Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * This file contains the functions which manage clocksource drivers.
4 *
5 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/device.h>
11#include <linux/clocksource.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
15#include <linux/tick.h>
16#include <linux/kthread.h>
17#include <linux/prandom.h>
18#include <linux/cpu.h>
19
20#include "tick-internal.h"
21#include "timekeeping_internal.h"
22
23/**
24 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
25 * @mult: pointer to mult variable
26 * @shift: pointer to shift variable
27 * @from: frequency to convert from
28 * @to: frequency to convert to
29 * @maxsec: guaranteed runtime conversion range in seconds
30 *
31 * The function evaluates the shift/mult pair for the scaled math
32 * operations of clocksources and clockevents.
33 *
34 * @to and @from are frequency values in HZ. For clock sources @to is
35 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
36 * event @to is the counter frequency and @from is NSEC_PER_SEC.
37 *
38 * The @maxsec conversion range argument controls the time frame in
39 * seconds which must be covered by the runtime conversion with the
40 * calculated mult and shift factors. This guarantees that no 64bit
41 * overflow happens when the input value of the conversion is
42 * multiplied with the calculated mult factor. Larger ranges may
43 * reduce the conversion accuracy by choosing smaller mult and shift
44 * factors.
45 */
46void
47clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
48{
49 u64 tmp;
50 u32 sft, sftacc= 32;
51
52 /*
53 * Calculate the shift factor which is limiting the conversion
54 * range:
55 */
56 tmp = ((u64)maxsec * from) >> 32;
57 while (tmp) {
58 tmp >>=1;
59 sftacc--;
60 }
61
62 /*
63 * Find the conversion shift/mult pair which has the best
64 * accuracy and fits the maxsec conversion range:
65 */
66 for (sft = 32; sft > 0; sft--) {
67 tmp = (u64) to << sft;
68 tmp += from / 2;
69 do_div(tmp, from);
70 if ((tmp >> sftacc) == 0)
71 break;
72 }
73 *mult = tmp;
74 *shift = sft;
75}
76EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
77
78/*[Clocksource internal variables]---------
79 * curr_clocksource:
80 * currently selected clocksource.
81 * suspend_clocksource:
82 * used to calculate the suspend time.
83 * clocksource_list:
84 * linked list with the registered clocksources
85 * clocksource_mutex:
86 * protects manipulations to curr_clocksource and the clocksource_list
87 * override_name:
88 * Name of the user-specified clocksource.
89 */
90static struct clocksource *curr_clocksource;
91static struct clocksource *suspend_clocksource;
92static LIST_HEAD(clocksource_list);
93static DEFINE_MUTEX(clocksource_mutex);
94static char override_name[CS_NAME_LEN];
95static int finished_booting;
96static u64 suspend_start;
97
98/*
99 * Interval: 0.5sec.
100 */
101#define WATCHDOG_INTERVAL (HZ >> 1)
102#define WATCHDOG_INTERVAL_MAX_NS ((2 * WATCHDOG_INTERVAL) * (NSEC_PER_SEC / HZ))
103
104/*
105 * Threshold: 0.0312s, when doubled: 0.0625s.
106 * Also a default for cs->uncertainty_margin when registering clocks.
107 */
108#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 5)
109
110/*
111 * Maximum permissible delay between two readouts of the watchdog
112 * clocksource surrounding a read of the clocksource being validated.
113 * This delay could be due to SMIs, NMIs, or to VCPU preemptions. Used as
114 * a lower bound for cs->uncertainty_margin values when registering clocks.
115 *
116 * The default of 500 parts per million is based on NTP's limits.
117 * If a clocksource is good enough for NTP, it is good enough for us!
118 */
119#ifdef CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
120#define MAX_SKEW_USEC CONFIG_CLOCKSOURCE_WATCHDOG_MAX_SKEW_US
121#else
122#define MAX_SKEW_USEC (125 * WATCHDOG_INTERVAL / HZ)
123#endif
124
125#define WATCHDOG_MAX_SKEW (MAX_SKEW_USEC * NSEC_PER_USEC)
126
127#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
128static void clocksource_watchdog_work(struct work_struct *work);
129static void clocksource_select(void);
130
131static LIST_HEAD(watchdog_list);
132static struct clocksource *watchdog;
133static struct timer_list watchdog_timer;
134static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
135static DEFINE_SPINLOCK(watchdog_lock);
136static int watchdog_running;
137static atomic_t watchdog_reset_pending;
138static int64_t watchdog_max_interval;
139
140static inline void clocksource_watchdog_lock(unsigned long *flags)
141{
142 spin_lock_irqsave(&watchdog_lock, *flags);
143}
144
145static inline void clocksource_watchdog_unlock(unsigned long *flags)
146{
147 spin_unlock_irqrestore(&watchdog_lock, *flags);
148}
149
150static int clocksource_watchdog_kthread(void *data);
151static void __clocksource_change_rating(struct clocksource *cs, int rating);
152
153static void clocksource_watchdog_work(struct work_struct *work)
154{
155 /*
156 * We cannot directly run clocksource_watchdog_kthread() here, because
157 * clocksource_select() calls timekeeping_notify() which uses
158 * stop_machine(). One cannot use stop_machine() from a workqueue() due
159 * lock inversions wrt CPU hotplug.
160 *
161 * Also, we only ever run this work once or twice during the lifetime
162 * of the kernel, so there is no point in creating a more permanent
163 * kthread for this.
164 *
165 * If kthread_run fails the next watchdog scan over the
166 * watchdog_list will find the unstable clock again.
167 */
168 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
169}
170
171static void __clocksource_unstable(struct clocksource *cs)
172{
173 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
174 cs->flags |= CLOCK_SOURCE_UNSTABLE;
175
176 /*
177 * If the clocksource is registered clocksource_watchdog_kthread() will
178 * re-rate and re-select.
179 */
180 if (list_empty(&cs->list)) {
181 cs->rating = 0;
182 return;
183 }
184
185 if (cs->mark_unstable)
186 cs->mark_unstable(cs);
187
188 /* kick clocksource_watchdog_kthread() */
189 if (finished_booting)
190 schedule_work(&watchdog_work);
191}
192
193/**
194 * clocksource_mark_unstable - mark clocksource unstable via watchdog
195 * @cs: clocksource to be marked unstable
196 *
197 * This function is called by the x86 TSC code to mark clocksources as unstable;
198 * it defers demotion and re-selection to a kthread.
199 */
200void clocksource_mark_unstable(struct clocksource *cs)
201{
202 unsigned long flags;
203
204 spin_lock_irqsave(&watchdog_lock, flags);
205 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
206 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
207 list_add(&cs->wd_list, &watchdog_list);
208 __clocksource_unstable(cs);
209 }
210 spin_unlock_irqrestore(&watchdog_lock, flags);
211}
212
213static int verify_n_cpus = 8;
214module_param(verify_n_cpus, int, 0644);
215
216enum wd_read_status {
217 WD_READ_SUCCESS,
218 WD_READ_UNSTABLE,
219 WD_READ_SKIP
220};
221
222static enum wd_read_status cs_watchdog_read(struct clocksource *cs, u64 *csnow, u64 *wdnow)
223{
224 unsigned int nretries, max_retries;
225 u64 wd_end, wd_end2, wd_delta;
226 int64_t wd_delay, wd_seq_delay;
227
228 max_retries = clocksource_get_max_watchdog_retry();
229 for (nretries = 0; nretries <= max_retries; nretries++) {
230 local_irq_disable();
231 *wdnow = watchdog->read(watchdog);
232 *csnow = cs->read(cs);
233 wd_end = watchdog->read(watchdog);
234 wd_end2 = watchdog->read(watchdog);
235 local_irq_enable();
236
237 wd_delta = clocksource_delta(wd_end, *wdnow, watchdog->mask);
238 wd_delay = clocksource_cyc2ns(wd_delta, watchdog->mult,
239 watchdog->shift);
240 if (wd_delay <= WATCHDOG_MAX_SKEW) {
241 if (nretries > 1 || nretries >= max_retries) {
242 pr_warn("timekeeping watchdog on CPU%d: %s retried %d times before success\n",
243 smp_processor_id(), watchdog->name, nretries);
244 }
245 return WD_READ_SUCCESS;
246 }
247
248 /*
249 * Now compute delay in consecutive watchdog read to see if
250 * there is too much external interferences that cause
251 * significant delay in reading both clocksource and watchdog.
252 *
253 * If consecutive WD read-back delay > WATCHDOG_MAX_SKEW/2,
254 * report system busy, reinit the watchdog and skip the current
255 * watchdog test.
256 */
257 wd_delta = clocksource_delta(wd_end2, wd_end, watchdog->mask);
258 wd_seq_delay = clocksource_cyc2ns(wd_delta, watchdog->mult, watchdog->shift);
259 if (wd_seq_delay > WATCHDOG_MAX_SKEW/2)
260 goto skip_test;
261 }
262
263 pr_warn("timekeeping watchdog on CPU%d: wd-%s-wd excessive read-back delay of %lldns vs. limit of %ldns, wd-wd read-back delay only %lldns, attempt %d, marking %s unstable\n",
264 smp_processor_id(), cs->name, wd_delay, WATCHDOG_MAX_SKEW, wd_seq_delay, nretries, cs->name);
265 return WD_READ_UNSTABLE;
266
267skip_test:
268 pr_info("timekeeping watchdog on CPU%d: %s wd-wd read-back delay of %lldns\n",
269 smp_processor_id(), watchdog->name, wd_seq_delay);
270 pr_info("wd-%s-wd read-back delay of %lldns, clock-skew test skipped!\n",
271 cs->name, wd_delay);
272 return WD_READ_SKIP;
273}
274
275static u64 csnow_mid;
276static cpumask_t cpus_ahead;
277static cpumask_t cpus_behind;
278static cpumask_t cpus_chosen;
279
280static void clocksource_verify_choose_cpus(void)
281{
282 int cpu, i, n = verify_n_cpus;
283
284 if (n < 0) {
285 /* Check all of the CPUs. */
286 cpumask_copy(&cpus_chosen, cpu_online_mask);
287 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
288 return;
289 }
290
291 /* If no checking desired, or no other CPU to check, leave. */
292 cpumask_clear(&cpus_chosen);
293 if (n == 0 || num_online_cpus() <= 1)
294 return;
295
296 /* Make sure to select at least one CPU other than the current CPU. */
297 cpu = cpumask_first(cpu_online_mask);
298 if (cpu == smp_processor_id())
299 cpu = cpumask_next(cpu, cpu_online_mask);
300 if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
301 return;
302 cpumask_set_cpu(cpu, &cpus_chosen);
303
304 /* Force a sane value for the boot parameter. */
305 if (n > nr_cpu_ids)
306 n = nr_cpu_ids;
307
308 /*
309 * Randomly select the specified number of CPUs. If the same
310 * CPU is selected multiple times, that CPU is checked only once,
311 * and no replacement CPU is selected. This gracefully handles
312 * situations where verify_n_cpus is greater than the number of
313 * CPUs that are currently online.
314 */
315 for (i = 1; i < n; i++) {
316 cpu = get_random_u32_below(nr_cpu_ids);
317 cpu = cpumask_next(cpu - 1, cpu_online_mask);
318 if (cpu >= nr_cpu_ids)
319 cpu = cpumask_first(cpu_online_mask);
320 if (!WARN_ON_ONCE(cpu >= nr_cpu_ids))
321 cpumask_set_cpu(cpu, &cpus_chosen);
322 }
323
324 /* Don't verify ourselves. */
325 cpumask_clear_cpu(smp_processor_id(), &cpus_chosen);
326}
327
328static void clocksource_verify_one_cpu(void *csin)
329{
330 struct clocksource *cs = (struct clocksource *)csin;
331
332 csnow_mid = cs->read(cs);
333}
334
335void clocksource_verify_percpu(struct clocksource *cs)
336{
337 int64_t cs_nsec, cs_nsec_max = 0, cs_nsec_min = LLONG_MAX;
338 u64 csnow_begin, csnow_end;
339 int cpu, testcpu;
340 s64 delta;
341
342 if (verify_n_cpus == 0)
343 return;
344 cpumask_clear(&cpus_ahead);
345 cpumask_clear(&cpus_behind);
346 cpus_read_lock();
347 preempt_disable();
348 clocksource_verify_choose_cpus();
349 if (cpumask_empty(&cpus_chosen)) {
350 preempt_enable();
351 cpus_read_unlock();
352 pr_warn("Not enough CPUs to check clocksource '%s'.\n", cs->name);
353 return;
354 }
355 testcpu = smp_processor_id();
356 pr_warn("Checking clocksource %s synchronization from CPU %d to CPUs %*pbl.\n", cs->name, testcpu, cpumask_pr_args(&cpus_chosen));
357 for_each_cpu(cpu, &cpus_chosen) {
358 if (cpu == testcpu)
359 continue;
360 csnow_begin = cs->read(cs);
361 smp_call_function_single(cpu, clocksource_verify_one_cpu, cs, 1);
362 csnow_end = cs->read(cs);
363 delta = (s64)((csnow_mid - csnow_begin) & cs->mask);
364 if (delta < 0)
365 cpumask_set_cpu(cpu, &cpus_behind);
366 delta = (csnow_end - csnow_mid) & cs->mask;
367 if (delta < 0)
368 cpumask_set_cpu(cpu, &cpus_ahead);
369 delta = clocksource_delta(csnow_end, csnow_begin, cs->mask);
370 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
371 if (cs_nsec > cs_nsec_max)
372 cs_nsec_max = cs_nsec;
373 if (cs_nsec < cs_nsec_min)
374 cs_nsec_min = cs_nsec;
375 }
376 preempt_enable();
377 cpus_read_unlock();
378 if (!cpumask_empty(&cpus_ahead))
379 pr_warn(" CPUs %*pbl ahead of CPU %d for clocksource %s.\n",
380 cpumask_pr_args(&cpus_ahead), testcpu, cs->name);
381 if (!cpumask_empty(&cpus_behind))
382 pr_warn(" CPUs %*pbl behind CPU %d for clocksource %s.\n",
383 cpumask_pr_args(&cpus_behind), testcpu, cs->name);
384 if (!cpumask_empty(&cpus_ahead) || !cpumask_empty(&cpus_behind))
385 pr_warn(" CPU %d check durations %lldns - %lldns for clocksource %s.\n",
386 testcpu, cs_nsec_min, cs_nsec_max, cs->name);
387}
388EXPORT_SYMBOL_GPL(clocksource_verify_percpu);
389
390static inline void clocksource_reset_watchdog(void)
391{
392 struct clocksource *cs;
393
394 list_for_each_entry(cs, &watchdog_list, wd_list)
395 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
396}
397
398
399static void clocksource_watchdog(struct timer_list *unused)
400{
401 u64 csnow, wdnow, cslast, wdlast, delta;
402 int64_t wd_nsec, cs_nsec, interval;
403 int next_cpu, reset_pending;
404 struct clocksource *cs;
405 enum wd_read_status read_ret;
406 unsigned long extra_wait = 0;
407 u32 md;
408
409 spin_lock(&watchdog_lock);
410 if (!watchdog_running)
411 goto out;
412
413 reset_pending = atomic_read(&watchdog_reset_pending);
414
415 list_for_each_entry(cs, &watchdog_list, wd_list) {
416
417 /* Clocksource already marked unstable? */
418 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
419 if (finished_booting)
420 schedule_work(&watchdog_work);
421 continue;
422 }
423
424 read_ret = cs_watchdog_read(cs, &csnow, &wdnow);
425
426 if (read_ret == WD_READ_UNSTABLE) {
427 /* Clock readout unreliable, so give it up. */
428 __clocksource_unstable(cs);
429 continue;
430 }
431
432 /*
433 * When WD_READ_SKIP is returned, it means the system is likely
434 * under very heavy load, where the latency of reading
435 * watchdog/clocksource is very big, and affect the accuracy of
436 * watchdog check. So give system some space and suspend the
437 * watchdog check for 5 minutes.
438 */
439 if (read_ret == WD_READ_SKIP) {
440 /*
441 * As the watchdog timer will be suspended, and
442 * cs->last could keep unchanged for 5 minutes, reset
443 * the counters.
444 */
445 clocksource_reset_watchdog();
446 extra_wait = HZ * 300;
447 break;
448 }
449
450 /* Clocksource initialized ? */
451 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
452 atomic_read(&watchdog_reset_pending)) {
453 cs->flags |= CLOCK_SOURCE_WATCHDOG;
454 cs->wd_last = wdnow;
455 cs->cs_last = csnow;
456 continue;
457 }
458
459 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
460 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
461 watchdog->shift);
462
463 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
464 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
465 wdlast = cs->wd_last; /* save these in case we print them */
466 cslast = cs->cs_last;
467 cs->cs_last = csnow;
468 cs->wd_last = wdnow;
469
470 if (atomic_read(&watchdog_reset_pending))
471 continue;
472
473 /*
474 * The processing of timer softirqs can get delayed (usually
475 * on account of ksoftirqd not getting to run in a timely
476 * manner), which causes the watchdog interval to stretch.
477 * Skew detection may fail for longer watchdog intervals
478 * on account of fixed margins being used.
479 * Some clocksources, e.g. acpi_pm, cannot tolerate
480 * watchdog intervals longer than a few seconds.
481 */
482 interval = max(cs_nsec, wd_nsec);
483 if (unlikely(interval > WATCHDOG_INTERVAL_MAX_NS)) {
484 if (system_state > SYSTEM_SCHEDULING &&
485 interval > 2 * watchdog_max_interval) {
486 watchdog_max_interval = interval;
487 pr_warn("Long readout interval, skipping watchdog check: cs_nsec: %lld wd_nsec: %lld\n",
488 cs_nsec, wd_nsec);
489 }
490 watchdog_timer.expires = jiffies;
491 continue;
492 }
493
494 /* Check the deviation from the watchdog clocksource. */
495 md = cs->uncertainty_margin + watchdog->uncertainty_margin;
496 if (abs(cs_nsec - wd_nsec) > md) {
497 s64 cs_wd_msec;
498 s64 wd_msec;
499 u32 wd_rem;
500
501 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
502 smp_processor_id(), cs->name);
503 pr_warn(" '%s' wd_nsec: %lld wd_now: %llx wd_last: %llx mask: %llx\n",
504 watchdog->name, wd_nsec, wdnow, wdlast, watchdog->mask);
505 pr_warn(" '%s' cs_nsec: %lld cs_now: %llx cs_last: %llx mask: %llx\n",
506 cs->name, cs_nsec, csnow, cslast, cs->mask);
507 cs_wd_msec = div_s64_rem(cs_nsec - wd_nsec, 1000 * 1000, &wd_rem);
508 wd_msec = div_s64_rem(wd_nsec, 1000 * 1000, &wd_rem);
509 pr_warn(" Clocksource '%s' skewed %lld ns (%lld ms) over watchdog '%s' interval of %lld ns (%lld ms)\n",
510 cs->name, cs_nsec - wd_nsec, cs_wd_msec, watchdog->name, wd_nsec, wd_msec);
511 if (curr_clocksource == cs)
512 pr_warn(" '%s' is current clocksource.\n", cs->name);
513 else if (curr_clocksource)
514 pr_warn(" '%s' (not '%s') is current clocksource.\n", curr_clocksource->name, cs->name);
515 else
516 pr_warn(" No current clocksource.\n");
517 __clocksource_unstable(cs);
518 continue;
519 }
520
521 if (cs == curr_clocksource && cs->tick_stable)
522 cs->tick_stable(cs);
523
524 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
525 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
526 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
527 /* Mark it valid for high-res. */
528 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
529
530 /*
531 * clocksource_done_booting() will sort it if
532 * finished_booting is not set yet.
533 */
534 if (!finished_booting)
535 continue;
536
537 /*
538 * If this is not the current clocksource let
539 * the watchdog thread reselect it. Due to the
540 * change to high res this clocksource might
541 * be preferred now. If it is the current
542 * clocksource let the tick code know about
543 * that change.
544 */
545 if (cs != curr_clocksource) {
546 cs->flags |= CLOCK_SOURCE_RESELECT;
547 schedule_work(&watchdog_work);
548 } else {
549 tick_clock_notify();
550 }
551 }
552 }
553
554 /*
555 * We only clear the watchdog_reset_pending, when we did a
556 * full cycle through all clocksources.
557 */
558 if (reset_pending)
559 atomic_dec(&watchdog_reset_pending);
560
561 /*
562 * Cycle through CPUs to check if the CPUs stay synchronized
563 * to each other.
564 */
565 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
566 if (next_cpu >= nr_cpu_ids)
567 next_cpu = cpumask_first(cpu_online_mask);
568
569 /*
570 * Arm timer if not already pending: could race with concurrent
571 * pair clocksource_stop_watchdog() clocksource_start_watchdog().
572 */
573 if (!timer_pending(&watchdog_timer)) {
574 watchdog_timer.expires += WATCHDOG_INTERVAL + extra_wait;
575 add_timer_on(&watchdog_timer, next_cpu);
576 }
577out:
578 spin_unlock(&watchdog_lock);
579}
580
581static inline void clocksource_start_watchdog(void)
582{
583 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
584 return;
585 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
586 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
587 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
588 watchdog_running = 1;
589}
590
591static inline void clocksource_stop_watchdog(void)
592{
593 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
594 return;
595 del_timer(&watchdog_timer);
596 watchdog_running = 0;
597}
598
599static void clocksource_resume_watchdog(void)
600{
601 atomic_inc(&watchdog_reset_pending);
602}
603
604static void clocksource_enqueue_watchdog(struct clocksource *cs)
605{
606 INIT_LIST_HEAD(&cs->wd_list);
607
608 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
609 /* cs is a clocksource to be watched. */
610 list_add(&cs->wd_list, &watchdog_list);
611 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
612 } else {
613 /* cs is a watchdog. */
614 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
615 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
616 }
617}
618
619static void clocksource_select_watchdog(bool fallback)
620{
621 struct clocksource *cs, *old_wd;
622 unsigned long flags;
623
624 spin_lock_irqsave(&watchdog_lock, flags);
625 /* save current watchdog */
626 old_wd = watchdog;
627 if (fallback)
628 watchdog = NULL;
629
630 list_for_each_entry(cs, &clocksource_list, list) {
631 /* cs is a clocksource to be watched. */
632 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
633 continue;
634
635 /* Skip current if we were requested for a fallback. */
636 if (fallback && cs == old_wd)
637 continue;
638
639 /* Pick the best watchdog. */
640 if (!watchdog || cs->rating > watchdog->rating)
641 watchdog = cs;
642 }
643 /* If we failed to find a fallback restore the old one. */
644 if (!watchdog)
645 watchdog = old_wd;
646
647 /* If we changed the watchdog we need to reset cycles. */
648 if (watchdog != old_wd)
649 clocksource_reset_watchdog();
650
651 /* Check if the watchdog timer needs to be started. */
652 clocksource_start_watchdog();
653 spin_unlock_irqrestore(&watchdog_lock, flags);
654}
655
656static void clocksource_dequeue_watchdog(struct clocksource *cs)
657{
658 if (cs != watchdog) {
659 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
660 /* cs is a watched clocksource. */
661 list_del_init(&cs->wd_list);
662 /* Check if the watchdog timer needs to be stopped. */
663 clocksource_stop_watchdog();
664 }
665 }
666}
667
668static int __clocksource_watchdog_kthread(void)
669{
670 struct clocksource *cs, *tmp;
671 unsigned long flags;
672 int select = 0;
673
674 /* Do any required per-CPU skew verification. */
675 if (curr_clocksource &&
676 curr_clocksource->flags & CLOCK_SOURCE_UNSTABLE &&
677 curr_clocksource->flags & CLOCK_SOURCE_VERIFY_PERCPU)
678 clocksource_verify_percpu(curr_clocksource);
679
680 spin_lock_irqsave(&watchdog_lock, flags);
681 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
682 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
683 list_del_init(&cs->wd_list);
684 __clocksource_change_rating(cs, 0);
685 select = 1;
686 }
687 if (cs->flags & CLOCK_SOURCE_RESELECT) {
688 cs->flags &= ~CLOCK_SOURCE_RESELECT;
689 select = 1;
690 }
691 }
692 /* Check if the watchdog timer needs to be stopped. */
693 clocksource_stop_watchdog();
694 spin_unlock_irqrestore(&watchdog_lock, flags);
695
696 return select;
697}
698
699static int clocksource_watchdog_kthread(void *data)
700{
701 mutex_lock(&clocksource_mutex);
702 if (__clocksource_watchdog_kthread())
703 clocksource_select();
704 mutex_unlock(&clocksource_mutex);
705 return 0;
706}
707
708static bool clocksource_is_watchdog(struct clocksource *cs)
709{
710 return cs == watchdog;
711}
712
713#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
714
715static void clocksource_enqueue_watchdog(struct clocksource *cs)
716{
717 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
718 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
719}
720
721static void clocksource_select_watchdog(bool fallback) { }
722static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
723static inline void clocksource_resume_watchdog(void) { }
724static inline int __clocksource_watchdog_kthread(void) { return 0; }
725static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
726void clocksource_mark_unstable(struct clocksource *cs) { }
727
728static inline void clocksource_watchdog_lock(unsigned long *flags) { }
729static inline void clocksource_watchdog_unlock(unsigned long *flags) { }
730
731#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
732
733static bool clocksource_is_suspend(struct clocksource *cs)
734{
735 return cs == suspend_clocksource;
736}
737
738static void __clocksource_suspend_select(struct clocksource *cs)
739{
740 /*
741 * Skip the clocksource which will be stopped in suspend state.
742 */
743 if (!(cs->flags & CLOCK_SOURCE_SUSPEND_NONSTOP))
744 return;
745
746 /*
747 * The nonstop clocksource can be selected as the suspend clocksource to
748 * calculate the suspend time, so it should not supply suspend/resume
749 * interfaces to suspend the nonstop clocksource when system suspends.
750 */
751 if (cs->suspend || cs->resume) {
752 pr_warn("Nonstop clocksource %s should not supply suspend/resume interfaces\n",
753 cs->name);
754 }
755
756 /* Pick the best rating. */
757 if (!suspend_clocksource || cs->rating > suspend_clocksource->rating)
758 suspend_clocksource = cs;
759}
760
761/**
762 * clocksource_suspend_select - Select the best clocksource for suspend timing
763 * @fallback: if select a fallback clocksource
764 */
765static void clocksource_suspend_select(bool fallback)
766{
767 struct clocksource *cs, *old_suspend;
768
769 old_suspend = suspend_clocksource;
770 if (fallback)
771 suspend_clocksource = NULL;
772
773 list_for_each_entry(cs, &clocksource_list, list) {
774 /* Skip current if we were requested for a fallback. */
775 if (fallback && cs == old_suspend)
776 continue;
777
778 __clocksource_suspend_select(cs);
779 }
780}
781
782/**
783 * clocksource_start_suspend_timing - Start measuring the suspend timing
784 * @cs: current clocksource from timekeeping
785 * @start_cycles: current cycles from timekeeping
786 *
787 * This function will save the start cycle values of suspend timer to calculate
788 * the suspend time when resuming system.
789 *
790 * This function is called late in the suspend process from timekeeping_suspend(),
791 * that means processes are frozen, non-boot cpus and interrupts are disabled
792 * now. It is therefore possible to start the suspend timer without taking the
793 * clocksource mutex.
794 */
795void clocksource_start_suspend_timing(struct clocksource *cs, u64 start_cycles)
796{
797 if (!suspend_clocksource)
798 return;
799
800 /*
801 * If current clocksource is the suspend timer, we should use the
802 * tkr_mono.cycle_last value as suspend_start to avoid same reading
803 * from suspend timer.
804 */
805 if (clocksource_is_suspend(cs)) {
806 suspend_start = start_cycles;
807 return;
808 }
809
810 if (suspend_clocksource->enable &&
811 suspend_clocksource->enable(suspend_clocksource)) {
812 pr_warn_once("Failed to enable the non-suspend-able clocksource.\n");
813 return;
814 }
815
816 suspend_start = suspend_clocksource->read(suspend_clocksource);
817}
818
819/**
820 * clocksource_stop_suspend_timing - Stop measuring the suspend timing
821 * @cs: current clocksource from timekeeping
822 * @cycle_now: current cycles from timekeeping
823 *
824 * This function will calculate the suspend time from suspend timer.
825 *
826 * Returns nanoseconds since suspend started, 0 if no usable suspend clocksource.
827 *
828 * This function is called early in the resume process from timekeeping_resume(),
829 * that means there is only one cpu, no processes are running and the interrupts
830 * are disabled. It is therefore possible to stop the suspend timer without
831 * taking the clocksource mutex.
832 */
833u64 clocksource_stop_suspend_timing(struct clocksource *cs, u64 cycle_now)
834{
835 u64 now, delta, nsec = 0;
836
837 if (!suspend_clocksource)
838 return 0;
839
840 /*
841 * If current clocksource is the suspend timer, we should use the
842 * tkr_mono.cycle_last value from timekeeping as current cycle to
843 * avoid same reading from suspend timer.
844 */
845 if (clocksource_is_suspend(cs))
846 now = cycle_now;
847 else
848 now = suspend_clocksource->read(suspend_clocksource);
849
850 if (now > suspend_start) {
851 delta = clocksource_delta(now, suspend_start,
852 suspend_clocksource->mask);
853 nsec = mul_u64_u32_shr(delta, suspend_clocksource->mult,
854 suspend_clocksource->shift);
855 }
856
857 /*
858 * Disable the suspend timer to save power if current clocksource is
859 * not the suspend timer.
860 */
861 if (!clocksource_is_suspend(cs) && suspend_clocksource->disable)
862 suspend_clocksource->disable(suspend_clocksource);
863
864 return nsec;
865}
866
867/**
868 * clocksource_suspend - suspend the clocksource(s)
869 */
870void clocksource_suspend(void)
871{
872 struct clocksource *cs;
873
874 list_for_each_entry_reverse(cs, &clocksource_list, list)
875 if (cs->suspend)
876 cs->suspend(cs);
877}
878
879/**
880 * clocksource_resume - resume the clocksource(s)
881 */
882void clocksource_resume(void)
883{
884 struct clocksource *cs;
885
886 list_for_each_entry(cs, &clocksource_list, list)
887 if (cs->resume)
888 cs->resume(cs);
889
890 clocksource_resume_watchdog();
891}
892
893/**
894 * clocksource_touch_watchdog - Update watchdog
895 *
896 * Update the watchdog after exception contexts such as kgdb so as not
897 * to incorrectly trip the watchdog. This might fail when the kernel
898 * was stopped in code which holds watchdog_lock.
899 */
900void clocksource_touch_watchdog(void)
901{
902 clocksource_resume_watchdog();
903}
904
905/**
906 * clocksource_max_adjustment- Returns max adjustment amount
907 * @cs: Pointer to clocksource
908 *
909 */
910static u32 clocksource_max_adjustment(struct clocksource *cs)
911{
912 u64 ret;
913 /*
914 * We won't try to correct for more than 11% adjustments (110,000 ppm),
915 */
916 ret = (u64)cs->mult * 11;
917 do_div(ret,100);
918 return (u32)ret;
919}
920
921/**
922 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
923 * @mult: cycle to nanosecond multiplier
924 * @shift: cycle to nanosecond divisor (power of two)
925 * @maxadj: maximum adjustment value to mult (~11%)
926 * @mask: bitmask for two's complement subtraction of non 64 bit counters
927 * @max_cyc: maximum cycle value before potential overflow (does not include
928 * any safety margin)
929 *
930 * NOTE: This function includes a safety margin of 50%, in other words, we
931 * return half the number of nanoseconds the hardware counter can technically
932 * cover. This is done so that we can potentially detect problems caused by
933 * delayed timers or bad hardware, which might result in time intervals that
934 * are larger than what the math used can handle without overflows.
935 */
936u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
937{
938 u64 max_nsecs, max_cycles;
939
940 /*
941 * Calculate the maximum number of cycles that we can pass to the
942 * cyc2ns() function without overflowing a 64-bit result.
943 */
944 max_cycles = ULLONG_MAX;
945 do_div(max_cycles, mult+maxadj);
946
947 /*
948 * The actual maximum number of cycles we can defer the clocksource is
949 * determined by the minimum of max_cycles and mask.
950 * Note: Here we subtract the maxadj to make sure we don't sleep for
951 * too long if there's a large negative adjustment.
952 */
953 max_cycles = min(max_cycles, mask);
954 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
955
956 /* return the max_cycles value as well if requested */
957 if (max_cyc)
958 *max_cyc = max_cycles;
959
960 /* Return 50% of the actual maximum, so we can detect bad values */
961 max_nsecs >>= 1;
962
963 return max_nsecs;
964}
965
966/**
967 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
968 * @cs: Pointer to clocksource to be updated
969 *
970 */
971static inline void clocksource_update_max_deferment(struct clocksource *cs)
972{
973 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
974 cs->maxadj, cs->mask,
975 &cs->max_cycles);
976}
977
978static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
979{
980 struct clocksource *cs;
981
982 if (!finished_booting || list_empty(&clocksource_list))
983 return NULL;
984
985 /*
986 * We pick the clocksource with the highest rating. If oneshot
987 * mode is active, we pick the highres valid clocksource with
988 * the best rating.
989 */
990 list_for_each_entry(cs, &clocksource_list, list) {
991 if (skipcur && cs == curr_clocksource)
992 continue;
993 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
994 continue;
995 return cs;
996 }
997 return NULL;
998}
999
1000static void __clocksource_select(bool skipcur)
1001{
1002 bool oneshot = tick_oneshot_mode_active();
1003 struct clocksource *best, *cs;
1004
1005 /* Find the best suitable clocksource */
1006 best = clocksource_find_best(oneshot, skipcur);
1007 if (!best)
1008 return;
1009
1010 if (!strlen(override_name))
1011 goto found;
1012
1013 /* Check for the override clocksource. */
1014 list_for_each_entry(cs, &clocksource_list, list) {
1015 if (skipcur && cs == curr_clocksource)
1016 continue;
1017 if (strcmp(cs->name, override_name) != 0)
1018 continue;
1019 /*
1020 * Check to make sure we don't switch to a non-highres
1021 * capable clocksource if the tick code is in oneshot
1022 * mode (highres or nohz)
1023 */
1024 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
1025 /* Override clocksource cannot be used. */
1026 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
1027 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
1028 cs->name);
1029 override_name[0] = 0;
1030 } else {
1031 /*
1032 * The override cannot be currently verified.
1033 * Deferring to let the watchdog check.
1034 */
1035 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
1036 cs->name);
1037 }
1038 } else
1039 /* Override clocksource can be used. */
1040 best = cs;
1041 break;
1042 }
1043
1044found:
1045 if (curr_clocksource != best && !timekeeping_notify(best)) {
1046 pr_info("Switched to clocksource %s\n", best->name);
1047 curr_clocksource = best;
1048 }
1049}
1050
1051/**
1052 * clocksource_select - Select the best clocksource available
1053 *
1054 * Private function. Must hold clocksource_mutex when called.
1055 *
1056 * Select the clocksource with the best rating, or the clocksource,
1057 * which is selected by userspace override.
1058 */
1059static void clocksource_select(void)
1060{
1061 __clocksource_select(false);
1062}
1063
1064static void clocksource_select_fallback(void)
1065{
1066 __clocksource_select(true);
1067}
1068
1069/*
1070 * clocksource_done_booting - Called near the end of core bootup
1071 *
1072 * Hack to avoid lots of clocksource churn at boot time.
1073 * We use fs_initcall because we want this to start before
1074 * device_initcall but after subsys_initcall.
1075 */
1076static int __init clocksource_done_booting(void)
1077{
1078 mutex_lock(&clocksource_mutex);
1079 curr_clocksource = clocksource_default_clock();
1080 finished_booting = 1;
1081 /*
1082 * Run the watchdog first to eliminate unstable clock sources
1083 */
1084 __clocksource_watchdog_kthread();
1085 clocksource_select();
1086 mutex_unlock(&clocksource_mutex);
1087 return 0;
1088}
1089fs_initcall(clocksource_done_booting);
1090
1091/*
1092 * Enqueue the clocksource sorted by rating
1093 */
1094static void clocksource_enqueue(struct clocksource *cs)
1095{
1096 struct list_head *entry = &clocksource_list;
1097 struct clocksource *tmp;
1098
1099 list_for_each_entry(tmp, &clocksource_list, list) {
1100 /* Keep track of the place, where to insert */
1101 if (tmp->rating < cs->rating)
1102 break;
1103 entry = &tmp->list;
1104 }
1105 list_add(&cs->list, entry);
1106}
1107
1108/**
1109 * __clocksource_update_freq_scale - Used update clocksource with new freq
1110 * @cs: clocksource to be registered
1111 * @scale: Scale factor multiplied against freq to get clocksource hz
1112 * @freq: clocksource frequency (cycles per second) divided by scale
1113 *
1114 * This should only be called from the clocksource->enable() method.
1115 *
1116 * This *SHOULD NOT* be called directly! Please use the
1117 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
1118 * functions.
1119 */
1120void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
1121{
1122 u64 sec;
1123
1124 /*
1125 * Default clocksources are *special* and self-define their mult/shift.
1126 * But, you're not special, so you should specify a freq value.
1127 */
1128 if (freq) {
1129 /*
1130 * Calc the maximum number of seconds which we can run before
1131 * wrapping around. For clocksources which have a mask > 32-bit
1132 * we need to limit the max sleep time to have a good
1133 * conversion precision. 10 minutes is still a reasonable
1134 * amount. That results in a shift value of 24 for a
1135 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
1136 * ~ 0.06ppm granularity for NTP.
1137 */
1138 sec = cs->mask;
1139 do_div(sec, freq);
1140 do_div(sec, scale);
1141 if (!sec)
1142 sec = 1;
1143 else if (sec > 600 && cs->mask > UINT_MAX)
1144 sec = 600;
1145
1146 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
1147 NSEC_PER_SEC / scale, sec * scale);
1148 }
1149
1150 /*
1151 * If the uncertainty margin is not specified, calculate it.
1152 * If both scale and freq are non-zero, calculate the clock
1153 * period, but bound below at 2*WATCHDOG_MAX_SKEW. However,
1154 * if either of scale or freq is zero, be very conservative and
1155 * take the tens-of-milliseconds WATCHDOG_THRESHOLD value for the
1156 * uncertainty margin. Allow stupidly small uncertainty margins
1157 * to be specified by the caller for testing purposes, but warn
1158 * to discourage production use of this capability.
1159 */
1160 if (scale && freq && !cs->uncertainty_margin) {
1161 cs->uncertainty_margin = NSEC_PER_SEC / (scale * freq);
1162 if (cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW)
1163 cs->uncertainty_margin = 2 * WATCHDOG_MAX_SKEW;
1164 } else if (!cs->uncertainty_margin) {
1165 cs->uncertainty_margin = WATCHDOG_THRESHOLD;
1166 }
1167 WARN_ON_ONCE(cs->uncertainty_margin < 2 * WATCHDOG_MAX_SKEW);
1168
1169 /*
1170 * Ensure clocksources that have large 'mult' values don't overflow
1171 * when adjusted.
1172 */
1173 cs->maxadj = clocksource_max_adjustment(cs);
1174 while (freq && ((cs->mult + cs->maxadj < cs->mult)
1175 || (cs->mult - cs->maxadj > cs->mult))) {
1176 cs->mult >>= 1;
1177 cs->shift--;
1178 cs->maxadj = clocksource_max_adjustment(cs);
1179 }
1180
1181 /*
1182 * Only warn for *special* clocksources that self-define
1183 * their mult/shift values and don't specify a freq.
1184 */
1185 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
1186 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
1187 cs->name);
1188
1189 clocksource_update_max_deferment(cs);
1190
1191 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
1192 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
1193}
1194EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
1195
1196/**
1197 * __clocksource_register_scale - Used to install new clocksources
1198 * @cs: clocksource to be registered
1199 * @scale: Scale factor multiplied against freq to get clocksource hz
1200 * @freq: clocksource frequency (cycles per second) divided by scale
1201 *
1202 * Returns -EBUSY if registration fails, zero otherwise.
1203 *
1204 * This *SHOULD NOT* be called directly! Please use the
1205 * clocksource_register_hz() or clocksource_register_khz helper functions.
1206 */
1207int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
1208{
1209 unsigned long flags;
1210
1211 clocksource_arch_init(cs);
1212
1213 if (WARN_ON_ONCE((unsigned int)cs->id >= CSID_MAX))
1214 cs->id = CSID_GENERIC;
1215 if (cs->vdso_clock_mode < 0 ||
1216 cs->vdso_clock_mode >= VDSO_CLOCKMODE_MAX) {
1217 pr_warn("clocksource %s registered with invalid VDSO mode %d. Disabling VDSO support.\n",
1218 cs->name, cs->vdso_clock_mode);
1219 cs->vdso_clock_mode = VDSO_CLOCKMODE_NONE;
1220 }
1221
1222 /* Initialize mult/shift and max_idle_ns */
1223 __clocksource_update_freq_scale(cs, scale, freq);
1224
1225 /* Add clocksource to the clocksource list */
1226 mutex_lock(&clocksource_mutex);
1227
1228 clocksource_watchdog_lock(&flags);
1229 clocksource_enqueue(cs);
1230 clocksource_enqueue_watchdog(cs);
1231 clocksource_watchdog_unlock(&flags);
1232
1233 clocksource_select();
1234 clocksource_select_watchdog(false);
1235 __clocksource_suspend_select(cs);
1236 mutex_unlock(&clocksource_mutex);
1237 return 0;
1238}
1239EXPORT_SYMBOL_GPL(__clocksource_register_scale);
1240
1241static void __clocksource_change_rating(struct clocksource *cs, int rating)
1242{
1243 list_del(&cs->list);
1244 cs->rating = rating;
1245 clocksource_enqueue(cs);
1246}
1247
1248/**
1249 * clocksource_change_rating - Change the rating of a registered clocksource
1250 * @cs: clocksource to be changed
1251 * @rating: new rating
1252 */
1253void clocksource_change_rating(struct clocksource *cs, int rating)
1254{
1255 unsigned long flags;
1256
1257 mutex_lock(&clocksource_mutex);
1258 clocksource_watchdog_lock(&flags);
1259 __clocksource_change_rating(cs, rating);
1260 clocksource_watchdog_unlock(&flags);
1261
1262 clocksource_select();
1263 clocksource_select_watchdog(false);
1264 clocksource_suspend_select(false);
1265 mutex_unlock(&clocksource_mutex);
1266}
1267EXPORT_SYMBOL(clocksource_change_rating);
1268
1269/*
1270 * Unbind clocksource @cs. Called with clocksource_mutex held
1271 */
1272static int clocksource_unbind(struct clocksource *cs)
1273{
1274 unsigned long flags;
1275
1276 if (clocksource_is_watchdog(cs)) {
1277 /* Select and try to install a replacement watchdog. */
1278 clocksource_select_watchdog(true);
1279 if (clocksource_is_watchdog(cs))
1280 return -EBUSY;
1281 }
1282
1283 if (cs == curr_clocksource) {
1284 /* Select and try to install a replacement clock source */
1285 clocksource_select_fallback();
1286 if (curr_clocksource == cs)
1287 return -EBUSY;
1288 }
1289
1290 if (clocksource_is_suspend(cs)) {
1291 /*
1292 * Select and try to install a replacement suspend clocksource.
1293 * If no replacement suspend clocksource, we will just let the
1294 * clocksource go and have no suspend clocksource.
1295 */
1296 clocksource_suspend_select(true);
1297 }
1298
1299 clocksource_watchdog_lock(&flags);
1300 clocksource_dequeue_watchdog(cs);
1301 list_del_init(&cs->list);
1302 clocksource_watchdog_unlock(&flags);
1303
1304 return 0;
1305}
1306
1307/**
1308 * clocksource_unregister - remove a registered clocksource
1309 * @cs: clocksource to be unregistered
1310 */
1311int clocksource_unregister(struct clocksource *cs)
1312{
1313 int ret = 0;
1314
1315 mutex_lock(&clocksource_mutex);
1316 if (!list_empty(&cs->list))
1317 ret = clocksource_unbind(cs);
1318 mutex_unlock(&clocksource_mutex);
1319 return ret;
1320}
1321EXPORT_SYMBOL(clocksource_unregister);
1322
1323#ifdef CONFIG_SYSFS
1324/**
1325 * current_clocksource_show - sysfs interface for current clocksource
1326 * @dev: unused
1327 * @attr: unused
1328 * @buf: char buffer to be filled with clocksource list
1329 *
1330 * Provides sysfs interface for listing current clocksource.
1331 */
1332static ssize_t current_clocksource_show(struct device *dev,
1333 struct device_attribute *attr,
1334 char *buf)
1335{
1336 ssize_t count = 0;
1337
1338 mutex_lock(&clocksource_mutex);
1339 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
1340 mutex_unlock(&clocksource_mutex);
1341
1342 return count;
1343}
1344
1345ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
1346{
1347 size_t ret = cnt;
1348
1349 /* strings from sysfs write are not 0 terminated! */
1350 if (!cnt || cnt >= CS_NAME_LEN)
1351 return -EINVAL;
1352
1353 /* strip of \n: */
1354 if (buf[cnt-1] == '\n')
1355 cnt--;
1356 if (cnt > 0)
1357 memcpy(dst, buf, cnt);
1358 dst[cnt] = 0;
1359 return ret;
1360}
1361
1362/**
1363 * current_clocksource_store - interface for manually overriding clocksource
1364 * @dev: unused
1365 * @attr: unused
1366 * @buf: name of override clocksource
1367 * @count: length of buffer
1368 *
1369 * Takes input from sysfs interface for manually overriding the default
1370 * clocksource selection.
1371 */
1372static ssize_t current_clocksource_store(struct device *dev,
1373 struct device_attribute *attr,
1374 const char *buf, size_t count)
1375{
1376 ssize_t ret;
1377
1378 mutex_lock(&clocksource_mutex);
1379
1380 ret = sysfs_get_uname(buf, override_name, count);
1381 if (ret >= 0)
1382 clocksource_select();
1383
1384 mutex_unlock(&clocksource_mutex);
1385
1386 return ret;
1387}
1388static DEVICE_ATTR_RW(current_clocksource);
1389
1390/**
1391 * unbind_clocksource_store - interface for manually unbinding clocksource
1392 * @dev: unused
1393 * @attr: unused
1394 * @buf: unused
1395 * @count: length of buffer
1396 *
1397 * Takes input from sysfs interface for manually unbinding a clocksource.
1398 */
1399static ssize_t unbind_clocksource_store(struct device *dev,
1400 struct device_attribute *attr,
1401 const char *buf, size_t count)
1402{
1403 struct clocksource *cs;
1404 char name[CS_NAME_LEN];
1405 ssize_t ret;
1406
1407 ret = sysfs_get_uname(buf, name, count);
1408 if (ret < 0)
1409 return ret;
1410
1411 ret = -ENODEV;
1412 mutex_lock(&clocksource_mutex);
1413 list_for_each_entry(cs, &clocksource_list, list) {
1414 if (strcmp(cs->name, name))
1415 continue;
1416 ret = clocksource_unbind(cs);
1417 break;
1418 }
1419 mutex_unlock(&clocksource_mutex);
1420
1421 return ret ? ret : count;
1422}
1423static DEVICE_ATTR_WO(unbind_clocksource);
1424
1425/**
1426 * available_clocksource_show - sysfs interface for listing clocksource
1427 * @dev: unused
1428 * @attr: unused
1429 * @buf: char buffer to be filled with clocksource list
1430 *
1431 * Provides sysfs interface for listing registered clocksources
1432 */
1433static ssize_t available_clocksource_show(struct device *dev,
1434 struct device_attribute *attr,
1435 char *buf)
1436{
1437 struct clocksource *src;
1438 ssize_t count = 0;
1439
1440 mutex_lock(&clocksource_mutex);
1441 list_for_each_entry(src, &clocksource_list, list) {
1442 /*
1443 * Don't show non-HRES clocksource if the tick code is
1444 * in one shot mode (highres=on or nohz=on)
1445 */
1446 if (!tick_oneshot_mode_active() ||
1447 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1448 count += snprintf(buf + count,
1449 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1450 "%s ", src->name);
1451 }
1452 mutex_unlock(&clocksource_mutex);
1453
1454 count += snprintf(buf + count,
1455 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1456
1457 return count;
1458}
1459static DEVICE_ATTR_RO(available_clocksource);
1460
1461static struct attribute *clocksource_attrs[] = {
1462 &dev_attr_current_clocksource.attr,
1463 &dev_attr_unbind_clocksource.attr,
1464 &dev_attr_available_clocksource.attr,
1465 NULL
1466};
1467ATTRIBUTE_GROUPS(clocksource);
1468
1469static const struct bus_type clocksource_subsys = {
1470 .name = "clocksource",
1471 .dev_name = "clocksource",
1472};
1473
1474static struct device device_clocksource = {
1475 .id = 0,
1476 .bus = &clocksource_subsys,
1477 .groups = clocksource_groups,
1478};
1479
1480static int __init init_clocksource_sysfs(void)
1481{
1482 int error = subsys_system_register(&clocksource_subsys, NULL);
1483
1484 if (!error)
1485 error = device_register(&device_clocksource);
1486
1487 return error;
1488}
1489
1490device_initcall(init_clocksource_sysfs);
1491#endif /* CONFIG_SYSFS */
1492
1493/**
1494 * boot_override_clocksource - boot clock override
1495 * @str: override name
1496 *
1497 * Takes a clocksource= boot argument and uses it
1498 * as the clocksource override name.
1499 */
1500static int __init boot_override_clocksource(char* str)
1501{
1502 mutex_lock(&clocksource_mutex);
1503 if (str)
1504 strscpy(override_name, str, sizeof(override_name));
1505 mutex_unlock(&clocksource_mutex);
1506 return 1;
1507}
1508
1509__setup("clocksource=", boot_override_clocksource);
1510
1511/**
1512 * boot_override_clock - Compatibility layer for deprecated boot option
1513 * @str: override name
1514 *
1515 * DEPRECATED! Takes a clock= boot argument and uses it
1516 * as the clocksource override name
1517 */
1518static int __init boot_override_clock(char* str)
1519{
1520 if (!strcmp(str, "pmtmr")) {
1521 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1522 return boot_override_clocksource("acpi_pm");
1523 }
1524 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1525 return boot_override_clocksource(str);
1526}
1527
1528__setup("clock=", boot_override_clock);
1/*
2 * linux/kernel/time/clocksource.c
3 *
4 * This file contains the functions which manage clocksource drivers.
5 *
6 * Copyright (C) 2004, 2005 IBM, John Stultz (johnstul@us.ibm.com)
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 *
22 * TODO WishList:
23 * o Allow clocksource drivers to be unregistered
24 */
25
26#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27
28#include <linux/device.h>
29#include <linux/clocksource.h>
30#include <linux/init.h>
31#include <linux/module.h>
32#include <linux/sched.h> /* for spin_unlock_irq() using preempt_count() m68k */
33#include <linux/tick.h>
34#include <linux/kthread.h>
35
36#include "tick-internal.h"
37#include "timekeeping_internal.h"
38
39/**
40 * clocks_calc_mult_shift - calculate mult/shift factors for scaled math of clocks
41 * @mult: pointer to mult variable
42 * @shift: pointer to shift variable
43 * @from: frequency to convert from
44 * @to: frequency to convert to
45 * @maxsec: guaranteed runtime conversion range in seconds
46 *
47 * The function evaluates the shift/mult pair for the scaled math
48 * operations of clocksources and clockevents.
49 *
50 * @to and @from are frequency values in HZ. For clock sources @to is
51 * NSEC_PER_SEC == 1GHz and @from is the counter frequency. For clock
52 * event @to is the counter frequency and @from is NSEC_PER_SEC.
53 *
54 * The @maxsec conversion range argument controls the time frame in
55 * seconds which must be covered by the runtime conversion with the
56 * calculated mult and shift factors. This guarantees that no 64bit
57 * overflow happens when the input value of the conversion is
58 * multiplied with the calculated mult factor. Larger ranges may
59 * reduce the conversion accuracy by chosing smaller mult and shift
60 * factors.
61 */
62void
63clocks_calc_mult_shift(u32 *mult, u32 *shift, u32 from, u32 to, u32 maxsec)
64{
65 u64 tmp;
66 u32 sft, sftacc= 32;
67
68 /*
69 * Calculate the shift factor which is limiting the conversion
70 * range:
71 */
72 tmp = ((u64)maxsec * from) >> 32;
73 while (tmp) {
74 tmp >>=1;
75 sftacc--;
76 }
77
78 /*
79 * Find the conversion shift/mult pair which has the best
80 * accuracy and fits the maxsec conversion range:
81 */
82 for (sft = 32; sft > 0; sft--) {
83 tmp = (u64) to << sft;
84 tmp += from / 2;
85 do_div(tmp, from);
86 if ((tmp >> sftacc) == 0)
87 break;
88 }
89 *mult = tmp;
90 *shift = sft;
91}
92EXPORT_SYMBOL_GPL(clocks_calc_mult_shift);
93
94/*[Clocksource internal variables]---------
95 * curr_clocksource:
96 * currently selected clocksource.
97 * clocksource_list:
98 * linked list with the registered clocksources
99 * clocksource_mutex:
100 * protects manipulations to curr_clocksource and the clocksource_list
101 * override_name:
102 * Name of the user-specified clocksource.
103 */
104static struct clocksource *curr_clocksource;
105static LIST_HEAD(clocksource_list);
106static DEFINE_MUTEX(clocksource_mutex);
107static char override_name[CS_NAME_LEN];
108static int finished_booting;
109
110#ifdef CONFIG_CLOCKSOURCE_WATCHDOG
111static void clocksource_watchdog_work(struct work_struct *work);
112static void clocksource_select(void);
113
114static LIST_HEAD(watchdog_list);
115static struct clocksource *watchdog;
116static struct timer_list watchdog_timer;
117static DECLARE_WORK(watchdog_work, clocksource_watchdog_work);
118static DEFINE_SPINLOCK(watchdog_lock);
119static int watchdog_running;
120static atomic_t watchdog_reset_pending;
121
122static void inline clocksource_watchdog_lock(unsigned long *flags)
123{
124 spin_lock_irqsave(&watchdog_lock, *flags);
125}
126
127static void inline clocksource_watchdog_unlock(unsigned long *flags)
128{
129 spin_unlock_irqrestore(&watchdog_lock, *flags);
130}
131
132static int clocksource_watchdog_kthread(void *data);
133static void __clocksource_change_rating(struct clocksource *cs, int rating);
134
135/*
136 * Interval: 0.5sec Threshold: 0.0625s
137 */
138#define WATCHDOG_INTERVAL (HZ >> 1)
139#define WATCHDOG_THRESHOLD (NSEC_PER_SEC >> 4)
140
141static void clocksource_watchdog_work(struct work_struct *work)
142{
143 /*
144 * If kthread_run fails the next watchdog scan over the
145 * watchdog_list will find the unstable clock again.
146 */
147 kthread_run(clocksource_watchdog_kthread, NULL, "kwatchdog");
148}
149
150static void __clocksource_unstable(struct clocksource *cs)
151{
152 cs->flags &= ~(CLOCK_SOURCE_VALID_FOR_HRES | CLOCK_SOURCE_WATCHDOG);
153 cs->flags |= CLOCK_SOURCE_UNSTABLE;
154
155 /*
156 * If the clocksource is registered clocksource_watchdog_kthread() will
157 * re-rate and re-select.
158 */
159 if (list_empty(&cs->list)) {
160 cs->rating = 0;
161 return;
162 }
163
164 if (cs->mark_unstable)
165 cs->mark_unstable(cs);
166
167 /* kick clocksource_watchdog_kthread() */
168 if (finished_booting)
169 schedule_work(&watchdog_work);
170}
171
172/**
173 * clocksource_mark_unstable - mark clocksource unstable via watchdog
174 * @cs: clocksource to be marked unstable
175 *
176 * This function is called by the x86 TSC code to mark clocksources as unstable;
177 * it defers demotion and re-selection to a kthread.
178 */
179void clocksource_mark_unstable(struct clocksource *cs)
180{
181 unsigned long flags;
182
183 spin_lock_irqsave(&watchdog_lock, flags);
184 if (!(cs->flags & CLOCK_SOURCE_UNSTABLE)) {
185 if (!list_empty(&cs->list) && list_empty(&cs->wd_list))
186 list_add(&cs->wd_list, &watchdog_list);
187 __clocksource_unstable(cs);
188 }
189 spin_unlock_irqrestore(&watchdog_lock, flags);
190}
191
192static void clocksource_watchdog(struct timer_list *unused)
193{
194 struct clocksource *cs;
195 u64 csnow, wdnow, cslast, wdlast, delta;
196 int64_t wd_nsec, cs_nsec;
197 int next_cpu, reset_pending;
198
199 spin_lock(&watchdog_lock);
200 if (!watchdog_running)
201 goto out;
202
203 reset_pending = atomic_read(&watchdog_reset_pending);
204
205 list_for_each_entry(cs, &watchdog_list, wd_list) {
206
207 /* Clocksource already marked unstable? */
208 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
209 if (finished_booting)
210 schedule_work(&watchdog_work);
211 continue;
212 }
213
214 local_irq_disable();
215 csnow = cs->read(cs);
216 wdnow = watchdog->read(watchdog);
217 local_irq_enable();
218
219 /* Clocksource initialized ? */
220 if (!(cs->flags & CLOCK_SOURCE_WATCHDOG) ||
221 atomic_read(&watchdog_reset_pending)) {
222 cs->flags |= CLOCK_SOURCE_WATCHDOG;
223 cs->wd_last = wdnow;
224 cs->cs_last = csnow;
225 continue;
226 }
227
228 delta = clocksource_delta(wdnow, cs->wd_last, watchdog->mask);
229 wd_nsec = clocksource_cyc2ns(delta, watchdog->mult,
230 watchdog->shift);
231
232 delta = clocksource_delta(csnow, cs->cs_last, cs->mask);
233 cs_nsec = clocksource_cyc2ns(delta, cs->mult, cs->shift);
234 wdlast = cs->wd_last; /* save these in case we print them */
235 cslast = cs->cs_last;
236 cs->cs_last = csnow;
237 cs->wd_last = wdnow;
238
239 if (atomic_read(&watchdog_reset_pending))
240 continue;
241
242 /* Check the deviation from the watchdog clocksource. */
243 if (abs(cs_nsec - wd_nsec) > WATCHDOG_THRESHOLD) {
244 pr_warn("timekeeping watchdog on CPU%d: Marking clocksource '%s' as unstable because the skew is too large:\n",
245 smp_processor_id(), cs->name);
246 pr_warn(" '%s' wd_now: %llx wd_last: %llx mask: %llx\n",
247 watchdog->name, wdnow, wdlast, watchdog->mask);
248 pr_warn(" '%s' cs_now: %llx cs_last: %llx mask: %llx\n",
249 cs->name, csnow, cslast, cs->mask);
250 __clocksource_unstable(cs);
251 continue;
252 }
253
254 if (cs == curr_clocksource && cs->tick_stable)
255 cs->tick_stable(cs);
256
257 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) &&
258 (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS) &&
259 (watchdog->flags & CLOCK_SOURCE_IS_CONTINUOUS)) {
260 /* Mark it valid for high-res. */
261 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
262
263 /*
264 * clocksource_done_booting() will sort it if
265 * finished_booting is not set yet.
266 */
267 if (!finished_booting)
268 continue;
269
270 /*
271 * If this is not the current clocksource let
272 * the watchdog thread reselect it. Due to the
273 * change to high res this clocksource might
274 * be preferred now. If it is the current
275 * clocksource let the tick code know about
276 * that change.
277 */
278 if (cs != curr_clocksource) {
279 cs->flags |= CLOCK_SOURCE_RESELECT;
280 schedule_work(&watchdog_work);
281 } else {
282 tick_clock_notify();
283 }
284 }
285 }
286
287 /*
288 * We only clear the watchdog_reset_pending, when we did a
289 * full cycle through all clocksources.
290 */
291 if (reset_pending)
292 atomic_dec(&watchdog_reset_pending);
293
294 /*
295 * Cycle through CPUs to check if the CPUs stay synchronized
296 * to each other.
297 */
298 next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
299 if (next_cpu >= nr_cpu_ids)
300 next_cpu = cpumask_first(cpu_online_mask);
301 watchdog_timer.expires += WATCHDOG_INTERVAL;
302 add_timer_on(&watchdog_timer, next_cpu);
303out:
304 spin_unlock(&watchdog_lock);
305}
306
307static inline void clocksource_start_watchdog(void)
308{
309 if (watchdog_running || !watchdog || list_empty(&watchdog_list))
310 return;
311 timer_setup(&watchdog_timer, clocksource_watchdog, 0);
312 watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
313 add_timer_on(&watchdog_timer, cpumask_first(cpu_online_mask));
314 watchdog_running = 1;
315}
316
317static inline void clocksource_stop_watchdog(void)
318{
319 if (!watchdog_running || (watchdog && !list_empty(&watchdog_list)))
320 return;
321 del_timer(&watchdog_timer);
322 watchdog_running = 0;
323}
324
325static inline void clocksource_reset_watchdog(void)
326{
327 struct clocksource *cs;
328
329 list_for_each_entry(cs, &watchdog_list, wd_list)
330 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
331}
332
333static void clocksource_resume_watchdog(void)
334{
335 atomic_inc(&watchdog_reset_pending);
336}
337
338static void clocksource_enqueue_watchdog(struct clocksource *cs)
339{
340 INIT_LIST_HEAD(&cs->wd_list);
341
342 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
343 /* cs is a clocksource to be watched. */
344 list_add(&cs->wd_list, &watchdog_list);
345 cs->flags &= ~CLOCK_SOURCE_WATCHDOG;
346 } else {
347 /* cs is a watchdog. */
348 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
349 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
350 }
351}
352
353static void clocksource_select_watchdog(bool fallback)
354{
355 struct clocksource *cs, *old_wd;
356 unsigned long flags;
357
358 spin_lock_irqsave(&watchdog_lock, flags);
359 /* save current watchdog */
360 old_wd = watchdog;
361 if (fallback)
362 watchdog = NULL;
363
364 list_for_each_entry(cs, &clocksource_list, list) {
365 /* cs is a clocksource to be watched. */
366 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY)
367 continue;
368
369 /* Skip current if we were requested for a fallback. */
370 if (fallback && cs == old_wd)
371 continue;
372
373 /* Pick the best watchdog. */
374 if (!watchdog || cs->rating > watchdog->rating)
375 watchdog = cs;
376 }
377 /* If we failed to find a fallback restore the old one. */
378 if (!watchdog)
379 watchdog = old_wd;
380
381 /* If we changed the watchdog we need to reset cycles. */
382 if (watchdog != old_wd)
383 clocksource_reset_watchdog();
384
385 /* Check if the watchdog timer needs to be started. */
386 clocksource_start_watchdog();
387 spin_unlock_irqrestore(&watchdog_lock, flags);
388}
389
390static void clocksource_dequeue_watchdog(struct clocksource *cs)
391{
392 if (cs != watchdog) {
393 if (cs->flags & CLOCK_SOURCE_MUST_VERIFY) {
394 /* cs is a watched clocksource. */
395 list_del_init(&cs->wd_list);
396 /* Check if the watchdog timer needs to be stopped. */
397 clocksource_stop_watchdog();
398 }
399 }
400}
401
402static int __clocksource_watchdog_kthread(void)
403{
404 struct clocksource *cs, *tmp;
405 unsigned long flags;
406 int select = 0;
407
408 spin_lock_irqsave(&watchdog_lock, flags);
409 list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
410 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
411 list_del_init(&cs->wd_list);
412 __clocksource_change_rating(cs, 0);
413 select = 1;
414 }
415 if (cs->flags & CLOCK_SOURCE_RESELECT) {
416 cs->flags &= ~CLOCK_SOURCE_RESELECT;
417 select = 1;
418 }
419 }
420 /* Check if the watchdog timer needs to be stopped. */
421 clocksource_stop_watchdog();
422 spin_unlock_irqrestore(&watchdog_lock, flags);
423
424 return select;
425}
426
427static int clocksource_watchdog_kthread(void *data)
428{
429 mutex_lock(&clocksource_mutex);
430 if (__clocksource_watchdog_kthread())
431 clocksource_select();
432 mutex_unlock(&clocksource_mutex);
433 return 0;
434}
435
436static bool clocksource_is_watchdog(struct clocksource *cs)
437{
438 return cs == watchdog;
439}
440
441#else /* CONFIG_CLOCKSOURCE_WATCHDOG */
442
443static void clocksource_enqueue_watchdog(struct clocksource *cs)
444{
445 if (cs->flags & CLOCK_SOURCE_IS_CONTINUOUS)
446 cs->flags |= CLOCK_SOURCE_VALID_FOR_HRES;
447}
448
449static void clocksource_select_watchdog(bool fallback) { }
450static inline void clocksource_dequeue_watchdog(struct clocksource *cs) { }
451static inline void clocksource_resume_watchdog(void) { }
452static inline int __clocksource_watchdog_kthread(void) { return 0; }
453static bool clocksource_is_watchdog(struct clocksource *cs) { return false; }
454void clocksource_mark_unstable(struct clocksource *cs) { }
455
456static void inline clocksource_watchdog_lock(unsigned long *flags) { }
457static void inline clocksource_watchdog_unlock(unsigned long *flags) { }
458
459#endif /* CONFIG_CLOCKSOURCE_WATCHDOG */
460
461/**
462 * clocksource_suspend - suspend the clocksource(s)
463 */
464void clocksource_suspend(void)
465{
466 struct clocksource *cs;
467
468 list_for_each_entry_reverse(cs, &clocksource_list, list)
469 if (cs->suspend)
470 cs->suspend(cs);
471}
472
473/**
474 * clocksource_resume - resume the clocksource(s)
475 */
476void clocksource_resume(void)
477{
478 struct clocksource *cs;
479
480 list_for_each_entry(cs, &clocksource_list, list)
481 if (cs->resume)
482 cs->resume(cs);
483
484 clocksource_resume_watchdog();
485}
486
487/**
488 * clocksource_touch_watchdog - Update watchdog
489 *
490 * Update the watchdog after exception contexts such as kgdb so as not
491 * to incorrectly trip the watchdog. This might fail when the kernel
492 * was stopped in code which holds watchdog_lock.
493 */
494void clocksource_touch_watchdog(void)
495{
496 clocksource_resume_watchdog();
497}
498
499/**
500 * clocksource_max_adjustment- Returns max adjustment amount
501 * @cs: Pointer to clocksource
502 *
503 */
504static u32 clocksource_max_adjustment(struct clocksource *cs)
505{
506 u64 ret;
507 /*
508 * We won't try to correct for more than 11% adjustments (110,000 ppm),
509 */
510 ret = (u64)cs->mult * 11;
511 do_div(ret,100);
512 return (u32)ret;
513}
514
515/**
516 * clocks_calc_max_nsecs - Returns maximum nanoseconds that can be converted
517 * @mult: cycle to nanosecond multiplier
518 * @shift: cycle to nanosecond divisor (power of two)
519 * @maxadj: maximum adjustment value to mult (~11%)
520 * @mask: bitmask for two's complement subtraction of non 64 bit counters
521 * @max_cyc: maximum cycle value before potential overflow (does not include
522 * any safety margin)
523 *
524 * NOTE: This function includes a safety margin of 50%, in other words, we
525 * return half the number of nanoseconds the hardware counter can technically
526 * cover. This is done so that we can potentially detect problems caused by
527 * delayed timers or bad hardware, which might result in time intervals that
528 * are larger than what the math used can handle without overflows.
529 */
530u64 clocks_calc_max_nsecs(u32 mult, u32 shift, u32 maxadj, u64 mask, u64 *max_cyc)
531{
532 u64 max_nsecs, max_cycles;
533
534 /*
535 * Calculate the maximum number of cycles that we can pass to the
536 * cyc2ns() function without overflowing a 64-bit result.
537 */
538 max_cycles = ULLONG_MAX;
539 do_div(max_cycles, mult+maxadj);
540
541 /*
542 * The actual maximum number of cycles we can defer the clocksource is
543 * determined by the minimum of max_cycles and mask.
544 * Note: Here we subtract the maxadj to make sure we don't sleep for
545 * too long if there's a large negative adjustment.
546 */
547 max_cycles = min(max_cycles, mask);
548 max_nsecs = clocksource_cyc2ns(max_cycles, mult - maxadj, shift);
549
550 /* return the max_cycles value as well if requested */
551 if (max_cyc)
552 *max_cyc = max_cycles;
553
554 /* Return 50% of the actual maximum, so we can detect bad values */
555 max_nsecs >>= 1;
556
557 return max_nsecs;
558}
559
560/**
561 * clocksource_update_max_deferment - Updates the clocksource max_idle_ns & max_cycles
562 * @cs: Pointer to clocksource to be updated
563 *
564 */
565static inline void clocksource_update_max_deferment(struct clocksource *cs)
566{
567 cs->max_idle_ns = clocks_calc_max_nsecs(cs->mult, cs->shift,
568 cs->maxadj, cs->mask,
569 &cs->max_cycles);
570}
571
572#ifndef CONFIG_ARCH_USES_GETTIMEOFFSET
573
574static struct clocksource *clocksource_find_best(bool oneshot, bool skipcur)
575{
576 struct clocksource *cs;
577
578 if (!finished_booting || list_empty(&clocksource_list))
579 return NULL;
580
581 /*
582 * We pick the clocksource with the highest rating. If oneshot
583 * mode is active, we pick the highres valid clocksource with
584 * the best rating.
585 */
586 list_for_each_entry(cs, &clocksource_list, list) {
587 if (skipcur && cs == curr_clocksource)
588 continue;
589 if (oneshot && !(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES))
590 continue;
591 return cs;
592 }
593 return NULL;
594}
595
596static void __clocksource_select(bool skipcur)
597{
598 bool oneshot = tick_oneshot_mode_active();
599 struct clocksource *best, *cs;
600
601 /* Find the best suitable clocksource */
602 best = clocksource_find_best(oneshot, skipcur);
603 if (!best)
604 return;
605
606 if (!strlen(override_name))
607 goto found;
608
609 /* Check for the override clocksource. */
610 list_for_each_entry(cs, &clocksource_list, list) {
611 if (skipcur && cs == curr_clocksource)
612 continue;
613 if (strcmp(cs->name, override_name) != 0)
614 continue;
615 /*
616 * Check to make sure we don't switch to a non-highres
617 * capable clocksource if the tick code is in oneshot
618 * mode (highres or nohz)
619 */
620 if (!(cs->flags & CLOCK_SOURCE_VALID_FOR_HRES) && oneshot) {
621 /* Override clocksource cannot be used. */
622 if (cs->flags & CLOCK_SOURCE_UNSTABLE) {
623 pr_warn("Override clocksource %s is unstable and not HRT compatible - cannot switch while in HRT/NOHZ mode\n",
624 cs->name);
625 override_name[0] = 0;
626 } else {
627 /*
628 * The override cannot be currently verified.
629 * Deferring to let the watchdog check.
630 */
631 pr_info("Override clocksource %s is not currently HRT compatible - deferring\n",
632 cs->name);
633 }
634 } else
635 /* Override clocksource can be used. */
636 best = cs;
637 break;
638 }
639
640found:
641 if (curr_clocksource != best && !timekeeping_notify(best)) {
642 pr_info("Switched to clocksource %s\n", best->name);
643 curr_clocksource = best;
644 }
645}
646
647/**
648 * clocksource_select - Select the best clocksource available
649 *
650 * Private function. Must hold clocksource_mutex when called.
651 *
652 * Select the clocksource with the best rating, or the clocksource,
653 * which is selected by userspace override.
654 */
655static void clocksource_select(void)
656{
657 __clocksource_select(false);
658}
659
660static void clocksource_select_fallback(void)
661{
662 __clocksource_select(true);
663}
664
665#else /* !CONFIG_ARCH_USES_GETTIMEOFFSET */
666static inline void clocksource_select(void) { }
667static inline void clocksource_select_fallback(void) { }
668
669#endif
670
671/*
672 * clocksource_done_booting - Called near the end of core bootup
673 *
674 * Hack to avoid lots of clocksource churn at boot time.
675 * We use fs_initcall because we want this to start before
676 * device_initcall but after subsys_initcall.
677 */
678static int __init clocksource_done_booting(void)
679{
680 mutex_lock(&clocksource_mutex);
681 curr_clocksource = clocksource_default_clock();
682 finished_booting = 1;
683 /*
684 * Run the watchdog first to eliminate unstable clock sources
685 */
686 __clocksource_watchdog_kthread();
687 clocksource_select();
688 mutex_unlock(&clocksource_mutex);
689 return 0;
690}
691fs_initcall(clocksource_done_booting);
692
693/*
694 * Enqueue the clocksource sorted by rating
695 */
696static void clocksource_enqueue(struct clocksource *cs)
697{
698 struct list_head *entry = &clocksource_list;
699 struct clocksource *tmp;
700
701 list_for_each_entry(tmp, &clocksource_list, list) {
702 /* Keep track of the place, where to insert */
703 if (tmp->rating < cs->rating)
704 break;
705 entry = &tmp->list;
706 }
707 list_add(&cs->list, entry);
708}
709
710/**
711 * __clocksource_update_freq_scale - Used update clocksource with new freq
712 * @cs: clocksource to be registered
713 * @scale: Scale factor multiplied against freq to get clocksource hz
714 * @freq: clocksource frequency (cycles per second) divided by scale
715 *
716 * This should only be called from the clocksource->enable() method.
717 *
718 * This *SHOULD NOT* be called directly! Please use the
719 * __clocksource_update_freq_hz() or __clocksource_update_freq_khz() helper
720 * functions.
721 */
722void __clocksource_update_freq_scale(struct clocksource *cs, u32 scale, u32 freq)
723{
724 u64 sec;
725
726 /*
727 * Default clocksources are *special* and self-define their mult/shift.
728 * But, you're not special, so you should specify a freq value.
729 */
730 if (freq) {
731 /*
732 * Calc the maximum number of seconds which we can run before
733 * wrapping around. For clocksources which have a mask > 32-bit
734 * we need to limit the max sleep time to have a good
735 * conversion precision. 10 minutes is still a reasonable
736 * amount. That results in a shift value of 24 for a
737 * clocksource with mask >= 40-bit and f >= 4GHz. That maps to
738 * ~ 0.06ppm granularity for NTP.
739 */
740 sec = cs->mask;
741 do_div(sec, freq);
742 do_div(sec, scale);
743 if (!sec)
744 sec = 1;
745 else if (sec > 600 && cs->mask > UINT_MAX)
746 sec = 600;
747
748 clocks_calc_mult_shift(&cs->mult, &cs->shift, freq,
749 NSEC_PER_SEC / scale, sec * scale);
750 }
751 /*
752 * Ensure clocksources that have large 'mult' values don't overflow
753 * when adjusted.
754 */
755 cs->maxadj = clocksource_max_adjustment(cs);
756 while (freq && ((cs->mult + cs->maxadj < cs->mult)
757 || (cs->mult - cs->maxadj > cs->mult))) {
758 cs->mult >>= 1;
759 cs->shift--;
760 cs->maxadj = clocksource_max_adjustment(cs);
761 }
762
763 /*
764 * Only warn for *special* clocksources that self-define
765 * their mult/shift values and don't specify a freq.
766 */
767 WARN_ONCE(cs->mult + cs->maxadj < cs->mult,
768 "timekeeping: Clocksource %s might overflow on 11%% adjustment\n",
769 cs->name);
770
771 clocksource_update_max_deferment(cs);
772
773 pr_info("%s: mask: 0x%llx max_cycles: 0x%llx, max_idle_ns: %lld ns\n",
774 cs->name, cs->mask, cs->max_cycles, cs->max_idle_ns);
775}
776EXPORT_SYMBOL_GPL(__clocksource_update_freq_scale);
777
778/**
779 * __clocksource_register_scale - Used to install new clocksources
780 * @cs: clocksource to be registered
781 * @scale: Scale factor multiplied against freq to get clocksource hz
782 * @freq: clocksource frequency (cycles per second) divided by scale
783 *
784 * Returns -EBUSY if registration fails, zero otherwise.
785 *
786 * This *SHOULD NOT* be called directly! Please use the
787 * clocksource_register_hz() or clocksource_register_khz helper functions.
788 */
789int __clocksource_register_scale(struct clocksource *cs, u32 scale, u32 freq)
790{
791 unsigned long flags;
792
793 /* Initialize mult/shift and max_idle_ns */
794 __clocksource_update_freq_scale(cs, scale, freq);
795
796 /* Add clocksource to the clocksource list */
797 mutex_lock(&clocksource_mutex);
798
799 clocksource_watchdog_lock(&flags);
800 clocksource_enqueue(cs);
801 clocksource_enqueue_watchdog(cs);
802 clocksource_watchdog_unlock(&flags);
803
804 clocksource_select();
805 clocksource_select_watchdog(false);
806 mutex_unlock(&clocksource_mutex);
807 return 0;
808}
809EXPORT_SYMBOL_GPL(__clocksource_register_scale);
810
811static void __clocksource_change_rating(struct clocksource *cs, int rating)
812{
813 list_del(&cs->list);
814 cs->rating = rating;
815 clocksource_enqueue(cs);
816}
817
818/**
819 * clocksource_change_rating - Change the rating of a registered clocksource
820 * @cs: clocksource to be changed
821 * @rating: new rating
822 */
823void clocksource_change_rating(struct clocksource *cs, int rating)
824{
825 unsigned long flags;
826
827 mutex_lock(&clocksource_mutex);
828 clocksource_watchdog_lock(&flags);
829 __clocksource_change_rating(cs, rating);
830 clocksource_watchdog_unlock(&flags);
831
832 clocksource_select();
833 clocksource_select_watchdog(false);
834 mutex_unlock(&clocksource_mutex);
835}
836EXPORT_SYMBOL(clocksource_change_rating);
837
838/*
839 * Unbind clocksource @cs. Called with clocksource_mutex held
840 */
841static int clocksource_unbind(struct clocksource *cs)
842{
843 unsigned long flags;
844
845 if (clocksource_is_watchdog(cs)) {
846 /* Select and try to install a replacement watchdog. */
847 clocksource_select_watchdog(true);
848 if (clocksource_is_watchdog(cs))
849 return -EBUSY;
850 }
851
852 if (cs == curr_clocksource) {
853 /* Select and try to install a replacement clock source */
854 clocksource_select_fallback();
855 if (curr_clocksource == cs)
856 return -EBUSY;
857 }
858
859 clocksource_watchdog_lock(&flags);
860 clocksource_dequeue_watchdog(cs);
861 list_del_init(&cs->list);
862 clocksource_watchdog_unlock(&flags);
863
864 return 0;
865}
866
867/**
868 * clocksource_unregister - remove a registered clocksource
869 * @cs: clocksource to be unregistered
870 */
871int clocksource_unregister(struct clocksource *cs)
872{
873 int ret = 0;
874
875 mutex_lock(&clocksource_mutex);
876 if (!list_empty(&cs->list))
877 ret = clocksource_unbind(cs);
878 mutex_unlock(&clocksource_mutex);
879 return ret;
880}
881EXPORT_SYMBOL(clocksource_unregister);
882
883#ifdef CONFIG_SYSFS
884/**
885 * current_clocksource_show - sysfs interface for current clocksource
886 * @dev: unused
887 * @attr: unused
888 * @buf: char buffer to be filled with clocksource list
889 *
890 * Provides sysfs interface for listing current clocksource.
891 */
892static ssize_t current_clocksource_show(struct device *dev,
893 struct device_attribute *attr,
894 char *buf)
895{
896 ssize_t count = 0;
897
898 mutex_lock(&clocksource_mutex);
899 count = snprintf(buf, PAGE_SIZE, "%s\n", curr_clocksource->name);
900 mutex_unlock(&clocksource_mutex);
901
902 return count;
903}
904
905ssize_t sysfs_get_uname(const char *buf, char *dst, size_t cnt)
906{
907 size_t ret = cnt;
908
909 /* strings from sysfs write are not 0 terminated! */
910 if (!cnt || cnt >= CS_NAME_LEN)
911 return -EINVAL;
912
913 /* strip of \n: */
914 if (buf[cnt-1] == '\n')
915 cnt--;
916 if (cnt > 0)
917 memcpy(dst, buf, cnt);
918 dst[cnt] = 0;
919 return ret;
920}
921
922/**
923 * current_clocksource_store - interface for manually overriding clocksource
924 * @dev: unused
925 * @attr: unused
926 * @buf: name of override clocksource
927 * @count: length of buffer
928 *
929 * Takes input from sysfs interface for manually overriding the default
930 * clocksource selection.
931 */
932static ssize_t current_clocksource_store(struct device *dev,
933 struct device_attribute *attr,
934 const char *buf, size_t count)
935{
936 ssize_t ret;
937
938 mutex_lock(&clocksource_mutex);
939
940 ret = sysfs_get_uname(buf, override_name, count);
941 if (ret >= 0)
942 clocksource_select();
943
944 mutex_unlock(&clocksource_mutex);
945
946 return ret;
947}
948static DEVICE_ATTR_RW(current_clocksource);
949
950/**
951 * unbind_clocksource_store - interface for manually unbinding clocksource
952 * @dev: unused
953 * @attr: unused
954 * @buf: unused
955 * @count: length of buffer
956 *
957 * Takes input from sysfs interface for manually unbinding a clocksource.
958 */
959static ssize_t unbind_clocksource_store(struct device *dev,
960 struct device_attribute *attr,
961 const char *buf, size_t count)
962{
963 struct clocksource *cs;
964 char name[CS_NAME_LEN];
965 ssize_t ret;
966
967 ret = sysfs_get_uname(buf, name, count);
968 if (ret < 0)
969 return ret;
970
971 ret = -ENODEV;
972 mutex_lock(&clocksource_mutex);
973 list_for_each_entry(cs, &clocksource_list, list) {
974 if (strcmp(cs->name, name))
975 continue;
976 ret = clocksource_unbind(cs);
977 break;
978 }
979 mutex_unlock(&clocksource_mutex);
980
981 return ret ? ret : count;
982}
983static DEVICE_ATTR_WO(unbind_clocksource);
984
985/**
986 * available_clocksource_show - sysfs interface for listing clocksource
987 * @dev: unused
988 * @attr: unused
989 * @buf: char buffer to be filled with clocksource list
990 *
991 * Provides sysfs interface for listing registered clocksources
992 */
993static ssize_t available_clocksource_show(struct device *dev,
994 struct device_attribute *attr,
995 char *buf)
996{
997 struct clocksource *src;
998 ssize_t count = 0;
999
1000 mutex_lock(&clocksource_mutex);
1001 list_for_each_entry(src, &clocksource_list, list) {
1002 /*
1003 * Don't show non-HRES clocksource if the tick code is
1004 * in one shot mode (highres=on or nohz=on)
1005 */
1006 if (!tick_oneshot_mode_active() ||
1007 (src->flags & CLOCK_SOURCE_VALID_FOR_HRES))
1008 count += snprintf(buf + count,
1009 max((ssize_t)PAGE_SIZE - count, (ssize_t)0),
1010 "%s ", src->name);
1011 }
1012 mutex_unlock(&clocksource_mutex);
1013
1014 count += snprintf(buf + count,
1015 max((ssize_t)PAGE_SIZE - count, (ssize_t)0), "\n");
1016
1017 return count;
1018}
1019static DEVICE_ATTR_RO(available_clocksource);
1020
1021static struct attribute *clocksource_attrs[] = {
1022 &dev_attr_current_clocksource.attr,
1023 &dev_attr_unbind_clocksource.attr,
1024 &dev_attr_available_clocksource.attr,
1025 NULL
1026};
1027ATTRIBUTE_GROUPS(clocksource);
1028
1029static struct bus_type clocksource_subsys = {
1030 .name = "clocksource",
1031 .dev_name = "clocksource",
1032};
1033
1034static struct device device_clocksource = {
1035 .id = 0,
1036 .bus = &clocksource_subsys,
1037 .groups = clocksource_groups,
1038};
1039
1040static int __init init_clocksource_sysfs(void)
1041{
1042 int error = subsys_system_register(&clocksource_subsys, NULL);
1043
1044 if (!error)
1045 error = device_register(&device_clocksource);
1046
1047 return error;
1048}
1049
1050device_initcall(init_clocksource_sysfs);
1051#endif /* CONFIG_SYSFS */
1052
1053/**
1054 * boot_override_clocksource - boot clock override
1055 * @str: override name
1056 *
1057 * Takes a clocksource= boot argument and uses it
1058 * as the clocksource override name.
1059 */
1060static int __init boot_override_clocksource(char* str)
1061{
1062 mutex_lock(&clocksource_mutex);
1063 if (str)
1064 strlcpy(override_name, str, sizeof(override_name));
1065 mutex_unlock(&clocksource_mutex);
1066 return 1;
1067}
1068
1069__setup("clocksource=", boot_override_clocksource);
1070
1071/**
1072 * boot_override_clock - Compatibility layer for deprecated boot option
1073 * @str: override name
1074 *
1075 * DEPRECATED! Takes a clock= boot argument and uses it
1076 * as the clocksource override name
1077 */
1078static int __init boot_override_clock(char* str)
1079{
1080 if (!strcmp(str, "pmtmr")) {
1081 pr_warn("clock=pmtmr is deprecated - use clocksource=acpi_pm\n");
1082 return boot_override_clocksource("acpi_pm");
1083 }
1084 pr_warn("clock= boot option is deprecated - use clocksource=xyz\n");
1085 return boot_override_clocksource(str);
1086}
1087
1088__setup("clock=", boot_override_clock);