;
2373 inode_init_once(&ui->vfs_inode);
2374}
2375
2376static int __init ubifs_init(void)
2377{
2378 int err = -ENOMEM;
2379
2380 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2381
2382 /* Make sure node sizes are 8-byte aligned */
2383 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2384 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2385 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2386 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2387 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2388 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2389 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2390 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2391 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2392 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2393 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2394
2395 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2396 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2397 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2398 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2399 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2400 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2401
2402 /* Check min. node size */
2403 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2404 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2405 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2406 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2407
2408 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2409 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2410 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2411 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2412
2413 /* Defined node sizes */
2414 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2415 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2416 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2417 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2418
2419 /*
2420 * We use 2 bit wide bit-fields to store compression type, which should
2421 * be amended if more compressors are added. The bit-fields are:
2422 * @compr_type in 'struct ubifs_inode', @default_compr in
2423 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2424 */
2425 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2426
2427 /*
2428 * We require that PAGE_SIZE is greater-than-or-equal-to
2429 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2430 */
2431 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2432 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2433 current->pid, (unsigned int)PAGE_SIZE);
2434 return -EINVAL;
2435 }
2436
2437 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2438 sizeof(struct ubifs_inode), 0,
2439 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
2440 &inode_slab_ctor);
2441 if (!ubifs_inode_slab)
2442 return -ENOMEM;
2443
2444 ubifs_shrinker_info = shrinker_alloc(0, "ubifs-slab");
2445 if (!ubifs_shrinker_info)
2446 goto out_slab;
2447
2448 ubifs_shrinker_info->count_objects = ubifs_shrink_count;
2449 ubifs_shrinker_info->scan_objects = ubifs_shrink_scan;
2450
2451 shrinker_register(ubifs_shrinker_info);
2452
2453 err = ubifs_compressors_init();
2454 if (err)
2455 goto out_shrinker;
2456
2457 dbg_debugfs_init();
2458
2459 err = ubifs_sysfs_init();
2460 if (err)
2461 goto out_dbg;
2462
2463 err = register_filesystem(&ubifs_fs_type);
2464 if (err) {
2465 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2466 current->pid, err);
2467 goto out_sysfs;
2468 }
2469 return 0;
2470
2471out_sysfs:
2472 ubifs_sysfs_exit();
2473out_dbg:
2474 dbg_debugfs_exit();
2475 ubifs_compressors_exit();
2476out_shrinker:
2477 shrinker_free(ubifs_shrinker_info);
2478out_slab:
2479 kmem_cache_destroy(ubifs_inode_slab);
2480 return err;
2481}
2482/* late_initcall to let compressors initialize first */
2483late_initcall(ubifs_init);
2484
2485static void __exit ubifs_exit(void)
2486{
2487 WARN_ON(!list_empty(&ubifs_infos));
2488 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0);
2489
2490 dbg_debugfs_exit();
2491 ubifs_sysfs_exit();
2492 ubifs_compressors_exit();
2493 shrinker_free(ubifs_shrinker_info);
2494
2495 /*
2496 * Make sure all delayed rcu free inodes are flushed before we
2497 * destroy cache.
2498 */
2499 rcu_barrier();
2500 kmem_cache_destroy(ubifs_inode_slab);
2501 unregister_filesystem(&ubifs_fs_type);
2502}
2503module_exit(ubifs_exit);
2504
2505MODULE_LICENSE("GPL");
2506MODULE_VERSION(__stringify(UBIFS_VERSION));
2507MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2508MODULE_DESCRIPTION("UBIFS - UBI File System");
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS initialization and VFS superblock operations. Some
25 * initialization stuff which is rather large and complex is placed at
26 * corresponding subsystems, but most of it is here.
27 */
28
29#include <linux/init.h>
30#include <linux/slab.h>
31#include <linux/module.h>
32#include <linux/ctype.h>
33#include <linux/kthread.h>
34#include <linux/parser.h>
35#include <linux/seq_file.h>
36#include <linux/mount.h>
37#include <linux/math64.h>
38#include <linux/writeback.h>
39#include "ubifs.h"
40
41/*
42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43 * allocating too much.
44 */
45#define UBIFS_KMALLOC_OK (128*1024)
46
47/* Slab cache for UBIFS inodes */
48struct kmem_cache *ubifs_inode_slab;
49
50/* UBIFS TNC shrinker description */
51static struct shrinker ubifs_shrinker_info = {
52 .scan_objects = ubifs_shrink_scan,
53 .count_objects = ubifs_shrink_count,
54 .seeks = DEFAULT_SEEKS,
55};
56
57/**
58 * validate_inode - validate inode.
59 * @c: UBIFS file-system description object
60 * @inode: the inode to validate
61 *
62 * This is a helper function for 'ubifs_iget()' which validates various fields
63 * of a newly built inode to make sure they contain sane values and prevent
64 * possible vulnerabilities. Returns zero if the inode is all right and
65 * a non-zero error code if not.
66 */
67static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68{
69 int err;
70 const struct ubifs_inode *ui = ubifs_inode(inode);
71
72 if (inode->i_size > c->max_inode_sz) {
73 ubifs_err(c, "inode is too large (%lld)",
74 (long long)inode->i_size);
75 return 1;
76 }
77
78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 return 2;
81 }
82
83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 return 3;
85
86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 return 4;
88
89 if (ui->xattr && !S_ISREG(inode->i_mode))
90 return 5;
91
92 if (!ubifs_compr_present(ui->compr_type)) {
93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 inode->i_ino, ubifs_compr_name(ui->compr_type));
95 }
96
97 err = dbg_check_dir(c, inode);
98 return err;
99}
100
101struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102{
103 int err;
104 union ubifs_key key;
105 struct ubifs_ino_node *ino;
106 struct ubifs_info *c = sb->s_fs_info;
107 struct inode *inode;
108 struct ubifs_inode *ui;
109
110 dbg_gen("inode %lu", inum);
111
112 inode = iget_locked(sb, inum);
113 if (!inode)
114 return ERR_PTR(-ENOMEM);
115 if (!(inode->i_state & I_NEW))
116 return inode;
117 ui = ubifs_inode(inode);
118
119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 if (!ino) {
121 err = -ENOMEM;
122 goto out;
123 }
124
125 ino_key_init(c, &key, inode->i_ino);
126
127 err = ubifs_tnc_lookup(c, &key, ino);
128 if (err)
129 goto out_ino;
130
131 inode->i_flags |= S_NOCMTIME;
132#ifndef CONFIG_UBIFS_ATIME_SUPPORT
133 inode->i_flags |= S_NOATIME;
134#endif
135 set_nlink(inode, le32_to_cpu(ino->nlink));
136 i_uid_write(inode, le32_to_cpu(ino->uid));
137 i_gid_write(inode, le32_to_cpu(ino->gid));
138 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec);
139 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
140 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec);
141 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
142 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec);
143 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
144 inode->i_mode = le32_to_cpu(ino->mode);
145 inode->i_size = le64_to_cpu(ino->size);
146
147 ui->data_len = le32_to_cpu(ino->data_len);
148 ui->flags = le32_to_cpu(ino->flags);
149 ui->compr_type = le16_to_cpu(ino->compr_type);
150 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
151 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
152 ui->xattr_size = le32_to_cpu(ino->xattr_size);
153 ui->xattr_names = le32_to_cpu(ino->xattr_names);
154 ui->synced_i_size = ui->ui_size = inode->i_size;
155
156 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
157
158 err = validate_inode(c, inode);
159 if (err)
160 goto out_invalid;
161
162 switch (inode->i_mode & S_IFMT) {
163 case S_IFREG:
164 inode->i_mapping->a_ops = &ubifs_file_address_operations;
165 inode->i_op = &ubifs_file_inode_operations;
166 inode->i_fop = &ubifs_file_operations;
167 if (ui->xattr) {
168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
169 if (!ui->data) {
170 err = -ENOMEM;
171 goto out_ino;
172 }
173 memcpy(ui->data, ino->data, ui->data_len);
174 ((char *)ui->data)[ui->data_len] = '\0';
175 } else if (ui->data_len != 0) {
176 err = 10;
177 goto out_invalid;
178 }
179 break;
180 case S_IFDIR:
181 inode->i_op = &ubifs_dir_inode_operations;
182 inode->i_fop = &ubifs_dir_operations;
183 if (ui->data_len != 0) {
184 err = 11;
185 goto out_invalid;
186 }
187 break;
188 case S_IFLNK:
189 inode->i_op = &ubifs_symlink_inode_operations;
190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
191 err = 12;
192 goto out_invalid;
193 }
194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
195 if (!ui->data) {
196 err = -ENOMEM;
197 goto out_ino;
198 }
199 memcpy(ui->data, ino->data, ui->data_len);
200 ((char *)ui->data)[ui->data_len] = '\0';
201 inode->i_link = ui->data;
202 break;
203 case S_IFBLK:
204 case S_IFCHR:
205 {
206 dev_t rdev;
207 union ubifs_dev_desc *dev;
208
209 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
210 if (!ui->data) {
211 err = -ENOMEM;
212 goto out_ino;
213 }
214
215 dev = (union ubifs_dev_desc *)ino->data;
216 if (ui->data_len == sizeof(dev->new))
217 rdev = new_decode_dev(le32_to_cpu(dev->new));
218 else if (ui->data_len == sizeof(dev->huge))
219 rdev = huge_decode_dev(le64_to_cpu(dev->huge));
220 else {
221 err = 13;
222 goto out_invalid;
223 }
224 memcpy(ui->data, ino->data, ui->data_len);
225 inode->i_op = &ubifs_file_inode_operations;
226 init_special_inode(inode, inode->i_mode, rdev);
227 break;
228 }
229 case S_IFSOCK:
230 case S_IFIFO:
231 inode->i_op = &ubifs_file_inode_operations;
232 init_special_inode(inode, inode->i_mode, 0);
233 if (ui->data_len != 0) {
234 err = 14;
235 goto out_invalid;
236 }
237 break;
238 default:
239 err = 15;
240 goto out_invalid;
241 }
242
243 kfree(ino);
244 ubifs_set_inode_flags(inode);
245 unlock_new_inode(inode);
246 return inode;
247
248out_invalid:
249 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
250 ubifs_dump_node(c, ino);
251 ubifs_dump_inode(c, inode);
252 err = -EINVAL;
253out_ino:
254 kfree(ino);
255out:
256 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
257 iget_failed(inode);
258 return ERR_PTR(err);
259}
260
261static struct inode *ubifs_alloc_inode(struct super_block *sb)
262{
263 struct ubifs_inode *ui;
264
265 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
266 if (!ui)
267 return NULL;
268
269 memset((void *)ui + sizeof(struct inode), 0,
270 sizeof(struct ubifs_inode) - sizeof(struct inode));
271 mutex_init(&ui->ui_mutex);
272 spin_lock_init(&ui->ui_lock);
273 return &ui->vfs_inode;
274};
275
276static void ubifs_i_callback(struct rcu_head *head)
277{
278 struct inode *inode = container_of(head, struct inode, i_rcu);
279 struct ubifs_inode *ui = ubifs_inode(inode);
280 kmem_cache_free(ubifs_inode_slab, ui);
281}
282
283static void ubifs_destroy_inode(struct inode *inode)
284{
285 struct ubifs_inode *ui = ubifs_inode(inode);
286
287 kfree(ui->data);
288 call_rcu(&inode->i_rcu, ubifs_i_callback);
289}
290
291/*
292 * Note, Linux write-back code calls this without 'i_mutex'.
293 */
294static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
295{
296 int err = 0;
297 struct ubifs_info *c = inode->i_sb->s_fs_info;
298 struct ubifs_inode *ui = ubifs_inode(inode);
299
300 ubifs_assert(!ui->xattr);
301 if (is_bad_inode(inode))
302 return 0;
303
304 mutex_lock(&ui->ui_mutex);
305 /*
306 * Due to races between write-back forced by budgeting
307 * (see 'sync_some_inodes()') and background write-back, the inode may
308 * have already been synchronized, do not do this again. This might
309 * also happen if it was synchronized in an VFS operation, e.g.
310 * 'ubifs_link()'.
311 */
312 if (!ui->dirty) {
313 mutex_unlock(&ui->ui_mutex);
314 return 0;
315 }
316
317 /*
318 * As an optimization, do not write orphan inodes to the media just
319 * because this is not needed.
320 */
321 dbg_gen("inode %lu, mode %#x, nlink %u",
322 inode->i_ino, (int)inode->i_mode, inode->i_nlink);
323 if (inode->i_nlink) {
324 err = ubifs_jnl_write_inode(c, inode);
325 if (err)
326 ubifs_err(c, "can't write inode %lu, error %d",
327 inode->i_ino, err);
328 else
329 err = dbg_check_inode_size(c, inode, ui->ui_size);
330 }
331
332 ui->dirty = 0;
333 mutex_unlock(&ui->ui_mutex);
334 ubifs_release_dirty_inode_budget(c, ui);
335 return err;
336}
337
338static void ubifs_evict_inode(struct inode *inode)
339{
340 int err;
341 struct ubifs_info *c = inode->i_sb->s_fs_info;
342 struct ubifs_inode *ui = ubifs_inode(inode);
343
344 if (ui->xattr)
345 /*
346 * Extended attribute inode deletions are fully handled in
347 * 'ubifs_removexattr()'. These inodes are special and have
348 * limited usage, so there is nothing to do here.
349 */
350 goto out;
351
352 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
353 ubifs_assert(!atomic_read(&inode->i_count));
354
355 truncate_inode_pages_final(&inode->i_data);
356
357 if (inode->i_nlink)
358 goto done;
359
360 if (is_bad_inode(inode))
361 goto out;
362
363 ui->ui_size = inode->i_size = 0;
364 err = ubifs_jnl_delete_inode(c, inode);
365 if (err)
366 /*
367 * Worst case we have a lost orphan inode wasting space, so a
368 * simple error message is OK here.
369 */
370 ubifs_err(c, "can't delete inode %lu, error %d",
371 inode->i_ino, err);
372
373out:
374 if (ui->dirty)
375 ubifs_release_dirty_inode_budget(c, ui);
376 else {
377 /* We've deleted something - clean the "no space" flags */
378 c->bi.nospace = c->bi.nospace_rp = 0;
379 smp_wmb();
380 }
381done:
382 clear_inode(inode);
383}
384
385static void ubifs_dirty_inode(struct inode *inode, int flags)
386{
387 struct ubifs_inode *ui = ubifs_inode(inode);
388
389 ubifs_assert(mutex_is_locked(&ui->ui_mutex));
390 if (!ui->dirty) {
391 ui->dirty = 1;
392 dbg_gen("inode %lu", inode->i_ino);
393 }
394}
395
396static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
397{
398 struct ubifs_info *c = dentry->d_sb->s_fs_info;
399 unsigned long long free;
400 __le32 *uuid = (__le32 *)c->uuid;
401
402 free = ubifs_get_free_space(c);
403 dbg_gen("free space %lld bytes (%lld blocks)",
404 free, free >> UBIFS_BLOCK_SHIFT);
405
406 buf->f_type = UBIFS_SUPER_MAGIC;
407 buf->f_bsize = UBIFS_BLOCK_SIZE;
408 buf->f_blocks = c->block_cnt;
409 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
410 if (free > c->report_rp_size)
411 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
412 else
413 buf->f_bavail = 0;
414 buf->f_files = 0;
415 buf->f_ffree = 0;
416 buf->f_namelen = UBIFS_MAX_NLEN;
417 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
418 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
419 ubifs_assert(buf->f_bfree <= c->block_cnt);
420 return 0;
421}
422
423static int ubifs_show_options(struct seq_file *s, struct dentry *root)
424{
425 struct ubifs_info *c = root->d_sb->s_fs_info;
426
427 if (c->mount_opts.unmount_mode == 2)
428 seq_puts(s, ",fast_unmount");
429 else if (c->mount_opts.unmount_mode == 1)
430 seq_puts(s, ",norm_unmount");
431
432 if (c->mount_opts.bulk_read == 2)
433 seq_puts(s, ",bulk_read");
434 else if (c->mount_opts.bulk_read == 1)
435 seq_puts(s, ",no_bulk_read");
436
437 if (c->mount_opts.chk_data_crc == 2)
438 seq_puts(s, ",chk_data_crc");
439 else if (c->mount_opts.chk_data_crc == 1)
440 seq_puts(s, ",no_chk_data_crc");
441
442 if (c->mount_opts.override_compr) {
443 seq_printf(s, ",compr=%s",
444 ubifs_compr_name(c->mount_opts.compr_type));
445 }
446
447 return 0;
448}
449
450static int ubifs_sync_fs(struct super_block *sb, int wait)
451{
452 int i, err;
453 struct ubifs_info *c = sb->s_fs_info;
454
455 /*
456 * Zero @wait is just an advisory thing to help the file system shove
457 * lots of data into the queues, and there will be the second
458 * '->sync_fs()' call, with non-zero @wait.
459 */
460 if (!wait)
461 return 0;
462
463 /*
464 * Synchronize write buffers, because 'ubifs_run_commit()' does not
465 * do this if it waits for an already running commit.
466 */
467 for (i = 0; i < c->jhead_cnt; i++) {
468 err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
469 if (err)
470 return err;
471 }
472
473 /*
474 * Strictly speaking, it is not necessary to commit the journal here,
475 * synchronizing write-buffers would be enough. But committing makes
476 * UBIFS free space predictions much more accurate, so we want to let
477 * the user be able to get more accurate results of 'statfs()' after
478 * they synchronize the file system.
479 */
480 err = ubifs_run_commit(c);
481 if (err)
482 return err;
483
484 return ubi_sync(c->vi.ubi_num);
485}
486
487/**
488 * init_constants_early - initialize UBIFS constants.
489 * @c: UBIFS file-system description object
490 *
491 * This function initialize UBIFS constants which do not need the superblock to
492 * be read. It also checks that the UBI volume satisfies basic UBIFS
493 * requirements. Returns zero in case of success and a negative error code in
494 * case of failure.
495 */
496static int init_constants_early(struct ubifs_info *c)
497{
498 if (c->vi.corrupted) {
499 ubifs_warn(c, "UBI volume is corrupted - read-only mode");
500 c->ro_media = 1;
501 }
502
503 if (c->di.ro_mode) {
504 ubifs_msg(c, "read-only UBI device");
505 c->ro_media = 1;
506 }
507
508 if (c->vi.vol_type == UBI_STATIC_VOLUME) {
509 ubifs_msg(c, "static UBI volume - read-only mode");
510 c->ro_media = 1;
511 }
512
513 c->leb_cnt = c->vi.size;
514 c->leb_size = c->vi.usable_leb_size;
515 c->leb_start = c->di.leb_start;
516 c->half_leb_size = c->leb_size / 2;
517 c->min_io_size = c->di.min_io_size;
518 c->min_io_shift = fls(c->min_io_size) - 1;
519 c->max_write_size = c->di.max_write_size;
520 c->max_write_shift = fls(c->max_write_size) - 1;
521
522 if (c->leb_size < UBIFS_MIN_LEB_SZ) {
523 ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
524 c->leb_size, UBIFS_MIN_LEB_SZ);
525 return -EINVAL;
526 }
527
528 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
529 ubifs_err(c, "too few LEBs (%d), min. is %d",
530 c->leb_cnt, UBIFS_MIN_LEB_CNT);
531 return -EINVAL;
532 }
533
534 if (!is_power_of_2(c->min_io_size)) {
535 ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
536 return -EINVAL;
537 }
538
539 /*
540 * Maximum write size has to be greater or equivalent to min. I/O
541 * size, and be multiple of min. I/O size.
542 */
543 if (c->max_write_size < c->min_io_size ||
544 c->max_write_size % c->min_io_size ||
545 !is_power_of_2(c->max_write_size)) {
546 ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
547 c->max_write_size, c->min_io_size);
548 return -EINVAL;
549 }
550
551 /*
552 * UBIFS aligns all node to 8-byte boundary, so to make function in
553 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
554 * less than 8.
555 */
556 if (c->min_io_size < 8) {
557 c->min_io_size = 8;
558 c->min_io_shift = 3;
559 if (c->max_write_size < c->min_io_size) {
560 c->max_write_size = c->min_io_size;
561 c->max_write_shift = c->min_io_shift;
562 }
563 }
564
565 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
566 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
567
568 /*
569 * Initialize node length ranges which are mostly needed for node
570 * length validation.
571 */
572 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ;
573 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ;
574 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ;
575 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ;
576 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
577 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ;
578
579 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ;
580 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ;
581 c->ranges[UBIFS_ORPH_NODE].min_len =
582 UBIFS_ORPH_NODE_SZ + sizeof(__le64);
583 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
584 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
585 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
586 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
587 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
588 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
589 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
590 /*
591 * Minimum indexing node size is amended later when superblock is
592 * read and the key length is known.
593 */
594 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
595 /*
596 * Maximum indexing node size is amended later when superblock is
597 * read and the fanout is known.
598 */
599 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
600
601 /*
602 * Initialize dead and dark LEB space watermarks. See gc.c for comments
603 * about these values.
604 */
605 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
606 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
607
608 /*
609 * Calculate how many bytes would be wasted at the end of LEB if it was
610 * fully filled with data nodes of maximum size. This is used in
611 * calculations when reporting free space.
612 */
613 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
614
615 /* Buffer size for bulk-reads */
616 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
617 if (c->max_bu_buf_len > c->leb_size)
618 c->max_bu_buf_len = c->leb_size;
619 return 0;
620}
621
622/**
623 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
624 * @c: UBIFS file-system description object
625 * @lnum: LEB the write-buffer was synchronized to
626 * @free: how many free bytes left in this LEB
627 * @pad: how many bytes were padded
628 *
629 * This is a callback function which is called by the I/O unit when the
630 * write-buffer is synchronized. We need this to correctly maintain space
631 * accounting in bud logical eraseblocks. This function returns zero in case of
632 * success and a negative error code in case of failure.
633 *
634 * This function actually belongs to the journal, but we keep it here because
635 * we want to keep it static.
636 */
637static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
638{
639 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
640}
641
642/*
643 * init_constants_sb - initialize UBIFS constants.
644 * @c: UBIFS file-system description object
645 *
646 * This is a helper function which initializes various UBIFS constants after
647 * the superblock has been read. It also checks various UBIFS parameters and
648 * makes sure they are all right. Returns zero in case of success and a
649 * negative error code in case of failure.
650 */
651static int init_constants_sb(struct ubifs_info *c)
652{
653 int tmp, err;
654 long long tmp64;
655
656 c->main_bytes = (long long)c->main_lebs * c->leb_size;
657 c->max_znode_sz = sizeof(struct ubifs_znode) +
658 c->fanout * sizeof(struct ubifs_zbranch);
659
660 tmp = ubifs_idx_node_sz(c, 1);
661 c->ranges[UBIFS_IDX_NODE].min_len = tmp;
662 c->min_idx_node_sz = ALIGN(tmp, 8);
663
664 tmp = ubifs_idx_node_sz(c, c->fanout);
665 c->ranges[UBIFS_IDX_NODE].max_len = tmp;
666 c->max_idx_node_sz = ALIGN(tmp, 8);
667
668 /* Make sure LEB size is large enough to fit full commit */
669 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
670 tmp = ALIGN(tmp, c->min_io_size);
671 if (tmp > c->leb_size) {
672 ubifs_err(c, "too small LEB size %d, at least %d needed",
673 c->leb_size, tmp);
674 return -EINVAL;
675 }
676
677 /*
678 * Make sure that the log is large enough to fit reference nodes for
679 * all buds plus one reserved LEB.
680 */
681 tmp64 = c->max_bud_bytes + c->leb_size - 1;
682 c->max_bud_cnt = div_u64(tmp64, c->leb_size);
683 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
684 tmp /= c->leb_size;
685 tmp += 1;
686 if (c->log_lebs < tmp) {
687 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
688 c->log_lebs, tmp);
689 return -EINVAL;
690 }
691
692 /*
693 * When budgeting we assume worst-case scenarios when the pages are not
694 * be compressed and direntries are of the maximum size.
695 *
696 * Note, data, which may be stored in inodes is budgeted separately, so
697 * it is not included into 'c->bi.inode_budget'.
698 */
699 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
700 c->bi.inode_budget = UBIFS_INO_NODE_SZ;
701 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
702
703 /*
704 * When the amount of flash space used by buds becomes
705 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
706 * The writers are unblocked when the commit is finished. To avoid
707 * writers to be blocked UBIFS initiates background commit in advance,
708 * when number of bud bytes becomes above the limit defined below.
709 */
710 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
711
712 /*
713 * Ensure minimum journal size. All the bytes in the journal heads are
714 * considered to be used, when calculating the current journal usage.
715 * Consequently, if the journal is too small, UBIFS will treat it as
716 * always full.
717 */
718 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
719 if (c->bg_bud_bytes < tmp64)
720 c->bg_bud_bytes = tmp64;
721 if (c->max_bud_bytes < tmp64 + c->leb_size)
722 c->max_bud_bytes = tmp64 + c->leb_size;
723
724 err = ubifs_calc_lpt_geom(c);
725 if (err)
726 return err;
727
728 /* Initialize effective LEB size used in budgeting calculations */
729 c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
730 return 0;
731}
732
733/*
734 * init_constants_master - initialize UBIFS constants.
735 * @c: UBIFS file-system description object
736 *
737 * This is a helper function which initializes various UBIFS constants after
738 * the master node has been read. It also checks various UBIFS parameters and
739 * makes sure they are all right.
740 */
741static void init_constants_master(struct ubifs_info *c)
742{
743 long long tmp64;
744
745 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
746 c->report_rp_size = ubifs_reported_space(c, c->rp_size);
747
748 /*
749 * Calculate total amount of FS blocks. This number is not used
750 * internally because it does not make much sense for UBIFS, but it is
751 * necessary to report something for the 'statfs()' call.
752 *
753 * Subtract the LEB reserved for GC, the LEB which is reserved for
754 * deletions, minimum LEBs for the index, and assume only one journal
755 * head is available.
756 */
757 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
758 tmp64 *= (long long)c->leb_size - c->leb_overhead;
759 tmp64 = ubifs_reported_space(c, tmp64);
760 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
761}
762
763/**
764 * take_gc_lnum - reserve GC LEB.
765 * @c: UBIFS file-system description object
766 *
767 * This function ensures that the LEB reserved for garbage collection is marked
768 * as "taken" in lprops. We also have to set free space to LEB size and dirty
769 * space to zero, because lprops may contain out-of-date information if the
770 * file-system was un-mounted before it has been committed. This function
771 * returns zero in case of success and a negative error code in case of
772 * failure.
773 */
774static int take_gc_lnum(struct ubifs_info *c)
775{
776 int err;
777
778 if (c->gc_lnum == -1) {
779 ubifs_err(c, "no LEB for GC");
780 return -EINVAL;
781 }
782
783 /* And we have to tell lprops that this LEB is taken */
784 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
785 LPROPS_TAKEN, 0, 0);
786 return err;
787}
788
789/**
790 * alloc_wbufs - allocate write-buffers.
791 * @c: UBIFS file-system description object
792 *
793 * This helper function allocates and initializes UBIFS write-buffers. Returns
794 * zero in case of success and %-ENOMEM in case of failure.
795 */
796static int alloc_wbufs(struct ubifs_info *c)
797{
798 int i, err;
799
800 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
801 GFP_KERNEL);
802 if (!c->jheads)
803 return -ENOMEM;
804
805 /* Initialize journal heads */
806 for (i = 0; i < c->jhead_cnt; i++) {
807 INIT_LIST_HEAD(&c->jheads[i].buds_list);
808 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
809 if (err)
810 return err;
811
812 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
813 c->jheads[i].wbuf.jhead = i;
814 c->jheads[i].grouped = 1;
815 }
816
817 /*
818 * Garbage Collector head does not need to be synchronized by timer.
819 * Also GC head nodes are not grouped.
820 */
821 c->jheads[GCHD].wbuf.no_timer = 1;
822 c->jheads[GCHD].grouped = 0;
823
824 return 0;
825}
826
827/**
828 * free_wbufs - free write-buffers.
829 * @c: UBIFS file-system description object
830 */
831static void free_wbufs(struct ubifs_info *c)
832{
833 int i;
834
835 if (c->jheads) {
836 for (i = 0; i < c->jhead_cnt; i++) {
837 kfree(c->jheads[i].wbuf.buf);
838 kfree(c->jheads[i].wbuf.inodes);
839 }
840 kfree(c->jheads);
841 c->jheads = NULL;
842 }
843}
844
845/**
846 * free_orphans - free orphans.
847 * @c: UBIFS file-system description object
848 */
849static void free_orphans(struct ubifs_info *c)
850{
851 struct ubifs_orphan *orph;
852
853 while (c->orph_dnext) {
854 orph = c->orph_dnext;
855 c->orph_dnext = orph->dnext;
856 list_del(&orph->list);
857 kfree(orph);
858 }
859
860 while (!list_empty(&c->orph_list)) {
861 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
862 list_del(&orph->list);
863 kfree(orph);
864 ubifs_err(c, "orphan list not empty at unmount");
865 }
866
867 vfree(c->orph_buf);
868 c->orph_buf = NULL;
869}
870
871/**
872 * free_buds - free per-bud objects.
873 * @c: UBIFS file-system description object
874 */
875static void free_buds(struct ubifs_info *c)
876{
877 struct ubifs_bud *bud, *n;
878
879 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
880 kfree(bud);
881}
882
883/**
884 * check_volume_empty - check if the UBI volume is empty.
885 * @c: UBIFS file-system description object
886 *
887 * This function checks if the UBIFS volume is empty by looking if its LEBs are
888 * mapped or not. The result of checking is stored in the @c->empty variable.
889 * Returns zero in case of success and a negative error code in case of
890 * failure.
891 */
892static int check_volume_empty(struct ubifs_info *c)
893{
894 int lnum, err;
895
896 c->empty = 1;
897 for (lnum = 0; lnum < c->leb_cnt; lnum++) {
898 err = ubifs_is_mapped(c, lnum);
899 if (unlikely(err < 0))
900 return err;
901 if (err == 1) {
902 c->empty = 0;
903 break;
904 }
905
906 cond_resched();
907 }
908
909 return 0;
910}
911
912/*
913 * UBIFS mount options.
914 *
915 * Opt_fast_unmount: do not run a journal commit before un-mounting
916 * Opt_norm_unmount: run a journal commit before un-mounting
917 * Opt_bulk_read: enable bulk-reads
918 * Opt_no_bulk_read: disable bulk-reads
919 * Opt_chk_data_crc: check CRCs when reading data nodes
920 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
921 * Opt_override_compr: override default compressor
922 * Opt_err: just end of array marker
923 */
924enum {
925 Opt_fast_unmount,
926 Opt_norm_unmount,
927 Opt_bulk_read,
928 Opt_no_bulk_read,
929 Opt_chk_data_crc,
930 Opt_no_chk_data_crc,
931 Opt_override_compr,
932 Opt_err,
933};
934
935static const match_table_t tokens = {
936 {Opt_fast_unmount, "fast_unmount"},
937 {Opt_norm_unmount, "norm_unmount"},
938 {Opt_bulk_read, "bulk_read"},
939 {Opt_no_bulk_read, "no_bulk_read"},
940 {Opt_chk_data_crc, "chk_data_crc"},
941 {Opt_no_chk_data_crc, "no_chk_data_crc"},
942 {Opt_override_compr, "compr=%s"},
943 {Opt_err, NULL},
944};
945
946/**
947 * parse_standard_option - parse a standard mount option.
948 * @option: the option to parse
949 *
950 * Normally, standard mount options like "sync" are passed to file-systems as
951 * flags. However, when a "rootflags=" kernel boot parameter is used, they may
952 * be present in the options string. This function tries to deal with this
953 * situation and parse standard options. Returns 0 if the option was not
954 * recognized, and the corresponding integer flag if it was.
955 *
956 * UBIFS is only interested in the "sync" option, so do not check for anything
957 * else.
958 */
959static int parse_standard_option(const char *option)
960{
961
962 pr_notice("UBIFS: parse %s\n", option);
963 if (!strcmp(option, "sync"))
964 return MS_SYNCHRONOUS;
965 return 0;
966}
967
968/**
969 * ubifs_parse_options - parse mount parameters.
970 * @c: UBIFS file-system description object
971 * @options: parameters to parse
972 * @is_remount: non-zero if this is FS re-mount
973 *
974 * This function parses UBIFS mount options and returns zero in case success
975 * and a negative error code in case of failure.
976 */
977static int ubifs_parse_options(struct ubifs_info *c, char *options,
978 int is_remount)
979{
980 char *p;
981 substring_t args[MAX_OPT_ARGS];
982
983 if (!options)
984 return 0;
985
986 while ((p = strsep(&options, ","))) {
987 int token;
988
989 if (!*p)
990 continue;
991
992 token = match_token(p, tokens, args);
993 switch (token) {
994 /*
995 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
996 * We accept them in order to be backward-compatible. But this
997 * should be removed at some point.
998 */
999 case Opt_fast_unmount:
1000 c->mount_opts.unmount_mode = 2;
1001 break;
1002 case Opt_norm_unmount:
1003 c->mount_opts.unmount_mode = 1;
1004 break;
1005 case Opt_bulk_read:
1006 c->mount_opts.bulk_read = 2;
1007 c->bulk_read = 1;
1008 break;
1009 case Opt_no_bulk_read:
1010 c->mount_opts.bulk_read = 1;
1011 c->bulk_read = 0;
1012 break;
1013 case Opt_chk_data_crc:
1014 c->mount_opts.chk_data_crc = 2;
1015 c->no_chk_data_crc = 0;
1016 break;
1017 case Opt_no_chk_data_crc:
1018 c->mount_opts.chk_data_crc = 1;
1019 c->no_chk_data_crc = 1;
1020 break;
1021 case Opt_override_compr:
1022 {
1023 char *name = match_strdup(&args[0]);
1024
1025 if (!name)
1026 return -ENOMEM;
1027 if (!strcmp(name, "none"))
1028 c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1029 else if (!strcmp(name, "lzo"))
1030 c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1031 else if (!strcmp(name, "zlib"))
1032 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1033 else {
1034 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1035 kfree(name);
1036 return -EINVAL;
1037 }
1038 kfree(name);
1039 c->mount_opts.override_compr = 1;
1040 c->default_compr = c->mount_opts.compr_type;
1041 break;
1042 }
1043 default:
1044 {
1045 unsigned long flag;
1046 struct super_block *sb = c->vfs_sb;
1047
1048 flag = parse_standard_option(p);
1049 if (!flag) {
1050 ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1051 p);
1052 return -EINVAL;
1053 }
1054 sb->s_flags |= flag;
1055 break;
1056 }
1057 }
1058 }
1059
1060 return 0;
1061}
1062
1063/**
1064 * destroy_journal - destroy journal data structures.
1065 * @c: UBIFS file-system description object
1066 *
1067 * This function destroys journal data structures including those that may have
1068 * been created by recovery functions.
1069 */
1070static void destroy_journal(struct ubifs_info *c)
1071{
1072 while (!list_empty(&c->unclean_leb_list)) {
1073 struct ubifs_unclean_leb *ucleb;
1074
1075 ucleb = list_entry(c->unclean_leb_list.next,
1076 struct ubifs_unclean_leb, list);
1077 list_del(&ucleb->list);
1078 kfree(ucleb);
1079 }
1080 while (!list_empty(&c->old_buds)) {
1081 struct ubifs_bud *bud;
1082
1083 bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1084 list_del(&bud->list);
1085 kfree(bud);
1086 }
1087 ubifs_destroy_idx_gc(c);
1088 ubifs_destroy_size_tree(c);
1089 ubifs_tnc_close(c);
1090 free_buds(c);
1091}
1092
1093/**
1094 * bu_init - initialize bulk-read information.
1095 * @c: UBIFS file-system description object
1096 */
1097static void bu_init(struct ubifs_info *c)
1098{
1099 ubifs_assert(c->bulk_read == 1);
1100
1101 if (c->bu.buf)
1102 return; /* Already initialized */
1103
1104again:
1105 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1106 if (!c->bu.buf) {
1107 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1108 c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1109 goto again;
1110 }
1111
1112 /* Just disable bulk-read */
1113 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1114 c->max_bu_buf_len);
1115 c->mount_opts.bulk_read = 1;
1116 c->bulk_read = 0;
1117 return;
1118 }
1119}
1120
1121/**
1122 * check_free_space - check if there is enough free space to mount.
1123 * @c: UBIFS file-system description object
1124 *
1125 * This function makes sure UBIFS has enough free space to be mounted in
1126 * read/write mode. UBIFS must always have some free space to allow deletions.
1127 */
1128static int check_free_space(struct ubifs_info *c)
1129{
1130 ubifs_assert(c->dark_wm > 0);
1131 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1132 ubifs_err(c, "insufficient free space to mount in R/W mode");
1133 ubifs_dump_budg(c, &c->bi);
1134 ubifs_dump_lprops(c);
1135 return -ENOSPC;
1136 }
1137 return 0;
1138}
1139
1140/**
1141 * mount_ubifs - mount UBIFS file-system.
1142 * @c: UBIFS file-system description object
1143 *
1144 * This function mounts UBIFS file system. Returns zero in case of success and
1145 * a negative error code in case of failure.
1146 */
1147static int mount_ubifs(struct ubifs_info *c)
1148{
1149 int err;
1150 long long x, y;
1151 size_t sz;
1152
1153 c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1154 /* Suppress error messages while probing if MS_SILENT is set */
1155 c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1156
1157 err = init_constants_early(c);
1158 if (err)
1159 return err;
1160
1161 err = ubifs_debugging_init(c);
1162 if (err)
1163 return err;
1164
1165 err = check_volume_empty(c);
1166 if (err)
1167 goto out_free;
1168
1169 if (c->empty && (c->ro_mount || c->ro_media)) {
1170 /*
1171 * This UBI volume is empty, and read-only, or the file system
1172 * is mounted read-only - we cannot format it.
1173 */
1174 ubifs_err(c, "can't format empty UBI volume: read-only %s",
1175 c->ro_media ? "UBI volume" : "mount");
1176 err = -EROFS;
1177 goto out_free;
1178 }
1179
1180 if (c->ro_media && !c->ro_mount) {
1181 ubifs_err(c, "cannot mount read-write - read-only media");
1182 err = -EROFS;
1183 goto out_free;
1184 }
1185
1186 /*
1187 * The requirement for the buffer is that it should fit indexing B-tree
1188 * height amount of integers. We assume the height if the TNC tree will
1189 * never exceed 64.
1190 */
1191 err = -ENOMEM;
1192 c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1193 if (!c->bottom_up_buf)
1194 goto out_free;
1195
1196 c->sbuf = vmalloc(c->leb_size);
1197 if (!c->sbuf)
1198 goto out_free;
1199
1200 if (!c->ro_mount) {
1201 c->ileb_buf = vmalloc(c->leb_size);
1202 if (!c->ileb_buf)
1203 goto out_free;
1204 }
1205
1206 if (c->bulk_read == 1)
1207 bu_init(c);
1208
1209 if (!c->ro_mount) {
1210 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1211 GFP_KERNEL);
1212 if (!c->write_reserve_buf)
1213 goto out_free;
1214 }
1215
1216 c->mounting = 1;
1217
1218 err = ubifs_read_superblock(c);
1219 if (err)
1220 goto out_free;
1221
1222 c->probing = 0;
1223
1224 /*
1225 * Make sure the compressor which is set as default in the superblock
1226 * or overridden by mount options is actually compiled in.
1227 */
1228 if (!ubifs_compr_present(c->default_compr)) {
1229 ubifs_err(c, "'compressor \"%s\" is not compiled in",
1230 ubifs_compr_name(c->default_compr));
1231 err = -ENOTSUPP;
1232 goto out_free;
1233 }
1234
1235 err = init_constants_sb(c);
1236 if (err)
1237 goto out_free;
1238
1239 sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1240 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1241 c->cbuf = kmalloc(sz, GFP_NOFS);
1242 if (!c->cbuf) {
1243 err = -ENOMEM;
1244 goto out_free;
1245 }
1246
1247 err = alloc_wbufs(c);
1248 if (err)
1249 goto out_cbuf;
1250
1251 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1252 if (!c->ro_mount) {
1253 /* Create background thread */
1254 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1255 if (IS_ERR(c->bgt)) {
1256 err = PTR_ERR(c->bgt);
1257 c->bgt = NULL;
1258 ubifs_err(c, "cannot spawn \"%s\", error %d",
1259 c->bgt_name, err);
1260 goto out_wbufs;
1261 }
1262 wake_up_process(c->bgt);
1263 }
1264
1265 err = ubifs_read_master(c);
1266 if (err)
1267 goto out_master;
1268
1269 init_constants_master(c);
1270
1271 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1272 ubifs_msg(c, "recovery needed");
1273 c->need_recovery = 1;
1274 }
1275
1276 if (c->need_recovery && !c->ro_mount) {
1277 err = ubifs_recover_inl_heads(c, c->sbuf);
1278 if (err)
1279 goto out_master;
1280 }
1281
1282 err = ubifs_lpt_init(c, 1, !c->ro_mount);
1283 if (err)
1284 goto out_master;
1285
1286 if (!c->ro_mount && c->space_fixup) {
1287 err = ubifs_fixup_free_space(c);
1288 if (err)
1289 goto out_lpt;
1290 }
1291
1292 if (!c->ro_mount && !c->need_recovery) {
1293 /*
1294 * Set the "dirty" flag so that if we reboot uncleanly we
1295 * will notice this immediately on the next mount.
1296 */
1297 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1298 err = ubifs_write_master(c);
1299 if (err)
1300 goto out_lpt;
1301 }
1302
1303 err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1304 if (err)
1305 goto out_lpt;
1306
1307 err = ubifs_replay_journal(c);
1308 if (err)
1309 goto out_journal;
1310
1311 /* Calculate 'min_idx_lebs' after journal replay */
1312 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1313
1314 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1315 if (err)
1316 goto out_orphans;
1317
1318 if (!c->ro_mount) {
1319 int lnum;
1320
1321 err = check_free_space(c);
1322 if (err)
1323 goto out_orphans;
1324
1325 /* Check for enough log space */
1326 lnum = c->lhead_lnum + 1;
1327 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1328 lnum = UBIFS_LOG_LNUM;
1329 if (lnum == c->ltail_lnum) {
1330 err = ubifs_consolidate_log(c);
1331 if (err)
1332 goto out_orphans;
1333 }
1334
1335 if (c->need_recovery) {
1336 err = ubifs_recover_size(c);
1337 if (err)
1338 goto out_orphans;
1339 err = ubifs_rcvry_gc_commit(c);
1340 if (err)
1341 goto out_orphans;
1342 } else {
1343 err = take_gc_lnum(c);
1344 if (err)
1345 goto out_orphans;
1346
1347 /*
1348 * GC LEB may contain garbage if there was an unclean
1349 * reboot, and it should be un-mapped.
1350 */
1351 err = ubifs_leb_unmap(c, c->gc_lnum);
1352 if (err)
1353 goto out_orphans;
1354 }
1355
1356 err = dbg_check_lprops(c);
1357 if (err)
1358 goto out_orphans;
1359 } else if (c->need_recovery) {
1360 err = ubifs_recover_size(c);
1361 if (err)
1362 goto out_orphans;
1363 } else {
1364 /*
1365 * Even if we mount read-only, we have to set space in GC LEB
1366 * to proper value because this affects UBIFS free space
1367 * reporting. We do not want to have a situation when
1368 * re-mounting from R/O to R/W changes amount of free space.
1369 */
1370 err = take_gc_lnum(c);
1371 if (err)
1372 goto out_orphans;
1373 }
1374
1375 spin_lock(&ubifs_infos_lock);
1376 list_add_tail(&c->infos_list, &ubifs_infos);
1377 spin_unlock(&ubifs_infos_lock);
1378
1379 if (c->need_recovery) {
1380 if (c->ro_mount)
1381 ubifs_msg(c, "recovery deferred");
1382 else {
1383 c->need_recovery = 0;
1384 ubifs_msg(c, "recovery completed");
1385 /*
1386 * GC LEB has to be empty and taken at this point. But
1387 * the journal head LEBs may also be accounted as
1388 * "empty taken" if they are empty.
1389 */
1390 ubifs_assert(c->lst.taken_empty_lebs > 0);
1391 }
1392 } else
1393 ubifs_assert(c->lst.taken_empty_lebs > 0);
1394
1395 err = dbg_check_filesystem(c);
1396 if (err)
1397 goto out_infos;
1398
1399 err = dbg_debugfs_init_fs(c);
1400 if (err)
1401 goto out_infos;
1402
1403 c->mounting = 0;
1404
1405 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1406 c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1407 c->ro_mount ? ", R/O mode" : "");
1408 x = (long long)c->main_lebs * c->leb_size;
1409 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1410 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1411 c->leb_size, c->leb_size >> 10, c->min_io_size,
1412 c->max_write_size);
1413 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1414 x, x >> 20, c->main_lebs,
1415 y, y >> 20, c->log_lebs + c->max_bud_cnt);
1416 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1417 c->report_rp_size, c->report_rp_size >> 10);
1418 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1419 c->fmt_version, c->ro_compat_version,
1420 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1421 c->big_lpt ? ", big LPT model" : ", small LPT model");
1422
1423 dbg_gen("default compressor: %s", ubifs_compr_name(c->default_compr));
1424 dbg_gen("data journal heads: %d",
1425 c->jhead_cnt - NONDATA_JHEADS_CNT);
1426 dbg_gen("log LEBs: %d (%d - %d)",
1427 c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1428 dbg_gen("LPT area LEBs: %d (%d - %d)",
1429 c->lpt_lebs, c->lpt_first, c->lpt_last);
1430 dbg_gen("orphan area LEBs: %d (%d - %d)",
1431 c->orph_lebs, c->orph_first, c->orph_last);
1432 dbg_gen("main area LEBs: %d (%d - %d)",
1433 c->main_lebs, c->main_first, c->leb_cnt - 1);
1434 dbg_gen("index LEBs: %d", c->lst.idx_lebs);
1435 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)",
1436 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1437 c->bi.old_idx_sz >> 20);
1438 dbg_gen("key hash type: %d", c->key_hash_type);
1439 dbg_gen("tree fanout: %d", c->fanout);
1440 dbg_gen("reserved GC LEB: %d", c->gc_lnum);
1441 dbg_gen("max. znode size %d", c->max_znode_sz);
1442 dbg_gen("max. index node size %d", c->max_idx_node_sz);
1443 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu",
1444 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1445 dbg_gen("node sizes: trun %zu, sb %zu, master %zu",
1446 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1447 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu",
1448 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1449 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d",
1450 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1451 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1452 dbg_gen("dead watermark: %d", c->dead_wm);
1453 dbg_gen("dark watermark: %d", c->dark_wm);
1454 dbg_gen("LEB overhead: %d", c->leb_overhead);
1455 x = (long long)c->main_lebs * c->dark_wm;
1456 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)",
1457 x, x >> 10, x >> 20);
1458 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)",
1459 c->max_bud_bytes, c->max_bud_bytes >> 10,
1460 c->max_bud_bytes >> 20);
1461 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1462 c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1463 c->bg_bud_bytes >> 20);
1464 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)",
1465 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1466 dbg_gen("max. seq. number: %llu", c->max_sqnum);
1467 dbg_gen("commit number: %llu", c->cmt_no);
1468
1469 return 0;
1470
1471out_infos:
1472 spin_lock(&ubifs_infos_lock);
1473 list_del(&c->infos_list);
1474 spin_unlock(&ubifs_infos_lock);
1475out_orphans:
1476 free_orphans(c);
1477out_journal:
1478 destroy_journal(c);
1479out_lpt:
1480 ubifs_lpt_free(c, 0);
1481out_master:
1482 kfree(c->mst_node);
1483 kfree(c->rcvrd_mst_node);
1484 if (c->bgt)
1485 kthread_stop(c->bgt);
1486out_wbufs:
1487 free_wbufs(c);
1488out_cbuf:
1489 kfree(c->cbuf);
1490out_free:
1491 kfree(c->write_reserve_buf);
1492 kfree(c->bu.buf);
1493 vfree(c->ileb_buf);
1494 vfree(c->sbuf);
1495 kfree(c->bottom_up_buf);
1496 ubifs_debugging_exit(c);
1497 return err;
1498}
1499
1500/**
1501 * ubifs_umount - un-mount UBIFS file-system.
1502 * @c: UBIFS file-system description object
1503 *
1504 * Note, this function is called to free allocated resourced when un-mounting,
1505 * as well as free resources when an error occurred while we were half way
1506 * through mounting (error path cleanup function). So it has to make sure the
1507 * resource was actually allocated before freeing it.
1508 */
1509static void ubifs_umount(struct ubifs_info *c)
1510{
1511 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1512 c->vi.vol_id);
1513
1514 dbg_debugfs_exit_fs(c);
1515 spin_lock(&ubifs_infos_lock);
1516 list_del(&c->infos_list);
1517 spin_unlock(&ubifs_infos_lock);
1518
1519 if (c->bgt)
1520 kthread_stop(c->bgt);
1521
1522 destroy_journal(c);
1523 free_wbufs(c);
1524 free_orphans(c);
1525 ubifs_lpt_free(c, 0);
1526
1527 kfree(c->cbuf);
1528 kfree(c->rcvrd_mst_node);
1529 kfree(c->mst_node);
1530 kfree(c->write_reserve_buf);
1531 kfree(c->bu.buf);
1532 vfree(c->ileb_buf);
1533 vfree(c->sbuf);
1534 kfree(c->bottom_up_buf);
1535 ubifs_debugging_exit(c);
1536}
1537
1538/**
1539 * ubifs_remount_rw - re-mount in read-write mode.
1540 * @c: UBIFS file-system description object
1541 *
1542 * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1543 * mode. This function allocates the needed resources and re-mounts UBIFS in
1544 * read-write mode.
1545 */
1546static int ubifs_remount_rw(struct ubifs_info *c)
1547{
1548 int err, lnum;
1549
1550 if (c->rw_incompat) {
1551 ubifs_err(c, "the file-system is not R/W-compatible");
1552 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1553 c->fmt_version, c->ro_compat_version,
1554 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1555 return -EROFS;
1556 }
1557
1558 mutex_lock(&c->umount_mutex);
1559 dbg_save_space_info(c);
1560 c->remounting_rw = 1;
1561 c->ro_mount = 0;
1562
1563 if (c->space_fixup) {
1564 err = ubifs_fixup_free_space(c);
1565 if (err)
1566 goto out;
1567 }
1568
1569 err = check_free_space(c);
1570 if (err)
1571 goto out;
1572
1573 if (c->old_leb_cnt != c->leb_cnt) {
1574 struct ubifs_sb_node *sup;
1575
1576 sup = ubifs_read_sb_node(c);
1577 if (IS_ERR(sup)) {
1578 err = PTR_ERR(sup);
1579 goto out;
1580 }
1581 sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1582 err = ubifs_write_sb_node(c, sup);
1583 kfree(sup);
1584 if (err)
1585 goto out;
1586 }
1587
1588 if (c->need_recovery) {
1589 ubifs_msg(c, "completing deferred recovery");
1590 err = ubifs_write_rcvrd_mst_node(c);
1591 if (err)
1592 goto out;
1593 err = ubifs_recover_size(c);
1594 if (err)
1595 goto out;
1596 err = ubifs_clean_lebs(c, c->sbuf);
1597 if (err)
1598 goto out;
1599 err = ubifs_recover_inl_heads(c, c->sbuf);
1600 if (err)
1601 goto out;
1602 } else {
1603 /* A readonly mount is not allowed to have orphans */
1604 ubifs_assert(c->tot_orphans == 0);
1605 err = ubifs_clear_orphans(c);
1606 if (err)
1607 goto out;
1608 }
1609
1610 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1611 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1612 err = ubifs_write_master(c);
1613 if (err)
1614 goto out;
1615 }
1616
1617 c->ileb_buf = vmalloc(c->leb_size);
1618 if (!c->ileb_buf) {
1619 err = -ENOMEM;
1620 goto out;
1621 }
1622
1623 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1624 if (!c->write_reserve_buf) {
1625 err = -ENOMEM;
1626 goto out;
1627 }
1628
1629 err = ubifs_lpt_init(c, 0, 1);
1630 if (err)
1631 goto out;
1632
1633 /* Create background thread */
1634 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1635 if (IS_ERR(c->bgt)) {
1636 err = PTR_ERR(c->bgt);
1637 c->bgt = NULL;
1638 ubifs_err(c, "cannot spawn \"%s\", error %d",
1639 c->bgt_name, err);
1640 goto out;
1641 }
1642 wake_up_process(c->bgt);
1643
1644 c->orph_buf = vmalloc(c->leb_size);
1645 if (!c->orph_buf) {
1646 err = -ENOMEM;
1647 goto out;
1648 }
1649
1650 /* Check for enough log space */
1651 lnum = c->lhead_lnum + 1;
1652 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1653 lnum = UBIFS_LOG_LNUM;
1654 if (lnum == c->ltail_lnum) {
1655 err = ubifs_consolidate_log(c);
1656 if (err)
1657 goto out;
1658 }
1659
1660 if (c->need_recovery)
1661 err = ubifs_rcvry_gc_commit(c);
1662 else
1663 err = ubifs_leb_unmap(c, c->gc_lnum);
1664 if (err)
1665 goto out;
1666
1667 dbg_gen("re-mounted read-write");
1668 c->remounting_rw = 0;
1669
1670 if (c->need_recovery) {
1671 c->need_recovery = 0;
1672 ubifs_msg(c, "deferred recovery completed");
1673 } else {
1674 /*
1675 * Do not run the debugging space check if the were doing
1676 * recovery, because when we saved the information we had the
1677 * file-system in a state where the TNC and lprops has been
1678 * modified in memory, but all the I/O operations (including a
1679 * commit) were deferred. So the file-system was in
1680 * "non-committed" state. Now the file-system is in committed
1681 * state, and of course the amount of free space will change
1682 * because, for example, the old index size was imprecise.
1683 */
1684 err = dbg_check_space_info(c);
1685 }
1686
1687 mutex_unlock(&c->umount_mutex);
1688 return err;
1689
1690out:
1691 c->ro_mount = 1;
1692 vfree(c->orph_buf);
1693 c->orph_buf = NULL;
1694 if (c->bgt) {
1695 kthread_stop(c->bgt);
1696 c->bgt = NULL;
1697 }
1698 free_wbufs(c);
1699 kfree(c->write_reserve_buf);
1700 c->write_reserve_buf = NULL;
1701 vfree(c->ileb_buf);
1702 c->ileb_buf = NULL;
1703 ubifs_lpt_free(c, 1);
1704 c->remounting_rw = 0;
1705 mutex_unlock(&c->umount_mutex);
1706 return err;
1707}
1708
1709/**
1710 * ubifs_remount_ro - re-mount in read-only mode.
1711 * @c: UBIFS file-system description object
1712 *
1713 * We assume VFS has stopped writing. Possibly the background thread could be
1714 * running a commit, however kthread_stop will wait in that case.
1715 */
1716static void ubifs_remount_ro(struct ubifs_info *c)
1717{
1718 int i, err;
1719
1720 ubifs_assert(!c->need_recovery);
1721 ubifs_assert(!c->ro_mount);
1722
1723 mutex_lock(&c->umount_mutex);
1724 if (c->bgt) {
1725 kthread_stop(c->bgt);
1726 c->bgt = NULL;
1727 }
1728
1729 dbg_save_space_info(c);
1730
1731 for (i = 0; i < c->jhead_cnt; i++)
1732 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1733
1734 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1735 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1736 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1737 err = ubifs_write_master(c);
1738 if (err)
1739 ubifs_ro_mode(c, err);
1740
1741 vfree(c->orph_buf);
1742 c->orph_buf = NULL;
1743 kfree(c->write_reserve_buf);
1744 c->write_reserve_buf = NULL;
1745 vfree(c->ileb_buf);
1746 c->ileb_buf = NULL;
1747 ubifs_lpt_free(c, 1);
1748 c->ro_mount = 1;
1749 err = dbg_check_space_info(c);
1750 if (err)
1751 ubifs_ro_mode(c, err);
1752 mutex_unlock(&c->umount_mutex);
1753}
1754
1755static void ubifs_put_super(struct super_block *sb)
1756{
1757 int i;
1758 struct ubifs_info *c = sb->s_fs_info;
1759
1760 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1761
1762 /*
1763 * The following asserts are only valid if there has not been a failure
1764 * of the media. For example, there will be dirty inodes if we failed
1765 * to write them back because of I/O errors.
1766 */
1767 if (!c->ro_error) {
1768 ubifs_assert(c->bi.idx_growth == 0);
1769 ubifs_assert(c->bi.dd_growth == 0);
1770 ubifs_assert(c->bi.data_growth == 0);
1771 }
1772
1773 /*
1774 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1775 * and file system un-mount. Namely, it prevents the shrinker from
1776 * picking this superblock for shrinking - it will be just skipped if
1777 * the mutex is locked.
1778 */
1779 mutex_lock(&c->umount_mutex);
1780 if (!c->ro_mount) {
1781 /*
1782 * First of all kill the background thread to make sure it does
1783 * not interfere with un-mounting and freeing resources.
1784 */
1785 if (c->bgt) {
1786 kthread_stop(c->bgt);
1787 c->bgt = NULL;
1788 }
1789
1790 /*
1791 * On fatal errors c->ro_error is set to 1, in which case we do
1792 * not write the master node.
1793 */
1794 if (!c->ro_error) {
1795 int err;
1796
1797 /* Synchronize write-buffers */
1798 for (i = 0; i < c->jhead_cnt; i++)
1799 ubifs_wbuf_sync(&c->jheads[i].wbuf);
1800
1801 /*
1802 * We are being cleanly unmounted which means the
1803 * orphans were killed - indicate this in the master
1804 * node. Also save the reserved GC LEB number.
1805 */
1806 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1807 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1808 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1809 err = ubifs_write_master(c);
1810 if (err)
1811 /*
1812 * Recovery will attempt to fix the master area
1813 * next mount, so we just print a message and
1814 * continue to unmount normally.
1815 */
1816 ubifs_err(c, "failed to write master node, error %d",
1817 err);
1818 } else {
1819 for (i = 0; i < c->jhead_cnt; i++)
1820 /* Make sure write-buffer timers are canceled */
1821 hrtimer_cancel(&c->jheads[i].wbuf.timer);
1822 }
1823 }
1824
1825 ubifs_umount(c);
1826 bdi_destroy(&c->bdi);
1827 ubi_close_volume(c->ubi);
1828 mutex_unlock(&c->umount_mutex);
1829}
1830
1831static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1832{
1833 int err;
1834 struct ubifs_info *c = sb->s_fs_info;
1835
1836 sync_filesystem(sb);
1837 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1838
1839 err = ubifs_parse_options(c, data, 1);
1840 if (err) {
1841 ubifs_err(c, "invalid or unknown remount parameter");
1842 return err;
1843 }
1844
1845 if (c->ro_mount && !(*flags & MS_RDONLY)) {
1846 if (c->ro_error) {
1847 ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1848 return -EROFS;
1849 }
1850 if (c->ro_media) {
1851 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1852 return -EROFS;
1853 }
1854 err = ubifs_remount_rw(c);
1855 if (err)
1856 return err;
1857 } else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1858 if (c->ro_error) {
1859 ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1860 return -EROFS;
1861 }
1862 ubifs_remount_ro(c);
1863 }
1864
1865 if (c->bulk_read == 1)
1866 bu_init(c);
1867 else {
1868 dbg_gen("disable bulk-read");
1869 kfree(c->bu.buf);
1870 c->bu.buf = NULL;
1871 }
1872
1873 ubifs_assert(c->lst.taken_empty_lebs > 0);
1874 return 0;
1875}
1876
1877const struct super_operations ubifs_super_operations = {
1878 .alloc_inode = ubifs_alloc_inode,
1879 .destroy_inode = ubifs_destroy_inode,
1880 .put_super = ubifs_put_super,
1881 .write_inode = ubifs_write_inode,
1882 .evict_inode = ubifs_evict_inode,
1883 .statfs = ubifs_statfs,
1884 .dirty_inode = ubifs_dirty_inode,
1885 .remount_fs = ubifs_remount_fs,
1886 .show_options = ubifs_show_options,
1887 .sync_fs = ubifs_sync_fs,
1888};
1889
1890/**
1891 * open_ubi - parse UBI device name string and open the UBI device.
1892 * @name: UBI volume name
1893 * @mode: UBI volume open mode
1894 *
1895 * The primary method of mounting UBIFS is by specifying the UBI volume
1896 * character device node path. However, UBIFS may also be mounted withoug any
1897 * character device node using one of the following methods:
1898 *
1899 * o ubiX_Y - mount UBI device number X, volume Y;
1900 * o ubiY - mount UBI device number 0, volume Y;
1901 * o ubiX:NAME - mount UBI device X, volume with name NAME;
1902 * o ubi:NAME - mount UBI device 0, volume with name NAME.
1903 *
1904 * Alternative '!' separator may be used instead of ':' (because some shells
1905 * like busybox may interpret ':' as an NFS host name separator). This function
1906 * returns UBI volume description object in case of success and a negative
1907 * error code in case of failure.
1908 */
1909static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1910{
1911 struct ubi_volume_desc *ubi;
1912 int dev, vol;
1913 char *endptr;
1914
1915 /* First, try to open using the device node path method */
1916 ubi = ubi_open_volume_path(name, mode);
1917 if (!IS_ERR(ubi))
1918 return ubi;
1919
1920 /* Try the "nodev" method */
1921 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1922 return ERR_PTR(-EINVAL);
1923
1924 /* ubi:NAME method */
1925 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1926 return ubi_open_volume_nm(0, name + 4, mode);
1927
1928 if (!isdigit(name[3]))
1929 return ERR_PTR(-EINVAL);
1930
1931 dev = simple_strtoul(name + 3, &endptr, 0);
1932
1933 /* ubiY method */
1934 if (*endptr == '\0')
1935 return ubi_open_volume(0, dev, mode);
1936
1937 /* ubiX_Y method */
1938 if (*endptr == '_' && isdigit(endptr[1])) {
1939 vol = simple_strtoul(endptr + 1, &endptr, 0);
1940 if (*endptr != '\0')
1941 return ERR_PTR(-EINVAL);
1942 return ubi_open_volume(dev, vol, mode);
1943 }
1944
1945 /* ubiX:NAME method */
1946 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1947 return ubi_open_volume_nm(dev, ++endptr, mode);
1948
1949 return ERR_PTR(-EINVAL);
1950}
1951
1952static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1953{
1954 struct ubifs_info *c;
1955
1956 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1957 if (c) {
1958 spin_lock_init(&c->cnt_lock);
1959 spin_lock_init(&c->cs_lock);
1960 spin_lock_init(&c->buds_lock);
1961 spin_lock_init(&c->space_lock);
1962 spin_lock_init(&c->orphan_lock);
1963 init_rwsem(&c->commit_sem);
1964 mutex_init(&c->lp_mutex);
1965 mutex_init(&c->tnc_mutex);
1966 mutex_init(&c->log_mutex);
1967 mutex_init(&c->umount_mutex);
1968 mutex_init(&c->bu_mutex);
1969 mutex_init(&c->write_reserve_mutex);
1970 init_waitqueue_head(&c->cmt_wq);
1971 c->buds = RB_ROOT;
1972 c->old_idx = RB_ROOT;
1973 c->size_tree = RB_ROOT;
1974 c->orph_tree = RB_ROOT;
1975 INIT_LIST_HEAD(&c->infos_list);
1976 INIT_LIST_HEAD(&c->idx_gc);
1977 INIT_LIST_HEAD(&c->replay_list);
1978 INIT_LIST_HEAD(&c->replay_buds);
1979 INIT_LIST_HEAD(&c->uncat_list);
1980 INIT_LIST_HEAD(&c->empty_list);
1981 INIT_LIST_HEAD(&c->freeable_list);
1982 INIT_LIST_HEAD(&c->frdi_idx_list);
1983 INIT_LIST_HEAD(&c->unclean_leb_list);
1984 INIT_LIST_HEAD(&c->old_buds);
1985 INIT_LIST_HEAD(&c->orph_list);
1986 INIT_LIST_HEAD(&c->orph_new);
1987 c->no_chk_data_crc = 1;
1988
1989 c->highest_inum = UBIFS_FIRST_INO;
1990 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1991
1992 ubi_get_volume_info(ubi, &c->vi);
1993 ubi_get_device_info(c->vi.ubi_num, &c->di);
1994 }
1995 return c;
1996}
1997
1998static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1999{
2000 struct ubifs_info *c = sb->s_fs_info;
2001 struct inode *root;
2002 int err;
2003
2004 c->vfs_sb = sb;
2005 /* Re-open the UBI device in read-write mode */
2006 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2007 if (IS_ERR(c->ubi)) {
2008 err = PTR_ERR(c->ubi);
2009 goto out;
2010 }
2011
2012 /*
2013 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2014 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2015 * which means the user would have to wait not just for their own I/O
2016 * but the read-ahead I/O as well i.e. completely pointless.
2017 *
2018 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2019 */
2020 c->bdi.name = "ubifs",
2021 c->bdi.capabilities = 0;
2022 err = bdi_init(&c->bdi);
2023 if (err)
2024 goto out_close;
2025 err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2026 c->vi.ubi_num, c->vi.vol_id);
2027 if (err)
2028 goto out_bdi;
2029
2030 err = ubifs_parse_options(c, data, 0);
2031 if (err)
2032 goto out_bdi;
2033
2034 sb->s_bdi = &c->bdi;
2035 sb->s_fs_info = c;
2036 sb->s_magic = UBIFS_SUPER_MAGIC;
2037 sb->s_blocksize = UBIFS_BLOCK_SIZE;
2038 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2039 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2040 if (c->max_inode_sz > MAX_LFS_FILESIZE)
2041 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2042 sb->s_op = &ubifs_super_operations;
2043
2044 mutex_lock(&c->umount_mutex);
2045 err = mount_ubifs(c);
2046 if (err) {
2047 ubifs_assert(err < 0);
2048 goto out_unlock;
2049 }
2050
2051 /* Read the root inode */
2052 root = ubifs_iget(sb, UBIFS_ROOT_INO);
2053 if (IS_ERR(root)) {
2054 err = PTR_ERR(root);
2055 goto out_umount;
2056 }
2057
2058 sb->s_root = d_make_root(root);
2059 if (!sb->s_root) {
2060 err = -ENOMEM;
2061 goto out_umount;
2062 }
2063
2064 mutex_unlock(&c->umount_mutex);
2065 return 0;
2066
2067out_umount:
2068 ubifs_umount(c);
2069out_unlock:
2070 mutex_unlock(&c->umount_mutex);
2071out_bdi:
2072 bdi_destroy(&c->bdi);
2073out_close:
2074 ubi_close_volume(c->ubi);
2075out:
2076 return err;
2077}
2078
2079static int sb_test(struct super_block *sb, void *data)
2080{
2081 struct ubifs_info *c1 = data;
2082 struct ubifs_info *c = sb->s_fs_info;
2083
2084 return c->vi.cdev == c1->vi.cdev;
2085}
2086
2087static int sb_set(struct super_block *sb, void *data)
2088{
2089 sb->s_fs_info = data;
2090 return set_anon_super(sb, NULL);
2091}
2092
2093static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2094 const char *name, void *data)
2095{
2096 struct ubi_volume_desc *ubi;
2097 struct ubifs_info *c;
2098 struct super_block *sb;
2099 int err;
2100
2101 dbg_gen("name %s, flags %#x", name, flags);
2102
2103 /*
2104 * Get UBI device number and volume ID. Mount it read-only so far
2105 * because this might be a new mount point, and UBI allows only one
2106 * read-write user at a time.
2107 */
2108 ubi = open_ubi(name, UBI_READONLY);
2109 if (IS_ERR(ubi)) {
2110 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2111 current->pid, name, (int)PTR_ERR(ubi));
2112 return ERR_CAST(ubi);
2113 }
2114
2115 c = alloc_ubifs_info(ubi);
2116 if (!c) {
2117 err = -ENOMEM;
2118 goto out_close;
2119 }
2120
2121 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2122
2123 sb = sget(fs_type, sb_test, sb_set, flags, c);
2124 if (IS_ERR(sb)) {
2125 err = PTR_ERR(sb);
2126 kfree(c);
2127 goto out_close;
2128 }
2129
2130 if (sb->s_root) {
2131 struct ubifs_info *c1 = sb->s_fs_info;
2132 kfree(c);
2133 /* A new mount point for already mounted UBIFS */
2134 dbg_gen("this ubi volume is already mounted");
2135 if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2136 err = -EBUSY;
2137 goto out_deact;
2138 }
2139 } else {
2140 err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2141 if (err)
2142 goto out_deact;
2143 /* We do not support atime */
2144 sb->s_flags |= MS_ACTIVE;
2145#ifndef CONFIG_UBIFS_ATIME_SUPPORT
2146 sb->s_flags |= MS_NOATIME;
2147#else
2148 ubifs_msg(c, "full atime support is enabled.");
2149#endif
2150 }
2151
2152 /* 'fill_super()' opens ubi again so we must close it here */
2153 ubi_close_volume(ubi);
2154
2155 return dget(sb->s_root);
2156
2157out_deact:
2158 deactivate_locked_super(sb);
2159out_close:
2160 ubi_close_volume(ubi);
2161 return ERR_PTR(err);
2162}
2163
2164static void kill_ubifs_super(struct super_block *s)
2165{
2166 struct ubifs_info *c = s->s_fs_info;
2167 kill_anon_super(s);
2168 kfree(c);
2169}
2170
2171static struct file_system_type ubifs_fs_type = {
2172 .name = "ubifs",
2173 .owner = THIS_MODULE,
2174 .mount = ubifs_mount,
2175 .kill_sb = kill_ubifs_super,
2176};
2177MODULE_ALIAS_FS("ubifs");
2178
2179/*
2180 * Inode slab cache constructor.
2181 */
2182static void inode_slab_ctor(void *obj)
2183{
2184 struct ubifs_inode *ui = obj;
2185 inode_init_once(&ui->vfs_inode);
2186}
2187
2188static int __init ubifs_init(void)
2189{
2190 int err;
2191
2192 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2193
2194 /* Make sure node sizes are 8-byte aligned */
2195 BUILD_BUG_ON(UBIFS_CH_SZ & 7);
2196 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7);
2197 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2198 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2199 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2200 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2201 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7);
2202 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7);
2203 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7);
2204 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7);
2205 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2206
2207 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2208 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2209 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2210 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7);
2211 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7);
2212 BUILD_BUG_ON(MIN_WRITE_SZ & 7);
2213
2214 /* Check min. node size */
2215 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ);
2216 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2217 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2218 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2219
2220 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2221 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2222 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2223 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ);
2224
2225 /* Defined node sizes */
2226 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096);
2227 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2228 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2229 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2230
2231 /*
2232 * We use 2 bit wide bit-fields to store compression type, which should
2233 * be amended if more compressors are added. The bit-fields are:
2234 * @compr_type in 'struct ubifs_inode', @default_compr in
2235 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2236 */
2237 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2238
2239 /*
2240 * We require that PAGE_SIZE is greater-than-or-equal-to
2241 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2242 */
2243 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) {
2244 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2245 current->pid, (unsigned int)PAGE_SIZE);
2246 return -EINVAL;
2247 }
2248
2249 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2250 sizeof(struct ubifs_inode), 0,
2251 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT |
2252 SLAB_ACCOUNT, &inode_slab_ctor);
2253 if (!ubifs_inode_slab)
2254 return -ENOMEM;
2255
2256 err = register_shrinker(&ubifs_shrinker_info);
2257 if (err)
2258 goto out_slab;
2259
2260 err = ubifs_compressors_init();
2261 if (err)
2262 goto out_shrinker;
2263
2264 err = dbg_debugfs_init();
2265 if (err)
2266 goto out_compr;
2267
2268 err = register_filesystem(&ubifs_fs_type);
2269 if (err) {
2270 pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2271 current->pid, err);
2272 goto out_dbg;
2273 }
2274 return 0;
2275
2276out_dbg:
2277 dbg_debugfs_exit();
2278out_compr:
2279 ubifs_compressors_exit();
2280out_shrinker:
2281 unregister_shrinker(&ubifs_shrinker_info);
2282out_slab:
2283 kmem_cache_destroy(ubifs_inode_slab);
2284 return err;
2285}
2286/* late_initcall to let compressors initialize first */
2287late_initcall(ubifs_init);
2288
2289static void __exit ubifs_exit(void)
2290{
2291 ubifs_assert(list_empty(&ubifs_infos));
2292 ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2293
2294 dbg_debugfs_exit();
2295 ubifs_compressors_exit();
2296 unregister_shrinker(&ubifs_shrinker_info);
2297
2298 /*
2299 * Make sure all delayed rcu free inodes are flushed before we
2300 * destroy cache.
2301 */
2302 rcu_barrier();
2303 kmem_cache_destroy(ubifs_inode_slab);
2304 unregister_filesystem(&ubifs_fs_type);
2305}
2306module_exit(ubifs_exit);
2307
2308MODULE_LICENSE("GPL");
2309MODULE_VERSION(__stringify(UBIFS_VERSION));
2310MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2311MODULE_DESCRIPTION("UBIFS - UBI File System");