Linux Audio

Check our new training course

Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Request reply cache. This is currently a global cache, but this may
  4 * change in the future and be a per-client cache.
  5 *
  6 * This code is heavily inspired by the 44BSD implementation, although
  7 * it does things a bit differently.
  8 *
  9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
 10 */
 11
 12#include <linux/sunrpc/svc_xprt.h>
 13#include <linux/slab.h>
 14#include <linux/vmalloc.h>
 15#include <linux/sunrpc/addr.h>
 16#include <linux/highmem.h>
 17#include <linux/log2.h>
 18#include <linux/hash.h>
 19#include <net/checksum.h>
 20
 21#include "nfsd.h"
 22#include "cache.h"
 23#include "trace.h"
 
 24
 25/*
 26 * We use this value to determine the number of hash buckets from the max
 27 * cache size, the idea being that when the cache is at its maximum number
 28 * of entries, then this should be the average number of entries per bucket.
 29 */
 30#define TARGET_BUCKET_SIZE	64
 31
 32struct nfsd_drc_bucket {
 33	struct rb_root rb_head;
 34	struct list_head lru_head;
 35	spinlock_t cache_lock;
 36};
 37
 
 38static struct kmem_cache	*drc_slab;
 39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
 41static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
 42					    struct shrink_control *sc);
 43static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
 44					   struct shrink_control *sc);
 45
 
 
 
 
 
 
 46/*
 47 * Put a cap on the size of the DRC based on the amount of available
 48 * low memory in the machine.
 49 *
 50 *  64MB:    8192
 51 * 128MB:   11585
 52 * 256MB:   16384
 53 * 512MB:   23170
 54 *   1GB:   32768
 55 *   2GB:   46340
 56 *   4GB:   65536
 57 *   8GB:   92681
 58 *  16GB:  131072
 59 *
 60 * ...with a hard cap of 256k entries. In the worst case, each entry will be
 61 * ~1k, so the above numbers should give a rough max of the amount of memory
 62 * used in k.
 63 *
 64 * XXX: these limits are per-container, so memory used will increase
 65 * linearly with number of containers.  Maybe that's OK.
 66 */
 67static unsigned int
 68nfsd_cache_size_limit(void)
 69{
 70	unsigned int limit;
 71	unsigned long low_pages = totalram_pages() - totalhigh_pages();
 72
 73	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
 74	return min_t(unsigned int, limit, 256*1024);
 75}
 76
 77/*
 78 * Compute the number of hash buckets we need. Divide the max cachesize by
 79 * the "target" max bucket size, and round up to next power of two.
 80 */
 81static unsigned int
 82nfsd_hashsize(unsigned int limit)
 83{
 84	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
 85}
 86
 87static struct nfsd_cacherep *
 88nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum,
 89		    struct nfsd_net *nn)
 90{
 91	struct nfsd_cacherep *rp;
 
 
 
 
 
 
 92
 93	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
 94	if (rp) {
 95		rp->c_state = RC_UNUSED;
 96		rp->c_type = RC_NOCACHE;
 97		RB_CLEAR_NODE(&rp->c_node);
 98		INIT_LIST_HEAD(&rp->c_lru);
 99
100		memset(&rp->c_key, 0, sizeof(rp->c_key));
101		rp->c_key.k_xid = rqstp->rq_xid;
102		rp->c_key.k_proc = rqstp->rq_proc;
103		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105		rp->c_key.k_prot = rqstp->rq_prot;
106		rp->c_key.k_vers = rqstp->rq_vers;
107		rp->c_key.k_len = rqstp->rq_arg.len;
108		rp->c_key.k_csum = csum;
109	}
110	return rp;
111}
112
113static void nfsd_cacherep_free(struct nfsd_cacherep *rp)
114{
115	if (rp->c_type == RC_REPLBUFF)
116		kfree(rp->c_replvec.iov_base);
117	kmem_cache_free(drc_slab, rp);
118}
119
120static unsigned long
121nfsd_cacherep_dispose(struct list_head *dispose)
122{
123	struct nfsd_cacherep *rp;
124	unsigned long freed = 0;
125
126	while (!list_empty(dispose)) {
127		rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru);
128		list_del(&rp->c_lru);
129		nfsd_cacherep_free(rp);
130		freed++;
131	}
132	return freed;
133}
134
135static void
136nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
137			    struct nfsd_cacherep *rp)
138{
139	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base)
140		nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
141	if (rp->c_state != RC_UNUSED) {
142		rb_erase(&rp->c_node, &b->rb_head);
143		list_del(&rp->c_lru);
144		atomic_dec(&nn->num_drc_entries);
145		nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
146	}
 
 
 
 
147}
148
149static void
150nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
151				struct nfsd_net *nn)
152{
153	nfsd_cacherep_unlink_locked(nn, b, rp);
154	nfsd_cacherep_free(rp);
155}
156
157static void
158nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
159			struct nfsd_net *nn)
160{
161	spin_lock(&b->cache_lock);
162	nfsd_cacherep_unlink_locked(nn, b, rp);
163	spin_unlock(&b->cache_lock);
164	nfsd_cacherep_free(rp);
165}
166
167int nfsd_drc_slab_create(void)
168{
169	drc_slab = KMEM_CACHE(nfsd_cacherep, 0);
170	return drc_slab ? 0: -ENOMEM;
171}
172
173void nfsd_drc_slab_free(void)
174{
175	kmem_cache_destroy(drc_slab);
176}
177
178int nfsd_reply_cache_init(struct nfsd_net *nn)
179{
180	unsigned int hashsize;
181	unsigned int i;
 
182
183	nn->max_drc_entries = nfsd_cache_size_limit();
184	atomic_set(&nn->num_drc_entries, 0);
185	hashsize = nfsd_hashsize(nn->max_drc_entries);
186	nn->maskbits = ilog2(hashsize);
187
188	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
189				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
190	if (!nn->drc_hashtbl)
191		return -ENOMEM;
192
193	nn->nfsd_reply_cache_shrinker = shrinker_alloc(0, "nfsd-reply:%s",
194						       nn->nfsd_name);
195	if (!nn->nfsd_reply_cache_shrinker)
196		goto out_shrinker;
197
198	nn->nfsd_reply_cache_shrinker->scan_objects = nfsd_reply_cache_scan;
199	nn->nfsd_reply_cache_shrinker->count_objects = nfsd_reply_cache_count;
200	nn->nfsd_reply_cache_shrinker->seeks = 1;
201	nn->nfsd_reply_cache_shrinker->private_data = nn;
202
203	shrinker_register(nn->nfsd_reply_cache_shrinker);
204
205	for (i = 0; i < hashsize; i++) {
206		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
207		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
208	}
209	nn->drc_hashsize = hashsize;
210
211	return 0;
212out_shrinker:
213	kvfree(nn->drc_hashtbl);
214	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
 
215	return -ENOMEM;
216}
217
218void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
219{
220	struct nfsd_cacherep *rp;
221	unsigned int i;
222
223	shrinker_free(nn->nfsd_reply_cache_shrinker);
224
225	for (i = 0; i < nn->drc_hashsize; i++) {
226		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
227		while (!list_empty(head)) {
228			rp = list_first_entry(head, struct nfsd_cacherep, c_lru);
229			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
230									rp, nn);
231		}
232	}
233
234	kvfree(nn->drc_hashtbl);
235	nn->drc_hashtbl = NULL;
236	nn->drc_hashsize = 0;
237
 
 
238}
239
240/*
241 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
242 * not already scheduled.
243 */
244static void
245lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp)
246{
247	rp->c_timestamp = jiffies;
248	list_move_tail(&rp->c_lru, &b->lru_head);
249}
250
251static noinline struct nfsd_drc_bucket *
252nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
253{
254	unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
255
256	return &nn->drc_hashtbl[hash];
257}
258
259/*
260 * Remove and return no more than @max expired entries in bucket @b.
261 * If @max is zero, do not limit the number of removed entries.
262 */
263static void
264nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
265			 unsigned int max, struct list_head *dispose)
266{
267	unsigned long expiry = jiffies - RC_EXPIRE;
268	struct nfsd_cacherep *rp, *tmp;
269	unsigned int freed = 0;
270
271	lockdep_assert_held(&b->cache_lock);
272
273	/* The bucket LRU is ordered oldest-first. */
274	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
275		/*
276		 * Don't free entries attached to calls that are still
277		 * in-progress, but do keep scanning the list.
278		 */
279		if (rp->c_state == RC_INPROG)
280			continue;
281
282		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
283		    time_before(expiry, rp->c_timestamp))
284			break;
285
286		nfsd_cacherep_unlink_locked(nn, b, rp);
287		list_add(&rp->c_lru, dispose);
288
289		if (max && ++freed > max)
290			break;
 
 
291	}
 
292}
293
294/**
295 * nfsd_reply_cache_count - count_objects method for the DRC shrinker
296 * @shrink: our registered shrinker context
297 * @sc: garbage collection parameters
298 *
299 * Returns the total number of entries in the duplicate reply cache. To
300 * keep things simple and quick, this is not the number of expired entries
301 * in the cache (ie, the number that would be removed by a call to
302 * nfsd_reply_cache_scan).
303 */
304static unsigned long
305nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
306{
307	struct nfsd_net *nn = shrink->private_data;
308
309	return atomic_read(&nn->num_drc_entries);
310}
311
312/**
313 * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker
314 * @shrink: our registered shrinker context
315 * @sc: garbage collection parameters
316 *
317 * Free expired entries on each bucket's LRU list until we've released
318 * nr_to_scan freed objects. Nothing will be released if the cache
319 * has not exceeded it's max_drc_entries limit.
320 *
321 * Returns the number of entries released by this call.
322 */
323static unsigned long
324nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
325{
326	struct nfsd_net *nn = shrink->private_data;
327	unsigned long freed = 0;
328	LIST_HEAD(dispose);
329	unsigned int i;
 
330
331	for (i = 0; i < nn->drc_hashsize; i++) {
332		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
333
334		if (list_empty(&b->lru_head))
335			continue;
336
337		spin_lock(&b->cache_lock);
338		nfsd_prune_bucket_locked(nn, b, 0, &dispose);
339		spin_unlock(&b->cache_lock);
340
341		freed += nfsd_cacherep_dispose(&dispose);
342		if (freed > sc->nr_to_scan)
343			break;
344	}
345	return freed;
346}
347
348/**
349 * nfsd_cache_csum - Checksum incoming NFS Call arguments
350 * @buf: buffer containing a whole RPC Call message
351 * @start: starting byte of the NFS Call header
352 * @remaining: size of the NFS Call header, in bytes
353 *
354 * Compute a weak checksum of the leading bytes of an NFS procedure
355 * call header to help verify that a retransmitted Call matches an
356 * entry in the duplicate reply cache.
357 *
358 * To avoid assumptions about how the RPC message is laid out in
359 * @buf and what else it might contain (eg, a GSS MIC suffix), the
360 * caller passes us the exact location and length of the NFS Call
361 * header.
362 *
363 * Returns a 32-bit checksum value, as defined in RFC 793.
364 */
365static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start,
366			      unsigned int remaining)
367{
368	unsigned int base, len;
369	struct xdr_buf subbuf;
370	__wsum csum = 0;
371	void *p;
372	int idx;
373
374	if (remaining > RC_CSUMLEN)
375		remaining = RC_CSUMLEN;
376	if (xdr_buf_subsegment(buf, &subbuf, start, remaining))
377		return csum;
 
 
378
379	/* rq_arg.head first */
380	if (subbuf.head[0].iov_len) {
381		len = min_t(unsigned int, subbuf.head[0].iov_len, remaining);
382		csum = csum_partial(subbuf.head[0].iov_base, len, csum);
383		remaining -= len;
384	}
385
386	/* Continue into page array */
387	idx = subbuf.page_base / PAGE_SIZE;
388	base = subbuf.page_base & ~PAGE_MASK;
389	while (remaining) {
390		p = page_address(subbuf.pages[idx]) + base;
391		len = min_t(unsigned int, PAGE_SIZE - base, remaining);
392		csum = csum_partial(p, len, csum);
393		remaining -= len;
394		base = 0;
395		++idx;
396	}
397	return csum;
398}
399
400static int
401nfsd_cache_key_cmp(const struct nfsd_cacherep *key,
402		   const struct nfsd_cacherep *rp, struct nfsd_net *nn)
403{
404	if (key->c_key.k_xid == rp->c_key.k_xid &&
405	    key->c_key.k_csum != rp->c_key.k_csum) {
406		nfsd_stats_payload_misses_inc(nn);
407		trace_nfsd_drc_mismatch(nn, key, rp);
 
 
 
408	}
409
410	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
 
 
 
 
 
 
 
 
 
411}
412
413/*
414 * Search the request hash for an entry that matches the given rqstp.
415 * Must be called with cache_lock held. Returns the found entry or
416 * inserts an empty key on failure.
417 */
418static struct nfsd_cacherep *
419nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key,
420			struct nfsd_net *nn)
421{
422	struct nfsd_cacherep	*rp, *ret = key;
423	struct rb_node		**p = &b->rb_head.rb_node,
424				*parent = NULL;
425	unsigned int		entries = 0;
426	int cmp;
427
428	while (*p != NULL) {
429		++entries;
430		parent = *p;
431		rp = rb_entry(parent, struct nfsd_cacherep, c_node);
432
433		cmp = nfsd_cache_key_cmp(key, rp, nn);
434		if (cmp < 0)
435			p = &parent->rb_left;
436		else if (cmp > 0)
437			p = &parent->rb_right;
438		else {
439			ret = rp;
440			goto out;
441		}
442	}
443	rb_link_node(&key->c_node, parent, p);
444	rb_insert_color(&key->c_node, &b->rb_head);
445out:
446	/* tally hash chain length stats */
447	if (entries > nn->longest_chain) {
448		nn->longest_chain = entries;
449		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
450	} else if (entries == nn->longest_chain) {
451		/* prefer to keep the smallest cachesize possible here */
452		nn->longest_chain_cachesize = min_t(unsigned int,
453				nn->longest_chain_cachesize,
454				atomic_read(&nn->num_drc_entries));
455	}
456
457	lru_put_end(b, ret);
458	return ret;
459}
460
461/**
462 * nfsd_cache_lookup - Find an entry in the duplicate reply cache
463 * @rqstp: Incoming Call to find
464 * @start: starting byte in @rqstp->rq_arg of the NFS Call header
465 * @len: size of the NFS Call header, in bytes
466 * @cacherep: OUT: DRC entry for this request
467 *
468 * Try to find an entry matching the current call in the cache. When none
469 * is found, we try to grab the oldest expired entry off the LRU list. If
470 * a suitable one isn't there, then drop the cache_lock and allocate a
471 * new one, then search again in case one got inserted while this thread
472 * didn't hold the lock.
473 *
474 * Return values:
475 *   %RC_DOIT: Process the request normally
476 *   %RC_REPLY: Reply from cache
477 *   %RC_DROPIT: Do not process the request further
478 */
479int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start,
480		      unsigned int len, struct nfsd_cacherep **cacherep)
481{
482	struct nfsd_net		*nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
483	struct nfsd_cacherep	*rp, *found;
 
 
 
484	__wsum			csum;
485	struct nfsd_drc_bucket	*b;
 
 
486	int type = rqstp->rq_cachetype;
487	LIST_HEAD(dispose);
488	int rtn = RC_DOIT;
489
 
490	if (type == RC_NOCACHE) {
491		nfsd_stats_rc_nocache_inc(nn);
492		goto out;
493	}
494
495	csum = nfsd_cache_csum(&rqstp->rq_arg, start, len);
496
497	/*
498	 * Since the common case is a cache miss followed by an insert,
499	 * preallocate an entry.
500	 */
501	rp = nfsd_cacherep_alloc(rqstp, csum, nn);
502	if (!rp)
503		goto out;
504
505	b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
506	spin_lock(&b->cache_lock);
507	found = nfsd_cache_insert(b, rp, nn);
508	if (found != rp)
 
 
 
 
 
 
 
 
 
 
 
509		goto found_entry;
510	*cacherep = rp;
 
 
 
 
 
 
 
 
511	rp->c_state = RC_INPROG;
512	nfsd_prune_bucket_locked(nn, b, 3, &dispose);
513	spin_unlock(&b->cache_lock);
 
 
 
 
 
 
514
515	nfsd_cacherep_dispose(&dispose);
516
517	nfsd_stats_rc_misses_inc(nn);
518	atomic_inc(&nn->num_drc_entries);
519	nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
520	goto out;
 
 
 
 
 
 
521
522found_entry:
 
523	/* We found a matching entry which is either in progress or done. */
524	nfsd_reply_cache_free_locked(NULL, rp, nn);
525	nfsd_stats_rc_hits_inc(nn);
526	rtn = RC_DROPIT;
527	rp = found;
528
529	/* Request being processed */
530	if (rp->c_state == RC_INPROG)
531		goto out_trace;
 
532
533	/* From the hall of fame of impractical attacks:
534	 * Is this a user who tries to snoop on the cache? */
535	rtn = RC_DOIT;
536	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
537		goto out_trace;
538
539	/* Compose RPC reply header */
540	switch (rp->c_type) {
541	case RC_NOCACHE:
542		break;
543	case RC_REPLSTAT:
544		xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat);
545		rtn = RC_REPLY;
546		break;
547	case RC_REPLBUFF:
548		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
549			goto out_unlock; /* should not happen */
550		rtn = RC_REPLY;
551		break;
552	default:
553		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
 
554	}
555
556out_trace:
557	trace_nfsd_drc_found(nn, rqstp, rtn);
558out_unlock:
559	spin_unlock(&b->cache_lock);
560out:
561	return rtn;
562}
563
564/**
565 * nfsd_cache_update - Update an entry in the duplicate reply cache.
566 * @rqstp: svc_rqst with a finished Reply
567 * @rp: IN: DRC entry for this request
568 * @cachetype: which cache to update
569 * @statp: pointer to Reply's NFS status code, or NULL
570 *
571 * This is called from nfsd_dispatch when the procedure has been
572 * executed and the complete reply is in rqstp->rq_res.
573 *
574 * We're copying around data here rather than swapping buffers because
575 * the toplevel loop requires max-sized buffers, which would be a waste
576 * of memory for a cache with a max reply size of 100 bytes (diropokres).
577 *
578 * If we should start to use different types of cache entries tailored
579 * specifically for attrstat and fh's, we may save even more space.
580 *
581 * Also note that a cachetype of RC_NOCACHE can legally be passed when
582 * nfsd failed to encode a reply that otherwise would have been cached.
583 * In this case, nfsd_cache_update is called with statp == NULL.
584 */
585void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp,
586		       int cachetype, __be32 *statp)
587{
588	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
589	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
 
590	struct nfsd_drc_bucket *b;
591	int		len;
592	size_t		bufsize = 0;
593
594	if (!rp)
595		return;
596
597	b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
 
598
599	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
600	len >>= 2;
601
602	/* Don't cache excessive amounts of data and XDR failures */
603	if (!statp || len > (256 >> 2)) {
604		nfsd_reply_cache_free(b, rp, nn);
605		return;
606	}
607
608	switch (cachetype) {
609	case RC_REPLSTAT:
610		if (len != 1)
611			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
612		rp->c_replstat = *statp;
613		break;
614	case RC_REPLBUFF:
615		cachv = &rp->c_replvec;
616		bufsize = len << 2;
617		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
618		if (!cachv->iov_base) {
619			nfsd_reply_cache_free(b, rp, nn);
620			return;
621		}
622		cachv->iov_len = bufsize;
623		memcpy(cachv->iov_base, statp, bufsize);
624		break;
625	case RC_NOCACHE:
626		nfsd_reply_cache_free(b, rp, nn);
627		return;
628	}
629	spin_lock(&b->cache_lock);
630	nfsd_stats_drc_mem_usage_add(nn, bufsize);
631	lru_put_end(b, rp);
632	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
633	rp->c_type = cachetype;
634	rp->c_state = RC_DONE;
635	spin_unlock(&b->cache_lock);
636	return;
637}
638
 
 
 
 
 
639static int
640nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
641{
642	__be32 *p;
643
644	p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len);
645	if (unlikely(!p))
646		return false;
647	memcpy(p, data->iov_base, data->iov_len);
648	xdr_commit_encode(&rqstp->rq_res_stream);
649	return true;
 
 
650}
651
652/*
653 * Note that fields may be added, removed or reordered in the future. Programs
654 * scraping this file for info should test the labels to ensure they're
655 * getting the correct field.
656 */
657int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
658{
659	struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
660					  nfsd_net_id);
661
662	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
663	seq_printf(m, "num entries:           %u\n",
664		   atomic_read(&nn->num_drc_entries));
665	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
666	seq_printf(m, "mem usage:             %lld\n",
667		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_DRC_MEM_USAGE]));
668	seq_printf(m, "cache hits:            %lld\n",
669		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_HITS]));
670	seq_printf(m, "cache misses:          %lld\n",
671		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_MISSES]));
672	seq_printf(m, "not cached:            %lld\n",
673		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_RC_NOCACHE]));
674	seq_printf(m, "payload misses:        %lld\n",
675		   percpu_counter_sum_positive(&nn->counter[NFSD_STATS_PAYLOAD_MISSES]));
676	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
677	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
678	return 0;
 
 
 
 
 
679}
v4.17
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Request reply cache. This is currently a global cache, but this may
  4 * change in the future and be a per-client cache.
  5 *
  6 * This code is heavily inspired by the 44BSD implementation, although
  7 * it does things a bit differently.
  8 *
  9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
 10 */
 11
 
 12#include <linux/slab.h>
 13#include <linux/vmalloc.h>
 14#include <linux/sunrpc/addr.h>
 15#include <linux/highmem.h>
 16#include <linux/log2.h>
 17#include <linux/hash.h>
 18#include <net/checksum.h>
 19
 20#include "nfsd.h"
 21#include "cache.h"
 22
 23#define NFSDDBG_FACILITY	NFSDDBG_REPCACHE
 24
 25/*
 26 * We use this value to determine the number of hash buckets from the max
 27 * cache size, the idea being that when the cache is at its maximum number
 28 * of entries, then this should be the average number of entries per bucket.
 29 */
 30#define TARGET_BUCKET_SIZE	64
 31
 32struct nfsd_drc_bucket {
 
 33	struct list_head lru_head;
 34	spinlock_t cache_lock;
 35};
 36
 37static struct nfsd_drc_bucket	*drc_hashtbl;
 38static struct kmem_cache	*drc_slab;
 39
 40/* max number of entries allowed in the cache */
 41static unsigned int		max_drc_entries;
 42
 43/* number of significant bits in the hash value */
 44static unsigned int		maskbits;
 45static unsigned int		drc_hashsize;
 46
 47/*
 48 * Stats and other tracking of on the duplicate reply cache. All of these and
 49 * the "rc" fields in nfsdstats are protected by the cache_lock
 50 */
 51
 52/* total number of entries */
 53static atomic_t			num_drc_entries;
 54
 55/* cache misses due only to checksum comparison failures */
 56static unsigned int		payload_misses;
 57
 58/* amount of memory (in bytes) currently consumed by the DRC */
 59static unsigned int		drc_mem_usage;
 60
 61/* longest hash chain seen */
 62static unsigned int		longest_chain;
 63
 64/* size of cache when we saw the longest hash chain */
 65static unsigned int		longest_chain_cachesize;
 66
 67static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
 68static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
 69					    struct shrink_control *sc);
 70static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
 71					   struct shrink_control *sc);
 72
 73static struct shrinker nfsd_reply_cache_shrinker = {
 74	.scan_objects = nfsd_reply_cache_scan,
 75	.count_objects = nfsd_reply_cache_count,
 76	.seeks	= 1,
 77};
 78
 79/*
 80 * Put a cap on the size of the DRC based on the amount of available
 81 * low memory in the machine.
 82 *
 83 *  64MB:    8192
 84 * 128MB:   11585
 85 * 256MB:   16384
 86 * 512MB:   23170
 87 *   1GB:   32768
 88 *   2GB:   46340
 89 *   4GB:   65536
 90 *   8GB:   92681
 91 *  16GB:  131072
 92 *
 93 * ...with a hard cap of 256k entries. In the worst case, each entry will be
 94 * ~1k, so the above numbers should give a rough max of the amount of memory
 95 * used in k.
 
 
 
 96 */
 97static unsigned int
 98nfsd_cache_size_limit(void)
 99{
100	unsigned int limit;
101	unsigned long low_pages = totalram_pages - totalhigh_pages;
102
103	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
104	return min_t(unsigned int, limit, 256*1024);
105}
106
107/*
108 * Compute the number of hash buckets we need. Divide the max cachesize by
109 * the "target" max bucket size, and round up to next power of two.
110 */
111static unsigned int
112nfsd_hashsize(unsigned int limit)
113{
114	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
115}
116
117static u32
118nfsd_cache_hash(__be32 xid)
 
119{
120	return hash_32(be32_to_cpu(xid), maskbits);
121}
122
123static struct svc_cacherep *
124nfsd_reply_cache_alloc(void)
125{
126	struct svc_cacherep	*rp;
127
128	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
129	if (rp) {
130		rp->c_state = RC_UNUSED;
131		rp->c_type = RC_NOCACHE;
 
132		INIT_LIST_HEAD(&rp->c_lru);
 
 
 
 
 
 
 
 
 
 
133	}
134	return rp;
135}
136
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
137static void
138nfsd_reply_cache_free_locked(struct svc_cacherep *rp)
 
139{
140	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
141		drc_mem_usage -= rp->c_replvec.iov_len;
142		kfree(rp->c_replvec.iov_base);
 
 
 
 
143	}
144	list_del(&rp->c_lru);
145	atomic_dec(&num_drc_entries);
146	drc_mem_usage -= sizeof(*rp);
147	kmem_cache_free(drc_slab, rp);
148}
149
150static void
151nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
 
 
 
 
 
 
 
 
 
152{
153	spin_lock(&b->cache_lock);
154	nfsd_reply_cache_free_locked(rp);
155	spin_unlock(&b->cache_lock);
 
156}
157
158int nfsd_reply_cache_init(void)
 
 
 
 
 
 
 
 
 
 
 
159{
160	unsigned int hashsize;
161	unsigned int i;
162	int status = 0;
163
164	max_drc_entries = nfsd_cache_size_limit();
165	atomic_set(&num_drc_entries, 0);
166	hashsize = nfsd_hashsize(max_drc_entries);
167	maskbits = ilog2(hashsize);
168
169	status = register_shrinker(&nfsd_reply_cache_shrinker);
170	if (status)
171		return status;
172
173	drc_slab = kmem_cache_create("nfsd_drc", sizeof(struct svc_cacherep),
174					0, 0, NULL);
175	if (!drc_slab)
176		goto out_nomem;
177
178	drc_hashtbl = kcalloc(hashsize, sizeof(*drc_hashtbl), GFP_KERNEL);
179	if (!drc_hashtbl) {
180		drc_hashtbl = vzalloc(hashsize * sizeof(*drc_hashtbl));
181		if (!drc_hashtbl)
182			goto out_nomem;
183	}
 
184
185	for (i = 0; i < hashsize; i++) {
186		INIT_LIST_HEAD(&drc_hashtbl[i].lru_head);
187		spin_lock_init(&drc_hashtbl[i].cache_lock);
188	}
189	drc_hashsize = hashsize;
190
191	return 0;
192out_nomem:
 
193	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
194	nfsd_reply_cache_shutdown();
195	return -ENOMEM;
196}
197
198void nfsd_reply_cache_shutdown(void)
199{
200	struct svc_cacherep	*rp;
201	unsigned int i;
202
203	unregister_shrinker(&nfsd_reply_cache_shrinker);
204
205	for (i = 0; i < drc_hashsize; i++) {
206		struct list_head *head = &drc_hashtbl[i].lru_head;
207		while (!list_empty(head)) {
208			rp = list_first_entry(head, struct svc_cacherep, c_lru);
209			nfsd_reply_cache_free_locked(rp);
 
210		}
211	}
212
213	kvfree(drc_hashtbl);
214	drc_hashtbl = NULL;
215	drc_hashsize = 0;
216
217	kmem_cache_destroy(drc_slab);
218	drc_slab = NULL;
219}
220
221/*
222 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
223 * not already scheduled.
224 */
225static void
226lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
227{
228	rp->c_timestamp = jiffies;
229	list_move_tail(&rp->c_lru, &b->lru_head);
230}
231
232static long
233prune_bucket(struct nfsd_drc_bucket *b)
 
 
 
 
 
 
 
 
 
 
 
 
 
234{
235	struct svc_cacherep *rp, *tmp;
236	long freed = 0;
 
237
 
 
 
238	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
239		/*
240		 * Don't free entries attached to calls that are still
241		 * in-progress, but do keep scanning the list.
242		 */
243		if (rp->c_state == RC_INPROG)
244			continue;
245		if (atomic_read(&num_drc_entries) <= max_drc_entries &&
246		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
 
 
 
 
 
 
 
247			break;
248		nfsd_reply_cache_free_locked(rp);
249		freed++;
250	}
251	return freed;
252}
253
254/*
255 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
256 * Also prune the oldest ones when the total exceeds the max number of entries.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257 */
258static long
259prune_cache_entries(void)
260{
 
 
 
261	unsigned int i;
262	long freed = 0;
263
264	for (i = 0; i < drc_hashsize; i++) {
265		struct nfsd_drc_bucket *b = &drc_hashtbl[i];
266
267		if (list_empty(&b->lru_head))
268			continue;
 
269		spin_lock(&b->cache_lock);
270		freed += prune_bucket(b);
271		spin_unlock(&b->cache_lock);
 
 
 
 
272	}
273	return freed;
274}
275
276static unsigned long
277nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
278{
279	return atomic_read(&num_drc_entries);
280}
281
282static unsigned long
283nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
284{
285	return prune_cache_entries();
286}
287/*
288 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
 
 
 
289 */
290static __wsum
291nfsd_cache_csum(struct svc_rqst *rqstp)
292{
 
 
 
 
293	int idx;
294	unsigned int base;
295	__wsum csum;
296	struct xdr_buf *buf = &rqstp->rq_arg;
297	const unsigned char *p = buf->head[0].iov_base;
298	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
299				RC_CSUMLEN);
300	size_t len = min(buf->head[0].iov_len, csum_len);
301
302	/* rq_arg.head first */
303	csum = csum_partial(p, len, 0);
304	csum_len -= len;
 
 
 
305
306	/* Continue into page array */
307	idx = buf->page_base / PAGE_SIZE;
308	base = buf->page_base & ~PAGE_MASK;
309	while (csum_len) {
310		p = page_address(buf->pages[idx]) + base;
311		len = min_t(size_t, PAGE_SIZE - base, csum_len);
312		csum = csum_partial(p, len, csum);
313		csum_len -= len;
314		base = 0;
315		++idx;
316	}
317	return csum;
318}
319
320static bool
321nfsd_cache_match(struct svc_rqst *rqstp, __wsum csum, struct svc_cacherep *rp)
 
322{
323	/* Check RPC XID first */
324	if (rqstp->rq_xid != rp->c_xid)
325		return false;
326	/* compare checksum of NFS data */
327	if (csum != rp->c_csum) {
328		++payload_misses;
329		return false;
330	}
331
332	/* Other discriminators */
333	if (rqstp->rq_proc != rp->c_proc ||
334	    rqstp->rq_prot != rp->c_prot ||
335	    rqstp->rq_vers != rp->c_vers ||
336	    rqstp->rq_arg.len != rp->c_len ||
337	    !rpc_cmp_addr(svc_addr(rqstp), (struct sockaddr *)&rp->c_addr) ||
338	    rpc_get_port(svc_addr(rqstp)) != rpc_get_port((struct sockaddr *)&rp->c_addr))
339		return false;
340
341	return true;
342}
343
344/*
345 * Search the request hash for an entry that matches the given rqstp.
346 * Must be called with cache_lock held. Returns the found entry or
347 * NULL on failure.
348 */
349static struct svc_cacherep *
350nfsd_cache_search(struct nfsd_drc_bucket *b, struct svc_rqst *rqstp,
351		__wsum csum)
352{
353	struct svc_cacherep	*rp, *ret = NULL;
354	struct list_head 	*rh = &b->lru_head;
 
355	unsigned int		entries = 0;
 
356
357	list_for_each_entry(rp, rh, c_lru) {
358		++entries;
359		if (nfsd_cache_match(rqstp, csum, rp)) {
 
 
 
 
 
 
 
 
360			ret = rp;
361			break;
362		}
363	}
364
 
 
365	/* tally hash chain length stats */
366	if (entries > longest_chain) {
367		longest_chain = entries;
368		longest_chain_cachesize = atomic_read(&num_drc_entries);
369	} else if (entries == longest_chain) {
370		/* prefer to keep the smallest cachesize possible here */
371		longest_chain_cachesize = min_t(unsigned int,
372				longest_chain_cachesize,
373				atomic_read(&num_drc_entries));
374	}
375
 
376	return ret;
377}
378
379/*
 
 
 
 
 
 
380 * Try to find an entry matching the current call in the cache. When none
381 * is found, we try to grab the oldest expired entry off the LRU list. If
382 * a suitable one isn't there, then drop the cache_lock and allocate a
383 * new one, then search again in case one got inserted while this thread
384 * didn't hold the lock.
 
 
 
 
 
385 */
386int
387nfsd_cache_lookup(struct svc_rqst *rqstp)
388{
389	struct svc_cacherep	*rp, *found;
390	__be32			xid = rqstp->rq_xid;
391	u32			proto =  rqstp->rq_prot,
392				vers = rqstp->rq_vers,
393				proc = rqstp->rq_proc;
394	__wsum			csum;
395	u32 hash = nfsd_cache_hash(xid);
396	struct nfsd_drc_bucket *b = &drc_hashtbl[hash];
397	unsigned long		age;
398	int type = rqstp->rq_cachetype;
 
399	int rtn = RC_DOIT;
400
401	rqstp->rq_cacherep = NULL;
402	if (type == RC_NOCACHE) {
403		nfsdstats.rcnocache++;
404		return rtn;
405	}
406
407	csum = nfsd_cache_csum(rqstp);
408
409	/*
410	 * Since the common case is a cache miss followed by an insert,
411	 * preallocate an entry.
412	 */
413	rp = nfsd_reply_cache_alloc();
 
 
 
 
414	spin_lock(&b->cache_lock);
415	if (likely(rp)) {
416		atomic_inc(&num_drc_entries);
417		drc_mem_usage += sizeof(*rp);
418	}
419
420	/* go ahead and prune the cache */
421	prune_bucket(b);
422
423	found = nfsd_cache_search(b, rqstp, csum);
424	if (found) {
425		if (likely(rp))
426			nfsd_reply_cache_free_locked(rp);
427		rp = found;
428		goto found_entry;
429	}
430
431	if (!rp) {
432		dprintk("nfsd: unable to allocate DRC entry!\n");
433		goto out;
434	}
435
436	nfsdstats.rcmisses++;
437	rqstp->rq_cacherep = rp;
438	rp->c_state = RC_INPROG;
439	rp->c_xid = xid;
440	rp->c_proc = proc;
441	rpc_copy_addr((struct sockaddr *)&rp->c_addr, svc_addr(rqstp));
442	rpc_set_port((struct sockaddr *)&rp->c_addr, rpc_get_port(svc_addr(rqstp)));
443	rp->c_prot = proto;
444	rp->c_vers = vers;
445	rp->c_len = rqstp->rq_arg.len;
446	rp->c_csum = csum;
447
448	lru_put_end(b, rp);
449
450	/* release any buffer */
451	if (rp->c_type == RC_REPLBUFF) {
452		drc_mem_usage -= rp->c_replvec.iov_len;
453		kfree(rp->c_replvec.iov_base);
454		rp->c_replvec.iov_base = NULL;
455	}
456	rp->c_type = RC_NOCACHE;
457 out:
458	spin_unlock(&b->cache_lock);
459	return rtn;
460
461found_entry:
462	nfsdstats.rchits++;
463	/* We found a matching entry which is either in progress or done. */
464	age = jiffies - rp->c_timestamp;
465	lru_put_end(b, rp);
 
 
466
467	rtn = RC_DROPIT;
468	/* Request being processed or excessive rexmits */
469	if (rp->c_state == RC_INPROG || age < RC_DELAY)
470		goto out;
471
472	/* From the hall of fame of impractical attacks:
473	 * Is this a user who tries to snoop on the cache? */
474	rtn = RC_DOIT;
475	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
476		goto out;
477
478	/* Compose RPC reply header */
479	switch (rp->c_type) {
480	case RC_NOCACHE:
481		break;
482	case RC_REPLSTAT:
483		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
484		rtn = RC_REPLY;
485		break;
486	case RC_REPLBUFF:
487		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
488			goto out;	/* should not happen */
489		rtn = RC_REPLY;
490		break;
491	default:
492		printk(KERN_WARNING "nfsd: bad repcache type %d\n", rp->c_type);
493		nfsd_reply_cache_free_locked(rp);
494	}
495
496	goto out;
 
 
 
 
 
497}
498
499/*
500 * Update a cache entry. This is called from nfsd_dispatch when
501 * the procedure has been executed and the complete reply is in
502 * rqstp->rq_res.
 
 
 
 
 
503 *
504 * We're copying around data here rather than swapping buffers because
505 * the toplevel loop requires max-sized buffers, which would be a waste
506 * of memory for a cache with a max reply size of 100 bytes (diropokres).
507 *
508 * If we should start to use different types of cache entries tailored
509 * specifically for attrstat and fh's, we may save even more space.
510 *
511 * Also note that a cachetype of RC_NOCACHE can legally be passed when
512 * nfsd failed to encode a reply that otherwise would have been cached.
513 * In this case, nfsd_cache_update is called with statp == NULL.
514 */
515void
516nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
517{
518	struct svc_cacherep *rp = rqstp->rq_cacherep;
519	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
520	u32		hash;
521	struct nfsd_drc_bucket *b;
522	int		len;
523	size_t		bufsize = 0;
524
525	if (!rp)
526		return;
527
528	hash = nfsd_cache_hash(rp->c_xid);
529	b = &drc_hashtbl[hash];
530
531	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
532	len >>= 2;
533
534	/* Don't cache excessive amounts of data and XDR failures */
535	if (!statp || len > (256 >> 2)) {
536		nfsd_reply_cache_free(b, rp);
537		return;
538	}
539
540	switch (cachetype) {
541	case RC_REPLSTAT:
542		if (len != 1)
543			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
544		rp->c_replstat = *statp;
545		break;
546	case RC_REPLBUFF:
547		cachv = &rp->c_replvec;
548		bufsize = len << 2;
549		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
550		if (!cachv->iov_base) {
551			nfsd_reply_cache_free(b, rp);
552			return;
553		}
554		cachv->iov_len = bufsize;
555		memcpy(cachv->iov_base, statp, bufsize);
556		break;
557	case RC_NOCACHE:
558		nfsd_reply_cache_free(b, rp);
559		return;
560	}
561	spin_lock(&b->cache_lock);
562	drc_mem_usage += bufsize;
563	lru_put_end(b, rp);
564	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
565	rp->c_type = cachetype;
566	rp->c_state = RC_DONE;
567	spin_unlock(&b->cache_lock);
568	return;
569}
570
571/*
572 * Copy cached reply to current reply buffer. Should always fit.
573 * FIXME as reply is in a page, we should just attach the page, and
574 * keep a refcount....
575 */
576static int
577nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
578{
579	struct kvec	*vec = &rqstp->rq_res.head[0];
580
581	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
582		printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
583				data->iov_len);
584		return 0;
585	}
586	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
587	vec->iov_len += data->iov_len;
588	return 1;
589}
590
591/*
592 * Note that fields may be added, removed or reordered in the future. Programs
593 * scraping this file for info should test the labels to ensure they're
594 * getting the correct field.
595 */
596static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
597{
598	seq_printf(m, "max entries:           %u\n", max_drc_entries);
 
 
 
599	seq_printf(m, "num entries:           %u\n",
600			atomic_read(&num_drc_entries));
601	seq_printf(m, "hash buckets:          %u\n", 1 << maskbits);
602	seq_printf(m, "mem usage:             %u\n", drc_mem_usage);
603	seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
604	seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
605	seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
606	seq_printf(m, "payload misses:        %u\n", payload_misses);
607	seq_printf(m, "longest chain len:     %u\n", longest_chain);
608	seq_printf(m, "cachesize at longest:  %u\n", longest_chain_cachesize);
 
 
 
 
 
609	return 0;
610}
611
612int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
613{
614	return single_open(file, nfsd_reply_cache_stats_show, NULL);
615}