Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * FDT related Helper functions used by the EFI stub on multiple
4 * architectures. This should be #included by the EFI stub
5 * implementation files.
6 *
7 * Copyright 2013 Linaro Limited; author Roy Franz
8 */
9
10#include <linux/efi.h>
11#include <linux/libfdt.h>
12#include <asm/efi.h>
13
14#include "efistub.h"
15
16#define EFI_DT_ADDR_CELLS_DEFAULT 2
17#define EFI_DT_SIZE_CELLS_DEFAULT 2
18
19static void fdt_update_cell_size(void *fdt)
20{
21 int offset;
22
23 offset = fdt_path_offset(fdt, "/");
24 /* Set the #address-cells and #size-cells values for an empty tree */
25
26 fdt_setprop_u32(fdt, offset, "#address-cells", EFI_DT_ADDR_CELLS_DEFAULT);
27 fdt_setprop_u32(fdt, offset, "#size-cells", EFI_DT_SIZE_CELLS_DEFAULT);
28}
29
30static efi_status_t update_fdt(void *orig_fdt, unsigned long orig_fdt_size,
31 void *fdt, int new_fdt_size, char *cmdline_ptr)
32{
33 int node, num_rsv;
34 int status;
35 u32 fdt_val32;
36 u64 fdt_val64;
37
38 /* Do some checks on provided FDT, if it exists: */
39 if (orig_fdt) {
40 if (fdt_check_header(orig_fdt)) {
41 efi_err("Device Tree header not valid!\n");
42 return EFI_LOAD_ERROR;
43 }
44 /*
45 * We don't get the size of the FDT if we get if from a
46 * configuration table:
47 */
48 if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
49 efi_err("Truncated device tree! foo!\n");
50 return EFI_LOAD_ERROR;
51 }
52 }
53
54 if (orig_fdt) {
55 status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
56 } else {
57 status = fdt_create_empty_tree(fdt, new_fdt_size);
58 if (status == 0) {
59 /*
60 * Any failure from the following function is
61 * non-critical:
62 */
63 fdt_update_cell_size(fdt);
64 }
65 }
66
67 if (status != 0)
68 goto fdt_set_fail;
69
70 /*
71 * Delete all memory reserve map entries. When booting via UEFI,
72 * kernel will use the UEFI memory map to find reserved regions.
73 */
74 num_rsv = fdt_num_mem_rsv(fdt);
75 while (num_rsv-- > 0)
76 fdt_del_mem_rsv(fdt, num_rsv);
77
78 node = fdt_subnode_offset(fdt, 0, "chosen");
79 if (node < 0) {
80 node = fdt_add_subnode(fdt, 0, "chosen");
81 if (node < 0) {
82 /* 'node' is an error code when negative: */
83 status = node;
84 goto fdt_set_fail;
85 }
86 }
87
88 if (cmdline_ptr != NULL && strlen(cmdline_ptr) > 0) {
89 status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
90 strlen(cmdline_ptr) + 1);
91 if (status)
92 goto fdt_set_fail;
93 }
94
95 /* Add FDT entries for EFI runtime services in chosen node. */
96 node = fdt_subnode_offset(fdt, 0, "chosen");
97 fdt_val64 = cpu_to_fdt64((u64)(unsigned long)efi_system_table);
98
99 status = fdt_setprop_var(fdt, node, "linux,uefi-system-table", fdt_val64);
100 if (status)
101 goto fdt_set_fail;
102
103 fdt_val64 = U64_MAX; /* placeholder */
104
105 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
106 if (status)
107 goto fdt_set_fail;
108
109 fdt_val32 = U32_MAX; /* placeholder */
110
111 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
112 if (status)
113 goto fdt_set_fail;
114
115 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
116 if (status)
117 goto fdt_set_fail;
118
119 status = fdt_setprop_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
120 if (status)
121 goto fdt_set_fail;
122
123 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE) && !efi_nokaslr) {
124 efi_status_t efi_status;
125
126 efi_status = efi_get_random_bytes(sizeof(fdt_val64),
127 (u8 *)&fdt_val64);
128 if (efi_status == EFI_SUCCESS) {
129 status = fdt_setprop_var(fdt, node, "kaslr-seed", fdt_val64);
130 if (status)
131 goto fdt_set_fail;
132 }
133 }
134
135 /* Shrink the FDT back to its minimum size: */
136 fdt_pack(fdt);
137
138 return EFI_SUCCESS;
139
140fdt_set_fail:
141 if (status == -FDT_ERR_NOSPACE)
142 return EFI_BUFFER_TOO_SMALL;
143
144 return EFI_LOAD_ERROR;
145}
146
147static efi_status_t update_fdt_memmap(void *fdt, struct efi_boot_memmap *map)
148{
149 int node = fdt_path_offset(fdt, "/chosen");
150 u64 fdt_val64;
151 u32 fdt_val32;
152 int err;
153
154 if (node < 0)
155 return EFI_LOAD_ERROR;
156
157 fdt_val64 = cpu_to_fdt64((unsigned long)map->map);
158
159 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-start", fdt_val64);
160 if (err)
161 return EFI_LOAD_ERROR;
162
163 fdt_val32 = cpu_to_fdt32(map->map_size);
164
165 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-size", fdt_val32);
166 if (err)
167 return EFI_LOAD_ERROR;
168
169 fdt_val32 = cpu_to_fdt32(map->desc_size);
170
171 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-size", fdt_val32);
172 if (err)
173 return EFI_LOAD_ERROR;
174
175 fdt_val32 = cpu_to_fdt32(map->desc_ver);
176
177 err = fdt_setprop_inplace_var(fdt, node, "linux,uefi-mmap-desc-ver", fdt_val32);
178 if (err)
179 return EFI_LOAD_ERROR;
180
181 return EFI_SUCCESS;
182}
183
184struct exit_boot_struct {
185 struct efi_boot_memmap *boot_memmap;
186 efi_memory_desc_t *runtime_map;
187 int runtime_entry_count;
188 void *new_fdt_addr;
189};
190
191static efi_status_t exit_boot_func(struct efi_boot_memmap *map, void *priv)
192{
193 struct exit_boot_struct *p = priv;
194
195 p->boot_memmap = map;
196
197 /*
198 * Update the memory map with virtual addresses. The function will also
199 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
200 * entries so that we can pass it straight to SetVirtualAddressMap()
201 */
202 efi_get_virtmap(map->map, map->map_size, map->desc_size,
203 p->runtime_map, &p->runtime_entry_count);
204
205 return update_fdt_memmap(p->new_fdt_addr, map);
206}
207
208#ifndef MAX_FDT_SIZE
209# define MAX_FDT_SIZE SZ_2M
210#endif
211
212/*
213 * Allocate memory for a new FDT, then add EFI and commandline related fields
214 * to the FDT. This routine increases the FDT allocation size until the
215 * allocated memory is large enough. EFI allocations are in EFI_PAGE_SIZE
216 * granules, which are fixed at 4K bytes, so in most cases the first allocation
217 * should succeed. EFI boot services are exited at the end of this function.
218 * There must be no allocations between the get_memory_map() call and the
219 * exit_boot_services() call, so the exiting of boot services is very tightly
220 * tied to the creation of the FDT with the final memory map in it.
221 */
222static
223efi_status_t allocate_new_fdt_and_exit_boot(void *handle,
224 efi_loaded_image_t *image,
225 unsigned long *new_fdt_addr,
226 char *cmdline_ptr)
227{
228 unsigned long desc_size;
229 u32 desc_ver;
230 efi_status_t status;
231 struct exit_boot_struct priv;
232 unsigned long fdt_addr = 0;
233 unsigned long fdt_size = 0;
234
235 if (!efi_novamap) {
236 status = efi_alloc_virtmap(&priv.runtime_map, &desc_size,
237 &desc_ver);
238 if (status != EFI_SUCCESS) {
239 efi_err("Unable to retrieve UEFI memory map.\n");
240 return status;
241 }
242 }
243
244 /*
245 * Unauthenticated device tree data is a security hazard, so ignore
246 * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
247 * boot is enabled if we can't determine its state.
248 */
249 if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
250 efi_get_secureboot() != efi_secureboot_mode_disabled) {
251 if (strstr(cmdline_ptr, "dtb="))
252 efi_err("Ignoring DTB from command line.\n");
253 } else {
254 status = efi_load_dtb(image, &fdt_addr, &fdt_size);
255
256 if (status != EFI_SUCCESS && status != EFI_NOT_READY) {
257 efi_err("Failed to load device tree!\n");
258 goto fail;
259 }
260 }
261
262 if (fdt_addr) {
263 efi_info("Using DTB from command line\n");
264 } else {
265 /* Look for a device tree configuration table entry. */
266 fdt_addr = (uintptr_t)get_fdt(&fdt_size);
267 if (fdt_addr)
268 efi_info("Using DTB from configuration table\n");
269 }
270
271 if (!fdt_addr)
272 efi_info("Generating empty DTB\n");
273
274 efi_info("Exiting boot services...\n");
275
276 status = efi_allocate_pages(MAX_FDT_SIZE, new_fdt_addr, ULONG_MAX);
277 if (status != EFI_SUCCESS) {
278 efi_err("Unable to allocate memory for new device tree.\n");
279 goto fail;
280 }
281
282 status = update_fdt((void *)fdt_addr, fdt_size,
283 (void *)*new_fdt_addr, MAX_FDT_SIZE, cmdline_ptr);
284
285 if (status != EFI_SUCCESS) {
286 efi_err("Unable to construct new device tree.\n");
287 goto fail_free_new_fdt;
288 }
289
290 priv.new_fdt_addr = (void *)*new_fdt_addr;
291
292 status = efi_exit_boot_services(handle, &priv, exit_boot_func);
293
294 if (status == EFI_SUCCESS) {
295 efi_set_virtual_address_map_t *svam;
296
297 if (efi_novamap)
298 return EFI_SUCCESS;
299
300 /* Install the new virtual address map */
301 svam = efi_system_table->runtime->set_virtual_address_map;
302 status = svam(priv.runtime_entry_count * desc_size, desc_size,
303 desc_ver, priv.runtime_map);
304
305 /*
306 * We are beyond the point of no return here, so if the call to
307 * SetVirtualAddressMap() failed, we need to signal that to the
308 * incoming kernel but proceed normally otherwise.
309 */
310 if (status != EFI_SUCCESS) {
311 efi_memory_desc_t *p;
312 int l;
313
314 /*
315 * Set the virtual address field of all
316 * EFI_MEMORY_RUNTIME entries to U64_MAX. This will
317 * signal the incoming kernel that no virtual
318 * translation has been installed.
319 */
320 for (l = 0; l < priv.boot_memmap->map_size;
321 l += priv.boot_memmap->desc_size) {
322 p = (void *)priv.boot_memmap->map + l;
323
324 if (p->attribute & EFI_MEMORY_RUNTIME)
325 p->virt_addr = U64_MAX;
326 }
327 }
328 return EFI_SUCCESS;
329 }
330
331 efi_err("Exit boot services failed.\n");
332
333fail_free_new_fdt:
334 efi_free(MAX_FDT_SIZE, *new_fdt_addr);
335
336fail:
337 efi_free(fdt_size, fdt_addr);
338 if (!efi_novamap)
339 efi_bs_call(free_pool, priv.runtime_map);
340
341 return EFI_LOAD_ERROR;
342}
343
344efi_status_t efi_boot_kernel(void *handle, efi_loaded_image_t *image,
345 unsigned long kernel_addr, char *cmdline_ptr)
346{
347 unsigned long fdt_addr;
348 efi_status_t status;
349
350 status = allocate_new_fdt_and_exit_boot(handle, image, &fdt_addr,
351 cmdline_ptr);
352 if (status != EFI_SUCCESS) {
353 efi_err("Failed to update FDT and exit boot services\n");
354 return status;
355 }
356
357 if (IS_ENABLED(CONFIG_ARM))
358 efi_handle_post_ebs_state();
359
360 efi_enter_kernel(kernel_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
361 /* not reached */
362}
363
364void *get_fdt(unsigned long *fdt_size)
365{
366 void *fdt;
367
368 fdt = get_efi_config_table(DEVICE_TREE_GUID);
369
370 if (!fdt)
371 return NULL;
372
373 if (fdt_check_header(fdt) != 0) {
374 efi_err("Invalid header detected on UEFI supplied FDT, ignoring ...\n");
375 return NULL;
376 }
377 *fdt_size = fdt_totalsize(fdt);
378 return fdt;
379}
1/*
2 * FDT related Helper functions used by the EFI stub on multiple
3 * architectures. This should be #included by the EFI stub
4 * implementation files.
5 *
6 * Copyright 2013 Linaro Limited; author Roy Franz
7 *
8 * This file is part of the Linux kernel, and is made available
9 * under the terms of the GNU General Public License version 2.
10 *
11 */
12
13#include <linux/efi.h>
14#include <linux/libfdt.h>
15#include <asm/efi.h>
16
17#include "efistub.h"
18
19efi_status_t update_fdt(efi_system_table_t *sys_table, void *orig_fdt,
20 unsigned long orig_fdt_size,
21 void *fdt, int new_fdt_size, char *cmdline_ptr,
22 u64 initrd_addr, u64 initrd_size,
23 efi_memory_desc_t *memory_map,
24 unsigned long map_size, unsigned long desc_size,
25 u32 desc_ver)
26{
27 int node, prev, num_rsv;
28 int status;
29 u32 fdt_val32;
30 u64 fdt_val64;
31
32 /* Do some checks on provided FDT, if it exists*/
33 if (orig_fdt) {
34 if (fdt_check_header(orig_fdt)) {
35 pr_efi_err(sys_table, "Device Tree header not valid!\n");
36 return EFI_LOAD_ERROR;
37 }
38 /*
39 * We don't get the size of the FDT if we get if from a
40 * configuration table.
41 */
42 if (orig_fdt_size && fdt_totalsize(orig_fdt) > orig_fdt_size) {
43 pr_efi_err(sys_table, "Truncated device tree! foo!\n");
44 return EFI_LOAD_ERROR;
45 }
46 }
47
48 if (orig_fdt)
49 status = fdt_open_into(orig_fdt, fdt, new_fdt_size);
50 else
51 status = fdt_create_empty_tree(fdt, new_fdt_size);
52
53 if (status != 0)
54 goto fdt_set_fail;
55
56 /*
57 * Delete any memory nodes present. We must delete nodes which
58 * early_init_dt_scan_memory may try to use.
59 */
60 prev = 0;
61 for (;;) {
62 const char *type;
63 int len;
64
65 node = fdt_next_node(fdt, prev, NULL);
66 if (node < 0)
67 break;
68
69 type = fdt_getprop(fdt, node, "device_type", &len);
70 if (type && strncmp(type, "memory", len) == 0) {
71 fdt_del_node(fdt, node);
72 continue;
73 }
74
75 prev = node;
76 }
77
78 /*
79 * Delete all memory reserve map entries. When booting via UEFI,
80 * kernel will use the UEFI memory map to find reserved regions.
81 */
82 num_rsv = fdt_num_mem_rsv(fdt);
83 while (num_rsv-- > 0)
84 fdt_del_mem_rsv(fdt, num_rsv);
85
86 node = fdt_subnode_offset(fdt, 0, "chosen");
87 if (node < 0) {
88 node = fdt_add_subnode(fdt, 0, "chosen");
89 if (node < 0) {
90 status = node; /* node is error code when negative */
91 goto fdt_set_fail;
92 }
93 }
94
95 if ((cmdline_ptr != NULL) && (strlen(cmdline_ptr) > 0)) {
96 status = fdt_setprop(fdt, node, "bootargs", cmdline_ptr,
97 strlen(cmdline_ptr) + 1);
98 if (status)
99 goto fdt_set_fail;
100 }
101
102 /* Set initrd address/end in device tree, if present */
103 if (initrd_size != 0) {
104 u64 initrd_image_end;
105 u64 initrd_image_start = cpu_to_fdt64(initrd_addr);
106
107 status = fdt_setprop(fdt, node, "linux,initrd-start",
108 &initrd_image_start, sizeof(u64));
109 if (status)
110 goto fdt_set_fail;
111 initrd_image_end = cpu_to_fdt64(initrd_addr + initrd_size);
112 status = fdt_setprop(fdt, node, "linux,initrd-end",
113 &initrd_image_end, sizeof(u64));
114 if (status)
115 goto fdt_set_fail;
116 }
117
118 /* Add FDT entries for EFI runtime services in chosen node. */
119 node = fdt_subnode_offset(fdt, 0, "chosen");
120 fdt_val64 = cpu_to_fdt64((u64)(unsigned long)sys_table);
121 status = fdt_setprop(fdt, node, "linux,uefi-system-table",
122 &fdt_val64, sizeof(fdt_val64));
123 if (status)
124 goto fdt_set_fail;
125
126 fdt_val64 = cpu_to_fdt64((u64)(unsigned long)memory_map);
127 status = fdt_setprop(fdt, node, "linux,uefi-mmap-start",
128 &fdt_val64, sizeof(fdt_val64));
129 if (status)
130 goto fdt_set_fail;
131
132 fdt_val32 = cpu_to_fdt32(map_size);
133 status = fdt_setprop(fdt, node, "linux,uefi-mmap-size",
134 &fdt_val32, sizeof(fdt_val32));
135 if (status)
136 goto fdt_set_fail;
137
138 fdt_val32 = cpu_to_fdt32(desc_size);
139 status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-size",
140 &fdt_val32, sizeof(fdt_val32));
141 if (status)
142 goto fdt_set_fail;
143
144 fdt_val32 = cpu_to_fdt32(desc_ver);
145 status = fdt_setprop(fdt, node, "linux,uefi-mmap-desc-ver",
146 &fdt_val32, sizeof(fdt_val32));
147 if (status)
148 goto fdt_set_fail;
149
150 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
151 efi_status_t efi_status;
152
153 efi_status = efi_get_random_bytes(sys_table, sizeof(fdt_val64),
154 (u8 *)&fdt_val64);
155 if (efi_status == EFI_SUCCESS) {
156 status = fdt_setprop(fdt, node, "kaslr-seed",
157 &fdt_val64, sizeof(fdt_val64));
158 if (status)
159 goto fdt_set_fail;
160 } else if (efi_status != EFI_NOT_FOUND) {
161 return efi_status;
162 }
163 }
164 return EFI_SUCCESS;
165
166fdt_set_fail:
167 if (status == -FDT_ERR_NOSPACE)
168 return EFI_BUFFER_TOO_SMALL;
169
170 return EFI_LOAD_ERROR;
171}
172
173#ifndef EFI_FDT_ALIGN
174#define EFI_FDT_ALIGN EFI_PAGE_SIZE
175#endif
176
177/*
178 * Allocate memory for a new FDT, then add EFI, commandline, and
179 * initrd related fields to the FDT. This routine increases the
180 * FDT allocation size until the allocated memory is large
181 * enough. EFI allocations are in EFI_PAGE_SIZE granules,
182 * which are fixed at 4K bytes, so in most cases the first
183 * allocation should succeed.
184 * EFI boot services are exited at the end of this function.
185 * There must be no allocations between the get_memory_map()
186 * call and the exit_boot_services() call, so the exiting of
187 * boot services is very tightly tied to the creation of the FDT
188 * with the final memory map in it.
189 */
190
191efi_status_t allocate_new_fdt_and_exit_boot(efi_system_table_t *sys_table,
192 void *handle,
193 unsigned long *new_fdt_addr,
194 unsigned long max_addr,
195 u64 initrd_addr, u64 initrd_size,
196 char *cmdline_ptr,
197 unsigned long fdt_addr,
198 unsigned long fdt_size)
199{
200 unsigned long map_size, desc_size;
201 u32 desc_ver;
202 unsigned long mmap_key;
203 efi_memory_desc_t *memory_map, *runtime_map;
204 unsigned long new_fdt_size;
205 efi_status_t status;
206 int runtime_entry_count = 0;
207
208 /*
209 * Get a copy of the current memory map that we will use to prepare
210 * the input for SetVirtualAddressMap(). We don't have to worry about
211 * subsequent allocations adding entries, since they could not affect
212 * the number of EFI_MEMORY_RUNTIME regions.
213 */
214 status = efi_get_memory_map(sys_table, &runtime_map, &map_size,
215 &desc_size, &desc_ver, &mmap_key);
216 if (status != EFI_SUCCESS) {
217 pr_efi_err(sys_table, "Unable to retrieve UEFI memory map.\n");
218 return status;
219 }
220
221 pr_efi(sys_table,
222 "Exiting boot services and installing virtual address map...\n");
223
224 /*
225 * Estimate size of new FDT, and allocate memory for it. We
226 * will allocate a bigger buffer if this ends up being too
227 * small, so a rough guess is OK here.
228 */
229 new_fdt_size = fdt_size + EFI_PAGE_SIZE;
230 while (1) {
231 status = efi_high_alloc(sys_table, new_fdt_size, EFI_FDT_ALIGN,
232 new_fdt_addr, max_addr);
233 if (status != EFI_SUCCESS) {
234 pr_efi_err(sys_table, "Unable to allocate memory for new device tree.\n");
235 goto fail;
236 }
237
238 /*
239 * Now that we have done our final memory allocation (and free)
240 * we can get the memory map key needed for
241 * exit_boot_services().
242 */
243 status = efi_get_memory_map(sys_table, &memory_map, &map_size,
244 &desc_size, &desc_ver, &mmap_key);
245 if (status != EFI_SUCCESS)
246 goto fail_free_new_fdt;
247
248 status = update_fdt(sys_table,
249 (void *)fdt_addr, fdt_size,
250 (void *)*new_fdt_addr, new_fdt_size,
251 cmdline_ptr, initrd_addr, initrd_size,
252 memory_map, map_size, desc_size, desc_ver);
253
254 /* Succeeding the first time is the expected case. */
255 if (status == EFI_SUCCESS)
256 break;
257
258 if (status == EFI_BUFFER_TOO_SMALL) {
259 /*
260 * We need to allocate more space for the new
261 * device tree, so free existing buffer that is
262 * too small. Also free memory map, as we will need
263 * to get new one that reflects the free/alloc we do
264 * on the device tree buffer.
265 */
266 efi_free(sys_table, new_fdt_size, *new_fdt_addr);
267 sys_table->boottime->free_pool(memory_map);
268 new_fdt_size += EFI_PAGE_SIZE;
269 } else {
270 pr_efi_err(sys_table, "Unable to construct new device tree.\n");
271 goto fail_free_mmap;
272 }
273 }
274
275 /*
276 * Update the memory map with virtual addresses. The function will also
277 * populate @runtime_map with copies of just the EFI_MEMORY_RUNTIME
278 * entries so that we can pass it straight into SetVirtualAddressMap()
279 */
280 efi_get_virtmap(memory_map, map_size, desc_size, runtime_map,
281 &runtime_entry_count);
282
283 /* Now we are ready to exit_boot_services.*/
284 status = sys_table->boottime->exit_boot_services(handle, mmap_key);
285
286 if (status == EFI_SUCCESS) {
287 efi_set_virtual_address_map_t *svam;
288
289 /* Install the new virtual address map */
290 svam = sys_table->runtime->set_virtual_address_map;
291 status = svam(runtime_entry_count * desc_size, desc_size,
292 desc_ver, runtime_map);
293
294 /*
295 * We are beyond the point of no return here, so if the call to
296 * SetVirtualAddressMap() failed, we need to signal that to the
297 * incoming kernel but proceed normally otherwise.
298 */
299 if (status != EFI_SUCCESS) {
300 int l;
301
302 /*
303 * Set the virtual address field of all
304 * EFI_MEMORY_RUNTIME entries to 0. This will signal
305 * the incoming kernel that no virtual translation has
306 * been installed.
307 */
308 for (l = 0; l < map_size; l += desc_size) {
309 efi_memory_desc_t *p = (void *)memory_map + l;
310
311 if (p->attribute & EFI_MEMORY_RUNTIME)
312 p->virt_addr = 0;
313 }
314 }
315 return EFI_SUCCESS;
316 }
317
318 pr_efi_err(sys_table, "Exit boot services failed.\n");
319
320fail_free_mmap:
321 sys_table->boottime->free_pool(memory_map);
322
323fail_free_new_fdt:
324 efi_free(sys_table, new_fdt_size, *new_fdt_addr);
325
326fail:
327 sys_table->boottime->free_pool(runtime_map);
328 return EFI_LOAD_ERROR;
329}
330
331void *get_fdt(efi_system_table_t *sys_table, unsigned long *fdt_size)
332{
333 efi_guid_t fdt_guid = DEVICE_TREE_GUID;
334 efi_config_table_t *tables;
335 void *fdt;
336 int i;
337
338 tables = (efi_config_table_t *) sys_table->tables;
339 fdt = NULL;
340
341 for (i = 0; i < sys_table->nr_tables; i++)
342 if (efi_guidcmp(tables[i].guid, fdt_guid) == 0) {
343 fdt = (void *) tables[i].table;
344 if (fdt_check_header(fdt) != 0) {
345 pr_efi_err(sys_table, "Invalid header detected on UEFI supplied FDT, ignoring ...\n");
346 return NULL;
347 }
348 *fdt_size = fdt_totalsize(fdt);
349 break;
350 }
351
352 return fdt;
353}