Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
Note: File does not exist in v4.6.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * ASPEED FMC/SPI Memory Controller Driver
   4 *
   5 * Copyright (c) 2015-2022, IBM Corporation.
   6 * Copyright (c) 2020, ASPEED Corporation.
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/module.h>
  11#include <linux/of.h>
  12#include <linux/of_platform.h>
  13#include <linux/platform_device.h>
  14#include <linux/spi/spi.h>
  15#include <linux/spi/spi-mem.h>
  16
  17#define DEVICE_NAME "spi-aspeed-smc"
  18
  19/* Type setting Register */
  20#define CONFIG_REG			0x0
  21#define   CONFIG_TYPE_SPI		0x2
  22
  23/* CE Control Register */
  24#define CE_CTRL_REG			0x4
  25
  26/* CEx Control Register */
  27#define CE0_CTRL_REG			0x10
  28#define   CTRL_IO_MODE_MASK		GENMASK(30, 28)
  29#define   CTRL_IO_SINGLE_DATA	        0x0
  30#define   CTRL_IO_DUAL_DATA		BIT(29)
  31#define   CTRL_IO_QUAD_DATA		BIT(30)
  32#define   CTRL_COMMAND_SHIFT		16
  33#define   CTRL_IO_ADDRESS_4B		BIT(13)	/* AST2400 SPI only */
  34#define   CTRL_IO_DUMMY_SET(dummy)					\
  35	(((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6))
  36#define   CTRL_FREQ_SEL_SHIFT		8
  37#define   CTRL_FREQ_SEL_MASK		GENMASK(11, CTRL_FREQ_SEL_SHIFT)
  38#define   CTRL_CE_STOP_ACTIVE		BIT(2)
  39#define   CTRL_IO_MODE_CMD_MASK		GENMASK(1, 0)
  40#define   CTRL_IO_MODE_NORMAL		0x0
  41#define   CTRL_IO_MODE_READ		0x1
  42#define   CTRL_IO_MODE_WRITE		0x2
  43#define   CTRL_IO_MODE_USER		0x3
  44
  45#define   CTRL_IO_CMD_MASK		0xf0ff40c3
  46
  47/* CEx Address Decoding Range Register */
  48#define CE0_SEGMENT_ADDR_REG		0x30
  49
  50/* CEx Read timing compensation register */
  51#define CE0_TIMING_COMPENSATION_REG	0x94
  52
  53enum aspeed_spi_ctl_reg_value {
  54	ASPEED_SPI_BASE,
  55	ASPEED_SPI_READ,
  56	ASPEED_SPI_WRITE,
  57	ASPEED_SPI_MAX,
  58};
  59
  60struct aspeed_spi;
  61
  62struct aspeed_spi_chip {
  63	struct aspeed_spi	*aspi;
  64	u32			 cs;
  65	void __iomem		*ctl;
  66	void __iomem		*ahb_base;
  67	u32			 ahb_window_size;
  68	u32			 ctl_val[ASPEED_SPI_MAX];
  69	u32			 clk_freq;
  70};
  71
  72struct aspeed_spi_data {
  73	u32	ctl0;
  74	u32	max_cs;
  75	bool	hastype;
  76	u32	mode_bits;
  77	u32	we0;
  78	u32	timing;
  79	u32	hclk_mask;
  80	u32	hdiv_max;
  81
  82	u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg);
  83	u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg);
  84	u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end);
  85	int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv,
  86			 const u8 *golden_buf, u8 *test_buf);
  87};
  88
  89#define ASPEED_SPI_MAX_NUM_CS	5
  90
  91struct aspeed_spi {
  92	const struct aspeed_spi_data	*data;
  93
  94	void __iomem		*regs;
  95	void __iomem		*ahb_base;
  96	u32			 ahb_base_phy;
  97	u32			 ahb_window_size;
  98	struct device		*dev;
  99
 100	struct clk		*clk;
 101	u32			 clk_freq;
 102
 103	struct aspeed_spi_chip	 chips[ASPEED_SPI_MAX_NUM_CS];
 104};
 105
 106static u32 aspeed_spi_get_io_mode(const struct spi_mem_op *op)
 107{
 108	switch (op->data.buswidth) {
 109	case 1:
 110		return CTRL_IO_SINGLE_DATA;
 111	case 2:
 112		return CTRL_IO_DUAL_DATA;
 113	case 4:
 114		return CTRL_IO_QUAD_DATA;
 115	default:
 116		return CTRL_IO_SINGLE_DATA;
 117	}
 118}
 119
 120static void aspeed_spi_set_io_mode(struct aspeed_spi_chip *chip, u32 io_mode)
 121{
 122	u32 ctl;
 123
 124	if (io_mode > 0) {
 125		ctl = readl(chip->ctl) & ~CTRL_IO_MODE_MASK;
 126		ctl |= io_mode;
 127		writel(ctl, chip->ctl);
 128	}
 129}
 130
 131static void aspeed_spi_start_user(struct aspeed_spi_chip *chip)
 132{
 133	u32 ctl = chip->ctl_val[ASPEED_SPI_BASE];
 134
 135	ctl |= CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
 136	writel(ctl, chip->ctl);
 137
 138	ctl &= ~CTRL_CE_STOP_ACTIVE;
 139	writel(ctl, chip->ctl);
 140}
 141
 142static void aspeed_spi_stop_user(struct aspeed_spi_chip *chip)
 143{
 144	u32 ctl = chip->ctl_val[ASPEED_SPI_READ] |
 145		CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
 146
 147	writel(ctl, chip->ctl);
 148
 149	/* Restore defaults */
 150	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
 151}
 152
 153static int aspeed_spi_read_from_ahb(void *buf, void __iomem *src, size_t len)
 154{
 155	size_t offset = 0;
 156
 157	if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
 158	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
 159		ioread32_rep(src, buf, len >> 2);
 160		offset = len & ~0x3;
 161		len -= offset;
 162	}
 163	ioread8_rep(src, (u8 *)buf + offset, len);
 164	return 0;
 165}
 166
 167static int aspeed_spi_write_to_ahb(void __iomem *dst, const void *buf, size_t len)
 168{
 169	size_t offset = 0;
 170
 171	if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
 172	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
 173		iowrite32_rep(dst, buf, len >> 2);
 174		offset = len & ~0x3;
 175		len -= offset;
 176	}
 177	iowrite8_rep(dst, (const u8 *)buf + offset, len);
 178	return 0;
 179}
 180
 181static int aspeed_spi_send_cmd_addr(struct aspeed_spi_chip *chip, u8 addr_nbytes,
 182				    u64 offset, u32 opcode)
 183{
 184	__be32 temp;
 185	u32 cmdaddr;
 186
 187	switch (addr_nbytes) {
 188	case 3:
 189		cmdaddr = offset & 0xFFFFFF;
 190		cmdaddr |= opcode << 24;
 191
 192		temp = cpu_to_be32(cmdaddr);
 193		aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
 194		break;
 195	case 4:
 196		temp = cpu_to_be32(offset);
 197		aspeed_spi_write_to_ahb(chip->ahb_base, &opcode, 1);
 198		aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
 199		break;
 200	default:
 201		WARN_ONCE(1, "Unexpected address width %u", addr_nbytes);
 202		return -EOPNOTSUPP;
 203	}
 204	return 0;
 205}
 206
 207static int aspeed_spi_read_reg(struct aspeed_spi_chip *chip,
 208			       const struct spi_mem_op *op)
 209{
 210	aspeed_spi_start_user(chip);
 211	aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
 212	aspeed_spi_read_from_ahb(op->data.buf.in,
 213				 chip->ahb_base, op->data.nbytes);
 214	aspeed_spi_stop_user(chip);
 215	return 0;
 216}
 217
 218static int aspeed_spi_write_reg(struct aspeed_spi_chip *chip,
 219				const struct spi_mem_op *op)
 220{
 221	aspeed_spi_start_user(chip);
 222	aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
 223	aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out,
 224				op->data.nbytes);
 225	aspeed_spi_stop_user(chip);
 226	return 0;
 227}
 228
 229static ssize_t aspeed_spi_read_user(struct aspeed_spi_chip *chip,
 230				    const struct spi_mem_op *op,
 231				    u64 offset, size_t len, void *buf)
 232{
 233	int io_mode = aspeed_spi_get_io_mode(op);
 234	u8 dummy = 0xFF;
 235	int i;
 236	int ret;
 237
 238	aspeed_spi_start_user(chip);
 239
 240	ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, offset, op->cmd.opcode);
 241	if (ret < 0)
 242		return ret;
 243
 244	if (op->dummy.buswidth && op->dummy.nbytes) {
 245		for (i = 0; i < op->dummy.nbytes / op->dummy.buswidth; i++)
 246			aspeed_spi_write_to_ahb(chip->ahb_base, &dummy,	sizeof(dummy));
 247	}
 248
 249	aspeed_spi_set_io_mode(chip, io_mode);
 250
 251	aspeed_spi_read_from_ahb(buf, chip->ahb_base, len);
 252	aspeed_spi_stop_user(chip);
 253	return 0;
 254}
 255
 256static ssize_t aspeed_spi_write_user(struct aspeed_spi_chip *chip,
 257				     const struct spi_mem_op *op)
 258{
 259	int ret;
 260
 261	aspeed_spi_start_user(chip);
 262	ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, op->addr.val, op->cmd.opcode);
 263	if (ret < 0)
 264		return ret;
 265	aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out, op->data.nbytes);
 266	aspeed_spi_stop_user(chip);
 267	return 0;
 268}
 269
 270/* support for 1-1-1, 1-1-2 or 1-1-4 */
 271static bool aspeed_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
 272{
 273	if (op->cmd.buswidth > 1)
 274		return false;
 275
 276	if (op->addr.nbytes != 0) {
 277		if (op->addr.buswidth > 1)
 278			return false;
 279		if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
 280			return false;
 281	}
 282
 283	if (op->dummy.nbytes != 0) {
 284		if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
 285			return false;
 286	}
 287
 288	if (op->data.nbytes != 0 && op->data.buswidth > 4)
 289		return false;
 290
 291	return spi_mem_default_supports_op(mem, op);
 292}
 293
 294static const struct aspeed_spi_data ast2400_spi_data;
 295
 296static int do_aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 297{
 298	struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->controller);
 299	struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(mem->spi, 0)];
 300	u32 addr_mode, addr_mode_backup;
 301	u32 ctl_val;
 302	int ret = 0;
 303
 304	dev_dbg(aspi->dev,
 305		"CE%d %s OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x len:%#x",
 306		chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
 307		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
 308		op->dummy.buswidth, op->data.buswidth,
 309		op->addr.nbytes, op->dummy.nbytes, op->data.nbytes);
 310
 311	addr_mode = readl(aspi->regs + CE_CTRL_REG);
 312	addr_mode_backup = addr_mode;
 313
 314	ctl_val = chip->ctl_val[ASPEED_SPI_BASE];
 315	ctl_val &= ~CTRL_IO_CMD_MASK;
 316
 317	ctl_val |= op->cmd.opcode << CTRL_COMMAND_SHIFT;
 318
 319	/* 4BYTE address mode */
 320	if (op->addr.nbytes) {
 321		if (op->addr.nbytes == 4)
 322			addr_mode |= (0x11 << chip->cs);
 323		else
 324			addr_mode &= ~(0x11 << chip->cs);
 325
 326		if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
 327			ctl_val |= CTRL_IO_ADDRESS_4B;
 328	}
 329
 330	if (op->dummy.nbytes)
 331		ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
 332
 333	if (op->data.nbytes)
 334		ctl_val |= aspeed_spi_get_io_mode(op);
 335
 336	if (op->data.dir == SPI_MEM_DATA_OUT)
 337		ctl_val |= CTRL_IO_MODE_WRITE;
 338	else
 339		ctl_val |= CTRL_IO_MODE_READ;
 340
 341	if (addr_mode != addr_mode_backup)
 342		writel(addr_mode, aspi->regs + CE_CTRL_REG);
 343	writel(ctl_val, chip->ctl);
 344
 345	if (op->data.dir == SPI_MEM_DATA_IN) {
 346		if (!op->addr.nbytes)
 347			ret = aspeed_spi_read_reg(chip, op);
 348		else
 349			ret = aspeed_spi_read_user(chip, op, op->addr.val,
 350						   op->data.nbytes, op->data.buf.in);
 351	} else {
 352		if (!op->addr.nbytes)
 353			ret = aspeed_spi_write_reg(chip, op);
 354		else
 355			ret = aspeed_spi_write_user(chip, op);
 356	}
 357
 358	/* Restore defaults */
 359	if (addr_mode != addr_mode_backup)
 360		writel(addr_mode_backup, aspi->regs + CE_CTRL_REG);
 361	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
 362	return ret;
 363}
 364
 365static int aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
 366{
 367	int ret;
 368
 369	ret = do_aspeed_spi_exec_op(mem, op);
 370	if (ret)
 371		dev_err(&mem->spi->dev, "operation failed: %d\n", ret);
 372	return ret;
 373}
 374
 375static const char *aspeed_spi_get_name(struct spi_mem *mem)
 376{
 377	struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->controller);
 378	struct device *dev = aspi->dev;
 379
 380	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
 381			      spi_get_chipselect(mem->spi, 0));
 382}
 383
 384struct aspeed_spi_window {
 385	u32 cs;
 386	u32 offset;
 387	u32 size;
 388};
 389
 390static void aspeed_spi_get_windows(struct aspeed_spi *aspi,
 391				   struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS])
 392{
 393	const struct aspeed_spi_data *data = aspi->data;
 394	u32 reg_val;
 395	u32 cs;
 396
 397	for (cs = 0; cs < aspi->data->max_cs; cs++) {
 398		reg_val = readl(aspi->regs + CE0_SEGMENT_ADDR_REG + cs * 4);
 399		windows[cs].cs = cs;
 400		windows[cs].size = data->segment_end(aspi, reg_val) -
 401			data->segment_start(aspi, reg_val);
 402		windows[cs].offset = data->segment_start(aspi, reg_val) - aspi->ahb_base_phy;
 403		dev_vdbg(aspi->dev, "CE%d offset=0x%.8x size=0x%x\n", cs,
 404			 windows[cs].offset, windows[cs].size);
 405	}
 406}
 407
 408/*
 409 * On the AST2600, some CE windows are closed by default at reset but
 410 * U-Boot should open all.
 411 */
 412static int aspeed_spi_chip_set_default_window(struct aspeed_spi_chip *chip)
 413{
 414	struct aspeed_spi *aspi = chip->aspi;
 415	struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
 416	struct aspeed_spi_window *win = &windows[chip->cs];
 417
 418	/* No segment registers for the AST2400 SPI controller */
 419	if (aspi->data == &ast2400_spi_data) {
 420		win->offset = 0;
 421		win->size = aspi->ahb_window_size;
 422	} else {
 423		aspeed_spi_get_windows(aspi, windows);
 424	}
 425
 426	chip->ahb_base = aspi->ahb_base + win->offset;
 427	chip->ahb_window_size = win->size;
 428
 429	dev_dbg(aspi->dev, "CE%d default window [ 0x%.8x - 0x%.8x ] %dMB",
 430		chip->cs, aspi->ahb_base_phy + win->offset,
 431		aspi->ahb_base_phy + win->offset + win->size - 1,
 432		win->size >> 20);
 433
 434	return chip->ahb_window_size ? 0 : -1;
 435}
 436
 437static int aspeed_spi_set_window(struct aspeed_spi *aspi,
 438				 const struct aspeed_spi_window *win)
 439{
 440	u32 start = aspi->ahb_base_phy + win->offset;
 441	u32 end = start + win->size;
 442	void __iomem *seg_reg = aspi->regs + CE0_SEGMENT_ADDR_REG + win->cs * 4;
 443	u32 seg_val_backup = readl(seg_reg);
 444	u32 seg_val = aspi->data->segment_reg(aspi, start, end);
 445
 446	if (seg_val == seg_val_backup)
 447		return 0;
 448
 449	writel(seg_val, seg_reg);
 450
 451	/*
 452	 * Restore initial value if something goes wrong else we could
 453	 * loose access to the chip.
 454	 */
 455	if (seg_val != readl(seg_reg)) {
 456		dev_err(aspi->dev, "CE%d invalid window [ 0x%.8x - 0x%.8x ] %dMB",
 457			win->cs, start, end - 1, win->size >> 20);
 458		writel(seg_val_backup, seg_reg);
 459		return -EIO;
 460	}
 461
 462	if (win->size)
 463		dev_dbg(aspi->dev, "CE%d new window [ 0x%.8x - 0x%.8x ] %dMB",
 464			win->cs, start, end - 1,  win->size >> 20);
 465	else
 466		dev_dbg(aspi->dev, "CE%d window closed", win->cs);
 467
 468	return 0;
 469}
 470
 471/*
 472 * Yet to be done when possible :
 473 * - Align mappings on flash size (we don't have the info)
 474 * - ioremap each window, not strictly necessary since the overall window
 475 *   is correct.
 476 */
 477static const struct aspeed_spi_data ast2500_spi_data;
 478static const struct aspeed_spi_data ast2600_spi_data;
 479static const struct aspeed_spi_data ast2600_fmc_data;
 480
 481static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip,
 482					 u32 local_offset, u32 size)
 483{
 484	struct aspeed_spi *aspi = chip->aspi;
 485	struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
 486	struct aspeed_spi_window *win = &windows[chip->cs];
 487	int ret;
 488
 489	/* No segment registers for the AST2400 SPI controller */
 490	if (aspi->data == &ast2400_spi_data)
 491		return 0;
 492
 493	/*
 494	 * Due to an HW issue on the AST2500 SPI controller, the CE0
 495	 * window size should be smaller than the maximum 128MB.
 496	 */
 497	if (aspi->data == &ast2500_spi_data && chip->cs == 0 && size == SZ_128M) {
 498		size = 120 << 20;
 499		dev_info(aspi->dev, "CE%d window resized to %dMB (AST2500 HW quirk)",
 500			 chip->cs, size >> 20);
 501	}
 502
 503	/*
 504	 * The decoding size of AST2600 SPI controller should set at
 505	 * least 2MB.
 506	 */
 507	if ((aspi->data == &ast2600_spi_data || aspi->data == &ast2600_fmc_data) &&
 508	    size < SZ_2M) {
 509		size = SZ_2M;
 510		dev_info(aspi->dev, "CE%d window resized to %dMB (AST2600 Decoding)",
 511			 chip->cs, size >> 20);
 512	}
 513
 514	aspeed_spi_get_windows(aspi, windows);
 515
 516	/* Adjust this chip window */
 517	win->offset += local_offset;
 518	win->size = size;
 519
 520	if (win->offset + win->size > aspi->ahb_window_size) {
 521		win->size = aspi->ahb_window_size - win->offset;
 522		dev_warn(aspi->dev, "CE%d window resized to %dMB", chip->cs, win->size >> 20);
 523	}
 524
 525	ret = aspeed_spi_set_window(aspi, win);
 526	if (ret)
 527		return ret;
 528
 529	/* Update chip mapping info */
 530	chip->ahb_base = aspi->ahb_base + win->offset;
 531	chip->ahb_window_size = win->size;
 532
 533	/*
 534	 * Also adjust next chip window to make sure that it does not
 535	 * overlap with the current window.
 536	 */
 537	if (chip->cs < aspi->data->max_cs - 1) {
 538		struct aspeed_spi_window *next = &windows[chip->cs + 1];
 539
 540		/* Change offset and size to keep the same end address */
 541		if ((next->offset + next->size) > (win->offset + win->size))
 542			next->size = (next->offset + next->size) - (win->offset + win->size);
 543		else
 544			next->size = 0;
 545		next->offset = win->offset + win->size;
 546
 547		aspeed_spi_set_window(aspi, next);
 548	}
 549	return 0;
 550}
 551
 552static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip);
 553
 554static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
 555{
 556	struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->controller);
 557	struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(desc->mem->spi, 0)];
 558	struct spi_mem_op *op = &desc->info.op_tmpl;
 559	u32 ctl_val;
 560	int ret = 0;
 561
 562	dev_dbg(aspi->dev,
 563		"CE%d %s dirmap [ 0x%.8llx - 0x%.8llx ] OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x\n",
 564		chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
 565		desc->info.offset, desc->info.offset + desc->info.length,
 566		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
 567		op->dummy.buswidth, op->data.buswidth,
 568		op->addr.nbytes, op->dummy.nbytes);
 569
 570	chip->clk_freq = desc->mem->spi->max_speed_hz;
 571
 572	/* Only for reads */
 573	if (op->data.dir != SPI_MEM_DATA_IN)
 574		return -EOPNOTSUPP;
 575
 576	aspeed_spi_chip_adjust_window(chip, desc->info.offset, desc->info.length);
 577
 578	if (desc->info.length > chip->ahb_window_size)
 579		dev_warn(aspi->dev, "CE%d window (%dMB) too small for mapping",
 580			 chip->cs, chip->ahb_window_size >> 20);
 581
 582	/* Define the default IO read settings */
 583	ctl_val = readl(chip->ctl) & ~CTRL_IO_CMD_MASK;
 584	ctl_val |= aspeed_spi_get_io_mode(op) |
 585		op->cmd.opcode << CTRL_COMMAND_SHIFT |
 586		CTRL_IO_MODE_READ;
 587
 588	if (op->dummy.nbytes)
 589		ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
 590
 591	/* Tune 4BYTE address mode */
 592	if (op->addr.nbytes) {
 593		u32 addr_mode = readl(aspi->regs + CE_CTRL_REG);
 594
 595		if (op->addr.nbytes == 4)
 596			addr_mode |= (0x11 << chip->cs);
 597		else
 598			addr_mode &= ~(0x11 << chip->cs);
 599		writel(addr_mode, aspi->regs + CE_CTRL_REG);
 600
 601		/* AST2400 SPI controller sets 4BYTE address mode in
 602		 * CE0 Control Register
 603		 */
 604		if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
 605			ctl_val |= CTRL_IO_ADDRESS_4B;
 606	}
 607
 608	/* READ mode is the controller default setting */
 609	chip->ctl_val[ASPEED_SPI_READ] = ctl_val;
 610	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
 611
 612	ret = aspeed_spi_do_calibration(chip);
 613
 614	dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n",
 615		 chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]);
 616
 617	return ret;
 618}
 619
 620static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
 621				      u64 offset, size_t len, void *buf)
 622{
 623	struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->controller);
 624	struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(desc->mem->spi, 0)];
 625
 626	/* Switch to USER command mode if mapping window is too small */
 627	if (chip->ahb_window_size < offset + len) {
 628		int ret;
 629
 630		ret = aspeed_spi_read_user(chip, &desc->info.op_tmpl, offset, len, buf);
 631		if (ret < 0)
 632			return ret;
 633	} else {
 634		memcpy_fromio(buf, chip->ahb_base + offset, len);
 635	}
 636
 637	return len;
 638}
 639
 640static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
 641	.supports_op = aspeed_spi_supports_op,
 642	.exec_op = aspeed_spi_exec_op,
 643	.get_name = aspeed_spi_get_name,
 644	.dirmap_create = aspeed_spi_dirmap_create,
 645	.dirmap_read = aspeed_spi_dirmap_read,
 646};
 647
 648static void aspeed_spi_chip_set_type(struct aspeed_spi *aspi, unsigned int cs, int type)
 649{
 650	u32 reg;
 651
 652	reg = readl(aspi->regs + CONFIG_REG);
 653	reg &= ~(0x3 << (cs * 2));
 654	reg |= type << (cs * 2);
 655	writel(reg, aspi->regs + CONFIG_REG);
 656}
 657
 658static void aspeed_spi_chip_enable(struct aspeed_spi *aspi, unsigned int cs, bool enable)
 659{
 660	u32 we_bit = BIT(aspi->data->we0 + cs);
 661	u32 reg = readl(aspi->regs + CONFIG_REG);
 662
 663	if (enable)
 664		reg |= we_bit;
 665	else
 666		reg &= ~we_bit;
 667	writel(reg, aspi->regs + CONFIG_REG);
 668}
 669
 670static int aspeed_spi_setup(struct spi_device *spi)
 671{
 672	struct aspeed_spi *aspi = spi_controller_get_devdata(spi->controller);
 673	const struct aspeed_spi_data *data = aspi->data;
 674	unsigned int cs = spi_get_chipselect(spi, 0);
 675	struct aspeed_spi_chip *chip = &aspi->chips[cs];
 676
 677	chip->aspi = aspi;
 678	chip->cs = cs;
 679	chip->ctl = aspi->regs + data->ctl0 + cs * 4;
 680
 681	/* The driver only supports SPI type flash */
 682	if (data->hastype)
 683		aspeed_spi_chip_set_type(aspi, cs, CONFIG_TYPE_SPI);
 684
 685	if (aspeed_spi_chip_set_default_window(chip) < 0) {
 686		dev_warn(aspi->dev, "CE%d window invalid", cs);
 687		return -EINVAL;
 688	}
 689
 690	aspeed_spi_chip_enable(aspi, cs, true);
 691
 692	chip->ctl_val[ASPEED_SPI_BASE] = CTRL_CE_STOP_ACTIVE | CTRL_IO_MODE_USER;
 693
 694	dev_dbg(aspi->dev, "CE%d setup done\n", cs);
 695	return 0;
 696}
 697
 698static void aspeed_spi_cleanup(struct spi_device *spi)
 699{
 700	struct aspeed_spi *aspi = spi_controller_get_devdata(spi->controller);
 701	unsigned int cs = spi_get_chipselect(spi, 0);
 702
 703	aspeed_spi_chip_enable(aspi, cs, false);
 704
 705	dev_dbg(aspi->dev, "CE%d cleanup done\n", cs);
 706}
 707
 708static void aspeed_spi_enable(struct aspeed_spi *aspi, bool enable)
 709{
 710	int cs;
 711
 712	for (cs = 0; cs < aspi->data->max_cs; cs++)
 713		aspeed_spi_chip_enable(aspi, cs, enable);
 714}
 715
 716static int aspeed_spi_probe(struct platform_device *pdev)
 717{
 718	struct device *dev = &pdev->dev;
 719	const struct aspeed_spi_data *data;
 720	struct spi_controller *ctlr;
 721	struct aspeed_spi *aspi;
 722	struct resource *res;
 723	int ret;
 724
 725	data = of_device_get_match_data(&pdev->dev);
 726	if (!data)
 727		return -ENODEV;
 728
 729	ctlr = devm_spi_alloc_host(dev, sizeof(*aspi));
 730	if (!ctlr)
 731		return -ENOMEM;
 732
 733	aspi = spi_controller_get_devdata(ctlr);
 734	platform_set_drvdata(pdev, aspi);
 735	aspi->data = data;
 736	aspi->dev = dev;
 737
 738	aspi->regs = devm_platform_ioremap_resource(pdev, 0);
 739	if (IS_ERR(aspi->regs))
 740		return PTR_ERR(aspi->regs);
 741
 742	aspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res);
 743	if (IS_ERR(aspi->ahb_base)) {
 744		dev_err(dev, "missing AHB mapping window\n");
 745		return PTR_ERR(aspi->ahb_base);
 746	}
 747
 748	aspi->ahb_window_size = resource_size(res);
 749	aspi->ahb_base_phy = res->start;
 750
 751	aspi->clk = devm_clk_get_enabled(&pdev->dev, NULL);
 752	if (IS_ERR(aspi->clk)) {
 753		dev_err(dev, "missing clock\n");
 754		return PTR_ERR(aspi->clk);
 755	}
 756
 757	aspi->clk_freq = clk_get_rate(aspi->clk);
 758	if (!aspi->clk_freq) {
 759		dev_err(dev, "invalid clock\n");
 760		return -EINVAL;
 761	}
 762
 763	/* IRQ is for DMA, which the driver doesn't support yet */
 764
 765	ctlr->mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | data->mode_bits;
 766	ctlr->bus_num = pdev->id;
 767	ctlr->mem_ops = &aspeed_spi_mem_ops;
 768	ctlr->setup = aspeed_spi_setup;
 769	ctlr->cleanup = aspeed_spi_cleanup;
 770	ctlr->num_chipselect = data->max_cs;
 771	ctlr->dev.of_node = dev->of_node;
 772
 773	ret = devm_spi_register_controller(dev, ctlr);
 774	if (ret)
 775		dev_err(&pdev->dev, "spi_register_controller failed\n");
 776
 777	return ret;
 778}
 779
 780static void aspeed_spi_remove(struct platform_device *pdev)
 781{
 782	struct aspeed_spi *aspi = platform_get_drvdata(pdev);
 783
 784	aspeed_spi_enable(aspi, false);
 785}
 786
 787/*
 788 * AHB mappings
 789 */
 790
 791/*
 792 * The Segment Registers of the AST2400 and AST2500 use a 8MB unit.
 793 * The address range is encoded with absolute addresses in the overall
 794 * mapping window.
 795 */
 796static u32 aspeed_spi_segment_start(struct aspeed_spi *aspi, u32 reg)
 797{
 798	return ((reg >> 16) & 0xFF) << 23;
 799}
 800
 801static u32 aspeed_spi_segment_end(struct aspeed_spi *aspi, u32 reg)
 802{
 803	return ((reg >> 24) & 0xFF) << 23;
 804}
 805
 806static u32 aspeed_spi_segment_reg(struct aspeed_spi *aspi, u32 start, u32 end)
 807{
 808	return (((start >> 23) & 0xFF) << 16) | (((end >> 23) & 0xFF) << 24);
 809}
 810
 811/*
 812 * The Segment Registers of the AST2600 use a 1MB unit. The address
 813 * range is encoded with offsets in the overall mapping window.
 814 */
 815
 816#define AST2600_SEG_ADDR_MASK 0x0ff00000
 817
 818static u32 aspeed_spi_segment_ast2600_start(struct aspeed_spi *aspi,
 819					    u32 reg)
 820{
 821	u32 start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
 822
 823	return aspi->ahb_base_phy + start_offset;
 824}
 825
 826static u32 aspeed_spi_segment_ast2600_end(struct aspeed_spi *aspi,
 827					  u32 reg)
 828{
 829	u32 end_offset = reg & AST2600_SEG_ADDR_MASK;
 830
 831	/* segment is disabled */
 832	if (!end_offset)
 833		return aspi->ahb_base_phy;
 834
 835	return aspi->ahb_base_phy + end_offset + 0x100000;
 836}
 837
 838static u32 aspeed_spi_segment_ast2600_reg(struct aspeed_spi *aspi,
 839					  u32 start, u32 end)
 840{
 841	/* disable zero size segments */
 842	if (start == end)
 843		return 0;
 844
 845	return ((start & AST2600_SEG_ADDR_MASK) >> 16) |
 846		((end - 1) & AST2600_SEG_ADDR_MASK);
 847}
 848
 849/*
 850 * Read timing compensation sequences
 851 */
 852
 853#define CALIBRATE_BUF_SIZE SZ_16K
 854
 855static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip,
 856				   const u8 *golden_buf, u8 *test_buf)
 857{
 858	int i;
 859
 860	for (i = 0; i < 10; i++) {
 861		memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
 862		if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) {
 863#if defined(VERBOSE_DEBUG)
 864			print_hex_dump_bytes(DEVICE_NAME "  fail: ", DUMP_PREFIX_NONE,
 865					     test_buf, 0x100);
 866#endif
 867			return false;
 868		}
 869	}
 870	return true;
 871}
 872
 873#define FREAD_TPASS(i)	(((i) / 2) | (((i) & 1) ? 0 : 8))
 874
 875/*
 876 * The timing register is shared by all devices. Only update for CE0.
 877 */
 878static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
 879				const u8 *golden_buf, u8 *test_buf)
 880{
 881	struct aspeed_spi *aspi = chip->aspi;
 882	const struct aspeed_spi_data *data = aspi->data;
 883	int i;
 884	int good_pass = -1, pass_count = 0;
 885	u32 shift = (hdiv - 1) << 2;
 886	u32 mask = ~(0xfu << shift);
 887	u32 fread_timing_val = 0;
 888
 889	/* Try HCLK delay 0..5, each one with/without delay and look for a
 890	 * good pair.
 891	 */
 892	for (i = 0; i < 12; i++) {
 893		bool pass;
 894
 895		if (chip->cs == 0) {
 896			fread_timing_val &= mask;
 897			fread_timing_val |= FREAD_TPASS(i) << shift;
 898			writel(fread_timing_val, aspi->regs + data->timing);
 899		}
 900		pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
 901		dev_dbg(aspi->dev,
 902			"  * [%08x] %d HCLK delay, %dns DI delay : %s",
 903			fread_timing_val, i / 2, (i & 1) ? 0 : 4,
 904			pass ? "PASS" : "FAIL");
 905		if (pass) {
 906			pass_count++;
 907			if (pass_count == 3) {
 908				good_pass = i - 1;
 909				break;
 910			}
 911		} else {
 912			pass_count = 0;
 913		}
 914	}
 915
 916	/* No good setting for this frequency */
 917	if (good_pass < 0)
 918		return -1;
 919
 920	/* We have at least one pass of margin, let's use first pass */
 921	if (chip->cs == 0) {
 922		fread_timing_val &= mask;
 923		fread_timing_val |= FREAD_TPASS(good_pass) << shift;
 924		writel(fread_timing_val, aspi->regs + data->timing);
 925	}
 926	dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]",
 927		good_pass, fread_timing_val);
 928	return 0;
 929}
 930
 931static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size)
 932{
 933	const u32 *tb32 = (const u32 *)test_buf;
 934	u32 i, cnt = 0;
 935
 936	/* We check if we have enough words that are neither all 0
 937	 * nor all 1's so the calibration can be considered valid.
 938	 *
 939	 * I use an arbitrary threshold for now of 64
 940	 */
 941	size >>= 2;
 942	for (i = 0; i < size; i++) {
 943		if (tb32[i] != 0 && tb32[i] != 0xffffffff)
 944			cnt++;
 945	}
 946	return cnt >= 64;
 947}
 948
 949static const u32 aspeed_spi_hclk_divs[] = {
 950	0xf, /* HCLK */
 951	0x7, /* HCLK/2 */
 952	0xe, /* HCLK/3 */
 953	0x6, /* HCLK/4 */
 954	0xd, /* HCLK/5 */
 955};
 956
 957#define ASPEED_SPI_HCLK_DIV(i) \
 958	(aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT)
 959
 960static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip)
 961{
 962	struct aspeed_spi *aspi = chip->aspi;
 963	const struct aspeed_spi_data *data = aspi->data;
 964	u32 ahb_freq = aspi->clk_freq;
 965	u32 max_freq = chip->clk_freq;
 966	u32 ctl_val;
 967	u8 *golden_buf = NULL;
 968	u8 *test_buf = NULL;
 969	int i, rc, best_div = -1;
 970
 971	dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz",
 972		ahb_freq / 1000000);
 973
 974	/*
 975	 * use the related low frequency to get check calibration data
 976	 * and get golden data.
 977	 */
 978	ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask;
 979	writel(ctl_val, chip->ctl);
 980
 981	test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL);
 982	if (!test_buf)
 983		return -ENOMEM;
 984
 985	golden_buf = test_buf + CALIBRATE_BUF_SIZE;
 986
 987	memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
 988	if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) {
 989		dev_info(aspi->dev, "Calibration area too uniform, using low speed");
 990		goto no_calib;
 991	}
 992
 993#if defined(VERBOSE_DEBUG)
 994	print_hex_dump_bytes(DEVICE_NAME "  good: ", DUMP_PREFIX_NONE,
 995			     golden_buf, 0x100);
 996#endif
 997
 998	/* Now we iterate the HCLK dividers until we find our breaking point */
 999	for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) {
1000		u32 tv, freq;
1001
1002		freq = ahb_freq / i;
1003		if (freq > max_freq)
1004			continue;
1005
1006		/* Set the timing */
1007		tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i);
1008		writel(tv, chip->ctl);
1009		dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv);
1010		rc = data->calibrate(chip, i, golden_buf, test_buf);
1011		if (rc == 0)
1012			best_div = i;
1013	}
1014
1015	/* Nothing found ? */
1016	if (best_div < 0) {
1017		dev_warn(aspi->dev, "No good frequency, using dumb slow");
1018	} else {
1019		dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", best_div);
1020
1021		/* Record the freq */
1022		for (i = 0; i < ASPEED_SPI_MAX; i++)
1023			chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) |
1024				ASPEED_SPI_HCLK_DIV(best_div);
1025	}
1026
1027no_calib:
1028	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
1029	kfree(test_buf);
1030	return 0;
1031}
1032
1033#define TIMING_DELAY_DI		BIT(3)
1034#define TIMING_DELAY_HCYCLE_MAX	5
1035#define TIMING_REG_AST2600(chip)				\
1036	((chip)->aspi->regs + (chip)->aspi->data->timing +	\
1037	 (chip)->cs * 4)
1038
1039static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
1040					const u8 *golden_buf, u8 *test_buf)
1041{
1042	struct aspeed_spi *aspi = chip->aspi;
1043	int hcycle;
1044	u32 shift = (hdiv - 2) << 3;
1045	u32 mask = ~(0xfu << shift);
1046	u32 fread_timing_val = 0;
1047
1048	for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) {
1049		int delay_ns;
1050		bool pass = false;
1051
1052		fread_timing_val &= mask;
1053		fread_timing_val |= hcycle << shift;
1054
1055		/* no DI input delay first  */
1056		writel(fread_timing_val, TIMING_REG_AST2600(chip));
1057		pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1058		dev_dbg(aspi->dev,
1059			"  * [%08x] %d HCLK delay, DI delay none : %s",
1060			fread_timing_val, hcycle, pass ? "PASS" : "FAIL");
1061		if (pass)
1062			return 0;
1063
1064		/* Add DI input delays  */
1065		fread_timing_val &= mask;
1066		fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift;
1067
1068		for (delay_ns = 0; delay_ns < 0x10; delay_ns++) {
1069			fread_timing_val &= ~(0xf << (4 + shift));
1070			fread_timing_val |= delay_ns << (4 + shift);
1071
1072			writel(fread_timing_val, TIMING_REG_AST2600(chip));
1073			pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1074			dev_dbg(aspi->dev,
1075				"  * [%08x] %d HCLK delay, DI delay %d.%dns : %s",
1076				fread_timing_val, hcycle, (delay_ns + 1) / 2,
1077				(delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL");
1078			/*
1079			 * TODO: This is optimistic. We should look
1080			 * for a working interval and save the middle
1081			 * value in the read timing register.
1082			 */
1083			if (pass)
1084				return 0;
1085		}
1086	}
1087
1088	/* No good setting for this frequency */
1089	return -1;
1090}
1091
1092/*
1093 * Platform definitions
1094 */
1095static const struct aspeed_spi_data ast2400_fmc_data = {
1096	.max_cs	       = 5,
1097	.hastype       = true,
1098	.we0	       = 16,
1099	.ctl0	       = CE0_CTRL_REG,
1100	.timing	       = CE0_TIMING_COMPENSATION_REG,
1101	.hclk_mask     = 0xfffff0ff,
1102	.hdiv_max      = 1,
1103	.calibrate     = aspeed_spi_calibrate,
1104	.segment_start = aspeed_spi_segment_start,
1105	.segment_end   = aspeed_spi_segment_end,
1106	.segment_reg   = aspeed_spi_segment_reg,
1107};
1108
1109static const struct aspeed_spi_data ast2400_spi_data = {
1110	.max_cs	       = 1,
1111	.hastype       = false,
1112	.we0	       = 0,
1113	.ctl0	       = 0x04,
1114	.timing	       = 0x14,
1115	.hclk_mask     = 0xfffff0ff,
1116	.hdiv_max      = 1,
1117	.calibrate     = aspeed_spi_calibrate,
1118	/* No segment registers */
1119};
1120
1121static const struct aspeed_spi_data ast2500_fmc_data = {
1122	.max_cs	       = 3,
1123	.hastype       = true,
1124	.we0	       = 16,
1125	.ctl0	       = CE0_CTRL_REG,
1126	.timing	       = CE0_TIMING_COMPENSATION_REG,
1127	.hclk_mask     = 0xffffd0ff,
1128	.hdiv_max      = 1,
1129	.calibrate     = aspeed_spi_calibrate,
1130	.segment_start = aspeed_spi_segment_start,
1131	.segment_end   = aspeed_spi_segment_end,
1132	.segment_reg   = aspeed_spi_segment_reg,
1133};
1134
1135static const struct aspeed_spi_data ast2500_spi_data = {
1136	.max_cs	       = 2,
1137	.hastype       = false,
1138	.we0	       = 16,
1139	.ctl0	       = CE0_CTRL_REG,
1140	.timing	       = CE0_TIMING_COMPENSATION_REG,
1141	.hclk_mask     = 0xffffd0ff,
1142	.hdiv_max      = 1,
1143	.calibrate     = aspeed_spi_calibrate,
1144	.segment_start = aspeed_spi_segment_start,
1145	.segment_end   = aspeed_spi_segment_end,
1146	.segment_reg   = aspeed_spi_segment_reg,
1147};
1148
1149static const struct aspeed_spi_data ast2600_fmc_data = {
1150	.max_cs	       = 3,
1151	.hastype       = false,
1152	.mode_bits     = SPI_RX_QUAD | SPI_TX_QUAD,
1153	.we0	       = 16,
1154	.ctl0	       = CE0_CTRL_REG,
1155	.timing	       = CE0_TIMING_COMPENSATION_REG,
1156	.hclk_mask     = 0xf0fff0ff,
1157	.hdiv_max      = 2,
1158	.calibrate     = aspeed_spi_ast2600_calibrate,
1159	.segment_start = aspeed_spi_segment_ast2600_start,
1160	.segment_end   = aspeed_spi_segment_ast2600_end,
1161	.segment_reg   = aspeed_spi_segment_ast2600_reg,
1162};
1163
1164static const struct aspeed_spi_data ast2600_spi_data = {
1165	.max_cs	       = 2,
1166	.hastype       = false,
1167	.mode_bits     = SPI_RX_QUAD | SPI_TX_QUAD,
1168	.we0	       = 16,
1169	.ctl0	       = CE0_CTRL_REG,
1170	.timing	       = CE0_TIMING_COMPENSATION_REG,
1171	.hclk_mask     = 0xf0fff0ff,
1172	.hdiv_max      = 2,
1173	.calibrate     = aspeed_spi_ast2600_calibrate,
1174	.segment_start = aspeed_spi_segment_ast2600_start,
1175	.segment_end   = aspeed_spi_segment_ast2600_end,
1176	.segment_reg   = aspeed_spi_segment_ast2600_reg,
1177};
1178
1179static const struct of_device_id aspeed_spi_matches[] = {
1180	{ .compatible = "aspeed,ast2400-fmc", .data = &ast2400_fmc_data },
1181	{ .compatible = "aspeed,ast2400-spi", .data = &ast2400_spi_data },
1182	{ .compatible = "aspeed,ast2500-fmc", .data = &ast2500_fmc_data },
1183	{ .compatible = "aspeed,ast2500-spi", .data = &ast2500_spi_data },
1184	{ .compatible = "aspeed,ast2600-fmc", .data = &ast2600_fmc_data },
1185	{ .compatible = "aspeed,ast2600-spi", .data = &ast2600_spi_data },
1186	{ }
1187};
1188MODULE_DEVICE_TABLE(of, aspeed_spi_matches);
1189
1190static struct platform_driver aspeed_spi_driver = {
1191	.probe			= aspeed_spi_probe,
1192	.remove_new		= aspeed_spi_remove,
1193	.driver	= {
1194		.name		= DEVICE_NAME,
1195		.of_match_table = aspeed_spi_matches,
1196	}
1197};
1198
1199module_platform_driver(aspeed_spi_driver);
1200
1201MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
1202MODULE_AUTHOR("Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>");
1203MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
1204MODULE_LICENSE("GPL v2");