Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras	August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)	"OF: " fmt
  18
  19#include <linux/console.h>
  20#include <linux/ctype.h>
  21#include <linux/cpu.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/of_graph.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/string.h>
  29#include <linux/proc_fs.h>
  30
  31#include "of_private.h"
  32
  33LIST_HEAD(aliases_lookup);
  34
  35struct device_node *of_root;
  36EXPORT_SYMBOL(of_root);
  37struct device_node *of_chosen;
  38EXPORT_SYMBOL(of_chosen);
  39struct device_node *of_aliases;
  40struct device_node *of_stdout;
  41static const char *of_stdout_options;
  42
  43struct kset *of_kset;
  44
  45/*
  46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  47 * This mutex must be held whenever modifications are being made to the
  48 * device tree. The of_{attach,detach}_node() and
  49 * of_{add,remove,update}_property() helpers make sure this happens.
  50 */
  51DEFINE_MUTEX(of_mutex);
  52
  53/* use when traversing tree through the child, sibling,
  54 * or parent members of struct device_node.
  55 */
  56DEFINE_RAW_SPINLOCK(devtree_lock);
  57
  58bool of_node_name_eq(const struct device_node *np, const char *name)
  59{
  60	const char *node_name;
  61	size_t len;
  62
  63	if (!np)
  64		return false;
  65
  66	node_name = kbasename(np->full_name);
  67	len = strchrnul(node_name, '@') - node_name;
  68
  69	return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
  70}
  71EXPORT_SYMBOL(of_node_name_eq);
  72
  73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
  74{
  75	if (!np)
  76		return false;
  77
  78	return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
  79}
  80EXPORT_SYMBOL(of_node_name_prefix);
  81
  82static bool __of_node_is_type(const struct device_node *np, const char *type)
  83{
  84	const char *match = __of_get_property(np, "device_type", NULL);
  85
  86	return np && match && type && !strcmp(match, type);
  87}
  88
  89int of_bus_n_addr_cells(struct device_node *np)
  90{
  91	u32 cells;
  92
  93	for (; np; np = np->parent)
 
 
  94		if (!of_property_read_u32(np, "#address-cells", &cells))
  95			return cells;
  96
  97	/* No #address-cells property for the root node */
  98	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  99}
 100
 101int of_n_addr_cells(struct device_node *np)
 102{
 103	if (np->parent)
 104		np = np->parent;
 105
 106	return of_bus_n_addr_cells(np);
 107}
 108EXPORT_SYMBOL(of_n_addr_cells);
 109
 110int of_bus_n_size_cells(struct device_node *np)
 111{
 112	u32 cells;
 113
 114	for (; np; np = np->parent)
 
 
 115		if (!of_property_read_u32(np, "#size-cells", &cells))
 116			return cells;
 117
 118	/* No #size-cells property for the root node */
 119	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
 120}
 121
 122int of_n_size_cells(struct device_node *np)
 123{
 124	if (np->parent)
 125		np = np->parent;
 126
 127	return of_bus_n_size_cells(np);
 128}
 129EXPORT_SYMBOL(of_n_size_cells);
 130
 131#ifdef CONFIG_NUMA
 132int __weak of_node_to_nid(struct device_node *np)
 133{
 134	return NUMA_NO_NODE;
 135}
 136#endif
 137
 138#define OF_PHANDLE_CACHE_BITS	7
 139#define OF_PHANDLE_CACHE_SZ	BIT(OF_PHANDLE_CACHE_BITS)
 140
 141static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
 142
 143static u32 of_phandle_cache_hash(phandle handle)
 144{
 145	return hash_32(handle, OF_PHANDLE_CACHE_BITS);
 146}
 147
 148/*
 149 * Caller must hold devtree_lock.
 
 
 
 
 
 150 */
 151void __of_phandle_cache_inv_entry(phandle handle)
 152{
 153	u32 handle_hash;
 
 154	struct device_node *np;
 
 155
 156	if (!handle)
 157		return;
 158
 159	handle_hash = of_phandle_cache_hash(handle);
 
 160
 161	np = phandle_cache[handle_hash];
 162	if (np && handle == np->phandle)
 163		phandle_cache[handle_hash] = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164}
 165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 166void __init of_core_init(void)
 167{
 168	struct device_node *np;
 169
 170	of_platform_register_reconfig_notifier();
 171
 172	/* Create the kset, and register existing nodes */
 173	mutex_lock(&of_mutex);
 174	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 175	if (!of_kset) {
 176		mutex_unlock(&of_mutex);
 177		pr_err("failed to register existing nodes\n");
 178		return;
 179	}
 180	for_each_of_allnodes(np) {
 181		__of_attach_node_sysfs(np);
 182		if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
 183			phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
 184	}
 185	mutex_unlock(&of_mutex);
 186
 187	/* Symlink in /proc as required by userspace ABI */
 188	if (of_root)
 189		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 190}
 191
 192static struct property *__of_find_property(const struct device_node *np,
 193					   const char *name, int *lenp)
 194{
 195	struct property *pp;
 196
 197	if (!np)
 198		return NULL;
 199
 200	for (pp = np->properties; pp; pp = pp->next) {
 201		if (of_prop_cmp(pp->name, name) == 0) {
 202			if (lenp)
 203				*lenp = pp->length;
 204			break;
 205		}
 206	}
 207
 208	return pp;
 209}
 210
 211struct property *of_find_property(const struct device_node *np,
 212				  const char *name,
 213				  int *lenp)
 214{
 215	struct property *pp;
 216	unsigned long flags;
 217
 218	raw_spin_lock_irqsave(&devtree_lock, flags);
 219	pp = __of_find_property(np, name, lenp);
 220	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 221
 222	return pp;
 223}
 224EXPORT_SYMBOL(of_find_property);
 225
 226struct device_node *__of_find_all_nodes(struct device_node *prev)
 227{
 228	struct device_node *np;
 229	if (!prev) {
 230		np = of_root;
 231	} else if (prev->child) {
 232		np = prev->child;
 233	} else {
 234		/* Walk back up looking for a sibling, or the end of the structure */
 235		np = prev;
 236		while (np->parent && !np->sibling)
 237			np = np->parent;
 238		np = np->sibling; /* Might be null at the end of the tree */
 239	}
 240	return np;
 241}
 242
 243/**
 244 * of_find_all_nodes - Get next node in global list
 245 * @prev:	Previous node or NULL to start iteration
 246 *		of_node_put() will be called on it
 247 *
 248 * Return: A node pointer with refcount incremented, use
 249 * of_node_put() on it when done.
 250 */
 251struct device_node *of_find_all_nodes(struct device_node *prev)
 252{
 253	struct device_node *np;
 254	unsigned long flags;
 255
 256	raw_spin_lock_irqsave(&devtree_lock, flags);
 257	np = __of_find_all_nodes(prev);
 258	of_node_get(np);
 259	of_node_put(prev);
 260	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 261	return np;
 262}
 263EXPORT_SYMBOL(of_find_all_nodes);
 264
 265/*
 266 * Find a property with a given name for a given node
 267 * and return the value.
 268 */
 269const void *__of_get_property(const struct device_node *np,
 270			      const char *name, int *lenp)
 271{
 272	struct property *pp = __of_find_property(np, name, lenp);
 273
 274	return pp ? pp->value : NULL;
 275}
 276
 277/*
 278 * Find a property with a given name for a given node
 279 * and return the value.
 280 */
 281const void *of_get_property(const struct device_node *np, const char *name,
 282			    int *lenp)
 283{
 284	struct property *pp = of_find_property(np, name, lenp);
 285
 286	return pp ? pp->value : NULL;
 287}
 288EXPORT_SYMBOL(of_get_property);
 289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 290/**
 291 * __of_device_is_compatible() - Check if the node matches given constraints
 292 * @device: pointer to node
 293 * @compat: required compatible string, NULL or "" for any match
 294 * @type: required device_type value, NULL or "" for any match
 295 * @name: required node name, NULL or "" for any match
 296 *
 297 * Checks if the given @compat, @type and @name strings match the
 298 * properties of the given @device. A constraints can be skipped by
 299 * passing NULL or an empty string as the constraint.
 300 *
 301 * Returns 0 for no match, and a positive integer on match. The return
 302 * value is a relative score with larger values indicating better
 303 * matches. The score is weighted for the most specific compatible value
 304 * to get the highest score. Matching type is next, followed by matching
 305 * name. Practically speaking, this results in the following priority
 306 * order for matches:
 307 *
 308 * 1. specific compatible && type && name
 309 * 2. specific compatible && type
 310 * 3. specific compatible && name
 311 * 4. specific compatible
 312 * 5. general compatible && type && name
 313 * 6. general compatible && type
 314 * 7. general compatible && name
 315 * 8. general compatible
 316 * 9. type && name
 317 * 10. type
 318 * 11. name
 319 */
 320static int __of_device_is_compatible(const struct device_node *device,
 321				     const char *compat, const char *type, const char *name)
 322{
 323	struct property *prop;
 324	const char *cp;
 325	int index = 0, score = 0;
 326
 327	/* Compatible match has highest priority */
 328	if (compat && compat[0]) {
 329		prop = __of_find_property(device, "compatible", NULL);
 330		for (cp = of_prop_next_string(prop, NULL); cp;
 331		     cp = of_prop_next_string(prop, cp), index++) {
 332			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 333				score = INT_MAX/2 - (index << 2);
 334				break;
 335			}
 336		}
 337		if (!score)
 338			return 0;
 339	}
 340
 341	/* Matching type is better than matching name */
 342	if (type && type[0]) {
 343		if (!__of_node_is_type(device, type))
 344			return 0;
 345		score += 2;
 346	}
 347
 348	/* Matching name is a bit better than not */
 349	if (name && name[0]) {
 350		if (!of_node_name_eq(device, name))
 351			return 0;
 352		score++;
 353	}
 354
 355	return score;
 356}
 357
 358/** Checks if the given "compat" string matches one of the strings in
 359 * the device's "compatible" property
 360 */
 361int of_device_is_compatible(const struct device_node *device,
 362		const char *compat)
 363{
 364	unsigned long flags;
 365	int res;
 366
 367	raw_spin_lock_irqsave(&devtree_lock, flags);
 368	res = __of_device_is_compatible(device, compat, NULL, NULL);
 369	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 370	return res;
 371}
 372EXPORT_SYMBOL(of_device_is_compatible);
 373
 374/** Checks if the device is compatible with any of the entries in
 375 *  a NULL terminated array of strings. Returns the best match
 376 *  score or 0.
 377 */
 378int of_device_compatible_match(const struct device_node *device,
 379			       const char *const *compat)
 380{
 381	unsigned int tmp, score = 0;
 382
 383	if (!compat)
 384		return 0;
 385
 386	while (*compat) {
 387		tmp = of_device_is_compatible(device, *compat);
 388		if (tmp > score)
 389			score = tmp;
 390		compat++;
 391	}
 392
 393	return score;
 394}
 395EXPORT_SYMBOL_GPL(of_device_compatible_match);
 396
 397/**
 398 * of_machine_compatible_match - Test root of device tree against a compatible array
 399 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
 400 *
 401 * Returns true if the root node has any of the given compatible values in its
 402 * compatible property.
 403 */
 404bool of_machine_compatible_match(const char *const *compats)
 405{
 406	struct device_node *root;
 407	int rc = 0;
 408
 409	root = of_find_node_by_path("/");
 410	if (root) {
 411		rc = of_device_compatible_match(root, compats);
 412		of_node_put(root);
 413	}
 414
 415	return rc != 0;
 416}
 417EXPORT_SYMBOL(of_machine_compatible_match);
 418
 419static bool __of_device_is_status(const struct device_node *device,
 420				  const char * const*strings)
 421{
 422	const char *status;
 423	int statlen;
 424
 425	if (!device)
 426		return false;
 427
 428	status = __of_get_property(device, "status", &statlen);
 429	if (status == NULL)
 430		return false;
 431
 432	if (statlen > 0) {
 433		while (*strings) {
 434			unsigned int len = strlen(*strings);
 435
 436			if ((*strings)[len - 1] == '-') {
 437				if (!strncmp(status, *strings, len))
 438					return true;
 439			} else {
 440				if (!strcmp(status, *strings))
 441					return true;
 442			}
 443			strings++;
 444		}
 445	}
 446
 447	return false;
 448}
 
 449
 450/**
 451 *  __of_device_is_available - check if a device is available for use
 452 *
 453 *  @device: Node to check for availability, with locks already held
 454 *
 455 *  Return: True if the status property is absent or set to "okay" or "ok",
 456 *  false otherwise
 457 */
 458static bool __of_device_is_available(const struct device_node *device)
 459{
 460	static const char * const ok[] = {"okay", "ok", NULL};
 
 461
 462	if (!device)
 463		return false;
 464
 465	return !__of_get_property(device, "status", NULL) ||
 466		__of_device_is_status(device, ok);
 467}
 468
 469/**
 470 *  __of_device_is_reserved - check if a device is reserved
 471 *
 472 *  @device: Node to check for availability, with locks already held
 473 *
 474 *  Return: True if the status property is set to "reserved", false otherwise
 475 */
 476static bool __of_device_is_reserved(const struct device_node *device)
 477{
 478	static const char * const reserved[] = {"reserved", NULL};
 479
 480	return __of_device_is_status(device, reserved);
 481}
 482
 483/**
 484 *  of_device_is_available - check if a device is available for use
 485 *
 486 *  @device: Node to check for availability
 487 *
 488 *  Return: True if the status property is absent or set to "okay" or "ok",
 489 *  false otherwise
 490 */
 491bool of_device_is_available(const struct device_node *device)
 492{
 493	unsigned long flags;
 494	bool res;
 495
 496	raw_spin_lock_irqsave(&devtree_lock, flags);
 497	res = __of_device_is_available(device);
 498	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 499	return res;
 500
 501}
 502EXPORT_SYMBOL(of_device_is_available);
 503
 504/**
 505 *  __of_device_is_fail - check if a device has status "fail" or "fail-..."
 506 *
 507 *  @device: Node to check status for, with locks already held
 508 *
 509 *  Return: True if the status property is set to "fail" or "fail-..." (for any
 510 *  error code suffix), false otherwise
 511 */
 512static bool __of_device_is_fail(const struct device_node *device)
 513{
 514	static const char * const fail[] = {"fail", "fail-", NULL};
 515
 516	return __of_device_is_status(device, fail);
 517}
 518
 519/**
 520 *  of_device_is_big_endian - check if a device has BE registers
 521 *
 522 *  @device: Node to check for endianness
 523 *
 524 *  Return: True if the device has a "big-endian" property, or if the kernel
 525 *  was compiled for BE *and* the device has a "native-endian" property.
 526 *  Returns false otherwise.
 527 *
 528 *  Callers would nominally use ioread32be/iowrite32be if
 529 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 530 */
 531bool of_device_is_big_endian(const struct device_node *device)
 532{
 533	if (of_property_read_bool(device, "big-endian"))
 534		return true;
 535	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 536	    of_property_read_bool(device, "native-endian"))
 537		return true;
 538	return false;
 539}
 540EXPORT_SYMBOL(of_device_is_big_endian);
 541
 542/**
 543 * of_get_parent - Get a node's parent if any
 544 * @node:	Node to get parent
 545 *
 546 * Return: A node pointer with refcount incremented, use
 547 * of_node_put() on it when done.
 548 */
 549struct device_node *of_get_parent(const struct device_node *node)
 550{
 551	struct device_node *np;
 552	unsigned long flags;
 553
 554	if (!node)
 555		return NULL;
 556
 557	raw_spin_lock_irqsave(&devtree_lock, flags);
 558	np = of_node_get(node->parent);
 559	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 560	return np;
 561}
 562EXPORT_SYMBOL(of_get_parent);
 563
 564/**
 565 * of_get_next_parent - Iterate to a node's parent
 566 * @node:	Node to get parent of
 567 *
 568 * This is like of_get_parent() except that it drops the
 569 * refcount on the passed node, making it suitable for iterating
 570 * through a node's parents.
 571 *
 572 * Return: A node pointer with refcount incremented, use
 573 * of_node_put() on it when done.
 574 */
 575struct device_node *of_get_next_parent(struct device_node *node)
 576{
 577	struct device_node *parent;
 578	unsigned long flags;
 579
 580	if (!node)
 581		return NULL;
 582
 583	raw_spin_lock_irqsave(&devtree_lock, flags);
 584	parent = of_node_get(node->parent);
 585	of_node_put(node);
 586	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 587	return parent;
 588}
 589EXPORT_SYMBOL(of_get_next_parent);
 590
 591static struct device_node *__of_get_next_child(const struct device_node *node,
 592						struct device_node *prev)
 593{
 594	struct device_node *next;
 595
 596	if (!node)
 597		return NULL;
 598
 599	next = prev ? prev->sibling : node->child;
 600	of_node_get(next);
 
 
 601	of_node_put(prev);
 602	return next;
 603}
 604#define __for_each_child_of_node(parent, child) \
 605	for (child = __of_get_next_child(parent, NULL); child != NULL; \
 606	     child = __of_get_next_child(parent, child))
 607
 608/**
 609 * of_get_next_child - Iterate a node childs
 610 * @node:	parent node
 611 * @prev:	previous child of the parent node, or NULL to get first
 612 *
 613 * Return: A node pointer with refcount incremented, use of_node_put() on
 614 * it when done. Returns NULL when prev is the last child. Decrements the
 615 * refcount of prev.
 616 */
 617struct device_node *of_get_next_child(const struct device_node *node,
 618	struct device_node *prev)
 619{
 620	struct device_node *next;
 621	unsigned long flags;
 622
 623	raw_spin_lock_irqsave(&devtree_lock, flags);
 624	next = __of_get_next_child(node, prev);
 625	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 626	return next;
 627}
 628EXPORT_SYMBOL(of_get_next_child);
 629
 630static struct device_node *of_get_next_status_child(const struct device_node *node,
 631						    struct device_node *prev,
 632						    bool (*checker)(const struct device_node *))
 633{
 634	struct device_node *next;
 635	unsigned long flags;
 636
 637	if (!node)
 638		return NULL;
 639
 640	raw_spin_lock_irqsave(&devtree_lock, flags);
 641	next = prev ? prev->sibling : node->child;
 642	for (; next; next = next->sibling) {
 643		if (!checker(next))
 644			continue;
 645		if (of_node_get(next))
 646			break;
 647	}
 648	of_node_put(prev);
 649	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 650	return next;
 651}
 652
 653/**
 654 * of_get_next_available_child - Find the next available child node
 655 * @node:	parent node
 656 * @prev:	previous child of the parent node, or NULL to get first
 657 *
 658 * This function is like of_get_next_child(), except that it
 659 * automatically skips any disabled nodes (i.e. status = "disabled").
 660 */
 661struct device_node *of_get_next_available_child(const struct device_node *node,
 662	struct device_node *prev)
 663{
 664	return of_get_next_status_child(node, prev, __of_device_is_available);
 665}
 666EXPORT_SYMBOL(of_get_next_available_child);
 667
 668/**
 669 * of_get_next_reserved_child - Find the next reserved child node
 670 * @node:	parent node
 671 * @prev:	previous child of the parent node, or NULL to get first
 672 *
 673 * This function is like of_get_next_child(), except that it
 674 * automatically skips any disabled nodes (i.e. status = "disabled").
 675 */
 676struct device_node *of_get_next_reserved_child(const struct device_node *node,
 677						struct device_node *prev)
 678{
 679	return of_get_next_status_child(node, prev, __of_device_is_reserved);
 680}
 681EXPORT_SYMBOL(of_get_next_reserved_child);
 682
 683/**
 684 * of_get_next_cpu_node - Iterate on cpu nodes
 685 * @prev:	previous child of the /cpus node, or NULL to get first
 686 *
 687 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
 688 * will be skipped.
 689 *
 690 * Return: A cpu node pointer with refcount incremented, use of_node_put()
 691 * on it when done. Returns NULL when prev is the last child. Decrements
 692 * the refcount of prev.
 693 */
 694struct device_node *of_get_next_cpu_node(struct device_node *prev)
 695{
 696	struct device_node *next = NULL;
 697	unsigned long flags;
 698	struct device_node *node;
 699
 700	if (!prev)
 701		node = of_find_node_by_path("/cpus");
 702
 703	raw_spin_lock_irqsave(&devtree_lock, flags);
 704	if (prev)
 705		next = prev->sibling;
 706	else if (node) {
 707		next = node->child;
 708		of_node_put(node);
 709	}
 710	for (; next; next = next->sibling) {
 711		if (__of_device_is_fail(next))
 712			continue;
 713		if (!(of_node_name_eq(next, "cpu") ||
 714		      __of_node_is_type(next, "cpu")))
 715			continue;
 716		if (of_node_get(next))
 717			break;
 718	}
 719	of_node_put(prev);
 720	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 721	return next;
 722}
 723EXPORT_SYMBOL(of_get_next_cpu_node);
 724
 725/**
 726 * of_get_compatible_child - Find compatible child node
 727 * @parent:	parent node
 728 * @compatible:	compatible string
 729 *
 730 * Lookup child node whose compatible property contains the given compatible
 731 * string.
 732 *
 733 * Return: a node pointer with refcount incremented, use of_node_put() on it
 734 * when done; or NULL if not found.
 735 */
 736struct device_node *of_get_compatible_child(const struct device_node *parent,
 737				const char *compatible)
 738{
 739	struct device_node *child;
 740
 741	for_each_child_of_node(parent, child) {
 742		if (of_device_is_compatible(child, compatible))
 743			break;
 744	}
 745
 746	return child;
 747}
 748EXPORT_SYMBOL(of_get_compatible_child);
 749
 750/**
 751 * of_get_child_by_name - Find the child node by name for a given parent
 752 * @node:	parent node
 753 * @name:	child name to look for.
 754 *
 755 * This function looks for child node for given matching name
 756 *
 757 * Return: A node pointer if found, with refcount incremented, use
 758 * of_node_put() on it when done.
 759 * Returns NULL if node is not found.
 760 */
 761struct device_node *of_get_child_by_name(const struct device_node *node,
 762				const char *name)
 763{
 764	struct device_node *child;
 765
 766	for_each_child_of_node(node, child)
 767		if (of_node_name_eq(child, name))
 768			break;
 769	return child;
 770}
 771EXPORT_SYMBOL(of_get_child_by_name);
 772
 773struct device_node *__of_find_node_by_path(struct device_node *parent,
 774						const char *path)
 775{
 776	struct device_node *child;
 777	int len;
 778
 779	len = strcspn(path, "/:");
 780	if (!len)
 781		return NULL;
 782
 783	__for_each_child_of_node(parent, child) {
 784		const char *name = kbasename(child->full_name);
 785		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 786			return child;
 787	}
 788	return NULL;
 789}
 790
 791struct device_node *__of_find_node_by_full_path(struct device_node *node,
 792						const char *path)
 793{
 794	const char *separator = strchr(path, ':');
 795
 796	while (node && *path == '/') {
 797		struct device_node *tmp = node;
 798
 799		path++; /* Increment past '/' delimiter */
 800		node = __of_find_node_by_path(node, path);
 801		of_node_put(tmp);
 802		path = strchrnul(path, '/');
 803		if (separator && separator < path)
 804			break;
 805	}
 806	return node;
 807}
 808
 809/**
 810 * of_find_node_opts_by_path - Find a node matching a full OF path
 811 * @path: Either the full path to match, or if the path does not
 812 *       start with '/', the name of a property of the /aliases
 813 *       node (an alias).  In the case of an alias, the node
 814 *       matching the alias' value will be returned.
 815 * @opts: Address of a pointer into which to store the start of
 816 *       an options string appended to the end of the path with
 817 *       a ':' separator.
 818 *
 819 * Valid paths:
 820 *  * /foo/bar	Full path
 821 *  * foo	Valid alias
 822 *  * foo/bar	Valid alias + relative path
 823 *
 824 * Return: A node pointer with refcount incremented, use
 825 * of_node_put() on it when done.
 826 */
 827struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 828{
 829	struct device_node *np = NULL;
 830	struct property *pp;
 831	unsigned long flags;
 832	const char *separator = strchr(path, ':');
 833
 834	if (opts)
 835		*opts = separator ? separator + 1 : NULL;
 836
 837	if (strcmp(path, "/") == 0)
 838		return of_node_get(of_root);
 839
 840	/* The path could begin with an alias */
 841	if (*path != '/') {
 842		int len;
 843		const char *p = separator;
 844
 845		if (!p)
 846			p = strchrnul(path, '/');
 847		len = p - path;
 848
 849		/* of_aliases must not be NULL */
 850		if (!of_aliases)
 851			return NULL;
 852
 853		for_each_property_of_node(of_aliases, pp) {
 854			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 855				np = of_find_node_by_path(pp->value);
 856				break;
 857			}
 858		}
 859		if (!np)
 860			return NULL;
 861		path = p;
 862	}
 863
 864	/* Step down the tree matching path components */
 865	raw_spin_lock_irqsave(&devtree_lock, flags);
 866	if (!np)
 867		np = of_node_get(of_root);
 868	np = __of_find_node_by_full_path(np, path);
 869	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 870	return np;
 871}
 872EXPORT_SYMBOL(of_find_node_opts_by_path);
 873
 874/**
 875 * of_find_node_by_name - Find a node by its "name" property
 876 * @from:	The node to start searching from or NULL; the node
 877 *		you pass will not be searched, only the next one
 878 *		will. Typically, you pass what the previous call
 879 *		returned. of_node_put() will be called on @from.
 880 * @name:	The name string to match against
 881 *
 882 * Return: A node pointer with refcount incremented, use
 883 * of_node_put() on it when done.
 884 */
 885struct device_node *of_find_node_by_name(struct device_node *from,
 886	const char *name)
 887{
 888	struct device_node *np;
 889	unsigned long flags;
 890
 891	raw_spin_lock_irqsave(&devtree_lock, flags);
 892	for_each_of_allnodes_from(from, np)
 893		if (of_node_name_eq(np, name) && of_node_get(np))
 
 894			break;
 895	of_node_put(from);
 896	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 897	return np;
 898}
 899EXPORT_SYMBOL(of_find_node_by_name);
 900
 901/**
 902 * of_find_node_by_type - Find a node by its "device_type" property
 903 * @from:	The node to start searching from, or NULL to start searching
 904 *		the entire device tree. The node you pass will not be
 905 *		searched, only the next one will; typically, you pass
 906 *		what the previous call returned. of_node_put() will be
 907 *		called on from for you.
 908 * @type:	The type string to match against
 909 *
 910 * Return: A node pointer with refcount incremented, use
 911 * of_node_put() on it when done.
 912 */
 913struct device_node *of_find_node_by_type(struct device_node *from,
 914	const char *type)
 915{
 916	struct device_node *np;
 917	unsigned long flags;
 918
 919	raw_spin_lock_irqsave(&devtree_lock, flags);
 920	for_each_of_allnodes_from(from, np)
 921		if (__of_node_is_type(np, type) && of_node_get(np))
 
 922			break;
 923	of_node_put(from);
 924	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 925	return np;
 926}
 927EXPORT_SYMBOL(of_find_node_by_type);
 928
 929/**
 930 * of_find_compatible_node - Find a node based on type and one of the
 931 *                                tokens in its "compatible" property
 932 * @from:	The node to start searching from or NULL, the node
 933 *		you pass will not be searched, only the next one
 934 *		will; typically, you pass what the previous call
 935 *		returned. of_node_put() will be called on it
 936 * @type:	The type string to match "device_type" or NULL to ignore
 937 * @compatible:	The string to match to one of the tokens in the device
 938 *		"compatible" list.
 939 *
 940 * Return: A node pointer with refcount incremented, use
 941 * of_node_put() on it when done.
 942 */
 943struct device_node *of_find_compatible_node(struct device_node *from,
 944	const char *type, const char *compatible)
 945{
 946	struct device_node *np;
 947	unsigned long flags;
 948
 949	raw_spin_lock_irqsave(&devtree_lock, flags);
 950	for_each_of_allnodes_from(from, np)
 951		if (__of_device_is_compatible(np, compatible, type, NULL) &&
 952		    of_node_get(np))
 953			break;
 954	of_node_put(from);
 955	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 956	return np;
 957}
 958EXPORT_SYMBOL(of_find_compatible_node);
 959
 960/**
 961 * of_find_node_with_property - Find a node which has a property with
 962 *                              the given name.
 963 * @from:	The node to start searching from or NULL, the node
 964 *		you pass will not be searched, only the next one
 965 *		will; typically, you pass what the previous call
 966 *		returned. of_node_put() will be called on it
 967 * @prop_name:	The name of the property to look for.
 968 *
 969 * Return: A node pointer with refcount incremented, use
 970 * of_node_put() on it when done.
 971 */
 972struct device_node *of_find_node_with_property(struct device_node *from,
 973	const char *prop_name)
 974{
 975	struct device_node *np;
 976	struct property *pp;
 977	unsigned long flags;
 978
 979	raw_spin_lock_irqsave(&devtree_lock, flags);
 980	for_each_of_allnodes_from(from, np) {
 981		for (pp = np->properties; pp; pp = pp->next) {
 982			if (of_prop_cmp(pp->name, prop_name) == 0) {
 983				of_node_get(np);
 984				goto out;
 985			}
 986		}
 987	}
 988out:
 989	of_node_put(from);
 990	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 991	return np;
 992}
 993EXPORT_SYMBOL(of_find_node_with_property);
 994
 995static
 996const struct of_device_id *__of_match_node(const struct of_device_id *matches,
 997					   const struct device_node *node)
 998{
 999	const struct of_device_id *best_match = NULL;
1000	int score, best_score = 0;
1001
1002	if (!matches)
1003		return NULL;
1004
1005	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1006		score = __of_device_is_compatible(node, matches->compatible,
1007						  matches->type, matches->name);
1008		if (score > best_score) {
1009			best_match = matches;
1010			best_score = score;
1011		}
1012	}
1013
1014	return best_match;
1015}
1016
1017/**
1018 * of_match_node - Tell if a device_node has a matching of_match structure
1019 * @matches:	array of of device match structures to search in
1020 * @node:	the of device structure to match against
1021 *
1022 * Low level utility function used by device matching.
1023 */
1024const struct of_device_id *of_match_node(const struct of_device_id *matches,
1025					 const struct device_node *node)
1026{
1027	const struct of_device_id *match;
1028	unsigned long flags;
1029
1030	raw_spin_lock_irqsave(&devtree_lock, flags);
1031	match = __of_match_node(matches, node);
1032	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1033	return match;
1034}
1035EXPORT_SYMBOL(of_match_node);
1036
1037/**
1038 * of_find_matching_node_and_match - Find a node based on an of_device_id
1039 *				     match table.
1040 * @from:	The node to start searching from or NULL, the node
1041 *		you pass will not be searched, only the next one
1042 *		will; typically, you pass what the previous call
1043 *		returned. of_node_put() will be called on it
1044 * @matches:	array of of device match structures to search in
1045 * @match:	Updated to point at the matches entry which matched
1046 *
1047 * Return: A node pointer with refcount incremented, use
1048 * of_node_put() on it when done.
1049 */
1050struct device_node *of_find_matching_node_and_match(struct device_node *from,
1051					const struct of_device_id *matches,
1052					const struct of_device_id **match)
1053{
1054	struct device_node *np;
1055	const struct of_device_id *m;
1056	unsigned long flags;
1057
1058	if (match)
1059		*match = NULL;
1060
1061	raw_spin_lock_irqsave(&devtree_lock, flags);
1062	for_each_of_allnodes_from(from, np) {
1063		m = __of_match_node(matches, np);
1064		if (m && of_node_get(np)) {
1065			if (match)
1066				*match = m;
1067			break;
1068		}
1069	}
1070	of_node_put(from);
1071	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1072	return np;
1073}
1074EXPORT_SYMBOL(of_find_matching_node_and_match);
1075
1076/**
1077 * of_alias_from_compatible - Lookup appropriate alias for a device node
1078 *			      depending on compatible
1079 * @node:	pointer to a device tree node
1080 * @alias:	Pointer to buffer that alias value will be copied into
1081 * @len:	Length of alias value
1082 *
1083 * Based on the value of the compatible property, this routine will attempt
1084 * to choose an appropriate alias value for a particular device tree node.
1085 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1086 * from the first entry in the compatible list property.
1087 *
1088 * Note: The matching on just the "product" side of the compatible is a relic
1089 * from I2C and SPI. Please do not add any new user.
1090 *
1091 * Return: This routine returns 0 on success, <0 on failure.
1092 */
1093int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1094{
1095	const char *compatible, *p;
1096	int cplen;
1097
1098	compatible = of_get_property(node, "compatible", &cplen);
1099	if (!compatible || strlen(compatible) > cplen)
1100		return -ENODEV;
1101	p = strchr(compatible, ',');
1102	strscpy(alias, p ? p + 1 : compatible, len);
1103	return 0;
1104}
1105EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1106
1107/**
1108 * of_find_node_by_phandle - Find a node given a phandle
1109 * @handle:	phandle of the node to find
1110 *
1111 * Return: A node pointer with refcount incremented, use
1112 * of_node_put() on it when done.
1113 */
1114struct device_node *of_find_node_by_phandle(phandle handle)
1115{
1116	struct device_node *np = NULL;
1117	unsigned long flags;
1118	u32 handle_hash;
1119
1120	if (!handle)
1121		return NULL;
1122
1123	handle_hash = of_phandle_cache_hash(handle);
1124
1125	raw_spin_lock_irqsave(&devtree_lock, flags);
1126
1127	if (phandle_cache[handle_hash] &&
1128	    handle == phandle_cache[handle_hash]->phandle)
1129		np = phandle_cache[handle_hash];
 
 
 
 
1130
1131	if (!np) {
1132		for_each_of_allnodes(np)
1133			if (np->phandle == handle &&
1134			    !of_node_check_flag(np, OF_DETACHED)) {
1135				phandle_cache[handle_hash] = np;
1136				break;
1137			}
1138	}
1139
1140	of_node_get(np);
1141	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1142	return np;
1143}
1144EXPORT_SYMBOL(of_find_node_by_phandle);
1145
1146void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1147{
1148	int i;
1149	printk("%s %pOF", msg, args->np);
1150	for (i = 0; i < args->args_count; i++) {
1151		const char delim = i ? ',' : ':';
1152
1153		pr_cont("%c%08x", delim, args->args[i]);
1154	}
1155	pr_cont("\n");
1156}
1157
1158int of_phandle_iterator_init(struct of_phandle_iterator *it,
1159		const struct device_node *np,
1160		const char *list_name,
1161		const char *cells_name,
1162		int cell_count)
1163{
1164	const __be32 *list;
1165	int size;
1166
1167	memset(it, 0, sizeof(*it));
1168
1169	/*
1170	 * one of cell_count or cells_name must be provided to determine the
1171	 * argument length.
1172	 */
1173	if (cell_count < 0 && !cells_name)
1174		return -EINVAL;
1175
1176	list = of_get_property(np, list_name, &size);
1177	if (!list)
1178		return -ENOENT;
1179
1180	it->cells_name = cells_name;
1181	it->cell_count = cell_count;
1182	it->parent = np;
1183	it->list_end = list + size / sizeof(*list);
1184	it->phandle_end = list;
1185	it->cur = list;
1186
1187	return 0;
1188}
1189EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1190
1191int of_phandle_iterator_next(struct of_phandle_iterator *it)
1192{
1193	uint32_t count = 0;
1194
1195	if (it->node) {
1196		of_node_put(it->node);
1197		it->node = NULL;
1198	}
1199
1200	if (!it->cur || it->phandle_end >= it->list_end)
1201		return -ENOENT;
1202
1203	it->cur = it->phandle_end;
1204
1205	/* If phandle is 0, then it is an empty entry with no arguments. */
1206	it->phandle = be32_to_cpup(it->cur++);
1207
1208	if (it->phandle) {
1209
1210		/*
1211		 * Find the provider node and parse the #*-cells property to
1212		 * determine the argument length.
1213		 */
1214		it->node = of_find_node_by_phandle(it->phandle);
1215
1216		if (it->cells_name) {
1217			if (!it->node) {
1218				pr_err("%pOF: could not find phandle %d\n",
1219				       it->parent, it->phandle);
1220				goto err;
1221			}
1222
1223			if (of_property_read_u32(it->node, it->cells_name,
1224						 &count)) {
1225				/*
1226				 * If both cell_count and cells_name is given,
1227				 * fall back to cell_count in absence
1228				 * of the cells_name property
1229				 */
1230				if (it->cell_count >= 0) {
1231					count = it->cell_count;
1232				} else {
1233					pr_err("%pOF: could not get %s for %pOF\n",
1234					       it->parent,
1235					       it->cells_name,
1236					       it->node);
1237					goto err;
1238				}
1239			}
1240		} else {
1241			count = it->cell_count;
1242		}
1243
1244		/*
1245		 * Make sure that the arguments actually fit in the remaining
1246		 * property data length
1247		 */
1248		if (it->cur + count > it->list_end) {
1249			if (it->cells_name)
1250				pr_err("%pOF: %s = %d found %td\n",
1251					it->parent, it->cells_name,
1252					count, it->list_end - it->cur);
1253			else
1254				pr_err("%pOF: phandle %s needs %d, found %td\n",
1255					it->parent, of_node_full_name(it->node),
1256					count, it->list_end - it->cur);
1257			goto err;
1258		}
1259	}
1260
1261	it->phandle_end = it->cur + count;
1262	it->cur_count = count;
1263
1264	return 0;
1265
1266err:
1267	if (it->node) {
1268		of_node_put(it->node);
1269		it->node = NULL;
1270	}
1271
1272	return -EINVAL;
1273}
1274EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1275
1276int of_phandle_iterator_args(struct of_phandle_iterator *it,
1277			     uint32_t *args,
1278			     int size)
1279{
1280	int i, count;
1281
1282	count = it->cur_count;
1283
1284	if (WARN_ON(size < count))
1285		count = size;
1286
1287	for (i = 0; i < count; i++)
1288		args[i] = be32_to_cpup(it->cur++);
1289
1290	return count;
1291}
1292
1293int __of_parse_phandle_with_args(const struct device_node *np,
1294				 const char *list_name,
1295				 const char *cells_name,
1296				 int cell_count, int index,
1297				 struct of_phandle_args *out_args)
1298{
1299	struct of_phandle_iterator it;
1300	int rc, cur_index = 0;
1301
1302	if (index < 0)
1303		return -EINVAL;
1304
1305	/* Loop over the phandles until all the requested entry is found */
1306	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1307		/*
1308		 * All of the error cases bail out of the loop, so at
1309		 * this point, the parsing is successful. If the requested
1310		 * index matches, then fill the out_args structure and return,
1311		 * or return -ENOENT for an empty entry.
1312		 */
1313		rc = -ENOENT;
1314		if (cur_index == index) {
1315			if (!it.phandle)
1316				goto err;
1317
1318			if (out_args) {
1319				int c;
1320
1321				c = of_phandle_iterator_args(&it,
1322							     out_args->args,
1323							     MAX_PHANDLE_ARGS);
1324				out_args->np = it.node;
1325				out_args->args_count = c;
1326			} else {
1327				of_node_put(it.node);
1328			}
1329
1330			/* Found it! return success */
1331			return 0;
1332		}
1333
1334		cur_index++;
1335	}
1336
1337	/*
1338	 * Unlock node before returning result; will be one of:
1339	 * -ENOENT : index is for empty phandle
1340	 * -EINVAL : parsing error on data
1341	 */
1342
1343 err:
1344	of_node_put(it.node);
1345	return rc;
1346}
1347EXPORT_SYMBOL(__of_parse_phandle_with_args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1348
1349/**
1350 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1351 * @np:		pointer to a device tree node containing a list
1352 * @list_name:	property name that contains a list
1353 * @stem_name:	stem of property names that specify phandles' arguments count
1354 * @index:	index of a phandle to parse out
1355 * @out_args:	optional pointer to output arguments structure (will be filled)
1356 *
1357 * This function is useful to parse lists of phandles and their arguments.
1358 * Returns 0 on success and fills out_args, on error returns appropriate errno
1359 * value. The difference between this function and of_parse_phandle_with_args()
1360 * is that this API remaps a phandle if the node the phandle points to has
1361 * a <@stem_name>-map property.
1362 *
1363 * Caller is responsible to call of_node_put() on the returned out_args->np
1364 * pointer.
1365 *
1366 * Example::
1367 *
1368 *  phandle1: node1 {
1369 *  	#list-cells = <2>;
1370 *  };
1371 *
1372 *  phandle2: node2 {
1373 *  	#list-cells = <1>;
1374 *  };
1375 *
1376 *  phandle3: node3 {
1377 *  	#list-cells = <1>;
1378 *  	list-map = <0 &phandle2 3>,
1379 *  		   <1 &phandle2 2>,
1380 *  		   <2 &phandle1 5 1>;
1381 *  	list-map-mask = <0x3>;
1382 *  };
1383 *
1384 *  node4 {
1385 *  	list = <&phandle1 1 2 &phandle3 0>;
1386 *  };
1387 *
1388 * To get a device_node of the ``node2`` node you may call this:
1389 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1390 */
1391int of_parse_phandle_with_args_map(const struct device_node *np,
1392				   const char *list_name,
1393				   const char *stem_name,
1394				   int index, struct of_phandle_args *out_args)
1395{
1396	char *cells_name, *map_name = NULL, *mask_name = NULL;
1397	char *pass_name = NULL;
1398	struct device_node *cur, *new = NULL;
1399	const __be32 *map, *mask, *pass;
1400	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
1401	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) };
1402	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1403	const __be32 *match_array = initial_match_array;
1404	int i, ret, map_len, match;
1405	u32 list_size, new_size;
1406
1407	if (index < 0)
1408		return -EINVAL;
1409
1410	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1411	if (!cells_name)
1412		return -ENOMEM;
1413
1414	ret = -ENOMEM;
1415	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1416	if (!map_name)
1417		goto free;
1418
1419	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1420	if (!mask_name)
1421		goto free;
1422
1423	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1424	if (!pass_name)
1425		goto free;
1426
1427	ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1428					   out_args);
1429	if (ret)
1430		goto free;
1431
1432	/* Get the #<list>-cells property */
1433	cur = out_args->np;
1434	ret = of_property_read_u32(cur, cells_name, &list_size);
1435	if (ret < 0)
1436		goto put;
1437
1438	/* Precalculate the match array - this simplifies match loop */
1439	for (i = 0; i < list_size; i++)
1440		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1441
1442	ret = -EINVAL;
1443	while (cur) {
1444		/* Get the <list>-map property */
1445		map = of_get_property(cur, map_name, &map_len);
1446		if (!map) {
1447			ret = 0;
1448			goto free;
1449		}
1450		map_len /= sizeof(u32);
1451
1452		/* Get the <list>-map-mask property (optional) */
1453		mask = of_get_property(cur, mask_name, NULL);
1454		if (!mask)
1455			mask = dummy_mask;
1456		/* Iterate through <list>-map property */
1457		match = 0;
1458		while (map_len > (list_size + 1) && !match) {
1459			/* Compare specifiers */
1460			match = 1;
1461			for (i = 0; i < list_size; i++, map_len--)
1462				match &= !((match_array[i] ^ *map++) & mask[i]);
1463
1464			of_node_put(new);
1465			new = of_find_node_by_phandle(be32_to_cpup(map));
1466			map++;
1467			map_len--;
1468
1469			/* Check if not found */
1470			if (!new)
1471				goto put;
1472
1473			if (!of_device_is_available(new))
1474				match = 0;
1475
1476			ret = of_property_read_u32(new, cells_name, &new_size);
1477			if (ret)
1478				goto put;
1479
1480			/* Check for malformed properties */
1481			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1482				goto put;
1483			if (map_len < new_size)
1484				goto put;
1485
1486			/* Move forward by new node's #<list>-cells amount */
1487			map += new_size;
1488			map_len -= new_size;
1489		}
1490		if (!match)
1491			goto put;
1492
1493		/* Get the <list>-map-pass-thru property (optional) */
1494		pass = of_get_property(cur, pass_name, NULL);
1495		if (!pass)
1496			pass = dummy_pass;
1497
1498		/*
1499		 * Successfully parsed a <list>-map translation; copy new
1500		 * specifier into the out_args structure, keeping the
1501		 * bits specified in <list>-map-pass-thru.
1502		 */
1503		match_array = map - new_size;
1504		for (i = 0; i < new_size; i++) {
1505			__be32 val = *(map - new_size + i);
1506
1507			if (i < list_size) {
1508				val &= ~pass[i];
1509				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1510			}
1511
1512			out_args->args[i] = be32_to_cpu(val);
1513		}
1514		out_args->args_count = list_size = new_size;
1515		/* Iterate again with new provider */
1516		out_args->np = new;
1517		of_node_put(cur);
1518		cur = new;
1519		new = NULL;
1520	}
1521put:
1522	of_node_put(cur);
1523	of_node_put(new);
1524free:
1525	kfree(mask_name);
1526	kfree(map_name);
1527	kfree(cells_name);
1528	kfree(pass_name);
1529
1530	return ret;
1531}
1532EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1533
1534/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535 * of_count_phandle_with_args() - Find the number of phandles references in a property
1536 * @np:		pointer to a device tree node containing a list
1537 * @list_name:	property name that contains a list
1538 * @cells_name:	property name that specifies phandles' arguments count
1539 *
1540 * Return: The number of phandle + argument tuples within a property. It
1541 * is a typical pattern to encode a list of phandle and variable
1542 * arguments into a single property. The number of arguments is encoded
1543 * by a property in the phandle-target node. For example, a gpios
1544 * property would contain a list of GPIO specifies consisting of a
1545 * phandle and 1 or more arguments. The number of arguments are
1546 * determined by the #gpio-cells property in the node pointed to by the
1547 * phandle.
1548 */
1549int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1550				const char *cells_name)
1551{
1552	struct of_phandle_iterator it;
1553	int rc, cur_index = 0;
1554
1555	/*
1556	 * If cells_name is NULL we assume a cell count of 0. This makes
1557	 * counting the phandles trivial as each 32bit word in the list is a
1558	 * phandle and no arguments are to consider. So we don't iterate through
1559	 * the list but just use the length to determine the phandle count.
1560	 */
1561	if (!cells_name) {
1562		const __be32 *list;
1563		int size;
1564
1565		list = of_get_property(np, list_name, &size);
1566		if (!list)
1567			return -ENOENT;
1568
1569		return size / sizeof(*list);
1570	}
1571
1572	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1573	if (rc)
1574		return rc;
1575
1576	while ((rc = of_phandle_iterator_next(&it)) == 0)
1577		cur_index += 1;
1578
1579	if (rc != -ENOENT)
1580		return rc;
1581
1582	return cur_index;
1583}
1584EXPORT_SYMBOL(of_count_phandle_with_args);
1585
1586static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1587{
1588	struct property **next;
1589
1590	for (next = list; *next; next = &(*next)->next) {
1591		if (*next == prop) {
1592			*next = prop->next;
1593			prop->next = NULL;
1594			return prop;
1595		}
1596	}
1597	return NULL;
1598}
1599
1600/**
1601 * __of_add_property - Add a property to a node without lock operations
1602 * @np:		Caller's Device Node
1603 * @prop:	Property to add
1604 */
1605int __of_add_property(struct device_node *np, struct property *prop)
1606{
1607	int rc = 0;
1608	unsigned long flags;
1609	struct property **next;
1610
1611	raw_spin_lock_irqsave(&devtree_lock, flags);
1612
1613	__of_remove_property_from_list(&np->deadprops, prop);
1614
1615	prop->next = NULL;
1616	next = &np->properties;
1617	while (*next) {
1618		if (strcmp(prop->name, (*next)->name) == 0) {
1619			/* duplicate ! don't insert it */
1620			rc = -EEXIST;
1621			goto out_unlock;
1622		}
1623		next = &(*next)->next;
1624	}
1625	*next = prop;
1626
1627out_unlock:
1628	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1629	if (rc)
1630		return rc;
1631
1632	__of_add_property_sysfs(np, prop);
1633	return 0;
1634}
1635
1636/**
1637 * of_add_property - Add a property to a node
1638 * @np:		Caller's Device Node
1639 * @prop:	Property to add
1640 */
1641int of_add_property(struct device_node *np, struct property *prop)
1642{
 
1643	int rc;
1644
1645	mutex_lock(&of_mutex);
 
 
1646	rc = __of_add_property(np, prop);
 
 
 
 
 
1647	mutex_unlock(&of_mutex);
1648
1649	if (!rc)
1650		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1651
1652	return rc;
1653}
1654EXPORT_SYMBOL_GPL(of_add_property);
1655
1656int __of_remove_property(struct device_node *np, struct property *prop)
1657{
1658	unsigned long flags;
1659	int rc = -ENODEV;
1660
1661	raw_spin_lock_irqsave(&devtree_lock, flags);
1662
1663	if (__of_remove_property_from_list(&np->properties, prop)) {
1664		/* Found the property, add it to deadprops list */
1665		prop->next = np->deadprops;
1666		np->deadprops = prop;
1667		rc = 0;
1668	}
 
 
1669
1670	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1671	if (rc)
1672		return rc;
 
1673
1674	__of_remove_property_sysfs(np, prop);
1675	return 0;
1676}
1677
1678/**
1679 * of_remove_property - Remove a property from a node.
1680 * @np:		Caller's Device Node
1681 * @prop:	Property to remove
1682 *
1683 * Note that we don't actually remove it, since we have given out
1684 * who-knows-how-many pointers to the data using get-property.
1685 * Instead we just move the property to the "dead properties"
1686 * list, so it won't be found any more.
1687 */
1688int of_remove_property(struct device_node *np, struct property *prop)
1689{
 
1690	int rc;
1691
1692	if (!prop)
1693		return -ENODEV;
1694
1695	mutex_lock(&of_mutex);
 
 
1696	rc = __of_remove_property(np, prop);
 
 
 
 
 
1697	mutex_unlock(&of_mutex);
1698
1699	if (!rc)
1700		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1701
1702	return rc;
1703}
1704EXPORT_SYMBOL_GPL(of_remove_property);
1705
1706int __of_update_property(struct device_node *np, struct property *newprop,
1707		struct property **oldpropp)
1708{
1709	struct property **next, *oldprop;
1710	unsigned long flags;
1711
1712	raw_spin_lock_irqsave(&devtree_lock, flags);
1713
1714	__of_remove_property_from_list(&np->deadprops, newprop);
1715
1716	for (next = &np->properties; *next; next = &(*next)->next) {
1717		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1718			break;
1719	}
1720	*oldpropp = oldprop = *next;
1721
1722	if (oldprop) {
1723		/* replace the node */
1724		newprop->next = oldprop->next;
1725		*next = newprop;
1726		oldprop->next = np->deadprops;
1727		np->deadprops = oldprop;
1728	} else {
1729		/* new node */
1730		newprop->next = NULL;
1731		*next = newprop;
1732	}
1733
1734	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1735
1736	__of_update_property_sysfs(np, newprop, oldprop);
1737
1738	return 0;
1739}
1740
1741/*
1742 * of_update_property - Update a property in a node, if the property does
1743 * not exist, add it.
1744 *
1745 * Note that we don't actually remove it, since we have given out
1746 * who-knows-how-many pointers to the data using get-property.
1747 * Instead we just move the property to the "dead properties" list,
1748 * and add the new property to the property list
1749 */
1750int of_update_property(struct device_node *np, struct property *newprop)
1751{
1752	struct property *oldprop;
 
1753	int rc;
1754
1755	if (!newprop->name)
1756		return -EINVAL;
1757
1758	mutex_lock(&of_mutex);
 
 
1759	rc = __of_update_property(np, newprop, &oldprop);
 
 
 
 
 
1760	mutex_unlock(&of_mutex);
1761
1762	if (!rc)
1763		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1764
1765	return rc;
1766}
1767
1768static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1769			 int id, const char *stem, int stem_len)
1770{
1771	ap->np = np;
1772	ap->id = id;
1773	strscpy(ap->stem, stem, stem_len + 1);
 
1774	list_add_tail(&ap->link, &aliases_lookup);
1775	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1776		 ap->alias, ap->stem, ap->id, np);
1777}
1778
1779/**
1780 * of_alias_scan - Scan all properties of the 'aliases' node
1781 * @dt_alloc:	An allocator that provides a virtual address to memory
1782 *		for storing the resulting tree
1783 *
1784 * The function scans all the properties of the 'aliases' node and populates
1785 * the global lookup table with the properties.  It returns the
1786 * number of alias properties found, or an error code in case of failure.
 
 
 
1787 */
1788void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1789{
1790	struct property *pp;
1791
1792	of_aliases = of_find_node_by_path("/aliases");
1793	of_chosen = of_find_node_by_path("/chosen");
1794	if (of_chosen == NULL)
1795		of_chosen = of_find_node_by_path("/chosen@0");
1796
1797	if (of_chosen) {
1798		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1799		const char *name = NULL;
1800
1801		if (of_property_read_string(of_chosen, "stdout-path", &name))
1802			of_property_read_string(of_chosen, "linux,stdout-path",
1803						&name);
1804		if (IS_ENABLED(CONFIG_PPC) && !name)
1805			of_property_read_string(of_aliases, "stdout", &name);
1806		if (name)
1807			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1808		if (of_stdout)
1809			of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1810	}
1811
1812	if (!of_aliases)
1813		return;
1814
1815	for_each_property_of_node(of_aliases, pp) {
1816		const char *start = pp->name;
1817		const char *end = start + strlen(start);
1818		struct device_node *np;
1819		struct alias_prop *ap;
1820		int id, len;
1821
1822		/* Skip those we do not want to proceed */
1823		if (!strcmp(pp->name, "name") ||
1824		    !strcmp(pp->name, "phandle") ||
1825		    !strcmp(pp->name, "linux,phandle"))
1826			continue;
1827
1828		np = of_find_node_by_path(pp->value);
1829		if (!np)
1830			continue;
1831
1832		/* walk the alias backwards to extract the id and work out
1833		 * the 'stem' string */
1834		while (isdigit(*(end-1)) && end > start)
1835			end--;
1836		len = end - start;
1837
1838		if (kstrtoint(end, 10, &id) < 0)
1839			continue;
1840
1841		/* Allocate an alias_prop with enough space for the stem */
1842		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1843		if (!ap)
1844			continue;
1845		memset(ap, 0, sizeof(*ap) + len + 1);
1846		ap->alias = start;
1847		of_alias_add(ap, np, id, start, len);
1848	}
1849}
1850
1851/**
1852 * of_alias_get_id - Get alias id for the given device_node
1853 * @np:		Pointer to the given device_node
1854 * @stem:	Alias stem of the given device_node
1855 *
1856 * The function travels the lookup table to get the alias id for the given
1857 * device_node and alias stem.
1858 *
1859 * Return: The alias id if found.
1860 */
1861int of_alias_get_id(struct device_node *np, const char *stem)
1862{
1863	struct alias_prop *app;
1864	int id = -ENODEV;
1865
1866	mutex_lock(&of_mutex);
1867	list_for_each_entry(app, &aliases_lookup, link) {
1868		if (strcmp(app->stem, stem) != 0)
1869			continue;
1870
1871		if (np == app->np) {
1872			id = app->id;
1873			break;
1874		}
1875	}
1876	mutex_unlock(&of_mutex);
1877
1878	return id;
1879}
1880EXPORT_SYMBOL_GPL(of_alias_get_id);
1881
1882/**
1883 * of_alias_get_highest_id - Get highest alias id for the given stem
1884 * @stem:	Alias stem to be examined
1885 *
1886 * The function travels the lookup table to get the highest alias id for the
1887 * given alias stem.  It returns the alias id if found.
1888 */
1889int of_alias_get_highest_id(const char *stem)
1890{
1891	struct alias_prop *app;
1892	int id = -ENODEV;
1893
1894	mutex_lock(&of_mutex);
1895	list_for_each_entry(app, &aliases_lookup, link) {
1896		if (strcmp(app->stem, stem) != 0)
1897			continue;
1898
1899		if (app->id > id)
1900			id = app->id;
1901	}
1902	mutex_unlock(&of_mutex);
1903
1904	return id;
1905}
1906EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1907
1908/**
1909 * of_console_check() - Test and setup console for DT setup
1910 * @dn: Pointer to device node
1911 * @name: Name to use for preferred console without index. ex. "ttyS"
1912 * @index: Index to use for preferred console.
1913 *
1914 * Check if the given device node matches the stdout-path property in the
1915 * /chosen node. If it does then register it as the preferred console.
1916 *
1917 * Return: TRUE if console successfully setup. Otherwise return FALSE.
1918 */
1919bool of_console_check(struct device_node *dn, char *name, int index)
1920{
1921	if (!dn || dn != of_stdout || console_set_on_cmdline)
1922		return false;
1923
1924	/*
1925	 * XXX: cast `options' to char pointer to suppress complication
1926	 * warnings: printk, UART and console drivers expect char pointer.
1927	 */
1928	return !add_preferred_console(name, index, (char *)of_stdout_options);
1929}
1930EXPORT_SYMBOL_GPL(of_console_check);
1931
1932/**
1933 * of_find_next_cache_node - Find a node's subsidiary cache
1934 * @np:	node of type "cpu" or "cache"
1935 *
1936 * Return: A node pointer with refcount incremented, use
1937 * of_node_put() on it when done.  Caller should hold a reference
1938 * to np.
1939 */
1940struct device_node *of_find_next_cache_node(const struct device_node *np)
1941{
1942	struct device_node *child, *cache_node;
1943
1944	cache_node = of_parse_phandle(np, "l2-cache", 0);
1945	if (!cache_node)
1946		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1947
1948	if (cache_node)
1949		return cache_node;
1950
1951	/* OF on pmac has nodes instead of properties named "l2-cache"
1952	 * beneath CPU nodes.
1953	 */
1954	if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1955		for_each_child_of_node(np, child)
1956			if (of_node_is_type(child, "cache"))
1957				return child;
1958
1959	return NULL;
1960}
1961
1962/**
1963 * of_find_last_cache_level - Find the level at which the last cache is
1964 * 		present for the given logical cpu
1965 *
1966 * @cpu: cpu number(logical index) for which the last cache level is needed
1967 *
1968 * Return: The level at which the last cache is present. It is exactly
1969 * same as  the total number of cache levels for the given logical cpu.
1970 */
1971int of_find_last_cache_level(unsigned int cpu)
1972{
1973	u32 cache_level = 0;
1974	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1975
1976	while (np) {
1977		of_node_put(prev);
1978		prev = np;
 
1979		np = of_find_next_cache_node(np);
1980	}
1981
1982	of_property_read_u32(prev, "cache-level", &cache_level);
1983	of_node_put(prev);
1984
1985	return cache_level;
1986}
1987
1988/**
1989 * of_map_id - Translate an ID through a downstream mapping.
1990 * @np: root complex device node.
1991 * @id: device ID to map.
1992 * @map_name: property name of the map to use.
1993 * @map_mask_name: optional property name of the mask to use.
1994 * @target: optional pointer to a target device node.
1995 * @id_out: optional pointer to receive the translated ID.
1996 *
1997 * Given a device ID, look up the appropriate implementation-defined
1998 * platform ID and/or the target device which receives transactions on that
1999 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2000 * @id_out may be NULL if only the other is required. If @target points to
2001 * a non-NULL device node pointer, only entries targeting that node will be
2002 * matched; if it points to a NULL value, it will receive the device node of
2003 * the first matching target phandle, with a reference held.
2004 *
2005 * Return: 0 on success or a standard error code on failure.
2006 */
2007int of_map_id(struct device_node *np, u32 id,
2008	       const char *map_name, const char *map_mask_name,
2009	       struct device_node **target, u32 *id_out)
2010{
2011	u32 map_mask, masked_id;
2012	int map_len;
2013	const __be32 *map = NULL;
2014
2015	if (!np || !map_name || (!target && !id_out))
2016		return -EINVAL;
2017
2018	map = of_get_property(np, map_name, &map_len);
2019	if (!map) {
2020		if (target)
2021			return -ENODEV;
2022		/* Otherwise, no map implies no translation */
2023		*id_out = id;
2024		return 0;
2025	}
2026
2027	if (!map_len || map_len % (4 * sizeof(*map))) {
2028		pr_err("%pOF: Error: Bad %s length: %d\n", np,
2029			map_name, map_len);
2030		return -EINVAL;
2031	}
2032
2033	/* The default is to select all bits. */
2034	map_mask = 0xffffffff;
2035
2036	/*
2037	 * Can be overridden by "{iommu,msi}-map-mask" property.
2038	 * If of_property_read_u32() fails, the default is used.
2039	 */
2040	if (map_mask_name)
2041		of_property_read_u32(np, map_mask_name, &map_mask);
2042
2043	masked_id = map_mask & id;
2044	for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2045		struct device_node *phandle_node;
2046		u32 id_base = be32_to_cpup(map + 0);
2047		u32 phandle = be32_to_cpup(map + 1);
2048		u32 out_base = be32_to_cpup(map + 2);
2049		u32 id_len = be32_to_cpup(map + 3);
2050
2051		if (id_base & ~map_mask) {
2052			pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2053				np, map_name, map_name,
2054				map_mask, id_base);
2055			return -EFAULT;
2056		}
2057
2058		if (masked_id < id_base || masked_id >= id_base + id_len)
2059			continue;
2060
2061		phandle_node = of_find_node_by_phandle(phandle);
2062		if (!phandle_node)
2063			return -ENODEV;
2064
2065		if (target) {
2066			if (*target)
2067				of_node_put(phandle_node);
2068			else
2069				*target = phandle_node;
2070
2071			if (*target != phandle_node)
2072				continue;
2073		}
2074
2075		if (id_out)
2076			*id_out = masked_id - id_base + out_base;
2077
2078		pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2079			np, map_name, map_mask, id_base, out_base,
2080			id_len, id, masked_id - id_base + out_base);
2081		return 0;
2082	}
2083
2084	pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2085		id, target && *target ? *target : NULL);
2086
2087	/* Bypasses translation */
2088	if (id_out)
2089		*id_out = id;
2090	return 0;
2091}
2092EXPORT_SYMBOL_GPL(of_map_id);
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Procedures for creating, accessing and interpreting the device tree.
   4 *
   5 * Paul Mackerras	August 1996.
   6 * Copyright (C) 1996-2005 Paul Mackerras.
   7 *
   8 *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
   9 *    {engebret|bergner}@us.ibm.com
  10 *
  11 *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
  12 *
  13 *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
  14 *  Grant Likely.
  15 */
  16
  17#define pr_fmt(fmt)	"OF: " fmt
  18
  19#include <linux/console.h>
  20#include <linux/ctype.h>
  21#include <linux/cpu.h>
  22#include <linux/module.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/of_graph.h>
  26#include <linux/spinlock.h>
  27#include <linux/slab.h>
  28#include <linux/string.h>
  29#include <linux/proc_fs.h>
  30
  31#include "of_private.h"
  32
  33LIST_HEAD(aliases_lookup);
  34
  35struct device_node *of_root;
  36EXPORT_SYMBOL(of_root);
  37struct device_node *of_chosen;
 
  38struct device_node *of_aliases;
  39struct device_node *of_stdout;
  40static const char *of_stdout_options;
  41
  42struct kset *of_kset;
  43
  44/*
  45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
  46 * This mutex must be held whenever modifications are being made to the
  47 * device tree. The of_{attach,detach}_node() and
  48 * of_{add,remove,update}_property() helpers make sure this happens.
  49 */
  50DEFINE_MUTEX(of_mutex);
  51
  52/* use when traversing tree through the child, sibling,
  53 * or parent members of struct device_node.
  54 */
  55DEFINE_RAW_SPINLOCK(devtree_lock);
  56
  57int of_n_addr_cells(struct device_node *np)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58{
  59	u32 cells;
  60
  61	do {
  62		if (np->parent)
  63			np = np->parent;
  64		if (!of_property_read_u32(np, "#address-cells", &cells))
  65			return cells;
  66	} while (np->parent);
  67	/* No #address-cells property for the root node */
  68	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
  69}
 
 
 
 
 
 
 
 
  70EXPORT_SYMBOL(of_n_addr_cells);
  71
  72int of_n_size_cells(struct device_node *np)
  73{
  74	u32 cells;
  75
  76	do {
  77		if (np->parent)
  78			np = np->parent;
  79		if (!of_property_read_u32(np, "#size-cells", &cells))
  80			return cells;
  81	} while (np->parent);
  82	/* No #size-cells property for the root node */
  83	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
  84}
 
 
 
 
 
 
 
 
  85EXPORT_SYMBOL(of_n_size_cells);
  86
  87#ifdef CONFIG_NUMA
  88int __weak of_node_to_nid(struct device_node *np)
  89{
  90	return NUMA_NO_NODE;
  91}
  92#endif
  93
  94static struct device_node **phandle_cache;
  95static u32 phandle_cache_mask;
 
 
 
 
 
 
 
  96
  97/*
  98 * Assumptions behind phandle_cache implementation:
  99 *   - phandle property values are in a contiguous range of 1..n
 100 *
 101 * If the assumptions do not hold, then
 102 *   - the phandle lookup overhead reduction provided by the cache
 103 *     will likely be less
 104 */
 105static void of_populate_phandle_cache(void)
 106{
 107	unsigned long flags;
 108	u32 cache_entries;
 109	struct device_node *np;
 110	u32 phandles = 0;
 111
 112	raw_spin_lock_irqsave(&devtree_lock, flags);
 
 113
 114	kfree(phandle_cache);
 115	phandle_cache = NULL;
 116
 117	for_each_of_allnodes(np)
 118		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
 119			phandles++;
 120
 121	cache_entries = roundup_pow_of_two(phandles);
 122	phandle_cache_mask = cache_entries - 1;
 123
 124	phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
 125				GFP_ATOMIC);
 126	if (!phandle_cache)
 127		goto out;
 128
 129	for_each_of_allnodes(np)
 130		if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
 131			phandle_cache[np->phandle & phandle_cache_mask] = np;
 132
 133out:
 134	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 135}
 136
 137#ifndef CONFIG_MODULES
 138static int __init of_free_phandle_cache(void)
 139{
 140	unsigned long flags;
 141
 142	raw_spin_lock_irqsave(&devtree_lock, flags);
 143
 144	kfree(phandle_cache);
 145	phandle_cache = NULL;
 146
 147	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 148
 149	return 0;
 150}
 151late_initcall_sync(of_free_phandle_cache);
 152#endif
 153
 154void __init of_core_init(void)
 155{
 156	struct device_node *np;
 157
 158	of_populate_phandle_cache();
 159
 160	/* Create the kset, and register existing nodes */
 161	mutex_lock(&of_mutex);
 162	of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
 163	if (!of_kset) {
 164		mutex_unlock(&of_mutex);
 165		pr_err("failed to register existing nodes\n");
 166		return;
 167	}
 168	for_each_of_allnodes(np)
 169		__of_attach_node_sysfs(np);
 
 
 
 170	mutex_unlock(&of_mutex);
 171
 172	/* Symlink in /proc as required by userspace ABI */
 173	if (of_root)
 174		proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
 175}
 176
 177static struct property *__of_find_property(const struct device_node *np,
 178					   const char *name, int *lenp)
 179{
 180	struct property *pp;
 181
 182	if (!np)
 183		return NULL;
 184
 185	for (pp = np->properties; pp; pp = pp->next) {
 186		if (of_prop_cmp(pp->name, name) == 0) {
 187			if (lenp)
 188				*lenp = pp->length;
 189			break;
 190		}
 191	}
 192
 193	return pp;
 194}
 195
 196struct property *of_find_property(const struct device_node *np,
 197				  const char *name,
 198				  int *lenp)
 199{
 200	struct property *pp;
 201	unsigned long flags;
 202
 203	raw_spin_lock_irqsave(&devtree_lock, flags);
 204	pp = __of_find_property(np, name, lenp);
 205	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 206
 207	return pp;
 208}
 209EXPORT_SYMBOL(of_find_property);
 210
 211struct device_node *__of_find_all_nodes(struct device_node *prev)
 212{
 213	struct device_node *np;
 214	if (!prev) {
 215		np = of_root;
 216	} else if (prev->child) {
 217		np = prev->child;
 218	} else {
 219		/* Walk back up looking for a sibling, or the end of the structure */
 220		np = prev;
 221		while (np->parent && !np->sibling)
 222			np = np->parent;
 223		np = np->sibling; /* Might be null at the end of the tree */
 224	}
 225	return np;
 226}
 227
 228/**
 229 * of_find_all_nodes - Get next node in global list
 230 * @prev:	Previous node or NULL to start iteration
 231 *		of_node_put() will be called on it
 232 *
 233 * Returns a node pointer with refcount incremented, use
 234 * of_node_put() on it when done.
 235 */
 236struct device_node *of_find_all_nodes(struct device_node *prev)
 237{
 238	struct device_node *np;
 239	unsigned long flags;
 240
 241	raw_spin_lock_irqsave(&devtree_lock, flags);
 242	np = __of_find_all_nodes(prev);
 243	of_node_get(np);
 244	of_node_put(prev);
 245	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 246	return np;
 247}
 248EXPORT_SYMBOL(of_find_all_nodes);
 249
 250/*
 251 * Find a property with a given name for a given node
 252 * and return the value.
 253 */
 254const void *__of_get_property(const struct device_node *np,
 255			      const char *name, int *lenp)
 256{
 257	struct property *pp = __of_find_property(np, name, lenp);
 258
 259	return pp ? pp->value : NULL;
 260}
 261
 262/*
 263 * Find a property with a given name for a given node
 264 * and return the value.
 265 */
 266const void *of_get_property(const struct device_node *np, const char *name,
 267			    int *lenp)
 268{
 269	struct property *pp = of_find_property(np, name, lenp);
 270
 271	return pp ? pp->value : NULL;
 272}
 273EXPORT_SYMBOL(of_get_property);
 274
 275/*
 276 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
 277 *
 278 * @cpu: logical cpu index of a core/thread
 279 * @phys_id: physical identifier of a core/thread
 280 *
 281 * CPU logical to physical index mapping is architecture specific.
 282 * However this __weak function provides a default match of physical
 283 * id to logical cpu index. phys_id provided here is usually values read
 284 * from the device tree which must match the hardware internal registers.
 285 *
 286 * Returns true if the physical identifier and the logical cpu index
 287 * correspond to the same core/thread, false otherwise.
 288 */
 289bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
 290{
 291	return (u32)phys_id == cpu;
 292}
 293
 294/**
 295 * Checks if the given "prop_name" property holds the physical id of the
 296 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
 297 * NULL, local thread number within the core is returned in it.
 298 */
 299static bool __of_find_n_match_cpu_property(struct device_node *cpun,
 300			const char *prop_name, int cpu, unsigned int *thread)
 301{
 302	const __be32 *cell;
 303	int ac, prop_len, tid;
 304	u64 hwid;
 305
 306	ac = of_n_addr_cells(cpun);
 307	cell = of_get_property(cpun, prop_name, &prop_len);
 308	if (!cell || !ac)
 309		return false;
 310	prop_len /= sizeof(*cell) * ac;
 311	for (tid = 0; tid < prop_len; tid++) {
 312		hwid = of_read_number(cell, ac);
 313		if (arch_match_cpu_phys_id(cpu, hwid)) {
 314			if (thread)
 315				*thread = tid;
 316			return true;
 317		}
 318		cell += ac;
 319	}
 320	return false;
 321}
 322
 323/*
 324 * arch_find_n_match_cpu_physical_id - See if the given device node is
 325 * for the cpu corresponding to logical cpu 'cpu'.  Return true if so,
 326 * else false.  If 'thread' is non-NULL, the local thread number within the
 327 * core is returned in it.
 328 */
 329bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
 330					      int cpu, unsigned int *thread)
 331{
 332	/* Check for non-standard "ibm,ppc-interrupt-server#s" property
 333	 * for thread ids on PowerPC. If it doesn't exist fallback to
 334	 * standard "reg" property.
 335	 */
 336	if (IS_ENABLED(CONFIG_PPC) &&
 337	    __of_find_n_match_cpu_property(cpun,
 338					   "ibm,ppc-interrupt-server#s",
 339					   cpu, thread))
 340		return true;
 341
 342	return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
 343}
 344
 345/**
 346 * of_get_cpu_node - Get device node associated with the given logical CPU
 347 *
 348 * @cpu: CPU number(logical index) for which device node is required
 349 * @thread: if not NULL, local thread number within the physical core is
 350 *          returned
 351 *
 352 * The main purpose of this function is to retrieve the device node for the
 353 * given logical CPU index. It should be used to initialize the of_node in
 354 * cpu device. Once of_node in cpu device is populated, all the further
 355 * references can use that instead.
 356 *
 357 * CPU logical to physical index mapping is architecture specific and is built
 358 * before booting secondary cores. This function uses arch_match_cpu_phys_id
 359 * which can be overridden by architecture specific implementation.
 360 *
 361 * Returns a node pointer for the logical cpu with refcount incremented, use
 362 * of_node_put() on it when done. Returns NULL if not found.
 363 */
 364struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
 365{
 366	struct device_node *cpun;
 367
 368	for_each_node_by_type(cpun, "cpu") {
 369		if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
 370			return cpun;
 371	}
 372	return NULL;
 373}
 374EXPORT_SYMBOL(of_get_cpu_node);
 375
 376/**
 377 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
 378 *
 379 * @cpu_node: Pointer to the device_node for CPU.
 380 *
 381 * Returns the logical CPU number of the given CPU device_node.
 382 * Returns -ENODEV if the CPU is not found.
 383 */
 384int of_cpu_node_to_id(struct device_node *cpu_node)
 385{
 386	int cpu;
 387	bool found = false;
 388	struct device_node *np;
 389
 390	for_each_possible_cpu(cpu) {
 391		np = of_cpu_device_node_get(cpu);
 392		found = (cpu_node == np);
 393		of_node_put(np);
 394		if (found)
 395			return cpu;
 396	}
 397
 398	return -ENODEV;
 399}
 400EXPORT_SYMBOL(of_cpu_node_to_id);
 401
 402/**
 403 * __of_device_is_compatible() - Check if the node matches given constraints
 404 * @device: pointer to node
 405 * @compat: required compatible string, NULL or "" for any match
 406 * @type: required device_type value, NULL or "" for any match
 407 * @name: required node name, NULL or "" for any match
 408 *
 409 * Checks if the given @compat, @type and @name strings match the
 410 * properties of the given @device. A constraints can be skipped by
 411 * passing NULL or an empty string as the constraint.
 412 *
 413 * Returns 0 for no match, and a positive integer on match. The return
 414 * value is a relative score with larger values indicating better
 415 * matches. The score is weighted for the most specific compatible value
 416 * to get the highest score. Matching type is next, followed by matching
 417 * name. Practically speaking, this results in the following priority
 418 * order for matches:
 419 *
 420 * 1. specific compatible && type && name
 421 * 2. specific compatible && type
 422 * 3. specific compatible && name
 423 * 4. specific compatible
 424 * 5. general compatible && type && name
 425 * 6. general compatible && type
 426 * 7. general compatible && name
 427 * 8. general compatible
 428 * 9. type && name
 429 * 10. type
 430 * 11. name
 431 */
 432static int __of_device_is_compatible(const struct device_node *device,
 433				     const char *compat, const char *type, const char *name)
 434{
 435	struct property *prop;
 436	const char *cp;
 437	int index = 0, score = 0;
 438
 439	/* Compatible match has highest priority */
 440	if (compat && compat[0]) {
 441		prop = __of_find_property(device, "compatible", NULL);
 442		for (cp = of_prop_next_string(prop, NULL); cp;
 443		     cp = of_prop_next_string(prop, cp), index++) {
 444			if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
 445				score = INT_MAX/2 - (index << 2);
 446				break;
 447			}
 448		}
 449		if (!score)
 450			return 0;
 451	}
 452
 453	/* Matching type is better than matching name */
 454	if (type && type[0]) {
 455		if (!device->type || of_node_cmp(type, device->type))
 456			return 0;
 457		score += 2;
 458	}
 459
 460	/* Matching name is a bit better than not */
 461	if (name && name[0]) {
 462		if (!device->name || of_node_cmp(name, device->name))
 463			return 0;
 464		score++;
 465	}
 466
 467	return score;
 468}
 469
 470/** Checks if the given "compat" string matches one of the strings in
 471 * the device's "compatible" property
 472 */
 473int of_device_is_compatible(const struct device_node *device,
 474		const char *compat)
 475{
 476	unsigned long flags;
 477	int res;
 478
 479	raw_spin_lock_irqsave(&devtree_lock, flags);
 480	res = __of_device_is_compatible(device, compat, NULL, NULL);
 481	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 482	return res;
 483}
 484EXPORT_SYMBOL(of_device_is_compatible);
 485
 486/** Checks if the device is compatible with any of the entries in
 487 *  a NULL terminated array of strings. Returns the best match
 488 *  score or 0.
 489 */
 490int of_device_compatible_match(struct device_node *device,
 491			       const char *const *compat)
 492{
 493	unsigned int tmp, score = 0;
 494
 495	if (!compat)
 496		return 0;
 497
 498	while (*compat) {
 499		tmp = of_device_is_compatible(device, *compat);
 500		if (tmp > score)
 501			score = tmp;
 502		compat++;
 503	}
 504
 505	return score;
 506}
 
 507
 508/**
 509 * of_machine_is_compatible - Test root of device tree for a given compatible value
 510 * @compat: compatible string to look for in root node's compatible property.
 511 *
 512 * Returns a positive integer if the root node has the given value in its
 513 * compatible property.
 514 */
 515int of_machine_is_compatible(const char *compat)
 516{
 517	struct device_node *root;
 518	int rc = 0;
 519
 520	root = of_find_node_by_path("/");
 521	if (root) {
 522		rc = of_device_is_compatible(root, compat);
 523		of_node_put(root);
 524	}
 525	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 526}
 527EXPORT_SYMBOL(of_machine_is_compatible);
 528
 529/**
 530 *  __of_device_is_available - check if a device is available for use
 531 *
 532 *  @device: Node to check for availability, with locks already held
 533 *
 534 *  Returns true if the status property is absent or set to "okay" or "ok",
 535 *  false otherwise
 536 */
 537static bool __of_device_is_available(const struct device_node *device)
 538{
 539	const char *status;
 540	int statlen;
 541
 542	if (!device)
 543		return false;
 544
 545	status = __of_get_property(device, "status", &statlen);
 546	if (status == NULL)
 547		return true;
 548
 549	if (statlen > 0) {
 550		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
 551			return true;
 552	}
 
 
 
 
 
 
 553
 554	return false;
 555}
 556
 557/**
 558 *  of_device_is_available - check if a device is available for use
 559 *
 560 *  @device: Node to check for availability
 561 *
 562 *  Returns true if the status property is absent or set to "okay" or "ok",
 563 *  false otherwise
 564 */
 565bool of_device_is_available(const struct device_node *device)
 566{
 567	unsigned long flags;
 568	bool res;
 569
 570	raw_spin_lock_irqsave(&devtree_lock, flags);
 571	res = __of_device_is_available(device);
 572	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 573	return res;
 574
 575}
 576EXPORT_SYMBOL(of_device_is_available);
 577
 578/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 579 *  of_device_is_big_endian - check if a device has BE registers
 580 *
 581 *  @device: Node to check for endianness
 582 *
 583 *  Returns true if the device has a "big-endian" property, or if the kernel
 584 *  was compiled for BE *and* the device has a "native-endian" property.
 585 *  Returns false otherwise.
 586 *
 587 *  Callers would nominally use ioread32be/iowrite32be if
 588 *  of_device_is_big_endian() == true, or readl/writel otherwise.
 589 */
 590bool of_device_is_big_endian(const struct device_node *device)
 591{
 592	if (of_property_read_bool(device, "big-endian"))
 593		return true;
 594	if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
 595	    of_property_read_bool(device, "native-endian"))
 596		return true;
 597	return false;
 598}
 599EXPORT_SYMBOL(of_device_is_big_endian);
 600
 601/**
 602 *	of_get_parent - Get a node's parent if any
 603 *	@node:	Node to get parent
 604 *
 605 *	Returns a node pointer with refcount incremented, use
 606 *	of_node_put() on it when done.
 607 */
 608struct device_node *of_get_parent(const struct device_node *node)
 609{
 610	struct device_node *np;
 611	unsigned long flags;
 612
 613	if (!node)
 614		return NULL;
 615
 616	raw_spin_lock_irqsave(&devtree_lock, flags);
 617	np = of_node_get(node->parent);
 618	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 619	return np;
 620}
 621EXPORT_SYMBOL(of_get_parent);
 622
 623/**
 624 *	of_get_next_parent - Iterate to a node's parent
 625 *	@node:	Node to get parent of
 626 *
 627 *	This is like of_get_parent() except that it drops the
 628 *	refcount on the passed node, making it suitable for iterating
 629 *	through a node's parents.
 630 *
 631 *	Returns a node pointer with refcount incremented, use
 632 *	of_node_put() on it when done.
 633 */
 634struct device_node *of_get_next_parent(struct device_node *node)
 635{
 636	struct device_node *parent;
 637	unsigned long flags;
 638
 639	if (!node)
 640		return NULL;
 641
 642	raw_spin_lock_irqsave(&devtree_lock, flags);
 643	parent = of_node_get(node->parent);
 644	of_node_put(node);
 645	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 646	return parent;
 647}
 648EXPORT_SYMBOL(of_get_next_parent);
 649
 650static struct device_node *__of_get_next_child(const struct device_node *node,
 651						struct device_node *prev)
 652{
 653	struct device_node *next;
 654
 655	if (!node)
 656		return NULL;
 657
 658	next = prev ? prev->sibling : node->child;
 659	for (; next; next = next->sibling)
 660		if (of_node_get(next))
 661			break;
 662	of_node_put(prev);
 663	return next;
 664}
 665#define __for_each_child_of_node(parent, child) \
 666	for (child = __of_get_next_child(parent, NULL); child != NULL; \
 667	     child = __of_get_next_child(parent, child))
 668
 669/**
 670 *	of_get_next_child - Iterate a node childs
 671 *	@node:	parent node
 672 *	@prev:	previous child of the parent node, or NULL to get first
 673 *
 674 *	Returns a node pointer with refcount incremented, use of_node_put() on
 675 *	it when done. Returns NULL when prev is the last child. Decrements the
 676 *	refcount of prev.
 677 */
 678struct device_node *of_get_next_child(const struct device_node *node,
 679	struct device_node *prev)
 680{
 681	struct device_node *next;
 682	unsigned long flags;
 683
 684	raw_spin_lock_irqsave(&devtree_lock, flags);
 685	next = __of_get_next_child(node, prev);
 686	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 687	return next;
 688}
 689EXPORT_SYMBOL(of_get_next_child);
 690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691/**
 692 *	of_get_next_available_child - Find the next available child node
 693 *	@node:	parent node
 694 *	@prev:	previous child of the parent node, or NULL to get first
 695 *
 696 *      This function is like of_get_next_child(), except that it
 697 *      automatically skips any disabled nodes (i.e. status = "disabled").
 698 */
 699struct device_node *of_get_next_available_child(const struct device_node *node,
 700	struct device_node *prev)
 701{
 702	struct device_node *next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703	unsigned long flags;
 
 704
 705	if (!node)
 706		return NULL;
 707
 708	raw_spin_lock_irqsave(&devtree_lock, flags);
 709	next = prev ? prev->sibling : node->child;
 
 
 
 
 
 710	for (; next; next = next->sibling) {
 711		if (!__of_device_is_available(next))
 
 
 
 712			continue;
 713		if (of_node_get(next))
 714			break;
 715	}
 716	of_node_put(prev);
 717	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 718	return next;
 719}
 720EXPORT_SYMBOL(of_get_next_available_child);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721
 722/**
 723 *	of_get_child_by_name - Find the child node by name for a given parent
 724 *	@node:	parent node
 725 *	@name:	child name to look for.
 726 *
 727 *      This function looks for child node for given matching name
 728 *
 729 *	Returns a node pointer if found, with refcount incremented, use
 730 *	of_node_put() on it when done.
 731 *	Returns NULL if node is not found.
 732 */
 733struct device_node *of_get_child_by_name(const struct device_node *node,
 734				const char *name)
 735{
 736	struct device_node *child;
 737
 738	for_each_child_of_node(node, child)
 739		if (child->name && (of_node_cmp(child->name, name) == 0))
 740			break;
 741	return child;
 742}
 743EXPORT_SYMBOL(of_get_child_by_name);
 744
 745struct device_node *__of_find_node_by_path(struct device_node *parent,
 746						const char *path)
 747{
 748	struct device_node *child;
 749	int len;
 750
 751	len = strcspn(path, "/:");
 752	if (!len)
 753		return NULL;
 754
 755	__for_each_child_of_node(parent, child) {
 756		const char *name = kbasename(child->full_name);
 757		if (strncmp(path, name, len) == 0 && (strlen(name) == len))
 758			return child;
 759	}
 760	return NULL;
 761}
 762
 763struct device_node *__of_find_node_by_full_path(struct device_node *node,
 764						const char *path)
 765{
 766	const char *separator = strchr(path, ':');
 767
 768	while (node && *path == '/') {
 769		struct device_node *tmp = node;
 770
 771		path++; /* Increment past '/' delimiter */
 772		node = __of_find_node_by_path(node, path);
 773		of_node_put(tmp);
 774		path = strchrnul(path, '/');
 775		if (separator && separator < path)
 776			break;
 777	}
 778	return node;
 779}
 780
 781/**
 782 *	of_find_node_opts_by_path - Find a node matching a full OF path
 783 *	@path: Either the full path to match, or if the path does not
 784 *	       start with '/', the name of a property of the /aliases
 785 *	       node (an alias).  In the case of an alias, the node
 786 *	       matching the alias' value will be returned.
 787 *	@opts: Address of a pointer into which to store the start of
 788 *	       an options string appended to the end of the path with
 789 *	       a ':' separator.
 790 *
 791 *	Valid paths:
 792 *		/foo/bar	Full path
 793 *		foo		Valid alias
 794 *		foo/bar		Valid alias + relative path
 795 *
 796 *	Returns a node pointer with refcount incremented, use
 797 *	of_node_put() on it when done.
 798 */
 799struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
 800{
 801	struct device_node *np = NULL;
 802	struct property *pp;
 803	unsigned long flags;
 804	const char *separator = strchr(path, ':');
 805
 806	if (opts)
 807		*opts = separator ? separator + 1 : NULL;
 808
 809	if (strcmp(path, "/") == 0)
 810		return of_node_get(of_root);
 811
 812	/* The path could begin with an alias */
 813	if (*path != '/') {
 814		int len;
 815		const char *p = separator;
 816
 817		if (!p)
 818			p = strchrnul(path, '/');
 819		len = p - path;
 820
 821		/* of_aliases must not be NULL */
 822		if (!of_aliases)
 823			return NULL;
 824
 825		for_each_property_of_node(of_aliases, pp) {
 826			if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
 827				np = of_find_node_by_path(pp->value);
 828				break;
 829			}
 830		}
 831		if (!np)
 832			return NULL;
 833		path = p;
 834	}
 835
 836	/* Step down the tree matching path components */
 837	raw_spin_lock_irqsave(&devtree_lock, flags);
 838	if (!np)
 839		np = of_node_get(of_root);
 840	np = __of_find_node_by_full_path(np, path);
 841	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 842	return np;
 843}
 844EXPORT_SYMBOL(of_find_node_opts_by_path);
 845
 846/**
 847 *	of_find_node_by_name - Find a node by its "name" property
 848 *	@from:	The node to start searching from or NULL; the node
 849 *		you pass will not be searched, only the next one
 850 *		will. Typically, you pass what the previous call
 851 *		returned. of_node_put() will be called on @from.
 852 *	@name:	The name string to match against
 853 *
 854 *	Returns a node pointer with refcount incremented, use
 855 *	of_node_put() on it when done.
 856 */
 857struct device_node *of_find_node_by_name(struct device_node *from,
 858	const char *name)
 859{
 860	struct device_node *np;
 861	unsigned long flags;
 862
 863	raw_spin_lock_irqsave(&devtree_lock, flags);
 864	for_each_of_allnodes_from(from, np)
 865		if (np->name && (of_node_cmp(np->name, name) == 0)
 866		    && of_node_get(np))
 867			break;
 868	of_node_put(from);
 869	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 870	return np;
 871}
 872EXPORT_SYMBOL(of_find_node_by_name);
 873
 874/**
 875 *	of_find_node_by_type - Find a node by its "device_type" property
 876 *	@from:	The node to start searching from, or NULL to start searching
 877 *		the entire device tree. The node you pass will not be
 878 *		searched, only the next one will; typically, you pass
 879 *		what the previous call returned. of_node_put() will be
 880 *		called on from for you.
 881 *	@type:	The type string to match against
 882 *
 883 *	Returns a node pointer with refcount incremented, use
 884 *	of_node_put() on it when done.
 885 */
 886struct device_node *of_find_node_by_type(struct device_node *from,
 887	const char *type)
 888{
 889	struct device_node *np;
 890	unsigned long flags;
 891
 892	raw_spin_lock_irqsave(&devtree_lock, flags);
 893	for_each_of_allnodes_from(from, np)
 894		if (np->type && (of_node_cmp(np->type, type) == 0)
 895		    && of_node_get(np))
 896			break;
 897	of_node_put(from);
 898	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 899	return np;
 900}
 901EXPORT_SYMBOL(of_find_node_by_type);
 902
 903/**
 904 *	of_find_compatible_node - Find a node based on type and one of the
 905 *                                tokens in its "compatible" property
 906 *	@from:		The node to start searching from or NULL, the node
 907 *			you pass will not be searched, only the next one
 908 *			will; typically, you pass what the previous call
 909 *			returned. of_node_put() will be called on it
 910 *	@type:		The type string to match "device_type" or NULL to ignore
 911 *	@compatible:	The string to match to one of the tokens in the device
 912 *			"compatible" list.
 913 *
 914 *	Returns a node pointer with refcount incremented, use
 915 *	of_node_put() on it when done.
 916 */
 917struct device_node *of_find_compatible_node(struct device_node *from,
 918	const char *type, const char *compatible)
 919{
 920	struct device_node *np;
 921	unsigned long flags;
 922
 923	raw_spin_lock_irqsave(&devtree_lock, flags);
 924	for_each_of_allnodes_from(from, np)
 925		if (__of_device_is_compatible(np, compatible, type, NULL) &&
 926		    of_node_get(np))
 927			break;
 928	of_node_put(from);
 929	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 930	return np;
 931}
 932EXPORT_SYMBOL(of_find_compatible_node);
 933
 934/**
 935 *	of_find_node_with_property - Find a node which has a property with
 936 *                                   the given name.
 937 *	@from:		The node to start searching from or NULL, the node
 938 *			you pass will not be searched, only the next one
 939 *			will; typically, you pass what the previous call
 940 *			returned. of_node_put() will be called on it
 941 *	@prop_name:	The name of the property to look for.
 942 *
 943 *	Returns a node pointer with refcount incremented, use
 944 *	of_node_put() on it when done.
 945 */
 946struct device_node *of_find_node_with_property(struct device_node *from,
 947	const char *prop_name)
 948{
 949	struct device_node *np;
 950	struct property *pp;
 951	unsigned long flags;
 952
 953	raw_spin_lock_irqsave(&devtree_lock, flags);
 954	for_each_of_allnodes_from(from, np) {
 955		for (pp = np->properties; pp; pp = pp->next) {
 956			if (of_prop_cmp(pp->name, prop_name) == 0) {
 957				of_node_get(np);
 958				goto out;
 959			}
 960		}
 961	}
 962out:
 963	of_node_put(from);
 964	raw_spin_unlock_irqrestore(&devtree_lock, flags);
 965	return np;
 966}
 967EXPORT_SYMBOL(of_find_node_with_property);
 968
 969static
 970const struct of_device_id *__of_match_node(const struct of_device_id *matches,
 971					   const struct device_node *node)
 972{
 973	const struct of_device_id *best_match = NULL;
 974	int score, best_score = 0;
 975
 976	if (!matches)
 977		return NULL;
 978
 979	for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
 980		score = __of_device_is_compatible(node, matches->compatible,
 981						  matches->type, matches->name);
 982		if (score > best_score) {
 983			best_match = matches;
 984			best_score = score;
 985		}
 986	}
 987
 988	return best_match;
 989}
 990
 991/**
 992 * of_match_node - Tell if a device_node has a matching of_match structure
 993 *	@matches:	array of of device match structures to search in
 994 *	@node:		the of device structure to match against
 995 *
 996 *	Low level utility function used by device matching.
 997 */
 998const struct of_device_id *of_match_node(const struct of_device_id *matches,
 999					 const struct device_node *node)
1000{
1001	const struct of_device_id *match;
1002	unsigned long flags;
1003
1004	raw_spin_lock_irqsave(&devtree_lock, flags);
1005	match = __of_match_node(matches, node);
1006	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1007	return match;
1008}
1009EXPORT_SYMBOL(of_match_node);
1010
1011/**
1012 *	of_find_matching_node_and_match - Find a node based on an of_device_id
1013 *					  match table.
1014 *	@from:		The node to start searching from or NULL, the node
1015 *			you pass will not be searched, only the next one
1016 *			will; typically, you pass what the previous call
1017 *			returned. of_node_put() will be called on it
1018 *	@matches:	array of of device match structures to search in
1019 *	@match		Updated to point at the matches entry which matched
1020 *
1021 *	Returns a node pointer with refcount incremented, use
1022 *	of_node_put() on it when done.
1023 */
1024struct device_node *of_find_matching_node_and_match(struct device_node *from,
1025					const struct of_device_id *matches,
1026					const struct of_device_id **match)
1027{
1028	struct device_node *np;
1029	const struct of_device_id *m;
1030	unsigned long flags;
1031
1032	if (match)
1033		*match = NULL;
1034
1035	raw_spin_lock_irqsave(&devtree_lock, flags);
1036	for_each_of_allnodes_from(from, np) {
1037		m = __of_match_node(matches, np);
1038		if (m && of_node_get(np)) {
1039			if (match)
1040				*match = m;
1041			break;
1042		}
1043	}
1044	of_node_put(from);
1045	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1046	return np;
1047}
1048EXPORT_SYMBOL(of_find_matching_node_and_match);
1049
1050/**
1051 * of_modalias_node - Lookup appropriate modalias for a device node
 
1052 * @node:	pointer to a device tree node
1053 * @modalias:	Pointer to buffer that modalias value will be copied into
1054 * @len:	Length of modalias value
1055 *
1056 * Based on the value of the compatible property, this routine will attempt
1057 * to choose an appropriate modalias value for a particular device tree node.
1058 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1059 * from the first entry in the compatible list property.
1060 *
1061 * This routine returns 0 on success, <0 on failure.
 
 
 
1062 */
1063int of_modalias_node(struct device_node *node, char *modalias, int len)
1064{
1065	const char *compatible, *p;
1066	int cplen;
1067
1068	compatible = of_get_property(node, "compatible", &cplen);
1069	if (!compatible || strlen(compatible) > cplen)
1070		return -ENODEV;
1071	p = strchr(compatible, ',');
1072	strlcpy(modalias, p ? p + 1 : compatible, len);
1073	return 0;
1074}
1075EXPORT_SYMBOL_GPL(of_modalias_node);
1076
1077/**
1078 * of_find_node_by_phandle - Find a node given a phandle
1079 * @handle:	phandle of the node to find
1080 *
1081 * Returns a node pointer with refcount incremented, use
1082 * of_node_put() on it when done.
1083 */
1084struct device_node *of_find_node_by_phandle(phandle handle)
1085{
1086	struct device_node *np = NULL;
1087	unsigned long flags;
1088	phandle masked_handle;
1089
1090	if (!handle)
1091		return NULL;
1092
 
 
1093	raw_spin_lock_irqsave(&devtree_lock, flags);
1094
1095	masked_handle = handle & phandle_cache_mask;
1096
1097	if (phandle_cache) {
1098		if (phandle_cache[masked_handle] &&
1099		    handle == phandle_cache[masked_handle]->phandle)
1100			np = phandle_cache[masked_handle];
1101	}
1102
1103	if (!np) {
1104		for_each_of_allnodes(np)
1105			if (np->phandle == handle) {
1106				if (phandle_cache)
1107					phandle_cache[masked_handle] = np;
1108				break;
1109			}
1110	}
1111
1112	of_node_get(np);
1113	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1114	return np;
1115}
1116EXPORT_SYMBOL(of_find_node_by_phandle);
1117
1118void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1119{
1120	int i;
1121	printk("%s %pOF", msg, args->np);
1122	for (i = 0; i < args->args_count; i++) {
1123		const char delim = i ? ',' : ':';
1124
1125		pr_cont("%c%08x", delim, args->args[i]);
1126	}
1127	pr_cont("\n");
1128}
1129
1130int of_phandle_iterator_init(struct of_phandle_iterator *it,
1131		const struct device_node *np,
1132		const char *list_name,
1133		const char *cells_name,
1134		int cell_count)
1135{
1136	const __be32 *list;
1137	int size;
1138
1139	memset(it, 0, sizeof(*it));
1140
 
 
 
 
 
 
 
1141	list = of_get_property(np, list_name, &size);
1142	if (!list)
1143		return -ENOENT;
1144
1145	it->cells_name = cells_name;
1146	it->cell_count = cell_count;
1147	it->parent = np;
1148	it->list_end = list + size / sizeof(*list);
1149	it->phandle_end = list;
1150	it->cur = list;
1151
1152	return 0;
1153}
1154EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1155
1156int of_phandle_iterator_next(struct of_phandle_iterator *it)
1157{
1158	uint32_t count = 0;
1159
1160	if (it->node) {
1161		of_node_put(it->node);
1162		it->node = NULL;
1163	}
1164
1165	if (!it->cur || it->phandle_end >= it->list_end)
1166		return -ENOENT;
1167
1168	it->cur = it->phandle_end;
1169
1170	/* If phandle is 0, then it is an empty entry with no arguments. */
1171	it->phandle = be32_to_cpup(it->cur++);
1172
1173	if (it->phandle) {
1174
1175		/*
1176		 * Find the provider node and parse the #*-cells property to
1177		 * determine the argument length.
1178		 */
1179		it->node = of_find_node_by_phandle(it->phandle);
1180
1181		if (it->cells_name) {
1182			if (!it->node) {
1183				pr_err("%pOF: could not find phandle\n",
1184				       it->parent);
1185				goto err;
1186			}
1187
1188			if (of_property_read_u32(it->node, it->cells_name,
1189						 &count)) {
1190				pr_err("%pOF: could not get %s for %pOF\n",
1191				       it->parent,
1192				       it->cells_name,
1193				       it->node);
1194				goto err;
 
 
 
 
 
 
 
 
 
1195			}
1196		} else {
1197			count = it->cell_count;
1198		}
1199
1200		/*
1201		 * Make sure that the arguments actually fit in the remaining
1202		 * property data length
1203		 */
1204		if (it->cur + count > it->list_end) {
1205			pr_err("%pOF: arguments longer than property\n",
1206			       it->parent);
 
 
 
 
 
 
1207			goto err;
1208		}
1209	}
1210
1211	it->phandle_end = it->cur + count;
1212	it->cur_count = count;
1213
1214	return 0;
1215
1216err:
1217	if (it->node) {
1218		of_node_put(it->node);
1219		it->node = NULL;
1220	}
1221
1222	return -EINVAL;
1223}
1224EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1225
1226int of_phandle_iterator_args(struct of_phandle_iterator *it,
1227			     uint32_t *args,
1228			     int size)
1229{
1230	int i, count;
1231
1232	count = it->cur_count;
1233
1234	if (WARN_ON(size < count))
1235		count = size;
1236
1237	for (i = 0; i < count; i++)
1238		args[i] = be32_to_cpup(it->cur++);
1239
1240	return count;
1241}
1242
1243static int __of_parse_phandle_with_args(const struct device_node *np,
1244					const char *list_name,
1245					const char *cells_name,
1246					int cell_count, int index,
1247					struct of_phandle_args *out_args)
1248{
1249	struct of_phandle_iterator it;
1250	int rc, cur_index = 0;
1251
 
 
 
1252	/* Loop over the phandles until all the requested entry is found */
1253	of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1254		/*
1255		 * All of the error cases bail out of the loop, so at
1256		 * this point, the parsing is successful. If the requested
1257		 * index matches, then fill the out_args structure and return,
1258		 * or return -ENOENT for an empty entry.
1259		 */
1260		rc = -ENOENT;
1261		if (cur_index == index) {
1262			if (!it.phandle)
1263				goto err;
1264
1265			if (out_args) {
1266				int c;
1267
1268				c = of_phandle_iterator_args(&it,
1269							     out_args->args,
1270							     MAX_PHANDLE_ARGS);
1271				out_args->np = it.node;
1272				out_args->args_count = c;
1273			} else {
1274				of_node_put(it.node);
1275			}
1276
1277			/* Found it! return success */
1278			return 0;
1279		}
1280
1281		cur_index++;
1282	}
1283
1284	/*
1285	 * Unlock node before returning result; will be one of:
1286	 * -ENOENT : index is for empty phandle
1287	 * -EINVAL : parsing error on data
1288	 */
1289
1290 err:
1291	of_node_put(it.node);
1292	return rc;
1293}
1294
1295/**
1296 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1297 * @np: Pointer to device node holding phandle property
1298 * @phandle_name: Name of property holding a phandle value
1299 * @index: For properties holding a table of phandles, this is the index into
1300 *         the table
1301 *
1302 * Returns the device_node pointer with refcount incremented.  Use
1303 * of_node_put() on it when done.
1304 */
1305struct device_node *of_parse_phandle(const struct device_node *np,
1306				     const char *phandle_name, int index)
1307{
1308	struct of_phandle_args args;
1309
1310	if (index < 0)
1311		return NULL;
1312
1313	if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1314					 index, &args))
1315		return NULL;
1316
1317	return args.np;
1318}
1319EXPORT_SYMBOL(of_parse_phandle);
1320
1321/**
1322 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1323 * @np:		pointer to a device tree node containing a list
1324 * @list_name:	property name that contains a list
1325 * @cells_name:	property name that specifies phandles' arguments count
1326 * @index:	index of a phandle to parse out
1327 * @out_args:	optional pointer to output arguments structure (will be filled)
1328 *
1329 * This function is useful to parse lists of phandles and their arguments.
1330 * Returns 0 on success and fills out_args, on error returns appropriate
1331 * errno value.
1332 *
1333 * Caller is responsible to call of_node_put() on the returned out_args->np
1334 * pointer.
1335 *
1336 * Example:
1337 *
1338 * phandle1: node1 {
1339 *	#list-cells = <2>;
1340 * }
1341 *
1342 * phandle2: node2 {
1343 *	#list-cells = <1>;
1344 * }
1345 *
1346 * node3 {
1347 *	list = <&phandle1 1 2 &phandle2 3>;
1348 * }
1349 *
1350 * To get a device_node of the `node2' node you may call this:
1351 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1352 */
1353int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1354				const char *cells_name, int index,
1355				struct of_phandle_args *out_args)
1356{
1357	if (index < 0)
1358		return -EINVAL;
1359	return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1360					    index, out_args);
1361}
1362EXPORT_SYMBOL(of_parse_phandle_with_args);
1363
1364/**
1365 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1366 * @np:		pointer to a device tree node containing a list
1367 * @list_name:	property name that contains a list
1368 * @stem_name:	stem of property names that specify phandles' arguments count
1369 * @index:	index of a phandle to parse out
1370 * @out_args:	optional pointer to output arguments structure (will be filled)
1371 *
1372 * This function is useful to parse lists of phandles and their arguments.
1373 * Returns 0 on success and fills out_args, on error returns appropriate errno
1374 * value. The difference between this function and of_parse_phandle_with_args()
1375 * is that this API remaps a phandle if the node the phandle points to has
1376 * a <@stem_name>-map property.
1377 *
1378 * Caller is responsible to call of_node_put() on the returned out_args->np
1379 * pointer.
1380 *
1381 * Example:
1382 *
1383 * phandle1: node1 {
1384 *	#list-cells = <2>;
1385 * }
1386 *
1387 * phandle2: node2 {
1388 *	#list-cells = <1>;
1389 * }
1390 *
1391 * phandle3: node3 {
1392 * 	#list-cells = <1>;
1393 * 	list-map = <0 &phandle2 3>,
1394 * 		   <1 &phandle2 2>,
1395 * 		   <2 &phandle1 5 1>;
1396 *	list-map-mask = <0x3>;
1397 * };
1398 *
1399 * node4 {
1400 *	list = <&phandle1 1 2 &phandle3 0>;
1401 * }
1402 *
1403 * To get a device_node of the `node2' node you may call this:
1404 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1405 */
1406int of_parse_phandle_with_args_map(const struct device_node *np,
1407				   const char *list_name,
1408				   const char *stem_name,
1409				   int index, struct of_phandle_args *out_args)
1410{
1411	char *cells_name, *map_name = NULL, *mask_name = NULL;
1412	char *pass_name = NULL;
1413	struct device_node *cur, *new = NULL;
1414	const __be32 *map, *mask, *pass;
1415	static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1416	static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1417	__be32 initial_match_array[MAX_PHANDLE_ARGS];
1418	const __be32 *match_array = initial_match_array;
1419	int i, ret, map_len, match;
1420	u32 list_size, new_size;
1421
1422	if (index < 0)
1423		return -EINVAL;
1424
1425	cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1426	if (!cells_name)
1427		return -ENOMEM;
1428
1429	ret = -ENOMEM;
1430	map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1431	if (!map_name)
1432		goto free;
1433
1434	mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1435	if (!mask_name)
1436		goto free;
1437
1438	pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1439	if (!pass_name)
1440		goto free;
1441
1442	ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1443					   out_args);
1444	if (ret)
1445		goto free;
1446
1447	/* Get the #<list>-cells property */
1448	cur = out_args->np;
1449	ret = of_property_read_u32(cur, cells_name, &list_size);
1450	if (ret < 0)
1451		goto put;
1452
1453	/* Precalculate the match array - this simplifies match loop */
1454	for (i = 0; i < list_size; i++)
1455		initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1456
1457	ret = -EINVAL;
1458	while (cur) {
1459		/* Get the <list>-map property */
1460		map = of_get_property(cur, map_name, &map_len);
1461		if (!map) {
1462			ret = 0;
1463			goto free;
1464		}
1465		map_len /= sizeof(u32);
1466
1467		/* Get the <list>-map-mask property (optional) */
1468		mask = of_get_property(cur, mask_name, NULL);
1469		if (!mask)
1470			mask = dummy_mask;
1471		/* Iterate through <list>-map property */
1472		match = 0;
1473		while (map_len > (list_size + 1) && !match) {
1474			/* Compare specifiers */
1475			match = 1;
1476			for (i = 0; i < list_size; i++, map_len--)
1477				match &= !((match_array[i] ^ *map++) & mask[i]);
1478
1479			of_node_put(new);
1480			new = of_find_node_by_phandle(be32_to_cpup(map));
1481			map++;
1482			map_len--;
1483
1484			/* Check if not found */
1485			if (!new)
1486				goto put;
1487
1488			if (!of_device_is_available(new))
1489				match = 0;
1490
1491			ret = of_property_read_u32(new, cells_name, &new_size);
1492			if (ret)
1493				goto put;
1494
1495			/* Check for malformed properties */
1496			if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1497				goto put;
1498			if (map_len < new_size)
1499				goto put;
1500
1501			/* Move forward by new node's #<list>-cells amount */
1502			map += new_size;
1503			map_len -= new_size;
1504		}
1505		if (!match)
1506			goto put;
1507
1508		/* Get the <list>-map-pass-thru property (optional) */
1509		pass = of_get_property(cur, pass_name, NULL);
1510		if (!pass)
1511			pass = dummy_pass;
1512
1513		/*
1514		 * Successfully parsed a <list>-map translation; copy new
1515		 * specifier into the out_args structure, keeping the
1516		 * bits specified in <list>-map-pass-thru.
1517		 */
1518		match_array = map - new_size;
1519		for (i = 0; i < new_size; i++) {
1520			__be32 val = *(map - new_size + i);
1521
1522			if (i < list_size) {
1523				val &= ~pass[i];
1524				val |= cpu_to_be32(out_args->args[i]) & pass[i];
1525			}
1526
1527			out_args->args[i] = be32_to_cpu(val);
1528		}
1529		out_args->args_count = list_size = new_size;
1530		/* Iterate again with new provider */
1531		out_args->np = new;
1532		of_node_put(cur);
1533		cur = new;
 
1534	}
1535put:
1536	of_node_put(cur);
1537	of_node_put(new);
1538free:
1539	kfree(mask_name);
1540	kfree(map_name);
1541	kfree(cells_name);
1542	kfree(pass_name);
1543
1544	return ret;
1545}
1546EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1547
1548/**
1549 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1550 * @np:		pointer to a device tree node containing a list
1551 * @list_name:	property name that contains a list
1552 * @cell_count: number of argument cells following the phandle
1553 * @index:	index of a phandle to parse out
1554 * @out_args:	optional pointer to output arguments structure (will be filled)
1555 *
1556 * This function is useful to parse lists of phandles and their arguments.
1557 * Returns 0 on success and fills out_args, on error returns appropriate
1558 * errno value.
1559 *
1560 * Caller is responsible to call of_node_put() on the returned out_args->np
1561 * pointer.
1562 *
1563 * Example:
1564 *
1565 * phandle1: node1 {
1566 * }
1567 *
1568 * phandle2: node2 {
1569 * }
1570 *
1571 * node3 {
1572 *	list = <&phandle1 0 2 &phandle2 2 3>;
1573 * }
1574 *
1575 * To get a device_node of the `node2' node you may call this:
1576 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1577 */
1578int of_parse_phandle_with_fixed_args(const struct device_node *np,
1579				const char *list_name, int cell_count,
1580				int index, struct of_phandle_args *out_args)
1581{
1582	if (index < 0)
1583		return -EINVAL;
1584	return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1585					   index, out_args);
1586}
1587EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1588
1589/**
1590 * of_count_phandle_with_args() - Find the number of phandles references in a property
1591 * @np:		pointer to a device tree node containing a list
1592 * @list_name:	property name that contains a list
1593 * @cells_name:	property name that specifies phandles' arguments count
1594 *
1595 * Returns the number of phandle + argument tuples within a property. It
1596 * is a typical pattern to encode a list of phandle and variable
1597 * arguments into a single property. The number of arguments is encoded
1598 * by a property in the phandle-target node. For example, a gpios
1599 * property would contain a list of GPIO specifies consisting of a
1600 * phandle and 1 or more arguments. The number of arguments are
1601 * determined by the #gpio-cells property in the node pointed to by the
1602 * phandle.
1603 */
1604int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1605				const char *cells_name)
1606{
1607	struct of_phandle_iterator it;
1608	int rc, cur_index = 0;
1609
1610	rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1611	if (rc)
1612		return rc;
1613
1614	while ((rc = of_phandle_iterator_next(&it)) == 0)
1615		cur_index += 1;
1616
1617	if (rc != -ENOENT)
1618		return rc;
1619
1620	return cur_index;
1621}
1622EXPORT_SYMBOL(of_count_phandle_with_args);
1623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1624/**
1625 * __of_add_property - Add a property to a node without lock operations
 
 
1626 */
1627int __of_add_property(struct device_node *np, struct property *prop)
1628{
 
 
1629	struct property **next;
1630
 
 
 
 
1631	prop->next = NULL;
1632	next = &np->properties;
1633	while (*next) {
1634		if (strcmp(prop->name, (*next)->name) == 0)
1635			/* duplicate ! don't insert it */
1636			return -EEXIST;
1637
 
1638		next = &(*next)->next;
1639	}
1640	*next = prop;
1641
 
 
 
 
 
 
1642	return 0;
1643}
1644
1645/**
1646 * of_add_property - Add a property to a node
 
 
1647 */
1648int of_add_property(struct device_node *np, struct property *prop)
1649{
1650	unsigned long flags;
1651	int rc;
1652
1653	mutex_lock(&of_mutex);
1654
1655	raw_spin_lock_irqsave(&devtree_lock, flags);
1656	rc = __of_add_property(np, prop);
1657	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1658
1659	if (!rc)
1660		__of_add_property_sysfs(np, prop);
1661
1662	mutex_unlock(&of_mutex);
1663
1664	if (!rc)
1665		of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1666
1667	return rc;
1668}
 
1669
1670int __of_remove_property(struct device_node *np, struct property *prop)
1671{
1672	struct property **next;
 
 
 
1673
1674	for (next = &np->properties; *next; next = &(*next)->next) {
1675		if (*next == prop)
1676			break;
 
 
1677	}
1678	if (*next == NULL)
1679		return -ENODEV;
1680
1681	/* found the node */
1682	*next = prop->next;
1683	prop->next = np->deadprops;
1684	np->deadprops = prop;
1685
 
1686	return 0;
1687}
1688
1689/**
1690 * of_remove_property - Remove a property from a node.
 
 
1691 *
1692 * Note that we don't actually remove it, since we have given out
1693 * who-knows-how-many pointers to the data using get-property.
1694 * Instead we just move the property to the "dead properties"
1695 * list, so it won't be found any more.
1696 */
1697int of_remove_property(struct device_node *np, struct property *prop)
1698{
1699	unsigned long flags;
1700	int rc;
1701
1702	if (!prop)
1703		return -ENODEV;
1704
1705	mutex_lock(&of_mutex);
1706
1707	raw_spin_lock_irqsave(&devtree_lock, flags);
1708	rc = __of_remove_property(np, prop);
1709	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1710
1711	if (!rc)
1712		__of_remove_property_sysfs(np, prop);
1713
1714	mutex_unlock(&of_mutex);
1715
1716	if (!rc)
1717		of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1718
1719	return rc;
1720}
 
1721
1722int __of_update_property(struct device_node *np, struct property *newprop,
1723		struct property **oldpropp)
1724{
1725	struct property **next, *oldprop;
 
 
 
 
 
1726
1727	for (next = &np->properties; *next; next = &(*next)->next) {
1728		if (of_prop_cmp((*next)->name, newprop->name) == 0)
1729			break;
1730	}
1731	*oldpropp = oldprop = *next;
1732
1733	if (oldprop) {
1734		/* replace the node */
1735		newprop->next = oldprop->next;
1736		*next = newprop;
1737		oldprop->next = np->deadprops;
1738		np->deadprops = oldprop;
1739	} else {
1740		/* new node */
1741		newprop->next = NULL;
1742		*next = newprop;
1743	}
1744
 
 
 
 
1745	return 0;
1746}
1747
1748/*
1749 * of_update_property - Update a property in a node, if the property does
1750 * not exist, add it.
1751 *
1752 * Note that we don't actually remove it, since we have given out
1753 * who-knows-how-many pointers to the data using get-property.
1754 * Instead we just move the property to the "dead properties" list,
1755 * and add the new property to the property list
1756 */
1757int of_update_property(struct device_node *np, struct property *newprop)
1758{
1759	struct property *oldprop;
1760	unsigned long flags;
1761	int rc;
1762
1763	if (!newprop->name)
1764		return -EINVAL;
1765
1766	mutex_lock(&of_mutex);
1767
1768	raw_spin_lock_irqsave(&devtree_lock, flags);
1769	rc = __of_update_property(np, newprop, &oldprop);
1770	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1771
1772	if (!rc)
1773		__of_update_property_sysfs(np, newprop, oldprop);
1774
1775	mutex_unlock(&of_mutex);
1776
1777	if (!rc)
1778		of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1779
1780	return rc;
1781}
1782
1783static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1784			 int id, const char *stem, int stem_len)
1785{
1786	ap->np = np;
1787	ap->id = id;
1788	strncpy(ap->stem, stem, stem_len);
1789	ap->stem[stem_len] = 0;
1790	list_add_tail(&ap->link, &aliases_lookup);
1791	pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1792		 ap->alias, ap->stem, ap->id, np);
1793}
1794
1795/**
1796 * of_alias_scan - Scan all properties of the 'aliases' node
 
 
1797 *
1798 * The function scans all the properties of the 'aliases' node and populates
1799 * the global lookup table with the properties.  It returns the
1800 * number of alias properties found, or an error code in case of failure.
1801 *
1802 * @dt_alloc:	An allocator that provides a virtual address to memory
1803 *		for storing the resulting tree
1804 */
1805void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1806{
1807	struct property *pp;
1808
1809	of_aliases = of_find_node_by_path("/aliases");
1810	of_chosen = of_find_node_by_path("/chosen");
1811	if (of_chosen == NULL)
1812		of_chosen = of_find_node_by_path("/chosen@0");
1813
1814	if (of_chosen) {
1815		/* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1816		const char *name = NULL;
1817
1818		if (of_property_read_string(of_chosen, "stdout-path", &name))
1819			of_property_read_string(of_chosen, "linux,stdout-path",
1820						&name);
1821		if (IS_ENABLED(CONFIG_PPC) && !name)
1822			of_property_read_string(of_aliases, "stdout", &name);
1823		if (name)
1824			of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
 
 
1825	}
1826
1827	if (!of_aliases)
1828		return;
1829
1830	for_each_property_of_node(of_aliases, pp) {
1831		const char *start = pp->name;
1832		const char *end = start + strlen(start);
1833		struct device_node *np;
1834		struct alias_prop *ap;
1835		int id, len;
1836
1837		/* Skip those we do not want to proceed */
1838		if (!strcmp(pp->name, "name") ||
1839		    !strcmp(pp->name, "phandle") ||
1840		    !strcmp(pp->name, "linux,phandle"))
1841			continue;
1842
1843		np = of_find_node_by_path(pp->value);
1844		if (!np)
1845			continue;
1846
1847		/* walk the alias backwards to extract the id and work out
1848		 * the 'stem' string */
1849		while (isdigit(*(end-1)) && end > start)
1850			end--;
1851		len = end - start;
1852
1853		if (kstrtoint(end, 10, &id) < 0)
1854			continue;
1855
1856		/* Allocate an alias_prop with enough space for the stem */
1857		ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1858		if (!ap)
1859			continue;
1860		memset(ap, 0, sizeof(*ap) + len + 1);
1861		ap->alias = start;
1862		of_alias_add(ap, np, id, start, len);
1863	}
1864}
1865
1866/**
1867 * of_alias_get_id - Get alias id for the given device_node
1868 * @np:		Pointer to the given device_node
1869 * @stem:	Alias stem of the given device_node
1870 *
1871 * The function travels the lookup table to get the alias id for the given
1872 * device_node and alias stem.  It returns the alias id if found.
 
 
1873 */
1874int of_alias_get_id(struct device_node *np, const char *stem)
1875{
1876	struct alias_prop *app;
1877	int id = -ENODEV;
1878
1879	mutex_lock(&of_mutex);
1880	list_for_each_entry(app, &aliases_lookup, link) {
1881		if (strcmp(app->stem, stem) != 0)
1882			continue;
1883
1884		if (np == app->np) {
1885			id = app->id;
1886			break;
1887		}
1888	}
1889	mutex_unlock(&of_mutex);
1890
1891	return id;
1892}
1893EXPORT_SYMBOL_GPL(of_alias_get_id);
1894
1895/**
1896 * of_alias_get_highest_id - Get highest alias id for the given stem
1897 * @stem:	Alias stem to be examined
1898 *
1899 * The function travels the lookup table to get the highest alias id for the
1900 * given alias stem.  It returns the alias id if found.
1901 */
1902int of_alias_get_highest_id(const char *stem)
1903{
1904	struct alias_prop *app;
1905	int id = -ENODEV;
1906
1907	mutex_lock(&of_mutex);
1908	list_for_each_entry(app, &aliases_lookup, link) {
1909		if (strcmp(app->stem, stem) != 0)
1910			continue;
1911
1912		if (app->id > id)
1913			id = app->id;
1914	}
1915	mutex_unlock(&of_mutex);
1916
1917	return id;
1918}
1919EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1920
1921/**
1922 * of_console_check() - Test and setup console for DT setup
1923 * @dn - Pointer to device node
1924 * @name - Name to use for preferred console without index. ex. "ttyS"
1925 * @index - Index to use for preferred console.
1926 *
1927 * Check if the given device node matches the stdout-path property in the
1928 * /chosen node. If it does then register it as the preferred console and return
1929 * TRUE. Otherwise return FALSE.
 
1930 */
1931bool of_console_check(struct device_node *dn, char *name, int index)
1932{
1933	if (!dn || dn != of_stdout || console_set_on_cmdline)
1934		return false;
1935
1936	/*
1937	 * XXX: cast `options' to char pointer to suppress complication
1938	 * warnings: printk, UART and console drivers expect char pointer.
1939	 */
1940	return !add_preferred_console(name, index, (char *)of_stdout_options);
1941}
1942EXPORT_SYMBOL_GPL(of_console_check);
1943
1944/**
1945 *	of_find_next_cache_node - Find a node's subsidiary cache
1946 *	@np:	node of type "cpu" or "cache"
1947 *
1948 *	Returns a node pointer with refcount incremented, use
1949 *	of_node_put() on it when done.  Caller should hold a reference
1950 *	to np.
1951 */
1952struct device_node *of_find_next_cache_node(const struct device_node *np)
1953{
1954	struct device_node *child, *cache_node;
1955
1956	cache_node = of_parse_phandle(np, "l2-cache", 0);
1957	if (!cache_node)
1958		cache_node = of_parse_phandle(np, "next-level-cache", 0);
1959
1960	if (cache_node)
1961		return cache_node;
1962
1963	/* OF on pmac has nodes instead of properties named "l2-cache"
1964	 * beneath CPU nodes.
1965	 */
1966	if (!strcmp(np->type, "cpu"))
1967		for_each_child_of_node(np, child)
1968			if (!strcmp(child->type, "cache"))
1969				return child;
1970
1971	return NULL;
1972}
1973
1974/**
1975 * of_find_last_cache_level - Find the level at which the last cache is
1976 * 		present for the given logical cpu
1977 *
1978 * @cpu: cpu number(logical index) for which the last cache level is needed
1979 *
1980 * Returns the the level at which the last cache is present. It is exactly
1981 * same as  the total number of cache levels for the given logical cpu.
1982 */
1983int of_find_last_cache_level(unsigned int cpu)
1984{
1985	u32 cache_level = 0;
1986	struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1987
1988	while (np) {
 
1989		prev = np;
1990		of_node_put(np);
1991		np = of_find_next_cache_node(np);
1992	}
1993
1994	of_property_read_u32(prev, "cache-level", &cache_level);
 
1995
1996	return cache_level;
1997}