Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		The User Datagram Protocol (UDP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  12 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  13 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  14 *
  15 * Fixes:
  16 *		Alan Cox	:	verify_area() calls
  17 *		Alan Cox	: 	stopped close while in use off icmp
  18 *					messages. Not a fix but a botch that
  19 *					for udp at least is 'valid'.
  20 *		Alan Cox	:	Fixed icmp handling properly
  21 *		Alan Cox	: 	Correct error for oversized datagrams
  22 *		Alan Cox	:	Tidied select() semantics.
  23 *		Alan Cox	:	udp_err() fixed properly, also now
  24 *					select and read wake correctly on errors
  25 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
  26 *		Alan Cox	:	UDP can count its memory
  27 *		Alan Cox	:	send to an unknown connection causes
  28 *					an ECONNREFUSED off the icmp, but
  29 *					does NOT close.
  30 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
  31 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
  32 *					bug no longer crashes it.
  33 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
  34 *		Alan Cox	:	Uses skb_free_datagram
  35 *		Alan Cox	:	Added get/set sockopt support.
  36 *		Alan Cox	:	Broadcasting without option set returns EACCES.
  37 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
  38 *		Alan Cox	:	Use ip_tos and ip_ttl
  39 *		Alan Cox	:	SNMP Mibs
  40 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
  41 *		Matt Dillon	:	UDP length checks.
  42 *		Alan Cox	:	Smarter af_inet used properly.
  43 *		Alan Cox	:	Use new kernel side addressing.
  44 *		Alan Cox	:	Incorrect return on truncated datagram receive.
  45 *	Arnt Gulbrandsen 	:	New udp_send and stuff
  46 *		Alan Cox	:	Cache last socket
  47 *		Alan Cox	:	Route cache
  48 *		Jon Peatfield	:	Minor efficiency fix to sendto().
  49 *		Mike Shaver	:	RFC1122 checks.
  50 *		Alan Cox	:	Nonblocking error fix.
  51 *	Willy Konynenberg	:	Transparent proxying support.
  52 *		Mike McLagan	:	Routing by source
  53 *		David S. Miller	:	New socket lookup architecture.
  54 *					Last socket cache retained as it
  55 *					does have a high hit rate.
  56 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
  57 *		Andi Kleen	:	Some cleanups, cache destination entry
  58 *					for connect.
  59 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  60 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
  61 *					return ENOTCONN for unconnected sockets (POSIX)
  62 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
  63 *					bound-to-device socket
  64 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
  65 *					datagrams.
  66 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
  67 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
  68 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  69 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
  70 *					a single port at the same time.
  71 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  72 *	James Chapman		:	Add L2TP encapsulation type.
 
 
 
 
 
 
  73 */
  74
  75#define pr_fmt(fmt) "UDP: " fmt
  76
  77#include <linux/bpf-cgroup.h>
  78#include <linux/uaccess.h>
  79#include <asm/ioctls.h>
  80#include <linux/memblock.h>
  81#include <linux/highmem.h>
 
  82#include <linux/types.h>
  83#include <linux/fcntl.h>
  84#include <linux/module.h>
  85#include <linux/socket.h>
  86#include <linux/sockios.h>
  87#include <linux/igmp.h>
  88#include <linux/inetdevice.h>
  89#include <linux/in.h>
  90#include <linux/errno.h>
  91#include <linux/timer.h>
  92#include <linux/mm.h>
  93#include <linux/inet.h>
  94#include <linux/netdevice.h>
  95#include <linux/slab.h>
  96#include <net/tcp_states.h>
  97#include <linux/skbuff.h>
  98#include <linux/proc_fs.h>
  99#include <linux/seq_file.h>
 100#include <net/net_namespace.h>
 101#include <net/icmp.h>
 102#include <net/inet_hashtables.h>
 103#include <net/ip_tunnels.h>
 104#include <net/route.h>
 105#include <net/checksum.h>
 106#include <net/gso.h>
 107#include <net/xfrm.h>
 108#include <trace/events/udp.h>
 109#include <linux/static_key.h>
 110#include <linux/btf_ids.h>
 111#include <trace/events/skb.h>
 112#include <net/busy_poll.h>
 113#include "udp_impl.h"
 114#include <net/sock_reuseport.h>
 115#include <net/addrconf.h>
 116#include <net/udp_tunnel.h>
 117#include <net/gro.h>
 118#if IS_ENABLED(CONFIG_IPV6)
 119#include <net/ipv6_stubs.h>
 120#endif
 121
 122struct udp_table udp_table __read_mostly;
 123EXPORT_SYMBOL(udp_table);
 124
 125long sysctl_udp_mem[3] __read_mostly;
 126EXPORT_SYMBOL(sysctl_udp_mem);
 127
 128atomic_long_t udp_memory_allocated ____cacheline_aligned_in_smp;
 129EXPORT_SYMBOL(udp_memory_allocated);
 130DEFINE_PER_CPU(int, udp_memory_per_cpu_fw_alloc);
 131EXPORT_PER_CPU_SYMBOL_GPL(udp_memory_per_cpu_fw_alloc);
 132
 133#define MAX_UDP_PORTS 65536
 134#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN_PERNET)
 135
 136static struct udp_table *udp_get_table_prot(struct sock *sk)
 
 137{
 138	return sk->sk_prot->h.udp_table ? : sock_net(sk)->ipv4.udp_table;
 
 
 
 
 
 139}
 140
 141static int udp_lib_lport_inuse(struct net *net, __u16 num,
 142			       const struct udp_hslot *hslot,
 143			       unsigned long *bitmap,
 144			       struct sock *sk, unsigned int log)
 145{
 146	struct sock *sk2;
 147	kuid_t uid = sock_i_uid(sk);
 148
 149	sk_for_each(sk2, &hslot->head) {
 150		if (net_eq(sock_net(sk2), net) &&
 151		    sk2 != sk &&
 152		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 153		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 154		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 155		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 156		    inet_rcv_saddr_equal(sk, sk2, true)) {
 157			if (sk2->sk_reuseport && sk->sk_reuseport &&
 158			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 159			    uid_eq(uid, sock_i_uid(sk2))) {
 160				if (!bitmap)
 161					return 0;
 162			} else {
 163				if (!bitmap)
 164					return 1;
 165				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
 166					  bitmap);
 167			}
 168		}
 169	}
 170	return 0;
 171}
 172
 173/*
 174 * Note: we still hold spinlock of primary hash chain, so no other writer
 175 * can insert/delete a socket with local_port == num
 176 */
 177static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 178				struct udp_hslot *hslot2,
 179				struct sock *sk)
 180{
 181	struct sock *sk2;
 182	kuid_t uid = sock_i_uid(sk);
 183	int res = 0;
 184
 185	spin_lock(&hslot2->lock);
 186	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 187		if (net_eq(sock_net(sk2), net) &&
 188		    sk2 != sk &&
 189		    (udp_sk(sk2)->udp_port_hash == num) &&
 190		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 191		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 192		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 193		    inet_rcv_saddr_equal(sk, sk2, true)) {
 194			if (sk2->sk_reuseport && sk->sk_reuseport &&
 195			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 196			    uid_eq(uid, sock_i_uid(sk2))) {
 197				res = 0;
 198			} else {
 199				res = 1;
 200			}
 201			break;
 202		}
 203	}
 204	spin_unlock(&hslot2->lock);
 205	return res;
 206}
 207
 208static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 209{
 210	struct net *net = sock_net(sk);
 211	kuid_t uid = sock_i_uid(sk);
 212	struct sock *sk2;
 213
 214	sk_for_each(sk2, &hslot->head) {
 215		if (net_eq(sock_net(sk2), net) &&
 216		    sk2 != sk &&
 217		    sk2->sk_family == sk->sk_family &&
 218		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 219		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 220		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 221		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 222		    inet_rcv_saddr_equal(sk, sk2, false)) {
 223			return reuseport_add_sock(sk, sk2,
 224						  inet_rcv_saddr_any(sk));
 225		}
 226	}
 227
 228	return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
 229}
 230
 231/**
 232 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 233 *
 234 *  @sk:          socket struct in question
 235 *  @snum:        port number to look up
 236 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 237 *                   with NULL address
 238 */
 239int udp_lib_get_port(struct sock *sk, unsigned short snum,
 240		     unsigned int hash2_nulladdr)
 241{
 242	struct udp_table *udptable = udp_get_table_prot(sk);
 243	struct udp_hslot *hslot, *hslot2;
 
 
 244	struct net *net = sock_net(sk);
 245	int error = -EADDRINUSE;
 246
 247	if (!snum) {
 248		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 249		unsigned short first, last;
 250		int low, high, remaining;
 251		unsigned int rand;
 
 
 252
 253		inet_sk_get_local_port_range(sk, &low, &high);
 254		remaining = (high - low) + 1;
 255
 256		rand = get_random_u32();
 257		first = reciprocal_scale(rand, remaining) + low;
 258		/*
 259		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 260		 */
 261		rand = (rand | 1) * (udptable->mask + 1);
 262		last = first + udptable->mask + 1;
 263		do {
 264			hslot = udp_hashslot(udptable, net, first);
 265			bitmap_zero(bitmap, PORTS_PER_CHAIN);
 266			spin_lock_bh(&hslot->lock);
 267			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 268					    udptable->log);
 269
 270			snum = first;
 271			/*
 272			 * Iterate on all possible values of snum for this hash.
 273			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
 274			 * give us randomization and full range coverage.
 275			 */
 276			do {
 277				if (low <= snum && snum <= high &&
 278				    !test_bit(snum >> udptable->log, bitmap) &&
 279				    !inet_is_local_reserved_port(net, snum))
 280					goto found;
 281				snum += rand;
 282			} while (snum != first);
 283			spin_unlock_bh(&hslot->lock);
 284			cond_resched();
 285		} while (++first != last);
 286		goto fail;
 287	} else {
 288		hslot = udp_hashslot(udptable, net, snum);
 289		spin_lock_bh(&hslot->lock);
 290		if (hslot->count > 10) {
 291			int exist;
 292			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 293
 294			slot2          &= udptable->mask;
 295			hash2_nulladdr &= udptable->mask;
 296
 297			hslot2 = udp_hashslot2(udptable, slot2);
 298			if (hslot->count < hslot2->count)
 299				goto scan_primary_hash;
 300
 301			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 302			if (!exist && (hash2_nulladdr != slot2)) {
 303				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 304				exist = udp_lib_lport_inuse2(net, snum, hslot2,
 305							     sk);
 306			}
 307			if (exist)
 308				goto fail_unlock;
 309			else
 310				goto found;
 311		}
 312scan_primary_hash:
 313		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 314			goto fail_unlock;
 315	}
 316found:
 317	inet_sk(sk)->inet_num = snum;
 318	udp_sk(sk)->udp_port_hash = snum;
 319	udp_sk(sk)->udp_portaddr_hash ^= snum;
 320	if (sk_unhashed(sk)) {
 321		if (sk->sk_reuseport &&
 322		    udp_reuseport_add_sock(sk, hslot)) {
 323			inet_sk(sk)->inet_num = 0;
 324			udp_sk(sk)->udp_port_hash = 0;
 325			udp_sk(sk)->udp_portaddr_hash ^= snum;
 326			goto fail_unlock;
 327		}
 328
 329		sk_add_node_rcu(sk, &hslot->head);
 330		hslot->count++;
 331		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 332
 333		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 334		spin_lock(&hslot2->lock);
 335		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 336		    sk->sk_family == AF_INET6)
 337			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 338					   &hslot2->head);
 339		else
 340			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 341					   &hslot2->head);
 342		hslot2->count++;
 343		spin_unlock(&hslot2->lock);
 344	}
 345	sock_set_flag(sk, SOCK_RCU_FREE);
 346	error = 0;
 347fail_unlock:
 348	spin_unlock_bh(&hslot->lock);
 349fail:
 350	return error;
 351}
 352EXPORT_SYMBOL(udp_lib_get_port);
 353
 354int udp_v4_get_port(struct sock *sk, unsigned short snum)
 355{
 356	unsigned int hash2_nulladdr =
 357		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 358	unsigned int hash2_partial =
 359		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 360
 361	/* precompute partial secondary hash */
 362	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 363	return udp_lib_get_port(sk, snum, hash2_nulladdr);
 364}
 365
 366static int compute_score(struct sock *sk, struct net *net,
 367			 __be32 saddr, __be16 sport,
 368			 __be32 daddr, unsigned short hnum,
 369			 int dif, int sdif)
 370{
 371	int score;
 372	struct inet_sock *inet;
 373	bool dev_match;
 374
 375	if (!net_eq(sock_net(sk), net) ||
 376	    udp_sk(sk)->udp_port_hash != hnum ||
 377	    ipv6_only_sock(sk))
 378		return -1;
 379
 380	if (sk->sk_rcv_saddr != daddr)
 381		return -1;
 382
 383	score = (sk->sk_family == PF_INET) ? 2 : 1;
 384
 385	inet = inet_sk(sk);
 
 
 
 
 
 
 
 386	if (inet->inet_daddr) {
 387		if (inet->inet_daddr != saddr)
 388			return -1;
 389		score += 4;
 390	}
 391
 392	if (inet->inet_dport) {
 393		if (inet->inet_dport != sport)
 394			return -1;
 395		score += 4;
 396	}
 397
 398	dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
 399					dif, sdif);
 400	if (!dev_match)
 401		return -1;
 402	if (sk->sk_bound_dev_if)
 403		score += 4;
 
 
 
 404
 405	if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
 406		score++;
 407	return score;
 408}
 409
 410INDIRECT_CALLABLE_SCOPE
 411u32 udp_ehashfn(const struct net *net, const __be32 laddr, const __u16 lport,
 412		const __be32 faddr, const __be16 fport)
 413{
 
 
 414	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 415
 416	return __inet_ehashfn(laddr, lport, faddr, fport,
 417			      udp_ehash_secret + net_hash_mix(net));
 418}
 419
 420/* called with rcu_read_lock() */
 421static struct sock *udp4_lib_lookup2(struct net *net,
 422				     __be32 saddr, __be16 sport,
 423				     __be32 daddr, unsigned int hnum,
 424				     int dif, int sdif,
 425				     struct udp_hslot *hslot2,
 426				     struct sk_buff *skb)
 427{
 428	struct sock *sk, *result;
 429	int score, badness;
 430	bool need_rescore;
 431
 432	result = NULL;
 433	badness = 0;
 434	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 435		need_rescore = false;
 436rescore:
 437		score = compute_score(need_rescore ? result : sk, net, saddr,
 438				      sport, daddr, hnum, dif, sdif);
 439		if (score > badness) {
 440			badness = score;
 441
 442			if (need_rescore)
 443				continue;
 444
 445			if (sk->sk_state == TCP_ESTABLISHED) {
 446				result = sk;
 447				continue;
 448			}
 449
 450			result = inet_lookup_reuseport(net, sk, skb, sizeof(struct udphdr),
 451						       saddr, sport, daddr, hnum, udp_ehashfn);
 452			if (!result) {
 453				result = sk;
 454				continue;
 455			}
 456
 457			/* Fall back to scoring if group has connections */
 458			if (!reuseport_has_conns(sk))
 459				return result;
 460
 461			/* Reuseport logic returned an error, keep original score. */
 462			if (IS_ERR(result))
 463				continue;
 464
 465			/* compute_score is too long of a function to be
 466			 * inlined, and calling it again here yields
 467			 * measureable overhead for some
 468			 * workloads. Work around it by jumping
 469			 * backwards to rescore 'result'.
 470			 */
 471			need_rescore = true;
 472			goto rescore;
 473		}
 474	}
 475	return result;
 476}
 477
 478/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 479 * harder than this. -DaveM
 480 */
 481struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 482		__be16 sport, __be32 daddr, __be16 dport, int dif,
 483		int sdif, struct udp_table *udptable, struct sk_buff *skb)
 484{
 
 485	unsigned short hnum = ntohs(dport);
 486	unsigned int hash2, slot2;
 487	struct udp_hslot *hslot2;
 488	struct sock *result, *sk;
 489
 490	hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 491	slot2 = hash2 & udptable->mask;
 492	hslot2 = &udptable->hash2[slot2];
 493
 494	/* Lookup connected or non-wildcard socket */
 495	result = udp4_lib_lookup2(net, saddr, sport,
 496				  daddr, hnum, dif, sdif,
 497				  hslot2, skb);
 498	if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
 499		goto done;
 500
 501	/* Lookup redirect from BPF */
 502	if (static_branch_unlikely(&bpf_sk_lookup_enabled) &&
 503	    udptable == net->ipv4.udp_table) {
 504		sk = inet_lookup_run_sk_lookup(net, IPPROTO_UDP, skb, sizeof(struct udphdr),
 505					       saddr, sport, daddr, hnum, dif,
 506					       udp_ehashfn);
 507		if (sk) {
 508			result = sk;
 509			goto done;
 510		}
 511	}
 512
 513	/* Got non-wildcard socket or error on first lookup */
 514	if (result)
 515		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516
 517	/* Lookup wildcard sockets */
 518	hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 519	slot2 = hash2 & udptable->mask;
 520	hslot2 = &udptable->hash2[slot2];
 521
 522	result = udp4_lib_lookup2(net, saddr, sport,
 523				  htonl(INADDR_ANY), hnum, dif, sdif,
 524				  hslot2, skb);
 525done:
 526	if (IS_ERR(result))
 527		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 528	return result;
 529}
 530EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 531
 532static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 533						 __be16 sport, __be16 dport,
 534						 struct udp_table *udptable)
 535{
 536	const struct iphdr *iph = ip_hdr(skb);
 537
 538	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 539				 iph->daddr, dport, inet_iif(skb),
 540				 inet_sdif(skb), udptable, skb);
 541}
 542
 543struct sock *udp4_lib_lookup_skb(const struct sk_buff *skb,
 544				 __be16 sport, __be16 dport)
 545{
 546	const u16 offset = NAPI_GRO_CB(skb)->network_offsets[skb->encapsulation];
 547	const struct iphdr *iph = (struct iphdr *)(skb->data + offset);
 548	struct net *net = dev_net(skb->dev);
 549	int iif, sdif;
 550
 551	inet_get_iif_sdif(skb, &iif, &sdif);
 552
 553	return __udp4_lib_lookup(net, iph->saddr, sport,
 554				 iph->daddr, dport, iif,
 555				 sdif, net->ipv4.udp_table, NULL);
 556}
 
 557
 558/* Must be called under rcu_read_lock().
 559 * Does increment socket refcount.
 560 */
 561#if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 
 
 562struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 563			     __be32 daddr, __be16 dport, int dif)
 564{
 565	struct sock *sk;
 566
 567	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 568			       dif, 0, net->ipv4.udp_table, NULL);
 569	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 570		sk = NULL;
 571	return sk;
 572}
 573EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 574#endif
 575
 576static inline bool __udp_is_mcast_sock(struct net *net, const struct sock *sk,
 577				       __be16 loc_port, __be32 loc_addr,
 578				       __be16 rmt_port, __be32 rmt_addr,
 579				       int dif, int sdif, unsigned short hnum)
 580{
 581	const struct inet_sock *inet = inet_sk(sk);
 582
 583	if (!net_eq(sock_net(sk), net) ||
 584	    udp_sk(sk)->udp_port_hash != hnum ||
 585	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 586	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 587	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 588	    ipv6_only_sock(sk) ||
 589	    !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
 
 590		return false;
 591	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 592		return false;
 593	return true;
 594}
 595
 596DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
 597EXPORT_SYMBOL(udp_encap_needed_key);
 598
 599#if IS_ENABLED(CONFIG_IPV6)
 600DEFINE_STATIC_KEY_FALSE(udpv6_encap_needed_key);
 601EXPORT_SYMBOL(udpv6_encap_needed_key);
 602#endif
 603
 604void udp_encap_enable(void)
 605{
 606	static_branch_inc(&udp_encap_needed_key);
 607}
 608EXPORT_SYMBOL(udp_encap_enable);
 609
 610void udp_encap_disable(void)
 611{
 612	static_branch_dec(&udp_encap_needed_key);
 613}
 614EXPORT_SYMBOL(udp_encap_disable);
 615
 616/* Handler for tunnels with arbitrary destination ports: no socket lookup, go
 617 * through error handlers in encapsulations looking for a match.
 618 */
 619static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
 620{
 621	int i;
 622
 623	for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
 624		int (*handler)(struct sk_buff *skb, u32 info);
 625		const struct ip_tunnel_encap_ops *encap;
 626
 627		encap = rcu_dereference(iptun_encaps[i]);
 628		if (!encap)
 629			continue;
 630		handler = encap->err_handler;
 631		if (handler && !handler(skb, info))
 632			return 0;
 633	}
 634
 635	return -ENOENT;
 636}
 637
 638/* Try to match ICMP errors to UDP tunnels by looking up a socket without
 639 * reversing source and destination port: this will match tunnels that force the
 640 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
 641 * lwtunnels might actually break this assumption by being configured with
 642 * different destination ports on endpoints, in this case we won't be able to
 643 * trace ICMP messages back to them.
 644 *
 645 * If this doesn't match any socket, probe tunnels with arbitrary destination
 646 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
 647 * we've sent packets to won't necessarily match the local destination port.
 648 *
 649 * Then ask the tunnel implementation to match the error against a valid
 650 * association.
 651 *
 652 * Return an error if we can't find a match, the socket if we need further
 653 * processing, zero otherwise.
 654 */
 655static struct sock *__udp4_lib_err_encap(struct net *net,
 656					 const struct iphdr *iph,
 657					 struct udphdr *uh,
 658					 struct udp_table *udptable,
 659					 struct sock *sk,
 660					 struct sk_buff *skb, u32 info)
 661{
 662	int (*lookup)(struct sock *sk, struct sk_buff *skb);
 663	int network_offset, transport_offset;
 664	struct udp_sock *up;
 665
 666	network_offset = skb_network_offset(skb);
 667	transport_offset = skb_transport_offset(skb);
 668
 669	/* Network header needs to point to the outer IPv4 header inside ICMP */
 670	skb_reset_network_header(skb);
 671
 672	/* Transport header needs to point to the UDP header */
 673	skb_set_transport_header(skb, iph->ihl << 2);
 674
 675	if (sk) {
 676		up = udp_sk(sk);
 677
 678		lookup = READ_ONCE(up->encap_err_lookup);
 679		if (lookup && lookup(sk, skb))
 680			sk = NULL;
 681
 682		goto out;
 683	}
 684
 685	sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
 686			       iph->saddr, uh->dest, skb->dev->ifindex, 0,
 687			       udptable, NULL);
 688	if (sk) {
 689		up = udp_sk(sk);
 690
 691		lookup = READ_ONCE(up->encap_err_lookup);
 692		if (!lookup || lookup(sk, skb))
 693			sk = NULL;
 694	}
 695
 696out:
 697	if (!sk)
 698		sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
 699
 700	skb_set_transport_header(skb, transport_offset);
 701	skb_set_network_header(skb, network_offset);
 702
 703	return sk;
 704}
 705
 706/*
 707 * This routine is called by the ICMP module when it gets some
 708 * sort of error condition.  If err < 0 then the socket should
 709 * be closed and the error returned to the user.  If err > 0
 710 * it's just the icmp type << 8 | icmp code.
 711 * Header points to the ip header of the error packet. We move
 712 * on past this. Then (as it used to claim before adjustment)
 713 * header points to the first 8 bytes of the udp header.  We need
 714 * to find the appropriate port.
 715 */
 716
 717int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 718{
 719	struct inet_sock *inet;
 720	const struct iphdr *iph = (const struct iphdr *)skb->data;
 721	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 722	const int type = icmp_hdr(skb)->type;
 723	const int code = icmp_hdr(skb)->code;
 724	bool tunnel = false;
 725	struct sock *sk;
 726	int harderr;
 727	int err;
 728	struct net *net = dev_net(skb->dev);
 729
 730	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 731			       iph->saddr, uh->source, skb->dev->ifindex,
 732			       inet_sdif(skb), udptable, NULL);
 733
 734	if (!sk || READ_ONCE(udp_sk(sk)->encap_type)) {
 735		/* No socket for error: try tunnels before discarding */
 736		if (static_branch_unlikely(&udp_encap_needed_key)) {
 737			sk = __udp4_lib_err_encap(net, iph, uh, udptable, sk, skb,
 738						  info);
 739			if (!sk)
 740				return 0;
 741		} else
 742			sk = ERR_PTR(-ENOENT);
 743
 744		if (IS_ERR(sk)) {
 745			__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 746			return PTR_ERR(sk);
 747		}
 748
 749		tunnel = true;
 750	}
 751
 752	err = 0;
 753	harderr = 0;
 754	inet = inet_sk(sk);
 755
 756	switch (type) {
 757	default:
 758	case ICMP_TIME_EXCEEDED:
 759		err = EHOSTUNREACH;
 760		break;
 761	case ICMP_SOURCE_QUENCH:
 762		goto out;
 763	case ICMP_PARAMETERPROB:
 764		err = EPROTO;
 765		harderr = 1;
 766		break;
 767	case ICMP_DEST_UNREACH:
 768		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 769			ipv4_sk_update_pmtu(skb, sk, info);
 770			if (READ_ONCE(inet->pmtudisc) != IP_PMTUDISC_DONT) {
 771				err = EMSGSIZE;
 772				harderr = 1;
 773				break;
 774			}
 775			goto out;
 776		}
 777		err = EHOSTUNREACH;
 778		if (code <= NR_ICMP_UNREACH) {
 779			harderr = icmp_err_convert[code].fatal;
 780			err = icmp_err_convert[code].errno;
 781		}
 782		break;
 783	case ICMP_REDIRECT:
 784		ipv4_sk_redirect(skb, sk);
 785		goto out;
 786	}
 787
 788	/*
 789	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
 790	 *	4.1.3.3.
 791	 */
 792	if (tunnel) {
 793		/* ...not for tunnels though: we don't have a sending socket */
 794		if (udp_sk(sk)->encap_err_rcv)
 795			udp_sk(sk)->encap_err_rcv(sk, skb, err, uh->dest, info,
 796						  (u8 *)(uh+1));
 797		goto out;
 798	}
 799	if (!inet_test_bit(RECVERR, sk)) {
 800		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 801			goto out;
 802	} else
 803		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 804
 805	sk->sk_err = err;
 806	sk_error_report(sk);
 807out:
 808	return 0;
 809}
 810
 811int udp_err(struct sk_buff *skb, u32 info)
 812{
 813	return __udp4_lib_err(skb, info, dev_net(skb->dev)->ipv4.udp_table);
 814}
 815
 816/*
 817 * Throw away all pending data and cancel the corking. Socket is locked.
 818 */
 819void udp_flush_pending_frames(struct sock *sk)
 820{
 821	struct udp_sock *up = udp_sk(sk);
 822
 823	if (up->pending) {
 824		up->len = 0;
 825		WRITE_ONCE(up->pending, 0);
 826		ip_flush_pending_frames(sk);
 827	}
 828}
 829EXPORT_SYMBOL(udp_flush_pending_frames);
 830
 831/**
 832 * 	udp4_hwcsum  -  handle outgoing HW checksumming
 833 * 	@skb: 	sk_buff containing the filled-in UDP header
 834 * 	        (checksum field must be zeroed out)
 835 *	@src:	source IP address
 836 *	@dst:	destination IP address
 837 */
 838void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 839{
 840	struct udphdr *uh = udp_hdr(skb);
 841	int offset = skb_transport_offset(skb);
 842	int len = skb->len - offset;
 843	int hlen = len;
 844	__wsum csum = 0;
 845
 846	if (!skb_has_frag_list(skb)) {
 847		/*
 848		 * Only one fragment on the socket.
 849		 */
 850		skb->csum_start = skb_transport_header(skb) - skb->head;
 851		skb->csum_offset = offsetof(struct udphdr, check);
 852		uh->check = ~csum_tcpudp_magic(src, dst, len,
 853					       IPPROTO_UDP, 0);
 854	} else {
 855		struct sk_buff *frags;
 856
 857		/*
 858		 * HW-checksum won't work as there are two or more
 859		 * fragments on the socket so that all csums of sk_buffs
 860		 * should be together
 861		 */
 862		skb_walk_frags(skb, frags) {
 863			csum = csum_add(csum, frags->csum);
 864			hlen -= frags->len;
 865		}
 866
 867		csum = skb_checksum(skb, offset, hlen, csum);
 868		skb->ip_summed = CHECKSUM_NONE;
 869
 870		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 871		if (uh->check == 0)
 872			uh->check = CSUM_MANGLED_0;
 873	}
 874}
 875EXPORT_SYMBOL_GPL(udp4_hwcsum);
 876
 877/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 878 * for the simple case like when setting the checksum for a UDP tunnel.
 879 */
 880void udp_set_csum(bool nocheck, struct sk_buff *skb,
 881		  __be32 saddr, __be32 daddr, int len)
 882{
 883	struct udphdr *uh = udp_hdr(skb);
 884
 885	if (nocheck) {
 886		uh->check = 0;
 887	} else if (skb_is_gso(skb)) {
 888		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 889	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 890		uh->check = 0;
 891		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
 892		if (uh->check == 0)
 893			uh->check = CSUM_MANGLED_0;
 894	} else {
 895		skb->ip_summed = CHECKSUM_PARTIAL;
 896		skb->csum_start = skb_transport_header(skb) - skb->head;
 897		skb->csum_offset = offsetof(struct udphdr, check);
 898		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 899	}
 900}
 901EXPORT_SYMBOL(udp_set_csum);
 902
 903static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
 904			struct inet_cork *cork)
 905{
 906	struct sock *sk = skb->sk;
 907	struct inet_sock *inet = inet_sk(sk);
 908	struct udphdr *uh;
 909	int err;
 910	int is_udplite = IS_UDPLITE(sk);
 911	int offset = skb_transport_offset(skb);
 912	int len = skb->len - offset;
 913	int datalen = len - sizeof(*uh);
 914	__wsum csum = 0;
 915
 916	/*
 917	 * Create a UDP header
 918	 */
 919	uh = udp_hdr(skb);
 920	uh->source = inet->inet_sport;
 921	uh->dest = fl4->fl4_dport;
 922	uh->len = htons(len);
 923	uh->check = 0;
 924
 925	if (cork->gso_size) {
 926		const int hlen = skb_network_header_len(skb) +
 927				 sizeof(struct udphdr);
 928
 929		if (hlen + cork->gso_size > cork->fragsize) {
 930			kfree_skb(skb);
 931			return -EINVAL;
 932		}
 933		if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
 934			kfree_skb(skb);
 935			return -EINVAL;
 936		}
 937		if (sk->sk_no_check_tx) {
 938			kfree_skb(skb);
 939			return -EINVAL;
 940		}
 941		if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
 942		    dst_xfrm(skb_dst(skb))) {
 943			kfree_skb(skb);
 944			return -EIO;
 945		}
 946
 947		if (datalen > cork->gso_size) {
 948			skb_shinfo(skb)->gso_size = cork->gso_size;
 949			skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
 950			skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
 951								 cork->gso_size);
 952		}
 953		goto csum_partial;
 954	}
 955
 956	if (is_udplite)  				 /*     UDP-Lite      */
 957		csum = udplite_csum(skb);
 958
 959	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
 960
 961		skb->ip_summed = CHECKSUM_NONE;
 962		goto send;
 963
 964	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 965csum_partial:
 966
 967		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 968		goto send;
 969
 970	} else
 971		csum = udp_csum(skb);
 972
 973	/* add protocol-dependent pseudo-header */
 974	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 975				      sk->sk_protocol, csum);
 976	if (uh->check == 0)
 977		uh->check = CSUM_MANGLED_0;
 978
 979send:
 980	err = ip_send_skb(sock_net(sk), skb);
 981	if (err) {
 982		if (err == -ENOBUFS &&
 983		    !inet_test_bit(RECVERR, sk)) {
 984			UDP_INC_STATS(sock_net(sk),
 985				      UDP_MIB_SNDBUFERRORS, is_udplite);
 986			err = 0;
 987		}
 988	} else
 989		UDP_INC_STATS(sock_net(sk),
 990			      UDP_MIB_OUTDATAGRAMS, is_udplite);
 991	return err;
 992}
 993
 994/*
 995 * Push out all pending data as one UDP datagram. Socket is locked.
 996 */
 997int udp_push_pending_frames(struct sock *sk)
 998{
 999	struct udp_sock  *up = udp_sk(sk);
1000	struct inet_sock *inet = inet_sk(sk);
1001	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
1002	struct sk_buff *skb;
1003	int err = 0;
1004
1005	skb = ip_finish_skb(sk, fl4);
1006	if (!skb)
1007		goto out;
1008
1009	err = udp_send_skb(skb, fl4, &inet->cork.base);
1010
1011out:
1012	up->len = 0;
1013	WRITE_ONCE(up->pending, 0);
1014	return err;
1015}
1016EXPORT_SYMBOL(udp_push_pending_frames);
1017
1018static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1019{
1020	switch (cmsg->cmsg_type) {
1021	case UDP_SEGMENT:
1022		if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1023			return -EINVAL;
1024		*gso_size = *(__u16 *)CMSG_DATA(cmsg);
1025		return 0;
1026	default:
1027		return -EINVAL;
1028	}
1029}
1030
1031int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1032{
1033	struct cmsghdr *cmsg;
1034	bool need_ip = false;
1035	int err;
1036
1037	for_each_cmsghdr(cmsg, msg) {
1038		if (!CMSG_OK(msg, cmsg))
1039			return -EINVAL;
1040
1041		if (cmsg->cmsg_level != SOL_UDP) {
1042			need_ip = true;
1043			continue;
1044		}
1045
1046		err = __udp_cmsg_send(cmsg, gso_size);
1047		if (err)
1048			return err;
1049	}
1050
1051	return need_ip;
1052}
1053EXPORT_SYMBOL_GPL(udp_cmsg_send);
1054
1055int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1056{
1057	struct inet_sock *inet = inet_sk(sk);
1058	struct udp_sock *up = udp_sk(sk);
1059	DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1060	struct flowi4 fl4_stack;
1061	struct flowi4 *fl4;
1062	int ulen = len;
1063	struct ipcm_cookie ipc;
1064	struct rtable *rt = NULL;
1065	int free = 0;
1066	int connected = 0;
1067	__be32 daddr, faddr, saddr;
1068	u8 tos, scope;
1069	__be16 dport;
 
1070	int err, is_udplite = IS_UDPLITE(sk);
1071	int corkreq = udp_test_bit(CORK, sk) || msg->msg_flags & MSG_MORE;
1072	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1073	struct sk_buff *skb;
1074	struct ip_options_data opt_copy;
1075	int uc_index;
1076
1077	if (len > 0xFFFF)
1078		return -EMSGSIZE;
1079
1080	/*
1081	 *	Check the flags.
1082	 */
1083
1084	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1085		return -EOPNOTSUPP;
1086
 
 
 
 
 
1087	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1088
1089	fl4 = &inet->cork.fl.u.ip4;
1090	if (READ_ONCE(up->pending)) {
1091		/*
1092		 * There are pending frames.
1093		 * The socket lock must be held while it's corked.
1094		 */
1095		lock_sock(sk);
1096		if (likely(up->pending)) {
1097			if (unlikely(up->pending != AF_INET)) {
1098				release_sock(sk);
1099				return -EINVAL;
1100			}
1101			goto do_append_data;
1102		}
1103		release_sock(sk);
1104	}
1105	ulen += sizeof(struct udphdr);
1106
1107	/*
1108	 *	Get and verify the address.
1109	 */
1110	if (usin) {
 
1111		if (msg->msg_namelen < sizeof(*usin))
1112			return -EINVAL;
1113		if (usin->sin_family != AF_INET) {
1114			if (usin->sin_family != AF_UNSPEC)
1115				return -EAFNOSUPPORT;
1116		}
1117
1118		daddr = usin->sin_addr.s_addr;
1119		dport = usin->sin_port;
1120		if (dport == 0)
1121			return -EINVAL;
1122	} else {
1123		if (sk->sk_state != TCP_ESTABLISHED)
1124			return -EDESTADDRREQ;
1125		daddr = inet->inet_daddr;
1126		dport = inet->inet_dport;
1127		/* Open fast path for connected socket.
1128		   Route will not be used, if at least one option is set.
1129		 */
1130		connected = 1;
1131	}
1132
1133	ipcm_init_sk(&ipc, inet);
1134	ipc.gso_size = READ_ONCE(up->gso_size);
 
1135
1136	if (msg->msg_controllen) {
1137		err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1138		if (err > 0) {
1139			err = ip_cmsg_send(sk, msg, &ipc,
1140					   sk->sk_family == AF_INET6);
1141			connected = 0;
1142		}
1143		if (unlikely(err < 0)) {
1144			kfree(ipc.opt);
1145			return err;
1146		}
1147		if (ipc.opt)
1148			free = 1;
 
1149	}
1150	if (!ipc.opt) {
1151		struct ip_options_rcu *inet_opt;
1152
1153		rcu_read_lock();
1154		inet_opt = rcu_dereference(inet->inet_opt);
1155		if (inet_opt) {
1156			memcpy(&opt_copy, inet_opt,
1157			       sizeof(*inet_opt) + inet_opt->opt.optlen);
1158			ipc.opt = &opt_copy.opt;
1159		}
1160		rcu_read_unlock();
1161	}
1162
1163	if (cgroup_bpf_enabled(CGROUP_UDP4_SENDMSG) && !connected) {
1164		err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1165					    (struct sockaddr *)usin,
1166					    &msg->msg_namelen,
1167					    &ipc.addr);
1168		if (err)
1169			goto out_free;
1170		if (usin) {
1171			if (usin->sin_port == 0) {
1172				/* BPF program set invalid port. Reject it. */
1173				err = -EINVAL;
1174				goto out_free;
1175			}
1176			daddr = usin->sin_addr.s_addr;
1177			dport = usin->sin_port;
1178		}
1179	}
1180
1181	saddr = ipc.addr;
1182	ipc.addr = faddr = daddr;
1183
 
 
1184	if (ipc.opt && ipc.opt->opt.srr) {
1185		if (!daddr) {
1186			err = -EINVAL;
1187			goto out_free;
1188		}
1189		faddr = ipc.opt->opt.faddr;
1190		connected = 0;
1191	}
1192	tos = get_rttos(&ipc, inet);
1193	scope = ip_sendmsg_scope(inet, &ipc, msg);
1194	if (scope == RT_SCOPE_LINK)
 
 
1195		connected = 0;
 
1196
1197	uc_index = READ_ONCE(inet->uc_index);
1198	if (ipv4_is_multicast(daddr)) {
1199		if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1200			ipc.oif = READ_ONCE(inet->mc_index);
1201		if (!saddr)
1202			saddr = READ_ONCE(inet->mc_addr);
1203		connected = 0;
1204	} else if (!ipc.oif) {
1205		ipc.oif = uc_index;
1206	} else if (ipv4_is_lbcast(daddr) && uc_index) {
1207		/* oif is set, packet is to local broadcast and
1208		 * uc_index is set. oif is most likely set
1209		 * by sk_bound_dev_if. If uc_index != oif check if the
1210		 * oif is an L3 master and uc_index is an L3 slave.
1211		 * If so, we want to allow the send using the uc_index.
1212		 */
1213		if (ipc.oif != uc_index &&
1214		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1215							      uc_index)) {
1216			ipc.oif = uc_index;
1217		}
1218	}
1219
1220	if (connected)
1221		rt = dst_rtable(sk_dst_check(sk, 0));
1222
1223	if (!rt) {
1224		struct net *net = sock_net(sk);
1225		__u8 flow_flags = inet_sk_flowi_flags(sk);
1226
1227		fl4 = &fl4_stack;
1228
1229		flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos, scope,
1230				   sk->sk_protocol, flow_flags, faddr, saddr,
1231				   dport, inet->inet_sport, sk->sk_uid);
 
 
1232
1233		security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1234		rt = ip_route_output_flow(net, fl4, sk);
1235		if (IS_ERR(rt)) {
1236			err = PTR_ERR(rt);
1237			rt = NULL;
1238			if (err == -ENETUNREACH)
1239				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1240			goto out;
1241		}
1242
1243		err = -EACCES;
1244		if ((rt->rt_flags & RTCF_BROADCAST) &&
1245		    !sock_flag(sk, SOCK_BROADCAST))
1246			goto out;
1247		if (connected)
1248			sk_dst_set(sk, dst_clone(&rt->dst));
1249	}
1250
1251	if (msg->msg_flags&MSG_CONFIRM)
1252		goto do_confirm;
1253back_from_confirm:
1254
1255	saddr = fl4->saddr;
1256	if (!ipc.addr)
1257		daddr = ipc.addr = fl4->daddr;
1258
1259	/* Lockless fast path for the non-corking case. */
1260	if (!corkreq) {
1261		struct inet_cork cork;
1262
1263		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1264				  sizeof(struct udphdr), &ipc, &rt,
1265				  &cork, msg->msg_flags);
1266		err = PTR_ERR(skb);
1267		if (!IS_ERR_OR_NULL(skb))
1268			err = udp_send_skb(skb, fl4, &cork);
1269		goto out;
1270	}
1271
1272	lock_sock(sk);
1273	if (unlikely(up->pending)) {
1274		/* The socket is already corked while preparing it. */
1275		/* ... which is an evident application bug. --ANK */
1276		release_sock(sk);
1277
1278		net_dbg_ratelimited("socket already corked\n");
1279		err = -EINVAL;
1280		goto out;
1281	}
1282	/*
1283	 *	Now cork the socket to pend data.
1284	 */
1285	fl4 = &inet->cork.fl.u.ip4;
1286	fl4->daddr = daddr;
1287	fl4->saddr = saddr;
1288	fl4->fl4_dport = dport;
1289	fl4->fl4_sport = inet->inet_sport;
1290	WRITE_ONCE(up->pending, AF_INET);
1291
1292do_append_data:
1293	up->len += ulen;
1294	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1295			     sizeof(struct udphdr), &ipc, &rt,
1296			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1297	if (err)
1298		udp_flush_pending_frames(sk);
1299	else if (!corkreq)
1300		err = udp_push_pending_frames(sk);
1301	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1302		WRITE_ONCE(up->pending, 0);
1303	release_sock(sk);
1304
1305out:
1306	ip_rt_put(rt);
1307out_free:
1308	if (free)
1309		kfree(ipc.opt);
1310	if (!err)
1311		return len;
1312	/*
1313	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1314	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1315	 * we don't have a good statistic (IpOutDiscards but it can be too many
1316	 * things).  We could add another new stat but at least for now that
1317	 * seems like overkill.
1318	 */
1319	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1320		UDP_INC_STATS(sock_net(sk),
1321			      UDP_MIB_SNDBUFERRORS, is_udplite);
1322	}
1323	return err;
1324
1325do_confirm:
1326	if (msg->msg_flags & MSG_PROBE)
1327		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1328	if (!(msg->msg_flags&MSG_PROBE) || len)
1329		goto back_from_confirm;
1330	err = 0;
1331	goto out;
1332}
1333EXPORT_SYMBOL(udp_sendmsg);
1334
1335void udp_splice_eof(struct socket *sock)
 
1336{
1337	struct sock *sk = sock->sk;
1338	struct udp_sock *up = udp_sk(sk);
 
1339
1340	if (!READ_ONCE(up->pending) || udp_test_bit(CORK, sk))
1341		return;
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343	lock_sock(sk);
1344	if (up->pending && !udp_test_bit(CORK, sk))
1345		udp_push_pending_frames(sk);
1346	release_sock(sk);
1347}
1348EXPORT_SYMBOL_GPL(udp_splice_eof);
1349
1350#define UDP_SKB_IS_STATELESS 0x80000000
 
1351
1352/* all head states (dst, sk, nf conntrack) except skb extensions are
1353 * cleared by udp_rcv().
1354 *
1355 * We need to preserve secpath, if present, to eventually process
1356 * IP_CMSG_PASSSEC at recvmsg() time.
1357 *
1358 * Other extensions can be cleared.
1359 */
1360static bool udp_try_make_stateless(struct sk_buff *skb)
1361{
1362	if (!skb_has_extensions(skb))
1363		return true;
1364
1365	if (!secpath_exists(skb)) {
1366		skb_ext_reset(skb);
1367		return true;
 
 
 
 
 
 
 
1368	}
1369
1370	return false;
 
 
 
 
 
 
 
1371}
1372
 
 
1373static void udp_set_dev_scratch(struct sk_buff *skb)
1374{
1375	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1376
1377	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1378	scratch->_tsize_state = skb->truesize;
1379#if BITS_PER_LONG == 64
1380	scratch->len = skb->len;
1381	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1382	scratch->is_linear = !skb_is_nonlinear(skb);
1383#endif
1384	if (udp_try_make_stateless(skb))
1385		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1386}
1387
1388static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1389{
1390	/* We come here after udp_lib_checksum_complete() returned 0.
1391	 * This means that __skb_checksum_complete() might have
1392	 * set skb->csum_valid to 1.
1393	 * On 64bit platforms, we can set csum_unnecessary
1394	 * to true, but only if the skb is not shared.
1395	 */
1396#if BITS_PER_LONG == 64
1397	if (!skb_shared(skb))
1398		udp_skb_scratch(skb)->csum_unnecessary = true;
1399#endif
1400}
1401
1402static int udp_skb_truesize(struct sk_buff *skb)
1403{
1404	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1405}
1406
1407static bool udp_skb_has_head_state(struct sk_buff *skb)
1408{
1409	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1410}
1411
1412/* fully reclaim rmem/fwd memory allocated for skb */
1413static void udp_rmem_release(struct sock *sk, int size, int partial,
1414			     bool rx_queue_lock_held)
1415{
1416	struct udp_sock *up = udp_sk(sk);
1417	struct sk_buff_head *sk_queue;
1418	int amt;
1419
1420	if (likely(partial)) {
1421		up->forward_deficit += size;
1422		size = up->forward_deficit;
1423		if (size < READ_ONCE(up->forward_threshold) &&
1424		    !skb_queue_empty(&up->reader_queue))
1425			return;
1426	} else {
1427		size += up->forward_deficit;
1428	}
1429	up->forward_deficit = 0;
1430
1431	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1432	 * if the called don't held it already
1433	 */
1434	sk_queue = &sk->sk_receive_queue;
1435	if (!rx_queue_lock_held)
1436		spin_lock(&sk_queue->lock);
1437
1438
1439	sk_forward_alloc_add(sk, size);
1440	amt = (sk->sk_forward_alloc - partial) & ~(PAGE_SIZE - 1);
1441	sk_forward_alloc_add(sk, -amt);
1442
1443	if (amt)
1444		__sk_mem_reduce_allocated(sk, amt >> PAGE_SHIFT);
1445
1446	atomic_sub(size, &sk->sk_rmem_alloc);
1447
1448	/* this can save us from acquiring the rx queue lock on next receive */
1449	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1450
1451	if (!rx_queue_lock_held)
1452		spin_unlock(&sk_queue->lock);
1453}
1454
1455/* Note: called with reader_queue.lock held.
1456 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1457 * This avoids a cache line miss while receive_queue lock is held.
1458 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1459 */
1460void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1461{
1462	prefetch(&skb->data);
1463	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1464}
1465EXPORT_SYMBOL(udp_skb_destructor);
1466
1467/* as above, but the caller held the rx queue lock, too */
1468static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1469{
1470	prefetch(&skb->data);
1471	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1472}
1473
1474/* Idea of busylocks is to let producers grab an extra spinlock
1475 * to relieve pressure on the receive_queue spinlock shared by consumer.
1476 * Under flood, this means that only one producer can be in line
1477 * trying to acquire the receive_queue spinlock.
1478 * These busylock can be allocated on a per cpu manner, instead of a
1479 * per socket one (that would consume a cache line per socket)
1480 */
1481static int udp_busylocks_log __read_mostly;
1482static spinlock_t *udp_busylocks __read_mostly;
1483
1484static spinlock_t *busylock_acquire(void *ptr)
1485{
1486	spinlock_t *busy;
1487
1488	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1489	spin_lock(busy);
1490	return busy;
1491}
1492
1493static void busylock_release(spinlock_t *busy)
1494{
1495	if (busy)
1496		spin_unlock(busy);
1497}
1498
1499static int udp_rmem_schedule(struct sock *sk, int size)
1500{
1501	int delta;
1502
1503	delta = size - sk->sk_forward_alloc;
1504	if (delta > 0 && !__sk_mem_schedule(sk, delta, SK_MEM_RECV))
1505		return -ENOBUFS;
1506
1507	return 0;
1508}
1509
1510int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1511{
1512	struct sk_buff_head *list = &sk->sk_receive_queue;
1513	int rmem, err = -ENOMEM;
1514	spinlock_t *busy = NULL;
1515	int size;
1516
1517	/* try to avoid the costly atomic add/sub pair when the receive
1518	 * queue is full; always allow at least a packet
1519	 */
1520	rmem = atomic_read(&sk->sk_rmem_alloc);
1521	if (rmem > sk->sk_rcvbuf)
1522		goto drop;
1523
1524	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1525	 * having linear skbs :
1526	 * - Reduce memory overhead and thus increase receive queue capacity
1527	 * - Less cache line misses at copyout() time
1528	 * - Less work at consume_skb() (less alien page frag freeing)
1529	 */
1530	if (rmem > (sk->sk_rcvbuf >> 1)) {
1531		skb_condense(skb);
1532
1533		busy = busylock_acquire(sk);
1534	}
1535	size = skb->truesize;
1536	udp_set_dev_scratch(skb);
1537
1538	/* we drop only if the receive buf is full and the receive
1539	 * queue contains some other skb
1540	 */
1541	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1542	if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1543		goto uncharge_drop;
1544
1545	spin_lock(&list->lock);
1546	err = udp_rmem_schedule(sk, size);
1547	if (err) {
1548		spin_unlock(&list->lock);
1549		goto uncharge_drop;
 
 
 
 
 
 
1550	}
1551
1552	sk_forward_alloc_add(sk, -size);
1553
1554	/* no need to setup a destructor, we will explicitly release the
1555	 * forward allocated memory on dequeue
1556	 */
1557	sock_skb_set_dropcount(sk, skb);
1558
1559	__skb_queue_tail(list, skb);
1560	spin_unlock(&list->lock);
1561
1562	if (!sock_flag(sk, SOCK_DEAD))
1563		INDIRECT_CALL_1(sk->sk_data_ready, sock_def_readable, sk);
1564
1565	busylock_release(busy);
1566	return 0;
1567
1568uncharge_drop:
1569	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1570
1571drop:
1572	atomic_inc(&sk->sk_drops);
1573	busylock_release(busy);
1574	return err;
1575}
1576EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1577
1578void udp_destruct_common(struct sock *sk)
1579{
1580	/* reclaim completely the forward allocated memory */
1581	struct udp_sock *up = udp_sk(sk);
1582	unsigned int total = 0;
1583	struct sk_buff *skb;
1584
1585	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1586	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1587		total += skb->truesize;
1588		kfree_skb(skb);
1589	}
1590	udp_rmem_release(sk, total, 0, true);
1591}
1592EXPORT_SYMBOL_GPL(udp_destruct_common);
1593
1594static void udp_destruct_sock(struct sock *sk)
1595{
1596	udp_destruct_common(sk);
1597	inet_sock_destruct(sk);
1598}
 
1599
1600int udp_init_sock(struct sock *sk)
1601{
1602	udp_lib_init_sock(sk);
1603	sk->sk_destruct = udp_destruct_sock;
1604	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1605	return 0;
1606}
 
1607
1608void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1609{
1610	if (unlikely(READ_ONCE(udp_sk(sk)->peeking_with_offset)))
 
 
1611		sk_peek_offset_bwd(sk, len);
 
 
1612
1613	if (!skb_unref(skb))
1614		return;
1615
1616	/* In the more common cases we cleared the head states previously,
1617	 * see __udp_queue_rcv_skb().
1618	 */
1619	if (unlikely(udp_skb_has_head_state(skb)))
1620		skb_release_head_state(skb);
1621	__consume_stateless_skb(skb);
1622}
1623EXPORT_SYMBOL_GPL(skb_consume_udp);
1624
1625static struct sk_buff *__first_packet_length(struct sock *sk,
1626					     struct sk_buff_head *rcvq,
1627					     int *total)
1628{
1629	struct sk_buff *skb;
1630
1631	while ((skb = skb_peek(rcvq)) != NULL) {
1632		if (udp_lib_checksum_complete(skb)) {
1633			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1634					IS_UDPLITE(sk));
1635			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1636					IS_UDPLITE(sk));
1637			atomic_inc(&sk->sk_drops);
1638			__skb_unlink(skb, rcvq);
1639			*total += skb->truesize;
1640			kfree_skb(skb);
1641		} else {
1642			udp_skb_csum_unnecessary_set(skb);
 
 
 
1643			break;
1644		}
1645	}
1646	return skb;
1647}
1648
1649/**
1650 *	first_packet_length	- return length of first packet in receive queue
1651 *	@sk: socket
1652 *
1653 *	Drops all bad checksum frames, until a valid one is found.
1654 *	Returns the length of found skb, or -1 if none is found.
1655 */
1656static int first_packet_length(struct sock *sk)
1657{
1658	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1659	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1660	struct sk_buff *skb;
1661	int total = 0;
1662	int res;
1663
1664	spin_lock_bh(&rcvq->lock);
1665	skb = __first_packet_length(sk, rcvq, &total);
1666	if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1667		spin_lock(&sk_queue->lock);
1668		skb_queue_splice_tail_init(sk_queue, rcvq);
1669		spin_unlock(&sk_queue->lock);
1670
1671		skb = __first_packet_length(sk, rcvq, &total);
1672	}
1673	res = skb ? skb->len : -1;
1674	if (total)
1675		udp_rmem_release(sk, total, 1, false);
1676	spin_unlock_bh(&rcvq->lock);
1677	return res;
1678}
1679
1680/*
1681 *	IOCTL requests applicable to the UDP protocol
1682 */
1683
1684int udp_ioctl(struct sock *sk, int cmd, int *karg)
1685{
1686	switch (cmd) {
1687	case SIOCOUTQ:
1688	{
1689		*karg = sk_wmem_alloc_get(sk);
1690		return 0;
 
1691	}
1692
1693	case SIOCINQ:
1694	{
1695		*karg = max_t(int, 0, first_packet_length(sk));
1696		return 0;
 
1697	}
1698
1699	default:
1700		return -ENOIOCTLCMD;
1701	}
1702
1703	return 0;
1704}
1705EXPORT_SYMBOL(udp_ioctl);
1706
1707struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1708			       int *off, int *err)
1709{
1710	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1711	struct sk_buff_head *queue;
1712	struct sk_buff *last;
1713	long timeo;
1714	int error;
1715
1716	queue = &udp_sk(sk)->reader_queue;
 
1717	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1718	do {
1719		struct sk_buff *skb;
1720
1721		error = sock_error(sk);
1722		if (error)
1723			break;
1724
1725		error = -EAGAIN;
 
1726		do {
1727			spin_lock_bh(&queue->lock);
1728			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1729							err, &last);
 
 
1730			if (skb) {
1731				if (!(flags & MSG_PEEK))
1732					udp_skb_destructor(sk, skb);
1733				spin_unlock_bh(&queue->lock);
1734				return skb;
1735			}
1736
1737			if (skb_queue_empty_lockless(sk_queue)) {
1738				spin_unlock_bh(&queue->lock);
1739				goto busy_check;
1740			}
1741
1742			/* refill the reader queue and walk it again
1743			 * keep both queues locked to avoid re-acquiring
1744			 * the sk_receive_queue lock if fwd memory scheduling
1745			 * is needed.
1746			 */
1747			spin_lock(&sk_queue->lock);
1748			skb_queue_splice_tail_init(sk_queue, queue);
1749
1750			skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1751							err, &last);
1752			if (skb && !(flags & MSG_PEEK))
1753				udp_skb_dtor_locked(sk, skb);
1754			spin_unlock(&sk_queue->lock);
1755			spin_unlock_bh(&queue->lock);
1756			if (skb)
1757				return skb;
1758
1759busy_check:
1760			if (!sk_can_busy_loop(sk))
1761				break;
1762
1763			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1764		} while (!skb_queue_empty_lockless(sk_queue));
1765
1766		/* sk_queue is empty, reader_queue may contain peeked packets */
1767	} while (timeo &&
1768		 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1769					      &error, &timeo,
1770					      (struct sk_buff *)sk_queue));
1771
1772	*err = error;
1773	return NULL;
1774}
1775EXPORT_SYMBOL(__skb_recv_udp);
1776
1777int udp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1778{
1779	struct sk_buff *skb;
1780	int err;
1781
1782try_again:
1783	skb = skb_recv_udp(sk, MSG_DONTWAIT, &err);
1784	if (!skb)
1785		return err;
1786
1787	if (udp_lib_checksum_complete(skb)) {
1788		int is_udplite = IS_UDPLITE(sk);
1789		struct net *net = sock_net(sk);
1790
1791		__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, is_udplite);
1792		__UDP_INC_STATS(net, UDP_MIB_INERRORS, is_udplite);
1793		atomic_inc(&sk->sk_drops);
1794		kfree_skb(skb);
1795		goto try_again;
1796	}
1797
1798	WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1799	return recv_actor(sk, skb);
1800}
1801EXPORT_SYMBOL(udp_read_skb);
1802
1803/*
1804 * 	This should be easy, if there is something there we
1805 * 	return it, otherwise we block.
1806 */
1807
1808int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
1809		int *addr_len)
1810{
1811	struct inet_sock *inet = inet_sk(sk);
1812	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1813	struct sk_buff *skb;
1814	unsigned int ulen, copied;
1815	int off, err, peeking = flags & MSG_PEEK;
 
1816	int is_udplite = IS_UDPLITE(sk);
1817	bool checksum_valid = false;
1818
1819	if (flags & MSG_ERRQUEUE)
1820		return ip_recv_error(sk, msg, len, addr_len);
1821
1822try_again:
 
1823	off = sk_peek_offset(sk, flags);
1824	skb = __skb_recv_udp(sk, flags, &off, &err);
1825	if (!skb)
1826		return err;
1827
1828	ulen = udp_skb_len(skb);
1829	copied = len;
1830	if (copied > ulen - off)
1831		copied = ulen - off;
1832	else if (copied < ulen)
1833		msg->msg_flags |= MSG_TRUNC;
1834
1835	/*
1836	 * If checksum is needed at all, try to do it while copying the
1837	 * data.  If the data is truncated, or if we only want a partial
1838	 * coverage checksum (UDP-Lite), do it before the copy.
1839	 */
1840
1841	if (copied < ulen || peeking ||
1842	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1843		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1844				!__udp_lib_checksum_complete(skb);
1845		if (!checksum_valid)
1846			goto csum_copy_err;
1847	}
1848
1849	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1850		if (udp_skb_is_linear(skb))
1851			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1852		else
1853			err = skb_copy_datagram_msg(skb, off, msg, copied);
1854	} else {
1855		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1856
1857		if (err == -EINVAL)
1858			goto csum_copy_err;
1859	}
1860
1861	if (unlikely(err)) {
1862		if (!peeking) {
1863			atomic_inc(&sk->sk_drops);
1864			UDP_INC_STATS(sock_net(sk),
1865				      UDP_MIB_INERRORS, is_udplite);
1866		}
1867		kfree_skb(skb);
1868		return err;
1869	}
1870
1871	if (!peeking)
1872		UDP_INC_STATS(sock_net(sk),
1873			      UDP_MIB_INDATAGRAMS, is_udplite);
1874
1875	sock_recv_cmsgs(msg, sk, skb);
1876
1877	/* Copy the address. */
1878	if (sin) {
1879		sin->sin_family = AF_INET;
1880		sin->sin_port = udp_hdr(skb)->source;
1881		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1882		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1883		*addr_len = sizeof(*sin);
1884
1885		BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1886						      (struct sockaddr *)sin,
1887						      addr_len);
1888	}
1889
1890	if (udp_test_bit(GRO_ENABLED, sk))
1891		udp_cmsg_recv(msg, sk, skb);
1892
1893	if (inet_cmsg_flags(inet))
1894		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1895
1896	err = copied;
1897	if (flags & MSG_TRUNC)
1898		err = ulen;
1899
1900	skb_consume_udp(sk, skb, peeking ? -err : err);
1901	return err;
1902
1903csum_copy_err:
1904	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1905				 udp_skb_destructor)) {
1906		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1907		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1908	}
1909	kfree_skb(skb);
1910
1911	/* starting over for a new packet, but check if we need to yield */
1912	cond_resched();
1913	msg->msg_flags &= ~MSG_TRUNC;
1914	goto try_again;
1915}
1916
1917int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1918{
1919	/* This check is replicated from __ip4_datagram_connect() and
1920	 * intended to prevent BPF program called below from accessing bytes
1921	 * that are out of the bound specified by user in addr_len.
1922	 */
1923	if (addr_len < sizeof(struct sockaddr_in))
1924		return -EINVAL;
1925
1926	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr, &addr_len);
1927}
1928EXPORT_SYMBOL(udp_pre_connect);
1929
1930int __udp_disconnect(struct sock *sk, int flags)
1931{
1932	struct inet_sock *inet = inet_sk(sk);
1933	/*
1934	 *	1003.1g - break association.
1935	 */
1936
1937	sk->sk_state = TCP_CLOSE;
1938	inet->inet_daddr = 0;
1939	inet->inet_dport = 0;
1940	sock_rps_reset_rxhash(sk);
1941	sk->sk_bound_dev_if = 0;
1942	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1943		inet_reset_saddr(sk);
1944		if (sk->sk_prot->rehash &&
1945		    (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1946			sk->sk_prot->rehash(sk);
1947	}
1948
1949	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1950		sk->sk_prot->unhash(sk);
1951		inet->inet_sport = 0;
1952	}
1953	sk_dst_reset(sk);
1954	return 0;
1955}
1956EXPORT_SYMBOL(__udp_disconnect);
1957
1958int udp_disconnect(struct sock *sk, int flags)
1959{
1960	lock_sock(sk);
1961	__udp_disconnect(sk, flags);
1962	release_sock(sk);
1963	return 0;
1964}
1965EXPORT_SYMBOL(udp_disconnect);
1966
1967void udp_lib_unhash(struct sock *sk)
1968{
1969	if (sk_hashed(sk)) {
1970		struct udp_table *udptable = udp_get_table_prot(sk);
1971		struct udp_hslot *hslot, *hslot2;
1972
1973		hslot  = udp_hashslot(udptable, sock_net(sk),
1974				      udp_sk(sk)->udp_port_hash);
1975		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1976
1977		spin_lock_bh(&hslot->lock);
1978		if (rcu_access_pointer(sk->sk_reuseport_cb))
1979			reuseport_detach_sock(sk);
1980		if (sk_del_node_init_rcu(sk)) {
1981			hslot->count--;
1982			inet_sk(sk)->inet_num = 0;
1983			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1984
1985			spin_lock(&hslot2->lock);
1986			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1987			hslot2->count--;
1988			spin_unlock(&hslot2->lock);
1989		}
1990		spin_unlock_bh(&hslot->lock);
1991	}
1992}
1993EXPORT_SYMBOL(udp_lib_unhash);
1994
1995/*
1996 * inet_rcv_saddr was changed, we must rehash secondary hash
1997 */
1998void udp_lib_rehash(struct sock *sk, u16 newhash)
1999{
2000	if (sk_hashed(sk)) {
2001		struct udp_table *udptable = udp_get_table_prot(sk);
2002		struct udp_hslot *hslot, *hslot2, *nhslot2;
2003
2004		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2005		nhslot2 = udp_hashslot2(udptable, newhash);
2006		udp_sk(sk)->udp_portaddr_hash = newhash;
2007
2008		if (hslot2 != nhslot2 ||
2009		    rcu_access_pointer(sk->sk_reuseport_cb)) {
2010			hslot = udp_hashslot(udptable, sock_net(sk),
2011					     udp_sk(sk)->udp_port_hash);
2012			/* we must lock primary chain too */
2013			spin_lock_bh(&hslot->lock);
2014			if (rcu_access_pointer(sk->sk_reuseport_cb))
2015				reuseport_detach_sock(sk);
2016
2017			if (hslot2 != nhslot2) {
2018				spin_lock(&hslot2->lock);
2019				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2020				hslot2->count--;
2021				spin_unlock(&hslot2->lock);
2022
2023				spin_lock(&nhslot2->lock);
2024				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2025							 &nhslot2->head);
2026				nhslot2->count++;
2027				spin_unlock(&nhslot2->lock);
2028			}
2029
2030			spin_unlock_bh(&hslot->lock);
2031		}
2032	}
2033}
2034EXPORT_SYMBOL(udp_lib_rehash);
2035
2036void udp_v4_rehash(struct sock *sk)
2037{
2038	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2039					  inet_sk(sk)->inet_rcv_saddr,
2040					  inet_sk(sk)->inet_num);
2041	udp_lib_rehash(sk, new_hash);
2042}
2043
2044static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2045{
2046	int rc;
2047
2048	if (inet_sk(sk)->inet_daddr) {
2049		sock_rps_save_rxhash(sk, skb);
2050		sk_mark_napi_id(sk, skb);
2051		sk_incoming_cpu_update(sk);
2052	} else {
2053		sk_mark_napi_id_once(sk, skb);
2054	}
2055
2056	rc = __udp_enqueue_schedule_skb(sk, skb);
2057	if (rc < 0) {
2058		int is_udplite = IS_UDPLITE(sk);
2059		int drop_reason;
2060
2061		/* Note that an ENOMEM error is charged twice */
2062		if (rc == -ENOMEM) {
2063			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2064					is_udplite);
2065			drop_reason = SKB_DROP_REASON_SOCKET_RCVBUFF;
2066		} else {
2067			UDP_INC_STATS(sock_net(sk), UDP_MIB_MEMERRORS,
2068				      is_udplite);
2069			drop_reason = SKB_DROP_REASON_PROTO_MEM;
2070		}
2071		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2072		kfree_skb_reason(skb, drop_reason);
2073		trace_udp_fail_queue_rcv_skb(rc, sk);
2074		return -1;
2075	}
2076
2077	return 0;
2078}
2079
 
 
 
 
 
 
 
2080/* returns:
2081 *  -1: error
2082 *   0: success
2083 *  >0: "udp encap" protocol resubmission
2084 *
2085 * Note that in the success and error cases, the skb is assumed to
2086 * have either been requeued or freed.
2087 */
2088static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2089{
2090	int drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2091	struct udp_sock *up = udp_sk(sk);
2092	int is_udplite = IS_UDPLITE(sk);
2093
2094	/*
2095	 *	Charge it to the socket, dropping if the queue is full.
2096	 */
2097	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) {
2098		drop_reason = SKB_DROP_REASON_XFRM_POLICY;
2099		goto drop;
2100	}
2101	nf_reset_ct(skb);
2102
2103	if (static_branch_unlikely(&udp_encap_needed_key) &&
2104	    READ_ONCE(up->encap_type)) {
2105		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2106
2107		/*
2108		 * This is an encapsulation socket so pass the skb to
2109		 * the socket's udp_encap_rcv() hook. Otherwise, just
2110		 * fall through and pass this up the UDP socket.
2111		 * up->encap_rcv() returns the following value:
2112		 * =0 if skb was successfully passed to the encap
2113		 *    handler or was discarded by it.
2114		 * >0 if skb should be passed on to UDP.
2115		 * <0 if skb should be resubmitted as proto -N
2116		 */
2117
2118		/* if we're overly short, let UDP handle it */
2119		encap_rcv = READ_ONCE(up->encap_rcv);
2120		if (encap_rcv) {
2121			int ret;
2122
2123			/* Verify checksum before giving to encap */
2124			if (udp_lib_checksum_complete(skb))
2125				goto csum_error;
2126
2127			ret = encap_rcv(sk, skb);
2128			if (ret <= 0) {
2129				__UDP_INC_STATS(sock_net(sk),
2130						UDP_MIB_INDATAGRAMS,
2131						is_udplite);
2132				return -ret;
2133			}
2134		}
2135
2136		/* FALLTHROUGH -- it's a UDP Packet */
2137	}
2138
2139	/*
2140	 * 	UDP-Lite specific tests, ignored on UDP sockets
2141	 */
2142	if (udp_test_bit(UDPLITE_RECV_CC, sk) && UDP_SKB_CB(skb)->partial_cov) {
2143		u16 pcrlen = READ_ONCE(up->pcrlen);
2144
2145		/*
2146		 * MIB statistics other than incrementing the error count are
2147		 * disabled for the following two types of errors: these depend
2148		 * on the application settings, not on the functioning of the
2149		 * protocol stack as such.
2150		 *
2151		 * RFC 3828 here recommends (sec 3.3): "There should also be a
2152		 * way ... to ... at least let the receiving application block
2153		 * delivery of packets with coverage values less than a value
2154		 * provided by the application."
2155		 */
2156		if (pcrlen == 0) {          /* full coverage was set  */
2157			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2158					    UDP_SKB_CB(skb)->cscov, skb->len);
2159			goto drop;
2160		}
2161		/* The next case involves violating the min. coverage requested
2162		 * by the receiver. This is subtle: if receiver wants x and x is
2163		 * greater than the buffersize/MTU then receiver will complain
2164		 * that it wants x while sender emits packets of smaller size y.
2165		 * Therefore the above ...()->partial_cov statement is essential.
2166		 */
2167		if (UDP_SKB_CB(skb)->cscov < pcrlen) {
2168			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2169					    UDP_SKB_CB(skb)->cscov, pcrlen);
2170			goto drop;
2171		}
2172	}
2173
2174	prefetch(&sk->sk_rmem_alloc);
2175	if (rcu_access_pointer(sk->sk_filter) &&
2176	    udp_lib_checksum_complete(skb))
2177			goto csum_error;
2178
2179	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr))) {
2180		drop_reason = SKB_DROP_REASON_SOCKET_FILTER;
2181		goto drop;
2182	}
2183
2184	udp_csum_pull_header(skb);
2185
2186	ipv4_pktinfo_prepare(sk, skb, true);
2187	return __udp_queue_rcv_skb(sk, skb);
2188
2189csum_error:
2190	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2191	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2192drop:
2193	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2194	atomic_inc(&sk->sk_drops);
2195	kfree_skb_reason(skb, drop_reason);
2196	return -1;
2197}
2198
2199static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2200{
2201	struct sk_buff *next, *segs;
2202	int ret;
2203
2204	if (likely(!udp_unexpected_gso(sk, skb)))
2205		return udp_queue_rcv_one_skb(sk, skb);
2206
2207	BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2208	__skb_push(skb, -skb_mac_offset(skb));
2209	segs = udp_rcv_segment(sk, skb, true);
2210	skb_list_walk_safe(segs, skb, next) {
2211		__skb_pull(skb, skb_transport_offset(skb));
2212
2213		udp_post_segment_fix_csum(skb);
2214		ret = udp_queue_rcv_one_skb(sk, skb);
2215		if (ret > 0)
2216			ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2217	}
2218	return 0;
2219}
2220
2221/* For TCP sockets, sk_rx_dst is protected by socket lock
2222 * For UDP, we use xchg() to guard against concurrent changes.
2223 */
2224bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2225{
2226	struct dst_entry *old;
2227
2228	if (dst_hold_safe(dst)) {
2229		old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2230		dst_release(old);
2231		return old != dst;
2232	}
2233	return false;
2234}
2235EXPORT_SYMBOL(udp_sk_rx_dst_set);
2236
2237/*
2238 *	Multicasts and broadcasts go to each listener.
2239 *
2240 *	Note: called only from the BH handler context.
2241 */
2242static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2243				    struct udphdr  *uh,
2244				    __be32 saddr, __be32 daddr,
2245				    struct udp_table *udptable,
2246				    int proto)
2247{
2248	struct sock *sk, *first = NULL;
2249	unsigned short hnum = ntohs(uh->dest);
2250	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2251	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2252	unsigned int offset = offsetof(typeof(*sk), sk_node);
2253	int dif = skb->dev->ifindex;
2254	int sdif = inet_sdif(skb);
2255	struct hlist_node *node;
2256	struct sk_buff *nskb;
2257
2258	if (use_hash2) {
2259		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2260			    udptable->mask;
2261		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2262start_lookup:
2263		hslot = &udptable->hash2[hash2];
2264		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2265	}
2266
2267	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2268		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2269					 uh->source, saddr, dif, sdif, hnum))
2270			continue;
2271
2272		if (!first) {
2273			first = sk;
2274			continue;
2275		}
2276		nskb = skb_clone(skb, GFP_ATOMIC);
2277
2278		if (unlikely(!nskb)) {
2279			atomic_inc(&sk->sk_drops);
2280			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2281					IS_UDPLITE(sk));
2282			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
2283					IS_UDPLITE(sk));
2284			continue;
2285		}
2286		if (udp_queue_rcv_skb(sk, nskb) > 0)
2287			consume_skb(nskb);
2288	}
2289
2290	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2291	if (use_hash2 && hash2 != hash2_any) {
2292		hash2 = hash2_any;
2293		goto start_lookup;
2294	}
2295
2296	if (first) {
2297		if (udp_queue_rcv_skb(first, skb) > 0)
2298			consume_skb(skb);
2299	} else {
2300		kfree_skb(skb);
2301		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2302				proto == IPPROTO_UDPLITE);
2303	}
2304	return 0;
2305}
2306
2307/* Initialize UDP checksum. If exited with zero value (success),
2308 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2309 * Otherwise, csum completion requires checksumming packet body,
2310 * including udp header and folding it to skb->csum.
2311 */
2312static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2313				 int proto)
2314{
2315	int err;
2316
2317	UDP_SKB_CB(skb)->partial_cov = 0;
2318	UDP_SKB_CB(skb)->cscov = skb->len;
2319
2320	if (proto == IPPROTO_UDPLITE) {
2321		err = udplite_checksum_init(skb, uh);
2322		if (err)
2323			return err;
2324
2325		if (UDP_SKB_CB(skb)->partial_cov) {
2326			skb->csum = inet_compute_pseudo(skb, proto);
2327			return 0;
2328		}
2329	}
2330
2331	/* Note, we are only interested in != 0 or == 0, thus the
2332	 * force to int.
2333	 */
2334	err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2335							inet_compute_pseudo);
2336	if (err)
2337		return err;
2338
2339	if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2340		/* If SW calculated the value, we know it's bad */
2341		if (skb->csum_complete_sw)
2342			return 1;
2343
2344		/* HW says the value is bad. Let's validate that.
2345		 * skb->csum is no longer the full packet checksum,
2346		 * so don't treat it as such.
2347		 */
2348		skb_checksum_complete_unset(skb);
2349	}
2350
2351	return 0;
2352}
2353
2354/* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2355 * return code conversion for ip layer consumption
2356 */
2357static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2358			       struct udphdr *uh)
2359{
2360	int ret;
2361
2362	if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2363		skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2364
2365	ret = udp_queue_rcv_skb(sk, skb);
2366
2367	/* a return value > 0 means to resubmit the input, but
2368	 * it wants the return to be -protocol, or 0
2369	 */
2370	if (ret > 0)
2371		return -ret;
2372	return 0;
2373}
2374
2375/*
2376 *	All we need to do is get the socket, and then do a checksum.
2377 */
2378
2379int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2380		   int proto)
2381{
2382	struct sock *sk;
2383	struct udphdr *uh;
2384	unsigned short ulen;
2385	struct rtable *rt = skb_rtable(skb);
2386	__be32 saddr, daddr;
2387	struct net *net = dev_net(skb->dev);
2388	bool refcounted;
2389	int drop_reason;
2390
2391	drop_reason = SKB_DROP_REASON_NOT_SPECIFIED;
2392
2393	/*
2394	 *  Validate the packet.
2395	 */
2396	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2397		goto drop;		/* No space for header. */
2398
2399	uh   = udp_hdr(skb);
2400	ulen = ntohs(uh->len);
2401	saddr = ip_hdr(skb)->saddr;
2402	daddr = ip_hdr(skb)->daddr;
2403
2404	if (ulen > skb->len)
2405		goto short_packet;
2406
2407	if (proto == IPPROTO_UDP) {
2408		/* UDP validates ulen. */
2409		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2410			goto short_packet;
2411		uh = udp_hdr(skb);
2412	}
2413
2414	if (udp4_csum_init(skb, uh, proto))
2415		goto csum_error;
2416
2417	sk = inet_steal_sock(net, skb, sizeof(struct udphdr), saddr, uh->source, daddr, uh->dest,
2418			     &refcounted, udp_ehashfn);
2419	if (IS_ERR(sk))
2420		goto no_sk;
2421
2422	if (sk) {
2423		struct dst_entry *dst = skb_dst(skb);
2424		int ret;
2425
2426		if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2427			udp_sk_rx_dst_set(sk, dst);
2428
2429		ret = udp_unicast_rcv_skb(sk, skb, uh);
2430		if (refcounted)
2431			sock_put(sk);
2432		return ret;
 
 
 
 
2433	}
2434
2435	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2436		return __udp4_lib_mcast_deliver(net, skb, uh,
2437						saddr, daddr, udptable, proto);
2438
2439	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2440	if (sk)
2441		return udp_unicast_rcv_skb(sk, skb, uh);
2442no_sk:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2443	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2444		goto drop;
2445	nf_reset_ct(skb);
2446
2447	/* No socket. Drop packet silently, if checksum is wrong */
2448	if (udp_lib_checksum_complete(skb))
2449		goto csum_error;
2450
2451	drop_reason = SKB_DROP_REASON_NO_SOCKET;
2452	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2453	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2454
2455	/*
2456	 * Hmm.  We got an UDP packet to a port to which we
2457	 * don't wanna listen.  Ignore it.
2458	 */
2459	kfree_skb_reason(skb, drop_reason);
2460	return 0;
2461
2462short_packet:
2463	drop_reason = SKB_DROP_REASON_PKT_TOO_SMALL;
2464	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2465			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2466			    &saddr, ntohs(uh->source),
2467			    ulen, skb->len,
2468			    &daddr, ntohs(uh->dest));
2469	goto drop;
2470
2471csum_error:
2472	/*
2473	 * RFC1122: OK.  Discards the bad packet silently (as far as
2474	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2475	 */
2476	drop_reason = SKB_DROP_REASON_UDP_CSUM;
2477	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2478			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2479			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2480			    ulen);
2481	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2482drop:
2483	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2484	kfree_skb_reason(skb, drop_reason);
2485	return 0;
2486}
2487
2488/* We can only early demux multicast if there is a single matching socket.
2489 * If more than one socket found returns NULL
2490 */
2491static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2492						  __be16 loc_port, __be32 loc_addr,
2493						  __be16 rmt_port, __be32 rmt_addr,
2494						  int dif, int sdif)
2495{
2496	struct udp_table *udptable = net->ipv4.udp_table;
2497	unsigned short hnum = ntohs(loc_port);
2498	struct sock *sk, *result;
2499	struct udp_hslot *hslot;
2500	unsigned int slot;
2501
2502	slot = udp_hashfn(net, hnum, udptable->mask);
2503	hslot = &udptable->hash[slot];
2504
2505	/* Do not bother scanning a too big list */
2506	if (hslot->count > 10)
2507		return NULL;
2508
2509	result = NULL;
2510	sk_for_each_rcu(sk, &hslot->head) {
2511		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2512					rmt_port, rmt_addr, dif, sdif, hnum)) {
2513			if (result)
2514				return NULL;
2515			result = sk;
2516		}
2517	}
2518
2519	return result;
2520}
2521
2522/* For unicast we should only early demux connected sockets or we can
2523 * break forwarding setups.  The chains here can be long so only check
2524 * if the first socket is an exact match and if not move on.
2525 */
2526static struct sock *__udp4_lib_demux_lookup(struct net *net,
2527					    __be16 loc_port, __be32 loc_addr,
2528					    __be16 rmt_port, __be32 rmt_addr,
2529					    int dif, int sdif)
2530{
2531	struct udp_table *udptable = net->ipv4.udp_table;
2532	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2533	unsigned short hnum = ntohs(loc_port);
2534	unsigned int hash2, slot2;
2535	struct udp_hslot *hslot2;
2536	__portpair ports;
 
 
2537	struct sock *sk;
2538
2539	hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2540	slot2 = hash2 & udptable->mask;
2541	hslot2 = &udptable->hash2[slot2];
2542	ports = INET_COMBINED_PORTS(rmt_port, hnum);
2543
2544	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2545		if (inet_match(net, sk, acookie, ports, dif, sdif))
 
2546			return sk;
2547		/* Only check first socket in chain */
2548		break;
2549	}
2550	return NULL;
2551}
2552
2553int udp_v4_early_demux(struct sk_buff *skb)
2554{
2555	struct net *net = dev_net(skb->dev);
2556	struct in_device *in_dev = NULL;
2557	const struct iphdr *iph;
2558	const struct udphdr *uh;
2559	struct sock *sk = NULL;
2560	struct dst_entry *dst;
2561	int dif = skb->dev->ifindex;
2562	int sdif = inet_sdif(skb);
2563	int ours;
2564
2565	/* validate the packet */
2566	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2567		return 0;
2568
2569	iph = ip_hdr(skb);
2570	uh = udp_hdr(skb);
2571
2572	if (skb->pkt_type == PACKET_MULTICAST) {
2573		in_dev = __in_dev_get_rcu(skb->dev);
2574
2575		if (!in_dev)
2576			return 0;
2577
2578		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2579				       iph->protocol);
2580		if (!ours)
2581			return 0;
2582
2583		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2584						   uh->source, iph->saddr,
2585						   dif, sdif);
2586	} else if (skb->pkt_type == PACKET_HOST) {
2587		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2588					     uh->source, iph->saddr, dif, sdif);
2589	}
2590
2591	if (!sk)
2592		return 0;
2593
2594	skb->sk = sk;
2595	DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
2596	skb->destructor = sock_pfree;
2597	dst = rcu_dereference(sk->sk_rx_dst);
2598
2599	if (dst)
2600		dst = dst_check(dst, 0);
2601	if (dst) {
2602		u32 itag = 0;
2603
2604		/* set noref for now.
2605		 * any place which wants to hold dst has to call
2606		 * dst_hold_safe()
2607		 */
2608		skb_dst_set_noref(skb, dst);
2609
2610		/* for unconnected multicast sockets we need to validate
2611		 * the source on each packet
2612		 */
2613		if (!inet_sk(sk)->inet_daddr && in_dev)
2614			return ip_mc_validate_source(skb, iph->daddr,
2615						     iph->saddr,
2616						     iph->tos & IPTOS_RT_MASK,
2617						     skb->dev, in_dev, &itag);
2618	}
2619	return 0;
2620}
2621
2622int udp_rcv(struct sk_buff *skb)
2623{
2624	return __udp4_lib_rcv(skb, dev_net(skb->dev)->ipv4.udp_table, IPPROTO_UDP);
2625}
2626
2627void udp_destroy_sock(struct sock *sk)
2628{
2629	struct udp_sock *up = udp_sk(sk);
2630	bool slow = lock_sock_fast(sk);
2631
2632	/* protects from races with udp_abort() */
2633	sock_set_flag(sk, SOCK_DEAD);
2634	udp_flush_pending_frames(sk);
2635	unlock_sock_fast(sk, slow);
2636	if (static_branch_unlikely(&udp_encap_needed_key)) {
2637		if (up->encap_type) {
2638			void (*encap_destroy)(struct sock *sk);
2639			encap_destroy = READ_ONCE(up->encap_destroy);
2640			if (encap_destroy)
2641				encap_destroy(sk);
2642		}
2643		if (udp_test_bit(ENCAP_ENABLED, sk))
2644			static_branch_dec(&udp_encap_needed_key);
2645	}
2646}
2647
2648static void set_xfrm_gro_udp_encap_rcv(__u16 encap_type, unsigned short family,
2649				       struct sock *sk)
2650{
2651#ifdef CONFIG_XFRM
2652	if (udp_test_bit(GRO_ENABLED, sk) && encap_type == UDP_ENCAP_ESPINUDP) {
2653		if (family == AF_INET)
2654			WRITE_ONCE(udp_sk(sk)->gro_receive, xfrm4_gro_udp_encap_rcv);
2655		else if (IS_ENABLED(CONFIG_IPV6) && family == AF_INET6)
2656			WRITE_ONCE(udp_sk(sk)->gro_receive, ipv6_stub->xfrm6_gro_udp_encap_rcv);
2657	}
2658#endif
2659}
2660
2661/*
2662 *	Socket option code for UDP
2663 */
2664int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2665		       sockptr_t optval, unsigned int optlen,
2666		       int (*push_pending_frames)(struct sock *))
2667{
2668	struct udp_sock *up = udp_sk(sk);
2669	int val, valbool;
2670	int err = 0;
2671	int is_udplite = IS_UDPLITE(sk);
2672
2673	if (level == SOL_SOCKET) {
2674		err = sk_setsockopt(sk, level, optname, optval, optlen);
2675
2676		if (optname == SO_RCVBUF || optname == SO_RCVBUFFORCE) {
2677			sockopt_lock_sock(sk);
2678			/* paired with READ_ONCE in udp_rmem_release() */
2679			WRITE_ONCE(up->forward_threshold, sk->sk_rcvbuf >> 2);
2680			sockopt_release_sock(sk);
2681		}
2682		return err;
2683	}
2684
2685	if (optlen < sizeof(int))
2686		return -EINVAL;
2687
2688	if (copy_from_sockptr(&val, optval, sizeof(val)))
2689		return -EFAULT;
2690
2691	valbool = val ? 1 : 0;
2692
2693	switch (optname) {
2694	case UDP_CORK:
2695		if (val != 0) {
2696			udp_set_bit(CORK, sk);
2697		} else {
2698			udp_clear_bit(CORK, sk);
2699			lock_sock(sk);
2700			push_pending_frames(sk);
2701			release_sock(sk);
2702		}
2703		break;
2704
2705	case UDP_ENCAP:
2706		switch (val) {
2707		case 0:
2708#ifdef CONFIG_XFRM
2709		case UDP_ENCAP_ESPINUDP:
2710			set_xfrm_gro_udp_encap_rcv(val, sk->sk_family, sk);
2711			fallthrough;
2712		case UDP_ENCAP_ESPINUDP_NON_IKE:
2713#if IS_ENABLED(CONFIG_IPV6)
2714			if (sk->sk_family == AF_INET6)
2715				WRITE_ONCE(up->encap_rcv,
2716					   ipv6_stub->xfrm6_udp_encap_rcv);
2717			else
2718#endif
2719				WRITE_ONCE(up->encap_rcv,
2720					   xfrm4_udp_encap_rcv);
2721#endif
2722			fallthrough;
2723		case UDP_ENCAP_L2TPINUDP:
2724			WRITE_ONCE(up->encap_type, val);
2725			udp_tunnel_encap_enable(sk);
2726			break;
2727		default:
2728			err = -ENOPROTOOPT;
2729			break;
2730		}
2731		break;
2732
2733	case UDP_NO_CHECK6_TX:
2734		udp_set_no_check6_tx(sk, valbool);
2735		break;
2736
2737	case UDP_NO_CHECK6_RX:
2738		udp_set_no_check6_rx(sk, valbool);
2739		break;
2740
2741	case UDP_SEGMENT:
2742		if (val < 0 || val > USHRT_MAX)
2743			return -EINVAL;
2744		WRITE_ONCE(up->gso_size, val);
2745		break;
2746
2747	case UDP_GRO:
2748
2749		/* when enabling GRO, accept the related GSO packet type */
2750		if (valbool)
2751			udp_tunnel_encap_enable(sk);
2752		udp_assign_bit(GRO_ENABLED, sk, valbool);
2753		udp_assign_bit(ACCEPT_L4, sk, valbool);
2754		set_xfrm_gro_udp_encap_rcv(up->encap_type, sk->sk_family, sk);
2755		break;
2756
2757	/*
2758	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2759	 */
2760	/* The sender sets actual checksum coverage length via this option.
2761	 * The case coverage > packet length is handled by send module. */
2762	case UDPLITE_SEND_CSCOV:
2763		if (!is_udplite)         /* Disable the option on UDP sockets */
2764			return -ENOPROTOOPT;
2765		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2766			val = 8;
2767		else if (val > USHRT_MAX)
2768			val = USHRT_MAX;
2769		WRITE_ONCE(up->pcslen, val);
2770		udp_set_bit(UDPLITE_SEND_CC, sk);
2771		break;
2772
2773	/* The receiver specifies a minimum checksum coverage value. To make
2774	 * sense, this should be set to at least 8 (as done below). If zero is
2775	 * used, this again means full checksum coverage.                     */
2776	case UDPLITE_RECV_CSCOV:
2777		if (!is_udplite)         /* Disable the option on UDP sockets */
2778			return -ENOPROTOOPT;
2779		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2780			val = 8;
2781		else if (val > USHRT_MAX)
2782			val = USHRT_MAX;
2783		WRITE_ONCE(up->pcrlen, val);
2784		udp_set_bit(UDPLITE_RECV_CC, sk);
2785		break;
2786
2787	default:
2788		err = -ENOPROTOOPT;
2789		break;
2790	}
2791
2792	return err;
2793}
2794EXPORT_SYMBOL(udp_lib_setsockopt);
2795
2796int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2797		   unsigned int optlen)
2798{
2799	if (level == SOL_UDP  ||  level == SOL_UDPLITE || level == SOL_SOCKET)
2800		return udp_lib_setsockopt(sk, level, optname,
2801					  optval, optlen,
2802					  udp_push_pending_frames);
2803	return ip_setsockopt(sk, level, optname, optval, optlen);
2804}
2805
 
 
 
 
 
 
 
 
 
 
 
2806int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2807		       char __user *optval, int __user *optlen)
2808{
2809	struct udp_sock *up = udp_sk(sk);
2810	int val, len;
2811
2812	if (get_user(len, optlen))
2813		return -EFAULT;
2814
 
 
2815	if (len < 0)
2816		return -EINVAL;
2817
2818	len = min_t(unsigned int, len, sizeof(int));
2819
2820	switch (optname) {
2821	case UDP_CORK:
2822		val = udp_test_bit(CORK, sk);
2823		break;
2824
2825	case UDP_ENCAP:
2826		val = READ_ONCE(up->encap_type);
2827		break;
2828
2829	case UDP_NO_CHECK6_TX:
2830		val = udp_get_no_check6_tx(sk);
2831		break;
2832
2833	case UDP_NO_CHECK6_RX:
2834		val = udp_get_no_check6_rx(sk);
2835		break;
2836
2837	case UDP_SEGMENT:
2838		val = READ_ONCE(up->gso_size);
2839		break;
2840
2841	case UDP_GRO:
2842		val = udp_test_bit(GRO_ENABLED, sk);
2843		break;
2844
2845	/* The following two cannot be changed on UDP sockets, the return is
2846	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2847	case UDPLITE_SEND_CSCOV:
2848		val = READ_ONCE(up->pcslen);
2849		break;
2850
2851	case UDPLITE_RECV_CSCOV:
2852		val = READ_ONCE(up->pcrlen);
2853		break;
2854
2855	default:
2856		return -ENOPROTOOPT;
2857	}
2858
2859	if (put_user(len, optlen))
2860		return -EFAULT;
2861	if (copy_to_user(optval, &val, len))
2862		return -EFAULT;
2863	return 0;
2864}
2865EXPORT_SYMBOL(udp_lib_getsockopt);
2866
2867int udp_getsockopt(struct sock *sk, int level, int optname,
2868		   char __user *optval, int __user *optlen)
2869{
2870	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2871		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2872	return ip_getsockopt(sk, level, optname, optval, optlen);
2873}
2874
 
 
 
 
 
 
 
 
 
2875/**
2876 * 	udp_poll - wait for a UDP event.
2877 *	@file: - file struct
2878 *	@sock: - socket
2879 *	@wait: - poll table
2880 *
2881 *	This is same as datagram poll, except for the special case of
2882 *	blocking sockets. If application is using a blocking fd
2883 *	and a packet with checksum error is in the queue;
2884 *	then it could get return from select indicating data available
2885 *	but then block when reading it. Add special case code
2886 *	to work around these arguably broken applications.
2887 */
2888__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2889{
2890	__poll_t mask = datagram_poll(file, sock, wait);
2891	struct sock *sk = sock->sk;
2892
2893	if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2894		mask |= EPOLLIN | EPOLLRDNORM;
2895
2896	/* Check for false positives due to checksum errors */
2897	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2898	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2899		mask &= ~(EPOLLIN | EPOLLRDNORM);
2900
2901	/* psock ingress_msg queue should not contain any bad checksum frames */
2902	if (sk_is_readable(sk))
2903		mask |= EPOLLIN | EPOLLRDNORM;
2904	return mask;
2905
2906}
2907EXPORT_SYMBOL(udp_poll);
2908
2909int udp_abort(struct sock *sk, int err)
2910{
2911	if (!has_current_bpf_ctx())
2912		lock_sock(sk);
2913
2914	/* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2915	 * with close()
2916	 */
2917	if (sock_flag(sk, SOCK_DEAD))
2918		goto out;
2919
2920	sk->sk_err = err;
2921	sk_error_report(sk);
2922	__udp_disconnect(sk, 0);
2923
2924out:
2925	if (!has_current_bpf_ctx())
2926		release_sock(sk);
2927
2928	return 0;
2929}
2930EXPORT_SYMBOL_GPL(udp_abort);
2931
2932struct proto udp_prot = {
2933	.name			= "UDP",
2934	.owner			= THIS_MODULE,
2935	.close			= udp_lib_close,
2936	.pre_connect		= udp_pre_connect,
2937	.connect		= ip4_datagram_connect,
2938	.disconnect		= udp_disconnect,
2939	.ioctl			= udp_ioctl,
2940	.init			= udp_init_sock,
2941	.destroy		= udp_destroy_sock,
2942	.setsockopt		= udp_setsockopt,
2943	.getsockopt		= udp_getsockopt,
2944	.sendmsg		= udp_sendmsg,
2945	.recvmsg		= udp_recvmsg,
2946	.splice_eof		= udp_splice_eof,
2947	.release_cb		= ip4_datagram_release_cb,
2948	.hash			= udp_lib_hash,
2949	.unhash			= udp_lib_unhash,
2950	.rehash			= udp_v4_rehash,
2951	.get_port		= udp_v4_get_port,
2952	.put_port		= udp_lib_unhash,
2953#ifdef CONFIG_BPF_SYSCALL
2954	.psock_update_sk_prot	= udp_bpf_update_proto,
2955#endif
2956	.memory_allocated	= &udp_memory_allocated,
2957	.per_cpu_fw_alloc	= &udp_memory_per_cpu_fw_alloc,
2958
2959	.sysctl_mem		= sysctl_udp_mem,
2960	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2961	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2962	.obj_size		= sizeof(struct udp_sock),
2963	.h.udp_table		= NULL,
 
 
 
 
2964	.diag_destroy		= udp_abort,
2965};
2966EXPORT_SYMBOL(udp_prot);
2967
2968/* ------------------------------------------------------------------------ */
2969#ifdef CONFIG_PROC_FS
2970
2971static unsigned short seq_file_family(const struct seq_file *seq);
2972static bool seq_sk_match(struct seq_file *seq, const struct sock *sk)
2973{
2974	unsigned short family = seq_file_family(seq);
2975
2976	/* AF_UNSPEC is used as a match all */
2977	return ((family == AF_UNSPEC || family == sk->sk_family) &&
2978		net_eq(sock_net(sk), seq_file_net(seq)));
2979}
2980
2981#ifdef CONFIG_BPF_SYSCALL
2982static const struct seq_operations bpf_iter_udp_seq_ops;
2983#endif
2984static struct udp_table *udp_get_table_seq(struct seq_file *seq,
2985					   struct net *net)
2986{
2987	const struct udp_seq_afinfo *afinfo;
2988
2989#ifdef CONFIG_BPF_SYSCALL
2990	if (seq->op == &bpf_iter_udp_seq_ops)
2991		return net->ipv4.udp_table;
2992#endif
2993
2994	afinfo = pde_data(file_inode(seq->file));
2995	return afinfo->udp_table ? : net->ipv4.udp_table;
2996}
2997
2998static struct sock *udp_get_first(struct seq_file *seq, int start)
2999{
 
3000	struct udp_iter_state *state = seq->private;
3001	struct net *net = seq_file_net(seq);
3002	struct udp_table *udptable;
3003	struct sock *sk;
3004
3005	udptable = udp_get_table_seq(seq, net);
3006
3007	for (state->bucket = start; state->bucket <= udptable->mask;
3008	     ++state->bucket) {
3009		struct udp_hslot *hslot = &udptable->hash[state->bucket];
3010
3011		if (hlist_empty(&hslot->head))
3012			continue;
3013
3014		spin_lock_bh(&hslot->lock);
3015		sk_for_each(sk, &hslot->head) {
3016			if (seq_sk_match(seq, sk))
 
 
3017				goto found;
3018		}
3019		spin_unlock_bh(&hslot->lock);
3020	}
3021	sk = NULL;
3022found:
3023	return sk;
3024}
3025
3026static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
3027{
3028	struct udp_iter_state *state = seq->private;
3029	struct net *net = seq_file_net(seq);
3030	struct udp_table *udptable;
3031
3032	do {
3033		sk = sk_next(sk);
3034	} while (sk && !seq_sk_match(seq, sk));
3035
3036	if (!sk) {
3037		udptable = udp_get_table_seq(seq, net);
3038
3039		if (state->bucket <= udptable->mask)
3040			spin_unlock_bh(&udptable->hash[state->bucket].lock);
3041
3042		return udp_get_first(seq, state->bucket + 1);
3043	}
3044	return sk;
3045}
3046
3047static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
3048{
3049	struct sock *sk = udp_get_first(seq, 0);
3050
3051	if (sk)
3052		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
3053			--pos;
3054	return pos ? NULL : sk;
3055}
3056
3057void *udp_seq_start(struct seq_file *seq, loff_t *pos)
3058{
3059	struct udp_iter_state *state = seq->private;
3060	state->bucket = MAX_UDP_PORTS;
3061
3062	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
3063}
3064EXPORT_SYMBOL(udp_seq_start);
3065
3066void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3067{
3068	struct sock *sk;
3069
3070	if (v == SEQ_START_TOKEN)
3071		sk = udp_get_idx(seq, 0);
3072	else
3073		sk = udp_get_next(seq, v);
3074
3075	++*pos;
3076	return sk;
3077}
3078EXPORT_SYMBOL(udp_seq_next);
3079
3080void udp_seq_stop(struct seq_file *seq, void *v)
3081{
3082	struct udp_iter_state *state = seq->private;
3083	struct udp_table *udptable;
3084
3085	udptable = udp_get_table_seq(seq, seq_file_net(seq));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3086
3087	if (state->bucket <= udptable->mask)
3088		spin_unlock_bh(&udptable->hash[state->bucket].lock);
 
3089}
3090EXPORT_SYMBOL(udp_seq_stop);
3091
3092/* ------------------------------------------------------------------------ */
3093static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3094		int bucket)
3095{
3096	struct inet_sock *inet = inet_sk(sp);
3097	__be32 dest = inet->inet_daddr;
3098	__be32 src  = inet->inet_rcv_saddr;
3099	__u16 destp	  = ntohs(inet->inet_dport);
3100	__u16 srcp	  = ntohs(inet->inet_sport);
3101
3102	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3103		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3104		bucket, src, srcp, dest, destp, sp->sk_state,
3105		sk_wmem_alloc_get(sp),
3106		udp_rqueue_get(sp),
3107		0, 0L, 0,
3108		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3109		0, sock_i_ino(sp),
3110		refcount_read(&sp->sk_refcnt), sp,
3111		atomic_read(&sp->sk_drops));
3112}
3113
3114int udp4_seq_show(struct seq_file *seq, void *v)
3115{
3116	seq_setwidth(seq, 127);
3117	if (v == SEQ_START_TOKEN)
3118		seq_puts(seq, "   sl  local_address rem_address   st tx_queue "
3119			   "rx_queue tr tm->when retrnsmt   uid  timeout "
3120			   "inode ref pointer drops");
3121	else {
3122		struct udp_iter_state *state = seq->private;
3123
3124		udp4_format_sock(v, seq, state->bucket);
3125	}
3126	seq_pad(seq, '\n');
3127	return 0;
3128}
3129
3130#ifdef CONFIG_BPF_SYSCALL
3131struct bpf_iter__udp {
3132	__bpf_md_ptr(struct bpf_iter_meta *, meta);
3133	__bpf_md_ptr(struct udp_sock *, udp_sk);
3134	uid_t uid __aligned(8);
3135	int bucket __aligned(8);
3136};
3137
3138struct bpf_udp_iter_state {
3139	struct udp_iter_state state;
3140	unsigned int cur_sk;
3141	unsigned int end_sk;
3142	unsigned int max_sk;
3143	int offset;
3144	struct sock **batch;
3145	bool st_bucket_done;
3146};
3147
3148static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3149				      unsigned int new_batch_sz);
3150static struct sock *bpf_iter_udp_batch(struct seq_file *seq)
3151{
3152	struct bpf_udp_iter_state *iter = seq->private;
3153	struct udp_iter_state *state = &iter->state;
3154	struct net *net = seq_file_net(seq);
3155	int resume_bucket, resume_offset;
3156	struct udp_table *udptable;
3157	unsigned int batch_sks = 0;
3158	bool resized = false;
3159	struct sock *sk;
3160
3161	resume_bucket = state->bucket;
3162	resume_offset = iter->offset;
3163
3164	/* The current batch is done, so advance the bucket. */
3165	if (iter->st_bucket_done)
3166		state->bucket++;
3167
3168	udptable = udp_get_table_seq(seq, net);
3169
3170again:
3171	/* New batch for the next bucket.
3172	 * Iterate over the hash table to find a bucket with sockets matching
3173	 * the iterator attributes, and return the first matching socket from
3174	 * the bucket. The remaining matched sockets from the bucket are batched
3175	 * before releasing the bucket lock. This allows BPF programs that are
3176	 * called in seq_show to acquire the bucket lock if needed.
3177	 */
3178	iter->cur_sk = 0;
3179	iter->end_sk = 0;
3180	iter->st_bucket_done = false;
3181	batch_sks = 0;
3182
3183	for (; state->bucket <= udptable->mask; state->bucket++) {
3184		struct udp_hslot *hslot2 = &udptable->hash2[state->bucket];
3185
3186		if (hlist_empty(&hslot2->head))
3187			continue;
3188
3189		iter->offset = 0;
3190		spin_lock_bh(&hslot2->lock);
3191		udp_portaddr_for_each_entry(sk, &hslot2->head) {
3192			if (seq_sk_match(seq, sk)) {
3193				/* Resume from the last iterated socket at the
3194				 * offset in the bucket before iterator was stopped.
3195				 */
3196				if (state->bucket == resume_bucket &&
3197				    iter->offset < resume_offset) {
3198					++iter->offset;
3199					continue;
3200				}
3201				if (iter->end_sk < iter->max_sk) {
3202					sock_hold(sk);
3203					iter->batch[iter->end_sk++] = sk;
3204				}
3205				batch_sks++;
3206			}
3207		}
3208		spin_unlock_bh(&hslot2->lock);
3209
3210		if (iter->end_sk)
3211			break;
3212	}
3213
3214	/* All done: no batch made. */
3215	if (!iter->end_sk)
3216		return NULL;
3217
3218	if (iter->end_sk == batch_sks) {
3219		/* Batching is done for the current bucket; return the first
3220		 * socket to be iterated from the batch.
3221		 */
3222		iter->st_bucket_done = true;
3223		goto done;
3224	}
3225	if (!resized && !bpf_iter_udp_realloc_batch(iter, batch_sks * 3 / 2)) {
3226		resized = true;
3227		/* After allocating a larger batch, retry one more time to grab
3228		 * the whole bucket.
3229		 */
3230		goto again;
3231	}
3232done:
3233	return iter->batch[0];
3234}
3235
3236static void *bpf_iter_udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
3237{
3238	struct bpf_udp_iter_state *iter = seq->private;
3239	struct sock *sk;
3240
3241	/* Whenever seq_next() is called, the iter->cur_sk is
3242	 * done with seq_show(), so unref the iter->cur_sk.
3243	 */
3244	if (iter->cur_sk < iter->end_sk) {
3245		sock_put(iter->batch[iter->cur_sk++]);
3246		++iter->offset;
3247	}
3248
3249	/* After updating iter->cur_sk, check if there are more sockets
3250	 * available in the current bucket batch.
3251	 */
3252	if (iter->cur_sk < iter->end_sk)
3253		sk = iter->batch[iter->cur_sk];
3254	else
3255		/* Prepare a new batch. */
3256		sk = bpf_iter_udp_batch(seq);
3257
3258	++*pos;
3259	return sk;
3260}
3261
3262static void *bpf_iter_udp_seq_start(struct seq_file *seq, loff_t *pos)
3263{
3264	/* bpf iter does not support lseek, so it always
3265	 * continue from where it was stop()-ped.
3266	 */
3267	if (*pos)
3268		return bpf_iter_udp_batch(seq);
3269
3270	return SEQ_START_TOKEN;
3271}
3272
3273static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3274			     struct udp_sock *udp_sk, uid_t uid, int bucket)
3275{
3276	struct bpf_iter__udp ctx;
3277
3278	meta->seq_num--;  /* skip SEQ_START_TOKEN */
3279	ctx.meta = meta;
3280	ctx.udp_sk = udp_sk;
3281	ctx.uid = uid;
3282	ctx.bucket = bucket;
3283	return bpf_iter_run_prog(prog, &ctx);
3284}
3285
3286static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3287{
3288	struct udp_iter_state *state = seq->private;
3289	struct bpf_iter_meta meta;
3290	struct bpf_prog *prog;
3291	struct sock *sk = v;
3292	uid_t uid;
3293	int ret;
3294
3295	if (v == SEQ_START_TOKEN)
3296		return 0;
3297
3298	lock_sock(sk);
3299
3300	if (unlikely(sk_unhashed(sk))) {
3301		ret = SEQ_SKIP;
3302		goto unlock;
3303	}
3304
3305	uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3306	meta.seq = seq;
3307	prog = bpf_iter_get_info(&meta, false);
3308	ret = udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3309
3310unlock:
3311	release_sock(sk);
3312	return ret;
3313}
3314
3315static void bpf_iter_udp_put_batch(struct bpf_udp_iter_state *iter)
3316{
3317	while (iter->cur_sk < iter->end_sk)
3318		sock_put(iter->batch[iter->cur_sk++]);
3319}
3320
3321static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3322{
3323	struct bpf_udp_iter_state *iter = seq->private;
3324	struct bpf_iter_meta meta;
3325	struct bpf_prog *prog;
3326
3327	if (!v) {
3328		meta.seq = seq;
3329		prog = bpf_iter_get_info(&meta, true);
3330		if (prog)
3331			(void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3332	}
3333
3334	if (iter->cur_sk < iter->end_sk) {
3335		bpf_iter_udp_put_batch(iter);
3336		iter->st_bucket_done = false;
3337	}
3338}
3339
3340static const struct seq_operations bpf_iter_udp_seq_ops = {
3341	.start		= bpf_iter_udp_seq_start,
3342	.next		= bpf_iter_udp_seq_next,
3343	.stop		= bpf_iter_udp_seq_stop,
3344	.show		= bpf_iter_udp_seq_show,
3345};
3346#endif
3347
3348static unsigned short seq_file_family(const struct seq_file *seq)
3349{
3350	const struct udp_seq_afinfo *afinfo;
3351
3352#ifdef CONFIG_BPF_SYSCALL
3353	/* BPF iterator: bpf programs to filter sockets. */
3354	if (seq->op == &bpf_iter_udp_seq_ops)
3355		return AF_UNSPEC;
3356#endif
3357
3358	/* Proc fs iterator */
3359	afinfo = pde_data(file_inode(seq->file));
3360	return afinfo->family;
3361}
3362
3363const struct seq_operations udp_seq_ops = {
3364	.start		= udp_seq_start,
3365	.next		= udp_seq_next,
3366	.stop		= udp_seq_stop,
3367	.show		= udp4_seq_show,
3368};
3369EXPORT_SYMBOL(udp_seq_ops);
3370
3371static struct udp_seq_afinfo udp4_seq_afinfo = {
 
3372	.family		= AF_INET,
3373	.udp_table	= NULL,
 
 
 
 
3374};
3375
3376static int __net_init udp4_proc_init_net(struct net *net)
3377{
3378	if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3379			sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3380		return -ENOMEM;
3381	return 0;
3382}
3383
3384static void __net_exit udp4_proc_exit_net(struct net *net)
3385{
3386	remove_proc_entry("udp", net->proc_net);
3387}
3388
3389static struct pernet_operations udp4_net_ops = {
3390	.init = udp4_proc_init_net,
3391	.exit = udp4_proc_exit_net,
3392};
3393
3394int __init udp4_proc_init(void)
3395{
3396	return register_pernet_subsys(&udp4_net_ops);
3397}
3398
3399void udp4_proc_exit(void)
3400{
3401	unregister_pernet_subsys(&udp4_net_ops);
3402}
3403#endif /* CONFIG_PROC_FS */
3404
3405static __initdata unsigned long uhash_entries;
3406static int __init set_uhash_entries(char *str)
3407{
3408	ssize_t ret;
3409
3410	if (!str)
3411		return 0;
3412
3413	ret = kstrtoul(str, 0, &uhash_entries);
3414	if (ret)
3415		return 0;
3416
3417	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3418		uhash_entries = UDP_HTABLE_SIZE_MIN;
3419	return 1;
3420}
3421__setup("uhash_entries=", set_uhash_entries);
3422
3423void __init udp_table_init(struct udp_table *table, const char *name)
3424{
3425	unsigned int i;
3426
3427	table->hash = alloc_large_system_hash(name,
3428					      2 * sizeof(struct udp_hslot),
3429					      uhash_entries,
3430					      21, /* one slot per 2 MB */
3431					      0,
3432					      &table->log,
3433					      &table->mask,
3434					      UDP_HTABLE_SIZE_MIN,
3435					      UDP_HTABLE_SIZE_MAX);
3436
3437	table->hash2 = table->hash + (table->mask + 1);
3438	for (i = 0; i <= table->mask; i++) {
3439		INIT_HLIST_HEAD(&table->hash[i].head);
3440		table->hash[i].count = 0;
3441		spin_lock_init(&table->hash[i].lock);
3442	}
3443	for (i = 0; i <= table->mask; i++) {
3444		INIT_HLIST_HEAD(&table->hash2[i].head);
3445		table->hash2[i].count = 0;
3446		spin_lock_init(&table->hash2[i].lock);
3447	}
3448}
3449
3450u32 udp_flow_hashrnd(void)
3451{
3452	static u32 hashrnd __read_mostly;
3453
3454	net_get_random_once(&hashrnd, sizeof(hashrnd));
3455
3456	return hashrnd;
3457}
3458EXPORT_SYMBOL(udp_flow_hashrnd);
3459
3460static void __net_init udp_sysctl_init(struct net *net)
3461{
3462	net->ipv4.sysctl_udp_rmem_min = PAGE_SIZE;
3463	net->ipv4.sysctl_udp_wmem_min = PAGE_SIZE;
3464
3465#ifdef CONFIG_NET_L3_MASTER_DEV
3466	net->ipv4.sysctl_udp_l3mdev_accept = 0;
3467#endif
3468}
3469
3470static struct udp_table __net_init *udp_pernet_table_alloc(unsigned int hash_entries)
3471{
3472	struct udp_table *udptable;
3473	int i;
3474
3475	udptable = kmalloc(sizeof(*udptable), GFP_KERNEL);
3476	if (!udptable)
3477		goto out;
3478
3479	udptable->hash = vmalloc_huge(hash_entries * 2 * sizeof(struct udp_hslot),
3480				      GFP_KERNEL_ACCOUNT);
3481	if (!udptable->hash)
3482		goto free_table;
3483
3484	udptable->hash2 = udptable->hash + hash_entries;
3485	udptable->mask = hash_entries - 1;
3486	udptable->log = ilog2(hash_entries);
3487
3488	for (i = 0; i < hash_entries; i++) {
3489		INIT_HLIST_HEAD(&udptable->hash[i].head);
3490		udptable->hash[i].count = 0;
3491		spin_lock_init(&udptable->hash[i].lock);
3492
3493		INIT_HLIST_HEAD(&udptable->hash2[i].head);
3494		udptable->hash2[i].count = 0;
3495		spin_lock_init(&udptable->hash2[i].lock);
3496	}
3497
3498	return udptable;
3499
3500free_table:
3501	kfree(udptable);
3502out:
3503	return NULL;
3504}
3505
3506static void __net_exit udp_pernet_table_free(struct net *net)
3507{
3508	struct udp_table *udptable = net->ipv4.udp_table;
3509
3510	if (udptable == &udp_table)
3511		return;
3512
3513	kvfree(udptable->hash);
3514	kfree(udptable);
3515}
3516
3517static void __net_init udp_set_table(struct net *net)
3518{
3519	struct udp_table *udptable;
3520	unsigned int hash_entries;
3521	struct net *old_net;
3522
3523	if (net_eq(net, &init_net))
3524		goto fallback;
3525
3526	old_net = current->nsproxy->net_ns;
3527	hash_entries = READ_ONCE(old_net->ipv4.sysctl_udp_child_hash_entries);
3528	if (!hash_entries)
3529		goto fallback;
3530
3531	/* Set min to keep the bitmap on stack in udp_lib_get_port() */
3532	if (hash_entries < UDP_HTABLE_SIZE_MIN_PERNET)
3533		hash_entries = UDP_HTABLE_SIZE_MIN_PERNET;
3534	else
3535		hash_entries = roundup_pow_of_two(hash_entries);
3536
3537	udptable = udp_pernet_table_alloc(hash_entries);
3538	if (udptable) {
3539		net->ipv4.udp_table = udptable;
3540	} else {
3541		pr_warn("Failed to allocate UDP hash table (entries: %u) "
3542			"for a netns, fallback to the global one\n",
3543			hash_entries);
3544fallback:
3545		net->ipv4.udp_table = &udp_table;
3546	}
3547}
3548
3549static int __net_init udp_pernet_init(struct net *net)
3550{
3551	udp_sysctl_init(net);
3552	udp_set_table(net);
3553
3554	return 0;
3555}
3556
3557static void __net_exit udp_pernet_exit(struct net *net)
3558{
3559	udp_pernet_table_free(net);
3560}
3561
3562static struct pernet_operations __net_initdata udp_sysctl_ops = {
3563	.init	= udp_pernet_init,
3564	.exit	= udp_pernet_exit,
3565};
3566
3567#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3568DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3569		     struct udp_sock *udp_sk, uid_t uid, int bucket)
3570
3571static int bpf_iter_udp_realloc_batch(struct bpf_udp_iter_state *iter,
3572				      unsigned int new_batch_sz)
3573{
3574	struct sock **new_batch;
3575
3576	new_batch = kvmalloc_array(new_batch_sz, sizeof(*new_batch),
3577				   GFP_USER | __GFP_NOWARN);
3578	if (!new_batch)
3579		return -ENOMEM;
3580
3581	bpf_iter_udp_put_batch(iter);
3582	kvfree(iter->batch);
3583	iter->batch = new_batch;
3584	iter->max_sk = new_batch_sz;
3585
3586	return 0;
3587}
3588
3589#define INIT_BATCH_SZ 16
3590
3591static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3592{
3593	struct bpf_udp_iter_state *iter = priv_data;
3594	int ret;
3595
3596	ret = bpf_iter_init_seq_net(priv_data, aux);
3597	if (ret)
3598		return ret;
3599
3600	ret = bpf_iter_udp_realloc_batch(iter, INIT_BATCH_SZ);
3601	if (ret)
3602		bpf_iter_fini_seq_net(priv_data);
3603
3604	return ret;
3605}
3606
3607static void bpf_iter_fini_udp(void *priv_data)
3608{
3609	struct bpf_udp_iter_state *iter = priv_data;
3610
3611	bpf_iter_fini_seq_net(priv_data);
3612	kvfree(iter->batch);
3613}
3614
3615static const struct bpf_iter_seq_info udp_seq_info = {
3616	.seq_ops		= &bpf_iter_udp_seq_ops,
3617	.init_seq_private	= bpf_iter_init_udp,
3618	.fini_seq_private	= bpf_iter_fini_udp,
3619	.seq_priv_size		= sizeof(struct bpf_udp_iter_state),
3620};
3621
3622static struct bpf_iter_reg udp_reg_info = {
3623	.target			= "udp",
3624	.ctx_arg_info_size	= 1,
3625	.ctx_arg_info		= {
3626		{ offsetof(struct bpf_iter__udp, udp_sk),
3627		  PTR_TO_BTF_ID_OR_NULL | PTR_TRUSTED },
3628	},
3629	.seq_info		= &udp_seq_info,
3630};
3631
3632static void __init bpf_iter_register(void)
3633{
3634	udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3635	if (bpf_iter_reg_target(&udp_reg_info))
3636		pr_warn("Warning: could not register bpf iterator udp\n");
3637}
3638#endif
3639
3640void __init udp_init(void)
3641{
3642	unsigned long limit;
3643	unsigned int i;
3644
3645	udp_table_init(&udp_table, "UDP");
3646	limit = nr_free_buffer_pages() / 8;
3647	limit = max(limit, 128UL);
3648	sysctl_udp_mem[0] = limit / 4 * 3;
3649	sysctl_udp_mem[1] = limit;
3650	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3651
 
 
3652	/* 16 spinlocks per cpu */
3653	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3654	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3655				GFP_KERNEL);
3656	if (!udp_busylocks)
3657		panic("UDP: failed to alloc udp_busylocks\n");
3658	for (i = 0; i < (1U << udp_busylocks_log); i++)
3659		spin_lock_init(udp_busylocks + i);
3660
3661	if (register_pernet_subsys(&udp_sysctl_ops))
3662		panic("UDP: failed to init sysctl parameters.\n");
3663
3664#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3665	bpf_iter_register();
3666#endif
3667}
v4.17
 
   1/*
   2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   3 *		operating system.  INET is implemented using the  BSD Socket
   4 *		interface as the means of communication with the user level.
   5 *
   6 *		The User Datagram Protocol (UDP).
   7 *
   8 * Authors:	Ross Biro
   9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  11 *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
  12 *		Hirokazu Takahashi, <taka@valinux.co.jp>
  13 *
  14 * Fixes:
  15 *		Alan Cox	:	verify_area() calls
  16 *		Alan Cox	: 	stopped close while in use off icmp
  17 *					messages. Not a fix but a botch that
  18 *					for udp at least is 'valid'.
  19 *		Alan Cox	:	Fixed icmp handling properly
  20 *		Alan Cox	: 	Correct error for oversized datagrams
  21 *		Alan Cox	:	Tidied select() semantics.
  22 *		Alan Cox	:	udp_err() fixed properly, also now
  23 *					select and read wake correctly on errors
  24 *		Alan Cox	:	udp_send verify_area moved to avoid mem leak
  25 *		Alan Cox	:	UDP can count its memory
  26 *		Alan Cox	:	send to an unknown connection causes
  27 *					an ECONNREFUSED off the icmp, but
  28 *					does NOT close.
  29 *		Alan Cox	:	Switched to new sk_buff handlers. No more backlog!
  30 *		Alan Cox	:	Using generic datagram code. Even smaller and the PEEK
  31 *					bug no longer crashes it.
  32 *		Fred Van Kempen	: 	Net2e support for sk->broadcast.
  33 *		Alan Cox	:	Uses skb_free_datagram
  34 *		Alan Cox	:	Added get/set sockopt support.
  35 *		Alan Cox	:	Broadcasting without option set returns EACCES.
  36 *		Alan Cox	:	No wakeup calls. Instead we now use the callbacks.
  37 *		Alan Cox	:	Use ip_tos and ip_ttl
  38 *		Alan Cox	:	SNMP Mibs
  39 *		Alan Cox	:	MSG_DONTROUTE, and 0.0.0.0 support.
  40 *		Matt Dillon	:	UDP length checks.
  41 *		Alan Cox	:	Smarter af_inet used properly.
  42 *		Alan Cox	:	Use new kernel side addressing.
  43 *		Alan Cox	:	Incorrect return on truncated datagram receive.
  44 *	Arnt Gulbrandsen 	:	New udp_send and stuff
  45 *		Alan Cox	:	Cache last socket
  46 *		Alan Cox	:	Route cache
  47 *		Jon Peatfield	:	Minor efficiency fix to sendto().
  48 *		Mike Shaver	:	RFC1122 checks.
  49 *		Alan Cox	:	Nonblocking error fix.
  50 *	Willy Konynenberg	:	Transparent proxying support.
  51 *		Mike McLagan	:	Routing by source
  52 *		David S. Miller	:	New socket lookup architecture.
  53 *					Last socket cache retained as it
  54 *					does have a high hit rate.
  55 *		Olaf Kirch	:	Don't linearise iovec on sendmsg.
  56 *		Andi Kleen	:	Some cleanups, cache destination entry
  57 *					for connect.
  58 *	Vitaly E. Lavrov	:	Transparent proxy revived after year coma.
  59 *		Melvin Smith	:	Check msg_name not msg_namelen in sendto(),
  60 *					return ENOTCONN for unconnected sockets (POSIX)
  61 *		Janos Farkas	:	don't deliver multi/broadcasts to a different
  62 *					bound-to-device socket
  63 *	Hirokazu Takahashi	:	HW checksumming for outgoing UDP
  64 *					datagrams.
  65 *	Hirokazu Takahashi	:	sendfile() on UDP works now.
  66 *		Arnaldo C. Melo :	convert /proc/net/udp to seq_file
  67 *	YOSHIFUJI Hideaki @USAGI and:	Support IPV6_V6ONLY socket option, which
  68 *	Alexey Kuznetsov:		allow both IPv4 and IPv6 sockets to bind
  69 *					a single port at the same time.
  70 *	Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
  71 *	James Chapman		:	Add L2TP encapsulation type.
  72 *
  73 *
  74 *		This program is free software; you can redistribute it and/or
  75 *		modify it under the terms of the GNU General Public License
  76 *		as published by the Free Software Foundation; either version
  77 *		2 of the License, or (at your option) any later version.
  78 */
  79
  80#define pr_fmt(fmt) "UDP: " fmt
  81
 
  82#include <linux/uaccess.h>
  83#include <asm/ioctls.h>
  84#include <linux/bootmem.h>
  85#include <linux/highmem.h>
  86#include <linux/swap.h>
  87#include <linux/types.h>
  88#include <linux/fcntl.h>
  89#include <linux/module.h>
  90#include <linux/socket.h>
  91#include <linux/sockios.h>
  92#include <linux/igmp.h>
  93#include <linux/inetdevice.h>
  94#include <linux/in.h>
  95#include <linux/errno.h>
  96#include <linux/timer.h>
  97#include <linux/mm.h>
  98#include <linux/inet.h>
  99#include <linux/netdevice.h>
 100#include <linux/slab.h>
 101#include <net/tcp_states.h>
 102#include <linux/skbuff.h>
 103#include <linux/proc_fs.h>
 104#include <linux/seq_file.h>
 105#include <net/net_namespace.h>
 106#include <net/icmp.h>
 107#include <net/inet_hashtables.h>
 
 108#include <net/route.h>
 109#include <net/checksum.h>
 
 110#include <net/xfrm.h>
 111#include <trace/events/udp.h>
 112#include <linux/static_key.h>
 
 113#include <trace/events/skb.h>
 114#include <net/busy_poll.h>
 115#include "udp_impl.h"
 116#include <net/sock_reuseport.h>
 117#include <net/addrconf.h>
 
 
 
 
 
 118
 119struct udp_table udp_table __read_mostly;
 120EXPORT_SYMBOL(udp_table);
 121
 122long sysctl_udp_mem[3] __read_mostly;
 123EXPORT_SYMBOL(sysctl_udp_mem);
 124
 125atomic_long_t udp_memory_allocated;
 126EXPORT_SYMBOL(udp_memory_allocated);
 
 
 127
 128#define MAX_UDP_PORTS 65536
 129#define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
 130
 131/* IPCB reference means this can not be used from early demux */
 132static bool udp_lib_exact_dif_match(struct net *net, struct sk_buff *skb)
 133{
 134#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
 135	if (!net->ipv4.sysctl_udp_l3mdev_accept &&
 136	    skb && ipv4_l3mdev_skb(IPCB(skb)->flags))
 137		return true;
 138#endif
 139	return false;
 140}
 141
 142static int udp_lib_lport_inuse(struct net *net, __u16 num,
 143			       const struct udp_hslot *hslot,
 144			       unsigned long *bitmap,
 145			       struct sock *sk, unsigned int log)
 146{
 147	struct sock *sk2;
 148	kuid_t uid = sock_i_uid(sk);
 149
 150	sk_for_each(sk2, &hslot->head) {
 151		if (net_eq(sock_net(sk2), net) &&
 152		    sk2 != sk &&
 153		    (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
 154		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 155		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 156		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 157		    inet_rcv_saddr_equal(sk, sk2, true)) {
 158			if (sk2->sk_reuseport && sk->sk_reuseport &&
 159			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 160			    uid_eq(uid, sock_i_uid(sk2))) {
 161				if (!bitmap)
 162					return 0;
 163			} else {
 164				if (!bitmap)
 165					return 1;
 166				__set_bit(udp_sk(sk2)->udp_port_hash >> log,
 167					  bitmap);
 168			}
 169		}
 170	}
 171	return 0;
 172}
 173
 174/*
 175 * Note: we still hold spinlock of primary hash chain, so no other writer
 176 * can insert/delete a socket with local_port == num
 177 */
 178static int udp_lib_lport_inuse2(struct net *net, __u16 num,
 179				struct udp_hslot *hslot2,
 180				struct sock *sk)
 181{
 182	struct sock *sk2;
 183	kuid_t uid = sock_i_uid(sk);
 184	int res = 0;
 185
 186	spin_lock(&hslot2->lock);
 187	udp_portaddr_for_each_entry(sk2, &hslot2->head) {
 188		if (net_eq(sock_net(sk2), net) &&
 189		    sk2 != sk &&
 190		    (udp_sk(sk2)->udp_port_hash == num) &&
 191		    (!sk2->sk_reuse || !sk->sk_reuse) &&
 192		    (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
 193		     sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 194		    inet_rcv_saddr_equal(sk, sk2, true)) {
 195			if (sk2->sk_reuseport && sk->sk_reuseport &&
 196			    !rcu_access_pointer(sk->sk_reuseport_cb) &&
 197			    uid_eq(uid, sock_i_uid(sk2))) {
 198				res = 0;
 199			} else {
 200				res = 1;
 201			}
 202			break;
 203		}
 204	}
 205	spin_unlock(&hslot2->lock);
 206	return res;
 207}
 208
 209static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
 210{
 211	struct net *net = sock_net(sk);
 212	kuid_t uid = sock_i_uid(sk);
 213	struct sock *sk2;
 214
 215	sk_for_each(sk2, &hslot->head) {
 216		if (net_eq(sock_net(sk2), net) &&
 217		    sk2 != sk &&
 218		    sk2->sk_family == sk->sk_family &&
 219		    ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
 220		    (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
 221		    (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
 222		    sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
 223		    inet_rcv_saddr_equal(sk, sk2, false)) {
 224			return reuseport_add_sock(sk, sk2);
 
 225		}
 226	}
 227
 228	return reuseport_alloc(sk);
 229}
 230
 231/**
 232 *  udp_lib_get_port  -  UDP/-Lite port lookup for IPv4 and IPv6
 233 *
 234 *  @sk:          socket struct in question
 235 *  @snum:        port number to look up
 236 *  @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
 237 *                   with NULL address
 238 */
 239int udp_lib_get_port(struct sock *sk, unsigned short snum,
 240		     unsigned int hash2_nulladdr)
 241{
 
 242	struct udp_hslot *hslot, *hslot2;
 243	struct udp_table *udptable = sk->sk_prot->h.udp_table;
 244	int    error = 1;
 245	struct net *net = sock_net(sk);
 
 246
 247	if (!snum) {
 
 
 248		int low, high, remaining;
 249		unsigned int rand;
 250		unsigned short first, last;
 251		DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
 252
 253		inet_get_local_port_range(net, &low, &high);
 254		remaining = (high - low) + 1;
 255
 256		rand = prandom_u32();
 257		first = reciprocal_scale(rand, remaining) + low;
 258		/*
 259		 * force rand to be an odd multiple of UDP_HTABLE_SIZE
 260		 */
 261		rand = (rand | 1) * (udptable->mask + 1);
 262		last = first + udptable->mask + 1;
 263		do {
 264			hslot = udp_hashslot(udptable, net, first);
 265			bitmap_zero(bitmap, PORTS_PER_CHAIN);
 266			spin_lock_bh(&hslot->lock);
 267			udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
 268					    udptable->log);
 269
 270			snum = first;
 271			/*
 272			 * Iterate on all possible values of snum for this hash.
 273			 * Using steps of an odd multiple of UDP_HTABLE_SIZE
 274			 * give us randomization and full range coverage.
 275			 */
 276			do {
 277				if (low <= snum && snum <= high &&
 278				    !test_bit(snum >> udptable->log, bitmap) &&
 279				    !inet_is_local_reserved_port(net, snum))
 280					goto found;
 281				snum += rand;
 282			} while (snum != first);
 283			spin_unlock_bh(&hslot->lock);
 284			cond_resched();
 285		} while (++first != last);
 286		goto fail;
 287	} else {
 288		hslot = udp_hashslot(udptable, net, snum);
 289		spin_lock_bh(&hslot->lock);
 290		if (hslot->count > 10) {
 291			int exist;
 292			unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
 293
 294			slot2          &= udptable->mask;
 295			hash2_nulladdr &= udptable->mask;
 296
 297			hslot2 = udp_hashslot2(udptable, slot2);
 298			if (hslot->count < hslot2->count)
 299				goto scan_primary_hash;
 300
 301			exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
 302			if (!exist && (hash2_nulladdr != slot2)) {
 303				hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
 304				exist = udp_lib_lport_inuse2(net, snum, hslot2,
 305							     sk);
 306			}
 307			if (exist)
 308				goto fail_unlock;
 309			else
 310				goto found;
 311		}
 312scan_primary_hash:
 313		if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
 314			goto fail_unlock;
 315	}
 316found:
 317	inet_sk(sk)->inet_num = snum;
 318	udp_sk(sk)->udp_port_hash = snum;
 319	udp_sk(sk)->udp_portaddr_hash ^= snum;
 320	if (sk_unhashed(sk)) {
 321		if (sk->sk_reuseport &&
 322		    udp_reuseport_add_sock(sk, hslot)) {
 323			inet_sk(sk)->inet_num = 0;
 324			udp_sk(sk)->udp_port_hash = 0;
 325			udp_sk(sk)->udp_portaddr_hash ^= snum;
 326			goto fail_unlock;
 327		}
 328
 329		sk_add_node_rcu(sk, &hslot->head);
 330		hslot->count++;
 331		sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
 332
 333		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
 334		spin_lock(&hslot2->lock);
 335		if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
 336		    sk->sk_family == AF_INET6)
 337			hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
 338					   &hslot2->head);
 339		else
 340			hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
 341					   &hslot2->head);
 342		hslot2->count++;
 343		spin_unlock(&hslot2->lock);
 344	}
 345	sock_set_flag(sk, SOCK_RCU_FREE);
 346	error = 0;
 347fail_unlock:
 348	spin_unlock_bh(&hslot->lock);
 349fail:
 350	return error;
 351}
 352EXPORT_SYMBOL(udp_lib_get_port);
 353
 354int udp_v4_get_port(struct sock *sk, unsigned short snum)
 355{
 356	unsigned int hash2_nulladdr =
 357		ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
 358	unsigned int hash2_partial =
 359		ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
 360
 361	/* precompute partial secondary hash */
 362	udp_sk(sk)->udp_portaddr_hash = hash2_partial;
 363	return udp_lib_get_port(sk, snum, hash2_nulladdr);
 364}
 365
 366static int compute_score(struct sock *sk, struct net *net,
 367			 __be32 saddr, __be16 sport,
 368			 __be32 daddr, unsigned short hnum,
 369			 int dif, int sdif, bool exact_dif)
 370{
 371	int score;
 372	struct inet_sock *inet;
 
 373
 374	if (!net_eq(sock_net(sk), net) ||
 375	    udp_sk(sk)->udp_port_hash != hnum ||
 376	    ipv6_only_sock(sk))
 377		return -1;
 378
 
 
 
 379	score = (sk->sk_family == PF_INET) ? 2 : 1;
 
 380	inet = inet_sk(sk);
 381
 382	if (inet->inet_rcv_saddr) {
 383		if (inet->inet_rcv_saddr != daddr)
 384			return -1;
 385		score += 4;
 386	}
 387
 388	if (inet->inet_daddr) {
 389		if (inet->inet_daddr != saddr)
 390			return -1;
 391		score += 4;
 392	}
 393
 394	if (inet->inet_dport) {
 395		if (inet->inet_dport != sport)
 396			return -1;
 397		score += 4;
 398	}
 399
 400	if (sk->sk_bound_dev_if || exact_dif) {
 401		bool dev_match = (sk->sk_bound_dev_if == dif ||
 402				  sk->sk_bound_dev_if == sdif);
 403
 404		if (!dev_match)
 405			return -1;
 406		if (sk->sk_bound_dev_if)
 407			score += 4;
 408	}
 409
 410	if (sk->sk_incoming_cpu == raw_smp_processor_id())
 411		score++;
 412	return score;
 413}
 414
 415static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
 416		       const __u16 lport, const __be32 faddr,
 417		       const __be16 fport)
 418{
 419	static u32 udp_ehash_secret __read_mostly;
 420
 421	net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
 422
 423	return __inet_ehashfn(laddr, lport, faddr, fport,
 424			      udp_ehash_secret + net_hash_mix(net));
 425}
 426
 427/* called with rcu_read_lock() */
 428static struct sock *udp4_lib_lookup2(struct net *net,
 429				     __be32 saddr, __be16 sport,
 430				     __be32 daddr, unsigned int hnum,
 431				     int dif, int sdif, bool exact_dif,
 432				     struct udp_hslot *hslot2,
 433				     struct sk_buff *skb)
 434{
 435	struct sock *sk, *result;
 436	int score, badness;
 437	u32 hash = 0;
 438
 439	result = NULL;
 440	badness = 0;
 441	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
 442		score = compute_score(sk, net, saddr, sport,
 443				      daddr, hnum, dif, sdif, exact_dif);
 
 
 444		if (score > badness) {
 445			if (sk->sk_reuseport) {
 446				hash = udp_ehashfn(net, daddr, hnum,
 447						   saddr, sport);
 448				result = reuseport_select_sock(sk, hash, skb,
 449							sizeof(struct udphdr));
 450				if (result)
 451					return result;
 
 
 
 
 
 
 
 
 452			}
 453			badness = score;
 454			result = sk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455		}
 456	}
 457	return result;
 458}
 459
 460/* UDP is nearly always wildcards out the wazoo, it makes no sense to try
 461 * harder than this. -DaveM
 462 */
 463struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
 464		__be16 sport, __be32 daddr, __be16 dport, int dif,
 465		int sdif, struct udp_table *udptable, struct sk_buff *skb)
 466{
 467	struct sock *sk, *result;
 468	unsigned short hnum = ntohs(dport);
 469	unsigned int hash2, slot2, slot = udp_hashfn(net, hnum, udptable->mask);
 470	struct udp_hslot *hslot2, *hslot = &udptable->hash[slot];
 471	bool exact_dif = udp_lib_exact_dif_match(net, skb);
 472	int score, badness;
 473	u32 hash = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 474
 475	if (hslot->count > 10) {
 476		hash2 = ipv4_portaddr_hash(net, daddr, hnum);
 477		slot2 = hash2 & udptable->mask;
 478		hslot2 = &udptable->hash2[slot2];
 479		if (hslot->count < hslot2->count)
 480			goto begin;
 481
 482		result = udp4_lib_lookup2(net, saddr, sport,
 483					  daddr, hnum, dif, sdif,
 484					  exact_dif, hslot2, skb);
 485		if (!result) {
 486			unsigned int old_slot2 = slot2;
 487			hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
 488			slot2 = hash2 & udptable->mask;
 489			/* avoid searching the same slot again. */
 490			if (unlikely(slot2 == old_slot2))
 491				return result;
 492
 493			hslot2 = &udptable->hash2[slot2];
 494			if (hslot->count < hslot2->count)
 495				goto begin;
 
 496
 497			result = udp4_lib_lookup2(net, saddr, sport,
 498						  daddr, hnum, dif, sdif,
 499						  exact_dif, hslot2, skb);
 500		}
 501		return result;
 502	}
 503begin:
 504	result = NULL;
 505	badness = 0;
 506	sk_for_each_rcu(sk, &hslot->head) {
 507		score = compute_score(sk, net, saddr, sport,
 508				      daddr, hnum, dif, sdif, exact_dif);
 509		if (score > badness) {
 510			if (sk->sk_reuseport) {
 511				hash = udp_ehashfn(net, daddr, hnum,
 512						   saddr, sport);
 513				result = reuseport_select_sock(sk, hash, skb,
 514							sizeof(struct udphdr));
 515				if (result)
 516					return result;
 517			}
 518			result = sk;
 519			badness = score;
 520		}
 521	}
 522	return result;
 523}
 524EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
 525
 526static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
 527						 __be16 sport, __be16 dport,
 528						 struct udp_table *udptable)
 529{
 530	const struct iphdr *iph = ip_hdr(skb);
 531
 532	return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
 533				 iph->daddr, dport, inet_iif(skb),
 534				 inet_sdif(skb), udptable, skb);
 535}
 536
 537struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
 538				 __be16 sport, __be16 dport)
 539{
 540	return __udp4_lib_lookup_skb(skb, sport, dport, &udp_table);
 
 
 
 
 
 
 
 
 
 541}
 542EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
 543
 544/* Must be called under rcu_read_lock().
 545 * Does increment socket refcount.
 546 */
 547#if IS_ENABLED(CONFIG_NETFILTER_XT_MATCH_SOCKET) || \
 548    IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TPROXY) || \
 549    IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
 550struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
 551			     __be32 daddr, __be16 dport, int dif)
 552{
 553	struct sock *sk;
 554
 555	sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
 556			       dif, 0, &udp_table, NULL);
 557	if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
 558		sk = NULL;
 559	return sk;
 560}
 561EXPORT_SYMBOL_GPL(udp4_lib_lookup);
 562#endif
 563
 564static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
 565				       __be16 loc_port, __be32 loc_addr,
 566				       __be16 rmt_port, __be32 rmt_addr,
 567				       int dif, int sdif, unsigned short hnum)
 568{
 569	struct inet_sock *inet = inet_sk(sk);
 570
 571	if (!net_eq(sock_net(sk), net) ||
 572	    udp_sk(sk)->udp_port_hash != hnum ||
 573	    (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
 574	    (inet->inet_dport != rmt_port && inet->inet_dport) ||
 575	    (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
 576	    ipv6_only_sock(sk) ||
 577	    (sk->sk_bound_dev_if && sk->sk_bound_dev_if != dif &&
 578	     sk->sk_bound_dev_if != sdif))
 579		return false;
 580	if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
 581		return false;
 582	return true;
 583}
 584
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 585/*
 586 * This routine is called by the ICMP module when it gets some
 587 * sort of error condition.  If err < 0 then the socket should
 588 * be closed and the error returned to the user.  If err > 0
 589 * it's just the icmp type << 8 | icmp code.
 590 * Header points to the ip header of the error packet. We move
 591 * on past this. Then (as it used to claim before adjustment)
 592 * header points to the first 8 bytes of the udp header.  We need
 593 * to find the appropriate port.
 594 */
 595
 596void __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
 597{
 598	struct inet_sock *inet;
 599	const struct iphdr *iph = (const struct iphdr *)skb->data;
 600	struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
 601	const int type = icmp_hdr(skb)->type;
 602	const int code = icmp_hdr(skb)->code;
 
 603	struct sock *sk;
 604	int harderr;
 605	int err;
 606	struct net *net = dev_net(skb->dev);
 607
 608	sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
 609			       iph->saddr, uh->source, skb->dev->ifindex, 0,
 610			       udptable, NULL);
 611	if (!sk) {
 612		__ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
 613		return;	/* No socket for error */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614	}
 615
 616	err = 0;
 617	harderr = 0;
 618	inet = inet_sk(sk);
 619
 620	switch (type) {
 621	default:
 622	case ICMP_TIME_EXCEEDED:
 623		err = EHOSTUNREACH;
 624		break;
 625	case ICMP_SOURCE_QUENCH:
 626		goto out;
 627	case ICMP_PARAMETERPROB:
 628		err = EPROTO;
 629		harderr = 1;
 630		break;
 631	case ICMP_DEST_UNREACH:
 632		if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
 633			ipv4_sk_update_pmtu(skb, sk, info);
 634			if (inet->pmtudisc != IP_PMTUDISC_DONT) {
 635				err = EMSGSIZE;
 636				harderr = 1;
 637				break;
 638			}
 639			goto out;
 640		}
 641		err = EHOSTUNREACH;
 642		if (code <= NR_ICMP_UNREACH) {
 643			harderr = icmp_err_convert[code].fatal;
 644			err = icmp_err_convert[code].errno;
 645		}
 646		break;
 647	case ICMP_REDIRECT:
 648		ipv4_sk_redirect(skb, sk);
 649		goto out;
 650	}
 651
 652	/*
 653	 *      RFC1122: OK.  Passes ICMP errors back to application, as per
 654	 *	4.1.3.3.
 655	 */
 656	if (!inet->recverr) {
 
 
 
 
 
 
 
 657		if (!harderr || sk->sk_state != TCP_ESTABLISHED)
 658			goto out;
 659	} else
 660		ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
 661
 662	sk->sk_err = err;
 663	sk->sk_error_report(sk);
 664out:
 665	return;
 666}
 667
 668void udp_err(struct sk_buff *skb, u32 info)
 669{
 670	__udp4_lib_err(skb, info, &udp_table);
 671}
 672
 673/*
 674 * Throw away all pending data and cancel the corking. Socket is locked.
 675 */
 676void udp_flush_pending_frames(struct sock *sk)
 677{
 678	struct udp_sock *up = udp_sk(sk);
 679
 680	if (up->pending) {
 681		up->len = 0;
 682		up->pending = 0;
 683		ip_flush_pending_frames(sk);
 684	}
 685}
 686EXPORT_SYMBOL(udp_flush_pending_frames);
 687
 688/**
 689 * 	udp4_hwcsum  -  handle outgoing HW checksumming
 690 * 	@skb: 	sk_buff containing the filled-in UDP header
 691 * 	        (checksum field must be zeroed out)
 692 *	@src:	source IP address
 693 *	@dst:	destination IP address
 694 */
 695void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
 696{
 697	struct udphdr *uh = udp_hdr(skb);
 698	int offset = skb_transport_offset(skb);
 699	int len = skb->len - offset;
 700	int hlen = len;
 701	__wsum csum = 0;
 702
 703	if (!skb_has_frag_list(skb)) {
 704		/*
 705		 * Only one fragment on the socket.
 706		 */
 707		skb->csum_start = skb_transport_header(skb) - skb->head;
 708		skb->csum_offset = offsetof(struct udphdr, check);
 709		uh->check = ~csum_tcpudp_magic(src, dst, len,
 710					       IPPROTO_UDP, 0);
 711	} else {
 712		struct sk_buff *frags;
 713
 714		/*
 715		 * HW-checksum won't work as there are two or more
 716		 * fragments on the socket so that all csums of sk_buffs
 717		 * should be together
 718		 */
 719		skb_walk_frags(skb, frags) {
 720			csum = csum_add(csum, frags->csum);
 721			hlen -= frags->len;
 722		}
 723
 724		csum = skb_checksum(skb, offset, hlen, csum);
 725		skb->ip_summed = CHECKSUM_NONE;
 726
 727		uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
 728		if (uh->check == 0)
 729			uh->check = CSUM_MANGLED_0;
 730	}
 731}
 732EXPORT_SYMBOL_GPL(udp4_hwcsum);
 733
 734/* Function to set UDP checksum for an IPv4 UDP packet. This is intended
 735 * for the simple case like when setting the checksum for a UDP tunnel.
 736 */
 737void udp_set_csum(bool nocheck, struct sk_buff *skb,
 738		  __be32 saddr, __be32 daddr, int len)
 739{
 740	struct udphdr *uh = udp_hdr(skb);
 741
 742	if (nocheck) {
 743		uh->check = 0;
 744	} else if (skb_is_gso(skb)) {
 745		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 746	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
 747		uh->check = 0;
 748		uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
 749		if (uh->check == 0)
 750			uh->check = CSUM_MANGLED_0;
 751	} else {
 752		skb->ip_summed = CHECKSUM_PARTIAL;
 753		skb->csum_start = skb_transport_header(skb) - skb->head;
 754		skb->csum_offset = offsetof(struct udphdr, check);
 755		uh->check = ~udp_v4_check(len, saddr, daddr, 0);
 756	}
 757}
 758EXPORT_SYMBOL(udp_set_csum);
 759
 760static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4)
 
 761{
 762	struct sock *sk = skb->sk;
 763	struct inet_sock *inet = inet_sk(sk);
 764	struct udphdr *uh;
 765	int err = 0;
 766	int is_udplite = IS_UDPLITE(sk);
 767	int offset = skb_transport_offset(skb);
 768	int len = skb->len - offset;
 
 769	__wsum csum = 0;
 770
 771	/*
 772	 * Create a UDP header
 773	 */
 774	uh = udp_hdr(skb);
 775	uh->source = inet->inet_sport;
 776	uh->dest = fl4->fl4_dport;
 777	uh->len = htons(len);
 778	uh->check = 0;
 779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780	if (is_udplite)  				 /*     UDP-Lite      */
 781		csum = udplite_csum(skb);
 782
 783	else if (sk->sk_no_check_tx) {			 /* UDP csum off */
 784
 785		skb->ip_summed = CHECKSUM_NONE;
 786		goto send;
 787
 788	} else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
 
 789
 790		udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
 791		goto send;
 792
 793	} else
 794		csum = udp_csum(skb);
 795
 796	/* add protocol-dependent pseudo-header */
 797	uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
 798				      sk->sk_protocol, csum);
 799	if (uh->check == 0)
 800		uh->check = CSUM_MANGLED_0;
 801
 802send:
 803	err = ip_send_skb(sock_net(sk), skb);
 804	if (err) {
 805		if (err == -ENOBUFS && !inet->recverr) {
 
 806			UDP_INC_STATS(sock_net(sk),
 807				      UDP_MIB_SNDBUFERRORS, is_udplite);
 808			err = 0;
 809		}
 810	} else
 811		UDP_INC_STATS(sock_net(sk),
 812			      UDP_MIB_OUTDATAGRAMS, is_udplite);
 813	return err;
 814}
 815
 816/*
 817 * Push out all pending data as one UDP datagram. Socket is locked.
 818 */
 819int udp_push_pending_frames(struct sock *sk)
 820{
 821	struct udp_sock  *up = udp_sk(sk);
 822	struct inet_sock *inet = inet_sk(sk);
 823	struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
 824	struct sk_buff *skb;
 825	int err = 0;
 826
 827	skb = ip_finish_skb(sk, fl4);
 828	if (!skb)
 829		goto out;
 830
 831	err = udp_send_skb(skb, fl4);
 832
 833out:
 834	up->len = 0;
 835	up->pending = 0;
 836	return err;
 837}
 838EXPORT_SYMBOL(udp_push_pending_frames);
 839
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 840int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
 841{
 842	struct inet_sock *inet = inet_sk(sk);
 843	struct udp_sock *up = udp_sk(sk);
 
 844	struct flowi4 fl4_stack;
 845	struct flowi4 *fl4;
 846	int ulen = len;
 847	struct ipcm_cookie ipc;
 848	struct rtable *rt = NULL;
 849	int free = 0;
 850	int connected = 0;
 851	__be32 daddr, faddr, saddr;
 
 852	__be16 dport;
 853	u8  tos;
 854	int err, is_udplite = IS_UDPLITE(sk);
 855	int corkreq = up->corkflag || msg->msg_flags&MSG_MORE;
 856	int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
 857	struct sk_buff *skb;
 858	struct ip_options_data opt_copy;
 
 859
 860	if (len > 0xFFFF)
 861		return -EMSGSIZE;
 862
 863	/*
 864	 *	Check the flags.
 865	 */
 866
 867	if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
 868		return -EOPNOTSUPP;
 869
 870	ipc.opt = NULL;
 871	ipc.tx_flags = 0;
 872	ipc.ttl = 0;
 873	ipc.tos = -1;
 874
 875	getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
 876
 877	fl4 = &inet->cork.fl.u.ip4;
 878	if (up->pending) {
 879		/*
 880		 * There are pending frames.
 881		 * The socket lock must be held while it's corked.
 882		 */
 883		lock_sock(sk);
 884		if (likely(up->pending)) {
 885			if (unlikely(up->pending != AF_INET)) {
 886				release_sock(sk);
 887				return -EINVAL;
 888			}
 889			goto do_append_data;
 890		}
 891		release_sock(sk);
 892	}
 893	ulen += sizeof(struct udphdr);
 894
 895	/*
 896	 *	Get and verify the address.
 897	 */
 898	if (msg->msg_name) {
 899		DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
 900		if (msg->msg_namelen < sizeof(*usin))
 901			return -EINVAL;
 902		if (usin->sin_family != AF_INET) {
 903			if (usin->sin_family != AF_UNSPEC)
 904				return -EAFNOSUPPORT;
 905		}
 906
 907		daddr = usin->sin_addr.s_addr;
 908		dport = usin->sin_port;
 909		if (dport == 0)
 910			return -EINVAL;
 911	} else {
 912		if (sk->sk_state != TCP_ESTABLISHED)
 913			return -EDESTADDRREQ;
 914		daddr = inet->inet_daddr;
 915		dport = inet->inet_dport;
 916		/* Open fast path for connected socket.
 917		   Route will not be used, if at least one option is set.
 918		 */
 919		connected = 1;
 920	}
 921
 922	ipc.sockc.tsflags = sk->sk_tsflags;
 923	ipc.addr = inet->inet_saddr;
 924	ipc.oif = sk->sk_bound_dev_if;
 925
 926	if (msg->msg_controllen) {
 927		err = ip_cmsg_send(sk, msg, &ipc, sk->sk_family == AF_INET6);
 928		if (unlikely(err)) {
 
 
 
 
 
 929			kfree(ipc.opt);
 930			return err;
 931		}
 932		if (ipc.opt)
 933			free = 1;
 934		connected = 0;
 935	}
 936	if (!ipc.opt) {
 937		struct ip_options_rcu *inet_opt;
 938
 939		rcu_read_lock();
 940		inet_opt = rcu_dereference(inet->inet_opt);
 941		if (inet_opt) {
 942			memcpy(&opt_copy, inet_opt,
 943			       sizeof(*inet_opt) + inet_opt->opt.optlen);
 944			ipc.opt = &opt_copy.opt;
 945		}
 946		rcu_read_unlock();
 947	}
 948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949	saddr = ipc.addr;
 950	ipc.addr = faddr = daddr;
 951
 952	sock_tx_timestamp(sk, ipc.sockc.tsflags, &ipc.tx_flags);
 953
 954	if (ipc.opt && ipc.opt->opt.srr) {
 955		if (!daddr) {
 956			err = -EINVAL;
 957			goto out_free;
 958		}
 959		faddr = ipc.opt->opt.faddr;
 960		connected = 0;
 961	}
 962	tos = get_rttos(&ipc, inet);
 963	if (sock_flag(sk, SOCK_LOCALROUTE) ||
 964	    (msg->msg_flags & MSG_DONTROUTE) ||
 965	    (ipc.opt && ipc.opt->opt.is_strictroute)) {
 966		tos |= RTO_ONLINK;
 967		connected = 0;
 968	}
 969
 
 970	if (ipv4_is_multicast(daddr)) {
 971		if (!ipc.oif)
 972			ipc.oif = inet->mc_index;
 973		if (!saddr)
 974			saddr = inet->mc_addr;
 975		connected = 0;
 976	} else if (!ipc.oif) {
 977		ipc.oif = inet->uc_index;
 978	} else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
 979		/* oif is set, packet is to local broadcast and
 980		 * and uc_index is set. oif is most likely set
 981		 * by sk_bound_dev_if. If uc_index != oif check if the
 982		 * oif is an L3 master and uc_index is an L3 slave.
 983		 * If so, we want to allow the send using the uc_index.
 984		 */
 985		if (ipc.oif != inet->uc_index &&
 986		    ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
 987							      inet->uc_index)) {
 988			ipc.oif = inet->uc_index;
 989		}
 990	}
 991
 992	if (connected)
 993		rt = (struct rtable *)sk_dst_check(sk, 0);
 994
 995	if (!rt) {
 996		struct net *net = sock_net(sk);
 997		__u8 flow_flags = inet_sk_flowi_flags(sk);
 998
 999		fl4 = &fl4_stack;
1000
1001		flowi4_init_output(fl4, ipc.oif, sk->sk_mark, tos,
1002				   RT_SCOPE_UNIVERSE, sk->sk_protocol,
1003				   flow_flags,
1004				   faddr, saddr, dport, inet->inet_sport,
1005				   sk->sk_uid);
1006
1007		security_sk_classify_flow(sk, flowi4_to_flowi(fl4));
1008		rt = ip_route_output_flow(net, fl4, sk);
1009		if (IS_ERR(rt)) {
1010			err = PTR_ERR(rt);
1011			rt = NULL;
1012			if (err == -ENETUNREACH)
1013				IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1014			goto out;
1015		}
1016
1017		err = -EACCES;
1018		if ((rt->rt_flags & RTCF_BROADCAST) &&
1019		    !sock_flag(sk, SOCK_BROADCAST))
1020			goto out;
1021		if (connected)
1022			sk_dst_set(sk, dst_clone(&rt->dst));
1023	}
1024
1025	if (msg->msg_flags&MSG_CONFIRM)
1026		goto do_confirm;
1027back_from_confirm:
1028
1029	saddr = fl4->saddr;
1030	if (!ipc.addr)
1031		daddr = ipc.addr = fl4->daddr;
1032
1033	/* Lockless fast path for the non-corking case. */
1034	if (!corkreq) {
 
 
1035		skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1036				  sizeof(struct udphdr), &ipc, &rt,
1037				  msg->msg_flags);
1038		err = PTR_ERR(skb);
1039		if (!IS_ERR_OR_NULL(skb))
1040			err = udp_send_skb(skb, fl4);
1041		goto out;
1042	}
1043
1044	lock_sock(sk);
1045	if (unlikely(up->pending)) {
1046		/* The socket is already corked while preparing it. */
1047		/* ... which is an evident application bug. --ANK */
1048		release_sock(sk);
1049
1050		net_dbg_ratelimited("socket already corked\n");
1051		err = -EINVAL;
1052		goto out;
1053	}
1054	/*
1055	 *	Now cork the socket to pend data.
1056	 */
1057	fl4 = &inet->cork.fl.u.ip4;
1058	fl4->daddr = daddr;
1059	fl4->saddr = saddr;
1060	fl4->fl4_dport = dport;
1061	fl4->fl4_sport = inet->inet_sport;
1062	up->pending = AF_INET;
1063
1064do_append_data:
1065	up->len += ulen;
1066	err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1067			     sizeof(struct udphdr), &ipc, &rt,
1068			     corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1069	if (err)
1070		udp_flush_pending_frames(sk);
1071	else if (!corkreq)
1072		err = udp_push_pending_frames(sk);
1073	else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1074		up->pending = 0;
1075	release_sock(sk);
1076
1077out:
1078	ip_rt_put(rt);
1079out_free:
1080	if (free)
1081		kfree(ipc.opt);
1082	if (!err)
1083		return len;
1084	/*
1085	 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space.  Reporting
1086	 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1087	 * we don't have a good statistic (IpOutDiscards but it can be too many
1088	 * things).  We could add another new stat but at least for now that
1089	 * seems like overkill.
1090	 */
1091	if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1092		UDP_INC_STATS(sock_net(sk),
1093			      UDP_MIB_SNDBUFERRORS, is_udplite);
1094	}
1095	return err;
1096
1097do_confirm:
1098	if (msg->msg_flags & MSG_PROBE)
1099		dst_confirm_neigh(&rt->dst, &fl4->daddr);
1100	if (!(msg->msg_flags&MSG_PROBE) || len)
1101		goto back_from_confirm;
1102	err = 0;
1103	goto out;
1104}
1105EXPORT_SYMBOL(udp_sendmsg);
1106
1107int udp_sendpage(struct sock *sk, struct page *page, int offset,
1108		 size_t size, int flags)
1109{
1110	struct inet_sock *inet = inet_sk(sk);
1111	struct udp_sock *up = udp_sk(sk);
1112	int ret;
1113
1114	if (flags & MSG_SENDPAGE_NOTLAST)
1115		flags |= MSG_MORE;
1116
1117	if (!up->pending) {
1118		struct msghdr msg = {	.msg_flags = flags|MSG_MORE };
1119
1120		/* Call udp_sendmsg to specify destination address which
1121		 * sendpage interface can't pass.
1122		 * This will succeed only when the socket is connected.
1123		 */
1124		ret = udp_sendmsg(sk, &msg, 0);
1125		if (ret < 0)
1126			return ret;
1127	}
1128
1129	lock_sock(sk);
 
 
 
 
 
1130
1131	if (unlikely(!up->pending)) {
1132		release_sock(sk);
1133
1134		net_dbg_ratelimited("cork failed\n");
1135		return -EINVAL;
1136	}
 
 
 
 
 
 
 
 
 
1137
1138	ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1139			     page, offset, size, flags);
1140	if (ret == -EOPNOTSUPP) {
1141		release_sock(sk);
1142		return sock_no_sendpage(sk->sk_socket, page, offset,
1143					size, flags);
1144	}
1145	if (ret < 0) {
1146		udp_flush_pending_frames(sk);
1147		goto out;
1148	}
1149
1150	up->len += size;
1151	if (!(up->corkflag || (flags&MSG_MORE)))
1152		ret = udp_push_pending_frames(sk);
1153	if (!ret)
1154		ret = size;
1155out:
1156	release_sock(sk);
1157	return ret;
1158}
1159
1160#define UDP_SKB_IS_STATELESS 0x80000000
1161
1162static void udp_set_dev_scratch(struct sk_buff *skb)
1163{
1164	struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1165
1166	BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1167	scratch->_tsize_state = skb->truesize;
1168#if BITS_PER_LONG == 64
1169	scratch->len = skb->len;
1170	scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1171	scratch->is_linear = !skb_is_nonlinear(skb);
1172#endif
1173	/* all head states execept sp (dst, sk, nf) are always cleared by
1174	 * udp_rcv() and we need to preserve secpath, if present, to eventually
1175	 * process IP_CMSG_PASSSEC at recvmsg() time
 
 
 
 
 
 
 
 
1176	 */
1177	if (likely(!skb_sec_path(skb)))
1178		scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
 
 
1179}
1180
1181static int udp_skb_truesize(struct sk_buff *skb)
1182{
1183	return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1184}
1185
1186static bool udp_skb_has_head_state(struct sk_buff *skb)
1187{
1188	return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1189}
1190
1191/* fully reclaim rmem/fwd memory allocated for skb */
1192static void udp_rmem_release(struct sock *sk, int size, int partial,
1193			     bool rx_queue_lock_held)
1194{
1195	struct udp_sock *up = udp_sk(sk);
1196	struct sk_buff_head *sk_queue;
1197	int amt;
1198
1199	if (likely(partial)) {
1200		up->forward_deficit += size;
1201		size = up->forward_deficit;
1202		if (size < (sk->sk_rcvbuf >> 2))
 
1203			return;
1204	} else {
1205		size += up->forward_deficit;
1206	}
1207	up->forward_deficit = 0;
1208
1209	/* acquire the sk_receive_queue for fwd allocated memory scheduling,
1210	 * if the called don't held it already
1211	 */
1212	sk_queue = &sk->sk_receive_queue;
1213	if (!rx_queue_lock_held)
1214		spin_lock(&sk_queue->lock);
1215
1216
1217	sk->sk_forward_alloc += size;
1218	amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1219	sk->sk_forward_alloc -= amt;
1220
1221	if (amt)
1222		__sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1223
1224	atomic_sub(size, &sk->sk_rmem_alloc);
1225
1226	/* this can save us from acquiring the rx queue lock on next receive */
1227	skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1228
1229	if (!rx_queue_lock_held)
1230		spin_unlock(&sk_queue->lock);
1231}
1232
1233/* Note: called with reader_queue.lock held.
1234 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1235 * This avoids a cache line miss while receive_queue lock is held.
1236 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1237 */
1238void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1239{
1240	prefetch(&skb->data);
1241	udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1242}
1243EXPORT_SYMBOL(udp_skb_destructor);
1244
1245/* as above, but the caller held the rx queue lock, too */
1246static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1247{
1248	prefetch(&skb->data);
1249	udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1250}
1251
1252/* Idea of busylocks is to let producers grab an extra spinlock
1253 * to relieve pressure on the receive_queue spinlock shared by consumer.
1254 * Under flood, this means that only one producer can be in line
1255 * trying to acquire the receive_queue spinlock.
1256 * These busylock can be allocated on a per cpu manner, instead of a
1257 * per socket one (that would consume a cache line per socket)
1258 */
1259static int udp_busylocks_log __read_mostly;
1260static spinlock_t *udp_busylocks __read_mostly;
1261
1262static spinlock_t *busylock_acquire(void *ptr)
1263{
1264	spinlock_t *busy;
1265
1266	busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1267	spin_lock(busy);
1268	return busy;
1269}
1270
1271static void busylock_release(spinlock_t *busy)
1272{
1273	if (busy)
1274		spin_unlock(busy);
1275}
1276
 
 
 
 
 
 
 
 
 
 
 
1277int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1278{
1279	struct sk_buff_head *list = &sk->sk_receive_queue;
1280	int rmem, delta, amt, err = -ENOMEM;
1281	spinlock_t *busy = NULL;
1282	int size;
1283
1284	/* try to avoid the costly atomic add/sub pair when the receive
1285	 * queue is full; always allow at least a packet
1286	 */
1287	rmem = atomic_read(&sk->sk_rmem_alloc);
1288	if (rmem > sk->sk_rcvbuf)
1289		goto drop;
1290
1291	/* Under mem pressure, it might be helpful to help udp_recvmsg()
1292	 * having linear skbs :
1293	 * - Reduce memory overhead and thus increase receive queue capacity
1294	 * - Less cache line misses at copyout() time
1295	 * - Less work at consume_skb() (less alien page frag freeing)
1296	 */
1297	if (rmem > (sk->sk_rcvbuf >> 1)) {
1298		skb_condense(skb);
1299
1300		busy = busylock_acquire(sk);
1301	}
1302	size = skb->truesize;
1303	udp_set_dev_scratch(skb);
1304
1305	/* we drop only if the receive buf is full and the receive
1306	 * queue contains some other skb
1307	 */
1308	rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1309	if (rmem > (size + sk->sk_rcvbuf))
1310		goto uncharge_drop;
1311
1312	spin_lock(&list->lock);
1313	if (size >= sk->sk_forward_alloc) {
1314		amt = sk_mem_pages(size);
1315		delta = amt << SK_MEM_QUANTUM_SHIFT;
1316		if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1317			err = -ENOBUFS;
1318			spin_unlock(&list->lock);
1319			goto uncharge_drop;
1320		}
1321
1322		sk->sk_forward_alloc += delta;
1323	}
1324
1325	sk->sk_forward_alloc -= size;
1326
1327	/* no need to setup a destructor, we will explicitly release the
1328	 * forward allocated memory on dequeue
1329	 */
1330	sock_skb_set_dropcount(sk, skb);
1331
1332	__skb_queue_tail(list, skb);
1333	spin_unlock(&list->lock);
1334
1335	if (!sock_flag(sk, SOCK_DEAD))
1336		sk->sk_data_ready(sk);
1337
1338	busylock_release(busy);
1339	return 0;
1340
1341uncharge_drop:
1342	atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1343
1344drop:
1345	atomic_inc(&sk->sk_drops);
1346	busylock_release(busy);
1347	return err;
1348}
1349EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1350
1351void udp_destruct_sock(struct sock *sk)
1352{
1353	/* reclaim completely the forward allocated memory */
1354	struct udp_sock *up = udp_sk(sk);
1355	unsigned int total = 0;
1356	struct sk_buff *skb;
1357
1358	skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1359	while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1360		total += skb->truesize;
1361		kfree_skb(skb);
1362	}
1363	udp_rmem_release(sk, total, 0, true);
 
 
1364
 
 
 
1365	inet_sock_destruct(sk);
1366}
1367EXPORT_SYMBOL_GPL(udp_destruct_sock);
1368
1369int udp_init_sock(struct sock *sk)
1370{
1371	skb_queue_head_init(&udp_sk(sk)->reader_queue);
1372	sk->sk_destruct = udp_destruct_sock;
 
1373	return 0;
1374}
1375EXPORT_SYMBOL_GPL(udp_init_sock);
1376
1377void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1378{
1379	if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1380		bool slow = lock_sock_fast(sk);
1381
1382		sk_peek_offset_bwd(sk, len);
1383		unlock_sock_fast(sk, slow);
1384	}
1385
1386	if (!skb_unref(skb))
1387		return;
1388
1389	/* In the more common cases we cleared the head states previously,
1390	 * see __udp_queue_rcv_skb().
1391	 */
1392	if (unlikely(udp_skb_has_head_state(skb)))
1393		skb_release_head_state(skb);
1394	__consume_stateless_skb(skb);
1395}
1396EXPORT_SYMBOL_GPL(skb_consume_udp);
1397
1398static struct sk_buff *__first_packet_length(struct sock *sk,
1399					     struct sk_buff_head *rcvq,
1400					     int *total)
1401{
1402	struct sk_buff *skb;
1403
1404	while ((skb = skb_peek(rcvq)) != NULL) {
1405		if (udp_lib_checksum_complete(skb)) {
1406			__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1407					IS_UDPLITE(sk));
1408			__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1409					IS_UDPLITE(sk));
1410			atomic_inc(&sk->sk_drops);
1411			__skb_unlink(skb, rcvq);
1412			*total += skb->truesize;
1413			kfree_skb(skb);
1414		} else {
1415			/* the csum related bits could be changed, refresh
1416			 * the scratch area
1417			 */
1418			udp_set_dev_scratch(skb);
1419			break;
1420		}
1421	}
1422	return skb;
1423}
1424
1425/**
1426 *	first_packet_length	- return length of first packet in receive queue
1427 *	@sk: socket
1428 *
1429 *	Drops all bad checksum frames, until a valid one is found.
1430 *	Returns the length of found skb, or -1 if none is found.
1431 */
1432static int first_packet_length(struct sock *sk)
1433{
1434	struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1435	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1436	struct sk_buff *skb;
1437	int total = 0;
1438	int res;
1439
1440	spin_lock_bh(&rcvq->lock);
1441	skb = __first_packet_length(sk, rcvq, &total);
1442	if (!skb && !skb_queue_empty(sk_queue)) {
1443		spin_lock(&sk_queue->lock);
1444		skb_queue_splice_tail_init(sk_queue, rcvq);
1445		spin_unlock(&sk_queue->lock);
1446
1447		skb = __first_packet_length(sk, rcvq, &total);
1448	}
1449	res = skb ? skb->len : -1;
1450	if (total)
1451		udp_rmem_release(sk, total, 1, false);
1452	spin_unlock_bh(&rcvq->lock);
1453	return res;
1454}
1455
1456/*
1457 *	IOCTL requests applicable to the UDP protocol
1458 */
1459
1460int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1461{
1462	switch (cmd) {
1463	case SIOCOUTQ:
1464	{
1465		int amount = sk_wmem_alloc_get(sk);
1466
1467		return put_user(amount, (int __user *)arg);
1468	}
1469
1470	case SIOCINQ:
1471	{
1472		int amount = max_t(int, 0, first_packet_length(sk));
1473
1474		return put_user(amount, (int __user *)arg);
1475	}
1476
1477	default:
1478		return -ENOIOCTLCMD;
1479	}
1480
1481	return 0;
1482}
1483EXPORT_SYMBOL(udp_ioctl);
1484
1485struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1486			       int noblock, int *peeked, int *off, int *err)
1487{
1488	struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1489	struct sk_buff_head *queue;
1490	struct sk_buff *last;
1491	long timeo;
1492	int error;
1493
1494	queue = &udp_sk(sk)->reader_queue;
1495	flags |= noblock ? MSG_DONTWAIT : 0;
1496	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1497	do {
1498		struct sk_buff *skb;
1499
1500		error = sock_error(sk);
1501		if (error)
1502			break;
1503
1504		error = -EAGAIN;
1505		*peeked = 0;
1506		do {
1507			spin_lock_bh(&queue->lock);
1508			skb = __skb_try_recv_from_queue(sk, queue, flags,
1509							udp_skb_destructor,
1510							peeked, off, err,
1511							&last);
1512			if (skb) {
 
 
1513				spin_unlock_bh(&queue->lock);
1514				return skb;
1515			}
1516
1517			if (skb_queue_empty(sk_queue)) {
1518				spin_unlock_bh(&queue->lock);
1519				goto busy_check;
1520			}
1521
1522			/* refill the reader queue and walk it again
1523			 * keep both queues locked to avoid re-acquiring
1524			 * the sk_receive_queue lock if fwd memory scheduling
1525			 * is needed.
1526			 */
1527			spin_lock(&sk_queue->lock);
1528			skb_queue_splice_tail_init(sk_queue, queue);
1529
1530			skb = __skb_try_recv_from_queue(sk, queue, flags,
1531							udp_skb_dtor_locked,
1532							peeked, off, err,
1533							&last);
1534			spin_unlock(&sk_queue->lock);
1535			spin_unlock_bh(&queue->lock);
1536			if (skb)
1537				return skb;
1538
1539busy_check:
1540			if (!sk_can_busy_loop(sk))
1541				break;
1542
1543			sk_busy_loop(sk, flags & MSG_DONTWAIT);
1544		} while (!skb_queue_empty(sk_queue));
1545
1546		/* sk_queue is empty, reader_queue may contain peeked packets */
1547	} while (timeo &&
1548		 !__skb_wait_for_more_packets(sk, &error, &timeo,
 
1549					      (struct sk_buff *)sk_queue));
1550
1551	*err = error;
1552	return NULL;
1553}
1554EXPORT_SYMBOL_GPL(__skb_recv_udp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1555
1556/*
1557 * 	This should be easy, if there is something there we
1558 * 	return it, otherwise we block.
1559 */
1560
1561int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1562		int flags, int *addr_len)
1563{
1564	struct inet_sock *inet = inet_sk(sk);
1565	DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1566	struct sk_buff *skb;
1567	unsigned int ulen, copied;
1568	int peeked, peeking, off;
1569	int err;
1570	int is_udplite = IS_UDPLITE(sk);
1571	bool checksum_valid = false;
1572
1573	if (flags & MSG_ERRQUEUE)
1574		return ip_recv_error(sk, msg, len, addr_len);
1575
1576try_again:
1577	peeking = flags & MSG_PEEK;
1578	off = sk_peek_offset(sk, flags);
1579	skb = __skb_recv_udp(sk, flags, noblock, &peeked, &off, &err);
1580	if (!skb)
1581		return err;
1582
1583	ulen = udp_skb_len(skb);
1584	copied = len;
1585	if (copied > ulen - off)
1586		copied = ulen - off;
1587	else if (copied < ulen)
1588		msg->msg_flags |= MSG_TRUNC;
1589
1590	/*
1591	 * If checksum is needed at all, try to do it while copying the
1592	 * data.  If the data is truncated, or if we only want a partial
1593	 * coverage checksum (UDP-Lite), do it before the copy.
1594	 */
1595
1596	if (copied < ulen || peeking ||
1597	    (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1598		checksum_valid = udp_skb_csum_unnecessary(skb) ||
1599				!__udp_lib_checksum_complete(skb);
1600		if (!checksum_valid)
1601			goto csum_copy_err;
1602	}
1603
1604	if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1605		if (udp_skb_is_linear(skb))
1606			err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1607		else
1608			err = skb_copy_datagram_msg(skb, off, msg, copied);
1609	} else {
1610		err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1611
1612		if (err == -EINVAL)
1613			goto csum_copy_err;
1614	}
1615
1616	if (unlikely(err)) {
1617		if (!peeked) {
1618			atomic_inc(&sk->sk_drops);
1619			UDP_INC_STATS(sock_net(sk),
1620				      UDP_MIB_INERRORS, is_udplite);
1621		}
1622		kfree_skb(skb);
1623		return err;
1624	}
1625
1626	if (!peeked)
1627		UDP_INC_STATS(sock_net(sk),
1628			      UDP_MIB_INDATAGRAMS, is_udplite);
1629
1630	sock_recv_ts_and_drops(msg, sk, skb);
1631
1632	/* Copy the address. */
1633	if (sin) {
1634		sin->sin_family = AF_INET;
1635		sin->sin_port = udp_hdr(skb)->source;
1636		sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1637		memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1638		*addr_len = sizeof(*sin);
 
 
 
 
1639	}
1640	if (inet->cmsg_flags)
 
 
 
 
1641		ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1642
1643	err = copied;
1644	if (flags & MSG_TRUNC)
1645		err = ulen;
1646
1647	skb_consume_udp(sk, skb, peeking ? -err : err);
1648	return err;
1649
1650csum_copy_err:
1651	if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1652				 udp_skb_destructor)) {
1653		UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1654		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1655	}
1656	kfree_skb(skb);
1657
1658	/* starting over for a new packet, but check if we need to yield */
1659	cond_resched();
1660	msg->msg_flags &= ~MSG_TRUNC;
1661	goto try_again;
1662}
1663
1664int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1665{
1666	/* This check is replicated from __ip4_datagram_connect() and
1667	 * intended to prevent BPF program called below from accessing bytes
1668	 * that are out of the bound specified by user in addr_len.
1669	 */
1670	if (addr_len < sizeof(struct sockaddr_in))
1671		return -EINVAL;
1672
1673	return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1674}
1675EXPORT_SYMBOL(udp_pre_connect);
1676
1677int __udp_disconnect(struct sock *sk, int flags)
1678{
1679	struct inet_sock *inet = inet_sk(sk);
1680	/*
1681	 *	1003.1g - break association.
1682	 */
1683
1684	sk->sk_state = TCP_CLOSE;
1685	inet->inet_daddr = 0;
1686	inet->inet_dport = 0;
1687	sock_rps_reset_rxhash(sk);
1688	sk->sk_bound_dev_if = 0;
1689	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
1690		inet_reset_saddr(sk);
 
 
 
 
1691
1692	if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1693		sk->sk_prot->unhash(sk);
1694		inet->inet_sport = 0;
1695	}
1696	sk_dst_reset(sk);
1697	return 0;
1698}
1699EXPORT_SYMBOL(__udp_disconnect);
1700
1701int udp_disconnect(struct sock *sk, int flags)
1702{
1703	lock_sock(sk);
1704	__udp_disconnect(sk, flags);
1705	release_sock(sk);
1706	return 0;
1707}
1708EXPORT_SYMBOL(udp_disconnect);
1709
1710void udp_lib_unhash(struct sock *sk)
1711{
1712	if (sk_hashed(sk)) {
1713		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1714		struct udp_hslot *hslot, *hslot2;
1715
1716		hslot  = udp_hashslot(udptable, sock_net(sk),
1717				      udp_sk(sk)->udp_port_hash);
1718		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1719
1720		spin_lock_bh(&hslot->lock);
1721		if (rcu_access_pointer(sk->sk_reuseport_cb))
1722			reuseport_detach_sock(sk);
1723		if (sk_del_node_init_rcu(sk)) {
1724			hslot->count--;
1725			inet_sk(sk)->inet_num = 0;
1726			sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1727
1728			spin_lock(&hslot2->lock);
1729			hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1730			hslot2->count--;
1731			spin_unlock(&hslot2->lock);
1732		}
1733		spin_unlock_bh(&hslot->lock);
1734	}
1735}
1736EXPORT_SYMBOL(udp_lib_unhash);
1737
1738/*
1739 * inet_rcv_saddr was changed, we must rehash secondary hash
1740 */
1741void udp_lib_rehash(struct sock *sk, u16 newhash)
1742{
1743	if (sk_hashed(sk)) {
1744		struct udp_table *udptable = sk->sk_prot->h.udp_table;
1745		struct udp_hslot *hslot, *hslot2, *nhslot2;
1746
1747		hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1748		nhslot2 = udp_hashslot2(udptable, newhash);
1749		udp_sk(sk)->udp_portaddr_hash = newhash;
1750
1751		if (hslot2 != nhslot2 ||
1752		    rcu_access_pointer(sk->sk_reuseport_cb)) {
1753			hslot = udp_hashslot(udptable, sock_net(sk),
1754					     udp_sk(sk)->udp_port_hash);
1755			/* we must lock primary chain too */
1756			spin_lock_bh(&hslot->lock);
1757			if (rcu_access_pointer(sk->sk_reuseport_cb))
1758				reuseport_detach_sock(sk);
1759
1760			if (hslot2 != nhslot2) {
1761				spin_lock(&hslot2->lock);
1762				hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1763				hslot2->count--;
1764				spin_unlock(&hslot2->lock);
1765
1766				spin_lock(&nhslot2->lock);
1767				hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
1768							 &nhslot2->head);
1769				nhslot2->count++;
1770				spin_unlock(&nhslot2->lock);
1771			}
1772
1773			spin_unlock_bh(&hslot->lock);
1774		}
1775	}
1776}
1777EXPORT_SYMBOL(udp_lib_rehash);
1778
1779static void udp_v4_rehash(struct sock *sk)
1780{
1781	u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
1782					  inet_sk(sk)->inet_rcv_saddr,
1783					  inet_sk(sk)->inet_num);
1784	udp_lib_rehash(sk, new_hash);
1785}
1786
1787static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1788{
1789	int rc;
1790
1791	if (inet_sk(sk)->inet_daddr) {
1792		sock_rps_save_rxhash(sk, skb);
1793		sk_mark_napi_id(sk, skb);
1794		sk_incoming_cpu_update(sk);
1795	} else {
1796		sk_mark_napi_id_once(sk, skb);
1797	}
1798
1799	rc = __udp_enqueue_schedule_skb(sk, skb);
1800	if (rc < 0) {
1801		int is_udplite = IS_UDPLITE(sk);
 
1802
1803		/* Note that an ENOMEM error is charged twice */
1804		if (rc == -ENOMEM)
1805			UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
1806					is_udplite);
 
 
 
 
 
 
1807		UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1808		kfree_skb(skb);
1809		trace_udp_fail_queue_rcv_skb(rc, sk);
1810		return -1;
1811	}
1812
1813	return 0;
1814}
1815
1816static struct static_key udp_encap_needed __read_mostly;
1817void udp_encap_enable(void)
1818{
1819	static_key_enable(&udp_encap_needed);
1820}
1821EXPORT_SYMBOL(udp_encap_enable);
1822
1823/* returns:
1824 *  -1: error
1825 *   0: success
1826 *  >0: "udp encap" protocol resubmission
1827 *
1828 * Note that in the success and error cases, the skb is assumed to
1829 * have either been requeued or freed.
1830 */
1831static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
1832{
 
1833	struct udp_sock *up = udp_sk(sk);
1834	int is_udplite = IS_UDPLITE(sk);
1835
1836	/*
1837	 *	Charge it to the socket, dropping if the queue is full.
1838	 */
1839	if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
 
1840		goto drop;
1841	nf_reset(skb);
 
1842
1843	if (static_key_false(&udp_encap_needed) && up->encap_type) {
 
1844		int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
1845
1846		/*
1847		 * This is an encapsulation socket so pass the skb to
1848		 * the socket's udp_encap_rcv() hook. Otherwise, just
1849		 * fall through and pass this up the UDP socket.
1850		 * up->encap_rcv() returns the following value:
1851		 * =0 if skb was successfully passed to the encap
1852		 *    handler or was discarded by it.
1853		 * >0 if skb should be passed on to UDP.
1854		 * <0 if skb should be resubmitted as proto -N
1855		 */
1856
1857		/* if we're overly short, let UDP handle it */
1858		encap_rcv = READ_ONCE(up->encap_rcv);
1859		if (encap_rcv) {
1860			int ret;
1861
1862			/* Verify checksum before giving to encap */
1863			if (udp_lib_checksum_complete(skb))
1864				goto csum_error;
1865
1866			ret = encap_rcv(sk, skb);
1867			if (ret <= 0) {
1868				__UDP_INC_STATS(sock_net(sk),
1869						UDP_MIB_INDATAGRAMS,
1870						is_udplite);
1871				return -ret;
1872			}
1873		}
1874
1875		/* FALLTHROUGH -- it's a UDP Packet */
1876	}
1877
1878	/*
1879	 * 	UDP-Lite specific tests, ignored on UDP sockets
1880	 */
1881	if ((is_udplite & UDPLITE_RECV_CC)  &&  UDP_SKB_CB(skb)->partial_cov) {
 
1882
1883		/*
1884		 * MIB statistics other than incrementing the error count are
1885		 * disabled for the following two types of errors: these depend
1886		 * on the application settings, not on the functioning of the
1887		 * protocol stack as such.
1888		 *
1889		 * RFC 3828 here recommends (sec 3.3): "There should also be a
1890		 * way ... to ... at least let the receiving application block
1891		 * delivery of packets with coverage values less than a value
1892		 * provided by the application."
1893		 */
1894		if (up->pcrlen == 0) {          /* full coverage was set  */
1895			net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
1896					    UDP_SKB_CB(skb)->cscov, skb->len);
1897			goto drop;
1898		}
1899		/* The next case involves violating the min. coverage requested
1900		 * by the receiver. This is subtle: if receiver wants x and x is
1901		 * greater than the buffersize/MTU then receiver will complain
1902		 * that it wants x while sender emits packets of smaller size y.
1903		 * Therefore the above ...()->partial_cov statement is essential.
1904		 */
1905		if (UDP_SKB_CB(skb)->cscov  <  up->pcrlen) {
1906			net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
1907					    UDP_SKB_CB(skb)->cscov, up->pcrlen);
1908			goto drop;
1909		}
1910	}
1911
1912	prefetch(&sk->sk_rmem_alloc);
1913	if (rcu_access_pointer(sk->sk_filter) &&
1914	    udp_lib_checksum_complete(skb))
1915			goto csum_error;
1916
1917	if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
 
1918		goto drop;
 
1919
1920	udp_csum_pull_header(skb);
1921
1922	ipv4_pktinfo_prepare(sk, skb);
1923	return __udp_queue_rcv_skb(sk, skb);
1924
1925csum_error:
 
1926	__UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1927drop:
1928	__UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1929	atomic_inc(&sk->sk_drops);
1930	kfree_skb(skb);
1931	return -1;
1932}
1933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934/* For TCP sockets, sk_rx_dst is protected by socket lock
1935 * For UDP, we use xchg() to guard against concurrent changes.
1936 */
1937bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
1938{
1939	struct dst_entry *old;
1940
1941	if (dst_hold_safe(dst)) {
1942		old = xchg(&sk->sk_rx_dst, dst);
1943		dst_release(old);
1944		return old != dst;
1945	}
1946	return false;
1947}
1948EXPORT_SYMBOL(udp_sk_rx_dst_set);
1949
1950/*
1951 *	Multicasts and broadcasts go to each listener.
1952 *
1953 *	Note: called only from the BH handler context.
1954 */
1955static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
1956				    struct udphdr  *uh,
1957				    __be32 saddr, __be32 daddr,
1958				    struct udp_table *udptable,
1959				    int proto)
1960{
1961	struct sock *sk, *first = NULL;
1962	unsigned short hnum = ntohs(uh->dest);
1963	struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
1964	unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
1965	unsigned int offset = offsetof(typeof(*sk), sk_node);
1966	int dif = skb->dev->ifindex;
1967	int sdif = inet_sdif(skb);
1968	struct hlist_node *node;
1969	struct sk_buff *nskb;
1970
1971	if (use_hash2) {
1972		hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
1973			    udptable->mask;
1974		hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
1975start_lookup:
1976		hslot = &udptable->hash2[hash2];
1977		offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
1978	}
1979
1980	sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
1981		if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
1982					 uh->source, saddr, dif, sdif, hnum))
1983			continue;
1984
1985		if (!first) {
1986			first = sk;
1987			continue;
1988		}
1989		nskb = skb_clone(skb, GFP_ATOMIC);
1990
1991		if (unlikely(!nskb)) {
1992			atomic_inc(&sk->sk_drops);
1993			__UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
1994					IS_UDPLITE(sk));
1995			__UDP_INC_STATS(net, UDP_MIB_INERRORS,
1996					IS_UDPLITE(sk));
1997			continue;
1998		}
1999		if (udp_queue_rcv_skb(sk, nskb) > 0)
2000			consume_skb(nskb);
2001	}
2002
2003	/* Also lookup *:port if we are using hash2 and haven't done so yet. */
2004	if (use_hash2 && hash2 != hash2_any) {
2005		hash2 = hash2_any;
2006		goto start_lookup;
2007	}
2008
2009	if (first) {
2010		if (udp_queue_rcv_skb(first, skb) > 0)
2011			consume_skb(skb);
2012	} else {
2013		kfree_skb(skb);
2014		__UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2015				proto == IPPROTO_UDPLITE);
2016	}
2017	return 0;
2018}
2019
2020/* Initialize UDP checksum. If exited with zero value (success),
2021 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2022 * Otherwise, csum completion requires chacksumming packet body,
2023 * including udp header and folding it to skb->csum.
2024 */
2025static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2026				 int proto)
2027{
2028	int err;
2029
2030	UDP_SKB_CB(skb)->partial_cov = 0;
2031	UDP_SKB_CB(skb)->cscov = skb->len;
2032
2033	if (proto == IPPROTO_UDPLITE) {
2034		err = udplite_checksum_init(skb, uh);
2035		if (err)
2036			return err;
2037
2038		if (UDP_SKB_CB(skb)->partial_cov) {
2039			skb->csum = inet_compute_pseudo(skb, proto);
2040			return 0;
2041		}
2042	}
2043
2044	/* Note, we are only interested in != 0 or == 0, thus the
2045	 * force to int.
2046	 */
2047	return (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2048							 inet_compute_pseudo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2049}
2050
2051/*
2052 *	All we need to do is get the socket, and then do a checksum.
2053 */
2054
2055int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2056		   int proto)
2057{
2058	struct sock *sk;
2059	struct udphdr *uh;
2060	unsigned short ulen;
2061	struct rtable *rt = skb_rtable(skb);
2062	__be32 saddr, daddr;
2063	struct net *net = dev_net(skb->dev);
 
 
 
 
2064
2065	/*
2066	 *  Validate the packet.
2067	 */
2068	if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2069		goto drop;		/* No space for header. */
2070
2071	uh   = udp_hdr(skb);
2072	ulen = ntohs(uh->len);
2073	saddr = ip_hdr(skb)->saddr;
2074	daddr = ip_hdr(skb)->daddr;
2075
2076	if (ulen > skb->len)
2077		goto short_packet;
2078
2079	if (proto == IPPROTO_UDP) {
2080		/* UDP validates ulen. */
2081		if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2082			goto short_packet;
2083		uh = udp_hdr(skb);
2084	}
2085
2086	if (udp4_csum_init(skb, uh, proto))
2087		goto csum_error;
2088
2089	sk = skb_steal_sock(skb);
 
 
 
 
2090	if (sk) {
2091		struct dst_entry *dst = skb_dst(skb);
2092		int ret;
2093
2094		if (unlikely(sk->sk_rx_dst != dst))
2095			udp_sk_rx_dst_set(sk, dst);
2096
2097		ret = udp_queue_rcv_skb(sk, skb);
2098		sock_put(sk);
2099		/* a return value > 0 means to resubmit the input, but
2100		 * it wants the return to be -protocol, or 0
2101		 */
2102		if (ret > 0)
2103			return -ret;
2104		return 0;
2105	}
2106
2107	if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2108		return __udp4_lib_mcast_deliver(net, skb, uh,
2109						saddr, daddr, udptable, proto);
2110
2111	sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2112	if (sk) {
2113		int ret;
2114
2115		if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2116			skb_checksum_try_convert(skb, IPPROTO_UDP, uh->check,
2117						 inet_compute_pseudo);
2118
2119		ret = udp_queue_rcv_skb(sk, skb);
2120
2121		/* a return value > 0 means to resubmit the input, but
2122		 * it wants the return to be -protocol, or 0
2123		 */
2124		if (ret > 0)
2125			return -ret;
2126		return 0;
2127	}
2128
2129	if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2130		goto drop;
2131	nf_reset(skb);
2132
2133	/* No socket. Drop packet silently, if checksum is wrong */
2134	if (udp_lib_checksum_complete(skb))
2135		goto csum_error;
2136
 
2137	__UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2138	icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2139
2140	/*
2141	 * Hmm.  We got an UDP packet to a port to which we
2142	 * don't wanna listen.  Ignore it.
2143	 */
2144	kfree_skb(skb);
2145	return 0;
2146
2147short_packet:
 
2148	net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2149			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2150			    &saddr, ntohs(uh->source),
2151			    ulen, skb->len,
2152			    &daddr, ntohs(uh->dest));
2153	goto drop;
2154
2155csum_error:
2156	/*
2157	 * RFC1122: OK.  Discards the bad packet silently (as far as
2158	 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2159	 */
 
2160	net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2161			    proto == IPPROTO_UDPLITE ? "Lite" : "",
2162			    &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2163			    ulen);
2164	__UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2165drop:
2166	__UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2167	kfree_skb(skb);
2168	return 0;
2169}
2170
2171/* We can only early demux multicast if there is a single matching socket.
2172 * If more than one socket found returns NULL
2173 */
2174static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2175						  __be16 loc_port, __be32 loc_addr,
2176						  __be16 rmt_port, __be32 rmt_addr,
2177						  int dif, int sdif)
2178{
 
 
2179	struct sock *sk, *result;
2180	unsigned short hnum = ntohs(loc_port);
2181	unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2182	struct udp_hslot *hslot = &udp_table.hash[slot];
 
 
2183
2184	/* Do not bother scanning a too big list */
2185	if (hslot->count > 10)
2186		return NULL;
2187
2188	result = NULL;
2189	sk_for_each_rcu(sk, &hslot->head) {
2190		if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2191					rmt_port, rmt_addr, dif, sdif, hnum)) {
2192			if (result)
2193				return NULL;
2194			result = sk;
2195		}
2196	}
2197
2198	return result;
2199}
2200
2201/* For unicast we should only early demux connected sockets or we can
2202 * break forwarding setups.  The chains here can be long so only check
2203 * if the first socket is an exact match and if not move on.
2204 */
2205static struct sock *__udp4_lib_demux_lookup(struct net *net,
2206					    __be16 loc_port, __be32 loc_addr,
2207					    __be16 rmt_port, __be32 rmt_addr,
2208					    int dif, int sdif)
2209{
 
 
2210	unsigned short hnum = ntohs(loc_port);
2211	unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2212	unsigned int slot2 = hash2 & udp_table.mask;
2213	struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2214	INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2215	const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2216	struct sock *sk;
2217
 
 
 
 
 
2218	udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2219		if (INET_MATCH(sk, net, acookie, rmt_addr,
2220			       loc_addr, ports, dif, sdif))
2221			return sk;
2222		/* Only check first socket in chain */
2223		break;
2224	}
2225	return NULL;
2226}
2227
2228int udp_v4_early_demux(struct sk_buff *skb)
2229{
2230	struct net *net = dev_net(skb->dev);
2231	struct in_device *in_dev = NULL;
2232	const struct iphdr *iph;
2233	const struct udphdr *uh;
2234	struct sock *sk = NULL;
2235	struct dst_entry *dst;
2236	int dif = skb->dev->ifindex;
2237	int sdif = inet_sdif(skb);
2238	int ours;
2239
2240	/* validate the packet */
2241	if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2242		return 0;
2243
2244	iph = ip_hdr(skb);
2245	uh = udp_hdr(skb);
2246
2247	if (skb->pkt_type == PACKET_MULTICAST) {
2248		in_dev = __in_dev_get_rcu(skb->dev);
2249
2250		if (!in_dev)
2251			return 0;
2252
2253		ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2254				       iph->protocol);
2255		if (!ours)
2256			return 0;
2257
2258		sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2259						   uh->source, iph->saddr,
2260						   dif, sdif);
2261	} else if (skb->pkt_type == PACKET_HOST) {
2262		sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2263					     uh->source, iph->saddr, dif, sdif);
2264	}
2265
2266	if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2267		return 0;
2268
2269	skb->sk = sk;
2270	skb->destructor = sock_efree;
2271	dst = READ_ONCE(sk->sk_rx_dst);
 
2272
2273	if (dst)
2274		dst = dst_check(dst, 0);
2275	if (dst) {
2276		u32 itag = 0;
2277
2278		/* set noref for now.
2279		 * any place which wants to hold dst has to call
2280		 * dst_hold_safe()
2281		 */
2282		skb_dst_set_noref(skb, dst);
2283
2284		/* for unconnected multicast sockets we need to validate
2285		 * the source on each packet
2286		 */
2287		if (!inet_sk(sk)->inet_daddr && in_dev)
2288			return ip_mc_validate_source(skb, iph->daddr,
2289						     iph->saddr, iph->tos,
 
2290						     skb->dev, in_dev, &itag);
2291	}
2292	return 0;
2293}
2294
2295int udp_rcv(struct sk_buff *skb)
2296{
2297	return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2298}
2299
2300void udp_destroy_sock(struct sock *sk)
2301{
2302	struct udp_sock *up = udp_sk(sk);
2303	bool slow = lock_sock_fast(sk);
 
 
 
2304	udp_flush_pending_frames(sk);
2305	unlock_sock_fast(sk, slow);
2306	if (static_key_false(&udp_encap_needed) && up->encap_type) {
2307		void (*encap_destroy)(struct sock *sk);
2308		encap_destroy = READ_ONCE(up->encap_destroy);
2309		if (encap_destroy)
2310			encap_destroy(sk);
 
 
 
 
2311	}
2312}
2313
 
 
 
 
 
 
 
 
 
 
 
 
 
2314/*
2315 *	Socket option code for UDP
2316 */
2317int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2318		       char __user *optval, unsigned int optlen,
2319		       int (*push_pending_frames)(struct sock *))
2320{
2321	struct udp_sock *up = udp_sk(sk);
2322	int val, valbool;
2323	int err = 0;
2324	int is_udplite = IS_UDPLITE(sk);
2325
 
 
 
 
 
 
 
 
 
 
 
 
2326	if (optlen < sizeof(int))
2327		return -EINVAL;
2328
2329	if (get_user(val, (int __user *)optval))
2330		return -EFAULT;
2331
2332	valbool = val ? 1 : 0;
2333
2334	switch (optname) {
2335	case UDP_CORK:
2336		if (val != 0) {
2337			up->corkflag = 1;
2338		} else {
2339			up->corkflag = 0;
2340			lock_sock(sk);
2341			push_pending_frames(sk);
2342			release_sock(sk);
2343		}
2344		break;
2345
2346	case UDP_ENCAP:
2347		switch (val) {
2348		case 0:
 
2349		case UDP_ENCAP_ESPINUDP:
 
 
2350		case UDP_ENCAP_ESPINUDP_NON_IKE:
2351			up->encap_rcv = xfrm4_udp_encap_rcv;
2352			/* FALLTHROUGH */
 
 
 
 
 
 
 
 
2353		case UDP_ENCAP_L2TPINUDP:
2354			up->encap_type = val;
2355			udp_encap_enable();
2356			break;
2357		default:
2358			err = -ENOPROTOOPT;
2359			break;
2360		}
2361		break;
2362
2363	case UDP_NO_CHECK6_TX:
2364		up->no_check6_tx = valbool;
2365		break;
2366
2367	case UDP_NO_CHECK6_RX:
2368		up->no_check6_rx = valbool;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2369		break;
2370
2371	/*
2372	 * 	UDP-Lite's partial checksum coverage (RFC 3828).
2373	 */
2374	/* The sender sets actual checksum coverage length via this option.
2375	 * The case coverage > packet length is handled by send module. */
2376	case UDPLITE_SEND_CSCOV:
2377		if (!is_udplite)         /* Disable the option on UDP sockets */
2378			return -ENOPROTOOPT;
2379		if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2380			val = 8;
2381		else if (val > USHRT_MAX)
2382			val = USHRT_MAX;
2383		up->pcslen = val;
2384		up->pcflag |= UDPLITE_SEND_CC;
2385		break;
2386
2387	/* The receiver specifies a minimum checksum coverage value. To make
2388	 * sense, this should be set to at least 8 (as done below). If zero is
2389	 * used, this again means full checksum coverage.                     */
2390	case UDPLITE_RECV_CSCOV:
2391		if (!is_udplite)         /* Disable the option on UDP sockets */
2392			return -ENOPROTOOPT;
2393		if (val != 0 && val < 8) /* Avoid silly minimal values.       */
2394			val = 8;
2395		else if (val > USHRT_MAX)
2396			val = USHRT_MAX;
2397		up->pcrlen = val;
2398		up->pcflag |= UDPLITE_RECV_CC;
2399		break;
2400
2401	default:
2402		err = -ENOPROTOOPT;
2403		break;
2404	}
2405
2406	return err;
2407}
2408EXPORT_SYMBOL(udp_lib_setsockopt);
2409
2410int udp_setsockopt(struct sock *sk, int level, int optname,
2411		   char __user *optval, unsigned int optlen)
2412{
2413	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2414		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
 
2415					  udp_push_pending_frames);
2416	return ip_setsockopt(sk, level, optname, optval, optlen);
2417}
2418
2419#ifdef CONFIG_COMPAT
2420int compat_udp_setsockopt(struct sock *sk, int level, int optname,
2421			  char __user *optval, unsigned int optlen)
2422{
2423	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2424		return udp_lib_setsockopt(sk, level, optname, optval, optlen,
2425					  udp_push_pending_frames);
2426	return compat_ip_setsockopt(sk, level, optname, optval, optlen);
2427}
2428#endif
2429
2430int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2431		       char __user *optval, int __user *optlen)
2432{
2433	struct udp_sock *up = udp_sk(sk);
2434	int val, len;
2435
2436	if (get_user(len, optlen))
2437		return -EFAULT;
2438
2439	len = min_t(unsigned int, len, sizeof(int));
2440
2441	if (len < 0)
2442		return -EINVAL;
2443
 
 
2444	switch (optname) {
2445	case UDP_CORK:
2446		val = up->corkflag;
2447		break;
2448
2449	case UDP_ENCAP:
2450		val = up->encap_type;
2451		break;
2452
2453	case UDP_NO_CHECK6_TX:
2454		val = up->no_check6_tx;
2455		break;
2456
2457	case UDP_NO_CHECK6_RX:
2458		val = up->no_check6_rx;
 
 
 
 
 
 
 
 
2459		break;
2460
2461	/* The following two cannot be changed on UDP sockets, the return is
2462	 * always 0 (which corresponds to the full checksum coverage of UDP). */
2463	case UDPLITE_SEND_CSCOV:
2464		val = up->pcslen;
2465		break;
2466
2467	case UDPLITE_RECV_CSCOV:
2468		val = up->pcrlen;
2469		break;
2470
2471	default:
2472		return -ENOPROTOOPT;
2473	}
2474
2475	if (put_user(len, optlen))
2476		return -EFAULT;
2477	if (copy_to_user(optval, &val, len))
2478		return -EFAULT;
2479	return 0;
2480}
2481EXPORT_SYMBOL(udp_lib_getsockopt);
2482
2483int udp_getsockopt(struct sock *sk, int level, int optname,
2484		   char __user *optval, int __user *optlen)
2485{
2486	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2487		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2488	return ip_getsockopt(sk, level, optname, optval, optlen);
2489}
2490
2491#ifdef CONFIG_COMPAT
2492int compat_udp_getsockopt(struct sock *sk, int level, int optname,
2493				 char __user *optval, int __user *optlen)
2494{
2495	if (level == SOL_UDP  ||  level == SOL_UDPLITE)
2496		return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2497	return compat_ip_getsockopt(sk, level, optname, optval, optlen);
2498}
2499#endif
2500/**
2501 * 	udp_poll - wait for a UDP event.
2502 *	@file - file struct
2503 *	@sock - socket
2504 *	@wait - poll table
2505 *
2506 *	This is same as datagram poll, except for the special case of
2507 *	blocking sockets. If application is using a blocking fd
2508 *	and a packet with checksum error is in the queue;
2509 *	then it could get return from select indicating data available
2510 *	but then block when reading it. Add special case code
2511 *	to work around these arguably broken applications.
2512 */
2513__poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2514{
2515	__poll_t mask = datagram_poll(file, sock, wait);
2516	struct sock *sk = sock->sk;
2517
2518	if (!skb_queue_empty(&udp_sk(sk)->reader_queue))
2519		mask |= EPOLLIN | EPOLLRDNORM;
2520
2521	/* Check for false positives due to checksum errors */
2522	if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2523	    !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2524		mask &= ~(EPOLLIN | EPOLLRDNORM);
2525
 
 
 
2526	return mask;
2527
2528}
2529EXPORT_SYMBOL(udp_poll);
2530
2531int udp_abort(struct sock *sk, int err)
2532{
2533	lock_sock(sk);
 
 
 
 
 
 
 
2534
2535	sk->sk_err = err;
2536	sk->sk_error_report(sk);
2537	__udp_disconnect(sk, 0);
2538
2539	release_sock(sk);
 
 
2540
2541	return 0;
2542}
2543EXPORT_SYMBOL_GPL(udp_abort);
2544
2545struct proto udp_prot = {
2546	.name			= "UDP",
2547	.owner			= THIS_MODULE,
2548	.close			= udp_lib_close,
2549	.pre_connect		= udp_pre_connect,
2550	.connect		= ip4_datagram_connect,
2551	.disconnect		= udp_disconnect,
2552	.ioctl			= udp_ioctl,
2553	.init			= udp_init_sock,
2554	.destroy		= udp_destroy_sock,
2555	.setsockopt		= udp_setsockopt,
2556	.getsockopt		= udp_getsockopt,
2557	.sendmsg		= udp_sendmsg,
2558	.recvmsg		= udp_recvmsg,
2559	.sendpage		= udp_sendpage,
2560	.release_cb		= ip4_datagram_release_cb,
2561	.hash			= udp_lib_hash,
2562	.unhash			= udp_lib_unhash,
2563	.rehash			= udp_v4_rehash,
2564	.get_port		= udp_v4_get_port,
 
 
 
 
2565	.memory_allocated	= &udp_memory_allocated,
 
 
2566	.sysctl_mem		= sysctl_udp_mem,
2567	.sysctl_wmem_offset	= offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2568	.sysctl_rmem_offset	= offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2569	.obj_size		= sizeof(struct udp_sock),
2570	.h.udp_table		= &udp_table,
2571#ifdef CONFIG_COMPAT
2572	.compat_setsockopt	= compat_udp_setsockopt,
2573	.compat_getsockopt	= compat_udp_getsockopt,
2574#endif
2575	.diag_destroy		= udp_abort,
2576};
2577EXPORT_SYMBOL(udp_prot);
2578
2579/* ------------------------------------------------------------------------ */
2580#ifdef CONFIG_PROC_FS
2581
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2582static struct sock *udp_get_first(struct seq_file *seq, int start)
2583{
2584	struct sock *sk;
2585	struct udp_iter_state *state = seq->private;
2586	struct net *net = seq_file_net(seq);
 
 
2587
2588	for (state->bucket = start; state->bucket <= state->udp_table->mask;
 
 
2589	     ++state->bucket) {
2590		struct udp_hslot *hslot = &state->udp_table->hash[state->bucket];
2591
2592		if (hlist_empty(&hslot->head))
2593			continue;
2594
2595		spin_lock_bh(&hslot->lock);
2596		sk_for_each(sk, &hslot->head) {
2597			if (!net_eq(sock_net(sk), net))
2598				continue;
2599			if (sk->sk_family == state->family)
2600				goto found;
2601		}
2602		spin_unlock_bh(&hslot->lock);
2603	}
2604	sk = NULL;
2605found:
2606	return sk;
2607}
2608
2609static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2610{
2611	struct udp_iter_state *state = seq->private;
2612	struct net *net = seq_file_net(seq);
 
2613
2614	do {
2615		sk = sk_next(sk);
2616	} while (sk && (!net_eq(sock_net(sk), net) || sk->sk_family != state->family));
2617
2618	if (!sk) {
2619		if (state->bucket <= state->udp_table->mask)
2620			spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
 
 
 
2621		return udp_get_first(seq, state->bucket + 1);
2622	}
2623	return sk;
2624}
2625
2626static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2627{
2628	struct sock *sk = udp_get_first(seq, 0);
2629
2630	if (sk)
2631		while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2632			--pos;
2633	return pos ? NULL : sk;
2634}
2635
2636static void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2637{
2638	struct udp_iter_state *state = seq->private;
2639	state->bucket = MAX_UDP_PORTS;
2640
2641	return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2642}
 
2643
2644static void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2645{
2646	struct sock *sk;
2647
2648	if (v == SEQ_START_TOKEN)
2649		sk = udp_get_idx(seq, 0);
2650	else
2651		sk = udp_get_next(seq, v);
2652
2653	++*pos;
2654	return sk;
2655}
 
2656
2657static void udp_seq_stop(struct seq_file *seq, void *v)
2658{
2659	struct udp_iter_state *state = seq->private;
 
2660
2661	if (state->bucket <= state->udp_table->mask)
2662		spin_unlock_bh(&state->udp_table->hash[state->bucket].lock);
2663}
2664
2665int udp_seq_open(struct inode *inode, struct file *file)
2666{
2667	struct udp_seq_afinfo *afinfo = PDE_DATA(inode);
2668	struct udp_iter_state *s;
2669	int err;
2670
2671	err = seq_open_net(inode, file, &afinfo->seq_ops,
2672			   sizeof(struct udp_iter_state));
2673	if (err < 0)
2674		return err;
2675
2676	s = ((struct seq_file *)file->private_data)->private;
2677	s->family		= afinfo->family;
2678	s->udp_table		= afinfo->udp_table;
2679	return err;
2680}
2681EXPORT_SYMBOL(udp_seq_open);
2682
2683/* ------------------------------------------------------------------------ */
2684int udp_proc_register(struct net *net, struct udp_seq_afinfo *afinfo)
2685{
2686	struct proc_dir_entry *p;
2687	int rc = 0;
2688
2689	afinfo->seq_ops.start		= udp_seq_start;
2690	afinfo->seq_ops.next		= udp_seq_next;
2691	afinfo->seq_ops.stop		= udp_seq_stop;
2692
2693	p = proc_create_data(afinfo->name, 0444, net->proc_net,
2694			     afinfo->seq_fops, afinfo);
2695	if (!p)
2696		rc = -ENOMEM;
2697	return rc;
2698}
2699EXPORT_SYMBOL(udp_proc_register);
2700
2701void udp_proc_unregister(struct net *net, struct udp_seq_afinfo *afinfo)
2702{
2703	remove_proc_entry(afinfo->name, net->proc_net);
2704}
2705EXPORT_SYMBOL(udp_proc_unregister);
2706
2707/* ------------------------------------------------------------------------ */
2708static void udp4_format_sock(struct sock *sp, struct seq_file *f,
2709		int bucket)
2710{
2711	struct inet_sock *inet = inet_sk(sp);
2712	__be32 dest = inet->inet_daddr;
2713	__be32 src  = inet->inet_rcv_saddr;
2714	__u16 destp	  = ntohs(inet->inet_dport);
2715	__u16 srcp	  = ntohs(inet->inet_sport);
2716
2717	seq_printf(f, "%5d: %08X:%04X %08X:%04X"
2718		" %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %d",
2719		bucket, src, srcp, dest, destp, sp->sk_state,
2720		sk_wmem_alloc_get(sp),
2721		sk_rmem_alloc_get(sp),
2722		0, 0L, 0,
2723		from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
2724		0, sock_i_ino(sp),
2725		refcount_read(&sp->sk_refcnt), sp,
2726		atomic_read(&sp->sk_drops));
2727}
2728
2729int udp4_seq_show(struct seq_file *seq, void *v)
2730{
2731	seq_setwidth(seq, 127);
2732	if (v == SEQ_START_TOKEN)
2733		seq_puts(seq, "  sl  local_address rem_address   st tx_queue "
2734			   "rx_queue tr tm->when retrnsmt   uid  timeout "
2735			   "inode ref pointer drops");
2736	else {
2737		struct udp_iter_state *state = seq->private;
2738
2739		udp4_format_sock(v, seq, state->bucket);
2740	}
2741	seq_pad(seq, '\n');
2742	return 0;
2743}
2744
2745static const struct file_operations udp_afinfo_seq_fops = {
2746	.open     = udp_seq_open,
2747	.read     = seq_read,
2748	.llseek   = seq_lseek,
2749	.release  = seq_release_net
 
 
 
 
 
 
 
 
 
 
 
2750};
2751
2752/* ------------------------------------------------------------------------ */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2753static struct udp_seq_afinfo udp4_seq_afinfo = {
2754	.name		= "udp",
2755	.family		= AF_INET,
2756	.udp_table	= &udp_table,
2757	.seq_fops	= &udp_afinfo_seq_fops,
2758	.seq_ops	= {
2759		.show		= udp4_seq_show,
2760	},
2761};
2762
2763static int __net_init udp4_proc_init_net(struct net *net)
2764{
2765	return udp_proc_register(net, &udp4_seq_afinfo);
 
 
 
2766}
2767
2768static void __net_exit udp4_proc_exit_net(struct net *net)
2769{
2770	udp_proc_unregister(net, &udp4_seq_afinfo);
2771}
2772
2773static struct pernet_operations udp4_net_ops = {
2774	.init = udp4_proc_init_net,
2775	.exit = udp4_proc_exit_net,
2776};
2777
2778int __init udp4_proc_init(void)
2779{
2780	return register_pernet_subsys(&udp4_net_ops);
2781}
2782
2783void udp4_proc_exit(void)
2784{
2785	unregister_pernet_subsys(&udp4_net_ops);
2786}
2787#endif /* CONFIG_PROC_FS */
2788
2789static __initdata unsigned long uhash_entries;
2790static int __init set_uhash_entries(char *str)
2791{
2792	ssize_t ret;
2793
2794	if (!str)
2795		return 0;
2796
2797	ret = kstrtoul(str, 0, &uhash_entries);
2798	if (ret)
2799		return 0;
2800
2801	if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
2802		uhash_entries = UDP_HTABLE_SIZE_MIN;
2803	return 1;
2804}
2805__setup("uhash_entries=", set_uhash_entries);
2806
2807void __init udp_table_init(struct udp_table *table, const char *name)
2808{
2809	unsigned int i;
2810
2811	table->hash = alloc_large_system_hash(name,
2812					      2 * sizeof(struct udp_hslot),
2813					      uhash_entries,
2814					      21, /* one slot per 2 MB */
2815					      0,
2816					      &table->log,
2817					      &table->mask,
2818					      UDP_HTABLE_SIZE_MIN,
2819					      64 * 1024);
2820
2821	table->hash2 = table->hash + (table->mask + 1);
2822	for (i = 0; i <= table->mask; i++) {
2823		INIT_HLIST_HEAD(&table->hash[i].head);
2824		table->hash[i].count = 0;
2825		spin_lock_init(&table->hash[i].lock);
2826	}
2827	for (i = 0; i <= table->mask; i++) {
2828		INIT_HLIST_HEAD(&table->hash2[i].head);
2829		table->hash2[i].count = 0;
2830		spin_lock_init(&table->hash2[i].lock);
2831	}
2832}
2833
2834u32 udp_flow_hashrnd(void)
2835{
2836	static u32 hashrnd __read_mostly;
2837
2838	net_get_random_once(&hashrnd, sizeof(hashrnd));
2839
2840	return hashrnd;
2841}
2842EXPORT_SYMBOL(udp_flow_hashrnd);
2843
2844static void __udp_sysctl_init(struct net *net)
2845{
2846	net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
2847	net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
2848
2849#ifdef CONFIG_NET_L3_MASTER_DEV
2850	net->ipv4.sysctl_udp_l3mdev_accept = 0;
2851#endif
2852}
2853
2854static int __net_init udp_sysctl_init(struct net *net)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855{
2856	__udp_sysctl_init(net);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2857	return 0;
2858}
2859
 
 
 
 
 
2860static struct pernet_operations __net_initdata udp_sysctl_ops = {
2861	.init	= udp_sysctl_init,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2862};
2863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864void __init udp_init(void)
2865{
2866	unsigned long limit;
2867	unsigned int i;
2868
2869	udp_table_init(&udp_table, "UDP");
2870	limit = nr_free_buffer_pages() / 8;
2871	limit = max(limit, 128UL);
2872	sysctl_udp_mem[0] = limit / 4 * 3;
2873	sysctl_udp_mem[1] = limit;
2874	sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
2875
2876	__udp_sysctl_init(&init_net);
2877
2878	/* 16 spinlocks per cpu */
2879	udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
2880	udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
2881				GFP_KERNEL);
2882	if (!udp_busylocks)
2883		panic("UDP: failed to alloc udp_busylocks\n");
2884	for (i = 0; i < (1U << udp_busylocks_log); i++)
2885		spin_lock_init(udp_busylocks + i);
2886
2887	if (register_pernet_subsys(&udp_sysctl_ops))
2888		panic("UDP: failed to init sysctl parameters.\n");
 
 
 
 
2889}