Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
   5 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
   6 */
   7
   8#include "e1000.h"
   9
  10/* A table for the GG82563 cable length where the range is defined
  11 * with a lower bound at "index" and the upper bound at
  12 * "index + 5".
  13 */
  14static const u16 e1000_gg82563_cable_length_table[] = {
  15	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
  16};
  17
  18#define GG82563_CABLE_LENGTH_TABLE_SIZE \
  19		ARRAY_SIZE(e1000_gg82563_cable_length_table)
  20
  21static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
  22static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  23static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  24static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
  25static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
  26static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
  27static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
  28static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  29					   u16 *data);
  30static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  31					    u16 data);
  32static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
  33
  34/**
  35 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
  36 *  @hw: pointer to the HW structure
  37 **/
  38static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
  39{
  40	struct e1000_phy_info *phy = &hw->phy;
  41	s32 ret_val;
  42
  43	if (hw->phy.media_type != e1000_media_type_copper) {
  44		phy->type = e1000_phy_none;
  45		return 0;
  46	} else {
  47		phy->ops.power_up = e1000_power_up_phy_copper;
  48		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  49	}
  50
  51	phy->addr = 1;
  52	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  53	phy->reset_delay_us = 100;
  54	phy->type = e1000_phy_gg82563;
  55
  56	/* This can only be done after all function pointers are setup. */
  57	ret_val = e1000e_get_phy_id(hw);
  58
  59	/* Verify phy id */
  60	if (phy->id != GG82563_E_PHY_ID)
  61		return -E1000_ERR_PHY;
  62
  63	return ret_val;
  64}
  65
  66/**
  67 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  68 *  @hw: pointer to the HW structure
  69 **/
  70static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  71{
  72	struct e1000_nvm_info *nvm = &hw->nvm;
  73	u32 eecd = er32(EECD);
  74	u16 size;
  75
  76	nvm->opcode_bits = 8;
  77	nvm->delay_usec = 1;
  78	switch (nvm->override) {
  79	case e1000_nvm_override_spi_large:
  80		nvm->page_size = 32;
  81		nvm->address_bits = 16;
  82		break;
  83	case e1000_nvm_override_spi_small:
  84		nvm->page_size = 8;
  85		nvm->address_bits = 8;
  86		break;
  87	default:
  88		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
  89		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
  90		break;
  91	}
  92
  93	nvm->type = e1000_nvm_eeprom_spi;
  94
  95	size = (u16)FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
 
  96
  97	/* Added to a constant, "size" becomes the left-shift value
  98	 * for setting word_size.
  99	 */
 100	size += NVM_WORD_SIZE_BASE_SHIFT;
 101
 102	/* EEPROM access above 16k is unsupported */
 103	if (size > 14)
 104		size = 14;
 105	nvm->word_size = BIT(size);
 106
 107	return 0;
 108}
 109
 110/**
 111 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 112 *  @hw: pointer to the HW structure
 113 **/
 114static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
 115{
 116	struct e1000_mac_info *mac = &hw->mac;
 117
 118	/* Set media type and media-dependent function pointers */
 119	switch (hw->adapter->pdev->device) {
 120	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 121		hw->phy.media_type = e1000_media_type_internal_serdes;
 122		mac->ops.check_for_link = e1000e_check_for_serdes_link;
 123		mac->ops.setup_physical_interface =
 124		    e1000e_setup_fiber_serdes_link;
 125		break;
 126	default:
 127		hw->phy.media_type = e1000_media_type_copper;
 128		mac->ops.check_for_link = e1000e_check_for_copper_link;
 129		mac->ops.setup_physical_interface =
 130		    e1000_setup_copper_link_80003es2lan;
 131		break;
 132	}
 133
 134	/* Set mta register count */
 135	mac->mta_reg_count = 128;
 136	/* Set rar entry count */
 137	mac->rar_entry_count = E1000_RAR_ENTRIES;
 138	/* FWSM register */
 139	mac->has_fwsm = true;
 140	/* ARC supported; valid only if manageability features are enabled. */
 141	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
 142	/* Adaptive IFS not supported */
 143	mac->adaptive_ifs = false;
 144
 145	/* set lan id for port to determine which phy lock to use */
 146	hw->mac.ops.set_lan_id(hw);
 147
 148	return 0;
 149}
 150
 151static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 152{
 153	struct e1000_hw *hw = &adapter->hw;
 154	s32 rc;
 155
 156	rc = e1000_init_mac_params_80003es2lan(hw);
 157	if (rc)
 158		return rc;
 159
 160	rc = e1000_init_nvm_params_80003es2lan(hw);
 161	if (rc)
 162		return rc;
 163
 164	rc = e1000_init_phy_params_80003es2lan(hw);
 165	if (rc)
 166		return rc;
 167
 168	return 0;
 169}
 170
 171/**
 172 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 173 *  @hw: pointer to the HW structure
 174 *
 175 *  A wrapper to acquire access rights to the correct PHY.
 176 **/
 177static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 178{
 179	u16 mask;
 180
 181	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 182	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 183}
 184
 185/**
 186 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 187 *  @hw: pointer to the HW structure
 188 *
 189 *  A wrapper to release access rights to the correct PHY.
 190 **/
 191static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 192{
 193	u16 mask;
 194
 195	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 196	e1000_release_swfw_sync_80003es2lan(hw, mask);
 197}
 198
 199/**
 200 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 201 *  @hw: pointer to the HW structure
 202 *
 203 *  Acquire the semaphore to access the Kumeran interface.
 204 *
 205 **/
 206static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 207{
 208	u16 mask;
 209
 210	mask = E1000_SWFW_CSR_SM;
 211
 212	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 213}
 214
 215/**
 216 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 217 *  @hw: pointer to the HW structure
 218 *
 219 *  Release the semaphore used to access the Kumeran interface
 220 **/
 221static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 222{
 223	u16 mask;
 224
 225	mask = E1000_SWFW_CSR_SM;
 226
 227	e1000_release_swfw_sync_80003es2lan(hw, mask);
 228}
 229
 230/**
 231 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 232 *  @hw: pointer to the HW structure
 233 *
 234 *  Acquire the semaphore to access the EEPROM.
 235 **/
 236static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 237{
 238	s32 ret_val;
 239
 240	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 241	if (ret_val)
 242		return ret_val;
 243
 244	ret_val = e1000e_acquire_nvm(hw);
 245
 246	if (ret_val)
 247		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 248
 249	return ret_val;
 250}
 251
 252/**
 253 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 254 *  @hw: pointer to the HW structure
 255 *
 256 *  Release the semaphore used to access the EEPROM.
 257 **/
 258static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 259{
 260	e1000e_release_nvm(hw);
 261	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 262}
 263
 264/**
 265 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 266 *  @hw: pointer to the HW structure
 267 *  @mask: specifies which semaphore to acquire
 268 *
 269 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 270 *  will also specify which port we're acquiring the lock for.
 271 **/
 272static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 273{
 274	u32 swfw_sync;
 275	u32 swmask = mask;
 276	u32 fwmask = mask << 16;
 277	s32 i = 0;
 278	s32 timeout = 50;
 279
 280	while (i < timeout) {
 281		if (e1000e_get_hw_semaphore(hw))
 282			return -E1000_ERR_SWFW_SYNC;
 283
 284		swfw_sync = er32(SW_FW_SYNC);
 285		if (!(swfw_sync & (fwmask | swmask)))
 286			break;
 287
 288		/* Firmware currently using resource (fwmask)
 289		 * or other software thread using resource (swmask)
 290		 */
 291		e1000e_put_hw_semaphore(hw);
 292		mdelay(5);
 293		i++;
 294	}
 295
 296	if (i == timeout) {
 297		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 298		return -E1000_ERR_SWFW_SYNC;
 299	}
 300
 301	swfw_sync |= swmask;
 302	ew32(SW_FW_SYNC, swfw_sync);
 303
 304	e1000e_put_hw_semaphore(hw);
 305
 306	return 0;
 307}
 308
 309/**
 310 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 311 *  @hw: pointer to the HW structure
 312 *  @mask: specifies which semaphore to acquire
 313 *
 314 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 315 *  will also specify which port we're releasing the lock for.
 316 **/
 317static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 318{
 319	u32 swfw_sync;
 320
 321	while (e1000e_get_hw_semaphore(hw) != 0)
 322		; /* Empty */
 323
 324	swfw_sync = er32(SW_FW_SYNC);
 325	swfw_sync &= ~mask;
 326	ew32(SW_FW_SYNC, swfw_sync);
 327
 328	e1000e_put_hw_semaphore(hw);
 329}
 330
 331/**
 332 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 333 *  @hw: pointer to the HW structure
 334 *  @offset: offset of the register to read
 335 *  @data: pointer to the data returned from the operation
 336 *
 337 *  Read the GG82563 PHY register.
 338 **/
 339static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 340						  u32 offset, u16 *data)
 341{
 342	s32 ret_val;
 343	u32 page_select;
 344	u16 temp;
 345
 346	ret_val = e1000_acquire_phy_80003es2lan(hw);
 347	if (ret_val)
 348		return ret_val;
 349
 350	/* Select Configuration Page */
 351	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 352		page_select = GG82563_PHY_PAGE_SELECT;
 353	} else {
 354		/* Use Alternative Page Select register to access
 355		 * registers 30 and 31
 356		 */
 357		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 358	}
 359
 360	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 361	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 362	if (ret_val) {
 363		e1000_release_phy_80003es2lan(hw);
 364		return ret_val;
 365	}
 366
 367	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 368		/* The "ready" bit in the MDIC register may be incorrectly set
 369		 * before the device has completed the "Page Select" MDI
 370		 * transaction.  So we wait 200us after each MDI command...
 371		 */
 372		usleep_range(200, 400);
 373
 374		/* ...and verify the command was successful. */
 375		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 376
 377		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 378			e1000_release_phy_80003es2lan(hw);
 379			return -E1000_ERR_PHY;
 380		}
 381
 382		usleep_range(200, 400);
 383
 384		ret_val = e1000e_read_phy_reg_mdic(hw,
 385						   MAX_PHY_REG_ADDRESS & offset,
 386						   data);
 387
 388		usleep_range(200, 400);
 389	} else {
 390		ret_val = e1000e_read_phy_reg_mdic(hw,
 391						   MAX_PHY_REG_ADDRESS & offset,
 392						   data);
 393	}
 394
 395	e1000_release_phy_80003es2lan(hw);
 396
 397	return ret_val;
 398}
 399
 400/**
 401 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 402 *  @hw: pointer to the HW structure
 403 *  @offset: offset of the register to read
 404 *  @data: value to write to the register
 405 *
 406 *  Write to the GG82563 PHY register.
 407 **/
 408static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 409						   u32 offset, u16 data)
 410{
 411	s32 ret_val;
 412	u32 page_select;
 413	u16 temp;
 414
 415	ret_val = e1000_acquire_phy_80003es2lan(hw);
 416	if (ret_val)
 417		return ret_val;
 418
 419	/* Select Configuration Page */
 420	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 421		page_select = GG82563_PHY_PAGE_SELECT;
 422	} else {
 423		/* Use Alternative Page Select register to access
 424		 * registers 30 and 31
 425		 */
 426		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 427	}
 428
 429	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 430	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 431	if (ret_val) {
 432		e1000_release_phy_80003es2lan(hw);
 433		return ret_val;
 434	}
 435
 436	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 437		/* The "ready" bit in the MDIC register may be incorrectly set
 438		 * before the device has completed the "Page Select" MDI
 439		 * transaction.  So we wait 200us after each MDI command...
 440		 */
 441		usleep_range(200, 400);
 442
 443		/* ...and verify the command was successful. */
 444		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 445
 446		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 447			e1000_release_phy_80003es2lan(hw);
 448			return -E1000_ERR_PHY;
 449		}
 450
 451		usleep_range(200, 400);
 452
 453		ret_val = e1000e_write_phy_reg_mdic(hw,
 454						    MAX_PHY_REG_ADDRESS &
 455						    offset, data);
 456
 457		usleep_range(200, 400);
 458	} else {
 459		ret_val = e1000e_write_phy_reg_mdic(hw,
 460						    MAX_PHY_REG_ADDRESS &
 461						    offset, data);
 462	}
 463
 464	e1000_release_phy_80003es2lan(hw);
 465
 466	return ret_val;
 467}
 468
 469/**
 470 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 471 *  @hw: pointer to the HW structure
 472 *  @offset: offset of the register to read
 473 *  @words: number of words to write
 474 *  @data: buffer of data to write to the NVM
 475 *
 476 *  Write "words" of data to the ESB2 NVM.
 477 **/
 478static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 479				       u16 words, u16 *data)
 480{
 481	return e1000e_write_nvm_spi(hw, offset, words, data);
 482}
 483
 484/**
 485 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 486 *  @hw: pointer to the HW structure
 487 *
 488 *  Wait a specific amount of time for manageability processes to complete.
 489 *  This is a function pointer entry point called by the phy module.
 490 **/
 491static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 492{
 493	s32 timeout = PHY_CFG_TIMEOUT;
 494	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 495
 496	if (hw->bus.func == 1)
 497		mask = E1000_NVM_CFG_DONE_PORT_1;
 498
 499	while (timeout) {
 500		if (er32(EEMNGCTL) & mask)
 501			break;
 502		usleep_range(1000, 2000);
 503		timeout--;
 504	}
 505	if (!timeout) {
 506		e_dbg("MNG configuration cycle has not completed.\n");
 507		return -E1000_ERR_RESET;
 508	}
 509
 510	return 0;
 511}
 512
 513/**
 514 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 515 *  @hw: pointer to the HW structure
 516 *
 517 *  Force the speed and duplex settings onto the PHY.  This is a
 518 *  function pointer entry point called by the phy module.
 519 **/
 520static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 521{
 522	s32 ret_val;
 523	u16 phy_data;
 524	bool link;
 525
 526	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 527	 * forced whenever speed and duplex are forced.
 528	 */
 529	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 530	if (ret_val)
 531		return ret_val;
 532
 533	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 534	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 535	if (ret_val)
 536		return ret_val;
 537
 538	e_dbg("GG82563 PSCR: %X\n", phy_data);
 539
 540	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
 541	if (ret_val)
 542		return ret_val;
 543
 544	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 545
 546	/* Reset the phy to commit changes. */
 547	phy_data |= BMCR_RESET;
 548
 549	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
 550	if (ret_val)
 551		return ret_val;
 552
 553	udelay(1);
 554
 555	if (hw->phy.autoneg_wait_to_complete) {
 556		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
 557
 558		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 559						      100000, &link);
 560		if (ret_val)
 561			return ret_val;
 562
 563		if (!link) {
 564			/* We didn't get link.
 565			 * Reset the DSP and cross our fingers.
 566			 */
 567			ret_val = e1000e_phy_reset_dsp(hw);
 568			if (ret_val)
 569				return ret_val;
 570		}
 571
 572		/* Try once more */
 573		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 574						      100000, &link);
 575		if (ret_val)
 576			return ret_val;
 577	}
 578
 579	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 580	if (ret_val)
 581		return ret_val;
 582
 583	/* Resetting the phy means we need to verify the TX_CLK corresponds
 584	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 585	 */
 586	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 587	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 588		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 589	else
 590		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 591
 592	/* In addition, we must re-enable CRS on Tx for both half and full
 593	 * duplex.
 594	 */
 595	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 596	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 597
 598	return ret_val;
 599}
 600
 601/**
 602 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 603 *  @hw: pointer to the HW structure
 604 *
 605 *  Find the approximate cable length as measured by the GG82563 PHY.
 606 *  This is a function pointer entry point called by the phy module.
 607 **/
 608static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 609{
 610	struct e1000_phy_info *phy = &hw->phy;
 611	s32 ret_val;
 612	u16 phy_data, index;
 613
 614	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 615	if (ret_val)
 616		return ret_val;
 617
 618	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 619
 620	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
 621		return -E1000_ERR_PHY;
 622
 623	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 624	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 625
 626	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 627
 628	return 0;
 629}
 630
 631/**
 632 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 633 *  @hw: pointer to the HW structure
 634 *  @speed: pointer to speed buffer
 635 *  @duplex: pointer to duplex buffer
 636 *
 637 *  Retrieve the current speed and duplex configuration.
 638 **/
 639static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 640					      u16 *duplex)
 641{
 642	s32 ret_val;
 643
 644	if (hw->phy.media_type == e1000_media_type_copper) {
 645		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
 646		hw->phy.ops.cfg_on_link_up(hw);
 647	} else {
 648		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 649								   speed,
 650								   duplex);
 651	}
 652
 653	return ret_val;
 654}
 655
 656/**
 657 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 658 *  @hw: pointer to the HW structure
 659 *
 660 *  Perform a global reset to the ESB2 controller.
 661 **/
 662static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 663{
 664	u32 ctrl;
 665	s32 ret_val;
 666	u16 kum_reg_data;
 667
 668	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 669	 * on the last TLP read/write transaction when MAC is reset.
 670	 */
 671	ret_val = e1000e_disable_pcie_master(hw);
 672	if (ret_val)
 673		e_dbg("PCI-E Master disable polling has failed.\n");
 674
 675	e_dbg("Masking off all interrupts\n");
 676	ew32(IMC, 0xffffffff);
 677
 678	ew32(RCTL, 0);
 679	ew32(TCTL, E1000_TCTL_PSP);
 680	e1e_flush();
 681
 682	usleep_range(10000, 11000);
 683
 684	ctrl = er32(CTRL);
 685
 686	ret_val = e1000_acquire_phy_80003es2lan(hw);
 687	if (ret_val)
 688		return ret_val;
 689
 690	e_dbg("Issuing a global reset to MAC\n");
 691	ew32(CTRL, ctrl | E1000_CTRL_RST);
 692	e1000_release_phy_80003es2lan(hw);
 693
 694	/* Disable IBIST slave mode (far-end loopback) */
 695	ret_val =
 696	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 697					    &kum_reg_data);
 698	if (!ret_val) {
 699		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 700		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 701						 E1000_KMRNCTRLSTA_INBAND_PARAM,
 702						 kum_reg_data);
 703		if (ret_val)
 704			e_dbg("Error disabling far-end loopback\n");
 705	} else {
 706		e_dbg("Error disabling far-end loopback\n");
 707	}
 708
 709	ret_val = e1000e_get_auto_rd_done(hw);
 710	if (ret_val)
 711		/* We don't want to continue accessing MAC registers. */
 712		return ret_val;
 713
 714	/* Clear any pending interrupt events. */
 715	ew32(IMC, 0xffffffff);
 716	er32(ICR);
 717
 718	return e1000_check_alt_mac_addr_generic(hw);
 719}
 720
 721/**
 722 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 723 *  @hw: pointer to the HW structure
 724 *
 725 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 726 **/
 727static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 728{
 729	struct e1000_mac_info *mac = &hw->mac;
 730	u32 reg_data;
 731	s32 ret_val;
 732	u16 kum_reg_data;
 733	u16 i;
 734
 735	e1000_initialize_hw_bits_80003es2lan(hw);
 736
 737	/* Initialize identification LED */
 738	ret_val = mac->ops.id_led_init(hw);
 739	/* An error is not fatal and we should not stop init due to this */
 740	if (ret_val)
 741		e_dbg("Error initializing identification LED\n");
 742
 743	/* Disabling VLAN filtering */
 744	e_dbg("Initializing the IEEE VLAN\n");
 745	mac->ops.clear_vfta(hw);
 746
 747	/* Setup the receive address. */
 748	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 749
 750	/* Zero out the Multicast HASH table */
 751	e_dbg("Zeroing the MTA\n");
 752	for (i = 0; i < mac->mta_reg_count; i++)
 753		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 754
 755	/* Setup link and flow control */
 756	ret_val = mac->ops.setup_link(hw);
 757	if (ret_val)
 758		return ret_val;
 759
 760	/* Disable IBIST slave mode (far-end loopback) */
 761	ret_val =
 762	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 763					    &kum_reg_data);
 764	if (!ret_val) {
 765		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 766		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 767						 E1000_KMRNCTRLSTA_INBAND_PARAM,
 768						 kum_reg_data);
 769		if (ret_val)
 770			e_dbg("Error disabling far-end loopback\n");
 771	} else {
 772		e_dbg("Error disabling far-end loopback\n");
 773	}
 774
 775	/* Set the transmit descriptor write-back policy */
 776	reg_data = er32(TXDCTL(0));
 777	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 778		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 779	ew32(TXDCTL(0), reg_data);
 780
 781	/* ...for both queues. */
 782	reg_data = er32(TXDCTL(1));
 783	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 784		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 785	ew32(TXDCTL(1), reg_data);
 786
 787	/* Enable retransmit on late collisions */
 788	reg_data = er32(TCTL);
 789	reg_data |= E1000_TCTL_RTLC;
 790	ew32(TCTL, reg_data);
 791
 792	/* Configure Gigabit Carry Extend Padding */
 793	reg_data = er32(TCTL_EXT);
 794	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 795	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 796	ew32(TCTL_EXT, reg_data);
 797
 798	/* Configure Transmit Inter-Packet Gap */
 799	reg_data = er32(TIPG);
 800	reg_data &= ~E1000_TIPG_IPGT_MASK;
 801	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 802	ew32(TIPG, reg_data);
 803
 804	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 805	reg_data &= ~0x00100000;
 806	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 807
 808	/* default to true to enable the MDIC W/A */
 809	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 810
 811	ret_val =
 812	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
 813					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
 814	if (!ret_val) {
 815		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 816		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 817			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 818	}
 819
 820	/* Clear all of the statistics registers (clear on read).  It is
 821	 * important that we do this after we have tried to establish link
 822	 * because the symbol error count will increment wildly if there
 823	 * is no link.
 824	 */
 825	e1000_clear_hw_cntrs_80003es2lan(hw);
 826
 827	return ret_val;
 828}
 829
 830/**
 831 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 832 *  @hw: pointer to the HW structure
 833 *
 834 *  Initializes required hardware-dependent bits needed for normal operation.
 835 **/
 836static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 837{
 838	u32 reg;
 839
 840	/* Transmit Descriptor Control 0 */
 841	reg = er32(TXDCTL(0));
 842	reg |= BIT(22);
 843	ew32(TXDCTL(0), reg);
 844
 845	/* Transmit Descriptor Control 1 */
 846	reg = er32(TXDCTL(1));
 847	reg |= BIT(22);
 848	ew32(TXDCTL(1), reg);
 849
 850	/* Transmit Arbitration Control 0 */
 851	reg = er32(TARC(0));
 852	reg &= ~(0xF << 27);	/* 30:27 */
 853	if (hw->phy.media_type != e1000_media_type_copper)
 854		reg &= ~BIT(20);
 855	ew32(TARC(0), reg);
 856
 857	/* Transmit Arbitration Control 1 */
 858	reg = er32(TARC(1));
 859	if (er32(TCTL) & E1000_TCTL_MULR)
 860		reg &= ~BIT(28);
 861	else
 862		reg |= BIT(28);
 863	ew32(TARC(1), reg);
 864
 865	/* Disable IPv6 extension header parsing because some malformed
 866	 * IPv6 headers can hang the Rx.
 867	 */
 868	reg = er32(RFCTL);
 869	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 870	ew32(RFCTL, reg);
 871}
 872
 873/**
 874 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 875 *  @hw: pointer to the HW structure
 876 *
 877 *  Setup some GG82563 PHY registers for obtaining link
 878 **/
 879static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 880{
 881	struct e1000_phy_info *phy = &hw->phy;
 882	s32 ret_val;
 883	u32 reg;
 884	u16 data;
 885
 886	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 887	if (ret_val)
 888		return ret_val;
 889
 890	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 891	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 892	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 893
 894	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 895	if (ret_val)
 896		return ret_val;
 897
 898	/* Options:
 899	 *   MDI/MDI-X = 0 (default)
 900	 *   0 - Auto for all speeds
 901	 *   1 - MDI mode
 902	 *   2 - MDI-X mode
 903	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 904	 */
 905	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 906	if (ret_val)
 907		return ret_val;
 908
 909	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 910
 911	switch (phy->mdix) {
 912	case 1:
 913		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 914		break;
 915	case 2:
 916		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 917		break;
 918	case 0:
 919	default:
 920		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 921		break;
 922	}
 923
 924	/* Options:
 925	 *   disable_polarity_correction = 0 (default)
 926	 *       Automatic Correction for Reversed Cable Polarity
 927	 *   0 - Disabled
 928	 *   1 - Enabled
 929	 */
 930	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 931	if (phy->disable_polarity_correction)
 932		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 933
 934	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 935	if (ret_val)
 936		return ret_val;
 937
 938	/* SW Reset the PHY so all changes take effect */
 939	ret_val = hw->phy.ops.commit(hw);
 940	if (ret_val) {
 941		e_dbg("Error Resetting the PHY\n");
 942		return ret_val;
 943	}
 944
 945	/* Bypass Rx and Tx FIFO's */
 946	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 947	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 948		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 949	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 950	if (ret_val)
 951		return ret_val;
 952
 953	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 954	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 955	if (ret_val)
 956		return ret_val;
 957	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 958	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 959	if (ret_val)
 960		return ret_val;
 961
 962	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 963	if (ret_val)
 964		return ret_val;
 965
 966	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 967	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 968	if (ret_val)
 969		return ret_val;
 970
 971	reg = er32(CTRL_EXT);
 972	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 973	ew32(CTRL_EXT, reg);
 974
 975	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 976	if (ret_val)
 977		return ret_val;
 978
 979	/* Do not init these registers when the HW is in IAMT mode, since the
 980	 * firmware will have already initialized them.  We only initialize
 981	 * them if the HW is not in IAMT mode.
 982	 */
 983	if (!hw->mac.ops.check_mng_mode(hw)) {
 984		/* Enable Electrical Idle on the PHY */
 985		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 986		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 987		if (ret_val)
 988			return ret_val;
 989
 990		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
 991		if (ret_val)
 992			return ret_val;
 993
 994		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 995		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
 996		if (ret_val)
 997			return ret_val;
 998	}
 999
1000	/* Workaround: Disable padding in Kumeran interface in the MAC
1001	 * and in the PHY to avoid CRC errors.
1002	 */
1003	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1004	if (ret_val)
1005		return ret_val;
1006
1007	data |= GG82563_ICR_DIS_PADDING;
1008	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1009	if (ret_val)
1010		return ret_val;
1011
1012	return 0;
1013}
1014
1015/**
1016 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1017 *  @hw: pointer to the HW structure
1018 *
1019 *  Essentially a wrapper for setting up all things "copper" related.
1020 *  This is a function pointer entry point called by the mac module.
1021 **/
1022static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1023{
1024	u32 ctrl;
1025	s32 ret_val;
1026	u16 reg_data;
1027
1028	ctrl = er32(CTRL);
1029	ctrl |= E1000_CTRL_SLU;
1030	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1031	ew32(CTRL, ctrl);
1032
1033	/* Set the mac to wait the maximum time between each
1034	 * iteration and increase the max iterations when
1035	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1036	 */
1037	/* these next three accesses were always meant to use page 0x34 using
1038	 * GG82563_REG(0x34, N) but never did, so we've just corrected the call
1039	 * to not drop bits
1040	 */
1041	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 4, 0xFFFF);
1042	if (ret_val)
1043		return ret_val;
1044	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, 9, &reg_data);
 
1045	if (ret_val)
1046		return ret_val;
1047	reg_data |= 0x3F;
1048	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 9, reg_data);
 
1049	if (ret_val)
1050		return ret_val;
1051	ret_val =
1052	    e1000_read_kmrn_reg_80003es2lan(hw,
1053					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1054					    &reg_data);
1055	if (ret_val)
1056		return ret_val;
1057	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1058	ret_val =
1059	    e1000_write_kmrn_reg_80003es2lan(hw,
1060					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1061					     reg_data);
1062	if (ret_val)
1063		return ret_val;
1064
1065	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1066	if (ret_val)
1067		return ret_val;
1068
1069	return e1000e_setup_copper_link(hw);
1070}
1071
1072/**
1073 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1074 *  @hw: pointer to the HW structure
 
1075 *
1076 *  Configure the KMRN interface by applying last minute quirks for
1077 *  10/100 operation.
1078 **/
1079static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1080{
1081	s32 ret_val = 0;
1082	u16 speed;
1083	u16 duplex;
1084
1085	if (hw->phy.media_type == e1000_media_type_copper) {
1086		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1087							     &duplex);
1088		if (ret_val)
1089			return ret_val;
1090
1091		if (speed == SPEED_1000)
1092			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1093		else
1094			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1095	}
1096
1097	return ret_val;
1098}
1099
1100/**
1101 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1102 *  @hw: pointer to the HW structure
1103 *  @duplex: current duplex setting
1104 *
1105 *  Configure the KMRN interface by applying last minute quirks for
1106 *  10/100 operation.
1107 **/
1108static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1109{
1110	s32 ret_val;
1111	u32 tipg;
1112	u32 i = 0;
1113	u16 reg_data, reg_data2;
1114
1115	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1116	ret_val =
1117	    e1000_write_kmrn_reg_80003es2lan(hw,
1118					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1119					     reg_data);
1120	if (ret_val)
1121		return ret_val;
1122
1123	/* Configure Transmit Inter-Packet Gap */
1124	tipg = er32(TIPG);
1125	tipg &= ~E1000_TIPG_IPGT_MASK;
1126	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1127	ew32(TIPG, tipg);
1128
1129	do {
1130		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1131		if (ret_val)
1132			return ret_val;
1133
1134		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1135		if (ret_val)
1136			return ret_val;
1137		i++;
1138	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1139
1140	if (duplex == HALF_DUPLEX)
1141		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1142	else
1143		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1144
1145	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1146}
1147
1148/**
1149 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1150 *  @hw: pointer to the HW structure
1151 *
1152 *  Configure the KMRN interface by applying last minute quirks for
1153 *  gigabit operation.
1154 **/
1155static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1156{
1157	s32 ret_val;
1158	u16 reg_data, reg_data2;
1159	u32 tipg;
1160	u32 i = 0;
1161
1162	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1163	ret_val =
1164	    e1000_write_kmrn_reg_80003es2lan(hw,
1165					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1166					     reg_data);
1167	if (ret_val)
1168		return ret_val;
1169
1170	/* Configure Transmit Inter-Packet Gap */
1171	tipg = er32(TIPG);
1172	tipg &= ~E1000_TIPG_IPGT_MASK;
1173	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1174	ew32(TIPG, tipg);
1175
1176	do {
1177		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1178		if (ret_val)
1179			return ret_val;
1180
1181		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1182		if (ret_val)
1183			return ret_val;
1184		i++;
1185	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1186
1187	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1188
1189	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1190}
1191
1192/**
1193 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1194 *  @hw: pointer to the HW structure
1195 *  @offset: register offset to be read
1196 *  @data: pointer to the read data
1197 *
1198 *  Acquire semaphore, then read the PHY register at offset
1199 *  using the kumeran interface.  The information retrieved is stored in data.
1200 *  Release the semaphore before exiting.
1201 **/
1202static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1203					   u16 *data)
1204{
1205	u32 kmrnctrlsta;
1206	s32 ret_val;
1207
1208	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1209	if (ret_val)
1210		return ret_val;
1211
1212	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
1213		      E1000_KMRNCTRLSTA_REN;
1214	ew32(KMRNCTRLSTA, kmrnctrlsta);
1215	e1e_flush();
1216
1217	udelay(2);
1218
1219	kmrnctrlsta = er32(KMRNCTRLSTA);
1220	*data = (u16)kmrnctrlsta;
1221
1222	e1000_release_mac_csr_80003es2lan(hw);
1223
1224	return ret_val;
1225}
1226
1227/**
1228 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1229 *  @hw: pointer to the HW structure
1230 *  @offset: register offset to write to
1231 *  @data: data to write at register offset
1232 *
1233 *  Acquire semaphore, then write the data to PHY register
1234 *  at the offset using the kumeran interface.  Release semaphore
1235 *  before exiting.
1236 **/
1237static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1238					    u16 data)
1239{
1240	u32 kmrnctrlsta;
1241	s32 ret_val;
1242
1243	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1244	if (ret_val)
1245		return ret_val;
1246
1247	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
 
1248	ew32(KMRNCTRLSTA, kmrnctrlsta);
1249	e1e_flush();
1250
1251	udelay(2);
1252
1253	e1000_release_mac_csr_80003es2lan(hw);
1254
1255	return ret_val;
1256}
1257
1258/**
1259 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1260 *  @hw: pointer to the HW structure
1261 **/
1262static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1263{
1264	s32 ret_val;
1265
1266	/* If there's an alternate MAC address place it in RAR0
1267	 * so that it will override the Si installed default perm
1268	 * address.
1269	 */
1270	ret_val = e1000_check_alt_mac_addr_generic(hw);
1271	if (ret_val)
1272		return ret_val;
1273
1274	return e1000_read_mac_addr_generic(hw);
1275}
1276
1277/**
1278 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1279 * @hw: pointer to the HW structure
1280 *
1281 * In the case of a PHY power down to save power, or to turn off link during a
1282 * driver unload, or wake on lan is not enabled, remove the link.
1283 **/
1284static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1285{
1286	/* If the management interface is not enabled, then power down */
1287	if (!(hw->mac.ops.check_mng_mode(hw) ||
1288	      hw->phy.ops.check_reset_block(hw)))
1289		e1000_power_down_phy_copper(hw);
1290}
1291
1292/**
1293 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1294 *  @hw: pointer to the HW structure
1295 *
1296 *  Clears the hardware counters by reading the counter registers.
1297 **/
1298static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1299{
1300	e1000e_clear_hw_cntrs_base(hw);
1301
1302	er32(PRC64);
1303	er32(PRC127);
1304	er32(PRC255);
1305	er32(PRC511);
1306	er32(PRC1023);
1307	er32(PRC1522);
1308	er32(PTC64);
1309	er32(PTC127);
1310	er32(PTC255);
1311	er32(PTC511);
1312	er32(PTC1023);
1313	er32(PTC1522);
1314
1315	er32(ALGNERRC);
1316	er32(RXERRC);
1317	er32(TNCRS);
1318	er32(CEXTERR);
1319	er32(TSCTC);
1320	er32(TSCTFC);
1321
1322	er32(MGTPRC);
1323	er32(MGTPDC);
1324	er32(MGTPTC);
1325
1326	er32(IAC);
1327	er32(ICRXOC);
1328
1329	er32(ICRXPTC);
1330	er32(ICRXATC);
1331	er32(ICTXPTC);
1332	er32(ICTXATC);
1333	er32(ICTXQEC);
1334	er32(ICTXQMTC);
1335	er32(ICRXDMTC);
1336}
1337
1338static const struct e1000_mac_operations es2_mac_ops = {
1339	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1340	.id_led_init		= e1000e_id_led_init_generic,
1341	.blink_led		= e1000e_blink_led_generic,
1342	.check_mng_mode		= e1000e_check_mng_mode_generic,
1343	/* check_for_link dependent on media type */
1344	.cleanup_led		= e1000e_cleanup_led_generic,
1345	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1346	.get_bus_info		= e1000e_get_bus_info_pcie,
1347	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1348	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1349	.led_on			= e1000e_led_on_generic,
1350	.led_off		= e1000e_led_off_generic,
1351	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1352	.write_vfta		= e1000_write_vfta_generic,
1353	.clear_vfta		= e1000_clear_vfta_generic,
1354	.reset_hw		= e1000_reset_hw_80003es2lan,
1355	.init_hw		= e1000_init_hw_80003es2lan,
1356	.setup_link		= e1000e_setup_link_generic,
1357	/* setup_physical_interface dependent on media type */
1358	.setup_led		= e1000e_setup_led_generic,
1359	.config_collision_dist	= e1000e_config_collision_dist_generic,
1360	.rar_set		= e1000e_rar_set_generic,
1361	.rar_get_count		= e1000e_rar_get_count_generic,
1362};
1363
1364static const struct e1000_phy_operations es2_phy_ops = {
1365	.acquire		= e1000_acquire_phy_80003es2lan,
1366	.check_polarity		= e1000_check_polarity_m88,
1367	.check_reset_block	= e1000e_check_reset_block_generic,
1368	.commit			= e1000e_phy_sw_reset,
1369	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1370	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1371	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1372	.get_info		= e1000e_get_phy_info_m88,
1373	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1374	.release		= e1000_release_phy_80003es2lan,
1375	.reset			= e1000e_phy_hw_reset_generic,
1376	.set_d0_lplu_state	= NULL,
1377	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1378	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1379	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1380};
1381
1382static const struct e1000_nvm_operations es2_nvm_ops = {
1383	.acquire		= e1000_acquire_nvm_80003es2lan,
1384	.read			= e1000e_read_nvm_eerd,
1385	.release		= e1000_release_nvm_80003es2lan,
1386	.reload			= e1000e_reload_nvm_generic,
1387	.update			= e1000e_update_nvm_checksum_generic,
1388	.valid_led_default	= e1000e_valid_led_default,
1389	.validate		= e1000e_validate_nvm_checksum_generic,
1390	.write			= e1000_write_nvm_80003es2lan,
1391};
1392
1393const struct e1000_info e1000_es2_info = {
1394	.mac			= e1000_80003es2lan,
1395	.flags			= FLAG_HAS_HW_VLAN_FILTER
1396				  | FLAG_HAS_JUMBO_FRAMES
1397				  | FLAG_HAS_WOL
1398				  | FLAG_APME_IN_CTRL3
1399				  | FLAG_HAS_CTRLEXT_ON_LOAD
1400				  | FLAG_RX_NEEDS_RESTART /* errata */
1401				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1402				  | FLAG_APME_CHECK_PORT_B
1403				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1404	.flags2			= FLAG2_DMA_BURST,
1405	.pba			= 38,
1406	.max_hw_frame_size	= DEFAULT_JUMBO,
1407	.get_variants		= e1000_get_variants_80003es2lan,
1408	.mac_ops		= &es2_mac_ops,
1409	.phy_ops		= &es2_phy_ops,
1410	.nvm_ops		= &es2_nvm_ops,
1411};
v4.6
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
  21
  22/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
  23 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
  24 */
  25
  26#include "e1000.h"
  27
  28/* A table for the GG82563 cable length where the range is defined
  29 * with a lower bound at "index" and the upper bound at
  30 * "index + 5".
  31 */
  32static const u16 e1000_gg82563_cable_length_table[] = {
  33	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
  34};
  35
  36#define GG82563_CABLE_LENGTH_TABLE_SIZE \
  37		ARRAY_SIZE(e1000_gg82563_cable_length_table)
  38
  39static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
  40static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  41static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  42static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
  43static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
  44static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
  45static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
  46static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  47					   u16 *data);
  48static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  49					    u16 data);
  50static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
  51
  52/**
  53 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
  54 *  @hw: pointer to the HW structure
  55 **/
  56static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
  57{
  58	struct e1000_phy_info *phy = &hw->phy;
  59	s32 ret_val;
  60
  61	if (hw->phy.media_type != e1000_media_type_copper) {
  62		phy->type = e1000_phy_none;
  63		return 0;
  64	} else {
  65		phy->ops.power_up = e1000_power_up_phy_copper;
  66		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  67	}
  68
  69	phy->addr = 1;
  70	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  71	phy->reset_delay_us = 100;
  72	phy->type = e1000_phy_gg82563;
  73
  74	/* This can only be done after all function pointers are setup. */
  75	ret_val = e1000e_get_phy_id(hw);
  76
  77	/* Verify phy id */
  78	if (phy->id != GG82563_E_PHY_ID)
  79		return -E1000_ERR_PHY;
  80
  81	return ret_val;
  82}
  83
  84/**
  85 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  86 *  @hw: pointer to the HW structure
  87 **/
  88static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  89{
  90	struct e1000_nvm_info *nvm = &hw->nvm;
  91	u32 eecd = er32(EECD);
  92	u16 size;
  93
  94	nvm->opcode_bits = 8;
  95	nvm->delay_usec = 1;
  96	switch (nvm->override) {
  97	case e1000_nvm_override_spi_large:
  98		nvm->page_size = 32;
  99		nvm->address_bits = 16;
 100		break;
 101	case e1000_nvm_override_spi_small:
 102		nvm->page_size = 8;
 103		nvm->address_bits = 8;
 104		break;
 105	default:
 106		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 107		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 108		break;
 109	}
 110
 111	nvm->type = e1000_nvm_eeprom_spi;
 112
 113	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 114		     E1000_EECD_SIZE_EX_SHIFT);
 115
 116	/* Added to a constant, "size" becomes the left-shift value
 117	 * for setting word_size.
 118	 */
 119	size += NVM_WORD_SIZE_BASE_SHIFT;
 120
 121	/* EEPROM access above 16k is unsupported */
 122	if (size > 14)
 123		size = 14;
 124	nvm->word_size = 1 << size;
 125
 126	return 0;
 127}
 128
 129/**
 130 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 131 *  @hw: pointer to the HW structure
 132 **/
 133static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
 134{
 135	struct e1000_mac_info *mac = &hw->mac;
 136
 137	/* Set media type and media-dependent function pointers */
 138	switch (hw->adapter->pdev->device) {
 139	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 140		hw->phy.media_type = e1000_media_type_internal_serdes;
 141		mac->ops.check_for_link = e1000e_check_for_serdes_link;
 142		mac->ops.setup_physical_interface =
 143		    e1000e_setup_fiber_serdes_link;
 144		break;
 145	default:
 146		hw->phy.media_type = e1000_media_type_copper;
 147		mac->ops.check_for_link = e1000e_check_for_copper_link;
 148		mac->ops.setup_physical_interface =
 149		    e1000_setup_copper_link_80003es2lan;
 150		break;
 151	}
 152
 153	/* Set mta register count */
 154	mac->mta_reg_count = 128;
 155	/* Set rar entry count */
 156	mac->rar_entry_count = E1000_RAR_ENTRIES;
 157	/* FWSM register */
 158	mac->has_fwsm = true;
 159	/* ARC supported; valid only if manageability features are enabled. */
 160	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
 161	/* Adaptive IFS not supported */
 162	mac->adaptive_ifs = false;
 163
 164	/* set lan id for port to determine which phy lock to use */
 165	hw->mac.ops.set_lan_id(hw);
 166
 167	return 0;
 168}
 169
 170static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 171{
 172	struct e1000_hw *hw = &adapter->hw;
 173	s32 rc;
 174
 175	rc = e1000_init_mac_params_80003es2lan(hw);
 176	if (rc)
 177		return rc;
 178
 179	rc = e1000_init_nvm_params_80003es2lan(hw);
 180	if (rc)
 181		return rc;
 182
 183	rc = e1000_init_phy_params_80003es2lan(hw);
 184	if (rc)
 185		return rc;
 186
 187	return 0;
 188}
 189
 190/**
 191 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 192 *  @hw: pointer to the HW structure
 193 *
 194 *  A wrapper to acquire access rights to the correct PHY.
 195 **/
 196static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 197{
 198	u16 mask;
 199
 200	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 201	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 202}
 203
 204/**
 205 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 206 *  @hw: pointer to the HW structure
 207 *
 208 *  A wrapper to release access rights to the correct PHY.
 209 **/
 210static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 211{
 212	u16 mask;
 213
 214	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 215	e1000_release_swfw_sync_80003es2lan(hw, mask);
 216}
 217
 218/**
 219 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 220 *  @hw: pointer to the HW structure
 221 *
 222 *  Acquire the semaphore to access the Kumeran interface.
 223 *
 224 **/
 225static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 226{
 227	u16 mask;
 228
 229	mask = E1000_SWFW_CSR_SM;
 230
 231	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 232}
 233
 234/**
 235 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 236 *  @hw: pointer to the HW structure
 237 *
 238 *  Release the semaphore used to access the Kumeran interface
 239 **/
 240static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 241{
 242	u16 mask;
 243
 244	mask = E1000_SWFW_CSR_SM;
 245
 246	e1000_release_swfw_sync_80003es2lan(hw, mask);
 247}
 248
 249/**
 250 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 251 *  @hw: pointer to the HW structure
 252 *
 253 *  Acquire the semaphore to access the EEPROM.
 254 **/
 255static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 256{
 257	s32 ret_val;
 258
 259	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 260	if (ret_val)
 261		return ret_val;
 262
 263	ret_val = e1000e_acquire_nvm(hw);
 264
 265	if (ret_val)
 266		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 267
 268	return ret_val;
 269}
 270
 271/**
 272 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 273 *  @hw: pointer to the HW structure
 274 *
 275 *  Release the semaphore used to access the EEPROM.
 276 **/
 277static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 278{
 279	e1000e_release_nvm(hw);
 280	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 281}
 282
 283/**
 284 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 285 *  @hw: pointer to the HW structure
 286 *  @mask: specifies which semaphore to acquire
 287 *
 288 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 289 *  will also specify which port we're acquiring the lock for.
 290 **/
 291static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 292{
 293	u32 swfw_sync;
 294	u32 swmask = mask;
 295	u32 fwmask = mask << 16;
 296	s32 i = 0;
 297	s32 timeout = 50;
 298
 299	while (i < timeout) {
 300		if (e1000e_get_hw_semaphore(hw))
 301			return -E1000_ERR_SWFW_SYNC;
 302
 303		swfw_sync = er32(SW_FW_SYNC);
 304		if (!(swfw_sync & (fwmask | swmask)))
 305			break;
 306
 307		/* Firmware currently using resource (fwmask)
 308		 * or other software thread using resource (swmask)
 309		 */
 310		e1000e_put_hw_semaphore(hw);
 311		mdelay(5);
 312		i++;
 313	}
 314
 315	if (i == timeout) {
 316		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 317		return -E1000_ERR_SWFW_SYNC;
 318	}
 319
 320	swfw_sync |= swmask;
 321	ew32(SW_FW_SYNC, swfw_sync);
 322
 323	e1000e_put_hw_semaphore(hw);
 324
 325	return 0;
 326}
 327
 328/**
 329 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 330 *  @hw: pointer to the HW structure
 331 *  @mask: specifies which semaphore to acquire
 332 *
 333 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 334 *  will also specify which port we're releasing the lock for.
 335 **/
 336static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 337{
 338	u32 swfw_sync;
 339
 340	while (e1000e_get_hw_semaphore(hw) != 0)
 341		; /* Empty */
 342
 343	swfw_sync = er32(SW_FW_SYNC);
 344	swfw_sync &= ~mask;
 345	ew32(SW_FW_SYNC, swfw_sync);
 346
 347	e1000e_put_hw_semaphore(hw);
 348}
 349
 350/**
 351 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 352 *  @hw: pointer to the HW structure
 353 *  @offset: offset of the register to read
 354 *  @data: pointer to the data returned from the operation
 355 *
 356 *  Read the GG82563 PHY register.
 357 **/
 358static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 359						  u32 offset, u16 *data)
 360{
 361	s32 ret_val;
 362	u32 page_select;
 363	u16 temp;
 364
 365	ret_val = e1000_acquire_phy_80003es2lan(hw);
 366	if (ret_val)
 367		return ret_val;
 368
 369	/* Select Configuration Page */
 370	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 371		page_select = GG82563_PHY_PAGE_SELECT;
 372	} else {
 373		/* Use Alternative Page Select register to access
 374		 * registers 30 and 31
 375		 */
 376		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 377	}
 378
 379	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 380	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 381	if (ret_val) {
 382		e1000_release_phy_80003es2lan(hw);
 383		return ret_val;
 384	}
 385
 386	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 387		/* The "ready" bit in the MDIC register may be incorrectly set
 388		 * before the device has completed the "Page Select" MDI
 389		 * transaction.  So we wait 200us after each MDI command...
 390		 */
 391		usleep_range(200, 400);
 392
 393		/* ...and verify the command was successful. */
 394		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 395
 396		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 397			e1000_release_phy_80003es2lan(hw);
 398			return -E1000_ERR_PHY;
 399		}
 400
 401		usleep_range(200, 400);
 402
 403		ret_val = e1000e_read_phy_reg_mdic(hw,
 404						   MAX_PHY_REG_ADDRESS & offset,
 405						   data);
 406
 407		usleep_range(200, 400);
 408	} else {
 409		ret_val = e1000e_read_phy_reg_mdic(hw,
 410						   MAX_PHY_REG_ADDRESS & offset,
 411						   data);
 412	}
 413
 414	e1000_release_phy_80003es2lan(hw);
 415
 416	return ret_val;
 417}
 418
 419/**
 420 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 421 *  @hw: pointer to the HW structure
 422 *  @offset: offset of the register to read
 423 *  @data: value to write to the register
 424 *
 425 *  Write to the GG82563 PHY register.
 426 **/
 427static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 428						   u32 offset, u16 data)
 429{
 430	s32 ret_val;
 431	u32 page_select;
 432	u16 temp;
 433
 434	ret_val = e1000_acquire_phy_80003es2lan(hw);
 435	if (ret_val)
 436		return ret_val;
 437
 438	/* Select Configuration Page */
 439	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 440		page_select = GG82563_PHY_PAGE_SELECT;
 441	} else {
 442		/* Use Alternative Page Select register to access
 443		 * registers 30 and 31
 444		 */
 445		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 446	}
 447
 448	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 449	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 450	if (ret_val) {
 451		e1000_release_phy_80003es2lan(hw);
 452		return ret_val;
 453	}
 454
 455	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 456		/* The "ready" bit in the MDIC register may be incorrectly set
 457		 * before the device has completed the "Page Select" MDI
 458		 * transaction.  So we wait 200us after each MDI command...
 459		 */
 460		usleep_range(200, 400);
 461
 462		/* ...and verify the command was successful. */
 463		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 464
 465		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 466			e1000_release_phy_80003es2lan(hw);
 467			return -E1000_ERR_PHY;
 468		}
 469
 470		usleep_range(200, 400);
 471
 472		ret_val = e1000e_write_phy_reg_mdic(hw,
 473						    MAX_PHY_REG_ADDRESS &
 474						    offset, data);
 475
 476		usleep_range(200, 400);
 477	} else {
 478		ret_val = e1000e_write_phy_reg_mdic(hw,
 479						    MAX_PHY_REG_ADDRESS &
 480						    offset, data);
 481	}
 482
 483	e1000_release_phy_80003es2lan(hw);
 484
 485	return ret_val;
 486}
 487
 488/**
 489 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 490 *  @hw: pointer to the HW structure
 491 *  @offset: offset of the register to read
 492 *  @words: number of words to write
 493 *  @data: buffer of data to write to the NVM
 494 *
 495 *  Write "words" of data to the ESB2 NVM.
 496 **/
 497static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 498				       u16 words, u16 *data)
 499{
 500	return e1000e_write_nvm_spi(hw, offset, words, data);
 501}
 502
 503/**
 504 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 505 *  @hw: pointer to the HW structure
 506 *
 507 *  Wait a specific amount of time for manageability processes to complete.
 508 *  This is a function pointer entry point called by the phy module.
 509 **/
 510static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 511{
 512	s32 timeout = PHY_CFG_TIMEOUT;
 513	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 514
 515	if (hw->bus.func == 1)
 516		mask = E1000_NVM_CFG_DONE_PORT_1;
 517
 518	while (timeout) {
 519		if (er32(EEMNGCTL) & mask)
 520			break;
 521		usleep_range(1000, 2000);
 522		timeout--;
 523	}
 524	if (!timeout) {
 525		e_dbg("MNG configuration cycle has not completed.\n");
 526		return -E1000_ERR_RESET;
 527	}
 528
 529	return 0;
 530}
 531
 532/**
 533 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 534 *  @hw: pointer to the HW structure
 535 *
 536 *  Force the speed and duplex settings onto the PHY.  This is a
 537 *  function pointer entry point called by the phy module.
 538 **/
 539static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 540{
 541	s32 ret_val;
 542	u16 phy_data;
 543	bool link;
 544
 545	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 546	 * forced whenever speed and duplex are forced.
 547	 */
 548	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 549	if (ret_val)
 550		return ret_val;
 551
 552	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 553	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 554	if (ret_val)
 555		return ret_val;
 556
 557	e_dbg("GG82563 PSCR: %X\n", phy_data);
 558
 559	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
 560	if (ret_val)
 561		return ret_val;
 562
 563	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 564
 565	/* Reset the phy to commit changes. */
 566	phy_data |= BMCR_RESET;
 567
 568	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
 569	if (ret_val)
 570		return ret_val;
 571
 572	udelay(1);
 573
 574	if (hw->phy.autoneg_wait_to_complete) {
 575		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
 576
 577		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 578						      100000, &link);
 579		if (ret_val)
 580			return ret_val;
 581
 582		if (!link) {
 583			/* We didn't get link.
 584			 * Reset the DSP and cross our fingers.
 585			 */
 586			ret_val = e1000e_phy_reset_dsp(hw);
 587			if (ret_val)
 588				return ret_val;
 589		}
 590
 591		/* Try once more */
 592		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 593						      100000, &link);
 594		if (ret_val)
 595			return ret_val;
 596	}
 597
 598	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 599	if (ret_val)
 600		return ret_val;
 601
 602	/* Resetting the phy means we need to verify the TX_CLK corresponds
 603	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 604	 */
 605	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 606	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 607		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 608	else
 609		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 610
 611	/* In addition, we must re-enable CRS on Tx for both half and full
 612	 * duplex.
 613	 */
 614	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 615	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 616
 617	return ret_val;
 618}
 619
 620/**
 621 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 622 *  @hw: pointer to the HW structure
 623 *
 624 *  Find the approximate cable length as measured by the GG82563 PHY.
 625 *  This is a function pointer entry point called by the phy module.
 626 **/
 627static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 628{
 629	struct e1000_phy_info *phy = &hw->phy;
 630	s32 ret_val;
 631	u16 phy_data, index;
 632
 633	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 634	if (ret_val)
 635		return ret_val;
 636
 637	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 638
 639	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
 640		return -E1000_ERR_PHY;
 641
 642	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 643	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 644
 645	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 646
 647	return 0;
 648}
 649
 650/**
 651 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 652 *  @hw: pointer to the HW structure
 653 *  @speed: pointer to speed buffer
 654 *  @duplex: pointer to duplex buffer
 655 *
 656 *  Retrieve the current speed and duplex configuration.
 657 **/
 658static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 659					      u16 *duplex)
 660{
 661	s32 ret_val;
 662
 663	if (hw->phy.media_type == e1000_media_type_copper) {
 664		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
 665		hw->phy.ops.cfg_on_link_up(hw);
 666	} else {
 667		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 668								   speed,
 669								   duplex);
 670	}
 671
 672	return ret_val;
 673}
 674
 675/**
 676 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 677 *  @hw: pointer to the HW structure
 678 *
 679 *  Perform a global reset to the ESB2 controller.
 680 **/
 681static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 682{
 683	u32 ctrl;
 684	s32 ret_val;
 685	u16 kum_reg_data;
 686
 687	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 688	 * on the last TLP read/write transaction when MAC is reset.
 689	 */
 690	ret_val = e1000e_disable_pcie_master(hw);
 691	if (ret_val)
 692		e_dbg("PCI-E Master disable polling has failed.\n");
 693
 694	e_dbg("Masking off all interrupts\n");
 695	ew32(IMC, 0xffffffff);
 696
 697	ew32(RCTL, 0);
 698	ew32(TCTL, E1000_TCTL_PSP);
 699	e1e_flush();
 700
 701	usleep_range(10000, 20000);
 702
 703	ctrl = er32(CTRL);
 704
 705	ret_val = e1000_acquire_phy_80003es2lan(hw);
 706	if (ret_val)
 707		return ret_val;
 708
 709	e_dbg("Issuing a global reset to MAC\n");
 710	ew32(CTRL, ctrl | E1000_CTRL_RST);
 711	e1000_release_phy_80003es2lan(hw);
 712
 713	/* Disable IBIST slave mode (far-end loopback) */
 714	ret_val =
 715	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 716					    &kum_reg_data);
 717	if (ret_val)
 718		return ret_val;
 719	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 720	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 721					 kum_reg_data);
 
 
 
 
 
 722
 723	ret_val = e1000e_get_auto_rd_done(hw);
 724	if (ret_val)
 725		/* We don't want to continue accessing MAC registers. */
 726		return ret_val;
 727
 728	/* Clear any pending interrupt events. */
 729	ew32(IMC, 0xffffffff);
 730	er32(ICR);
 731
 732	return e1000_check_alt_mac_addr_generic(hw);
 733}
 734
 735/**
 736 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 737 *  @hw: pointer to the HW structure
 738 *
 739 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 740 **/
 741static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 742{
 743	struct e1000_mac_info *mac = &hw->mac;
 744	u32 reg_data;
 745	s32 ret_val;
 746	u16 kum_reg_data;
 747	u16 i;
 748
 749	e1000_initialize_hw_bits_80003es2lan(hw);
 750
 751	/* Initialize identification LED */
 752	ret_val = mac->ops.id_led_init(hw);
 753	/* An error is not fatal and we should not stop init due to this */
 754	if (ret_val)
 755		e_dbg("Error initializing identification LED\n");
 756
 757	/* Disabling VLAN filtering */
 758	e_dbg("Initializing the IEEE VLAN\n");
 759	mac->ops.clear_vfta(hw);
 760
 761	/* Setup the receive address. */
 762	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 763
 764	/* Zero out the Multicast HASH table */
 765	e_dbg("Zeroing the MTA\n");
 766	for (i = 0; i < mac->mta_reg_count; i++)
 767		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 768
 769	/* Setup link and flow control */
 770	ret_val = mac->ops.setup_link(hw);
 771	if (ret_val)
 772		return ret_val;
 773
 774	/* Disable IBIST slave mode (far-end loopback) */
 775	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 776					&kum_reg_data);
 777	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 778	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 779					 kum_reg_data);
 
 
 
 
 
 
 
 
 780
 781	/* Set the transmit descriptor write-back policy */
 782	reg_data = er32(TXDCTL(0));
 783	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 784		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 785	ew32(TXDCTL(0), reg_data);
 786
 787	/* ...for both queues. */
 788	reg_data = er32(TXDCTL(1));
 789	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 790		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 791	ew32(TXDCTL(1), reg_data);
 792
 793	/* Enable retransmit on late collisions */
 794	reg_data = er32(TCTL);
 795	reg_data |= E1000_TCTL_RTLC;
 796	ew32(TCTL, reg_data);
 797
 798	/* Configure Gigabit Carry Extend Padding */
 799	reg_data = er32(TCTL_EXT);
 800	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 801	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 802	ew32(TCTL_EXT, reg_data);
 803
 804	/* Configure Transmit Inter-Packet Gap */
 805	reg_data = er32(TIPG);
 806	reg_data &= ~E1000_TIPG_IPGT_MASK;
 807	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 808	ew32(TIPG, reg_data);
 809
 810	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 811	reg_data &= ~0x00100000;
 812	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 813
 814	/* default to true to enable the MDIC W/A */
 815	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 816
 817	ret_val =
 818	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
 819					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
 820	if (!ret_val) {
 821		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 822		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 823			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 824	}
 825
 826	/* Clear all of the statistics registers (clear on read).  It is
 827	 * important that we do this after we have tried to establish link
 828	 * because the symbol error count will increment wildly if there
 829	 * is no link.
 830	 */
 831	e1000_clear_hw_cntrs_80003es2lan(hw);
 832
 833	return ret_val;
 834}
 835
 836/**
 837 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 838 *  @hw: pointer to the HW structure
 839 *
 840 *  Initializes required hardware-dependent bits needed for normal operation.
 841 **/
 842static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 843{
 844	u32 reg;
 845
 846	/* Transmit Descriptor Control 0 */
 847	reg = er32(TXDCTL(0));
 848	reg |= (1 << 22);
 849	ew32(TXDCTL(0), reg);
 850
 851	/* Transmit Descriptor Control 1 */
 852	reg = er32(TXDCTL(1));
 853	reg |= (1 << 22);
 854	ew32(TXDCTL(1), reg);
 855
 856	/* Transmit Arbitration Control 0 */
 857	reg = er32(TARC(0));
 858	reg &= ~(0xF << 27);	/* 30:27 */
 859	if (hw->phy.media_type != e1000_media_type_copper)
 860		reg &= ~(1 << 20);
 861	ew32(TARC(0), reg);
 862
 863	/* Transmit Arbitration Control 1 */
 864	reg = er32(TARC(1));
 865	if (er32(TCTL) & E1000_TCTL_MULR)
 866		reg &= ~(1 << 28);
 867	else
 868		reg |= (1 << 28);
 869	ew32(TARC(1), reg);
 870
 871	/* Disable IPv6 extension header parsing because some malformed
 872	 * IPv6 headers can hang the Rx.
 873	 */
 874	reg = er32(RFCTL);
 875	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 876	ew32(RFCTL, reg);
 877}
 878
 879/**
 880 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 881 *  @hw: pointer to the HW structure
 882 *
 883 *  Setup some GG82563 PHY registers for obtaining link
 884 **/
 885static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 886{
 887	struct e1000_phy_info *phy = &hw->phy;
 888	s32 ret_val;
 889	u32 reg;
 890	u16 data;
 891
 892	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 893	if (ret_val)
 894		return ret_val;
 895
 896	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 897	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 898	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 899
 900	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 901	if (ret_val)
 902		return ret_val;
 903
 904	/* Options:
 905	 *   MDI/MDI-X = 0 (default)
 906	 *   0 - Auto for all speeds
 907	 *   1 - MDI mode
 908	 *   2 - MDI-X mode
 909	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 910	 */
 911	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 912	if (ret_val)
 913		return ret_val;
 914
 915	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 916
 917	switch (phy->mdix) {
 918	case 1:
 919		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 920		break;
 921	case 2:
 922		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 923		break;
 924	case 0:
 925	default:
 926		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 927		break;
 928	}
 929
 930	/* Options:
 931	 *   disable_polarity_correction = 0 (default)
 932	 *       Automatic Correction for Reversed Cable Polarity
 933	 *   0 - Disabled
 934	 *   1 - Enabled
 935	 */
 936	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 937	if (phy->disable_polarity_correction)
 938		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 939
 940	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 941	if (ret_val)
 942		return ret_val;
 943
 944	/* SW Reset the PHY so all changes take effect */
 945	ret_val = hw->phy.ops.commit(hw);
 946	if (ret_val) {
 947		e_dbg("Error Resetting the PHY\n");
 948		return ret_val;
 949	}
 950
 951	/* Bypass Rx and Tx FIFO's */
 952	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 953	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 954		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 955	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 956	if (ret_val)
 957		return ret_val;
 958
 959	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 960	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 961	if (ret_val)
 962		return ret_val;
 963	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 964	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 965	if (ret_val)
 966		return ret_val;
 967
 968	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 969	if (ret_val)
 970		return ret_val;
 971
 972	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 973	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 974	if (ret_val)
 975		return ret_val;
 976
 977	reg = er32(CTRL_EXT);
 978	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 979	ew32(CTRL_EXT, reg);
 980
 981	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 982	if (ret_val)
 983		return ret_val;
 984
 985	/* Do not init these registers when the HW is in IAMT mode, since the
 986	 * firmware will have already initialized them.  We only initialize
 987	 * them if the HW is not in IAMT mode.
 988	 */
 989	if (!hw->mac.ops.check_mng_mode(hw)) {
 990		/* Enable Electrical Idle on the PHY */
 991		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 992		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 993		if (ret_val)
 994			return ret_val;
 995
 996		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
 997		if (ret_val)
 998			return ret_val;
 999
1000		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1001		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1002		if (ret_val)
1003			return ret_val;
1004	}
1005
1006	/* Workaround: Disable padding in Kumeran interface in the MAC
1007	 * and in the PHY to avoid CRC errors.
1008	 */
1009	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1010	if (ret_val)
1011		return ret_val;
1012
1013	data |= GG82563_ICR_DIS_PADDING;
1014	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1015	if (ret_val)
1016		return ret_val;
1017
1018	return 0;
1019}
1020
1021/**
1022 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1023 *  @hw: pointer to the HW structure
1024 *
1025 *  Essentially a wrapper for setting up all things "copper" related.
1026 *  This is a function pointer entry point called by the mac module.
1027 **/
1028static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1029{
1030	u32 ctrl;
1031	s32 ret_val;
1032	u16 reg_data;
1033
1034	ctrl = er32(CTRL);
1035	ctrl |= E1000_CTRL_SLU;
1036	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1037	ew32(CTRL, ctrl);
1038
1039	/* Set the mac to wait the maximum time between each
1040	 * iteration and increase the max iterations when
1041	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1042	 */
1043	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1044						   0xFFFF);
 
 
 
1045	if (ret_val)
1046		return ret_val;
1047	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1048						  &reg_data);
1049	if (ret_val)
1050		return ret_val;
1051	reg_data |= 0x3F;
1052	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1053						   reg_data);
1054	if (ret_val)
1055		return ret_val;
1056	ret_val =
1057	    e1000_read_kmrn_reg_80003es2lan(hw,
1058					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1059					    &reg_data);
1060	if (ret_val)
1061		return ret_val;
1062	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1063	ret_val =
1064	    e1000_write_kmrn_reg_80003es2lan(hw,
1065					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1066					     reg_data);
1067	if (ret_val)
1068		return ret_val;
1069
1070	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1071	if (ret_val)
1072		return ret_val;
1073
1074	return e1000e_setup_copper_link(hw);
1075}
1076
1077/**
1078 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1079 *  @hw: pointer to the HW structure
1080 *  @duplex: current duplex setting
1081 *
1082 *  Configure the KMRN interface by applying last minute quirks for
1083 *  10/100 operation.
1084 **/
1085static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1086{
1087	s32 ret_val = 0;
1088	u16 speed;
1089	u16 duplex;
1090
1091	if (hw->phy.media_type == e1000_media_type_copper) {
1092		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1093							     &duplex);
1094		if (ret_val)
1095			return ret_val;
1096
1097		if (speed == SPEED_1000)
1098			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1099		else
1100			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1101	}
1102
1103	return ret_val;
1104}
1105
1106/**
1107 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1108 *  @hw: pointer to the HW structure
1109 *  @duplex: current duplex setting
1110 *
1111 *  Configure the KMRN interface by applying last minute quirks for
1112 *  10/100 operation.
1113 **/
1114static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1115{
1116	s32 ret_val;
1117	u32 tipg;
1118	u32 i = 0;
1119	u16 reg_data, reg_data2;
1120
1121	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1122	ret_val =
1123	    e1000_write_kmrn_reg_80003es2lan(hw,
1124					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1125					     reg_data);
1126	if (ret_val)
1127		return ret_val;
1128
1129	/* Configure Transmit Inter-Packet Gap */
1130	tipg = er32(TIPG);
1131	tipg &= ~E1000_TIPG_IPGT_MASK;
1132	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1133	ew32(TIPG, tipg);
1134
1135	do {
1136		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1137		if (ret_val)
1138			return ret_val;
1139
1140		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1141		if (ret_val)
1142			return ret_val;
1143		i++;
1144	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1145
1146	if (duplex == HALF_DUPLEX)
1147		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1148	else
1149		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1150
1151	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1152}
1153
1154/**
1155 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1156 *  @hw: pointer to the HW structure
1157 *
1158 *  Configure the KMRN interface by applying last minute quirks for
1159 *  gigabit operation.
1160 **/
1161static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1162{
1163	s32 ret_val;
1164	u16 reg_data, reg_data2;
1165	u32 tipg;
1166	u32 i = 0;
1167
1168	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1169	ret_val =
1170	    e1000_write_kmrn_reg_80003es2lan(hw,
1171					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1172					     reg_data);
1173	if (ret_val)
1174		return ret_val;
1175
1176	/* Configure Transmit Inter-Packet Gap */
1177	tipg = er32(TIPG);
1178	tipg &= ~E1000_TIPG_IPGT_MASK;
1179	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1180	ew32(TIPG, tipg);
1181
1182	do {
1183		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1184		if (ret_val)
1185			return ret_val;
1186
1187		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1188		if (ret_val)
1189			return ret_val;
1190		i++;
1191	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1192
1193	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1194
1195	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1196}
1197
1198/**
1199 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1200 *  @hw: pointer to the HW structure
1201 *  @offset: register offset to be read
1202 *  @data: pointer to the read data
1203 *
1204 *  Acquire semaphore, then read the PHY register at offset
1205 *  using the kumeran interface.  The information retrieved is stored in data.
1206 *  Release the semaphore before exiting.
1207 **/
1208static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1209					   u16 *data)
1210{
1211	u32 kmrnctrlsta;
1212	s32 ret_val;
1213
1214	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1215	if (ret_val)
1216		return ret_val;
1217
1218	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1219		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1220	ew32(KMRNCTRLSTA, kmrnctrlsta);
1221	e1e_flush();
1222
1223	udelay(2);
1224
1225	kmrnctrlsta = er32(KMRNCTRLSTA);
1226	*data = (u16)kmrnctrlsta;
1227
1228	e1000_release_mac_csr_80003es2lan(hw);
1229
1230	return ret_val;
1231}
1232
1233/**
1234 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1235 *  @hw: pointer to the HW structure
1236 *  @offset: register offset to write to
1237 *  @data: data to write at register offset
1238 *
1239 *  Acquire semaphore, then write the data to PHY register
1240 *  at the offset using the kumeran interface.  Release semaphore
1241 *  before exiting.
1242 **/
1243static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1244					    u16 data)
1245{
1246	u32 kmrnctrlsta;
1247	s32 ret_val;
1248
1249	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1250	if (ret_val)
1251		return ret_val;
1252
1253	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1254		       E1000_KMRNCTRLSTA_OFFSET) | data;
1255	ew32(KMRNCTRLSTA, kmrnctrlsta);
1256	e1e_flush();
1257
1258	udelay(2);
1259
1260	e1000_release_mac_csr_80003es2lan(hw);
1261
1262	return ret_val;
1263}
1264
1265/**
1266 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1267 *  @hw: pointer to the HW structure
1268 **/
1269static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1270{
1271	s32 ret_val;
1272
1273	/* If there's an alternate MAC address place it in RAR0
1274	 * so that it will override the Si installed default perm
1275	 * address.
1276	 */
1277	ret_val = e1000_check_alt_mac_addr_generic(hw);
1278	if (ret_val)
1279		return ret_val;
1280
1281	return e1000_read_mac_addr_generic(hw);
1282}
1283
1284/**
1285 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1286 * @hw: pointer to the HW structure
1287 *
1288 * In the case of a PHY power down to save power, or to turn off link during a
1289 * driver unload, or wake on lan is not enabled, remove the link.
1290 **/
1291static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1292{
1293	/* If the management interface is not enabled, then power down */
1294	if (!(hw->mac.ops.check_mng_mode(hw) ||
1295	      hw->phy.ops.check_reset_block(hw)))
1296		e1000_power_down_phy_copper(hw);
1297}
1298
1299/**
1300 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1301 *  @hw: pointer to the HW structure
1302 *
1303 *  Clears the hardware counters by reading the counter registers.
1304 **/
1305static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1306{
1307	e1000e_clear_hw_cntrs_base(hw);
1308
1309	er32(PRC64);
1310	er32(PRC127);
1311	er32(PRC255);
1312	er32(PRC511);
1313	er32(PRC1023);
1314	er32(PRC1522);
1315	er32(PTC64);
1316	er32(PTC127);
1317	er32(PTC255);
1318	er32(PTC511);
1319	er32(PTC1023);
1320	er32(PTC1522);
1321
1322	er32(ALGNERRC);
1323	er32(RXERRC);
1324	er32(TNCRS);
1325	er32(CEXTERR);
1326	er32(TSCTC);
1327	er32(TSCTFC);
1328
1329	er32(MGTPRC);
1330	er32(MGTPDC);
1331	er32(MGTPTC);
1332
1333	er32(IAC);
1334	er32(ICRXOC);
1335
1336	er32(ICRXPTC);
1337	er32(ICRXATC);
1338	er32(ICTXPTC);
1339	er32(ICTXATC);
1340	er32(ICTXQEC);
1341	er32(ICTXQMTC);
1342	er32(ICRXDMTC);
1343}
1344
1345static const struct e1000_mac_operations es2_mac_ops = {
1346	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1347	.id_led_init		= e1000e_id_led_init_generic,
1348	.blink_led		= e1000e_blink_led_generic,
1349	.check_mng_mode		= e1000e_check_mng_mode_generic,
1350	/* check_for_link dependent on media type */
1351	.cleanup_led		= e1000e_cleanup_led_generic,
1352	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1353	.get_bus_info		= e1000e_get_bus_info_pcie,
1354	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1355	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1356	.led_on			= e1000e_led_on_generic,
1357	.led_off		= e1000e_led_off_generic,
1358	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1359	.write_vfta		= e1000_write_vfta_generic,
1360	.clear_vfta		= e1000_clear_vfta_generic,
1361	.reset_hw		= e1000_reset_hw_80003es2lan,
1362	.init_hw		= e1000_init_hw_80003es2lan,
1363	.setup_link		= e1000e_setup_link_generic,
1364	/* setup_physical_interface dependent on media type */
1365	.setup_led		= e1000e_setup_led_generic,
1366	.config_collision_dist	= e1000e_config_collision_dist_generic,
1367	.rar_set		= e1000e_rar_set_generic,
1368	.rar_get_count		= e1000e_rar_get_count_generic,
1369};
1370
1371static const struct e1000_phy_operations es2_phy_ops = {
1372	.acquire		= e1000_acquire_phy_80003es2lan,
1373	.check_polarity		= e1000_check_polarity_m88,
1374	.check_reset_block	= e1000e_check_reset_block_generic,
1375	.commit			= e1000e_phy_sw_reset,
1376	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1377	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1378	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1379	.get_info		= e1000e_get_phy_info_m88,
1380	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1381	.release		= e1000_release_phy_80003es2lan,
1382	.reset			= e1000e_phy_hw_reset_generic,
1383	.set_d0_lplu_state	= NULL,
1384	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1385	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1386	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1387};
1388
1389static const struct e1000_nvm_operations es2_nvm_ops = {
1390	.acquire		= e1000_acquire_nvm_80003es2lan,
1391	.read			= e1000e_read_nvm_eerd,
1392	.release		= e1000_release_nvm_80003es2lan,
1393	.reload			= e1000e_reload_nvm_generic,
1394	.update			= e1000e_update_nvm_checksum_generic,
1395	.valid_led_default	= e1000e_valid_led_default,
1396	.validate		= e1000e_validate_nvm_checksum_generic,
1397	.write			= e1000_write_nvm_80003es2lan,
1398};
1399
1400const struct e1000_info e1000_es2_info = {
1401	.mac			= e1000_80003es2lan,
1402	.flags			= FLAG_HAS_HW_VLAN_FILTER
1403				  | FLAG_HAS_JUMBO_FRAMES
1404				  | FLAG_HAS_WOL
1405				  | FLAG_APME_IN_CTRL3
1406				  | FLAG_HAS_CTRLEXT_ON_LOAD
1407				  | FLAG_RX_NEEDS_RESTART /* errata */
1408				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1409				  | FLAG_APME_CHECK_PORT_B
1410				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1411	.flags2			= FLAG2_DMA_BURST,
1412	.pba			= 38,
1413	.max_hw_frame_size	= DEFAULT_JUMBO,
1414	.get_variants		= e1000_get_variants_80003es2lan,
1415	.mac_ops		= &es2_mac_ops,
1416	.phy_ops		= &es2_phy_ops,
1417	.nvm_ops		= &es2_nvm_ops,
1418};