Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17#define pr_fmt(fmt) "OF: " fmt
18
19#include <linux/console.h>
20#include <linux/ctype.h>
21#include <linux/cpu.h>
22#include <linux/module.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/of_graph.h>
26#include <linux/spinlock.h>
27#include <linux/slab.h>
28#include <linux/string.h>
29#include <linux/proc_fs.h>
30
31#include "of_private.h"
32
33LIST_HEAD(aliases_lookup);
34
35struct device_node *of_root;
36EXPORT_SYMBOL(of_root);
37struct device_node *of_chosen;
38EXPORT_SYMBOL(of_chosen);
39struct device_node *of_aliases;
40struct device_node *of_stdout;
41static const char *of_stdout_options;
42
43struct kset *of_kset;
44
45/*
46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47 * This mutex must be held whenever modifications are being made to the
48 * device tree. The of_{attach,detach}_node() and
49 * of_{add,remove,update}_property() helpers make sure this happens.
50 */
51DEFINE_MUTEX(of_mutex);
52
53/* use when traversing tree through the child, sibling,
54 * or parent members of struct device_node.
55 */
56DEFINE_RAW_SPINLOCK(devtree_lock);
57
58bool of_node_name_eq(const struct device_node *np, const char *name)
59{
60 const char *node_name;
61 size_t len;
62
63 if (!np)
64 return false;
65
66 node_name = kbasename(np->full_name);
67 len = strchrnul(node_name, '@') - node_name;
68
69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70}
71EXPORT_SYMBOL(of_node_name_eq);
72
73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74{
75 if (!np)
76 return false;
77
78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79}
80EXPORT_SYMBOL(of_node_name_prefix);
81
82static bool __of_node_is_type(const struct device_node *np, const char *type)
83{
84 const char *match = __of_get_property(np, "device_type", NULL);
85
86 return np && match && type && !strcmp(match, type);
87}
88
89int of_bus_n_addr_cells(struct device_node *np)
90{
91 u32 cells;
92
93 for (; np; np = np->parent)
94 if (!of_property_read_u32(np, "#address-cells", &cells))
95 return cells;
96
97 /* No #address-cells property for the root node */
98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99}
100
101int of_n_addr_cells(struct device_node *np)
102{
103 if (np->parent)
104 np = np->parent;
105
106 return of_bus_n_addr_cells(np);
107}
108EXPORT_SYMBOL(of_n_addr_cells);
109
110int of_bus_n_size_cells(struct device_node *np)
111{
112 u32 cells;
113
114 for (; np; np = np->parent)
115 if (!of_property_read_u32(np, "#size-cells", &cells))
116 return cells;
117
118 /* No #size-cells property for the root node */
119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120}
121
122int of_n_size_cells(struct device_node *np)
123{
124 if (np->parent)
125 np = np->parent;
126
127 return of_bus_n_size_cells(np);
128}
129EXPORT_SYMBOL(of_n_size_cells);
130
131#ifdef CONFIG_NUMA
132int __weak of_node_to_nid(struct device_node *np)
133{
134 return NUMA_NO_NODE;
135}
136#endif
137
138#define OF_PHANDLE_CACHE_BITS 7
139#define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
140
141static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142
143static u32 of_phandle_cache_hash(phandle handle)
144{
145 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146}
147
148/*
149 * Caller must hold devtree_lock.
150 */
151void __of_phandle_cache_inv_entry(phandle handle)
152{
153 u32 handle_hash;
154 struct device_node *np;
155
156 if (!handle)
157 return;
158
159 handle_hash = of_phandle_cache_hash(handle);
160
161 np = phandle_cache[handle_hash];
162 if (np && handle == np->phandle)
163 phandle_cache[handle_hash] = NULL;
164}
165
166void __init of_core_init(void)
167{
168 struct device_node *np;
169
170 of_platform_register_reconfig_notifier();
171
172 /* Create the kset, and register existing nodes */
173 mutex_lock(&of_mutex);
174 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
175 if (!of_kset) {
176 mutex_unlock(&of_mutex);
177 pr_err("failed to register existing nodes\n");
178 return;
179 }
180 for_each_of_allnodes(np) {
181 __of_attach_node_sysfs(np);
182 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
183 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
184 }
185 mutex_unlock(&of_mutex);
186
187 /* Symlink in /proc as required by userspace ABI */
188 if (of_root)
189 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
190}
191
192static struct property *__of_find_property(const struct device_node *np,
193 const char *name, int *lenp)
194{
195 struct property *pp;
196
197 if (!np)
198 return NULL;
199
200 for (pp = np->properties; pp; pp = pp->next) {
201 if (of_prop_cmp(pp->name, name) == 0) {
202 if (lenp)
203 *lenp = pp->length;
204 break;
205 }
206 }
207
208 return pp;
209}
210
211struct property *of_find_property(const struct device_node *np,
212 const char *name,
213 int *lenp)
214{
215 struct property *pp;
216 unsigned long flags;
217
218 raw_spin_lock_irqsave(&devtree_lock, flags);
219 pp = __of_find_property(np, name, lenp);
220 raw_spin_unlock_irqrestore(&devtree_lock, flags);
221
222 return pp;
223}
224EXPORT_SYMBOL(of_find_property);
225
226struct device_node *__of_find_all_nodes(struct device_node *prev)
227{
228 struct device_node *np;
229 if (!prev) {
230 np = of_root;
231 } else if (prev->child) {
232 np = prev->child;
233 } else {
234 /* Walk back up looking for a sibling, or the end of the structure */
235 np = prev;
236 while (np->parent && !np->sibling)
237 np = np->parent;
238 np = np->sibling; /* Might be null at the end of the tree */
239 }
240 return np;
241}
242
243/**
244 * of_find_all_nodes - Get next node in global list
245 * @prev: Previous node or NULL to start iteration
246 * of_node_put() will be called on it
247 *
248 * Return: A node pointer with refcount incremented, use
249 * of_node_put() on it when done.
250 */
251struct device_node *of_find_all_nodes(struct device_node *prev)
252{
253 struct device_node *np;
254 unsigned long flags;
255
256 raw_spin_lock_irqsave(&devtree_lock, flags);
257 np = __of_find_all_nodes(prev);
258 of_node_get(np);
259 of_node_put(prev);
260 raw_spin_unlock_irqrestore(&devtree_lock, flags);
261 return np;
262}
263EXPORT_SYMBOL(of_find_all_nodes);
264
265/*
266 * Find a property with a given name for a given node
267 * and return the value.
268 */
269const void *__of_get_property(const struct device_node *np,
270 const char *name, int *lenp)
271{
272 struct property *pp = __of_find_property(np, name, lenp);
273
274 return pp ? pp->value : NULL;
275}
276
277/*
278 * Find a property with a given name for a given node
279 * and return the value.
280 */
281const void *of_get_property(const struct device_node *np, const char *name,
282 int *lenp)
283{
284 struct property *pp = of_find_property(np, name, lenp);
285
286 return pp ? pp->value : NULL;
287}
288EXPORT_SYMBOL(of_get_property);
289
290/**
291 * __of_device_is_compatible() - Check if the node matches given constraints
292 * @device: pointer to node
293 * @compat: required compatible string, NULL or "" for any match
294 * @type: required device_type value, NULL or "" for any match
295 * @name: required node name, NULL or "" for any match
296 *
297 * Checks if the given @compat, @type and @name strings match the
298 * properties of the given @device. A constraints can be skipped by
299 * passing NULL or an empty string as the constraint.
300 *
301 * Returns 0 for no match, and a positive integer on match. The return
302 * value is a relative score with larger values indicating better
303 * matches. The score is weighted for the most specific compatible value
304 * to get the highest score. Matching type is next, followed by matching
305 * name. Practically speaking, this results in the following priority
306 * order for matches:
307 *
308 * 1. specific compatible && type && name
309 * 2. specific compatible && type
310 * 3. specific compatible && name
311 * 4. specific compatible
312 * 5. general compatible && type && name
313 * 6. general compatible && type
314 * 7. general compatible && name
315 * 8. general compatible
316 * 9. type && name
317 * 10. type
318 * 11. name
319 */
320static int __of_device_is_compatible(const struct device_node *device,
321 const char *compat, const char *type, const char *name)
322{
323 struct property *prop;
324 const char *cp;
325 int index = 0, score = 0;
326
327 /* Compatible match has highest priority */
328 if (compat && compat[0]) {
329 prop = __of_find_property(device, "compatible", NULL);
330 for (cp = of_prop_next_string(prop, NULL); cp;
331 cp = of_prop_next_string(prop, cp), index++) {
332 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
333 score = INT_MAX/2 - (index << 2);
334 break;
335 }
336 }
337 if (!score)
338 return 0;
339 }
340
341 /* Matching type is better than matching name */
342 if (type && type[0]) {
343 if (!__of_node_is_type(device, type))
344 return 0;
345 score += 2;
346 }
347
348 /* Matching name is a bit better than not */
349 if (name && name[0]) {
350 if (!of_node_name_eq(device, name))
351 return 0;
352 score++;
353 }
354
355 return score;
356}
357
358/** Checks if the given "compat" string matches one of the strings in
359 * the device's "compatible" property
360 */
361int of_device_is_compatible(const struct device_node *device,
362 const char *compat)
363{
364 unsigned long flags;
365 int res;
366
367 raw_spin_lock_irqsave(&devtree_lock, flags);
368 res = __of_device_is_compatible(device, compat, NULL, NULL);
369 raw_spin_unlock_irqrestore(&devtree_lock, flags);
370 return res;
371}
372EXPORT_SYMBOL(of_device_is_compatible);
373
374/** Checks if the device is compatible with any of the entries in
375 * a NULL terminated array of strings. Returns the best match
376 * score or 0.
377 */
378int of_device_compatible_match(const struct device_node *device,
379 const char *const *compat)
380{
381 unsigned int tmp, score = 0;
382
383 if (!compat)
384 return 0;
385
386 while (*compat) {
387 tmp = of_device_is_compatible(device, *compat);
388 if (tmp > score)
389 score = tmp;
390 compat++;
391 }
392
393 return score;
394}
395EXPORT_SYMBOL_GPL(of_device_compatible_match);
396
397/**
398 * of_machine_compatible_match - Test root of device tree against a compatible array
399 * @compats: NULL terminated array of compatible strings to look for in root node's compatible property.
400 *
401 * Returns true if the root node has any of the given compatible values in its
402 * compatible property.
403 */
404bool of_machine_compatible_match(const char *const *compats)
405{
406 struct device_node *root;
407 int rc = 0;
408
409 root = of_find_node_by_path("/");
410 if (root) {
411 rc = of_device_compatible_match(root, compats);
412 of_node_put(root);
413 }
414
415 return rc != 0;
416}
417EXPORT_SYMBOL(of_machine_compatible_match);
418
419static bool __of_device_is_status(const struct device_node *device,
420 const char * const*strings)
421{
422 const char *status;
423 int statlen;
424
425 if (!device)
426 return false;
427
428 status = __of_get_property(device, "status", &statlen);
429 if (status == NULL)
430 return false;
431
432 if (statlen > 0) {
433 while (*strings) {
434 unsigned int len = strlen(*strings);
435
436 if ((*strings)[len - 1] == '-') {
437 if (!strncmp(status, *strings, len))
438 return true;
439 } else {
440 if (!strcmp(status, *strings))
441 return true;
442 }
443 strings++;
444 }
445 }
446
447 return false;
448}
449
450/**
451 * __of_device_is_available - check if a device is available for use
452 *
453 * @device: Node to check for availability, with locks already held
454 *
455 * Return: True if the status property is absent or set to "okay" or "ok",
456 * false otherwise
457 */
458static bool __of_device_is_available(const struct device_node *device)
459{
460 static const char * const ok[] = {"okay", "ok", NULL};
461
462 if (!device)
463 return false;
464
465 return !__of_get_property(device, "status", NULL) ||
466 __of_device_is_status(device, ok);
467}
468
469/**
470 * __of_device_is_reserved - check if a device is reserved
471 *
472 * @device: Node to check for availability, with locks already held
473 *
474 * Return: True if the status property is set to "reserved", false otherwise
475 */
476static bool __of_device_is_reserved(const struct device_node *device)
477{
478 static const char * const reserved[] = {"reserved", NULL};
479
480 return __of_device_is_status(device, reserved);
481}
482
483/**
484 * of_device_is_available - check if a device is available for use
485 *
486 * @device: Node to check for availability
487 *
488 * Return: True if the status property is absent or set to "okay" or "ok",
489 * false otherwise
490 */
491bool of_device_is_available(const struct device_node *device)
492{
493 unsigned long flags;
494 bool res;
495
496 raw_spin_lock_irqsave(&devtree_lock, flags);
497 res = __of_device_is_available(device);
498 raw_spin_unlock_irqrestore(&devtree_lock, flags);
499 return res;
500
501}
502EXPORT_SYMBOL(of_device_is_available);
503
504/**
505 * __of_device_is_fail - check if a device has status "fail" or "fail-..."
506 *
507 * @device: Node to check status for, with locks already held
508 *
509 * Return: True if the status property is set to "fail" or "fail-..." (for any
510 * error code suffix), false otherwise
511 */
512static bool __of_device_is_fail(const struct device_node *device)
513{
514 static const char * const fail[] = {"fail", "fail-", NULL};
515
516 return __of_device_is_status(device, fail);
517}
518
519/**
520 * of_device_is_big_endian - check if a device has BE registers
521 *
522 * @device: Node to check for endianness
523 *
524 * Return: True if the device has a "big-endian" property, or if the kernel
525 * was compiled for BE *and* the device has a "native-endian" property.
526 * Returns false otherwise.
527 *
528 * Callers would nominally use ioread32be/iowrite32be if
529 * of_device_is_big_endian() == true, or readl/writel otherwise.
530 */
531bool of_device_is_big_endian(const struct device_node *device)
532{
533 if (of_property_read_bool(device, "big-endian"))
534 return true;
535 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
536 of_property_read_bool(device, "native-endian"))
537 return true;
538 return false;
539}
540EXPORT_SYMBOL(of_device_is_big_endian);
541
542/**
543 * of_get_parent - Get a node's parent if any
544 * @node: Node to get parent
545 *
546 * Return: A node pointer with refcount incremented, use
547 * of_node_put() on it when done.
548 */
549struct device_node *of_get_parent(const struct device_node *node)
550{
551 struct device_node *np;
552 unsigned long flags;
553
554 if (!node)
555 return NULL;
556
557 raw_spin_lock_irqsave(&devtree_lock, flags);
558 np = of_node_get(node->parent);
559 raw_spin_unlock_irqrestore(&devtree_lock, flags);
560 return np;
561}
562EXPORT_SYMBOL(of_get_parent);
563
564/**
565 * of_get_next_parent - Iterate to a node's parent
566 * @node: Node to get parent of
567 *
568 * This is like of_get_parent() except that it drops the
569 * refcount on the passed node, making it suitable for iterating
570 * through a node's parents.
571 *
572 * Return: A node pointer with refcount incremented, use
573 * of_node_put() on it when done.
574 */
575struct device_node *of_get_next_parent(struct device_node *node)
576{
577 struct device_node *parent;
578 unsigned long flags;
579
580 if (!node)
581 return NULL;
582
583 raw_spin_lock_irqsave(&devtree_lock, flags);
584 parent = of_node_get(node->parent);
585 of_node_put(node);
586 raw_spin_unlock_irqrestore(&devtree_lock, flags);
587 return parent;
588}
589EXPORT_SYMBOL(of_get_next_parent);
590
591static struct device_node *__of_get_next_child(const struct device_node *node,
592 struct device_node *prev)
593{
594 struct device_node *next;
595
596 if (!node)
597 return NULL;
598
599 next = prev ? prev->sibling : node->child;
600 of_node_get(next);
601 of_node_put(prev);
602 return next;
603}
604#define __for_each_child_of_node(parent, child) \
605 for (child = __of_get_next_child(parent, NULL); child != NULL; \
606 child = __of_get_next_child(parent, child))
607
608/**
609 * of_get_next_child - Iterate a node childs
610 * @node: parent node
611 * @prev: previous child of the parent node, or NULL to get first
612 *
613 * Return: A node pointer with refcount incremented, use of_node_put() on
614 * it when done. Returns NULL when prev is the last child. Decrements the
615 * refcount of prev.
616 */
617struct device_node *of_get_next_child(const struct device_node *node,
618 struct device_node *prev)
619{
620 struct device_node *next;
621 unsigned long flags;
622
623 raw_spin_lock_irqsave(&devtree_lock, flags);
624 next = __of_get_next_child(node, prev);
625 raw_spin_unlock_irqrestore(&devtree_lock, flags);
626 return next;
627}
628EXPORT_SYMBOL(of_get_next_child);
629
630static struct device_node *of_get_next_status_child(const struct device_node *node,
631 struct device_node *prev,
632 bool (*checker)(const struct device_node *))
633{
634 struct device_node *next;
635 unsigned long flags;
636
637 if (!node)
638 return NULL;
639
640 raw_spin_lock_irqsave(&devtree_lock, flags);
641 next = prev ? prev->sibling : node->child;
642 for (; next; next = next->sibling) {
643 if (!checker(next))
644 continue;
645 if (of_node_get(next))
646 break;
647 }
648 of_node_put(prev);
649 raw_spin_unlock_irqrestore(&devtree_lock, flags);
650 return next;
651}
652
653/**
654 * of_get_next_available_child - Find the next available child node
655 * @node: parent node
656 * @prev: previous child of the parent node, or NULL to get first
657 *
658 * This function is like of_get_next_child(), except that it
659 * automatically skips any disabled nodes (i.e. status = "disabled").
660 */
661struct device_node *of_get_next_available_child(const struct device_node *node,
662 struct device_node *prev)
663{
664 return of_get_next_status_child(node, prev, __of_device_is_available);
665}
666EXPORT_SYMBOL(of_get_next_available_child);
667
668/**
669 * of_get_next_reserved_child - Find the next reserved child node
670 * @node: parent node
671 * @prev: previous child of the parent node, or NULL to get first
672 *
673 * This function is like of_get_next_child(), except that it
674 * automatically skips any disabled nodes (i.e. status = "disabled").
675 */
676struct device_node *of_get_next_reserved_child(const struct device_node *node,
677 struct device_node *prev)
678{
679 return of_get_next_status_child(node, prev, __of_device_is_reserved);
680}
681EXPORT_SYMBOL(of_get_next_reserved_child);
682
683/**
684 * of_get_next_cpu_node - Iterate on cpu nodes
685 * @prev: previous child of the /cpus node, or NULL to get first
686 *
687 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
688 * will be skipped.
689 *
690 * Return: A cpu node pointer with refcount incremented, use of_node_put()
691 * on it when done. Returns NULL when prev is the last child. Decrements
692 * the refcount of prev.
693 */
694struct device_node *of_get_next_cpu_node(struct device_node *prev)
695{
696 struct device_node *next = NULL;
697 unsigned long flags;
698 struct device_node *node;
699
700 if (!prev)
701 node = of_find_node_by_path("/cpus");
702
703 raw_spin_lock_irqsave(&devtree_lock, flags);
704 if (prev)
705 next = prev->sibling;
706 else if (node) {
707 next = node->child;
708 of_node_put(node);
709 }
710 for (; next; next = next->sibling) {
711 if (__of_device_is_fail(next))
712 continue;
713 if (!(of_node_name_eq(next, "cpu") ||
714 __of_node_is_type(next, "cpu")))
715 continue;
716 if (of_node_get(next))
717 break;
718 }
719 of_node_put(prev);
720 raw_spin_unlock_irqrestore(&devtree_lock, flags);
721 return next;
722}
723EXPORT_SYMBOL(of_get_next_cpu_node);
724
725/**
726 * of_get_compatible_child - Find compatible child node
727 * @parent: parent node
728 * @compatible: compatible string
729 *
730 * Lookup child node whose compatible property contains the given compatible
731 * string.
732 *
733 * Return: a node pointer with refcount incremented, use of_node_put() on it
734 * when done; or NULL if not found.
735 */
736struct device_node *of_get_compatible_child(const struct device_node *parent,
737 const char *compatible)
738{
739 struct device_node *child;
740
741 for_each_child_of_node(parent, child) {
742 if (of_device_is_compatible(child, compatible))
743 break;
744 }
745
746 return child;
747}
748EXPORT_SYMBOL(of_get_compatible_child);
749
750/**
751 * of_get_child_by_name - Find the child node by name for a given parent
752 * @node: parent node
753 * @name: child name to look for.
754 *
755 * This function looks for child node for given matching name
756 *
757 * Return: A node pointer if found, with refcount incremented, use
758 * of_node_put() on it when done.
759 * Returns NULL if node is not found.
760 */
761struct device_node *of_get_child_by_name(const struct device_node *node,
762 const char *name)
763{
764 struct device_node *child;
765
766 for_each_child_of_node(node, child)
767 if (of_node_name_eq(child, name))
768 break;
769 return child;
770}
771EXPORT_SYMBOL(of_get_child_by_name);
772
773struct device_node *__of_find_node_by_path(struct device_node *parent,
774 const char *path)
775{
776 struct device_node *child;
777 int len;
778
779 len = strcspn(path, "/:");
780 if (!len)
781 return NULL;
782
783 __for_each_child_of_node(parent, child) {
784 const char *name = kbasename(child->full_name);
785 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
786 return child;
787 }
788 return NULL;
789}
790
791struct device_node *__of_find_node_by_full_path(struct device_node *node,
792 const char *path)
793{
794 const char *separator = strchr(path, ':');
795
796 while (node && *path == '/') {
797 struct device_node *tmp = node;
798
799 path++; /* Increment past '/' delimiter */
800 node = __of_find_node_by_path(node, path);
801 of_node_put(tmp);
802 path = strchrnul(path, '/');
803 if (separator && separator < path)
804 break;
805 }
806 return node;
807}
808
809/**
810 * of_find_node_opts_by_path - Find a node matching a full OF path
811 * @path: Either the full path to match, or if the path does not
812 * start with '/', the name of a property of the /aliases
813 * node (an alias). In the case of an alias, the node
814 * matching the alias' value will be returned.
815 * @opts: Address of a pointer into which to store the start of
816 * an options string appended to the end of the path with
817 * a ':' separator.
818 *
819 * Valid paths:
820 * * /foo/bar Full path
821 * * foo Valid alias
822 * * foo/bar Valid alias + relative path
823 *
824 * Return: A node pointer with refcount incremented, use
825 * of_node_put() on it when done.
826 */
827struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
828{
829 struct device_node *np = NULL;
830 struct property *pp;
831 unsigned long flags;
832 const char *separator = strchr(path, ':');
833
834 if (opts)
835 *opts = separator ? separator + 1 : NULL;
836
837 if (strcmp(path, "/") == 0)
838 return of_node_get(of_root);
839
840 /* The path could begin with an alias */
841 if (*path != '/') {
842 int len;
843 const char *p = separator;
844
845 if (!p)
846 p = strchrnul(path, '/');
847 len = p - path;
848
849 /* of_aliases must not be NULL */
850 if (!of_aliases)
851 return NULL;
852
853 for_each_property_of_node(of_aliases, pp) {
854 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
855 np = of_find_node_by_path(pp->value);
856 break;
857 }
858 }
859 if (!np)
860 return NULL;
861 path = p;
862 }
863
864 /* Step down the tree matching path components */
865 raw_spin_lock_irqsave(&devtree_lock, flags);
866 if (!np)
867 np = of_node_get(of_root);
868 np = __of_find_node_by_full_path(np, path);
869 raw_spin_unlock_irqrestore(&devtree_lock, flags);
870 return np;
871}
872EXPORT_SYMBOL(of_find_node_opts_by_path);
873
874/**
875 * of_find_node_by_name - Find a node by its "name" property
876 * @from: The node to start searching from or NULL; the node
877 * you pass will not be searched, only the next one
878 * will. Typically, you pass what the previous call
879 * returned. of_node_put() will be called on @from.
880 * @name: The name string to match against
881 *
882 * Return: A node pointer with refcount incremented, use
883 * of_node_put() on it when done.
884 */
885struct device_node *of_find_node_by_name(struct device_node *from,
886 const char *name)
887{
888 struct device_node *np;
889 unsigned long flags;
890
891 raw_spin_lock_irqsave(&devtree_lock, flags);
892 for_each_of_allnodes_from(from, np)
893 if (of_node_name_eq(np, name) && of_node_get(np))
894 break;
895 of_node_put(from);
896 raw_spin_unlock_irqrestore(&devtree_lock, flags);
897 return np;
898}
899EXPORT_SYMBOL(of_find_node_by_name);
900
901/**
902 * of_find_node_by_type - Find a node by its "device_type" property
903 * @from: The node to start searching from, or NULL to start searching
904 * the entire device tree. The node you pass will not be
905 * searched, only the next one will; typically, you pass
906 * what the previous call returned. of_node_put() will be
907 * called on from for you.
908 * @type: The type string to match against
909 *
910 * Return: A node pointer with refcount incremented, use
911 * of_node_put() on it when done.
912 */
913struct device_node *of_find_node_by_type(struct device_node *from,
914 const char *type)
915{
916 struct device_node *np;
917 unsigned long flags;
918
919 raw_spin_lock_irqsave(&devtree_lock, flags);
920 for_each_of_allnodes_from(from, np)
921 if (__of_node_is_type(np, type) && of_node_get(np))
922 break;
923 of_node_put(from);
924 raw_spin_unlock_irqrestore(&devtree_lock, flags);
925 return np;
926}
927EXPORT_SYMBOL(of_find_node_by_type);
928
929/**
930 * of_find_compatible_node - Find a node based on type and one of the
931 * tokens in its "compatible" property
932 * @from: The node to start searching from or NULL, the node
933 * you pass will not be searched, only the next one
934 * will; typically, you pass what the previous call
935 * returned. of_node_put() will be called on it
936 * @type: The type string to match "device_type" or NULL to ignore
937 * @compatible: The string to match to one of the tokens in the device
938 * "compatible" list.
939 *
940 * Return: A node pointer with refcount incremented, use
941 * of_node_put() on it when done.
942 */
943struct device_node *of_find_compatible_node(struct device_node *from,
944 const char *type, const char *compatible)
945{
946 struct device_node *np;
947 unsigned long flags;
948
949 raw_spin_lock_irqsave(&devtree_lock, flags);
950 for_each_of_allnodes_from(from, np)
951 if (__of_device_is_compatible(np, compatible, type, NULL) &&
952 of_node_get(np))
953 break;
954 of_node_put(from);
955 raw_spin_unlock_irqrestore(&devtree_lock, flags);
956 return np;
957}
958EXPORT_SYMBOL(of_find_compatible_node);
959
960/**
961 * of_find_node_with_property - Find a node which has a property with
962 * the given name.
963 * @from: The node to start searching from or NULL, the node
964 * you pass will not be searched, only the next one
965 * will; typically, you pass what the previous call
966 * returned. of_node_put() will be called on it
967 * @prop_name: The name of the property to look for.
968 *
969 * Return: A node pointer with refcount incremented, use
970 * of_node_put() on it when done.
971 */
972struct device_node *of_find_node_with_property(struct device_node *from,
973 const char *prop_name)
974{
975 struct device_node *np;
976 struct property *pp;
977 unsigned long flags;
978
979 raw_spin_lock_irqsave(&devtree_lock, flags);
980 for_each_of_allnodes_from(from, np) {
981 for (pp = np->properties; pp; pp = pp->next) {
982 if (of_prop_cmp(pp->name, prop_name) == 0) {
983 of_node_get(np);
984 goto out;
985 }
986 }
987 }
988out:
989 of_node_put(from);
990 raw_spin_unlock_irqrestore(&devtree_lock, flags);
991 return np;
992}
993EXPORT_SYMBOL(of_find_node_with_property);
994
995static
996const struct of_device_id *__of_match_node(const struct of_device_id *matches,
997 const struct device_node *node)
998{
999 const struct of_device_id *best_match = NULL;
1000 int score, best_score = 0;
1001
1002 if (!matches)
1003 return NULL;
1004
1005 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
1006 score = __of_device_is_compatible(node, matches->compatible,
1007 matches->type, matches->name);
1008 if (score > best_score) {
1009 best_match = matches;
1010 best_score = score;
1011 }
1012 }
1013
1014 return best_match;
1015}
1016
1017/**
1018 * of_match_node - Tell if a device_node has a matching of_match structure
1019 * @matches: array of of device match structures to search in
1020 * @node: the of device structure to match against
1021 *
1022 * Low level utility function used by device matching.
1023 */
1024const struct of_device_id *of_match_node(const struct of_device_id *matches,
1025 const struct device_node *node)
1026{
1027 const struct of_device_id *match;
1028 unsigned long flags;
1029
1030 raw_spin_lock_irqsave(&devtree_lock, flags);
1031 match = __of_match_node(matches, node);
1032 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1033 return match;
1034}
1035EXPORT_SYMBOL(of_match_node);
1036
1037/**
1038 * of_find_matching_node_and_match - Find a node based on an of_device_id
1039 * match table.
1040 * @from: The node to start searching from or NULL, the node
1041 * you pass will not be searched, only the next one
1042 * will; typically, you pass what the previous call
1043 * returned. of_node_put() will be called on it
1044 * @matches: array of of device match structures to search in
1045 * @match: Updated to point at the matches entry which matched
1046 *
1047 * Return: A node pointer with refcount incremented, use
1048 * of_node_put() on it when done.
1049 */
1050struct device_node *of_find_matching_node_and_match(struct device_node *from,
1051 const struct of_device_id *matches,
1052 const struct of_device_id **match)
1053{
1054 struct device_node *np;
1055 const struct of_device_id *m;
1056 unsigned long flags;
1057
1058 if (match)
1059 *match = NULL;
1060
1061 raw_spin_lock_irqsave(&devtree_lock, flags);
1062 for_each_of_allnodes_from(from, np) {
1063 m = __of_match_node(matches, np);
1064 if (m && of_node_get(np)) {
1065 if (match)
1066 *match = m;
1067 break;
1068 }
1069 }
1070 of_node_put(from);
1071 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1072 return np;
1073}
1074EXPORT_SYMBOL(of_find_matching_node_and_match);
1075
1076/**
1077 * of_alias_from_compatible - Lookup appropriate alias for a device node
1078 * depending on compatible
1079 * @node: pointer to a device tree node
1080 * @alias: Pointer to buffer that alias value will be copied into
1081 * @len: Length of alias value
1082 *
1083 * Based on the value of the compatible property, this routine will attempt
1084 * to choose an appropriate alias value for a particular device tree node.
1085 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1086 * from the first entry in the compatible list property.
1087 *
1088 * Note: The matching on just the "product" side of the compatible is a relic
1089 * from I2C and SPI. Please do not add any new user.
1090 *
1091 * Return: This routine returns 0 on success, <0 on failure.
1092 */
1093int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1094{
1095 const char *compatible, *p;
1096 int cplen;
1097
1098 compatible = of_get_property(node, "compatible", &cplen);
1099 if (!compatible || strlen(compatible) > cplen)
1100 return -ENODEV;
1101 p = strchr(compatible, ',');
1102 strscpy(alias, p ? p + 1 : compatible, len);
1103 return 0;
1104}
1105EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1106
1107/**
1108 * of_find_node_by_phandle - Find a node given a phandle
1109 * @handle: phandle of the node to find
1110 *
1111 * Return: A node pointer with refcount incremented, use
1112 * of_node_put() on it when done.
1113 */
1114struct device_node *of_find_node_by_phandle(phandle handle)
1115{
1116 struct device_node *np = NULL;
1117 unsigned long flags;
1118 u32 handle_hash;
1119
1120 if (!handle)
1121 return NULL;
1122
1123 handle_hash = of_phandle_cache_hash(handle);
1124
1125 raw_spin_lock_irqsave(&devtree_lock, flags);
1126
1127 if (phandle_cache[handle_hash] &&
1128 handle == phandle_cache[handle_hash]->phandle)
1129 np = phandle_cache[handle_hash];
1130
1131 if (!np) {
1132 for_each_of_allnodes(np)
1133 if (np->phandle == handle &&
1134 !of_node_check_flag(np, OF_DETACHED)) {
1135 phandle_cache[handle_hash] = np;
1136 break;
1137 }
1138 }
1139
1140 of_node_get(np);
1141 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1142 return np;
1143}
1144EXPORT_SYMBOL(of_find_node_by_phandle);
1145
1146void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1147{
1148 int i;
1149 printk("%s %pOF", msg, args->np);
1150 for (i = 0; i < args->args_count; i++) {
1151 const char delim = i ? ',' : ':';
1152
1153 pr_cont("%c%08x", delim, args->args[i]);
1154 }
1155 pr_cont("\n");
1156}
1157
1158int of_phandle_iterator_init(struct of_phandle_iterator *it,
1159 const struct device_node *np,
1160 const char *list_name,
1161 const char *cells_name,
1162 int cell_count)
1163{
1164 const __be32 *list;
1165 int size;
1166
1167 memset(it, 0, sizeof(*it));
1168
1169 /*
1170 * one of cell_count or cells_name must be provided to determine the
1171 * argument length.
1172 */
1173 if (cell_count < 0 && !cells_name)
1174 return -EINVAL;
1175
1176 list = of_get_property(np, list_name, &size);
1177 if (!list)
1178 return -ENOENT;
1179
1180 it->cells_name = cells_name;
1181 it->cell_count = cell_count;
1182 it->parent = np;
1183 it->list_end = list + size / sizeof(*list);
1184 it->phandle_end = list;
1185 it->cur = list;
1186
1187 return 0;
1188}
1189EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1190
1191int of_phandle_iterator_next(struct of_phandle_iterator *it)
1192{
1193 uint32_t count = 0;
1194
1195 if (it->node) {
1196 of_node_put(it->node);
1197 it->node = NULL;
1198 }
1199
1200 if (!it->cur || it->phandle_end >= it->list_end)
1201 return -ENOENT;
1202
1203 it->cur = it->phandle_end;
1204
1205 /* If phandle is 0, then it is an empty entry with no arguments. */
1206 it->phandle = be32_to_cpup(it->cur++);
1207
1208 if (it->phandle) {
1209
1210 /*
1211 * Find the provider node and parse the #*-cells property to
1212 * determine the argument length.
1213 */
1214 it->node = of_find_node_by_phandle(it->phandle);
1215
1216 if (it->cells_name) {
1217 if (!it->node) {
1218 pr_err("%pOF: could not find phandle %d\n",
1219 it->parent, it->phandle);
1220 goto err;
1221 }
1222
1223 if (of_property_read_u32(it->node, it->cells_name,
1224 &count)) {
1225 /*
1226 * If both cell_count and cells_name is given,
1227 * fall back to cell_count in absence
1228 * of the cells_name property
1229 */
1230 if (it->cell_count >= 0) {
1231 count = it->cell_count;
1232 } else {
1233 pr_err("%pOF: could not get %s for %pOF\n",
1234 it->parent,
1235 it->cells_name,
1236 it->node);
1237 goto err;
1238 }
1239 }
1240 } else {
1241 count = it->cell_count;
1242 }
1243
1244 /*
1245 * Make sure that the arguments actually fit in the remaining
1246 * property data length
1247 */
1248 if (it->cur + count > it->list_end) {
1249 if (it->cells_name)
1250 pr_err("%pOF: %s = %d found %td\n",
1251 it->parent, it->cells_name,
1252 count, it->list_end - it->cur);
1253 else
1254 pr_err("%pOF: phandle %s needs %d, found %td\n",
1255 it->parent, of_node_full_name(it->node),
1256 count, it->list_end - it->cur);
1257 goto err;
1258 }
1259 }
1260
1261 it->phandle_end = it->cur + count;
1262 it->cur_count = count;
1263
1264 return 0;
1265
1266err:
1267 if (it->node) {
1268 of_node_put(it->node);
1269 it->node = NULL;
1270 }
1271
1272 return -EINVAL;
1273}
1274EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1275
1276int of_phandle_iterator_args(struct of_phandle_iterator *it,
1277 uint32_t *args,
1278 int size)
1279{
1280 int i, count;
1281
1282 count = it->cur_count;
1283
1284 if (WARN_ON(size < count))
1285 count = size;
1286
1287 for (i = 0; i < count; i++)
1288 args[i] = be32_to_cpup(it->cur++);
1289
1290 return count;
1291}
1292
1293int __of_parse_phandle_with_args(const struct device_node *np,
1294 const char *list_name,
1295 const char *cells_name,
1296 int cell_count, int index,
1297 struct of_phandle_args *out_args)
1298{
1299 struct of_phandle_iterator it;
1300 int rc, cur_index = 0;
1301
1302 if (index < 0)
1303 return -EINVAL;
1304
1305 /* Loop over the phandles until all the requested entry is found */
1306 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1307 /*
1308 * All of the error cases bail out of the loop, so at
1309 * this point, the parsing is successful. If the requested
1310 * index matches, then fill the out_args structure and return,
1311 * or return -ENOENT for an empty entry.
1312 */
1313 rc = -ENOENT;
1314 if (cur_index == index) {
1315 if (!it.phandle)
1316 goto err;
1317
1318 if (out_args) {
1319 int c;
1320
1321 c = of_phandle_iterator_args(&it,
1322 out_args->args,
1323 MAX_PHANDLE_ARGS);
1324 out_args->np = it.node;
1325 out_args->args_count = c;
1326 } else {
1327 of_node_put(it.node);
1328 }
1329
1330 /* Found it! return success */
1331 return 0;
1332 }
1333
1334 cur_index++;
1335 }
1336
1337 /*
1338 * Unlock node before returning result; will be one of:
1339 * -ENOENT : index is for empty phandle
1340 * -EINVAL : parsing error on data
1341 */
1342
1343 err:
1344 of_node_put(it.node);
1345 return rc;
1346}
1347EXPORT_SYMBOL(__of_parse_phandle_with_args);
1348
1349/**
1350 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1351 * @np: pointer to a device tree node containing a list
1352 * @list_name: property name that contains a list
1353 * @stem_name: stem of property names that specify phandles' arguments count
1354 * @index: index of a phandle to parse out
1355 * @out_args: optional pointer to output arguments structure (will be filled)
1356 *
1357 * This function is useful to parse lists of phandles and their arguments.
1358 * Returns 0 on success and fills out_args, on error returns appropriate errno
1359 * value. The difference between this function and of_parse_phandle_with_args()
1360 * is that this API remaps a phandle if the node the phandle points to has
1361 * a <@stem_name>-map property.
1362 *
1363 * Caller is responsible to call of_node_put() on the returned out_args->np
1364 * pointer.
1365 *
1366 * Example::
1367 *
1368 * phandle1: node1 {
1369 * #list-cells = <2>;
1370 * };
1371 *
1372 * phandle2: node2 {
1373 * #list-cells = <1>;
1374 * };
1375 *
1376 * phandle3: node3 {
1377 * #list-cells = <1>;
1378 * list-map = <0 &phandle2 3>,
1379 * <1 &phandle2 2>,
1380 * <2 &phandle1 5 1>;
1381 * list-map-mask = <0x3>;
1382 * };
1383 *
1384 * node4 {
1385 * list = <&phandle1 1 2 &phandle3 0>;
1386 * };
1387 *
1388 * To get a device_node of the ``node2`` node you may call this:
1389 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1390 */
1391int of_parse_phandle_with_args_map(const struct device_node *np,
1392 const char *list_name,
1393 const char *stem_name,
1394 int index, struct of_phandle_args *out_args)
1395{
1396 char *cells_name, *map_name = NULL, *mask_name = NULL;
1397 char *pass_name = NULL;
1398 struct device_node *cur, *new = NULL;
1399 const __be32 *map, *mask, *pass;
1400 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(~0) };
1401 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = cpu_to_be32(0) };
1402 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1403 const __be32 *match_array = initial_match_array;
1404 int i, ret, map_len, match;
1405 u32 list_size, new_size;
1406
1407 if (index < 0)
1408 return -EINVAL;
1409
1410 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1411 if (!cells_name)
1412 return -ENOMEM;
1413
1414 ret = -ENOMEM;
1415 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1416 if (!map_name)
1417 goto free;
1418
1419 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1420 if (!mask_name)
1421 goto free;
1422
1423 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1424 if (!pass_name)
1425 goto free;
1426
1427 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1428 out_args);
1429 if (ret)
1430 goto free;
1431
1432 /* Get the #<list>-cells property */
1433 cur = out_args->np;
1434 ret = of_property_read_u32(cur, cells_name, &list_size);
1435 if (ret < 0)
1436 goto put;
1437
1438 /* Precalculate the match array - this simplifies match loop */
1439 for (i = 0; i < list_size; i++)
1440 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1441
1442 ret = -EINVAL;
1443 while (cur) {
1444 /* Get the <list>-map property */
1445 map = of_get_property(cur, map_name, &map_len);
1446 if (!map) {
1447 ret = 0;
1448 goto free;
1449 }
1450 map_len /= sizeof(u32);
1451
1452 /* Get the <list>-map-mask property (optional) */
1453 mask = of_get_property(cur, mask_name, NULL);
1454 if (!mask)
1455 mask = dummy_mask;
1456 /* Iterate through <list>-map property */
1457 match = 0;
1458 while (map_len > (list_size + 1) && !match) {
1459 /* Compare specifiers */
1460 match = 1;
1461 for (i = 0; i < list_size; i++, map_len--)
1462 match &= !((match_array[i] ^ *map++) & mask[i]);
1463
1464 of_node_put(new);
1465 new = of_find_node_by_phandle(be32_to_cpup(map));
1466 map++;
1467 map_len--;
1468
1469 /* Check if not found */
1470 if (!new)
1471 goto put;
1472
1473 if (!of_device_is_available(new))
1474 match = 0;
1475
1476 ret = of_property_read_u32(new, cells_name, &new_size);
1477 if (ret)
1478 goto put;
1479
1480 /* Check for malformed properties */
1481 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1482 goto put;
1483 if (map_len < new_size)
1484 goto put;
1485
1486 /* Move forward by new node's #<list>-cells amount */
1487 map += new_size;
1488 map_len -= new_size;
1489 }
1490 if (!match)
1491 goto put;
1492
1493 /* Get the <list>-map-pass-thru property (optional) */
1494 pass = of_get_property(cur, pass_name, NULL);
1495 if (!pass)
1496 pass = dummy_pass;
1497
1498 /*
1499 * Successfully parsed a <list>-map translation; copy new
1500 * specifier into the out_args structure, keeping the
1501 * bits specified in <list>-map-pass-thru.
1502 */
1503 match_array = map - new_size;
1504 for (i = 0; i < new_size; i++) {
1505 __be32 val = *(map - new_size + i);
1506
1507 if (i < list_size) {
1508 val &= ~pass[i];
1509 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1510 }
1511
1512 out_args->args[i] = be32_to_cpu(val);
1513 }
1514 out_args->args_count = list_size = new_size;
1515 /* Iterate again with new provider */
1516 out_args->np = new;
1517 of_node_put(cur);
1518 cur = new;
1519 new = NULL;
1520 }
1521put:
1522 of_node_put(cur);
1523 of_node_put(new);
1524free:
1525 kfree(mask_name);
1526 kfree(map_name);
1527 kfree(cells_name);
1528 kfree(pass_name);
1529
1530 return ret;
1531}
1532EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1533
1534/**
1535 * of_count_phandle_with_args() - Find the number of phandles references in a property
1536 * @np: pointer to a device tree node containing a list
1537 * @list_name: property name that contains a list
1538 * @cells_name: property name that specifies phandles' arguments count
1539 *
1540 * Return: The number of phandle + argument tuples within a property. It
1541 * is a typical pattern to encode a list of phandle and variable
1542 * arguments into a single property. The number of arguments is encoded
1543 * by a property in the phandle-target node. For example, a gpios
1544 * property would contain a list of GPIO specifies consisting of a
1545 * phandle and 1 or more arguments. The number of arguments are
1546 * determined by the #gpio-cells property in the node pointed to by the
1547 * phandle.
1548 */
1549int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1550 const char *cells_name)
1551{
1552 struct of_phandle_iterator it;
1553 int rc, cur_index = 0;
1554
1555 /*
1556 * If cells_name is NULL we assume a cell count of 0. This makes
1557 * counting the phandles trivial as each 32bit word in the list is a
1558 * phandle and no arguments are to consider. So we don't iterate through
1559 * the list but just use the length to determine the phandle count.
1560 */
1561 if (!cells_name) {
1562 const __be32 *list;
1563 int size;
1564
1565 list = of_get_property(np, list_name, &size);
1566 if (!list)
1567 return -ENOENT;
1568
1569 return size / sizeof(*list);
1570 }
1571
1572 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1573 if (rc)
1574 return rc;
1575
1576 while ((rc = of_phandle_iterator_next(&it)) == 0)
1577 cur_index += 1;
1578
1579 if (rc != -ENOENT)
1580 return rc;
1581
1582 return cur_index;
1583}
1584EXPORT_SYMBOL(of_count_phandle_with_args);
1585
1586static struct property *__of_remove_property_from_list(struct property **list, struct property *prop)
1587{
1588 struct property **next;
1589
1590 for (next = list; *next; next = &(*next)->next) {
1591 if (*next == prop) {
1592 *next = prop->next;
1593 prop->next = NULL;
1594 return prop;
1595 }
1596 }
1597 return NULL;
1598}
1599
1600/**
1601 * __of_add_property - Add a property to a node without lock operations
1602 * @np: Caller's Device Node
1603 * @prop: Property to add
1604 */
1605int __of_add_property(struct device_node *np, struct property *prop)
1606{
1607 int rc = 0;
1608 unsigned long flags;
1609 struct property **next;
1610
1611 raw_spin_lock_irqsave(&devtree_lock, flags);
1612
1613 __of_remove_property_from_list(&np->deadprops, prop);
1614
1615 prop->next = NULL;
1616 next = &np->properties;
1617 while (*next) {
1618 if (strcmp(prop->name, (*next)->name) == 0) {
1619 /* duplicate ! don't insert it */
1620 rc = -EEXIST;
1621 goto out_unlock;
1622 }
1623 next = &(*next)->next;
1624 }
1625 *next = prop;
1626
1627out_unlock:
1628 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1629 if (rc)
1630 return rc;
1631
1632 __of_add_property_sysfs(np, prop);
1633 return 0;
1634}
1635
1636/**
1637 * of_add_property - Add a property to a node
1638 * @np: Caller's Device Node
1639 * @prop: Property to add
1640 */
1641int of_add_property(struct device_node *np, struct property *prop)
1642{
1643 int rc;
1644
1645 mutex_lock(&of_mutex);
1646 rc = __of_add_property(np, prop);
1647 mutex_unlock(&of_mutex);
1648
1649 if (!rc)
1650 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1651
1652 return rc;
1653}
1654EXPORT_SYMBOL_GPL(of_add_property);
1655
1656int __of_remove_property(struct device_node *np, struct property *prop)
1657{
1658 unsigned long flags;
1659 int rc = -ENODEV;
1660
1661 raw_spin_lock_irqsave(&devtree_lock, flags);
1662
1663 if (__of_remove_property_from_list(&np->properties, prop)) {
1664 /* Found the property, add it to deadprops list */
1665 prop->next = np->deadprops;
1666 np->deadprops = prop;
1667 rc = 0;
1668 }
1669
1670 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1671 if (rc)
1672 return rc;
1673
1674 __of_remove_property_sysfs(np, prop);
1675 return 0;
1676}
1677
1678/**
1679 * of_remove_property - Remove a property from a node.
1680 * @np: Caller's Device Node
1681 * @prop: Property to remove
1682 *
1683 * Note that we don't actually remove it, since we have given out
1684 * who-knows-how-many pointers to the data using get-property.
1685 * Instead we just move the property to the "dead properties"
1686 * list, so it won't be found any more.
1687 */
1688int of_remove_property(struct device_node *np, struct property *prop)
1689{
1690 int rc;
1691
1692 if (!prop)
1693 return -ENODEV;
1694
1695 mutex_lock(&of_mutex);
1696 rc = __of_remove_property(np, prop);
1697 mutex_unlock(&of_mutex);
1698
1699 if (!rc)
1700 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1701
1702 return rc;
1703}
1704EXPORT_SYMBOL_GPL(of_remove_property);
1705
1706int __of_update_property(struct device_node *np, struct property *newprop,
1707 struct property **oldpropp)
1708{
1709 struct property **next, *oldprop;
1710 unsigned long flags;
1711
1712 raw_spin_lock_irqsave(&devtree_lock, flags);
1713
1714 __of_remove_property_from_list(&np->deadprops, newprop);
1715
1716 for (next = &np->properties; *next; next = &(*next)->next) {
1717 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1718 break;
1719 }
1720 *oldpropp = oldprop = *next;
1721
1722 if (oldprop) {
1723 /* replace the node */
1724 newprop->next = oldprop->next;
1725 *next = newprop;
1726 oldprop->next = np->deadprops;
1727 np->deadprops = oldprop;
1728 } else {
1729 /* new node */
1730 newprop->next = NULL;
1731 *next = newprop;
1732 }
1733
1734 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1735
1736 __of_update_property_sysfs(np, newprop, oldprop);
1737
1738 return 0;
1739}
1740
1741/*
1742 * of_update_property - Update a property in a node, if the property does
1743 * not exist, add it.
1744 *
1745 * Note that we don't actually remove it, since we have given out
1746 * who-knows-how-many pointers to the data using get-property.
1747 * Instead we just move the property to the "dead properties" list,
1748 * and add the new property to the property list
1749 */
1750int of_update_property(struct device_node *np, struct property *newprop)
1751{
1752 struct property *oldprop;
1753 int rc;
1754
1755 if (!newprop->name)
1756 return -EINVAL;
1757
1758 mutex_lock(&of_mutex);
1759 rc = __of_update_property(np, newprop, &oldprop);
1760 mutex_unlock(&of_mutex);
1761
1762 if (!rc)
1763 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1764
1765 return rc;
1766}
1767
1768static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1769 int id, const char *stem, int stem_len)
1770{
1771 ap->np = np;
1772 ap->id = id;
1773 strscpy(ap->stem, stem, stem_len + 1);
1774 list_add_tail(&ap->link, &aliases_lookup);
1775 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1776 ap->alias, ap->stem, ap->id, np);
1777}
1778
1779/**
1780 * of_alias_scan - Scan all properties of the 'aliases' node
1781 * @dt_alloc: An allocator that provides a virtual address to memory
1782 * for storing the resulting tree
1783 *
1784 * The function scans all the properties of the 'aliases' node and populates
1785 * the global lookup table with the properties. It returns the
1786 * number of alias properties found, or an error code in case of failure.
1787 */
1788void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1789{
1790 struct property *pp;
1791
1792 of_aliases = of_find_node_by_path("/aliases");
1793 of_chosen = of_find_node_by_path("/chosen");
1794 if (of_chosen == NULL)
1795 of_chosen = of_find_node_by_path("/chosen@0");
1796
1797 if (of_chosen) {
1798 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1799 const char *name = NULL;
1800
1801 if (of_property_read_string(of_chosen, "stdout-path", &name))
1802 of_property_read_string(of_chosen, "linux,stdout-path",
1803 &name);
1804 if (IS_ENABLED(CONFIG_PPC) && !name)
1805 of_property_read_string(of_aliases, "stdout", &name);
1806 if (name)
1807 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1808 if (of_stdout)
1809 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1810 }
1811
1812 if (!of_aliases)
1813 return;
1814
1815 for_each_property_of_node(of_aliases, pp) {
1816 const char *start = pp->name;
1817 const char *end = start + strlen(start);
1818 struct device_node *np;
1819 struct alias_prop *ap;
1820 int id, len;
1821
1822 /* Skip those we do not want to proceed */
1823 if (!strcmp(pp->name, "name") ||
1824 !strcmp(pp->name, "phandle") ||
1825 !strcmp(pp->name, "linux,phandle"))
1826 continue;
1827
1828 np = of_find_node_by_path(pp->value);
1829 if (!np)
1830 continue;
1831
1832 /* walk the alias backwards to extract the id and work out
1833 * the 'stem' string */
1834 while (isdigit(*(end-1)) && end > start)
1835 end--;
1836 len = end - start;
1837
1838 if (kstrtoint(end, 10, &id) < 0)
1839 continue;
1840
1841 /* Allocate an alias_prop with enough space for the stem */
1842 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1843 if (!ap)
1844 continue;
1845 memset(ap, 0, sizeof(*ap) + len + 1);
1846 ap->alias = start;
1847 of_alias_add(ap, np, id, start, len);
1848 }
1849}
1850
1851/**
1852 * of_alias_get_id - Get alias id for the given device_node
1853 * @np: Pointer to the given device_node
1854 * @stem: Alias stem of the given device_node
1855 *
1856 * The function travels the lookup table to get the alias id for the given
1857 * device_node and alias stem.
1858 *
1859 * Return: The alias id if found.
1860 */
1861int of_alias_get_id(struct device_node *np, const char *stem)
1862{
1863 struct alias_prop *app;
1864 int id = -ENODEV;
1865
1866 mutex_lock(&of_mutex);
1867 list_for_each_entry(app, &aliases_lookup, link) {
1868 if (strcmp(app->stem, stem) != 0)
1869 continue;
1870
1871 if (np == app->np) {
1872 id = app->id;
1873 break;
1874 }
1875 }
1876 mutex_unlock(&of_mutex);
1877
1878 return id;
1879}
1880EXPORT_SYMBOL_GPL(of_alias_get_id);
1881
1882/**
1883 * of_alias_get_highest_id - Get highest alias id for the given stem
1884 * @stem: Alias stem to be examined
1885 *
1886 * The function travels the lookup table to get the highest alias id for the
1887 * given alias stem. It returns the alias id if found.
1888 */
1889int of_alias_get_highest_id(const char *stem)
1890{
1891 struct alias_prop *app;
1892 int id = -ENODEV;
1893
1894 mutex_lock(&of_mutex);
1895 list_for_each_entry(app, &aliases_lookup, link) {
1896 if (strcmp(app->stem, stem) != 0)
1897 continue;
1898
1899 if (app->id > id)
1900 id = app->id;
1901 }
1902 mutex_unlock(&of_mutex);
1903
1904 return id;
1905}
1906EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1907
1908/**
1909 * of_console_check() - Test and setup console for DT setup
1910 * @dn: Pointer to device node
1911 * @name: Name to use for preferred console without index. ex. "ttyS"
1912 * @index: Index to use for preferred console.
1913 *
1914 * Check if the given device node matches the stdout-path property in the
1915 * /chosen node. If it does then register it as the preferred console.
1916 *
1917 * Return: TRUE if console successfully setup. Otherwise return FALSE.
1918 */
1919bool of_console_check(struct device_node *dn, char *name, int index)
1920{
1921 if (!dn || dn != of_stdout || console_set_on_cmdline)
1922 return false;
1923
1924 /*
1925 * XXX: cast `options' to char pointer to suppress complication
1926 * warnings: printk, UART and console drivers expect char pointer.
1927 */
1928 return !add_preferred_console(name, index, (char *)of_stdout_options);
1929}
1930EXPORT_SYMBOL_GPL(of_console_check);
1931
1932/**
1933 * of_find_next_cache_node - Find a node's subsidiary cache
1934 * @np: node of type "cpu" or "cache"
1935 *
1936 * Return: A node pointer with refcount incremented, use
1937 * of_node_put() on it when done. Caller should hold a reference
1938 * to np.
1939 */
1940struct device_node *of_find_next_cache_node(const struct device_node *np)
1941{
1942 struct device_node *child, *cache_node;
1943
1944 cache_node = of_parse_phandle(np, "l2-cache", 0);
1945 if (!cache_node)
1946 cache_node = of_parse_phandle(np, "next-level-cache", 0);
1947
1948 if (cache_node)
1949 return cache_node;
1950
1951 /* OF on pmac has nodes instead of properties named "l2-cache"
1952 * beneath CPU nodes.
1953 */
1954 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1955 for_each_child_of_node(np, child)
1956 if (of_node_is_type(child, "cache"))
1957 return child;
1958
1959 return NULL;
1960}
1961
1962/**
1963 * of_find_last_cache_level - Find the level at which the last cache is
1964 * present for the given logical cpu
1965 *
1966 * @cpu: cpu number(logical index) for which the last cache level is needed
1967 *
1968 * Return: The level at which the last cache is present. It is exactly
1969 * same as the total number of cache levels for the given logical cpu.
1970 */
1971int of_find_last_cache_level(unsigned int cpu)
1972{
1973 u32 cache_level = 0;
1974 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1975
1976 while (np) {
1977 of_node_put(prev);
1978 prev = np;
1979 np = of_find_next_cache_node(np);
1980 }
1981
1982 of_property_read_u32(prev, "cache-level", &cache_level);
1983 of_node_put(prev);
1984
1985 return cache_level;
1986}
1987
1988/**
1989 * of_map_id - Translate an ID through a downstream mapping.
1990 * @np: root complex device node.
1991 * @id: device ID to map.
1992 * @map_name: property name of the map to use.
1993 * @map_mask_name: optional property name of the mask to use.
1994 * @target: optional pointer to a target device node.
1995 * @id_out: optional pointer to receive the translated ID.
1996 *
1997 * Given a device ID, look up the appropriate implementation-defined
1998 * platform ID and/or the target device which receives transactions on that
1999 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
2000 * @id_out may be NULL if only the other is required. If @target points to
2001 * a non-NULL device node pointer, only entries targeting that node will be
2002 * matched; if it points to a NULL value, it will receive the device node of
2003 * the first matching target phandle, with a reference held.
2004 *
2005 * Return: 0 on success or a standard error code on failure.
2006 */
2007int of_map_id(struct device_node *np, u32 id,
2008 const char *map_name, const char *map_mask_name,
2009 struct device_node **target, u32 *id_out)
2010{
2011 u32 map_mask, masked_id;
2012 int map_len;
2013 const __be32 *map = NULL;
2014
2015 if (!np || !map_name || (!target && !id_out))
2016 return -EINVAL;
2017
2018 map = of_get_property(np, map_name, &map_len);
2019 if (!map) {
2020 if (target)
2021 return -ENODEV;
2022 /* Otherwise, no map implies no translation */
2023 *id_out = id;
2024 return 0;
2025 }
2026
2027 if (!map_len || map_len % (4 * sizeof(*map))) {
2028 pr_err("%pOF: Error: Bad %s length: %d\n", np,
2029 map_name, map_len);
2030 return -EINVAL;
2031 }
2032
2033 /* The default is to select all bits. */
2034 map_mask = 0xffffffff;
2035
2036 /*
2037 * Can be overridden by "{iommu,msi}-map-mask" property.
2038 * If of_property_read_u32() fails, the default is used.
2039 */
2040 if (map_mask_name)
2041 of_property_read_u32(np, map_mask_name, &map_mask);
2042
2043 masked_id = map_mask & id;
2044 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
2045 struct device_node *phandle_node;
2046 u32 id_base = be32_to_cpup(map + 0);
2047 u32 phandle = be32_to_cpup(map + 1);
2048 u32 out_base = be32_to_cpup(map + 2);
2049 u32 id_len = be32_to_cpup(map + 3);
2050
2051 if (id_base & ~map_mask) {
2052 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
2053 np, map_name, map_name,
2054 map_mask, id_base);
2055 return -EFAULT;
2056 }
2057
2058 if (masked_id < id_base || masked_id >= id_base + id_len)
2059 continue;
2060
2061 phandle_node = of_find_node_by_phandle(phandle);
2062 if (!phandle_node)
2063 return -ENODEV;
2064
2065 if (target) {
2066 if (*target)
2067 of_node_put(phandle_node);
2068 else
2069 *target = phandle_node;
2070
2071 if (*target != phandle_node)
2072 continue;
2073 }
2074
2075 if (id_out)
2076 *id_out = masked_id - id_base + out_base;
2077
2078 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2079 np, map_name, map_mask, id_base, out_base,
2080 id_len, id, masked_id - id_base + out_base);
2081 return 0;
2082 }
2083
2084 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2085 id, target && *target ? *target : NULL);
2086
2087 /* Bypasses translation */
2088 if (id_out)
2089 *id_out = id;
2090 return 0;
2091}
2092EXPORT_SYMBOL_GPL(of_map_id);
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17#define pr_fmt(fmt) "OF: " fmt
18
19#include <linux/console.h>
20#include <linux/ctype.h>
21#include <linux/cpu.h>
22#include <linux/module.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/of_graph.h>
26#include <linux/spinlock.h>
27#include <linux/slab.h>
28#include <linux/string.h>
29#include <linux/proc_fs.h>
30
31#include "of_private.h"
32
33LIST_HEAD(aliases_lookup);
34
35struct device_node *of_root;
36EXPORT_SYMBOL(of_root);
37struct device_node *of_chosen;
38struct device_node *of_aliases;
39struct device_node *of_stdout;
40static const char *of_stdout_options;
41
42struct kset *of_kset;
43
44/*
45 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
46 * This mutex must be held whenever modifications are being made to the
47 * device tree. The of_{attach,detach}_node() and
48 * of_{add,remove,update}_property() helpers make sure this happens.
49 */
50DEFINE_MUTEX(of_mutex);
51
52/* use when traversing tree through the child, sibling,
53 * or parent members of struct device_node.
54 */
55DEFINE_RAW_SPINLOCK(devtree_lock);
56
57int of_n_addr_cells(struct device_node *np)
58{
59 u32 cells;
60
61 do {
62 if (np->parent)
63 np = np->parent;
64 if (!of_property_read_u32(np, "#address-cells", &cells))
65 return cells;
66 } while (np->parent);
67 /* No #address-cells property for the root node */
68 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
69}
70EXPORT_SYMBOL(of_n_addr_cells);
71
72int of_n_size_cells(struct device_node *np)
73{
74 u32 cells;
75
76 do {
77 if (np->parent)
78 np = np->parent;
79 if (!of_property_read_u32(np, "#size-cells", &cells))
80 return cells;
81 } while (np->parent);
82 /* No #size-cells property for the root node */
83 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
84}
85EXPORT_SYMBOL(of_n_size_cells);
86
87#ifdef CONFIG_NUMA
88int __weak of_node_to_nid(struct device_node *np)
89{
90 return NUMA_NO_NODE;
91}
92#endif
93
94static struct device_node **phandle_cache;
95static u32 phandle_cache_mask;
96
97/*
98 * Assumptions behind phandle_cache implementation:
99 * - phandle property values are in a contiguous range of 1..n
100 *
101 * If the assumptions do not hold, then
102 * - the phandle lookup overhead reduction provided by the cache
103 * will likely be less
104 */
105static void of_populate_phandle_cache(void)
106{
107 unsigned long flags;
108 u32 cache_entries;
109 struct device_node *np;
110 u32 phandles = 0;
111
112 raw_spin_lock_irqsave(&devtree_lock, flags);
113
114 kfree(phandle_cache);
115 phandle_cache = NULL;
116
117 for_each_of_allnodes(np)
118 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
119 phandles++;
120
121 cache_entries = roundup_pow_of_two(phandles);
122 phandle_cache_mask = cache_entries - 1;
123
124 phandle_cache = kcalloc(cache_entries, sizeof(*phandle_cache),
125 GFP_ATOMIC);
126 if (!phandle_cache)
127 goto out;
128
129 for_each_of_allnodes(np)
130 if (np->phandle && np->phandle != OF_PHANDLE_ILLEGAL)
131 phandle_cache[np->phandle & phandle_cache_mask] = np;
132
133out:
134 raw_spin_unlock_irqrestore(&devtree_lock, flags);
135}
136
137#ifndef CONFIG_MODULES
138static int __init of_free_phandle_cache(void)
139{
140 unsigned long flags;
141
142 raw_spin_lock_irqsave(&devtree_lock, flags);
143
144 kfree(phandle_cache);
145 phandle_cache = NULL;
146
147 raw_spin_unlock_irqrestore(&devtree_lock, flags);
148
149 return 0;
150}
151late_initcall_sync(of_free_phandle_cache);
152#endif
153
154void __init of_core_init(void)
155{
156 struct device_node *np;
157
158 of_populate_phandle_cache();
159
160 /* Create the kset, and register existing nodes */
161 mutex_lock(&of_mutex);
162 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
163 if (!of_kset) {
164 mutex_unlock(&of_mutex);
165 pr_err("failed to register existing nodes\n");
166 return;
167 }
168 for_each_of_allnodes(np)
169 __of_attach_node_sysfs(np);
170 mutex_unlock(&of_mutex);
171
172 /* Symlink in /proc as required by userspace ABI */
173 if (of_root)
174 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
175}
176
177static struct property *__of_find_property(const struct device_node *np,
178 const char *name, int *lenp)
179{
180 struct property *pp;
181
182 if (!np)
183 return NULL;
184
185 for (pp = np->properties; pp; pp = pp->next) {
186 if (of_prop_cmp(pp->name, name) == 0) {
187 if (lenp)
188 *lenp = pp->length;
189 break;
190 }
191 }
192
193 return pp;
194}
195
196struct property *of_find_property(const struct device_node *np,
197 const char *name,
198 int *lenp)
199{
200 struct property *pp;
201 unsigned long flags;
202
203 raw_spin_lock_irqsave(&devtree_lock, flags);
204 pp = __of_find_property(np, name, lenp);
205 raw_spin_unlock_irqrestore(&devtree_lock, flags);
206
207 return pp;
208}
209EXPORT_SYMBOL(of_find_property);
210
211struct device_node *__of_find_all_nodes(struct device_node *prev)
212{
213 struct device_node *np;
214 if (!prev) {
215 np = of_root;
216 } else if (prev->child) {
217 np = prev->child;
218 } else {
219 /* Walk back up looking for a sibling, or the end of the structure */
220 np = prev;
221 while (np->parent && !np->sibling)
222 np = np->parent;
223 np = np->sibling; /* Might be null at the end of the tree */
224 }
225 return np;
226}
227
228/**
229 * of_find_all_nodes - Get next node in global list
230 * @prev: Previous node or NULL to start iteration
231 * of_node_put() will be called on it
232 *
233 * Returns a node pointer with refcount incremented, use
234 * of_node_put() on it when done.
235 */
236struct device_node *of_find_all_nodes(struct device_node *prev)
237{
238 struct device_node *np;
239 unsigned long flags;
240
241 raw_spin_lock_irqsave(&devtree_lock, flags);
242 np = __of_find_all_nodes(prev);
243 of_node_get(np);
244 of_node_put(prev);
245 raw_spin_unlock_irqrestore(&devtree_lock, flags);
246 return np;
247}
248EXPORT_SYMBOL(of_find_all_nodes);
249
250/*
251 * Find a property with a given name for a given node
252 * and return the value.
253 */
254const void *__of_get_property(const struct device_node *np,
255 const char *name, int *lenp)
256{
257 struct property *pp = __of_find_property(np, name, lenp);
258
259 return pp ? pp->value : NULL;
260}
261
262/*
263 * Find a property with a given name for a given node
264 * and return the value.
265 */
266const void *of_get_property(const struct device_node *np, const char *name,
267 int *lenp)
268{
269 struct property *pp = of_find_property(np, name, lenp);
270
271 return pp ? pp->value : NULL;
272}
273EXPORT_SYMBOL(of_get_property);
274
275/*
276 * arch_match_cpu_phys_id - Match the given logical CPU and physical id
277 *
278 * @cpu: logical cpu index of a core/thread
279 * @phys_id: physical identifier of a core/thread
280 *
281 * CPU logical to physical index mapping is architecture specific.
282 * However this __weak function provides a default match of physical
283 * id to logical cpu index. phys_id provided here is usually values read
284 * from the device tree which must match the hardware internal registers.
285 *
286 * Returns true if the physical identifier and the logical cpu index
287 * correspond to the same core/thread, false otherwise.
288 */
289bool __weak arch_match_cpu_phys_id(int cpu, u64 phys_id)
290{
291 return (u32)phys_id == cpu;
292}
293
294/**
295 * Checks if the given "prop_name" property holds the physical id of the
296 * core/thread corresponding to the logical cpu 'cpu'. If 'thread' is not
297 * NULL, local thread number within the core is returned in it.
298 */
299static bool __of_find_n_match_cpu_property(struct device_node *cpun,
300 const char *prop_name, int cpu, unsigned int *thread)
301{
302 const __be32 *cell;
303 int ac, prop_len, tid;
304 u64 hwid;
305
306 ac = of_n_addr_cells(cpun);
307 cell = of_get_property(cpun, prop_name, &prop_len);
308 if (!cell || !ac)
309 return false;
310 prop_len /= sizeof(*cell) * ac;
311 for (tid = 0; tid < prop_len; tid++) {
312 hwid = of_read_number(cell, ac);
313 if (arch_match_cpu_phys_id(cpu, hwid)) {
314 if (thread)
315 *thread = tid;
316 return true;
317 }
318 cell += ac;
319 }
320 return false;
321}
322
323/*
324 * arch_find_n_match_cpu_physical_id - See if the given device node is
325 * for the cpu corresponding to logical cpu 'cpu'. Return true if so,
326 * else false. If 'thread' is non-NULL, the local thread number within the
327 * core is returned in it.
328 */
329bool __weak arch_find_n_match_cpu_physical_id(struct device_node *cpun,
330 int cpu, unsigned int *thread)
331{
332 /* Check for non-standard "ibm,ppc-interrupt-server#s" property
333 * for thread ids on PowerPC. If it doesn't exist fallback to
334 * standard "reg" property.
335 */
336 if (IS_ENABLED(CONFIG_PPC) &&
337 __of_find_n_match_cpu_property(cpun,
338 "ibm,ppc-interrupt-server#s",
339 cpu, thread))
340 return true;
341
342 return __of_find_n_match_cpu_property(cpun, "reg", cpu, thread);
343}
344
345/**
346 * of_get_cpu_node - Get device node associated with the given logical CPU
347 *
348 * @cpu: CPU number(logical index) for which device node is required
349 * @thread: if not NULL, local thread number within the physical core is
350 * returned
351 *
352 * The main purpose of this function is to retrieve the device node for the
353 * given logical CPU index. It should be used to initialize the of_node in
354 * cpu device. Once of_node in cpu device is populated, all the further
355 * references can use that instead.
356 *
357 * CPU logical to physical index mapping is architecture specific and is built
358 * before booting secondary cores. This function uses arch_match_cpu_phys_id
359 * which can be overridden by architecture specific implementation.
360 *
361 * Returns a node pointer for the logical cpu with refcount incremented, use
362 * of_node_put() on it when done. Returns NULL if not found.
363 */
364struct device_node *of_get_cpu_node(int cpu, unsigned int *thread)
365{
366 struct device_node *cpun;
367
368 for_each_node_by_type(cpun, "cpu") {
369 if (arch_find_n_match_cpu_physical_id(cpun, cpu, thread))
370 return cpun;
371 }
372 return NULL;
373}
374EXPORT_SYMBOL(of_get_cpu_node);
375
376/**
377 * of_cpu_node_to_id: Get the logical CPU number for a given device_node
378 *
379 * @cpu_node: Pointer to the device_node for CPU.
380 *
381 * Returns the logical CPU number of the given CPU device_node.
382 * Returns -ENODEV if the CPU is not found.
383 */
384int of_cpu_node_to_id(struct device_node *cpu_node)
385{
386 int cpu;
387 bool found = false;
388 struct device_node *np;
389
390 for_each_possible_cpu(cpu) {
391 np = of_cpu_device_node_get(cpu);
392 found = (cpu_node == np);
393 of_node_put(np);
394 if (found)
395 return cpu;
396 }
397
398 return -ENODEV;
399}
400EXPORT_SYMBOL(of_cpu_node_to_id);
401
402/**
403 * __of_device_is_compatible() - Check if the node matches given constraints
404 * @device: pointer to node
405 * @compat: required compatible string, NULL or "" for any match
406 * @type: required device_type value, NULL or "" for any match
407 * @name: required node name, NULL or "" for any match
408 *
409 * Checks if the given @compat, @type and @name strings match the
410 * properties of the given @device. A constraints can be skipped by
411 * passing NULL or an empty string as the constraint.
412 *
413 * Returns 0 for no match, and a positive integer on match. The return
414 * value is a relative score with larger values indicating better
415 * matches. The score is weighted for the most specific compatible value
416 * to get the highest score. Matching type is next, followed by matching
417 * name. Practically speaking, this results in the following priority
418 * order for matches:
419 *
420 * 1. specific compatible && type && name
421 * 2. specific compatible && type
422 * 3. specific compatible && name
423 * 4. specific compatible
424 * 5. general compatible && type && name
425 * 6. general compatible && type
426 * 7. general compatible && name
427 * 8. general compatible
428 * 9. type && name
429 * 10. type
430 * 11. name
431 */
432static int __of_device_is_compatible(const struct device_node *device,
433 const char *compat, const char *type, const char *name)
434{
435 struct property *prop;
436 const char *cp;
437 int index = 0, score = 0;
438
439 /* Compatible match has highest priority */
440 if (compat && compat[0]) {
441 prop = __of_find_property(device, "compatible", NULL);
442 for (cp = of_prop_next_string(prop, NULL); cp;
443 cp = of_prop_next_string(prop, cp), index++) {
444 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
445 score = INT_MAX/2 - (index << 2);
446 break;
447 }
448 }
449 if (!score)
450 return 0;
451 }
452
453 /* Matching type is better than matching name */
454 if (type && type[0]) {
455 if (!device->type || of_node_cmp(type, device->type))
456 return 0;
457 score += 2;
458 }
459
460 /* Matching name is a bit better than not */
461 if (name && name[0]) {
462 if (!device->name || of_node_cmp(name, device->name))
463 return 0;
464 score++;
465 }
466
467 return score;
468}
469
470/** Checks if the given "compat" string matches one of the strings in
471 * the device's "compatible" property
472 */
473int of_device_is_compatible(const struct device_node *device,
474 const char *compat)
475{
476 unsigned long flags;
477 int res;
478
479 raw_spin_lock_irqsave(&devtree_lock, flags);
480 res = __of_device_is_compatible(device, compat, NULL, NULL);
481 raw_spin_unlock_irqrestore(&devtree_lock, flags);
482 return res;
483}
484EXPORT_SYMBOL(of_device_is_compatible);
485
486/** Checks if the device is compatible with any of the entries in
487 * a NULL terminated array of strings. Returns the best match
488 * score or 0.
489 */
490int of_device_compatible_match(struct device_node *device,
491 const char *const *compat)
492{
493 unsigned int tmp, score = 0;
494
495 if (!compat)
496 return 0;
497
498 while (*compat) {
499 tmp = of_device_is_compatible(device, *compat);
500 if (tmp > score)
501 score = tmp;
502 compat++;
503 }
504
505 return score;
506}
507
508/**
509 * of_machine_is_compatible - Test root of device tree for a given compatible value
510 * @compat: compatible string to look for in root node's compatible property.
511 *
512 * Returns a positive integer if the root node has the given value in its
513 * compatible property.
514 */
515int of_machine_is_compatible(const char *compat)
516{
517 struct device_node *root;
518 int rc = 0;
519
520 root = of_find_node_by_path("/");
521 if (root) {
522 rc = of_device_is_compatible(root, compat);
523 of_node_put(root);
524 }
525 return rc;
526}
527EXPORT_SYMBOL(of_machine_is_compatible);
528
529/**
530 * __of_device_is_available - check if a device is available for use
531 *
532 * @device: Node to check for availability, with locks already held
533 *
534 * Returns true if the status property is absent or set to "okay" or "ok",
535 * false otherwise
536 */
537static bool __of_device_is_available(const struct device_node *device)
538{
539 const char *status;
540 int statlen;
541
542 if (!device)
543 return false;
544
545 status = __of_get_property(device, "status", &statlen);
546 if (status == NULL)
547 return true;
548
549 if (statlen > 0) {
550 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
551 return true;
552 }
553
554 return false;
555}
556
557/**
558 * of_device_is_available - check if a device is available for use
559 *
560 * @device: Node to check for availability
561 *
562 * Returns true if the status property is absent or set to "okay" or "ok",
563 * false otherwise
564 */
565bool of_device_is_available(const struct device_node *device)
566{
567 unsigned long flags;
568 bool res;
569
570 raw_spin_lock_irqsave(&devtree_lock, flags);
571 res = __of_device_is_available(device);
572 raw_spin_unlock_irqrestore(&devtree_lock, flags);
573 return res;
574
575}
576EXPORT_SYMBOL(of_device_is_available);
577
578/**
579 * of_device_is_big_endian - check if a device has BE registers
580 *
581 * @device: Node to check for endianness
582 *
583 * Returns true if the device has a "big-endian" property, or if the kernel
584 * was compiled for BE *and* the device has a "native-endian" property.
585 * Returns false otherwise.
586 *
587 * Callers would nominally use ioread32be/iowrite32be if
588 * of_device_is_big_endian() == true, or readl/writel otherwise.
589 */
590bool of_device_is_big_endian(const struct device_node *device)
591{
592 if (of_property_read_bool(device, "big-endian"))
593 return true;
594 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
595 of_property_read_bool(device, "native-endian"))
596 return true;
597 return false;
598}
599EXPORT_SYMBOL(of_device_is_big_endian);
600
601/**
602 * of_get_parent - Get a node's parent if any
603 * @node: Node to get parent
604 *
605 * Returns a node pointer with refcount incremented, use
606 * of_node_put() on it when done.
607 */
608struct device_node *of_get_parent(const struct device_node *node)
609{
610 struct device_node *np;
611 unsigned long flags;
612
613 if (!node)
614 return NULL;
615
616 raw_spin_lock_irqsave(&devtree_lock, flags);
617 np = of_node_get(node->parent);
618 raw_spin_unlock_irqrestore(&devtree_lock, flags);
619 return np;
620}
621EXPORT_SYMBOL(of_get_parent);
622
623/**
624 * of_get_next_parent - Iterate to a node's parent
625 * @node: Node to get parent of
626 *
627 * This is like of_get_parent() except that it drops the
628 * refcount on the passed node, making it suitable for iterating
629 * through a node's parents.
630 *
631 * Returns a node pointer with refcount incremented, use
632 * of_node_put() on it when done.
633 */
634struct device_node *of_get_next_parent(struct device_node *node)
635{
636 struct device_node *parent;
637 unsigned long flags;
638
639 if (!node)
640 return NULL;
641
642 raw_spin_lock_irqsave(&devtree_lock, flags);
643 parent = of_node_get(node->parent);
644 of_node_put(node);
645 raw_spin_unlock_irqrestore(&devtree_lock, flags);
646 return parent;
647}
648EXPORT_SYMBOL(of_get_next_parent);
649
650static struct device_node *__of_get_next_child(const struct device_node *node,
651 struct device_node *prev)
652{
653 struct device_node *next;
654
655 if (!node)
656 return NULL;
657
658 next = prev ? prev->sibling : node->child;
659 for (; next; next = next->sibling)
660 if (of_node_get(next))
661 break;
662 of_node_put(prev);
663 return next;
664}
665#define __for_each_child_of_node(parent, child) \
666 for (child = __of_get_next_child(parent, NULL); child != NULL; \
667 child = __of_get_next_child(parent, child))
668
669/**
670 * of_get_next_child - Iterate a node childs
671 * @node: parent node
672 * @prev: previous child of the parent node, or NULL to get first
673 *
674 * Returns a node pointer with refcount incremented, use of_node_put() on
675 * it when done. Returns NULL when prev is the last child. Decrements the
676 * refcount of prev.
677 */
678struct device_node *of_get_next_child(const struct device_node *node,
679 struct device_node *prev)
680{
681 struct device_node *next;
682 unsigned long flags;
683
684 raw_spin_lock_irqsave(&devtree_lock, flags);
685 next = __of_get_next_child(node, prev);
686 raw_spin_unlock_irqrestore(&devtree_lock, flags);
687 return next;
688}
689EXPORT_SYMBOL(of_get_next_child);
690
691/**
692 * of_get_next_available_child - Find the next available child node
693 * @node: parent node
694 * @prev: previous child of the parent node, or NULL to get first
695 *
696 * This function is like of_get_next_child(), except that it
697 * automatically skips any disabled nodes (i.e. status = "disabled").
698 */
699struct device_node *of_get_next_available_child(const struct device_node *node,
700 struct device_node *prev)
701{
702 struct device_node *next;
703 unsigned long flags;
704
705 if (!node)
706 return NULL;
707
708 raw_spin_lock_irqsave(&devtree_lock, flags);
709 next = prev ? prev->sibling : node->child;
710 for (; next; next = next->sibling) {
711 if (!__of_device_is_available(next))
712 continue;
713 if (of_node_get(next))
714 break;
715 }
716 of_node_put(prev);
717 raw_spin_unlock_irqrestore(&devtree_lock, flags);
718 return next;
719}
720EXPORT_SYMBOL(of_get_next_available_child);
721
722/**
723 * of_get_child_by_name - Find the child node by name for a given parent
724 * @node: parent node
725 * @name: child name to look for.
726 *
727 * This function looks for child node for given matching name
728 *
729 * Returns a node pointer if found, with refcount incremented, use
730 * of_node_put() on it when done.
731 * Returns NULL if node is not found.
732 */
733struct device_node *of_get_child_by_name(const struct device_node *node,
734 const char *name)
735{
736 struct device_node *child;
737
738 for_each_child_of_node(node, child)
739 if (child->name && (of_node_cmp(child->name, name) == 0))
740 break;
741 return child;
742}
743EXPORT_SYMBOL(of_get_child_by_name);
744
745struct device_node *__of_find_node_by_path(struct device_node *parent,
746 const char *path)
747{
748 struct device_node *child;
749 int len;
750
751 len = strcspn(path, "/:");
752 if (!len)
753 return NULL;
754
755 __for_each_child_of_node(parent, child) {
756 const char *name = kbasename(child->full_name);
757 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
758 return child;
759 }
760 return NULL;
761}
762
763struct device_node *__of_find_node_by_full_path(struct device_node *node,
764 const char *path)
765{
766 const char *separator = strchr(path, ':');
767
768 while (node && *path == '/') {
769 struct device_node *tmp = node;
770
771 path++; /* Increment past '/' delimiter */
772 node = __of_find_node_by_path(node, path);
773 of_node_put(tmp);
774 path = strchrnul(path, '/');
775 if (separator && separator < path)
776 break;
777 }
778 return node;
779}
780
781/**
782 * of_find_node_opts_by_path - Find a node matching a full OF path
783 * @path: Either the full path to match, or if the path does not
784 * start with '/', the name of a property of the /aliases
785 * node (an alias). In the case of an alias, the node
786 * matching the alias' value will be returned.
787 * @opts: Address of a pointer into which to store the start of
788 * an options string appended to the end of the path with
789 * a ':' separator.
790 *
791 * Valid paths:
792 * /foo/bar Full path
793 * foo Valid alias
794 * foo/bar Valid alias + relative path
795 *
796 * Returns a node pointer with refcount incremented, use
797 * of_node_put() on it when done.
798 */
799struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
800{
801 struct device_node *np = NULL;
802 struct property *pp;
803 unsigned long flags;
804 const char *separator = strchr(path, ':');
805
806 if (opts)
807 *opts = separator ? separator + 1 : NULL;
808
809 if (strcmp(path, "/") == 0)
810 return of_node_get(of_root);
811
812 /* The path could begin with an alias */
813 if (*path != '/') {
814 int len;
815 const char *p = separator;
816
817 if (!p)
818 p = strchrnul(path, '/');
819 len = p - path;
820
821 /* of_aliases must not be NULL */
822 if (!of_aliases)
823 return NULL;
824
825 for_each_property_of_node(of_aliases, pp) {
826 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
827 np = of_find_node_by_path(pp->value);
828 break;
829 }
830 }
831 if (!np)
832 return NULL;
833 path = p;
834 }
835
836 /* Step down the tree matching path components */
837 raw_spin_lock_irqsave(&devtree_lock, flags);
838 if (!np)
839 np = of_node_get(of_root);
840 np = __of_find_node_by_full_path(np, path);
841 raw_spin_unlock_irqrestore(&devtree_lock, flags);
842 return np;
843}
844EXPORT_SYMBOL(of_find_node_opts_by_path);
845
846/**
847 * of_find_node_by_name - Find a node by its "name" property
848 * @from: The node to start searching from or NULL; the node
849 * you pass will not be searched, only the next one
850 * will. Typically, you pass what the previous call
851 * returned. of_node_put() will be called on @from.
852 * @name: The name string to match against
853 *
854 * Returns a node pointer with refcount incremented, use
855 * of_node_put() on it when done.
856 */
857struct device_node *of_find_node_by_name(struct device_node *from,
858 const char *name)
859{
860 struct device_node *np;
861 unsigned long flags;
862
863 raw_spin_lock_irqsave(&devtree_lock, flags);
864 for_each_of_allnodes_from(from, np)
865 if (np->name && (of_node_cmp(np->name, name) == 0)
866 && of_node_get(np))
867 break;
868 of_node_put(from);
869 raw_spin_unlock_irqrestore(&devtree_lock, flags);
870 return np;
871}
872EXPORT_SYMBOL(of_find_node_by_name);
873
874/**
875 * of_find_node_by_type - Find a node by its "device_type" property
876 * @from: The node to start searching from, or NULL to start searching
877 * the entire device tree. The node you pass will not be
878 * searched, only the next one will; typically, you pass
879 * what the previous call returned. of_node_put() will be
880 * called on from for you.
881 * @type: The type string to match against
882 *
883 * Returns a node pointer with refcount incremented, use
884 * of_node_put() on it when done.
885 */
886struct device_node *of_find_node_by_type(struct device_node *from,
887 const char *type)
888{
889 struct device_node *np;
890 unsigned long flags;
891
892 raw_spin_lock_irqsave(&devtree_lock, flags);
893 for_each_of_allnodes_from(from, np)
894 if (np->type && (of_node_cmp(np->type, type) == 0)
895 && of_node_get(np))
896 break;
897 of_node_put(from);
898 raw_spin_unlock_irqrestore(&devtree_lock, flags);
899 return np;
900}
901EXPORT_SYMBOL(of_find_node_by_type);
902
903/**
904 * of_find_compatible_node - Find a node based on type and one of the
905 * tokens in its "compatible" property
906 * @from: The node to start searching from or NULL, the node
907 * you pass will not be searched, only the next one
908 * will; typically, you pass what the previous call
909 * returned. of_node_put() will be called on it
910 * @type: The type string to match "device_type" or NULL to ignore
911 * @compatible: The string to match to one of the tokens in the device
912 * "compatible" list.
913 *
914 * Returns a node pointer with refcount incremented, use
915 * of_node_put() on it when done.
916 */
917struct device_node *of_find_compatible_node(struct device_node *from,
918 const char *type, const char *compatible)
919{
920 struct device_node *np;
921 unsigned long flags;
922
923 raw_spin_lock_irqsave(&devtree_lock, flags);
924 for_each_of_allnodes_from(from, np)
925 if (__of_device_is_compatible(np, compatible, type, NULL) &&
926 of_node_get(np))
927 break;
928 of_node_put(from);
929 raw_spin_unlock_irqrestore(&devtree_lock, flags);
930 return np;
931}
932EXPORT_SYMBOL(of_find_compatible_node);
933
934/**
935 * of_find_node_with_property - Find a node which has a property with
936 * the given name.
937 * @from: The node to start searching from or NULL, the node
938 * you pass will not be searched, only the next one
939 * will; typically, you pass what the previous call
940 * returned. of_node_put() will be called on it
941 * @prop_name: The name of the property to look for.
942 *
943 * Returns a node pointer with refcount incremented, use
944 * of_node_put() on it when done.
945 */
946struct device_node *of_find_node_with_property(struct device_node *from,
947 const char *prop_name)
948{
949 struct device_node *np;
950 struct property *pp;
951 unsigned long flags;
952
953 raw_spin_lock_irqsave(&devtree_lock, flags);
954 for_each_of_allnodes_from(from, np) {
955 for (pp = np->properties; pp; pp = pp->next) {
956 if (of_prop_cmp(pp->name, prop_name) == 0) {
957 of_node_get(np);
958 goto out;
959 }
960 }
961 }
962out:
963 of_node_put(from);
964 raw_spin_unlock_irqrestore(&devtree_lock, flags);
965 return np;
966}
967EXPORT_SYMBOL(of_find_node_with_property);
968
969static
970const struct of_device_id *__of_match_node(const struct of_device_id *matches,
971 const struct device_node *node)
972{
973 const struct of_device_id *best_match = NULL;
974 int score, best_score = 0;
975
976 if (!matches)
977 return NULL;
978
979 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
980 score = __of_device_is_compatible(node, matches->compatible,
981 matches->type, matches->name);
982 if (score > best_score) {
983 best_match = matches;
984 best_score = score;
985 }
986 }
987
988 return best_match;
989}
990
991/**
992 * of_match_node - Tell if a device_node has a matching of_match structure
993 * @matches: array of of device match structures to search in
994 * @node: the of device structure to match against
995 *
996 * Low level utility function used by device matching.
997 */
998const struct of_device_id *of_match_node(const struct of_device_id *matches,
999 const struct device_node *node)
1000{
1001 const struct of_device_id *match;
1002 unsigned long flags;
1003
1004 raw_spin_lock_irqsave(&devtree_lock, flags);
1005 match = __of_match_node(matches, node);
1006 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1007 return match;
1008}
1009EXPORT_SYMBOL(of_match_node);
1010
1011/**
1012 * of_find_matching_node_and_match - Find a node based on an of_device_id
1013 * match table.
1014 * @from: The node to start searching from or NULL, the node
1015 * you pass will not be searched, only the next one
1016 * will; typically, you pass what the previous call
1017 * returned. of_node_put() will be called on it
1018 * @matches: array of of device match structures to search in
1019 * @match Updated to point at the matches entry which matched
1020 *
1021 * Returns a node pointer with refcount incremented, use
1022 * of_node_put() on it when done.
1023 */
1024struct device_node *of_find_matching_node_and_match(struct device_node *from,
1025 const struct of_device_id *matches,
1026 const struct of_device_id **match)
1027{
1028 struct device_node *np;
1029 const struct of_device_id *m;
1030 unsigned long flags;
1031
1032 if (match)
1033 *match = NULL;
1034
1035 raw_spin_lock_irqsave(&devtree_lock, flags);
1036 for_each_of_allnodes_from(from, np) {
1037 m = __of_match_node(matches, np);
1038 if (m && of_node_get(np)) {
1039 if (match)
1040 *match = m;
1041 break;
1042 }
1043 }
1044 of_node_put(from);
1045 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1046 return np;
1047}
1048EXPORT_SYMBOL(of_find_matching_node_and_match);
1049
1050/**
1051 * of_modalias_node - Lookup appropriate modalias for a device node
1052 * @node: pointer to a device tree node
1053 * @modalias: Pointer to buffer that modalias value will be copied into
1054 * @len: Length of modalias value
1055 *
1056 * Based on the value of the compatible property, this routine will attempt
1057 * to choose an appropriate modalias value for a particular device tree node.
1058 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1059 * from the first entry in the compatible list property.
1060 *
1061 * This routine returns 0 on success, <0 on failure.
1062 */
1063int of_modalias_node(struct device_node *node, char *modalias, int len)
1064{
1065 const char *compatible, *p;
1066 int cplen;
1067
1068 compatible = of_get_property(node, "compatible", &cplen);
1069 if (!compatible || strlen(compatible) > cplen)
1070 return -ENODEV;
1071 p = strchr(compatible, ',');
1072 strlcpy(modalias, p ? p + 1 : compatible, len);
1073 return 0;
1074}
1075EXPORT_SYMBOL_GPL(of_modalias_node);
1076
1077/**
1078 * of_find_node_by_phandle - Find a node given a phandle
1079 * @handle: phandle of the node to find
1080 *
1081 * Returns a node pointer with refcount incremented, use
1082 * of_node_put() on it when done.
1083 */
1084struct device_node *of_find_node_by_phandle(phandle handle)
1085{
1086 struct device_node *np = NULL;
1087 unsigned long flags;
1088 phandle masked_handle;
1089
1090 if (!handle)
1091 return NULL;
1092
1093 raw_spin_lock_irqsave(&devtree_lock, flags);
1094
1095 masked_handle = handle & phandle_cache_mask;
1096
1097 if (phandle_cache) {
1098 if (phandle_cache[masked_handle] &&
1099 handle == phandle_cache[masked_handle]->phandle)
1100 np = phandle_cache[masked_handle];
1101 }
1102
1103 if (!np) {
1104 for_each_of_allnodes(np)
1105 if (np->phandle == handle) {
1106 if (phandle_cache)
1107 phandle_cache[masked_handle] = np;
1108 break;
1109 }
1110 }
1111
1112 of_node_get(np);
1113 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1114 return np;
1115}
1116EXPORT_SYMBOL(of_find_node_by_phandle);
1117
1118void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1119{
1120 int i;
1121 printk("%s %pOF", msg, args->np);
1122 for (i = 0; i < args->args_count; i++) {
1123 const char delim = i ? ',' : ':';
1124
1125 pr_cont("%c%08x", delim, args->args[i]);
1126 }
1127 pr_cont("\n");
1128}
1129
1130int of_phandle_iterator_init(struct of_phandle_iterator *it,
1131 const struct device_node *np,
1132 const char *list_name,
1133 const char *cells_name,
1134 int cell_count)
1135{
1136 const __be32 *list;
1137 int size;
1138
1139 memset(it, 0, sizeof(*it));
1140
1141 list = of_get_property(np, list_name, &size);
1142 if (!list)
1143 return -ENOENT;
1144
1145 it->cells_name = cells_name;
1146 it->cell_count = cell_count;
1147 it->parent = np;
1148 it->list_end = list + size / sizeof(*list);
1149 it->phandle_end = list;
1150 it->cur = list;
1151
1152 return 0;
1153}
1154EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1155
1156int of_phandle_iterator_next(struct of_phandle_iterator *it)
1157{
1158 uint32_t count = 0;
1159
1160 if (it->node) {
1161 of_node_put(it->node);
1162 it->node = NULL;
1163 }
1164
1165 if (!it->cur || it->phandle_end >= it->list_end)
1166 return -ENOENT;
1167
1168 it->cur = it->phandle_end;
1169
1170 /* If phandle is 0, then it is an empty entry with no arguments. */
1171 it->phandle = be32_to_cpup(it->cur++);
1172
1173 if (it->phandle) {
1174
1175 /*
1176 * Find the provider node and parse the #*-cells property to
1177 * determine the argument length.
1178 */
1179 it->node = of_find_node_by_phandle(it->phandle);
1180
1181 if (it->cells_name) {
1182 if (!it->node) {
1183 pr_err("%pOF: could not find phandle\n",
1184 it->parent);
1185 goto err;
1186 }
1187
1188 if (of_property_read_u32(it->node, it->cells_name,
1189 &count)) {
1190 pr_err("%pOF: could not get %s for %pOF\n",
1191 it->parent,
1192 it->cells_name,
1193 it->node);
1194 goto err;
1195 }
1196 } else {
1197 count = it->cell_count;
1198 }
1199
1200 /*
1201 * Make sure that the arguments actually fit in the remaining
1202 * property data length
1203 */
1204 if (it->cur + count > it->list_end) {
1205 pr_err("%pOF: arguments longer than property\n",
1206 it->parent);
1207 goto err;
1208 }
1209 }
1210
1211 it->phandle_end = it->cur + count;
1212 it->cur_count = count;
1213
1214 return 0;
1215
1216err:
1217 if (it->node) {
1218 of_node_put(it->node);
1219 it->node = NULL;
1220 }
1221
1222 return -EINVAL;
1223}
1224EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1225
1226int of_phandle_iterator_args(struct of_phandle_iterator *it,
1227 uint32_t *args,
1228 int size)
1229{
1230 int i, count;
1231
1232 count = it->cur_count;
1233
1234 if (WARN_ON(size < count))
1235 count = size;
1236
1237 for (i = 0; i < count; i++)
1238 args[i] = be32_to_cpup(it->cur++);
1239
1240 return count;
1241}
1242
1243static int __of_parse_phandle_with_args(const struct device_node *np,
1244 const char *list_name,
1245 const char *cells_name,
1246 int cell_count, int index,
1247 struct of_phandle_args *out_args)
1248{
1249 struct of_phandle_iterator it;
1250 int rc, cur_index = 0;
1251
1252 /* Loop over the phandles until all the requested entry is found */
1253 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1254 /*
1255 * All of the error cases bail out of the loop, so at
1256 * this point, the parsing is successful. If the requested
1257 * index matches, then fill the out_args structure and return,
1258 * or return -ENOENT for an empty entry.
1259 */
1260 rc = -ENOENT;
1261 if (cur_index == index) {
1262 if (!it.phandle)
1263 goto err;
1264
1265 if (out_args) {
1266 int c;
1267
1268 c = of_phandle_iterator_args(&it,
1269 out_args->args,
1270 MAX_PHANDLE_ARGS);
1271 out_args->np = it.node;
1272 out_args->args_count = c;
1273 } else {
1274 of_node_put(it.node);
1275 }
1276
1277 /* Found it! return success */
1278 return 0;
1279 }
1280
1281 cur_index++;
1282 }
1283
1284 /*
1285 * Unlock node before returning result; will be one of:
1286 * -ENOENT : index is for empty phandle
1287 * -EINVAL : parsing error on data
1288 */
1289
1290 err:
1291 of_node_put(it.node);
1292 return rc;
1293}
1294
1295/**
1296 * of_parse_phandle - Resolve a phandle property to a device_node pointer
1297 * @np: Pointer to device node holding phandle property
1298 * @phandle_name: Name of property holding a phandle value
1299 * @index: For properties holding a table of phandles, this is the index into
1300 * the table
1301 *
1302 * Returns the device_node pointer with refcount incremented. Use
1303 * of_node_put() on it when done.
1304 */
1305struct device_node *of_parse_phandle(const struct device_node *np,
1306 const char *phandle_name, int index)
1307{
1308 struct of_phandle_args args;
1309
1310 if (index < 0)
1311 return NULL;
1312
1313 if (__of_parse_phandle_with_args(np, phandle_name, NULL, 0,
1314 index, &args))
1315 return NULL;
1316
1317 return args.np;
1318}
1319EXPORT_SYMBOL(of_parse_phandle);
1320
1321/**
1322 * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1323 * @np: pointer to a device tree node containing a list
1324 * @list_name: property name that contains a list
1325 * @cells_name: property name that specifies phandles' arguments count
1326 * @index: index of a phandle to parse out
1327 * @out_args: optional pointer to output arguments structure (will be filled)
1328 *
1329 * This function is useful to parse lists of phandles and their arguments.
1330 * Returns 0 on success and fills out_args, on error returns appropriate
1331 * errno value.
1332 *
1333 * Caller is responsible to call of_node_put() on the returned out_args->np
1334 * pointer.
1335 *
1336 * Example:
1337 *
1338 * phandle1: node1 {
1339 * #list-cells = <2>;
1340 * }
1341 *
1342 * phandle2: node2 {
1343 * #list-cells = <1>;
1344 * }
1345 *
1346 * node3 {
1347 * list = <&phandle1 1 2 &phandle2 3>;
1348 * }
1349 *
1350 * To get a device_node of the `node2' node you may call this:
1351 * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1352 */
1353int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1354 const char *cells_name, int index,
1355 struct of_phandle_args *out_args)
1356{
1357 if (index < 0)
1358 return -EINVAL;
1359 return __of_parse_phandle_with_args(np, list_name, cells_name, 0,
1360 index, out_args);
1361}
1362EXPORT_SYMBOL(of_parse_phandle_with_args);
1363
1364/**
1365 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1366 * @np: pointer to a device tree node containing a list
1367 * @list_name: property name that contains a list
1368 * @stem_name: stem of property names that specify phandles' arguments count
1369 * @index: index of a phandle to parse out
1370 * @out_args: optional pointer to output arguments structure (will be filled)
1371 *
1372 * This function is useful to parse lists of phandles and their arguments.
1373 * Returns 0 on success and fills out_args, on error returns appropriate errno
1374 * value. The difference between this function and of_parse_phandle_with_args()
1375 * is that this API remaps a phandle if the node the phandle points to has
1376 * a <@stem_name>-map property.
1377 *
1378 * Caller is responsible to call of_node_put() on the returned out_args->np
1379 * pointer.
1380 *
1381 * Example:
1382 *
1383 * phandle1: node1 {
1384 * #list-cells = <2>;
1385 * }
1386 *
1387 * phandle2: node2 {
1388 * #list-cells = <1>;
1389 * }
1390 *
1391 * phandle3: node3 {
1392 * #list-cells = <1>;
1393 * list-map = <0 &phandle2 3>,
1394 * <1 &phandle2 2>,
1395 * <2 &phandle1 5 1>;
1396 * list-map-mask = <0x3>;
1397 * };
1398 *
1399 * node4 {
1400 * list = <&phandle1 1 2 &phandle3 0>;
1401 * }
1402 *
1403 * To get a device_node of the `node2' node you may call this:
1404 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1405 */
1406int of_parse_phandle_with_args_map(const struct device_node *np,
1407 const char *list_name,
1408 const char *stem_name,
1409 int index, struct of_phandle_args *out_args)
1410{
1411 char *cells_name, *map_name = NULL, *mask_name = NULL;
1412 char *pass_name = NULL;
1413 struct device_node *cur, *new = NULL;
1414 const __be32 *map, *mask, *pass;
1415 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1416 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1417 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1418 const __be32 *match_array = initial_match_array;
1419 int i, ret, map_len, match;
1420 u32 list_size, new_size;
1421
1422 if (index < 0)
1423 return -EINVAL;
1424
1425 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1426 if (!cells_name)
1427 return -ENOMEM;
1428
1429 ret = -ENOMEM;
1430 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1431 if (!map_name)
1432 goto free;
1433
1434 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1435 if (!mask_name)
1436 goto free;
1437
1438 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1439 if (!pass_name)
1440 goto free;
1441
1442 ret = __of_parse_phandle_with_args(np, list_name, cells_name, 0, index,
1443 out_args);
1444 if (ret)
1445 goto free;
1446
1447 /* Get the #<list>-cells property */
1448 cur = out_args->np;
1449 ret = of_property_read_u32(cur, cells_name, &list_size);
1450 if (ret < 0)
1451 goto put;
1452
1453 /* Precalculate the match array - this simplifies match loop */
1454 for (i = 0; i < list_size; i++)
1455 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1456
1457 ret = -EINVAL;
1458 while (cur) {
1459 /* Get the <list>-map property */
1460 map = of_get_property(cur, map_name, &map_len);
1461 if (!map) {
1462 ret = 0;
1463 goto free;
1464 }
1465 map_len /= sizeof(u32);
1466
1467 /* Get the <list>-map-mask property (optional) */
1468 mask = of_get_property(cur, mask_name, NULL);
1469 if (!mask)
1470 mask = dummy_mask;
1471 /* Iterate through <list>-map property */
1472 match = 0;
1473 while (map_len > (list_size + 1) && !match) {
1474 /* Compare specifiers */
1475 match = 1;
1476 for (i = 0; i < list_size; i++, map_len--)
1477 match &= !((match_array[i] ^ *map++) & mask[i]);
1478
1479 of_node_put(new);
1480 new = of_find_node_by_phandle(be32_to_cpup(map));
1481 map++;
1482 map_len--;
1483
1484 /* Check if not found */
1485 if (!new)
1486 goto put;
1487
1488 if (!of_device_is_available(new))
1489 match = 0;
1490
1491 ret = of_property_read_u32(new, cells_name, &new_size);
1492 if (ret)
1493 goto put;
1494
1495 /* Check for malformed properties */
1496 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1497 goto put;
1498 if (map_len < new_size)
1499 goto put;
1500
1501 /* Move forward by new node's #<list>-cells amount */
1502 map += new_size;
1503 map_len -= new_size;
1504 }
1505 if (!match)
1506 goto put;
1507
1508 /* Get the <list>-map-pass-thru property (optional) */
1509 pass = of_get_property(cur, pass_name, NULL);
1510 if (!pass)
1511 pass = dummy_pass;
1512
1513 /*
1514 * Successfully parsed a <list>-map translation; copy new
1515 * specifier into the out_args structure, keeping the
1516 * bits specified in <list>-map-pass-thru.
1517 */
1518 match_array = map - new_size;
1519 for (i = 0; i < new_size; i++) {
1520 __be32 val = *(map - new_size + i);
1521
1522 if (i < list_size) {
1523 val &= ~pass[i];
1524 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1525 }
1526
1527 out_args->args[i] = be32_to_cpu(val);
1528 }
1529 out_args->args_count = list_size = new_size;
1530 /* Iterate again with new provider */
1531 out_args->np = new;
1532 of_node_put(cur);
1533 cur = new;
1534 }
1535put:
1536 of_node_put(cur);
1537 of_node_put(new);
1538free:
1539 kfree(mask_name);
1540 kfree(map_name);
1541 kfree(cells_name);
1542 kfree(pass_name);
1543
1544 return ret;
1545}
1546EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1547
1548/**
1549 * of_parse_phandle_with_fixed_args() - Find a node pointed by phandle in a list
1550 * @np: pointer to a device tree node containing a list
1551 * @list_name: property name that contains a list
1552 * @cell_count: number of argument cells following the phandle
1553 * @index: index of a phandle to parse out
1554 * @out_args: optional pointer to output arguments structure (will be filled)
1555 *
1556 * This function is useful to parse lists of phandles and their arguments.
1557 * Returns 0 on success and fills out_args, on error returns appropriate
1558 * errno value.
1559 *
1560 * Caller is responsible to call of_node_put() on the returned out_args->np
1561 * pointer.
1562 *
1563 * Example:
1564 *
1565 * phandle1: node1 {
1566 * }
1567 *
1568 * phandle2: node2 {
1569 * }
1570 *
1571 * node3 {
1572 * list = <&phandle1 0 2 &phandle2 2 3>;
1573 * }
1574 *
1575 * To get a device_node of the `node2' node you may call this:
1576 * of_parse_phandle_with_fixed_args(node3, "list", 2, 1, &args);
1577 */
1578int of_parse_phandle_with_fixed_args(const struct device_node *np,
1579 const char *list_name, int cell_count,
1580 int index, struct of_phandle_args *out_args)
1581{
1582 if (index < 0)
1583 return -EINVAL;
1584 return __of_parse_phandle_with_args(np, list_name, NULL, cell_count,
1585 index, out_args);
1586}
1587EXPORT_SYMBOL(of_parse_phandle_with_fixed_args);
1588
1589/**
1590 * of_count_phandle_with_args() - Find the number of phandles references in a property
1591 * @np: pointer to a device tree node containing a list
1592 * @list_name: property name that contains a list
1593 * @cells_name: property name that specifies phandles' arguments count
1594 *
1595 * Returns the number of phandle + argument tuples within a property. It
1596 * is a typical pattern to encode a list of phandle and variable
1597 * arguments into a single property. The number of arguments is encoded
1598 * by a property in the phandle-target node. For example, a gpios
1599 * property would contain a list of GPIO specifies consisting of a
1600 * phandle and 1 or more arguments. The number of arguments are
1601 * determined by the #gpio-cells property in the node pointed to by the
1602 * phandle.
1603 */
1604int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1605 const char *cells_name)
1606{
1607 struct of_phandle_iterator it;
1608 int rc, cur_index = 0;
1609
1610 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, 0);
1611 if (rc)
1612 return rc;
1613
1614 while ((rc = of_phandle_iterator_next(&it)) == 0)
1615 cur_index += 1;
1616
1617 if (rc != -ENOENT)
1618 return rc;
1619
1620 return cur_index;
1621}
1622EXPORT_SYMBOL(of_count_phandle_with_args);
1623
1624/**
1625 * __of_add_property - Add a property to a node without lock operations
1626 */
1627int __of_add_property(struct device_node *np, struct property *prop)
1628{
1629 struct property **next;
1630
1631 prop->next = NULL;
1632 next = &np->properties;
1633 while (*next) {
1634 if (strcmp(prop->name, (*next)->name) == 0)
1635 /* duplicate ! don't insert it */
1636 return -EEXIST;
1637
1638 next = &(*next)->next;
1639 }
1640 *next = prop;
1641
1642 return 0;
1643}
1644
1645/**
1646 * of_add_property - Add a property to a node
1647 */
1648int of_add_property(struct device_node *np, struct property *prop)
1649{
1650 unsigned long flags;
1651 int rc;
1652
1653 mutex_lock(&of_mutex);
1654
1655 raw_spin_lock_irqsave(&devtree_lock, flags);
1656 rc = __of_add_property(np, prop);
1657 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1658
1659 if (!rc)
1660 __of_add_property_sysfs(np, prop);
1661
1662 mutex_unlock(&of_mutex);
1663
1664 if (!rc)
1665 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1666
1667 return rc;
1668}
1669
1670int __of_remove_property(struct device_node *np, struct property *prop)
1671{
1672 struct property **next;
1673
1674 for (next = &np->properties; *next; next = &(*next)->next) {
1675 if (*next == prop)
1676 break;
1677 }
1678 if (*next == NULL)
1679 return -ENODEV;
1680
1681 /* found the node */
1682 *next = prop->next;
1683 prop->next = np->deadprops;
1684 np->deadprops = prop;
1685
1686 return 0;
1687}
1688
1689/**
1690 * of_remove_property - Remove a property from a node.
1691 *
1692 * Note that we don't actually remove it, since we have given out
1693 * who-knows-how-many pointers to the data using get-property.
1694 * Instead we just move the property to the "dead properties"
1695 * list, so it won't be found any more.
1696 */
1697int of_remove_property(struct device_node *np, struct property *prop)
1698{
1699 unsigned long flags;
1700 int rc;
1701
1702 if (!prop)
1703 return -ENODEV;
1704
1705 mutex_lock(&of_mutex);
1706
1707 raw_spin_lock_irqsave(&devtree_lock, flags);
1708 rc = __of_remove_property(np, prop);
1709 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1710
1711 if (!rc)
1712 __of_remove_property_sysfs(np, prop);
1713
1714 mutex_unlock(&of_mutex);
1715
1716 if (!rc)
1717 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1718
1719 return rc;
1720}
1721
1722int __of_update_property(struct device_node *np, struct property *newprop,
1723 struct property **oldpropp)
1724{
1725 struct property **next, *oldprop;
1726
1727 for (next = &np->properties; *next; next = &(*next)->next) {
1728 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1729 break;
1730 }
1731 *oldpropp = oldprop = *next;
1732
1733 if (oldprop) {
1734 /* replace the node */
1735 newprop->next = oldprop->next;
1736 *next = newprop;
1737 oldprop->next = np->deadprops;
1738 np->deadprops = oldprop;
1739 } else {
1740 /* new node */
1741 newprop->next = NULL;
1742 *next = newprop;
1743 }
1744
1745 return 0;
1746}
1747
1748/*
1749 * of_update_property - Update a property in a node, if the property does
1750 * not exist, add it.
1751 *
1752 * Note that we don't actually remove it, since we have given out
1753 * who-knows-how-many pointers to the data using get-property.
1754 * Instead we just move the property to the "dead properties" list,
1755 * and add the new property to the property list
1756 */
1757int of_update_property(struct device_node *np, struct property *newprop)
1758{
1759 struct property *oldprop;
1760 unsigned long flags;
1761 int rc;
1762
1763 if (!newprop->name)
1764 return -EINVAL;
1765
1766 mutex_lock(&of_mutex);
1767
1768 raw_spin_lock_irqsave(&devtree_lock, flags);
1769 rc = __of_update_property(np, newprop, &oldprop);
1770 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1771
1772 if (!rc)
1773 __of_update_property_sysfs(np, newprop, oldprop);
1774
1775 mutex_unlock(&of_mutex);
1776
1777 if (!rc)
1778 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1779
1780 return rc;
1781}
1782
1783static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1784 int id, const char *stem, int stem_len)
1785{
1786 ap->np = np;
1787 ap->id = id;
1788 strncpy(ap->stem, stem, stem_len);
1789 ap->stem[stem_len] = 0;
1790 list_add_tail(&ap->link, &aliases_lookup);
1791 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1792 ap->alias, ap->stem, ap->id, np);
1793}
1794
1795/**
1796 * of_alias_scan - Scan all properties of the 'aliases' node
1797 *
1798 * The function scans all the properties of the 'aliases' node and populates
1799 * the global lookup table with the properties. It returns the
1800 * number of alias properties found, or an error code in case of failure.
1801 *
1802 * @dt_alloc: An allocator that provides a virtual address to memory
1803 * for storing the resulting tree
1804 */
1805void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1806{
1807 struct property *pp;
1808
1809 of_aliases = of_find_node_by_path("/aliases");
1810 of_chosen = of_find_node_by_path("/chosen");
1811 if (of_chosen == NULL)
1812 of_chosen = of_find_node_by_path("/chosen@0");
1813
1814 if (of_chosen) {
1815 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1816 const char *name = NULL;
1817
1818 if (of_property_read_string(of_chosen, "stdout-path", &name))
1819 of_property_read_string(of_chosen, "linux,stdout-path",
1820 &name);
1821 if (IS_ENABLED(CONFIG_PPC) && !name)
1822 of_property_read_string(of_aliases, "stdout", &name);
1823 if (name)
1824 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1825 }
1826
1827 if (!of_aliases)
1828 return;
1829
1830 for_each_property_of_node(of_aliases, pp) {
1831 const char *start = pp->name;
1832 const char *end = start + strlen(start);
1833 struct device_node *np;
1834 struct alias_prop *ap;
1835 int id, len;
1836
1837 /* Skip those we do not want to proceed */
1838 if (!strcmp(pp->name, "name") ||
1839 !strcmp(pp->name, "phandle") ||
1840 !strcmp(pp->name, "linux,phandle"))
1841 continue;
1842
1843 np = of_find_node_by_path(pp->value);
1844 if (!np)
1845 continue;
1846
1847 /* walk the alias backwards to extract the id and work out
1848 * the 'stem' string */
1849 while (isdigit(*(end-1)) && end > start)
1850 end--;
1851 len = end - start;
1852
1853 if (kstrtoint(end, 10, &id) < 0)
1854 continue;
1855
1856 /* Allocate an alias_prop with enough space for the stem */
1857 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1858 if (!ap)
1859 continue;
1860 memset(ap, 0, sizeof(*ap) + len + 1);
1861 ap->alias = start;
1862 of_alias_add(ap, np, id, start, len);
1863 }
1864}
1865
1866/**
1867 * of_alias_get_id - Get alias id for the given device_node
1868 * @np: Pointer to the given device_node
1869 * @stem: Alias stem of the given device_node
1870 *
1871 * The function travels the lookup table to get the alias id for the given
1872 * device_node and alias stem. It returns the alias id if found.
1873 */
1874int of_alias_get_id(struct device_node *np, const char *stem)
1875{
1876 struct alias_prop *app;
1877 int id = -ENODEV;
1878
1879 mutex_lock(&of_mutex);
1880 list_for_each_entry(app, &aliases_lookup, link) {
1881 if (strcmp(app->stem, stem) != 0)
1882 continue;
1883
1884 if (np == app->np) {
1885 id = app->id;
1886 break;
1887 }
1888 }
1889 mutex_unlock(&of_mutex);
1890
1891 return id;
1892}
1893EXPORT_SYMBOL_GPL(of_alias_get_id);
1894
1895/**
1896 * of_alias_get_highest_id - Get highest alias id for the given stem
1897 * @stem: Alias stem to be examined
1898 *
1899 * The function travels the lookup table to get the highest alias id for the
1900 * given alias stem. It returns the alias id if found.
1901 */
1902int of_alias_get_highest_id(const char *stem)
1903{
1904 struct alias_prop *app;
1905 int id = -ENODEV;
1906
1907 mutex_lock(&of_mutex);
1908 list_for_each_entry(app, &aliases_lookup, link) {
1909 if (strcmp(app->stem, stem) != 0)
1910 continue;
1911
1912 if (app->id > id)
1913 id = app->id;
1914 }
1915 mutex_unlock(&of_mutex);
1916
1917 return id;
1918}
1919EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1920
1921/**
1922 * of_console_check() - Test and setup console for DT setup
1923 * @dn - Pointer to device node
1924 * @name - Name to use for preferred console without index. ex. "ttyS"
1925 * @index - Index to use for preferred console.
1926 *
1927 * Check if the given device node matches the stdout-path property in the
1928 * /chosen node. If it does then register it as the preferred console and return
1929 * TRUE. Otherwise return FALSE.
1930 */
1931bool of_console_check(struct device_node *dn, char *name, int index)
1932{
1933 if (!dn || dn != of_stdout || console_set_on_cmdline)
1934 return false;
1935
1936 /*
1937 * XXX: cast `options' to char pointer to suppress complication
1938 * warnings: printk, UART and console drivers expect char pointer.
1939 */
1940 return !add_preferred_console(name, index, (char *)of_stdout_options);
1941}
1942EXPORT_SYMBOL_GPL(of_console_check);
1943
1944/**
1945 * of_find_next_cache_node - Find a node's subsidiary cache
1946 * @np: node of type "cpu" or "cache"
1947 *
1948 * Returns a node pointer with refcount incremented, use
1949 * of_node_put() on it when done. Caller should hold a reference
1950 * to np.
1951 */
1952struct device_node *of_find_next_cache_node(const struct device_node *np)
1953{
1954 struct device_node *child, *cache_node;
1955
1956 cache_node = of_parse_phandle(np, "l2-cache", 0);
1957 if (!cache_node)
1958 cache_node = of_parse_phandle(np, "next-level-cache", 0);
1959
1960 if (cache_node)
1961 return cache_node;
1962
1963 /* OF on pmac has nodes instead of properties named "l2-cache"
1964 * beneath CPU nodes.
1965 */
1966 if (!strcmp(np->type, "cpu"))
1967 for_each_child_of_node(np, child)
1968 if (!strcmp(child->type, "cache"))
1969 return child;
1970
1971 return NULL;
1972}
1973
1974/**
1975 * of_find_last_cache_level - Find the level at which the last cache is
1976 * present for the given logical cpu
1977 *
1978 * @cpu: cpu number(logical index) for which the last cache level is needed
1979 *
1980 * Returns the the level at which the last cache is present. It is exactly
1981 * same as the total number of cache levels for the given logical cpu.
1982 */
1983int of_find_last_cache_level(unsigned int cpu)
1984{
1985 u32 cache_level = 0;
1986 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1987
1988 while (np) {
1989 prev = np;
1990 of_node_put(np);
1991 np = of_find_next_cache_node(np);
1992 }
1993
1994 of_property_read_u32(prev, "cache-level", &cache_level);
1995
1996 return cache_level;
1997}