Linux Audio

Check our new training course

Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
  4 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
 
 
 
 
  5 */
  6
  7#include <linux/sched.h>
  8#include <linux/slab.h>
  9#include <linux/spinlock.h>
 10#include <linux/completion.h>
 11#include <linux/buffer_head.h>
 12#include <linux/pagemap.h>
 13#include <linux/pagevec.h>
 14#include <linux/mpage.h>
 15#include <linux/fs.h>
 16#include <linux/writeback.h>
 17#include <linux/swap.h>
 18#include <linux/gfs2_ondisk.h>
 19#include <linux/backing-dev.h>
 20#include <linux/uio.h>
 21#include <trace/events/writeback.h>
 22#include <linux/sched/signal.h>
 23
 24#include "gfs2.h"
 25#include "incore.h"
 26#include "bmap.h"
 27#include "glock.h"
 28#include "inode.h"
 29#include "log.h"
 30#include "meta_io.h"
 31#include "quota.h"
 32#include "trans.h"
 33#include "rgrp.h"
 34#include "super.h"
 35#include "util.h"
 36#include "glops.h"
 37#include "aops.h"
 38
 39
 40void gfs2_trans_add_databufs(struct gfs2_inode *ip, struct folio *folio,
 41			     size_t from, size_t len)
 42{
 43	struct buffer_head *head = folio_buffers(folio);
 44	unsigned int bsize = head->b_size;
 45	struct buffer_head *bh;
 46	size_t to = from + len;
 47	size_t start, end;
 48
 49	for (bh = head, start = 0; bh != head || !start;
 50	     bh = bh->b_this_page, start = end) {
 51		end = start + bsize;
 52		if (end <= from)
 53			continue;
 54		if (start >= to)
 55			break;
 56		set_buffer_uptodate(bh);
 
 57		gfs2_trans_add_data(ip->i_gl, bh);
 58	}
 59}
 60
 61/**
 62 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
 63 * @inode: The inode
 64 * @lblock: The block number to look up
 65 * @bh_result: The buffer head to return the result in
 66 * @create: Non-zero if we may add block to the file
 67 *
 68 * Returns: errno
 69 */
 70
 71static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
 72				  struct buffer_head *bh_result, int create)
 73{
 74	int error;
 75
 76	error = gfs2_block_map(inode, lblock, bh_result, 0);
 77	if (error)
 78		return error;
 79	if (!buffer_mapped(bh_result))
 80		return -ENODATA;
 81	return 0;
 82}
 83
 
 
 
 
 
 
 84/**
 85 * gfs2_write_jdata_folio - gfs2 jdata-specific version of block_write_full_folio
 86 * @folio: The folio to write
 87 * @wbc: The writeback control
 88 *
 89 * This is the same as calling block_write_full_folio, but it also
 90 * writes pages outside of i_size
 91 */
 92static int gfs2_write_jdata_folio(struct folio *folio,
 
 93				 struct writeback_control *wbc)
 94{
 95	struct inode * const inode = folio->mapping->host;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 96	loff_t i_size = i_size_read(inode);
 
 
 97
 98	/*
 99	 * The folio straddles i_size.  It must be zeroed out on each and every
100	 * writepage invocation because it may be mmapped.  "A file is mapped
101	 * in multiples of the page size.  For a file that is not a multiple of
102	 * the page size, the remaining memory is zeroed when mapped, and
103	 * writes to that region are not written out to the file."
104	 */
105	if (folio_pos(folio) < i_size &&
106	    i_size < folio_pos(folio) + folio_size(folio))
107		folio_zero_segment(folio, offset_in_folio(folio, i_size),
108				folio_size(folio));
109
110	return __block_write_full_folio(inode, folio, gfs2_get_block_noalloc,
111			wbc);
112}
113
114/**
115 * __gfs2_jdata_write_folio - The core of jdata writepage
116 * @folio: The folio to write
117 * @wbc: The writeback control
118 *
119 * This is shared between writepage and writepages and implements the
120 * core of the writepage operation. If a transaction is required then
121 * the checked flag will have been set and the transaction will have
122 * already been started before this is called.
123 */
124static int __gfs2_jdata_write_folio(struct folio *folio,
125		struct writeback_control *wbc)
126{
127	struct inode *inode = folio->mapping->host;
128	struct gfs2_inode *ip = GFS2_I(inode);
 
129
130	if (folio_test_checked(folio)) {
131		folio_clear_checked(folio);
132		if (!folio_buffers(folio)) {
133			create_empty_buffers(folio,
134					inode->i_sb->s_blocksize,
135					BIT(BH_Dirty)|BIT(BH_Uptodate));
136		}
137		gfs2_trans_add_databufs(ip, folio, 0, folio_size(folio));
138	}
139	return gfs2_write_jdata_folio(folio, wbc);
140}
141
142/**
143 * gfs2_jdata_writepage - Write complete page
144 * @page: Page to write
145 * @wbc: The writeback control
146 *
147 * Returns: errno
148 *
149 */
150
151static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
152{
153	struct folio *folio = page_folio(page);
154	struct inode *inode = page->mapping->host;
155	struct gfs2_inode *ip = GFS2_I(inode);
156	struct gfs2_sbd *sdp = GFS2_SB(inode);
 
157
158	if (gfs2_assert_withdraw(sdp, ip->i_gl->gl_state == LM_ST_EXCLUSIVE))
159		goto out;
160	if (folio_test_checked(folio) || current->journal_info)
161		goto out_ignore;
162	return __gfs2_jdata_write_folio(folio, wbc);
 
163
164out_ignore:
165	folio_redirty_for_writepage(wbc, folio);
166out:
167	folio_unlock(folio);
168	return 0;
169}
170
171/**
172 * gfs2_writepages - Write a bunch of dirty pages back to disk
173 * @mapping: The mapping to write
174 * @wbc: Write-back control
175 *
176 * Used for both ordered and writeback modes.
177 */
178static int gfs2_writepages(struct address_space *mapping,
179			   struct writeback_control *wbc)
180{
181	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
182	struct iomap_writepage_ctx wpc = { };
183	int ret;
184
185	/*
186	 * Even if we didn't write enough pages here, we might still be holding
187	 * dirty pages in the ail. We forcibly flush the ail because we don't
188	 * want balance_dirty_pages() to loop indefinitely trying to write out
189	 * pages held in the ail that it can't find.
190	 */
191	ret = iomap_writepages(mapping, wbc, &wpc, &gfs2_writeback_ops);
192	if (ret == 0 && wbc->nr_to_write > 0)
193		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
 
194	return ret;
195}
196
197/**
198 * gfs2_write_jdata_batch - Write back a folio batch's worth of folios
199 * @mapping: The mapping
200 * @wbc: The writeback control
201 * @fbatch: The batch of folios
 
202 * @done_index: Page index
203 *
204 * Returns: non-zero if loop should terminate, zero otherwise
205 */
206
207static int gfs2_write_jdata_batch(struct address_space *mapping,
208				    struct writeback_control *wbc,
209				    struct folio_batch *fbatch,
 
210				    pgoff_t *done_index)
211{
212	struct inode *inode = mapping->host;
213	struct gfs2_sbd *sdp = GFS2_SB(inode);
214	unsigned nrblocks;
215	int i;
216	int ret;
217	size_t size = 0;
218	int nr_folios = folio_batch_count(fbatch);
219
220	for (i = 0; i < nr_folios; i++)
221		size += folio_size(fbatch->folios[i]);
222	nrblocks = size >> inode->i_blkbits;
223
224	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
225	if (ret < 0)
226		return ret;
227
228	for (i = 0; i < nr_folios; i++) {
229		struct folio *folio = fbatch->folios[i];
230
231		*done_index = folio->index;
232
233		folio_lock(folio);
234
235		if (unlikely(folio->mapping != mapping)) {
236continue_unlock:
237			folio_unlock(folio);
238			continue;
239		}
240
241		if (!folio_test_dirty(folio)) {
242			/* someone wrote it for us */
243			goto continue_unlock;
244		}
245
246		if (folio_test_writeback(folio)) {
247			if (wbc->sync_mode != WB_SYNC_NONE)
248				folio_wait_writeback(folio);
249			else
250				goto continue_unlock;
251		}
252
253		BUG_ON(folio_test_writeback(folio));
254		if (!folio_clear_dirty_for_io(folio))
255			goto continue_unlock;
256
257		trace_wbc_writepage(wbc, inode_to_bdi(inode));
258
259		ret = __gfs2_jdata_write_folio(folio, wbc);
260		if (unlikely(ret)) {
261			if (ret == AOP_WRITEPAGE_ACTIVATE) {
262				folio_unlock(folio);
263				ret = 0;
264			} else {
265
266				/*
267				 * done_index is set past this page,
268				 * so media errors will not choke
269				 * background writeout for the entire
270				 * file. This has consequences for
271				 * range_cyclic semantics (ie. it may
272				 * not be suitable for data integrity
273				 * writeout).
274				 */
275				*done_index = folio_next_index(folio);
276				ret = 1;
277				break;
278			}
279		}
280
281		/*
282		 * We stop writing back only if we are not doing
283		 * integrity sync. In case of integrity sync we have to
284		 * keep going until we have written all the pages
285		 * we tagged for writeback prior to entering this loop.
286		 */
287		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
288			ret = 1;
289			break;
290		}
291
292	}
293	gfs2_trans_end(sdp);
294	return ret;
295}
296
297/**
298 * gfs2_write_cache_jdata - Like write_cache_pages but different
299 * @mapping: The mapping to write
300 * @wbc: The writeback control
301 *
302 * The reason that we use our own function here is that we need to
303 * start transactions before we grab page locks. This allows us
304 * to get the ordering right.
305 */
306
307static int gfs2_write_cache_jdata(struct address_space *mapping,
308				  struct writeback_control *wbc)
309{
310	int ret = 0;
311	int done = 0;
312	struct folio_batch fbatch;
313	int nr_folios;
314	pgoff_t writeback_index;
315	pgoff_t index;
316	pgoff_t end;
317	pgoff_t done_index;
318	int cycled;
319	int range_whole = 0;
320	xa_mark_t tag;
321
322	folio_batch_init(&fbatch);
323	if (wbc->range_cyclic) {
324		writeback_index = mapping->writeback_index; /* prev offset */
325		index = writeback_index;
326		if (index == 0)
327			cycled = 1;
328		else
329			cycled = 0;
330		end = -1;
331	} else {
332		index = wbc->range_start >> PAGE_SHIFT;
333		end = wbc->range_end >> PAGE_SHIFT;
334		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
335			range_whole = 1;
336		cycled = 1; /* ignore range_cyclic tests */
337	}
338	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
339		tag = PAGECACHE_TAG_TOWRITE;
340	else
341		tag = PAGECACHE_TAG_DIRTY;
342
343retry:
344	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
345		tag_pages_for_writeback(mapping, index, end);
346	done_index = index;
347	while (!done && (index <= end)) {
348		nr_folios = filemap_get_folios_tag(mapping, &index, end,
349				tag, &fbatch);
350		if (nr_folios == 0)
351			break;
352
353		ret = gfs2_write_jdata_batch(mapping, wbc, &fbatch,
354				&done_index);
355		if (ret)
356			done = 1;
357		if (ret > 0)
358			ret = 0;
359		folio_batch_release(&fbatch);
360		cond_resched();
361	}
362
363	if (!cycled && !done) {
364		/*
365		 * range_cyclic:
366		 * We hit the last page and there is more work to be done: wrap
367		 * back to the start of the file
368		 */
369		cycled = 1;
370		index = 0;
371		end = writeback_index - 1;
372		goto retry;
373	}
374
375	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
376		mapping->writeback_index = done_index;
377
378	return ret;
379}
380
381
382/**
383 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
384 * @mapping: The mapping to write
385 * @wbc: The writeback control
386 * 
387 */
388
389static int gfs2_jdata_writepages(struct address_space *mapping,
390				 struct writeback_control *wbc)
391{
392	struct gfs2_inode *ip = GFS2_I(mapping->host);
393	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
394	int ret;
395
396	ret = gfs2_write_cache_jdata(mapping, wbc);
397	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
398		gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
399			       GFS2_LFC_JDATA_WPAGES);
400		ret = gfs2_write_cache_jdata(mapping, wbc);
401	}
402	return ret;
403}
404
405/**
406 * stuffed_read_folio - Fill in a Linux folio with stuffed file data
407 * @ip: the inode
408 * @folio: the folio
409 *
410 * Returns: errno
411 */
412static int stuffed_read_folio(struct gfs2_inode *ip, struct folio *folio)
 
413{
414	struct buffer_head *dibh = NULL;
415	size_t dsize = i_size_read(&ip->i_inode);
416	void *from = NULL;
417	int error = 0;
418
419	/*
420	 * Due to the order of unstuffing files and ->fault(), we can be
421	 * asked for a zero folio in the case of a stuffed file being extended,
422	 * so we need to supply one here. It doesn't happen often.
423	 */
424	if (unlikely(folio->index)) {
425		dsize = 0;
426	} else {
427		error = gfs2_meta_inode_buffer(ip, &dibh);
428		if (error)
429			goto out;
430		from = dibh->b_data + sizeof(struct gfs2_dinode);
431	}
432
433	folio_fill_tail(folio, 0, from, dsize);
 
 
 
 
 
 
 
 
 
 
434	brelse(dibh);
435out:
436	folio_end_read(folio, error == 0);
437
438	return error;
439}
440
 
441/**
442 * gfs2_read_folio - read a folio from a file
443 * @file: The file to read
444 * @folio: The folio in the file
 
 
 
 
445 */
446static int gfs2_read_folio(struct file *file, struct folio *folio)
 
447{
448	struct inode *inode = folio->mapping->host;
449	struct gfs2_inode *ip = GFS2_I(inode);
450	struct gfs2_sbd *sdp = GFS2_SB(inode);
451	int error;
452
453	if (!gfs2_is_jdata(ip) ||
454	    (i_blocksize(inode) == PAGE_SIZE && !folio_buffers(folio))) {
455		error = iomap_read_folio(folio, &gfs2_iomap_ops);
456	} else if (gfs2_is_stuffed(ip)) {
457		error = stuffed_read_folio(ip, folio);
458	} else {
459		error = mpage_read_folio(folio, gfs2_block_map);
460	}
461
462	if (gfs2_withdrawing_or_withdrawn(sdp))
463		return -EIO;
464
465	return error;
466}
467
468/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469 * gfs2_internal_read - read an internal file
470 * @ip: The gfs2 inode
471 * @buf: The buffer to fill
472 * @pos: The file position
473 * @size: The amount to read
474 *
475 */
476
477ssize_t gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
478			   size_t size)
479{
480	struct address_space *mapping = ip->i_inode.i_mapping;
481	unsigned long index = *pos >> PAGE_SHIFT;
482	size_t copied = 0;
 
 
 
 
483
484	do {
485		size_t offset, chunk;
486		struct folio *folio;
487
488		folio = read_cache_folio(mapping, index, gfs2_read_folio, NULL);
489		if (IS_ERR(folio)) {
490			if (PTR_ERR(folio) == -EINTR)
491				continue;
492			return PTR_ERR(folio);
493		}
494		offset = *pos + copied - folio_pos(folio);
495		chunk = min(size - copied, folio_size(folio) - offset);
496		memcpy_from_folio(buf + copied, folio, offset, chunk);
497		index = folio_next_index(folio);
498		folio_put(folio);
499		copied += chunk;
500	} while(copied < size);
501	(*pos) += size;
502	return size;
503}
504
505/**
506 * gfs2_readahead - Read a bunch of pages at once
507 * @rac: Read-ahead control structure
 
 
 
508 *
509 * Some notes:
510 * 1. This is only for readahead, so we can simply ignore any things
511 *    which are slightly inconvenient (such as locking conflicts between
512 *    the page lock and the glock) and return having done no I/O. Its
513 *    obviously not something we'd want to do on too regular a basis.
514 *    Any I/O we ignore at this time will be done via readpage later.
515 * 2. We don't handle stuffed files here we let readpage do the honours.
516 * 3. mpage_readahead() does most of the heavy lifting in the common case.
517 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
518 */
519
520static void gfs2_readahead(struct readahead_control *rac)
 
521{
522	struct inode *inode = rac->mapping->host;
523	struct gfs2_inode *ip = GFS2_I(inode);
 
 
 
524
525	if (gfs2_is_stuffed(ip))
526		;
527	else if (gfs2_is_jdata(ip))
528		mpage_readahead(rac, gfs2_block_map);
529	else
530		iomap_readahead(rac, &gfs2_iomap_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
531}
532
533/**
534 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
535 * @inode: the rindex inode
536 */
537void adjust_fs_space(struct inode *inode)
538{
539	struct gfs2_sbd *sdp = GFS2_SB(inode);
540	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 
541	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
542	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
543	struct buffer_head *m_bh;
544	u64 fs_total, new_free;
545
546	if (gfs2_trans_begin(sdp, 2 * RES_STATFS, 0) != 0)
547		return;
548
549	/* Total up the file system space, according to the latest rindex. */
550	fs_total = gfs2_ri_total(sdp);
551	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
552		goto out;
553
554	spin_lock(&sdp->sd_statfs_spin);
555	gfs2_statfs_change_in(m_sc, m_bh->b_data +
556			      sizeof(struct gfs2_dinode));
557	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
558		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
559	else
560		new_free = 0;
561	spin_unlock(&sdp->sd_statfs_spin);
562	fs_warn(sdp, "File system extended by %llu blocks.\n",
563		(unsigned long long)new_free);
564	gfs2_statfs_change(sdp, new_free, new_free, 0);
565
566	update_statfs(sdp, m_bh);
567	brelse(m_bh);
 
 
568out:
569	sdp->sd_rindex_uptodate = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
570	gfs2_trans_end(sdp);
 
 
 
 
 
 
 
571}
572
573static bool jdata_dirty_folio(struct address_space *mapping,
574		struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
575{
576	if (current->journal_info)
577		folio_set_checked(folio);
578	return block_dirty_folio(mapping, folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
579}
580
581/**
582 * gfs2_bmap - Block map function
583 * @mapping: Address space info
584 * @lblock: The block to map
585 *
586 * Returns: The disk address for the block or 0 on hole or error
587 */
588
589static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
590{
591	struct gfs2_inode *ip = GFS2_I(mapping->host);
592	struct gfs2_holder i_gh;
593	sector_t dblock = 0;
594	int error;
595
596	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
597	if (error)
598		return 0;
599
600	if (!gfs2_is_stuffed(ip))
601		dblock = iomap_bmap(mapping, lblock, &gfs2_iomap_ops);
602
603	gfs2_glock_dq_uninit(&i_gh);
604
605	return dblock;
606}
607
608static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
609{
610	struct gfs2_bufdata *bd;
611
612	lock_buffer(bh);
613	gfs2_log_lock(sdp);
614	clear_buffer_dirty(bh);
615	bd = bh->b_private;
616	if (bd) {
617		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
618			list_del_init(&bd->bd_list);
619		else {
620			spin_lock(&sdp->sd_ail_lock);
621			gfs2_remove_from_journal(bh, REMOVE_JDATA);
622			spin_unlock(&sdp->sd_ail_lock);
623		}
624	}
625	bh->b_bdev = NULL;
626	clear_buffer_mapped(bh);
627	clear_buffer_req(bh);
628	clear_buffer_new(bh);
629	gfs2_log_unlock(sdp);
630	unlock_buffer(bh);
631}
632
633static void gfs2_invalidate_folio(struct folio *folio, size_t offset,
634				size_t length)
635{
636	struct gfs2_sbd *sdp = GFS2_SB(folio->mapping->host);
637	size_t stop = offset + length;
638	int partial_page = (offset || length < folio_size(folio));
639	struct buffer_head *bh, *head;
640	unsigned long pos = 0;
641
642	BUG_ON(!folio_test_locked(folio));
643	if (!partial_page)
644		folio_clear_checked(folio);
645	head = folio_buffers(folio);
646	if (!head)
647		goto out;
648
649	bh = head;
650	do {
651		if (pos + bh->b_size > stop)
652			return;
653
654		if (offset <= pos)
655			gfs2_discard(sdp, bh);
656		pos += bh->b_size;
657		bh = bh->b_this_page;
658	} while (bh != head);
659out:
660	if (!partial_page)
661		filemap_release_folio(folio, 0);
662}
663
664/**
665 * gfs2_release_folio - free the metadata associated with a folio
666 * @folio: the folio that's being released
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
667 * @gfp_mask: passed from Linux VFS, ignored by us
668 *
669 * Calls try_to_free_buffers() to free the buffers and put the folio if the
670 * buffers can be released.
671 *
672 * Returns: true if the folio was put or else false
673 */
674
675bool gfs2_release_folio(struct folio *folio, gfp_t gfp_mask)
676{
677	struct address_space *mapping = folio->mapping;
678	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
679	struct buffer_head *bh, *head;
680	struct gfs2_bufdata *bd;
681
682	head = folio_buffers(folio);
683	if (!head)
684		return false;
685
686	/*
687	 * mm accommodates an old ext3 case where clean folios might
688	 * not have had the dirty bit cleared.	Thus, it can send actual
689	 * dirty folios to ->release_folio() via shrink_active_list().
690	 *
691	 * As a workaround, we skip folios that contain dirty buffers
692	 * below.  Once ->release_folio isn't called on dirty folios
693	 * anymore, we can warn on dirty buffers like we used to here
694	 * again.
695	 */
696
697	gfs2_log_lock(sdp);
698	bh = head;
 
699	do {
700		if (atomic_read(&bh->b_count))
701			goto cannot_release;
702		bd = bh->b_private;
703		if (bd && bd->bd_tr)
704			goto cannot_release;
705		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
706			goto cannot_release;
707		bh = bh->b_this_page;
708	} while (bh != head);
 
709
710	bh = head;
711	do {
712		bd = bh->b_private;
713		if (bd) {
714			gfs2_assert_warn(sdp, bd->bd_bh == bh);
 
 
715			bd->bd_bh = NULL;
716			bh->b_private = NULL;
717			/*
718			 * The bd may still be queued as a revoke, in which
719			 * case we must not dequeue nor free it.
720			 */
721			if (!bd->bd_blkno && !list_empty(&bd->bd_list))
722				list_del_init(&bd->bd_list);
723			if (list_empty(&bd->bd_list))
724				kmem_cache_free(gfs2_bufdata_cachep, bd);
725		}
726
727		bh = bh->b_this_page;
728	} while (bh != head);
729	gfs2_log_unlock(sdp);
730
731	return try_to_free_buffers(folio);
732
733cannot_release:
 
734	gfs2_log_unlock(sdp);
735	return false;
736}
737
738static const struct address_space_operations gfs2_aops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739	.writepages = gfs2_writepages,
740	.read_folio = gfs2_read_folio,
741	.readahead = gfs2_readahead,
742	.dirty_folio = iomap_dirty_folio,
743	.release_folio = iomap_release_folio,
744	.invalidate_folio = iomap_invalidate_folio,
745	.bmap = gfs2_bmap,
746	.migrate_folio = filemap_migrate_folio,
747	.is_partially_uptodate = iomap_is_partially_uptodate,
748	.error_remove_folio = generic_error_remove_folio,
 
 
 
749};
750
751static const struct address_space_operations gfs2_jdata_aops = {
752	.writepage = gfs2_jdata_writepage,
753	.writepages = gfs2_jdata_writepages,
754	.read_folio = gfs2_read_folio,
755	.readahead = gfs2_readahead,
756	.dirty_folio = jdata_dirty_folio,
 
 
757	.bmap = gfs2_bmap,
758	.invalidate_folio = gfs2_invalidate_folio,
759	.release_folio = gfs2_release_folio,
760	.is_partially_uptodate = block_is_partially_uptodate,
761	.error_remove_folio = generic_error_remove_folio,
762};
763
764void gfs2_set_aops(struct inode *inode)
765{
766	if (gfs2_is_jdata(GFS2_I(inode)))
 
 
 
 
 
 
767		inode->i_mapping->a_ops = &gfs2_jdata_aops;
768	else
769		inode->i_mapping->a_ops = &gfs2_aops;
770}
v4.17
 
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/spinlock.h>
  13#include <linux/completion.h>
  14#include <linux/buffer_head.h>
  15#include <linux/pagemap.h>
  16#include <linux/pagevec.h>
  17#include <linux/mpage.h>
  18#include <linux/fs.h>
  19#include <linux/writeback.h>
  20#include <linux/swap.h>
  21#include <linux/gfs2_ondisk.h>
  22#include <linux/backing-dev.h>
  23#include <linux/uio.h>
  24#include <trace/events/writeback.h>
 
  25
  26#include "gfs2.h"
  27#include "incore.h"
  28#include "bmap.h"
  29#include "glock.h"
  30#include "inode.h"
  31#include "log.h"
  32#include "meta_io.h"
  33#include "quota.h"
  34#include "trans.h"
  35#include "rgrp.h"
  36#include "super.h"
  37#include "util.h"
  38#include "glops.h"
 
  39
  40
  41static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
  42				   unsigned int from, unsigned int len)
  43{
  44	struct buffer_head *head = page_buffers(page);
  45	unsigned int bsize = head->b_size;
  46	struct buffer_head *bh;
  47	unsigned int to = from + len;
  48	unsigned int start, end;
  49
  50	for (bh = head, start = 0; bh != head || !start;
  51	     bh = bh->b_this_page, start = end) {
  52		end = start + bsize;
  53		if (end <= from)
  54			continue;
  55		if (start >= to)
  56			break;
  57		if (gfs2_is_jdata(ip))
  58			set_buffer_uptodate(bh);
  59		gfs2_trans_add_data(ip->i_gl, bh);
  60	}
  61}
  62
  63/**
  64 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
  65 * @inode: The inode
  66 * @lblock: The block number to look up
  67 * @bh_result: The buffer head to return the result in
  68 * @create: Non-zero if we may add block to the file
  69 *
  70 * Returns: errno
  71 */
  72
  73static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
  74				  struct buffer_head *bh_result, int create)
  75{
  76	int error;
  77
  78	error = gfs2_block_map(inode, lblock, bh_result, 0);
  79	if (error)
  80		return error;
  81	if (!buffer_mapped(bh_result))
  82		return -EIO;
  83	return 0;
  84}
  85
  86static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
  87				 struct buffer_head *bh_result, int create)
  88{
  89	return gfs2_block_map(inode, lblock, bh_result, 0);
  90}
  91
  92/**
  93 * gfs2_writepage_common - Common bits of writepage
  94 * @page: The page to be written
  95 * @wbc: The writeback control
  96 *
  97 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
 
  98 */
  99
 100static int gfs2_writepage_common(struct page *page,
 101				 struct writeback_control *wbc)
 102{
 103	struct inode *inode = page->mapping->host;
 104	struct gfs2_inode *ip = GFS2_I(inode);
 105	struct gfs2_sbd *sdp = GFS2_SB(inode);
 106	loff_t i_size = i_size_read(inode);
 107	pgoff_t end_index = i_size >> PAGE_SHIFT;
 108	unsigned offset;
 109
 110	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 111		goto out;
 112	if (current->journal_info)
 113		goto redirty;
 114	/* Is the page fully outside i_size? (truncate in progress) */
 115	offset = i_size & (PAGE_SIZE-1);
 116	if (page->index > end_index || (page->index == end_index && !offset)) {
 117		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
 118		goto out;
 119	}
 120	return 1;
 121redirty:
 122	redirty_page_for_writepage(wbc, page);
 123out:
 124	unlock_page(page);
 125	return 0;
 126}
 127
 128/**
 129 * gfs2_writepage - Write page for writeback mappings
 130 * @page: The page
 131 * @wbc: The writeback control
 132 *
 133 */
 134
 135static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
 136{
 137	int ret;
 138
 139	ret = gfs2_writepage_common(page, wbc);
 140	if (ret <= 0)
 141		return ret;
 142
 143	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
 144}
 145
 146/* This is the same as calling block_write_full_page, but it also
 147 * writes pages outside of i_size
 148 */
 149static int gfs2_write_full_page(struct page *page, get_block_t *get_block,
 150				struct writeback_control *wbc)
 151{
 152	struct inode * const inode = page->mapping->host;
 153	loff_t i_size = i_size_read(inode);
 154	const pgoff_t end_index = i_size >> PAGE_SHIFT;
 155	unsigned offset;
 156
 157	/*
 158	 * The page straddles i_size.  It must be zeroed out on each and every
 159	 * writepage invocation because it may be mmapped.  "A file is mapped
 160	 * in multiples of the page size.  For a file that is not a multiple of
 161	 * the  page size, the remaining memory is zeroed when mapped, and
 162	 * writes to that region are not written out to the file."
 163	 */
 164	offset = i_size & (PAGE_SIZE-1);
 165	if (page->index == end_index && offset)
 166		zero_user_segment(page, offset, PAGE_SIZE);
 
 167
 168	return __block_write_full_page(inode, page, get_block, wbc,
 169				       end_buffer_async_write);
 170}
 171
 172/**
 173 * __gfs2_jdata_writepage - The core of jdata writepage
 174 * @page: The page to write
 175 * @wbc: The writeback control
 176 *
 177 * This is shared between writepage and writepages and implements the
 178 * core of the writepage operation. If a transaction is required then
 179 * PageChecked will have been set and the transaction will have
 180 * already been started before this is called.
 181 */
 182
 183static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 184{
 185	struct inode *inode = page->mapping->host;
 186	struct gfs2_inode *ip = GFS2_I(inode);
 187	struct gfs2_sbd *sdp = GFS2_SB(inode);
 188
 189	if (PageChecked(page)) {
 190		ClearPageChecked(page);
 191		if (!page_has_buffers(page)) {
 192			create_empty_buffers(page, inode->i_sb->s_blocksize,
 193					     BIT(BH_Dirty)|BIT(BH_Uptodate));
 
 194		}
 195		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize);
 196	}
 197	return gfs2_write_full_page(page, gfs2_get_block_noalloc, wbc);
 198}
 199
 200/**
 201 * gfs2_jdata_writepage - Write complete page
 202 * @page: Page to write
 203 * @wbc: The writeback control
 204 *
 205 * Returns: errno
 206 *
 207 */
 208
 209static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 210{
 
 211	struct inode *inode = page->mapping->host;
 212	struct gfs2_inode *ip = GFS2_I(inode);
 213	struct gfs2_sbd *sdp = GFS2_SB(inode);
 214	int ret;
 215
 216	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 217		goto out;
 218	if (PageChecked(page) || current->journal_info)
 219		goto out_ignore;
 220	ret = __gfs2_jdata_writepage(page, wbc);
 221	return ret;
 222
 223out_ignore:
 224	redirty_page_for_writepage(wbc, page);
 225out:
 226	unlock_page(page);
 227	return 0;
 228}
 229
 230/**
 231 * gfs2_writepages - Write a bunch of dirty pages back to disk
 232 * @mapping: The mapping to write
 233 * @wbc: Write-back control
 234 *
 235 * Used for both ordered and writeback modes.
 236 */
 237static int gfs2_writepages(struct address_space *mapping,
 238			   struct writeback_control *wbc)
 239{
 240	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
 241	int ret = mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
 
 242
 243	/*
 244	 * Even if we didn't write any pages here, we might still be holding
 245	 * dirty pages in the ail. We forcibly flush the ail because we don't
 246	 * want balance_dirty_pages() to loop indefinitely trying to write out
 247	 * pages held in the ail that it can't find.
 248	 */
 249	if (ret == 0)
 
 250		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
 251
 252	return ret;
 253}
 254
 255/**
 256 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
 257 * @mapping: The mapping
 258 * @wbc: The writeback control
 259 * @pvec: The vector of pages
 260 * @nr_pages: The number of pages to write
 261 * @done_index: Page index
 262 *
 263 * Returns: non-zero if loop should terminate, zero otherwise
 264 */
 265
 266static int gfs2_write_jdata_pagevec(struct address_space *mapping,
 267				    struct writeback_control *wbc,
 268				    struct pagevec *pvec,
 269				    int nr_pages,
 270				    pgoff_t *done_index)
 271{
 272	struct inode *inode = mapping->host;
 273	struct gfs2_sbd *sdp = GFS2_SB(inode);
 274	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
 275	int i;
 276	int ret;
 
 
 
 
 
 
 277
 278	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
 279	if (ret < 0)
 280		return ret;
 281
 282	for(i = 0; i < nr_pages; i++) {
 283		struct page *page = pvec->pages[i];
 284
 285		*done_index = page->index;
 286
 287		lock_page(page);
 288
 289		if (unlikely(page->mapping != mapping)) {
 290continue_unlock:
 291			unlock_page(page);
 292			continue;
 293		}
 294
 295		if (!PageDirty(page)) {
 296			/* someone wrote it for us */
 297			goto continue_unlock;
 298		}
 299
 300		if (PageWriteback(page)) {
 301			if (wbc->sync_mode != WB_SYNC_NONE)
 302				wait_on_page_writeback(page);
 303			else
 304				goto continue_unlock;
 305		}
 306
 307		BUG_ON(PageWriteback(page));
 308		if (!clear_page_dirty_for_io(page))
 309			goto continue_unlock;
 310
 311		trace_wbc_writepage(wbc, inode_to_bdi(inode));
 312
 313		ret = __gfs2_jdata_writepage(page, wbc);
 314		if (unlikely(ret)) {
 315			if (ret == AOP_WRITEPAGE_ACTIVATE) {
 316				unlock_page(page);
 317				ret = 0;
 318			} else {
 319
 320				/*
 321				 * done_index is set past this page,
 322				 * so media errors will not choke
 323				 * background writeout for the entire
 324				 * file. This has consequences for
 325				 * range_cyclic semantics (ie. it may
 326				 * not be suitable for data integrity
 327				 * writeout).
 328				 */
 329				*done_index = page->index + 1;
 330				ret = 1;
 331				break;
 332			}
 333		}
 334
 335		/*
 336		 * We stop writing back only if we are not doing
 337		 * integrity sync. In case of integrity sync we have to
 338		 * keep going until we have written all the pages
 339		 * we tagged for writeback prior to entering this loop.
 340		 */
 341		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
 342			ret = 1;
 343			break;
 344		}
 345
 346	}
 347	gfs2_trans_end(sdp);
 348	return ret;
 349}
 350
 351/**
 352 * gfs2_write_cache_jdata - Like write_cache_pages but different
 353 * @mapping: The mapping to write
 354 * @wbc: The writeback control
 355 *
 356 * The reason that we use our own function here is that we need to
 357 * start transactions before we grab page locks. This allows us
 358 * to get the ordering right.
 359 */
 360
 361static int gfs2_write_cache_jdata(struct address_space *mapping,
 362				  struct writeback_control *wbc)
 363{
 364	int ret = 0;
 365	int done = 0;
 366	struct pagevec pvec;
 367	int nr_pages;
 368	pgoff_t uninitialized_var(writeback_index);
 369	pgoff_t index;
 370	pgoff_t end;
 371	pgoff_t done_index;
 372	int cycled;
 373	int range_whole = 0;
 374	int tag;
 375
 376	pagevec_init(&pvec);
 377	if (wbc->range_cyclic) {
 378		writeback_index = mapping->writeback_index; /* prev offset */
 379		index = writeback_index;
 380		if (index == 0)
 381			cycled = 1;
 382		else
 383			cycled = 0;
 384		end = -1;
 385	} else {
 386		index = wbc->range_start >> PAGE_SHIFT;
 387		end = wbc->range_end >> PAGE_SHIFT;
 388		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 389			range_whole = 1;
 390		cycled = 1; /* ignore range_cyclic tests */
 391	}
 392	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 393		tag = PAGECACHE_TAG_TOWRITE;
 394	else
 395		tag = PAGECACHE_TAG_DIRTY;
 396
 397retry:
 398	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 399		tag_pages_for_writeback(mapping, index, end);
 400	done_index = index;
 401	while (!done && (index <= end)) {
 402		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
 403				tag);
 404		if (nr_pages == 0)
 405			break;
 406
 407		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
 
 408		if (ret)
 409			done = 1;
 410		if (ret > 0)
 411			ret = 0;
 412		pagevec_release(&pvec);
 413		cond_resched();
 414	}
 415
 416	if (!cycled && !done) {
 417		/*
 418		 * range_cyclic:
 419		 * We hit the last page and there is more work to be done: wrap
 420		 * back to the start of the file
 421		 */
 422		cycled = 1;
 423		index = 0;
 424		end = writeback_index - 1;
 425		goto retry;
 426	}
 427
 428	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 429		mapping->writeback_index = done_index;
 430
 431	return ret;
 432}
 433
 434
 435/**
 436 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
 437 * @mapping: The mapping to write
 438 * @wbc: The writeback control
 439 * 
 440 */
 441
 442static int gfs2_jdata_writepages(struct address_space *mapping,
 443				 struct writeback_control *wbc)
 444{
 445	struct gfs2_inode *ip = GFS2_I(mapping->host);
 446	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 447	int ret;
 448
 449	ret = gfs2_write_cache_jdata(mapping, wbc);
 450	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
 451		gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
 452			       GFS2_LFC_JDATA_WPAGES);
 453		ret = gfs2_write_cache_jdata(mapping, wbc);
 454	}
 455	return ret;
 456}
 457
 458/**
 459 * stuffed_readpage - Fill in a Linux page with stuffed file data
 460 * @ip: the inode
 461 * @page: the page
 462 *
 463 * Returns: errno
 464 */
 465
 466static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
 467{
 468	struct buffer_head *dibh;
 469	u64 dsize = i_size_read(&ip->i_inode);
 470	void *kaddr;
 471	int error;
 472
 473	/*
 474	 * Due to the order of unstuffing files and ->fault(), we can be
 475	 * asked for a zero page in the case of a stuffed file being extended,
 476	 * so we need to supply one here. It doesn't happen often.
 477	 */
 478	if (unlikely(page->index)) {
 479		zero_user(page, 0, PAGE_SIZE);
 480		SetPageUptodate(page);
 481		return 0;
 
 
 
 482	}
 483
 484	error = gfs2_meta_inode_buffer(ip, &dibh);
 485	if (error)
 486		return error;
 487
 488	kaddr = kmap_atomic(page);
 489	if (dsize > gfs2_max_stuffed_size(ip))
 490		dsize = gfs2_max_stuffed_size(ip);
 491	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
 492	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
 493	kunmap_atomic(kaddr);
 494	flush_dcache_page(page);
 495	brelse(dibh);
 496	SetPageUptodate(page);
 
 497
 498	return 0;
 499}
 500
 501
 502/**
 503 * __gfs2_readpage - readpage
 504 * @file: The file to read a page for
 505 * @page: The page to read
 506 *
 507 * This is the core of gfs2's readpage. It's used by the internal file
 508 * reading code as in that case we already hold the glock. Also it's
 509 * called by gfs2_readpage() once the required lock has been granted.
 510 */
 511
 512static int __gfs2_readpage(void *file, struct page *page)
 513{
 514	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
 515	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 
 516	int error;
 517
 518	if (gfs2_is_stuffed(ip)) {
 519		error = stuffed_readpage(ip, page);
 520		unlock_page(page);
 
 
 521	} else {
 522		error = mpage_readpage(page, gfs2_block_map);
 523	}
 524
 525	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 526		return -EIO;
 527
 528	return error;
 529}
 530
 531/**
 532 * gfs2_readpage - read a page of a file
 533 * @file: The file to read
 534 * @page: The page of the file
 535 *
 536 * This deals with the locking required. We have to unlock and
 537 * relock the page in order to get the locking in the right
 538 * order.
 539 */
 540
 541static int gfs2_readpage(struct file *file, struct page *page)
 542{
 543	struct address_space *mapping = page->mapping;
 544	struct gfs2_inode *ip = GFS2_I(mapping->host);
 545	struct gfs2_holder gh;
 546	int error;
 547
 548	unlock_page(page);
 549	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 550	error = gfs2_glock_nq(&gh);
 551	if (unlikely(error))
 552		goto out;
 553	error = AOP_TRUNCATED_PAGE;
 554	lock_page(page);
 555	if (page->mapping == mapping && !PageUptodate(page))
 556		error = __gfs2_readpage(file, page);
 557	else
 558		unlock_page(page);
 559	gfs2_glock_dq(&gh);
 560out:
 561	gfs2_holder_uninit(&gh);
 562	if (error && error != AOP_TRUNCATED_PAGE)
 563		lock_page(page);
 564	return error;
 565}
 566
 567/**
 568 * gfs2_internal_read - read an internal file
 569 * @ip: The gfs2 inode
 570 * @buf: The buffer to fill
 571 * @pos: The file position
 572 * @size: The amount to read
 573 *
 574 */
 575
 576int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
 577                       unsigned size)
 578{
 579	struct address_space *mapping = ip->i_inode.i_mapping;
 580	unsigned long index = *pos / PAGE_SIZE;
 581	unsigned offset = *pos & (PAGE_SIZE - 1);
 582	unsigned copied = 0;
 583	unsigned amt;
 584	struct page *page;
 585	void *p;
 586
 587	do {
 588		amt = size - copied;
 589		if (offset + size > PAGE_SIZE)
 590			amt = PAGE_SIZE - offset;
 591		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
 592		if (IS_ERR(page))
 593			return PTR_ERR(page);
 594		p = kmap_atomic(page);
 595		memcpy(buf + copied, p + offset, amt);
 596		kunmap_atomic(p);
 597		put_page(page);
 598		copied += amt;
 599		index++;
 600		offset = 0;
 
 
 601	} while(copied < size);
 602	(*pos) += size;
 603	return size;
 604}
 605
 606/**
 607 * gfs2_readpages - Read a bunch of pages at once
 608 * @file: The file to read from
 609 * @mapping: Address space info
 610 * @pages: List of pages to read
 611 * @nr_pages: Number of pages to read
 612 *
 613 * Some notes:
 614 * 1. This is only for readahead, so we can simply ignore any things
 615 *    which are slightly inconvenient (such as locking conflicts between
 616 *    the page lock and the glock) and return having done no I/O. Its
 617 *    obviously not something we'd want to do on too regular a basis.
 618 *    Any I/O we ignore at this time will be done via readpage later.
 619 * 2. We don't handle stuffed files here we let readpage do the honours.
 620 * 3. mpage_readpages() does most of the heavy lifting in the common case.
 621 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
 622 */
 623
 624static int gfs2_readpages(struct file *file, struct address_space *mapping,
 625			  struct list_head *pages, unsigned nr_pages)
 626{
 627	struct inode *inode = mapping->host;
 628	struct gfs2_inode *ip = GFS2_I(inode);
 629	struct gfs2_sbd *sdp = GFS2_SB(inode);
 630	struct gfs2_holder gh;
 631	int ret;
 632
 633	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 634	ret = gfs2_glock_nq(&gh);
 635	if (unlikely(ret))
 636		goto out_uninit;
 637	if (!gfs2_is_stuffed(ip))
 638		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
 639	gfs2_glock_dq(&gh);
 640out_uninit:
 641	gfs2_holder_uninit(&gh);
 642	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 643		ret = -EIO;
 644	return ret;
 645}
 646
 647/**
 648 * gfs2_write_begin - Begin to write to a file
 649 * @file: The file to write to
 650 * @mapping: The mapping in which to write
 651 * @pos: The file offset at which to start writing
 652 * @len: Length of the write
 653 * @flags: Various flags
 654 * @pagep: Pointer to return the page
 655 * @fsdata: Pointer to return fs data (unused by GFS2)
 656 *
 657 * Returns: errno
 658 */
 659
 660static int gfs2_write_begin(struct file *file, struct address_space *mapping,
 661			    loff_t pos, unsigned len, unsigned flags,
 662			    struct page **pagep, void **fsdata)
 663{
 664	struct gfs2_inode *ip = GFS2_I(mapping->host);
 665	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 666	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 667	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 668	unsigned requested = 0;
 669	int alloc_required;
 670	int error = 0;
 671	pgoff_t index = pos >> PAGE_SHIFT;
 672	unsigned from = pos & (PAGE_SIZE - 1);
 673	struct page *page;
 674
 675	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
 676	error = gfs2_glock_nq(&ip->i_gh);
 677	if (unlikely(error))
 678		goto out_uninit;
 679	if (&ip->i_inode == sdp->sd_rindex) {
 680		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
 681					   GL_NOCACHE, &m_ip->i_gh);
 682		if (unlikely(error)) {
 683			gfs2_glock_dq(&ip->i_gh);
 684			goto out_uninit;
 685		}
 686	}
 687
 688	alloc_required = gfs2_write_alloc_required(ip, pos, len);
 689
 690	if (alloc_required || gfs2_is_jdata(ip))
 691		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
 692
 693	if (alloc_required) {
 694		struct gfs2_alloc_parms ap = { .aflags = 0, };
 695		requested = data_blocks + ind_blocks;
 696		ap.target = requested;
 697		error = gfs2_quota_lock_check(ip, &ap);
 698		if (error)
 699			goto out_unlock;
 700
 701		error = gfs2_inplace_reserve(ip, &ap);
 702		if (error)
 703			goto out_qunlock;
 704	}
 705
 706	rblocks = RES_DINODE + ind_blocks;
 707	if (gfs2_is_jdata(ip))
 708		rblocks += data_blocks ? data_blocks : 1;
 709	if (ind_blocks || data_blocks)
 710		rblocks += RES_STATFS + RES_QUOTA;
 711	if (&ip->i_inode == sdp->sd_rindex)
 712		rblocks += 2 * RES_STATFS;
 713	if (alloc_required)
 714		rblocks += gfs2_rg_blocks(ip, requested);
 715
 716	error = gfs2_trans_begin(sdp, rblocks,
 717				 PAGE_SIZE/sdp->sd_sb.sb_bsize);
 718	if (error)
 719		goto out_trans_fail;
 720
 721	error = -ENOMEM;
 722	flags |= AOP_FLAG_NOFS;
 723	page = grab_cache_page_write_begin(mapping, index, flags);
 724	*pagep = page;
 725	if (unlikely(!page))
 726		goto out_endtrans;
 727
 728	if (gfs2_is_stuffed(ip)) {
 729		error = 0;
 730		if (pos + len > gfs2_max_stuffed_size(ip)) {
 731			error = gfs2_unstuff_dinode(ip, page);
 732			if (error == 0)
 733				goto prepare_write;
 734		} else if (!PageUptodate(page)) {
 735			error = stuffed_readpage(ip, page);
 736		}
 737		goto out;
 738	}
 739
 740prepare_write:
 741	error = __block_write_begin(page, from, len, gfs2_block_map);
 742out:
 743	if (error == 0)
 744		return 0;
 745
 746	unlock_page(page);
 747	put_page(page);
 748
 749	gfs2_trans_end(sdp);
 750	if (pos + len > ip->i_inode.i_size)
 751		gfs2_trim_blocks(&ip->i_inode);
 752	goto out_trans_fail;
 753
 754out_endtrans:
 755	gfs2_trans_end(sdp);
 756out_trans_fail:
 757	if (alloc_required) {
 758		gfs2_inplace_release(ip);
 759out_qunlock:
 760		gfs2_quota_unlock(ip);
 761	}
 762out_unlock:
 763	if (&ip->i_inode == sdp->sd_rindex) {
 764		gfs2_glock_dq(&m_ip->i_gh);
 765		gfs2_holder_uninit(&m_ip->i_gh);
 766	}
 767	gfs2_glock_dq(&ip->i_gh);
 768out_uninit:
 769	gfs2_holder_uninit(&ip->i_gh);
 770	return error;
 771}
 772
 773/**
 774 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
 775 * @inode: the rindex inode
 776 */
 777static void adjust_fs_space(struct inode *inode)
 778{
 779	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
 780	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 781	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
 782	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
 783	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
 784	struct buffer_head *m_bh, *l_bh;
 785	u64 fs_total, new_free;
 786
 
 
 
 787	/* Total up the file system space, according to the latest rindex. */
 788	fs_total = gfs2_ri_total(sdp);
 789	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
 790		return;
 791
 792	spin_lock(&sdp->sd_statfs_spin);
 793	gfs2_statfs_change_in(m_sc, m_bh->b_data +
 794			      sizeof(struct gfs2_dinode));
 795	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
 796		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
 797	else
 798		new_free = 0;
 799	spin_unlock(&sdp->sd_statfs_spin);
 800	fs_warn(sdp, "File system extended by %llu blocks.\n",
 801		(unsigned long long)new_free);
 802	gfs2_statfs_change(sdp, new_free, new_free, 0);
 803
 804	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
 805		goto out;
 806	update_statfs(sdp, m_bh, l_bh);
 807	brelse(l_bh);
 808out:
 809	brelse(m_bh);
 810}
 811
 812/**
 813 * gfs2_stuffed_write_end - Write end for stuffed files
 814 * @inode: The inode
 815 * @dibh: The buffer_head containing the on-disk inode
 816 * @pos: The file position
 817 * @len: The length of the write
 818 * @copied: How much was actually copied by the VFS
 819 * @page: The page
 820 *
 821 * This copies the data from the page into the inode block after
 822 * the inode data structure itself.
 823 *
 824 * Returns: errno
 825 */
 826static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
 827				  loff_t pos, unsigned len, unsigned copied,
 828				  struct page *page)
 829{
 830	struct gfs2_inode *ip = GFS2_I(inode);
 831	struct gfs2_sbd *sdp = GFS2_SB(inode);
 832	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 833	u64 to = pos + copied;
 834	void *kaddr;
 835	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
 836
 837	BUG_ON(pos + len > gfs2_max_stuffed_size(ip));
 838
 839	kaddr = kmap_atomic(page);
 840	memcpy(buf + pos, kaddr + pos, copied);
 841	flush_dcache_page(page);
 842	kunmap_atomic(kaddr);
 843
 844	WARN_ON(!PageUptodate(page));
 845	unlock_page(page);
 846	put_page(page);
 847
 848	if (copied) {
 849		if (inode->i_size < to)
 850			i_size_write(inode, to);
 851		mark_inode_dirty(inode);
 852	}
 853
 854	if (inode == sdp->sd_rindex) {
 855		adjust_fs_space(inode);
 856		sdp->sd_rindex_uptodate = 0;
 857	}
 858
 859	brelse(dibh);
 860	gfs2_trans_end(sdp);
 861	if (inode == sdp->sd_rindex) {
 862		gfs2_glock_dq(&m_ip->i_gh);
 863		gfs2_holder_uninit(&m_ip->i_gh);
 864	}
 865	gfs2_glock_dq(&ip->i_gh);
 866	gfs2_holder_uninit(&ip->i_gh);
 867	return copied;
 868}
 869
 870/**
 871 * gfs2_write_end
 872 * @file: The file to write to
 873 * @mapping: The address space to write to
 874 * @pos: The file position
 875 * @len: The length of the data
 876 * @copied: How much was actually copied by the VFS
 877 * @page: The page that has been written
 878 * @fsdata: The fsdata (unused in GFS2)
 879 *
 880 * The main write_end function for GFS2. We have a separate one for
 881 * stuffed files as they are slightly different, otherwise we just
 882 * put our locking around the VFS provided functions.
 883 *
 884 * Returns: errno
 885 */
 886
 887static int gfs2_write_end(struct file *file, struct address_space *mapping,
 888			  loff_t pos, unsigned len, unsigned copied,
 889			  struct page *page, void *fsdata)
 890{
 891	struct inode *inode = page->mapping->host;
 892	struct gfs2_inode *ip = GFS2_I(inode);
 893	struct gfs2_sbd *sdp = GFS2_SB(inode);
 894	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 895	struct buffer_head *dibh;
 896	int ret;
 897	struct gfs2_trans *tr = current->journal_info;
 898	BUG_ON(!tr);
 899
 900	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
 901
 902	ret = gfs2_meta_inode_buffer(ip, &dibh);
 903	if (unlikely(ret)) {
 904		unlock_page(page);
 905		put_page(page);
 906		goto failed;
 907	}
 908
 909	if (gfs2_is_stuffed(ip))
 910		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
 911
 912	if (!gfs2_is_writeback(ip))
 913		gfs2_page_add_databufs(ip, page, pos & ~PAGE_MASK, len);
 914
 915	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 916	if (tr->tr_num_buf_new)
 917		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 918	else
 919		gfs2_trans_add_meta(ip->i_gl, dibh);
 920
 921
 922	if (inode == sdp->sd_rindex) {
 923		adjust_fs_space(inode);
 924		sdp->sd_rindex_uptodate = 0;
 925	}
 926
 927	brelse(dibh);
 928failed:
 929	gfs2_trans_end(sdp);
 930	gfs2_inplace_release(ip);
 931	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
 932		gfs2_quota_unlock(ip);
 933	if (inode == sdp->sd_rindex) {
 934		gfs2_glock_dq(&m_ip->i_gh);
 935		gfs2_holder_uninit(&m_ip->i_gh);
 936	}
 937	gfs2_glock_dq(&ip->i_gh);
 938	gfs2_holder_uninit(&ip->i_gh);
 939	return ret;
 940}
 941
 942/**
 943 * jdata_set_page_dirty - Page dirtying function
 944 * @page: The page to dirty
 945 *
 946 * Returns: 1 if it dirtyed the page, or 0 otherwise
 947 */
 948 
 949static int jdata_set_page_dirty(struct page *page)
 950{
 951	SetPageChecked(page);
 952	return __set_page_dirty_buffers(page);
 953}
 954
 955/**
 956 * gfs2_bmap - Block map function
 957 * @mapping: Address space info
 958 * @lblock: The block to map
 959 *
 960 * Returns: The disk address for the block or 0 on hole or error
 961 */
 962
 963static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
 964{
 965	struct gfs2_inode *ip = GFS2_I(mapping->host);
 966	struct gfs2_holder i_gh;
 967	sector_t dblock = 0;
 968	int error;
 969
 970	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
 971	if (error)
 972		return 0;
 973
 974	if (!gfs2_is_stuffed(ip))
 975		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
 976
 977	gfs2_glock_dq_uninit(&i_gh);
 978
 979	return dblock;
 980}
 981
 982static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
 983{
 984	struct gfs2_bufdata *bd;
 985
 986	lock_buffer(bh);
 987	gfs2_log_lock(sdp);
 988	clear_buffer_dirty(bh);
 989	bd = bh->b_private;
 990	if (bd) {
 991		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
 992			list_del_init(&bd->bd_list);
 993		else
 
 994			gfs2_remove_from_journal(bh, REMOVE_JDATA);
 
 
 995	}
 996	bh->b_bdev = NULL;
 997	clear_buffer_mapped(bh);
 998	clear_buffer_req(bh);
 999	clear_buffer_new(bh);
1000	gfs2_log_unlock(sdp);
1001	unlock_buffer(bh);
1002}
1003
1004static void gfs2_invalidatepage(struct page *page, unsigned int offset,
1005				unsigned int length)
1006{
1007	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
1008	unsigned int stop = offset + length;
1009	int partial_page = (offset || length < PAGE_SIZE);
1010	struct buffer_head *bh, *head;
1011	unsigned long pos = 0;
1012
1013	BUG_ON(!PageLocked(page));
1014	if (!partial_page)
1015		ClearPageChecked(page);
1016	if (!page_has_buffers(page))
 
1017		goto out;
1018
1019	bh = head = page_buffers(page);
1020	do {
1021		if (pos + bh->b_size > stop)
1022			return;
1023
1024		if (offset <= pos)
1025			gfs2_discard(sdp, bh);
1026		pos += bh->b_size;
1027		bh = bh->b_this_page;
1028	} while (bh != head);
1029out:
1030	if (!partial_page)
1031		try_to_release_page(page, 0);
1032}
1033
1034/**
1035 * gfs2_ok_for_dio - check that dio is valid on this file
1036 * @ip: The inode
1037 * @offset: The offset at which we are reading or writing
1038 *
1039 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1040 *          1 (to accept the i/o request)
1041 */
1042static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1043{
1044	/*
1045	 * Should we return an error here? I can't see that O_DIRECT for
1046	 * a stuffed file makes any sense. For now we'll silently fall
1047	 * back to buffered I/O
1048	 */
1049	if (gfs2_is_stuffed(ip))
1050		return 0;
1051
1052	if (offset >= i_size_read(&ip->i_inode))
1053		return 0;
1054	return 1;
1055}
1056
1057
1058
1059static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1060{
1061	struct file *file = iocb->ki_filp;
1062	struct inode *inode = file->f_mapping->host;
1063	struct address_space *mapping = inode->i_mapping;
1064	struct gfs2_inode *ip = GFS2_I(inode);
1065	loff_t offset = iocb->ki_pos;
1066	struct gfs2_holder gh;
1067	int rv;
1068
1069	/*
1070	 * Deferred lock, even if its a write, since we do no allocation
1071	 * on this path. All we need change is atime, and this lock mode
1072	 * ensures that other nodes have flushed their buffered read caches
1073	 * (i.e. their page cache entries for this inode). We do not,
1074	 * unfortunately have the option of only flushing a range like
1075	 * the VFS does.
1076	 */
1077	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1078	rv = gfs2_glock_nq(&gh);
1079	if (rv)
1080		goto out_uninit;
1081	rv = gfs2_ok_for_dio(ip, offset);
1082	if (rv != 1)
1083		goto out; /* dio not valid, fall back to buffered i/o */
1084
1085	/*
1086	 * Now since we are holding a deferred (CW) lock at this point, you
1087	 * might be wondering why this is ever needed. There is a case however
1088	 * where we've granted a deferred local lock against a cached exclusive
1089	 * glock. That is ok provided all granted local locks are deferred, but
1090	 * it also means that it is possible to encounter pages which are
1091	 * cached and possibly also mapped. So here we check for that and sort
1092	 * them out ahead of the dio. The glock state machine will take care of
1093	 * everything else.
1094	 *
1095	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1096	 * the first place, mapping->nr_pages will always be zero.
1097	 */
1098	if (mapping->nrpages) {
1099		loff_t lstart = offset & ~(PAGE_SIZE - 1);
1100		loff_t len = iov_iter_count(iter);
1101		loff_t end = PAGE_ALIGN(offset + len) - 1;
1102
1103		rv = 0;
1104		if (len == 0)
1105			goto out;
1106		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1107			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1108		rv = filemap_write_and_wait_range(mapping, lstart, end);
1109		if (rv)
1110			goto out;
1111		if (iov_iter_rw(iter) == WRITE)
1112			truncate_inode_pages_range(mapping, lstart, end);
1113	}
1114
1115	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1116				  gfs2_get_block_direct, NULL, NULL, 0);
1117out:
1118	gfs2_glock_dq(&gh);
1119out_uninit:
1120	gfs2_holder_uninit(&gh);
1121	return rv;
1122}
1123
1124/**
1125 * gfs2_releasepage - free the metadata associated with a page
1126 * @page: the page that's being released
1127 * @gfp_mask: passed from Linux VFS, ignored by us
1128 *
1129 * Call try_to_free_buffers() if the buffers in this page can be
1130 * released.
1131 *
1132 * Returns: 0
1133 */
1134
1135int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1136{
1137	struct address_space *mapping = page->mapping;
1138	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1139	struct buffer_head *bh, *head;
1140	struct gfs2_bufdata *bd;
1141
1142	if (!page_has_buffers(page))
1143		return 0;
 
1144
1145	/*
1146	 * From xfs_vm_releasepage: mm accommodates an old ext3 case where
1147	 * clean pages might not have had the dirty bit cleared.  Thus, it can
1148	 * send actual dirty pages to ->releasepage() via shrink_active_list().
1149	 *
1150	 * As a workaround, we skip pages that contain dirty buffers below.
1151	 * Once ->releasepage isn't called on dirty pages anymore, we can warn
1152	 * on dirty buffers like we used to here again.
 
1153	 */
1154
1155	gfs2_log_lock(sdp);
1156	spin_lock(&sdp->sd_ail_lock);
1157	head = bh = page_buffers(page);
1158	do {
1159		if (atomic_read(&bh->b_count))
1160			goto cannot_release;
1161		bd = bh->b_private;
1162		if (bd && bd->bd_tr)
1163			goto cannot_release;
1164		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
1165			goto cannot_release;
1166		bh = bh->b_this_page;
1167	} while(bh != head);
1168	spin_unlock(&sdp->sd_ail_lock);
1169
1170	head = bh = page_buffers(page);
1171	do {
1172		bd = bh->b_private;
1173		if (bd) {
1174			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1175			if (!list_empty(&bd->bd_list))
1176				list_del_init(&bd->bd_list);
1177			bd->bd_bh = NULL;
1178			bh->b_private = NULL;
1179			kmem_cache_free(gfs2_bufdata_cachep, bd);
 
 
 
 
 
 
 
1180		}
1181
1182		bh = bh->b_this_page;
1183	} while (bh != head);
1184	gfs2_log_unlock(sdp);
1185
1186	return try_to_free_buffers(page);
1187
1188cannot_release:
1189	spin_unlock(&sdp->sd_ail_lock);
1190	gfs2_log_unlock(sdp);
1191	return 0;
1192}
1193
1194static const struct address_space_operations gfs2_writeback_aops = {
1195	.writepage = gfs2_writepage,
1196	.writepages = gfs2_writepages,
1197	.readpage = gfs2_readpage,
1198	.readpages = gfs2_readpages,
1199	.write_begin = gfs2_write_begin,
1200	.write_end = gfs2_write_end,
1201	.bmap = gfs2_bmap,
1202	.invalidatepage = gfs2_invalidatepage,
1203	.releasepage = gfs2_releasepage,
1204	.direct_IO = gfs2_direct_IO,
1205	.migratepage = buffer_migrate_page,
1206	.is_partially_uptodate = block_is_partially_uptodate,
1207	.error_remove_page = generic_error_remove_page,
1208};
1209
1210static const struct address_space_operations gfs2_ordered_aops = {
1211	.writepage = gfs2_writepage,
1212	.writepages = gfs2_writepages,
1213	.readpage = gfs2_readpage,
1214	.readpages = gfs2_readpages,
1215	.write_begin = gfs2_write_begin,
1216	.write_end = gfs2_write_end,
1217	.set_page_dirty = __set_page_dirty_buffers,
1218	.bmap = gfs2_bmap,
1219	.invalidatepage = gfs2_invalidatepage,
1220	.releasepage = gfs2_releasepage,
1221	.direct_IO = gfs2_direct_IO,
1222	.migratepage = buffer_migrate_page,
1223	.is_partially_uptodate = block_is_partially_uptodate,
1224	.error_remove_page = generic_error_remove_page,
1225};
1226
1227static const struct address_space_operations gfs2_jdata_aops = {
1228	.writepage = gfs2_jdata_writepage,
1229	.writepages = gfs2_jdata_writepages,
1230	.readpage = gfs2_readpage,
1231	.readpages = gfs2_readpages,
1232	.write_begin = gfs2_write_begin,
1233	.write_end = gfs2_write_end,
1234	.set_page_dirty = jdata_set_page_dirty,
1235	.bmap = gfs2_bmap,
1236	.invalidatepage = gfs2_invalidatepage,
1237	.releasepage = gfs2_releasepage,
1238	.is_partially_uptodate = block_is_partially_uptodate,
1239	.error_remove_page = generic_error_remove_page,
1240};
1241
1242void gfs2_set_aops(struct inode *inode)
1243{
1244	struct gfs2_inode *ip = GFS2_I(inode);
1245
1246	if (gfs2_is_writeback(ip))
1247		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1248	else if (gfs2_is_ordered(ip))
1249		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1250	else if (gfs2_is_jdata(ip))
1251		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1252	else
1253		BUG();
1254}
1255