Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* 82562G 10/100 Network Connection
   5 * 82562G-2 10/100 Network Connection
   6 * 82562GT 10/100 Network Connection
   7 * 82562GT-2 10/100 Network Connection
   8 * 82562V 10/100 Network Connection
   9 * 82562V-2 10/100 Network Connection
  10 * 82566DC-2 Gigabit Network Connection
  11 * 82566DC Gigabit Network Connection
  12 * 82566DM-2 Gigabit Network Connection
  13 * 82566DM Gigabit Network Connection
  14 * 82566MC Gigabit Network Connection
  15 * 82566MM Gigabit Network Connection
  16 * 82567LM Gigabit Network Connection
  17 * 82567LF Gigabit Network Connection
  18 * 82567V Gigabit Network Connection
  19 * 82567LM-2 Gigabit Network Connection
  20 * 82567LF-2 Gigabit Network Connection
  21 * 82567V-2 Gigabit Network Connection
  22 * 82567LF-3 Gigabit Network Connection
  23 * 82567LM-3 Gigabit Network Connection
  24 * 82567LM-4 Gigabit Network Connection
  25 * 82577LM Gigabit Network Connection
  26 * 82577LC Gigabit Network Connection
  27 * 82578DM Gigabit Network Connection
  28 * 82578DC Gigabit Network Connection
  29 * 82579LM Gigabit Network Connection
  30 * 82579V Gigabit Network Connection
  31 * Ethernet Connection I217-LM
  32 * Ethernet Connection I217-V
  33 * Ethernet Connection I218-V
  34 * Ethernet Connection I218-LM
  35 * Ethernet Connection (2) I218-LM
  36 * Ethernet Connection (2) I218-V
  37 * Ethernet Connection (3) I218-LM
  38 * Ethernet Connection (3) I218-V
  39 */
  40
  41#include "e1000.h"
  42
  43/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  44/* Offset 04h HSFSTS */
  45union ich8_hws_flash_status {
  46	struct ich8_hsfsts {
  47		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  48		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  49		u16 dael:1;	/* bit 2 Direct Access error Log */
  50		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  51		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  52		u16 reserved1:2;	/* bit 13:6 Reserved */
  53		u16 reserved2:6;	/* bit 13:6 Reserved */
  54		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  55		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  56	} hsf_status;
  57	u16 regval;
  58};
  59
  60/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  61/* Offset 06h FLCTL */
  62union ich8_hws_flash_ctrl {
  63	struct ich8_hsflctl {
  64		u16 flcgo:1;	/* 0 Flash Cycle Go */
  65		u16 flcycle:2;	/* 2:1 Flash Cycle */
  66		u16 reserved:5;	/* 7:3 Reserved  */
  67		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  68		u16 flockdn:6;	/* 15:10 Reserved */
  69	} hsf_ctrl;
  70	u16 regval;
  71};
  72
  73/* ICH Flash Region Access Permissions */
  74union ich8_hws_flash_regacc {
  75	struct ich8_flracc {
  76		u32 grra:8;	/* 0:7 GbE region Read Access */
  77		u32 grwa:8;	/* 8:15 GbE region Write Access */
  78		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  79		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  80	} hsf_flregacc;
  81	u16 regval;
  82};
  83
  84/* ICH Flash Protected Region */
  85union ich8_flash_protected_range {
  86	struct ich8_pr {
  87		u32 base:13;	/* 0:12 Protected Range Base */
  88		u32 reserved1:2;	/* 13:14 Reserved */
  89		u32 rpe:1;	/* 15 Read Protection Enable */
  90		u32 limit:13;	/* 16:28 Protected Range Limit */
  91		u32 reserved2:2;	/* 29:30 Reserved */
  92		u32 wpe:1;	/* 31 Write Protection Enable */
  93	} range;
  94	u32 regval;
  95};
  96
  97static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
  98static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
  99static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 100static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 101						u32 offset, u8 byte);
 102static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 103					 u8 *data);
 104static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 105					 u16 *data);
 106static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 107					 u8 size, u16 *data);
 108static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 109					   u32 *data);
 110static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 111					  u32 offset, u32 *data);
 112static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 113					    u32 offset, u32 data);
 114static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 115						 u32 offset, u32 dword);
 116static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 118static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 119static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 120static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 121static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 122static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 123static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 124static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 125static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 126static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 127static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 128static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 129static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 130static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 131static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 132static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 133static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 134static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 135static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 136static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 137static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 138static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 139static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 140
 141static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 142{
 143	return readw(hw->flash_address + reg);
 144}
 145
 146static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 147{
 148	return readl(hw->flash_address + reg);
 149}
 150
 151static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 152{
 153	writew(val, hw->flash_address + reg);
 154}
 155
 156static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 157{
 158	writel(val, hw->flash_address + reg);
 159}
 160
 161#define er16flash(reg)		__er16flash(hw, (reg))
 162#define er32flash(reg)		__er32flash(hw, (reg))
 163#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 164#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 165
 166/**
 167 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 168 *  @hw: pointer to the HW structure
 169 *
 170 *  Test access to the PHY registers by reading the PHY ID registers.  If
 171 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 172 *  otherwise assume the read PHY ID is correct if it is valid.
 173 *
 174 *  Assumes the sw/fw/hw semaphore is already acquired.
 175 **/
 176static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 177{
 178	u16 phy_reg = 0;
 179	u32 phy_id = 0;
 180	s32 ret_val = 0;
 181	u16 retry_count;
 182	u32 mac_reg = 0;
 183
 184	for (retry_count = 0; retry_count < 2; retry_count++) {
 185		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 186		if (ret_val || (phy_reg == 0xFFFF))
 187			continue;
 188		phy_id = (u32)(phy_reg << 16);
 189
 190		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 191		if (ret_val || (phy_reg == 0xFFFF)) {
 192			phy_id = 0;
 193			continue;
 194		}
 195		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 196		break;
 197	}
 198
 199	if (hw->phy.id) {
 200		if (hw->phy.id == phy_id)
 201			goto out;
 202	} else if (phy_id) {
 203		hw->phy.id = phy_id;
 204		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 205		goto out;
 206	}
 207
 208	/* In case the PHY needs to be in mdio slow mode,
 209	 * set slow mode and try to get the PHY id again.
 210	 */
 211	if (hw->mac.type < e1000_pch_lpt) {
 212		hw->phy.ops.release(hw);
 213		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 214		if (!ret_val)
 215			ret_val = e1000e_get_phy_id(hw);
 216		hw->phy.ops.acquire(hw);
 217	}
 218
 219	if (ret_val)
 220		return false;
 221out:
 222	if (hw->mac.type >= e1000_pch_lpt) {
 223		/* Only unforce SMBus if ME is not active */
 224		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 225			/* Switching PHY interface always returns MDI error
 226			 * so disable retry mechanism to avoid wasting time
 227			 */
 228			e1000e_disable_phy_retry(hw);
 229
 230			/* Unforce SMBus mode in PHY */
 231			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 232			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 233			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 234
 235			e1000e_enable_phy_retry(hw);
 236
 237			/* Unforce SMBus mode in MAC */
 238			mac_reg = er32(CTRL_EXT);
 239			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 240			ew32(CTRL_EXT, mac_reg);
 241		}
 242	}
 243
 244	return true;
 245}
 246
 247/**
 248 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 249 *  @hw: pointer to the HW structure
 250 *
 251 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 252 *  used to reset the PHY to a quiescent state when necessary.
 253 **/
 254static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 255{
 256	u32 mac_reg;
 257
 258	/* Set Phy Config Counter to 50msec */
 259	mac_reg = er32(FEXTNVM3);
 260	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 261	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 262	ew32(FEXTNVM3, mac_reg);
 263
 264	/* Toggle LANPHYPC Value bit */
 265	mac_reg = er32(CTRL);
 266	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 267	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 268	ew32(CTRL, mac_reg);
 269	e1e_flush();
 270	usleep_range(10, 20);
 271	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 272	ew32(CTRL, mac_reg);
 273	e1e_flush();
 274
 275	if (hw->mac.type < e1000_pch_lpt) {
 276		msleep(50);
 277	} else {
 278		u16 count = 20;
 279
 280		do {
 281			usleep_range(5000, 6000);
 282		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 283
 284		msleep(30);
 285	}
 286}
 287
 288/**
 289 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 290 *  @hw: pointer to the HW structure
 291 *
 292 *  Workarounds/flow necessary for PHY initialization during driver load
 293 *  and resume paths.
 294 **/
 295static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 296{
 297	struct e1000_adapter *adapter = hw->adapter;
 298	u32 mac_reg, fwsm = er32(FWSM);
 299	s32 ret_val;
 300
 301	/* Gate automatic PHY configuration by hardware on managed and
 302	 * non-managed 82579 and newer adapters.
 303	 */
 304	e1000_gate_hw_phy_config_ich8lan(hw, true);
 305
 306	/* It is not possible to be certain of the current state of ULP
 307	 * so forcibly disable it.
 308	 */
 309	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 310	ret_val = e1000_disable_ulp_lpt_lp(hw, true);
 311	if (ret_val)
 312		e_warn("Failed to disable ULP\n");
 313
 314	ret_val = hw->phy.ops.acquire(hw);
 315	if (ret_val) {
 316		e_dbg("Failed to initialize PHY flow\n");
 317		goto out;
 318	}
 319
 320	/* There is no guarantee that the PHY is accessible at this time
 321	 * so disable retry mechanism to avoid wasting time
 322	 */
 323	e1000e_disable_phy_retry(hw);
 324
 325	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 326	 * inaccessible and resetting the PHY is not blocked, toggle the
 327	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 328	 */
 329	switch (hw->mac.type) {
 330	case e1000_pch_lpt:
 331	case e1000_pch_spt:
 332	case e1000_pch_cnp:
 333	case e1000_pch_tgp:
 334	case e1000_pch_adp:
 335	case e1000_pch_mtp:
 336	case e1000_pch_lnp:
 337	case e1000_pch_ptp:
 338	case e1000_pch_nvp:
 339		if (e1000_phy_is_accessible_pchlan(hw))
 340			break;
 341
 342		/* Before toggling LANPHYPC, see if PHY is accessible by
 343		 * forcing MAC to SMBus mode first.
 344		 */
 345		mac_reg = er32(CTRL_EXT);
 346		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 347		ew32(CTRL_EXT, mac_reg);
 348
 349		/* Wait 50 milliseconds for MAC to finish any retries
 350		 * that it might be trying to perform from previous
 351		 * attempts to acknowledge any phy read requests.
 352		 */
 353		msleep(50);
 354
 355		fallthrough;
 356	case e1000_pch2lan:
 357		if (e1000_phy_is_accessible_pchlan(hw))
 358			break;
 359
 360		fallthrough;
 361	case e1000_pchlan:
 362		if ((hw->mac.type == e1000_pchlan) &&
 363		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 364			break;
 365
 366		if (hw->phy.ops.check_reset_block(hw)) {
 367			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 368			ret_val = -E1000_ERR_PHY;
 369			break;
 370		}
 371
 372		/* Toggle LANPHYPC Value bit */
 373		e1000_toggle_lanphypc_pch_lpt(hw);
 374		if (hw->mac.type >= e1000_pch_lpt) {
 375			if (e1000_phy_is_accessible_pchlan(hw))
 376				break;
 377
 378			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 379			 * so ensure that the MAC is also out of SMBus mode
 380			 */
 381			mac_reg = er32(CTRL_EXT);
 382			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 383			ew32(CTRL_EXT, mac_reg);
 384
 385			if (e1000_phy_is_accessible_pchlan(hw))
 386				break;
 387
 388			ret_val = -E1000_ERR_PHY;
 389		}
 390		break;
 391	default:
 392		break;
 393	}
 394
 395	e1000e_enable_phy_retry(hw);
 396
 397	hw->phy.ops.release(hw);
 398	if (!ret_val) {
 399
 400		/* Check to see if able to reset PHY.  Print error if not */
 401		if (hw->phy.ops.check_reset_block(hw)) {
 402			e_err("Reset blocked by ME\n");
 403			goto out;
 404		}
 405
 406		/* Reset the PHY before any access to it.  Doing so, ensures
 407		 * that the PHY is in a known good state before we read/write
 408		 * PHY registers.  The generic reset is sufficient here,
 409		 * because we haven't determined the PHY type yet.
 410		 */
 411		ret_val = e1000e_phy_hw_reset_generic(hw);
 412		if (ret_val)
 413			goto out;
 414
 415		/* On a successful reset, possibly need to wait for the PHY
 416		 * to quiesce to an accessible state before returning control
 417		 * to the calling function.  If the PHY does not quiesce, then
 418		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 419		 *  the PHY is in.
 420		 */
 421		ret_val = hw->phy.ops.check_reset_block(hw);
 422		if (ret_val)
 423			e_err("ME blocked access to PHY after reset\n");
 424	}
 425
 426out:
 427	/* Ungate automatic PHY configuration on non-managed 82579 */
 428	if ((hw->mac.type == e1000_pch2lan) &&
 429	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 430		usleep_range(10000, 11000);
 431		e1000_gate_hw_phy_config_ich8lan(hw, false);
 432	}
 433
 434	return ret_val;
 435}
 436
 437/**
 438 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 439 *  @hw: pointer to the HW structure
 440 *
 441 *  Initialize family-specific PHY parameters and function pointers.
 442 **/
 443static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 444{
 445	struct e1000_phy_info *phy = &hw->phy;
 446	s32 ret_val;
 447
 448	phy->addr = 1;
 449	phy->reset_delay_us = 100;
 450
 451	phy->ops.set_page = e1000_set_page_igp;
 452	phy->ops.read_reg = e1000_read_phy_reg_hv;
 453	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 454	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 455	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 456	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 457	phy->ops.write_reg = e1000_write_phy_reg_hv;
 458	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 459	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 460	phy->ops.power_up = e1000_power_up_phy_copper;
 461	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 462	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 463
 464	phy->id = e1000_phy_unknown;
 465
 466	if (hw->mac.type == e1000_pch_mtp) {
 467		phy->retry_count = 2;
 468		e1000e_enable_phy_retry(hw);
 469	}
 470
 471	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 472	if (ret_val)
 473		return ret_val;
 474
 475	if (phy->id == e1000_phy_unknown)
 476		switch (hw->mac.type) {
 477		default:
 478			ret_val = e1000e_get_phy_id(hw);
 479			if (ret_val)
 480				return ret_val;
 481			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 482				break;
 483			fallthrough;
 484		case e1000_pch2lan:
 485		case e1000_pch_lpt:
 486		case e1000_pch_spt:
 487		case e1000_pch_cnp:
 488		case e1000_pch_tgp:
 489		case e1000_pch_adp:
 490		case e1000_pch_mtp:
 491		case e1000_pch_lnp:
 492		case e1000_pch_ptp:
 493		case e1000_pch_nvp:
 494			/* In case the PHY needs to be in mdio slow mode,
 495			 * set slow mode and try to get the PHY id again.
 496			 */
 497			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 498			if (ret_val)
 499				return ret_val;
 500			ret_val = e1000e_get_phy_id(hw);
 501			if (ret_val)
 502				return ret_val;
 503			break;
 504		}
 505	phy->type = e1000e_get_phy_type_from_id(phy->id);
 506
 507	switch (phy->type) {
 508	case e1000_phy_82577:
 509	case e1000_phy_82579:
 510	case e1000_phy_i217:
 511		phy->ops.check_polarity = e1000_check_polarity_82577;
 512		phy->ops.force_speed_duplex =
 513		    e1000_phy_force_speed_duplex_82577;
 514		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 515		phy->ops.get_info = e1000_get_phy_info_82577;
 516		phy->ops.commit = e1000e_phy_sw_reset;
 517		break;
 518	case e1000_phy_82578:
 519		phy->ops.check_polarity = e1000_check_polarity_m88;
 520		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 521		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 522		phy->ops.get_info = e1000e_get_phy_info_m88;
 523		break;
 524	default:
 525		ret_val = -E1000_ERR_PHY;
 526		break;
 527	}
 528
 529	return ret_val;
 530}
 531
 532/**
 533 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 534 *  @hw: pointer to the HW structure
 535 *
 536 *  Initialize family-specific PHY parameters and function pointers.
 537 **/
 538static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 539{
 540	struct e1000_phy_info *phy = &hw->phy;
 541	s32 ret_val;
 542	u16 i = 0;
 543
 544	phy->addr = 1;
 545	phy->reset_delay_us = 100;
 546
 547	phy->ops.power_up = e1000_power_up_phy_copper;
 548	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 549
 550	/* We may need to do this twice - once for IGP and if that fails,
 551	 * we'll set BM func pointers and try again
 552	 */
 553	ret_val = e1000e_determine_phy_address(hw);
 554	if (ret_val) {
 555		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 556		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 557		ret_val = e1000e_determine_phy_address(hw);
 558		if (ret_val) {
 559			e_dbg("Cannot determine PHY addr. Erroring out\n");
 560			return ret_val;
 561		}
 562	}
 563
 564	phy->id = 0;
 565	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 566	       (i++ < 100)) {
 567		usleep_range(1000, 1100);
 568		ret_val = e1000e_get_phy_id(hw);
 569		if (ret_val)
 570			return ret_val;
 571	}
 572
 573	/* Verify phy id */
 574	switch (phy->id) {
 575	case IGP03E1000_E_PHY_ID:
 576		phy->type = e1000_phy_igp_3;
 577		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 578		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 579		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 580		phy->ops.get_info = e1000e_get_phy_info_igp;
 581		phy->ops.check_polarity = e1000_check_polarity_igp;
 582		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 583		break;
 584	case IFE_E_PHY_ID:
 585	case IFE_PLUS_E_PHY_ID:
 586	case IFE_C_E_PHY_ID:
 587		phy->type = e1000_phy_ife;
 588		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 589		phy->ops.get_info = e1000_get_phy_info_ife;
 590		phy->ops.check_polarity = e1000_check_polarity_ife;
 591		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 592		break;
 593	case BME1000_E_PHY_ID:
 594		phy->type = e1000_phy_bm;
 595		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 596		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 597		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 598		phy->ops.commit = e1000e_phy_sw_reset;
 599		phy->ops.get_info = e1000e_get_phy_info_m88;
 600		phy->ops.check_polarity = e1000_check_polarity_m88;
 601		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 602		break;
 603	default:
 604		return -E1000_ERR_PHY;
 605	}
 606
 607	return 0;
 608}
 609
 610/**
 611 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 612 *  @hw: pointer to the HW structure
 613 *
 614 *  Initialize family-specific NVM parameters and function
 615 *  pointers.
 616 **/
 617static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 618{
 619	struct e1000_nvm_info *nvm = &hw->nvm;
 620	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 621	u32 gfpreg, sector_base_addr, sector_end_addr;
 622	u16 i;
 623	u32 nvm_size;
 624
 625	nvm->type = e1000_nvm_flash_sw;
 626
 627	if (hw->mac.type >= e1000_pch_spt) {
 628		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 629		 * STRAP register. This is because in SPT the GbE Flash region
 630		 * is no longer accessed through the flash registers. Instead,
 631		 * the mechanism has changed, and the Flash region access
 632		 * registers are now implemented in GbE memory space.
 633		 */
 634		nvm->flash_base_addr = 0;
 635		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 636		    * NVM_SIZE_MULTIPLIER;
 637		nvm->flash_bank_size = nvm_size / 2;
 638		/* Adjust to word count */
 639		nvm->flash_bank_size /= sizeof(u16);
 640		/* Set the base address for flash register access */
 641		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 642	} else {
 643		/* Can't read flash registers if register set isn't mapped. */
 644		if (!hw->flash_address) {
 645			e_dbg("ERROR: Flash registers not mapped\n");
 646			return -E1000_ERR_CONFIG;
 647		}
 648
 649		gfpreg = er32flash(ICH_FLASH_GFPREG);
 650
 651		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 652		 * Add 1 to sector_end_addr since this sector is included in
 653		 * the overall size.
 654		 */
 655		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 656		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 657
 658		/* flash_base_addr is byte-aligned */
 659		nvm->flash_base_addr = sector_base_addr
 660		    << FLASH_SECTOR_ADDR_SHIFT;
 661
 662		/* find total size of the NVM, then cut in half since the total
 663		 * size represents two separate NVM banks.
 664		 */
 665		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 666					<< FLASH_SECTOR_ADDR_SHIFT);
 667		nvm->flash_bank_size /= 2;
 668		/* Adjust to word count */
 669		nvm->flash_bank_size /= sizeof(u16);
 670	}
 671
 672	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 673
 674	/* Clear shadow ram */
 675	for (i = 0; i < nvm->word_size; i++) {
 676		dev_spec->shadow_ram[i].modified = false;
 677		dev_spec->shadow_ram[i].value = 0xFFFF;
 678	}
 679
 680	return 0;
 681}
 682
 683/**
 684 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 685 *  @hw: pointer to the HW structure
 686 *
 687 *  Initialize family-specific MAC parameters and function
 688 *  pointers.
 689 **/
 690static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 691{
 692	struct e1000_mac_info *mac = &hw->mac;
 693
 694	/* Set media type function pointer */
 695	hw->phy.media_type = e1000_media_type_copper;
 696
 697	/* Set mta register count */
 698	mac->mta_reg_count = 32;
 699	/* Set rar entry count */
 700	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 701	if (mac->type == e1000_ich8lan)
 702		mac->rar_entry_count--;
 703	/* FWSM register */
 704	mac->has_fwsm = true;
 705	/* ARC subsystem not supported */
 706	mac->arc_subsystem_valid = false;
 707	/* Adaptive IFS supported */
 708	mac->adaptive_ifs = true;
 709
 710	/* LED and other operations */
 711	switch (mac->type) {
 712	case e1000_ich8lan:
 713	case e1000_ich9lan:
 714	case e1000_ich10lan:
 715		/* check management mode */
 716		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 717		/* ID LED init */
 718		mac->ops.id_led_init = e1000e_id_led_init_generic;
 719		/* blink LED */
 720		mac->ops.blink_led = e1000e_blink_led_generic;
 721		/* setup LED */
 722		mac->ops.setup_led = e1000e_setup_led_generic;
 723		/* cleanup LED */
 724		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 725		/* turn on/off LED */
 726		mac->ops.led_on = e1000_led_on_ich8lan;
 727		mac->ops.led_off = e1000_led_off_ich8lan;
 728		break;
 729	case e1000_pch2lan:
 730		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 731		mac->ops.rar_set = e1000_rar_set_pch2lan;
 732		fallthrough;
 733	case e1000_pch_lpt:
 734	case e1000_pch_spt:
 735	case e1000_pch_cnp:
 736	case e1000_pch_tgp:
 737	case e1000_pch_adp:
 738	case e1000_pch_mtp:
 739	case e1000_pch_lnp:
 740	case e1000_pch_ptp:
 741	case e1000_pch_nvp:
 742	case e1000_pchlan:
 743		/* check management mode */
 744		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 745		/* ID LED init */
 746		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 747		/* setup LED */
 748		mac->ops.setup_led = e1000_setup_led_pchlan;
 749		/* cleanup LED */
 750		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 751		/* turn on/off LED */
 752		mac->ops.led_on = e1000_led_on_pchlan;
 753		mac->ops.led_off = e1000_led_off_pchlan;
 754		break;
 755	default:
 756		break;
 757	}
 758
 759	if (mac->type >= e1000_pch_lpt) {
 760		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 761		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 762		mac->ops.setup_physical_interface =
 763		    e1000_setup_copper_link_pch_lpt;
 764		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 765	}
 766
 767	/* Enable PCS Lock-loss workaround for ICH8 */
 768	if (mac->type == e1000_ich8lan)
 769		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 770
 771	return 0;
 772}
 773
 774/**
 775 *  __e1000_access_emi_reg_locked - Read/write EMI register
 776 *  @hw: pointer to the HW structure
 777 *  @address: EMI address to program
 778 *  @data: pointer to value to read/write from/to the EMI address
 779 *  @read: boolean flag to indicate read or write
 780 *
 781 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 782 **/
 783static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 784					 u16 *data, bool read)
 785{
 786	s32 ret_val;
 787
 788	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 789	if (ret_val)
 790		return ret_val;
 791
 792	if (read)
 793		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 794	else
 795		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 796
 797	return ret_val;
 798}
 799
 800/**
 801 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 802 *  @hw: pointer to the HW structure
 803 *  @addr: EMI address to program
 804 *  @data: value to be read from the EMI address
 805 *
 806 *  Assumes the SW/FW/HW Semaphore is already acquired.
 807 **/
 808s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 809{
 810	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 811}
 812
 813/**
 814 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 815 *  @hw: pointer to the HW structure
 816 *  @addr: EMI address to program
 817 *  @data: value to be written to the EMI address
 818 *
 819 *  Assumes the SW/FW/HW Semaphore is already acquired.
 820 **/
 821s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 822{
 823	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 824}
 825
 826/**
 827 *  e1000_set_eee_pchlan - Enable/disable EEE support
 828 *  @hw: pointer to the HW structure
 829 *
 830 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 831 *  the link and the EEE capabilities of the link partner.  The LPI Control
 832 *  register bits will remain set only if/when link is up.
 833 *
 834 *  EEE LPI must not be asserted earlier than one second after link is up.
 835 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 836 *  can be link issues with some switches.  Other devices can have EEE LPI
 837 *  enabled immediately upon link up since they have a timer in hardware which
 838 *  prevents LPI from being asserted too early.
 839 **/
 840s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 841{
 842	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 843	s32 ret_val;
 844	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 845
 846	switch (hw->phy.type) {
 847	case e1000_phy_82579:
 848		lpa = I82579_EEE_LP_ABILITY;
 849		pcs_status = I82579_EEE_PCS_STATUS;
 850		adv_addr = I82579_EEE_ADVERTISEMENT;
 851		break;
 852	case e1000_phy_i217:
 853		lpa = I217_EEE_LP_ABILITY;
 854		pcs_status = I217_EEE_PCS_STATUS;
 855		adv_addr = I217_EEE_ADVERTISEMENT;
 856		break;
 857	default:
 858		return 0;
 859	}
 860
 861	ret_val = hw->phy.ops.acquire(hw);
 862	if (ret_val)
 863		return ret_val;
 864
 865	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 866	if (ret_val)
 867		goto release;
 868
 869	/* Clear bits that enable EEE in various speeds */
 870	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 871
 872	/* Enable EEE if not disabled by user */
 873	if (!dev_spec->eee_disable) {
 874		/* Save off link partner's EEE ability */
 875		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 876						    &dev_spec->eee_lp_ability);
 877		if (ret_val)
 878			goto release;
 879
 880		/* Read EEE advertisement */
 881		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 882		if (ret_val)
 883			goto release;
 884
 885		/* Enable EEE only for speeds in which the link partner is
 886		 * EEE capable and for which we advertise EEE.
 887		 */
 888		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 889			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 890
 891		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 892			e1e_rphy_locked(hw, MII_LPA, &data);
 893			if (data & LPA_100FULL)
 894				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 895			else
 896				/* EEE is not supported in 100Half, so ignore
 897				 * partner's EEE in 100 ability if full-duplex
 898				 * is not advertised.
 899				 */
 900				dev_spec->eee_lp_ability &=
 901				    ~I82579_EEE_100_SUPPORTED;
 902		}
 903	}
 904
 905	if (hw->phy.type == e1000_phy_82579) {
 906		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 907						    &data);
 908		if (ret_val)
 909			goto release;
 910
 911		data &= ~I82579_LPI_100_PLL_SHUT;
 912		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 913						     data);
 914	}
 915
 916	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 917	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 918	if (ret_val)
 919		goto release;
 920
 921	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 922release:
 923	hw->phy.ops.release(hw);
 924
 925	return ret_val;
 926}
 927
 928/**
 929 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 930 *  @hw:   pointer to the HW structure
 931 *  @link: link up bool flag
 932 *
 933 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 934 *  preventing further DMA write requests.  Workaround the issue by disabling
 935 *  the de-assertion of the clock request when in 1Gpbs mode.
 936 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 937 *  speeds in order to avoid Tx hangs.
 938 **/
 939static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 940{
 941	u32 fextnvm6 = er32(FEXTNVM6);
 942	u32 status = er32(STATUS);
 943	s32 ret_val = 0;
 944	u16 reg;
 945
 946	if (link && (status & E1000_STATUS_SPEED_1000)) {
 947		ret_val = hw->phy.ops.acquire(hw);
 948		if (ret_val)
 949			return ret_val;
 950
 951		ret_val =
 952		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 953						&reg);
 954		if (ret_val)
 955			goto release;
 956
 957		ret_val =
 958		    e1000e_write_kmrn_reg_locked(hw,
 959						 E1000_KMRNCTRLSTA_K1_CONFIG,
 960						 reg &
 961						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 962		if (ret_val)
 963			goto release;
 964
 965		usleep_range(10, 20);
 966
 967		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 968
 969		ret_val =
 970		    e1000e_write_kmrn_reg_locked(hw,
 971						 E1000_KMRNCTRLSTA_K1_CONFIG,
 972						 reg);
 973release:
 974		hw->phy.ops.release(hw);
 975	} else {
 976		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 977		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 978
 979		if ((hw->phy.revision > 5) || !link ||
 980		    ((status & E1000_STATUS_SPEED_100) &&
 981		     (status & E1000_STATUS_FD)))
 982			goto update_fextnvm6;
 983
 984		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 985		if (ret_val)
 986			return ret_val;
 987
 988		/* Clear link status transmit timeout */
 989		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 990
 991		if (status & E1000_STATUS_SPEED_100) {
 992			/* Set inband Tx timeout to 5x10us for 100Half */
 993			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 994
 995			/* Do not extend the K1 entry latency for 100Half */
 996			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 997		} else {
 998			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 999			reg |= 50 <<
1000			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
1001
1002			/* Extend the K1 entry latency for 10 Mbps */
1003			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
1004		}
1005
1006		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
1007		if (ret_val)
1008			return ret_val;
1009
1010update_fextnvm6:
1011		ew32(FEXTNVM6, fextnvm6);
1012	}
1013
1014	return ret_val;
1015}
1016
1017/**
1018 *  e1000_platform_pm_pch_lpt - Set platform power management values
1019 *  @hw: pointer to the HW structure
1020 *  @link: bool indicating link status
1021 *
1022 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1023 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1024 *  when link is up (which must not exceed the maximum latency supported
1025 *  by the platform), otherwise specify there is no LTR requirement.
1026 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1027 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1028 *  Capability register set, on this device LTR is set by writing the
1029 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1030 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1031 *  message to the PMC.
1032 **/
1033static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1034{
1035	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1036	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1037	u32 max_ltr_enc_d = 0;	/* maximum LTR decoded by platform */
1038	u32 lat_enc_d = 0;	/* latency decoded */
1039	u16 lat_enc = 0;	/* latency encoded */
1040
1041	if (link) {
1042		u16 speed, duplex, scale = 0;
1043		u16 max_snoop, max_nosnoop;
1044		u16 max_ltr_enc;	/* max LTR latency encoded */
1045		u64 value;
1046		u32 rxa;
1047
1048		if (!hw->adapter->max_frame_size) {
1049			e_dbg("max_frame_size not set.\n");
1050			return -E1000_ERR_CONFIG;
1051		}
1052
1053		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1054		if (!speed) {
1055			e_dbg("Speed not set.\n");
1056			return -E1000_ERR_CONFIG;
1057		}
1058
1059		/* Rx Packet Buffer Allocation size (KB) */
1060		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1061
1062		/* Determine the maximum latency tolerated by the device.
1063		 *
1064		 * Per the PCIe spec, the tolerated latencies are encoded as
1065		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1066		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1067		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1068		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1069		 */
1070		rxa *= 512;
1071		value = (rxa > hw->adapter->max_frame_size) ?
1072			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1073			0;
1074
1075		while (value > PCI_LTR_VALUE_MASK) {
1076			scale++;
1077			value = DIV_ROUND_UP(value, BIT(5));
1078		}
1079		if (scale > E1000_LTRV_SCALE_MAX) {
1080			e_dbg("Invalid LTR latency scale %d\n", scale);
1081			return -E1000_ERR_CONFIG;
1082		}
1083		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1084
1085		/* Determine the maximum latency tolerated by the platform */
1086		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1087				     &max_snoop);
1088		pci_read_config_word(hw->adapter->pdev,
1089				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1090		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1091
1092		lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1093			     (1U << (E1000_LTRV_SCALE_FACTOR *
1094			     FIELD_GET(E1000_LTRV_SCALE_MASK, lat_enc)));
1095
1096		max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1097			(1U << (E1000_LTRV_SCALE_FACTOR *
1098				FIELD_GET(E1000_LTRV_SCALE_MASK, max_ltr_enc)));
1099
1100		if (lat_enc_d > max_ltr_enc_d)
1101			lat_enc = max_ltr_enc;
1102	}
1103
1104	/* Set Snoop and No-Snoop latencies the same */
1105	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1106	ew32(LTRV, reg);
1107
1108	return 0;
1109}
1110
1111/**
1112 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1113 *  @hw: pointer to the HW structure
1114 *  @to_sx: boolean indicating a system power state transition to Sx
1115 *
1116 *  When link is down, configure ULP mode to significantly reduce the power
1117 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1118 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1119 *  system, configure the ULP mode by software.
1120 */
1121s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1122{
1123	u32 mac_reg;
1124	s32 ret_val = 0;
1125	u16 phy_reg;
1126	u16 oem_reg = 0;
1127
1128	if ((hw->mac.type < e1000_pch_lpt) ||
1129	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1130	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1131	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1132	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1133	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1134		return 0;
1135
1136	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1137		/* Request ME configure ULP mode in the PHY */
1138		mac_reg = er32(H2ME);
1139		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1140		ew32(H2ME, mac_reg);
1141
1142		goto out;
1143	}
1144
1145	if (!to_sx) {
1146		int i = 0;
1147
1148		/* Poll up to 5 seconds for Cable Disconnected indication */
1149		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1150			/* Bail if link is re-acquired */
1151			if (er32(STATUS) & E1000_STATUS_LU)
1152				return -E1000_ERR_PHY;
1153
1154			if (i++ == 100)
1155				break;
1156
1157			msleep(50);
1158		}
1159		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1160		      (er32(FEXT) &
1161		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1162	}
1163
1164	ret_val = hw->phy.ops.acquire(hw);
1165	if (ret_val)
1166		goto out;
1167
 
 
 
 
 
 
 
 
 
 
 
 
1168	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1169	 * LPLU and disable Gig speed when entering ULP
1170	 */
1171	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1172		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1173						       &oem_reg);
1174		if (ret_val)
1175			goto release;
1176
1177		phy_reg = oem_reg;
1178		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1179
1180		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1181							phy_reg);
1182
1183		if (ret_val)
1184			goto release;
1185	}
1186
1187	/* Set Inband ULP Exit, Reset to SMBus mode and
1188	 * Disable SMBus Release on PERST# in PHY
1189	 */
1190	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1191	if (ret_val)
1192		goto release;
1193	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1194		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1195	if (to_sx) {
1196		if (er32(WUFC) & E1000_WUFC_LNKC)
1197			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1198		else
1199			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1200
1201		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1202		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1203	} else {
1204		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1205		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1206		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1207	}
1208	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1209
1210	/* Set Disable SMBus Release on PERST# in MAC */
1211	mac_reg = er32(FEXTNVM7);
1212	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1213	ew32(FEXTNVM7, mac_reg);
1214
1215	/* Commit ULP changes in PHY by starting auto ULP configuration */
1216	phy_reg |= I218_ULP_CONFIG1_START;
1217	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1218
1219	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1220	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1221		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1222							oem_reg);
1223		if (ret_val)
1224			goto release;
1225	}
1226
1227release:
1228	hw->phy.ops.release(hw);
1229out:
1230	if (ret_val)
1231		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1232	else
1233		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1234
1235	return ret_val;
1236}
1237
1238/**
1239 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1240 *  @hw: pointer to the HW structure
1241 *  @force: boolean indicating whether or not to force disabling ULP
1242 *
1243 *  Un-configure ULP mode when link is up, the system is transitioned from
1244 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1245 *  system, poll for an indication from ME that ULP has been un-configured.
1246 *  If not on an ME enabled system, un-configure the ULP mode by software.
1247 *
1248 *  During nominal operation, this function is called when link is acquired
1249 *  to disable ULP mode (force=false); otherwise, for example when unloading
1250 *  the driver or during Sx->S0 transitions, this is called with force=true
1251 *  to forcibly disable ULP.
1252 */
1253static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1254{
1255	s32 ret_val = 0;
1256	u32 mac_reg;
1257	u16 phy_reg;
1258	int i = 0;
1259
1260	if ((hw->mac.type < e1000_pch_lpt) ||
1261	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1262	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1263	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1264	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1265	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1266		return 0;
1267
1268	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1269		struct e1000_adapter *adapter = hw->adapter;
1270		bool firmware_bug = false;
1271
1272		if (force) {
1273			/* Request ME un-configure ULP mode in the PHY */
1274			mac_reg = er32(H2ME);
1275			mac_reg &= ~E1000_H2ME_ULP;
1276			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1277			ew32(H2ME, mac_reg);
1278		}
1279
1280		/* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1281		 * If this takes more than 1 second, show a warning indicating a
1282		 * firmware bug
1283		 */
1284		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1285			if (i++ == 250) {
1286				ret_val = -E1000_ERR_PHY;
1287				goto out;
1288			}
1289			if (i > 100 && !firmware_bug)
1290				firmware_bug = true;
1291
1292			usleep_range(10000, 11000);
1293		}
1294		if (firmware_bug)
1295			e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1296			       i * 10);
1297		else
1298			e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1299			      i * 10);
1300
1301		if (force) {
1302			mac_reg = er32(H2ME);
1303			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1304			ew32(H2ME, mac_reg);
1305		} else {
1306			/* Clear H2ME.ULP after ME ULP configuration */
1307			mac_reg = er32(H2ME);
1308			mac_reg &= ~E1000_H2ME_ULP;
1309			ew32(H2ME, mac_reg);
1310		}
1311
1312		goto out;
1313	}
1314
1315	ret_val = hw->phy.ops.acquire(hw);
1316	if (ret_val)
1317		goto out;
1318
1319	if (force)
1320		/* Toggle LANPHYPC Value bit */
1321		e1000_toggle_lanphypc_pch_lpt(hw);
1322
1323	/* Switching PHY interface always returns MDI error
1324	 * so disable retry mechanism to avoid wasting time
1325	 */
1326	e1000e_disable_phy_retry(hw);
1327
1328	/* Unforce SMBus mode in PHY */
1329	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1330	if (ret_val) {
1331		/* The MAC might be in PCIe mode, so temporarily force to
1332		 * SMBus mode in order to access the PHY.
1333		 */
1334		mac_reg = er32(CTRL_EXT);
1335		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1336		ew32(CTRL_EXT, mac_reg);
1337
1338		msleep(50);
1339
1340		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1341						       &phy_reg);
1342		if (ret_val)
1343			goto release;
1344	}
1345	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1346	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1347
1348	e1000e_enable_phy_retry(hw);
1349
1350	/* Unforce SMBus mode in MAC */
1351	mac_reg = er32(CTRL_EXT);
1352	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1353	ew32(CTRL_EXT, mac_reg);
1354
1355	/* When ULP mode was previously entered, K1 was disabled by the
1356	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1357	 */
1358	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1359	if (ret_val)
1360		goto release;
1361	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1362	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1363
1364	/* Clear ULP enabled configuration */
1365	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1366	if (ret_val)
1367		goto release;
1368	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1369		     I218_ULP_CONFIG1_STICKY_ULP |
1370		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1371		     I218_ULP_CONFIG1_WOL_HOST |
1372		     I218_ULP_CONFIG1_INBAND_EXIT |
1373		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1374		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1375		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1376	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1377
1378	/* Commit ULP changes by starting auto ULP configuration */
1379	phy_reg |= I218_ULP_CONFIG1_START;
1380	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1381
1382	/* Clear Disable SMBus Release on PERST# in MAC */
1383	mac_reg = er32(FEXTNVM7);
1384	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1385	ew32(FEXTNVM7, mac_reg);
1386
1387release:
1388	hw->phy.ops.release(hw);
1389	if (force) {
1390		e1000_phy_hw_reset(hw);
1391		msleep(50);
1392	}
1393out:
1394	if (ret_val)
1395		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1396	else
1397		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1398
1399	return ret_val;
1400}
1401
1402/**
1403 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1404 *  @hw: pointer to the HW structure
1405 *
1406 *  Checks to see of the link status of the hardware has changed.  If a
1407 *  change in link status has been detected, then we read the PHY registers
1408 *  to get the current speed/duplex if link exists.
1409 **/
1410static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1411{
1412	struct e1000_mac_info *mac = &hw->mac;
1413	s32 ret_val, tipg_reg = 0;
1414	u16 emi_addr, emi_val = 0;
1415	bool link;
1416	u16 phy_reg;
1417
1418	/* We only want to go out to the PHY registers to see if Auto-Neg
1419	 * has completed and/or if our link status has changed.  The
1420	 * get_link_status flag is set upon receiving a Link Status
1421	 * Change or Rx Sequence Error interrupt.
1422	 */
1423	if (!mac->get_link_status)
1424		return 0;
1425	mac->get_link_status = false;
1426
1427	/* First we want to see if the MII Status Register reports
1428	 * link.  If so, then we want to get the current speed/duplex
1429	 * of the PHY.
1430	 */
1431	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1432	if (ret_val)
1433		goto out;
1434
1435	if (hw->mac.type == e1000_pchlan) {
1436		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1437		if (ret_val)
1438			goto out;
1439	}
1440
1441	/* When connected at 10Mbps half-duplex, some parts are excessively
1442	 * aggressive resulting in many collisions. To avoid this, increase
1443	 * the IPG and reduce Rx latency in the PHY.
1444	 */
1445	if ((hw->mac.type >= e1000_pch2lan) && link) {
 
 
1446		u16 speed, duplex;
1447
1448		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1449		tipg_reg = er32(TIPG);
1450		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1451
1452		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1453			tipg_reg |= 0xFF;
1454			/* Reduce Rx latency in analog PHY */
1455			emi_val = 0;
1456		} else if (hw->mac.type >= e1000_pch_spt &&
1457			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1458			tipg_reg |= 0xC;
1459			emi_val = 1;
1460		} else {
1461
1462			/* Roll back the default values */
1463			tipg_reg |= 0x08;
1464			emi_val = 1;
1465		}
1466
1467		ew32(TIPG, tipg_reg);
1468
1469		ret_val = hw->phy.ops.acquire(hw);
1470		if (ret_val)
1471			goto out;
1472
1473		if (hw->mac.type == e1000_pch2lan)
1474			emi_addr = I82579_RX_CONFIG;
1475		else
1476			emi_addr = I217_RX_CONFIG;
1477		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1478
1479		if (hw->mac.type >= e1000_pch_lpt) {
 
1480			u16 phy_reg;
1481
1482			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1483			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1484			if (speed == SPEED_100 || speed == SPEED_10)
1485				phy_reg |= 0x3E8;
1486			else
1487				phy_reg |= 0xFA;
1488			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1489
1490			if (speed == SPEED_1000) {
1491				hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1492							    &phy_reg);
1493
1494				phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1495
1496				hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1497							     phy_reg);
1498			}
1499		}
1500		hw->phy.ops.release(hw);
1501
1502		if (ret_val)
1503			goto out;
1504
1505		if (hw->mac.type >= e1000_pch_spt) {
1506			u16 data;
1507			u16 ptr_gap;
1508
1509			if (speed == SPEED_1000) {
1510				ret_val = hw->phy.ops.acquire(hw);
1511				if (ret_val)
1512					goto out;
1513
1514				ret_val = e1e_rphy_locked(hw,
1515							  PHY_REG(776, 20),
1516							  &data);
1517				if (ret_val) {
1518					hw->phy.ops.release(hw);
1519					goto out;
1520				}
1521
1522				ptr_gap = (data & (0x3FF << 2)) >> 2;
1523				if (ptr_gap < 0x18) {
1524					data &= ~(0x3FF << 2);
1525					data |= (0x18 << 2);
1526					ret_val =
1527					    e1e_wphy_locked(hw,
1528							    PHY_REG(776, 20),
1529							    data);
1530				}
1531				hw->phy.ops.release(hw);
1532				if (ret_val)
1533					goto out;
1534			} else {
1535				ret_val = hw->phy.ops.acquire(hw);
1536				if (ret_val)
1537					goto out;
1538
1539				ret_val = e1e_wphy_locked(hw,
1540							  PHY_REG(776, 20),
1541							  0xC023);
1542				hw->phy.ops.release(hw);
1543				if (ret_val)
1544					goto out;
1545
1546			}
1547		}
1548	}
1549
1550	/* I217 Packet Loss issue:
1551	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1552	 * on power up.
1553	 * Set the Beacon Duration for I217 to 8 usec
1554	 */
1555	if (hw->mac.type >= e1000_pch_lpt) {
1556		u32 mac_reg;
1557
1558		mac_reg = er32(FEXTNVM4);
1559		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1560		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1561		ew32(FEXTNVM4, mac_reg);
1562	}
1563
1564	/* Work-around I218 hang issue */
1565	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1566	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1567	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1568	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1569		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1570		if (ret_val)
1571			goto out;
1572	}
1573	if (hw->mac.type >= e1000_pch_lpt) {
 
1574		/* Set platform power management values for
1575		 * Latency Tolerance Reporting (LTR)
1576		 */
1577		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1578		if (ret_val)
1579			goto out;
1580	}
1581
1582	/* Clear link partner's EEE ability */
1583	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1584
1585	if (hw->mac.type >= e1000_pch_lpt) {
 
 
1586		u32 fextnvm6 = er32(FEXTNVM6);
1587
1588		if (hw->mac.type == e1000_pch_spt) {
1589			/* FEXTNVM6 K1-off workaround - for SPT only */
1590			u32 pcieanacfg = er32(PCIEANACFG);
1591
1592			if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1593				fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1594			else
1595				fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1596		}
1597
1598		ew32(FEXTNVM6, fextnvm6);
1599	}
1600
1601	if (!link)
1602		goto out;
 
 
1603
1604	switch (hw->mac.type) {
1605	case e1000_pch2lan:
1606		ret_val = e1000_k1_workaround_lv(hw);
1607		if (ret_val)
1608			return ret_val;
1609		fallthrough;
1610	case e1000_pchlan:
1611		if (hw->phy.type == e1000_phy_82578) {
1612			ret_val = e1000_link_stall_workaround_hv(hw);
1613			if (ret_val)
1614				return ret_val;
1615		}
1616
1617		/* Workaround for PCHx parts in half-duplex:
1618		 * Set the number of preambles removed from the packet
1619		 * when it is passed from the PHY to the MAC to prevent
1620		 * the MAC from misinterpreting the packet type.
1621		 */
1622		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1623		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1624
1625		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1626			phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1627
1628		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1629		break;
1630	default:
1631		break;
1632	}
1633
1634	/* Check if there was DownShift, must be checked
1635	 * immediately after link-up
1636	 */
1637	e1000e_check_downshift(hw);
1638
1639	/* Enable/Disable EEE after link up */
1640	if (hw->phy.type > e1000_phy_82579) {
1641		ret_val = e1000_set_eee_pchlan(hw);
1642		if (ret_val)
1643			return ret_val;
1644	}
1645
1646	/* If we are forcing speed/duplex, then we simply return since
1647	 * we have already determined whether we have link or not.
1648	 */
1649	if (!mac->autoneg)
1650		return -E1000_ERR_CONFIG;
1651
1652	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1653	 * of MAC speed/duplex configuration.  So we only need to
1654	 * configure Collision Distance in the MAC.
1655	 */
1656	mac->ops.config_collision_dist(hw);
1657
1658	/* Configure Flow Control now that Auto-Neg has completed.
1659	 * First, we need to restore the desired flow control
1660	 * settings because we may have had to re-autoneg with a
1661	 * different link partner.
1662	 */
1663	ret_val = e1000e_config_fc_after_link_up(hw);
1664	if (ret_val)
1665		e_dbg("Error configuring flow control\n");
1666
1667	return ret_val;
1668
1669out:
1670	mac->get_link_status = true;
1671	return ret_val;
1672}
1673
1674static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1675{
1676	struct e1000_hw *hw = &adapter->hw;
1677	s32 rc;
1678
1679	rc = e1000_init_mac_params_ich8lan(hw);
1680	if (rc)
1681		return rc;
1682
1683	rc = e1000_init_nvm_params_ich8lan(hw);
1684	if (rc)
1685		return rc;
1686
1687	switch (hw->mac.type) {
1688	case e1000_ich8lan:
1689	case e1000_ich9lan:
1690	case e1000_ich10lan:
1691		rc = e1000_init_phy_params_ich8lan(hw);
1692		break;
1693	case e1000_pchlan:
1694	case e1000_pch2lan:
1695	case e1000_pch_lpt:
1696	case e1000_pch_spt:
1697	case e1000_pch_cnp:
1698	case e1000_pch_tgp:
1699	case e1000_pch_adp:
1700	case e1000_pch_mtp:
1701	case e1000_pch_lnp:
1702	case e1000_pch_ptp:
1703	case e1000_pch_nvp:
1704		rc = e1000_init_phy_params_pchlan(hw);
1705		break;
1706	default:
1707		break;
1708	}
1709	if (rc)
1710		return rc;
1711
1712	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1713	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1714	 */
1715	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1716	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1717	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1718		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1719		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1720
1721		hw->mac.ops.blink_led = NULL;
1722	}
1723
1724	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1725	    (adapter->hw.phy.type != e1000_phy_ife))
1726		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1727
1728	/* Enable workaround for 82579 w/ ME enabled */
1729	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1730	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1731		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1732
1733	return 0;
1734}
1735
1736static DEFINE_MUTEX(nvm_mutex);
1737
1738/**
1739 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1740 *  @hw: pointer to the HW structure
1741 *
1742 *  Acquires the mutex for performing NVM operations.
1743 **/
1744static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1745{
1746	mutex_lock(&nvm_mutex);
1747
1748	return 0;
1749}
1750
1751/**
1752 *  e1000_release_nvm_ich8lan - Release NVM mutex
1753 *  @hw: pointer to the HW structure
1754 *
1755 *  Releases the mutex used while performing NVM operations.
1756 **/
1757static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1758{
1759	mutex_unlock(&nvm_mutex);
1760}
1761
1762/**
1763 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1764 *  @hw: pointer to the HW structure
1765 *
1766 *  Acquires the software control flag for performing PHY and select
1767 *  MAC CSR accesses.
1768 **/
1769static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1770{
1771	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1772	s32 ret_val = 0;
1773
1774	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1775			     &hw->adapter->state)) {
1776		e_dbg("contention for Phy access\n");
1777		return -E1000_ERR_PHY;
1778	}
1779
1780	while (timeout) {
1781		extcnf_ctrl = er32(EXTCNF_CTRL);
1782		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1783			break;
1784
1785		mdelay(1);
1786		timeout--;
1787	}
1788
1789	if (!timeout) {
1790		e_dbg("SW has already locked the resource.\n");
1791		ret_val = -E1000_ERR_CONFIG;
1792		goto out;
1793	}
1794
1795	timeout = SW_FLAG_TIMEOUT;
1796
1797	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1798	ew32(EXTCNF_CTRL, extcnf_ctrl);
1799
1800	while (timeout) {
1801		extcnf_ctrl = er32(EXTCNF_CTRL);
1802		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1803			break;
1804
1805		mdelay(1);
1806		timeout--;
1807	}
1808
1809	if (!timeout) {
1810		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1811		      er32(FWSM), extcnf_ctrl);
1812		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1813		ew32(EXTCNF_CTRL, extcnf_ctrl);
1814		ret_val = -E1000_ERR_CONFIG;
1815		goto out;
1816	}
1817
1818out:
1819	if (ret_val)
1820		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1821
1822	return ret_val;
1823}
1824
1825/**
1826 *  e1000_release_swflag_ich8lan - Release software control flag
1827 *  @hw: pointer to the HW structure
1828 *
1829 *  Releases the software control flag for performing PHY and select
1830 *  MAC CSR accesses.
1831 **/
1832static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1833{
1834	u32 extcnf_ctrl;
1835
1836	extcnf_ctrl = er32(EXTCNF_CTRL);
1837
1838	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1839		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1840		ew32(EXTCNF_CTRL, extcnf_ctrl);
1841	} else {
1842		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1843	}
1844
1845	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1846}
1847
1848/**
1849 *  e1000_check_mng_mode_ich8lan - Checks management mode
1850 *  @hw: pointer to the HW structure
1851 *
1852 *  This checks if the adapter has any manageability enabled.
1853 *  This is a function pointer entry point only called by read/write
1854 *  routines for the PHY and NVM parts.
1855 **/
1856static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1857{
1858	u32 fwsm;
1859
1860	fwsm = er32(FWSM);
1861	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1862		((fwsm & E1000_FWSM_MODE_MASK) ==
1863		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1864}
1865
1866/**
1867 *  e1000_check_mng_mode_pchlan - Checks management mode
1868 *  @hw: pointer to the HW structure
1869 *
1870 *  This checks if the adapter has iAMT enabled.
1871 *  This is a function pointer entry point only called by read/write
1872 *  routines for the PHY and NVM parts.
1873 **/
1874static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1875{
1876	u32 fwsm;
1877
1878	fwsm = er32(FWSM);
1879	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1880	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1881}
1882
1883/**
1884 *  e1000_rar_set_pch2lan - Set receive address register
1885 *  @hw: pointer to the HW structure
1886 *  @addr: pointer to the receive address
1887 *  @index: receive address array register
1888 *
1889 *  Sets the receive address array register at index to the address passed
1890 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1891 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1892 *  Use SHRA[0-3] in place of those reserved for ME.
1893 **/
1894static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1895{
1896	u32 rar_low, rar_high;
1897
1898	/* HW expects these in little endian so we reverse the byte order
1899	 * from network order (big endian) to little endian
1900	 */
1901	rar_low = ((u32)addr[0] |
1902		   ((u32)addr[1] << 8) |
1903		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1904
1905	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1906
1907	/* If MAC address zero, no need to set the AV bit */
1908	if (rar_low || rar_high)
1909		rar_high |= E1000_RAH_AV;
1910
1911	if (index == 0) {
1912		ew32(RAL(index), rar_low);
1913		e1e_flush();
1914		ew32(RAH(index), rar_high);
1915		e1e_flush();
1916		return 0;
1917	}
1918
1919	/* RAR[1-6] are owned by manageability.  Skip those and program the
1920	 * next address into the SHRA register array.
1921	 */
1922	if (index < (u32)(hw->mac.rar_entry_count)) {
1923		s32 ret_val;
1924
1925		ret_val = e1000_acquire_swflag_ich8lan(hw);
1926		if (ret_val)
1927			goto out;
1928
1929		ew32(SHRAL(index - 1), rar_low);
1930		e1e_flush();
1931		ew32(SHRAH(index - 1), rar_high);
1932		e1e_flush();
1933
1934		e1000_release_swflag_ich8lan(hw);
1935
1936		/* verify the register updates */
1937		if ((er32(SHRAL(index - 1)) == rar_low) &&
1938		    (er32(SHRAH(index - 1)) == rar_high))
1939			return 0;
1940
1941		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1942		      (index - 1), er32(FWSM));
1943	}
1944
1945out:
1946	e_dbg("Failed to write receive address at index %d\n", index);
1947	return -E1000_ERR_CONFIG;
1948}
1949
1950/**
1951 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1952 *  @hw: pointer to the HW structure
1953 *
1954 *  Get the number of available receive registers that the Host can
1955 *  program. SHRA[0-10] are the shared receive address registers
1956 *  that are shared between the Host and manageability engine (ME).
1957 *  ME can reserve any number of addresses and the host needs to be
1958 *  able to tell how many available registers it has access to.
1959 **/
1960static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1961{
1962	u32 wlock_mac;
1963	u32 num_entries;
1964
1965	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1966	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1967
1968	switch (wlock_mac) {
1969	case 0:
1970		/* All SHRA[0..10] and RAR[0] available */
1971		num_entries = hw->mac.rar_entry_count;
1972		break;
1973	case 1:
1974		/* Only RAR[0] available */
1975		num_entries = 1;
1976		break;
1977	default:
1978		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1979		num_entries = wlock_mac + 1;
1980		break;
1981	}
1982
1983	return num_entries;
1984}
1985
1986/**
1987 *  e1000_rar_set_pch_lpt - Set receive address registers
1988 *  @hw: pointer to the HW structure
1989 *  @addr: pointer to the receive address
1990 *  @index: receive address array register
1991 *
1992 *  Sets the receive address register array at index to the address passed
1993 *  in by addr. For LPT, RAR[0] is the base address register that is to
1994 *  contain the MAC address. SHRA[0-10] are the shared receive address
1995 *  registers that are shared between the Host and manageability engine (ME).
1996 **/
1997static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1998{
1999	u32 rar_low, rar_high;
2000	u32 wlock_mac;
2001
2002	/* HW expects these in little endian so we reverse the byte order
2003	 * from network order (big endian) to little endian
2004	 */
2005	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
2006		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
2007
2008	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
2009
2010	/* If MAC address zero, no need to set the AV bit */
2011	if (rar_low || rar_high)
2012		rar_high |= E1000_RAH_AV;
2013
2014	if (index == 0) {
2015		ew32(RAL(index), rar_low);
2016		e1e_flush();
2017		ew32(RAH(index), rar_high);
2018		e1e_flush();
2019		return 0;
2020	}
2021
2022	/* The manageability engine (ME) can lock certain SHRAR registers that
2023	 * it is using - those registers are unavailable for use.
2024	 */
2025	if (index < hw->mac.rar_entry_count) {
2026		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2027		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2028
2029		/* Check if all SHRAR registers are locked */
2030		if (wlock_mac == 1)
2031			goto out;
2032
2033		if ((wlock_mac == 0) || (index <= wlock_mac)) {
2034			s32 ret_val;
2035
2036			ret_val = e1000_acquire_swflag_ich8lan(hw);
2037
2038			if (ret_val)
2039				goto out;
2040
2041			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2042			e1e_flush();
2043			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2044			e1e_flush();
2045
2046			e1000_release_swflag_ich8lan(hw);
2047
2048			/* verify the register updates */
2049			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2050			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2051				return 0;
2052		}
2053	}
2054
2055out:
2056	e_dbg("Failed to write receive address at index %d\n", index);
2057	return -E1000_ERR_CONFIG;
2058}
2059
2060/**
2061 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2062 *  @hw: pointer to the HW structure
2063 *
2064 *  Checks if firmware is blocking the reset of the PHY.
2065 *  This is a function pointer entry point only called by
2066 *  reset routines.
2067 **/
2068static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2069{
2070	bool blocked = false;
2071	int i = 0;
2072
2073	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2074	       (i++ < 30))
2075		usleep_range(10000, 11000);
2076	return blocked ? E1000_BLK_PHY_RESET : 0;
2077}
2078
2079/**
2080 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2081 *  @hw: pointer to the HW structure
2082 *
2083 *  Assumes semaphore already acquired.
2084 *
2085 **/
2086static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2087{
2088	u16 phy_data;
2089	u32 strap = er32(STRAP);
2090	u32 freq = FIELD_GET(E1000_STRAP_SMT_FREQ_MASK, strap);
 
2091	s32 ret_val;
2092
2093	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2094
2095	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2096	if (ret_val)
2097		return ret_val;
2098
2099	phy_data &= ~HV_SMB_ADDR_MASK;
2100	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2101	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2102
2103	if (hw->phy.type == e1000_phy_i217) {
2104		/* Restore SMBus frequency */
2105		if (freq--) {
2106			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2107			phy_data |= (freq & BIT(0)) <<
2108			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2109			phy_data |= (freq & BIT(1)) <<
2110			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2111		} else {
2112			e_dbg("Unsupported SMB frequency in PHY\n");
2113		}
2114	}
2115
2116	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2117}
2118
2119/**
2120 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2121 *  @hw:   pointer to the HW structure
2122 *
2123 *  SW should configure the LCD from the NVM extended configuration region
2124 *  as a workaround for certain parts.
2125 **/
2126static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2127{
2128	struct e1000_phy_info *phy = &hw->phy;
2129	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2130	s32 ret_val = 0;
2131	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2132
2133	/* Initialize the PHY from the NVM on ICH platforms.  This
2134	 * is needed due to an issue where the NVM configuration is
2135	 * not properly autoloaded after power transitions.
2136	 * Therefore, after each PHY reset, we will load the
2137	 * configuration data out of the NVM manually.
2138	 */
2139	switch (hw->mac.type) {
2140	case e1000_ich8lan:
2141		if (phy->type != e1000_phy_igp_3)
2142			return ret_val;
2143
2144		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2145		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2146			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2147			break;
2148		}
2149		fallthrough;
2150	case e1000_pchlan:
2151	case e1000_pch2lan:
2152	case e1000_pch_lpt:
2153	case e1000_pch_spt:
2154	case e1000_pch_cnp:
2155	case e1000_pch_tgp:
2156	case e1000_pch_adp:
2157	case e1000_pch_mtp:
2158	case e1000_pch_lnp:
2159	case e1000_pch_ptp:
2160	case e1000_pch_nvp:
2161		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2162		break;
2163	default:
2164		return ret_val;
2165	}
2166
2167	ret_val = hw->phy.ops.acquire(hw);
2168	if (ret_val)
2169		return ret_val;
2170
2171	data = er32(FEXTNVM);
2172	if (!(data & sw_cfg_mask))
2173		goto release;
2174
2175	/* Make sure HW does not configure LCD from PHY
2176	 * extended configuration before SW configuration
2177	 */
2178	data = er32(EXTCNF_CTRL);
2179	if ((hw->mac.type < e1000_pch2lan) &&
2180	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2181		goto release;
2182
2183	cnf_size = er32(EXTCNF_SIZE);
2184	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2185	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2186	if (!cnf_size)
2187		goto release;
2188
2189	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2190	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2191
2192	if (((hw->mac.type == e1000_pchlan) &&
2193	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2194	    (hw->mac.type > e1000_pchlan)) {
2195		/* HW configures the SMBus address and LEDs when the
2196		 * OEM and LCD Write Enable bits are set in the NVM.
2197		 * When both NVM bits are cleared, SW will configure
2198		 * them instead.
2199		 */
2200		ret_val = e1000_write_smbus_addr(hw);
2201		if (ret_val)
2202			goto release;
2203
2204		data = er32(LEDCTL);
2205		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2206							(u16)data);
2207		if (ret_val)
2208			goto release;
2209	}
2210
2211	/* Configure LCD from extended configuration region. */
2212
2213	/* cnf_base_addr is in DWORD */
2214	word_addr = (u16)(cnf_base_addr << 1);
2215
2216	for (i = 0; i < cnf_size; i++) {
2217		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2218		if (ret_val)
2219			goto release;
2220
2221		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2222					 1, &reg_addr);
2223		if (ret_val)
2224			goto release;
2225
2226		/* Save off the PHY page for future writes. */
2227		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2228			phy_page = reg_data;
2229			continue;
2230		}
2231
2232		reg_addr &= PHY_REG_MASK;
2233		reg_addr |= phy_page;
2234
2235		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2236		if (ret_val)
2237			goto release;
2238	}
2239
2240release:
2241	hw->phy.ops.release(hw);
2242	return ret_val;
2243}
2244
2245/**
2246 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2247 *  @hw:   pointer to the HW structure
2248 *  @link: link up bool flag
2249 *
2250 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2251 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2252 *  If link is down, the function will restore the default K1 setting located
2253 *  in the NVM.
2254 **/
2255static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2256{
2257	s32 ret_val = 0;
2258	u16 status_reg = 0;
2259	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2260
2261	if (hw->mac.type != e1000_pchlan)
2262		return 0;
2263
2264	/* Wrap the whole flow with the sw flag */
2265	ret_val = hw->phy.ops.acquire(hw);
2266	if (ret_val)
2267		return ret_val;
2268
2269	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2270	if (link) {
2271		if (hw->phy.type == e1000_phy_82578) {
2272			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2273						  &status_reg);
2274			if (ret_val)
2275				goto release;
2276
2277			status_reg &= (BM_CS_STATUS_LINK_UP |
2278				       BM_CS_STATUS_RESOLVED |
2279				       BM_CS_STATUS_SPEED_MASK);
2280
2281			if (status_reg == (BM_CS_STATUS_LINK_UP |
2282					   BM_CS_STATUS_RESOLVED |
2283					   BM_CS_STATUS_SPEED_1000))
2284				k1_enable = false;
2285		}
2286
2287		if (hw->phy.type == e1000_phy_82577) {
2288			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2289			if (ret_val)
2290				goto release;
2291
2292			status_reg &= (HV_M_STATUS_LINK_UP |
2293				       HV_M_STATUS_AUTONEG_COMPLETE |
2294				       HV_M_STATUS_SPEED_MASK);
2295
2296			if (status_reg == (HV_M_STATUS_LINK_UP |
2297					   HV_M_STATUS_AUTONEG_COMPLETE |
2298					   HV_M_STATUS_SPEED_1000))
2299				k1_enable = false;
2300		}
2301
2302		/* Link stall fix for link up */
2303		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2304		if (ret_val)
2305			goto release;
2306
2307	} else {
2308		/* Link stall fix for link down */
2309		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2310		if (ret_val)
2311			goto release;
2312	}
2313
2314	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2315
2316release:
2317	hw->phy.ops.release(hw);
2318
2319	return ret_val;
2320}
2321
2322/**
2323 *  e1000_configure_k1_ich8lan - Configure K1 power state
2324 *  @hw: pointer to the HW structure
2325 *  @k1_enable: K1 state to configure
2326 *
2327 *  Configure the K1 power state based on the provided parameter.
2328 *  Assumes semaphore already acquired.
2329 *
2330 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2331 **/
2332s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2333{
2334	s32 ret_val;
2335	u32 ctrl_reg = 0;
2336	u32 ctrl_ext = 0;
2337	u32 reg = 0;
2338	u16 kmrn_reg = 0;
2339
2340	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2341					      &kmrn_reg);
2342	if (ret_val)
2343		return ret_val;
2344
2345	if (k1_enable)
2346		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2347	else
2348		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2349
2350	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2351					       kmrn_reg);
2352	if (ret_val)
2353		return ret_val;
2354
2355	usleep_range(20, 40);
2356	ctrl_ext = er32(CTRL_EXT);
2357	ctrl_reg = er32(CTRL);
2358
2359	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2360	reg |= E1000_CTRL_FRCSPD;
2361	ew32(CTRL, reg);
2362
2363	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2364	e1e_flush();
2365	usleep_range(20, 40);
2366	ew32(CTRL, ctrl_reg);
2367	ew32(CTRL_EXT, ctrl_ext);
2368	e1e_flush();
2369	usleep_range(20, 40);
2370
2371	return 0;
2372}
2373
2374/**
2375 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2376 *  @hw:       pointer to the HW structure
2377 *  @d0_state: boolean if entering d0 or d3 device state
2378 *
2379 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2380 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2381 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2382 **/
2383static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2384{
2385	s32 ret_val = 0;
2386	u32 mac_reg;
2387	u16 oem_reg;
2388
2389	if (hw->mac.type < e1000_pchlan)
2390		return ret_val;
2391
2392	ret_val = hw->phy.ops.acquire(hw);
2393	if (ret_val)
2394		return ret_val;
2395
2396	if (hw->mac.type == e1000_pchlan) {
2397		mac_reg = er32(EXTCNF_CTRL);
2398		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2399			goto release;
2400	}
2401
2402	mac_reg = er32(FEXTNVM);
2403	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2404		goto release;
2405
2406	mac_reg = er32(PHY_CTRL);
2407
2408	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2409	if (ret_val)
2410		goto release;
2411
2412	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2413
2414	if (d0_state) {
2415		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2416			oem_reg |= HV_OEM_BITS_GBE_DIS;
2417
2418		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2419			oem_reg |= HV_OEM_BITS_LPLU;
2420	} else {
2421		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2422			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2423			oem_reg |= HV_OEM_BITS_GBE_DIS;
2424
2425		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2426			       E1000_PHY_CTRL_NOND0A_LPLU))
2427			oem_reg |= HV_OEM_BITS_LPLU;
2428	}
2429
2430	/* Set Restart auto-neg to activate the bits */
2431	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2432	    !hw->phy.ops.check_reset_block(hw))
2433		oem_reg |= HV_OEM_BITS_RESTART_AN;
2434
2435	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2436
2437release:
2438	hw->phy.ops.release(hw);
2439
2440	return ret_val;
2441}
2442
2443/**
2444 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2445 *  @hw:   pointer to the HW structure
2446 **/
2447static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2448{
2449	s32 ret_val;
2450	u16 data;
2451
2452	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2453	if (ret_val)
2454		return ret_val;
2455
2456	data |= HV_KMRN_MDIO_SLOW;
2457
2458	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2459
2460	return ret_val;
2461}
2462
2463/**
2464 *  e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2465 *  @hw: pointer to the HW structure
2466 *
2467 *  A series of PHY workarounds to be done after every PHY reset.
2468 **/
2469static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2470{
2471	s32 ret_val = 0;
2472	u16 phy_data;
2473
2474	if (hw->mac.type != e1000_pchlan)
2475		return 0;
2476
2477	/* Set MDIO slow mode before any other MDIO access */
2478	if (hw->phy.type == e1000_phy_82577) {
2479		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2480		if (ret_val)
2481			return ret_val;
2482	}
2483
2484	if (((hw->phy.type == e1000_phy_82577) &&
2485	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2486	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2487		/* Disable generation of early preamble */
2488		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2489		if (ret_val)
2490			return ret_val;
2491
2492		/* Preamble tuning for SSC */
2493		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2494		if (ret_val)
2495			return ret_val;
2496	}
2497
2498	if (hw->phy.type == e1000_phy_82578) {
2499		/* Return registers to default by doing a soft reset then
2500		 * writing 0x3140 to the control register.
2501		 */
2502		if (hw->phy.revision < 2) {
2503			e1000e_phy_sw_reset(hw);
2504			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2505			if (ret_val)
2506				return ret_val;
2507		}
2508	}
2509
2510	/* Select page 0 */
2511	ret_val = hw->phy.ops.acquire(hw);
2512	if (ret_val)
2513		return ret_val;
2514
2515	hw->phy.addr = 1;
2516	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2517	hw->phy.ops.release(hw);
2518	if (ret_val)
2519		return ret_val;
2520
2521	/* Configure the K1 Si workaround during phy reset assuming there is
2522	 * link so that it disables K1 if link is in 1Gbps.
2523	 */
2524	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2525	if (ret_val)
2526		return ret_val;
2527
2528	/* Workaround for link disconnects on a busy hub in half duplex */
2529	ret_val = hw->phy.ops.acquire(hw);
2530	if (ret_val)
2531		return ret_val;
2532	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2533	if (ret_val)
2534		goto release;
2535	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2536	if (ret_val)
2537		goto release;
2538
2539	/* set MSE higher to enable link to stay up when noise is high */
2540	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2541release:
2542	hw->phy.ops.release(hw);
2543
2544	return ret_val;
2545}
2546
2547/**
2548 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2549 *  @hw:   pointer to the HW structure
2550 **/
2551void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2552{
2553	u32 mac_reg;
2554	u16 i, phy_reg = 0;
2555	s32 ret_val;
2556
2557	ret_val = hw->phy.ops.acquire(hw);
2558	if (ret_val)
2559		return;
2560	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2561	if (ret_val)
2562		goto release;
2563
2564	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2565	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2566		mac_reg = er32(RAL(i));
2567		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2568					   (u16)(mac_reg & 0xFFFF));
2569		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2570					   (u16)((mac_reg >> 16) & 0xFFFF));
2571
2572		mac_reg = er32(RAH(i));
2573		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2574					   (u16)(mac_reg & 0xFFFF));
2575		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2576					   (u16)((mac_reg & E1000_RAH_AV) >> 16));
 
2577	}
2578
2579	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2580
2581release:
2582	hw->phy.ops.release(hw);
2583}
2584
2585/**
2586 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2587 *  with 82579 PHY
2588 *  @hw: pointer to the HW structure
2589 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2590 **/
2591s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2592{
2593	s32 ret_val = 0;
2594	u16 phy_reg, data;
2595	u32 mac_reg;
2596	u16 i;
2597
2598	if (hw->mac.type < e1000_pch2lan)
2599		return 0;
2600
2601	/* disable Rx path while enabling/disabling workaround */
2602	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2603	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2604	if (ret_val)
2605		return ret_val;
2606
2607	if (enable) {
2608		/* Write Rx addresses (rar_entry_count for RAL/H, and
2609		 * SHRAL/H) and initial CRC values to the MAC
2610		 */
2611		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2612			u8 mac_addr[ETH_ALEN] = { 0 };
2613			u32 addr_high, addr_low;
2614
2615			addr_high = er32(RAH(i));
2616			if (!(addr_high & E1000_RAH_AV))
2617				continue;
2618			addr_low = er32(RAL(i));
2619			mac_addr[0] = (addr_low & 0xFF);
2620			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2621			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2622			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2623			mac_addr[4] = (addr_high & 0xFF);
2624			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2625
2626			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2627		}
2628
2629		/* Write Rx addresses to the PHY */
2630		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2631
2632		/* Enable jumbo frame workaround in the MAC */
2633		mac_reg = er32(FFLT_DBG);
2634		mac_reg &= ~BIT(14);
2635		mac_reg |= (7 << 15);
2636		ew32(FFLT_DBG, mac_reg);
2637
2638		mac_reg = er32(RCTL);
2639		mac_reg |= E1000_RCTL_SECRC;
2640		ew32(RCTL, mac_reg);
2641
2642		ret_val = e1000e_read_kmrn_reg(hw,
2643					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2644					       &data);
2645		if (ret_val)
2646			return ret_val;
2647		ret_val = e1000e_write_kmrn_reg(hw,
2648						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2649						data | BIT(0));
2650		if (ret_val)
2651			return ret_val;
2652		ret_val = e1000e_read_kmrn_reg(hw,
2653					       E1000_KMRNCTRLSTA_HD_CTRL,
2654					       &data);
2655		if (ret_val)
2656			return ret_val;
2657		data &= ~(0xF << 8);
2658		data |= (0xB << 8);
2659		ret_val = e1000e_write_kmrn_reg(hw,
2660						E1000_KMRNCTRLSTA_HD_CTRL,
2661						data);
2662		if (ret_val)
2663			return ret_val;
2664
2665		/* Enable jumbo frame workaround in the PHY */
2666		e1e_rphy(hw, PHY_REG(769, 23), &data);
2667		data &= ~(0x7F << 5);
2668		data |= (0x37 << 5);
2669		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2670		if (ret_val)
2671			return ret_val;
2672		e1e_rphy(hw, PHY_REG(769, 16), &data);
2673		data &= ~BIT(13);
2674		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2675		if (ret_val)
2676			return ret_val;
2677		e1e_rphy(hw, PHY_REG(776, 20), &data);
2678		data &= ~(0x3FF << 2);
2679		data |= (E1000_TX_PTR_GAP << 2);
2680		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2681		if (ret_val)
2682			return ret_val;
2683		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2684		if (ret_val)
2685			return ret_val;
2686		e1e_rphy(hw, HV_PM_CTRL, &data);
2687		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2688		if (ret_val)
2689			return ret_val;
2690	} else {
2691		/* Write MAC register values back to h/w defaults */
2692		mac_reg = er32(FFLT_DBG);
2693		mac_reg &= ~(0xF << 14);
2694		ew32(FFLT_DBG, mac_reg);
2695
2696		mac_reg = er32(RCTL);
2697		mac_reg &= ~E1000_RCTL_SECRC;
2698		ew32(RCTL, mac_reg);
2699
2700		ret_val = e1000e_read_kmrn_reg(hw,
2701					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2702					       &data);
2703		if (ret_val)
2704			return ret_val;
2705		ret_val = e1000e_write_kmrn_reg(hw,
2706						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2707						data & ~BIT(0));
2708		if (ret_val)
2709			return ret_val;
2710		ret_val = e1000e_read_kmrn_reg(hw,
2711					       E1000_KMRNCTRLSTA_HD_CTRL,
2712					       &data);
2713		if (ret_val)
2714			return ret_val;
2715		data &= ~(0xF << 8);
2716		data |= (0xB << 8);
2717		ret_val = e1000e_write_kmrn_reg(hw,
2718						E1000_KMRNCTRLSTA_HD_CTRL,
2719						data);
2720		if (ret_val)
2721			return ret_val;
2722
2723		/* Write PHY register values back to h/w defaults */
2724		e1e_rphy(hw, PHY_REG(769, 23), &data);
2725		data &= ~(0x7F << 5);
2726		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2727		if (ret_val)
2728			return ret_val;
2729		e1e_rphy(hw, PHY_REG(769, 16), &data);
2730		data |= BIT(13);
2731		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2732		if (ret_val)
2733			return ret_val;
2734		e1e_rphy(hw, PHY_REG(776, 20), &data);
2735		data &= ~(0x3FF << 2);
2736		data |= (0x8 << 2);
2737		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2738		if (ret_val)
2739			return ret_val;
2740		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2741		if (ret_val)
2742			return ret_val;
2743		e1e_rphy(hw, HV_PM_CTRL, &data);
2744		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2745		if (ret_val)
2746			return ret_val;
2747	}
2748
2749	/* re-enable Rx path after enabling/disabling workaround */
2750	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2751}
2752
2753/**
2754 *  e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2755 *  @hw: pointer to the HW structure
2756 *
2757 *  A series of PHY workarounds to be done after every PHY reset.
2758 **/
2759static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2760{
2761	s32 ret_val = 0;
2762
2763	if (hw->mac.type != e1000_pch2lan)
2764		return 0;
2765
2766	/* Set MDIO slow mode before any other MDIO access */
2767	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2768	if (ret_val)
2769		return ret_val;
2770
2771	ret_val = hw->phy.ops.acquire(hw);
2772	if (ret_val)
2773		return ret_val;
2774	/* set MSE higher to enable link to stay up when noise is high */
2775	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2776	if (ret_val)
2777		goto release;
2778	/* drop link after 5 times MSE threshold was reached */
2779	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2780release:
2781	hw->phy.ops.release(hw);
2782
2783	return ret_val;
2784}
2785
2786/**
2787 *  e1000_k1_workaround_lv - K1 Si workaround
2788 *  @hw:   pointer to the HW structure
2789 *
2790 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2791 *  Disable K1 in 1000Mbps and 100Mbps
2792 **/
2793static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2794{
2795	s32 ret_val = 0;
2796	u16 status_reg = 0;
2797
2798	if (hw->mac.type != e1000_pch2lan)
2799		return 0;
2800
2801	/* Set K1 beacon duration based on 10Mbs speed */
2802	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2803	if (ret_val)
2804		return ret_val;
2805
2806	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2807	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2808		if (status_reg &
2809		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2810			u16 pm_phy_reg;
2811
2812			/* LV 1G/100 Packet drop issue wa  */
2813			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2814			if (ret_val)
2815				return ret_val;
2816			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2817			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2818			if (ret_val)
2819				return ret_val;
2820		} else {
2821			u32 mac_reg;
2822
2823			mac_reg = er32(FEXTNVM4);
2824			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2825			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2826			ew32(FEXTNVM4, mac_reg);
2827		}
2828	}
2829
2830	return ret_val;
2831}
2832
2833/**
2834 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2835 *  @hw:   pointer to the HW structure
2836 *  @gate: boolean set to true to gate, false to ungate
2837 *
2838 *  Gate/ungate the automatic PHY configuration via hardware; perform
2839 *  the configuration via software instead.
2840 **/
2841static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2842{
2843	u32 extcnf_ctrl;
2844
2845	if (hw->mac.type < e1000_pch2lan)
2846		return;
2847
2848	extcnf_ctrl = er32(EXTCNF_CTRL);
2849
2850	if (gate)
2851		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2852	else
2853		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2854
2855	ew32(EXTCNF_CTRL, extcnf_ctrl);
2856}
2857
2858/**
2859 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2860 *  @hw: pointer to the HW structure
2861 *
2862 *  Check the appropriate indication the MAC has finished configuring the
2863 *  PHY after a software reset.
2864 **/
2865static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2866{
2867	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2868
2869	/* Wait for basic configuration completes before proceeding */
2870	do {
2871		data = er32(STATUS);
2872		data &= E1000_STATUS_LAN_INIT_DONE;
2873		usleep_range(100, 200);
2874	} while ((!data) && --loop);
2875
2876	/* If basic configuration is incomplete before the above loop
2877	 * count reaches 0, loading the configuration from NVM will
2878	 * leave the PHY in a bad state possibly resulting in no link.
2879	 */
2880	if (loop == 0)
2881		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2882
2883	/* Clear the Init Done bit for the next init event */
2884	data = er32(STATUS);
2885	data &= ~E1000_STATUS_LAN_INIT_DONE;
2886	ew32(STATUS, data);
2887}
2888
2889/**
2890 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2891 *  @hw: pointer to the HW structure
2892 **/
2893static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2894{
2895	s32 ret_val = 0;
2896	u16 reg;
2897
2898	if (hw->phy.ops.check_reset_block(hw))
2899		return 0;
2900
2901	/* Allow time for h/w to get to quiescent state after reset */
2902	usleep_range(10000, 11000);
2903
2904	/* Perform any necessary post-reset workarounds */
2905	switch (hw->mac.type) {
2906	case e1000_pchlan:
2907		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2908		if (ret_val)
2909			return ret_val;
2910		break;
2911	case e1000_pch2lan:
2912		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2913		if (ret_val)
2914			return ret_val;
2915		break;
2916	default:
2917		break;
2918	}
2919
2920	/* Clear the host wakeup bit after lcd reset */
2921	if (hw->mac.type >= e1000_pchlan) {
2922		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2923		reg &= ~BM_WUC_HOST_WU_BIT;
2924		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2925	}
2926
2927	/* Configure the LCD with the extended configuration region in NVM */
2928	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2929	if (ret_val)
2930		return ret_val;
2931
2932	/* Configure the LCD with the OEM bits in NVM */
2933	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2934
2935	if (hw->mac.type == e1000_pch2lan) {
2936		/* Ungate automatic PHY configuration on non-managed 82579 */
2937		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2938			usleep_range(10000, 11000);
2939			e1000_gate_hw_phy_config_ich8lan(hw, false);
2940		}
2941
2942		/* Set EEE LPI Update Timer to 200usec */
2943		ret_val = hw->phy.ops.acquire(hw);
2944		if (ret_val)
2945			return ret_val;
2946		ret_val = e1000_write_emi_reg_locked(hw,
2947						     I82579_LPI_UPDATE_TIMER,
2948						     0x1387);
2949		hw->phy.ops.release(hw);
2950	}
2951
2952	return ret_val;
2953}
2954
2955/**
2956 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2957 *  @hw: pointer to the HW structure
2958 *
2959 *  Resets the PHY
2960 *  This is a function pointer entry point called by drivers
2961 *  or other shared routines.
2962 **/
2963static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2964{
2965	s32 ret_val = 0;
2966
2967	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2968	if ((hw->mac.type == e1000_pch2lan) &&
2969	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2970		e1000_gate_hw_phy_config_ich8lan(hw, true);
2971
2972	ret_val = e1000e_phy_hw_reset_generic(hw);
2973	if (ret_val)
2974		return ret_val;
2975
2976	return e1000_post_phy_reset_ich8lan(hw);
2977}
2978
2979/**
2980 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2981 *  @hw: pointer to the HW structure
2982 *  @active: true to enable LPLU, false to disable
2983 *
2984 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2985 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2986 *  the phy speed. This function will manually set the LPLU bit and restart
2987 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2988 *  since it configures the same bit.
2989 **/
2990static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2991{
2992	s32 ret_val;
2993	u16 oem_reg;
2994
2995	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2996	if (ret_val)
2997		return ret_val;
2998
2999	if (active)
3000		oem_reg |= HV_OEM_BITS_LPLU;
3001	else
3002		oem_reg &= ~HV_OEM_BITS_LPLU;
3003
3004	if (!hw->phy.ops.check_reset_block(hw))
3005		oem_reg |= HV_OEM_BITS_RESTART_AN;
3006
3007	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
3008}
3009
3010/**
3011 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3012 *  @hw: pointer to the HW structure
3013 *  @active: true to enable LPLU, false to disable
3014 *
3015 *  Sets the LPLU D0 state according to the active flag.  When
3016 *  activating LPLU this function also disables smart speed
3017 *  and vice versa.  LPLU will not be activated unless the
3018 *  device autonegotiation advertisement meets standards of
3019 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3020 *  This is a function pointer entry point only called by
3021 *  PHY setup routines.
3022 **/
3023static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3024{
3025	struct e1000_phy_info *phy = &hw->phy;
3026	u32 phy_ctrl;
3027	s32 ret_val = 0;
3028	u16 data;
3029
3030	if (phy->type == e1000_phy_ife)
3031		return 0;
3032
3033	phy_ctrl = er32(PHY_CTRL);
3034
3035	if (active) {
3036		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3037		ew32(PHY_CTRL, phy_ctrl);
3038
3039		if (phy->type != e1000_phy_igp_3)
3040			return 0;
3041
3042		/* Call gig speed drop workaround on LPLU before accessing
3043		 * any PHY registers
3044		 */
3045		if (hw->mac.type == e1000_ich8lan)
3046			e1000e_gig_downshift_workaround_ich8lan(hw);
3047
3048		/* When LPLU is enabled, we should disable SmartSpeed */
3049		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3050		if (ret_val)
3051			return ret_val;
3052		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3053		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3054		if (ret_val)
3055			return ret_val;
3056	} else {
3057		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3058		ew32(PHY_CTRL, phy_ctrl);
3059
3060		if (phy->type != e1000_phy_igp_3)
3061			return 0;
3062
3063		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3064		 * during Dx states where the power conservation is most
3065		 * important.  During driver activity we should enable
3066		 * SmartSpeed, so performance is maintained.
3067		 */
3068		if (phy->smart_speed == e1000_smart_speed_on) {
3069			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3070					   &data);
3071			if (ret_val)
3072				return ret_val;
3073
3074			data |= IGP01E1000_PSCFR_SMART_SPEED;
3075			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3076					   data);
3077			if (ret_val)
3078				return ret_val;
3079		} else if (phy->smart_speed == e1000_smart_speed_off) {
3080			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3081					   &data);
3082			if (ret_val)
3083				return ret_val;
3084
3085			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3086			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3087					   data);
3088			if (ret_val)
3089				return ret_val;
3090		}
3091	}
3092
3093	return 0;
3094}
3095
3096/**
3097 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3098 *  @hw: pointer to the HW structure
3099 *  @active: true to enable LPLU, false to disable
3100 *
3101 *  Sets the LPLU D3 state according to the active flag.  When
3102 *  activating LPLU this function also disables smart speed
3103 *  and vice versa.  LPLU will not be activated unless the
3104 *  device autonegotiation advertisement meets standards of
3105 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3106 *  This is a function pointer entry point only called by
3107 *  PHY setup routines.
3108 **/
3109static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3110{
3111	struct e1000_phy_info *phy = &hw->phy;
3112	u32 phy_ctrl;
3113	s32 ret_val = 0;
3114	u16 data;
3115
3116	phy_ctrl = er32(PHY_CTRL);
3117
3118	if (!active) {
3119		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3120		ew32(PHY_CTRL, phy_ctrl);
3121
3122		if (phy->type != e1000_phy_igp_3)
3123			return 0;
3124
3125		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3126		 * during Dx states where the power conservation is most
3127		 * important.  During driver activity we should enable
3128		 * SmartSpeed, so performance is maintained.
3129		 */
3130		if (phy->smart_speed == e1000_smart_speed_on) {
3131			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3132					   &data);
3133			if (ret_val)
3134				return ret_val;
3135
3136			data |= IGP01E1000_PSCFR_SMART_SPEED;
3137			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3138					   data);
3139			if (ret_val)
3140				return ret_val;
3141		} else if (phy->smart_speed == e1000_smart_speed_off) {
3142			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3143					   &data);
3144			if (ret_val)
3145				return ret_val;
3146
3147			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3148			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3149					   data);
3150			if (ret_val)
3151				return ret_val;
3152		}
3153	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3154		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3155		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3156		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3157		ew32(PHY_CTRL, phy_ctrl);
3158
3159		if (phy->type != e1000_phy_igp_3)
3160			return 0;
3161
3162		/* Call gig speed drop workaround on LPLU before accessing
3163		 * any PHY registers
3164		 */
3165		if (hw->mac.type == e1000_ich8lan)
3166			e1000e_gig_downshift_workaround_ich8lan(hw);
3167
3168		/* When LPLU is enabled, we should disable SmartSpeed */
3169		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3170		if (ret_val)
3171			return ret_val;
3172
3173		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3174		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3175	}
3176
3177	return ret_val;
3178}
3179
3180/**
3181 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3182 *  @hw: pointer to the HW structure
3183 *  @bank:  pointer to the variable that returns the active bank
3184 *
3185 *  Reads signature byte from the NVM using the flash access registers.
3186 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3187 **/
3188static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3189{
3190	u32 eecd;
3191	struct e1000_nvm_info *nvm = &hw->nvm;
3192	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3193	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3194	u32 nvm_dword = 0;
3195	u8 sig_byte = 0;
3196	s32 ret_val;
3197
3198	switch (hw->mac.type) {
3199	case e1000_pch_spt:
3200	case e1000_pch_cnp:
3201	case e1000_pch_tgp:
3202	case e1000_pch_adp:
3203	case e1000_pch_mtp:
3204	case e1000_pch_lnp:
3205	case e1000_pch_ptp:
3206	case e1000_pch_nvp:
3207		bank1_offset = nvm->flash_bank_size;
3208		act_offset = E1000_ICH_NVM_SIG_WORD;
3209
3210		/* set bank to 0 in case flash read fails */
3211		*bank = 0;
3212
3213		/* Check bank 0 */
3214		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3215							 &nvm_dword);
3216		if (ret_val)
3217			return ret_val;
3218		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3219		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3220		    E1000_ICH_NVM_SIG_VALUE) {
3221			*bank = 0;
3222			return 0;
3223		}
3224
3225		/* Check bank 1 */
3226		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3227							 bank1_offset,
3228							 &nvm_dword);
3229		if (ret_val)
3230			return ret_val;
3231		sig_byte = FIELD_GET(0xFF00, nvm_dword);
3232		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3233		    E1000_ICH_NVM_SIG_VALUE) {
3234			*bank = 1;
3235			return 0;
3236		}
3237
3238		e_dbg("ERROR: No valid NVM bank present\n");
3239		return -E1000_ERR_NVM;
3240	case e1000_ich8lan:
3241	case e1000_ich9lan:
3242		eecd = er32(EECD);
3243		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3244		    E1000_EECD_SEC1VAL_VALID_MASK) {
3245			if (eecd & E1000_EECD_SEC1VAL)
3246				*bank = 1;
3247			else
3248				*bank = 0;
3249
3250			return 0;
3251		}
3252		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3253		fallthrough;
3254	default:
3255		/* set bank to 0 in case flash read fails */
3256		*bank = 0;
3257
3258		/* Check bank 0 */
3259		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3260							&sig_byte);
3261		if (ret_val)
3262			return ret_val;
3263		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3264		    E1000_ICH_NVM_SIG_VALUE) {
3265			*bank = 0;
3266			return 0;
3267		}
3268
3269		/* Check bank 1 */
3270		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3271							bank1_offset,
3272							&sig_byte);
3273		if (ret_val)
3274			return ret_val;
3275		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3276		    E1000_ICH_NVM_SIG_VALUE) {
3277			*bank = 1;
3278			return 0;
3279		}
3280
3281		e_dbg("ERROR: No valid NVM bank present\n");
3282		return -E1000_ERR_NVM;
3283	}
3284}
3285
3286/**
3287 *  e1000_read_nvm_spt - NVM access for SPT
3288 *  @hw: pointer to the HW structure
3289 *  @offset: The offset (in bytes) of the word(s) to read.
3290 *  @words: Size of data to read in words.
3291 *  @data: pointer to the word(s) to read at offset.
3292 *
3293 *  Reads a word(s) from the NVM
3294 **/
3295static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3296			      u16 *data)
3297{
3298	struct e1000_nvm_info *nvm = &hw->nvm;
3299	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3300	u32 act_offset;
3301	s32 ret_val = 0;
3302	u32 bank = 0;
3303	u32 dword = 0;
3304	u16 offset_to_read;
3305	u16 i;
3306
3307	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3308	    (words == 0)) {
3309		e_dbg("nvm parameter(s) out of bounds\n");
3310		ret_val = -E1000_ERR_NVM;
3311		goto out;
3312	}
3313
3314	nvm->ops.acquire(hw);
3315
3316	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3317	if (ret_val) {
3318		e_dbg("Could not detect valid bank, assuming bank 0\n");
3319		bank = 0;
3320	}
3321
3322	act_offset = (bank) ? nvm->flash_bank_size : 0;
3323	act_offset += offset;
3324
3325	ret_val = 0;
3326
3327	for (i = 0; i < words; i += 2) {
3328		if (words - i == 1) {
3329			if (dev_spec->shadow_ram[offset + i].modified) {
3330				data[i] =
3331				    dev_spec->shadow_ram[offset + i].value;
3332			} else {
3333				offset_to_read = act_offset + i -
3334				    ((act_offset + i) % 2);
3335				ret_val =
3336				  e1000_read_flash_dword_ich8lan(hw,
3337								 offset_to_read,
3338								 &dword);
3339				if (ret_val)
3340					break;
3341				if ((act_offset + i) % 2 == 0)
3342					data[i] = (u16)(dword & 0xFFFF);
3343				else
3344					data[i] = (u16)((dword >> 16) & 0xFFFF);
3345			}
3346		} else {
3347			offset_to_read = act_offset + i;
3348			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3349			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3350				ret_val =
3351				  e1000_read_flash_dword_ich8lan(hw,
3352								 offset_to_read,
3353								 &dword);
3354				if (ret_val)
3355					break;
3356			}
3357			if (dev_spec->shadow_ram[offset + i].modified)
3358				data[i] =
3359				    dev_spec->shadow_ram[offset + i].value;
3360			else
3361				data[i] = (u16)(dword & 0xFFFF);
3362			if (dev_spec->shadow_ram[offset + i].modified)
3363				data[i + 1] =
3364				    dev_spec->shadow_ram[offset + i + 1].value;
3365			else
3366				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3367		}
3368	}
3369
3370	nvm->ops.release(hw);
3371
3372out:
3373	if (ret_val)
3374		e_dbg("NVM read error: %d\n", ret_val);
3375
3376	return ret_val;
3377}
3378
3379/**
3380 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3381 *  @hw: pointer to the HW structure
3382 *  @offset: The offset (in bytes) of the word(s) to read.
3383 *  @words: Size of data to read in words
3384 *  @data: Pointer to the word(s) to read at offset.
3385 *
3386 *  Reads a word(s) from the NVM using the flash access registers.
3387 **/
3388static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3389				  u16 *data)
3390{
3391	struct e1000_nvm_info *nvm = &hw->nvm;
3392	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3393	u32 act_offset;
3394	s32 ret_val = 0;
3395	u32 bank = 0;
3396	u16 i, word;
3397
3398	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3399	    (words == 0)) {
3400		e_dbg("nvm parameter(s) out of bounds\n");
3401		ret_val = -E1000_ERR_NVM;
3402		goto out;
3403	}
3404
3405	nvm->ops.acquire(hw);
3406
3407	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3408	if (ret_val) {
3409		e_dbg("Could not detect valid bank, assuming bank 0\n");
3410		bank = 0;
3411	}
3412
3413	act_offset = (bank) ? nvm->flash_bank_size : 0;
3414	act_offset += offset;
3415
3416	ret_val = 0;
3417	for (i = 0; i < words; i++) {
3418		if (dev_spec->shadow_ram[offset + i].modified) {
3419			data[i] = dev_spec->shadow_ram[offset + i].value;
3420		} else {
3421			ret_val = e1000_read_flash_word_ich8lan(hw,
3422								act_offset + i,
3423								&word);
3424			if (ret_val)
3425				break;
3426			data[i] = word;
3427		}
3428	}
3429
3430	nvm->ops.release(hw);
3431
3432out:
3433	if (ret_val)
3434		e_dbg("NVM read error: %d\n", ret_val);
3435
3436	return ret_val;
3437}
3438
3439/**
3440 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3441 *  @hw: pointer to the HW structure
3442 *
3443 *  This function does initial flash setup so that a new read/write/erase cycle
3444 *  can be started.
3445 **/
3446static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3447{
3448	union ich8_hws_flash_status hsfsts;
3449	s32 ret_val = -E1000_ERR_NVM;
3450
3451	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3452
3453	/* Check if the flash descriptor is valid */
3454	if (!hsfsts.hsf_status.fldesvalid) {
3455		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3456		return -E1000_ERR_NVM;
3457	}
3458
3459	/* Clear FCERR and DAEL in hw status by writing 1 */
3460	hsfsts.hsf_status.flcerr = 1;
3461	hsfsts.hsf_status.dael = 1;
3462	if (hw->mac.type >= e1000_pch_spt)
3463		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3464	else
3465		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3466
3467	/* Either we should have a hardware SPI cycle in progress
3468	 * bit to check against, in order to start a new cycle or
3469	 * FDONE bit should be changed in the hardware so that it
3470	 * is 1 after hardware reset, which can then be used as an
3471	 * indication whether a cycle is in progress or has been
3472	 * completed.
3473	 */
3474
3475	if (!hsfsts.hsf_status.flcinprog) {
3476		/* There is no cycle running at present,
3477		 * so we can start a cycle.
3478		 * Begin by setting Flash Cycle Done.
3479		 */
3480		hsfsts.hsf_status.flcdone = 1;
3481		if (hw->mac.type >= e1000_pch_spt)
3482			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3483		else
3484			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3485		ret_val = 0;
3486	} else {
3487		s32 i;
3488
3489		/* Otherwise poll for sometime so the current
3490		 * cycle has a chance to end before giving up.
3491		 */
3492		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3493			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3494			if (!hsfsts.hsf_status.flcinprog) {
3495				ret_val = 0;
3496				break;
3497			}
3498			udelay(1);
3499		}
3500		if (!ret_val) {
3501			/* Successful in waiting for previous cycle to timeout,
3502			 * now set the Flash Cycle Done.
3503			 */
3504			hsfsts.hsf_status.flcdone = 1;
3505			if (hw->mac.type >= e1000_pch_spt)
3506				ew32flash(ICH_FLASH_HSFSTS,
3507					  hsfsts.regval & 0xFFFF);
3508			else
3509				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3510		} else {
3511			e_dbg("Flash controller busy, cannot get access\n");
3512		}
3513	}
3514
3515	return ret_val;
3516}
3517
3518/**
3519 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3520 *  @hw: pointer to the HW structure
3521 *  @timeout: maximum time to wait for completion
3522 *
3523 *  This function starts a flash cycle and waits for its completion.
3524 **/
3525static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3526{
3527	union ich8_hws_flash_ctrl hsflctl;
3528	union ich8_hws_flash_status hsfsts;
3529	u32 i = 0;
3530
3531	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3532	if (hw->mac.type >= e1000_pch_spt)
3533		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3534	else
3535		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3536	hsflctl.hsf_ctrl.flcgo = 1;
3537
3538	if (hw->mac.type >= e1000_pch_spt)
3539		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3540	else
3541		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3542
3543	/* wait till FDONE bit is set to 1 */
3544	do {
3545		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3546		if (hsfsts.hsf_status.flcdone)
3547			break;
3548		udelay(1);
3549	} while (i++ < timeout);
3550
3551	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3552		return 0;
3553
3554	return -E1000_ERR_NVM;
3555}
3556
3557/**
3558 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3559 *  @hw: pointer to the HW structure
3560 *  @offset: offset to data location
3561 *  @data: pointer to the location for storing the data
3562 *
3563 *  Reads the flash dword at offset into data.  Offset is converted
3564 *  to bytes before read.
3565 **/
3566static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3567					  u32 *data)
3568{
3569	/* Must convert word offset into bytes. */
3570	offset <<= 1;
3571	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3572}
3573
3574/**
3575 *  e1000_read_flash_word_ich8lan - Read word from flash
3576 *  @hw: pointer to the HW structure
3577 *  @offset: offset to data location
3578 *  @data: pointer to the location for storing the data
3579 *
3580 *  Reads the flash word at offset into data.  Offset is converted
3581 *  to bytes before read.
3582 **/
3583static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3584					 u16 *data)
3585{
3586	/* Must convert offset into bytes. */
3587	offset <<= 1;
3588
3589	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3590}
3591
3592/**
3593 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3594 *  @hw: pointer to the HW structure
3595 *  @offset: The offset of the byte to read.
3596 *  @data: Pointer to a byte to store the value read.
3597 *
3598 *  Reads a single byte from the NVM using the flash access registers.
3599 **/
3600static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3601					 u8 *data)
3602{
3603	s32 ret_val;
3604	u16 word = 0;
3605
3606	/* In SPT, only 32 bits access is supported,
3607	 * so this function should not be called.
3608	 */
3609	if (hw->mac.type >= e1000_pch_spt)
3610		return -E1000_ERR_NVM;
3611	else
3612		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3613
3614	if (ret_val)
3615		return ret_val;
3616
3617	*data = (u8)word;
3618
3619	return 0;
3620}
3621
3622/**
3623 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3624 *  @hw: pointer to the HW structure
3625 *  @offset: The offset (in bytes) of the byte or word to read.
3626 *  @size: Size of data to read, 1=byte 2=word
3627 *  @data: Pointer to the word to store the value read.
3628 *
3629 *  Reads a byte or word from the NVM using the flash access registers.
3630 **/
3631static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3632					 u8 size, u16 *data)
3633{
3634	union ich8_hws_flash_status hsfsts;
3635	union ich8_hws_flash_ctrl hsflctl;
3636	u32 flash_linear_addr;
3637	u32 flash_data = 0;
3638	s32 ret_val = -E1000_ERR_NVM;
3639	u8 count = 0;
3640
3641	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3642		return -E1000_ERR_NVM;
3643
3644	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3645			     hw->nvm.flash_base_addr);
3646
3647	do {
3648		udelay(1);
3649		/* Steps */
3650		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3651		if (ret_val)
3652			break;
3653
3654		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3655		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3656		hsflctl.hsf_ctrl.fldbcount = size - 1;
3657		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3658		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3659
3660		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3661
3662		ret_val =
3663		    e1000_flash_cycle_ich8lan(hw,
3664					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3665
3666		/* Check if FCERR is set to 1, if set to 1, clear it
3667		 * and try the whole sequence a few more times, else
3668		 * read in (shift in) the Flash Data0, the order is
3669		 * least significant byte first msb to lsb
3670		 */
3671		if (!ret_val) {
3672			flash_data = er32flash(ICH_FLASH_FDATA0);
3673			if (size == 1)
3674				*data = (u8)(flash_data & 0x000000FF);
3675			else if (size == 2)
3676				*data = (u16)(flash_data & 0x0000FFFF);
3677			break;
3678		} else {
3679			/* If we've gotten here, then things are probably
3680			 * completely hosed, but if the error condition is
3681			 * detected, it won't hurt to give it another try...
3682			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3683			 */
3684			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3685			if (hsfsts.hsf_status.flcerr) {
3686				/* Repeat for some time before giving up. */
3687				continue;
3688			} else if (!hsfsts.hsf_status.flcdone) {
3689				e_dbg("Timeout error - flash cycle did not complete.\n");
3690				break;
3691			}
3692		}
3693	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3694
3695	return ret_val;
3696}
3697
3698/**
3699 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3700 *  @hw: pointer to the HW structure
3701 *  @offset: The offset (in bytes) of the dword to read.
3702 *  @data: Pointer to the dword to store the value read.
3703 *
3704 *  Reads a byte or word from the NVM using the flash access registers.
3705 **/
3706
3707static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3708					   u32 *data)
3709{
3710	union ich8_hws_flash_status hsfsts;
3711	union ich8_hws_flash_ctrl hsflctl;
3712	u32 flash_linear_addr;
3713	s32 ret_val = -E1000_ERR_NVM;
3714	u8 count = 0;
3715
3716	if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
 
3717		return -E1000_ERR_NVM;
3718	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3719			     hw->nvm.flash_base_addr);
3720
3721	do {
3722		udelay(1);
3723		/* Steps */
3724		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3725		if (ret_val)
3726			break;
3727		/* In SPT, This register is in Lan memory space, not flash.
3728		 * Therefore, only 32 bit access is supported
3729		 */
3730		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3731
3732		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3733		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3734		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3735		/* In SPT, This register is in Lan memory space, not flash.
3736		 * Therefore, only 32 bit access is supported
3737		 */
3738		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3739		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3740
3741		ret_val =
3742		   e1000_flash_cycle_ich8lan(hw,
3743					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3744
3745		/* Check if FCERR is set to 1, if set to 1, clear it
3746		 * and try the whole sequence a few more times, else
3747		 * read in (shift in) the Flash Data0, the order is
3748		 * least significant byte first msb to lsb
3749		 */
3750		if (!ret_val) {
3751			*data = er32flash(ICH_FLASH_FDATA0);
3752			break;
3753		} else {
3754			/* If we've gotten here, then things are probably
3755			 * completely hosed, but if the error condition is
3756			 * detected, it won't hurt to give it another try...
3757			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3758			 */
3759			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3760			if (hsfsts.hsf_status.flcerr) {
3761				/* Repeat for some time before giving up. */
3762				continue;
3763			} else if (!hsfsts.hsf_status.flcdone) {
3764				e_dbg("Timeout error - flash cycle did not complete.\n");
3765				break;
3766			}
3767		}
3768	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3769
3770	return ret_val;
3771}
3772
3773/**
3774 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3775 *  @hw: pointer to the HW structure
3776 *  @offset: The offset (in bytes) of the word(s) to write.
3777 *  @words: Size of data to write in words
3778 *  @data: Pointer to the word(s) to write at offset.
3779 *
3780 *  Writes a byte or word to the NVM using the flash access registers.
3781 **/
3782static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3783				   u16 *data)
3784{
3785	struct e1000_nvm_info *nvm = &hw->nvm;
3786	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3787	u16 i;
3788
3789	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3790	    (words == 0)) {
3791		e_dbg("nvm parameter(s) out of bounds\n");
3792		return -E1000_ERR_NVM;
3793	}
3794
3795	nvm->ops.acquire(hw);
3796
3797	for (i = 0; i < words; i++) {
3798		dev_spec->shadow_ram[offset + i].modified = true;
3799		dev_spec->shadow_ram[offset + i].value = data[i];
3800	}
3801
3802	nvm->ops.release(hw);
3803
3804	return 0;
3805}
3806
3807/**
3808 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3809 *  @hw: pointer to the HW structure
3810 *
3811 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3812 *  which writes the checksum to the shadow ram.  The changes in the shadow
3813 *  ram are then committed to the EEPROM by processing each bank at a time
3814 *  checking for the modified bit and writing only the pending changes.
3815 *  After a successful commit, the shadow ram is cleared and is ready for
3816 *  future writes.
3817 **/
3818static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3819{
3820	struct e1000_nvm_info *nvm = &hw->nvm;
3821	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3822	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3823	s32 ret_val;
3824	u32 dword = 0;
3825
3826	ret_val = e1000e_update_nvm_checksum_generic(hw);
3827	if (ret_val)
3828		goto out;
3829
3830	if (nvm->type != e1000_nvm_flash_sw)
3831		goto out;
3832
3833	nvm->ops.acquire(hw);
3834
3835	/* We're writing to the opposite bank so if we're on bank 1,
3836	 * write to bank 0 etc.  We also need to erase the segment that
3837	 * is going to be written
3838	 */
3839	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3840	if (ret_val) {
3841		e_dbg("Could not detect valid bank, assuming bank 0\n");
3842		bank = 0;
3843	}
3844
3845	if (bank == 0) {
3846		new_bank_offset = nvm->flash_bank_size;
3847		old_bank_offset = 0;
3848		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3849		if (ret_val)
3850			goto release;
3851	} else {
3852		old_bank_offset = nvm->flash_bank_size;
3853		new_bank_offset = 0;
3854		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3855		if (ret_val)
3856			goto release;
3857	}
3858	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3859		/* Determine whether to write the value stored
3860		 * in the other NVM bank or a modified value stored
3861		 * in the shadow RAM
3862		 */
3863		ret_val = e1000_read_flash_dword_ich8lan(hw,
3864							 i + old_bank_offset,
3865							 &dword);
3866
3867		if (dev_spec->shadow_ram[i].modified) {
3868			dword &= 0xffff0000;
3869			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3870		}
3871		if (dev_spec->shadow_ram[i + 1].modified) {
3872			dword &= 0x0000ffff;
3873			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3874				  << 16);
3875		}
3876		if (ret_val)
3877			break;
3878
3879		/* If the word is 0x13, then make sure the signature bits
3880		 * (15:14) are 11b until the commit has completed.
3881		 * This will allow us to write 10b which indicates the
3882		 * signature is valid.  We want to do this after the write
3883		 * has completed so that we don't mark the segment valid
3884		 * while the write is still in progress
3885		 */
3886		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3887			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3888
3889		/* Convert offset to bytes. */
3890		act_offset = (i + new_bank_offset) << 1;
3891
3892		usleep_range(100, 200);
3893
3894		/* Write the data to the new bank. Offset in words */
3895		act_offset = i + new_bank_offset;
3896		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3897								dword);
3898		if (ret_val)
3899			break;
3900	}
3901
3902	/* Don't bother writing the segment valid bits if sector
3903	 * programming failed.
3904	 */
3905	if (ret_val) {
3906		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3907		e_dbg("Flash commit failed.\n");
3908		goto release;
3909	}
3910
3911	/* Finally validate the new segment by setting bit 15:14
3912	 * to 10b in word 0x13 , this can be done without an
3913	 * erase as well since these bits are 11 to start with
3914	 * and we need to change bit 14 to 0b
3915	 */
3916	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3917
3918	/*offset in words but we read dword */
3919	--act_offset;
3920	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3921
3922	if (ret_val)
3923		goto release;
3924
3925	dword &= 0xBFFFFFFF;
3926	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3927
3928	if (ret_val)
3929		goto release;
3930
 
 
 
 
 
 
 
3931	/* offset in words but we read dword */
3932	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3933	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3934
3935	if (ret_val)
3936		goto release;
3937
3938	dword &= 0x00FFFFFF;
3939	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3940
3941	if (ret_val)
3942		goto release;
3943
3944	/* Great!  Everything worked, we can now clear the cached entries. */
3945	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3946		dev_spec->shadow_ram[i].modified = false;
3947		dev_spec->shadow_ram[i].value = 0xFFFF;
3948	}
3949
3950release:
3951	nvm->ops.release(hw);
3952
3953	/* Reload the EEPROM, or else modifications will not appear
3954	 * until after the next adapter reset.
3955	 */
3956	if (!ret_val) {
3957		nvm->ops.reload(hw);
3958		usleep_range(10000, 11000);
3959	}
3960
3961out:
3962	if (ret_val)
3963		e_dbg("NVM update error: %d\n", ret_val);
3964
3965	return ret_val;
3966}
3967
3968/**
3969 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3970 *  @hw: pointer to the HW structure
3971 *
3972 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3973 *  which writes the checksum to the shadow ram.  The changes in the shadow
3974 *  ram are then committed to the EEPROM by processing each bank at a time
3975 *  checking for the modified bit and writing only the pending changes.
3976 *  After a successful commit, the shadow ram is cleared and is ready for
3977 *  future writes.
3978 **/
3979static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3980{
3981	struct e1000_nvm_info *nvm = &hw->nvm;
3982	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3983	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3984	s32 ret_val;
3985	u16 data = 0;
3986
3987	ret_val = e1000e_update_nvm_checksum_generic(hw);
3988	if (ret_val)
3989		goto out;
3990
3991	if (nvm->type != e1000_nvm_flash_sw)
3992		goto out;
3993
3994	nvm->ops.acquire(hw);
3995
3996	/* We're writing to the opposite bank so if we're on bank 1,
3997	 * write to bank 0 etc.  We also need to erase the segment that
3998	 * is going to be written
3999	 */
4000	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
4001	if (ret_val) {
4002		e_dbg("Could not detect valid bank, assuming bank 0\n");
4003		bank = 0;
4004	}
4005
4006	if (bank == 0) {
4007		new_bank_offset = nvm->flash_bank_size;
4008		old_bank_offset = 0;
4009		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4010		if (ret_val)
4011			goto release;
4012	} else {
4013		old_bank_offset = nvm->flash_bank_size;
4014		new_bank_offset = 0;
4015		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4016		if (ret_val)
4017			goto release;
4018	}
4019	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4020		if (dev_spec->shadow_ram[i].modified) {
4021			data = dev_spec->shadow_ram[i].value;
4022		} else {
4023			ret_val = e1000_read_flash_word_ich8lan(hw, i +
4024								old_bank_offset,
4025								&data);
4026			if (ret_val)
4027				break;
4028		}
4029
4030		/* If the word is 0x13, then make sure the signature bits
4031		 * (15:14) are 11b until the commit has completed.
4032		 * This will allow us to write 10b which indicates the
4033		 * signature is valid.  We want to do this after the write
4034		 * has completed so that we don't mark the segment valid
4035		 * while the write is still in progress
4036		 */
4037		if (i == E1000_ICH_NVM_SIG_WORD)
4038			data |= E1000_ICH_NVM_SIG_MASK;
4039
4040		/* Convert offset to bytes. */
4041		act_offset = (i + new_bank_offset) << 1;
4042
4043		usleep_range(100, 200);
4044		/* Write the bytes to the new bank. */
4045		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4046							       act_offset,
4047							       (u8)data);
4048		if (ret_val)
4049			break;
4050
4051		usleep_range(100, 200);
4052		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4053							       act_offset + 1,
4054							       (u8)(data >> 8));
4055		if (ret_val)
4056			break;
4057	}
4058
4059	/* Don't bother writing the segment valid bits if sector
4060	 * programming failed.
4061	 */
4062	if (ret_val) {
4063		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4064		e_dbg("Flash commit failed.\n");
4065		goto release;
4066	}
4067
4068	/* Finally validate the new segment by setting bit 15:14
4069	 * to 10b in word 0x13 , this can be done without an
4070	 * erase as well since these bits are 11 to start with
4071	 * and we need to change bit 14 to 0b
4072	 */
4073	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4074	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4075	if (ret_val)
4076		goto release;
4077
4078	data &= 0xBFFF;
4079	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4080						       act_offset * 2 + 1,
4081						       (u8)(data >> 8));
4082	if (ret_val)
4083		goto release;
4084
4085	/* And invalidate the previously valid segment by setting
4086	 * its signature word (0x13) high_byte to 0b. This can be
4087	 * done without an erase because flash erase sets all bits
4088	 * to 1's. We can write 1's to 0's without an erase
4089	 */
4090	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4091	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4092	if (ret_val)
4093		goto release;
4094
4095	/* Great!  Everything worked, we can now clear the cached entries. */
4096	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4097		dev_spec->shadow_ram[i].modified = false;
4098		dev_spec->shadow_ram[i].value = 0xFFFF;
4099	}
4100
4101release:
4102	nvm->ops.release(hw);
4103
4104	/* Reload the EEPROM, or else modifications will not appear
4105	 * until after the next adapter reset.
4106	 */
4107	if (!ret_val) {
4108		nvm->ops.reload(hw);
4109		usleep_range(10000, 11000);
4110	}
4111
4112out:
4113	if (ret_val)
4114		e_dbg("NVM update error: %d\n", ret_val);
4115
4116	return ret_val;
4117}
4118
4119/**
4120 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4121 *  @hw: pointer to the HW structure
4122 *
4123 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4124 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4125 *  calculated, in which case we need to calculate the checksum and set bit 6.
4126 **/
4127static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4128{
4129	s32 ret_val;
4130	u16 data;
4131	u16 word;
4132	u16 valid_csum_mask;
4133
4134	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4135	 * the checksum needs to be fixed.  This bit is an indication that
4136	 * the NVM was prepared by OEM software and did not calculate
4137	 * the checksum...a likely scenario.
4138	 */
4139	switch (hw->mac.type) {
4140	case e1000_pch_lpt:
4141	case e1000_pch_spt:
4142	case e1000_pch_cnp:
4143	case e1000_pch_tgp:
4144	case e1000_pch_adp:
4145	case e1000_pch_mtp:
4146	case e1000_pch_lnp:
4147	case e1000_pch_ptp:
4148	case e1000_pch_nvp:
4149		word = NVM_COMPAT;
4150		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4151		break;
4152	default:
4153		word = NVM_FUTURE_INIT_WORD1;
4154		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4155		break;
4156	}
4157
4158	ret_val = e1000_read_nvm(hw, word, 1, &data);
4159	if (ret_val)
4160		return ret_val;
4161
4162	if (!(data & valid_csum_mask)) {
4163		e_dbg("NVM Checksum valid bit not set\n");
4164
4165		if (hw->mac.type < e1000_pch_tgp) {
4166			data |= valid_csum_mask;
4167			ret_val = e1000_write_nvm(hw, word, 1, &data);
4168			if (ret_val)
4169				return ret_val;
4170			ret_val = e1000e_update_nvm_checksum(hw);
4171			if (ret_val)
4172				return ret_val;
4173		}
4174	}
4175
4176	return e1000e_validate_nvm_checksum_generic(hw);
4177}
4178
4179/**
4180 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4181 *  @hw: pointer to the HW structure
4182 *
4183 *  To prevent malicious write/erase of the NVM, set it to be read-only
4184 *  so that the hardware ignores all write/erase cycles of the NVM via
4185 *  the flash control registers.  The shadow-ram copy of the NVM will
4186 *  still be updated, however any updates to this copy will not stick
4187 *  across driver reloads.
4188 **/
4189void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4190{
4191	struct e1000_nvm_info *nvm = &hw->nvm;
4192	union ich8_flash_protected_range pr0;
4193	union ich8_hws_flash_status hsfsts;
4194	u32 gfpreg;
4195
4196	nvm->ops.acquire(hw);
4197
4198	gfpreg = er32flash(ICH_FLASH_GFPREG);
4199
4200	/* Write-protect GbE Sector of NVM */
4201	pr0.regval = er32flash(ICH_FLASH_PR0);
4202	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4203	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4204	pr0.range.wpe = true;
4205	ew32flash(ICH_FLASH_PR0, pr0.regval);
4206
4207	/* Lock down a subset of GbE Flash Control Registers, e.g.
4208	 * PR0 to prevent the write-protection from being lifted.
4209	 * Once FLOCKDN is set, the registers protected by it cannot
4210	 * be written until FLOCKDN is cleared by a hardware reset.
4211	 */
4212	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4213	hsfsts.hsf_status.flockdn = true;
4214	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4215
4216	nvm->ops.release(hw);
4217}
4218
4219/**
4220 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4221 *  @hw: pointer to the HW structure
4222 *  @offset: The offset (in bytes) of the byte/word to read.
4223 *  @size: Size of data to read, 1=byte 2=word
4224 *  @data: The byte(s) to write to the NVM.
4225 *
4226 *  Writes one/two bytes to the NVM using the flash access registers.
4227 **/
4228static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4229					  u8 size, u16 data)
4230{
4231	union ich8_hws_flash_status hsfsts;
4232	union ich8_hws_flash_ctrl hsflctl;
4233	u32 flash_linear_addr;
4234	u32 flash_data = 0;
4235	s32 ret_val;
4236	u8 count = 0;
4237
4238	if (hw->mac.type >= e1000_pch_spt) {
4239		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4240			return -E1000_ERR_NVM;
4241	} else {
4242		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4243			return -E1000_ERR_NVM;
4244	}
4245
4246	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4247			     hw->nvm.flash_base_addr);
4248
4249	do {
4250		udelay(1);
4251		/* Steps */
4252		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4253		if (ret_val)
4254			break;
4255		/* In SPT, This register is in Lan memory space, not
4256		 * flash.  Therefore, only 32 bit access is supported
4257		 */
4258		if (hw->mac.type >= e1000_pch_spt)
4259			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4260		else
4261			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4262
4263		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4264		hsflctl.hsf_ctrl.fldbcount = size - 1;
4265		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4266		/* In SPT, This register is in Lan memory space,
4267		 * not flash.  Therefore, only 32 bit access is
4268		 * supported
4269		 */
4270		if (hw->mac.type >= e1000_pch_spt)
4271			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4272		else
4273			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4274
4275		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4276
4277		if (size == 1)
4278			flash_data = (u32)data & 0x00FF;
4279		else
4280			flash_data = (u32)data;
4281
4282		ew32flash(ICH_FLASH_FDATA0, flash_data);
4283
4284		/* check if FCERR is set to 1 , if set to 1, clear it
4285		 * and try the whole sequence a few more times else done
4286		 */
4287		ret_val =
4288		    e1000_flash_cycle_ich8lan(hw,
4289					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4290		if (!ret_val)
4291			break;
4292
4293		/* If we're here, then things are most likely
4294		 * completely hosed, but if the error condition
4295		 * is detected, it won't hurt to give it another
4296		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4297		 */
4298		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4299		if (hsfsts.hsf_status.flcerr)
4300			/* Repeat for some time before giving up. */
4301			continue;
4302		if (!hsfsts.hsf_status.flcdone) {
4303			e_dbg("Timeout error - flash cycle did not complete.\n");
4304			break;
4305		}
4306	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4307
4308	return ret_val;
4309}
4310
4311/**
4312*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4313*  @hw: pointer to the HW structure
4314*  @offset: The offset (in bytes) of the dwords to read.
4315*  @data: The 4 bytes to write to the NVM.
4316*
4317*  Writes one/two/four bytes to the NVM using the flash access registers.
4318**/
4319static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4320					    u32 data)
4321{
4322	union ich8_hws_flash_status hsfsts;
4323	union ich8_hws_flash_ctrl hsflctl;
4324	u32 flash_linear_addr;
4325	s32 ret_val;
4326	u8 count = 0;
4327
4328	if (hw->mac.type >= e1000_pch_spt) {
4329		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4330			return -E1000_ERR_NVM;
4331	}
4332	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4333			     hw->nvm.flash_base_addr);
4334	do {
4335		udelay(1);
4336		/* Steps */
4337		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4338		if (ret_val)
4339			break;
4340
4341		/* In SPT, This register is in Lan memory space, not
4342		 * flash.  Therefore, only 32 bit access is supported
4343		 */
4344		if (hw->mac.type >= e1000_pch_spt)
4345			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4346			    >> 16;
4347		else
4348			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4349
4350		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4351		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4352
4353		/* In SPT, This register is in Lan memory space,
4354		 * not flash.  Therefore, only 32 bit access is
4355		 * supported
4356		 */
4357		if (hw->mac.type >= e1000_pch_spt)
4358			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4359		else
4360			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4361
4362		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4363
4364		ew32flash(ICH_FLASH_FDATA0, data);
4365
4366		/* check if FCERR is set to 1 , if set to 1, clear it
4367		 * and try the whole sequence a few more times else done
4368		 */
4369		ret_val =
4370		   e1000_flash_cycle_ich8lan(hw,
4371					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4372
4373		if (!ret_val)
4374			break;
4375
4376		/* If we're here, then things are most likely
4377		 * completely hosed, but if the error condition
4378		 * is detected, it won't hurt to give it another
4379		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4380		 */
4381		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4382
4383		if (hsfsts.hsf_status.flcerr)
4384			/* Repeat for some time before giving up. */
4385			continue;
4386		if (!hsfsts.hsf_status.flcdone) {
4387			e_dbg("Timeout error - flash cycle did not complete.\n");
4388			break;
4389		}
4390	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4391
4392	return ret_val;
4393}
4394
4395/**
4396 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4397 *  @hw: pointer to the HW structure
4398 *  @offset: The index of the byte to read.
4399 *  @data: The byte to write to the NVM.
4400 *
4401 *  Writes a single byte to the NVM using the flash access registers.
4402 **/
4403static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4404					  u8 data)
4405{
4406	u16 word = (u16)data;
4407
4408	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4409}
4410
4411/**
4412*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4413*  @hw: pointer to the HW structure
4414*  @offset: The offset of the word to write.
4415*  @dword: The dword to write to the NVM.
4416*
4417*  Writes a single dword to the NVM using the flash access registers.
4418*  Goes through a retry algorithm before giving up.
4419**/
4420static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4421						 u32 offset, u32 dword)
4422{
4423	s32 ret_val;
4424	u16 program_retries;
4425
4426	/* Must convert word offset into bytes. */
4427	offset <<= 1;
4428	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4429
4430	if (!ret_val)
4431		return ret_val;
4432	for (program_retries = 0; program_retries < 100; program_retries++) {
4433		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4434		usleep_range(100, 200);
4435		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4436		if (!ret_val)
4437			break;
4438	}
4439	if (program_retries == 100)
4440		return -E1000_ERR_NVM;
4441
4442	return 0;
4443}
4444
4445/**
4446 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4447 *  @hw: pointer to the HW structure
4448 *  @offset: The offset of the byte to write.
4449 *  @byte: The byte to write to the NVM.
4450 *
4451 *  Writes a single byte to the NVM using the flash access registers.
4452 *  Goes through a retry algorithm before giving up.
4453 **/
4454static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4455						u32 offset, u8 byte)
4456{
4457	s32 ret_val;
4458	u16 program_retries;
4459
4460	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4461	if (!ret_val)
4462		return ret_val;
4463
4464	for (program_retries = 0; program_retries < 100; program_retries++) {
4465		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4466		usleep_range(100, 200);
4467		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4468		if (!ret_val)
4469			break;
4470	}
4471	if (program_retries == 100)
4472		return -E1000_ERR_NVM;
4473
4474	return 0;
4475}
4476
4477/**
4478 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4479 *  @hw: pointer to the HW structure
4480 *  @bank: 0 for first bank, 1 for second bank, etc.
4481 *
4482 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4483 *  bank N is 4096 * N + flash_reg_addr.
4484 **/
4485static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4486{
4487	struct e1000_nvm_info *nvm = &hw->nvm;
4488	union ich8_hws_flash_status hsfsts;
4489	union ich8_hws_flash_ctrl hsflctl;
4490	u32 flash_linear_addr;
4491	/* bank size is in 16bit words - adjust to bytes */
4492	u32 flash_bank_size = nvm->flash_bank_size * 2;
4493	s32 ret_val;
4494	s32 count = 0;
4495	s32 j, iteration, sector_size;
4496
4497	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4498
4499	/* Determine HW Sector size: Read BERASE bits of hw flash status
4500	 * register
4501	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4502	 *     consecutive sectors.  The start index for the nth Hw sector
4503	 *     can be calculated as = bank * 4096 + n * 256
4504	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4505	 *     The start index for the nth Hw sector can be calculated
4506	 *     as = bank * 4096
4507	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4508	 *     (ich9 only, otherwise error condition)
4509	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4510	 */
4511	switch (hsfsts.hsf_status.berasesz) {
4512	case 0:
4513		/* Hw sector size 256 */
4514		sector_size = ICH_FLASH_SEG_SIZE_256;
4515		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4516		break;
4517	case 1:
4518		sector_size = ICH_FLASH_SEG_SIZE_4K;
4519		iteration = 1;
4520		break;
4521	case 2:
4522		sector_size = ICH_FLASH_SEG_SIZE_8K;
4523		iteration = 1;
4524		break;
4525	case 3:
4526		sector_size = ICH_FLASH_SEG_SIZE_64K;
4527		iteration = 1;
4528		break;
4529	default:
4530		return -E1000_ERR_NVM;
4531	}
4532
4533	/* Start with the base address, then add the sector offset. */
4534	flash_linear_addr = hw->nvm.flash_base_addr;
4535	flash_linear_addr += (bank) ? flash_bank_size : 0;
4536
4537	for (j = 0; j < iteration; j++) {
4538		do {
4539			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4540
4541			/* Steps */
4542			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4543			if (ret_val)
4544				return ret_val;
4545
4546			/* Write a value 11 (block Erase) in Flash
4547			 * Cycle field in hw flash control
4548			 */
4549			if (hw->mac.type >= e1000_pch_spt)
4550				hsflctl.regval =
4551				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4552			else
4553				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4554
4555			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4556			if (hw->mac.type >= e1000_pch_spt)
4557				ew32flash(ICH_FLASH_HSFSTS,
4558					  hsflctl.regval << 16);
4559			else
4560				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4561
4562			/* Write the last 24 bits of an index within the
4563			 * block into Flash Linear address field in Flash
4564			 * Address.
4565			 */
4566			flash_linear_addr += (j * sector_size);
4567			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4568
4569			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4570			if (!ret_val)
4571				break;
4572
4573			/* Check if FCERR is set to 1.  If 1,
4574			 * clear it and try the whole sequence
4575			 * a few more times else Done
4576			 */
4577			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4578			if (hsfsts.hsf_status.flcerr)
4579				/* repeat for some time before giving up */
4580				continue;
4581			else if (!hsfsts.hsf_status.flcdone)
4582				return ret_val;
4583		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4584	}
4585
4586	return 0;
4587}
4588
4589/**
4590 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4591 *  @hw: pointer to the HW structure
4592 *  @data: Pointer to the LED settings
4593 *
4594 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4595 *  settings is all 0's or F's, set the LED default to a valid LED default
4596 *  setting.
4597 **/
4598static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4599{
4600	s32 ret_val;
4601
4602	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4603	if (ret_val) {
4604		e_dbg("NVM Read Error\n");
4605		return ret_val;
4606	}
4607
4608	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4609		*data = ID_LED_DEFAULT_ICH8LAN;
4610
4611	return 0;
4612}
4613
4614/**
4615 *  e1000_id_led_init_pchlan - store LED configurations
4616 *  @hw: pointer to the HW structure
4617 *
4618 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4619 *  the PHY LED configuration register.
4620 *
4621 *  PCH also does not have an "always on" or "always off" mode which
4622 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4623 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4624 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4625 *  link based on logic in e1000_led_[on|off]_pchlan().
4626 **/
4627static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4628{
4629	struct e1000_mac_info *mac = &hw->mac;
4630	s32 ret_val;
4631	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4632	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4633	u16 data, i, temp, shift;
4634
4635	/* Get default ID LED modes */
4636	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4637	if (ret_val)
4638		return ret_val;
4639
4640	mac->ledctl_default = er32(LEDCTL);
4641	mac->ledctl_mode1 = mac->ledctl_default;
4642	mac->ledctl_mode2 = mac->ledctl_default;
4643
4644	for (i = 0; i < 4; i++) {
4645		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4646		shift = (i * 5);
4647		switch (temp) {
4648		case ID_LED_ON1_DEF2:
4649		case ID_LED_ON1_ON2:
4650		case ID_LED_ON1_OFF2:
4651			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4652			mac->ledctl_mode1 |= (ledctl_on << shift);
4653			break;
4654		case ID_LED_OFF1_DEF2:
4655		case ID_LED_OFF1_ON2:
4656		case ID_LED_OFF1_OFF2:
4657			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4658			mac->ledctl_mode1 |= (ledctl_off << shift);
4659			break;
4660		default:
4661			/* Do nothing */
4662			break;
4663		}
4664		switch (temp) {
4665		case ID_LED_DEF1_ON2:
4666		case ID_LED_ON1_ON2:
4667		case ID_LED_OFF1_ON2:
4668			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4669			mac->ledctl_mode2 |= (ledctl_on << shift);
4670			break;
4671		case ID_LED_DEF1_OFF2:
4672		case ID_LED_ON1_OFF2:
4673		case ID_LED_OFF1_OFF2:
4674			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4675			mac->ledctl_mode2 |= (ledctl_off << shift);
4676			break;
4677		default:
4678			/* Do nothing */
4679			break;
4680		}
4681	}
4682
4683	return 0;
4684}
4685
4686/**
4687 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4688 *  @hw: pointer to the HW structure
4689 *
4690 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4691 *  register, so the bus width is hard coded.
4692 **/
4693static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4694{
4695	struct e1000_bus_info *bus = &hw->bus;
4696	s32 ret_val;
4697
4698	ret_val = e1000e_get_bus_info_pcie(hw);
4699
4700	/* ICH devices are "PCI Express"-ish.  They have
4701	 * a configuration space, but do not contain
4702	 * PCI Express Capability registers, so bus width
4703	 * must be hardcoded.
4704	 */
4705	if (bus->width == e1000_bus_width_unknown)
4706		bus->width = e1000_bus_width_pcie_x1;
4707
4708	return ret_val;
4709}
4710
4711/**
4712 *  e1000_reset_hw_ich8lan - Reset the hardware
4713 *  @hw: pointer to the HW structure
4714 *
4715 *  Does a full reset of the hardware which includes a reset of the PHY and
4716 *  MAC.
4717 **/
4718static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4719{
4720	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4721	u16 kum_cfg;
4722	u32 ctrl, reg;
4723	s32 ret_val;
4724
4725	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4726	 * on the last TLP read/write transaction when MAC is reset.
4727	 */
4728	ret_val = e1000e_disable_pcie_master(hw);
4729	if (ret_val)
4730		e_dbg("PCI-E Master disable polling has failed.\n");
4731
4732	e_dbg("Masking off all interrupts\n");
4733	ew32(IMC, 0xffffffff);
4734
4735	/* Disable the Transmit and Receive units.  Then delay to allow
4736	 * any pending transactions to complete before we hit the MAC
4737	 * with the global reset.
4738	 */
4739	ew32(RCTL, 0);
4740	ew32(TCTL, E1000_TCTL_PSP);
4741	e1e_flush();
4742
4743	usleep_range(10000, 11000);
4744
4745	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4746	if (hw->mac.type == e1000_ich8lan) {
4747		/* Set Tx and Rx buffer allocation to 8k apiece. */
4748		ew32(PBA, E1000_PBA_8K);
4749		/* Set Packet Buffer Size to 16k. */
4750		ew32(PBS, E1000_PBS_16K);
4751	}
4752
4753	if (hw->mac.type == e1000_pchlan) {
4754		/* Save the NVM K1 bit setting */
4755		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4756		if (ret_val)
4757			return ret_val;
4758
4759		if (kum_cfg & E1000_NVM_K1_ENABLE)
4760			dev_spec->nvm_k1_enabled = true;
4761		else
4762			dev_spec->nvm_k1_enabled = false;
4763	}
4764
4765	ctrl = er32(CTRL);
4766
4767	if (!hw->phy.ops.check_reset_block(hw)) {
4768		/* Full-chip reset requires MAC and PHY reset at the same
4769		 * time to make sure the interface between MAC and the
4770		 * external PHY is reset.
4771		 */
4772		ctrl |= E1000_CTRL_PHY_RST;
4773
4774		/* Gate automatic PHY configuration by hardware on
4775		 * non-managed 82579
4776		 */
4777		if ((hw->mac.type == e1000_pch2lan) &&
4778		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4779			e1000_gate_hw_phy_config_ich8lan(hw, true);
4780	}
4781	ret_val = e1000_acquire_swflag_ich8lan(hw);
4782	e_dbg("Issuing a global reset to ich8lan\n");
4783	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4784	/* cannot issue a flush here because it hangs the hardware */
4785	msleep(20);
4786
4787	/* Set Phy Config Counter to 50msec */
4788	if (hw->mac.type == e1000_pch2lan) {
4789		reg = er32(FEXTNVM3);
4790		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4791		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4792		ew32(FEXTNVM3, reg);
4793	}
4794
4795	if (!ret_val)
4796		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4797
4798	if (ctrl & E1000_CTRL_PHY_RST) {
4799		ret_val = hw->phy.ops.get_cfg_done(hw);
4800		if (ret_val)
4801			return ret_val;
4802
4803		ret_val = e1000_post_phy_reset_ich8lan(hw);
4804		if (ret_val)
4805			return ret_val;
4806	}
4807
4808	/* For PCH, this write will make sure that any noise
4809	 * will be detected as a CRC error and be dropped rather than show up
4810	 * as a bad packet to the DMA engine.
4811	 */
4812	if (hw->mac.type == e1000_pchlan)
4813		ew32(CRC_OFFSET, 0x65656565);
4814
4815	ew32(IMC, 0xffffffff);
4816	er32(ICR);
4817
4818	reg = er32(KABGTXD);
4819	reg |= E1000_KABGTXD_BGSQLBIAS;
4820	ew32(KABGTXD, reg);
4821
4822	return 0;
4823}
4824
4825/**
4826 *  e1000_init_hw_ich8lan - Initialize the hardware
4827 *  @hw: pointer to the HW structure
4828 *
4829 *  Prepares the hardware for transmit and receive by doing the following:
4830 *   - initialize hardware bits
4831 *   - initialize LED identification
4832 *   - setup receive address registers
4833 *   - setup flow control
4834 *   - setup transmit descriptors
4835 *   - clear statistics
4836 **/
4837static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4838{
4839	struct e1000_mac_info *mac = &hw->mac;
4840	u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4841	s32 ret_val;
4842	u16 i;
4843
4844	e1000_initialize_hw_bits_ich8lan(hw);
4845
4846	/* Initialize identification LED */
4847	ret_val = mac->ops.id_led_init(hw);
4848	/* An error is not fatal and we should not stop init due to this */
4849	if (ret_val)
4850		e_dbg("Error initializing identification LED\n");
4851
4852	/* Setup the receive address. */
4853	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4854
4855	/* Zero out the Multicast HASH table */
4856	e_dbg("Zeroing the MTA\n");
4857	for (i = 0; i < mac->mta_reg_count; i++)
4858		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4859
4860	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4861	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4862	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4863	 */
4864	if (hw->phy.type == e1000_phy_82578) {
4865		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4866		i &= ~BM_WUC_HOST_WU_BIT;
4867		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4868		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4869		if (ret_val)
4870			return ret_val;
4871	}
4872
4873	/* Setup link and flow control */
4874	ret_val = mac->ops.setup_link(hw);
4875
4876	/* Set the transmit descriptor write-back policy for both queues */
4877	txdctl = er32(TXDCTL(0));
4878	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4879		  E1000_TXDCTL_FULL_TX_DESC_WB);
4880	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4881		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4882	ew32(TXDCTL(0), txdctl);
4883	txdctl = er32(TXDCTL(1));
4884	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4885		  E1000_TXDCTL_FULL_TX_DESC_WB);
4886	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4887		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4888	ew32(TXDCTL(1), txdctl);
4889
4890	/* ICH8 has opposite polarity of no_snoop bits.
4891	 * By default, we should use snoop behavior.
4892	 */
4893	if (mac->type == e1000_ich8lan)
4894		snoop = PCIE_ICH8_SNOOP_ALL;
4895	else
4896		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4897	e1000e_set_pcie_no_snoop(hw, snoop);
4898
4899	/* Enable workaround for packet loss issue on TGP PCH
4900	 * Do not gate DMA clock from the modPHY block
4901	 */
4902	if (mac->type >= e1000_pch_tgp) {
4903		fflt_dbg = er32(FFLT_DBG);
4904		fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4905		ew32(FFLT_DBG, fflt_dbg);
4906	}
4907
4908	ctrl_ext = er32(CTRL_EXT);
4909	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4910	ew32(CTRL_EXT, ctrl_ext);
4911
4912	/* Clear all of the statistics registers (clear on read).  It is
4913	 * important that we do this after we have tried to establish link
4914	 * because the symbol error count will increment wildly if there
4915	 * is no link.
4916	 */
4917	e1000_clear_hw_cntrs_ich8lan(hw);
4918
4919	return ret_val;
4920}
4921
4922/**
4923 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4924 *  @hw: pointer to the HW structure
4925 *
4926 *  Sets/Clears required hardware bits necessary for correctly setting up the
4927 *  hardware for transmit and receive.
4928 **/
4929static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4930{
4931	u32 reg;
4932
4933	/* Extended Device Control */
4934	reg = er32(CTRL_EXT);
4935	reg |= BIT(22);
4936	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4937	if (hw->mac.type >= e1000_pchlan)
4938		reg |= E1000_CTRL_EXT_PHYPDEN;
4939	ew32(CTRL_EXT, reg);
4940
4941	/* Transmit Descriptor Control 0 */
4942	reg = er32(TXDCTL(0));
4943	reg |= BIT(22);
4944	ew32(TXDCTL(0), reg);
4945
4946	/* Transmit Descriptor Control 1 */
4947	reg = er32(TXDCTL(1));
4948	reg |= BIT(22);
4949	ew32(TXDCTL(1), reg);
4950
4951	/* Transmit Arbitration Control 0 */
4952	reg = er32(TARC(0));
4953	if (hw->mac.type == e1000_ich8lan)
4954		reg |= BIT(28) | BIT(29);
4955	reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4956	ew32(TARC(0), reg);
4957
4958	/* Transmit Arbitration Control 1 */
4959	reg = er32(TARC(1));
4960	if (er32(TCTL) & E1000_TCTL_MULR)
4961		reg &= ~BIT(28);
4962	else
4963		reg |= BIT(28);
4964	reg |= BIT(24) | BIT(26) | BIT(30);
4965	ew32(TARC(1), reg);
4966
4967	/* Device Status */
4968	if (hw->mac.type == e1000_ich8lan) {
4969		reg = er32(STATUS);
4970		reg &= ~BIT(31);
4971		ew32(STATUS, reg);
4972	}
4973
4974	/* work-around descriptor data corruption issue during nfs v2 udp
4975	 * traffic, just disable the nfs filtering capability
4976	 */
4977	reg = er32(RFCTL);
4978	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4979
4980	/* Disable IPv6 extension header parsing because some malformed
4981	 * IPv6 headers can hang the Rx.
4982	 */
4983	if (hw->mac.type == e1000_ich8lan)
4984		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4985	ew32(RFCTL, reg);
4986
4987	/* Enable ECC on Lynxpoint */
4988	if (hw->mac.type >= e1000_pch_lpt) {
 
4989		reg = er32(PBECCSTS);
4990		reg |= E1000_PBECCSTS_ECC_ENABLE;
4991		ew32(PBECCSTS, reg);
4992
4993		reg = er32(CTRL);
4994		reg |= E1000_CTRL_MEHE;
4995		ew32(CTRL, reg);
4996	}
4997}
4998
4999/**
5000 *  e1000_setup_link_ich8lan - Setup flow control and link settings
5001 *  @hw: pointer to the HW structure
5002 *
5003 *  Determines which flow control settings to use, then configures flow
5004 *  control.  Calls the appropriate media-specific link configuration
5005 *  function.  Assuming the adapter has a valid link partner, a valid link
5006 *  should be established.  Assumes the hardware has previously been reset
5007 *  and the transmitter and receiver are not enabled.
5008 **/
5009static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5010{
5011	s32 ret_val;
5012
5013	if (hw->phy.ops.check_reset_block(hw))
5014		return 0;
5015
5016	/* ICH parts do not have a word in the NVM to determine
5017	 * the default flow control setting, so we explicitly
5018	 * set it to full.
5019	 */
5020	if (hw->fc.requested_mode == e1000_fc_default) {
5021		/* Workaround h/w hang when Tx flow control enabled */
5022		if (hw->mac.type == e1000_pchlan)
5023			hw->fc.requested_mode = e1000_fc_rx_pause;
5024		else
5025			hw->fc.requested_mode = e1000_fc_full;
5026	}
5027
5028	/* Save off the requested flow control mode for use later.  Depending
5029	 * on the link partner's capabilities, we may or may not use this mode.
5030	 */
5031	hw->fc.current_mode = hw->fc.requested_mode;
5032
5033	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5034
5035	/* Continue to configure the copper link. */
5036	ret_val = hw->mac.ops.setup_physical_interface(hw);
5037	if (ret_val)
5038		return ret_val;
5039
5040	ew32(FCTTV, hw->fc.pause_time);
5041	if ((hw->phy.type == e1000_phy_82578) ||
5042	    (hw->phy.type == e1000_phy_82579) ||
5043	    (hw->phy.type == e1000_phy_i217) ||
5044	    (hw->phy.type == e1000_phy_82577)) {
5045		ew32(FCRTV_PCH, hw->fc.refresh_time);
5046
5047		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5048				   hw->fc.pause_time);
5049		if (ret_val)
5050			return ret_val;
5051	}
5052
5053	return e1000e_set_fc_watermarks(hw);
5054}
5055
5056/**
5057 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5058 *  @hw: pointer to the HW structure
5059 *
5060 *  Configures the kumeran interface to the PHY to wait the appropriate time
5061 *  when polling the PHY, then call the generic setup_copper_link to finish
5062 *  configuring the copper link.
5063 **/
5064static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5065{
5066	u32 ctrl;
5067	s32 ret_val;
5068	u16 reg_data;
5069
5070	ctrl = er32(CTRL);
5071	ctrl |= E1000_CTRL_SLU;
5072	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5073	ew32(CTRL, ctrl);
5074
5075	/* Set the mac to wait the maximum time between each iteration
5076	 * and increase the max iterations when polling the phy;
5077	 * this fixes erroneous timeouts at 10Mbps.
5078	 */
5079	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5080	if (ret_val)
5081		return ret_val;
5082	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5083				       &reg_data);
5084	if (ret_val)
5085		return ret_val;
5086	reg_data |= 0x3F;
5087	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5088					reg_data);
5089	if (ret_val)
5090		return ret_val;
5091
5092	switch (hw->phy.type) {
5093	case e1000_phy_igp_3:
5094		ret_val = e1000e_copper_link_setup_igp(hw);
5095		if (ret_val)
5096			return ret_val;
5097		break;
5098	case e1000_phy_bm:
5099	case e1000_phy_82578:
5100		ret_val = e1000e_copper_link_setup_m88(hw);
5101		if (ret_val)
5102			return ret_val;
5103		break;
5104	case e1000_phy_82577:
5105	case e1000_phy_82579:
5106		ret_val = e1000_copper_link_setup_82577(hw);
5107		if (ret_val)
5108			return ret_val;
5109		break;
5110	case e1000_phy_ife:
5111		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5112		if (ret_val)
5113			return ret_val;
5114
5115		reg_data &= ~IFE_PMC_AUTO_MDIX;
5116
5117		switch (hw->phy.mdix) {
5118		case 1:
5119			reg_data &= ~IFE_PMC_FORCE_MDIX;
5120			break;
5121		case 2:
5122			reg_data |= IFE_PMC_FORCE_MDIX;
5123			break;
5124		case 0:
5125		default:
5126			reg_data |= IFE_PMC_AUTO_MDIX;
5127			break;
5128		}
5129		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5130		if (ret_val)
5131			return ret_val;
5132		break;
5133	default:
5134		break;
5135	}
5136
5137	return e1000e_setup_copper_link(hw);
5138}
5139
5140/**
5141 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5142 *  @hw: pointer to the HW structure
5143 *
5144 *  Calls the PHY specific link setup function and then calls the
5145 *  generic setup_copper_link to finish configuring the link for
5146 *  Lynxpoint PCH devices
5147 **/
5148static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5149{
5150	u32 ctrl;
5151	s32 ret_val;
5152
5153	ctrl = er32(CTRL);
5154	ctrl |= E1000_CTRL_SLU;
5155	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5156	ew32(CTRL, ctrl);
5157
5158	ret_val = e1000_copper_link_setup_82577(hw);
5159	if (ret_val)
5160		return ret_val;
5161
5162	return e1000e_setup_copper_link(hw);
5163}
5164
5165/**
5166 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5167 *  @hw: pointer to the HW structure
5168 *  @speed: pointer to store current link speed
5169 *  @duplex: pointer to store the current link duplex
5170 *
5171 *  Calls the generic get_speed_and_duplex to retrieve the current link
5172 *  information and then calls the Kumeran lock loss workaround for links at
5173 *  gigabit speeds.
5174 **/
5175static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5176					  u16 *duplex)
5177{
5178	s32 ret_val;
5179
5180	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5181	if (ret_val)
5182		return ret_val;
5183
5184	if ((hw->mac.type == e1000_ich8lan) &&
5185	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5186		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5187	}
5188
5189	return ret_val;
5190}
5191
5192/**
5193 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5194 *  @hw: pointer to the HW structure
5195 *
5196 *  Work-around for 82566 Kumeran PCS lock loss:
5197 *  On link status change (i.e. PCI reset, speed change) and link is up and
5198 *  speed is gigabit-
5199 *    0) if workaround is optionally disabled do nothing
5200 *    1) wait 1ms for Kumeran link to come up
5201 *    2) check Kumeran Diagnostic register PCS lock loss bit
5202 *    3) if not set the link is locked (all is good), otherwise...
5203 *    4) reset the PHY
5204 *    5) repeat up to 10 times
5205 *  Note: this is only called for IGP3 copper when speed is 1gb.
5206 **/
5207static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5208{
5209	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5210	u32 phy_ctrl;
5211	s32 ret_val;
5212	u16 i, data;
5213	bool link;
5214
5215	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5216		return 0;
5217
5218	/* Make sure link is up before proceeding.  If not just return.
5219	 * Attempting this while link is negotiating fouled up link
5220	 * stability
5221	 */
5222	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5223	if (!link)
5224		return 0;
5225
5226	for (i = 0; i < 10; i++) {
5227		/* read once to clear */
5228		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5229		if (ret_val)
5230			return ret_val;
5231		/* and again to get new status */
5232		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5233		if (ret_val)
5234			return ret_val;
5235
5236		/* check for PCS lock */
5237		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5238			return 0;
5239
5240		/* Issue PHY reset */
5241		e1000_phy_hw_reset(hw);
5242		mdelay(5);
5243	}
5244	/* Disable GigE link negotiation */
5245	phy_ctrl = er32(PHY_CTRL);
5246	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5247		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5248	ew32(PHY_CTRL, phy_ctrl);
5249
5250	/* Call gig speed drop workaround on Gig disable before accessing
5251	 * any PHY registers
5252	 */
5253	e1000e_gig_downshift_workaround_ich8lan(hw);
5254
5255	/* unable to acquire PCS lock */
5256	return -E1000_ERR_PHY;
5257}
5258
5259/**
5260 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5261 *  @hw: pointer to the HW structure
5262 *  @state: boolean value used to set the current Kumeran workaround state
5263 *
5264 *  If ICH8, set the current Kumeran workaround state (enabled - true
5265 *  /disabled - false).
5266 **/
5267void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5268						  bool state)
5269{
5270	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5271
5272	if (hw->mac.type != e1000_ich8lan) {
5273		e_dbg("Workaround applies to ICH8 only.\n");
5274		return;
5275	}
5276
5277	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5278}
5279
5280/**
5281 *  e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5282 *  @hw: pointer to the HW structure
5283 *
5284 *  Workaround for 82566 power-down on D3 entry:
5285 *    1) disable gigabit link
5286 *    2) write VR power-down enable
5287 *    3) read it back
5288 *  Continue if successful, else issue LCD reset and repeat
5289 **/
5290void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5291{
5292	u32 reg;
5293	u16 data;
5294	u8 retry = 0;
5295
5296	if (hw->phy.type != e1000_phy_igp_3)
5297		return;
5298
5299	/* Try the workaround twice (if needed) */
5300	do {
5301		/* Disable link */
5302		reg = er32(PHY_CTRL);
5303		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5304			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5305		ew32(PHY_CTRL, reg);
5306
5307		/* Call gig speed drop workaround on Gig disable before
5308		 * accessing any PHY registers
5309		 */
5310		if (hw->mac.type == e1000_ich8lan)
5311			e1000e_gig_downshift_workaround_ich8lan(hw);
5312
5313		/* Write VR power-down enable */
5314		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5315		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5316		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5317
5318		/* Read it back and test */
5319		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5320		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5321		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5322			break;
5323
5324		/* Issue PHY reset and repeat at most one more time */
5325		reg = er32(CTRL);
5326		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5327		retry++;
5328	} while (retry);
5329}
5330
5331/**
5332 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5333 *  @hw: pointer to the HW structure
5334 *
5335 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5336 *  LPLU, Gig disable, MDIC PHY reset):
5337 *    1) Set Kumeran Near-end loopback
5338 *    2) Clear Kumeran Near-end loopback
5339 *  Should only be called for ICH8[m] devices with any 1G Phy.
5340 **/
5341void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5342{
5343	s32 ret_val;
5344	u16 reg_data;
5345
5346	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5347		return;
5348
5349	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5350				       &reg_data);
5351	if (ret_val)
5352		return;
5353	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5354	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5355					reg_data);
5356	if (ret_val)
5357		return;
5358	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5359	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5360}
5361
5362/**
5363 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5364 *  @hw: pointer to the HW structure
5365 *
5366 *  During S0 to Sx transition, it is possible the link remains at gig
5367 *  instead of negotiating to a lower speed.  Before going to Sx, set
5368 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5369 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5370 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5371 *  needs to be written.
5372 *  Parts that support (and are linked to a partner which support) EEE in
5373 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5374 *  than 10Mbps w/o EEE.
5375 **/
5376void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5377{
5378	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5379	u32 phy_ctrl;
5380	s32 ret_val;
5381
5382	phy_ctrl = er32(PHY_CTRL);
5383	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5384
5385	if (hw->phy.type == e1000_phy_i217) {
5386		u16 phy_reg, device_id = hw->adapter->pdev->device;
5387
5388		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5389		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5390		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5391		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5392		    (hw->mac.type >= e1000_pch_spt)) {
5393			u32 fextnvm6 = er32(FEXTNVM6);
5394
5395			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5396		}
5397
5398		ret_val = hw->phy.ops.acquire(hw);
5399		if (ret_val)
5400			goto out;
5401
5402		if (!dev_spec->eee_disable) {
5403			u16 eee_advert;
5404
5405			ret_val =
5406			    e1000_read_emi_reg_locked(hw,
5407						      I217_EEE_ADVERTISEMENT,
5408						      &eee_advert);
5409			if (ret_val)
5410				goto release;
5411
5412			/* Disable LPLU if both link partners support 100BaseT
5413			 * EEE and 100Full is advertised on both ends of the
5414			 * link, and enable Auto Enable LPI since there will
5415			 * be no driver to enable LPI while in Sx.
5416			 */
5417			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5418			    (dev_spec->eee_lp_ability &
5419			     I82579_EEE_100_SUPPORTED) &&
5420			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5421				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5422					      E1000_PHY_CTRL_NOND0A_LPLU);
5423
5424				/* Set Auto Enable LPI after link up */
5425				e1e_rphy_locked(hw,
5426						I217_LPI_GPIO_CTRL, &phy_reg);
5427				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5428				e1e_wphy_locked(hw,
5429						I217_LPI_GPIO_CTRL, phy_reg);
5430			}
5431		}
5432
5433		/* For i217 Intel Rapid Start Technology support,
5434		 * when the system is going into Sx and no manageability engine
5435		 * is present, the driver must configure proxy to reset only on
5436		 * power good.  LPI (Low Power Idle) state must also reset only
5437		 * on power good, as well as the MTA (Multicast table array).
5438		 * The SMBus release must also be disabled on LCD reset.
5439		 */
5440		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5441			/* Enable proxy to reset only on power good. */
5442			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5443			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5444			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5445
5446			/* Set bit enable LPI (EEE) to reset only on
5447			 * power good.
5448			 */
5449			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5450			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5451			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5452
5453			/* Disable the SMB release on LCD reset. */
5454			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5455			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5456			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5457		}
5458
5459		/* Enable MTA to reset for Intel Rapid Start Technology
5460		 * Support
5461		 */
5462		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5463		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5464		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5465
5466release:
5467		hw->phy.ops.release(hw);
5468	}
5469out:
5470	ew32(PHY_CTRL, phy_ctrl);
5471
5472	if (hw->mac.type == e1000_ich8lan)
5473		e1000e_gig_downshift_workaround_ich8lan(hw);
5474
5475	if (hw->mac.type >= e1000_pchlan) {
5476		e1000_oem_bits_config_ich8lan(hw, false);
5477
5478		/* Reset PHY to activate OEM bits on 82577/8 */
5479		if (hw->mac.type == e1000_pchlan)
5480			e1000e_phy_hw_reset_generic(hw);
5481
5482		ret_val = hw->phy.ops.acquire(hw);
5483		if (ret_val)
5484			return;
5485		e1000_write_smbus_addr(hw);
5486		hw->phy.ops.release(hw);
5487	}
5488}
5489
5490/**
5491 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5492 *  @hw: pointer to the HW structure
5493 *
5494 *  During Sx to S0 transitions on non-managed devices or managed devices
5495 *  on which PHY resets are not blocked, if the PHY registers cannot be
5496 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5497 *  the PHY.
5498 *  On i217, setup Intel Rapid Start Technology.
5499 **/
5500void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5501{
5502	s32 ret_val;
5503
5504	if (hw->mac.type < e1000_pch2lan)
5505		return;
5506
5507	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5508	if (ret_val) {
5509		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5510		return;
5511	}
5512
5513	/* For i217 Intel Rapid Start Technology support when the system
5514	 * is transitioning from Sx and no manageability engine is present
5515	 * configure SMBus to restore on reset, disable proxy, and enable
5516	 * the reset on MTA (Multicast table array).
5517	 */
5518	if (hw->phy.type == e1000_phy_i217) {
5519		u16 phy_reg;
5520
5521		ret_val = hw->phy.ops.acquire(hw);
5522		if (ret_val) {
5523			e_dbg("Failed to setup iRST\n");
5524			return;
5525		}
5526
5527		/* Clear Auto Enable LPI after link up */
5528		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5529		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5530		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5531
5532		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5533			/* Restore clear on SMB if no manageability engine
5534			 * is present
5535			 */
5536			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5537			if (ret_val)
5538				goto release;
5539			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5540			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5541
5542			/* Disable Proxy */
5543			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5544		}
5545		/* Enable reset on MTA */
5546		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5547		if (ret_val)
5548			goto release;
5549		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5550		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5551release:
5552		if (ret_val)
5553			e_dbg("Error %d in resume workarounds\n", ret_val);
5554		hw->phy.ops.release(hw);
5555	}
5556}
5557
5558/**
5559 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5560 *  @hw: pointer to the HW structure
5561 *
5562 *  Return the LED back to the default configuration.
5563 **/
5564static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5565{
5566	if (hw->phy.type == e1000_phy_ife)
5567		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5568
5569	ew32(LEDCTL, hw->mac.ledctl_default);
5570	return 0;
5571}
5572
5573/**
5574 *  e1000_led_on_ich8lan - Turn LEDs on
5575 *  @hw: pointer to the HW structure
5576 *
5577 *  Turn on the LEDs.
5578 **/
5579static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5580{
5581	if (hw->phy.type == e1000_phy_ife)
5582		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5583				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5584
5585	ew32(LEDCTL, hw->mac.ledctl_mode2);
5586	return 0;
5587}
5588
5589/**
5590 *  e1000_led_off_ich8lan - Turn LEDs off
5591 *  @hw: pointer to the HW structure
5592 *
5593 *  Turn off the LEDs.
5594 **/
5595static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5596{
5597	if (hw->phy.type == e1000_phy_ife)
5598		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5599				(IFE_PSCL_PROBE_MODE |
5600				 IFE_PSCL_PROBE_LEDS_OFF));
5601
5602	ew32(LEDCTL, hw->mac.ledctl_mode1);
5603	return 0;
5604}
5605
5606/**
5607 *  e1000_setup_led_pchlan - Configures SW controllable LED
5608 *  @hw: pointer to the HW structure
5609 *
5610 *  This prepares the SW controllable LED for use.
5611 **/
5612static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5613{
5614	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5615}
5616
5617/**
5618 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5619 *  @hw: pointer to the HW structure
5620 *
5621 *  Return the LED back to the default configuration.
5622 **/
5623static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5624{
5625	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5626}
5627
5628/**
5629 *  e1000_led_on_pchlan - Turn LEDs on
5630 *  @hw: pointer to the HW structure
5631 *
5632 *  Turn on the LEDs.
5633 **/
5634static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5635{
5636	u16 data = (u16)hw->mac.ledctl_mode2;
5637	u32 i, led;
5638
5639	/* If no link, then turn LED on by setting the invert bit
5640	 * for each LED that's mode is "link_up" in ledctl_mode2.
5641	 */
5642	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5643		for (i = 0; i < 3; i++) {
5644			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5645			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5646			    E1000_LEDCTL_MODE_LINK_UP)
5647				continue;
5648			if (led & E1000_PHY_LED0_IVRT)
5649				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5650			else
5651				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5652		}
5653	}
5654
5655	return e1e_wphy(hw, HV_LED_CONFIG, data);
5656}
5657
5658/**
5659 *  e1000_led_off_pchlan - Turn LEDs off
5660 *  @hw: pointer to the HW structure
5661 *
5662 *  Turn off the LEDs.
5663 **/
5664static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5665{
5666	u16 data = (u16)hw->mac.ledctl_mode1;
5667	u32 i, led;
5668
5669	/* If no link, then turn LED off by clearing the invert bit
5670	 * for each LED that's mode is "link_up" in ledctl_mode1.
5671	 */
5672	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5673		for (i = 0; i < 3; i++) {
5674			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5675			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5676			    E1000_LEDCTL_MODE_LINK_UP)
5677				continue;
5678			if (led & E1000_PHY_LED0_IVRT)
5679				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5680			else
5681				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5682		}
5683	}
5684
5685	return e1e_wphy(hw, HV_LED_CONFIG, data);
5686}
5687
5688/**
5689 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5690 *  @hw: pointer to the HW structure
5691 *
5692 *  Read appropriate register for the config done bit for completion status
5693 *  and configure the PHY through s/w for EEPROM-less parts.
5694 *
5695 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5696 *  config done bit, so only an error is logged and continues.  If we were
5697 *  to return with error, EEPROM-less silicon would not be able to be reset
5698 *  or change link.
5699 **/
5700static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5701{
5702	s32 ret_val = 0;
5703	u32 bank = 0;
5704	u32 status;
5705
5706	e1000e_get_cfg_done_generic(hw);
5707
5708	/* Wait for indication from h/w that it has completed basic config */
5709	if (hw->mac.type >= e1000_ich10lan) {
5710		e1000_lan_init_done_ich8lan(hw);
5711	} else {
5712		ret_val = e1000e_get_auto_rd_done(hw);
5713		if (ret_val) {
5714			/* When auto config read does not complete, do not
5715			 * return with an error. This can happen in situations
5716			 * where there is no eeprom and prevents getting link.
5717			 */
5718			e_dbg("Auto Read Done did not complete\n");
5719			ret_val = 0;
5720		}
5721	}
5722
5723	/* Clear PHY Reset Asserted bit */
5724	status = er32(STATUS);
5725	if (status & E1000_STATUS_PHYRA)
5726		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5727	else
5728		e_dbg("PHY Reset Asserted not set - needs delay\n");
5729
5730	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5731	if (hw->mac.type <= e1000_ich9lan) {
5732		if (!(er32(EECD) & E1000_EECD_PRES) &&
5733		    (hw->phy.type == e1000_phy_igp_3)) {
5734			e1000e_phy_init_script_igp3(hw);
5735		}
5736	} else {
5737		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5738			/* Maybe we should do a basic PHY config */
5739			e_dbg("EEPROM not present\n");
5740			ret_val = -E1000_ERR_CONFIG;
5741		}
5742	}
5743
5744	return ret_val;
5745}
5746
5747/**
5748 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5749 * @hw: pointer to the HW structure
5750 *
5751 * In the case of a PHY power down to save power, or to turn off link during a
5752 * driver unload, or wake on lan is not enabled, remove the link.
5753 **/
5754static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5755{
5756	/* If the management interface is not enabled, then power down */
5757	if (!(hw->mac.ops.check_mng_mode(hw) ||
5758	      hw->phy.ops.check_reset_block(hw)))
5759		e1000_power_down_phy_copper(hw);
5760}
5761
5762/**
5763 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5764 *  @hw: pointer to the HW structure
5765 *
5766 *  Clears hardware counters specific to the silicon family and calls
5767 *  clear_hw_cntrs_generic to clear all general purpose counters.
5768 **/
5769static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5770{
5771	u16 phy_data;
5772	s32 ret_val;
5773
5774	e1000e_clear_hw_cntrs_base(hw);
5775
5776	er32(ALGNERRC);
5777	er32(RXERRC);
5778	er32(TNCRS);
5779	er32(CEXTERR);
5780	er32(TSCTC);
5781	er32(TSCTFC);
5782
5783	er32(MGTPRC);
5784	er32(MGTPDC);
5785	er32(MGTPTC);
5786
5787	er32(IAC);
5788	er32(ICRXOC);
5789
5790	/* Clear PHY statistics registers */
5791	if ((hw->phy.type == e1000_phy_82578) ||
5792	    (hw->phy.type == e1000_phy_82579) ||
5793	    (hw->phy.type == e1000_phy_i217) ||
5794	    (hw->phy.type == e1000_phy_82577)) {
5795		ret_val = hw->phy.ops.acquire(hw);
5796		if (ret_val)
5797			return;
5798		ret_val = hw->phy.ops.set_page(hw,
5799					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5800		if (ret_val)
5801			goto release;
5802		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5803		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5804		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5805		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5806		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5807		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5808		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5809		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5810		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5811		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5812		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5813		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5814		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5815		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5816release:
5817		hw->phy.ops.release(hw);
5818	}
5819}
5820
5821static const struct e1000_mac_operations ich8_mac_ops = {
5822	/* check_mng_mode dependent on mac type */
5823	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5824	/* cleanup_led dependent on mac type */
5825	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5826	.get_bus_info		= e1000_get_bus_info_ich8lan,
5827	.set_lan_id		= e1000_set_lan_id_single_port,
5828	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5829	/* led_on dependent on mac type */
5830	/* led_off dependent on mac type */
5831	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5832	.reset_hw		= e1000_reset_hw_ich8lan,
5833	.init_hw		= e1000_init_hw_ich8lan,
5834	.setup_link		= e1000_setup_link_ich8lan,
5835	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5836	/* id_led_init dependent on mac type */
5837	.config_collision_dist	= e1000e_config_collision_dist_generic,
5838	.rar_set		= e1000e_rar_set_generic,
5839	.rar_get_count		= e1000e_rar_get_count_generic,
5840};
5841
5842static const struct e1000_phy_operations ich8_phy_ops = {
5843	.acquire		= e1000_acquire_swflag_ich8lan,
5844	.check_reset_block	= e1000_check_reset_block_ich8lan,
5845	.commit			= NULL,
5846	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5847	.get_cable_length	= e1000e_get_cable_length_igp_2,
5848	.read_reg		= e1000e_read_phy_reg_igp,
5849	.release		= e1000_release_swflag_ich8lan,
5850	.reset			= e1000_phy_hw_reset_ich8lan,
5851	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5852	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5853	.write_reg		= e1000e_write_phy_reg_igp,
5854};
5855
5856static const struct e1000_nvm_operations ich8_nvm_ops = {
5857	.acquire		= e1000_acquire_nvm_ich8lan,
5858	.read			= e1000_read_nvm_ich8lan,
5859	.release		= e1000_release_nvm_ich8lan,
5860	.reload			= e1000e_reload_nvm_generic,
5861	.update			= e1000_update_nvm_checksum_ich8lan,
5862	.valid_led_default	= e1000_valid_led_default_ich8lan,
5863	.validate		= e1000_validate_nvm_checksum_ich8lan,
5864	.write			= e1000_write_nvm_ich8lan,
5865};
5866
5867static const struct e1000_nvm_operations spt_nvm_ops = {
5868	.acquire		= e1000_acquire_nvm_ich8lan,
5869	.release		= e1000_release_nvm_ich8lan,
5870	.read			= e1000_read_nvm_spt,
5871	.update			= e1000_update_nvm_checksum_spt,
5872	.reload			= e1000e_reload_nvm_generic,
5873	.valid_led_default	= e1000_valid_led_default_ich8lan,
5874	.validate		= e1000_validate_nvm_checksum_ich8lan,
5875	.write			= e1000_write_nvm_ich8lan,
5876};
5877
5878const struct e1000_info e1000_ich8_info = {
5879	.mac			= e1000_ich8lan,
5880	.flags			= FLAG_HAS_WOL
5881				  | FLAG_IS_ICH
5882				  | FLAG_HAS_CTRLEXT_ON_LOAD
5883				  | FLAG_HAS_AMT
5884				  | FLAG_HAS_FLASH
5885				  | FLAG_APME_IN_WUC,
5886	.pba			= 8,
5887	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5888	.get_variants		= e1000_get_variants_ich8lan,
5889	.mac_ops		= &ich8_mac_ops,
5890	.phy_ops		= &ich8_phy_ops,
5891	.nvm_ops		= &ich8_nvm_ops,
5892};
5893
5894const struct e1000_info e1000_ich9_info = {
5895	.mac			= e1000_ich9lan,
5896	.flags			= FLAG_HAS_JUMBO_FRAMES
5897				  | FLAG_IS_ICH
5898				  | FLAG_HAS_WOL
5899				  | FLAG_HAS_CTRLEXT_ON_LOAD
5900				  | FLAG_HAS_AMT
5901				  | FLAG_HAS_FLASH
5902				  | FLAG_APME_IN_WUC,
5903	.pba			= 18,
5904	.max_hw_frame_size	= DEFAULT_JUMBO,
5905	.get_variants		= e1000_get_variants_ich8lan,
5906	.mac_ops		= &ich8_mac_ops,
5907	.phy_ops		= &ich8_phy_ops,
5908	.nvm_ops		= &ich8_nvm_ops,
5909};
5910
5911const struct e1000_info e1000_ich10_info = {
5912	.mac			= e1000_ich10lan,
5913	.flags			= FLAG_HAS_JUMBO_FRAMES
5914				  | FLAG_IS_ICH
5915				  | FLAG_HAS_WOL
5916				  | FLAG_HAS_CTRLEXT_ON_LOAD
5917				  | FLAG_HAS_AMT
5918				  | FLAG_HAS_FLASH
5919				  | FLAG_APME_IN_WUC,
5920	.pba			= 18,
5921	.max_hw_frame_size	= DEFAULT_JUMBO,
5922	.get_variants		= e1000_get_variants_ich8lan,
5923	.mac_ops		= &ich8_mac_ops,
5924	.phy_ops		= &ich8_phy_ops,
5925	.nvm_ops		= &ich8_nvm_ops,
5926};
5927
5928const struct e1000_info e1000_pch_info = {
5929	.mac			= e1000_pchlan,
5930	.flags			= FLAG_IS_ICH
5931				  | FLAG_HAS_WOL
5932				  | FLAG_HAS_CTRLEXT_ON_LOAD
5933				  | FLAG_HAS_AMT
5934				  | FLAG_HAS_FLASH
5935				  | FLAG_HAS_JUMBO_FRAMES
5936				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5937				  | FLAG_APME_IN_WUC,
5938	.flags2			= FLAG2_HAS_PHY_STATS,
5939	.pba			= 26,
5940	.max_hw_frame_size	= 4096,
5941	.get_variants		= e1000_get_variants_ich8lan,
5942	.mac_ops		= &ich8_mac_ops,
5943	.phy_ops		= &ich8_phy_ops,
5944	.nvm_ops		= &ich8_nvm_ops,
5945};
5946
5947const struct e1000_info e1000_pch2_info = {
5948	.mac			= e1000_pch2lan,
5949	.flags			= FLAG_IS_ICH
5950				  | FLAG_HAS_WOL
5951				  | FLAG_HAS_HW_TIMESTAMP
5952				  | FLAG_HAS_CTRLEXT_ON_LOAD
5953				  | FLAG_HAS_AMT
5954				  | FLAG_HAS_FLASH
5955				  | FLAG_HAS_JUMBO_FRAMES
5956				  | FLAG_APME_IN_WUC,
5957	.flags2			= FLAG2_HAS_PHY_STATS
5958				  | FLAG2_HAS_EEE
5959				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5960	.pba			= 26,
5961	.max_hw_frame_size	= 9022,
5962	.get_variants		= e1000_get_variants_ich8lan,
5963	.mac_ops		= &ich8_mac_ops,
5964	.phy_ops		= &ich8_phy_ops,
5965	.nvm_ops		= &ich8_nvm_ops,
5966};
5967
5968const struct e1000_info e1000_pch_lpt_info = {
5969	.mac			= e1000_pch_lpt,
5970	.flags			= FLAG_IS_ICH
5971				  | FLAG_HAS_WOL
5972				  | FLAG_HAS_HW_TIMESTAMP
5973				  | FLAG_HAS_CTRLEXT_ON_LOAD
5974				  | FLAG_HAS_AMT
5975				  | FLAG_HAS_FLASH
5976				  | FLAG_HAS_JUMBO_FRAMES
5977				  | FLAG_APME_IN_WUC,
5978	.flags2			= FLAG2_HAS_PHY_STATS
5979				  | FLAG2_HAS_EEE
5980				  | FLAG2_CHECK_SYSTIM_OVERFLOW,
5981	.pba			= 26,
5982	.max_hw_frame_size	= 9022,
5983	.get_variants		= e1000_get_variants_ich8lan,
5984	.mac_ops		= &ich8_mac_ops,
5985	.phy_ops		= &ich8_phy_ops,
5986	.nvm_ops		= &ich8_nvm_ops,
5987};
5988
5989const struct e1000_info e1000_pch_spt_info = {
5990	.mac			= e1000_pch_spt,
5991	.flags			= FLAG_IS_ICH
5992				  | FLAG_HAS_WOL
5993				  | FLAG_HAS_HW_TIMESTAMP
5994				  | FLAG_HAS_CTRLEXT_ON_LOAD
5995				  | FLAG_HAS_AMT
5996				  | FLAG_HAS_FLASH
5997				  | FLAG_HAS_JUMBO_FRAMES
5998				  | FLAG_APME_IN_WUC,
5999	.flags2			= FLAG2_HAS_PHY_STATS
6000				  | FLAG2_HAS_EEE,
6001	.pba			= 26,
6002	.max_hw_frame_size	= 9022,
6003	.get_variants		= e1000_get_variants_ich8lan,
6004	.mac_ops		= &ich8_mac_ops,
6005	.phy_ops		= &ich8_phy_ops,
6006	.nvm_ops		= &spt_nvm_ops,
6007};
6008
6009const struct e1000_info e1000_pch_cnp_info = {
6010	.mac			= e1000_pch_cnp,
6011	.flags			= FLAG_IS_ICH
6012				  | FLAG_HAS_WOL
6013				  | FLAG_HAS_HW_TIMESTAMP
6014				  | FLAG_HAS_CTRLEXT_ON_LOAD
6015				  | FLAG_HAS_AMT
6016				  | FLAG_HAS_FLASH
6017				  | FLAG_HAS_JUMBO_FRAMES
6018				  | FLAG_APME_IN_WUC,
6019	.flags2			= FLAG2_HAS_PHY_STATS
6020				  | FLAG2_HAS_EEE,
6021	.pba			= 26,
6022	.max_hw_frame_size	= 9022,
6023	.get_variants		= e1000_get_variants_ich8lan,
6024	.mac_ops		= &ich8_mac_ops,
6025	.phy_ops		= &ich8_phy_ops,
6026	.nvm_ops		= &spt_nvm_ops,
6027};
6028
6029const struct e1000_info e1000_pch_tgp_info = {
6030	.mac			= e1000_pch_tgp,
6031	.flags			= FLAG_IS_ICH
6032				  | FLAG_HAS_WOL
6033				  | FLAG_HAS_HW_TIMESTAMP
6034				  | FLAG_HAS_CTRLEXT_ON_LOAD
6035				  | FLAG_HAS_AMT
6036				  | FLAG_HAS_FLASH
6037				  | FLAG_HAS_JUMBO_FRAMES
6038				  | FLAG_APME_IN_WUC,
6039	.flags2			= FLAG2_HAS_PHY_STATS
6040				  | FLAG2_HAS_EEE,
6041	.pba			= 26,
6042	.max_hw_frame_size	= 9022,
6043	.get_variants		= e1000_get_variants_ich8lan,
6044	.mac_ops		= &ich8_mac_ops,
6045	.phy_ops		= &ich8_phy_ops,
6046	.nvm_ops		= &spt_nvm_ops,
6047};
6048
6049const struct e1000_info e1000_pch_adp_info = {
6050	.mac			= e1000_pch_adp,
6051	.flags			= FLAG_IS_ICH
6052				  | FLAG_HAS_WOL
6053				  | FLAG_HAS_HW_TIMESTAMP
6054				  | FLAG_HAS_CTRLEXT_ON_LOAD
6055				  | FLAG_HAS_AMT
6056				  | FLAG_HAS_FLASH
6057				  | FLAG_HAS_JUMBO_FRAMES
6058				  | FLAG_APME_IN_WUC,
6059	.flags2			= FLAG2_HAS_PHY_STATS
6060				  | FLAG2_HAS_EEE,
6061	.pba			= 26,
6062	.max_hw_frame_size	= 9022,
6063	.get_variants		= e1000_get_variants_ich8lan,
6064	.mac_ops		= &ich8_mac_ops,
6065	.phy_ops		= &ich8_phy_ops,
6066	.nvm_ops		= &spt_nvm_ops,
6067};
6068
6069const struct e1000_info e1000_pch_mtp_info = {
6070	.mac			= e1000_pch_mtp,
6071	.flags			= FLAG_IS_ICH
6072				  | FLAG_HAS_WOL
6073				  | FLAG_HAS_HW_TIMESTAMP
6074				  | FLAG_HAS_CTRLEXT_ON_LOAD
6075				  | FLAG_HAS_AMT
6076				  | FLAG_HAS_FLASH
6077				  | FLAG_HAS_JUMBO_FRAMES
6078				  | FLAG_APME_IN_WUC,
6079	.flags2			= FLAG2_HAS_PHY_STATS
6080				  | FLAG2_HAS_EEE,
6081	.pba			= 26,
6082	.max_hw_frame_size	= 9022,
6083	.get_variants		= e1000_get_variants_ich8lan,
6084	.mac_ops		= &ich8_mac_ops,
6085	.phy_ops		= &ich8_phy_ops,
6086	.nvm_ops		= &spt_nvm_ops,
6087};
v4.6
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22/* 82562G 10/100 Network Connection
  23 * 82562G-2 10/100 Network Connection
  24 * 82562GT 10/100 Network Connection
  25 * 82562GT-2 10/100 Network Connection
  26 * 82562V 10/100 Network Connection
  27 * 82562V-2 10/100 Network Connection
  28 * 82566DC-2 Gigabit Network Connection
  29 * 82566DC Gigabit Network Connection
  30 * 82566DM-2 Gigabit Network Connection
  31 * 82566DM Gigabit Network Connection
  32 * 82566MC Gigabit Network Connection
  33 * 82566MM Gigabit Network Connection
  34 * 82567LM Gigabit Network Connection
  35 * 82567LF Gigabit Network Connection
  36 * 82567V Gigabit Network Connection
  37 * 82567LM-2 Gigabit Network Connection
  38 * 82567LF-2 Gigabit Network Connection
  39 * 82567V-2 Gigabit Network Connection
  40 * 82567LF-3 Gigabit Network Connection
  41 * 82567LM-3 Gigabit Network Connection
  42 * 82567LM-4 Gigabit Network Connection
  43 * 82577LM Gigabit Network Connection
  44 * 82577LC Gigabit Network Connection
  45 * 82578DM Gigabit Network Connection
  46 * 82578DC Gigabit Network Connection
  47 * 82579LM Gigabit Network Connection
  48 * 82579V Gigabit Network Connection
  49 * Ethernet Connection I217-LM
  50 * Ethernet Connection I217-V
  51 * Ethernet Connection I218-V
  52 * Ethernet Connection I218-LM
  53 * Ethernet Connection (2) I218-LM
  54 * Ethernet Connection (2) I218-V
  55 * Ethernet Connection (3) I218-LM
  56 * Ethernet Connection (3) I218-V
  57 */
  58
  59#include "e1000.h"
  60
  61/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
  62/* Offset 04h HSFSTS */
  63union ich8_hws_flash_status {
  64	struct ich8_hsfsts {
  65		u16 flcdone:1;	/* bit 0 Flash Cycle Done */
  66		u16 flcerr:1;	/* bit 1 Flash Cycle Error */
  67		u16 dael:1;	/* bit 2 Direct Access error Log */
  68		u16 berasesz:2;	/* bit 4:3 Sector Erase Size */
  69		u16 flcinprog:1;	/* bit 5 flash cycle in Progress */
  70		u16 reserved1:2;	/* bit 13:6 Reserved */
  71		u16 reserved2:6;	/* bit 13:6 Reserved */
  72		u16 fldesvalid:1;	/* bit 14 Flash Descriptor Valid */
  73		u16 flockdn:1;	/* bit 15 Flash Config Lock-Down */
  74	} hsf_status;
  75	u16 regval;
  76};
  77
  78/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
  79/* Offset 06h FLCTL */
  80union ich8_hws_flash_ctrl {
  81	struct ich8_hsflctl {
  82		u16 flcgo:1;	/* 0 Flash Cycle Go */
  83		u16 flcycle:2;	/* 2:1 Flash Cycle */
  84		u16 reserved:5;	/* 7:3 Reserved  */
  85		u16 fldbcount:2;	/* 9:8 Flash Data Byte Count */
  86		u16 flockdn:6;	/* 15:10 Reserved */
  87	} hsf_ctrl;
  88	u16 regval;
  89};
  90
  91/* ICH Flash Region Access Permissions */
  92union ich8_hws_flash_regacc {
  93	struct ich8_flracc {
  94		u32 grra:8;	/* 0:7 GbE region Read Access */
  95		u32 grwa:8;	/* 8:15 GbE region Write Access */
  96		u32 gmrag:8;	/* 23:16 GbE Master Read Access Grant */
  97		u32 gmwag:8;	/* 31:24 GbE Master Write Access Grant */
  98	} hsf_flregacc;
  99	u16 regval;
 100};
 101
 102/* ICH Flash Protected Region */
 103union ich8_flash_protected_range {
 104	struct ich8_pr {
 105		u32 base:13;	/* 0:12 Protected Range Base */
 106		u32 reserved1:2;	/* 13:14 Reserved */
 107		u32 rpe:1;	/* 15 Read Protection Enable */
 108		u32 limit:13;	/* 16:28 Protected Range Limit */
 109		u32 reserved2:2;	/* 29:30 Reserved */
 110		u32 wpe:1;	/* 31 Write Protection Enable */
 111	} range;
 112	u32 regval;
 113};
 114
 115static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
 116static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
 117static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
 118static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
 119						u32 offset, u8 byte);
 120static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
 121					 u8 *data);
 122static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
 123					 u16 *data);
 124static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
 125					 u8 size, u16 *data);
 126static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
 127					   u32 *data);
 128static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
 129					  u32 offset, u32 *data);
 130static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
 131					    u32 offset, u32 data);
 132static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
 133						 u32 offset, u32 dword);
 134static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
 135static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
 136static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
 137static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
 138static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
 139static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
 140static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
 141static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
 142static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
 143static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
 144static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
 145static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
 146static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
 147static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
 148static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
 149static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
 150static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
 151static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
 152static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
 153static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
 154static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
 155static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
 156static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
 157static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
 158
 159static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
 160{
 161	return readw(hw->flash_address + reg);
 162}
 163
 164static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
 165{
 166	return readl(hw->flash_address + reg);
 167}
 168
 169static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
 170{
 171	writew(val, hw->flash_address + reg);
 172}
 173
 174static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
 175{
 176	writel(val, hw->flash_address + reg);
 177}
 178
 179#define er16flash(reg)		__er16flash(hw, (reg))
 180#define er32flash(reg)		__er32flash(hw, (reg))
 181#define ew16flash(reg, val)	__ew16flash(hw, (reg), (val))
 182#define ew32flash(reg, val)	__ew32flash(hw, (reg), (val))
 183
 184/**
 185 *  e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
 186 *  @hw: pointer to the HW structure
 187 *
 188 *  Test access to the PHY registers by reading the PHY ID registers.  If
 189 *  the PHY ID is already known (e.g. resume path) compare it with known ID,
 190 *  otherwise assume the read PHY ID is correct if it is valid.
 191 *
 192 *  Assumes the sw/fw/hw semaphore is already acquired.
 193 **/
 194static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
 195{
 196	u16 phy_reg = 0;
 197	u32 phy_id = 0;
 198	s32 ret_val = 0;
 199	u16 retry_count;
 200	u32 mac_reg = 0;
 201
 202	for (retry_count = 0; retry_count < 2; retry_count++) {
 203		ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
 204		if (ret_val || (phy_reg == 0xFFFF))
 205			continue;
 206		phy_id = (u32)(phy_reg << 16);
 207
 208		ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
 209		if (ret_val || (phy_reg == 0xFFFF)) {
 210			phy_id = 0;
 211			continue;
 212		}
 213		phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
 214		break;
 215	}
 216
 217	if (hw->phy.id) {
 218		if (hw->phy.id == phy_id)
 219			goto out;
 220	} else if (phy_id) {
 221		hw->phy.id = phy_id;
 222		hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
 223		goto out;
 224	}
 225
 226	/* In case the PHY needs to be in mdio slow mode,
 227	 * set slow mode and try to get the PHY id again.
 228	 */
 229	if (hw->mac.type < e1000_pch_lpt) {
 230		hw->phy.ops.release(hw);
 231		ret_val = e1000_set_mdio_slow_mode_hv(hw);
 232		if (!ret_val)
 233			ret_val = e1000e_get_phy_id(hw);
 234		hw->phy.ops.acquire(hw);
 235	}
 236
 237	if (ret_val)
 238		return false;
 239out:
 240	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
 241		/* Only unforce SMBus if ME is not active */
 242		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
 
 
 
 
 
 243			/* Unforce SMBus mode in PHY */
 244			e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
 245			phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
 246			e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
 247
 
 
 248			/* Unforce SMBus mode in MAC */
 249			mac_reg = er32(CTRL_EXT);
 250			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 251			ew32(CTRL_EXT, mac_reg);
 252		}
 253	}
 254
 255	return true;
 256}
 257
 258/**
 259 *  e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
 260 *  @hw: pointer to the HW structure
 261 *
 262 *  Toggling the LANPHYPC pin value fully power-cycles the PHY and is
 263 *  used to reset the PHY to a quiescent state when necessary.
 264 **/
 265static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
 266{
 267	u32 mac_reg;
 268
 269	/* Set Phy Config Counter to 50msec */
 270	mac_reg = er32(FEXTNVM3);
 271	mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
 272	mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
 273	ew32(FEXTNVM3, mac_reg);
 274
 275	/* Toggle LANPHYPC Value bit */
 276	mac_reg = er32(CTRL);
 277	mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
 278	mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
 279	ew32(CTRL, mac_reg);
 280	e1e_flush();
 281	usleep_range(10, 20);
 282	mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
 283	ew32(CTRL, mac_reg);
 284	e1e_flush();
 285
 286	if (hw->mac.type < e1000_pch_lpt) {
 287		msleep(50);
 288	} else {
 289		u16 count = 20;
 290
 291		do {
 292			usleep_range(5000, 10000);
 293		} while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
 294
 295		msleep(30);
 296	}
 297}
 298
 299/**
 300 *  e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
 301 *  @hw: pointer to the HW structure
 302 *
 303 *  Workarounds/flow necessary for PHY initialization during driver load
 304 *  and resume paths.
 305 **/
 306static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
 307{
 308	struct e1000_adapter *adapter = hw->adapter;
 309	u32 mac_reg, fwsm = er32(FWSM);
 310	s32 ret_val;
 311
 312	/* Gate automatic PHY configuration by hardware on managed and
 313	 * non-managed 82579 and newer adapters.
 314	 */
 315	e1000_gate_hw_phy_config_ich8lan(hw, true);
 316
 317	/* It is not possible to be certain of the current state of ULP
 318	 * so forcibly disable it.
 319	 */
 320	hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
 321	e1000_disable_ulp_lpt_lp(hw, true);
 
 
 322
 323	ret_val = hw->phy.ops.acquire(hw);
 324	if (ret_val) {
 325		e_dbg("Failed to initialize PHY flow\n");
 326		goto out;
 327	}
 328
 
 
 
 
 
 329	/* The MAC-PHY interconnect may be in SMBus mode.  If the PHY is
 330	 * inaccessible and resetting the PHY is not blocked, toggle the
 331	 * LANPHYPC Value bit to force the interconnect to PCIe mode.
 332	 */
 333	switch (hw->mac.type) {
 334	case e1000_pch_lpt:
 335	case e1000_pch_spt:
 
 
 
 
 
 
 
 336		if (e1000_phy_is_accessible_pchlan(hw))
 337			break;
 338
 339		/* Before toggling LANPHYPC, see if PHY is accessible by
 340		 * forcing MAC to SMBus mode first.
 341		 */
 342		mac_reg = er32(CTRL_EXT);
 343		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
 344		ew32(CTRL_EXT, mac_reg);
 345
 346		/* Wait 50 milliseconds for MAC to finish any retries
 347		 * that it might be trying to perform from previous
 348		 * attempts to acknowledge any phy read requests.
 349		 */
 350		msleep(50);
 351
 352		/* fall-through */
 353	case e1000_pch2lan:
 354		if (e1000_phy_is_accessible_pchlan(hw))
 355			break;
 356
 357		/* fall-through */
 358	case e1000_pchlan:
 359		if ((hw->mac.type == e1000_pchlan) &&
 360		    (fwsm & E1000_ICH_FWSM_FW_VALID))
 361			break;
 362
 363		if (hw->phy.ops.check_reset_block(hw)) {
 364			e_dbg("Required LANPHYPC toggle blocked by ME\n");
 365			ret_val = -E1000_ERR_PHY;
 366			break;
 367		}
 368
 369		/* Toggle LANPHYPC Value bit */
 370		e1000_toggle_lanphypc_pch_lpt(hw);
 371		if (hw->mac.type >= e1000_pch_lpt) {
 372			if (e1000_phy_is_accessible_pchlan(hw))
 373				break;
 374
 375			/* Toggling LANPHYPC brings the PHY out of SMBus mode
 376			 * so ensure that the MAC is also out of SMBus mode
 377			 */
 378			mac_reg = er32(CTRL_EXT);
 379			mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
 380			ew32(CTRL_EXT, mac_reg);
 381
 382			if (e1000_phy_is_accessible_pchlan(hw))
 383				break;
 384
 385			ret_val = -E1000_ERR_PHY;
 386		}
 387		break;
 388	default:
 389		break;
 390	}
 391
 
 
 392	hw->phy.ops.release(hw);
 393	if (!ret_val) {
 394
 395		/* Check to see if able to reset PHY.  Print error if not */
 396		if (hw->phy.ops.check_reset_block(hw)) {
 397			e_err("Reset blocked by ME\n");
 398			goto out;
 399		}
 400
 401		/* Reset the PHY before any access to it.  Doing so, ensures
 402		 * that the PHY is in a known good state before we read/write
 403		 * PHY registers.  The generic reset is sufficient here,
 404		 * because we haven't determined the PHY type yet.
 405		 */
 406		ret_val = e1000e_phy_hw_reset_generic(hw);
 407		if (ret_val)
 408			goto out;
 409
 410		/* On a successful reset, possibly need to wait for the PHY
 411		 * to quiesce to an accessible state before returning control
 412		 * to the calling function.  If the PHY does not quiesce, then
 413		 * return E1000E_BLK_PHY_RESET, as this is the condition that
 414		 *  the PHY is in.
 415		 */
 416		ret_val = hw->phy.ops.check_reset_block(hw);
 417		if (ret_val)
 418			e_err("ME blocked access to PHY after reset\n");
 419	}
 420
 421out:
 422	/* Ungate automatic PHY configuration on non-managed 82579 */
 423	if ((hw->mac.type == e1000_pch2lan) &&
 424	    !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
 425		usleep_range(10000, 20000);
 426		e1000_gate_hw_phy_config_ich8lan(hw, false);
 427	}
 428
 429	return ret_val;
 430}
 431
 432/**
 433 *  e1000_init_phy_params_pchlan - Initialize PHY function pointers
 434 *  @hw: pointer to the HW structure
 435 *
 436 *  Initialize family-specific PHY parameters and function pointers.
 437 **/
 438static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
 439{
 440	struct e1000_phy_info *phy = &hw->phy;
 441	s32 ret_val;
 442
 443	phy->addr = 1;
 444	phy->reset_delay_us = 100;
 445
 446	phy->ops.set_page = e1000_set_page_igp;
 447	phy->ops.read_reg = e1000_read_phy_reg_hv;
 448	phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
 449	phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
 450	phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
 451	phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
 452	phy->ops.write_reg = e1000_write_phy_reg_hv;
 453	phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
 454	phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
 455	phy->ops.power_up = e1000_power_up_phy_copper;
 456	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 457	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 458
 459	phy->id = e1000_phy_unknown;
 460
 
 
 
 
 
 461	ret_val = e1000_init_phy_workarounds_pchlan(hw);
 462	if (ret_val)
 463		return ret_val;
 464
 465	if (phy->id == e1000_phy_unknown)
 466		switch (hw->mac.type) {
 467		default:
 468			ret_val = e1000e_get_phy_id(hw);
 469			if (ret_val)
 470				return ret_val;
 471			if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
 472				break;
 473			/* fall-through */
 474		case e1000_pch2lan:
 475		case e1000_pch_lpt:
 476		case e1000_pch_spt:
 
 
 
 
 
 
 
 477			/* In case the PHY needs to be in mdio slow mode,
 478			 * set slow mode and try to get the PHY id again.
 479			 */
 480			ret_val = e1000_set_mdio_slow_mode_hv(hw);
 481			if (ret_val)
 482				return ret_val;
 483			ret_val = e1000e_get_phy_id(hw);
 484			if (ret_val)
 485				return ret_val;
 486			break;
 487		}
 488	phy->type = e1000e_get_phy_type_from_id(phy->id);
 489
 490	switch (phy->type) {
 491	case e1000_phy_82577:
 492	case e1000_phy_82579:
 493	case e1000_phy_i217:
 494		phy->ops.check_polarity = e1000_check_polarity_82577;
 495		phy->ops.force_speed_duplex =
 496		    e1000_phy_force_speed_duplex_82577;
 497		phy->ops.get_cable_length = e1000_get_cable_length_82577;
 498		phy->ops.get_info = e1000_get_phy_info_82577;
 499		phy->ops.commit = e1000e_phy_sw_reset;
 500		break;
 501	case e1000_phy_82578:
 502		phy->ops.check_polarity = e1000_check_polarity_m88;
 503		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 504		phy->ops.get_cable_length = e1000e_get_cable_length_m88;
 505		phy->ops.get_info = e1000e_get_phy_info_m88;
 506		break;
 507	default:
 508		ret_val = -E1000_ERR_PHY;
 509		break;
 510	}
 511
 512	return ret_val;
 513}
 514
 515/**
 516 *  e1000_init_phy_params_ich8lan - Initialize PHY function pointers
 517 *  @hw: pointer to the HW structure
 518 *
 519 *  Initialize family-specific PHY parameters and function pointers.
 520 **/
 521static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
 522{
 523	struct e1000_phy_info *phy = &hw->phy;
 524	s32 ret_val;
 525	u16 i = 0;
 526
 527	phy->addr = 1;
 528	phy->reset_delay_us = 100;
 529
 530	phy->ops.power_up = e1000_power_up_phy_copper;
 531	phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
 532
 533	/* We may need to do this twice - once for IGP and if that fails,
 534	 * we'll set BM func pointers and try again
 535	 */
 536	ret_val = e1000e_determine_phy_address(hw);
 537	if (ret_val) {
 538		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 539		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 540		ret_val = e1000e_determine_phy_address(hw);
 541		if (ret_val) {
 542			e_dbg("Cannot determine PHY addr. Erroring out\n");
 543			return ret_val;
 544		}
 545	}
 546
 547	phy->id = 0;
 548	while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
 549	       (i++ < 100)) {
 550		usleep_range(1000, 2000);
 551		ret_val = e1000e_get_phy_id(hw);
 552		if (ret_val)
 553			return ret_val;
 554	}
 555
 556	/* Verify phy id */
 557	switch (phy->id) {
 558	case IGP03E1000_E_PHY_ID:
 559		phy->type = e1000_phy_igp_3;
 560		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 561		phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
 562		phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
 563		phy->ops.get_info = e1000e_get_phy_info_igp;
 564		phy->ops.check_polarity = e1000_check_polarity_igp;
 565		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
 566		break;
 567	case IFE_E_PHY_ID:
 568	case IFE_PLUS_E_PHY_ID:
 569	case IFE_C_E_PHY_ID:
 570		phy->type = e1000_phy_ife;
 571		phy->autoneg_mask = E1000_ALL_NOT_GIG;
 572		phy->ops.get_info = e1000_get_phy_info_ife;
 573		phy->ops.check_polarity = e1000_check_polarity_ife;
 574		phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
 575		break;
 576	case BME1000_E_PHY_ID:
 577		phy->type = e1000_phy_bm;
 578		phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
 579		phy->ops.read_reg = e1000e_read_phy_reg_bm;
 580		phy->ops.write_reg = e1000e_write_phy_reg_bm;
 581		phy->ops.commit = e1000e_phy_sw_reset;
 582		phy->ops.get_info = e1000e_get_phy_info_m88;
 583		phy->ops.check_polarity = e1000_check_polarity_m88;
 584		phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
 585		break;
 586	default:
 587		return -E1000_ERR_PHY;
 588	}
 589
 590	return 0;
 591}
 592
 593/**
 594 *  e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
 595 *  @hw: pointer to the HW structure
 596 *
 597 *  Initialize family-specific NVM parameters and function
 598 *  pointers.
 599 **/
 600static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
 601{
 602	struct e1000_nvm_info *nvm = &hw->nvm;
 603	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 604	u32 gfpreg, sector_base_addr, sector_end_addr;
 605	u16 i;
 606	u32 nvm_size;
 607
 608	nvm->type = e1000_nvm_flash_sw;
 609
 610	if (hw->mac.type == e1000_pch_spt) {
 611		/* in SPT, gfpreg doesn't exist. NVM size is taken from the
 612		 * STRAP register. This is because in SPT the GbE Flash region
 613		 * is no longer accessed through the flash registers. Instead,
 614		 * the mechanism has changed, and the Flash region access
 615		 * registers are now implemented in GbE memory space.
 616		 */
 617		nvm->flash_base_addr = 0;
 618		nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
 619		    * NVM_SIZE_MULTIPLIER;
 620		nvm->flash_bank_size = nvm_size / 2;
 621		/* Adjust to word count */
 622		nvm->flash_bank_size /= sizeof(u16);
 623		/* Set the base address for flash register access */
 624		hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
 625	} else {
 626		/* Can't read flash registers if register set isn't mapped. */
 627		if (!hw->flash_address) {
 628			e_dbg("ERROR: Flash registers not mapped\n");
 629			return -E1000_ERR_CONFIG;
 630		}
 631
 632		gfpreg = er32flash(ICH_FLASH_GFPREG);
 633
 634		/* sector_X_addr is a "sector"-aligned address (4096 bytes)
 635		 * Add 1 to sector_end_addr since this sector is included in
 636		 * the overall size.
 637		 */
 638		sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
 639		sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
 640
 641		/* flash_base_addr is byte-aligned */
 642		nvm->flash_base_addr = sector_base_addr
 643		    << FLASH_SECTOR_ADDR_SHIFT;
 644
 645		/* find total size of the NVM, then cut in half since the total
 646		 * size represents two separate NVM banks.
 647		 */
 648		nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
 649					<< FLASH_SECTOR_ADDR_SHIFT);
 650		nvm->flash_bank_size /= 2;
 651		/* Adjust to word count */
 652		nvm->flash_bank_size /= sizeof(u16);
 653	}
 654
 655	nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
 656
 657	/* Clear shadow ram */
 658	for (i = 0; i < nvm->word_size; i++) {
 659		dev_spec->shadow_ram[i].modified = false;
 660		dev_spec->shadow_ram[i].value = 0xFFFF;
 661	}
 662
 663	return 0;
 664}
 665
 666/**
 667 *  e1000_init_mac_params_ich8lan - Initialize MAC function pointers
 668 *  @hw: pointer to the HW structure
 669 *
 670 *  Initialize family-specific MAC parameters and function
 671 *  pointers.
 672 **/
 673static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
 674{
 675	struct e1000_mac_info *mac = &hw->mac;
 676
 677	/* Set media type function pointer */
 678	hw->phy.media_type = e1000_media_type_copper;
 679
 680	/* Set mta register count */
 681	mac->mta_reg_count = 32;
 682	/* Set rar entry count */
 683	mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
 684	if (mac->type == e1000_ich8lan)
 685		mac->rar_entry_count--;
 686	/* FWSM register */
 687	mac->has_fwsm = true;
 688	/* ARC subsystem not supported */
 689	mac->arc_subsystem_valid = false;
 690	/* Adaptive IFS supported */
 691	mac->adaptive_ifs = true;
 692
 693	/* LED and other operations */
 694	switch (mac->type) {
 695	case e1000_ich8lan:
 696	case e1000_ich9lan:
 697	case e1000_ich10lan:
 698		/* check management mode */
 699		mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
 700		/* ID LED init */
 701		mac->ops.id_led_init = e1000e_id_led_init_generic;
 702		/* blink LED */
 703		mac->ops.blink_led = e1000e_blink_led_generic;
 704		/* setup LED */
 705		mac->ops.setup_led = e1000e_setup_led_generic;
 706		/* cleanup LED */
 707		mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
 708		/* turn on/off LED */
 709		mac->ops.led_on = e1000_led_on_ich8lan;
 710		mac->ops.led_off = e1000_led_off_ich8lan;
 711		break;
 712	case e1000_pch2lan:
 713		mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
 714		mac->ops.rar_set = e1000_rar_set_pch2lan;
 715		/* fall-through */
 716	case e1000_pch_lpt:
 717	case e1000_pch_spt:
 
 
 
 
 
 
 
 718	case e1000_pchlan:
 719		/* check management mode */
 720		mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
 721		/* ID LED init */
 722		mac->ops.id_led_init = e1000_id_led_init_pchlan;
 723		/* setup LED */
 724		mac->ops.setup_led = e1000_setup_led_pchlan;
 725		/* cleanup LED */
 726		mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
 727		/* turn on/off LED */
 728		mac->ops.led_on = e1000_led_on_pchlan;
 729		mac->ops.led_off = e1000_led_off_pchlan;
 730		break;
 731	default:
 732		break;
 733	}
 734
 735	if ((mac->type == e1000_pch_lpt) || (mac->type == e1000_pch_spt)) {
 736		mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
 737		mac->ops.rar_set = e1000_rar_set_pch_lpt;
 738		mac->ops.setup_physical_interface =
 739		    e1000_setup_copper_link_pch_lpt;
 740		mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
 741	}
 742
 743	/* Enable PCS Lock-loss workaround for ICH8 */
 744	if (mac->type == e1000_ich8lan)
 745		e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
 746
 747	return 0;
 748}
 749
 750/**
 751 *  __e1000_access_emi_reg_locked - Read/write EMI register
 752 *  @hw: pointer to the HW structure
 753 *  @addr: EMI address to program
 754 *  @data: pointer to value to read/write from/to the EMI address
 755 *  @read: boolean flag to indicate read or write
 756 *
 757 *  This helper function assumes the SW/FW/HW Semaphore is already acquired.
 758 **/
 759static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
 760					 u16 *data, bool read)
 761{
 762	s32 ret_val;
 763
 764	ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
 765	if (ret_val)
 766		return ret_val;
 767
 768	if (read)
 769		ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
 770	else
 771		ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
 772
 773	return ret_val;
 774}
 775
 776/**
 777 *  e1000_read_emi_reg_locked - Read Extended Management Interface register
 778 *  @hw: pointer to the HW structure
 779 *  @addr: EMI address to program
 780 *  @data: value to be read from the EMI address
 781 *
 782 *  Assumes the SW/FW/HW Semaphore is already acquired.
 783 **/
 784s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
 785{
 786	return __e1000_access_emi_reg_locked(hw, addr, data, true);
 787}
 788
 789/**
 790 *  e1000_write_emi_reg_locked - Write Extended Management Interface register
 791 *  @hw: pointer to the HW structure
 792 *  @addr: EMI address to program
 793 *  @data: value to be written to the EMI address
 794 *
 795 *  Assumes the SW/FW/HW Semaphore is already acquired.
 796 **/
 797s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
 798{
 799	return __e1000_access_emi_reg_locked(hw, addr, &data, false);
 800}
 801
 802/**
 803 *  e1000_set_eee_pchlan - Enable/disable EEE support
 804 *  @hw: pointer to the HW structure
 805 *
 806 *  Enable/disable EEE based on setting in dev_spec structure, the duplex of
 807 *  the link and the EEE capabilities of the link partner.  The LPI Control
 808 *  register bits will remain set only if/when link is up.
 809 *
 810 *  EEE LPI must not be asserted earlier than one second after link is up.
 811 *  On 82579, EEE LPI should not be enabled until such time otherwise there
 812 *  can be link issues with some switches.  Other devices can have EEE LPI
 813 *  enabled immediately upon link up since they have a timer in hardware which
 814 *  prevents LPI from being asserted too early.
 815 **/
 816s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
 817{
 818	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
 819	s32 ret_val;
 820	u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
 821
 822	switch (hw->phy.type) {
 823	case e1000_phy_82579:
 824		lpa = I82579_EEE_LP_ABILITY;
 825		pcs_status = I82579_EEE_PCS_STATUS;
 826		adv_addr = I82579_EEE_ADVERTISEMENT;
 827		break;
 828	case e1000_phy_i217:
 829		lpa = I217_EEE_LP_ABILITY;
 830		pcs_status = I217_EEE_PCS_STATUS;
 831		adv_addr = I217_EEE_ADVERTISEMENT;
 832		break;
 833	default:
 834		return 0;
 835	}
 836
 837	ret_val = hw->phy.ops.acquire(hw);
 838	if (ret_val)
 839		return ret_val;
 840
 841	ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
 842	if (ret_val)
 843		goto release;
 844
 845	/* Clear bits that enable EEE in various speeds */
 846	lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
 847
 848	/* Enable EEE if not disabled by user */
 849	if (!dev_spec->eee_disable) {
 850		/* Save off link partner's EEE ability */
 851		ret_val = e1000_read_emi_reg_locked(hw, lpa,
 852						    &dev_spec->eee_lp_ability);
 853		if (ret_val)
 854			goto release;
 855
 856		/* Read EEE advertisement */
 857		ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
 858		if (ret_val)
 859			goto release;
 860
 861		/* Enable EEE only for speeds in which the link partner is
 862		 * EEE capable and for which we advertise EEE.
 863		 */
 864		if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
 865			lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
 866
 867		if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
 868			e1e_rphy_locked(hw, MII_LPA, &data);
 869			if (data & LPA_100FULL)
 870				lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
 871			else
 872				/* EEE is not supported in 100Half, so ignore
 873				 * partner's EEE in 100 ability if full-duplex
 874				 * is not advertised.
 875				 */
 876				dev_spec->eee_lp_ability &=
 877				    ~I82579_EEE_100_SUPPORTED;
 878		}
 879	}
 880
 881	if (hw->phy.type == e1000_phy_82579) {
 882		ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 883						    &data);
 884		if (ret_val)
 885			goto release;
 886
 887		data &= ~I82579_LPI_100_PLL_SHUT;
 888		ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
 889						     data);
 890	}
 891
 892	/* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
 893	ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
 894	if (ret_val)
 895		goto release;
 896
 897	ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
 898release:
 899	hw->phy.ops.release(hw);
 900
 901	return ret_val;
 902}
 903
 904/**
 905 *  e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
 906 *  @hw:   pointer to the HW structure
 907 *  @link: link up bool flag
 908 *
 909 *  When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
 910 *  preventing further DMA write requests.  Workaround the issue by disabling
 911 *  the de-assertion of the clock request when in 1Gpbs mode.
 912 *  Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
 913 *  speeds in order to avoid Tx hangs.
 914 **/
 915static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
 916{
 917	u32 fextnvm6 = er32(FEXTNVM6);
 918	u32 status = er32(STATUS);
 919	s32 ret_val = 0;
 920	u16 reg;
 921
 922	if (link && (status & E1000_STATUS_SPEED_1000)) {
 923		ret_val = hw->phy.ops.acquire(hw);
 924		if (ret_val)
 925			return ret_val;
 926
 927		ret_val =
 928		    e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
 929						&reg);
 930		if (ret_val)
 931			goto release;
 932
 933		ret_val =
 934		    e1000e_write_kmrn_reg_locked(hw,
 935						 E1000_KMRNCTRLSTA_K1_CONFIG,
 936						 reg &
 937						 ~E1000_KMRNCTRLSTA_K1_ENABLE);
 938		if (ret_val)
 939			goto release;
 940
 941		usleep_range(10, 20);
 942
 943		ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
 944
 945		ret_val =
 946		    e1000e_write_kmrn_reg_locked(hw,
 947						 E1000_KMRNCTRLSTA_K1_CONFIG,
 948						 reg);
 949release:
 950		hw->phy.ops.release(hw);
 951	} else {
 952		/* clear FEXTNVM6 bit 8 on link down or 10/100 */
 953		fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
 954
 955		if ((hw->phy.revision > 5) || !link ||
 956		    ((status & E1000_STATUS_SPEED_100) &&
 957		     (status & E1000_STATUS_FD)))
 958			goto update_fextnvm6;
 959
 960		ret_val = e1e_rphy(hw, I217_INBAND_CTRL, &reg);
 961		if (ret_val)
 962			return ret_val;
 963
 964		/* Clear link status transmit timeout */
 965		reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
 966
 967		if (status & E1000_STATUS_SPEED_100) {
 968			/* Set inband Tx timeout to 5x10us for 100Half */
 969			reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 970
 971			/* Do not extend the K1 entry latency for 100Half */
 972			fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 973		} else {
 974			/* Set inband Tx timeout to 50x10us for 10Full/Half */
 975			reg |= 50 <<
 976			    I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
 977
 978			/* Extend the K1 entry latency for 10 Mbps */
 979			fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
 980		}
 981
 982		ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
 983		if (ret_val)
 984			return ret_val;
 985
 986update_fextnvm6:
 987		ew32(FEXTNVM6, fextnvm6);
 988	}
 989
 990	return ret_val;
 991}
 992
 993/**
 994 *  e1000_platform_pm_pch_lpt - Set platform power management values
 995 *  @hw: pointer to the HW structure
 996 *  @link: bool indicating link status
 997 *
 998 *  Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
 999 *  GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1000 *  when link is up (which must not exceed the maximum latency supported
1001 *  by the platform), otherwise specify there is no LTR requirement.
1002 *  Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1003 *  latencies in the LTR Extended Capability Structure in the PCIe Extended
1004 *  Capability register set, on this device LTR is set by writing the
1005 *  equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1006 *  set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1007 *  message to the PMC.
1008 **/
1009static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1010{
1011	u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1012	    link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
 
 
1013	u16 lat_enc = 0;	/* latency encoded */
1014
1015	if (link) {
1016		u16 speed, duplex, scale = 0;
1017		u16 max_snoop, max_nosnoop;
1018		u16 max_ltr_enc;	/* max LTR latency encoded */
1019		u64 value;
1020		u32 rxa;
1021
1022		if (!hw->adapter->max_frame_size) {
1023			e_dbg("max_frame_size not set.\n");
1024			return -E1000_ERR_CONFIG;
1025		}
1026
1027		hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1028		if (!speed) {
1029			e_dbg("Speed not set.\n");
1030			return -E1000_ERR_CONFIG;
1031		}
1032
1033		/* Rx Packet Buffer Allocation size (KB) */
1034		rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1035
1036		/* Determine the maximum latency tolerated by the device.
1037		 *
1038		 * Per the PCIe spec, the tolerated latencies are encoded as
1039		 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1040		 * a 10-bit value (0-1023) to provide a range from 1 ns to
1041		 * 2^25*(2^10-1) ns.  The scale is encoded as 0=2^0ns,
1042		 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1043		 */
1044		rxa *= 512;
1045		value = (rxa > hw->adapter->max_frame_size) ?
1046			(rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1047			0;
1048
1049		while (value > PCI_LTR_VALUE_MASK) {
1050			scale++;
1051			value = DIV_ROUND_UP(value, (1 << 5));
1052		}
1053		if (scale > E1000_LTRV_SCALE_MAX) {
1054			e_dbg("Invalid LTR latency scale %d\n", scale);
1055			return -E1000_ERR_CONFIG;
1056		}
1057		lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1058
1059		/* Determine the maximum latency tolerated by the platform */
1060		pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1061				     &max_snoop);
1062		pci_read_config_word(hw->adapter->pdev,
1063				     E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1064		max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1065
1066		if (lat_enc > max_ltr_enc)
 
 
 
 
 
 
 
 
1067			lat_enc = max_ltr_enc;
1068	}
1069
1070	/* Set Snoop and No-Snoop latencies the same */
1071	reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1072	ew32(LTRV, reg);
1073
1074	return 0;
1075}
1076
1077/**
1078 *  e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1079 *  @hw: pointer to the HW structure
1080 *  @to_sx: boolean indicating a system power state transition to Sx
1081 *
1082 *  When link is down, configure ULP mode to significantly reduce the power
1083 *  to the PHY.  If on a Manageability Engine (ME) enabled system, tell the
1084 *  ME firmware to start the ULP configuration.  If not on an ME enabled
1085 *  system, configure the ULP mode by software.
1086 */
1087s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1088{
1089	u32 mac_reg;
1090	s32 ret_val = 0;
1091	u16 phy_reg;
1092	u16 oem_reg = 0;
1093
1094	if ((hw->mac.type < e1000_pch_lpt) ||
1095	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1096	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1097	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1098	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1099	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1100		return 0;
1101
1102	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1103		/* Request ME configure ULP mode in the PHY */
1104		mac_reg = er32(H2ME);
1105		mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1106		ew32(H2ME, mac_reg);
1107
1108		goto out;
1109	}
1110
1111	if (!to_sx) {
1112		int i = 0;
1113
1114		/* Poll up to 5 seconds for Cable Disconnected indication */
1115		while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1116			/* Bail if link is re-acquired */
1117			if (er32(STATUS) & E1000_STATUS_LU)
1118				return -E1000_ERR_PHY;
1119
1120			if (i++ == 100)
1121				break;
1122
1123			msleep(50);
1124		}
1125		e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1126		      (er32(FEXT) &
1127		       E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1128	}
1129
1130	ret_val = hw->phy.ops.acquire(hw);
1131	if (ret_val)
1132		goto out;
1133
1134	/* Force SMBus mode in PHY */
1135	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1136	if (ret_val)
1137		goto release;
1138	phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1139	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1140
1141	/* Force SMBus mode in MAC */
1142	mac_reg = er32(CTRL_EXT);
1143	mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1144	ew32(CTRL_EXT, mac_reg);
1145
1146	/* Si workaround for ULP entry flow on i127/rev6 h/w.  Enable
1147	 * LPLU and disable Gig speed when entering ULP
1148	 */
1149	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1150		ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1151						       &oem_reg);
1152		if (ret_val)
1153			goto release;
1154
1155		phy_reg = oem_reg;
1156		phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1157
1158		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1159							phy_reg);
1160
1161		if (ret_val)
1162			goto release;
1163	}
1164
1165	/* Set Inband ULP Exit, Reset to SMBus mode and
1166	 * Disable SMBus Release on PERST# in PHY
1167	 */
1168	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1169	if (ret_val)
1170		goto release;
1171	phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1172		    I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1173	if (to_sx) {
1174		if (er32(WUFC) & E1000_WUFC_LNKC)
1175			phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1176		else
1177			phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1178
1179		phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1180		phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1181	} else {
1182		phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1183		phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1184		phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1185	}
1186	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1187
1188	/* Set Disable SMBus Release on PERST# in MAC */
1189	mac_reg = er32(FEXTNVM7);
1190	mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1191	ew32(FEXTNVM7, mac_reg);
1192
1193	/* Commit ULP changes in PHY by starting auto ULP configuration */
1194	phy_reg |= I218_ULP_CONFIG1_START;
1195	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1196
1197	if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1198	    to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1199		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1200							oem_reg);
1201		if (ret_val)
1202			goto release;
1203	}
1204
1205release:
1206	hw->phy.ops.release(hw);
1207out:
1208	if (ret_val)
1209		e_dbg("Error in ULP enable flow: %d\n", ret_val);
1210	else
1211		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1212
1213	return ret_val;
1214}
1215
1216/**
1217 *  e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1218 *  @hw: pointer to the HW structure
1219 *  @force: boolean indicating whether or not to force disabling ULP
1220 *
1221 *  Un-configure ULP mode when link is up, the system is transitioned from
1222 *  Sx or the driver is unloaded.  If on a Manageability Engine (ME) enabled
1223 *  system, poll for an indication from ME that ULP has been un-configured.
1224 *  If not on an ME enabled system, un-configure the ULP mode by software.
1225 *
1226 *  During nominal operation, this function is called when link is acquired
1227 *  to disable ULP mode (force=false); otherwise, for example when unloading
1228 *  the driver or during Sx->S0 transitions, this is called with force=true
1229 *  to forcibly disable ULP.
1230 */
1231static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1232{
1233	s32 ret_val = 0;
1234	u32 mac_reg;
1235	u16 phy_reg;
1236	int i = 0;
1237
1238	if ((hw->mac.type < e1000_pch_lpt) ||
1239	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1240	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1241	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1242	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1243	    (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1244		return 0;
1245
1246	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
 
 
 
1247		if (force) {
1248			/* Request ME un-configure ULP mode in the PHY */
1249			mac_reg = er32(H2ME);
1250			mac_reg &= ~E1000_H2ME_ULP;
1251			mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1252			ew32(H2ME, mac_reg);
1253		}
1254
1255		/* Poll up to 300msec for ME to clear ULP_CFG_DONE. */
 
 
 
1256		while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1257			if (i++ == 30) {
1258				ret_val = -E1000_ERR_PHY;
1259				goto out;
1260			}
 
 
1261
1262			usleep_range(10000, 20000);
1263		}
1264		e_dbg("ULP_CONFIG_DONE cleared after %dmsec\n", i * 10);
 
 
 
 
 
1265
1266		if (force) {
1267			mac_reg = er32(H2ME);
1268			mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1269			ew32(H2ME, mac_reg);
1270		} else {
1271			/* Clear H2ME.ULP after ME ULP configuration */
1272			mac_reg = er32(H2ME);
1273			mac_reg &= ~E1000_H2ME_ULP;
1274			ew32(H2ME, mac_reg);
1275		}
1276
1277		goto out;
1278	}
1279
1280	ret_val = hw->phy.ops.acquire(hw);
1281	if (ret_val)
1282		goto out;
1283
1284	if (force)
1285		/* Toggle LANPHYPC Value bit */
1286		e1000_toggle_lanphypc_pch_lpt(hw);
1287
 
 
 
 
 
1288	/* Unforce SMBus mode in PHY */
1289	ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1290	if (ret_val) {
1291		/* The MAC might be in PCIe mode, so temporarily force to
1292		 * SMBus mode in order to access the PHY.
1293		 */
1294		mac_reg = er32(CTRL_EXT);
1295		mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1296		ew32(CTRL_EXT, mac_reg);
1297
1298		msleep(50);
1299
1300		ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1301						       &phy_reg);
1302		if (ret_val)
1303			goto release;
1304	}
1305	phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1306	e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1307
 
 
1308	/* Unforce SMBus mode in MAC */
1309	mac_reg = er32(CTRL_EXT);
1310	mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1311	ew32(CTRL_EXT, mac_reg);
1312
1313	/* When ULP mode was previously entered, K1 was disabled by the
1314	 * hardware.  Re-Enable K1 in the PHY when exiting ULP.
1315	 */
1316	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1317	if (ret_val)
1318		goto release;
1319	phy_reg |= HV_PM_CTRL_K1_ENABLE;
1320	e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1321
1322	/* Clear ULP enabled configuration */
1323	ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1324	if (ret_val)
1325		goto release;
1326	phy_reg &= ~(I218_ULP_CONFIG1_IND |
1327		     I218_ULP_CONFIG1_STICKY_ULP |
1328		     I218_ULP_CONFIG1_RESET_TO_SMBUS |
1329		     I218_ULP_CONFIG1_WOL_HOST |
1330		     I218_ULP_CONFIG1_INBAND_EXIT |
1331		     I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1332		     I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1333		     I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1334	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1335
1336	/* Commit ULP changes by starting auto ULP configuration */
1337	phy_reg |= I218_ULP_CONFIG1_START;
1338	e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1339
1340	/* Clear Disable SMBus Release on PERST# in MAC */
1341	mac_reg = er32(FEXTNVM7);
1342	mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1343	ew32(FEXTNVM7, mac_reg);
1344
1345release:
1346	hw->phy.ops.release(hw);
1347	if (force) {
1348		e1000_phy_hw_reset(hw);
1349		msleep(50);
1350	}
1351out:
1352	if (ret_val)
1353		e_dbg("Error in ULP disable flow: %d\n", ret_val);
1354	else
1355		hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1356
1357	return ret_val;
1358}
1359
1360/**
1361 *  e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1362 *  @hw: pointer to the HW structure
1363 *
1364 *  Checks to see of the link status of the hardware has changed.  If a
1365 *  change in link status has been detected, then we read the PHY registers
1366 *  to get the current speed/duplex if link exists.
1367 **/
1368static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1369{
1370	struct e1000_mac_info *mac = &hw->mac;
1371	s32 ret_val, tipg_reg = 0;
1372	u16 emi_addr, emi_val = 0;
1373	bool link;
1374	u16 phy_reg;
1375
1376	/* We only want to go out to the PHY registers to see if Auto-Neg
1377	 * has completed and/or if our link status has changed.  The
1378	 * get_link_status flag is set upon receiving a Link Status
1379	 * Change or Rx Sequence Error interrupt.
1380	 */
1381	if (!mac->get_link_status)
1382		return 0;
 
1383
1384	/* First we want to see if the MII Status Register reports
1385	 * link.  If so, then we want to get the current speed/duplex
1386	 * of the PHY.
1387	 */
1388	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1389	if (ret_val)
1390		return ret_val;
1391
1392	if (hw->mac.type == e1000_pchlan) {
1393		ret_val = e1000_k1_gig_workaround_hv(hw, link);
1394		if (ret_val)
1395			return ret_val;
1396	}
1397
1398	/* When connected at 10Mbps half-duplex, some parts are excessively
1399	 * aggressive resulting in many collisions. To avoid this, increase
1400	 * the IPG and reduce Rx latency in the PHY.
1401	 */
1402	if (((hw->mac.type == e1000_pch2lan) ||
1403	     (hw->mac.type == e1000_pch_lpt) ||
1404	     (hw->mac.type == e1000_pch_spt)) && link) {
1405		u16 speed, duplex;
1406
1407		e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1408		tipg_reg = er32(TIPG);
1409		tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1410
1411		if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1412			tipg_reg |= 0xFF;
1413			/* Reduce Rx latency in analog PHY */
1414			emi_val = 0;
1415		} else if (hw->mac.type == e1000_pch_spt &&
1416			   duplex == FULL_DUPLEX && speed != SPEED_1000) {
1417			tipg_reg |= 0xC;
1418			emi_val = 1;
1419		} else {
1420
1421			/* Roll back the default values */
1422			tipg_reg |= 0x08;
1423			emi_val = 1;
1424		}
1425
1426		ew32(TIPG, tipg_reg);
1427
1428		ret_val = hw->phy.ops.acquire(hw);
1429		if (ret_val)
1430			return ret_val;
1431
1432		if (hw->mac.type == e1000_pch2lan)
1433			emi_addr = I82579_RX_CONFIG;
1434		else
1435			emi_addr = I217_RX_CONFIG;
1436		ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1437
1438		if (hw->mac.type == e1000_pch_lpt ||
1439		    hw->mac.type == e1000_pch_spt) {
1440			u16 phy_reg;
1441
1442			e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1443			phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1444			if (speed == SPEED_100 || speed == SPEED_10)
1445				phy_reg |= 0x3E8;
1446			else
1447				phy_reg |= 0xFA;
1448			e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
 
 
 
 
 
 
 
 
 
 
1449		}
1450		hw->phy.ops.release(hw);
1451
1452		if (ret_val)
1453			return ret_val;
1454
1455		if (hw->mac.type == e1000_pch_spt) {
1456			u16 data;
1457			u16 ptr_gap;
1458
1459			if (speed == SPEED_1000) {
1460				ret_val = hw->phy.ops.acquire(hw);
1461				if (ret_val)
1462					return ret_val;
1463
1464				ret_val = e1e_rphy_locked(hw,
1465							  PHY_REG(776, 20),
1466							  &data);
1467				if (ret_val) {
1468					hw->phy.ops.release(hw);
1469					return ret_val;
1470				}
1471
1472				ptr_gap = (data & (0x3FF << 2)) >> 2;
1473				if (ptr_gap < 0x18) {
1474					data &= ~(0x3FF << 2);
1475					data |= (0x18 << 2);
1476					ret_val =
1477					    e1e_wphy_locked(hw,
1478							    PHY_REG(776, 20),
1479							    data);
1480				}
1481				hw->phy.ops.release(hw);
1482				if (ret_val)
1483					return ret_val;
1484			} else {
1485				ret_val = hw->phy.ops.acquire(hw);
1486				if (ret_val)
1487					return ret_val;
1488
1489				ret_val = e1e_wphy_locked(hw,
1490							  PHY_REG(776, 20),
1491							  0xC023);
1492				hw->phy.ops.release(hw);
1493				if (ret_val)
1494					return ret_val;
1495
1496			}
1497		}
1498	}
1499
1500	/* I217 Packet Loss issue:
1501	 * ensure that FEXTNVM4 Beacon Duration is set correctly
1502	 * on power up.
1503	 * Set the Beacon Duration for I217 to 8 usec
1504	 */
1505	if ((hw->mac.type == e1000_pch_lpt) || (hw->mac.type == e1000_pch_spt)) {
1506		u32 mac_reg;
1507
1508		mac_reg = er32(FEXTNVM4);
1509		mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1510		mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1511		ew32(FEXTNVM4, mac_reg);
1512	}
1513
1514	/* Work-around I218 hang issue */
1515	if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1516	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1517	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1518	    (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1519		ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1520		if (ret_val)
1521			return ret_val;
1522	}
1523	if ((hw->mac.type == e1000_pch_lpt) ||
1524	    (hw->mac.type == e1000_pch_spt)) {
1525		/* Set platform power management values for
1526		 * Latency Tolerance Reporting (LTR)
1527		 */
1528		ret_val = e1000_platform_pm_pch_lpt(hw, link);
1529		if (ret_val)
1530			return ret_val;
1531	}
1532
1533	/* Clear link partner's EEE ability */
1534	hw->dev_spec.ich8lan.eee_lp_ability = 0;
1535
1536	/* FEXTNVM6 K1-off workaround */
1537	if (hw->mac.type == e1000_pch_spt) {
1538		u32 pcieanacfg = er32(PCIEANACFG);
1539		u32 fextnvm6 = er32(FEXTNVM6);
1540
1541		if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1542			fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1543		else
1544			fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
 
 
 
 
 
1545
1546		ew32(FEXTNVM6, fextnvm6);
1547	}
1548
1549	if (!link)
1550		return 0;	/* No link detected */
1551
1552	mac->get_link_status = false;
1553
1554	switch (hw->mac.type) {
1555	case e1000_pch2lan:
1556		ret_val = e1000_k1_workaround_lv(hw);
1557		if (ret_val)
1558			return ret_val;
1559		/* fall-thru */
1560	case e1000_pchlan:
1561		if (hw->phy.type == e1000_phy_82578) {
1562			ret_val = e1000_link_stall_workaround_hv(hw);
1563			if (ret_val)
1564				return ret_val;
1565		}
1566
1567		/* Workaround for PCHx parts in half-duplex:
1568		 * Set the number of preambles removed from the packet
1569		 * when it is passed from the PHY to the MAC to prevent
1570		 * the MAC from misinterpreting the packet type.
1571		 */
1572		e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1573		phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1574
1575		if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1576			phy_reg |= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1577
1578		e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1579		break;
1580	default:
1581		break;
1582	}
1583
1584	/* Check if there was DownShift, must be checked
1585	 * immediately after link-up
1586	 */
1587	e1000e_check_downshift(hw);
1588
1589	/* Enable/Disable EEE after link up */
1590	if (hw->phy.type > e1000_phy_82579) {
1591		ret_val = e1000_set_eee_pchlan(hw);
1592		if (ret_val)
1593			return ret_val;
1594	}
1595
1596	/* If we are forcing speed/duplex, then we simply return since
1597	 * we have already determined whether we have link or not.
1598	 */
1599	if (!mac->autoneg)
1600		return -E1000_ERR_CONFIG;
1601
1602	/* Auto-Neg is enabled.  Auto Speed Detection takes care
1603	 * of MAC speed/duplex configuration.  So we only need to
1604	 * configure Collision Distance in the MAC.
1605	 */
1606	mac->ops.config_collision_dist(hw);
1607
1608	/* Configure Flow Control now that Auto-Neg has completed.
1609	 * First, we need to restore the desired flow control
1610	 * settings because we may have had to re-autoneg with a
1611	 * different link partner.
1612	 */
1613	ret_val = e1000e_config_fc_after_link_up(hw);
1614	if (ret_val)
1615		e_dbg("Error configuring flow control\n");
1616
1617	return ret_val;
 
 
 
 
1618}
1619
1620static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1621{
1622	struct e1000_hw *hw = &adapter->hw;
1623	s32 rc;
1624
1625	rc = e1000_init_mac_params_ich8lan(hw);
1626	if (rc)
1627		return rc;
1628
1629	rc = e1000_init_nvm_params_ich8lan(hw);
1630	if (rc)
1631		return rc;
1632
1633	switch (hw->mac.type) {
1634	case e1000_ich8lan:
1635	case e1000_ich9lan:
1636	case e1000_ich10lan:
1637		rc = e1000_init_phy_params_ich8lan(hw);
1638		break;
1639	case e1000_pchlan:
1640	case e1000_pch2lan:
1641	case e1000_pch_lpt:
1642	case e1000_pch_spt:
 
 
 
 
 
 
 
1643		rc = e1000_init_phy_params_pchlan(hw);
1644		break;
1645	default:
1646		break;
1647	}
1648	if (rc)
1649		return rc;
1650
1651	/* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1652	 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1653	 */
1654	if ((adapter->hw.phy.type == e1000_phy_ife) ||
1655	    ((adapter->hw.mac.type >= e1000_pch2lan) &&
1656	     (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1657		adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1658		adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1659
1660		hw->mac.ops.blink_led = NULL;
1661	}
1662
1663	if ((adapter->hw.mac.type == e1000_ich8lan) &&
1664	    (adapter->hw.phy.type != e1000_phy_ife))
1665		adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1666
1667	/* Enable workaround for 82579 w/ ME enabled */
1668	if ((adapter->hw.mac.type == e1000_pch2lan) &&
1669	    (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1670		adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1671
1672	return 0;
1673}
1674
1675static DEFINE_MUTEX(nvm_mutex);
1676
1677/**
1678 *  e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1679 *  @hw: pointer to the HW structure
1680 *
1681 *  Acquires the mutex for performing NVM operations.
1682 **/
1683static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1684{
1685	mutex_lock(&nvm_mutex);
1686
1687	return 0;
1688}
1689
1690/**
1691 *  e1000_release_nvm_ich8lan - Release NVM mutex
1692 *  @hw: pointer to the HW structure
1693 *
1694 *  Releases the mutex used while performing NVM operations.
1695 **/
1696static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1697{
1698	mutex_unlock(&nvm_mutex);
1699}
1700
1701/**
1702 *  e1000_acquire_swflag_ich8lan - Acquire software control flag
1703 *  @hw: pointer to the HW structure
1704 *
1705 *  Acquires the software control flag for performing PHY and select
1706 *  MAC CSR accesses.
1707 **/
1708static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1709{
1710	u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1711	s32 ret_val = 0;
1712
1713	if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1714			     &hw->adapter->state)) {
1715		e_dbg("contention for Phy access\n");
1716		return -E1000_ERR_PHY;
1717	}
1718
1719	while (timeout) {
1720		extcnf_ctrl = er32(EXTCNF_CTRL);
1721		if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1722			break;
1723
1724		mdelay(1);
1725		timeout--;
1726	}
1727
1728	if (!timeout) {
1729		e_dbg("SW has already locked the resource.\n");
1730		ret_val = -E1000_ERR_CONFIG;
1731		goto out;
1732	}
1733
1734	timeout = SW_FLAG_TIMEOUT;
1735
1736	extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1737	ew32(EXTCNF_CTRL, extcnf_ctrl);
1738
1739	while (timeout) {
1740		extcnf_ctrl = er32(EXTCNF_CTRL);
1741		if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1742			break;
1743
1744		mdelay(1);
1745		timeout--;
1746	}
1747
1748	if (!timeout) {
1749		e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1750		      er32(FWSM), extcnf_ctrl);
1751		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1752		ew32(EXTCNF_CTRL, extcnf_ctrl);
1753		ret_val = -E1000_ERR_CONFIG;
1754		goto out;
1755	}
1756
1757out:
1758	if (ret_val)
1759		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1760
1761	return ret_val;
1762}
1763
1764/**
1765 *  e1000_release_swflag_ich8lan - Release software control flag
1766 *  @hw: pointer to the HW structure
1767 *
1768 *  Releases the software control flag for performing PHY and select
1769 *  MAC CSR accesses.
1770 **/
1771static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1772{
1773	u32 extcnf_ctrl;
1774
1775	extcnf_ctrl = er32(EXTCNF_CTRL);
1776
1777	if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1778		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1779		ew32(EXTCNF_CTRL, extcnf_ctrl);
1780	} else {
1781		e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1782	}
1783
1784	clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1785}
1786
1787/**
1788 *  e1000_check_mng_mode_ich8lan - Checks management mode
1789 *  @hw: pointer to the HW structure
1790 *
1791 *  This checks if the adapter has any manageability enabled.
1792 *  This is a function pointer entry point only called by read/write
1793 *  routines for the PHY and NVM parts.
1794 **/
1795static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1796{
1797	u32 fwsm;
1798
1799	fwsm = er32(FWSM);
1800	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1801		((fwsm & E1000_FWSM_MODE_MASK) ==
1802		 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1803}
1804
1805/**
1806 *  e1000_check_mng_mode_pchlan - Checks management mode
1807 *  @hw: pointer to the HW structure
1808 *
1809 *  This checks if the adapter has iAMT enabled.
1810 *  This is a function pointer entry point only called by read/write
1811 *  routines for the PHY and NVM parts.
1812 **/
1813static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1814{
1815	u32 fwsm;
1816
1817	fwsm = er32(FWSM);
1818	return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1819	    (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1820}
1821
1822/**
1823 *  e1000_rar_set_pch2lan - Set receive address register
1824 *  @hw: pointer to the HW structure
1825 *  @addr: pointer to the receive address
1826 *  @index: receive address array register
1827 *
1828 *  Sets the receive address array register at index to the address passed
1829 *  in by addr.  For 82579, RAR[0] is the base address register that is to
1830 *  contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1831 *  Use SHRA[0-3] in place of those reserved for ME.
1832 **/
1833static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1834{
1835	u32 rar_low, rar_high;
1836
1837	/* HW expects these in little endian so we reverse the byte order
1838	 * from network order (big endian) to little endian
1839	 */
1840	rar_low = ((u32)addr[0] |
1841		   ((u32)addr[1] << 8) |
1842		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1843
1844	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1845
1846	/* If MAC address zero, no need to set the AV bit */
1847	if (rar_low || rar_high)
1848		rar_high |= E1000_RAH_AV;
1849
1850	if (index == 0) {
1851		ew32(RAL(index), rar_low);
1852		e1e_flush();
1853		ew32(RAH(index), rar_high);
1854		e1e_flush();
1855		return 0;
1856	}
1857
1858	/* RAR[1-6] are owned by manageability.  Skip those and program the
1859	 * next address into the SHRA register array.
1860	 */
1861	if (index < (u32)(hw->mac.rar_entry_count)) {
1862		s32 ret_val;
1863
1864		ret_val = e1000_acquire_swflag_ich8lan(hw);
1865		if (ret_val)
1866			goto out;
1867
1868		ew32(SHRAL(index - 1), rar_low);
1869		e1e_flush();
1870		ew32(SHRAH(index - 1), rar_high);
1871		e1e_flush();
1872
1873		e1000_release_swflag_ich8lan(hw);
1874
1875		/* verify the register updates */
1876		if ((er32(SHRAL(index - 1)) == rar_low) &&
1877		    (er32(SHRAH(index - 1)) == rar_high))
1878			return 0;
1879
1880		e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1881		      (index - 1), er32(FWSM));
1882	}
1883
1884out:
1885	e_dbg("Failed to write receive address at index %d\n", index);
1886	return -E1000_ERR_CONFIG;
1887}
1888
1889/**
1890 *  e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1891 *  @hw: pointer to the HW structure
1892 *
1893 *  Get the number of available receive registers that the Host can
1894 *  program. SHRA[0-10] are the shared receive address registers
1895 *  that are shared between the Host and manageability engine (ME).
1896 *  ME can reserve any number of addresses and the host needs to be
1897 *  able to tell how many available registers it has access to.
1898 **/
1899static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1900{
1901	u32 wlock_mac;
1902	u32 num_entries;
1903
1904	wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1905	wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1906
1907	switch (wlock_mac) {
1908	case 0:
1909		/* All SHRA[0..10] and RAR[0] available */
1910		num_entries = hw->mac.rar_entry_count;
1911		break;
1912	case 1:
1913		/* Only RAR[0] available */
1914		num_entries = 1;
1915		break;
1916	default:
1917		/* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1918		num_entries = wlock_mac + 1;
1919		break;
1920	}
1921
1922	return num_entries;
1923}
1924
1925/**
1926 *  e1000_rar_set_pch_lpt - Set receive address registers
1927 *  @hw: pointer to the HW structure
1928 *  @addr: pointer to the receive address
1929 *  @index: receive address array register
1930 *
1931 *  Sets the receive address register array at index to the address passed
1932 *  in by addr. For LPT, RAR[0] is the base address register that is to
1933 *  contain the MAC address. SHRA[0-10] are the shared receive address
1934 *  registers that are shared between the Host and manageability engine (ME).
1935 **/
1936static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1937{
1938	u32 rar_low, rar_high;
1939	u32 wlock_mac;
1940
1941	/* HW expects these in little endian so we reverse the byte order
1942	 * from network order (big endian) to little endian
1943	 */
1944	rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1945		   ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1946
1947	rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1948
1949	/* If MAC address zero, no need to set the AV bit */
1950	if (rar_low || rar_high)
1951		rar_high |= E1000_RAH_AV;
1952
1953	if (index == 0) {
1954		ew32(RAL(index), rar_low);
1955		e1e_flush();
1956		ew32(RAH(index), rar_high);
1957		e1e_flush();
1958		return 0;
1959	}
1960
1961	/* The manageability engine (ME) can lock certain SHRAR registers that
1962	 * it is using - those registers are unavailable for use.
1963	 */
1964	if (index < hw->mac.rar_entry_count) {
1965		wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1966		wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1967
1968		/* Check if all SHRAR registers are locked */
1969		if (wlock_mac == 1)
1970			goto out;
1971
1972		if ((wlock_mac == 0) || (index <= wlock_mac)) {
1973			s32 ret_val;
1974
1975			ret_val = e1000_acquire_swflag_ich8lan(hw);
1976
1977			if (ret_val)
1978				goto out;
1979
1980			ew32(SHRAL_PCH_LPT(index - 1), rar_low);
1981			e1e_flush();
1982			ew32(SHRAH_PCH_LPT(index - 1), rar_high);
1983			e1e_flush();
1984
1985			e1000_release_swflag_ich8lan(hw);
1986
1987			/* verify the register updates */
1988			if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
1989			    (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
1990				return 0;
1991		}
1992	}
1993
1994out:
1995	e_dbg("Failed to write receive address at index %d\n", index);
1996	return -E1000_ERR_CONFIG;
1997}
1998
1999/**
2000 *  e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2001 *  @hw: pointer to the HW structure
2002 *
2003 *  Checks if firmware is blocking the reset of the PHY.
2004 *  This is a function pointer entry point only called by
2005 *  reset routines.
2006 **/
2007static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2008{
2009	bool blocked = false;
2010	int i = 0;
2011
2012	while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2013	       (i++ < 30))
2014		usleep_range(10000, 20000);
2015	return blocked ? E1000_BLK_PHY_RESET : 0;
2016}
2017
2018/**
2019 *  e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2020 *  @hw: pointer to the HW structure
2021 *
2022 *  Assumes semaphore already acquired.
2023 *
2024 **/
2025static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2026{
2027	u16 phy_data;
2028	u32 strap = er32(STRAP);
2029	u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2030	    E1000_STRAP_SMT_FREQ_SHIFT;
2031	s32 ret_val;
2032
2033	strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2034
2035	ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2036	if (ret_val)
2037		return ret_val;
2038
2039	phy_data &= ~HV_SMB_ADDR_MASK;
2040	phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2041	phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2042
2043	if (hw->phy.type == e1000_phy_i217) {
2044		/* Restore SMBus frequency */
2045		if (freq--) {
2046			phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2047			phy_data |= (freq & (1 << 0)) <<
2048			    HV_SMB_ADDR_FREQ_LOW_SHIFT;
2049			phy_data |= (freq & (1 << 1)) <<
2050			    (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2051		} else {
2052			e_dbg("Unsupported SMB frequency in PHY\n");
2053		}
2054	}
2055
2056	return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2057}
2058
2059/**
2060 *  e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2061 *  @hw:   pointer to the HW structure
2062 *
2063 *  SW should configure the LCD from the NVM extended configuration region
2064 *  as a workaround for certain parts.
2065 **/
2066static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2067{
2068	struct e1000_phy_info *phy = &hw->phy;
2069	u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2070	s32 ret_val = 0;
2071	u16 word_addr, reg_data, reg_addr, phy_page = 0;
2072
2073	/* Initialize the PHY from the NVM on ICH platforms.  This
2074	 * is needed due to an issue where the NVM configuration is
2075	 * not properly autoloaded after power transitions.
2076	 * Therefore, after each PHY reset, we will load the
2077	 * configuration data out of the NVM manually.
2078	 */
2079	switch (hw->mac.type) {
2080	case e1000_ich8lan:
2081		if (phy->type != e1000_phy_igp_3)
2082			return ret_val;
2083
2084		if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2085		    (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2086			sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2087			break;
2088		}
2089		/* Fall-thru */
2090	case e1000_pchlan:
2091	case e1000_pch2lan:
2092	case e1000_pch_lpt:
2093	case e1000_pch_spt:
 
 
 
 
 
 
 
2094		sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2095		break;
2096	default:
2097		return ret_val;
2098	}
2099
2100	ret_val = hw->phy.ops.acquire(hw);
2101	if (ret_val)
2102		return ret_val;
2103
2104	data = er32(FEXTNVM);
2105	if (!(data & sw_cfg_mask))
2106		goto release;
2107
2108	/* Make sure HW does not configure LCD from PHY
2109	 * extended configuration before SW configuration
2110	 */
2111	data = er32(EXTCNF_CTRL);
2112	if ((hw->mac.type < e1000_pch2lan) &&
2113	    (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2114		goto release;
2115
2116	cnf_size = er32(EXTCNF_SIZE);
2117	cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2118	cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2119	if (!cnf_size)
2120		goto release;
2121
2122	cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2123	cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2124
2125	if (((hw->mac.type == e1000_pchlan) &&
2126	     !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2127	    (hw->mac.type > e1000_pchlan)) {
2128		/* HW configures the SMBus address and LEDs when the
2129		 * OEM and LCD Write Enable bits are set in the NVM.
2130		 * When both NVM bits are cleared, SW will configure
2131		 * them instead.
2132		 */
2133		ret_val = e1000_write_smbus_addr(hw);
2134		if (ret_val)
2135			goto release;
2136
2137		data = er32(LEDCTL);
2138		ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2139							(u16)data);
2140		if (ret_val)
2141			goto release;
2142	}
2143
2144	/* Configure LCD from extended configuration region. */
2145
2146	/* cnf_base_addr is in DWORD */
2147	word_addr = (u16)(cnf_base_addr << 1);
2148
2149	for (i = 0; i < cnf_size; i++) {
2150		ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, &reg_data);
2151		if (ret_val)
2152			goto release;
2153
2154		ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2155					 1, &reg_addr);
2156		if (ret_val)
2157			goto release;
2158
2159		/* Save off the PHY page for future writes. */
2160		if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2161			phy_page = reg_data;
2162			continue;
2163		}
2164
2165		reg_addr &= PHY_REG_MASK;
2166		reg_addr |= phy_page;
2167
2168		ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2169		if (ret_val)
2170			goto release;
2171	}
2172
2173release:
2174	hw->phy.ops.release(hw);
2175	return ret_val;
2176}
2177
2178/**
2179 *  e1000_k1_gig_workaround_hv - K1 Si workaround
2180 *  @hw:   pointer to the HW structure
2181 *  @link: link up bool flag
2182 *
2183 *  If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2184 *  from a lower speed.  This workaround disables K1 whenever link is at 1Gig
2185 *  If link is down, the function will restore the default K1 setting located
2186 *  in the NVM.
2187 **/
2188static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2189{
2190	s32 ret_val = 0;
2191	u16 status_reg = 0;
2192	bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2193
2194	if (hw->mac.type != e1000_pchlan)
2195		return 0;
2196
2197	/* Wrap the whole flow with the sw flag */
2198	ret_val = hw->phy.ops.acquire(hw);
2199	if (ret_val)
2200		return ret_val;
2201
2202	/* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2203	if (link) {
2204		if (hw->phy.type == e1000_phy_82578) {
2205			ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2206						  &status_reg);
2207			if (ret_val)
2208				goto release;
2209
2210			status_reg &= (BM_CS_STATUS_LINK_UP |
2211				       BM_CS_STATUS_RESOLVED |
2212				       BM_CS_STATUS_SPEED_MASK);
2213
2214			if (status_reg == (BM_CS_STATUS_LINK_UP |
2215					   BM_CS_STATUS_RESOLVED |
2216					   BM_CS_STATUS_SPEED_1000))
2217				k1_enable = false;
2218		}
2219
2220		if (hw->phy.type == e1000_phy_82577) {
2221			ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2222			if (ret_val)
2223				goto release;
2224
2225			status_reg &= (HV_M_STATUS_LINK_UP |
2226				       HV_M_STATUS_AUTONEG_COMPLETE |
2227				       HV_M_STATUS_SPEED_MASK);
2228
2229			if (status_reg == (HV_M_STATUS_LINK_UP |
2230					   HV_M_STATUS_AUTONEG_COMPLETE |
2231					   HV_M_STATUS_SPEED_1000))
2232				k1_enable = false;
2233		}
2234
2235		/* Link stall fix for link up */
2236		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2237		if (ret_val)
2238			goto release;
2239
2240	} else {
2241		/* Link stall fix for link down */
2242		ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2243		if (ret_val)
2244			goto release;
2245	}
2246
2247	ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2248
2249release:
2250	hw->phy.ops.release(hw);
2251
2252	return ret_val;
2253}
2254
2255/**
2256 *  e1000_configure_k1_ich8lan - Configure K1 power state
2257 *  @hw: pointer to the HW structure
2258 *  @enable: K1 state to configure
2259 *
2260 *  Configure the K1 power state based on the provided parameter.
2261 *  Assumes semaphore already acquired.
2262 *
2263 *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2264 **/
2265s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2266{
2267	s32 ret_val;
2268	u32 ctrl_reg = 0;
2269	u32 ctrl_ext = 0;
2270	u32 reg = 0;
2271	u16 kmrn_reg = 0;
2272
2273	ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2274					      &kmrn_reg);
2275	if (ret_val)
2276		return ret_val;
2277
2278	if (k1_enable)
2279		kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2280	else
2281		kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2282
2283	ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2284					       kmrn_reg);
2285	if (ret_val)
2286		return ret_val;
2287
2288	usleep_range(20, 40);
2289	ctrl_ext = er32(CTRL_EXT);
2290	ctrl_reg = er32(CTRL);
2291
2292	reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2293	reg |= E1000_CTRL_FRCSPD;
2294	ew32(CTRL, reg);
2295
2296	ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2297	e1e_flush();
2298	usleep_range(20, 40);
2299	ew32(CTRL, ctrl_reg);
2300	ew32(CTRL_EXT, ctrl_ext);
2301	e1e_flush();
2302	usleep_range(20, 40);
2303
2304	return 0;
2305}
2306
2307/**
2308 *  e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2309 *  @hw:       pointer to the HW structure
2310 *  @d0_state: boolean if entering d0 or d3 device state
2311 *
2312 *  SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2313 *  collectively called OEM bits.  The OEM Write Enable bit and SW Config bit
2314 *  in NVM determines whether HW should configure LPLU and Gbe Disable.
2315 **/
2316static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2317{
2318	s32 ret_val = 0;
2319	u32 mac_reg;
2320	u16 oem_reg;
2321
2322	if (hw->mac.type < e1000_pchlan)
2323		return ret_val;
2324
2325	ret_val = hw->phy.ops.acquire(hw);
2326	if (ret_val)
2327		return ret_val;
2328
2329	if (hw->mac.type == e1000_pchlan) {
2330		mac_reg = er32(EXTCNF_CTRL);
2331		if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2332			goto release;
2333	}
2334
2335	mac_reg = er32(FEXTNVM);
2336	if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2337		goto release;
2338
2339	mac_reg = er32(PHY_CTRL);
2340
2341	ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2342	if (ret_val)
2343		goto release;
2344
2345	oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2346
2347	if (d0_state) {
2348		if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2349			oem_reg |= HV_OEM_BITS_GBE_DIS;
2350
2351		if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2352			oem_reg |= HV_OEM_BITS_LPLU;
2353	} else {
2354		if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2355			       E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2356			oem_reg |= HV_OEM_BITS_GBE_DIS;
2357
2358		if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2359			       E1000_PHY_CTRL_NOND0A_LPLU))
2360			oem_reg |= HV_OEM_BITS_LPLU;
2361	}
2362
2363	/* Set Restart auto-neg to activate the bits */
2364	if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2365	    !hw->phy.ops.check_reset_block(hw))
2366		oem_reg |= HV_OEM_BITS_RESTART_AN;
2367
2368	ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2369
2370release:
2371	hw->phy.ops.release(hw);
2372
2373	return ret_val;
2374}
2375
2376/**
2377 *  e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2378 *  @hw:   pointer to the HW structure
2379 **/
2380static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2381{
2382	s32 ret_val;
2383	u16 data;
2384
2385	ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2386	if (ret_val)
2387		return ret_val;
2388
2389	data |= HV_KMRN_MDIO_SLOW;
2390
2391	ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2392
2393	return ret_val;
2394}
2395
2396/**
2397 *  e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2398 *  done after every PHY reset.
 
 
2399 **/
2400static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2401{
2402	s32 ret_val = 0;
2403	u16 phy_data;
2404
2405	if (hw->mac.type != e1000_pchlan)
2406		return 0;
2407
2408	/* Set MDIO slow mode before any other MDIO access */
2409	if (hw->phy.type == e1000_phy_82577) {
2410		ret_val = e1000_set_mdio_slow_mode_hv(hw);
2411		if (ret_val)
2412			return ret_val;
2413	}
2414
2415	if (((hw->phy.type == e1000_phy_82577) &&
2416	     ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2417	    ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2418		/* Disable generation of early preamble */
2419		ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2420		if (ret_val)
2421			return ret_val;
2422
2423		/* Preamble tuning for SSC */
2424		ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2425		if (ret_val)
2426			return ret_val;
2427	}
2428
2429	if (hw->phy.type == e1000_phy_82578) {
2430		/* Return registers to default by doing a soft reset then
2431		 * writing 0x3140 to the control register.
2432		 */
2433		if (hw->phy.revision < 2) {
2434			e1000e_phy_sw_reset(hw);
2435			ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
 
 
2436		}
2437	}
2438
2439	/* Select page 0 */
2440	ret_val = hw->phy.ops.acquire(hw);
2441	if (ret_val)
2442		return ret_val;
2443
2444	hw->phy.addr = 1;
2445	ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2446	hw->phy.ops.release(hw);
2447	if (ret_val)
2448		return ret_val;
2449
2450	/* Configure the K1 Si workaround during phy reset assuming there is
2451	 * link so that it disables K1 if link is in 1Gbps.
2452	 */
2453	ret_val = e1000_k1_gig_workaround_hv(hw, true);
2454	if (ret_val)
2455		return ret_val;
2456
2457	/* Workaround for link disconnects on a busy hub in half duplex */
2458	ret_val = hw->phy.ops.acquire(hw);
2459	if (ret_val)
2460		return ret_val;
2461	ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2462	if (ret_val)
2463		goto release;
2464	ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2465	if (ret_val)
2466		goto release;
2467
2468	/* set MSE higher to enable link to stay up when noise is high */
2469	ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2470release:
2471	hw->phy.ops.release(hw);
2472
2473	return ret_val;
2474}
2475
2476/**
2477 *  e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2478 *  @hw:   pointer to the HW structure
2479 **/
2480void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2481{
2482	u32 mac_reg;
2483	u16 i, phy_reg = 0;
2484	s32 ret_val;
2485
2486	ret_val = hw->phy.ops.acquire(hw);
2487	if (ret_val)
2488		return;
2489	ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2490	if (ret_val)
2491		goto release;
2492
2493	/* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2494	for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2495		mac_reg = er32(RAL(i));
2496		hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2497					   (u16)(mac_reg & 0xFFFF));
2498		hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2499					   (u16)((mac_reg >> 16) & 0xFFFF));
2500
2501		mac_reg = er32(RAH(i));
2502		hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2503					   (u16)(mac_reg & 0xFFFF));
2504		hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2505					   (u16)((mac_reg & E1000_RAH_AV)
2506						 >> 16));
2507	}
2508
2509	e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2510
2511release:
2512	hw->phy.ops.release(hw);
2513}
2514
2515/**
2516 *  e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2517 *  with 82579 PHY
2518 *  @hw: pointer to the HW structure
2519 *  @enable: flag to enable/disable workaround when enabling/disabling jumbos
2520 **/
2521s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2522{
2523	s32 ret_val = 0;
2524	u16 phy_reg, data;
2525	u32 mac_reg;
2526	u16 i;
2527
2528	if (hw->mac.type < e1000_pch2lan)
2529		return 0;
2530
2531	/* disable Rx path while enabling/disabling workaround */
2532	e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2533	ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
2534	if (ret_val)
2535		return ret_val;
2536
2537	if (enable) {
2538		/* Write Rx addresses (rar_entry_count for RAL/H, and
2539		 * SHRAL/H) and initial CRC values to the MAC
2540		 */
2541		for (i = 0; i < hw->mac.rar_entry_count; i++) {
2542			u8 mac_addr[ETH_ALEN] = { 0 };
2543			u32 addr_high, addr_low;
2544
2545			addr_high = er32(RAH(i));
2546			if (!(addr_high & E1000_RAH_AV))
2547				continue;
2548			addr_low = er32(RAL(i));
2549			mac_addr[0] = (addr_low & 0xFF);
2550			mac_addr[1] = ((addr_low >> 8) & 0xFF);
2551			mac_addr[2] = ((addr_low >> 16) & 0xFF);
2552			mac_addr[3] = ((addr_low >> 24) & 0xFF);
2553			mac_addr[4] = (addr_high & 0xFF);
2554			mac_addr[5] = ((addr_high >> 8) & 0xFF);
2555
2556			ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2557		}
2558
2559		/* Write Rx addresses to the PHY */
2560		e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2561
2562		/* Enable jumbo frame workaround in the MAC */
2563		mac_reg = er32(FFLT_DBG);
2564		mac_reg &= ~(1 << 14);
2565		mac_reg |= (7 << 15);
2566		ew32(FFLT_DBG, mac_reg);
2567
2568		mac_reg = er32(RCTL);
2569		mac_reg |= E1000_RCTL_SECRC;
2570		ew32(RCTL, mac_reg);
2571
2572		ret_val = e1000e_read_kmrn_reg(hw,
2573					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2574					       &data);
2575		if (ret_val)
2576			return ret_val;
2577		ret_val = e1000e_write_kmrn_reg(hw,
2578						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2579						data | (1 << 0));
2580		if (ret_val)
2581			return ret_val;
2582		ret_val = e1000e_read_kmrn_reg(hw,
2583					       E1000_KMRNCTRLSTA_HD_CTRL,
2584					       &data);
2585		if (ret_val)
2586			return ret_val;
2587		data &= ~(0xF << 8);
2588		data |= (0xB << 8);
2589		ret_val = e1000e_write_kmrn_reg(hw,
2590						E1000_KMRNCTRLSTA_HD_CTRL,
2591						data);
2592		if (ret_val)
2593			return ret_val;
2594
2595		/* Enable jumbo frame workaround in the PHY */
2596		e1e_rphy(hw, PHY_REG(769, 23), &data);
2597		data &= ~(0x7F << 5);
2598		data |= (0x37 << 5);
2599		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2600		if (ret_val)
2601			return ret_val;
2602		e1e_rphy(hw, PHY_REG(769, 16), &data);
2603		data &= ~(1 << 13);
2604		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2605		if (ret_val)
2606			return ret_val;
2607		e1e_rphy(hw, PHY_REG(776, 20), &data);
2608		data &= ~(0x3FF << 2);
2609		data |= (E1000_TX_PTR_GAP << 2);
2610		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2611		if (ret_val)
2612			return ret_val;
2613		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2614		if (ret_val)
2615			return ret_val;
2616		e1e_rphy(hw, HV_PM_CTRL, &data);
2617		ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
2618		if (ret_val)
2619			return ret_val;
2620	} else {
2621		/* Write MAC register values back to h/w defaults */
2622		mac_reg = er32(FFLT_DBG);
2623		mac_reg &= ~(0xF << 14);
2624		ew32(FFLT_DBG, mac_reg);
2625
2626		mac_reg = er32(RCTL);
2627		mac_reg &= ~E1000_RCTL_SECRC;
2628		ew32(RCTL, mac_reg);
2629
2630		ret_val = e1000e_read_kmrn_reg(hw,
2631					       E1000_KMRNCTRLSTA_CTRL_OFFSET,
2632					       &data);
2633		if (ret_val)
2634			return ret_val;
2635		ret_val = e1000e_write_kmrn_reg(hw,
2636						E1000_KMRNCTRLSTA_CTRL_OFFSET,
2637						data & ~(1 << 0));
2638		if (ret_val)
2639			return ret_val;
2640		ret_val = e1000e_read_kmrn_reg(hw,
2641					       E1000_KMRNCTRLSTA_HD_CTRL,
2642					       &data);
2643		if (ret_val)
2644			return ret_val;
2645		data &= ~(0xF << 8);
2646		data |= (0xB << 8);
2647		ret_val = e1000e_write_kmrn_reg(hw,
2648						E1000_KMRNCTRLSTA_HD_CTRL,
2649						data);
2650		if (ret_val)
2651			return ret_val;
2652
2653		/* Write PHY register values back to h/w defaults */
2654		e1e_rphy(hw, PHY_REG(769, 23), &data);
2655		data &= ~(0x7F << 5);
2656		ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2657		if (ret_val)
2658			return ret_val;
2659		e1e_rphy(hw, PHY_REG(769, 16), &data);
2660		data |= (1 << 13);
2661		ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2662		if (ret_val)
2663			return ret_val;
2664		e1e_rphy(hw, PHY_REG(776, 20), &data);
2665		data &= ~(0x3FF << 2);
2666		data |= (0x8 << 2);
2667		ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2668		if (ret_val)
2669			return ret_val;
2670		ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2671		if (ret_val)
2672			return ret_val;
2673		e1e_rphy(hw, HV_PM_CTRL, &data);
2674		ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
2675		if (ret_val)
2676			return ret_val;
2677	}
2678
2679	/* re-enable Rx path after enabling/disabling workaround */
2680	return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
2681}
2682
2683/**
2684 *  e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
2685 *  done after every PHY reset.
 
 
2686 **/
2687static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2688{
2689	s32 ret_val = 0;
2690
2691	if (hw->mac.type != e1000_pch2lan)
2692		return 0;
2693
2694	/* Set MDIO slow mode before any other MDIO access */
2695	ret_val = e1000_set_mdio_slow_mode_hv(hw);
2696	if (ret_val)
2697		return ret_val;
2698
2699	ret_val = hw->phy.ops.acquire(hw);
2700	if (ret_val)
2701		return ret_val;
2702	/* set MSE higher to enable link to stay up when noise is high */
2703	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2704	if (ret_val)
2705		goto release;
2706	/* drop link after 5 times MSE threshold was reached */
2707	ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2708release:
2709	hw->phy.ops.release(hw);
2710
2711	return ret_val;
2712}
2713
2714/**
2715 *  e1000_k1_gig_workaround_lv - K1 Si workaround
2716 *  @hw:   pointer to the HW structure
2717 *
2718 *  Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2719 *  Disable K1 in 1000Mbps and 100Mbps
2720 **/
2721static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2722{
2723	s32 ret_val = 0;
2724	u16 status_reg = 0;
2725
2726	if (hw->mac.type != e1000_pch2lan)
2727		return 0;
2728
2729	/* Set K1 beacon duration based on 10Mbs speed */
2730	ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2731	if (ret_val)
2732		return ret_val;
2733
2734	if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2735	    == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2736		if (status_reg &
2737		    (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2738			u16 pm_phy_reg;
2739
2740			/* LV 1G/100 Packet drop issue wa  */
2741			ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2742			if (ret_val)
2743				return ret_val;
2744			pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2745			ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2746			if (ret_val)
2747				return ret_val;
2748		} else {
2749			u32 mac_reg;
2750
2751			mac_reg = er32(FEXTNVM4);
2752			mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2753			mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2754			ew32(FEXTNVM4, mac_reg);
2755		}
2756	}
2757
2758	return ret_val;
2759}
2760
2761/**
2762 *  e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2763 *  @hw:   pointer to the HW structure
2764 *  @gate: boolean set to true to gate, false to ungate
2765 *
2766 *  Gate/ungate the automatic PHY configuration via hardware; perform
2767 *  the configuration via software instead.
2768 **/
2769static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2770{
2771	u32 extcnf_ctrl;
2772
2773	if (hw->mac.type < e1000_pch2lan)
2774		return;
2775
2776	extcnf_ctrl = er32(EXTCNF_CTRL);
2777
2778	if (gate)
2779		extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2780	else
2781		extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2782
2783	ew32(EXTCNF_CTRL, extcnf_ctrl);
2784}
2785
2786/**
2787 *  e1000_lan_init_done_ich8lan - Check for PHY config completion
2788 *  @hw: pointer to the HW structure
2789 *
2790 *  Check the appropriate indication the MAC has finished configuring the
2791 *  PHY after a software reset.
2792 **/
2793static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2794{
2795	u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2796
2797	/* Wait for basic configuration completes before proceeding */
2798	do {
2799		data = er32(STATUS);
2800		data &= E1000_STATUS_LAN_INIT_DONE;
2801		usleep_range(100, 200);
2802	} while ((!data) && --loop);
2803
2804	/* If basic configuration is incomplete before the above loop
2805	 * count reaches 0, loading the configuration from NVM will
2806	 * leave the PHY in a bad state possibly resulting in no link.
2807	 */
2808	if (loop == 0)
2809		e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2810
2811	/* Clear the Init Done bit for the next init event */
2812	data = er32(STATUS);
2813	data &= ~E1000_STATUS_LAN_INIT_DONE;
2814	ew32(STATUS, data);
2815}
2816
2817/**
2818 *  e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2819 *  @hw: pointer to the HW structure
2820 **/
2821static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2822{
2823	s32 ret_val = 0;
2824	u16 reg;
2825
2826	if (hw->phy.ops.check_reset_block(hw))
2827		return 0;
2828
2829	/* Allow time for h/w to get to quiescent state after reset */
2830	usleep_range(10000, 20000);
2831
2832	/* Perform any necessary post-reset workarounds */
2833	switch (hw->mac.type) {
2834	case e1000_pchlan:
2835		ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2836		if (ret_val)
2837			return ret_val;
2838		break;
2839	case e1000_pch2lan:
2840		ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2841		if (ret_val)
2842			return ret_val;
2843		break;
2844	default:
2845		break;
2846	}
2847
2848	/* Clear the host wakeup bit after lcd reset */
2849	if (hw->mac.type >= e1000_pchlan) {
2850		e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
2851		reg &= ~BM_WUC_HOST_WU_BIT;
2852		e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2853	}
2854
2855	/* Configure the LCD with the extended configuration region in NVM */
2856	ret_val = e1000_sw_lcd_config_ich8lan(hw);
2857	if (ret_val)
2858		return ret_val;
2859
2860	/* Configure the LCD with the OEM bits in NVM */
2861	ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2862
2863	if (hw->mac.type == e1000_pch2lan) {
2864		/* Ungate automatic PHY configuration on non-managed 82579 */
2865		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2866			usleep_range(10000, 20000);
2867			e1000_gate_hw_phy_config_ich8lan(hw, false);
2868		}
2869
2870		/* Set EEE LPI Update Timer to 200usec */
2871		ret_val = hw->phy.ops.acquire(hw);
2872		if (ret_val)
2873			return ret_val;
2874		ret_val = e1000_write_emi_reg_locked(hw,
2875						     I82579_LPI_UPDATE_TIMER,
2876						     0x1387);
2877		hw->phy.ops.release(hw);
2878	}
2879
2880	return ret_val;
2881}
2882
2883/**
2884 *  e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2885 *  @hw: pointer to the HW structure
2886 *
2887 *  Resets the PHY
2888 *  This is a function pointer entry point called by drivers
2889 *  or other shared routines.
2890 **/
2891static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2892{
2893	s32 ret_val = 0;
2894
2895	/* Gate automatic PHY configuration by hardware on non-managed 82579 */
2896	if ((hw->mac.type == e1000_pch2lan) &&
2897	    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2898		e1000_gate_hw_phy_config_ich8lan(hw, true);
2899
2900	ret_val = e1000e_phy_hw_reset_generic(hw);
2901	if (ret_val)
2902		return ret_val;
2903
2904	return e1000_post_phy_reset_ich8lan(hw);
2905}
2906
2907/**
2908 *  e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2909 *  @hw: pointer to the HW structure
2910 *  @active: true to enable LPLU, false to disable
2911 *
2912 *  Sets the LPLU state according to the active flag.  For PCH, if OEM write
2913 *  bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2914 *  the phy speed. This function will manually set the LPLU bit and restart
2915 *  auto-neg as hw would do. D3 and D0 LPLU will call the same function
2916 *  since it configures the same bit.
2917 **/
2918static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2919{
2920	s32 ret_val;
2921	u16 oem_reg;
2922
2923	ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2924	if (ret_val)
2925		return ret_val;
2926
2927	if (active)
2928		oem_reg |= HV_OEM_BITS_LPLU;
2929	else
2930		oem_reg &= ~HV_OEM_BITS_LPLU;
2931
2932	if (!hw->phy.ops.check_reset_block(hw))
2933		oem_reg |= HV_OEM_BITS_RESTART_AN;
2934
2935	return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2936}
2937
2938/**
2939 *  e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
2940 *  @hw: pointer to the HW structure
2941 *  @active: true to enable LPLU, false to disable
2942 *
2943 *  Sets the LPLU D0 state according to the active flag.  When
2944 *  activating LPLU this function also disables smart speed
2945 *  and vice versa.  LPLU will not be activated unless the
2946 *  device autonegotiation advertisement meets standards of
2947 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
2948 *  This is a function pointer entry point only called by
2949 *  PHY setup routines.
2950 **/
2951static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
2952{
2953	struct e1000_phy_info *phy = &hw->phy;
2954	u32 phy_ctrl;
2955	s32 ret_val = 0;
2956	u16 data;
2957
2958	if (phy->type == e1000_phy_ife)
2959		return 0;
2960
2961	phy_ctrl = er32(PHY_CTRL);
2962
2963	if (active) {
2964		phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
2965		ew32(PHY_CTRL, phy_ctrl);
2966
2967		if (phy->type != e1000_phy_igp_3)
2968			return 0;
2969
2970		/* Call gig speed drop workaround on LPLU before accessing
2971		 * any PHY registers
2972		 */
2973		if (hw->mac.type == e1000_ich8lan)
2974			e1000e_gig_downshift_workaround_ich8lan(hw);
2975
2976		/* When LPLU is enabled, we should disable SmartSpeed */
2977		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2978		if (ret_val)
2979			return ret_val;
2980		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2981		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2982		if (ret_val)
2983			return ret_val;
2984	} else {
2985		phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
2986		ew32(PHY_CTRL, phy_ctrl);
2987
2988		if (phy->type != e1000_phy_igp_3)
2989			return 0;
2990
2991		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
2992		 * during Dx states where the power conservation is most
2993		 * important.  During driver activity we should enable
2994		 * SmartSpeed, so performance is maintained.
2995		 */
2996		if (phy->smart_speed == e1000_smart_speed_on) {
2997			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2998					   &data);
2999			if (ret_val)
3000				return ret_val;
3001
3002			data |= IGP01E1000_PSCFR_SMART_SPEED;
3003			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3004					   data);
3005			if (ret_val)
3006				return ret_val;
3007		} else if (phy->smart_speed == e1000_smart_speed_off) {
3008			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3009					   &data);
3010			if (ret_val)
3011				return ret_val;
3012
3013			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3014			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3015					   data);
3016			if (ret_val)
3017				return ret_val;
3018		}
3019	}
3020
3021	return 0;
3022}
3023
3024/**
3025 *  e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3026 *  @hw: pointer to the HW structure
3027 *  @active: true to enable LPLU, false to disable
3028 *
3029 *  Sets the LPLU D3 state according to the active flag.  When
3030 *  activating LPLU this function also disables smart speed
3031 *  and vice versa.  LPLU will not be activated unless the
3032 *  device autonegotiation advertisement meets standards of
3033 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
3034 *  This is a function pointer entry point only called by
3035 *  PHY setup routines.
3036 **/
3037static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3038{
3039	struct e1000_phy_info *phy = &hw->phy;
3040	u32 phy_ctrl;
3041	s32 ret_val = 0;
3042	u16 data;
3043
3044	phy_ctrl = er32(PHY_CTRL);
3045
3046	if (!active) {
3047		phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3048		ew32(PHY_CTRL, phy_ctrl);
3049
3050		if (phy->type != e1000_phy_igp_3)
3051			return 0;
3052
3053		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
3054		 * during Dx states where the power conservation is most
3055		 * important.  During driver activity we should enable
3056		 * SmartSpeed, so performance is maintained.
3057		 */
3058		if (phy->smart_speed == e1000_smart_speed_on) {
3059			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060					   &data);
3061			if (ret_val)
3062				return ret_val;
3063
3064			data |= IGP01E1000_PSCFR_SMART_SPEED;
3065			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066					   data);
3067			if (ret_val)
3068				return ret_val;
3069		} else if (phy->smart_speed == e1000_smart_speed_off) {
3070			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071					   &data);
3072			if (ret_val)
3073				return ret_val;
3074
3075			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077					   data);
3078			if (ret_val)
3079				return ret_val;
3080		}
3081	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3082		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3083		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3084		phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3085		ew32(PHY_CTRL, phy_ctrl);
3086
3087		if (phy->type != e1000_phy_igp_3)
3088			return 0;
3089
3090		/* Call gig speed drop workaround on LPLU before accessing
3091		 * any PHY registers
3092		 */
3093		if (hw->mac.type == e1000_ich8lan)
3094			e1000e_gig_downshift_workaround_ich8lan(hw);
3095
3096		/* When LPLU is enabled, we should disable SmartSpeed */
3097		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3098		if (ret_val)
3099			return ret_val;
3100
3101		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3102		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3103	}
3104
3105	return ret_val;
3106}
3107
3108/**
3109 *  e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3110 *  @hw: pointer to the HW structure
3111 *  @bank:  pointer to the variable that returns the active bank
3112 *
3113 *  Reads signature byte from the NVM using the flash access registers.
3114 *  Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3115 **/
3116static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3117{
3118	u32 eecd;
3119	struct e1000_nvm_info *nvm = &hw->nvm;
3120	u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3121	u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3122	u32 nvm_dword = 0;
3123	u8 sig_byte = 0;
3124	s32 ret_val;
3125
3126	switch (hw->mac.type) {
3127	case e1000_pch_spt:
 
 
 
 
 
 
 
3128		bank1_offset = nvm->flash_bank_size;
3129		act_offset = E1000_ICH_NVM_SIG_WORD;
3130
3131		/* set bank to 0 in case flash read fails */
3132		*bank = 0;
3133
3134		/* Check bank 0 */
3135		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3136							 &nvm_dword);
3137		if (ret_val)
3138			return ret_val;
3139		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3140		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3141		    E1000_ICH_NVM_SIG_VALUE) {
3142			*bank = 0;
3143			return 0;
3144		}
3145
3146		/* Check bank 1 */
3147		ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3148							 bank1_offset,
3149							 &nvm_dword);
3150		if (ret_val)
3151			return ret_val;
3152		sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3153		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3154		    E1000_ICH_NVM_SIG_VALUE) {
3155			*bank = 1;
3156			return 0;
3157		}
3158
3159		e_dbg("ERROR: No valid NVM bank present\n");
3160		return -E1000_ERR_NVM;
3161	case e1000_ich8lan:
3162	case e1000_ich9lan:
3163		eecd = er32(EECD);
3164		if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3165		    E1000_EECD_SEC1VAL_VALID_MASK) {
3166			if (eecd & E1000_EECD_SEC1VAL)
3167				*bank = 1;
3168			else
3169				*bank = 0;
3170
3171			return 0;
3172		}
3173		e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3174		/* fall-thru */
3175	default:
3176		/* set bank to 0 in case flash read fails */
3177		*bank = 0;
3178
3179		/* Check bank 0 */
3180		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3181							&sig_byte);
3182		if (ret_val)
3183			return ret_val;
3184		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3185		    E1000_ICH_NVM_SIG_VALUE) {
3186			*bank = 0;
3187			return 0;
3188		}
3189
3190		/* Check bank 1 */
3191		ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3192							bank1_offset,
3193							&sig_byte);
3194		if (ret_val)
3195			return ret_val;
3196		if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3197		    E1000_ICH_NVM_SIG_VALUE) {
3198			*bank = 1;
3199			return 0;
3200		}
3201
3202		e_dbg("ERROR: No valid NVM bank present\n");
3203		return -E1000_ERR_NVM;
3204	}
3205}
3206
3207/**
3208 *  e1000_read_nvm_spt - NVM access for SPT
3209 *  @hw: pointer to the HW structure
3210 *  @offset: The offset (in bytes) of the word(s) to read.
3211 *  @words: Size of data to read in words.
3212 *  @data: pointer to the word(s) to read at offset.
3213 *
3214 *  Reads a word(s) from the NVM
3215 **/
3216static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3217			      u16 *data)
3218{
3219	struct e1000_nvm_info *nvm = &hw->nvm;
3220	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3221	u32 act_offset;
3222	s32 ret_val = 0;
3223	u32 bank = 0;
3224	u32 dword = 0;
3225	u16 offset_to_read;
3226	u16 i;
3227
3228	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3229	    (words == 0)) {
3230		e_dbg("nvm parameter(s) out of bounds\n");
3231		ret_val = -E1000_ERR_NVM;
3232		goto out;
3233	}
3234
3235	nvm->ops.acquire(hw);
3236
3237	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3238	if (ret_val) {
3239		e_dbg("Could not detect valid bank, assuming bank 0\n");
3240		bank = 0;
3241	}
3242
3243	act_offset = (bank) ? nvm->flash_bank_size : 0;
3244	act_offset += offset;
3245
3246	ret_val = 0;
3247
3248	for (i = 0; i < words; i += 2) {
3249		if (words - i == 1) {
3250			if (dev_spec->shadow_ram[offset + i].modified) {
3251				data[i] =
3252				    dev_spec->shadow_ram[offset + i].value;
3253			} else {
3254				offset_to_read = act_offset + i -
3255				    ((act_offset + i) % 2);
3256				ret_val =
3257				  e1000_read_flash_dword_ich8lan(hw,
3258								 offset_to_read,
3259								 &dword);
3260				if (ret_val)
3261					break;
3262				if ((act_offset + i) % 2 == 0)
3263					data[i] = (u16)(dword & 0xFFFF);
3264				else
3265					data[i] = (u16)((dword >> 16) & 0xFFFF);
3266			}
3267		} else {
3268			offset_to_read = act_offset + i;
3269			if (!(dev_spec->shadow_ram[offset + i].modified) ||
3270			    !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3271				ret_val =
3272				  e1000_read_flash_dword_ich8lan(hw,
3273								 offset_to_read,
3274								 &dword);
3275				if (ret_val)
3276					break;
3277			}
3278			if (dev_spec->shadow_ram[offset + i].modified)
3279				data[i] =
3280				    dev_spec->shadow_ram[offset + i].value;
3281			else
3282				data[i] = (u16)(dword & 0xFFFF);
3283			if (dev_spec->shadow_ram[offset + i].modified)
3284				data[i + 1] =
3285				    dev_spec->shadow_ram[offset + i + 1].value;
3286			else
3287				data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3288		}
3289	}
3290
3291	nvm->ops.release(hw);
3292
3293out:
3294	if (ret_val)
3295		e_dbg("NVM read error: %d\n", ret_val);
3296
3297	return ret_val;
3298}
3299
3300/**
3301 *  e1000_read_nvm_ich8lan - Read word(s) from the NVM
3302 *  @hw: pointer to the HW structure
3303 *  @offset: The offset (in bytes) of the word(s) to read.
3304 *  @words: Size of data to read in words
3305 *  @data: Pointer to the word(s) to read at offset.
3306 *
3307 *  Reads a word(s) from the NVM using the flash access registers.
3308 **/
3309static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3310				  u16 *data)
3311{
3312	struct e1000_nvm_info *nvm = &hw->nvm;
3313	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3314	u32 act_offset;
3315	s32 ret_val = 0;
3316	u32 bank = 0;
3317	u16 i, word;
3318
3319	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3320	    (words == 0)) {
3321		e_dbg("nvm parameter(s) out of bounds\n");
3322		ret_val = -E1000_ERR_NVM;
3323		goto out;
3324	}
3325
3326	nvm->ops.acquire(hw);
3327
3328	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3329	if (ret_val) {
3330		e_dbg("Could not detect valid bank, assuming bank 0\n");
3331		bank = 0;
3332	}
3333
3334	act_offset = (bank) ? nvm->flash_bank_size : 0;
3335	act_offset += offset;
3336
3337	ret_val = 0;
3338	for (i = 0; i < words; i++) {
3339		if (dev_spec->shadow_ram[offset + i].modified) {
3340			data[i] = dev_spec->shadow_ram[offset + i].value;
3341		} else {
3342			ret_val = e1000_read_flash_word_ich8lan(hw,
3343								act_offset + i,
3344								&word);
3345			if (ret_val)
3346				break;
3347			data[i] = word;
3348		}
3349	}
3350
3351	nvm->ops.release(hw);
3352
3353out:
3354	if (ret_val)
3355		e_dbg("NVM read error: %d\n", ret_val);
3356
3357	return ret_val;
3358}
3359
3360/**
3361 *  e1000_flash_cycle_init_ich8lan - Initialize flash
3362 *  @hw: pointer to the HW structure
3363 *
3364 *  This function does initial flash setup so that a new read/write/erase cycle
3365 *  can be started.
3366 **/
3367static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3368{
3369	union ich8_hws_flash_status hsfsts;
3370	s32 ret_val = -E1000_ERR_NVM;
3371
3372	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3373
3374	/* Check if the flash descriptor is valid */
3375	if (!hsfsts.hsf_status.fldesvalid) {
3376		e_dbg("Flash descriptor invalid.  SW Sequencing must be used.\n");
3377		return -E1000_ERR_NVM;
3378	}
3379
3380	/* Clear FCERR and DAEL in hw status by writing 1 */
3381	hsfsts.hsf_status.flcerr = 1;
3382	hsfsts.hsf_status.dael = 1;
3383	if (hw->mac.type == e1000_pch_spt)
3384		ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3385	else
3386		ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3387
3388	/* Either we should have a hardware SPI cycle in progress
3389	 * bit to check against, in order to start a new cycle or
3390	 * FDONE bit should be changed in the hardware so that it
3391	 * is 1 after hardware reset, which can then be used as an
3392	 * indication whether a cycle is in progress or has been
3393	 * completed.
3394	 */
3395
3396	if (!hsfsts.hsf_status.flcinprog) {
3397		/* There is no cycle running at present,
3398		 * so we can start a cycle.
3399		 * Begin by setting Flash Cycle Done.
3400		 */
3401		hsfsts.hsf_status.flcdone = 1;
3402		if (hw->mac.type == e1000_pch_spt)
3403			ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3404		else
3405			ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3406		ret_val = 0;
3407	} else {
3408		s32 i;
3409
3410		/* Otherwise poll for sometime so the current
3411		 * cycle has a chance to end before giving up.
3412		 */
3413		for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3414			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3415			if (!hsfsts.hsf_status.flcinprog) {
3416				ret_val = 0;
3417				break;
3418			}
3419			udelay(1);
3420		}
3421		if (!ret_val) {
3422			/* Successful in waiting for previous cycle to timeout,
3423			 * now set the Flash Cycle Done.
3424			 */
3425			hsfsts.hsf_status.flcdone = 1;
3426			if (hw->mac.type == e1000_pch_spt)
3427				ew32flash(ICH_FLASH_HSFSTS,
3428					  hsfsts.regval & 0xFFFF);
3429			else
3430				ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3431		} else {
3432			e_dbg("Flash controller busy, cannot get access\n");
3433		}
3434	}
3435
3436	return ret_val;
3437}
3438
3439/**
3440 *  e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3441 *  @hw: pointer to the HW structure
3442 *  @timeout: maximum time to wait for completion
3443 *
3444 *  This function starts a flash cycle and waits for its completion.
3445 **/
3446static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3447{
3448	union ich8_hws_flash_ctrl hsflctl;
3449	union ich8_hws_flash_status hsfsts;
3450	u32 i = 0;
3451
3452	/* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3453	if (hw->mac.type == e1000_pch_spt)
3454		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3455	else
3456		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3457	hsflctl.hsf_ctrl.flcgo = 1;
3458
3459	if (hw->mac.type == e1000_pch_spt)
3460		ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3461	else
3462		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3463
3464	/* wait till FDONE bit is set to 1 */
3465	do {
3466		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3467		if (hsfsts.hsf_status.flcdone)
3468			break;
3469		udelay(1);
3470	} while (i++ < timeout);
3471
3472	if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3473		return 0;
3474
3475	return -E1000_ERR_NVM;
3476}
3477
3478/**
3479 *  e1000_read_flash_dword_ich8lan - Read dword from flash
3480 *  @hw: pointer to the HW structure
3481 *  @offset: offset to data location
3482 *  @data: pointer to the location for storing the data
3483 *
3484 *  Reads the flash dword at offset into data.  Offset is converted
3485 *  to bytes before read.
3486 **/
3487static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3488					  u32 *data)
3489{
3490	/* Must convert word offset into bytes. */
3491	offset <<= 1;
3492	return e1000_read_flash_data32_ich8lan(hw, offset, data);
3493}
3494
3495/**
3496 *  e1000_read_flash_word_ich8lan - Read word from flash
3497 *  @hw: pointer to the HW structure
3498 *  @offset: offset to data location
3499 *  @data: pointer to the location for storing the data
3500 *
3501 *  Reads the flash word at offset into data.  Offset is converted
3502 *  to bytes before read.
3503 **/
3504static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3505					 u16 *data)
3506{
3507	/* Must convert offset into bytes. */
3508	offset <<= 1;
3509
3510	return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3511}
3512
3513/**
3514 *  e1000_read_flash_byte_ich8lan - Read byte from flash
3515 *  @hw: pointer to the HW structure
3516 *  @offset: The offset of the byte to read.
3517 *  @data: Pointer to a byte to store the value read.
3518 *
3519 *  Reads a single byte from the NVM using the flash access registers.
3520 **/
3521static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3522					 u8 *data)
3523{
3524	s32 ret_val;
3525	u16 word = 0;
3526
3527	/* In SPT, only 32 bits access is supported,
3528	 * so this function should not be called.
3529	 */
3530	if (hw->mac.type == e1000_pch_spt)
3531		return -E1000_ERR_NVM;
3532	else
3533		ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3534
3535	if (ret_val)
3536		return ret_val;
3537
3538	*data = (u8)word;
3539
3540	return 0;
3541}
3542
3543/**
3544 *  e1000_read_flash_data_ich8lan - Read byte or word from NVM
3545 *  @hw: pointer to the HW structure
3546 *  @offset: The offset (in bytes) of the byte or word to read.
3547 *  @size: Size of data to read, 1=byte 2=word
3548 *  @data: Pointer to the word to store the value read.
3549 *
3550 *  Reads a byte or word from the NVM using the flash access registers.
3551 **/
3552static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3553					 u8 size, u16 *data)
3554{
3555	union ich8_hws_flash_status hsfsts;
3556	union ich8_hws_flash_ctrl hsflctl;
3557	u32 flash_linear_addr;
3558	u32 flash_data = 0;
3559	s32 ret_val = -E1000_ERR_NVM;
3560	u8 count = 0;
3561
3562	if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3563		return -E1000_ERR_NVM;
3564
3565	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3566			     hw->nvm.flash_base_addr);
3567
3568	do {
3569		udelay(1);
3570		/* Steps */
3571		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3572		if (ret_val)
3573			break;
3574
3575		hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3576		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3577		hsflctl.hsf_ctrl.fldbcount = size - 1;
3578		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3579		ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3580
3581		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3582
3583		ret_val =
3584		    e1000_flash_cycle_ich8lan(hw,
3585					      ICH_FLASH_READ_COMMAND_TIMEOUT);
3586
3587		/* Check if FCERR is set to 1, if set to 1, clear it
3588		 * and try the whole sequence a few more times, else
3589		 * read in (shift in) the Flash Data0, the order is
3590		 * least significant byte first msb to lsb
3591		 */
3592		if (!ret_val) {
3593			flash_data = er32flash(ICH_FLASH_FDATA0);
3594			if (size == 1)
3595				*data = (u8)(flash_data & 0x000000FF);
3596			else if (size == 2)
3597				*data = (u16)(flash_data & 0x0000FFFF);
3598			break;
3599		} else {
3600			/* If we've gotten here, then things are probably
3601			 * completely hosed, but if the error condition is
3602			 * detected, it won't hurt to give it another try...
3603			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3604			 */
3605			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3606			if (hsfsts.hsf_status.flcerr) {
3607				/* Repeat for some time before giving up. */
3608				continue;
3609			} else if (!hsfsts.hsf_status.flcdone) {
3610				e_dbg("Timeout error - flash cycle did not complete.\n");
3611				break;
3612			}
3613		}
3614	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3615
3616	return ret_val;
3617}
3618
3619/**
3620 *  e1000_read_flash_data32_ich8lan - Read dword from NVM
3621 *  @hw: pointer to the HW structure
3622 *  @offset: The offset (in bytes) of the dword to read.
3623 *  @data: Pointer to the dword to store the value read.
3624 *
3625 *  Reads a byte or word from the NVM using the flash access registers.
3626 **/
3627
3628static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3629					   u32 *data)
3630{
3631	union ich8_hws_flash_status hsfsts;
3632	union ich8_hws_flash_ctrl hsflctl;
3633	u32 flash_linear_addr;
3634	s32 ret_val = -E1000_ERR_NVM;
3635	u8 count = 0;
3636
3637	if (offset > ICH_FLASH_LINEAR_ADDR_MASK ||
3638	    hw->mac.type != e1000_pch_spt)
3639		return -E1000_ERR_NVM;
3640	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3641			     hw->nvm.flash_base_addr);
3642
3643	do {
3644		udelay(1);
3645		/* Steps */
3646		ret_val = e1000_flash_cycle_init_ich8lan(hw);
3647		if (ret_val)
3648			break;
3649		/* In SPT, This register is in Lan memory space, not flash.
3650		 * Therefore, only 32 bit access is supported
3651		 */
3652		hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3653
3654		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3655		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3656		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3657		/* In SPT, This register is in Lan memory space, not flash.
3658		 * Therefore, only 32 bit access is supported
3659		 */
3660		ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3661		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3662
3663		ret_val =
3664		   e1000_flash_cycle_ich8lan(hw,
3665					     ICH_FLASH_READ_COMMAND_TIMEOUT);
3666
3667		/* Check if FCERR is set to 1, if set to 1, clear it
3668		 * and try the whole sequence a few more times, else
3669		 * read in (shift in) the Flash Data0, the order is
3670		 * least significant byte first msb to lsb
3671		 */
3672		if (!ret_val) {
3673			*data = er32flash(ICH_FLASH_FDATA0);
3674			break;
3675		} else {
3676			/* If we've gotten here, then things are probably
3677			 * completely hosed, but if the error condition is
3678			 * detected, it won't hurt to give it another try...
3679			 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3680			 */
3681			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3682			if (hsfsts.hsf_status.flcerr) {
3683				/* Repeat for some time before giving up. */
3684				continue;
3685			} else if (!hsfsts.hsf_status.flcdone) {
3686				e_dbg("Timeout error - flash cycle did not complete.\n");
3687				break;
3688			}
3689		}
3690	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3691
3692	return ret_val;
3693}
3694
3695/**
3696 *  e1000_write_nvm_ich8lan - Write word(s) to the NVM
3697 *  @hw: pointer to the HW structure
3698 *  @offset: The offset (in bytes) of the word(s) to write.
3699 *  @words: Size of data to write in words
3700 *  @data: Pointer to the word(s) to write at offset.
3701 *
3702 *  Writes a byte or word to the NVM using the flash access registers.
3703 **/
3704static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3705				   u16 *data)
3706{
3707	struct e1000_nvm_info *nvm = &hw->nvm;
3708	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3709	u16 i;
3710
3711	if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3712	    (words == 0)) {
3713		e_dbg("nvm parameter(s) out of bounds\n");
3714		return -E1000_ERR_NVM;
3715	}
3716
3717	nvm->ops.acquire(hw);
3718
3719	for (i = 0; i < words; i++) {
3720		dev_spec->shadow_ram[offset + i].modified = true;
3721		dev_spec->shadow_ram[offset + i].value = data[i];
3722	}
3723
3724	nvm->ops.release(hw);
3725
3726	return 0;
3727}
3728
3729/**
3730 *  e1000_update_nvm_checksum_spt - Update the checksum for NVM
3731 *  @hw: pointer to the HW structure
3732 *
3733 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3734 *  which writes the checksum to the shadow ram.  The changes in the shadow
3735 *  ram are then committed to the EEPROM by processing each bank at a time
3736 *  checking for the modified bit and writing only the pending changes.
3737 *  After a successful commit, the shadow ram is cleared and is ready for
3738 *  future writes.
3739 **/
3740static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3741{
3742	struct e1000_nvm_info *nvm = &hw->nvm;
3743	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3744	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3745	s32 ret_val;
3746	u32 dword = 0;
3747
3748	ret_val = e1000e_update_nvm_checksum_generic(hw);
3749	if (ret_val)
3750		goto out;
3751
3752	if (nvm->type != e1000_nvm_flash_sw)
3753		goto out;
3754
3755	nvm->ops.acquire(hw);
3756
3757	/* We're writing to the opposite bank so if we're on bank 1,
3758	 * write to bank 0 etc.  We also need to erase the segment that
3759	 * is going to be written
3760	 */
3761	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3762	if (ret_val) {
3763		e_dbg("Could not detect valid bank, assuming bank 0\n");
3764		bank = 0;
3765	}
3766
3767	if (bank == 0) {
3768		new_bank_offset = nvm->flash_bank_size;
3769		old_bank_offset = 0;
3770		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3771		if (ret_val)
3772			goto release;
3773	} else {
3774		old_bank_offset = nvm->flash_bank_size;
3775		new_bank_offset = 0;
3776		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3777		if (ret_val)
3778			goto release;
3779	}
3780	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3781		/* Determine whether to write the value stored
3782		 * in the other NVM bank or a modified value stored
3783		 * in the shadow RAM
3784		 */
3785		ret_val = e1000_read_flash_dword_ich8lan(hw,
3786							 i + old_bank_offset,
3787							 &dword);
3788
3789		if (dev_spec->shadow_ram[i].modified) {
3790			dword &= 0xffff0000;
3791			dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3792		}
3793		if (dev_spec->shadow_ram[i + 1].modified) {
3794			dword &= 0x0000ffff;
3795			dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3796				  << 16);
3797		}
3798		if (ret_val)
3799			break;
3800
3801		/* If the word is 0x13, then make sure the signature bits
3802		 * (15:14) are 11b until the commit has completed.
3803		 * This will allow us to write 10b which indicates the
3804		 * signature is valid.  We want to do this after the write
3805		 * has completed so that we don't mark the segment valid
3806		 * while the write is still in progress
3807		 */
3808		if (i == E1000_ICH_NVM_SIG_WORD - 1)
3809			dword |= E1000_ICH_NVM_SIG_MASK << 16;
3810
3811		/* Convert offset to bytes. */
3812		act_offset = (i + new_bank_offset) << 1;
3813
3814		usleep_range(100, 200);
3815
3816		/* Write the data to the new bank. Offset in words */
3817		act_offset = i + new_bank_offset;
3818		ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3819								dword);
3820		if (ret_val)
3821			break;
3822	}
3823
3824	/* Don't bother writing the segment valid bits if sector
3825	 * programming failed.
3826	 */
3827	if (ret_val) {
3828		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3829		e_dbg("Flash commit failed.\n");
3830		goto release;
3831	}
3832
3833	/* Finally validate the new segment by setting bit 15:14
3834	 * to 10b in word 0x13 , this can be done without an
3835	 * erase as well since these bits are 11 to start with
3836	 * and we need to change bit 14 to 0b
3837	 */
3838	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3839
3840	/*offset in words but we read dword */
3841	--act_offset;
3842	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3843
3844	if (ret_val)
3845		goto release;
3846
3847	dword &= 0xBFFFFFFF;
3848	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3849
3850	if (ret_val)
3851		goto release;
3852
3853	/* And invalidate the previously valid segment by setting
3854	 * its signature word (0x13) high_byte to 0b. This can be
3855	 * done without an erase because flash erase sets all bits
3856	 * to 1's. We can write 1's to 0's without an erase
3857	 */
3858	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
3859
3860	/* offset in words but we read dword */
3861	act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3862	ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3863
3864	if (ret_val)
3865		goto release;
3866
3867	dword &= 0x00FFFFFF;
3868	ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3869
3870	if (ret_val)
3871		goto release;
3872
3873	/* Great!  Everything worked, we can now clear the cached entries. */
3874	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3875		dev_spec->shadow_ram[i].modified = false;
3876		dev_spec->shadow_ram[i].value = 0xFFFF;
3877	}
3878
3879release:
3880	nvm->ops.release(hw);
3881
3882	/* Reload the EEPROM, or else modifications will not appear
3883	 * until after the next adapter reset.
3884	 */
3885	if (!ret_val) {
3886		nvm->ops.reload(hw);
3887		usleep_range(10000, 20000);
3888	}
3889
3890out:
3891	if (ret_val)
3892		e_dbg("NVM update error: %d\n", ret_val);
3893
3894	return ret_val;
3895}
3896
3897/**
3898 *  e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3899 *  @hw: pointer to the HW structure
3900 *
3901 *  The NVM checksum is updated by calling the generic update_nvm_checksum,
3902 *  which writes the checksum to the shadow ram.  The changes in the shadow
3903 *  ram are then committed to the EEPROM by processing each bank at a time
3904 *  checking for the modified bit and writing only the pending changes.
3905 *  After a successful commit, the shadow ram is cleared and is ready for
3906 *  future writes.
3907 **/
3908static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3909{
3910	struct e1000_nvm_info *nvm = &hw->nvm;
3911	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3912	u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3913	s32 ret_val;
3914	u16 data = 0;
3915
3916	ret_val = e1000e_update_nvm_checksum_generic(hw);
3917	if (ret_val)
3918		goto out;
3919
3920	if (nvm->type != e1000_nvm_flash_sw)
3921		goto out;
3922
3923	nvm->ops.acquire(hw);
3924
3925	/* We're writing to the opposite bank so if we're on bank 1,
3926	 * write to bank 0 etc.  We also need to erase the segment that
3927	 * is going to be written
3928	 */
3929	ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3930	if (ret_val) {
3931		e_dbg("Could not detect valid bank, assuming bank 0\n");
3932		bank = 0;
3933	}
3934
3935	if (bank == 0) {
3936		new_bank_offset = nvm->flash_bank_size;
3937		old_bank_offset = 0;
3938		ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3939		if (ret_val)
3940			goto release;
3941	} else {
3942		old_bank_offset = nvm->flash_bank_size;
3943		new_bank_offset = 0;
3944		ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3945		if (ret_val)
3946			goto release;
3947	}
3948	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3949		if (dev_spec->shadow_ram[i].modified) {
3950			data = dev_spec->shadow_ram[i].value;
3951		} else {
3952			ret_val = e1000_read_flash_word_ich8lan(hw, i +
3953								old_bank_offset,
3954								&data);
3955			if (ret_val)
3956				break;
3957		}
3958
3959		/* If the word is 0x13, then make sure the signature bits
3960		 * (15:14) are 11b until the commit has completed.
3961		 * This will allow us to write 10b which indicates the
3962		 * signature is valid.  We want to do this after the write
3963		 * has completed so that we don't mark the segment valid
3964		 * while the write is still in progress
3965		 */
3966		if (i == E1000_ICH_NVM_SIG_WORD)
3967			data |= E1000_ICH_NVM_SIG_MASK;
3968
3969		/* Convert offset to bytes. */
3970		act_offset = (i + new_bank_offset) << 1;
3971
3972		usleep_range(100, 200);
3973		/* Write the bytes to the new bank. */
3974		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3975							       act_offset,
3976							       (u8)data);
3977		if (ret_val)
3978			break;
3979
3980		usleep_range(100, 200);
3981		ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
3982							       act_offset + 1,
3983							       (u8)(data >> 8));
3984		if (ret_val)
3985			break;
3986	}
3987
3988	/* Don't bother writing the segment valid bits if sector
3989	 * programming failed.
3990	 */
3991	if (ret_val) {
3992		/* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3993		e_dbg("Flash commit failed.\n");
3994		goto release;
3995	}
3996
3997	/* Finally validate the new segment by setting bit 15:14
3998	 * to 10b in word 0x13 , this can be done without an
3999	 * erase as well since these bits are 11 to start with
4000	 * and we need to change bit 14 to 0b
4001	 */
4002	act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4003	ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4004	if (ret_val)
4005		goto release;
4006
4007	data &= 0xBFFF;
4008	ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4009						       act_offset * 2 + 1,
4010						       (u8)(data >> 8));
4011	if (ret_val)
4012		goto release;
4013
4014	/* And invalidate the previously valid segment by setting
4015	 * its signature word (0x13) high_byte to 0b. This can be
4016	 * done without an erase because flash erase sets all bits
4017	 * to 1's. We can write 1's to 0's without an erase
4018	 */
4019	act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4020	ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4021	if (ret_val)
4022		goto release;
4023
4024	/* Great!  Everything worked, we can now clear the cached entries. */
4025	for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4026		dev_spec->shadow_ram[i].modified = false;
4027		dev_spec->shadow_ram[i].value = 0xFFFF;
4028	}
4029
4030release:
4031	nvm->ops.release(hw);
4032
4033	/* Reload the EEPROM, or else modifications will not appear
4034	 * until after the next adapter reset.
4035	 */
4036	if (!ret_val) {
4037		nvm->ops.reload(hw);
4038		usleep_range(10000, 20000);
4039	}
4040
4041out:
4042	if (ret_val)
4043		e_dbg("NVM update error: %d\n", ret_val);
4044
4045	return ret_val;
4046}
4047
4048/**
4049 *  e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4050 *  @hw: pointer to the HW structure
4051 *
4052 *  Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4053 *  If the bit is 0, that the EEPROM had been modified, but the checksum was not
4054 *  calculated, in which case we need to calculate the checksum and set bit 6.
4055 **/
4056static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4057{
4058	s32 ret_val;
4059	u16 data;
4060	u16 word;
4061	u16 valid_csum_mask;
4062
4063	/* Read NVM and check Invalid Image CSUM bit.  If this bit is 0,
4064	 * the checksum needs to be fixed.  This bit is an indication that
4065	 * the NVM was prepared by OEM software and did not calculate
4066	 * the checksum...a likely scenario.
4067	 */
4068	switch (hw->mac.type) {
4069	case e1000_pch_lpt:
4070	case e1000_pch_spt:
 
 
 
 
 
 
 
4071		word = NVM_COMPAT;
4072		valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4073		break;
4074	default:
4075		word = NVM_FUTURE_INIT_WORD1;
4076		valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4077		break;
4078	}
4079
4080	ret_val = e1000_read_nvm(hw, word, 1, &data);
4081	if (ret_val)
4082		return ret_val;
4083
4084	if (!(data & valid_csum_mask)) {
4085		data |= valid_csum_mask;
4086		ret_val = e1000_write_nvm(hw, word, 1, &data);
4087		if (ret_val)
4088			return ret_val;
4089		ret_val = e1000e_update_nvm_checksum(hw);
4090		if (ret_val)
4091			return ret_val;
 
 
 
 
4092	}
4093
4094	return e1000e_validate_nvm_checksum_generic(hw);
4095}
4096
4097/**
4098 *  e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4099 *  @hw: pointer to the HW structure
4100 *
4101 *  To prevent malicious write/erase of the NVM, set it to be read-only
4102 *  so that the hardware ignores all write/erase cycles of the NVM via
4103 *  the flash control registers.  The shadow-ram copy of the NVM will
4104 *  still be updated, however any updates to this copy will not stick
4105 *  across driver reloads.
4106 **/
4107void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4108{
4109	struct e1000_nvm_info *nvm = &hw->nvm;
4110	union ich8_flash_protected_range pr0;
4111	union ich8_hws_flash_status hsfsts;
4112	u32 gfpreg;
4113
4114	nvm->ops.acquire(hw);
4115
4116	gfpreg = er32flash(ICH_FLASH_GFPREG);
4117
4118	/* Write-protect GbE Sector of NVM */
4119	pr0.regval = er32flash(ICH_FLASH_PR0);
4120	pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4121	pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4122	pr0.range.wpe = true;
4123	ew32flash(ICH_FLASH_PR0, pr0.regval);
4124
4125	/* Lock down a subset of GbE Flash Control Registers, e.g.
4126	 * PR0 to prevent the write-protection from being lifted.
4127	 * Once FLOCKDN is set, the registers protected by it cannot
4128	 * be written until FLOCKDN is cleared by a hardware reset.
4129	 */
4130	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4131	hsfsts.hsf_status.flockdn = true;
4132	ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4133
4134	nvm->ops.release(hw);
4135}
4136
4137/**
4138 *  e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4139 *  @hw: pointer to the HW structure
4140 *  @offset: The offset (in bytes) of the byte/word to read.
4141 *  @size: Size of data to read, 1=byte 2=word
4142 *  @data: The byte(s) to write to the NVM.
4143 *
4144 *  Writes one/two bytes to the NVM using the flash access registers.
4145 **/
4146static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4147					  u8 size, u16 data)
4148{
4149	union ich8_hws_flash_status hsfsts;
4150	union ich8_hws_flash_ctrl hsflctl;
4151	u32 flash_linear_addr;
4152	u32 flash_data = 0;
4153	s32 ret_val;
4154	u8 count = 0;
4155
4156	if (hw->mac.type == e1000_pch_spt) {
4157		if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4158			return -E1000_ERR_NVM;
4159	} else {
4160		if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4161			return -E1000_ERR_NVM;
4162	}
4163
4164	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4165			     hw->nvm.flash_base_addr);
4166
4167	do {
4168		udelay(1);
4169		/* Steps */
4170		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4171		if (ret_val)
4172			break;
4173		/* In SPT, This register is in Lan memory space, not
4174		 * flash.  Therefore, only 32 bit access is supported
4175		 */
4176		if (hw->mac.type == e1000_pch_spt)
4177			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4178		else
4179			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4180
4181		/* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4182		hsflctl.hsf_ctrl.fldbcount = size - 1;
4183		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4184		/* In SPT, This register is in Lan memory space,
4185		 * not flash.  Therefore, only 32 bit access is
4186		 * supported
4187		 */
4188		if (hw->mac.type == e1000_pch_spt)
4189			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4190		else
4191			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4192
4193		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4194
4195		if (size == 1)
4196			flash_data = (u32)data & 0x00FF;
4197		else
4198			flash_data = (u32)data;
4199
4200		ew32flash(ICH_FLASH_FDATA0, flash_data);
4201
4202		/* check if FCERR is set to 1 , if set to 1, clear it
4203		 * and try the whole sequence a few more times else done
4204		 */
4205		ret_val =
4206		    e1000_flash_cycle_ich8lan(hw,
4207					      ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4208		if (!ret_val)
4209			break;
4210
4211		/* If we're here, then things are most likely
4212		 * completely hosed, but if the error condition
4213		 * is detected, it won't hurt to give it another
4214		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4215		 */
4216		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4217		if (hsfsts.hsf_status.flcerr)
4218			/* Repeat for some time before giving up. */
4219			continue;
4220		if (!hsfsts.hsf_status.flcdone) {
4221			e_dbg("Timeout error - flash cycle did not complete.\n");
4222			break;
4223		}
4224	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4225
4226	return ret_val;
4227}
4228
4229/**
4230*  e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4231*  @hw: pointer to the HW structure
4232*  @offset: The offset (in bytes) of the dwords to read.
4233*  @data: The 4 bytes to write to the NVM.
4234*
4235*  Writes one/two/four bytes to the NVM using the flash access registers.
4236**/
4237static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4238					    u32 data)
4239{
4240	union ich8_hws_flash_status hsfsts;
4241	union ich8_hws_flash_ctrl hsflctl;
4242	u32 flash_linear_addr;
4243	s32 ret_val;
4244	u8 count = 0;
4245
4246	if (hw->mac.type == e1000_pch_spt) {
4247		if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4248			return -E1000_ERR_NVM;
4249	}
4250	flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4251			     hw->nvm.flash_base_addr);
4252	do {
4253		udelay(1);
4254		/* Steps */
4255		ret_val = e1000_flash_cycle_init_ich8lan(hw);
4256		if (ret_val)
4257			break;
4258
4259		/* In SPT, This register is in Lan memory space, not
4260		 * flash.  Therefore, only 32 bit access is supported
4261		 */
4262		if (hw->mac.type == e1000_pch_spt)
4263			hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4264			    >> 16;
4265		else
4266			hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4267
4268		hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4269		hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4270
4271		/* In SPT, This register is in Lan memory space,
4272		 * not flash.  Therefore, only 32 bit access is
4273		 * supported
4274		 */
4275		if (hw->mac.type == e1000_pch_spt)
4276			ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4277		else
4278			ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4279
4280		ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4281
4282		ew32flash(ICH_FLASH_FDATA0, data);
4283
4284		/* check if FCERR is set to 1 , if set to 1, clear it
4285		 * and try the whole sequence a few more times else done
4286		 */
4287		ret_val =
4288		   e1000_flash_cycle_ich8lan(hw,
4289					     ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4290
4291		if (!ret_val)
4292			break;
4293
4294		/* If we're here, then things are most likely
4295		 * completely hosed, but if the error condition
4296		 * is detected, it won't hurt to give it another
4297		 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4298		 */
4299		hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4300
4301		if (hsfsts.hsf_status.flcerr)
4302			/* Repeat for some time before giving up. */
4303			continue;
4304		if (!hsfsts.hsf_status.flcdone) {
4305			e_dbg("Timeout error - flash cycle did not complete.\n");
4306			break;
4307		}
4308	} while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4309
4310	return ret_val;
4311}
4312
4313/**
4314 *  e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4315 *  @hw: pointer to the HW structure
4316 *  @offset: The index of the byte to read.
4317 *  @data: The byte to write to the NVM.
4318 *
4319 *  Writes a single byte to the NVM using the flash access registers.
4320 **/
4321static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4322					  u8 data)
4323{
4324	u16 word = (u16)data;
4325
4326	return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4327}
4328
4329/**
4330*  e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4331*  @hw: pointer to the HW structure
4332*  @offset: The offset of the word to write.
4333*  @dword: The dword to write to the NVM.
4334*
4335*  Writes a single dword to the NVM using the flash access registers.
4336*  Goes through a retry algorithm before giving up.
4337**/
4338static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4339						 u32 offset, u32 dword)
4340{
4341	s32 ret_val;
4342	u16 program_retries;
4343
4344	/* Must convert word offset into bytes. */
4345	offset <<= 1;
4346	ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4347
4348	if (!ret_val)
4349		return ret_val;
4350	for (program_retries = 0; program_retries < 100; program_retries++) {
4351		e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4352		usleep_range(100, 200);
4353		ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4354		if (!ret_val)
4355			break;
4356	}
4357	if (program_retries == 100)
4358		return -E1000_ERR_NVM;
4359
4360	return 0;
4361}
4362
4363/**
4364 *  e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4365 *  @hw: pointer to the HW structure
4366 *  @offset: The offset of the byte to write.
4367 *  @byte: The byte to write to the NVM.
4368 *
4369 *  Writes a single byte to the NVM using the flash access registers.
4370 *  Goes through a retry algorithm before giving up.
4371 **/
4372static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4373						u32 offset, u8 byte)
4374{
4375	s32 ret_val;
4376	u16 program_retries;
4377
4378	ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4379	if (!ret_val)
4380		return ret_val;
4381
4382	for (program_retries = 0; program_retries < 100; program_retries++) {
4383		e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4384		usleep_range(100, 200);
4385		ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4386		if (!ret_val)
4387			break;
4388	}
4389	if (program_retries == 100)
4390		return -E1000_ERR_NVM;
4391
4392	return 0;
4393}
4394
4395/**
4396 *  e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4397 *  @hw: pointer to the HW structure
4398 *  @bank: 0 for first bank, 1 for second bank, etc.
4399 *
4400 *  Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4401 *  bank N is 4096 * N + flash_reg_addr.
4402 **/
4403static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4404{
4405	struct e1000_nvm_info *nvm = &hw->nvm;
4406	union ich8_hws_flash_status hsfsts;
4407	union ich8_hws_flash_ctrl hsflctl;
4408	u32 flash_linear_addr;
4409	/* bank size is in 16bit words - adjust to bytes */
4410	u32 flash_bank_size = nvm->flash_bank_size * 2;
4411	s32 ret_val;
4412	s32 count = 0;
4413	s32 j, iteration, sector_size;
4414
4415	hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4416
4417	/* Determine HW Sector size: Read BERASE bits of hw flash status
4418	 * register
4419	 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4420	 *     consecutive sectors.  The start index for the nth Hw sector
4421	 *     can be calculated as = bank * 4096 + n * 256
4422	 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4423	 *     The start index for the nth Hw sector can be calculated
4424	 *     as = bank * 4096
4425	 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4426	 *     (ich9 only, otherwise error condition)
4427	 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4428	 */
4429	switch (hsfsts.hsf_status.berasesz) {
4430	case 0:
4431		/* Hw sector size 256 */
4432		sector_size = ICH_FLASH_SEG_SIZE_256;
4433		iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4434		break;
4435	case 1:
4436		sector_size = ICH_FLASH_SEG_SIZE_4K;
4437		iteration = 1;
4438		break;
4439	case 2:
4440		sector_size = ICH_FLASH_SEG_SIZE_8K;
4441		iteration = 1;
4442		break;
4443	case 3:
4444		sector_size = ICH_FLASH_SEG_SIZE_64K;
4445		iteration = 1;
4446		break;
4447	default:
4448		return -E1000_ERR_NVM;
4449	}
4450
4451	/* Start with the base address, then add the sector offset. */
4452	flash_linear_addr = hw->nvm.flash_base_addr;
4453	flash_linear_addr += (bank) ? flash_bank_size : 0;
4454
4455	for (j = 0; j < iteration; j++) {
4456		do {
4457			u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4458
4459			/* Steps */
4460			ret_val = e1000_flash_cycle_init_ich8lan(hw);
4461			if (ret_val)
4462				return ret_val;
4463
4464			/* Write a value 11 (block Erase) in Flash
4465			 * Cycle field in hw flash control
4466			 */
4467			if (hw->mac.type == e1000_pch_spt)
4468				hsflctl.regval =
4469				    er32flash(ICH_FLASH_HSFSTS) >> 16;
4470			else
4471				hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4472
4473			hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4474			if (hw->mac.type == e1000_pch_spt)
4475				ew32flash(ICH_FLASH_HSFSTS,
4476					  hsflctl.regval << 16);
4477			else
4478				ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4479
4480			/* Write the last 24 bits of an index within the
4481			 * block into Flash Linear address field in Flash
4482			 * Address.
4483			 */
4484			flash_linear_addr += (j * sector_size);
4485			ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4486
4487			ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4488			if (!ret_val)
4489				break;
4490
4491			/* Check if FCERR is set to 1.  If 1,
4492			 * clear it and try the whole sequence
4493			 * a few more times else Done
4494			 */
4495			hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4496			if (hsfsts.hsf_status.flcerr)
4497				/* repeat for some time before giving up */
4498				continue;
4499			else if (!hsfsts.hsf_status.flcdone)
4500				return ret_val;
4501		} while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4502	}
4503
4504	return 0;
4505}
4506
4507/**
4508 *  e1000_valid_led_default_ich8lan - Set the default LED settings
4509 *  @hw: pointer to the HW structure
4510 *  @data: Pointer to the LED settings
4511 *
4512 *  Reads the LED default settings from the NVM to data.  If the NVM LED
4513 *  settings is all 0's or F's, set the LED default to a valid LED default
4514 *  setting.
4515 **/
4516static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4517{
4518	s32 ret_val;
4519
4520	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4521	if (ret_val) {
4522		e_dbg("NVM Read Error\n");
4523		return ret_val;
4524	}
4525
4526	if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4527		*data = ID_LED_DEFAULT_ICH8LAN;
4528
4529	return 0;
4530}
4531
4532/**
4533 *  e1000_id_led_init_pchlan - store LED configurations
4534 *  @hw: pointer to the HW structure
4535 *
4536 *  PCH does not control LEDs via the LEDCTL register, rather it uses
4537 *  the PHY LED configuration register.
4538 *
4539 *  PCH also does not have an "always on" or "always off" mode which
4540 *  complicates the ID feature.  Instead of using the "on" mode to indicate
4541 *  in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4542 *  use "link_up" mode.  The LEDs will still ID on request if there is no
4543 *  link based on logic in e1000_led_[on|off]_pchlan().
4544 **/
4545static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4546{
4547	struct e1000_mac_info *mac = &hw->mac;
4548	s32 ret_val;
4549	const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4550	const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4551	u16 data, i, temp, shift;
4552
4553	/* Get default ID LED modes */
4554	ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4555	if (ret_val)
4556		return ret_val;
4557
4558	mac->ledctl_default = er32(LEDCTL);
4559	mac->ledctl_mode1 = mac->ledctl_default;
4560	mac->ledctl_mode2 = mac->ledctl_default;
4561
4562	for (i = 0; i < 4; i++) {
4563		temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4564		shift = (i * 5);
4565		switch (temp) {
4566		case ID_LED_ON1_DEF2:
4567		case ID_LED_ON1_ON2:
4568		case ID_LED_ON1_OFF2:
4569			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4570			mac->ledctl_mode1 |= (ledctl_on << shift);
4571			break;
4572		case ID_LED_OFF1_DEF2:
4573		case ID_LED_OFF1_ON2:
4574		case ID_LED_OFF1_OFF2:
4575			mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4576			mac->ledctl_mode1 |= (ledctl_off << shift);
4577			break;
4578		default:
4579			/* Do nothing */
4580			break;
4581		}
4582		switch (temp) {
4583		case ID_LED_DEF1_ON2:
4584		case ID_LED_ON1_ON2:
4585		case ID_LED_OFF1_ON2:
4586			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4587			mac->ledctl_mode2 |= (ledctl_on << shift);
4588			break;
4589		case ID_LED_DEF1_OFF2:
4590		case ID_LED_ON1_OFF2:
4591		case ID_LED_OFF1_OFF2:
4592			mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4593			mac->ledctl_mode2 |= (ledctl_off << shift);
4594			break;
4595		default:
4596			/* Do nothing */
4597			break;
4598		}
4599	}
4600
4601	return 0;
4602}
4603
4604/**
4605 *  e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4606 *  @hw: pointer to the HW structure
4607 *
4608 *  ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4609 *  register, so the the bus width is hard coded.
4610 **/
4611static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4612{
4613	struct e1000_bus_info *bus = &hw->bus;
4614	s32 ret_val;
4615
4616	ret_val = e1000e_get_bus_info_pcie(hw);
4617
4618	/* ICH devices are "PCI Express"-ish.  They have
4619	 * a configuration space, but do not contain
4620	 * PCI Express Capability registers, so bus width
4621	 * must be hardcoded.
4622	 */
4623	if (bus->width == e1000_bus_width_unknown)
4624		bus->width = e1000_bus_width_pcie_x1;
4625
4626	return ret_val;
4627}
4628
4629/**
4630 *  e1000_reset_hw_ich8lan - Reset the hardware
4631 *  @hw: pointer to the HW structure
4632 *
4633 *  Does a full reset of the hardware which includes a reset of the PHY and
4634 *  MAC.
4635 **/
4636static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4637{
4638	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4639	u16 kum_cfg;
4640	u32 ctrl, reg;
4641	s32 ret_val;
4642
4643	/* Prevent the PCI-E bus from sticking if there is no TLP connection
4644	 * on the last TLP read/write transaction when MAC is reset.
4645	 */
4646	ret_val = e1000e_disable_pcie_master(hw);
4647	if (ret_val)
4648		e_dbg("PCI-E Master disable polling has failed.\n");
4649
4650	e_dbg("Masking off all interrupts\n");
4651	ew32(IMC, 0xffffffff);
4652
4653	/* Disable the Transmit and Receive units.  Then delay to allow
4654	 * any pending transactions to complete before we hit the MAC
4655	 * with the global reset.
4656	 */
4657	ew32(RCTL, 0);
4658	ew32(TCTL, E1000_TCTL_PSP);
4659	e1e_flush();
4660
4661	usleep_range(10000, 20000);
4662
4663	/* Workaround for ICH8 bit corruption issue in FIFO memory */
4664	if (hw->mac.type == e1000_ich8lan) {
4665		/* Set Tx and Rx buffer allocation to 8k apiece. */
4666		ew32(PBA, E1000_PBA_8K);
4667		/* Set Packet Buffer Size to 16k. */
4668		ew32(PBS, E1000_PBS_16K);
4669	}
4670
4671	if (hw->mac.type == e1000_pchlan) {
4672		/* Save the NVM K1 bit setting */
4673		ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4674		if (ret_val)
4675			return ret_val;
4676
4677		if (kum_cfg & E1000_NVM_K1_ENABLE)
4678			dev_spec->nvm_k1_enabled = true;
4679		else
4680			dev_spec->nvm_k1_enabled = false;
4681	}
4682
4683	ctrl = er32(CTRL);
4684
4685	if (!hw->phy.ops.check_reset_block(hw)) {
4686		/* Full-chip reset requires MAC and PHY reset at the same
4687		 * time to make sure the interface between MAC and the
4688		 * external PHY is reset.
4689		 */
4690		ctrl |= E1000_CTRL_PHY_RST;
4691
4692		/* Gate automatic PHY configuration by hardware on
4693		 * non-managed 82579
4694		 */
4695		if ((hw->mac.type == e1000_pch2lan) &&
4696		    !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4697			e1000_gate_hw_phy_config_ich8lan(hw, true);
4698	}
4699	ret_val = e1000_acquire_swflag_ich8lan(hw);
4700	e_dbg("Issuing a global reset to ich8lan\n");
4701	ew32(CTRL, (ctrl | E1000_CTRL_RST));
4702	/* cannot issue a flush here because it hangs the hardware */
4703	msleep(20);
4704
4705	/* Set Phy Config Counter to 50msec */
4706	if (hw->mac.type == e1000_pch2lan) {
4707		reg = er32(FEXTNVM3);
4708		reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4709		reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4710		ew32(FEXTNVM3, reg);
4711	}
4712
4713	if (!ret_val)
4714		clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4715
4716	if (ctrl & E1000_CTRL_PHY_RST) {
4717		ret_val = hw->phy.ops.get_cfg_done(hw);
4718		if (ret_val)
4719			return ret_val;
4720
4721		ret_val = e1000_post_phy_reset_ich8lan(hw);
4722		if (ret_val)
4723			return ret_val;
4724	}
4725
4726	/* For PCH, this write will make sure that any noise
4727	 * will be detected as a CRC error and be dropped rather than show up
4728	 * as a bad packet to the DMA engine.
4729	 */
4730	if (hw->mac.type == e1000_pchlan)
4731		ew32(CRC_OFFSET, 0x65656565);
4732
4733	ew32(IMC, 0xffffffff);
4734	er32(ICR);
4735
4736	reg = er32(KABGTXD);
4737	reg |= E1000_KABGTXD_BGSQLBIAS;
4738	ew32(KABGTXD, reg);
4739
4740	return 0;
4741}
4742
4743/**
4744 *  e1000_init_hw_ich8lan - Initialize the hardware
4745 *  @hw: pointer to the HW structure
4746 *
4747 *  Prepares the hardware for transmit and receive by doing the following:
4748 *   - initialize hardware bits
4749 *   - initialize LED identification
4750 *   - setup receive address registers
4751 *   - setup flow control
4752 *   - setup transmit descriptors
4753 *   - clear statistics
4754 **/
4755static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4756{
4757	struct e1000_mac_info *mac = &hw->mac;
4758	u32 ctrl_ext, txdctl, snoop;
4759	s32 ret_val;
4760	u16 i;
4761
4762	e1000_initialize_hw_bits_ich8lan(hw);
4763
4764	/* Initialize identification LED */
4765	ret_val = mac->ops.id_led_init(hw);
4766	/* An error is not fatal and we should not stop init due to this */
4767	if (ret_val)
4768		e_dbg("Error initializing identification LED\n");
4769
4770	/* Setup the receive address. */
4771	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4772
4773	/* Zero out the Multicast HASH table */
4774	e_dbg("Zeroing the MTA\n");
4775	for (i = 0; i < mac->mta_reg_count; i++)
4776		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4777
4778	/* The 82578 Rx buffer will stall if wakeup is enabled in host and
4779	 * the ME.  Disable wakeup by clearing the host wakeup bit.
4780	 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4781	 */
4782	if (hw->phy.type == e1000_phy_82578) {
4783		e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4784		i &= ~BM_WUC_HOST_WU_BIT;
4785		e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4786		ret_val = e1000_phy_hw_reset_ich8lan(hw);
4787		if (ret_val)
4788			return ret_val;
4789	}
4790
4791	/* Setup link and flow control */
4792	ret_val = mac->ops.setup_link(hw);
4793
4794	/* Set the transmit descriptor write-back policy for both queues */
4795	txdctl = er32(TXDCTL(0));
4796	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4797		  E1000_TXDCTL_FULL_TX_DESC_WB);
4798	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4799		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4800	ew32(TXDCTL(0), txdctl);
4801	txdctl = er32(TXDCTL(1));
4802	txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4803		  E1000_TXDCTL_FULL_TX_DESC_WB);
4804	txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4805		  E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4806	ew32(TXDCTL(1), txdctl);
4807
4808	/* ICH8 has opposite polarity of no_snoop bits.
4809	 * By default, we should use snoop behavior.
4810	 */
4811	if (mac->type == e1000_ich8lan)
4812		snoop = PCIE_ICH8_SNOOP_ALL;
4813	else
4814		snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4815	e1000e_set_pcie_no_snoop(hw, snoop);
4816
 
 
 
 
 
 
 
 
 
4817	ctrl_ext = er32(CTRL_EXT);
4818	ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4819	ew32(CTRL_EXT, ctrl_ext);
4820
4821	/* Clear all of the statistics registers (clear on read).  It is
4822	 * important that we do this after we have tried to establish link
4823	 * because the symbol error count will increment wildly if there
4824	 * is no link.
4825	 */
4826	e1000_clear_hw_cntrs_ich8lan(hw);
4827
4828	return ret_val;
4829}
4830
4831/**
4832 *  e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4833 *  @hw: pointer to the HW structure
4834 *
4835 *  Sets/Clears required hardware bits necessary for correctly setting up the
4836 *  hardware for transmit and receive.
4837 **/
4838static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4839{
4840	u32 reg;
4841
4842	/* Extended Device Control */
4843	reg = er32(CTRL_EXT);
4844	reg |= (1 << 22);
4845	/* Enable PHY low-power state when MAC is at D3 w/o WoL */
4846	if (hw->mac.type >= e1000_pchlan)
4847		reg |= E1000_CTRL_EXT_PHYPDEN;
4848	ew32(CTRL_EXT, reg);
4849
4850	/* Transmit Descriptor Control 0 */
4851	reg = er32(TXDCTL(0));
4852	reg |= (1 << 22);
4853	ew32(TXDCTL(0), reg);
4854
4855	/* Transmit Descriptor Control 1 */
4856	reg = er32(TXDCTL(1));
4857	reg |= (1 << 22);
4858	ew32(TXDCTL(1), reg);
4859
4860	/* Transmit Arbitration Control 0 */
4861	reg = er32(TARC(0));
4862	if (hw->mac.type == e1000_ich8lan)
4863		reg |= (1 << 28) | (1 << 29);
4864	reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
4865	ew32(TARC(0), reg);
4866
4867	/* Transmit Arbitration Control 1 */
4868	reg = er32(TARC(1));
4869	if (er32(TCTL) & E1000_TCTL_MULR)
4870		reg &= ~(1 << 28);
4871	else
4872		reg |= (1 << 28);
4873	reg |= (1 << 24) | (1 << 26) | (1 << 30);
4874	ew32(TARC(1), reg);
4875
4876	/* Device Status */
4877	if (hw->mac.type == e1000_ich8lan) {
4878		reg = er32(STATUS);
4879		reg &= ~(1 << 31);
4880		ew32(STATUS, reg);
4881	}
4882
4883	/* work-around descriptor data corruption issue during nfs v2 udp
4884	 * traffic, just disable the nfs filtering capability
4885	 */
4886	reg = er32(RFCTL);
4887	reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4888
4889	/* Disable IPv6 extension header parsing because some malformed
4890	 * IPv6 headers can hang the Rx.
4891	 */
4892	if (hw->mac.type == e1000_ich8lan)
4893		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4894	ew32(RFCTL, reg);
4895
4896	/* Enable ECC on Lynxpoint */
4897	if ((hw->mac.type == e1000_pch_lpt) ||
4898	    (hw->mac.type == e1000_pch_spt)) {
4899		reg = er32(PBECCSTS);
4900		reg |= E1000_PBECCSTS_ECC_ENABLE;
4901		ew32(PBECCSTS, reg);
4902
4903		reg = er32(CTRL);
4904		reg |= E1000_CTRL_MEHE;
4905		ew32(CTRL, reg);
4906	}
4907}
4908
4909/**
4910 *  e1000_setup_link_ich8lan - Setup flow control and link settings
4911 *  @hw: pointer to the HW structure
4912 *
4913 *  Determines which flow control settings to use, then configures flow
4914 *  control.  Calls the appropriate media-specific link configuration
4915 *  function.  Assuming the adapter has a valid link partner, a valid link
4916 *  should be established.  Assumes the hardware has previously been reset
4917 *  and the transmitter and receiver are not enabled.
4918 **/
4919static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
4920{
4921	s32 ret_val;
4922
4923	if (hw->phy.ops.check_reset_block(hw))
4924		return 0;
4925
4926	/* ICH parts do not have a word in the NVM to determine
4927	 * the default flow control setting, so we explicitly
4928	 * set it to full.
4929	 */
4930	if (hw->fc.requested_mode == e1000_fc_default) {
4931		/* Workaround h/w hang when Tx flow control enabled */
4932		if (hw->mac.type == e1000_pchlan)
4933			hw->fc.requested_mode = e1000_fc_rx_pause;
4934		else
4935			hw->fc.requested_mode = e1000_fc_full;
4936	}
4937
4938	/* Save off the requested flow control mode for use later.  Depending
4939	 * on the link partner's capabilities, we may or may not use this mode.
4940	 */
4941	hw->fc.current_mode = hw->fc.requested_mode;
4942
4943	e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
4944
4945	/* Continue to configure the copper link. */
4946	ret_val = hw->mac.ops.setup_physical_interface(hw);
4947	if (ret_val)
4948		return ret_val;
4949
4950	ew32(FCTTV, hw->fc.pause_time);
4951	if ((hw->phy.type == e1000_phy_82578) ||
4952	    (hw->phy.type == e1000_phy_82579) ||
4953	    (hw->phy.type == e1000_phy_i217) ||
4954	    (hw->phy.type == e1000_phy_82577)) {
4955		ew32(FCRTV_PCH, hw->fc.refresh_time);
4956
4957		ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
4958				   hw->fc.pause_time);
4959		if (ret_val)
4960			return ret_val;
4961	}
4962
4963	return e1000e_set_fc_watermarks(hw);
4964}
4965
4966/**
4967 *  e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
4968 *  @hw: pointer to the HW structure
4969 *
4970 *  Configures the kumeran interface to the PHY to wait the appropriate time
4971 *  when polling the PHY, then call the generic setup_copper_link to finish
4972 *  configuring the copper link.
4973 **/
4974static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
4975{
4976	u32 ctrl;
4977	s32 ret_val;
4978	u16 reg_data;
4979
4980	ctrl = er32(CTRL);
4981	ctrl |= E1000_CTRL_SLU;
4982	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
4983	ew32(CTRL, ctrl);
4984
4985	/* Set the mac to wait the maximum time between each iteration
4986	 * and increase the max iterations when polling the phy;
4987	 * this fixes erroneous timeouts at 10Mbps.
4988	 */
4989	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
4990	if (ret_val)
4991		return ret_val;
4992	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4993				       &reg_data);
4994	if (ret_val)
4995		return ret_val;
4996	reg_data |= 0x3F;
4997	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
4998					reg_data);
4999	if (ret_val)
5000		return ret_val;
5001
5002	switch (hw->phy.type) {
5003	case e1000_phy_igp_3:
5004		ret_val = e1000e_copper_link_setup_igp(hw);
5005		if (ret_val)
5006			return ret_val;
5007		break;
5008	case e1000_phy_bm:
5009	case e1000_phy_82578:
5010		ret_val = e1000e_copper_link_setup_m88(hw);
5011		if (ret_val)
5012			return ret_val;
5013		break;
5014	case e1000_phy_82577:
5015	case e1000_phy_82579:
5016		ret_val = e1000_copper_link_setup_82577(hw);
5017		if (ret_val)
5018			return ret_val;
5019		break;
5020	case e1000_phy_ife:
5021		ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
5022		if (ret_val)
5023			return ret_val;
5024
5025		reg_data &= ~IFE_PMC_AUTO_MDIX;
5026
5027		switch (hw->phy.mdix) {
5028		case 1:
5029			reg_data &= ~IFE_PMC_FORCE_MDIX;
5030			break;
5031		case 2:
5032			reg_data |= IFE_PMC_FORCE_MDIX;
5033			break;
5034		case 0:
5035		default:
5036			reg_data |= IFE_PMC_AUTO_MDIX;
5037			break;
5038		}
5039		ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5040		if (ret_val)
5041			return ret_val;
5042		break;
5043	default:
5044		break;
5045	}
5046
5047	return e1000e_setup_copper_link(hw);
5048}
5049
5050/**
5051 *  e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5052 *  @hw: pointer to the HW structure
5053 *
5054 *  Calls the PHY specific link setup function and then calls the
5055 *  generic setup_copper_link to finish configuring the link for
5056 *  Lynxpoint PCH devices
5057 **/
5058static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5059{
5060	u32 ctrl;
5061	s32 ret_val;
5062
5063	ctrl = er32(CTRL);
5064	ctrl |= E1000_CTRL_SLU;
5065	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5066	ew32(CTRL, ctrl);
5067
5068	ret_val = e1000_copper_link_setup_82577(hw);
5069	if (ret_val)
5070		return ret_val;
5071
5072	return e1000e_setup_copper_link(hw);
5073}
5074
5075/**
5076 *  e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5077 *  @hw: pointer to the HW structure
5078 *  @speed: pointer to store current link speed
5079 *  @duplex: pointer to store the current link duplex
5080 *
5081 *  Calls the generic get_speed_and_duplex to retrieve the current link
5082 *  information and then calls the Kumeran lock loss workaround for links at
5083 *  gigabit speeds.
5084 **/
5085static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5086					  u16 *duplex)
5087{
5088	s32 ret_val;
5089
5090	ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5091	if (ret_val)
5092		return ret_val;
5093
5094	if ((hw->mac.type == e1000_ich8lan) &&
5095	    (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5096		ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5097	}
5098
5099	return ret_val;
5100}
5101
5102/**
5103 *  e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5104 *  @hw: pointer to the HW structure
5105 *
5106 *  Work-around for 82566 Kumeran PCS lock loss:
5107 *  On link status change (i.e. PCI reset, speed change) and link is up and
5108 *  speed is gigabit-
5109 *    0) if workaround is optionally disabled do nothing
5110 *    1) wait 1ms for Kumeran link to come up
5111 *    2) check Kumeran Diagnostic register PCS lock loss bit
5112 *    3) if not set the link is locked (all is good), otherwise...
5113 *    4) reset the PHY
5114 *    5) repeat up to 10 times
5115 *  Note: this is only called for IGP3 copper when speed is 1gb.
5116 **/
5117static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5118{
5119	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5120	u32 phy_ctrl;
5121	s32 ret_val;
5122	u16 i, data;
5123	bool link;
5124
5125	if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5126		return 0;
5127
5128	/* Make sure link is up before proceeding.  If not just return.
5129	 * Attempting this while link is negotiating fouled up link
5130	 * stability
5131	 */
5132	ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5133	if (!link)
5134		return 0;
5135
5136	for (i = 0; i < 10; i++) {
5137		/* read once to clear */
5138		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5139		if (ret_val)
5140			return ret_val;
5141		/* and again to get new status */
5142		ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5143		if (ret_val)
5144			return ret_val;
5145
5146		/* check for PCS lock */
5147		if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5148			return 0;
5149
5150		/* Issue PHY reset */
5151		e1000_phy_hw_reset(hw);
5152		mdelay(5);
5153	}
5154	/* Disable GigE link negotiation */
5155	phy_ctrl = er32(PHY_CTRL);
5156	phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5157		     E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5158	ew32(PHY_CTRL, phy_ctrl);
5159
5160	/* Call gig speed drop workaround on Gig disable before accessing
5161	 * any PHY registers
5162	 */
5163	e1000e_gig_downshift_workaround_ich8lan(hw);
5164
5165	/* unable to acquire PCS lock */
5166	return -E1000_ERR_PHY;
5167}
5168
5169/**
5170 *  e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5171 *  @hw: pointer to the HW structure
5172 *  @state: boolean value used to set the current Kumeran workaround state
5173 *
5174 *  If ICH8, set the current Kumeran workaround state (enabled - true
5175 *  /disabled - false).
5176 **/
5177void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5178						  bool state)
5179{
5180	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5181
5182	if (hw->mac.type != e1000_ich8lan) {
5183		e_dbg("Workaround applies to ICH8 only.\n");
5184		return;
5185	}
5186
5187	dev_spec->kmrn_lock_loss_workaround_enabled = state;
5188}
5189
5190/**
5191 *  e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5192 *  @hw: pointer to the HW structure
5193 *
5194 *  Workaround for 82566 power-down on D3 entry:
5195 *    1) disable gigabit link
5196 *    2) write VR power-down enable
5197 *    3) read it back
5198 *  Continue if successful, else issue LCD reset and repeat
5199 **/
5200void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5201{
5202	u32 reg;
5203	u16 data;
5204	u8 retry = 0;
5205
5206	if (hw->phy.type != e1000_phy_igp_3)
5207		return;
5208
5209	/* Try the workaround twice (if needed) */
5210	do {
5211		/* Disable link */
5212		reg = er32(PHY_CTRL);
5213		reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5214			E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5215		ew32(PHY_CTRL, reg);
5216
5217		/* Call gig speed drop workaround on Gig disable before
5218		 * accessing any PHY registers
5219		 */
5220		if (hw->mac.type == e1000_ich8lan)
5221			e1000e_gig_downshift_workaround_ich8lan(hw);
5222
5223		/* Write VR power-down enable */
5224		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5225		data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5226		e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5227
5228		/* Read it back and test */
5229		e1e_rphy(hw, IGP3_VR_CTRL, &data);
5230		data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5231		if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5232			break;
5233
5234		/* Issue PHY reset and repeat at most one more time */
5235		reg = er32(CTRL);
5236		ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5237		retry++;
5238	} while (retry);
5239}
5240
5241/**
5242 *  e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5243 *  @hw: pointer to the HW structure
5244 *
5245 *  Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5246 *  LPLU, Gig disable, MDIC PHY reset):
5247 *    1) Set Kumeran Near-end loopback
5248 *    2) Clear Kumeran Near-end loopback
5249 *  Should only be called for ICH8[m] devices with any 1G Phy.
5250 **/
5251void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5252{
5253	s32 ret_val;
5254	u16 reg_data;
5255
5256	if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5257		return;
5258
5259	ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5260				       &reg_data);
5261	if (ret_val)
5262		return;
5263	reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5264	ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5265					reg_data);
5266	if (ret_val)
5267		return;
5268	reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5269	e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5270}
5271
5272/**
5273 *  e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5274 *  @hw: pointer to the HW structure
5275 *
5276 *  During S0 to Sx transition, it is possible the link remains at gig
5277 *  instead of negotiating to a lower speed.  Before going to Sx, set
5278 *  'Gig Disable' to force link speed negotiation to a lower speed based on
5279 *  the LPLU setting in the NVM or custom setting.  For PCH and newer parts,
5280 *  the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5281 *  needs to be written.
5282 *  Parts that support (and are linked to a partner which support) EEE in
5283 *  100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5284 *  than 10Mbps w/o EEE.
5285 **/
5286void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5287{
5288	struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5289	u32 phy_ctrl;
5290	s32 ret_val;
5291
5292	phy_ctrl = er32(PHY_CTRL);
5293	phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5294
5295	if (hw->phy.type == e1000_phy_i217) {
5296		u16 phy_reg, device_id = hw->adapter->pdev->device;
5297
5298		if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5299		    (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5300		    (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5301		    (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5302		    (hw->mac.type == e1000_pch_spt)) {
5303			u32 fextnvm6 = er32(FEXTNVM6);
5304
5305			ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5306		}
5307
5308		ret_val = hw->phy.ops.acquire(hw);
5309		if (ret_val)
5310			goto out;
5311
5312		if (!dev_spec->eee_disable) {
5313			u16 eee_advert;
5314
5315			ret_val =
5316			    e1000_read_emi_reg_locked(hw,
5317						      I217_EEE_ADVERTISEMENT,
5318						      &eee_advert);
5319			if (ret_val)
5320				goto release;
5321
5322			/* Disable LPLU if both link partners support 100BaseT
5323			 * EEE and 100Full is advertised on both ends of the
5324			 * link, and enable Auto Enable LPI since there will
5325			 * be no driver to enable LPI while in Sx.
5326			 */
5327			if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5328			    (dev_spec->eee_lp_ability &
5329			     I82579_EEE_100_SUPPORTED) &&
5330			    (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5331				phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5332					      E1000_PHY_CTRL_NOND0A_LPLU);
5333
5334				/* Set Auto Enable LPI after link up */
5335				e1e_rphy_locked(hw,
5336						I217_LPI_GPIO_CTRL, &phy_reg);
5337				phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5338				e1e_wphy_locked(hw,
5339						I217_LPI_GPIO_CTRL, phy_reg);
5340			}
5341		}
5342
5343		/* For i217 Intel Rapid Start Technology support,
5344		 * when the system is going into Sx and no manageability engine
5345		 * is present, the driver must configure proxy to reset only on
5346		 * power good.  LPI (Low Power Idle) state must also reset only
5347		 * on power good, as well as the MTA (Multicast table array).
5348		 * The SMBus release must also be disabled on LCD reset.
5349		 */
5350		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5351			/* Enable proxy to reset only on power good. */
5352			e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5353			phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5354			e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5355
5356			/* Set bit enable LPI (EEE) to reset only on
5357			 * power good.
5358			 */
5359			e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5360			phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5361			e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5362
5363			/* Disable the SMB release on LCD reset. */
5364			e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5365			phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5366			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5367		}
5368
5369		/* Enable MTA to reset for Intel Rapid Start Technology
5370		 * Support
5371		 */
5372		e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5373		phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5374		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5375
5376release:
5377		hw->phy.ops.release(hw);
5378	}
5379out:
5380	ew32(PHY_CTRL, phy_ctrl);
5381
5382	if (hw->mac.type == e1000_ich8lan)
5383		e1000e_gig_downshift_workaround_ich8lan(hw);
5384
5385	if (hw->mac.type >= e1000_pchlan) {
5386		e1000_oem_bits_config_ich8lan(hw, false);
5387
5388		/* Reset PHY to activate OEM bits on 82577/8 */
5389		if (hw->mac.type == e1000_pchlan)
5390			e1000e_phy_hw_reset_generic(hw);
5391
5392		ret_val = hw->phy.ops.acquire(hw);
5393		if (ret_val)
5394			return;
5395		e1000_write_smbus_addr(hw);
5396		hw->phy.ops.release(hw);
5397	}
5398}
5399
5400/**
5401 *  e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5402 *  @hw: pointer to the HW structure
5403 *
5404 *  During Sx to S0 transitions on non-managed devices or managed devices
5405 *  on which PHY resets are not blocked, if the PHY registers cannot be
5406 *  accessed properly by the s/w toggle the LANPHYPC value to power cycle
5407 *  the PHY.
5408 *  On i217, setup Intel Rapid Start Technology.
5409 **/
5410void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5411{
5412	s32 ret_val;
5413
5414	if (hw->mac.type < e1000_pch2lan)
5415		return;
5416
5417	ret_val = e1000_init_phy_workarounds_pchlan(hw);
5418	if (ret_val) {
5419		e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5420		return;
5421	}
5422
5423	/* For i217 Intel Rapid Start Technology support when the system
5424	 * is transitioning from Sx and no manageability engine is present
5425	 * configure SMBus to restore on reset, disable proxy, and enable
5426	 * the reset on MTA (Multicast table array).
5427	 */
5428	if (hw->phy.type == e1000_phy_i217) {
5429		u16 phy_reg;
5430
5431		ret_val = hw->phy.ops.acquire(hw);
5432		if (ret_val) {
5433			e_dbg("Failed to setup iRST\n");
5434			return;
5435		}
5436
5437		/* Clear Auto Enable LPI after link up */
5438		e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5439		phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5440		e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5441
5442		if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5443			/* Restore clear on SMB if no manageability engine
5444			 * is present
5445			 */
5446			ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5447			if (ret_val)
5448				goto release;
5449			phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5450			e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5451
5452			/* Disable Proxy */
5453			e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5454		}
5455		/* Enable reset on MTA */
5456		ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5457		if (ret_val)
5458			goto release;
5459		phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5460		e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5461release:
5462		if (ret_val)
5463			e_dbg("Error %d in resume workarounds\n", ret_val);
5464		hw->phy.ops.release(hw);
5465	}
5466}
5467
5468/**
5469 *  e1000_cleanup_led_ich8lan - Restore the default LED operation
5470 *  @hw: pointer to the HW structure
5471 *
5472 *  Return the LED back to the default configuration.
5473 **/
5474static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5475{
5476	if (hw->phy.type == e1000_phy_ife)
5477		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5478
5479	ew32(LEDCTL, hw->mac.ledctl_default);
5480	return 0;
5481}
5482
5483/**
5484 *  e1000_led_on_ich8lan - Turn LEDs on
5485 *  @hw: pointer to the HW structure
5486 *
5487 *  Turn on the LEDs.
5488 **/
5489static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5490{
5491	if (hw->phy.type == e1000_phy_ife)
5492		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5493				(IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5494
5495	ew32(LEDCTL, hw->mac.ledctl_mode2);
5496	return 0;
5497}
5498
5499/**
5500 *  e1000_led_off_ich8lan - Turn LEDs off
5501 *  @hw: pointer to the HW structure
5502 *
5503 *  Turn off the LEDs.
5504 **/
5505static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5506{
5507	if (hw->phy.type == e1000_phy_ife)
5508		return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5509				(IFE_PSCL_PROBE_MODE |
5510				 IFE_PSCL_PROBE_LEDS_OFF));
5511
5512	ew32(LEDCTL, hw->mac.ledctl_mode1);
5513	return 0;
5514}
5515
5516/**
5517 *  e1000_setup_led_pchlan - Configures SW controllable LED
5518 *  @hw: pointer to the HW structure
5519 *
5520 *  This prepares the SW controllable LED for use.
5521 **/
5522static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5523{
5524	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5525}
5526
5527/**
5528 *  e1000_cleanup_led_pchlan - Restore the default LED operation
5529 *  @hw: pointer to the HW structure
5530 *
5531 *  Return the LED back to the default configuration.
5532 **/
5533static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5534{
5535	return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5536}
5537
5538/**
5539 *  e1000_led_on_pchlan - Turn LEDs on
5540 *  @hw: pointer to the HW structure
5541 *
5542 *  Turn on the LEDs.
5543 **/
5544static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5545{
5546	u16 data = (u16)hw->mac.ledctl_mode2;
5547	u32 i, led;
5548
5549	/* If no link, then turn LED on by setting the invert bit
5550	 * for each LED that's mode is "link_up" in ledctl_mode2.
5551	 */
5552	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5553		for (i = 0; i < 3; i++) {
5554			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5555			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5556			    E1000_LEDCTL_MODE_LINK_UP)
5557				continue;
5558			if (led & E1000_PHY_LED0_IVRT)
5559				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5560			else
5561				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5562		}
5563	}
5564
5565	return e1e_wphy(hw, HV_LED_CONFIG, data);
5566}
5567
5568/**
5569 *  e1000_led_off_pchlan - Turn LEDs off
5570 *  @hw: pointer to the HW structure
5571 *
5572 *  Turn off the LEDs.
5573 **/
5574static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5575{
5576	u16 data = (u16)hw->mac.ledctl_mode1;
5577	u32 i, led;
5578
5579	/* If no link, then turn LED off by clearing the invert bit
5580	 * for each LED that's mode is "link_up" in ledctl_mode1.
5581	 */
5582	if (!(er32(STATUS) & E1000_STATUS_LU)) {
5583		for (i = 0; i < 3; i++) {
5584			led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5585			if ((led & E1000_PHY_LED0_MODE_MASK) !=
5586			    E1000_LEDCTL_MODE_LINK_UP)
5587				continue;
5588			if (led & E1000_PHY_LED0_IVRT)
5589				data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5590			else
5591				data |= (E1000_PHY_LED0_IVRT << (i * 5));
5592		}
5593	}
5594
5595	return e1e_wphy(hw, HV_LED_CONFIG, data);
5596}
5597
5598/**
5599 *  e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5600 *  @hw: pointer to the HW structure
5601 *
5602 *  Read appropriate register for the config done bit for completion status
5603 *  and configure the PHY through s/w for EEPROM-less parts.
5604 *
5605 *  NOTE: some silicon which is EEPROM-less will fail trying to read the
5606 *  config done bit, so only an error is logged and continues.  If we were
5607 *  to return with error, EEPROM-less silicon would not be able to be reset
5608 *  or change link.
5609 **/
5610static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5611{
5612	s32 ret_val = 0;
5613	u32 bank = 0;
5614	u32 status;
5615
5616	e1000e_get_cfg_done_generic(hw);
5617
5618	/* Wait for indication from h/w that it has completed basic config */
5619	if (hw->mac.type >= e1000_ich10lan) {
5620		e1000_lan_init_done_ich8lan(hw);
5621	} else {
5622		ret_val = e1000e_get_auto_rd_done(hw);
5623		if (ret_val) {
5624			/* When auto config read does not complete, do not
5625			 * return with an error. This can happen in situations
5626			 * where there is no eeprom and prevents getting link.
5627			 */
5628			e_dbg("Auto Read Done did not complete\n");
5629			ret_val = 0;
5630		}
5631	}
5632
5633	/* Clear PHY Reset Asserted bit */
5634	status = er32(STATUS);
5635	if (status & E1000_STATUS_PHYRA)
5636		ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5637	else
5638		e_dbg("PHY Reset Asserted not set - needs delay\n");
5639
5640	/* If EEPROM is not marked present, init the IGP 3 PHY manually */
5641	if (hw->mac.type <= e1000_ich9lan) {
5642		if (!(er32(EECD) & E1000_EECD_PRES) &&
5643		    (hw->phy.type == e1000_phy_igp_3)) {
5644			e1000e_phy_init_script_igp3(hw);
5645		}
5646	} else {
5647		if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5648			/* Maybe we should do a basic PHY config */
5649			e_dbg("EEPROM not present\n");
5650			ret_val = -E1000_ERR_CONFIG;
5651		}
5652	}
5653
5654	return ret_val;
5655}
5656
5657/**
5658 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5659 * @hw: pointer to the HW structure
5660 *
5661 * In the case of a PHY power down to save power, or to turn off link during a
5662 * driver unload, or wake on lan is not enabled, remove the link.
5663 **/
5664static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5665{
5666	/* If the management interface is not enabled, then power down */
5667	if (!(hw->mac.ops.check_mng_mode(hw) ||
5668	      hw->phy.ops.check_reset_block(hw)))
5669		e1000_power_down_phy_copper(hw);
5670}
5671
5672/**
5673 *  e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5674 *  @hw: pointer to the HW structure
5675 *
5676 *  Clears hardware counters specific to the silicon family and calls
5677 *  clear_hw_cntrs_generic to clear all general purpose counters.
5678 **/
5679static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5680{
5681	u16 phy_data;
5682	s32 ret_val;
5683
5684	e1000e_clear_hw_cntrs_base(hw);
5685
5686	er32(ALGNERRC);
5687	er32(RXERRC);
5688	er32(TNCRS);
5689	er32(CEXTERR);
5690	er32(TSCTC);
5691	er32(TSCTFC);
5692
5693	er32(MGTPRC);
5694	er32(MGTPDC);
5695	er32(MGTPTC);
5696
5697	er32(IAC);
5698	er32(ICRXOC);
5699
5700	/* Clear PHY statistics registers */
5701	if ((hw->phy.type == e1000_phy_82578) ||
5702	    (hw->phy.type == e1000_phy_82579) ||
5703	    (hw->phy.type == e1000_phy_i217) ||
5704	    (hw->phy.type == e1000_phy_82577)) {
5705		ret_val = hw->phy.ops.acquire(hw);
5706		if (ret_val)
5707			return;
5708		ret_val = hw->phy.ops.set_page(hw,
5709					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
5710		if (ret_val)
5711			goto release;
5712		hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5713		hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5714		hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5715		hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5716		hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5717		hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5718		hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5719		hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5720		hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5721		hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5722		hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5723		hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5724		hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5725		hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5726release:
5727		hw->phy.ops.release(hw);
5728	}
5729}
5730
5731static const struct e1000_mac_operations ich8_mac_ops = {
5732	/* check_mng_mode dependent on mac type */
5733	.check_for_link		= e1000_check_for_copper_link_ich8lan,
5734	/* cleanup_led dependent on mac type */
5735	.clear_hw_cntrs		= e1000_clear_hw_cntrs_ich8lan,
5736	.get_bus_info		= e1000_get_bus_info_ich8lan,
5737	.set_lan_id		= e1000_set_lan_id_single_port,
5738	.get_link_up_info	= e1000_get_link_up_info_ich8lan,
5739	/* led_on dependent on mac type */
5740	/* led_off dependent on mac type */
5741	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
5742	.reset_hw		= e1000_reset_hw_ich8lan,
5743	.init_hw		= e1000_init_hw_ich8lan,
5744	.setup_link		= e1000_setup_link_ich8lan,
5745	.setup_physical_interface = e1000_setup_copper_link_ich8lan,
5746	/* id_led_init dependent on mac type */
5747	.config_collision_dist	= e1000e_config_collision_dist_generic,
5748	.rar_set		= e1000e_rar_set_generic,
5749	.rar_get_count		= e1000e_rar_get_count_generic,
5750};
5751
5752static const struct e1000_phy_operations ich8_phy_ops = {
5753	.acquire		= e1000_acquire_swflag_ich8lan,
5754	.check_reset_block	= e1000_check_reset_block_ich8lan,
5755	.commit			= NULL,
5756	.get_cfg_done		= e1000_get_cfg_done_ich8lan,
5757	.get_cable_length	= e1000e_get_cable_length_igp_2,
5758	.read_reg		= e1000e_read_phy_reg_igp,
5759	.release		= e1000_release_swflag_ich8lan,
5760	.reset			= e1000_phy_hw_reset_ich8lan,
5761	.set_d0_lplu_state	= e1000_set_d0_lplu_state_ich8lan,
5762	.set_d3_lplu_state	= e1000_set_d3_lplu_state_ich8lan,
5763	.write_reg		= e1000e_write_phy_reg_igp,
5764};
5765
5766static const struct e1000_nvm_operations ich8_nvm_ops = {
5767	.acquire		= e1000_acquire_nvm_ich8lan,
5768	.read			= e1000_read_nvm_ich8lan,
5769	.release		= e1000_release_nvm_ich8lan,
5770	.reload			= e1000e_reload_nvm_generic,
5771	.update			= e1000_update_nvm_checksum_ich8lan,
5772	.valid_led_default	= e1000_valid_led_default_ich8lan,
5773	.validate		= e1000_validate_nvm_checksum_ich8lan,
5774	.write			= e1000_write_nvm_ich8lan,
5775};
5776
5777static const struct e1000_nvm_operations spt_nvm_ops = {
5778	.acquire		= e1000_acquire_nvm_ich8lan,
5779	.release		= e1000_release_nvm_ich8lan,
5780	.read			= e1000_read_nvm_spt,
5781	.update			= e1000_update_nvm_checksum_spt,
5782	.reload			= e1000e_reload_nvm_generic,
5783	.valid_led_default	= e1000_valid_led_default_ich8lan,
5784	.validate		= e1000_validate_nvm_checksum_ich8lan,
5785	.write			= e1000_write_nvm_ich8lan,
5786};
5787
5788const struct e1000_info e1000_ich8_info = {
5789	.mac			= e1000_ich8lan,
5790	.flags			= FLAG_HAS_WOL
5791				  | FLAG_IS_ICH
5792				  | FLAG_HAS_CTRLEXT_ON_LOAD
5793				  | FLAG_HAS_AMT
5794				  | FLAG_HAS_FLASH
5795				  | FLAG_APME_IN_WUC,
5796	.pba			= 8,
5797	.max_hw_frame_size	= VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5798	.get_variants		= e1000_get_variants_ich8lan,
5799	.mac_ops		= &ich8_mac_ops,
5800	.phy_ops		= &ich8_phy_ops,
5801	.nvm_ops		= &ich8_nvm_ops,
5802};
5803
5804const struct e1000_info e1000_ich9_info = {
5805	.mac			= e1000_ich9lan,
5806	.flags			= FLAG_HAS_JUMBO_FRAMES
5807				  | FLAG_IS_ICH
5808				  | FLAG_HAS_WOL
5809				  | FLAG_HAS_CTRLEXT_ON_LOAD
5810				  | FLAG_HAS_AMT
5811				  | FLAG_HAS_FLASH
5812				  | FLAG_APME_IN_WUC,
5813	.pba			= 18,
5814	.max_hw_frame_size	= DEFAULT_JUMBO,
5815	.get_variants		= e1000_get_variants_ich8lan,
5816	.mac_ops		= &ich8_mac_ops,
5817	.phy_ops		= &ich8_phy_ops,
5818	.nvm_ops		= &ich8_nvm_ops,
5819};
5820
5821const struct e1000_info e1000_ich10_info = {
5822	.mac			= e1000_ich10lan,
5823	.flags			= FLAG_HAS_JUMBO_FRAMES
5824				  | FLAG_IS_ICH
5825				  | FLAG_HAS_WOL
5826				  | FLAG_HAS_CTRLEXT_ON_LOAD
5827				  | FLAG_HAS_AMT
5828				  | FLAG_HAS_FLASH
5829				  | FLAG_APME_IN_WUC,
5830	.pba			= 18,
5831	.max_hw_frame_size	= DEFAULT_JUMBO,
5832	.get_variants		= e1000_get_variants_ich8lan,
5833	.mac_ops		= &ich8_mac_ops,
5834	.phy_ops		= &ich8_phy_ops,
5835	.nvm_ops		= &ich8_nvm_ops,
5836};
5837
5838const struct e1000_info e1000_pch_info = {
5839	.mac			= e1000_pchlan,
5840	.flags			= FLAG_IS_ICH
5841				  | FLAG_HAS_WOL
5842				  | FLAG_HAS_CTRLEXT_ON_LOAD
5843				  | FLAG_HAS_AMT
5844				  | FLAG_HAS_FLASH
5845				  | FLAG_HAS_JUMBO_FRAMES
5846				  | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5847				  | FLAG_APME_IN_WUC,
5848	.flags2			= FLAG2_HAS_PHY_STATS,
5849	.pba			= 26,
5850	.max_hw_frame_size	= 4096,
5851	.get_variants		= e1000_get_variants_ich8lan,
5852	.mac_ops		= &ich8_mac_ops,
5853	.phy_ops		= &ich8_phy_ops,
5854	.nvm_ops		= &ich8_nvm_ops,
5855};
5856
5857const struct e1000_info e1000_pch2_info = {
5858	.mac			= e1000_pch2lan,
5859	.flags			= FLAG_IS_ICH
5860				  | FLAG_HAS_WOL
5861				  | FLAG_HAS_HW_TIMESTAMP
5862				  | FLAG_HAS_CTRLEXT_ON_LOAD
5863				  | FLAG_HAS_AMT
5864				  | FLAG_HAS_FLASH
5865				  | FLAG_HAS_JUMBO_FRAMES
5866				  | FLAG_APME_IN_WUC,
5867	.flags2			= FLAG2_HAS_PHY_STATS
5868				  | FLAG2_HAS_EEE,
 
5869	.pba			= 26,
5870	.max_hw_frame_size	= 9022,
5871	.get_variants		= e1000_get_variants_ich8lan,
5872	.mac_ops		= &ich8_mac_ops,
5873	.phy_ops		= &ich8_phy_ops,
5874	.nvm_ops		= &ich8_nvm_ops,
5875};
5876
5877const struct e1000_info e1000_pch_lpt_info = {
5878	.mac			= e1000_pch_lpt,
5879	.flags			= FLAG_IS_ICH
5880				  | FLAG_HAS_WOL
5881				  | FLAG_HAS_HW_TIMESTAMP
5882				  | FLAG_HAS_CTRLEXT_ON_LOAD
5883				  | FLAG_HAS_AMT
5884				  | FLAG_HAS_FLASH
5885				  | FLAG_HAS_JUMBO_FRAMES
5886				  | FLAG_APME_IN_WUC,
5887	.flags2			= FLAG2_HAS_PHY_STATS
5888				  | FLAG2_HAS_EEE,
 
5889	.pba			= 26,
5890	.max_hw_frame_size	= 9022,
5891	.get_variants		= e1000_get_variants_ich8lan,
5892	.mac_ops		= &ich8_mac_ops,
5893	.phy_ops		= &ich8_phy_ops,
5894	.nvm_ops		= &ich8_nvm_ops,
5895};
5896
5897const struct e1000_info e1000_pch_spt_info = {
5898	.mac			= e1000_pch_spt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5899	.flags			= FLAG_IS_ICH
5900				  | FLAG_HAS_WOL
5901				  | FLAG_HAS_HW_TIMESTAMP
5902				  | FLAG_HAS_CTRLEXT_ON_LOAD
5903				  | FLAG_HAS_AMT
5904				  | FLAG_HAS_FLASH
5905				  | FLAG_HAS_JUMBO_FRAMES
5906				  | FLAG_APME_IN_WUC,
5907	.flags2			= FLAG2_HAS_PHY_STATS
5908				  | FLAG2_HAS_EEE,
5909	.pba			= 26,
5910	.max_hw_frame_size	= 9022,
5911	.get_variants		= e1000_get_variants_ich8lan,
5912	.mac_ops		= &ich8_mac_ops,
5913	.phy_ops		= &ich8_phy_ops,
5914	.nvm_ops		= &spt_nvm_ops,
5915};