Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * This file contains functions which manage clock event devices.
4 *
5 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
6 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
7 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
8 */
9
10#include <linux/clockchips.h>
11#include <linux/hrtimer.h>
12#include <linux/init.h>
13#include <linux/module.h>
14#include <linux/smp.h>
15#include <linux/device.h>
16
17#include "tick-internal.h"
18
19/* The registered clock event devices */
20static LIST_HEAD(clockevent_devices);
21static LIST_HEAD(clockevents_released);
22/* Protection for the above */
23static DEFINE_RAW_SPINLOCK(clockevents_lock);
24/* Protection for unbind operations */
25static DEFINE_MUTEX(clockevents_mutex);
26
27struct ce_unbind {
28 struct clock_event_device *ce;
29 int res;
30};
31
32static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
33 bool ismax)
34{
35 u64 clc = (u64) latch << evt->shift;
36 u64 rnd;
37
38 if (WARN_ON(!evt->mult))
39 evt->mult = 1;
40 rnd = (u64) evt->mult - 1;
41
42 /*
43 * Upper bound sanity check. If the backwards conversion is
44 * not equal latch, we know that the above shift overflowed.
45 */
46 if ((clc >> evt->shift) != (u64)latch)
47 clc = ~0ULL;
48
49 /*
50 * Scaled math oddities:
51 *
52 * For mult <= (1 << shift) we can safely add mult - 1 to
53 * prevent integer rounding loss. So the backwards conversion
54 * from nsec to device ticks will be correct.
55 *
56 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
57 * need to be careful. Adding mult - 1 will result in a value
58 * which when converted back to device ticks can be larger
59 * than latch by up to (mult - 1) >> shift. For the min_delta
60 * calculation we still want to apply this in order to stay
61 * above the minimum device ticks limit. For the upper limit
62 * we would end up with a latch value larger than the upper
63 * limit of the device, so we omit the add to stay below the
64 * device upper boundary.
65 *
66 * Also omit the add if it would overflow the u64 boundary.
67 */
68 if ((~0ULL - clc > rnd) &&
69 (!ismax || evt->mult <= (1ULL << evt->shift)))
70 clc += rnd;
71
72 do_div(clc, evt->mult);
73
74 /* Deltas less than 1usec are pointless noise */
75 return clc > 1000 ? clc : 1000;
76}
77
78/**
79 * clockevent_delta2ns - Convert a latch value (device ticks) to nanoseconds
80 * @latch: value to convert
81 * @evt: pointer to clock event device descriptor
82 *
83 * Math helper, returns latch value converted to nanoseconds (bound checked)
84 */
85u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
86{
87 return cev_delta2ns(latch, evt, false);
88}
89EXPORT_SYMBOL_GPL(clockevent_delta2ns);
90
91static int __clockevents_switch_state(struct clock_event_device *dev,
92 enum clock_event_state state)
93{
94 if (dev->features & CLOCK_EVT_FEAT_DUMMY)
95 return 0;
96
97 /* Transition with new state-specific callbacks */
98 switch (state) {
99 case CLOCK_EVT_STATE_DETACHED:
100 /* The clockevent device is getting replaced. Shut it down. */
101
102 case CLOCK_EVT_STATE_SHUTDOWN:
103 if (dev->set_state_shutdown)
104 return dev->set_state_shutdown(dev);
105 return 0;
106
107 case CLOCK_EVT_STATE_PERIODIC:
108 /* Core internal bug */
109 if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
110 return -ENOSYS;
111 if (dev->set_state_periodic)
112 return dev->set_state_periodic(dev);
113 return 0;
114
115 case CLOCK_EVT_STATE_ONESHOT:
116 /* Core internal bug */
117 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
118 return -ENOSYS;
119 if (dev->set_state_oneshot)
120 return dev->set_state_oneshot(dev);
121 return 0;
122
123 case CLOCK_EVT_STATE_ONESHOT_STOPPED:
124 /* Core internal bug */
125 if (WARN_ONCE(!clockevent_state_oneshot(dev),
126 "Current state: %d\n",
127 clockevent_get_state(dev)))
128 return -EINVAL;
129
130 if (dev->set_state_oneshot_stopped)
131 return dev->set_state_oneshot_stopped(dev);
132 else
133 return -ENOSYS;
134
135 default:
136 return -ENOSYS;
137 }
138}
139
140/**
141 * clockevents_switch_state - set the operating state of a clock event device
142 * @dev: device to modify
143 * @state: new state
144 *
145 * Must be called with interrupts disabled !
146 */
147void clockevents_switch_state(struct clock_event_device *dev,
148 enum clock_event_state state)
149{
150 if (clockevent_get_state(dev) != state) {
151 if (__clockevents_switch_state(dev, state))
152 return;
153
154 clockevent_set_state(dev, state);
155
156 /*
157 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
158 * on it, so fix it up and emit a warning:
159 */
160 if (clockevent_state_oneshot(dev)) {
161 if (WARN_ON(!dev->mult))
162 dev->mult = 1;
163 }
164 }
165}
166
167/**
168 * clockevents_shutdown - shutdown the device and clear next_event
169 * @dev: device to shutdown
170 */
171void clockevents_shutdown(struct clock_event_device *dev)
172{
173 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
174 dev->next_event = KTIME_MAX;
175}
176
177/**
178 * clockevents_tick_resume - Resume the tick device before using it again
179 * @dev: device to resume
180 */
181int clockevents_tick_resume(struct clock_event_device *dev)
182{
183 int ret = 0;
184
185 if (dev->tick_resume)
186 ret = dev->tick_resume(dev);
187
188 return ret;
189}
190
191#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
192
193/* Limit min_delta to a jiffie */
194#define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ)
195
196/**
197 * clockevents_increase_min_delta - raise minimum delta of a clock event device
198 * @dev: device to increase the minimum delta
199 *
200 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
201 */
202static int clockevents_increase_min_delta(struct clock_event_device *dev)
203{
204 /* Nothing to do if we already reached the limit */
205 if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
206 printk_deferred(KERN_WARNING
207 "CE: Reprogramming failure. Giving up\n");
208 dev->next_event = KTIME_MAX;
209 return -ETIME;
210 }
211
212 if (dev->min_delta_ns < 5000)
213 dev->min_delta_ns = 5000;
214 else
215 dev->min_delta_ns += dev->min_delta_ns >> 1;
216
217 if (dev->min_delta_ns > MIN_DELTA_LIMIT)
218 dev->min_delta_ns = MIN_DELTA_LIMIT;
219
220 printk_deferred(KERN_WARNING
221 "CE: %s increased min_delta_ns to %llu nsec\n",
222 dev->name ? dev->name : "?",
223 (unsigned long long) dev->min_delta_ns);
224 return 0;
225}
226
227/**
228 * clockevents_program_min_delta - Set clock event device to the minimum delay.
229 * @dev: device to program
230 *
231 * Returns 0 on success, -ETIME when the retry loop failed.
232 */
233static int clockevents_program_min_delta(struct clock_event_device *dev)
234{
235 unsigned long long clc;
236 int64_t delta;
237 int i;
238
239 for (i = 0;;) {
240 delta = dev->min_delta_ns;
241 dev->next_event = ktime_add_ns(ktime_get(), delta);
242
243 if (clockevent_state_shutdown(dev))
244 return 0;
245
246 dev->retries++;
247 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
248 if (dev->set_next_event((unsigned long) clc, dev) == 0)
249 return 0;
250
251 if (++i > 2) {
252 /*
253 * We tried 3 times to program the device with the
254 * given min_delta_ns. Try to increase the minimum
255 * delta, if that fails as well get out of here.
256 */
257 if (clockevents_increase_min_delta(dev))
258 return -ETIME;
259 i = 0;
260 }
261 }
262}
263
264#else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
265
266/**
267 * clockevents_program_min_delta - Set clock event device to the minimum delay.
268 * @dev: device to program
269 *
270 * Returns 0 on success, -ETIME when the retry loop failed.
271 */
272static int clockevents_program_min_delta(struct clock_event_device *dev)
273{
274 unsigned long long clc;
275 int64_t delta = 0;
276 int i;
277
278 for (i = 0; i < 10; i++) {
279 delta += dev->min_delta_ns;
280 dev->next_event = ktime_add_ns(ktime_get(), delta);
281
282 if (clockevent_state_shutdown(dev))
283 return 0;
284
285 dev->retries++;
286 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
287 if (dev->set_next_event((unsigned long) clc, dev) == 0)
288 return 0;
289 }
290 return -ETIME;
291}
292
293#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
294
295/**
296 * clockevents_program_event - Reprogram the clock event device.
297 * @dev: device to program
298 * @expires: absolute expiry time (monotonic clock)
299 * @force: program minimum delay if expires can not be set
300 *
301 * Returns 0 on success, -ETIME when the event is in the past.
302 */
303int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
304 bool force)
305{
306 unsigned long long clc;
307 int64_t delta;
308 int rc;
309
310 if (WARN_ON_ONCE(expires < 0))
311 return -ETIME;
312
313 dev->next_event = expires;
314
315 if (clockevent_state_shutdown(dev))
316 return 0;
317
318 /* We must be in ONESHOT state here */
319 WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
320 clockevent_get_state(dev));
321
322 /* Shortcut for clockevent devices that can deal with ktime. */
323 if (dev->features & CLOCK_EVT_FEAT_KTIME)
324 return dev->set_next_ktime(expires, dev);
325
326 delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
327 if (delta <= 0)
328 return force ? clockevents_program_min_delta(dev) : -ETIME;
329
330 delta = min(delta, (int64_t) dev->max_delta_ns);
331 delta = max(delta, (int64_t) dev->min_delta_ns);
332
333 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
334 rc = dev->set_next_event((unsigned long) clc, dev);
335
336 return (rc && force) ? clockevents_program_min_delta(dev) : rc;
337}
338
339/*
340 * Called after a notify add to make devices available which were
341 * released from the notifier call.
342 */
343static void clockevents_notify_released(void)
344{
345 struct clock_event_device *dev;
346
347 while (!list_empty(&clockevents_released)) {
348 dev = list_entry(clockevents_released.next,
349 struct clock_event_device, list);
350 list_move(&dev->list, &clockevent_devices);
351 tick_check_new_device(dev);
352 }
353}
354
355/*
356 * Try to install a replacement clock event device
357 */
358static int clockevents_replace(struct clock_event_device *ced)
359{
360 struct clock_event_device *dev, *newdev = NULL;
361
362 list_for_each_entry(dev, &clockevent_devices, list) {
363 if (dev == ced || !clockevent_state_detached(dev))
364 continue;
365
366 if (!tick_check_replacement(newdev, dev))
367 continue;
368
369 if (!try_module_get(dev->owner))
370 continue;
371
372 if (newdev)
373 module_put(newdev->owner);
374 newdev = dev;
375 }
376 if (newdev) {
377 tick_install_replacement(newdev);
378 list_del_init(&ced->list);
379 }
380 return newdev ? 0 : -EBUSY;
381}
382
383/*
384 * Called with clockevents_mutex and clockevents_lock held
385 */
386static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
387{
388 /* Fast track. Device is unused */
389 if (clockevent_state_detached(ced)) {
390 list_del_init(&ced->list);
391 return 0;
392 }
393
394 return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
395}
396
397/*
398 * SMP function call to unbind a device
399 */
400static void __clockevents_unbind(void *arg)
401{
402 struct ce_unbind *cu = arg;
403 int res;
404
405 raw_spin_lock(&clockevents_lock);
406 res = __clockevents_try_unbind(cu->ce, smp_processor_id());
407 if (res == -EAGAIN)
408 res = clockevents_replace(cu->ce);
409 cu->res = res;
410 raw_spin_unlock(&clockevents_lock);
411}
412
413/*
414 * Issues smp function call to unbind a per cpu device. Called with
415 * clockevents_mutex held.
416 */
417static int clockevents_unbind(struct clock_event_device *ced, int cpu)
418{
419 struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
420
421 smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
422 return cu.res;
423}
424
425/*
426 * Unbind a clockevents device.
427 */
428int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
429{
430 int ret;
431
432 mutex_lock(&clockevents_mutex);
433 ret = clockevents_unbind(ced, cpu);
434 mutex_unlock(&clockevents_mutex);
435 return ret;
436}
437EXPORT_SYMBOL_GPL(clockevents_unbind_device);
438
439/**
440 * clockevents_register_device - register a clock event device
441 * @dev: device to register
442 */
443void clockevents_register_device(struct clock_event_device *dev)
444{
445 unsigned long flags;
446
447 /* Initialize state to DETACHED */
448 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
449
450 if (!dev->cpumask) {
451 WARN_ON(num_possible_cpus() > 1);
452 dev->cpumask = cpumask_of(smp_processor_id());
453 }
454
455 if (dev->cpumask == cpu_all_mask) {
456 WARN(1, "%s cpumask == cpu_all_mask, using cpu_possible_mask instead\n",
457 dev->name);
458 dev->cpumask = cpu_possible_mask;
459 }
460
461 raw_spin_lock_irqsave(&clockevents_lock, flags);
462
463 list_add(&dev->list, &clockevent_devices);
464 tick_check_new_device(dev);
465 clockevents_notify_released();
466
467 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
468}
469EXPORT_SYMBOL_GPL(clockevents_register_device);
470
471static void clockevents_config(struct clock_event_device *dev, u32 freq)
472{
473 u64 sec;
474
475 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
476 return;
477
478 /*
479 * Calculate the maximum number of seconds we can sleep. Limit
480 * to 10 minutes for hardware which can program more than
481 * 32bit ticks so we still get reasonable conversion values.
482 */
483 sec = dev->max_delta_ticks;
484 do_div(sec, freq);
485 if (!sec)
486 sec = 1;
487 else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
488 sec = 600;
489
490 clockevents_calc_mult_shift(dev, freq, sec);
491 dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
492 dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
493}
494
495/**
496 * clockevents_config_and_register - Configure and register a clock event device
497 * @dev: device to register
498 * @freq: The clock frequency
499 * @min_delta: The minimum clock ticks to program in oneshot mode
500 * @max_delta: The maximum clock ticks to program in oneshot mode
501 *
502 * min/max_delta can be 0 for devices which do not support oneshot mode.
503 */
504void clockevents_config_and_register(struct clock_event_device *dev,
505 u32 freq, unsigned long min_delta,
506 unsigned long max_delta)
507{
508 dev->min_delta_ticks = min_delta;
509 dev->max_delta_ticks = max_delta;
510 clockevents_config(dev, freq);
511 clockevents_register_device(dev);
512}
513EXPORT_SYMBOL_GPL(clockevents_config_and_register);
514
515int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
516{
517 clockevents_config(dev, freq);
518
519 if (clockevent_state_oneshot(dev))
520 return clockevents_program_event(dev, dev->next_event, false);
521
522 if (clockevent_state_periodic(dev))
523 return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
524
525 return 0;
526}
527
528/**
529 * clockevents_update_freq - Update frequency and reprogram a clock event device.
530 * @dev: device to modify
531 * @freq: new device frequency
532 *
533 * Reconfigure and reprogram a clock event device in oneshot
534 * mode. Must be called on the cpu for which the device delivers per
535 * cpu timer events. If called for the broadcast device the core takes
536 * care of serialization.
537 *
538 * Returns 0 on success, -ETIME when the event is in the past.
539 */
540int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
541{
542 unsigned long flags;
543 int ret;
544
545 local_irq_save(flags);
546 ret = tick_broadcast_update_freq(dev, freq);
547 if (ret == -ENODEV)
548 ret = __clockevents_update_freq(dev, freq);
549 local_irq_restore(flags);
550 return ret;
551}
552
553/*
554 * Noop handler when we shut down an event device
555 */
556void clockevents_handle_noop(struct clock_event_device *dev)
557{
558}
559
560/**
561 * clockevents_exchange_device - release and request clock devices
562 * @old: device to release (can be NULL)
563 * @new: device to request (can be NULL)
564 *
565 * Called from various tick functions with clockevents_lock held and
566 * interrupts disabled.
567 */
568void clockevents_exchange_device(struct clock_event_device *old,
569 struct clock_event_device *new)
570{
571 /*
572 * Caller releases a clock event device. We queue it into the
573 * released list and do a notify add later.
574 */
575 if (old) {
576 module_put(old->owner);
577 clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
578 list_move(&old->list, &clockevents_released);
579 }
580
581 if (new) {
582 BUG_ON(!clockevent_state_detached(new));
583 clockevents_shutdown(new);
584 }
585}
586
587/**
588 * clockevents_suspend - suspend clock devices
589 */
590void clockevents_suspend(void)
591{
592 struct clock_event_device *dev;
593
594 list_for_each_entry_reverse(dev, &clockevent_devices, list)
595 if (dev->suspend && !clockevent_state_detached(dev))
596 dev->suspend(dev);
597}
598
599/**
600 * clockevents_resume - resume clock devices
601 */
602void clockevents_resume(void)
603{
604 struct clock_event_device *dev;
605
606 list_for_each_entry(dev, &clockevent_devices, list)
607 if (dev->resume && !clockevent_state_detached(dev))
608 dev->resume(dev);
609}
610
611#ifdef CONFIG_HOTPLUG_CPU
612
613# ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
614/**
615 * tick_offline_cpu - Take CPU out of the broadcast mechanism
616 * @cpu: The outgoing CPU
617 *
618 * Called on the outgoing CPU after it took itself offline.
619 */
620void tick_offline_cpu(unsigned int cpu)
621{
622 raw_spin_lock(&clockevents_lock);
623 tick_broadcast_offline(cpu);
624 raw_spin_unlock(&clockevents_lock);
625}
626# endif
627
628/**
629 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
630 * @cpu: The dead CPU
631 */
632void tick_cleanup_dead_cpu(int cpu)
633{
634 struct clock_event_device *dev, *tmp;
635 unsigned long flags;
636
637 raw_spin_lock_irqsave(&clockevents_lock, flags);
638
639 tick_shutdown(cpu);
640 /*
641 * Unregister the clock event devices which were
642 * released from the users in the notify chain.
643 */
644 list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
645 list_del(&dev->list);
646 /*
647 * Now check whether the CPU has left unused per cpu devices
648 */
649 list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
650 if (cpumask_test_cpu(cpu, dev->cpumask) &&
651 cpumask_weight(dev->cpumask) == 1 &&
652 !tick_is_broadcast_device(dev)) {
653 BUG_ON(!clockevent_state_detached(dev));
654 list_del(&dev->list);
655 }
656 }
657 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
658}
659#endif
660
661#ifdef CONFIG_SYSFS
662static const struct bus_type clockevents_subsys = {
663 .name = "clockevents",
664 .dev_name = "clockevent",
665};
666
667static DEFINE_PER_CPU(struct device, tick_percpu_dev);
668static struct tick_device *tick_get_tick_dev(struct device *dev);
669
670static ssize_t current_device_show(struct device *dev,
671 struct device_attribute *attr,
672 char *buf)
673{
674 struct tick_device *td;
675 ssize_t count = 0;
676
677 raw_spin_lock_irq(&clockevents_lock);
678 td = tick_get_tick_dev(dev);
679 if (td && td->evtdev)
680 count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
681 raw_spin_unlock_irq(&clockevents_lock);
682 return count;
683}
684static DEVICE_ATTR_RO(current_device);
685
686/* We don't support the abomination of removable broadcast devices */
687static ssize_t unbind_device_store(struct device *dev,
688 struct device_attribute *attr,
689 const char *buf, size_t count)
690{
691 char name[CS_NAME_LEN];
692 ssize_t ret = sysfs_get_uname(buf, name, count);
693 struct clock_event_device *ce = NULL, *iter;
694
695 if (ret < 0)
696 return ret;
697
698 ret = -ENODEV;
699 mutex_lock(&clockevents_mutex);
700 raw_spin_lock_irq(&clockevents_lock);
701 list_for_each_entry(iter, &clockevent_devices, list) {
702 if (!strcmp(iter->name, name)) {
703 ret = __clockevents_try_unbind(iter, dev->id);
704 ce = iter;
705 break;
706 }
707 }
708 raw_spin_unlock_irq(&clockevents_lock);
709 /*
710 * We hold clockevents_mutex, so ce can't go away
711 */
712 if (ret == -EAGAIN)
713 ret = clockevents_unbind(ce, dev->id);
714 mutex_unlock(&clockevents_mutex);
715 return ret ? ret : count;
716}
717static DEVICE_ATTR_WO(unbind_device);
718
719#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
720static struct device tick_bc_dev = {
721 .init_name = "broadcast",
722 .id = 0,
723 .bus = &clockevents_subsys,
724};
725
726static struct tick_device *tick_get_tick_dev(struct device *dev)
727{
728 return dev == &tick_bc_dev ? tick_get_broadcast_device() :
729 &per_cpu(tick_cpu_device, dev->id);
730}
731
732static __init int tick_broadcast_init_sysfs(void)
733{
734 int err = device_register(&tick_bc_dev);
735
736 if (!err)
737 err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
738 return err;
739}
740#else
741static struct tick_device *tick_get_tick_dev(struct device *dev)
742{
743 return &per_cpu(tick_cpu_device, dev->id);
744}
745static inline int tick_broadcast_init_sysfs(void) { return 0; }
746#endif
747
748static int __init tick_init_sysfs(void)
749{
750 int cpu;
751
752 for_each_possible_cpu(cpu) {
753 struct device *dev = &per_cpu(tick_percpu_dev, cpu);
754 int err;
755
756 dev->id = cpu;
757 dev->bus = &clockevents_subsys;
758 err = device_register(dev);
759 if (!err)
760 err = device_create_file(dev, &dev_attr_current_device);
761 if (!err)
762 err = device_create_file(dev, &dev_attr_unbind_device);
763 if (err)
764 return err;
765 }
766 return tick_broadcast_init_sysfs();
767}
768
769static int __init clockevents_init_sysfs(void)
770{
771 int err = subsys_system_register(&clockevents_subsys, NULL);
772
773 if (!err)
774 err = tick_init_sysfs();
775 return err;
776}
777device_initcall(clockevents_init_sysfs);
778#endif /* SYSFS */
1/*
2 * linux/kernel/time/clockevents.c
3 *
4 * This file contains functions which manage clock event devices.
5 *
6 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9 *
10 * This code is licenced under the GPL version 2. For details see
11 * kernel-base/COPYING.
12 */
13
14#include <linux/clockchips.h>
15#include <linux/hrtimer.h>
16#include <linux/init.h>
17#include <linux/module.h>
18#include <linux/smp.h>
19#include <linux/device.h>
20
21#include "tick-internal.h"
22
23/* The registered clock event devices */
24static LIST_HEAD(clockevent_devices);
25static LIST_HEAD(clockevents_released);
26/* Protection for the above */
27static DEFINE_RAW_SPINLOCK(clockevents_lock);
28/* Protection for unbind operations */
29static DEFINE_MUTEX(clockevents_mutex);
30
31struct ce_unbind {
32 struct clock_event_device *ce;
33 int res;
34};
35
36static u64 cev_delta2ns(unsigned long latch, struct clock_event_device *evt,
37 bool ismax)
38{
39 u64 clc = (u64) latch << evt->shift;
40 u64 rnd;
41
42 if (unlikely(!evt->mult)) {
43 evt->mult = 1;
44 WARN_ON(1);
45 }
46 rnd = (u64) evt->mult - 1;
47
48 /*
49 * Upper bound sanity check. If the backwards conversion is
50 * not equal latch, we know that the above shift overflowed.
51 */
52 if ((clc >> evt->shift) != (u64)latch)
53 clc = ~0ULL;
54
55 /*
56 * Scaled math oddities:
57 *
58 * For mult <= (1 << shift) we can safely add mult - 1 to
59 * prevent integer rounding loss. So the backwards conversion
60 * from nsec to device ticks will be correct.
61 *
62 * For mult > (1 << shift), i.e. device frequency is > 1GHz we
63 * need to be careful. Adding mult - 1 will result in a value
64 * which when converted back to device ticks can be larger
65 * than latch by up to (mult - 1) >> shift. For the min_delta
66 * calculation we still want to apply this in order to stay
67 * above the minimum device ticks limit. For the upper limit
68 * we would end up with a latch value larger than the upper
69 * limit of the device, so we omit the add to stay below the
70 * device upper boundary.
71 *
72 * Also omit the add if it would overflow the u64 boundary.
73 */
74 if ((~0ULL - clc > rnd) &&
75 (!ismax || evt->mult <= (1ULL << evt->shift)))
76 clc += rnd;
77
78 do_div(clc, evt->mult);
79
80 /* Deltas less than 1usec are pointless noise */
81 return clc > 1000 ? clc : 1000;
82}
83
84/**
85 * clockevents_delta2ns - Convert a latch value (device ticks) to nanoseconds
86 * @latch: value to convert
87 * @evt: pointer to clock event device descriptor
88 *
89 * Math helper, returns latch value converted to nanoseconds (bound checked)
90 */
91u64 clockevent_delta2ns(unsigned long latch, struct clock_event_device *evt)
92{
93 return cev_delta2ns(latch, evt, false);
94}
95EXPORT_SYMBOL_GPL(clockevent_delta2ns);
96
97static int __clockevents_switch_state(struct clock_event_device *dev,
98 enum clock_event_state state)
99{
100 if (dev->features & CLOCK_EVT_FEAT_DUMMY)
101 return 0;
102
103 /* Transition with new state-specific callbacks */
104 switch (state) {
105 case CLOCK_EVT_STATE_DETACHED:
106 /* The clockevent device is getting replaced. Shut it down. */
107
108 case CLOCK_EVT_STATE_SHUTDOWN:
109 if (dev->set_state_shutdown)
110 return dev->set_state_shutdown(dev);
111 return 0;
112
113 case CLOCK_EVT_STATE_PERIODIC:
114 /* Core internal bug */
115 if (!(dev->features & CLOCK_EVT_FEAT_PERIODIC))
116 return -ENOSYS;
117 if (dev->set_state_periodic)
118 return dev->set_state_periodic(dev);
119 return 0;
120
121 case CLOCK_EVT_STATE_ONESHOT:
122 /* Core internal bug */
123 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
124 return -ENOSYS;
125 if (dev->set_state_oneshot)
126 return dev->set_state_oneshot(dev);
127 return 0;
128
129 case CLOCK_EVT_STATE_ONESHOT_STOPPED:
130 /* Core internal bug */
131 if (WARN_ONCE(!clockevent_state_oneshot(dev),
132 "Current state: %d\n",
133 clockevent_get_state(dev)))
134 return -EINVAL;
135
136 if (dev->set_state_oneshot_stopped)
137 return dev->set_state_oneshot_stopped(dev);
138 else
139 return -ENOSYS;
140
141 default:
142 return -ENOSYS;
143 }
144}
145
146/**
147 * clockevents_switch_state - set the operating state of a clock event device
148 * @dev: device to modify
149 * @state: new state
150 *
151 * Must be called with interrupts disabled !
152 */
153void clockevents_switch_state(struct clock_event_device *dev,
154 enum clock_event_state state)
155{
156 if (clockevent_get_state(dev) != state) {
157 if (__clockevents_switch_state(dev, state))
158 return;
159
160 clockevent_set_state(dev, state);
161
162 /*
163 * A nsec2cyc multiplicator of 0 is invalid and we'd crash
164 * on it, so fix it up and emit a warning:
165 */
166 if (clockevent_state_oneshot(dev)) {
167 if (unlikely(!dev->mult)) {
168 dev->mult = 1;
169 WARN_ON(1);
170 }
171 }
172 }
173}
174
175/**
176 * clockevents_shutdown - shutdown the device and clear next_event
177 * @dev: device to shutdown
178 */
179void clockevents_shutdown(struct clock_event_device *dev)
180{
181 clockevents_switch_state(dev, CLOCK_EVT_STATE_SHUTDOWN);
182 dev->next_event = KTIME_MAX;
183}
184
185/**
186 * clockevents_tick_resume - Resume the tick device before using it again
187 * @dev: device to resume
188 */
189int clockevents_tick_resume(struct clock_event_device *dev)
190{
191 int ret = 0;
192
193 if (dev->tick_resume)
194 ret = dev->tick_resume(dev);
195
196 return ret;
197}
198
199#ifdef CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST
200
201/* Limit min_delta to a jiffie */
202#define MIN_DELTA_LIMIT (NSEC_PER_SEC / HZ)
203
204/**
205 * clockevents_increase_min_delta - raise minimum delta of a clock event device
206 * @dev: device to increase the minimum delta
207 *
208 * Returns 0 on success, -ETIME when the minimum delta reached the limit.
209 */
210static int clockevents_increase_min_delta(struct clock_event_device *dev)
211{
212 /* Nothing to do if we already reached the limit */
213 if (dev->min_delta_ns >= MIN_DELTA_LIMIT) {
214 printk_deferred(KERN_WARNING
215 "CE: Reprogramming failure. Giving up\n");
216 dev->next_event = KTIME_MAX;
217 return -ETIME;
218 }
219
220 if (dev->min_delta_ns < 5000)
221 dev->min_delta_ns = 5000;
222 else
223 dev->min_delta_ns += dev->min_delta_ns >> 1;
224
225 if (dev->min_delta_ns > MIN_DELTA_LIMIT)
226 dev->min_delta_ns = MIN_DELTA_LIMIT;
227
228 printk_deferred(KERN_WARNING
229 "CE: %s increased min_delta_ns to %llu nsec\n",
230 dev->name ? dev->name : "?",
231 (unsigned long long) dev->min_delta_ns);
232 return 0;
233}
234
235/**
236 * clockevents_program_min_delta - Set clock event device to the minimum delay.
237 * @dev: device to program
238 *
239 * Returns 0 on success, -ETIME when the retry loop failed.
240 */
241static int clockevents_program_min_delta(struct clock_event_device *dev)
242{
243 unsigned long long clc;
244 int64_t delta;
245 int i;
246
247 for (i = 0;;) {
248 delta = dev->min_delta_ns;
249 dev->next_event = ktime_add_ns(ktime_get(), delta);
250
251 if (clockevent_state_shutdown(dev))
252 return 0;
253
254 dev->retries++;
255 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
256 if (dev->set_next_event((unsigned long) clc, dev) == 0)
257 return 0;
258
259 if (++i > 2) {
260 /*
261 * We tried 3 times to program the device with the
262 * given min_delta_ns. Try to increase the minimum
263 * delta, if that fails as well get out of here.
264 */
265 if (clockevents_increase_min_delta(dev))
266 return -ETIME;
267 i = 0;
268 }
269 }
270}
271
272#else /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
273
274/**
275 * clockevents_program_min_delta - Set clock event device to the minimum delay.
276 * @dev: device to program
277 *
278 * Returns 0 on success, -ETIME when the retry loop failed.
279 */
280static int clockevents_program_min_delta(struct clock_event_device *dev)
281{
282 unsigned long long clc;
283 int64_t delta = 0;
284 int i;
285
286 for (i = 0; i < 10; i++) {
287 delta += dev->min_delta_ns;
288 dev->next_event = ktime_add_ns(ktime_get(), delta);
289
290 if (clockevent_state_shutdown(dev))
291 return 0;
292
293 dev->retries++;
294 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
295 if (dev->set_next_event((unsigned long) clc, dev) == 0)
296 return 0;
297 }
298 return -ETIME;
299}
300
301#endif /* CONFIG_GENERIC_CLOCKEVENTS_MIN_ADJUST */
302
303/**
304 * clockevents_program_event - Reprogram the clock event device.
305 * @dev: device to program
306 * @expires: absolute expiry time (monotonic clock)
307 * @force: program minimum delay if expires can not be set
308 *
309 * Returns 0 on success, -ETIME when the event is in the past.
310 */
311int clockevents_program_event(struct clock_event_device *dev, ktime_t expires,
312 bool force)
313{
314 unsigned long long clc;
315 int64_t delta;
316 int rc;
317
318 if (unlikely(expires < 0)) {
319 WARN_ON_ONCE(1);
320 return -ETIME;
321 }
322
323 dev->next_event = expires;
324
325 if (clockevent_state_shutdown(dev))
326 return 0;
327
328 /* We must be in ONESHOT state here */
329 WARN_ONCE(!clockevent_state_oneshot(dev), "Current state: %d\n",
330 clockevent_get_state(dev));
331
332 /* Shortcut for clockevent devices that can deal with ktime. */
333 if (dev->features & CLOCK_EVT_FEAT_KTIME)
334 return dev->set_next_ktime(expires, dev);
335
336 delta = ktime_to_ns(ktime_sub(expires, ktime_get()));
337 if (delta <= 0)
338 return force ? clockevents_program_min_delta(dev) : -ETIME;
339
340 delta = min(delta, (int64_t) dev->max_delta_ns);
341 delta = max(delta, (int64_t) dev->min_delta_ns);
342
343 clc = ((unsigned long long) delta * dev->mult) >> dev->shift;
344 rc = dev->set_next_event((unsigned long) clc, dev);
345
346 return (rc && force) ? clockevents_program_min_delta(dev) : rc;
347}
348
349/*
350 * Called after a notify add to make devices available which were
351 * released from the notifier call.
352 */
353static void clockevents_notify_released(void)
354{
355 struct clock_event_device *dev;
356
357 while (!list_empty(&clockevents_released)) {
358 dev = list_entry(clockevents_released.next,
359 struct clock_event_device, list);
360 list_del(&dev->list);
361 list_add(&dev->list, &clockevent_devices);
362 tick_check_new_device(dev);
363 }
364}
365
366/*
367 * Try to install a replacement clock event device
368 */
369static int clockevents_replace(struct clock_event_device *ced)
370{
371 struct clock_event_device *dev, *newdev = NULL;
372
373 list_for_each_entry(dev, &clockevent_devices, list) {
374 if (dev == ced || !clockevent_state_detached(dev))
375 continue;
376
377 if (!tick_check_replacement(newdev, dev))
378 continue;
379
380 if (!try_module_get(dev->owner))
381 continue;
382
383 if (newdev)
384 module_put(newdev->owner);
385 newdev = dev;
386 }
387 if (newdev) {
388 tick_install_replacement(newdev);
389 list_del_init(&ced->list);
390 }
391 return newdev ? 0 : -EBUSY;
392}
393
394/*
395 * Called with clockevents_mutex and clockevents_lock held
396 */
397static int __clockevents_try_unbind(struct clock_event_device *ced, int cpu)
398{
399 /* Fast track. Device is unused */
400 if (clockevent_state_detached(ced)) {
401 list_del_init(&ced->list);
402 return 0;
403 }
404
405 return ced == per_cpu(tick_cpu_device, cpu).evtdev ? -EAGAIN : -EBUSY;
406}
407
408/*
409 * SMP function call to unbind a device
410 */
411static void __clockevents_unbind(void *arg)
412{
413 struct ce_unbind *cu = arg;
414 int res;
415
416 raw_spin_lock(&clockevents_lock);
417 res = __clockevents_try_unbind(cu->ce, smp_processor_id());
418 if (res == -EAGAIN)
419 res = clockevents_replace(cu->ce);
420 cu->res = res;
421 raw_spin_unlock(&clockevents_lock);
422}
423
424/*
425 * Issues smp function call to unbind a per cpu device. Called with
426 * clockevents_mutex held.
427 */
428static int clockevents_unbind(struct clock_event_device *ced, int cpu)
429{
430 struct ce_unbind cu = { .ce = ced, .res = -ENODEV };
431
432 smp_call_function_single(cpu, __clockevents_unbind, &cu, 1);
433 return cu.res;
434}
435
436/*
437 * Unbind a clockevents device.
438 */
439int clockevents_unbind_device(struct clock_event_device *ced, int cpu)
440{
441 int ret;
442
443 mutex_lock(&clockevents_mutex);
444 ret = clockevents_unbind(ced, cpu);
445 mutex_unlock(&clockevents_mutex);
446 return ret;
447}
448EXPORT_SYMBOL_GPL(clockevents_unbind_device);
449
450/**
451 * clockevents_register_device - register a clock event device
452 * @dev: device to register
453 */
454void clockevents_register_device(struct clock_event_device *dev)
455{
456 unsigned long flags;
457
458 /* Initialize state to DETACHED */
459 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
460
461 if (!dev->cpumask) {
462 WARN_ON(num_possible_cpus() > 1);
463 dev->cpumask = cpumask_of(smp_processor_id());
464 }
465
466 raw_spin_lock_irqsave(&clockevents_lock, flags);
467
468 list_add(&dev->list, &clockevent_devices);
469 tick_check_new_device(dev);
470 clockevents_notify_released();
471
472 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
473}
474EXPORT_SYMBOL_GPL(clockevents_register_device);
475
476static void clockevents_config(struct clock_event_device *dev, u32 freq)
477{
478 u64 sec;
479
480 if (!(dev->features & CLOCK_EVT_FEAT_ONESHOT))
481 return;
482
483 /*
484 * Calculate the maximum number of seconds we can sleep. Limit
485 * to 10 minutes for hardware which can program more than
486 * 32bit ticks so we still get reasonable conversion values.
487 */
488 sec = dev->max_delta_ticks;
489 do_div(sec, freq);
490 if (!sec)
491 sec = 1;
492 else if (sec > 600 && dev->max_delta_ticks > UINT_MAX)
493 sec = 600;
494
495 clockevents_calc_mult_shift(dev, freq, sec);
496 dev->min_delta_ns = cev_delta2ns(dev->min_delta_ticks, dev, false);
497 dev->max_delta_ns = cev_delta2ns(dev->max_delta_ticks, dev, true);
498}
499
500/**
501 * clockevents_config_and_register - Configure and register a clock event device
502 * @dev: device to register
503 * @freq: The clock frequency
504 * @min_delta: The minimum clock ticks to program in oneshot mode
505 * @max_delta: The maximum clock ticks to program in oneshot mode
506 *
507 * min/max_delta can be 0 for devices which do not support oneshot mode.
508 */
509void clockevents_config_and_register(struct clock_event_device *dev,
510 u32 freq, unsigned long min_delta,
511 unsigned long max_delta)
512{
513 dev->min_delta_ticks = min_delta;
514 dev->max_delta_ticks = max_delta;
515 clockevents_config(dev, freq);
516 clockevents_register_device(dev);
517}
518EXPORT_SYMBOL_GPL(clockevents_config_and_register);
519
520int __clockevents_update_freq(struct clock_event_device *dev, u32 freq)
521{
522 clockevents_config(dev, freq);
523
524 if (clockevent_state_oneshot(dev))
525 return clockevents_program_event(dev, dev->next_event, false);
526
527 if (clockevent_state_periodic(dev))
528 return __clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
529
530 return 0;
531}
532
533/**
534 * clockevents_update_freq - Update frequency and reprogram a clock event device.
535 * @dev: device to modify
536 * @freq: new device frequency
537 *
538 * Reconfigure and reprogram a clock event device in oneshot
539 * mode. Must be called on the cpu for which the device delivers per
540 * cpu timer events. If called for the broadcast device the core takes
541 * care of serialization.
542 *
543 * Returns 0 on success, -ETIME when the event is in the past.
544 */
545int clockevents_update_freq(struct clock_event_device *dev, u32 freq)
546{
547 unsigned long flags;
548 int ret;
549
550 local_irq_save(flags);
551 ret = tick_broadcast_update_freq(dev, freq);
552 if (ret == -ENODEV)
553 ret = __clockevents_update_freq(dev, freq);
554 local_irq_restore(flags);
555 return ret;
556}
557
558/*
559 * Noop handler when we shut down an event device
560 */
561void clockevents_handle_noop(struct clock_event_device *dev)
562{
563}
564
565/**
566 * clockevents_exchange_device - release and request clock devices
567 * @old: device to release (can be NULL)
568 * @new: device to request (can be NULL)
569 *
570 * Called from various tick functions with clockevents_lock held and
571 * interrupts disabled.
572 */
573void clockevents_exchange_device(struct clock_event_device *old,
574 struct clock_event_device *new)
575{
576 /*
577 * Caller releases a clock event device. We queue it into the
578 * released list and do a notify add later.
579 */
580 if (old) {
581 module_put(old->owner);
582 clockevents_switch_state(old, CLOCK_EVT_STATE_DETACHED);
583 list_del(&old->list);
584 list_add(&old->list, &clockevents_released);
585 }
586
587 if (new) {
588 BUG_ON(!clockevent_state_detached(new));
589 clockevents_shutdown(new);
590 }
591}
592
593/**
594 * clockevents_suspend - suspend clock devices
595 */
596void clockevents_suspend(void)
597{
598 struct clock_event_device *dev;
599
600 list_for_each_entry_reverse(dev, &clockevent_devices, list)
601 if (dev->suspend && !clockevent_state_detached(dev))
602 dev->suspend(dev);
603}
604
605/**
606 * clockevents_resume - resume clock devices
607 */
608void clockevents_resume(void)
609{
610 struct clock_event_device *dev;
611
612 list_for_each_entry(dev, &clockevent_devices, list)
613 if (dev->resume && !clockevent_state_detached(dev))
614 dev->resume(dev);
615}
616
617#ifdef CONFIG_HOTPLUG_CPU
618/**
619 * tick_cleanup_dead_cpu - Cleanup the tick and clockevents of a dead cpu
620 */
621void tick_cleanup_dead_cpu(int cpu)
622{
623 struct clock_event_device *dev, *tmp;
624 unsigned long flags;
625
626 raw_spin_lock_irqsave(&clockevents_lock, flags);
627
628 tick_shutdown_broadcast_oneshot(cpu);
629 tick_shutdown_broadcast(cpu);
630 tick_shutdown(cpu);
631 /*
632 * Unregister the clock event devices which were
633 * released from the users in the notify chain.
634 */
635 list_for_each_entry_safe(dev, tmp, &clockevents_released, list)
636 list_del(&dev->list);
637 /*
638 * Now check whether the CPU has left unused per cpu devices
639 */
640 list_for_each_entry_safe(dev, tmp, &clockevent_devices, list) {
641 if (cpumask_test_cpu(cpu, dev->cpumask) &&
642 cpumask_weight(dev->cpumask) == 1 &&
643 !tick_is_broadcast_device(dev)) {
644 BUG_ON(!clockevent_state_detached(dev));
645 list_del(&dev->list);
646 }
647 }
648 raw_spin_unlock_irqrestore(&clockevents_lock, flags);
649}
650#endif
651
652#ifdef CONFIG_SYSFS
653static struct bus_type clockevents_subsys = {
654 .name = "clockevents",
655 .dev_name = "clockevent",
656};
657
658static DEFINE_PER_CPU(struct device, tick_percpu_dev);
659static struct tick_device *tick_get_tick_dev(struct device *dev);
660
661static ssize_t sysfs_show_current_tick_dev(struct device *dev,
662 struct device_attribute *attr,
663 char *buf)
664{
665 struct tick_device *td;
666 ssize_t count = 0;
667
668 raw_spin_lock_irq(&clockevents_lock);
669 td = tick_get_tick_dev(dev);
670 if (td && td->evtdev)
671 count = snprintf(buf, PAGE_SIZE, "%s\n", td->evtdev->name);
672 raw_spin_unlock_irq(&clockevents_lock);
673 return count;
674}
675static DEVICE_ATTR(current_device, 0444, sysfs_show_current_tick_dev, NULL);
676
677/* We don't support the abomination of removable broadcast devices */
678static ssize_t sysfs_unbind_tick_dev(struct device *dev,
679 struct device_attribute *attr,
680 const char *buf, size_t count)
681{
682 char name[CS_NAME_LEN];
683 ssize_t ret = sysfs_get_uname(buf, name, count);
684 struct clock_event_device *ce;
685
686 if (ret < 0)
687 return ret;
688
689 ret = -ENODEV;
690 mutex_lock(&clockevents_mutex);
691 raw_spin_lock_irq(&clockevents_lock);
692 list_for_each_entry(ce, &clockevent_devices, list) {
693 if (!strcmp(ce->name, name)) {
694 ret = __clockevents_try_unbind(ce, dev->id);
695 break;
696 }
697 }
698 raw_spin_unlock_irq(&clockevents_lock);
699 /*
700 * We hold clockevents_mutex, so ce can't go away
701 */
702 if (ret == -EAGAIN)
703 ret = clockevents_unbind(ce, dev->id);
704 mutex_unlock(&clockevents_mutex);
705 return ret ? ret : count;
706}
707static DEVICE_ATTR(unbind_device, 0200, NULL, sysfs_unbind_tick_dev);
708
709#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
710static struct device tick_bc_dev = {
711 .init_name = "broadcast",
712 .id = 0,
713 .bus = &clockevents_subsys,
714};
715
716static struct tick_device *tick_get_tick_dev(struct device *dev)
717{
718 return dev == &tick_bc_dev ? tick_get_broadcast_device() :
719 &per_cpu(tick_cpu_device, dev->id);
720}
721
722static __init int tick_broadcast_init_sysfs(void)
723{
724 int err = device_register(&tick_bc_dev);
725
726 if (!err)
727 err = device_create_file(&tick_bc_dev, &dev_attr_current_device);
728 return err;
729}
730#else
731static struct tick_device *tick_get_tick_dev(struct device *dev)
732{
733 return &per_cpu(tick_cpu_device, dev->id);
734}
735static inline int tick_broadcast_init_sysfs(void) { return 0; }
736#endif
737
738static int __init tick_init_sysfs(void)
739{
740 int cpu;
741
742 for_each_possible_cpu(cpu) {
743 struct device *dev = &per_cpu(tick_percpu_dev, cpu);
744 int err;
745
746 dev->id = cpu;
747 dev->bus = &clockevents_subsys;
748 err = device_register(dev);
749 if (!err)
750 err = device_create_file(dev, &dev_attr_current_device);
751 if (!err)
752 err = device_create_file(dev, &dev_attr_unbind_device);
753 if (err)
754 return err;
755 }
756 return tick_broadcast_init_sysfs();
757}
758
759static int __init clockevents_init_sysfs(void)
760{
761 int err = subsys_system_register(&clockevents_subsys, NULL);
762
763 if (!err)
764 err = tick_init_sysfs();
765 return err;
766}
767device_initcall(clockevents_init_sysfs);
768#endif /* SYSFS */