Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Suspend support specific for i386/x86-64.
  4 *
 
 
  5 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
  6 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
  7 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
  8 */
  9
 10#include <linux/suspend.h>
 11#include <linux/export.h>
 12#include <linux/smp.h>
 13#include <linux/perf_event.h>
 14#include <linux/tboot.h>
 15#include <linux/dmi.h>
 16#include <linux/pgtable.h>
 17
 
 18#include <asm/proto.h>
 19#include <asm/mtrr.h>
 20#include <asm/page.h>
 21#include <asm/mce.h>
 22#include <asm/suspend.h>
 23#include <asm/fpu/api.h>
 24#include <asm/debugreg.h>
 25#include <asm/cpu.h>
 26#include <asm/cacheinfo.h>
 27#include <asm/mmu_context.h>
 28#include <asm/cpu_device_id.h>
 29#include <asm/microcode.h>
 30
 31#ifdef CONFIG_X86_32
 32__visible unsigned long saved_context_ebx;
 33__visible unsigned long saved_context_esp, saved_context_ebp;
 34__visible unsigned long saved_context_esi, saved_context_edi;
 35__visible unsigned long saved_context_eflags;
 36#endif
 37struct saved_context saved_context;
 38
 39static void msr_save_context(struct saved_context *ctxt)
 40{
 41	struct saved_msr *msr = ctxt->saved_msrs.array;
 42	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 43
 44	while (msr < end) {
 45		if (msr->valid)
 46			rdmsrl(msr->info.msr_no, msr->info.reg.q);
 47		msr++;
 48	}
 49}
 50
 51static void msr_restore_context(struct saved_context *ctxt)
 52{
 53	struct saved_msr *msr = ctxt->saved_msrs.array;
 54	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 55
 56	while (msr < end) {
 57		if (msr->valid)
 58			wrmsrl(msr->info.msr_no, msr->info.reg.q);
 59		msr++;
 60	}
 61}
 62
 63/**
 64 * __save_processor_state() - Save CPU registers before creating a
 65 *                             hibernation image and before restoring
 66 *                             the memory state from it
 67 * @ctxt: Structure to store the registers contents in.
 68 *
 69 * NOTE: If there is a CPU register the modification of which by the
 70 * boot kernel (ie. the kernel used for loading the hibernation image)
 71 * might affect the operations of the restored target kernel (ie. the one
 72 * saved in the hibernation image), then its contents must be saved by this
 73 * function.  In other words, if kernel A is hibernated and different
 74 * kernel B is used for loading the hibernation image into memory, the
 75 * kernel A's __save_processor_state() function must save all registers
 76 * needed by kernel A, so that it can operate correctly after the resume
 77 * regardless of what kernel B does in the meantime.
 78 */
 79static void __save_processor_state(struct saved_context *ctxt)
 80{
 81#ifdef CONFIG_X86_32
 82	mtrr_save_fixed_ranges(NULL);
 83#endif
 84	kernel_fpu_begin();
 85
 86	/*
 87	 * descriptor tables
 88	 */
 
 89	store_idt(&ctxt->idt);
 90
 
 
 
 91	/*
 92	 * We save it here, but restore it only in the hibernate case.
 93	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
 94	 * mode in "secondary_startup_64". In 32-bit mode it is done via
 95	 * 'pmode_gdt' in wakeup_start.
 96	 */
 97	ctxt->gdt_desc.size = GDT_SIZE - 1;
 98	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_rw(smp_processor_id());
 99
100	store_tr(ctxt->tr);
101
102	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
103	/*
104	 * segment registers
105	 */
106	savesegment(gs, ctxt->gs);
107#ifdef CONFIG_X86_64
108	savesegment(fs, ctxt->fs);
109	savesegment(ds, ctxt->ds);
110	savesegment(es, ctxt->es);
 
 
 
 
 
 
 
 
 
 
111
112	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
113	rdmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
114	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
115	mtrr_save_fixed_ranges(NULL);
116
117	rdmsrl(MSR_EFER, ctxt->efer);
118#endif
119
120	/*
121	 * control registers
122	 */
123	ctxt->cr0 = read_cr0();
124	ctxt->cr2 = read_cr2();
125	ctxt->cr3 = __read_cr3();
126	ctxt->cr4 = __read_cr4();
 
 
 
127	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
128					       &ctxt->misc_enable);
129	msr_save_context(ctxt);
130}
131
132/* Needed by apm.c */
133void save_processor_state(void)
134{
135	__save_processor_state(&saved_context);
136	x86_platform.save_sched_clock_state();
137}
138#ifdef CONFIG_X86_32
139EXPORT_SYMBOL(save_processor_state);
140#endif
141
142static void do_fpu_end(void)
143{
144	/*
145	 * Restore FPU regs if necessary.
146	 */
147	kernel_fpu_end();
148}
149
150static void fix_processor_context(void)
151{
152	int cpu = smp_processor_id();
 
153#ifdef CONFIG_X86_64
154	struct desc_struct *desc = get_cpu_gdt_rw(cpu);
155	tss_desc tss;
156#endif
157
158	/*
159	 * We need to reload TR, which requires that we change the
160	 * GDT entry to indicate "available" first.
161	 *
162	 * XXX: This could probably all be replaced by a call to
163	 * force_reload_TR().
164	 */
165	set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
166
167#ifdef CONFIG_X86_64
168	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
169	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
170	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
171
172	syscall_init();				/* This sets MSR_*STAR and related */
173#else
174	if (boot_cpu_has(X86_FEATURE_SEP))
175		enable_sep_cpu();
176#endif
177	load_TR_desc();				/* This does ltr */
178	load_mm_ldt(current->active_mm);	/* This does lldt */
179	initialize_tlbstate_and_flush();
180
181	fpu__resume_cpu();
182
183	/* The processor is back on the direct GDT, load back the fixmap */
184	load_fixmap_gdt(cpu);
185}
186
187/**
188 * __restore_processor_state() - Restore the contents of CPU registers saved
189 *                               by __save_processor_state()
190 * @ctxt: Structure to load the registers contents from.
191 *
192 * The asm code that gets us here will have restored a usable GDT, although
193 * it will be pointing to the wrong alias.
194 */
195static void notrace __restore_processor_state(struct saved_context *ctxt)
196{
197	struct cpuinfo_x86 *c;
198
199	if (ctxt->misc_enable_saved)
200		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
201	/*
202	 * control registers
203	 */
204	/* cr4 was introduced in the Pentium CPU */
205#ifdef CONFIG_X86_32
206	if (ctxt->cr4)
207		__write_cr4(ctxt->cr4);
208#else
209/* CONFIG X86_64 */
210	wrmsrl(MSR_EFER, ctxt->efer);
 
211	__write_cr4(ctxt->cr4);
212#endif
213	write_cr3(ctxt->cr3);
214	write_cr2(ctxt->cr2);
215	write_cr0(ctxt->cr0);
216
217	/* Restore the IDT. */
218	load_idt(&ctxt->idt);
219
220	/*
221	 * Just in case the asm code got us here with the SS, DS, or ES
222	 * out of sync with the GDT, update them.
223	 */
224	loadsegment(ss, __KERNEL_DS);
225	loadsegment(ds, __USER_DS);
226	loadsegment(es, __USER_DS);
227
228	/*
229	 * Restore percpu access.  Percpu access can happen in exception
230	 * handlers or in complicated helpers like load_gs_index().
231	 */
232#ifdef CONFIG_X86_64
233	wrmsrl(MSR_GS_BASE, ctxt->kernelmode_gs_base);
234#else
235	loadsegment(fs, __KERNEL_PERCPU);
 
236#endif
237
238	/* Restore the TSS, RO GDT, LDT, and usermode-relevant MSRs. */
239	fix_processor_context();
240
241	/*
242	 * Now that we have descriptor tables fully restored and working
243	 * exception handling, restore the usermode segments.
244	 */
245#ifdef CONFIG_X86_64
246	loadsegment(ds, ctxt->es);
247	loadsegment(es, ctxt->es);
248	loadsegment(fs, ctxt->fs);
249	load_gs_index(ctxt->gs);
 
250
251	/*
252	 * Restore FSBASE and GSBASE after restoring the selectors, since
253	 * restoring the selectors clobbers the bases.  Keep in mind
254	 * that MSR_KERNEL_GS_BASE is horribly misnamed.
255	 */
256	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
257	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->usermode_gs_base);
258#else
259	loadsegment(gs, ctxt->gs);
 
 
 
 
 
 
 
 
 
260#endif
261
 
 
262	do_fpu_end();
263	tsc_verify_tsc_adjust(true);
264	x86_platform.restore_sched_clock_state();
265	cache_bp_restore();
266	perf_restore_debug_store();
267
268	c = &cpu_data(smp_processor_id());
269	if (cpu_has(c, X86_FEATURE_MSR_IA32_FEAT_CTL))
270		init_ia32_feat_ctl(c);
271
272	microcode_bsp_resume();
273
274	/*
275	 * This needs to happen after the microcode has been updated upon resume
276	 * because some of the MSRs are "emulated" in microcode.
277	 */
278	msr_restore_context(ctxt);
279}
280
281/* Needed by apm.c */
282void notrace restore_processor_state(void)
283{
284	__restore_processor_state(&saved_context);
285}
286#ifdef CONFIG_X86_32
287EXPORT_SYMBOL(restore_processor_state);
288#endif
289
290#if defined(CONFIG_HIBERNATION) && defined(CONFIG_HOTPLUG_CPU)
291static void __noreturn resume_play_dead(void)
292{
293	play_dead_common();
294	tboot_shutdown(TB_SHUTDOWN_WFS);
295	hlt_play_dead();
296}
297
298int hibernate_resume_nonboot_cpu_disable(void)
299{
300	void (*play_dead)(void) = smp_ops.play_dead;
301	int ret;
302
303	/*
304	 * Ensure that MONITOR/MWAIT will not be used in the "play dead" loop
305	 * during hibernate image restoration, because it is likely that the
306	 * monitored address will be actually written to at that time and then
307	 * the "dead" CPU will attempt to execute instructions again, but the
308	 * address in its instruction pointer may not be possible to resolve
309	 * any more at that point (the page tables used by it previously may
310	 * have been overwritten by hibernate image data).
311	 *
312	 * First, make sure that we wake up all the potentially disabled SMT
313	 * threads which have been initially brought up and then put into
314	 * mwait/cpuidle sleep.
315	 * Those will be put to proper (not interfering with hibernation
316	 * resume) sleep afterwards, and the resumed kernel will decide itself
317	 * what to do with them.
318	 */
319	ret = cpuhp_smt_enable();
320	if (ret)
321		return ret;
322	smp_ops.play_dead = resume_play_dead;
323	ret = freeze_secondary_cpus(0);
324	smp_ops.play_dead = play_dead;
325	return ret;
326}
327#endif
328
329/*
330 * When bsp_check() is called in hibernate and suspend, cpu hotplug
331 * is disabled already. So it's unnecessary to handle race condition between
332 * cpumask query and cpu hotplug.
333 */
334static int bsp_check(void)
335{
336	if (cpumask_first(cpu_online_mask) != 0) {
337		pr_warn("CPU0 is offline.\n");
338		return -ENODEV;
339	}
340
341	return 0;
342}
343
344static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
345			   void *ptr)
346{
347	int ret = 0;
348
349	switch (action) {
350	case PM_SUSPEND_PREPARE:
351	case PM_HIBERNATION_PREPARE:
352		ret = bsp_check();
353		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
354	default:
355		break;
356	}
357	return notifier_from_errno(ret);
358}
359
360static int __init bsp_pm_check_init(void)
361{
362	/*
363	 * Set this bsp_pm_callback as lower priority than
364	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
365	 * earlier to disable cpu hotplug before bsp online check.
366	 */
367	pm_notifier(bsp_pm_callback, -INT_MAX);
368	return 0;
369}
370
371core_initcall(bsp_pm_check_init);
372
373static int msr_build_context(const u32 *msr_id, const int num)
374{
375	struct saved_msrs *saved_msrs = &saved_context.saved_msrs;
376	struct saved_msr *msr_array;
377	int total_num;
378	int i, j;
379
380	total_num = saved_msrs->num + num;
 
 
 
381
382	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
383	if (!msr_array) {
384		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
385		return -ENOMEM;
386	}
387
388	if (saved_msrs->array) {
389		/*
390		 * Multiple callbacks can invoke this function, so copy any
391		 * MSR save requests from previous invocations.
392		 */
393		memcpy(msr_array, saved_msrs->array,
394		       sizeof(struct saved_msr) * saved_msrs->num);
395
396		kfree(saved_msrs->array);
397	}
398
399	for (i = saved_msrs->num, j = 0; i < total_num; i++, j++) {
400		u64 dummy;
401
402		msr_array[i].info.msr_no	= msr_id[j];
403		msr_array[i].valid		= !rdmsrl_safe(msr_id[j], &dummy);
404		msr_array[i].info.reg.q		= 0;
405	}
406	saved_msrs->num   = total_num;
407	saved_msrs->array = msr_array;
408
409	return 0;
410}
411
412/*
413 * The following sections are a quirk framework for problematic BIOSen:
414 * Sometimes MSRs are modified by the BIOSen after suspended to
415 * RAM, this might cause unexpected behavior after wakeup.
416 * Thus we save/restore these specified MSRs across suspend/resume
417 * in order to work around it.
418 *
419 * For any further problematic BIOSen/platforms,
420 * please add your own function similar to msr_initialize_bdw.
421 */
422static int msr_initialize_bdw(const struct dmi_system_id *d)
423{
424	/* Add any extra MSR ids into this array. */
425	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
426
427	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
428	return msr_build_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
429}
430
431static const struct dmi_system_id msr_save_dmi_table[] = {
432	{
433	 .callback = msr_initialize_bdw,
434	 .ident = "BROADWELL BDX_EP",
435	 .matches = {
436		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
437		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
438		},
439	},
440	{}
441};
442
443static int msr_save_cpuid_features(const struct x86_cpu_id *c)
444{
445	u32 cpuid_msr_id[] = {
446		MSR_AMD64_CPUID_FN_1,
447	};
448
449	pr_info("x86/pm: family %#hx cpu detected, MSR saving is needed during suspending.\n",
450		c->family);
451
452	return msr_build_context(cpuid_msr_id, ARRAY_SIZE(cpuid_msr_id));
453}
454
455static const struct x86_cpu_id msr_save_cpu_table[] = {
456	X86_MATCH_VENDOR_FAM(AMD, 0x15, &msr_save_cpuid_features),
457	X86_MATCH_VENDOR_FAM(AMD, 0x16, &msr_save_cpuid_features),
458	{}
459};
460
461typedef int (*pm_cpu_match_t)(const struct x86_cpu_id *);
462static int pm_cpu_check(const struct x86_cpu_id *c)
463{
464	const struct x86_cpu_id *m;
465	int ret = 0;
466
467	m = x86_match_cpu(msr_save_cpu_table);
468	if (m) {
469		pm_cpu_match_t fn;
470
471		fn = (pm_cpu_match_t)m->driver_data;
472		ret = fn(m);
473	}
474
475	return ret;
476}
477
478static void pm_save_spec_msr(void)
479{
480	struct msr_enumeration {
481		u32 msr_no;
482		u32 feature;
483	} msr_enum[] = {
484		{ MSR_IA32_SPEC_CTRL,	 X86_FEATURE_MSR_SPEC_CTRL },
485		{ MSR_IA32_TSX_CTRL,	 X86_FEATURE_MSR_TSX_CTRL },
486		{ MSR_TSX_FORCE_ABORT,	 X86_FEATURE_TSX_FORCE_ABORT },
487		{ MSR_IA32_MCU_OPT_CTRL, X86_FEATURE_SRBDS_CTRL },
488		{ MSR_AMD64_LS_CFG,	 X86_FEATURE_LS_CFG_SSBD },
489		{ MSR_AMD64_DE_CFG,	 X86_FEATURE_LFENCE_RDTSC },
490	};
491	int i;
492
493	for (i = 0; i < ARRAY_SIZE(msr_enum); i++) {
494		if (boot_cpu_has(msr_enum[i].feature))
495			msr_build_context(&msr_enum[i].msr_no, 1);
496	}
497}
498
499static int pm_check_save_msr(void)
500{
501	dmi_check_system(msr_save_dmi_table);
502	pm_cpu_check(msr_save_cpu_table);
503	pm_save_spec_msr();
504
505	return 0;
506}
507
508device_initcall(pm_check_save_msr);
v4.6
 
  1/*
  2 * Suspend support specific for i386/x86-64.
  3 *
  4 * Distribute under GPLv2
  5 *
  6 * Copyright (c) 2007 Rafael J. Wysocki <rjw@sisk.pl>
  7 * Copyright (c) 2002 Pavel Machek <pavel@ucw.cz>
  8 * Copyright (c) 2001 Patrick Mochel <mochel@osdl.org>
  9 */
 10
 11#include <linux/suspend.h>
 12#include <linux/export.h>
 13#include <linux/smp.h>
 14#include <linux/perf_event.h>
 
 
 
 15
 16#include <asm/pgtable.h>
 17#include <asm/proto.h>
 18#include <asm/mtrr.h>
 19#include <asm/page.h>
 20#include <asm/mce.h>
 21#include <asm/suspend.h>
 22#include <asm/fpu/internal.h>
 23#include <asm/debugreg.h>
 24#include <asm/cpu.h>
 
 25#include <asm/mmu_context.h>
 26#include <linux/dmi.h>
 
 27
 28#ifdef CONFIG_X86_32
 29__visible unsigned long saved_context_ebx;
 30__visible unsigned long saved_context_esp, saved_context_ebp;
 31__visible unsigned long saved_context_esi, saved_context_edi;
 32__visible unsigned long saved_context_eflags;
 33#endif
 34struct saved_context saved_context;
 35
 36static void msr_save_context(struct saved_context *ctxt)
 37{
 38	struct saved_msr *msr = ctxt->saved_msrs.array;
 39	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 40
 41	while (msr < end) {
 42		msr->valid = !rdmsrl_safe(msr->info.msr_no, &msr->info.reg.q);
 
 43		msr++;
 44	}
 45}
 46
 47static void msr_restore_context(struct saved_context *ctxt)
 48{
 49	struct saved_msr *msr = ctxt->saved_msrs.array;
 50	struct saved_msr *end = msr + ctxt->saved_msrs.num;
 51
 52	while (msr < end) {
 53		if (msr->valid)
 54			wrmsrl(msr->info.msr_no, msr->info.reg.q);
 55		msr++;
 56	}
 57}
 58
 59/**
 60 *	__save_processor_state - save CPU registers before creating a
 61 *		hibernation image and before restoring the memory state from it
 62 *	@ctxt - structure to store the registers contents in
 
 63 *
 64 *	NOTE: If there is a CPU register the modification of which by the
 65 *	boot kernel (ie. the kernel used for loading the hibernation image)
 66 *	might affect the operations of the restored target kernel (ie. the one
 67 *	saved in the hibernation image), then its contents must be saved by this
 68 *	function.  In other words, if kernel A is hibernated and different
 69 *	kernel B is used for loading the hibernation image into memory, the
 70 *	kernel A's __save_processor_state() function must save all registers
 71 *	needed by kernel A, so that it can operate correctly after the resume
 72 *	regardless of what kernel B does in the meantime.
 73 */
 74static void __save_processor_state(struct saved_context *ctxt)
 75{
 76#ifdef CONFIG_X86_32
 77	mtrr_save_fixed_ranges(NULL);
 78#endif
 79	kernel_fpu_begin();
 80
 81	/*
 82	 * descriptor tables
 83	 */
 84#ifdef CONFIG_X86_32
 85	store_idt(&ctxt->idt);
 86#else
 87/* CONFIG_X86_64 */
 88	store_idt((struct desc_ptr *)&ctxt->idt_limit);
 89#endif
 90	/*
 91	 * We save it here, but restore it only in the hibernate case.
 92	 * For ACPI S3 resume, this is loaded via 'early_gdt_desc' in 64-bit
 93	 * mode in "secondary_startup_64". In 32-bit mode it is done via
 94	 * 'pmode_gdt' in wakeup_start.
 95	 */
 96	ctxt->gdt_desc.size = GDT_SIZE - 1;
 97	ctxt->gdt_desc.address = (unsigned long)get_cpu_gdt_table(smp_processor_id());
 98
 99	store_tr(ctxt->tr);
100
101	/* XMM0..XMM15 should be handled by kernel_fpu_begin(). */
102	/*
103	 * segment registers
104	 */
105#ifdef CONFIG_X86_32
 
 
 
106	savesegment(es, ctxt->es);
107	savesegment(fs, ctxt->fs);
108	savesegment(gs, ctxt->gs);
109	savesegment(ss, ctxt->ss);
110#else
111/* CONFIG_X86_64 */
112	asm volatile ("movw %%ds, %0" : "=m" (ctxt->ds));
113	asm volatile ("movw %%es, %0" : "=m" (ctxt->es));
114	asm volatile ("movw %%fs, %0" : "=m" (ctxt->fs));
115	asm volatile ("movw %%gs, %0" : "=m" (ctxt->gs));
116	asm volatile ("movw %%ss, %0" : "=m" (ctxt->ss));
117
118	rdmsrl(MSR_FS_BASE, ctxt->fs_base);
119	rdmsrl(MSR_GS_BASE, ctxt->gs_base);
120	rdmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
121	mtrr_save_fixed_ranges(NULL);
122
123	rdmsrl(MSR_EFER, ctxt->efer);
124#endif
125
126	/*
127	 * control registers
128	 */
129	ctxt->cr0 = read_cr0();
130	ctxt->cr2 = read_cr2();
131	ctxt->cr3 = read_cr3();
132	ctxt->cr4 = __read_cr4_safe();
133#ifdef CONFIG_X86_64
134	ctxt->cr8 = read_cr8();
135#endif
136	ctxt->misc_enable_saved = !rdmsrl_safe(MSR_IA32_MISC_ENABLE,
137					       &ctxt->misc_enable);
138	msr_save_context(ctxt);
139}
140
141/* Needed by apm.c */
142void save_processor_state(void)
143{
144	__save_processor_state(&saved_context);
145	x86_platform.save_sched_clock_state();
146}
147#ifdef CONFIG_X86_32
148EXPORT_SYMBOL(save_processor_state);
149#endif
150
151static void do_fpu_end(void)
152{
153	/*
154	 * Restore FPU regs if necessary.
155	 */
156	kernel_fpu_end();
157}
158
159static void fix_processor_context(void)
160{
161	int cpu = smp_processor_id();
162	struct tss_struct *t = &per_cpu(cpu_tss, cpu);
163#ifdef CONFIG_X86_64
164	struct desc_struct *desc = get_cpu_gdt_table(cpu);
165	tss_desc tss;
166#endif
167	set_tss_desc(cpu, t);	/*
168				 * This just modifies memory; should not be
169				 * necessary. But... This is necessary, because
170				 * 386 hardware has concept of busy TSS or some
171				 * similar stupidity.
172				 */
 
 
 
173
174#ifdef CONFIG_X86_64
175	memcpy(&tss, &desc[GDT_ENTRY_TSS], sizeof(tss_desc));
176	tss.type = 0x9; /* The available 64-bit TSS (see AMD vol 2, pg 91 */
177	write_gdt_entry(desc, GDT_ENTRY_TSS, &tss, DESC_TSS);
178
179	syscall_init();				/* This sets MSR_*STAR and related */
 
 
 
180#endif
181	load_TR_desc();				/* This does ltr */
182	load_mm_ldt(current->active_mm);	/* This does lldt */
 
183
184	fpu__resume_cpu();
 
 
 
185}
186
187/**
188 *	__restore_processor_state - restore the contents of CPU registers saved
189 *		by __save_processor_state()
190 *	@ctxt - structure to load the registers contents from
 
 
 
191 */
192static void notrace __restore_processor_state(struct saved_context *ctxt)
193{
 
 
194	if (ctxt->misc_enable_saved)
195		wrmsrl(MSR_IA32_MISC_ENABLE, ctxt->misc_enable);
196	/*
197	 * control registers
198	 */
199	/* cr4 was introduced in the Pentium CPU */
200#ifdef CONFIG_X86_32
201	if (ctxt->cr4)
202		__write_cr4(ctxt->cr4);
203#else
204/* CONFIG X86_64 */
205	wrmsrl(MSR_EFER, ctxt->efer);
206	write_cr8(ctxt->cr8);
207	__write_cr4(ctxt->cr4);
208#endif
209	write_cr3(ctxt->cr3);
210	write_cr2(ctxt->cr2);
211	write_cr0(ctxt->cr0);
212
 
 
 
213	/*
214	 * now restore the descriptor tables to their proper values
215	 * ltr is done i fix_processor_context().
216	 */
217#ifdef CONFIG_X86_32
218	load_idt(&ctxt->idt);
 
 
 
 
 
 
 
 
219#else
220/* CONFIG_X86_64 */
221	load_idt((const struct desc_ptr *)&ctxt->idt_limit);
222#endif
223
 
 
 
224	/*
225	 * segment registers
 
226	 */
227#ifdef CONFIG_X86_32
 
228	loadsegment(es, ctxt->es);
229	loadsegment(fs, ctxt->fs);
230	loadsegment(gs, ctxt->gs);
231	loadsegment(ss, ctxt->ss);
232
233	/*
234	 * sysenter MSRs
 
 
235	 */
236	if (boot_cpu_has(X86_FEATURE_SEP))
237		enable_sep_cpu();
238#else
239/* CONFIG_X86_64 */
240	asm volatile ("movw %0, %%ds" :: "r" (ctxt->ds));
241	asm volatile ("movw %0, %%es" :: "r" (ctxt->es));
242	asm volatile ("movw %0, %%fs" :: "r" (ctxt->fs));
243	load_gs_index(ctxt->gs);
244	asm volatile ("movw %0, %%ss" :: "r" (ctxt->ss));
245
246	wrmsrl(MSR_FS_BASE, ctxt->fs_base);
247	wrmsrl(MSR_GS_BASE, ctxt->gs_base);
248	wrmsrl(MSR_KERNEL_GS_BASE, ctxt->gs_kernel_base);
249#endif
250
251	fix_processor_context();
252
253	do_fpu_end();
 
254	x86_platform.restore_sched_clock_state();
255	mtrr_bp_restore();
256	perf_restore_debug_store();
 
 
 
 
 
 
 
 
 
 
 
257	msr_restore_context(ctxt);
258}
259
260/* Needed by apm.c */
261void notrace restore_processor_state(void)
262{
263	__restore_processor_state(&saved_context);
264}
265#ifdef CONFIG_X86_32
266EXPORT_SYMBOL(restore_processor_state);
267#endif
268
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269/*
270 * When bsp_check() is called in hibernate and suspend, cpu hotplug
271 * is disabled already. So it's unnessary to handle race condition between
272 * cpumask query and cpu hotplug.
273 */
274static int bsp_check(void)
275{
276	if (cpumask_first(cpu_online_mask) != 0) {
277		pr_warn("CPU0 is offline.\n");
278		return -ENODEV;
279	}
280
281	return 0;
282}
283
284static int bsp_pm_callback(struct notifier_block *nb, unsigned long action,
285			   void *ptr)
286{
287	int ret = 0;
288
289	switch (action) {
290	case PM_SUSPEND_PREPARE:
291	case PM_HIBERNATION_PREPARE:
292		ret = bsp_check();
293		break;
294#ifdef CONFIG_DEBUG_HOTPLUG_CPU0
295	case PM_RESTORE_PREPARE:
296		/*
297		 * When system resumes from hibernation, online CPU0 because
298		 * 1. it's required for resume and
299		 * 2. the CPU was online before hibernation
300		 */
301		if (!cpu_online(0))
302			_debug_hotplug_cpu(0, 1);
303		break;
304	case PM_POST_RESTORE:
305		/*
306		 * When a resume really happens, this code won't be called.
307		 *
308		 * This code is called only when user space hibernation software
309		 * prepares for snapshot device during boot time. So we just
310		 * call _debug_hotplug_cpu() to restore to CPU0's state prior to
311		 * preparing the snapshot device.
312		 *
313		 * This works for normal boot case in our CPU0 hotplug debug
314		 * mode, i.e. CPU0 is offline and user mode hibernation
315		 * software initializes during boot time.
316		 *
317		 * If CPU0 is online and user application accesses snapshot
318		 * device after boot time, this will offline CPU0 and user may
319		 * see different CPU0 state before and after accessing
320		 * the snapshot device. But hopefully this is not a case when
321		 * user debugging CPU0 hotplug. Even if users hit this case,
322		 * they can easily online CPU0 back.
323		 *
324		 * To simplify this debug code, we only consider normal boot
325		 * case. Otherwise we need to remember CPU0's state and restore
326		 * to that state and resolve racy conditions etc.
327		 */
328		_debug_hotplug_cpu(0, 0);
329		break;
330#endif
331	default:
332		break;
333	}
334	return notifier_from_errno(ret);
335}
336
337static int __init bsp_pm_check_init(void)
338{
339	/*
340	 * Set this bsp_pm_callback as lower priority than
341	 * cpu_hotplug_pm_callback. So cpu_hotplug_pm_callback will be called
342	 * earlier to disable cpu hotplug before bsp online check.
343	 */
344	pm_notifier(bsp_pm_callback, -INT_MAX);
345	return 0;
346}
347
348core_initcall(bsp_pm_check_init);
349
350static int msr_init_context(const u32 *msr_id, const int total_num)
351{
352	int i = 0;
353	struct saved_msr *msr_array;
 
 
354
355	if (saved_context.saved_msrs.array || saved_context.saved_msrs.num > 0) {
356		pr_err("x86/pm: MSR quirk already applied, please check your DMI match table.\n");
357		return -EINVAL;
358	}
359
360	msr_array = kmalloc_array(total_num, sizeof(struct saved_msr), GFP_KERNEL);
361	if (!msr_array) {
362		pr_err("x86/pm: Can not allocate memory to save/restore MSRs during suspend.\n");
363		return -ENOMEM;
364	}
365
366	for (i = 0; i < total_num; i++) {
367		msr_array[i].info.msr_no	= msr_id[i];
368		msr_array[i].valid		= false;
 
 
 
 
 
 
 
 
 
 
 
 
 
369		msr_array[i].info.reg.q		= 0;
370	}
371	saved_context.saved_msrs.num	= total_num;
372	saved_context.saved_msrs.array	= msr_array;
373
374	return 0;
375}
376
377/*
378 * The following section is a quirk framework for problematic BIOSen:
379 * Sometimes MSRs are modified by the BIOSen after suspended to
380 * RAM, this might cause unexpected behavior after wakeup.
381 * Thus we save/restore these specified MSRs across suspend/resume
382 * in order to work around it.
383 *
384 * For any further problematic BIOSen/platforms,
385 * please add your own function similar to msr_initialize_bdw.
386 */
387static int msr_initialize_bdw(const struct dmi_system_id *d)
388{
389	/* Add any extra MSR ids into this array. */
390	u32 bdw_msr_id[] = { MSR_IA32_THERM_CONTROL };
391
392	pr_info("x86/pm: %s detected, MSR saving is needed during suspending.\n", d->ident);
393	return msr_init_context(bdw_msr_id, ARRAY_SIZE(bdw_msr_id));
394}
395
396static struct dmi_system_id msr_save_dmi_table[] = {
397	{
398	 .callback = msr_initialize_bdw,
399	 .ident = "BROADWELL BDX_EP",
400	 .matches = {
401		DMI_MATCH(DMI_PRODUCT_NAME, "GRANTLEY"),
402		DMI_MATCH(DMI_PRODUCT_VERSION, "E63448-400"),
403		},
404	},
405	{}
406};
407
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
408static int pm_check_save_msr(void)
409{
410	dmi_check_system(msr_save_dmi_table);
 
 
 
411	return 0;
412}
413
414device_initcall(pm_check_save_msr);