Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/pci.h>
   5#include <linux/delay.h>
   6#include <linux/iopoll.h>
   7#include <linux/sched.h>
   8
   9#include "ixgbe.h"
  10#include "ixgbe_phy.h"
  11
  12static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  13static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  14static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  15static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  16static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  17static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  18static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  19static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  20static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  21static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  22static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  23static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  24static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  25static int ixgbe_get_phy_id(struct ixgbe_hw *hw);
  26static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  27
  28/**
  29 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  30 *  @hw: pointer to the hardware structure
  31 *  @byte: byte to send
  32 *
  33 *  Returns an error code on error.
  34 **/
  35static int ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  36{
  37	int status;
  38
  39	status = ixgbe_clock_out_i2c_byte(hw, byte);
  40	if (status)
  41		return status;
  42	return ixgbe_get_i2c_ack(hw);
  43}
  44
  45/**
  46 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  47 *  @hw: pointer to the hardware structure
  48 *  @byte: pointer to a u8 to receive the byte
  49 *
  50 *  Returns an error code on error.
  51 **/
  52static int ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  53{
  54	int status;
  55
  56	status = ixgbe_clock_in_i2c_byte(hw, byte);
  57	if (status)
  58		return status;
  59	/* ACK */
  60	return ixgbe_clock_out_i2c_bit(hw, false);
  61}
  62
  63/**
  64 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  65 *  @add1: addend 1
  66 *  @add2: addend 2
  67 *
  68 *  Returns one's complement 8-bit sum.
  69 **/
  70static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  71{
  72	u16 sum = add1 + add2;
  73
  74	sum = (sum & 0xFF) + (sum >> 8);
  75	return sum & 0xFF;
  76}
  77
  78/**
  79 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
  80 *  @hw: pointer to the hardware structure
  81 *  @addr: I2C bus address to read from
  82 *  @reg: I2C device register to read from
  83 *  @val: pointer to location to receive read value
  84 *  @lock: true if to take and release semaphore
  85 *
  86 *  Returns an error code on error.
  87 */
  88int ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
  89					u16 reg, u16 *val, bool lock)
  90{
  91	u32 swfw_mask = hw->phy.phy_semaphore_mask;
  92	int max_retry = 3;
  93	int retry = 0;
  94	u8 csum_byte;
  95	u8 high_bits;
  96	u8 low_bits;
  97	u8 reg_high;
  98	u8 csum;
  99
 100	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 101	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 102	csum = ~csum;
 103	do {
 104		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 105			return -EBUSY;
 106		ixgbe_i2c_start(hw);
 107		/* Device Address and write indication */
 108		if (ixgbe_out_i2c_byte_ack(hw, addr))
 109			goto fail;
 110		/* Write bits 14:8 */
 111		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 112			goto fail;
 113		/* Write bits 7:0 */
 114		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 115			goto fail;
 116		/* Write csum */
 117		if (ixgbe_out_i2c_byte_ack(hw, csum))
 118			goto fail;
 119		/* Re-start condition */
 120		ixgbe_i2c_start(hw);
 121		/* Device Address and read indication */
 122		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 123			goto fail;
 124		/* Get upper bits */
 125		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 126			goto fail;
 127		/* Get low bits */
 128		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 129			goto fail;
 130		/* Get csum */
 131		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 132			goto fail;
 133		/* NACK */
 134		if (ixgbe_clock_out_i2c_bit(hw, false))
 135			goto fail;
 136		ixgbe_i2c_stop(hw);
 137		if (lock)
 138			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 139		*val = (high_bits << 8) | low_bits;
 140		return 0;
 141
 142fail:
 143		ixgbe_i2c_bus_clear(hw);
 144		if (lock)
 145			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 146		retry++;
 147		if (retry < max_retry)
 148			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 149		else
 150			hw_dbg(hw, "I2C byte read combined error.\n");
 151	} while (retry < max_retry);
 152
 153	return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154}
 155
 156/**
 157 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 158 *  @hw: pointer to the hardware structure
 159 *  @addr: I2C bus address to write to
 160 *  @reg: I2C device register to write to
 161 *  @val: value to write
 162 *  @lock: true if to take and release semaphore
 163 *
 164 *  Returns an error code on error.
 165 */
 166int ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 167					 u16 reg, u16 val, bool lock)
 168{
 169	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 170	int max_retry = 1;
 171	int retry = 0;
 172	u8 reg_high;
 173	u8 csum;
 174
 175	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 176	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 177	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 178	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 179	csum = ~csum;
 180	do {
 181		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 182			return -EBUSY;
 183		ixgbe_i2c_start(hw);
 184		/* Device Address and write indication */
 185		if (ixgbe_out_i2c_byte_ack(hw, addr))
 186			goto fail;
 187		/* Write bits 14:8 */
 188		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 189			goto fail;
 190		/* Write bits 7:0 */
 191		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 192			goto fail;
 193		/* Write data 15:8 */
 194		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 195			goto fail;
 196		/* Write data 7:0 */
 197		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 198			goto fail;
 199		/* Write csum */
 200		if (ixgbe_out_i2c_byte_ack(hw, csum))
 201			goto fail;
 202		ixgbe_i2c_stop(hw);
 203		if (lock)
 204			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 205		return 0;
 206
 207fail:
 208		ixgbe_i2c_bus_clear(hw);
 209		if (lock)
 210			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 211		retry++;
 212		if (retry < max_retry)
 213			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 214		else
 215			hw_dbg(hw, "I2C byte write combined error.\n");
 216	} while (retry < max_retry);
 217
 218	return -EIO;
 219}
 220
 221/**
 222 *  ixgbe_probe_phy - Probe a single address for a PHY
 223 *  @hw: pointer to hardware structure
 224 *  @phy_addr: PHY address to probe
 
 
 225 *
 226 *  Returns true if PHY found
 227 **/
 228static bool ixgbe_probe_phy(struct ixgbe_hw *hw, u16 phy_addr)
 
 229{
 230	u16 ext_ability = 0;
 231
 232	hw->phy.mdio.prtad = phy_addr;
 233	if (mdio45_probe(&hw->phy.mdio, phy_addr) != 0)
 234		return false;
 235
 236	if (ixgbe_get_phy_id(hw))
 237		return false;
 238
 239	hw->phy.type = ixgbe_get_phy_type_from_id(hw->phy.id);
 240
 241	if (hw->phy.type == ixgbe_phy_unknown) {
 242		hw->phy.ops.read_reg(hw,
 243				     MDIO_PMA_EXTABLE,
 244				     MDIO_MMD_PMAPMD,
 245				     &ext_ability);
 246		if (ext_ability &
 247		    (MDIO_PMA_EXTABLE_10GBT |
 248		     MDIO_PMA_EXTABLE_1000BT))
 249			hw->phy.type = ixgbe_phy_cu_unknown;
 250		else
 251			hw->phy.type = ixgbe_phy_generic;
 252	}
 253
 254	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 255}
 256
 257/**
 258 *  ixgbe_identify_phy_generic - Get physical layer module
 259 *  @hw: pointer to hardware structure
 260 *
 261 *  Determines the physical layer module found on the current adapter.
 262 **/
 263int ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 264{
 265	u32 status = -EFAULT;
 266	u32 phy_addr;
 
 267
 268	if (!hw->phy.phy_semaphore_mask) {
 269		if (hw->bus.lan_id)
 270			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 271		else
 272			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 273	}
 274
 275	if (hw->phy.type != ixgbe_phy_unknown)
 276		return 0;
 
 
 
 
 
 277
 278	if (hw->phy.nw_mng_if_sel) {
 279		phy_addr = FIELD_GET(IXGBE_NW_MNG_IF_SEL_MDIO_PHY_ADD,
 280				     hw->phy.nw_mng_if_sel);
 281		if (ixgbe_probe_phy(hw, phy_addr))
 282			return 0;
 283		else
 284			return -EFAULT;
 285	}
 
 
 
 
 
 
 286
 287	for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 288		if (ixgbe_probe_phy(hw, phy_addr)) {
 289			status = 0;
 290			break;
 291		}
 
 
 
 292	}
 293
 294	/* Certain media types do not have a phy so an address will not
 295	 * be found and the code will take this path.  Caller has to
 296	 * decide if it is an error or not.
 297	 */
 298	if (status)
 299		hw->phy.mdio.prtad = MDIO_PRTAD_NONE;
 300
 301	return status;
 302}
 303
 304/**
 305 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 306 * @hw: pointer to the hardware structure
 307 *
 308 * This function checks the MMNGC.MNG_VETO bit to see if there are
 309 * any constraints on link from manageability.  For MAC's that don't
 310 * have this bit just return false since the link can not be blocked
 311 * via this method.
 312 **/
 313bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 314{
 315	u32 mmngc;
 316
 317	/* If we don't have this bit, it can't be blocking */
 318	if (hw->mac.type == ixgbe_mac_82598EB)
 319		return false;
 320
 321	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 322	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 323		hw_dbg(hw, "MNG_VETO bit detected.\n");
 324		return true;
 325	}
 326
 327	return false;
 328}
 329
 330/**
 331 *  ixgbe_get_phy_id - Get the phy type
 332 *  @hw: pointer to hardware structure
 333 *
 334 **/
 335static int ixgbe_get_phy_id(struct ixgbe_hw *hw)
 336{
 
 337	u16 phy_id_high = 0;
 338	u16 phy_id_low = 0;
 339	int status;
 340
 341	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 342				      &phy_id_high);
 343
 344	if (!status) {
 345		hw->phy.id = (u32)(phy_id_high << 16);
 346		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 347					      &phy_id_low);
 348		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 349		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 350	}
 351	return status;
 352}
 353
 354/**
 355 *  ixgbe_get_phy_type_from_id - Get the phy type
 356 *  @phy_id: hardware phy id
 357 *
 358 **/
 359static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 360{
 361	enum ixgbe_phy_type phy_type;
 362
 363	switch (phy_id) {
 364	case TN1010_PHY_ID:
 365		phy_type = ixgbe_phy_tn;
 366		break;
 367	case X550_PHY_ID2:
 368	case X550_PHY_ID3:
 369	case X540_PHY_ID:
 370		phy_type = ixgbe_phy_aq;
 371		break;
 372	case QT2022_PHY_ID:
 373		phy_type = ixgbe_phy_qt;
 374		break;
 375	case ATH_PHY_ID:
 376		phy_type = ixgbe_phy_nl;
 377		break;
 378	case X557_PHY_ID:
 379	case X557_PHY_ID2:
 380		phy_type = ixgbe_phy_x550em_ext_t;
 381		break;
 382	case BCM54616S_E_PHY_ID:
 383		phy_type = ixgbe_phy_ext_1g_t;
 384		break;
 385	default:
 386		phy_type = ixgbe_phy_unknown;
 387		break;
 388	}
 389
 390	return phy_type;
 391}
 392
 393/**
 394 *  ixgbe_reset_phy_generic - Performs a PHY reset
 395 *  @hw: pointer to hardware structure
 396 **/
 397int ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 398{
 399	u32 i;
 400	u16 ctrl = 0;
 401	int status = 0;
 402
 403	if (hw->phy.type == ixgbe_phy_unknown)
 404		status = ixgbe_identify_phy_generic(hw);
 405
 406	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 407		return status;
 408
 409	/* Don't reset PHY if it's shut down due to overtemp. */
 410	if (!hw->phy.reset_if_overtemp && hw->phy.ops.check_overtemp(hw))
 
 411		return 0;
 412
 413	/* Blocked by MNG FW so bail */
 414	if (ixgbe_check_reset_blocked(hw))
 415		return 0;
 416
 417	/*
 418	 * Perform soft PHY reset to the PHY_XS.
 419	 * This will cause a soft reset to the PHY
 420	 */
 421	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 422			      MDIO_MMD_PHYXS,
 423			      MDIO_CTRL1_RESET);
 424
 425	/*
 426	 * Poll for reset bit to self-clear indicating reset is complete.
 427	 * Some PHYs could take up to 3 seconds to complete and need about
 428	 * 1.7 usec delay after the reset is complete.
 429	 */
 430	for (i = 0; i < 30; i++) {
 431		msleep(100);
 432		if (hw->phy.type == ixgbe_phy_x550em_ext_t) {
 433			status = hw->phy.ops.read_reg(hw,
 434						  IXGBE_MDIO_TX_VENDOR_ALARMS_3,
 435						  MDIO_MMD_PMAPMD, &ctrl);
 436			if (status)
 437				return status;
 438
 439			if (ctrl & IXGBE_MDIO_TX_VENDOR_ALARMS_3_RST_MASK) {
 440				udelay(2);
 441				break;
 442			}
 443		} else {
 444			status = hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 445						      MDIO_MMD_PHYXS, &ctrl);
 446			if (status)
 447				return status;
 448
 449			if (!(ctrl & MDIO_CTRL1_RESET)) {
 450				udelay(2);
 451				break;
 452			}
 453		}
 454	}
 455
 456	if (ctrl & MDIO_CTRL1_RESET) {
 457		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 458		return -EIO;
 459	}
 460
 461	return 0;
 462}
 463
 464/**
 465 *  ixgbe_read_phy_reg_mdi - read PHY register
 
 466 *  @hw: pointer to hardware structure
 467 *  @reg_addr: 32 bit address of PHY register to read
 468 *  @device_type: 5 bit device type
 469 *  @phy_data: Pointer to read data from PHY register
 470 *
 471 *  Reads a value from a specified PHY register without the SWFW lock
 472 **/
 473int ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 474			   u16 *phy_data)
 475{
 476	u32 i, data, command;
 477
 478	/* Setup and write the address cycle command */
 479	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 480		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 481		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 482		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 483
 484	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 485
 486	/* Check every 10 usec to see if the address cycle completed.
 487	 * The MDI Command bit will clear when the operation is
 488	 * complete
 489	 */
 490	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 491		udelay(10);
 492
 493		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 494		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 495				break;
 496	}
 497
 498
 499	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 500		hw_dbg(hw, "PHY address command did not complete.\n");
 501		return -EIO;
 502	}
 503
 504	/* Address cycle complete, setup and write the read
 505	 * command
 506	 */
 507	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 508		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 509		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 510		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 511
 512	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 513
 514	/* Check every 10 usec to see if the address cycle
 515	 * completed. The MDI Command bit will clear when the
 516	 * operation is complete
 517	 */
 518	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 519		udelay(10);
 520
 521		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 522		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 523			break;
 524	}
 525
 526	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 527		hw_dbg(hw, "PHY read command didn't complete\n");
 528		return -EIO;
 529	}
 530
 531	/* Read operation is complete.  Get the data
 532	 * from MSRWD
 533	 */
 534	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 535	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 536	*phy_data = (u16)(data);
 537
 538	return 0;
 539}
 540
 541/**
 542 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 543 *  using the SWFW lock - this function is needed in most cases
 544 *  @hw: pointer to hardware structure
 545 *  @reg_addr: 32 bit address of PHY register to read
 546 *  @device_type: 5 bit device type
 547 *  @phy_data: Pointer to read data from PHY register
 548 **/
 549int ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 550			       u32 device_type, u16 *phy_data)
 551{
 
 552	u32 gssr = hw->phy.phy_semaphore_mask;
 553	int status;
 554
 555	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 556		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 557						phy_data);
 558		hw->mac.ops.release_swfw_sync(hw, gssr);
 559	} else {
 560		return -EBUSY;
 561	}
 562
 563	return status;
 564}
 565
 566/**
 567 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 568 *  without SWFW lock
 569 *  @hw: pointer to hardware structure
 570 *  @reg_addr: 32 bit PHY register to write
 571 *  @device_type: 5 bit device type
 572 *  @phy_data: Data to write to the PHY register
 573 **/
 574int ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 575			    u16 phy_data)
 576{
 577	u32 i, command;
 578
 579	/* Put the data in the MDI single read and write data register*/
 580	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 581
 582	/* Setup and write the address cycle command */
 583	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 584		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 585		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 586		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 587
 588	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 589
 590	/*
 591	 * Check every 10 usec to see if the address cycle completed.
 592	 * The MDI Command bit will clear when the operation is
 593	 * complete
 594	 */
 595	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 596		udelay(10);
 597
 598		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 599		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 600			break;
 601	}
 602
 603	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 604		hw_dbg(hw, "PHY address cmd didn't complete\n");
 605		return -EIO;
 606	}
 607
 608	/*
 609	 * Address cycle complete, setup and write the write
 610	 * command
 611	 */
 612	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 613		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 614		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 615		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 616
 617	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 618
 619	/* Check every 10 usec to see if the address cycle
 620	 * completed. The MDI Command bit will clear when the
 621	 * operation is complete
 622	 */
 623	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 624		udelay(10);
 625
 626		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 627		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 628			break;
 629	}
 630
 631	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 632		hw_dbg(hw, "PHY write cmd didn't complete\n");
 633		return -EIO;
 634	}
 635
 636	return 0;
 637}
 638
 639/**
 640 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 641 *  using SWFW lock- this function is needed in most cases
 642 *  @hw: pointer to hardware structure
 643 *  @reg_addr: 32 bit PHY register to write
 644 *  @device_type: 5 bit device type
 645 *  @phy_data: Data to write to the PHY register
 646 **/
 647int ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 648				u32 device_type, u16 phy_data)
 649{
 
 650	u32 gssr = hw->phy.phy_semaphore_mask;
 651	int status;
 652
 653	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 654		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 655						 phy_data);
 656		hw->mac.ops.release_swfw_sync(hw, gssr);
 657	} else {
 658		return -EBUSY;
 659	}
 660
 661	return status;
 662}
 663
 664#define IXGBE_HW_READ_REG(addr) IXGBE_READ_REG(hw, addr)
 665
 666/**
 667 *  ixgbe_msca_cmd - Write the command register and poll for completion/timeout
 668 *  @hw: pointer to hardware structure
 669 *  @cmd: command register value to write
 670 **/
 671static int ixgbe_msca_cmd(struct ixgbe_hw *hw, u32 cmd)
 672{
 673	IXGBE_WRITE_REG(hw, IXGBE_MSCA, cmd);
 674
 675	return readx_poll_timeout(IXGBE_HW_READ_REG, IXGBE_MSCA, cmd,
 676				  !(cmd & IXGBE_MSCA_MDI_COMMAND), 10,
 677				  10 * IXGBE_MDIO_COMMAND_TIMEOUT);
 678}
 679
 680/**
 681 *  ixgbe_mii_bus_read_generic_c22 - Read a clause 22 register with gssr flags
 682 *  @hw: pointer to hardware structure
 683 *  @addr: address
 684 *  @regnum: register number
 685 *  @gssr: semaphore flags to acquire
 686 **/
 687static int ixgbe_mii_bus_read_generic_c22(struct ixgbe_hw *hw, int addr,
 688					  int regnum, u32 gssr)
 689{
 690	u32 hwaddr, cmd;
 691	int data;
 692
 693	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 694		return -EBUSY;
 695
 696	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 697	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 698	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL |
 699		IXGBE_MSCA_READ_AUTOINC | IXGBE_MSCA_MDI_COMMAND;
 700
 701	data = ixgbe_msca_cmd(hw, cmd);
 702	if (data < 0)
 703		goto mii_bus_read_done;
 704
 705	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 706	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 707
 708mii_bus_read_done:
 709	hw->mac.ops.release_swfw_sync(hw, gssr);
 710	return data;
 711}
 712
 713/**
 714 *  ixgbe_mii_bus_read_generic_c45 - Read a clause 45 register with gssr flags
 715 *  @hw: pointer to hardware structure
 716 *  @addr: address
 717 *  @devad: device address to read
 718 *  @regnum: register number
 719 *  @gssr: semaphore flags to acquire
 720 **/
 721static int ixgbe_mii_bus_read_generic_c45(struct ixgbe_hw *hw, int addr,
 722					  int devad, int regnum, u32 gssr)
 723{
 724	u32 hwaddr, cmd;
 725	int data;
 726
 727	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 728		return -EBUSY;
 729
 730	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 731	hwaddr |= devad << 16 | regnum;
 732	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 733
 734	data = ixgbe_msca_cmd(hw, cmd);
 735	if (data < 0)
 736		goto mii_bus_read_done;
 737
 738	cmd = hwaddr | IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND;
 739	data = ixgbe_msca_cmd(hw, cmd);
 740	if (data < 0)
 741		goto mii_bus_read_done;
 742
 743	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 744	data = (data >> IXGBE_MSRWD_READ_DATA_SHIFT) & GENMASK(16, 0);
 745
 746mii_bus_read_done:
 747	hw->mac.ops.release_swfw_sync(hw, gssr);
 748	return data;
 749}
 750
 751/**
 752 *  ixgbe_mii_bus_write_generic_c22 - Write a clause 22 register with gssr flags
 753 *  @hw: pointer to hardware structure
 754 *  @addr: address
 755 *  @regnum: register number
 756 *  @val: value to write
 757 *  @gssr: semaphore flags to acquire
 758 **/
 759static int ixgbe_mii_bus_write_generic_c22(struct ixgbe_hw *hw, int addr,
 760					   int regnum, u16 val, u32 gssr)
 761{
 762	u32 hwaddr, cmd;
 763	int err;
 764
 765	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 766		return -EBUSY;
 767
 768	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 769
 770	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 771	hwaddr |= (regnum & GENMASK(5, 0)) << IXGBE_MSCA_DEV_TYPE_SHIFT;
 772	cmd = hwaddr | IXGBE_MSCA_OLD_PROTOCOL | IXGBE_MSCA_WRITE |
 773		IXGBE_MSCA_MDI_COMMAND;
 774
 775	err = ixgbe_msca_cmd(hw, cmd);
 776
 777	hw->mac.ops.release_swfw_sync(hw, gssr);
 778	return err;
 779}
 780
 781/**
 782 *  ixgbe_mii_bus_write_generic_c45 - Write a clause 45 register with gssr flags
 783 *  @hw: pointer to hardware structure
 784 *  @addr: address
 785 *  @devad: device address to read
 786 *  @regnum: register number
 787 *  @val: value to write
 788 *  @gssr: semaphore flags to acquire
 789 **/
 790static int ixgbe_mii_bus_write_generic_c45(struct ixgbe_hw *hw, int addr,
 791					   int devad, int regnum, u16 val,
 792					   u32 gssr)
 793{
 794	u32 hwaddr, cmd;
 795	int err;
 796
 797	if (hw->mac.ops.acquire_swfw_sync(hw, gssr))
 798		return -EBUSY;
 799
 800	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)val);
 801
 802	hwaddr = addr << IXGBE_MSCA_PHY_ADDR_SHIFT;
 803	hwaddr |= devad << 16 | regnum;
 804	cmd = hwaddr | IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND;
 805
 806	err = ixgbe_msca_cmd(hw, cmd);
 807	if (err < 0)
 808		goto mii_bus_write_done;
 809
 810	cmd = hwaddr | IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND;
 811	err = ixgbe_msca_cmd(hw, cmd);
 812
 813mii_bus_write_done:
 814	hw->mac.ops.release_swfw_sync(hw, gssr);
 815	return err;
 816}
 817
 818/**
 819 *  ixgbe_mii_bus_read_c22 - Read a clause 22 register
 820 *  @bus: pointer to mii_bus structure which points to our driver private
 821 *  @addr: address
 822 *  @regnum: register number
 823 **/
 824static int ixgbe_mii_bus_read_c22(struct mii_bus *bus, int addr, int regnum)
 825{
 826	struct ixgbe_adapter *adapter = bus->priv;
 827	struct ixgbe_hw *hw = &adapter->hw;
 828	u32 gssr = hw->phy.phy_semaphore_mask;
 829
 830	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 831}
 832
 833/**
 834 *  ixgbe_mii_bus_read_c45 - Read a clause 45 register
 835 *  @bus: pointer to mii_bus structure which points to our driver private
 836 *  @devad: device address to read
 837 *  @addr: address
 838 *  @regnum: register number
 839 **/
 840static int ixgbe_mii_bus_read_c45(struct mii_bus *bus, int devad, int addr,
 841				  int regnum)
 842{
 843	struct ixgbe_adapter *adapter = bus->priv;
 844	struct ixgbe_hw *hw = &adapter->hw;
 845	u32 gssr = hw->phy.phy_semaphore_mask;
 846
 847	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 848}
 849
 850/**
 851 *  ixgbe_mii_bus_write_c22 - Write a clause 22 register
 852 *  @bus: pointer to mii_bus structure which points to our driver private
 853 *  @addr: address
 854 *  @regnum: register number
 855 *  @val: value to write
 856 **/
 857static int ixgbe_mii_bus_write_c22(struct mii_bus *bus, int addr, int regnum,
 858				   u16 val)
 859{
 860	struct ixgbe_adapter *adapter = bus->priv;
 861	struct ixgbe_hw *hw = &adapter->hw;
 862	u32 gssr = hw->phy.phy_semaphore_mask;
 863
 864	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 865}
 866
 867/**
 868 *  ixgbe_mii_bus_write_c45 - Write a clause 45 register
 869 *  @bus: pointer to mii_bus structure which points to our driver private
 870 *  @addr: address
 871 *  @devad: device address to read
 872 *  @regnum: register number
 873 *  @val: value to write
 874 **/
 875static int ixgbe_mii_bus_write_c45(struct mii_bus *bus, int addr, int devad,
 876				   int regnum, u16 val)
 877{
 878	struct ixgbe_adapter *adapter = bus->priv;
 879	struct ixgbe_hw *hw = &adapter->hw;
 880	u32 gssr = hw->phy.phy_semaphore_mask;
 881
 882	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 883					       gssr);
 884}
 885
 886/**
 887 *  ixgbe_x550em_a_mii_bus_read_c22 - Read a clause 22 register on x550em_a
 888 *  @bus: pointer to mii_bus structure which points to our driver private
 889 *  @addr: address
 890 *  @regnum: register number
 891 **/
 892static int ixgbe_x550em_a_mii_bus_read_c22(struct mii_bus *bus, int addr,
 893					   int regnum)
 894{
 895	struct ixgbe_adapter *adapter = bus->priv;
 896	struct ixgbe_hw *hw = &adapter->hw;
 897	u32 gssr = hw->phy.phy_semaphore_mask;
 898
 899	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 900	return ixgbe_mii_bus_read_generic_c22(hw, addr, regnum, gssr);
 901}
 902
 903/**
 904 *  ixgbe_x550em_a_mii_bus_read_c45 - Read a clause 45 register on x550em_a
 905 *  @bus: pointer to mii_bus structure which points to our driver private
 906 *  @addr: address
 907 *  @devad: device address to read
 908 *  @regnum: register number
 909 **/
 910static int ixgbe_x550em_a_mii_bus_read_c45(struct mii_bus *bus, int addr,
 911					   int devad, int regnum)
 912{
 913	struct ixgbe_adapter *adapter = bus->priv;
 914	struct ixgbe_hw *hw = &adapter->hw;
 915	u32 gssr = hw->phy.phy_semaphore_mask;
 916
 917	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 918	return ixgbe_mii_bus_read_generic_c45(hw, addr, devad, regnum, gssr);
 919}
 920
 921/**
 922 *  ixgbe_x550em_a_mii_bus_write_c22 - Write a clause 22 register on x550em_a
 923 *  @bus: pointer to mii_bus structure which points to our driver private
 924 *  @addr: address
 925 *  @regnum: register number
 926 *  @val: value to write
 927 **/
 928static int ixgbe_x550em_a_mii_bus_write_c22(struct mii_bus *bus, int addr,
 929					    int regnum, u16 val)
 930{
 931	struct ixgbe_adapter *adapter = bus->priv;
 932	struct ixgbe_hw *hw = &adapter->hw;
 933	u32 gssr = hw->phy.phy_semaphore_mask;
 934
 935	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 936	return ixgbe_mii_bus_write_generic_c22(hw, addr, regnum, val, gssr);
 937}
 938
 939/**
 940 *  ixgbe_x550em_a_mii_bus_write_c45 - Write a clause 45 register on x550em_a
 941 *  @bus: pointer to mii_bus structure which points to our driver private
 942 *  @addr: address
 943 *  @devad: device address to read
 944 *  @regnum: register number
 945 *  @val: value to write
 946 **/
 947static int ixgbe_x550em_a_mii_bus_write_c45(struct mii_bus *bus, int addr,
 948					    int devad, int regnum, u16 val)
 949{
 950	struct ixgbe_adapter *adapter = bus->priv;
 951	struct ixgbe_hw *hw = &adapter->hw;
 952	u32 gssr = hw->phy.phy_semaphore_mask;
 953
 954	gssr |= IXGBE_GSSR_TOKEN_SM | IXGBE_GSSR_PHY0_SM;
 955	return ixgbe_mii_bus_write_generic_c45(hw, addr, devad, regnum, val,
 956					       gssr);
 957}
 958
 959/**
 960 * ixgbe_get_first_secondary_devfn - get first device downstream of root port
 961 * @devfn: PCI_DEVFN of root port on domain 0, bus 0
 962 *
 963 * Returns pci_dev pointer to PCI_DEVFN(0, 0) on subordinate side of root
 964 * on domain 0, bus 0, devfn = 'devfn'
 965 **/
 966static struct pci_dev *ixgbe_get_first_secondary_devfn(unsigned int devfn)
 967{
 968	struct pci_dev *rp_pdev;
 969	int bus;
 970
 971	rp_pdev = pci_get_domain_bus_and_slot(0, 0, devfn);
 972	if (rp_pdev && rp_pdev->subordinate) {
 973		bus = rp_pdev->subordinate->number;
 974		pci_dev_put(rp_pdev);
 975		return pci_get_domain_bus_and_slot(0, bus, 0);
 976	}
 977
 978	pci_dev_put(rp_pdev);
 979	return NULL;
 980}
 981
 982/**
 983 * ixgbe_x550em_a_has_mii - is this the first ixgbe x550em_a PCI function?
 984 * @hw: pointer to hardware structure
 985 *
 986 * Returns true if hw points to lowest numbered PCI B:D.F x550_em_a device in
 987 * the SoC.  There are up to 4 MACs sharing a single MDIO bus on the x550em_a,
 988 * but we only want to register one MDIO bus.
 989 **/
 990static bool ixgbe_x550em_a_has_mii(struct ixgbe_hw *hw)
 991{
 992	struct ixgbe_adapter *adapter = hw->back;
 993	struct pci_dev *pdev = adapter->pdev;
 994	struct pci_dev *func0_pdev;
 995	bool has_mii = false;
 996
 997	/* For the C3000 family of SoCs (x550em_a) the internal ixgbe devices
 998	 * are always downstream of root ports @ 0000:00:16.0 & 0000:00:17.0
 999	 * It's not valid for function 0 to be disabled and function 1 is up,
1000	 * so the lowest numbered ixgbe dev will be device 0 function 0 on one
1001	 * of those two root ports
1002	 */
1003	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x16, 0));
1004	if (func0_pdev) {
1005		if (func0_pdev == pdev)
1006			has_mii = true;
1007		goto out;
1008	}
1009	func0_pdev = ixgbe_get_first_secondary_devfn(PCI_DEVFN(0x17, 0));
1010	if (func0_pdev == pdev)
1011		has_mii = true;
1012
1013out:
1014	pci_dev_put(func0_pdev);
1015	return has_mii;
1016}
1017
1018/**
1019 * ixgbe_mii_bus_init - mii_bus structure setup
1020 * @hw: pointer to hardware structure
1021 *
1022 * Returns 0 on success, negative on failure
1023 *
1024 * ixgbe_mii_bus_init initializes a mii_bus structure in adapter
1025 **/
1026int ixgbe_mii_bus_init(struct ixgbe_hw *hw)
1027{
1028	int (*write_c22)(struct mii_bus *bus, int addr, int regnum, u16 val);
1029	int (*read_c22)(struct mii_bus *bus, int addr, int regnum);
1030	int (*write_c45)(struct mii_bus *bus, int addr, int devad, int regnum,
1031			 u16 val);
1032	int (*read_c45)(struct mii_bus *bus, int addr, int devad, int regnum);
1033	struct ixgbe_adapter *adapter = hw->back;
1034	struct pci_dev *pdev = adapter->pdev;
1035	struct device *dev = &adapter->netdev->dev;
1036	struct mii_bus *bus;
1037
1038	switch (hw->device_id) {
1039	/* C3000 SoCs */
1040	case IXGBE_DEV_ID_X550EM_A_KR:
1041	case IXGBE_DEV_ID_X550EM_A_KR_L:
1042	case IXGBE_DEV_ID_X550EM_A_SFP_N:
1043	case IXGBE_DEV_ID_X550EM_A_SGMII:
1044	case IXGBE_DEV_ID_X550EM_A_SGMII_L:
1045	case IXGBE_DEV_ID_X550EM_A_10G_T:
1046	case IXGBE_DEV_ID_X550EM_A_SFP:
1047	case IXGBE_DEV_ID_X550EM_A_1G_T:
1048	case IXGBE_DEV_ID_X550EM_A_1G_T_L:
1049		if (!ixgbe_x550em_a_has_mii(hw))
1050			return 0;
1051		read_c22 = ixgbe_x550em_a_mii_bus_read_c22;
1052		write_c22 = ixgbe_x550em_a_mii_bus_write_c22;
1053		read_c45 = ixgbe_x550em_a_mii_bus_read_c45;
1054		write_c45 = ixgbe_x550em_a_mii_bus_write_c45;
1055		break;
1056	default:
1057		read_c22 = ixgbe_mii_bus_read_c22;
1058		write_c22 = ixgbe_mii_bus_write_c22;
1059		read_c45 = ixgbe_mii_bus_read_c45;
1060		write_c45 = ixgbe_mii_bus_write_c45;
1061		break;
1062	}
1063
1064	bus = devm_mdiobus_alloc(dev);
1065	if (!bus)
1066		return -ENOMEM;
1067
1068	bus->read = read_c22;
1069	bus->write = write_c22;
1070	bus->read_c45 = read_c45;
1071	bus->write_c45 = write_c45;
1072
1073	/* Use the position of the device in the PCI hierarchy as the id */
1074	snprintf(bus->id, MII_BUS_ID_SIZE, "%s-mdio-%s", ixgbe_driver_name,
1075		 pci_name(pdev));
1076
1077	bus->name = "ixgbe-mdio";
1078	bus->priv = adapter;
1079	bus->parent = dev;
1080	bus->phy_mask = GENMASK(31, 0);
1081
1082	/* Support clause 22/45 natively.  ixgbe_probe() sets MDIO_EMULATE_C22
1083	 * unfortunately that causes some clause 22 frames to be sent with
1084	 * clause 45 addressing.  We don't want that.
1085	 */
1086	hw->phy.mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_SUPPORTS_C22;
1087
1088	adapter->mii_bus = bus;
1089	return mdiobus_register(bus);
1090}
1091
1092/**
1093 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
1094 *  @hw: pointer to hardware structure
1095 *
1096 *  Restart autonegotiation and PHY and waits for completion.
1097 **/
1098int ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
1099{
 
1100	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1101	ixgbe_link_speed speed;
1102	bool autoneg = false;
1103	int status = 0;
1104
1105	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1106
1107	/* Set or unset auto-negotiation 10G advertisement */
1108	hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, &autoneg_reg);
 
 
 
1109
1110	autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1111	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL) &&
1112	    (speed & IXGBE_LINK_SPEED_10GB_FULL))
1113		autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1114
1115	hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL, MDIO_MMD_AN, autoneg_reg);
 
 
 
1116
1117	hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1118			     MDIO_MMD_AN, &autoneg_reg);
 
 
 
 
1119
1120	if (hw->mac.type == ixgbe_mac_X550) {
1121		/* Set or unset auto-negotiation 5G advertisement */
1122		autoneg_reg &= ~IXGBE_MII_5GBASE_T_ADVERTISE;
1123		if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_5GB_FULL) &&
1124		    (speed & IXGBE_LINK_SPEED_5GB_FULL))
1125			autoneg_reg |= IXGBE_MII_5GBASE_T_ADVERTISE;
1126
1127		/* Set or unset auto-negotiation 2.5G advertisement */
1128		autoneg_reg &= ~IXGBE_MII_2_5GBASE_T_ADVERTISE;
1129		if ((hw->phy.autoneg_advertised &
1130		     IXGBE_LINK_SPEED_2_5GB_FULL) &&
1131		    (speed & IXGBE_LINK_SPEED_2_5GB_FULL))
1132			autoneg_reg |= IXGBE_MII_2_5GBASE_T_ADVERTISE;
1133	}
1134
1135	/* Set or unset auto-negotiation 1G advertisement */
1136	autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
1137	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL) &&
1138	    (speed & IXGBE_LINK_SPEED_1GB_FULL))
1139		autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
1140
1141	hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
1142			      MDIO_MMD_AN, autoneg_reg);
 
 
 
1143
1144	/* Set or unset auto-negotiation 100M advertisement */
1145	hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, &autoneg_reg);
 
 
 
1146
1147	autoneg_reg &= ~(ADVERTISE_100FULL | ADVERTISE_100HALF);
1148	if ((hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL) &&
1149	    (speed & IXGBE_LINK_SPEED_100_FULL))
1150		autoneg_reg |= ADVERTISE_100FULL;
1151
1152	hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE, MDIO_MMD_AN, autoneg_reg);
 
 
 
1153
1154	/* Blocked by MNG FW so don't reset PHY */
1155	if (ixgbe_check_reset_blocked(hw))
1156		return 0;
1157
1158	/* Restart PHY autonegotiation and wait for completion */
1159	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1160			     MDIO_MMD_AN, &autoneg_reg);
1161
1162	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1163
1164	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1165			      MDIO_MMD_AN, autoneg_reg);
1166
1167	return status;
1168}
1169
1170/**
1171 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
1172 *  @hw: pointer to hardware structure
1173 *  @speed: new link speed
1174 *  @autoneg_wait_to_complete: unused
1175 **/
1176int ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
1177				       ixgbe_link_speed speed,
1178				       bool autoneg_wait_to_complete)
1179{
1180	/* Clear autoneg_advertised and set new values based on input link
 
 
1181	 * speed.
1182	 */
1183	hw->phy.autoneg_advertised = 0;
1184
1185	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
1186		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
1187
1188	if (speed & IXGBE_LINK_SPEED_5GB_FULL)
1189		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_5GB_FULL;
1190
1191	if (speed & IXGBE_LINK_SPEED_2_5GB_FULL)
1192		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_2_5GB_FULL;
1193
1194	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
1195		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
1196
1197	if (speed & IXGBE_LINK_SPEED_100_FULL)
1198		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
1199
1200	if (speed & IXGBE_LINK_SPEED_10_FULL)
1201		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10_FULL;
1202
1203	/* Setup link based on the new speed settings */
1204	if (hw->phy.ops.setup_link)
1205		hw->phy.ops.setup_link(hw);
1206
1207	return 0;
1208}
1209
1210/**
1211 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
1212 * @hw: pointer to hardware structure
1213 *
1214 * Determines the supported link capabilities by reading the PHY auto
1215 * negotiation register.
1216 */
1217static int ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
1218{
1219	u16 speed_ability;
1220	int status;
1221
1222	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
1223				      &speed_ability);
1224	if (status)
1225		return status;
1226
1227	if (speed_ability & MDIO_SPEED_10G)
1228		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
1229	if (speed_ability & MDIO_PMA_SPEED_1000)
1230		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
1231	if (speed_ability & MDIO_PMA_SPEED_100)
1232		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
1233
1234	switch (hw->mac.type) {
1235	case ixgbe_mac_X550:
1236		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
1237		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
1238		break;
1239	case ixgbe_mac_X550EM_x:
1240	case ixgbe_mac_x550em_a:
1241		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
1242		break;
1243	default:
1244		break;
1245	}
1246
1247	return 0;
1248}
1249
1250/**
1251 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
1252 * @hw: pointer to hardware structure
1253 * @speed: pointer to link speed
1254 * @autoneg: boolean auto-negotiation value
1255 */
1256int ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
1257					       ixgbe_link_speed *speed,
1258					       bool *autoneg)
1259{
1260	int status = 0;
1261
1262	*autoneg = true;
1263	if (!hw->phy.speeds_supported)
1264		status = ixgbe_get_copper_speeds_supported(hw);
1265
1266	*speed = hw->phy.speeds_supported;
1267	return status;
1268}
1269
1270/**
1271 *  ixgbe_check_phy_link_tnx - Determine link and speed status
1272 *  @hw: pointer to hardware structure
1273 *  @speed: link speed
1274 *  @link_up: status of link
1275 *
1276 *  Reads the VS1 register to determine if link is up and the current speed for
1277 *  the PHY.
1278 **/
1279int ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
1280			     bool *link_up)
1281{
 
 
1282	u32 max_time_out = 10;
1283	u16 phy_speed = 0;
1284	u16 phy_link = 0;
 
1285	u16 phy_data = 0;
1286	u32 time_out;
1287	int status;
1288
1289	/* Initialize speed and link to default case */
1290	*link_up = false;
1291	*speed = IXGBE_LINK_SPEED_10GB_FULL;
1292
1293	/*
1294	 * Check current speed and link status of the PHY register.
1295	 * This is a vendor specific register and may have to
1296	 * be changed for other copper PHYs.
1297	 */
1298	for (time_out = 0; time_out < max_time_out; time_out++) {
1299		udelay(10);
1300		status = hw->phy.ops.read_reg(hw,
1301					      MDIO_STAT1,
1302					      MDIO_MMD_VEND1,
1303					      &phy_data);
1304		phy_link = phy_data &
1305			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
1306		phy_speed = phy_data &
1307			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
1308		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
1309			*link_up = true;
1310			if (phy_speed ==
1311			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
1312				*speed = IXGBE_LINK_SPEED_1GB_FULL;
1313			break;
1314		}
1315	}
1316
1317	return status;
1318}
1319
1320/**
1321 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
1322 *	@hw: pointer to hardware structure
1323 *
1324 *	Restart autonegotiation and PHY and waits for completion.
1325 *      This function always returns success, this is nessary since
1326 *	it is called via a function pointer that could call other
1327 *	functions that could return an error.
1328 **/
1329int ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
1330{
1331	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
1332	bool autoneg = false;
1333	ixgbe_link_speed speed;
1334
1335	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
1336
1337	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
1338		/* Set or unset auto-negotiation 10G advertisement */
1339		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
1340				     MDIO_MMD_AN,
1341				     &autoneg_reg);
1342
1343		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
1344		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
1345			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
1346
1347		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
1348				      MDIO_MMD_AN,
1349				      autoneg_reg);
1350	}
1351
1352	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
1353		/* Set or unset auto-negotiation 1G advertisement */
1354		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1355				     MDIO_MMD_AN,
1356				     &autoneg_reg);
1357
1358		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1359		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
1360			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
1361
1362		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
1363				      MDIO_MMD_AN,
1364				      autoneg_reg);
1365	}
1366
1367	if (speed & IXGBE_LINK_SPEED_100_FULL) {
1368		/* Set or unset auto-negotiation 100M advertisement */
1369		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
1370				     MDIO_MMD_AN,
1371				     &autoneg_reg);
1372
1373		autoneg_reg &= ~(ADVERTISE_100FULL |
1374				 ADVERTISE_100HALF);
1375		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
1376			autoneg_reg |= ADVERTISE_100FULL;
1377
1378		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
1379				      MDIO_MMD_AN,
1380				      autoneg_reg);
1381	}
1382
1383	/* Blocked by MNG FW so don't reset PHY */
1384	if (ixgbe_check_reset_blocked(hw))
1385		return 0;
1386
1387	/* Restart PHY autonegotiation and wait for completion */
1388	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
1389			     MDIO_MMD_AN, &autoneg_reg);
1390
1391	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
1392
1393	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
1394			      MDIO_MMD_AN, autoneg_reg);
1395	return 0;
1396}
1397
1398/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399 *  ixgbe_reset_phy_nl - Performs a PHY reset
1400 *  @hw: pointer to hardware structure
1401 **/
1402int ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1403{
1404	u16 phy_offset, control, eword, edata, block_crc;
1405	u16 list_offset, data_offset;
1406	bool end_data = false;
 
1407	u16 phy_data = 0;
1408	int ret_val;
1409	u32 i;
1410
1411	/* Blocked by MNG FW so bail */
1412	if (ixgbe_check_reset_blocked(hw))
1413		return 0;
1414
1415	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1416
1417	/* reset the PHY and poll for completion */
1418	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1419			      (phy_data | MDIO_CTRL1_RESET));
1420
1421	for (i = 0; i < 100; i++) {
1422		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1423				     &phy_data);
1424		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1425			break;
1426		usleep_range(10000, 20000);
1427	}
1428
1429	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1430		hw_dbg(hw, "PHY reset did not complete.\n");
1431		return -EIO;
1432	}
1433
1434	/* Get init offsets */
1435	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1436						      &data_offset);
1437	if (ret_val)
1438		return ret_val;
1439
1440	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1441	data_offset++;
1442	while (!end_data) {
1443		/*
1444		 * Read control word from PHY init contents offset
1445		 */
1446		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1447		if (ret_val)
1448			goto err_eeprom;
1449		control = FIELD_GET(IXGBE_CONTROL_MASK_NL, eword);
 
1450		edata = eword & IXGBE_DATA_MASK_NL;
1451		switch (control) {
1452		case IXGBE_DELAY_NL:
1453			data_offset++;
1454			hw_dbg(hw, "DELAY: %d MS\n", edata);
1455			usleep_range(edata * 1000, edata * 2000);
1456			break;
1457		case IXGBE_DATA_NL:
1458			hw_dbg(hw, "DATA:\n");
1459			data_offset++;
1460			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1461						      &phy_offset);
1462			if (ret_val)
1463				goto err_eeprom;
1464			for (i = 0; i < edata; i++) {
1465				ret_val = hw->eeprom.ops.read(hw, data_offset,
1466							      &eword);
1467				if (ret_val)
1468					goto err_eeprom;
1469				hw->phy.ops.write_reg(hw, phy_offset,
1470						      MDIO_MMD_PMAPMD, eword);
1471				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1472				       phy_offset);
1473				data_offset++;
1474				phy_offset++;
1475			}
1476			break;
1477		case IXGBE_CONTROL_NL:
1478			data_offset++;
1479			hw_dbg(hw, "CONTROL:\n");
1480			if (edata == IXGBE_CONTROL_EOL_NL) {
1481				hw_dbg(hw, "EOL\n");
1482				end_data = true;
1483			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1484				hw_dbg(hw, "SOL\n");
1485			} else {
1486				hw_dbg(hw, "Bad control value\n");
1487				return -EIO;
1488			}
1489			break;
1490		default:
1491			hw_dbg(hw, "Bad control type\n");
1492			return -EIO;
1493		}
1494	}
1495
1496	return ret_val;
1497
1498err_eeprom:
1499	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1500	return -EIO;
1501}
1502
1503/**
1504 *  ixgbe_identify_module_generic - Identifies module type
1505 *  @hw: pointer to hardware structure
1506 *
1507 *  Determines HW type and calls appropriate function.
1508 **/
1509int ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1510{
1511	switch (hw->mac.ops.get_media_type(hw)) {
1512	case ixgbe_media_type_fiber:
1513		return ixgbe_identify_sfp_module_generic(hw);
1514	case ixgbe_media_type_fiber_qsfp:
1515		return ixgbe_identify_qsfp_module_generic(hw);
1516	default:
1517		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1518		return -ENOENT;
1519	}
1520
1521	return -ENOENT;
1522}
1523
1524/**
1525 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1526 *  @hw: pointer to hardware structure
1527 *
1528 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1529 **/
1530int ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1531{
1532	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1533	struct ixgbe_adapter *adapter = hw->back;
1534	u8 oui_bytes[3] = {0, 0, 0};
1535	u8 bitrate_nominal = 0;
1536	u8 comp_codes_10g = 0;
1537	u8 comp_codes_1g = 0;
1538	u16 enforce_sfp = 0;
1539	u32 vendor_oui = 0;
 
1540	u8 identifier = 0;
 
 
 
1541	u8 cable_tech = 0;
1542	u8 cable_spec = 0;
1543	int status;
1544
1545	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1546		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1547		return -ENOENT;
1548	}
1549
1550	/* LAN ID is needed for sfp_type determination */
1551	hw->mac.ops.set_lan_id(hw);
1552
1553	status = hw->phy.ops.read_i2c_eeprom(hw,
1554					     IXGBE_SFF_IDENTIFIER,
1555					     &identifier);
1556
1557	if (status)
1558		goto err_read_i2c_eeprom;
1559
1560	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1561		hw->phy.type = ixgbe_phy_sfp_unsupported;
1562		return -EOPNOTSUPP;
1563	}
1564	status = hw->phy.ops.read_i2c_eeprom(hw,
1565					     IXGBE_SFF_1GBE_COMP_CODES,
1566					     &comp_codes_1g);
1567
1568	if (status)
1569		goto err_read_i2c_eeprom;
1570
1571	status = hw->phy.ops.read_i2c_eeprom(hw,
1572					     IXGBE_SFF_10GBE_COMP_CODES,
1573					     &comp_codes_10g);
1574
1575	if (status)
1576		goto err_read_i2c_eeprom;
1577	status = hw->phy.ops.read_i2c_eeprom(hw,
1578					     IXGBE_SFF_CABLE_TECHNOLOGY,
1579					     &cable_tech);
1580	if (status)
1581		goto err_read_i2c_eeprom;
1582
1583	status = hw->phy.ops.read_i2c_eeprom(hw,
1584					     IXGBE_SFF_BITRATE_NOMINAL,
1585					     &bitrate_nominal);
1586	if (status)
1587		goto err_read_i2c_eeprom;
1588
1589	 /* ID Module
1590	  * =========
1591	  * 0   SFP_DA_CU
1592	  * 1   SFP_SR
1593	  * 2   SFP_LR
1594	  * 3   SFP_DA_CORE0 - 82599-specific
1595	  * 4   SFP_DA_CORE1 - 82599-specific
1596	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1597	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1598	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1599	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1600	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1601	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1602	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1603	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1604	  */
1605	if (hw->mac.type == ixgbe_mac_82598EB) {
1606		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1607			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1608		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1609			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1610		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1611			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1612		else
1613			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1614	} else {
1615		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1616			if (hw->bus.lan_id == 0)
1617				hw->phy.sfp_type =
1618					     ixgbe_sfp_type_da_cu_core0;
1619			else
1620				hw->phy.sfp_type =
1621					     ixgbe_sfp_type_da_cu_core1;
1622		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1623			hw->phy.ops.read_i2c_eeprom(
1624					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1625					&cable_spec);
1626			if (cable_spec &
1627			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1628				if (hw->bus.lan_id == 0)
1629					hw->phy.sfp_type =
1630					ixgbe_sfp_type_da_act_lmt_core0;
1631				else
1632					hw->phy.sfp_type =
1633					ixgbe_sfp_type_da_act_lmt_core1;
1634			} else {
1635				hw->phy.sfp_type =
1636						ixgbe_sfp_type_unknown;
1637			}
1638		} else if (comp_codes_10g &
1639			   (IXGBE_SFF_10GBASESR_CAPABLE |
1640			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1641			if (hw->bus.lan_id == 0)
1642				hw->phy.sfp_type =
1643					      ixgbe_sfp_type_srlr_core0;
1644			else
1645				hw->phy.sfp_type =
1646					      ixgbe_sfp_type_srlr_core1;
1647		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1648			if (hw->bus.lan_id == 0)
1649				hw->phy.sfp_type =
1650					ixgbe_sfp_type_1g_cu_core0;
1651			else
1652				hw->phy.sfp_type =
1653					ixgbe_sfp_type_1g_cu_core1;
1654		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1655			if (hw->bus.lan_id == 0)
1656				hw->phy.sfp_type =
1657					ixgbe_sfp_type_1g_sx_core0;
1658			else
1659				hw->phy.sfp_type =
1660					ixgbe_sfp_type_1g_sx_core1;
1661		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1662			if (hw->bus.lan_id == 0)
1663				hw->phy.sfp_type =
1664					ixgbe_sfp_type_1g_lx_core0;
1665			else
1666				hw->phy.sfp_type =
1667					ixgbe_sfp_type_1g_lx_core1;
1668		/* Support only Ethernet 1000BASE-BX10, checking the Bit Rate
1669		 * Nominal Value as per SFF-8472 by convention 1.25 Gb/s should
1670		 * be rounded up to 0Dh (13 in units of 100 MBd) for 1000BASE-BX
1671		 */
1672		} else if ((comp_codes_1g & IXGBE_SFF_BASEBX10_CAPABLE) &&
1673			   (bitrate_nominal == 0xD)) {
1674			if (hw->bus.lan_id == 0)
1675				hw->phy.sfp_type =
1676					ixgbe_sfp_type_1g_bx_core0;
1677			else
1678				hw->phy.sfp_type =
1679					ixgbe_sfp_type_1g_bx_core1;
1680		} else {
1681			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1682		}
1683	}
1684
1685	if (hw->phy.sfp_type != stored_sfp_type)
1686		hw->phy.sfp_setup_needed = true;
1687
1688	/* Determine if the SFP+ PHY is dual speed or not. */
1689	hw->phy.multispeed_fiber = false;
1690	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1691	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1692	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1693	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1694		hw->phy.multispeed_fiber = true;
1695
1696	/* Determine PHY vendor */
1697	if (hw->phy.type != ixgbe_phy_nl) {
1698		hw->phy.id = identifier;
1699		status = hw->phy.ops.read_i2c_eeprom(hw,
1700					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1701					    &oui_bytes[0]);
1702
1703		if (status != 0)
1704			goto err_read_i2c_eeprom;
1705
1706		status = hw->phy.ops.read_i2c_eeprom(hw,
1707					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1708					    &oui_bytes[1]);
1709
1710		if (status != 0)
1711			goto err_read_i2c_eeprom;
1712
1713		status = hw->phy.ops.read_i2c_eeprom(hw,
1714					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1715					    &oui_bytes[2]);
1716
1717		if (status != 0)
1718			goto err_read_i2c_eeprom;
1719
1720		vendor_oui =
1721		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1722		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1723		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1724
1725		switch (vendor_oui) {
1726		case IXGBE_SFF_VENDOR_OUI_TYCO:
1727			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1728				hw->phy.type =
1729					    ixgbe_phy_sfp_passive_tyco;
1730			break;
1731		case IXGBE_SFF_VENDOR_OUI_FTL:
1732			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1733				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1734			else
1735				hw->phy.type = ixgbe_phy_sfp_ftl;
1736			break;
1737		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1738			hw->phy.type = ixgbe_phy_sfp_avago;
1739			break;
1740		case IXGBE_SFF_VENDOR_OUI_INTEL:
1741			hw->phy.type = ixgbe_phy_sfp_intel;
1742			break;
1743		default:
1744			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1745				hw->phy.type =
1746					 ixgbe_phy_sfp_passive_unknown;
1747			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1748				hw->phy.type =
1749					ixgbe_phy_sfp_active_unknown;
1750			else
1751				hw->phy.type = ixgbe_phy_sfp_unknown;
1752			break;
1753		}
1754	}
1755
1756	/* Allow any DA cable vendor */
1757	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1758	    IXGBE_SFF_DA_ACTIVE_CABLE))
1759		return 0;
1760
1761	/* Verify supported 1G SFP modules */
1762	if (comp_codes_10g == 0 &&
1763	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1764	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1765	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1766	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1767	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1768	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1769	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1770	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1771		hw->phy.type = ixgbe_phy_sfp_unsupported;
1772		return -EOPNOTSUPP;
1773	}
1774
1775	/* Anything else 82598-based is supported */
1776	if (hw->mac.type == ixgbe_mac_82598EB)
1777		return 0;
1778
1779	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1780	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1781	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1782	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1783	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1784	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1785	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1786	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
1787	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core0 ||
1788	      hw->phy.sfp_type == ixgbe_sfp_type_1g_bx_core1)) {
1789		/* Make sure we're a supported PHY type */
1790		if (hw->phy.type == ixgbe_phy_sfp_intel)
1791			return 0;
1792		if (hw->allow_unsupported_sfp) {
1793			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1794			return 0;
1795		}
1796		hw_dbg(hw, "SFP+ module not supported\n");
1797		hw->phy.type = ixgbe_phy_sfp_unsupported;
1798		return -EOPNOTSUPP;
1799	}
1800	return 0;
1801
1802err_read_i2c_eeprom:
1803	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1804	if (hw->phy.type != ixgbe_phy_nl) {
1805		hw->phy.id = 0;
1806		hw->phy.type = ixgbe_phy_unknown;
1807	}
1808	return -ENOENT;
1809}
1810
1811/**
1812 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1813 * @hw: pointer to hardware structure
1814 *
1815 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1816 **/
1817static int ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1818{
1819	struct ixgbe_adapter *adapter = hw->back;
1820	int status;
1821	u32 vendor_oui = 0;
1822	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1823	u8 identifier = 0;
1824	u8 comp_codes_1g = 0;
1825	u8 comp_codes_10g = 0;
1826	u8 oui_bytes[3] = {0, 0, 0};
1827	u16 enforce_sfp = 0;
1828	u8 connector = 0;
1829	u8 cable_length = 0;
1830	u8 device_tech = 0;
1831	bool active_cable = false;
1832
1833	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1834		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1835		return -ENOENT;
1836	}
1837
1838	/* LAN ID is needed for sfp_type determination */
1839	hw->mac.ops.set_lan_id(hw);
1840
1841	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1842					     &identifier);
1843
1844	if (status != 0)
1845		goto err_read_i2c_eeprom;
1846
1847	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1848		hw->phy.type = ixgbe_phy_sfp_unsupported;
1849		return -EOPNOTSUPP;
1850	}
1851
1852	hw->phy.id = identifier;
1853
1854	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1855					     &comp_codes_10g);
1856
1857	if (status != 0)
1858		goto err_read_i2c_eeprom;
1859
1860	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1861					     &comp_codes_1g);
1862
1863	if (status != 0)
1864		goto err_read_i2c_eeprom;
1865
1866	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1867		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1868		if (hw->bus.lan_id == 0)
1869			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1870		else
1871			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1872	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1873				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1874		if (hw->bus.lan_id == 0)
1875			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1876		else
1877			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1878	} else {
1879		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1880			active_cable = true;
1881
1882		if (!active_cable) {
1883			/* check for active DA cables that pre-date
1884			 * SFF-8436 v3.6
1885			 */
1886			hw->phy.ops.read_i2c_eeprom(hw,
1887					IXGBE_SFF_QSFP_CONNECTOR,
1888					&connector);
1889
1890			hw->phy.ops.read_i2c_eeprom(hw,
1891					IXGBE_SFF_QSFP_CABLE_LENGTH,
1892					&cable_length);
1893
1894			hw->phy.ops.read_i2c_eeprom(hw,
1895					IXGBE_SFF_QSFP_DEVICE_TECH,
1896					&device_tech);
1897
1898			if ((connector ==
1899				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1900			    (cable_length > 0) &&
1901			    ((device_tech >> 4) ==
1902				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1903				active_cable = true;
1904		}
1905
1906		if (active_cable) {
1907			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1908			if (hw->bus.lan_id == 0)
1909				hw->phy.sfp_type =
1910						ixgbe_sfp_type_da_act_lmt_core0;
1911			else
1912				hw->phy.sfp_type =
1913						ixgbe_sfp_type_da_act_lmt_core1;
1914		} else {
1915			/* unsupported module type */
1916			hw->phy.type = ixgbe_phy_sfp_unsupported;
1917			return -EOPNOTSUPP;
1918		}
1919	}
1920
1921	if (hw->phy.sfp_type != stored_sfp_type)
1922		hw->phy.sfp_setup_needed = true;
1923
1924	/* Determine if the QSFP+ PHY is dual speed or not. */
1925	hw->phy.multispeed_fiber = false;
1926	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1927	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1928	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1929	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1930		hw->phy.multispeed_fiber = true;
1931
1932	/* Determine PHY vendor for optical modules */
1933	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1934			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1935		status = hw->phy.ops.read_i2c_eeprom(hw,
1936					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1937					&oui_bytes[0]);
1938
1939		if (status != 0)
1940			goto err_read_i2c_eeprom;
1941
1942		status = hw->phy.ops.read_i2c_eeprom(hw,
1943					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1944					&oui_bytes[1]);
1945
1946		if (status != 0)
1947			goto err_read_i2c_eeprom;
1948
1949		status = hw->phy.ops.read_i2c_eeprom(hw,
1950					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1951					&oui_bytes[2]);
1952
1953		if (status != 0)
1954			goto err_read_i2c_eeprom;
1955
1956		vendor_oui =
1957			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1958			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1959			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1960
1961		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1962			hw->phy.type = ixgbe_phy_qsfp_intel;
1963		else
1964			hw->phy.type = ixgbe_phy_qsfp_unknown;
1965
1966		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1967		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1968			/* Make sure we're a supported PHY type */
1969			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1970				return 0;
1971			if (hw->allow_unsupported_sfp) {
1972				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1973				return 0;
1974			}
1975			hw_dbg(hw, "QSFP module not supported\n");
1976			hw->phy.type = ixgbe_phy_sfp_unsupported;
1977			return -EOPNOTSUPP;
1978		}
1979		return 0;
1980	}
1981	return 0;
1982
1983err_read_i2c_eeprom:
1984	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1985	hw->phy.id = 0;
1986	hw->phy.type = ixgbe_phy_unknown;
1987
1988	return -ENOENT;
1989}
1990
1991/**
1992 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1993 *  @hw: pointer to hardware structure
1994 *  @list_offset: offset to the SFP ID list
1995 *  @data_offset: offset to the SFP data block
1996 *
1997 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1998 *  so it returns the offsets to the phy init sequence block.
1999 **/
2000int ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
2001					u16 *list_offset,
2002					u16 *data_offset)
2003{
2004	u16 sfp_id;
2005	u16 sfp_type = hw->phy.sfp_type;
2006
2007	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
2008		return -EOPNOTSUPP;
2009
2010	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2011		return -ENOENT;
2012
2013	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
2014	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
2015		return -EOPNOTSUPP;
2016
2017	/*
2018	 * Limiting active cables and 1G Phys must be initialized as
2019	 * SR modules
2020	 */
2021	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
2022	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
2023	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
2024	    sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
2025	    sfp_type == ixgbe_sfp_type_1g_bx_core0)
2026		sfp_type = ixgbe_sfp_type_srlr_core0;
2027	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
2028		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
2029		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
2030		 sfp_type == ixgbe_sfp_type_1g_sx_core1 ||
2031		 sfp_type == ixgbe_sfp_type_1g_bx_core1)
2032		sfp_type = ixgbe_sfp_type_srlr_core1;
2033
2034	/* Read offset to PHY init contents */
2035	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
2036		hw_err(hw, "eeprom read at %d failed\n",
2037		       IXGBE_PHY_INIT_OFFSET_NL);
2038		return -EIO;
2039	}
2040
2041	if ((!*list_offset) || (*list_offset == 0xFFFF))
2042		return -EIO;
2043
2044	/* Shift offset to first ID word */
2045	(*list_offset)++;
2046
2047	/*
2048	 * Find the matching SFP ID in the EEPROM
2049	 * and program the init sequence
2050	 */
2051	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2052		goto err_phy;
2053
2054	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
2055		if (sfp_id == sfp_type) {
2056			(*list_offset)++;
2057			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
2058				goto err_phy;
2059			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
2060				hw_dbg(hw, "SFP+ module not supported\n");
2061				return -EOPNOTSUPP;
2062			} else {
2063				break;
2064			}
2065		} else {
2066			(*list_offset) += 2;
2067			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
2068				goto err_phy;
2069		}
2070	}
2071
2072	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
2073		hw_dbg(hw, "No matching SFP+ module found\n");
2074		return -EOPNOTSUPP;
2075	}
2076
2077	return 0;
2078
2079err_phy:
2080	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
2081	return -EIO;
2082}
2083
2084/**
2085 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
2086 *  @hw: pointer to hardware structure
2087 *  @byte_offset: EEPROM byte offset to read
2088 *  @eeprom_data: value read
2089 *
2090 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
2091 **/
2092int ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2093				  u8 *eeprom_data)
2094{
2095	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2096					 IXGBE_I2C_EEPROM_DEV_ADDR,
2097					 eeprom_data);
2098}
2099
2100/**
2101 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
2102 *  @hw: pointer to hardware structure
2103 *  @byte_offset: byte offset at address 0xA2
2104 *  @sff8472_data: value read
2105 *
2106 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
2107 **/
2108int ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
2109				   u8 *sff8472_data)
2110{
2111	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
2112					 IXGBE_I2C_EEPROM_DEV_ADDR2,
2113					 sff8472_data);
2114}
2115
2116/**
2117 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
2118 *  @hw: pointer to hardware structure
2119 *  @byte_offset: EEPROM byte offset to write
2120 *  @eeprom_data: value to write
2121 *
2122 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
2123 **/
2124int ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
2125				   u8 eeprom_data)
2126{
2127	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
2128					  IXGBE_I2C_EEPROM_DEV_ADDR,
2129					  eeprom_data);
2130}
2131
2132/**
2133 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
2134 * @hw: pointer to hardware structure
2135 * @offset: eeprom offset to be read
2136 * @addr: I2C address to be read
2137 */
2138static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
2139{
2140	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
2141	    offset == IXGBE_SFF_IDENTIFIER &&
2142	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
2143		return true;
2144	return false;
2145}
2146
2147/**
2148 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
2149 *  @hw: pointer to hardware structure
2150 *  @byte_offset: byte offset to read
2151 *  @dev_addr: device address
2152 *  @data: value read
2153 *  @lock: true if to take and release semaphore
2154 *
2155 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2156 *  a specified device address.
2157 */
2158static int ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2159					   u8 dev_addr, u8 *data, bool lock)
2160{
2161	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2162	u32 max_retry = 10;
2163	bool nack = true;
2164	u32 retry = 0;
2165	int status;
 
2166
2167	if (hw->mac.type >= ixgbe_mac_X550)
2168		max_retry = 3;
2169	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
2170		max_retry = IXGBE_SFP_DETECT_RETRIES;
2171
2172	*data = 0;
2173
2174	do {
2175		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2176			return -EBUSY;
2177
2178		ixgbe_i2c_start(hw);
2179
2180		/* Device Address and write indication */
2181		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2182		if (status != 0)
2183			goto fail;
2184
2185		status = ixgbe_get_i2c_ack(hw);
2186		if (status != 0)
2187			goto fail;
2188
2189		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2190		if (status != 0)
2191			goto fail;
2192
2193		status = ixgbe_get_i2c_ack(hw);
2194		if (status != 0)
2195			goto fail;
2196
2197		ixgbe_i2c_start(hw);
2198
2199		/* Device Address and read indication */
2200		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
2201		if (status != 0)
2202			goto fail;
2203
2204		status = ixgbe_get_i2c_ack(hw);
2205		if (status != 0)
2206			goto fail;
2207
2208		status = ixgbe_clock_in_i2c_byte(hw, data);
2209		if (status != 0)
2210			goto fail;
2211
2212		status = ixgbe_clock_out_i2c_bit(hw, nack);
2213		if (status != 0)
2214			goto fail;
2215
2216		ixgbe_i2c_stop(hw);
2217		if (lock)
2218			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2219		return 0;
2220
2221fail:
2222		ixgbe_i2c_bus_clear(hw);
2223		if (lock) {
2224			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2225			msleep(100);
2226		}
2227		retry++;
2228		if (retry < max_retry)
2229			hw_dbg(hw, "I2C byte read error - Retrying.\n");
2230		else
2231			hw_dbg(hw, "I2C byte read error.\n");
2232
2233	} while (retry < max_retry);
2234
2235	return status;
2236}
2237
2238/**
2239 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
2240 *  @hw: pointer to hardware structure
2241 *  @byte_offset: byte offset to read
2242 *  @dev_addr: device address
2243 *  @data: value read
2244 *
2245 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2246 *  a specified device address.
2247 */
2248int ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2249				u8 dev_addr, u8 *data)
2250{
2251	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2252					       data, true);
2253}
2254
2255/**
2256 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
2257 *  @hw: pointer to hardware structure
2258 *  @byte_offset: byte offset to read
2259 *  @dev_addr: device address
2260 *  @data: value read
2261 *
2262 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
2263 *  a specified device address.
2264 */
2265int ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2266					 u8 dev_addr, u8 *data)
2267{
2268	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2269					       data, false);
2270}
2271
2272/**
2273 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
2274 *  @hw: pointer to hardware structure
2275 *  @byte_offset: byte offset to write
2276 *  @dev_addr: device address
2277 *  @data: value to write
2278 *  @lock: true if to take and release semaphore
2279 *
2280 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2281 *  a specified device address.
2282 */
2283static int ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
2284					    u8 dev_addr, u8 data, bool lock)
2285{
2286	u32 swfw_mask = hw->phy.phy_semaphore_mask;
2287	u32 max_retry = 1;
2288	u32 retry = 0;
2289	int status;
2290
2291	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
2292		return -EBUSY;
2293
2294	do {
2295		ixgbe_i2c_start(hw);
2296
2297		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
2298		if (status != 0)
2299			goto fail;
2300
2301		status = ixgbe_get_i2c_ack(hw);
2302		if (status != 0)
2303			goto fail;
2304
2305		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
2306		if (status != 0)
2307			goto fail;
2308
2309		status = ixgbe_get_i2c_ack(hw);
2310		if (status != 0)
2311			goto fail;
2312
2313		status = ixgbe_clock_out_i2c_byte(hw, data);
2314		if (status != 0)
2315			goto fail;
2316
2317		status = ixgbe_get_i2c_ack(hw);
2318		if (status != 0)
2319			goto fail;
2320
2321		ixgbe_i2c_stop(hw);
2322		if (lock)
2323			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2324		return 0;
2325
2326fail:
2327		ixgbe_i2c_bus_clear(hw);
2328		retry++;
2329		if (retry < max_retry)
2330			hw_dbg(hw, "I2C byte write error - Retrying.\n");
2331		else
2332			hw_dbg(hw, "I2C byte write error.\n");
2333	} while (retry < max_retry);
2334
2335	if (lock)
2336		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
2337
2338	return status;
2339}
2340
2341/**
2342 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
2343 *  @hw: pointer to hardware structure
2344 *  @byte_offset: byte offset to write
2345 *  @dev_addr: device address
2346 *  @data: value to write
2347 *
2348 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2349 *  a specified device address.
2350 */
2351int ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
2352				 u8 dev_addr, u8 data)
2353{
2354	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2355						data, true);
2356}
2357
2358/**
2359 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
2360 *  @hw: pointer to hardware structure
2361 *  @byte_offset: byte offset to write
2362 *  @dev_addr: device address
2363 *  @data: value to write
2364 *
2365 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
2366 *  a specified device address.
2367 */
2368int ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
2369					  u8 dev_addr, u8 data)
2370{
2371	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
2372						data, false);
2373}
2374
2375/**
2376 *  ixgbe_i2c_start - Sets I2C start condition
2377 *  @hw: pointer to hardware structure
2378 *
2379 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
2380 *  Set bit-bang mode on X550 hardware.
2381 **/
2382static void ixgbe_i2c_start(struct ixgbe_hw *hw)
2383{
2384	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2385
2386	i2cctl |= IXGBE_I2C_BB_EN(hw);
2387
2388	/* Start condition must begin with data and clock high */
2389	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2390	ixgbe_raise_i2c_clk(hw, &i2cctl);
2391
2392	/* Setup time for start condition (4.7us) */
2393	udelay(IXGBE_I2C_T_SU_STA);
2394
2395	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2396
2397	/* Hold time for start condition (4us) */
2398	udelay(IXGBE_I2C_T_HD_STA);
2399
2400	ixgbe_lower_i2c_clk(hw, &i2cctl);
2401
2402	/* Minimum low period of clock is 4.7 us */
2403	udelay(IXGBE_I2C_T_LOW);
2404
2405}
2406
2407/**
2408 *  ixgbe_i2c_stop - Sets I2C stop condition
2409 *  @hw: pointer to hardware structure
2410 *
2411 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2412 *  Disables bit-bang mode and negates data output enable on X550
2413 *  hardware.
2414 **/
2415static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2416{
2417	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2418	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2419	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2420	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2421
2422	/* Stop condition must begin with data low and clock high */
2423	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2424	ixgbe_raise_i2c_clk(hw, &i2cctl);
2425
2426	/* Setup time for stop condition (4us) */
2427	udelay(IXGBE_I2C_T_SU_STO);
2428
2429	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2430
2431	/* bus free time between stop and start (4.7us)*/
2432	udelay(IXGBE_I2C_T_BUF);
2433
2434	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2435		i2cctl &= ~bb_en_bit;
2436		i2cctl |= data_oe_bit | clk_oe_bit;
2437		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2438		IXGBE_WRITE_FLUSH(hw);
2439	}
2440}
2441
2442/**
2443 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2444 *  @hw: pointer to hardware structure
2445 *  @data: data byte to clock in
2446 *
2447 *  Clocks in one byte data via I2C data/clock
2448 **/
2449static int ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2450{
 
2451	bool bit = false;
2452	int i;
2453
2454	*data = 0;
2455	for (i = 7; i >= 0; i--) {
2456		ixgbe_clock_in_i2c_bit(hw, &bit);
2457		*data |= bit << i;
2458	}
2459
2460	return 0;
2461}
2462
2463/**
2464 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2465 *  @hw: pointer to hardware structure
2466 *  @data: data byte clocked out
2467 *
2468 *  Clocks out one byte data via I2C data/clock
2469 **/
2470static int ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2471{
2472	bool bit = false;
2473	int status;
2474	u32 i2cctl;
2475	int i;
2476
2477	for (i = 7; i >= 0; i--) {
2478		bit = (data >> i) & 0x1;
2479		status = ixgbe_clock_out_i2c_bit(hw, bit);
2480
2481		if (status != 0)
2482			break;
2483	}
2484
2485	/* Release SDA line (set high) */
2486	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2487	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2488	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2489	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2490	IXGBE_WRITE_FLUSH(hw);
2491
2492	return status;
2493}
2494
2495/**
2496 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2497 *  @hw: pointer to hardware structure
2498 *
2499 *  Clocks in/out one bit via I2C data/clock
2500 **/
2501static int ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2502{
2503	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2504	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
 
 
 
2505	u32 timeout = 10;
2506	bool ack = true;
2507	int status = 0;
2508	u32 i = 0;
2509
2510	if (data_oe_bit) {
2511		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2512		i2cctl |= data_oe_bit;
2513		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2514		IXGBE_WRITE_FLUSH(hw);
2515	}
2516	ixgbe_raise_i2c_clk(hw, &i2cctl);
2517
2518	/* Minimum high period of clock is 4us */
2519	udelay(IXGBE_I2C_T_HIGH);
2520
2521	/* Poll for ACK.  Note that ACK in I2C spec is
2522	 * transition from 1 to 0 */
2523	for (i = 0; i < timeout; i++) {
2524		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2525		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2526
2527		udelay(1);
2528		if (ack == 0)
2529			break;
2530	}
2531
2532	if (ack == 1) {
2533		hw_dbg(hw, "I2C ack was not received.\n");
2534		status = -EIO;
2535	}
2536
2537	ixgbe_lower_i2c_clk(hw, &i2cctl);
2538
2539	/* Minimum low period of clock is 4.7 us */
2540	udelay(IXGBE_I2C_T_LOW);
2541
2542	return status;
2543}
2544
2545/**
2546 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2547 *  @hw: pointer to hardware structure
2548 *  @data: read data value
2549 *
2550 *  Clocks in one bit via I2C data/clock
2551 **/
2552static int ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2553{
2554	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2555	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2556
2557	if (data_oe_bit) {
2558		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2559		i2cctl |= data_oe_bit;
2560		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2561		IXGBE_WRITE_FLUSH(hw);
2562	}
2563	ixgbe_raise_i2c_clk(hw, &i2cctl);
2564
2565	/* Minimum high period of clock is 4us */
2566	udelay(IXGBE_I2C_T_HIGH);
2567
2568	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2569	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2570
2571	ixgbe_lower_i2c_clk(hw, &i2cctl);
2572
2573	/* Minimum low period of clock is 4.7 us */
2574	udelay(IXGBE_I2C_T_LOW);
2575
2576	return 0;
2577}
2578
2579/**
2580 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2581 *  @hw: pointer to hardware structure
2582 *  @data: data value to write
2583 *
2584 *  Clocks out one bit via I2C data/clock
2585 **/
2586static int ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2587{
 
2588	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2589	int status;
2590
2591	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2592	if (status == 0) {
2593		ixgbe_raise_i2c_clk(hw, &i2cctl);
2594
2595		/* Minimum high period of clock is 4us */
2596		udelay(IXGBE_I2C_T_HIGH);
2597
2598		ixgbe_lower_i2c_clk(hw, &i2cctl);
2599
2600		/* Minimum low period of clock is 4.7 us.
2601		 * This also takes care of the data hold time.
2602		 */
2603		udelay(IXGBE_I2C_T_LOW);
2604	} else {
2605		hw_dbg(hw, "I2C data was not set to %X\n", data);
2606		return -EIO;
2607	}
2608
2609	return 0;
2610}
2611/**
2612 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2613 *  @hw: pointer to hardware structure
2614 *  @i2cctl: Current value of I2CCTL register
2615 *
2616 *  Raises the I2C clock line '0'->'1'
2617 *  Negates the I2C clock output enable on X550 hardware.
2618 **/
2619static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2620{
2621	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2622	u32 i = 0;
2623	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2624	u32 i2cctl_r = 0;
2625
2626	if (clk_oe_bit) {
2627		*i2cctl |= clk_oe_bit;
2628		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2629	}
2630
2631	for (i = 0; i < timeout; i++) {
2632		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2633		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2634		IXGBE_WRITE_FLUSH(hw);
2635		/* SCL rise time (1000ns) */
2636		udelay(IXGBE_I2C_T_RISE);
2637
2638		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2639		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2640			break;
2641	}
2642}
2643
2644/**
2645 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2646 *  @hw: pointer to hardware structure
2647 *  @i2cctl: Current value of I2CCTL register
2648 *
2649 *  Lowers the I2C clock line '1'->'0'
2650 *  Asserts the I2C clock output enable on X550 hardware.
2651 **/
2652static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2653{
2654
2655	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2656	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2657
2658	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2659	IXGBE_WRITE_FLUSH(hw);
2660
2661	/* SCL fall time (300ns) */
2662	udelay(IXGBE_I2C_T_FALL);
2663}
2664
2665/**
2666 *  ixgbe_set_i2c_data - Sets the I2C data bit
2667 *  @hw: pointer to hardware structure
2668 *  @i2cctl: Current value of I2CCTL register
2669 *  @data: I2C data value (0 or 1) to set
2670 *
2671 *  Sets the I2C data bit
2672 *  Asserts the I2C data output enable on X550 hardware.
2673 **/
2674static int ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2675{
2676	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2677
2678	if (data)
2679		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2680	else
2681		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2682	*i2cctl &= ~data_oe_bit;
2683
2684	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2685	IXGBE_WRITE_FLUSH(hw);
2686
2687	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2688	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2689
2690	if (!data)	/* Can't verify data in this case */
2691		return 0;
2692	if (data_oe_bit) {
2693		*i2cctl |= data_oe_bit;
2694		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2695		IXGBE_WRITE_FLUSH(hw);
2696	}
2697
2698	/* Verify data was set correctly */
2699	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2700	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2701		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2702		return -EIO;
2703	}
2704
2705	return 0;
2706}
2707
2708/**
2709 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2710 *  @hw: pointer to hardware structure
2711 *  @i2cctl: Current value of I2CCTL register
2712 *
2713 *  Returns the I2C data bit value
2714 *  Negates the I2C data output enable on X550 hardware.
2715 **/
2716static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2717{
2718	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2719
2720	if (data_oe_bit) {
2721		*i2cctl |= data_oe_bit;
2722		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2723		IXGBE_WRITE_FLUSH(hw);
2724		udelay(IXGBE_I2C_T_FALL);
2725	}
2726
2727	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2728		return true;
2729	return false;
2730}
2731
2732/**
2733 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2734 *  @hw: pointer to hardware structure
2735 *
2736 *  Clears the I2C bus by sending nine clock pulses.
2737 *  Used when data line is stuck low.
2738 **/
2739static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2740{
2741	u32 i2cctl;
2742	u32 i;
2743
2744	ixgbe_i2c_start(hw);
2745	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2746
2747	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2748
2749	for (i = 0; i < 9; i++) {
2750		ixgbe_raise_i2c_clk(hw, &i2cctl);
2751
2752		/* Min high period of clock is 4us */
2753		udelay(IXGBE_I2C_T_HIGH);
2754
2755		ixgbe_lower_i2c_clk(hw, &i2cctl);
2756
2757		/* Min low period of clock is 4.7us*/
2758		udelay(IXGBE_I2C_T_LOW);
2759	}
2760
2761	ixgbe_i2c_start(hw);
2762
2763	/* Put the i2c bus back to default state */
2764	ixgbe_i2c_stop(hw);
2765}
2766
2767/**
2768 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2769 *  @hw: pointer to hardware structure
2770 *
2771 *  Checks if the LASI temp alarm status was triggered due to overtemp
2772 *
2773 *  Return true when an overtemp event detected, otherwise false.
2774 **/
2775bool ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2776{
2777	u16 phy_data = 0;
2778	u32 status;
2779
2780	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2781		return false;
2782
2783	/* Check that the LASI temp alarm status was triggered */
2784	status = hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2785				      MDIO_MMD_PMAPMD, &phy_data);
2786	if (status)
2787		return false;
 
2788
2789	return !!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM);
2790}
2791
2792/** ixgbe_set_copper_phy_power - Control power for copper phy
2793 *  @hw: pointer to hardware structure
2794 *  @on: true for on, false for off
2795 **/
2796int ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2797{
2798	u32 status;
2799	u16 reg;
2800
2801	/* Bail if we don't have copper phy */
2802	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2803		return 0;
2804
2805	if (!on && ixgbe_mng_present(hw))
2806		return 0;
2807
2808	status = hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, &reg);
 
 
2809	if (status)
2810		return status;
2811
2812	if (on) {
2813		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2814	} else {
2815		if (ixgbe_check_reset_blocked(hw))
2816			return 0;
2817		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2818	}
2819
2820	status = hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_VEND1, reg);
 
 
2821	return status;
2822}
v4.6
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2014 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#include <linux/pci.h>
  30#include <linux/delay.h>
 
  31#include <linux/sched.h>
  32
  33#include "ixgbe.h"
  34#include "ixgbe_phy.h"
  35
  36static void ixgbe_i2c_start(struct ixgbe_hw *hw);
  37static void ixgbe_i2c_stop(struct ixgbe_hw *hw);
  38static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data);
  39static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data);
  40static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw);
  41static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data);
  42static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data);
  43static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  44static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl);
  45static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data);
  46static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl);
  47static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw);
  48static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id);
  49static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw);
  50static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw);
  51
  52/**
  53 *  ixgbe_out_i2c_byte_ack - Send I2C byte with ack
  54 *  @hw: pointer to the hardware structure
  55 *  @byte: byte to send
  56 *
  57 *  Returns an error code on error.
  58 **/
  59static s32 ixgbe_out_i2c_byte_ack(struct ixgbe_hw *hw, u8 byte)
  60{
  61	s32 status;
  62
  63	status = ixgbe_clock_out_i2c_byte(hw, byte);
  64	if (status)
  65		return status;
  66	return ixgbe_get_i2c_ack(hw);
  67}
  68
  69/**
  70 *  ixgbe_in_i2c_byte_ack - Receive an I2C byte and send ack
  71 *  @hw: pointer to the hardware structure
  72 *  @byte: pointer to a u8 to receive the byte
  73 *
  74 *  Returns an error code on error.
  75 **/
  76static s32 ixgbe_in_i2c_byte_ack(struct ixgbe_hw *hw, u8 *byte)
  77{
  78	s32 status;
  79
  80	status = ixgbe_clock_in_i2c_byte(hw, byte);
  81	if (status)
  82		return status;
  83	/* ACK */
  84	return ixgbe_clock_out_i2c_bit(hw, false);
  85}
  86
  87/**
  88 *  ixgbe_ones_comp_byte_add - Perform one's complement addition
  89 *  @add1: addend 1
  90 *  @add2: addend 2
  91 *
  92 *  Returns one's complement 8-bit sum.
  93 **/
  94static u8 ixgbe_ones_comp_byte_add(u8 add1, u8 add2)
  95{
  96	u16 sum = add1 + add2;
  97
  98	sum = (sum & 0xFF) + (sum >> 8);
  99	return sum & 0xFF;
 100}
 101
 102/**
 103 *  ixgbe_read_i2c_combined_generic_int - Perform I2C read combined operation
 104 *  @hw: pointer to the hardware structure
 105 *  @addr: I2C bus address to read from
 106 *  @reg: I2C device register to read from
 107 *  @val: pointer to location to receive read value
 108 *  @lock: true if to take and release semaphore
 109 *
 110 *  Returns an error code on error.
 111 */
 112static s32 ixgbe_read_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 113					       u16 reg, u16 *val, bool lock)
 114{
 115	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 116	int max_retry = 10;
 117	int retry = 0;
 118	u8 csum_byte;
 119	u8 high_bits;
 120	u8 low_bits;
 121	u8 reg_high;
 122	u8 csum;
 123
 124	reg_high = ((reg >> 7) & 0xFE) | 1;     /* Indicate read combined */
 125	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 126	csum = ~csum;
 127	do {
 128		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 129			return IXGBE_ERR_SWFW_SYNC;
 130		ixgbe_i2c_start(hw);
 131		/* Device Address and write indication */
 132		if (ixgbe_out_i2c_byte_ack(hw, addr))
 133			goto fail;
 134		/* Write bits 14:8 */
 135		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 136			goto fail;
 137		/* Write bits 7:0 */
 138		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 139			goto fail;
 140		/* Write csum */
 141		if (ixgbe_out_i2c_byte_ack(hw, csum))
 142			goto fail;
 143		/* Re-start condition */
 144		ixgbe_i2c_start(hw);
 145		/* Device Address and read indication */
 146		if (ixgbe_out_i2c_byte_ack(hw, addr | 1))
 147			goto fail;
 148		/* Get upper bits */
 149		if (ixgbe_in_i2c_byte_ack(hw, &high_bits))
 150			goto fail;
 151		/* Get low bits */
 152		if (ixgbe_in_i2c_byte_ack(hw, &low_bits))
 153			goto fail;
 154		/* Get csum */
 155		if (ixgbe_clock_in_i2c_byte(hw, &csum_byte))
 156			goto fail;
 157		/* NACK */
 158		if (ixgbe_clock_out_i2c_bit(hw, false))
 159			goto fail;
 160		ixgbe_i2c_stop(hw);
 161		if (lock)
 162			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 163		*val = (high_bits << 8) | low_bits;
 164		return 0;
 165
 166fail:
 167		ixgbe_i2c_bus_clear(hw);
 168		if (lock)
 169			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 170		retry++;
 171		if (retry < max_retry)
 172			hw_dbg(hw, "I2C byte read combined error - Retry.\n");
 173		else
 174			hw_dbg(hw, "I2C byte read combined error.\n");
 175	} while (retry < max_retry);
 176
 177	return IXGBE_ERR_I2C;
 178}
 179
 180/**
 181 *  ixgbe_read_i2c_combined_generic - Perform I2C read combined operation
 182 *  @hw: pointer to the hardware structure
 183 *  @addr: I2C bus address to read from
 184 *  @reg: I2C device register to read from
 185 *  @val: pointer to location to receive read value
 186 *
 187 *  Returns an error code on error.
 188 */
 189s32 ixgbe_read_i2c_combined_generic(struct ixgbe_hw *hw, u8 addr,
 190				    u16 reg, u16 *val)
 191{
 192	return ixgbe_read_i2c_combined_generic_int(hw, addr, reg, val, true);
 193}
 194
 195/**
 196 *  ixgbe_read_i2c_combined_generic_unlocked - Unlocked I2C read combined
 197 *  @hw: pointer to the hardware structure
 198 *  @addr: I2C bus address to read from
 199 *  @reg: I2C device register to read from
 200 *  @val: pointer to location to receive read value
 201 *
 202 *  Returns an error code on error.
 203 */
 204s32 ixgbe_read_i2c_combined_generic_unlocked(struct ixgbe_hw *hw, u8 addr,
 205					     u16 reg, u16 *val)
 206{
 207	return ixgbe_read_i2c_combined_generic_int(hw, addr, reg, val, false);
 208}
 209
 210/**
 211 *  ixgbe_write_i2c_combined_generic_int - Perform I2C write combined operation
 212 *  @hw: pointer to the hardware structure
 213 *  @addr: I2C bus address to write to
 214 *  @reg: I2C device register to write to
 215 *  @val: value to write
 216 *  @lock: true if to take and release semaphore
 217 *
 218 *  Returns an error code on error.
 219 */
 220static s32 ixgbe_write_i2c_combined_generic_int(struct ixgbe_hw *hw, u8 addr,
 221						u16 reg, u16 val, bool lock)
 222{
 223	u32 swfw_mask = hw->phy.phy_semaphore_mask;
 224	int max_retry = 1;
 225	int retry = 0;
 226	u8 reg_high;
 227	u8 csum;
 228
 229	reg_high = (reg >> 7) & 0xFE;   /* Indicate write combined */
 230	csum = ixgbe_ones_comp_byte_add(reg_high, reg & 0xFF);
 231	csum = ixgbe_ones_comp_byte_add(csum, val >> 8);
 232	csum = ixgbe_ones_comp_byte_add(csum, val & 0xFF);
 233	csum = ~csum;
 234	do {
 235		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
 236			return IXGBE_ERR_SWFW_SYNC;
 237		ixgbe_i2c_start(hw);
 238		/* Device Address and write indication */
 239		if (ixgbe_out_i2c_byte_ack(hw, addr))
 240			goto fail;
 241		/* Write bits 14:8 */
 242		if (ixgbe_out_i2c_byte_ack(hw, reg_high))
 243			goto fail;
 244		/* Write bits 7:0 */
 245		if (ixgbe_out_i2c_byte_ack(hw, reg & 0xFF))
 246			goto fail;
 247		/* Write data 15:8 */
 248		if (ixgbe_out_i2c_byte_ack(hw, val >> 8))
 249			goto fail;
 250		/* Write data 7:0 */
 251		if (ixgbe_out_i2c_byte_ack(hw, val & 0xFF))
 252			goto fail;
 253		/* Write csum */
 254		if (ixgbe_out_i2c_byte_ack(hw, csum))
 255			goto fail;
 256		ixgbe_i2c_stop(hw);
 257		if (lock)
 258			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 259		return 0;
 260
 261fail:
 262		ixgbe_i2c_bus_clear(hw);
 263		if (lock)
 264			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
 265		retry++;
 266		if (retry < max_retry)
 267			hw_dbg(hw, "I2C byte write combined error - Retry.\n");
 268		else
 269			hw_dbg(hw, "I2C byte write combined error.\n");
 270	} while (retry < max_retry);
 271
 272	return IXGBE_ERR_I2C;
 273}
 274
 275/**
 276 *  ixgbe_write_i2c_combined_generic - Perform I2C write combined operation
 277 *  @hw: pointer to the hardware structure
 278 *  @addr: I2C bus address to write to
 279 *  @reg: I2C device register to write to
 280 *  @val: value to write
 281 *
 282 *  Returns an error code on error.
 283 */
 284s32 ixgbe_write_i2c_combined_generic(struct ixgbe_hw *hw,
 285				     u8 addr, u16 reg, u16 val)
 286{
 287	return ixgbe_write_i2c_combined_generic_int(hw, addr, reg, val, true);
 288}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289
 290/**
 291 *  ixgbe_write_i2c_combined_generic_unlocked - Unlocked I2C write combined
 292 *  @hw: pointer to the hardware structure
 293 *  @addr: I2C bus address to write to
 294 *  @reg: I2C device register to write to
 295 *  @val: value to write
 296 *
 297 *  Returns an error code on error.
 298 */
 299s32 ixgbe_write_i2c_combined_generic_unlocked(struct ixgbe_hw *hw,
 300					      u8 addr, u16 reg, u16 val)
 301{
 302	return ixgbe_write_i2c_combined_generic_int(hw, addr, reg, val, false);
 303}
 304
 305/**
 306 *  ixgbe_identify_phy_generic - Get physical layer module
 307 *  @hw: pointer to hardware structure
 308 *
 309 *  Determines the physical layer module found on the current adapter.
 310 **/
 311s32 ixgbe_identify_phy_generic(struct ixgbe_hw *hw)
 312{
 
 313	u32 phy_addr;
 314	u16 ext_ability = 0;
 315
 316	if (!hw->phy.phy_semaphore_mask) {
 317		if (hw->bus.lan_id)
 318			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY1_SM;
 319		else
 320			hw->phy.phy_semaphore_mask = IXGBE_GSSR_PHY0_SM;
 321	}
 322
 323	if (hw->phy.type == ixgbe_phy_unknown) {
 324		for (phy_addr = 0; phy_addr < IXGBE_MAX_PHY_ADDR; phy_addr++) {
 325			hw->phy.mdio.prtad = phy_addr;
 326			if (mdio45_probe(&hw->phy.mdio, phy_addr) == 0) {
 327				ixgbe_get_phy_id(hw);
 328				hw->phy.type =
 329					ixgbe_get_phy_type_from_id(hw->phy.id);
 330
 331				if (hw->phy.type == ixgbe_phy_unknown) {
 332					hw->phy.ops.read_reg(hw,
 333							     MDIO_PMA_EXTABLE,
 334							     MDIO_MMD_PMAPMD,
 335							     &ext_ability);
 336					if (ext_ability &
 337					    (MDIO_PMA_EXTABLE_10GBT |
 338					     MDIO_PMA_EXTABLE_1000BT))
 339						hw->phy.type =
 340							 ixgbe_phy_cu_unknown;
 341					else
 342						hw->phy.type =
 343							 ixgbe_phy_generic;
 344				}
 345
 346				return 0;
 347			}
 
 
 348		}
 349		/* clear value if nothing found */
 350		hw->phy.mdio.prtad = 0;
 351		return IXGBE_ERR_PHY_ADDR_INVALID;
 352	}
 353	return 0;
 
 
 
 
 
 
 
 
 354}
 355
 356/**
 357 * ixgbe_check_reset_blocked - check status of MNG FW veto bit
 358 * @hw: pointer to the hardware structure
 359 *
 360 * This function checks the MMNGC.MNG_VETO bit to see if there are
 361 * any constraints on link from manageability.  For MAC's that don't
 362 * have this bit just return false since the link can not be blocked
 363 * via this method.
 364 **/
 365bool ixgbe_check_reset_blocked(struct ixgbe_hw *hw)
 366{
 367	u32 mmngc;
 368
 369	/* If we don't have this bit, it can't be blocking */
 370	if (hw->mac.type == ixgbe_mac_82598EB)
 371		return false;
 372
 373	mmngc = IXGBE_READ_REG(hw, IXGBE_MMNGC);
 374	if (mmngc & IXGBE_MMNGC_MNG_VETO) {
 375		hw_dbg(hw, "MNG_VETO bit detected.\n");
 376		return true;
 377	}
 378
 379	return false;
 380}
 381
 382/**
 383 *  ixgbe_get_phy_id - Get the phy type
 384 *  @hw: pointer to hardware structure
 385 *
 386 **/
 387static s32 ixgbe_get_phy_id(struct ixgbe_hw *hw)
 388{
 389	s32 status;
 390	u16 phy_id_high = 0;
 391	u16 phy_id_low = 0;
 
 392
 393	status = hw->phy.ops.read_reg(hw, MDIO_DEVID1, MDIO_MMD_PMAPMD,
 394				      &phy_id_high);
 395
 396	if (!status) {
 397		hw->phy.id = (u32)(phy_id_high << 16);
 398		status = hw->phy.ops.read_reg(hw, MDIO_DEVID2, MDIO_MMD_PMAPMD,
 399					      &phy_id_low);
 400		hw->phy.id |= (u32)(phy_id_low & IXGBE_PHY_REVISION_MASK);
 401		hw->phy.revision = (u32)(phy_id_low & ~IXGBE_PHY_REVISION_MASK);
 402	}
 403	return status;
 404}
 405
 406/**
 407 *  ixgbe_get_phy_type_from_id - Get the phy type
 408 *  @hw: pointer to hardware structure
 409 *
 410 **/
 411static enum ixgbe_phy_type ixgbe_get_phy_type_from_id(u32 phy_id)
 412{
 413	enum ixgbe_phy_type phy_type;
 414
 415	switch (phy_id) {
 416	case TN1010_PHY_ID:
 417		phy_type = ixgbe_phy_tn;
 418		break;
 419	case X550_PHY_ID:
 
 420	case X540_PHY_ID:
 421		phy_type = ixgbe_phy_aq;
 422		break;
 423	case QT2022_PHY_ID:
 424		phy_type = ixgbe_phy_qt;
 425		break;
 426	case ATH_PHY_ID:
 427		phy_type = ixgbe_phy_nl;
 428		break;
 429	case X557_PHY_ID:
 
 430		phy_type = ixgbe_phy_x550em_ext_t;
 431		break;
 
 
 
 432	default:
 433		phy_type = ixgbe_phy_unknown;
 434		break;
 435	}
 436
 437	return phy_type;
 438}
 439
 440/**
 441 *  ixgbe_reset_phy_generic - Performs a PHY reset
 442 *  @hw: pointer to hardware structure
 443 **/
 444s32 ixgbe_reset_phy_generic(struct ixgbe_hw *hw)
 445{
 446	u32 i;
 447	u16 ctrl = 0;
 448	s32 status = 0;
 449
 450	if (hw->phy.type == ixgbe_phy_unknown)
 451		status = ixgbe_identify_phy_generic(hw);
 452
 453	if (status != 0 || hw->phy.type == ixgbe_phy_none)
 454		return status;
 455
 456	/* Don't reset PHY if it's shut down due to overtemp. */
 457	if (!hw->phy.reset_if_overtemp &&
 458	    (IXGBE_ERR_OVERTEMP == hw->phy.ops.check_overtemp(hw)))
 459		return 0;
 460
 461	/* Blocked by MNG FW so bail */
 462	if (ixgbe_check_reset_blocked(hw))
 463		return 0;
 464
 465	/*
 466	 * Perform soft PHY reset to the PHY_XS.
 467	 * This will cause a soft reset to the PHY
 468	 */
 469	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 470			      MDIO_MMD_PHYXS,
 471			      MDIO_CTRL1_RESET);
 472
 473	/*
 474	 * Poll for reset bit to self-clear indicating reset is complete.
 475	 * Some PHYs could take up to 3 seconds to complete and need about
 476	 * 1.7 usec delay after the reset is complete.
 477	 */
 478	for (i = 0; i < 30; i++) {
 479		msleep(100);
 480		hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 481				     MDIO_MMD_PHYXS, &ctrl);
 482		if (!(ctrl & MDIO_CTRL1_RESET)) {
 483			udelay(2);
 484			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485		}
 486	}
 487
 488	if (ctrl & MDIO_CTRL1_RESET) {
 489		hw_dbg(hw, "PHY reset polling failed to complete.\n");
 490		return IXGBE_ERR_RESET_FAILED;
 491	}
 492
 493	return 0;
 494}
 495
 496/**
 497 *  ixgbe_read_phy_mdi - Reads a value from a specified PHY register without
 498 *  the SWFW lock
 499 *  @hw: pointer to hardware structure
 500 *  @reg_addr: 32 bit address of PHY register to read
 
 501 *  @phy_data: Pointer to read data from PHY register
 
 
 502 **/
 503s32 ixgbe_read_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr, u32 device_type,
 504		       u16 *phy_data)
 505{
 506	u32 i, data, command;
 507
 508	/* Setup and write the address cycle command */
 509	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 510		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 511		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 512		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 513
 514	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 515
 516	/* Check every 10 usec to see if the address cycle completed.
 517	 * The MDI Command bit will clear when the operation is
 518	 * complete
 519	 */
 520	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 521		udelay(10);
 522
 523		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 524		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 525				break;
 526	}
 527
 528
 529	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 530		hw_dbg(hw, "PHY address command did not complete.\n");
 531		return IXGBE_ERR_PHY;
 532	}
 533
 534	/* Address cycle complete, setup and write the read
 535	 * command
 536	 */
 537	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 538		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 539		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 540		   (IXGBE_MSCA_READ | IXGBE_MSCA_MDI_COMMAND));
 541
 542	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 543
 544	/* Check every 10 usec to see if the address cycle
 545	 * completed. The MDI Command bit will clear when the
 546	 * operation is complete
 547	 */
 548	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 549		udelay(10);
 550
 551		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 552		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 553			break;
 554	}
 555
 556	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 557		hw_dbg(hw, "PHY read command didn't complete\n");
 558		return IXGBE_ERR_PHY;
 559	}
 560
 561	/* Read operation is complete.  Get the data
 562	 * from MSRWD
 563	 */
 564	data = IXGBE_READ_REG(hw, IXGBE_MSRWD);
 565	data >>= IXGBE_MSRWD_READ_DATA_SHIFT;
 566	*phy_data = (u16)(data);
 567
 568	return 0;
 569}
 570
 571/**
 572 *  ixgbe_read_phy_reg_generic - Reads a value from a specified PHY register
 573 *  using the SWFW lock - this function is needed in most cases
 574 *  @hw: pointer to hardware structure
 575 *  @reg_addr: 32 bit address of PHY register to read
 
 576 *  @phy_data: Pointer to read data from PHY register
 577 **/
 578s32 ixgbe_read_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 579			       u32 device_type, u16 *phy_data)
 580{
 581	s32 status;
 582	u32 gssr = hw->phy.phy_semaphore_mask;
 
 583
 584	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 585		status = ixgbe_read_phy_reg_mdi(hw, reg_addr, device_type,
 586						phy_data);
 587		hw->mac.ops.release_swfw_sync(hw, gssr);
 588	} else {
 589		return IXGBE_ERR_SWFW_SYNC;
 590	}
 591
 592	return status;
 593}
 594
 595/**
 596 *  ixgbe_write_phy_reg_mdi - Writes a value to specified PHY register
 597 *  without SWFW lock
 598 *  @hw: pointer to hardware structure
 599 *  @reg_addr: 32 bit PHY register to write
 600 *  @device_type: 5 bit device type
 601 *  @phy_data: Data to write to the PHY register
 602 **/
 603s32 ixgbe_write_phy_reg_mdi(struct ixgbe_hw *hw, u32 reg_addr,
 604				u32 device_type, u16 phy_data)
 605{
 606	u32 i, command;
 607
 608	/* Put the data in the MDI single read and write data register*/
 609	IXGBE_WRITE_REG(hw, IXGBE_MSRWD, (u32)phy_data);
 610
 611	/* Setup and write the address cycle command */
 612	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 613		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 614		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 615		   (IXGBE_MSCA_ADDR_CYCLE | IXGBE_MSCA_MDI_COMMAND));
 616
 617	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 618
 619	/*
 620	 * Check every 10 usec to see if the address cycle completed.
 621	 * The MDI Command bit will clear when the operation is
 622	 * complete
 623	 */
 624	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 625		udelay(10);
 626
 627		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 628		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 629			break;
 630	}
 631
 632	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 633		hw_dbg(hw, "PHY address cmd didn't complete\n");
 634		return IXGBE_ERR_PHY;
 635	}
 636
 637	/*
 638	 * Address cycle complete, setup and write the write
 639	 * command
 640	 */
 641	command = ((reg_addr << IXGBE_MSCA_NP_ADDR_SHIFT)  |
 642		   (device_type << IXGBE_MSCA_DEV_TYPE_SHIFT) |
 643		   (hw->phy.mdio.prtad << IXGBE_MSCA_PHY_ADDR_SHIFT) |
 644		   (IXGBE_MSCA_WRITE | IXGBE_MSCA_MDI_COMMAND));
 645
 646	IXGBE_WRITE_REG(hw, IXGBE_MSCA, command);
 647
 648	/* Check every 10 usec to see if the address cycle
 649	 * completed. The MDI Command bit will clear when the
 650	 * operation is complete
 651	 */
 652	for (i = 0; i < IXGBE_MDIO_COMMAND_TIMEOUT; i++) {
 653		udelay(10);
 654
 655		command = IXGBE_READ_REG(hw, IXGBE_MSCA);
 656		if ((command & IXGBE_MSCA_MDI_COMMAND) == 0)
 657			break;
 658	}
 659
 660	if ((command & IXGBE_MSCA_MDI_COMMAND) != 0) {
 661		hw_dbg(hw, "PHY write cmd didn't complete\n");
 662		return IXGBE_ERR_PHY;
 663	}
 664
 665	return 0;
 666}
 667
 668/**
 669 *  ixgbe_write_phy_reg_generic - Writes a value to specified PHY register
 670 *  using SWFW lock- this function is needed in most cases
 671 *  @hw: pointer to hardware structure
 672 *  @reg_addr: 32 bit PHY register to write
 673 *  @device_type: 5 bit device type
 674 *  @phy_data: Data to write to the PHY register
 675 **/
 676s32 ixgbe_write_phy_reg_generic(struct ixgbe_hw *hw, u32 reg_addr,
 677				u32 device_type, u16 phy_data)
 678{
 679	s32 status;
 680	u32 gssr = hw->phy.phy_semaphore_mask;
 
 681
 682	if (hw->mac.ops.acquire_swfw_sync(hw, gssr) == 0) {
 683		status = ixgbe_write_phy_reg_mdi(hw, reg_addr, device_type,
 684						 phy_data);
 685		hw->mac.ops.release_swfw_sync(hw, gssr);
 686	} else {
 687		return IXGBE_ERR_SWFW_SYNC;
 688	}
 689
 690	return status;
 691}
 692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 693/**
 694 *  ixgbe_setup_phy_link_generic - Set and restart autoneg
 695 *  @hw: pointer to hardware structure
 696 *
 697 *  Restart autonegotiation and PHY and waits for completion.
 698 **/
 699s32 ixgbe_setup_phy_link_generic(struct ixgbe_hw *hw)
 700{
 701	s32 status = 0;
 702	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 
 703	bool autoneg = false;
 704	ixgbe_link_speed speed;
 705
 706	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 707
 708	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
 709		/* Set or unset auto-negotiation 10G advertisement */
 710		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
 711				     MDIO_MMD_AN,
 712				     &autoneg_reg);
 713
 714		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 715		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
 716			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 
 717
 718		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
 719				      MDIO_MMD_AN,
 720				      autoneg_reg);
 721	}
 722
 723	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
 724		/* Set or unset auto-negotiation 1G advertisement */
 725		hw->phy.ops.read_reg(hw,
 726				     IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 727				     MDIO_MMD_AN,
 728				     &autoneg_reg);
 729
 730		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE;
 731		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
 732			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733
 734		hw->phy.ops.write_reg(hw,
 735				      IXGBE_MII_AUTONEG_VENDOR_PROVISION_1_REG,
 736				      MDIO_MMD_AN,
 737				      autoneg_reg);
 738	}
 739
 740	if (speed & IXGBE_LINK_SPEED_100_FULL) {
 741		/* Set or unset auto-negotiation 100M advertisement */
 742		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 743				     MDIO_MMD_AN,
 744				     &autoneg_reg);
 745
 746		autoneg_reg &= ~(ADVERTISE_100FULL |
 747				 ADVERTISE_100HALF);
 748		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
 749			autoneg_reg |= ADVERTISE_100FULL;
 750
 751		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 752				      MDIO_MMD_AN,
 753				      autoneg_reg);
 754	}
 755
 756	/* Blocked by MNG FW so don't reset PHY */
 757	if (ixgbe_check_reset_blocked(hw))
 758		return 0;
 759
 760	/* Restart PHY autonegotiation and wait for completion */
 761	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 762			     MDIO_MMD_AN, &autoneg_reg);
 763
 764	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
 765
 766	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 767			      MDIO_MMD_AN, autoneg_reg);
 768
 769	return status;
 770}
 771
 772/**
 773 *  ixgbe_setup_phy_link_speed_generic - Sets the auto advertised capabilities
 774 *  @hw: pointer to hardware structure
 775 *  @speed: new link speed
 
 776 **/
 777s32 ixgbe_setup_phy_link_speed_generic(struct ixgbe_hw *hw,
 778				       ixgbe_link_speed speed,
 779				       bool autoneg_wait_to_complete)
 780{
 781
 782	/*
 783	 * Clear autoneg_advertised and set new values based on input link
 784	 * speed.
 785	 */
 786	hw->phy.autoneg_advertised = 0;
 787
 788	if (speed & IXGBE_LINK_SPEED_10GB_FULL)
 789		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_10GB_FULL;
 790
 
 
 
 
 
 
 791	if (speed & IXGBE_LINK_SPEED_1GB_FULL)
 792		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_1GB_FULL;
 793
 794	if (speed & IXGBE_LINK_SPEED_100_FULL)
 795		hw->phy.autoneg_advertised |= IXGBE_LINK_SPEED_100_FULL;
 796
 
 
 
 797	/* Setup link based on the new speed settings */
 798	hw->phy.ops.setup_link(hw);
 
 799
 800	return 0;
 801}
 802
 803/**
 804 * ixgbe_get_copper_speeds_supported - Get copper link speed from phy
 805 * @hw: pointer to hardware structure
 806 *
 807 * Determines the supported link capabilities by reading the PHY auto
 808 * negotiation register.
 809 */
 810static s32 ixgbe_get_copper_speeds_supported(struct ixgbe_hw *hw)
 811{
 812	u16 speed_ability;
 813	s32 status;
 814
 815	status = hw->phy.ops.read_reg(hw, MDIO_SPEED, MDIO_MMD_PMAPMD,
 816				      &speed_ability);
 817	if (status)
 818		return status;
 819
 820	if (speed_ability & MDIO_SPEED_10G)
 821		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_10GB_FULL;
 822	if (speed_ability & MDIO_PMA_SPEED_1000)
 823		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_1GB_FULL;
 824	if (speed_ability & MDIO_PMA_SPEED_100)
 825		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_100_FULL;
 826
 827	switch (hw->mac.type) {
 828	case ixgbe_mac_X550:
 829		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_2_5GB_FULL;
 830		hw->phy.speeds_supported |= IXGBE_LINK_SPEED_5GB_FULL;
 831		break;
 832	case ixgbe_mac_X550EM_x:
 
 833		hw->phy.speeds_supported &= ~IXGBE_LINK_SPEED_100_FULL;
 834		break;
 835	default:
 836		break;
 837	}
 838
 839	return 0;
 840}
 841
 842/**
 843 * ixgbe_get_copper_link_capabilities_generic - Determines link capabilities
 844 * @hw: pointer to hardware structure
 845 * @speed: pointer to link speed
 846 * @autoneg: boolean auto-negotiation value
 847 */
 848s32 ixgbe_get_copper_link_capabilities_generic(struct ixgbe_hw *hw,
 849					       ixgbe_link_speed *speed,
 850					       bool *autoneg)
 851{
 852	s32 status = 0;
 853
 854	*autoneg = true;
 855	if (!hw->phy.speeds_supported)
 856		status = ixgbe_get_copper_speeds_supported(hw);
 857
 858	*speed = hw->phy.speeds_supported;
 859	return status;
 860}
 861
 862/**
 863 *  ixgbe_check_phy_link_tnx - Determine link and speed status
 864 *  @hw: pointer to hardware structure
 
 
 865 *
 866 *  Reads the VS1 register to determine if link is up and the current speed for
 867 *  the PHY.
 868 **/
 869s32 ixgbe_check_phy_link_tnx(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
 870			     bool *link_up)
 871{
 872	s32 status;
 873	u32 time_out;
 874	u32 max_time_out = 10;
 
 875	u16 phy_link = 0;
 876	u16 phy_speed = 0;
 877	u16 phy_data = 0;
 
 
 878
 879	/* Initialize speed and link to default case */
 880	*link_up = false;
 881	*speed = IXGBE_LINK_SPEED_10GB_FULL;
 882
 883	/*
 884	 * Check current speed and link status of the PHY register.
 885	 * This is a vendor specific register and may have to
 886	 * be changed for other copper PHYs.
 887	 */
 888	for (time_out = 0; time_out < max_time_out; time_out++) {
 889		udelay(10);
 890		status = hw->phy.ops.read_reg(hw,
 891					      MDIO_STAT1,
 892					      MDIO_MMD_VEND1,
 893					      &phy_data);
 894		phy_link = phy_data &
 895			    IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS;
 896		phy_speed = phy_data &
 897			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS;
 898		if (phy_link == IXGBE_MDIO_VENDOR_SPECIFIC_1_LINK_STATUS) {
 899			*link_up = true;
 900			if (phy_speed ==
 901			    IXGBE_MDIO_VENDOR_SPECIFIC_1_SPEED_STATUS)
 902				*speed = IXGBE_LINK_SPEED_1GB_FULL;
 903			break;
 904		}
 905	}
 906
 907	return status;
 908}
 909
 910/**
 911 *	ixgbe_setup_phy_link_tnx - Set and restart autoneg
 912 *	@hw: pointer to hardware structure
 913 *
 914 *	Restart autonegotiation and PHY and waits for completion.
 915 *      This function always returns success, this is nessary since
 916 *	it is called via a function pointer that could call other
 917 *	functions that could return an error.
 918 **/
 919s32 ixgbe_setup_phy_link_tnx(struct ixgbe_hw *hw)
 920{
 921	u16 autoneg_reg = IXGBE_MII_AUTONEG_REG;
 922	bool autoneg = false;
 923	ixgbe_link_speed speed;
 924
 925	ixgbe_get_copper_link_capabilities_generic(hw, &speed, &autoneg);
 926
 927	if (speed & IXGBE_LINK_SPEED_10GB_FULL) {
 928		/* Set or unset auto-negotiation 10G advertisement */
 929		hw->phy.ops.read_reg(hw, MDIO_AN_10GBT_CTRL,
 930				     MDIO_MMD_AN,
 931				     &autoneg_reg);
 932
 933		autoneg_reg &= ~MDIO_AN_10GBT_CTRL_ADV10G;
 934		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_10GB_FULL)
 935			autoneg_reg |= MDIO_AN_10GBT_CTRL_ADV10G;
 936
 937		hw->phy.ops.write_reg(hw, MDIO_AN_10GBT_CTRL,
 938				      MDIO_MMD_AN,
 939				      autoneg_reg);
 940	}
 941
 942	if (speed & IXGBE_LINK_SPEED_1GB_FULL) {
 943		/* Set or unset auto-negotiation 1G advertisement */
 944		hw->phy.ops.read_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
 945				     MDIO_MMD_AN,
 946				     &autoneg_reg);
 947
 948		autoneg_reg &= ~IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
 949		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_1GB_FULL)
 950			autoneg_reg |= IXGBE_MII_1GBASE_T_ADVERTISE_XNP_TX;
 951
 952		hw->phy.ops.write_reg(hw, IXGBE_MII_AUTONEG_XNP_TX_REG,
 953				      MDIO_MMD_AN,
 954				      autoneg_reg);
 955	}
 956
 957	if (speed & IXGBE_LINK_SPEED_100_FULL) {
 958		/* Set or unset auto-negotiation 100M advertisement */
 959		hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
 960				     MDIO_MMD_AN,
 961				     &autoneg_reg);
 962
 963		autoneg_reg &= ~(ADVERTISE_100FULL |
 964				 ADVERTISE_100HALF);
 965		if (hw->phy.autoneg_advertised & IXGBE_LINK_SPEED_100_FULL)
 966			autoneg_reg |= ADVERTISE_100FULL;
 967
 968		hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
 969				      MDIO_MMD_AN,
 970				      autoneg_reg);
 971	}
 972
 973	/* Blocked by MNG FW so don't reset PHY */
 974	if (ixgbe_check_reset_blocked(hw))
 975		return 0;
 976
 977	/* Restart PHY autonegotiation and wait for completion */
 978	hw->phy.ops.read_reg(hw, MDIO_CTRL1,
 979			     MDIO_MMD_AN, &autoneg_reg);
 980
 981	autoneg_reg |= MDIO_AN_CTRL1_RESTART;
 982
 983	hw->phy.ops.write_reg(hw, MDIO_CTRL1,
 984			      MDIO_MMD_AN, autoneg_reg);
 985	return 0;
 986}
 987
 988/**
 989 *  ixgbe_get_phy_firmware_version_tnx - Gets the PHY Firmware Version
 990 *  @hw: pointer to hardware structure
 991 *  @firmware_version: pointer to the PHY Firmware Version
 992 **/
 993s32 ixgbe_get_phy_firmware_version_tnx(struct ixgbe_hw *hw,
 994				       u16 *firmware_version)
 995{
 996	s32 status;
 997
 998	status = hw->phy.ops.read_reg(hw, TNX_FW_REV,
 999				      MDIO_MMD_VEND1,
1000				      firmware_version);
1001
1002	return status;
1003}
1004
1005/**
1006 *  ixgbe_get_phy_firmware_version_generic - Gets the PHY Firmware Version
1007 *  @hw: pointer to hardware structure
1008 *  @firmware_version: pointer to the PHY Firmware Version
1009 **/
1010s32 ixgbe_get_phy_firmware_version_generic(struct ixgbe_hw *hw,
1011					   u16 *firmware_version)
1012{
1013	s32 status;
1014
1015	status = hw->phy.ops.read_reg(hw, AQ_FW_REV,
1016				      MDIO_MMD_VEND1,
1017				      firmware_version);
1018
1019	return status;
1020}
1021
1022/**
1023 *  ixgbe_reset_phy_nl - Performs a PHY reset
1024 *  @hw: pointer to hardware structure
1025 **/
1026s32 ixgbe_reset_phy_nl(struct ixgbe_hw *hw)
1027{
1028	u16 phy_offset, control, eword, edata, block_crc;
 
1029	bool end_data = false;
1030	u16 list_offset, data_offset;
1031	u16 phy_data = 0;
1032	s32 ret_val;
1033	u32 i;
1034
1035	/* Blocked by MNG FW so bail */
1036	if (ixgbe_check_reset_blocked(hw))
1037		return 0;
1038
1039	hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS, &phy_data);
1040
1041	/* reset the PHY and poll for completion */
1042	hw->phy.ops.write_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1043			      (phy_data | MDIO_CTRL1_RESET));
1044
1045	for (i = 0; i < 100; i++) {
1046		hw->phy.ops.read_reg(hw, MDIO_CTRL1, MDIO_MMD_PHYXS,
1047				     &phy_data);
1048		if ((phy_data & MDIO_CTRL1_RESET) == 0)
1049			break;
1050		usleep_range(10000, 20000);
1051	}
1052
1053	if ((phy_data & MDIO_CTRL1_RESET) != 0) {
1054		hw_dbg(hw, "PHY reset did not complete.\n");
1055		return IXGBE_ERR_PHY;
1056	}
1057
1058	/* Get init offsets */
1059	ret_val = ixgbe_get_sfp_init_sequence_offsets(hw, &list_offset,
1060						      &data_offset);
1061	if (ret_val)
1062		return ret_val;
1063
1064	ret_val = hw->eeprom.ops.read(hw, data_offset, &block_crc);
1065	data_offset++;
1066	while (!end_data) {
1067		/*
1068		 * Read control word from PHY init contents offset
1069		 */
1070		ret_val = hw->eeprom.ops.read(hw, data_offset, &eword);
1071		if (ret_val)
1072			goto err_eeprom;
1073		control = (eword & IXGBE_CONTROL_MASK_NL) >>
1074			   IXGBE_CONTROL_SHIFT_NL;
1075		edata = eword & IXGBE_DATA_MASK_NL;
1076		switch (control) {
1077		case IXGBE_DELAY_NL:
1078			data_offset++;
1079			hw_dbg(hw, "DELAY: %d MS\n", edata);
1080			usleep_range(edata * 1000, edata * 2000);
1081			break;
1082		case IXGBE_DATA_NL:
1083			hw_dbg(hw, "DATA:\n");
1084			data_offset++;
1085			ret_val = hw->eeprom.ops.read(hw, data_offset++,
1086						      &phy_offset);
1087			if (ret_val)
1088				goto err_eeprom;
1089			for (i = 0; i < edata; i++) {
1090				ret_val = hw->eeprom.ops.read(hw, data_offset,
1091							      &eword);
1092				if (ret_val)
1093					goto err_eeprom;
1094				hw->phy.ops.write_reg(hw, phy_offset,
1095						      MDIO_MMD_PMAPMD, eword);
1096				hw_dbg(hw, "Wrote %4.4x to %4.4x\n", eword,
1097				       phy_offset);
1098				data_offset++;
1099				phy_offset++;
1100			}
1101			break;
1102		case IXGBE_CONTROL_NL:
1103			data_offset++;
1104			hw_dbg(hw, "CONTROL:\n");
1105			if (edata == IXGBE_CONTROL_EOL_NL) {
1106				hw_dbg(hw, "EOL\n");
1107				end_data = true;
1108			} else if (edata == IXGBE_CONTROL_SOL_NL) {
1109				hw_dbg(hw, "SOL\n");
1110			} else {
1111				hw_dbg(hw, "Bad control value\n");
1112				return IXGBE_ERR_PHY;
1113			}
1114			break;
1115		default:
1116			hw_dbg(hw, "Bad control type\n");
1117			return IXGBE_ERR_PHY;
1118		}
1119	}
1120
1121	return ret_val;
1122
1123err_eeprom:
1124	hw_err(hw, "eeprom read at offset %d failed\n", data_offset);
1125	return IXGBE_ERR_PHY;
1126}
1127
1128/**
1129 *  ixgbe_identify_module_generic - Identifies module type
1130 *  @hw: pointer to hardware structure
1131 *
1132 *  Determines HW type and calls appropriate function.
1133 **/
1134s32 ixgbe_identify_module_generic(struct ixgbe_hw *hw)
1135{
1136	switch (hw->mac.ops.get_media_type(hw)) {
1137	case ixgbe_media_type_fiber:
1138		return ixgbe_identify_sfp_module_generic(hw);
1139	case ixgbe_media_type_fiber_qsfp:
1140		return ixgbe_identify_qsfp_module_generic(hw);
1141	default:
1142		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1143		return IXGBE_ERR_SFP_NOT_PRESENT;
1144	}
1145
1146	return IXGBE_ERR_SFP_NOT_PRESENT;
1147}
1148
1149/**
1150 *  ixgbe_identify_sfp_module_generic - Identifies SFP modules
1151 *  @hw: pointer to hardware structure
1152 *
1153 *  Searches for and identifies the SFP module and assigns appropriate PHY type.
1154 **/
1155s32 ixgbe_identify_sfp_module_generic(struct ixgbe_hw *hw)
1156{
 
1157	struct ixgbe_adapter *adapter = hw->back;
1158	s32 status;
 
 
 
 
1159	u32 vendor_oui = 0;
1160	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1161	u8 identifier = 0;
1162	u8 comp_codes_1g = 0;
1163	u8 comp_codes_10g = 0;
1164	u8 oui_bytes[3] = {0, 0, 0};
1165	u8 cable_tech = 0;
1166	u8 cable_spec = 0;
1167	u16 enforce_sfp = 0;
1168
1169	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber) {
1170		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1171		return IXGBE_ERR_SFP_NOT_PRESENT;
1172	}
1173
1174	/* LAN ID is needed for sfp_type determination */
1175	hw->mac.ops.set_lan_id(hw);
1176
1177	status = hw->phy.ops.read_i2c_eeprom(hw,
1178					     IXGBE_SFF_IDENTIFIER,
1179					     &identifier);
1180
1181	if (status)
1182		goto err_read_i2c_eeprom;
1183
1184	if (identifier != IXGBE_SFF_IDENTIFIER_SFP) {
1185		hw->phy.type = ixgbe_phy_sfp_unsupported;
1186		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1187	}
1188	status = hw->phy.ops.read_i2c_eeprom(hw,
1189					     IXGBE_SFF_1GBE_COMP_CODES,
1190					     &comp_codes_1g);
1191
1192	if (status)
1193		goto err_read_i2c_eeprom;
1194
1195	status = hw->phy.ops.read_i2c_eeprom(hw,
1196					     IXGBE_SFF_10GBE_COMP_CODES,
1197					     &comp_codes_10g);
1198
1199	if (status)
1200		goto err_read_i2c_eeprom;
1201	status = hw->phy.ops.read_i2c_eeprom(hw,
1202					     IXGBE_SFF_CABLE_TECHNOLOGY,
1203					     &cable_tech);
 
 
1204
 
 
 
1205	if (status)
1206		goto err_read_i2c_eeprom;
1207
1208	 /* ID Module
1209	  * =========
1210	  * 0   SFP_DA_CU
1211	  * 1   SFP_SR
1212	  * 2   SFP_LR
1213	  * 3   SFP_DA_CORE0 - 82599-specific
1214	  * 4   SFP_DA_CORE1 - 82599-specific
1215	  * 5   SFP_SR/LR_CORE0 - 82599-specific
1216	  * 6   SFP_SR/LR_CORE1 - 82599-specific
1217	  * 7   SFP_act_lmt_DA_CORE0 - 82599-specific
1218	  * 8   SFP_act_lmt_DA_CORE1 - 82599-specific
1219	  * 9   SFP_1g_cu_CORE0 - 82599-specific
1220	  * 10  SFP_1g_cu_CORE1 - 82599-specific
1221	  * 11  SFP_1g_sx_CORE0 - 82599-specific
1222	  * 12  SFP_1g_sx_CORE1 - 82599-specific
1223	  */
1224	if (hw->mac.type == ixgbe_mac_82598EB) {
1225		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1226			hw->phy.sfp_type = ixgbe_sfp_type_da_cu;
1227		else if (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)
1228			hw->phy.sfp_type = ixgbe_sfp_type_sr;
1229		else if (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)
1230			hw->phy.sfp_type = ixgbe_sfp_type_lr;
1231		else
1232			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1233	} else {
1234		if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE) {
1235			if (hw->bus.lan_id == 0)
1236				hw->phy.sfp_type =
1237					     ixgbe_sfp_type_da_cu_core0;
1238			else
1239				hw->phy.sfp_type =
1240					     ixgbe_sfp_type_da_cu_core1;
1241		} else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE) {
1242			hw->phy.ops.read_i2c_eeprom(
1243					hw, IXGBE_SFF_CABLE_SPEC_COMP,
1244					&cable_spec);
1245			if (cable_spec &
1246			    IXGBE_SFF_DA_SPEC_ACTIVE_LIMITING) {
1247				if (hw->bus.lan_id == 0)
1248					hw->phy.sfp_type =
1249					ixgbe_sfp_type_da_act_lmt_core0;
1250				else
1251					hw->phy.sfp_type =
1252					ixgbe_sfp_type_da_act_lmt_core1;
1253			} else {
1254				hw->phy.sfp_type =
1255						ixgbe_sfp_type_unknown;
1256			}
1257		} else if (comp_codes_10g &
1258			   (IXGBE_SFF_10GBASESR_CAPABLE |
1259			    IXGBE_SFF_10GBASELR_CAPABLE)) {
1260			if (hw->bus.lan_id == 0)
1261				hw->phy.sfp_type =
1262					      ixgbe_sfp_type_srlr_core0;
1263			else
1264				hw->phy.sfp_type =
1265					      ixgbe_sfp_type_srlr_core1;
1266		} else if (comp_codes_1g & IXGBE_SFF_1GBASET_CAPABLE) {
1267			if (hw->bus.lan_id == 0)
1268				hw->phy.sfp_type =
1269					ixgbe_sfp_type_1g_cu_core0;
1270			else
1271				hw->phy.sfp_type =
1272					ixgbe_sfp_type_1g_cu_core1;
1273		} else if (comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) {
1274			if (hw->bus.lan_id == 0)
1275				hw->phy.sfp_type =
1276					ixgbe_sfp_type_1g_sx_core0;
1277			else
1278				hw->phy.sfp_type =
1279					ixgbe_sfp_type_1g_sx_core1;
1280		} else if (comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) {
1281			if (hw->bus.lan_id == 0)
1282				hw->phy.sfp_type =
1283					ixgbe_sfp_type_1g_lx_core0;
1284			else
1285				hw->phy.sfp_type =
1286					ixgbe_sfp_type_1g_lx_core1;
 
 
 
 
 
 
 
 
 
 
 
 
1287		} else {
1288			hw->phy.sfp_type = ixgbe_sfp_type_unknown;
1289		}
1290	}
1291
1292	if (hw->phy.sfp_type != stored_sfp_type)
1293		hw->phy.sfp_setup_needed = true;
1294
1295	/* Determine if the SFP+ PHY is dual speed or not. */
1296	hw->phy.multispeed_fiber = false;
1297	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1298	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1299	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1300	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1301		hw->phy.multispeed_fiber = true;
1302
1303	/* Determine PHY vendor */
1304	if (hw->phy.type != ixgbe_phy_nl) {
1305		hw->phy.id = identifier;
1306		status = hw->phy.ops.read_i2c_eeprom(hw,
1307					    IXGBE_SFF_VENDOR_OUI_BYTE0,
1308					    &oui_bytes[0]);
1309
1310		if (status != 0)
1311			goto err_read_i2c_eeprom;
1312
1313		status = hw->phy.ops.read_i2c_eeprom(hw,
1314					    IXGBE_SFF_VENDOR_OUI_BYTE1,
1315					    &oui_bytes[1]);
1316
1317		if (status != 0)
1318			goto err_read_i2c_eeprom;
1319
1320		status = hw->phy.ops.read_i2c_eeprom(hw,
1321					    IXGBE_SFF_VENDOR_OUI_BYTE2,
1322					    &oui_bytes[2]);
1323
1324		if (status != 0)
1325			goto err_read_i2c_eeprom;
1326
1327		vendor_oui =
1328		  ((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1329		   (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1330		   (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1331
1332		switch (vendor_oui) {
1333		case IXGBE_SFF_VENDOR_OUI_TYCO:
1334			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1335				hw->phy.type =
1336					    ixgbe_phy_sfp_passive_tyco;
1337			break;
1338		case IXGBE_SFF_VENDOR_OUI_FTL:
1339			if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1340				hw->phy.type = ixgbe_phy_sfp_ftl_active;
1341			else
1342				hw->phy.type = ixgbe_phy_sfp_ftl;
1343			break;
1344		case IXGBE_SFF_VENDOR_OUI_AVAGO:
1345			hw->phy.type = ixgbe_phy_sfp_avago;
1346			break;
1347		case IXGBE_SFF_VENDOR_OUI_INTEL:
1348			hw->phy.type = ixgbe_phy_sfp_intel;
1349			break;
1350		default:
1351			if (cable_tech & IXGBE_SFF_DA_PASSIVE_CABLE)
1352				hw->phy.type =
1353					 ixgbe_phy_sfp_passive_unknown;
1354			else if (cable_tech & IXGBE_SFF_DA_ACTIVE_CABLE)
1355				hw->phy.type =
1356					ixgbe_phy_sfp_active_unknown;
1357			else
1358				hw->phy.type = ixgbe_phy_sfp_unknown;
1359			break;
1360		}
1361	}
1362
1363	/* Allow any DA cable vendor */
1364	if (cable_tech & (IXGBE_SFF_DA_PASSIVE_CABLE |
1365	    IXGBE_SFF_DA_ACTIVE_CABLE))
1366		return 0;
1367
1368	/* Verify supported 1G SFP modules */
1369	if (comp_codes_10g == 0 &&
1370	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1371	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1372	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1373	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1374	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1375	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
 
 
1376		hw->phy.type = ixgbe_phy_sfp_unsupported;
1377		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1378	}
1379
1380	/* Anything else 82598-based is supported */
1381	if (hw->mac.type == ixgbe_mac_82598EB)
1382		return 0;
1383
1384	hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1385	if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP) &&
1386	    !(hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1387	      hw->phy.sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1388	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1389	      hw->phy.sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1390	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core0 ||
1391	      hw->phy.sfp_type == ixgbe_sfp_type_1g_sx_core1)) {
 
 
1392		/* Make sure we're a supported PHY type */
1393		if (hw->phy.type == ixgbe_phy_sfp_intel)
1394			return 0;
1395		if (hw->allow_unsupported_sfp) {
1396			e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics.  Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter.  Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1397			return 0;
1398		}
1399		hw_dbg(hw, "SFP+ module not supported\n");
1400		hw->phy.type = ixgbe_phy_sfp_unsupported;
1401		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1402	}
1403	return 0;
1404
1405err_read_i2c_eeprom:
1406	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1407	if (hw->phy.type != ixgbe_phy_nl) {
1408		hw->phy.id = 0;
1409		hw->phy.type = ixgbe_phy_unknown;
1410	}
1411	return IXGBE_ERR_SFP_NOT_PRESENT;
1412}
1413
1414/**
1415 * ixgbe_identify_qsfp_module_generic - Identifies QSFP modules
1416 * @hw: pointer to hardware structure
1417 *
1418 * Searches for and identifies the QSFP module and assigns appropriate PHY type
1419 **/
1420static s32 ixgbe_identify_qsfp_module_generic(struct ixgbe_hw *hw)
1421{
1422	struct ixgbe_adapter *adapter = hw->back;
1423	s32 status;
1424	u32 vendor_oui = 0;
1425	enum ixgbe_sfp_type stored_sfp_type = hw->phy.sfp_type;
1426	u8 identifier = 0;
1427	u8 comp_codes_1g = 0;
1428	u8 comp_codes_10g = 0;
1429	u8 oui_bytes[3] = {0, 0, 0};
1430	u16 enforce_sfp = 0;
1431	u8 connector = 0;
1432	u8 cable_length = 0;
1433	u8 device_tech = 0;
1434	bool active_cable = false;
1435
1436	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_fiber_qsfp) {
1437		hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1438		return IXGBE_ERR_SFP_NOT_PRESENT;
1439	}
1440
1441	/* LAN ID is needed for sfp_type determination */
1442	hw->mac.ops.set_lan_id(hw);
1443
1444	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_IDENTIFIER,
1445					     &identifier);
1446
1447	if (status != 0)
1448		goto err_read_i2c_eeprom;
1449
1450	if (identifier != IXGBE_SFF_IDENTIFIER_QSFP_PLUS) {
1451		hw->phy.type = ixgbe_phy_sfp_unsupported;
1452		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1453	}
1454
1455	hw->phy.id = identifier;
1456
1457	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_10GBE_COMP,
1458					     &comp_codes_10g);
1459
1460	if (status != 0)
1461		goto err_read_i2c_eeprom;
1462
1463	status = hw->phy.ops.read_i2c_eeprom(hw, IXGBE_SFF_QSFP_1GBE_COMP,
1464					     &comp_codes_1g);
1465
1466	if (status != 0)
1467		goto err_read_i2c_eeprom;
1468
1469	if (comp_codes_10g & IXGBE_SFF_QSFP_DA_PASSIVE_CABLE) {
1470		hw->phy.type = ixgbe_phy_qsfp_passive_unknown;
1471		if (hw->bus.lan_id == 0)
1472			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core0;
1473		else
1474			hw->phy.sfp_type = ixgbe_sfp_type_da_cu_core1;
1475	} else if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1476				     IXGBE_SFF_10GBASELR_CAPABLE)) {
1477		if (hw->bus.lan_id == 0)
1478			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core0;
1479		else
1480			hw->phy.sfp_type = ixgbe_sfp_type_srlr_core1;
1481	} else {
1482		if (comp_codes_10g & IXGBE_SFF_QSFP_DA_ACTIVE_CABLE)
1483			active_cable = true;
1484
1485		if (!active_cable) {
1486			/* check for active DA cables that pre-date
1487			 * SFF-8436 v3.6
1488			 */
1489			hw->phy.ops.read_i2c_eeprom(hw,
1490					IXGBE_SFF_QSFP_CONNECTOR,
1491					&connector);
1492
1493			hw->phy.ops.read_i2c_eeprom(hw,
1494					IXGBE_SFF_QSFP_CABLE_LENGTH,
1495					&cable_length);
1496
1497			hw->phy.ops.read_i2c_eeprom(hw,
1498					IXGBE_SFF_QSFP_DEVICE_TECH,
1499					&device_tech);
1500
1501			if ((connector ==
1502				     IXGBE_SFF_QSFP_CONNECTOR_NOT_SEPARABLE) &&
1503			    (cable_length > 0) &&
1504			    ((device_tech >> 4) ==
1505				     IXGBE_SFF_QSFP_TRANSMITER_850NM_VCSEL))
1506				active_cable = true;
1507		}
1508
1509		if (active_cable) {
1510			hw->phy.type = ixgbe_phy_qsfp_active_unknown;
1511			if (hw->bus.lan_id == 0)
1512				hw->phy.sfp_type =
1513						ixgbe_sfp_type_da_act_lmt_core0;
1514			else
1515				hw->phy.sfp_type =
1516						ixgbe_sfp_type_da_act_lmt_core1;
1517		} else {
1518			/* unsupported module type */
1519			hw->phy.type = ixgbe_phy_sfp_unsupported;
1520			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1521		}
1522	}
1523
1524	if (hw->phy.sfp_type != stored_sfp_type)
1525		hw->phy.sfp_setup_needed = true;
1526
1527	/* Determine if the QSFP+ PHY is dual speed or not. */
1528	hw->phy.multispeed_fiber = false;
1529	if (((comp_codes_1g & IXGBE_SFF_1GBASESX_CAPABLE) &&
1530	     (comp_codes_10g & IXGBE_SFF_10GBASESR_CAPABLE)) ||
1531	    ((comp_codes_1g & IXGBE_SFF_1GBASELX_CAPABLE) &&
1532	     (comp_codes_10g & IXGBE_SFF_10GBASELR_CAPABLE)))
1533		hw->phy.multispeed_fiber = true;
1534
1535	/* Determine PHY vendor for optical modules */
1536	if (comp_codes_10g & (IXGBE_SFF_10GBASESR_CAPABLE |
1537			      IXGBE_SFF_10GBASELR_CAPABLE)) {
1538		status = hw->phy.ops.read_i2c_eeprom(hw,
1539					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE0,
1540					&oui_bytes[0]);
1541
1542		if (status != 0)
1543			goto err_read_i2c_eeprom;
1544
1545		status = hw->phy.ops.read_i2c_eeprom(hw,
1546					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE1,
1547					&oui_bytes[1]);
1548
1549		if (status != 0)
1550			goto err_read_i2c_eeprom;
1551
1552		status = hw->phy.ops.read_i2c_eeprom(hw,
1553					IXGBE_SFF_QSFP_VENDOR_OUI_BYTE2,
1554					&oui_bytes[2]);
1555
1556		if (status != 0)
1557			goto err_read_i2c_eeprom;
1558
1559		vendor_oui =
1560			((oui_bytes[0] << IXGBE_SFF_VENDOR_OUI_BYTE0_SHIFT) |
1561			 (oui_bytes[1] << IXGBE_SFF_VENDOR_OUI_BYTE1_SHIFT) |
1562			 (oui_bytes[2] << IXGBE_SFF_VENDOR_OUI_BYTE2_SHIFT));
1563
1564		if (vendor_oui == IXGBE_SFF_VENDOR_OUI_INTEL)
1565			hw->phy.type = ixgbe_phy_qsfp_intel;
1566		else
1567			hw->phy.type = ixgbe_phy_qsfp_unknown;
1568
1569		hw->mac.ops.get_device_caps(hw, &enforce_sfp);
1570		if (!(enforce_sfp & IXGBE_DEVICE_CAPS_ALLOW_ANY_SFP)) {
1571			/* Make sure we're a supported PHY type */
1572			if (hw->phy.type == ixgbe_phy_qsfp_intel)
1573				return 0;
1574			if (hw->allow_unsupported_sfp) {
1575				e_warn(drv, "WARNING: Intel (R) Network Connections are quality tested using Intel (R) Ethernet Optics. Using untested modules is not supported and may cause unstable operation or damage to the module or the adapter. Intel Corporation is not responsible for any harm caused by using untested modules.\n");
1576				return 0;
1577			}
1578			hw_dbg(hw, "QSFP module not supported\n");
1579			hw->phy.type = ixgbe_phy_sfp_unsupported;
1580			return IXGBE_ERR_SFP_NOT_SUPPORTED;
1581		}
1582		return 0;
1583	}
1584	return 0;
1585
1586err_read_i2c_eeprom:
1587	hw->phy.sfp_type = ixgbe_sfp_type_not_present;
1588	hw->phy.id = 0;
1589	hw->phy.type = ixgbe_phy_unknown;
1590
1591	return IXGBE_ERR_SFP_NOT_PRESENT;
1592}
1593
1594/**
1595 *  ixgbe_get_sfp_init_sequence_offsets - Provides offset of PHY init sequence
1596 *  @hw: pointer to hardware structure
1597 *  @list_offset: offset to the SFP ID list
1598 *  @data_offset: offset to the SFP data block
1599 *
1600 *  Checks the MAC's EEPROM to see if it supports a given SFP+ module type, if
1601 *  so it returns the offsets to the phy init sequence block.
1602 **/
1603s32 ixgbe_get_sfp_init_sequence_offsets(struct ixgbe_hw *hw,
1604					u16 *list_offset,
1605					u16 *data_offset)
1606{
1607	u16 sfp_id;
1608	u16 sfp_type = hw->phy.sfp_type;
1609
1610	if (hw->phy.sfp_type == ixgbe_sfp_type_unknown)
1611		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1612
1613	if (hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1614		return IXGBE_ERR_SFP_NOT_PRESENT;
1615
1616	if ((hw->device_id == IXGBE_DEV_ID_82598_SR_DUAL_PORT_EM) &&
1617	    (hw->phy.sfp_type == ixgbe_sfp_type_da_cu))
1618		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1619
1620	/*
1621	 * Limiting active cables and 1G Phys must be initialized as
1622	 * SR modules
1623	 */
1624	if (sfp_type == ixgbe_sfp_type_da_act_lmt_core0 ||
1625	    sfp_type == ixgbe_sfp_type_1g_lx_core0 ||
1626	    sfp_type == ixgbe_sfp_type_1g_cu_core0 ||
1627	    sfp_type == ixgbe_sfp_type_1g_sx_core0)
 
1628		sfp_type = ixgbe_sfp_type_srlr_core0;
1629	else if (sfp_type == ixgbe_sfp_type_da_act_lmt_core1 ||
1630		 sfp_type == ixgbe_sfp_type_1g_lx_core1 ||
1631		 sfp_type == ixgbe_sfp_type_1g_cu_core1 ||
1632		 sfp_type == ixgbe_sfp_type_1g_sx_core1)
 
1633		sfp_type = ixgbe_sfp_type_srlr_core1;
1634
1635	/* Read offset to PHY init contents */
1636	if (hw->eeprom.ops.read(hw, IXGBE_PHY_INIT_OFFSET_NL, list_offset)) {
1637		hw_err(hw, "eeprom read at %d failed\n",
1638		       IXGBE_PHY_INIT_OFFSET_NL);
1639		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1640	}
1641
1642	if ((!*list_offset) || (*list_offset == 0xFFFF))
1643		return IXGBE_ERR_SFP_NO_INIT_SEQ_PRESENT;
1644
1645	/* Shift offset to first ID word */
1646	(*list_offset)++;
1647
1648	/*
1649	 * Find the matching SFP ID in the EEPROM
1650	 * and program the init sequence
1651	 */
1652	if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1653		goto err_phy;
1654
1655	while (sfp_id != IXGBE_PHY_INIT_END_NL) {
1656		if (sfp_id == sfp_type) {
1657			(*list_offset)++;
1658			if (hw->eeprom.ops.read(hw, *list_offset, data_offset))
1659				goto err_phy;
1660			if ((!*data_offset) || (*data_offset == 0xFFFF)) {
1661				hw_dbg(hw, "SFP+ module not supported\n");
1662				return IXGBE_ERR_SFP_NOT_SUPPORTED;
1663			} else {
1664				break;
1665			}
1666		} else {
1667			(*list_offset) += 2;
1668			if (hw->eeprom.ops.read(hw, *list_offset, &sfp_id))
1669				goto err_phy;
1670		}
1671	}
1672
1673	if (sfp_id == IXGBE_PHY_INIT_END_NL) {
1674		hw_dbg(hw, "No matching SFP+ module found\n");
1675		return IXGBE_ERR_SFP_NOT_SUPPORTED;
1676	}
1677
1678	return 0;
1679
1680err_phy:
1681	hw_err(hw, "eeprom read at offset %d failed\n", *list_offset);
1682	return IXGBE_ERR_PHY;
1683}
1684
1685/**
1686 *  ixgbe_read_i2c_eeprom_generic - Reads 8 bit EEPROM word over I2C interface
1687 *  @hw: pointer to hardware structure
1688 *  @byte_offset: EEPROM byte offset to read
1689 *  @eeprom_data: value read
1690 *
1691 *  Performs byte read operation to SFP module's EEPROM over I2C interface.
1692 **/
1693s32 ixgbe_read_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1694				  u8 *eeprom_data)
1695{
1696	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1697					 IXGBE_I2C_EEPROM_DEV_ADDR,
1698					 eeprom_data);
1699}
1700
1701/**
1702 *  ixgbe_read_i2c_sff8472_generic - Reads 8 bit word over I2C interface
1703 *  @hw: pointer to hardware structure
1704 *  @byte_offset: byte offset at address 0xA2
1705 *  @eeprom_data: value read
1706 *
1707 *  Performs byte read operation to SFP module's SFF-8472 data over I2C
1708 **/
1709s32 ixgbe_read_i2c_sff8472_generic(struct ixgbe_hw *hw, u8 byte_offset,
1710				   u8 *sff8472_data)
1711{
1712	return hw->phy.ops.read_i2c_byte(hw, byte_offset,
1713					 IXGBE_I2C_EEPROM_DEV_ADDR2,
1714					 sff8472_data);
1715}
1716
1717/**
1718 *  ixgbe_write_i2c_eeprom_generic - Writes 8 bit EEPROM word over I2C interface
1719 *  @hw: pointer to hardware structure
1720 *  @byte_offset: EEPROM byte offset to write
1721 *  @eeprom_data: value to write
1722 *
1723 *  Performs byte write operation to SFP module's EEPROM over I2C interface.
1724 **/
1725s32 ixgbe_write_i2c_eeprom_generic(struct ixgbe_hw *hw, u8 byte_offset,
1726				   u8 eeprom_data)
1727{
1728	return hw->phy.ops.write_i2c_byte(hw, byte_offset,
1729					  IXGBE_I2C_EEPROM_DEV_ADDR,
1730					  eeprom_data);
1731}
1732
1733/**
1734 * ixgbe_is_sfp_probe - Returns true if SFP is being detected
1735 * @hw: pointer to hardware structure
1736 * @offset: eeprom offset to be read
1737 * @addr: I2C address to be read
1738 */
1739static bool ixgbe_is_sfp_probe(struct ixgbe_hw *hw, u8 offset, u8 addr)
1740{
1741	if (addr == IXGBE_I2C_EEPROM_DEV_ADDR &&
1742	    offset == IXGBE_SFF_IDENTIFIER &&
1743	    hw->phy.sfp_type == ixgbe_sfp_type_not_present)
1744		return true;
1745	return false;
1746}
1747
1748/**
1749 *  ixgbe_read_i2c_byte_generic_int - Reads 8 bit word over I2C
1750 *  @hw: pointer to hardware structure
1751 *  @byte_offset: byte offset to read
 
1752 *  @data: value read
1753 *  @lock: true if to take and release semaphore
1754 *
1755 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
1756 *  a specified device address.
1757 */
1758static s32 ixgbe_read_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
1759					   u8 dev_addr, u8 *data, bool lock)
1760{
1761	s32 status;
1762	u32 max_retry = 10;
 
1763	u32 retry = 0;
1764	u32 swfw_mask = hw->phy.phy_semaphore_mask;
1765	bool nack = true;
1766
 
 
1767	if (ixgbe_is_sfp_probe(hw, byte_offset, dev_addr))
1768		max_retry = IXGBE_SFP_DETECT_RETRIES;
1769
1770	*data = 0;
1771
1772	do {
1773		if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
1774			return IXGBE_ERR_SWFW_SYNC;
1775
1776		ixgbe_i2c_start(hw);
1777
1778		/* Device Address and write indication */
1779		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1780		if (status != 0)
1781			goto fail;
1782
1783		status = ixgbe_get_i2c_ack(hw);
1784		if (status != 0)
1785			goto fail;
1786
1787		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1788		if (status != 0)
1789			goto fail;
1790
1791		status = ixgbe_get_i2c_ack(hw);
1792		if (status != 0)
1793			goto fail;
1794
1795		ixgbe_i2c_start(hw);
1796
1797		/* Device Address and read indication */
1798		status = ixgbe_clock_out_i2c_byte(hw, (dev_addr | 0x1));
1799		if (status != 0)
1800			goto fail;
1801
1802		status = ixgbe_get_i2c_ack(hw);
1803		if (status != 0)
1804			goto fail;
1805
1806		status = ixgbe_clock_in_i2c_byte(hw, data);
1807		if (status != 0)
1808			goto fail;
1809
1810		status = ixgbe_clock_out_i2c_bit(hw, nack);
1811		if (status != 0)
1812			goto fail;
1813
1814		ixgbe_i2c_stop(hw);
1815		if (lock)
1816			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1817		return 0;
1818
1819fail:
1820		ixgbe_i2c_bus_clear(hw);
1821		if (lock) {
1822			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1823			msleep(100);
1824		}
1825		retry++;
1826		if (retry < max_retry)
1827			hw_dbg(hw, "I2C byte read error - Retrying.\n");
1828		else
1829			hw_dbg(hw, "I2C byte read error.\n");
1830
1831	} while (retry < max_retry);
1832
1833	return status;
1834}
1835
1836/**
1837 *  ixgbe_read_i2c_byte_generic - Reads 8 bit word over I2C
1838 *  @hw: pointer to hardware structure
1839 *  @byte_offset: byte offset to read
 
1840 *  @data: value read
1841 *
1842 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
1843 *  a specified device address.
1844 */
1845s32 ixgbe_read_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1846				u8 dev_addr, u8 *data)
1847{
1848	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1849					       data, true);
1850}
1851
1852/**
1853 *  ixgbe_read_i2c_byte_generic_unlocked - Reads 8 bit word over I2C
1854 *  @hw: pointer to hardware structure
1855 *  @byte_offset: byte offset to read
 
1856 *  @data: value read
1857 *
1858 *  Performs byte read operation to SFP module's EEPROM over I2C interface at
1859 *  a specified device address.
1860 */
1861s32 ixgbe_read_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
1862					 u8 dev_addr, u8 *data)
1863{
1864	return ixgbe_read_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1865					       data, false);
1866}
1867
1868/**
1869 *  ixgbe_write_i2c_byte_generic_int - Writes 8 bit word over I2C
1870 *  @hw: pointer to hardware structure
1871 *  @byte_offset: byte offset to write
 
1872 *  @data: value to write
1873 *  @lock: true if to take and release semaphore
1874 *
1875 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
1876 *  a specified device address.
1877 */
1878static s32 ixgbe_write_i2c_byte_generic_int(struct ixgbe_hw *hw, u8 byte_offset,
1879					    u8 dev_addr, u8 data, bool lock)
1880{
1881	s32 status;
1882	u32 max_retry = 1;
1883	u32 retry = 0;
1884	u32 swfw_mask = hw->phy.phy_semaphore_mask;
1885
1886	if (lock && hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
1887		return IXGBE_ERR_SWFW_SYNC;
1888
1889	do {
1890		ixgbe_i2c_start(hw);
1891
1892		status = ixgbe_clock_out_i2c_byte(hw, dev_addr);
1893		if (status != 0)
1894			goto fail;
1895
1896		status = ixgbe_get_i2c_ack(hw);
1897		if (status != 0)
1898			goto fail;
1899
1900		status = ixgbe_clock_out_i2c_byte(hw, byte_offset);
1901		if (status != 0)
1902			goto fail;
1903
1904		status = ixgbe_get_i2c_ack(hw);
1905		if (status != 0)
1906			goto fail;
1907
1908		status = ixgbe_clock_out_i2c_byte(hw, data);
1909		if (status != 0)
1910			goto fail;
1911
1912		status = ixgbe_get_i2c_ack(hw);
1913		if (status != 0)
1914			goto fail;
1915
1916		ixgbe_i2c_stop(hw);
1917		if (lock)
1918			hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1919		return 0;
1920
1921fail:
1922		ixgbe_i2c_bus_clear(hw);
1923		retry++;
1924		if (retry < max_retry)
1925			hw_dbg(hw, "I2C byte write error - Retrying.\n");
1926		else
1927			hw_dbg(hw, "I2C byte write error.\n");
1928	} while (retry < max_retry);
1929
1930	if (lock)
1931		hw->mac.ops.release_swfw_sync(hw, swfw_mask);
1932
1933	return status;
1934}
1935
1936/**
1937 *  ixgbe_write_i2c_byte_generic - Writes 8 bit word over I2C
1938 *  @hw: pointer to hardware structure
1939 *  @byte_offset: byte offset to write
 
1940 *  @data: value to write
1941 *
1942 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
1943 *  a specified device address.
1944 */
1945s32 ixgbe_write_i2c_byte_generic(struct ixgbe_hw *hw, u8 byte_offset,
1946				 u8 dev_addr, u8 data)
1947{
1948	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1949						data, true);
1950}
1951
1952/**
1953 *  ixgbe_write_i2c_byte_generic_unlocked - Writes 8 bit word over I2C
1954 *  @hw: pointer to hardware structure
1955 *  @byte_offset: byte offset to write
 
1956 *  @data: value to write
1957 *
1958 *  Performs byte write operation to SFP module's EEPROM over I2C interface at
1959 *  a specified device address.
1960 */
1961s32 ixgbe_write_i2c_byte_generic_unlocked(struct ixgbe_hw *hw, u8 byte_offset,
1962					  u8 dev_addr, u8 data)
1963{
1964	return ixgbe_write_i2c_byte_generic_int(hw, byte_offset, dev_addr,
1965						data, false);
1966}
1967
1968/**
1969 *  ixgbe_i2c_start - Sets I2C start condition
1970 *  @hw: pointer to hardware structure
1971 *
1972 *  Sets I2C start condition (High -> Low on SDA while SCL is High)
1973 *  Set bit-bang mode on X550 hardware.
1974 **/
1975static void ixgbe_i2c_start(struct ixgbe_hw *hw)
1976{
1977	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
1978
1979	i2cctl |= IXGBE_I2C_BB_EN(hw);
1980
1981	/* Start condition must begin with data and clock high */
1982	ixgbe_set_i2c_data(hw, &i2cctl, 1);
1983	ixgbe_raise_i2c_clk(hw, &i2cctl);
1984
1985	/* Setup time for start condition (4.7us) */
1986	udelay(IXGBE_I2C_T_SU_STA);
1987
1988	ixgbe_set_i2c_data(hw, &i2cctl, 0);
1989
1990	/* Hold time for start condition (4us) */
1991	udelay(IXGBE_I2C_T_HD_STA);
1992
1993	ixgbe_lower_i2c_clk(hw, &i2cctl);
1994
1995	/* Minimum low period of clock is 4.7 us */
1996	udelay(IXGBE_I2C_T_LOW);
1997
1998}
1999
2000/**
2001 *  ixgbe_i2c_stop - Sets I2C stop condition
2002 *  @hw: pointer to hardware structure
2003 *
2004 *  Sets I2C stop condition (Low -> High on SDA while SCL is High)
2005 *  Disables bit-bang mode and negates data output enable on X550
2006 *  hardware.
2007 **/
2008static void ixgbe_i2c_stop(struct ixgbe_hw *hw)
2009{
2010	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2011	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2012	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2013	u32 bb_en_bit = IXGBE_I2C_BB_EN(hw);
2014
2015	/* Stop condition must begin with data low and clock high */
2016	ixgbe_set_i2c_data(hw, &i2cctl, 0);
2017	ixgbe_raise_i2c_clk(hw, &i2cctl);
2018
2019	/* Setup time for stop condition (4us) */
2020	udelay(IXGBE_I2C_T_SU_STO);
2021
2022	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2023
2024	/* bus free time between stop and start (4.7us)*/
2025	udelay(IXGBE_I2C_T_BUF);
2026
2027	if (bb_en_bit || data_oe_bit || clk_oe_bit) {
2028		i2cctl &= ~bb_en_bit;
2029		i2cctl |= data_oe_bit | clk_oe_bit;
2030		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2031		IXGBE_WRITE_FLUSH(hw);
2032	}
2033}
2034
2035/**
2036 *  ixgbe_clock_in_i2c_byte - Clocks in one byte via I2C
2037 *  @hw: pointer to hardware structure
2038 *  @data: data byte to clock in
2039 *
2040 *  Clocks in one byte data via I2C data/clock
2041 **/
2042static s32 ixgbe_clock_in_i2c_byte(struct ixgbe_hw *hw, u8 *data)
2043{
2044	s32 i;
2045	bool bit = false;
 
2046
2047	*data = 0;
2048	for (i = 7; i >= 0; i--) {
2049		ixgbe_clock_in_i2c_bit(hw, &bit);
2050		*data |= bit << i;
2051	}
2052
2053	return 0;
2054}
2055
2056/**
2057 *  ixgbe_clock_out_i2c_byte - Clocks out one byte via I2C
2058 *  @hw: pointer to hardware structure
2059 *  @data: data byte clocked out
2060 *
2061 *  Clocks out one byte data via I2C data/clock
2062 **/
2063static s32 ixgbe_clock_out_i2c_byte(struct ixgbe_hw *hw, u8 data)
2064{
2065	s32 status;
2066	s32 i;
2067	u32 i2cctl;
2068	bool bit = false;
2069
2070	for (i = 7; i >= 0; i--) {
2071		bit = (data >> i) & 0x1;
2072		status = ixgbe_clock_out_i2c_bit(hw, bit);
2073
2074		if (status != 0)
2075			break;
2076	}
2077
2078	/* Release SDA line (set high) */
2079	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2080	i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2081	i2cctl |= IXGBE_I2C_DATA_OE_N_EN(hw);
2082	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2083	IXGBE_WRITE_FLUSH(hw);
2084
2085	return status;
2086}
2087
2088/**
2089 *  ixgbe_get_i2c_ack - Polls for I2C ACK
2090 *  @hw: pointer to hardware structure
2091 *
2092 *  Clocks in/out one bit via I2C data/clock
2093 **/
2094static s32 ixgbe_get_i2c_ack(struct ixgbe_hw *hw)
2095{
 
2096	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2097	s32 status = 0;
2098	u32 i = 0;
2099	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2100	u32 timeout = 10;
2101	bool ack = true;
 
 
2102
2103	if (data_oe_bit) {
2104		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2105		i2cctl |= data_oe_bit;
2106		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2107		IXGBE_WRITE_FLUSH(hw);
2108	}
2109	ixgbe_raise_i2c_clk(hw, &i2cctl);
2110
2111	/* Minimum high period of clock is 4us */
2112	udelay(IXGBE_I2C_T_HIGH);
2113
2114	/* Poll for ACK.  Note that ACK in I2C spec is
2115	 * transition from 1 to 0 */
2116	for (i = 0; i < timeout; i++) {
2117		i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2118		ack = ixgbe_get_i2c_data(hw, &i2cctl);
2119
2120		udelay(1);
2121		if (ack == 0)
2122			break;
2123	}
2124
2125	if (ack == 1) {
2126		hw_dbg(hw, "I2C ack was not received.\n");
2127		status = IXGBE_ERR_I2C;
2128	}
2129
2130	ixgbe_lower_i2c_clk(hw, &i2cctl);
2131
2132	/* Minimum low period of clock is 4.7 us */
2133	udelay(IXGBE_I2C_T_LOW);
2134
2135	return status;
2136}
2137
2138/**
2139 *  ixgbe_clock_in_i2c_bit - Clocks in one bit via I2C data/clock
2140 *  @hw: pointer to hardware structure
2141 *  @data: read data value
2142 *
2143 *  Clocks in one bit via I2C data/clock
2144 **/
2145static s32 ixgbe_clock_in_i2c_bit(struct ixgbe_hw *hw, bool *data)
2146{
2147	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2148	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2149
2150	if (data_oe_bit) {
2151		i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2152		i2cctl |= data_oe_bit;
2153		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), i2cctl);
2154		IXGBE_WRITE_FLUSH(hw);
2155	}
2156	ixgbe_raise_i2c_clk(hw, &i2cctl);
2157
2158	/* Minimum high period of clock is 4us */
2159	udelay(IXGBE_I2C_T_HIGH);
2160
2161	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2162	*data = ixgbe_get_i2c_data(hw, &i2cctl);
2163
2164	ixgbe_lower_i2c_clk(hw, &i2cctl);
2165
2166	/* Minimum low period of clock is 4.7 us */
2167	udelay(IXGBE_I2C_T_LOW);
2168
2169	return 0;
2170}
2171
2172/**
2173 *  ixgbe_clock_out_i2c_bit - Clocks in/out one bit via I2C data/clock
2174 *  @hw: pointer to hardware structure
2175 *  @data: data value to write
2176 *
2177 *  Clocks out one bit via I2C data/clock
2178 **/
2179static s32 ixgbe_clock_out_i2c_bit(struct ixgbe_hw *hw, bool data)
2180{
2181	s32 status;
2182	u32 i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
 
2183
2184	status = ixgbe_set_i2c_data(hw, &i2cctl, data);
2185	if (status == 0) {
2186		ixgbe_raise_i2c_clk(hw, &i2cctl);
2187
2188		/* Minimum high period of clock is 4us */
2189		udelay(IXGBE_I2C_T_HIGH);
2190
2191		ixgbe_lower_i2c_clk(hw, &i2cctl);
2192
2193		/* Minimum low period of clock is 4.7 us.
2194		 * This also takes care of the data hold time.
2195		 */
2196		udelay(IXGBE_I2C_T_LOW);
2197	} else {
2198		hw_dbg(hw, "I2C data was not set to %X\n", data);
2199		return IXGBE_ERR_I2C;
2200	}
2201
2202	return 0;
2203}
2204/**
2205 *  ixgbe_raise_i2c_clk - Raises the I2C SCL clock
2206 *  @hw: pointer to hardware structure
2207 *  @i2cctl: Current value of I2CCTL register
2208 *
2209 *  Raises the I2C clock line '0'->'1'
2210 *  Negates the I2C clock output enable on X550 hardware.
2211 **/
2212static void ixgbe_raise_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2213{
2214	u32 clk_oe_bit = IXGBE_I2C_CLK_OE_N_EN(hw);
2215	u32 i = 0;
2216	u32 timeout = IXGBE_I2C_CLOCK_STRETCHING_TIMEOUT;
2217	u32 i2cctl_r = 0;
2218
2219	if (clk_oe_bit) {
2220		*i2cctl |= clk_oe_bit;
2221		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2222	}
2223
2224	for (i = 0; i < timeout; i++) {
2225		*i2cctl |= IXGBE_I2C_CLK_OUT(hw);
2226		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2227		IXGBE_WRITE_FLUSH(hw);
2228		/* SCL rise time (1000ns) */
2229		udelay(IXGBE_I2C_T_RISE);
2230
2231		i2cctl_r = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2232		if (i2cctl_r & IXGBE_I2C_CLK_IN(hw))
2233			break;
2234	}
2235}
2236
2237/**
2238 *  ixgbe_lower_i2c_clk - Lowers the I2C SCL clock
2239 *  @hw: pointer to hardware structure
2240 *  @i2cctl: Current value of I2CCTL register
2241 *
2242 *  Lowers the I2C clock line '1'->'0'
2243 *  Asserts the I2C clock output enable on X550 hardware.
2244 **/
2245static void ixgbe_lower_i2c_clk(struct ixgbe_hw *hw, u32 *i2cctl)
2246{
2247
2248	*i2cctl &= ~IXGBE_I2C_CLK_OUT(hw);
2249	*i2cctl &= ~IXGBE_I2C_CLK_OE_N_EN(hw);
2250
2251	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2252	IXGBE_WRITE_FLUSH(hw);
2253
2254	/* SCL fall time (300ns) */
2255	udelay(IXGBE_I2C_T_FALL);
2256}
2257
2258/**
2259 *  ixgbe_set_i2c_data - Sets the I2C data bit
2260 *  @hw: pointer to hardware structure
2261 *  @i2cctl: Current value of I2CCTL register
2262 *  @data: I2C data value (0 or 1) to set
2263 *
2264 *  Sets the I2C data bit
2265 *  Asserts the I2C data output enable on X550 hardware.
2266 **/
2267static s32 ixgbe_set_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl, bool data)
2268{
2269	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2270
2271	if (data)
2272		*i2cctl |= IXGBE_I2C_DATA_OUT(hw);
2273	else
2274		*i2cctl &= ~IXGBE_I2C_DATA_OUT(hw);
2275	*i2cctl &= ~data_oe_bit;
2276
2277	IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2278	IXGBE_WRITE_FLUSH(hw);
2279
2280	/* Data rise/fall (1000ns/300ns) and set-up time (250ns) */
2281	udelay(IXGBE_I2C_T_RISE + IXGBE_I2C_T_FALL + IXGBE_I2C_T_SU_DATA);
2282
2283	if (!data)	/* Can't verify data in this case */
2284		return 0;
2285	if (data_oe_bit) {
2286		*i2cctl |= data_oe_bit;
2287		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2288		IXGBE_WRITE_FLUSH(hw);
2289	}
2290
2291	/* Verify data was set correctly */
2292	*i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2293	if (data != ixgbe_get_i2c_data(hw, i2cctl)) {
2294		hw_dbg(hw, "Error - I2C data was not set to %X.\n", data);
2295		return IXGBE_ERR_I2C;
2296	}
2297
2298	return 0;
2299}
2300
2301/**
2302 *  ixgbe_get_i2c_data - Reads the I2C SDA data bit
2303 *  @hw: pointer to hardware structure
2304 *  @i2cctl: Current value of I2CCTL register
2305 *
2306 *  Returns the I2C data bit value
2307 *  Negates the I2C data output enable on X550 hardware.
2308 **/
2309static bool ixgbe_get_i2c_data(struct ixgbe_hw *hw, u32 *i2cctl)
2310{
2311	u32 data_oe_bit = IXGBE_I2C_DATA_OE_N_EN(hw);
2312
2313	if (data_oe_bit) {
2314		*i2cctl |= data_oe_bit;
2315		IXGBE_WRITE_REG(hw, IXGBE_I2CCTL(hw), *i2cctl);
2316		IXGBE_WRITE_FLUSH(hw);
2317		udelay(IXGBE_I2C_T_FALL);
2318	}
2319
2320	if (*i2cctl & IXGBE_I2C_DATA_IN(hw))
2321		return true;
2322	return false;
2323}
2324
2325/**
2326 *  ixgbe_i2c_bus_clear - Clears the I2C bus
2327 *  @hw: pointer to hardware structure
2328 *
2329 *  Clears the I2C bus by sending nine clock pulses.
2330 *  Used when data line is stuck low.
2331 **/
2332static void ixgbe_i2c_bus_clear(struct ixgbe_hw *hw)
2333{
2334	u32 i2cctl;
2335	u32 i;
2336
2337	ixgbe_i2c_start(hw);
2338	i2cctl = IXGBE_READ_REG(hw, IXGBE_I2CCTL(hw));
2339
2340	ixgbe_set_i2c_data(hw, &i2cctl, 1);
2341
2342	for (i = 0; i < 9; i++) {
2343		ixgbe_raise_i2c_clk(hw, &i2cctl);
2344
2345		/* Min high period of clock is 4us */
2346		udelay(IXGBE_I2C_T_HIGH);
2347
2348		ixgbe_lower_i2c_clk(hw, &i2cctl);
2349
2350		/* Min low period of clock is 4.7us*/
2351		udelay(IXGBE_I2C_T_LOW);
2352	}
2353
2354	ixgbe_i2c_start(hw);
2355
2356	/* Put the i2c bus back to default state */
2357	ixgbe_i2c_stop(hw);
2358}
2359
2360/**
2361 *  ixgbe_tn_check_overtemp - Checks if an overtemp occurred.
2362 *  @hw: pointer to hardware structure
2363 *
2364 *  Checks if the LASI temp alarm status was triggered due to overtemp
 
 
2365 **/
2366s32 ixgbe_tn_check_overtemp(struct ixgbe_hw *hw)
2367{
2368	u16 phy_data = 0;
 
2369
2370	if (hw->device_id != IXGBE_DEV_ID_82599_T3_LOM)
2371		return 0;
2372
2373	/* Check that the LASI temp alarm status was triggered */
2374	hw->phy.ops.read_reg(hw, IXGBE_TN_LASI_STATUS_REG,
2375			     MDIO_MMD_PMAPMD, &phy_data);
2376
2377	if (!(phy_data & IXGBE_TN_LASI_STATUS_TEMP_ALARM))
2378		return 0;
2379
2380	return IXGBE_ERR_OVERTEMP;
2381}
2382
2383/** ixgbe_set_copper_phy_power - Control power for copper phy
2384 *  @hw: pointer to hardware structure
2385 *  @on: true for on, false for off
2386 **/
2387s32 ixgbe_set_copper_phy_power(struct ixgbe_hw *hw, bool on)
2388{
2389	u32 status;
2390	u16 reg;
2391
2392	/* Bail if we don't have copper phy */
2393	if (hw->mac.ops.get_media_type(hw) != ixgbe_media_type_copper)
2394		return 0;
2395
2396	if (!on && ixgbe_mng_present(hw))
2397		return 0;
2398
2399	status = hw->phy.ops.read_reg(hw, IXGBE_MDIO_VENDOR_SPECIFIC_1_CONTROL,
2400				      IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
2401				      &reg);
2402	if (status)
2403		return status;
2404
2405	if (on) {
2406		reg &= ~IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2407	} else {
2408		if (ixgbe_check_reset_blocked(hw))
2409			return 0;
2410		reg |= IXGBE_MDIO_PHY_SET_LOW_POWER_MODE;
2411	}
2412
2413	status = hw->phy.ops.write_reg(hw, IXGBE_MDIO_VENDOR_SPECIFIC_1_CONTROL,
2414				       IXGBE_MDIO_VENDOR_SPECIFIC_1_DEV_TYPE,
2415				       reg);
2416	return status;
2417}