Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2007 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* e1000_82575
   5 * e1000_82576
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/types.h>
  11#include <linux/if_ether.h>
  12#include <linux/i2c.h>
  13
  14#include "e1000_mac.h"
  15#include "e1000_82575.h"
  16#include "e1000_i210.h"
  17#include "igb.h"
  18
  19static s32  igb_get_invariants_82575(struct e1000_hw *);
  20static s32  igb_acquire_phy_82575(struct e1000_hw *);
  21static void igb_release_phy_82575(struct e1000_hw *);
  22static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  23static void igb_release_nvm_82575(struct e1000_hw *);
  24static s32  igb_check_for_link_82575(struct e1000_hw *);
  25static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  26static s32  igb_init_hw_82575(struct e1000_hw *);
  27static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  28static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  29static s32  igb_reset_hw_82575(struct e1000_hw *);
  30static s32  igb_reset_hw_82580(struct e1000_hw *);
  31static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  32static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  33static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  34static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  35static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  36static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  37static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  38static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  39static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  40						 u16 *);
  41static s32  igb_get_phy_id_82575(struct e1000_hw *);
  42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  43static bool igb_sgmii_active_82575(struct e1000_hw *);
  44static s32  igb_reset_init_script_82575(struct e1000_hw *);
  45static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  46static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  47static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  48static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  49static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  52static const u16 e1000_82580_rxpbs_table[] = {
  53	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  54
  55/* Due to a hw errata, if the host tries to  configure the VFTA register
  56 * while performing queries from the BMC or DMA, then the VFTA in some
  57 * cases won't be written.
  58 */
  59
  60/**
  61 *  igb_write_vfta_i350 - Write value to VLAN filter table
  62 *  @hw: pointer to the HW structure
  63 *  @offset: register offset in VLAN filter table
  64 *  @value: register value written to VLAN filter table
  65 *
  66 *  Writes value at the given offset in the register array which stores
  67 *  the VLAN filter table.
  68 **/
  69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  70{
  71	struct igb_adapter *adapter = hw->back;
  72	int i;
  73
  74	for (i = 10; i--;)
  75		array_wr32(E1000_VFTA, offset, value);
  76
  77	wrfl();
  78	adapter->shadow_vfta[offset] = value;
  79}
  80
  81/**
  82 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
  83 *  @hw: pointer to the HW structure
  84 *
  85 *  Called to determine if the I2C pins are being used for I2C or as an
  86 *  external MDIO interface since the two options are mutually exclusive.
  87 **/
  88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
  89{
  90	u32 reg = 0;
  91	bool ext_mdio = false;
  92
  93	switch (hw->mac.type) {
  94	case e1000_82575:
  95	case e1000_82576:
  96		reg = rd32(E1000_MDIC);
  97		ext_mdio = !!(reg & E1000_MDIC_DEST);
  98		break;
  99	case e1000_82580:
 100	case e1000_i350:
 101	case e1000_i354:
 102	case e1000_i210:
 103	case e1000_i211:
 104		reg = rd32(E1000_MDICNFG);
 105		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 106		break;
 107	default:
 108		break;
 109	}
 110	return ext_mdio;
 111}
 112
 113/**
 114 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 115 *  @hw: pointer to the HW structure
 116 *
 117 *  Poll the M88E1112 interfaces to see which interface achieved link.
 118 */
 119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 120{
 121	struct e1000_phy_info *phy = &hw->phy;
 122	s32 ret_val;
 123	u16 data;
 124	u8 port = 0;
 125
 126	/* Check the copper medium. */
 127	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 128	if (ret_val)
 129		return ret_val;
 130
 131	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 132	if (ret_val)
 133		return ret_val;
 134
 135	if (data & E1000_M88E1112_STATUS_LINK)
 136		port = E1000_MEDIA_PORT_COPPER;
 137
 138	/* Check the other medium. */
 139	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 140	if (ret_val)
 141		return ret_val;
 142
 143	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 144	if (ret_val)
 145		return ret_val;
 146
 147
 148	if (data & E1000_M88E1112_STATUS_LINK)
 149		port = E1000_MEDIA_PORT_OTHER;
 150
 151	/* Determine if a swap needs to happen. */
 152	if (port && (hw->dev_spec._82575.media_port != port)) {
 153		hw->dev_spec._82575.media_port = port;
 154		hw->dev_spec._82575.media_changed = true;
 155	}
 156
 157	if (port == E1000_MEDIA_PORT_COPPER) {
 158		/* reset page to 0 */
 159		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 160		if (ret_val)
 161			return ret_val;
 162		igb_check_for_link_82575(hw);
 163	} else {
 164		igb_check_for_link_82575(hw);
 165		/* reset page to 0 */
 166		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 167		if (ret_val)
 168			return ret_val;
 169	}
 170
 171	return 0;
 172}
 173
 174/**
 175 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 176 *  @hw: pointer to the HW structure
 177 **/
 178static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 179{
 180	struct e1000_phy_info *phy = &hw->phy;
 181	s32 ret_val = 0;
 182	u32 ctrl_ext;
 183
 184	if (hw->phy.media_type != e1000_media_type_copper) {
 185		phy->type = e1000_phy_none;
 186		goto out;
 187	}
 188
 189	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 190	phy->reset_delay_us	= 100;
 191
 192	ctrl_ext = rd32(E1000_CTRL_EXT);
 193
 194	if (igb_sgmii_active_82575(hw)) {
 195		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 196		ctrl_ext |= E1000_CTRL_I2C_ENA;
 197	} else {
 198		phy->ops.reset = igb_phy_hw_reset;
 199		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 200	}
 201
 202	wr32(E1000_CTRL_EXT, ctrl_ext);
 203	igb_reset_mdicnfg_82580(hw);
 204
 205	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 206		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 207		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 208	} else {
 209		switch (hw->mac.type) {
 210		case e1000_82580:
 211		case e1000_i350:
 212		case e1000_i354:
 213		case e1000_i210:
 214		case e1000_i211:
 215			phy->ops.read_reg = igb_read_phy_reg_82580;
 216			phy->ops.write_reg = igb_write_phy_reg_82580;
 217			break;
 218		default:
 219			phy->ops.read_reg = igb_read_phy_reg_igp;
 220			phy->ops.write_reg = igb_write_phy_reg_igp;
 221		}
 222	}
 223
 224	/* set lan id */
 225	hw->bus.func = FIELD_GET(E1000_STATUS_FUNC_MASK, rd32(E1000_STATUS));
 
 
 
 
 
 
 
 
 
 
 
 
 226
 227	/* Set phy->phy_addr and phy->id. */
 
 228	ret_val = igb_get_phy_id_82575(hw);
 229	if (ret_val)
 230		return ret_val;
 231
 232	/* Verify phy id and set remaining function pointers */
 233	switch (phy->id) {
 234	case M88E1543_E_PHY_ID:
 235	case M88E1512_E_PHY_ID:
 236	case I347AT4_E_PHY_ID:
 237	case M88E1112_E_PHY_ID:
 238	case M88E1111_I_PHY_ID:
 239		phy->type		= e1000_phy_m88;
 240		phy->ops.check_polarity	= igb_check_polarity_m88;
 241		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 242		if (phy->id != M88E1111_I_PHY_ID)
 243			phy->ops.get_cable_length =
 244					 igb_get_cable_length_m88_gen2;
 245		else
 246			phy->ops.get_cable_length = igb_get_cable_length_m88;
 247		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 248		/* Check if this PHY is configured for media swap. */
 249		if (phy->id == M88E1112_E_PHY_ID) {
 250			u16 data;
 251
 252			ret_val = phy->ops.write_reg(hw,
 253						     E1000_M88E1112_PAGE_ADDR,
 254						     2);
 255			if (ret_val)
 256				goto out;
 257
 258			ret_val = phy->ops.read_reg(hw,
 259						    E1000_M88E1112_MAC_CTRL_1,
 260						    &data);
 261			if (ret_val)
 262				goto out;
 263
 264			data = FIELD_GET(E1000_M88E1112_MAC_CTRL_1_MODE_MASK,
 265					 data);
 266			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 267			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
 268				hw->mac.ops.check_for_link =
 269						igb_check_for_link_media_swap;
 270		}
 271		if (phy->id == M88E1512_E_PHY_ID) {
 272			ret_val = igb_initialize_M88E1512_phy(hw);
 273			if (ret_val)
 274				goto out;
 275		}
 276		if (phy->id == M88E1543_E_PHY_ID) {
 277			ret_val = igb_initialize_M88E1543_phy(hw);
 278			if (ret_val)
 279				goto out;
 280		}
 281		break;
 282	case IGP03E1000_E_PHY_ID:
 283		phy->type = e1000_phy_igp_3;
 284		phy->ops.get_phy_info = igb_get_phy_info_igp;
 285		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 286		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 287		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 288		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 289		break;
 290	case I82580_I_PHY_ID:
 291	case I350_I_PHY_ID:
 292		phy->type = e1000_phy_82580;
 293		phy->ops.force_speed_duplex =
 294					 igb_phy_force_speed_duplex_82580;
 295		phy->ops.get_cable_length = igb_get_cable_length_82580;
 296		phy->ops.get_phy_info = igb_get_phy_info_82580;
 297		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 298		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 299		break;
 300	case I210_I_PHY_ID:
 301		phy->type		= e1000_phy_i210;
 302		phy->ops.check_polarity	= igb_check_polarity_m88;
 303		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
 304		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 305		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 306		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 307		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 308		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 309		break;
 310	case BCM54616_E_PHY_ID:
 311		phy->type = e1000_phy_bcm54616;
 312		break;
 313	default:
 314		ret_val = -E1000_ERR_PHY;
 315		goto out;
 316	}
 317
 318out:
 319	return ret_val;
 320}
 321
 322/**
 323 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 324 *  @hw: pointer to the HW structure
 325 **/
 326static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 327{
 328	struct e1000_nvm_info *nvm = &hw->nvm;
 329	u32 eecd = rd32(E1000_EECD);
 330	u16 size;
 331
 332	size = FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
 
 333
 334	/* Added to a constant, "size" becomes the left-shift value
 335	 * for setting word_size.
 336	 */
 337	size += NVM_WORD_SIZE_BASE_SHIFT;
 338
 339	/* Just in case size is out of range, cap it to the largest
 340	 * EEPROM size supported
 341	 */
 342	if (size > 15)
 343		size = 15;
 344
 345	nvm->word_size = BIT(size);
 346	nvm->opcode_bits = 8;
 347	nvm->delay_usec = 1;
 348
 349	switch (nvm->override) {
 350	case e1000_nvm_override_spi_large:
 351		nvm->page_size = 32;
 352		nvm->address_bits = 16;
 353		break;
 354	case e1000_nvm_override_spi_small:
 355		nvm->page_size = 8;
 356		nvm->address_bits = 8;
 357		break;
 358	default:
 359		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 360		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 361				    16 : 8;
 362		break;
 363	}
 364	if (nvm->word_size == BIT(15))
 365		nvm->page_size = 128;
 366
 367	nvm->type = e1000_nvm_eeprom_spi;
 368
 369	/* NVM Function Pointers */
 370	nvm->ops.acquire = igb_acquire_nvm_82575;
 371	nvm->ops.release = igb_release_nvm_82575;
 372	nvm->ops.write = igb_write_nvm_spi;
 373	nvm->ops.validate = igb_validate_nvm_checksum;
 374	nvm->ops.update = igb_update_nvm_checksum;
 375	if (nvm->word_size < BIT(15))
 376		nvm->ops.read = igb_read_nvm_eerd;
 377	else
 378		nvm->ops.read = igb_read_nvm_spi;
 379
 380	/* override generic family function pointers for specific descendants */
 381	switch (hw->mac.type) {
 382	case e1000_82580:
 383		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 384		nvm->ops.update = igb_update_nvm_checksum_82580;
 385		break;
 386	case e1000_i354:
 387	case e1000_i350:
 388		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 389		nvm->ops.update = igb_update_nvm_checksum_i350;
 390		break;
 391	default:
 392		break;
 393	}
 394
 395	return 0;
 396}
 397
 398/**
 399 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 400 *  @hw: pointer to the HW structure
 401 **/
 402static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 403{
 404	struct e1000_mac_info *mac = &hw->mac;
 405	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 406
 407	/* Set mta register count */
 408	mac->mta_reg_count = 128;
 409	/* Set uta register count */
 410	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 411	/* Set rar entry count */
 412	switch (mac->type) {
 413	case e1000_82576:
 414		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 415		break;
 416	case e1000_82580:
 417		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 418		break;
 419	case e1000_i350:
 420	case e1000_i354:
 421		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 422		break;
 423	default:
 424		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 425		break;
 426	}
 427	/* reset */
 428	if (mac->type >= e1000_82580)
 429		mac->ops.reset_hw = igb_reset_hw_82580;
 430	else
 431		mac->ops.reset_hw = igb_reset_hw_82575;
 432
 433	if (mac->type >= e1000_i210) {
 434		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 435		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 436
 437	} else {
 438		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 439		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 440	}
 441
 442	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 443		mac->ops.write_vfta = igb_write_vfta_i350;
 444	else
 445		mac->ops.write_vfta = igb_write_vfta;
 446
 447	/* Set if part includes ASF firmware */
 448	mac->asf_firmware_present = true;
 449	/* Set if manageability features are enabled. */
 450	mac->arc_subsystem_valid =
 451		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 452			? true : false;
 453	/* enable EEE on i350 parts and later parts */
 454	if (mac->type >= e1000_i350)
 455		dev_spec->eee_disable = false;
 456	else
 457		dev_spec->eee_disable = true;
 458	/* Allow a single clear of the SW semaphore on I210 and newer */
 459	if (mac->type >= e1000_i210)
 460		dev_spec->clear_semaphore_once = true;
 461	/* physical interface link setup */
 462	mac->ops.setup_physical_interface =
 463		(hw->phy.media_type == e1000_media_type_copper)
 464			? igb_setup_copper_link_82575
 465			: igb_setup_serdes_link_82575;
 466
 467	if (mac->type == e1000_82580 || mac->type == e1000_i350) {
 468		switch (hw->device_id) {
 469		/* feature not supported on these id's */
 470		case E1000_DEV_ID_DH89XXCC_SGMII:
 471		case E1000_DEV_ID_DH89XXCC_SERDES:
 472		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 473		case E1000_DEV_ID_DH89XXCC_SFP:
 474			break;
 475		default:
 476			hw->dev_spec._82575.mas_capable = true;
 477			break;
 478		}
 479	}
 480	return 0;
 481}
 482
 483/**
 484 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 485 *  @hw: pointer to the HW structure
 486 *
 487 *  The media type is chosen based on SFP module.
 488 *  compatibility flags retrieved from SFP ID EEPROM.
 489 **/
 490static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 491{
 492	s32 ret_val = E1000_ERR_CONFIG;
 493	u32 ctrl_ext = 0;
 494	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 495	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 496	u8 tranceiver_type = 0;
 497	s32 timeout = 3;
 498
 499	/* Turn I2C interface ON and power on sfp cage */
 500	ctrl_ext = rd32(E1000_CTRL_EXT);
 501	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 502	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 503
 504	wrfl();
 505
 506	/* Read SFP module data */
 507	while (timeout) {
 508		ret_val = igb_read_sfp_data_byte(hw,
 509			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 510			&tranceiver_type);
 511		if (ret_val == 0)
 512			break;
 513		msleep(100);
 514		timeout--;
 515	}
 516	if (ret_val != 0)
 517		goto out;
 518
 519	ret_val = igb_read_sfp_data_byte(hw,
 520			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 521			(u8 *)eth_flags);
 522	if (ret_val != 0)
 523		goto out;
 524
 525	/* Check if there is some SFP module plugged and powered */
 526	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 527	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 528		dev_spec->module_plugged = true;
 529		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 530			hw->phy.media_type = e1000_media_type_internal_serdes;
 531		} else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
 532			dev_spec->sgmii_active = true;
 533			hw->phy.media_type = e1000_media_type_internal_serdes;
 534		} else if (eth_flags->e1000_base_t) {
 535			dev_spec->sgmii_active = true;
 536			hw->phy.media_type = e1000_media_type_copper;
 537		} else {
 538			hw->phy.media_type = e1000_media_type_unknown;
 539			hw_dbg("PHY module has not been recognized\n");
 540			goto out;
 541		}
 542	} else {
 543		hw->phy.media_type = e1000_media_type_unknown;
 544	}
 545	ret_val = 0;
 546out:
 547	/* Restore I2C interface setting */
 548	wr32(E1000_CTRL_EXT, ctrl_ext);
 549	return ret_val;
 550}
 551
 552static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 553{
 554	struct e1000_mac_info *mac = &hw->mac;
 555	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 556	s32 ret_val;
 557	u32 ctrl_ext = 0;
 558	u32 link_mode = 0;
 559
 560	switch (hw->device_id) {
 561	case E1000_DEV_ID_82575EB_COPPER:
 562	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 563	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 564		mac->type = e1000_82575;
 565		break;
 566	case E1000_DEV_ID_82576:
 567	case E1000_DEV_ID_82576_NS:
 568	case E1000_DEV_ID_82576_NS_SERDES:
 569	case E1000_DEV_ID_82576_FIBER:
 570	case E1000_DEV_ID_82576_SERDES:
 571	case E1000_DEV_ID_82576_QUAD_COPPER:
 572	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 573	case E1000_DEV_ID_82576_SERDES_QUAD:
 574		mac->type = e1000_82576;
 575		break;
 576	case E1000_DEV_ID_82580_COPPER:
 577	case E1000_DEV_ID_82580_FIBER:
 578	case E1000_DEV_ID_82580_QUAD_FIBER:
 579	case E1000_DEV_ID_82580_SERDES:
 580	case E1000_DEV_ID_82580_SGMII:
 581	case E1000_DEV_ID_82580_COPPER_DUAL:
 582	case E1000_DEV_ID_DH89XXCC_SGMII:
 583	case E1000_DEV_ID_DH89XXCC_SERDES:
 584	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 585	case E1000_DEV_ID_DH89XXCC_SFP:
 586		mac->type = e1000_82580;
 587		break;
 588	case E1000_DEV_ID_I350_COPPER:
 589	case E1000_DEV_ID_I350_FIBER:
 590	case E1000_DEV_ID_I350_SERDES:
 591	case E1000_DEV_ID_I350_SGMII:
 592		mac->type = e1000_i350;
 593		break;
 594	case E1000_DEV_ID_I210_COPPER:
 595	case E1000_DEV_ID_I210_FIBER:
 596	case E1000_DEV_ID_I210_SERDES:
 597	case E1000_DEV_ID_I210_SGMII:
 598	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 599	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 600		mac->type = e1000_i210;
 601		break;
 602	case E1000_DEV_ID_I211_COPPER:
 603		mac->type = e1000_i211;
 604		break;
 605	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 606	case E1000_DEV_ID_I354_SGMII:
 607	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 608		mac->type = e1000_i354;
 609		break;
 610	default:
 611		return -E1000_ERR_MAC_INIT;
 612	}
 613
 614	/* Set media type */
 615	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
 616	 * based on the EEPROM. We cannot rely upon device ID. There
 617	 * is no distinguishable difference between fiber and internal
 618	 * SerDes mode on the 82575. There can be an external PHY attached
 619	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 620	 */
 621	hw->phy.media_type = e1000_media_type_copper;
 622	dev_spec->sgmii_active = false;
 623	dev_spec->module_plugged = false;
 624
 625	ctrl_ext = rd32(E1000_CTRL_EXT);
 626
 627	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 628	switch (link_mode) {
 629	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 630		hw->phy.media_type = e1000_media_type_internal_serdes;
 631		break;
 632	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 633		/* Get phy control interface type set (MDIO vs. I2C)*/
 634		if (igb_sgmii_uses_mdio_82575(hw)) {
 635			hw->phy.media_type = e1000_media_type_copper;
 636			dev_spec->sgmii_active = true;
 637			break;
 638		}
 639		fallthrough; /* for I2C based SGMII */
 640	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 641		/* read media type from SFP EEPROM */
 642		ret_val = igb_set_sfp_media_type_82575(hw);
 643		if ((ret_val != 0) ||
 644		    (hw->phy.media_type == e1000_media_type_unknown)) {
 645			/* If media type was not identified then return media
 646			 * type defined by the CTRL_EXT settings.
 647			 */
 648			hw->phy.media_type = e1000_media_type_internal_serdes;
 649
 650			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 651				hw->phy.media_type = e1000_media_type_copper;
 652				dev_spec->sgmii_active = true;
 653			}
 654
 655			break;
 656		}
 657
 
 
 
 
 658		/* change current link mode setting */
 659		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 660
 661		if (dev_spec->sgmii_active)
 662			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 663		else
 664			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 665
 666		wr32(E1000_CTRL_EXT, ctrl_ext);
 667
 668		break;
 669	default:
 670		break;
 671	}
 672
 673	/* mac initialization and operations */
 674	ret_val = igb_init_mac_params_82575(hw);
 675	if (ret_val)
 676		goto out;
 677
 678	/* NVM initialization */
 679	ret_val = igb_init_nvm_params_82575(hw);
 680	switch (hw->mac.type) {
 681	case e1000_i210:
 682	case e1000_i211:
 683		ret_val = igb_init_nvm_params_i210(hw);
 684		break;
 685	default:
 686		break;
 687	}
 688
 689	if (ret_val)
 690		goto out;
 691
 692	/* if part supports SR-IOV then initialize mailbox parameters */
 693	switch (mac->type) {
 694	case e1000_82576:
 695	case e1000_i350:
 696		igb_init_mbx_params_pf(hw);
 697		break;
 698	default:
 699		break;
 700	}
 701
 702	/* setup PHY parameters */
 703	ret_val = igb_init_phy_params_82575(hw);
 704
 705out:
 706	return ret_val;
 707}
 708
 709/**
 710 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 711 *  @hw: pointer to the HW structure
 712 *
 713 *  Acquire access rights to the correct PHY.  This is a
 714 *  function pointer entry point called by the api module.
 715 **/
 716static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 717{
 718	u16 mask = E1000_SWFW_PHY0_SM;
 719
 720	if (hw->bus.func == E1000_FUNC_1)
 721		mask = E1000_SWFW_PHY1_SM;
 722	else if (hw->bus.func == E1000_FUNC_2)
 723		mask = E1000_SWFW_PHY2_SM;
 724	else if (hw->bus.func == E1000_FUNC_3)
 725		mask = E1000_SWFW_PHY3_SM;
 726
 727	return hw->mac.ops.acquire_swfw_sync(hw, mask);
 728}
 729
 730/**
 731 *  igb_release_phy_82575 - Release rights to access PHY
 732 *  @hw: pointer to the HW structure
 733 *
 734 *  A wrapper to release access rights to the correct PHY.  This is a
 735 *  function pointer entry point called by the api module.
 736 **/
 737static void igb_release_phy_82575(struct e1000_hw *hw)
 738{
 739	u16 mask = E1000_SWFW_PHY0_SM;
 740
 741	if (hw->bus.func == E1000_FUNC_1)
 742		mask = E1000_SWFW_PHY1_SM;
 743	else if (hw->bus.func == E1000_FUNC_2)
 744		mask = E1000_SWFW_PHY2_SM;
 745	else if (hw->bus.func == E1000_FUNC_3)
 746		mask = E1000_SWFW_PHY3_SM;
 747
 748	hw->mac.ops.release_swfw_sync(hw, mask);
 749}
 750
 751/**
 752 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 753 *  @hw: pointer to the HW structure
 754 *  @offset: register offset to be read
 755 *  @data: pointer to the read data
 756 *
 757 *  Reads the PHY register at offset using the serial gigabit media independent
 758 *  interface and stores the retrieved information in data.
 759 **/
 760static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 761					  u16 *data)
 762{
 763	s32 ret_val = -E1000_ERR_PARAM;
 764
 765	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 766		hw_dbg("PHY Address %u is out of range\n", offset);
 767		goto out;
 768	}
 769
 770	ret_val = hw->phy.ops.acquire(hw);
 771	if (ret_val)
 772		goto out;
 773
 774	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 775
 776	hw->phy.ops.release(hw);
 777
 778out:
 779	return ret_val;
 780}
 781
 782/**
 783 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 784 *  @hw: pointer to the HW structure
 785 *  @offset: register offset to write to
 786 *  @data: data to write at register offset
 787 *
 788 *  Writes the data to PHY register at the offset using the serial gigabit
 789 *  media independent interface.
 790 **/
 791static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 792					   u16 data)
 793{
 794	s32 ret_val = -E1000_ERR_PARAM;
 795
 796
 797	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 798		hw_dbg("PHY Address %d is out of range\n", offset);
 799		goto out;
 800	}
 801
 802	ret_val = hw->phy.ops.acquire(hw);
 803	if (ret_val)
 804		goto out;
 805
 806	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 807
 808	hw->phy.ops.release(hw);
 809
 810out:
 811	return ret_val;
 812}
 813
 814/**
 815 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 816 *  @hw: pointer to the HW structure
 817 *
 818 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 819 *  sgmi interface.
 820 **/
 821static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 822{
 823	struct e1000_phy_info *phy = &hw->phy;
 824	s32  ret_val = 0;
 825	u16 phy_id;
 826	u32 ctrl_ext;
 827	u32 mdic;
 828
 829	/* Extra read required for some PHY's on i354 */
 830	if (hw->mac.type == e1000_i354)
 831		igb_get_phy_id(hw);
 832
 833	/* For SGMII PHYs, we try the list of possible addresses until
 834	 * we find one that works.  For non-SGMII PHYs
 835	 * (e.g. integrated copper PHYs), an address of 1 should
 836	 * work.  The result of this function should mean phy->phy_addr
 837	 * and phy->id are set correctly.
 838	 */
 839	if (!(igb_sgmii_active_82575(hw))) {
 840		phy->addr = 1;
 841		ret_val = igb_get_phy_id(hw);
 842		goto out;
 843	}
 844
 845	if (igb_sgmii_uses_mdio_82575(hw)) {
 846		switch (hw->mac.type) {
 847		case e1000_82575:
 848		case e1000_82576:
 849			mdic = rd32(E1000_MDIC);
 850			mdic &= E1000_MDIC_PHY_MASK;
 851			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 852			break;
 853		case e1000_82580:
 854		case e1000_i350:
 855		case e1000_i354:
 856		case e1000_i210:
 857		case e1000_i211:
 858			mdic = rd32(E1000_MDICNFG);
 859			mdic &= E1000_MDICNFG_PHY_MASK;
 860			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 861			break;
 862		default:
 863			ret_val = -E1000_ERR_PHY;
 864			goto out;
 865		}
 866		ret_val = igb_get_phy_id(hw);
 867		goto out;
 868	}
 869
 870	/* Power on sgmii phy if it is disabled */
 871	ctrl_ext = rd32(E1000_CTRL_EXT);
 872	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 873	wrfl();
 874	msleep(300);
 875
 876	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 877	 * Therefore, we need to test 1-7
 878	 */
 879	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 880		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 881		if (ret_val == 0) {
 882			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 883			       phy_id, phy->addr);
 884			/* At the time of this writing, The M88 part is
 885			 * the only supported SGMII PHY product.
 886			 */
 887			if (phy_id == M88_VENDOR)
 888				break;
 889		} else {
 890			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 891		}
 892	}
 893
 894	/* A valid PHY type couldn't be found. */
 895	if (phy->addr == 8) {
 896		phy->addr = 0;
 897		ret_val = -E1000_ERR_PHY;
 898		goto out;
 899	} else {
 900		ret_val = igb_get_phy_id(hw);
 901	}
 902
 903	/* restore previous sfp cage power state */
 904	wr32(E1000_CTRL_EXT, ctrl_ext);
 905
 906out:
 907	return ret_val;
 908}
 909
 910/**
 911 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 912 *  @hw: pointer to the HW structure
 913 *
 914 *  Resets the PHY using the serial gigabit media independent interface.
 915 **/
 916static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 917{
 918	struct e1000_phy_info *phy = &hw->phy;
 919	s32 ret_val;
 920
 921	/* This isn't a true "hard" reset, but is the only reset
 922	 * available to us at this time.
 923	 */
 924
 925	hw_dbg("Soft resetting SGMII attached PHY...\n");
 926
 927	/* SFP documentation requires the following to configure the SPF module
 928	 * to work on SGMII.  No further documentation is given.
 929	 */
 930	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 931	if (ret_val)
 932		goto out;
 933
 934	ret_val = igb_phy_sw_reset(hw);
 935	if (ret_val)
 936		goto out;
 937
 938	if (phy->id == M88E1512_E_PHY_ID)
 939		ret_val = igb_initialize_M88E1512_phy(hw);
 940	if (phy->id == M88E1543_E_PHY_ID)
 941		ret_val = igb_initialize_M88E1543_phy(hw);
 942out:
 943	return ret_val;
 944}
 945
 946/**
 947 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 948 *  @hw: pointer to the HW structure
 949 *  @active: true to enable LPLU, false to disable
 950 *
 951 *  Sets the LPLU D0 state according to the active flag.  When
 952 *  activating LPLU this function also disables smart speed
 953 *  and vice versa.  LPLU will not be activated unless the
 954 *  device autonegotiation advertisement meets standards of
 955 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 956 *  This is a function pointer entry point only called by
 957 *  PHY setup routines.
 958 **/
 959static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 960{
 961	struct e1000_phy_info *phy = &hw->phy;
 962	s32 ret_val;
 963	u16 data;
 964
 965	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
 966	if (ret_val)
 967		goto out;
 968
 969	if (active) {
 970		data |= IGP02E1000_PM_D0_LPLU;
 971		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 972						 data);
 973		if (ret_val)
 974			goto out;
 975
 976		/* When LPLU is enabled, we should disable SmartSpeed */
 977		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 978						&data);
 979		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
 980		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
 981						 data);
 982		if (ret_val)
 983			goto out;
 984	} else {
 985		data &= ~IGP02E1000_PM_D0_LPLU;
 986		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
 987						 data);
 988		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
 989		 * during Dx states where the power conservation is most
 990		 * important.  During driver activity we should enable
 991		 * SmartSpeed, so performance is maintained.
 992		 */
 993		if (phy->smart_speed == e1000_smart_speed_on) {
 994			ret_val = phy->ops.read_reg(hw,
 995					IGP01E1000_PHY_PORT_CONFIG, &data);
 996			if (ret_val)
 997				goto out;
 998
 999			data |= IGP01E1000_PSCFR_SMART_SPEED;
1000			ret_val = phy->ops.write_reg(hw,
1001					IGP01E1000_PHY_PORT_CONFIG, data);
1002			if (ret_val)
1003				goto out;
1004		} else if (phy->smart_speed == e1000_smart_speed_off) {
1005			ret_val = phy->ops.read_reg(hw,
1006					IGP01E1000_PHY_PORT_CONFIG, &data);
1007			if (ret_val)
1008				goto out;
1009
1010			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1011			ret_val = phy->ops.write_reg(hw,
1012					IGP01E1000_PHY_PORT_CONFIG, data);
1013			if (ret_val)
1014				goto out;
1015		}
1016	}
1017
1018out:
1019	return ret_val;
1020}
1021
1022/**
1023 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1024 *  @hw: pointer to the HW structure
1025 *  @active: true to enable LPLU, false to disable
1026 *
1027 *  Sets the LPLU D0 state according to the active flag.  When
1028 *  activating LPLU this function also disables smart speed
1029 *  and vice versa.  LPLU will not be activated unless the
1030 *  device autonegotiation advertisement meets standards of
1031 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1032 *  This is a function pointer entry point only called by
1033 *  PHY setup routines.
1034 **/
1035static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1036{
1037	struct e1000_phy_info *phy = &hw->phy;
1038	u16 data;
1039
1040	data = rd32(E1000_82580_PHY_POWER_MGMT);
1041
1042	if (active) {
1043		data |= E1000_82580_PM_D0_LPLU;
1044
1045		/* When LPLU is enabled, we should disable SmartSpeed */
1046		data &= ~E1000_82580_PM_SPD;
1047	} else {
1048		data &= ~E1000_82580_PM_D0_LPLU;
1049
1050		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1051		 * during Dx states where the power conservation is most
1052		 * important.  During driver activity we should enable
1053		 * SmartSpeed, so performance is maintained.
1054		 */
1055		if (phy->smart_speed == e1000_smart_speed_on)
1056			data |= E1000_82580_PM_SPD;
1057		else if (phy->smart_speed == e1000_smart_speed_off)
1058			data &= ~E1000_82580_PM_SPD; }
1059
1060	wr32(E1000_82580_PHY_POWER_MGMT, data);
1061	return 0;
1062}
1063
1064/**
1065 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1066 *  @hw: pointer to the HW structure
1067 *  @active: boolean used to enable/disable lplu
1068 *
1069 *  Success returns 0, Failure returns 1
1070 *
1071 *  The low power link up (lplu) state is set to the power management level D3
1072 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1073 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1074 *  is used during Dx states where the power conservation is most important.
1075 *  During driver activity, SmartSpeed should be enabled so performance is
1076 *  maintained.
1077 **/
1078static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1079{
1080	struct e1000_phy_info *phy = &hw->phy;
1081	u16 data;
1082
1083	data = rd32(E1000_82580_PHY_POWER_MGMT);
1084
1085	if (!active) {
1086		data &= ~E1000_82580_PM_D3_LPLU;
1087		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1088		 * during Dx states where the power conservation is most
1089		 * important.  During driver activity we should enable
1090		 * SmartSpeed, so performance is maintained.
1091		 */
1092		if (phy->smart_speed == e1000_smart_speed_on)
1093			data |= E1000_82580_PM_SPD;
1094		else if (phy->smart_speed == e1000_smart_speed_off)
1095			data &= ~E1000_82580_PM_SPD;
1096	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1097		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1098		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1099		data |= E1000_82580_PM_D3_LPLU;
1100		/* When LPLU is enabled, we should disable SmartSpeed */
1101		data &= ~E1000_82580_PM_SPD;
1102	}
1103
1104	wr32(E1000_82580_PHY_POWER_MGMT, data);
1105	return 0;
1106}
1107
1108/**
1109 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1110 *  @hw: pointer to the HW structure
1111 *
1112 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1113 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1114 *  Return successful if access grant bit set, else clear the request for
1115 *  EEPROM access and return -E1000_ERR_NVM (-1).
1116 **/
1117static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1118{
1119	s32 ret_val;
1120
1121	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1122	if (ret_val)
1123		goto out;
1124
1125	ret_val = igb_acquire_nvm(hw);
1126
1127	if (ret_val)
1128		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1129
1130out:
1131	return ret_val;
1132}
1133
1134/**
1135 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1136 *  @hw: pointer to the HW structure
1137 *
1138 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1139 *  then release the semaphores acquired.
1140 **/
1141static void igb_release_nvm_82575(struct e1000_hw *hw)
1142{
1143	igb_release_nvm(hw);
1144	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1145}
1146
1147/**
1148 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1149 *  @hw: pointer to the HW structure
1150 *  @mask: specifies which semaphore to acquire
1151 *
1152 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1153 *  will also specify which port we're acquiring the lock for.
1154 **/
1155static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1156{
1157	u32 swfw_sync;
1158	u32 swmask = mask;
1159	u32 fwmask = mask << 16;
1160	s32 ret_val = 0;
1161	s32 i = 0, timeout = 200;
1162
1163	while (i < timeout) {
1164		if (igb_get_hw_semaphore(hw)) {
1165			ret_val = -E1000_ERR_SWFW_SYNC;
1166			goto out;
1167		}
1168
1169		swfw_sync = rd32(E1000_SW_FW_SYNC);
1170		if (!(swfw_sync & (fwmask | swmask)))
1171			break;
1172
1173		/* Firmware currently using resource (fwmask)
1174		 * or other software thread using resource (swmask)
1175		 */
1176		igb_put_hw_semaphore(hw);
1177		mdelay(5);
1178		i++;
1179	}
1180
1181	if (i == timeout) {
1182		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1183		ret_val = -E1000_ERR_SWFW_SYNC;
1184		goto out;
1185	}
1186
1187	swfw_sync |= swmask;
1188	wr32(E1000_SW_FW_SYNC, swfw_sync);
1189
1190	igb_put_hw_semaphore(hw);
1191
1192out:
1193	return ret_val;
1194}
1195
1196/**
1197 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1198 *  @hw: pointer to the HW structure
1199 *  @mask: specifies which semaphore to acquire
1200 *
1201 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1202 *  will also specify which port we're releasing the lock for.
1203 **/
1204static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1205{
1206	u32 swfw_sync;
1207
1208	while (igb_get_hw_semaphore(hw) != 0)
1209		; /* Empty */
1210
1211	swfw_sync = rd32(E1000_SW_FW_SYNC);
1212	swfw_sync &= ~mask;
1213	wr32(E1000_SW_FW_SYNC, swfw_sync);
1214
1215	igb_put_hw_semaphore(hw);
1216}
1217
1218/**
1219 *  igb_get_cfg_done_82575 - Read config done bit
1220 *  @hw: pointer to the HW structure
1221 *
1222 *  Read the management control register for the config done bit for
1223 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1224 *  to read the config done bit, so an error is *ONLY* logged and returns
1225 *  0.  If we were to return with error, EEPROM-less silicon
1226 *  would not be able to be reset or change link.
1227 **/
1228static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1229{
1230	s32 timeout = PHY_CFG_TIMEOUT;
1231	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1232
1233	if (hw->bus.func == 1)
1234		mask = E1000_NVM_CFG_DONE_PORT_1;
1235	else if (hw->bus.func == E1000_FUNC_2)
1236		mask = E1000_NVM_CFG_DONE_PORT_2;
1237	else if (hw->bus.func == E1000_FUNC_3)
1238		mask = E1000_NVM_CFG_DONE_PORT_3;
1239
1240	while (timeout) {
1241		if (rd32(E1000_EEMNGCTL) & mask)
1242			break;
1243		usleep_range(1000, 2000);
1244		timeout--;
1245	}
1246	if (!timeout)
1247		hw_dbg("MNG configuration cycle has not completed.\n");
1248
1249	/* If EEPROM is not marked present, init the PHY manually */
1250	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1251	    (hw->phy.type == e1000_phy_igp_3))
1252		igb_phy_init_script_igp3(hw);
1253
1254	return 0;
1255}
1256
1257/**
1258 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1259 *  @hw: pointer to the HW structure
1260 *  @speed: stores the current speed
1261 *  @duplex: stores the current duplex
1262 *
1263 *  This is a wrapper function, if using the serial gigabit media independent
1264 *  interface, use PCS to retrieve the link speed and duplex information.
1265 *  Otherwise, use the generic function to get the link speed and duplex info.
1266 **/
1267static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1268					u16 *duplex)
1269{
1270	s32 ret_val;
1271
1272	if (hw->phy.media_type != e1000_media_type_copper)
1273		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1274							       duplex);
1275	else
1276		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1277								    duplex);
1278
1279	return ret_val;
1280}
1281
1282/**
1283 *  igb_check_for_link_82575 - Check for link
1284 *  @hw: pointer to the HW structure
1285 *
1286 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1287 *  use the generic interface for determining link.
1288 **/
1289static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1290{
1291	s32 ret_val;
1292	u16 speed, duplex;
1293
1294	if (hw->phy.media_type != e1000_media_type_copper) {
1295		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1296							     &duplex);
1297		/* Use this flag to determine if link needs to be checked or
1298		 * not.  If  we have link clear the flag so that we do not
1299		 * continue to check for link.
1300		 */
1301		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1302
1303		/* Configure Flow Control now that Auto-Neg has completed.
1304		 * First, we need to restore the desired flow control
1305		 * settings because we may have had to re-autoneg with a
1306		 * different link partner.
1307		 */
1308		ret_val = igb_config_fc_after_link_up(hw);
1309		if (ret_val)
1310			hw_dbg("Error configuring flow control\n");
1311	} else {
1312		ret_val = igb_check_for_copper_link(hw);
1313	}
1314
1315	return ret_val;
1316}
1317
1318/**
1319 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1320 *  @hw: pointer to the HW structure
1321 **/
1322void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1323{
1324	u32 reg;
1325
1326
1327	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1328	    !igb_sgmii_active_82575(hw))
1329		return;
1330
1331	/* Enable PCS to turn on link */
1332	reg = rd32(E1000_PCS_CFG0);
1333	reg |= E1000_PCS_CFG_PCS_EN;
1334	wr32(E1000_PCS_CFG0, reg);
1335
1336	/* Power up the laser */
1337	reg = rd32(E1000_CTRL_EXT);
1338	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1339	wr32(E1000_CTRL_EXT, reg);
1340
1341	/* flush the write to verify completion */
1342	wrfl();
1343	usleep_range(1000, 2000);
1344}
1345
1346/**
1347 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1348 *  @hw: pointer to the HW structure
1349 *  @speed: stores the current speed
1350 *  @duplex: stores the current duplex
1351 *
1352 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1353 *  duplex, then store the values in the pointers provided.
1354 **/
1355static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1356						u16 *duplex)
1357{
1358	struct e1000_mac_info *mac = &hw->mac;
1359	u32 pcs, status;
1360
1361	/* Set up defaults for the return values of this function */
1362	mac->serdes_has_link = false;
1363	*speed = 0;
1364	*duplex = 0;
1365
1366	/* Read the PCS Status register for link state. For non-copper mode,
1367	 * the status register is not accurate. The PCS status register is
1368	 * used instead.
1369	 */
1370	pcs = rd32(E1000_PCS_LSTAT);
1371
1372	/* The link up bit determines when link is up on autoneg. The sync ok
1373	 * gets set once both sides sync up and agree upon link. Stable link
1374	 * can be determined by checking for both link up and link sync ok
1375	 */
1376	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1377		mac->serdes_has_link = true;
1378
1379		/* Detect and store PCS speed */
1380		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1381			*speed = SPEED_1000;
1382		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1383			*speed = SPEED_100;
1384		else
1385			*speed = SPEED_10;
1386
1387		/* Detect and store PCS duplex */
1388		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1389			*duplex = FULL_DUPLEX;
1390		else
1391			*duplex = HALF_DUPLEX;
1392
1393	/* Check if it is an I354 2.5Gb backplane connection. */
1394		if (mac->type == e1000_i354) {
1395			status = rd32(E1000_STATUS);
1396			if ((status & E1000_STATUS_2P5_SKU) &&
1397			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1398				*speed = SPEED_2500;
1399				*duplex = FULL_DUPLEX;
1400				hw_dbg("2500 Mbs, ");
1401				hw_dbg("Full Duplex\n");
1402			}
1403		}
1404
1405	}
1406
1407	return 0;
1408}
1409
1410/**
1411 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1412 *  @hw: pointer to the HW structure
1413 *
1414 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1415 *  when management pass thru is not enabled.
1416 **/
1417void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1418{
1419	u32 reg;
1420
1421	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1422	    igb_sgmii_active_82575(hw))
1423		return;
1424
1425	if (!igb_enable_mng_pass_thru(hw)) {
1426		/* Disable PCS to turn off link */
1427		reg = rd32(E1000_PCS_CFG0);
1428		reg &= ~E1000_PCS_CFG_PCS_EN;
1429		wr32(E1000_PCS_CFG0, reg);
1430
1431		/* shutdown the laser */
1432		reg = rd32(E1000_CTRL_EXT);
1433		reg |= E1000_CTRL_EXT_SDP3_DATA;
1434		wr32(E1000_CTRL_EXT, reg);
1435
1436		/* flush the write to verify completion */
1437		wrfl();
1438		usleep_range(1000, 2000);
1439	}
1440}
1441
1442/**
1443 *  igb_reset_hw_82575 - Reset hardware
1444 *  @hw: pointer to the HW structure
1445 *
1446 *  This resets the hardware into a known state.  This is a
1447 *  function pointer entry point called by the api module.
1448 **/
1449static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1450{
1451	u32 ctrl;
1452	s32 ret_val;
1453
1454	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1455	 * on the last TLP read/write transaction when MAC is reset.
1456	 */
1457	ret_val = igb_disable_pcie_master(hw);
1458	if (ret_val)
1459		hw_dbg("PCI-E Master disable polling has failed.\n");
1460
1461	/* set the completion timeout for interface */
1462	ret_val = igb_set_pcie_completion_timeout(hw);
1463	if (ret_val)
1464		hw_dbg("PCI-E Set completion timeout has failed.\n");
1465
1466	hw_dbg("Masking off all interrupts\n");
1467	wr32(E1000_IMC, 0xffffffff);
1468
1469	wr32(E1000_RCTL, 0);
1470	wr32(E1000_TCTL, E1000_TCTL_PSP);
1471	wrfl();
1472
1473	usleep_range(10000, 20000);
1474
1475	ctrl = rd32(E1000_CTRL);
1476
1477	hw_dbg("Issuing a global reset to MAC\n");
1478	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1479
1480	ret_val = igb_get_auto_rd_done(hw);
1481	if (ret_val) {
1482		/* When auto config read does not complete, do not
1483		 * return with an error. This can happen in situations
1484		 * where there is no eeprom and prevents getting link.
1485		 */
1486		hw_dbg("Auto Read Done did not complete\n");
1487	}
1488
1489	/* If EEPROM is not present, run manual init scripts */
1490	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1491		igb_reset_init_script_82575(hw);
1492
1493	/* Clear any pending interrupt events. */
1494	wr32(E1000_IMC, 0xffffffff);
1495	rd32(E1000_ICR);
1496
1497	/* Install any alternate MAC address into RAR0 */
1498	ret_val = igb_check_alt_mac_addr(hw);
1499
1500	return ret_val;
1501}
1502
1503/**
1504 *  igb_init_hw_82575 - Initialize hardware
1505 *  @hw: pointer to the HW structure
1506 *
1507 *  This inits the hardware readying it for operation.
1508 **/
1509static s32 igb_init_hw_82575(struct e1000_hw *hw)
1510{
1511	struct e1000_mac_info *mac = &hw->mac;
1512	s32 ret_val;
1513	u16 i, rar_count = mac->rar_entry_count;
1514
1515	if ((hw->mac.type >= e1000_i210) &&
1516	    !(igb_get_flash_presence_i210(hw))) {
1517		ret_val = igb_pll_workaround_i210(hw);
1518		if (ret_val)
1519			return ret_val;
1520	}
1521
1522	/* Initialize identification LED */
1523	ret_val = igb_id_led_init(hw);
1524	if (ret_val) {
1525		hw_dbg("Error initializing identification LED\n");
1526		/* This is not fatal and we should not stop init due to this */
1527	}
1528
1529	/* Disabling VLAN filtering */
1530	hw_dbg("Initializing the IEEE VLAN\n");
1531	igb_clear_vfta(hw);
1532
1533	/* Setup the receive address */
1534	igb_init_rx_addrs(hw, rar_count);
1535
1536	/* Zero out the Multicast HASH table */
1537	hw_dbg("Zeroing the MTA\n");
1538	for (i = 0; i < mac->mta_reg_count; i++)
1539		array_wr32(E1000_MTA, i, 0);
1540
1541	/* Zero out the Unicast HASH table */
1542	hw_dbg("Zeroing the UTA\n");
1543	for (i = 0; i < mac->uta_reg_count; i++)
1544		array_wr32(E1000_UTA, i, 0);
1545
1546	/* Setup link and flow control */
1547	ret_val = igb_setup_link(hw);
1548
1549	/* Clear all of the statistics registers (clear on read).  It is
1550	 * important that we do this after we have tried to establish link
1551	 * because the symbol error count will increment wildly if there
1552	 * is no link.
1553	 */
1554	igb_clear_hw_cntrs_82575(hw);
1555	return ret_val;
1556}
1557
1558/**
1559 *  igb_setup_copper_link_82575 - Configure copper link settings
1560 *  @hw: pointer to the HW structure
1561 *
1562 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1563 *  for link, once link is established calls to configure collision distance
1564 *  and flow control are called.
1565 **/
1566static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1567{
1568	u32 ctrl;
1569	s32  ret_val;
1570	u32 phpm_reg;
1571
1572	ctrl = rd32(E1000_CTRL);
1573	ctrl |= E1000_CTRL_SLU;
1574	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1575	wr32(E1000_CTRL, ctrl);
1576
1577	/* Clear Go Link Disconnect bit on supported devices */
1578	switch (hw->mac.type) {
1579	case e1000_82580:
1580	case e1000_i350:
1581	case e1000_i210:
1582	case e1000_i211:
1583		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1584		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1585		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1586		break;
1587	default:
1588		break;
1589	}
1590
1591	ret_val = igb_setup_serdes_link_82575(hw);
1592	if (ret_val)
1593		goto out;
1594
1595	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1596		/* allow time for SFP cage time to power up phy */
1597		msleep(300);
1598
1599		ret_val = hw->phy.ops.reset(hw);
1600		if (ret_val) {
1601			hw_dbg("Error resetting the PHY.\n");
1602			goto out;
1603		}
1604	}
1605	switch (hw->phy.type) {
1606	case e1000_phy_i210:
1607	case e1000_phy_m88:
1608		switch (hw->phy.id) {
1609		case I347AT4_E_PHY_ID:
1610		case M88E1112_E_PHY_ID:
1611		case M88E1543_E_PHY_ID:
1612		case M88E1512_E_PHY_ID:
1613		case I210_I_PHY_ID:
1614			ret_val = igb_copper_link_setup_m88_gen2(hw);
1615			break;
1616		default:
1617			ret_val = igb_copper_link_setup_m88(hw);
1618			break;
1619		}
1620		break;
1621	case e1000_phy_igp_3:
1622		ret_val = igb_copper_link_setup_igp(hw);
1623		break;
1624	case e1000_phy_82580:
1625		ret_val = igb_copper_link_setup_82580(hw);
1626		break;
1627	case e1000_phy_bcm54616:
1628		ret_val = 0;
1629		break;
1630	default:
1631		ret_val = -E1000_ERR_PHY;
1632		break;
1633	}
1634
1635	if (ret_val)
1636		goto out;
1637
1638	ret_val = igb_setup_copper_link(hw);
1639out:
1640	return ret_val;
1641}
1642
1643/**
1644 *  igb_setup_serdes_link_82575 - Setup link for serdes
1645 *  @hw: pointer to the HW structure
1646 *
1647 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1648 *  used on copper connections where the serialized gigabit media independent
1649 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1650 *  for auto-negotiation or forces speed/duplex.
1651 **/
1652static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1653{
1654	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1655	bool pcs_autoneg;
1656	s32 ret_val = 0;
1657	u16 data;
1658
1659	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1660	    !igb_sgmii_active_82575(hw))
1661		return ret_val;
1662
1663
1664	/* On the 82575, SerDes loopback mode persists until it is
1665	 * explicitly turned off or a power cycle is performed.  A read to
1666	 * the register does not indicate its status.  Therefore, we ensure
1667	 * loopback mode is disabled during initialization.
1668	 */
1669	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1670
1671	/* power on the sfp cage if present and turn on I2C */
1672	ctrl_ext = rd32(E1000_CTRL_EXT);
1673	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1674	ctrl_ext |= E1000_CTRL_I2C_ENA;
1675	wr32(E1000_CTRL_EXT, ctrl_ext);
1676
1677	ctrl_reg = rd32(E1000_CTRL);
1678	ctrl_reg |= E1000_CTRL_SLU;
1679
1680	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1681		/* set both sw defined pins */
1682		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1683
1684		/* Set switch control to serdes energy detect */
1685		reg = rd32(E1000_CONNSW);
1686		reg |= E1000_CONNSW_ENRGSRC;
1687		wr32(E1000_CONNSW, reg);
1688	}
1689
1690	reg = rd32(E1000_PCS_LCTL);
1691
1692	/* default pcs_autoneg to the same setting as mac autoneg */
1693	pcs_autoneg = hw->mac.autoneg;
1694
1695	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1696	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1697		/* sgmii mode lets the phy handle forcing speed/duplex */
1698		pcs_autoneg = true;
1699		/* autoneg time out should be disabled for SGMII mode */
1700		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1701		break;
1702	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1703		/* disable PCS autoneg and support parallel detect only */
1704		pcs_autoneg = false;
1705		fallthrough;
1706	default:
1707		if (hw->mac.type == e1000_82575 ||
1708		    hw->mac.type == e1000_82576) {
1709			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1710			if (ret_val) {
1711				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1712				return ret_val;
1713			}
1714
1715			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1716				pcs_autoneg = false;
1717		}
1718
1719		/* non-SGMII modes only supports a speed of 1000/Full for the
1720		 * link so it is best to just force the MAC and let the pcs
1721		 * link either autoneg or be forced to 1000/Full
1722		 */
1723		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1724				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1725
1726		/* set speed of 1000/Full if speed/duplex is forced */
1727		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1728		break;
1729	}
1730
1731	wr32(E1000_CTRL, ctrl_reg);
1732
1733	/* New SerDes mode allows for forcing speed or autonegotiating speed
1734	 * at 1gb. Autoneg should be default set by most drivers. This is the
1735	 * mode that will be compatible with older link partners and switches.
1736	 * However, both are supported by the hardware and some drivers/tools.
1737	 */
1738	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1739		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1740
1741	if (pcs_autoneg) {
1742		/* Set PCS register for autoneg */
1743		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1744		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1745
1746		/* Disable force flow control for autoneg */
1747		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1748
1749		/* Configure flow control advertisement for autoneg */
1750		anadv_reg = rd32(E1000_PCS_ANADV);
1751		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1752		switch (hw->fc.requested_mode) {
1753		case e1000_fc_full:
1754		case e1000_fc_rx_pause:
1755			anadv_reg |= E1000_TXCW_ASM_DIR;
1756			anadv_reg |= E1000_TXCW_PAUSE;
1757			break;
1758		case e1000_fc_tx_pause:
1759			anadv_reg |= E1000_TXCW_ASM_DIR;
1760			break;
1761		default:
1762			break;
1763		}
1764		wr32(E1000_PCS_ANADV, anadv_reg);
1765
1766		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1767	} else {
1768		/* Set PCS register for forced link */
1769		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1770
1771		/* Force flow control for forced link */
1772		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1773
1774		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1775	}
1776
1777	wr32(E1000_PCS_LCTL, reg);
1778
1779	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1780		igb_force_mac_fc(hw);
1781
1782	return ret_val;
1783}
1784
1785/**
1786 *  igb_sgmii_active_82575 - Return sgmii state
1787 *  @hw: pointer to the HW structure
1788 *
1789 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1790 *  which can be enabled for use in the embedded applications.  Simply
1791 *  return the current state of the sgmii interface.
1792 **/
1793static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1794{
1795	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1796	return dev_spec->sgmii_active;
1797}
1798
1799/**
1800 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1801 *  @hw: pointer to the HW structure
1802 *
1803 *  Inits recommended HW defaults after a reset when there is no EEPROM
1804 *  detected. This is only for the 82575.
1805 **/
1806static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1807{
1808	if (hw->mac.type == e1000_82575) {
1809		hw_dbg("Running reset init script for 82575\n");
1810		/* SerDes configuration via SERDESCTRL */
1811		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1812		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1813		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1814		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1815
1816		/* CCM configuration via CCMCTL register */
1817		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1818		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1819
1820		/* PCIe lanes configuration */
1821		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1822		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1823		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1824		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1825
1826		/* PCIe PLL Configuration */
1827		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1828		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1829		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1830	}
1831
1832	return 0;
1833}
1834
1835/**
1836 *  igb_read_mac_addr_82575 - Read device MAC address
1837 *  @hw: pointer to the HW structure
1838 **/
1839static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1840{
1841	s32 ret_val = 0;
1842
1843	/* If there's an alternate MAC address place it in RAR0
1844	 * so that it will override the Si installed default perm
1845	 * address.
1846	 */
1847	ret_val = igb_check_alt_mac_addr(hw);
1848	if (ret_val)
1849		goto out;
1850
1851	ret_val = igb_read_mac_addr(hw);
1852
1853out:
1854	return ret_val;
1855}
1856
1857/**
1858 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1859 * @hw: pointer to the HW structure
1860 *
1861 * In the case of a PHY power down to save power, or to turn off link during a
1862 * driver unload, or wake on lan is not enabled, remove the link.
1863 **/
1864void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1865{
1866	/* If the management interface is not enabled, then power down */
1867	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1868		igb_power_down_phy_copper(hw);
1869}
1870
1871/**
1872 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1873 *  @hw: pointer to the HW structure
1874 *
1875 *  Clears the hardware counters by reading the counter registers.
1876 **/
1877static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1878{
1879	igb_clear_hw_cntrs_base(hw);
1880
1881	rd32(E1000_PRC64);
1882	rd32(E1000_PRC127);
1883	rd32(E1000_PRC255);
1884	rd32(E1000_PRC511);
1885	rd32(E1000_PRC1023);
1886	rd32(E1000_PRC1522);
1887	rd32(E1000_PTC64);
1888	rd32(E1000_PTC127);
1889	rd32(E1000_PTC255);
1890	rd32(E1000_PTC511);
1891	rd32(E1000_PTC1023);
1892	rd32(E1000_PTC1522);
1893
1894	rd32(E1000_ALGNERRC);
1895	rd32(E1000_RXERRC);
1896	rd32(E1000_TNCRS);
1897	rd32(E1000_CEXTERR);
1898	rd32(E1000_TSCTC);
1899	rd32(E1000_TSCTFC);
1900
1901	rd32(E1000_MGTPRC);
1902	rd32(E1000_MGTPDC);
1903	rd32(E1000_MGTPTC);
1904
1905	rd32(E1000_IAC);
1906	rd32(E1000_ICRXOC);
1907
1908	rd32(E1000_ICRXPTC);
1909	rd32(E1000_ICRXATC);
1910	rd32(E1000_ICTXPTC);
1911	rd32(E1000_ICTXATC);
1912	rd32(E1000_ICTXQEC);
1913	rd32(E1000_ICTXQMTC);
1914	rd32(E1000_ICRXDMTC);
1915
1916	rd32(E1000_CBTMPC);
1917	rd32(E1000_HTDPMC);
1918	rd32(E1000_CBRMPC);
1919	rd32(E1000_RPTHC);
1920	rd32(E1000_HGPTC);
1921	rd32(E1000_HTCBDPC);
1922	rd32(E1000_HGORCL);
1923	rd32(E1000_HGORCH);
1924	rd32(E1000_HGOTCL);
1925	rd32(E1000_HGOTCH);
1926	rd32(E1000_LENERRS);
1927
1928	/* This register should not be read in copper configurations */
1929	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1930	    igb_sgmii_active_82575(hw))
1931		rd32(E1000_SCVPC);
1932}
1933
1934/**
1935 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1936 *  @hw: pointer to the HW structure
1937 *
1938 *  After rx enable if manageability is enabled then there is likely some
1939 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1940 *  function clears the fifos and flushes any packets that came in as rx was
1941 *  being enabled.
1942 **/
1943void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1944{
1945	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1946	int i, ms_wait;
1947
1948	/* disable IPv6 options as per hardware errata */
1949	rfctl = rd32(E1000_RFCTL);
1950	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1951	wr32(E1000_RFCTL, rfctl);
1952
1953	if (hw->mac.type != e1000_82575 ||
1954	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1955		return;
1956
1957	/* Disable all RX queues */
1958	for (i = 0; i < 4; i++) {
1959		rxdctl[i] = rd32(E1000_RXDCTL(i));
1960		wr32(E1000_RXDCTL(i),
1961		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1962	}
1963	/* Poll all queues to verify they have shut down */
1964	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1965		usleep_range(1000, 2000);
1966		rx_enabled = 0;
1967		for (i = 0; i < 4; i++)
1968			rx_enabled |= rd32(E1000_RXDCTL(i));
1969		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1970			break;
1971	}
1972
1973	if (ms_wait == 10)
1974		hw_dbg("Queue disable timed out after 10ms\n");
1975
1976	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1977	 * incoming packets are rejected.  Set enable and wait 2ms so that
1978	 * any packet that was coming in as RCTL.EN was set is flushed
1979	 */
1980	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1981
1982	rlpml = rd32(E1000_RLPML);
1983	wr32(E1000_RLPML, 0);
1984
1985	rctl = rd32(E1000_RCTL);
1986	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1987	temp_rctl |= E1000_RCTL_LPE;
1988
1989	wr32(E1000_RCTL, temp_rctl);
1990	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1991	wrfl();
1992	usleep_range(2000, 3000);
1993
1994	/* Enable RX queues that were previously enabled and restore our
1995	 * previous state
1996	 */
1997	for (i = 0; i < 4; i++)
1998		wr32(E1000_RXDCTL(i), rxdctl[i]);
1999	wr32(E1000_RCTL, rctl);
2000	wrfl();
2001
2002	wr32(E1000_RLPML, rlpml);
2003	wr32(E1000_RFCTL, rfctl);
2004
2005	/* Flush receive errors generated by workaround */
2006	rd32(E1000_ROC);
2007	rd32(E1000_RNBC);
2008	rd32(E1000_MPC);
2009}
2010
2011/**
2012 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2013 *  @hw: pointer to the HW structure
2014 *
2015 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2016 *  however the hardware default for these parts is 500us to 1ms which is less
2017 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2018 *  increase the value to either 10ms to 200ms for capability version 1 config,
2019 *  or 16ms to 55ms for version 2.
2020 **/
2021static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2022{
2023	u32 gcr = rd32(E1000_GCR);
2024	s32 ret_val = 0;
2025	u16 pcie_devctl2;
2026
2027	/* only take action if timeout value is defaulted to 0 */
2028	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2029		goto out;
2030
2031	/* if capabilities version is type 1 we can write the
2032	 * timeout of 10ms to 200ms through the GCR register
2033	 */
2034	if (!(gcr & E1000_GCR_CAP_VER2)) {
2035		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2036		goto out;
2037	}
2038
2039	/* for version 2 capabilities we need to write the config space
2040	 * directly in order to set the completion timeout value for
2041	 * 16ms to 55ms
2042	 */
2043	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2044					&pcie_devctl2);
2045	if (ret_val)
2046		goto out;
2047
2048	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2049
2050	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2051					 &pcie_devctl2);
2052out:
2053	/* disable completion timeout resend */
2054	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2055
2056	wr32(E1000_GCR, gcr);
2057	return ret_val;
2058}
2059
2060/**
2061 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2062 *  @hw: pointer to the hardware struct
2063 *  @enable: state to enter, either enabled or disabled
2064 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2065 *
2066 *  enables/disables L2 switch anti-spoofing functionality.
2067 **/
2068void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2069{
2070	u32 reg_val, reg_offset;
2071
2072	switch (hw->mac.type) {
2073	case e1000_82576:
2074		reg_offset = E1000_DTXSWC;
2075		break;
2076	case e1000_i350:
2077	case e1000_i354:
2078		reg_offset = E1000_TXSWC;
2079		break;
2080	default:
2081		return;
2082	}
2083
2084	reg_val = rd32(reg_offset);
2085	if (enable) {
2086		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2087			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2088		/* The PF can spoof - it has to in order to
2089		 * support emulation mode NICs
2090		 */
2091		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2092	} else {
2093		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2094			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2095	}
2096	wr32(reg_offset, reg_val);
2097}
2098
2099/**
2100 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2101 *  @hw: pointer to the hardware struct
2102 *  @enable: state to enter, either enabled or disabled
2103 *
2104 *  enables/disables L2 switch loopback functionality.
2105 **/
2106void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2107{
2108	u32 dtxswc;
2109
2110	switch (hw->mac.type) {
2111	case e1000_82576:
2112		dtxswc = rd32(E1000_DTXSWC);
2113		if (enable)
2114			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2115		else
2116			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2117		wr32(E1000_DTXSWC, dtxswc);
2118		break;
2119	case e1000_i354:
2120	case e1000_i350:
2121		dtxswc = rd32(E1000_TXSWC);
2122		if (enable)
2123			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2124		else
2125			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2126		wr32(E1000_TXSWC, dtxswc);
2127		break;
2128	default:
2129		/* Currently no other hardware supports loopback */
2130		break;
2131	}
2132
2133}
2134
2135/**
2136 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2137 *  @hw: pointer to the hardware struct
2138 *  @enable: state to enter, either enabled or disabled
2139 *
2140 *  enables/disables replication of packets across multiple pools.
2141 **/
2142void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2143{
2144	u32 vt_ctl = rd32(E1000_VT_CTL);
2145
2146	if (enable)
2147		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2148	else
2149		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2150
2151	wr32(E1000_VT_CTL, vt_ctl);
2152}
2153
2154/**
2155 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2156 *  @hw: pointer to the HW structure
2157 *  @offset: register offset to be read
2158 *  @data: pointer to the read data
2159 *
2160 *  Reads the MDI control register in the PHY at offset and stores the
2161 *  information read to data.
2162 **/
2163s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2164{
2165	s32 ret_val;
2166
2167	ret_val = hw->phy.ops.acquire(hw);
2168	if (ret_val)
2169		goto out;
2170
2171	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2172
2173	hw->phy.ops.release(hw);
2174
2175out:
2176	return ret_val;
2177}
2178
2179/**
2180 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2181 *  @hw: pointer to the HW structure
2182 *  @offset: register offset to write to
2183 *  @data: data to write to register at offset
2184 *
2185 *  Writes data to MDI control register in the PHY at offset.
2186 **/
2187s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2188{
2189	s32 ret_val;
2190
2191
2192	ret_val = hw->phy.ops.acquire(hw);
2193	if (ret_val)
2194		goto out;
2195
2196	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2197
2198	hw->phy.ops.release(hw);
2199
2200out:
2201	return ret_val;
2202}
2203
2204/**
2205 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2206 *  @hw: pointer to the HW structure
2207 *
2208 *  This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2209 *  the values found in the EEPROM.  This addresses an issue in which these
2210 *  bits are not restored from EEPROM after reset.
2211 **/
2212static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2213{
2214	s32 ret_val = 0;
2215	u32 mdicnfg;
2216	u16 nvm_data = 0;
2217
2218	if (hw->mac.type != e1000_82580)
2219		goto out;
2220	if (!igb_sgmii_active_82575(hw))
2221		goto out;
2222
2223	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2224				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2225				   &nvm_data);
2226	if (ret_val) {
2227		hw_dbg("NVM Read Error\n");
2228		goto out;
2229	}
2230
2231	mdicnfg = rd32(E1000_MDICNFG);
2232	if (nvm_data & NVM_WORD24_EXT_MDIO)
2233		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2234	if (nvm_data & NVM_WORD24_COM_MDIO)
2235		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2236	wr32(E1000_MDICNFG, mdicnfg);
2237out:
2238	return ret_val;
2239}
2240
2241/**
2242 *  igb_reset_hw_82580 - Reset hardware
2243 *  @hw: pointer to the HW structure
2244 *
2245 *  This resets function or entire device (all ports, etc.)
2246 *  to a known state.
2247 **/
2248static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2249{
2250	s32 ret_val = 0;
2251	/* BH SW mailbox bit in SW_FW_SYNC */
2252	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2253	u32 ctrl;
2254	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2255
2256	hw->dev_spec._82575.global_device_reset = false;
2257
2258	/* due to hw errata, global device reset doesn't always
2259	 * work on 82580
2260	 */
2261	if (hw->mac.type == e1000_82580)
2262		global_device_reset = false;
2263
2264	/* Get current control state. */
2265	ctrl = rd32(E1000_CTRL);
2266
2267	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2268	 * on the last TLP read/write transaction when MAC is reset.
2269	 */
2270	ret_val = igb_disable_pcie_master(hw);
2271	if (ret_val)
2272		hw_dbg("PCI-E Master disable polling has failed.\n");
2273
2274	hw_dbg("Masking off all interrupts\n");
2275	wr32(E1000_IMC, 0xffffffff);
2276	wr32(E1000_RCTL, 0);
2277	wr32(E1000_TCTL, E1000_TCTL_PSP);
2278	wrfl();
2279
2280	usleep_range(10000, 11000);
2281
2282	/* Determine whether or not a global dev reset is requested */
2283	if (global_device_reset &&
2284		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2285			global_device_reset = false;
2286
2287	if (global_device_reset &&
2288		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2289		ctrl |= E1000_CTRL_DEV_RST;
2290	else
2291		ctrl |= E1000_CTRL_RST;
2292
2293	wr32(E1000_CTRL, ctrl);
2294	wrfl();
2295
2296	/* Add delay to insure DEV_RST has time to complete */
2297	if (global_device_reset)
2298		usleep_range(5000, 6000);
2299
2300	ret_val = igb_get_auto_rd_done(hw);
2301	if (ret_val) {
2302		/* When auto config read does not complete, do not
2303		 * return with an error. This can happen in situations
2304		 * where there is no eeprom and prevents getting link.
2305		 */
2306		hw_dbg("Auto Read Done did not complete\n");
2307	}
2308
2309	/* clear global device reset status bit */
2310	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2311
2312	/* Clear any pending interrupt events. */
2313	wr32(E1000_IMC, 0xffffffff);
2314	rd32(E1000_ICR);
2315
2316	ret_val = igb_reset_mdicnfg_82580(hw);
2317	if (ret_val)
2318		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2319
2320	/* Install any alternate MAC address into RAR0 */
2321	ret_val = igb_check_alt_mac_addr(hw);
2322
2323	/* Release semaphore */
2324	if (global_device_reset)
2325		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2326
2327	return ret_val;
2328}
2329
2330/**
2331 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2332 *  @data: data received by reading RXPBS register
2333 *
2334 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2335 *  This function converts the retrieved value into the correct table value
2336 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2337 *  0x0 36  72 144   1   2   4   8  16
2338 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2339 */
2340u16 igb_rxpbs_adjust_82580(u32 data)
2341{
2342	u16 ret_val = 0;
2343
2344	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2345		ret_val = e1000_82580_rxpbs_table[data];
2346
2347	return ret_val;
2348}
2349
2350/**
2351 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2352 *  checksum
2353 *  @hw: pointer to the HW structure
2354 *  @offset: offset in words of the checksum protected region
2355 *
2356 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2357 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2358 **/
2359static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2360						 u16 offset)
2361{
2362	s32 ret_val = 0;
2363	u16 checksum = 0;
2364	u16 i, nvm_data;
2365
2366	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2367		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2368		if (ret_val) {
2369			hw_dbg("NVM Read Error\n");
2370			goto out;
2371		}
2372		checksum += nvm_data;
2373	}
2374
2375	if (checksum != (u16) NVM_SUM) {
2376		hw_dbg("NVM Checksum Invalid\n");
2377		ret_val = -E1000_ERR_NVM;
2378		goto out;
2379	}
2380
2381out:
2382	return ret_val;
2383}
2384
2385/**
2386 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2387 *  checksum
2388 *  @hw: pointer to the HW structure
2389 *  @offset: offset in words of the checksum protected region
2390 *
2391 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2392 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2393 *  value to the EEPROM.
2394 **/
2395static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2396{
2397	s32 ret_val;
2398	u16 checksum = 0;
2399	u16 i, nvm_data;
2400
2401	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2402		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2403		if (ret_val) {
2404			hw_dbg("NVM Read Error while updating checksum.\n");
2405			goto out;
2406		}
2407		checksum += nvm_data;
2408	}
2409	checksum = (u16) NVM_SUM - checksum;
2410	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2411				&checksum);
2412	if (ret_val)
2413		hw_dbg("NVM Write Error while updating checksum.\n");
2414
2415out:
2416	return ret_val;
2417}
2418
2419/**
2420 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2421 *  @hw: pointer to the HW structure
2422 *
2423 *  Calculates the EEPROM section checksum by reading/adding each word of
2424 *  the EEPROM and then verifies that the sum of the EEPROM is
2425 *  equal to 0xBABA.
2426 **/
2427static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2428{
2429	s32 ret_val = 0;
2430	u16 eeprom_regions_count = 1;
2431	u16 j, nvm_data;
2432	u16 nvm_offset;
2433
2434	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2435	if (ret_val) {
2436		hw_dbg("NVM Read Error\n");
2437		goto out;
2438	}
2439
2440	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2441		/* if checksums compatibility bit is set validate checksums
2442		 * for all 4 ports.
2443		 */
2444		eeprom_regions_count = 4;
2445	}
2446
2447	for (j = 0; j < eeprom_regions_count; j++) {
2448		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2449		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2450								nvm_offset);
2451		if (ret_val != 0)
2452			goto out;
2453	}
2454
2455out:
2456	return ret_val;
2457}
2458
2459/**
2460 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2461 *  @hw: pointer to the HW structure
2462 *
2463 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2464 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2465 *  checksum and writes the value to the EEPROM.
2466 **/
2467static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2468{
2469	s32 ret_val;
2470	u16 j, nvm_data;
2471	u16 nvm_offset;
2472
2473	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2474	if (ret_val) {
2475		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2476		goto out;
2477	}
2478
2479	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2480		/* set compatibility bit to validate checksums appropriately */
2481		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2482		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2483					&nvm_data);
2484		if (ret_val) {
2485			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2486			goto out;
2487		}
2488	}
2489
2490	for (j = 0; j < 4; j++) {
2491		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2492		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2493		if (ret_val)
2494			goto out;
2495	}
2496
2497out:
2498	return ret_val;
2499}
2500
2501/**
2502 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2503 *  @hw: pointer to the HW structure
2504 *
2505 *  Calculates the EEPROM section checksum by reading/adding each word of
2506 *  the EEPROM and then verifies that the sum of the EEPROM is
2507 *  equal to 0xBABA.
2508 **/
2509static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2510{
2511	s32 ret_val = 0;
2512	u16 j;
2513	u16 nvm_offset;
2514
2515	for (j = 0; j < 4; j++) {
2516		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2517		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2518								nvm_offset);
2519		if (ret_val != 0)
2520			goto out;
2521	}
2522
2523out:
2524	return ret_val;
2525}
2526
2527/**
2528 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2529 *  @hw: pointer to the HW structure
2530 *
2531 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2532 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2533 *  checksum and writes the value to the EEPROM.
2534 **/
2535static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2536{
2537	s32 ret_val = 0;
2538	u16 j;
2539	u16 nvm_offset;
2540
2541	for (j = 0; j < 4; j++) {
2542		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2543		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2544		if (ret_val != 0)
2545			goto out;
2546	}
2547
2548out:
2549	return ret_val;
2550}
2551
2552/**
2553 *  __igb_access_emi_reg - Read/write EMI register
2554 *  @hw: pointer to the HW structure
2555 *  @address: EMI address to program
2556 *  @data: pointer to value to read/write from/to the EMI address
2557 *  @read: boolean flag to indicate read or write
2558 **/
2559static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2560				  u16 *data, bool read)
2561{
2562	s32 ret_val = 0;
2563
2564	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2565	if (ret_val)
2566		return ret_val;
2567
2568	if (read)
2569		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2570	else
2571		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2572
2573	return ret_val;
2574}
2575
2576/**
2577 *  igb_read_emi_reg - Read Extended Management Interface register
2578 *  @hw: pointer to the HW structure
2579 *  @addr: EMI address to program
2580 *  @data: value to be read from the EMI address
2581 **/
2582s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2583{
2584	return __igb_access_emi_reg(hw, addr, data, true);
2585}
2586
2587/**
2588 *  igb_set_eee_i350 - Enable/disable EEE support
2589 *  @hw: pointer to the HW structure
2590 *  @adv1G: boolean flag enabling 1G EEE advertisement
2591 *  @adv100M: boolean flag enabling 100M EEE advertisement
2592 *
2593 *  Enable/disable EEE based on setting in dev_spec structure.
2594 *
2595 **/
2596s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2597{
2598	u32 ipcnfg, eeer;
2599
2600	if ((hw->mac.type < e1000_i350) ||
2601	    (hw->phy.media_type != e1000_media_type_copper))
2602		goto out;
2603	ipcnfg = rd32(E1000_IPCNFG);
2604	eeer = rd32(E1000_EEER);
2605
2606	/* enable or disable per user setting */
2607	if (!(hw->dev_spec._82575.eee_disable)) {
2608		u32 eee_su = rd32(E1000_EEE_SU);
2609
2610		if (adv100M)
2611			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2612		else
2613			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2614
2615		if (adv1G)
2616			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2617		else
2618			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2619
2620		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2621			E1000_EEER_LPI_FC);
2622
2623		/* This bit should not be set in normal operation. */
2624		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2625			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2626
2627	} else {
2628		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2629			E1000_IPCNFG_EEE_100M_AN);
2630		eeer &= ~(E1000_EEER_TX_LPI_EN |
2631			E1000_EEER_RX_LPI_EN |
2632			E1000_EEER_LPI_FC);
2633	}
2634	wr32(E1000_IPCNFG, ipcnfg);
2635	wr32(E1000_EEER, eeer);
2636	rd32(E1000_IPCNFG);
2637	rd32(E1000_EEER);
2638out:
2639
2640	return 0;
2641}
2642
2643/**
2644 *  igb_set_eee_i354 - Enable/disable EEE support
2645 *  @hw: pointer to the HW structure
2646 *  @adv1G: boolean flag enabling 1G EEE advertisement
2647 *  @adv100M: boolean flag enabling 100M EEE advertisement
2648 *
2649 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2650 *
2651 **/
2652s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2653{
2654	struct e1000_phy_info *phy = &hw->phy;
2655	s32 ret_val = 0;
2656	u16 phy_data;
2657
2658	if ((hw->phy.media_type != e1000_media_type_copper) ||
2659	    ((phy->id != M88E1543_E_PHY_ID) &&
2660	     (phy->id != M88E1512_E_PHY_ID)))
2661		goto out;
2662
2663	if (!hw->dev_spec._82575.eee_disable) {
2664		/* Switch to PHY page 18. */
2665		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2666		if (ret_val)
2667			goto out;
2668
2669		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2670					    &phy_data);
2671		if (ret_val)
2672			goto out;
2673
2674		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2675		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2676					     phy_data);
2677		if (ret_val)
2678			goto out;
2679
2680		/* Return the PHY to page 0. */
2681		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2682		if (ret_val)
2683			goto out;
2684
2685		/* Turn on EEE advertisement. */
2686		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2687					     E1000_EEE_ADV_DEV_I354,
2688					     &phy_data);
2689		if (ret_val)
2690			goto out;
2691
2692		if (adv100M)
2693			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2694		else
2695			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2696
2697		if (adv1G)
2698			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2699		else
2700			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2701
2702		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2703						E1000_EEE_ADV_DEV_I354,
2704						phy_data);
2705	} else {
2706		/* Turn off EEE advertisement. */
2707		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2708					     E1000_EEE_ADV_DEV_I354,
2709					     &phy_data);
2710		if (ret_val)
2711			goto out;
2712
2713		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2714			      E1000_EEE_ADV_1000_SUPPORTED);
2715		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2716					      E1000_EEE_ADV_DEV_I354,
2717					      phy_data);
2718	}
2719
2720out:
2721	return ret_val;
2722}
2723
2724/**
2725 *  igb_get_eee_status_i354 - Get EEE status
2726 *  @hw: pointer to the HW structure
2727 *  @status: EEE status
2728 *
2729 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2730 *  been received.
2731 **/
2732s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2733{
2734	struct e1000_phy_info *phy = &hw->phy;
2735	s32 ret_val = 0;
2736	u16 phy_data;
2737
2738	/* Check if EEE is supported on this device. */
2739	if ((hw->phy.media_type != e1000_media_type_copper) ||
2740	    ((phy->id != M88E1543_E_PHY_ID) &&
2741	     (phy->id != M88E1512_E_PHY_ID)))
2742		goto out;
2743
2744	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2745				     E1000_PCS_STATUS_DEV_I354,
2746				     &phy_data);
2747	if (ret_val)
2748		goto out;
2749
2750	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2751			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2752
2753out:
2754	return ret_val;
2755}
2756
2757#ifdef CONFIG_IGB_HWMON
2758static const u8 e1000_emc_temp_data[4] = {
2759	E1000_EMC_INTERNAL_DATA,
2760	E1000_EMC_DIODE1_DATA,
2761	E1000_EMC_DIODE2_DATA,
2762	E1000_EMC_DIODE3_DATA
2763};
2764static const u8 e1000_emc_therm_limit[4] = {
2765	E1000_EMC_INTERNAL_THERM_LIMIT,
2766	E1000_EMC_DIODE1_THERM_LIMIT,
2767	E1000_EMC_DIODE2_THERM_LIMIT,
2768	E1000_EMC_DIODE3_THERM_LIMIT
2769};
2770
 
2771/**
2772 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2773 *  @hw: pointer to hardware structure
2774 *
2775 *  Updates the temperatures in mac.thermal_sensor_data
2776 **/
2777static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2778{
2779	u16 ets_offset;
2780	u16 ets_cfg;
2781	u16 ets_sensor;
2782	u8  num_sensors;
2783	u8  sensor_index;
2784	u8  sensor_location;
2785	u8  i;
2786	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2787
2788	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2789		return E1000_NOT_IMPLEMENTED;
2790
2791	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2792
2793	/* Return the internal sensor only if ETS is unsupported */
2794	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2795	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2796		return 0;
2797
2798	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2799	if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg)
2800	    != NVM_ETS_TYPE_EMC)
2801		return E1000_NOT_IMPLEMENTED;
2802
2803	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2804	if (num_sensors > E1000_MAX_SENSORS)
2805		num_sensors = E1000_MAX_SENSORS;
2806
2807	for (i = 1; i < num_sensors; i++) {
2808		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2809		sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor);
2810		sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor);
 
 
2811
2812		if (sensor_location != 0)
2813			hw->phy.ops.read_i2c_byte(hw,
2814					e1000_emc_temp_data[sensor_index],
2815					E1000_I2C_THERMAL_SENSOR_ADDR,
2816					&data->sensor[i].temp);
2817	}
2818	return 0;
2819}
2820
2821/**
2822 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2823 *  @hw: pointer to hardware structure
2824 *
2825 *  Sets the thermal sensor thresholds according to the NVM map
2826 *  and save off the threshold and location values into mac.thermal_sensor_data
2827 **/
2828static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2829{
2830	u16 ets_offset;
2831	u16 ets_cfg;
2832	u16 ets_sensor;
2833	u8  low_thresh_delta;
2834	u8  num_sensors;
2835	u8  sensor_index;
2836	u8  sensor_location;
2837	u8  therm_limit;
2838	u8  i;
2839	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2840
2841	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2842		return E1000_NOT_IMPLEMENTED;
2843
2844	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2845
2846	data->sensor[0].location = 0x1;
2847	data->sensor[0].caution_thresh =
2848		(rd32(E1000_THHIGHTC) & 0xFF);
2849	data->sensor[0].max_op_thresh =
2850		(rd32(E1000_THLOWTC) & 0xFF);
2851
2852	/* Return the internal sensor only if ETS is unsupported */
2853	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2854	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2855		return 0;
2856
2857	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2858	if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg)
2859	    != NVM_ETS_TYPE_EMC)
2860		return E1000_NOT_IMPLEMENTED;
2861
2862	low_thresh_delta = FIELD_GET(NVM_ETS_LTHRES_DELTA_MASK, ets_cfg);
 
2863	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2864
2865	for (i = 1; i <= num_sensors; i++) {
2866		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2867		sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor);
2868		sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor);
 
 
2869		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2870
2871		hw->phy.ops.write_i2c_byte(hw,
2872			e1000_emc_therm_limit[sensor_index],
2873			E1000_I2C_THERMAL_SENSOR_ADDR,
2874			therm_limit);
2875
2876		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2877			data->sensor[i].location = sensor_location;
2878			data->sensor[i].caution_thresh = therm_limit;
2879			data->sensor[i].max_op_thresh = therm_limit -
2880							low_thresh_delta;
2881		}
2882	}
2883	return 0;
2884}
2885
2886#endif
2887static struct e1000_mac_operations e1000_mac_ops_82575 = {
2888	.init_hw              = igb_init_hw_82575,
2889	.check_for_link       = igb_check_for_link_82575,
2890	.rar_set              = igb_rar_set,
2891	.read_mac_addr        = igb_read_mac_addr_82575,
2892	.get_speed_and_duplex = igb_get_link_up_info_82575,
2893#ifdef CONFIG_IGB_HWMON
2894	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2895	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2896#endif
2897};
2898
2899static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2900	.acquire              = igb_acquire_phy_82575,
2901	.get_cfg_done         = igb_get_cfg_done_82575,
2902	.release              = igb_release_phy_82575,
2903	.write_i2c_byte       = igb_write_i2c_byte,
2904	.read_i2c_byte        = igb_read_i2c_byte,
2905};
2906
2907static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2908	.acquire              = igb_acquire_nvm_82575,
2909	.read                 = igb_read_nvm_eerd,
2910	.release              = igb_release_nvm_82575,
2911	.write                = igb_write_nvm_spi,
2912};
2913
2914const struct e1000_info e1000_82575_info = {
2915	.get_invariants = igb_get_invariants_82575,
2916	.mac_ops = &e1000_mac_ops_82575,
2917	.phy_ops = &e1000_phy_ops_82575,
2918	.nvm_ops = &e1000_nvm_ops_82575,
2919};
2920
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel(R) Gigabit Ethernet Linux driver
   3 * Copyright(c) 2007-2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, see <http://www.gnu.org/licenses/>.
  16 *
  17 * The full GNU General Public License is included in this distribution in
  18 * the file called "COPYING".
  19 *
  20 * Contact Information:
  21 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  22 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  23 */
  24
  25/* e1000_82575
  26 * e1000_82576
  27 */
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/types.h>
  32#include <linux/if_ether.h>
  33#include <linux/i2c.h>
  34
  35#include "e1000_mac.h"
  36#include "e1000_82575.h"
  37#include "e1000_i210.h"
  38#include "igb.h"
  39
  40static s32  igb_get_invariants_82575(struct e1000_hw *);
  41static s32  igb_acquire_phy_82575(struct e1000_hw *);
  42static void igb_release_phy_82575(struct e1000_hw *);
  43static s32  igb_acquire_nvm_82575(struct e1000_hw *);
  44static void igb_release_nvm_82575(struct e1000_hw *);
  45static s32  igb_check_for_link_82575(struct e1000_hw *);
  46static s32  igb_get_cfg_done_82575(struct e1000_hw *);
  47static s32  igb_init_hw_82575(struct e1000_hw *);
  48static s32  igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
  49static s32  igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
  50static s32  igb_reset_hw_82575(struct e1000_hw *);
  51static s32  igb_reset_hw_82580(struct e1000_hw *);
  52static s32  igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
  53static s32  igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
  54static s32  igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
  55static s32  igb_setup_copper_link_82575(struct e1000_hw *);
  56static s32  igb_setup_serdes_link_82575(struct e1000_hw *);
  57static s32  igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
  58static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
  59static s32  igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
  60static s32  igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
  61						 u16 *);
  62static s32  igb_get_phy_id_82575(struct e1000_hw *);
  63static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
  64static bool igb_sgmii_active_82575(struct e1000_hw *);
  65static s32  igb_reset_init_script_82575(struct e1000_hw *);
  66static s32  igb_read_mac_addr_82575(struct e1000_hw *);
  67static s32  igb_set_pcie_completion_timeout(struct e1000_hw *hw);
  68static s32  igb_reset_mdicnfg_82580(struct e1000_hw *hw);
  69static s32  igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
  70static s32  igb_update_nvm_checksum_82580(struct e1000_hw *hw);
  71static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
  72static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
  73static const u16 e1000_82580_rxpbs_table[] = {
  74	36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
  75
  76/* Due to a hw errata, if the host tries to  configure the VFTA register
  77 * while performing queries from the BMC or DMA, then the VFTA in some
  78 * cases won't be written.
  79 */
  80
  81/**
  82 *  igb_write_vfta_i350 - Write value to VLAN filter table
  83 *  @hw: pointer to the HW structure
  84 *  @offset: register offset in VLAN filter table
  85 *  @value: register value written to VLAN filter table
  86 *
  87 *  Writes value at the given offset in the register array which stores
  88 *  the VLAN filter table.
  89 **/
  90static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
  91{
  92	struct igb_adapter *adapter = hw->back;
  93	int i;
  94
  95	for (i = 10; i--;)
  96		array_wr32(E1000_VFTA, offset, value);
  97
  98	wrfl();
  99	adapter->shadow_vfta[offset] = value;
 100}
 101
 102/**
 103 *  igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
 104 *  @hw: pointer to the HW structure
 105 *
 106 *  Called to determine if the I2C pins are being used for I2C or as an
 107 *  external MDIO interface since the two options are mutually exclusive.
 108 **/
 109static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
 110{
 111	u32 reg = 0;
 112	bool ext_mdio = false;
 113
 114	switch (hw->mac.type) {
 115	case e1000_82575:
 116	case e1000_82576:
 117		reg = rd32(E1000_MDIC);
 118		ext_mdio = !!(reg & E1000_MDIC_DEST);
 119		break;
 120	case e1000_82580:
 121	case e1000_i350:
 122	case e1000_i354:
 123	case e1000_i210:
 124	case e1000_i211:
 125		reg = rd32(E1000_MDICNFG);
 126		ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
 127		break;
 128	default:
 129		break;
 130	}
 131	return ext_mdio;
 132}
 133
 134/**
 135 *  igb_check_for_link_media_swap - Check which M88E1112 interface linked
 136 *  @hw: pointer to the HW structure
 137 *
 138 *  Poll the M88E1112 interfaces to see which interface achieved link.
 139 */
 140static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
 141{
 142	struct e1000_phy_info *phy = &hw->phy;
 143	s32 ret_val;
 144	u16 data;
 145	u8 port = 0;
 146
 147	/* Check the copper medium. */
 148	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 149	if (ret_val)
 150		return ret_val;
 151
 152	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 153	if (ret_val)
 154		return ret_val;
 155
 156	if (data & E1000_M88E1112_STATUS_LINK)
 157		port = E1000_MEDIA_PORT_COPPER;
 158
 159	/* Check the other medium. */
 160	ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
 161	if (ret_val)
 162		return ret_val;
 163
 164	ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
 165	if (ret_val)
 166		return ret_val;
 167
 168
 169	if (data & E1000_M88E1112_STATUS_LINK)
 170		port = E1000_MEDIA_PORT_OTHER;
 171
 172	/* Determine if a swap needs to happen. */
 173	if (port && (hw->dev_spec._82575.media_port != port)) {
 174		hw->dev_spec._82575.media_port = port;
 175		hw->dev_spec._82575.media_changed = true;
 176	}
 177
 178	if (port == E1000_MEDIA_PORT_COPPER) {
 179		/* reset page to 0 */
 180		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 181		if (ret_val)
 182			return ret_val;
 183		igb_check_for_link_82575(hw);
 184	} else {
 185		igb_check_for_link_82575(hw);
 186		/* reset page to 0 */
 187		ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
 188		if (ret_val)
 189			return ret_val;
 190	}
 191
 192	return 0;
 193}
 194
 195/**
 196 *  igb_init_phy_params_82575 - Init PHY func ptrs.
 197 *  @hw: pointer to the HW structure
 198 **/
 199static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
 200{
 201	struct e1000_phy_info *phy = &hw->phy;
 202	s32 ret_val = 0;
 203	u32 ctrl_ext;
 204
 205	if (hw->phy.media_type != e1000_media_type_copper) {
 206		phy->type = e1000_phy_none;
 207		goto out;
 208	}
 209
 210	phy->autoneg_mask	= AUTONEG_ADVERTISE_SPEED_DEFAULT;
 211	phy->reset_delay_us	= 100;
 212
 213	ctrl_ext = rd32(E1000_CTRL_EXT);
 214
 215	if (igb_sgmii_active_82575(hw)) {
 216		phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
 217		ctrl_ext |= E1000_CTRL_I2C_ENA;
 218	} else {
 219		phy->ops.reset = igb_phy_hw_reset;
 220		ctrl_ext &= ~E1000_CTRL_I2C_ENA;
 221	}
 222
 223	wr32(E1000_CTRL_EXT, ctrl_ext);
 224	igb_reset_mdicnfg_82580(hw);
 225
 226	if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
 227		phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
 228		phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
 229	} else {
 230		switch (hw->mac.type) {
 231		case e1000_82580:
 232		case e1000_i350:
 233		case e1000_i354:
 234		case e1000_i210:
 235		case e1000_i211:
 236			phy->ops.read_reg = igb_read_phy_reg_82580;
 237			phy->ops.write_reg = igb_write_phy_reg_82580;
 238			break;
 239		default:
 240			phy->ops.read_reg = igb_read_phy_reg_igp;
 241			phy->ops.write_reg = igb_write_phy_reg_igp;
 242		}
 243	}
 244
 245	/* set lan id */
 246	hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
 247			E1000_STATUS_FUNC_SHIFT;
 248
 249	/* Make sure the PHY is in a good state. Several people have reported
 250	 * firmware leaving the PHY's page select register set to something
 251	 * other than the default of zero, which causes the PHY ID read to
 252	 * access something other than the intended register.
 253	 */
 254	ret_val = hw->phy.ops.reset(hw);
 255	if (ret_val) {
 256		hw_dbg("Error resetting the PHY.\n");
 257		goto out;
 258	}
 259
 260	/* Set phy->phy_addr and phy->id. */
 261	igb_write_phy_reg_82580(hw, I347AT4_PAGE_SELECT, 0);
 262	ret_val = igb_get_phy_id_82575(hw);
 263	if (ret_val)
 264		return ret_val;
 265
 266	/* Verify phy id and set remaining function pointers */
 267	switch (phy->id) {
 268	case M88E1543_E_PHY_ID:
 269	case M88E1512_E_PHY_ID:
 270	case I347AT4_E_PHY_ID:
 271	case M88E1112_E_PHY_ID:
 272	case M88E1111_I_PHY_ID:
 273		phy->type		= e1000_phy_m88;
 274		phy->ops.check_polarity	= igb_check_polarity_m88;
 275		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 276		if (phy->id != M88E1111_I_PHY_ID)
 277			phy->ops.get_cable_length =
 278					 igb_get_cable_length_m88_gen2;
 279		else
 280			phy->ops.get_cable_length = igb_get_cable_length_m88;
 281		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 282		/* Check if this PHY is configured for media swap. */
 283		if (phy->id == M88E1112_E_PHY_ID) {
 284			u16 data;
 285
 286			ret_val = phy->ops.write_reg(hw,
 287						     E1000_M88E1112_PAGE_ADDR,
 288						     2);
 289			if (ret_val)
 290				goto out;
 291
 292			ret_val = phy->ops.read_reg(hw,
 293						    E1000_M88E1112_MAC_CTRL_1,
 294						    &data);
 295			if (ret_val)
 296				goto out;
 297
 298			data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
 299			       E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
 300			if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
 301			    data == E1000_M88E1112_AUTO_COPPER_BASEX)
 302				hw->mac.ops.check_for_link =
 303						igb_check_for_link_media_swap;
 304		}
 305		if (phy->id == M88E1512_E_PHY_ID) {
 306			ret_val = igb_initialize_M88E1512_phy(hw);
 307			if (ret_val)
 308				goto out;
 309		}
 310		if (phy->id == M88E1543_E_PHY_ID) {
 311			ret_val = igb_initialize_M88E1543_phy(hw);
 312			if (ret_val)
 313				goto out;
 314		}
 315		break;
 316	case IGP03E1000_E_PHY_ID:
 317		phy->type = e1000_phy_igp_3;
 318		phy->ops.get_phy_info = igb_get_phy_info_igp;
 319		phy->ops.get_cable_length = igb_get_cable_length_igp_2;
 320		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
 321		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
 322		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
 323		break;
 324	case I82580_I_PHY_ID:
 325	case I350_I_PHY_ID:
 326		phy->type = e1000_phy_82580;
 327		phy->ops.force_speed_duplex =
 328					 igb_phy_force_speed_duplex_82580;
 329		phy->ops.get_cable_length = igb_get_cable_length_82580;
 330		phy->ops.get_phy_info = igb_get_phy_info_82580;
 331		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 332		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 333		break;
 334	case I210_I_PHY_ID:
 335		phy->type		= e1000_phy_i210;
 336		phy->ops.check_polarity	= igb_check_polarity_m88;
 337		phy->ops.get_cfg_done	= igb_get_cfg_done_i210;
 338		phy->ops.get_phy_info	= igb_get_phy_info_m88;
 339		phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
 340		phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
 341		phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
 342		phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
 343		break;
 344	case BCM54616_E_PHY_ID:
 345		phy->type = e1000_phy_bcm54616;
 346		break;
 347	default:
 348		ret_val = -E1000_ERR_PHY;
 349		goto out;
 350	}
 351
 352out:
 353	return ret_val;
 354}
 355
 356/**
 357 *  igb_init_nvm_params_82575 - Init NVM func ptrs.
 358 *  @hw: pointer to the HW structure
 359 **/
 360static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
 361{
 362	struct e1000_nvm_info *nvm = &hw->nvm;
 363	u32 eecd = rd32(E1000_EECD);
 364	u16 size;
 365
 366	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 367		     E1000_EECD_SIZE_EX_SHIFT);
 368
 369	/* Added to a constant, "size" becomes the left-shift value
 370	 * for setting word_size.
 371	 */
 372	size += NVM_WORD_SIZE_BASE_SHIFT;
 373
 374	/* Just in case size is out of range, cap it to the largest
 375	 * EEPROM size supported
 376	 */
 377	if (size > 15)
 378		size = 15;
 379
 380	nvm->word_size = BIT(size);
 381	nvm->opcode_bits = 8;
 382	nvm->delay_usec = 1;
 383
 384	switch (nvm->override) {
 385	case e1000_nvm_override_spi_large:
 386		nvm->page_size = 32;
 387		nvm->address_bits = 16;
 388		break;
 389	case e1000_nvm_override_spi_small:
 390		nvm->page_size = 8;
 391		nvm->address_bits = 8;
 392		break;
 393	default:
 394		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 395		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
 396				    16 : 8;
 397		break;
 398	}
 399	if (nvm->word_size == BIT(15))
 400		nvm->page_size = 128;
 401
 402	nvm->type = e1000_nvm_eeprom_spi;
 403
 404	/* NVM Function Pointers */
 405	nvm->ops.acquire = igb_acquire_nvm_82575;
 406	nvm->ops.release = igb_release_nvm_82575;
 407	nvm->ops.write = igb_write_nvm_spi;
 408	nvm->ops.validate = igb_validate_nvm_checksum;
 409	nvm->ops.update = igb_update_nvm_checksum;
 410	if (nvm->word_size < BIT(15))
 411		nvm->ops.read = igb_read_nvm_eerd;
 412	else
 413		nvm->ops.read = igb_read_nvm_spi;
 414
 415	/* override generic family function pointers for specific descendants */
 416	switch (hw->mac.type) {
 417	case e1000_82580:
 418		nvm->ops.validate = igb_validate_nvm_checksum_82580;
 419		nvm->ops.update = igb_update_nvm_checksum_82580;
 420		break;
 421	case e1000_i354:
 422	case e1000_i350:
 423		nvm->ops.validate = igb_validate_nvm_checksum_i350;
 424		nvm->ops.update = igb_update_nvm_checksum_i350;
 425		break;
 426	default:
 427		break;
 428	}
 429
 430	return 0;
 431}
 432
 433/**
 434 *  igb_init_mac_params_82575 - Init MAC func ptrs.
 435 *  @hw: pointer to the HW structure
 436 **/
 437static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
 438{
 439	struct e1000_mac_info *mac = &hw->mac;
 440	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 441
 442	/* Set mta register count */
 443	mac->mta_reg_count = 128;
 444	/* Set uta register count */
 445	mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
 446	/* Set rar entry count */
 447	switch (mac->type) {
 448	case e1000_82576:
 449		mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
 450		break;
 451	case e1000_82580:
 452		mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
 453		break;
 454	case e1000_i350:
 455	case e1000_i354:
 456		mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
 457		break;
 458	default:
 459		mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
 460		break;
 461	}
 462	/* reset */
 463	if (mac->type >= e1000_82580)
 464		mac->ops.reset_hw = igb_reset_hw_82580;
 465	else
 466		mac->ops.reset_hw = igb_reset_hw_82575;
 467
 468	if (mac->type >= e1000_i210) {
 469		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
 470		mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
 471
 472	} else {
 473		mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
 474		mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
 475	}
 476
 477	if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
 478		mac->ops.write_vfta = igb_write_vfta_i350;
 479	else
 480		mac->ops.write_vfta = igb_write_vfta;
 481
 482	/* Set if part includes ASF firmware */
 483	mac->asf_firmware_present = true;
 484	/* Set if manageability features are enabled. */
 485	mac->arc_subsystem_valid =
 486		(rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
 487			? true : false;
 488	/* enable EEE on i350 parts and later parts */
 489	if (mac->type >= e1000_i350)
 490		dev_spec->eee_disable = false;
 491	else
 492		dev_spec->eee_disable = true;
 493	/* Allow a single clear of the SW semaphore on I210 and newer */
 494	if (mac->type >= e1000_i210)
 495		dev_spec->clear_semaphore_once = true;
 496	/* physical interface link setup */
 497	mac->ops.setup_physical_interface =
 498		(hw->phy.media_type == e1000_media_type_copper)
 499			? igb_setup_copper_link_82575
 500			: igb_setup_serdes_link_82575;
 501
 502	if (mac->type == e1000_82580) {
 503		switch (hw->device_id) {
 504		/* feature not supported on these id's */
 505		case E1000_DEV_ID_DH89XXCC_SGMII:
 506		case E1000_DEV_ID_DH89XXCC_SERDES:
 507		case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 508		case E1000_DEV_ID_DH89XXCC_SFP:
 509			break;
 510		default:
 511			hw->dev_spec._82575.mas_capable = true;
 512			break;
 513		}
 514	}
 515	return 0;
 516}
 517
 518/**
 519 *  igb_set_sfp_media_type_82575 - derives SFP module media type.
 520 *  @hw: pointer to the HW structure
 521 *
 522 *  The media type is chosen based on SFP module.
 523 *  compatibility flags retrieved from SFP ID EEPROM.
 524 **/
 525static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
 526{
 527	s32 ret_val = E1000_ERR_CONFIG;
 528	u32 ctrl_ext = 0;
 529	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 530	struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
 531	u8 tranceiver_type = 0;
 532	s32 timeout = 3;
 533
 534	/* Turn I2C interface ON and power on sfp cage */
 535	ctrl_ext = rd32(E1000_CTRL_EXT);
 536	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
 537	wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
 538
 539	wrfl();
 540
 541	/* Read SFP module data */
 542	while (timeout) {
 543		ret_val = igb_read_sfp_data_byte(hw,
 544			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
 545			&tranceiver_type);
 546		if (ret_val == 0)
 547			break;
 548		msleep(100);
 549		timeout--;
 550	}
 551	if (ret_val != 0)
 552		goto out;
 553
 554	ret_val = igb_read_sfp_data_byte(hw,
 555			E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
 556			(u8 *)eth_flags);
 557	if (ret_val != 0)
 558		goto out;
 559
 560	/* Check if there is some SFP module plugged and powered */
 561	if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
 562	    (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
 563		dev_spec->module_plugged = true;
 564		if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
 565			hw->phy.media_type = e1000_media_type_internal_serdes;
 566		} else if (eth_flags->e100_base_fx) {
 567			dev_spec->sgmii_active = true;
 568			hw->phy.media_type = e1000_media_type_internal_serdes;
 569		} else if (eth_flags->e1000_base_t) {
 570			dev_spec->sgmii_active = true;
 571			hw->phy.media_type = e1000_media_type_copper;
 572		} else {
 573			hw->phy.media_type = e1000_media_type_unknown;
 574			hw_dbg("PHY module has not been recognized\n");
 575			goto out;
 576		}
 577	} else {
 578		hw->phy.media_type = e1000_media_type_unknown;
 579	}
 580	ret_val = 0;
 581out:
 582	/* Restore I2C interface setting */
 583	wr32(E1000_CTRL_EXT, ctrl_ext);
 584	return ret_val;
 585}
 586
 587static s32 igb_get_invariants_82575(struct e1000_hw *hw)
 588{
 589	struct e1000_mac_info *mac = &hw->mac;
 590	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
 591	s32 ret_val;
 592	u32 ctrl_ext = 0;
 593	u32 link_mode = 0;
 594
 595	switch (hw->device_id) {
 596	case E1000_DEV_ID_82575EB_COPPER:
 597	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 598	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 599		mac->type = e1000_82575;
 600		break;
 601	case E1000_DEV_ID_82576:
 602	case E1000_DEV_ID_82576_NS:
 603	case E1000_DEV_ID_82576_NS_SERDES:
 604	case E1000_DEV_ID_82576_FIBER:
 605	case E1000_DEV_ID_82576_SERDES:
 606	case E1000_DEV_ID_82576_QUAD_COPPER:
 607	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 608	case E1000_DEV_ID_82576_SERDES_QUAD:
 609		mac->type = e1000_82576;
 610		break;
 611	case E1000_DEV_ID_82580_COPPER:
 612	case E1000_DEV_ID_82580_FIBER:
 613	case E1000_DEV_ID_82580_QUAD_FIBER:
 614	case E1000_DEV_ID_82580_SERDES:
 615	case E1000_DEV_ID_82580_SGMII:
 616	case E1000_DEV_ID_82580_COPPER_DUAL:
 617	case E1000_DEV_ID_DH89XXCC_SGMII:
 618	case E1000_DEV_ID_DH89XXCC_SERDES:
 619	case E1000_DEV_ID_DH89XXCC_BACKPLANE:
 620	case E1000_DEV_ID_DH89XXCC_SFP:
 621		mac->type = e1000_82580;
 622		break;
 623	case E1000_DEV_ID_I350_COPPER:
 624	case E1000_DEV_ID_I350_FIBER:
 625	case E1000_DEV_ID_I350_SERDES:
 626	case E1000_DEV_ID_I350_SGMII:
 627		mac->type = e1000_i350;
 628		break;
 629	case E1000_DEV_ID_I210_COPPER:
 630	case E1000_DEV_ID_I210_FIBER:
 631	case E1000_DEV_ID_I210_SERDES:
 632	case E1000_DEV_ID_I210_SGMII:
 633	case E1000_DEV_ID_I210_COPPER_FLASHLESS:
 634	case E1000_DEV_ID_I210_SERDES_FLASHLESS:
 635		mac->type = e1000_i210;
 636		break;
 637	case E1000_DEV_ID_I211_COPPER:
 638		mac->type = e1000_i211;
 639		break;
 640	case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
 641	case E1000_DEV_ID_I354_SGMII:
 642	case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
 643		mac->type = e1000_i354;
 644		break;
 645	default:
 646		return -E1000_ERR_MAC_INIT;
 647	}
 648
 649	/* Set media type */
 650	/* The 82575 uses bits 22:23 for link mode. The mode can be changed
 651	 * based on the EEPROM. We cannot rely upon device ID. There
 652	 * is no distinguishable difference between fiber and internal
 653	 * SerDes mode on the 82575. There can be an external PHY attached
 654	 * on the SGMII interface. For this, we'll set sgmii_active to true.
 655	 */
 656	hw->phy.media_type = e1000_media_type_copper;
 657	dev_spec->sgmii_active = false;
 658	dev_spec->module_plugged = false;
 659
 660	ctrl_ext = rd32(E1000_CTRL_EXT);
 661
 662	link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
 663	switch (link_mode) {
 664	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
 665		hw->phy.media_type = e1000_media_type_internal_serdes;
 666		break;
 667	case E1000_CTRL_EXT_LINK_MODE_SGMII:
 668		/* Get phy control interface type set (MDIO vs. I2C)*/
 669		if (igb_sgmii_uses_mdio_82575(hw)) {
 670			hw->phy.media_type = e1000_media_type_copper;
 671			dev_spec->sgmii_active = true;
 672			break;
 673		}
 674		/* fall through for I2C based SGMII */
 675	case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
 676		/* read media type from SFP EEPROM */
 677		ret_val = igb_set_sfp_media_type_82575(hw);
 678		if ((ret_val != 0) ||
 679		    (hw->phy.media_type == e1000_media_type_unknown)) {
 680			/* If media type was not identified then return media
 681			 * type defined by the CTRL_EXT settings.
 682			 */
 683			hw->phy.media_type = e1000_media_type_internal_serdes;
 684
 685			if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
 686				hw->phy.media_type = e1000_media_type_copper;
 687				dev_spec->sgmii_active = true;
 688			}
 689
 690			break;
 691		}
 692
 693		/* do not change link mode for 100BaseFX */
 694		if (dev_spec->eth_flags.e100_base_fx)
 695			break;
 696
 697		/* change current link mode setting */
 698		ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 699
 700		if (hw->phy.media_type == e1000_media_type_copper)
 701			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
 702		else
 703			ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 704
 705		wr32(E1000_CTRL_EXT, ctrl_ext);
 706
 707		break;
 708	default:
 709		break;
 710	}
 711
 712	/* mac initialization and operations */
 713	ret_val = igb_init_mac_params_82575(hw);
 714	if (ret_val)
 715		goto out;
 716
 717	/* NVM initialization */
 718	ret_val = igb_init_nvm_params_82575(hw);
 719	switch (hw->mac.type) {
 720	case e1000_i210:
 721	case e1000_i211:
 722		ret_val = igb_init_nvm_params_i210(hw);
 723		break;
 724	default:
 725		break;
 726	}
 727
 728	if (ret_val)
 729		goto out;
 730
 731	/* if part supports SR-IOV then initialize mailbox parameters */
 732	switch (mac->type) {
 733	case e1000_82576:
 734	case e1000_i350:
 735		igb_init_mbx_params_pf(hw);
 736		break;
 737	default:
 738		break;
 739	}
 740
 741	/* setup PHY parameters */
 742	ret_val = igb_init_phy_params_82575(hw);
 743
 744out:
 745	return ret_val;
 746}
 747
 748/**
 749 *  igb_acquire_phy_82575 - Acquire rights to access PHY
 750 *  @hw: pointer to the HW structure
 751 *
 752 *  Acquire access rights to the correct PHY.  This is a
 753 *  function pointer entry point called by the api module.
 754 **/
 755static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
 756{
 757	u16 mask = E1000_SWFW_PHY0_SM;
 758
 759	if (hw->bus.func == E1000_FUNC_1)
 760		mask = E1000_SWFW_PHY1_SM;
 761	else if (hw->bus.func == E1000_FUNC_2)
 762		mask = E1000_SWFW_PHY2_SM;
 763	else if (hw->bus.func == E1000_FUNC_3)
 764		mask = E1000_SWFW_PHY3_SM;
 765
 766	return hw->mac.ops.acquire_swfw_sync(hw, mask);
 767}
 768
 769/**
 770 *  igb_release_phy_82575 - Release rights to access PHY
 771 *  @hw: pointer to the HW structure
 772 *
 773 *  A wrapper to release access rights to the correct PHY.  This is a
 774 *  function pointer entry point called by the api module.
 775 **/
 776static void igb_release_phy_82575(struct e1000_hw *hw)
 777{
 778	u16 mask = E1000_SWFW_PHY0_SM;
 779
 780	if (hw->bus.func == E1000_FUNC_1)
 781		mask = E1000_SWFW_PHY1_SM;
 782	else if (hw->bus.func == E1000_FUNC_2)
 783		mask = E1000_SWFW_PHY2_SM;
 784	else if (hw->bus.func == E1000_FUNC_3)
 785		mask = E1000_SWFW_PHY3_SM;
 786
 787	hw->mac.ops.release_swfw_sync(hw, mask);
 788}
 789
 790/**
 791 *  igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
 792 *  @hw: pointer to the HW structure
 793 *  @offset: register offset to be read
 794 *  @data: pointer to the read data
 795 *
 796 *  Reads the PHY register at offset using the serial gigabit media independent
 797 *  interface and stores the retrieved information in data.
 798 **/
 799static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 800					  u16 *data)
 801{
 802	s32 ret_val = -E1000_ERR_PARAM;
 803
 804	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 805		hw_dbg("PHY Address %u is out of range\n", offset);
 806		goto out;
 807	}
 808
 809	ret_val = hw->phy.ops.acquire(hw);
 810	if (ret_val)
 811		goto out;
 812
 813	ret_val = igb_read_phy_reg_i2c(hw, offset, data);
 814
 815	hw->phy.ops.release(hw);
 816
 817out:
 818	return ret_val;
 819}
 820
 821/**
 822 *  igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
 823 *  @hw: pointer to the HW structure
 824 *  @offset: register offset to write to
 825 *  @data: data to write at register offset
 826 *
 827 *  Writes the data to PHY register at the offset using the serial gigabit
 828 *  media independent interface.
 829 **/
 830static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
 831					   u16 data)
 832{
 833	s32 ret_val = -E1000_ERR_PARAM;
 834
 835
 836	if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
 837		hw_dbg("PHY Address %d is out of range\n", offset);
 838		goto out;
 839	}
 840
 841	ret_val = hw->phy.ops.acquire(hw);
 842	if (ret_val)
 843		goto out;
 844
 845	ret_val = igb_write_phy_reg_i2c(hw, offset, data);
 846
 847	hw->phy.ops.release(hw);
 848
 849out:
 850	return ret_val;
 851}
 852
 853/**
 854 *  igb_get_phy_id_82575 - Retrieve PHY addr and id
 855 *  @hw: pointer to the HW structure
 856 *
 857 *  Retrieves the PHY address and ID for both PHY's which do and do not use
 858 *  sgmi interface.
 859 **/
 860static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
 861{
 862	struct e1000_phy_info *phy = &hw->phy;
 863	s32  ret_val = 0;
 864	u16 phy_id;
 865	u32 ctrl_ext;
 866	u32 mdic;
 867
 868	/* Extra read required for some PHY's on i354 */
 869	if (hw->mac.type == e1000_i354)
 870		igb_get_phy_id(hw);
 871
 872	/* For SGMII PHYs, we try the list of possible addresses until
 873	 * we find one that works.  For non-SGMII PHYs
 874	 * (e.g. integrated copper PHYs), an address of 1 should
 875	 * work.  The result of this function should mean phy->phy_addr
 876	 * and phy->id are set correctly.
 877	 */
 878	if (!(igb_sgmii_active_82575(hw))) {
 879		phy->addr = 1;
 880		ret_val = igb_get_phy_id(hw);
 881		goto out;
 882	}
 883
 884	if (igb_sgmii_uses_mdio_82575(hw)) {
 885		switch (hw->mac.type) {
 886		case e1000_82575:
 887		case e1000_82576:
 888			mdic = rd32(E1000_MDIC);
 889			mdic &= E1000_MDIC_PHY_MASK;
 890			phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
 891			break;
 892		case e1000_82580:
 893		case e1000_i350:
 894		case e1000_i354:
 895		case e1000_i210:
 896		case e1000_i211:
 897			mdic = rd32(E1000_MDICNFG);
 898			mdic &= E1000_MDICNFG_PHY_MASK;
 899			phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
 900			break;
 901		default:
 902			ret_val = -E1000_ERR_PHY;
 903			goto out;
 904		}
 905		ret_val = igb_get_phy_id(hw);
 906		goto out;
 907	}
 908
 909	/* Power on sgmii phy if it is disabled */
 910	ctrl_ext = rd32(E1000_CTRL_EXT);
 911	wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
 912	wrfl();
 913	msleep(300);
 914
 915	/* The address field in the I2CCMD register is 3 bits and 0 is invalid.
 916	 * Therefore, we need to test 1-7
 917	 */
 918	for (phy->addr = 1; phy->addr < 8; phy->addr++) {
 919		ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
 920		if (ret_val == 0) {
 921			hw_dbg("Vendor ID 0x%08X read at address %u\n",
 922			       phy_id, phy->addr);
 923			/* At the time of this writing, The M88 part is
 924			 * the only supported SGMII PHY product.
 925			 */
 926			if (phy_id == M88_VENDOR)
 927				break;
 928		} else {
 929			hw_dbg("PHY address %u was unreadable\n", phy->addr);
 930		}
 931	}
 932
 933	/* A valid PHY type couldn't be found. */
 934	if (phy->addr == 8) {
 935		phy->addr = 0;
 936		ret_val = -E1000_ERR_PHY;
 937		goto out;
 938	} else {
 939		ret_val = igb_get_phy_id(hw);
 940	}
 941
 942	/* restore previous sfp cage power state */
 943	wr32(E1000_CTRL_EXT, ctrl_ext);
 944
 945out:
 946	return ret_val;
 947}
 948
 949/**
 950 *  igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
 951 *  @hw: pointer to the HW structure
 952 *
 953 *  Resets the PHY using the serial gigabit media independent interface.
 954 **/
 955static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
 956{
 957	struct e1000_phy_info *phy = &hw->phy;
 958	s32 ret_val;
 959
 960	/* This isn't a true "hard" reset, but is the only reset
 961	 * available to us at this time.
 962	 */
 963
 964	hw_dbg("Soft resetting SGMII attached PHY...\n");
 965
 966	/* SFP documentation requires the following to configure the SPF module
 967	 * to work on SGMII.  No further documentation is given.
 968	 */
 969	ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
 970	if (ret_val)
 971		goto out;
 972
 973	ret_val = igb_phy_sw_reset(hw);
 974	if (ret_val)
 975		goto out;
 976
 977	if (phy->id == M88E1512_E_PHY_ID)
 978		ret_val = igb_initialize_M88E1512_phy(hw);
 979	if (phy->id == M88E1543_E_PHY_ID)
 980		ret_val = igb_initialize_M88E1543_phy(hw);
 981out:
 982	return ret_val;
 983}
 984
 985/**
 986 *  igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
 987 *  @hw: pointer to the HW structure
 988 *  @active: true to enable LPLU, false to disable
 989 *
 990 *  Sets the LPLU D0 state according to the active flag.  When
 991 *  activating LPLU this function also disables smart speed
 992 *  and vice versa.  LPLU will not be activated unless the
 993 *  device autonegotiation advertisement meets standards of
 994 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
 995 *  This is a function pointer entry point only called by
 996 *  PHY setup routines.
 997 **/
 998static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
 999{
1000	struct e1000_phy_info *phy = &hw->phy;
1001	s32 ret_val;
1002	u16 data;
1003
1004	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1005	if (ret_val)
1006		goto out;
1007
1008	if (active) {
1009		data |= IGP02E1000_PM_D0_LPLU;
1010		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1011						 data);
1012		if (ret_val)
1013			goto out;
1014
1015		/* When LPLU is enabled, we should disable SmartSpeed */
1016		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1017						&data);
1018		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1019		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1020						 data);
1021		if (ret_val)
1022			goto out;
1023	} else {
1024		data &= ~IGP02E1000_PM_D0_LPLU;
1025		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1026						 data);
1027		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1028		 * during Dx states where the power conservation is most
1029		 * important.  During driver activity we should enable
1030		 * SmartSpeed, so performance is maintained.
1031		 */
1032		if (phy->smart_speed == e1000_smart_speed_on) {
1033			ret_val = phy->ops.read_reg(hw,
1034					IGP01E1000_PHY_PORT_CONFIG, &data);
1035			if (ret_val)
1036				goto out;
1037
1038			data |= IGP01E1000_PSCFR_SMART_SPEED;
1039			ret_val = phy->ops.write_reg(hw,
1040					IGP01E1000_PHY_PORT_CONFIG, data);
1041			if (ret_val)
1042				goto out;
1043		} else if (phy->smart_speed == e1000_smart_speed_off) {
1044			ret_val = phy->ops.read_reg(hw,
1045					IGP01E1000_PHY_PORT_CONFIG, &data);
1046			if (ret_val)
1047				goto out;
1048
1049			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1050			ret_val = phy->ops.write_reg(hw,
1051					IGP01E1000_PHY_PORT_CONFIG, data);
1052			if (ret_val)
1053				goto out;
1054		}
1055	}
1056
1057out:
1058	return ret_val;
1059}
1060
1061/**
1062 *  igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1063 *  @hw: pointer to the HW structure
1064 *  @active: true to enable LPLU, false to disable
1065 *
1066 *  Sets the LPLU D0 state according to the active flag.  When
1067 *  activating LPLU this function also disables smart speed
1068 *  and vice versa.  LPLU will not be activated unless the
1069 *  device autonegotiation advertisement meets standards of
1070 *  either 10 or 10/100 or 10/100/1000 at all duplexes.
1071 *  This is a function pointer entry point only called by
1072 *  PHY setup routines.
1073 **/
1074static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1075{
1076	struct e1000_phy_info *phy = &hw->phy;
1077	u16 data;
1078
1079	data = rd32(E1000_82580_PHY_POWER_MGMT);
1080
1081	if (active) {
1082		data |= E1000_82580_PM_D0_LPLU;
1083
1084		/* When LPLU is enabled, we should disable SmartSpeed */
1085		data &= ~E1000_82580_PM_SPD;
1086	} else {
1087		data &= ~E1000_82580_PM_D0_LPLU;
1088
1089		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1090		 * during Dx states where the power conservation is most
1091		 * important.  During driver activity we should enable
1092		 * SmartSpeed, so performance is maintained.
1093		 */
1094		if (phy->smart_speed == e1000_smart_speed_on)
1095			data |= E1000_82580_PM_SPD;
1096		else if (phy->smart_speed == e1000_smart_speed_off)
1097			data &= ~E1000_82580_PM_SPD; }
1098
1099	wr32(E1000_82580_PHY_POWER_MGMT, data);
1100	return 0;
1101}
1102
1103/**
1104 *  igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1105 *  @hw: pointer to the HW structure
1106 *  @active: boolean used to enable/disable lplu
1107 *
1108 *  Success returns 0, Failure returns 1
1109 *
1110 *  The low power link up (lplu) state is set to the power management level D3
1111 *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1112 *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1113 *  is used during Dx states where the power conservation is most important.
1114 *  During driver activity, SmartSpeed should be enabled so performance is
1115 *  maintained.
1116 **/
1117static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1118{
1119	struct e1000_phy_info *phy = &hw->phy;
1120	u16 data;
1121
1122	data = rd32(E1000_82580_PHY_POWER_MGMT);
1123
1124	if (!active) {
1125		data &= ~E1000_82580_PM_D3_LPLU;
1126		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1127		 * during Dx states where the power conservation is most
1128		 * important.  During driver activity we should enable
1129		 * SmartSpeed, so performance is maintained.
1130		 */
1131		if (phy->smart_speed == e1000_smart_speed_on)
1132			data |= E1000_82580_PM_SPD;
1133		else if (phy->smart_speed == e1000_smart_speed_off)
1134			data &= ~E1000_82580_PM_SPD;
1135	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1136		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1137		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1138		data |= E1000_82580_PM_D3_LPLU;
1139		/* When LPLU is enabled, we should disable SmartSpeed */
1140		data &= ~E1000_82580_PM_SPD;
1141	}
1142
1143	wr32(E1000_82580_PHY_POWER_MGMT, data);
1144	return 0;
1145}
1146
1147/**
1148 *  igb_acquire_nvm_82575 - Request for access to EEPROM
1149 *  @hw: pointer to the HW structure
1150 *
1151 *  Acquire the necessary semaphores for exclusive access to the EEPROM.
1152 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
1153 *  Return successful if access grant bit set, else clear the request for
1154 *  EEPROM access and return -E1000_ERR_NVM (-1).
1155 **/
1156static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1157{
1158	s32 ret_val;
1159
1160	ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1161	if (ret_val)
1162		goto out;
1163
1164	ret_val = igb_acquire_nvm(hw);
1165
1166	if (ret_val)
1167		hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1168
1169out:
1170	return ret_val;
1171}
1172
1173/**
1174 *  igb_release_nvm_82575 - Release exclusive access to EEPROM
1175 *  @hw: pointer to the HW structure
1176 *
1177 *  Stop any current commands to the EEPROM and clear the EEPROM request bit,
1178 *  then release the semaphores acquired.
1179 **/
1180static void igb_release_nvm_82575(struct e1000_hw *hw)
1181{
1182	igb_release_nvm(hw);
1183	hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1184}
1185
1186/**
1187 *  igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1188 *  @hw: pointer to the HW structure
1189 *  @mask: specifies which semaphore to acquire
1190 *
1191 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
1192 *  will also specify which port we're acquiring the lock for.
1193 **/
1194static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1195{
1196	u32 swfw_sync;
1197	u32 swmask = mask;
1198	u32 fwmask = mask << 16;
1199	s32 ret_val = 0;
1200	s32 i = 0, timeout = 200;
1201
1202	while (i < timeout) {
1203		if (igb_get_hw_semaphore(hw)) {
1204			ret_val = -E1000_ERR_SWFW_SYNC;
1205			goto out;
1206		}
1207
1208		swfw_sync = rd32(E1000_SW_FW_SYNC);
1209		if (!(swfw_sync & (fwmask | swmask)))
1210			break;
1211
1212		/* Firmware currently using resource (fwmask)
1213		 * or other software thread using resource (swmask)
1214		 */
1215		igb_put_hw_semaphore(hw);
1216		mdelay(5);
1217		i++;
1218	}
1219
1220	if (i == timeout) {
1221		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1222		ret_val = -E1000_ERR_SWFW_SYNC;
1223		goto out;
1224	}
1225
1226	swfw_sync |= swmask;
1227	wr32(E1000_SW_FW_SYNC, swfw_sync);
1228
1229	igb_put_hw_semaphore(hw);
1230
1231out:
1232	return ret_val;
1233}
1234
1235/**
1236 *  igb_release_swfw_sync_82575 - Release SW/FW semaphore
1237 *  @hw: pointer to the HW structure
1238 *  @mask: specifies which semaphore to acquire
1239 *
1240 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
1241 *  will also specify which port we're releasing the lock for.
1242 **/
1243static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1244{
1245	u32 swfw_sync;
1246
1247	while (igb_get_hw_semaphore(hw) != 0)
1248		; /* Empty */
1249
1250	swfw_sync = rd32(E1000_SW_FW_SYNC);
1251	swfw_sync &= ~mask;
1252	wr32(E1000_SW_FW_SYNC, swfw_sync);
1253
1254	igb_put_hw_semaphore(hw);
1255}
1256
1257/**
1258 *  igb_get_cfg_done_82575 - Read config done bit
1259 *  @hw: pointer to the HW structure
1260 *
1261 *  Read the management control register for the config done bit for
1262 *  completion status.  NOTE: silicon which is EEPROM-less will fail trying
1263 *  to read the config done bit, so an error is *ONLY* logged and returns
1264 *  0.  If we were to return with error, EEPROM-less silicon
1265 *  would not be able to be reset or change link.
1266 **/
1267static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1268{
1269	s32 timeout = PHY_CFG_TIMEOUT;
1270	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1271
1272	if (hw->bus.func == 1)
1273		mask = E1000_NVM_CFG_DONE_PORT_1;
1274	else if (hw->bus.func == E1000_FUNC_2)
1275		mask = E1000_NVM_CFG_DONE_PORT_2;
1276	else if (hw->bus.func == E1000_FUNC_3)
1277		mask = E1000_NVM_CFG_DONE_PORT_3;
1278
1279	while (timeout) {
1280		if (rd32(E1000_EEMNGCTL) & mask)
1281			break;
1282		usleep_range(1000, 2000);
1283		timeout--;
1284	}
1285	if (!timeout)
1286		hw_dbg("MNG configuration cycle has not completed.\n");
1287
1288	/* If EEPROM is not marked present, init the PHY manually */
1289	if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1290	    (hw->phy.type == e1000_phy_igp_3))
1291		igb_phy_init_script_igp3(hw);
1292
1293	return 0;
1294}
1295
1296/**
1297 *  igb_get_link_up_info_82575 - Get link speed/duplex info
1298 *  @hw: pointer to the HW structure
1299 *  @speed: stores the current speed
1300 *  @duplex: stores the current duplex
1301 *
1302 *  This is a wrapper function, if using the serial gigabit media independent
1303 *  interface, use PCS to retrieve the link speed and duplex information.
1304 *  Otherwise, use the generic function to get the link speed and duplex info.
1305 **/
1306static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1307					u16 *duplex)
1308{
1309	s32 ret_val;
1310
1311	if (hw->phy.media_type != e1000_media_type_copper)
1312		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1313							       duplex);
1314	else
1315		ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1316								    duplex);
1317
1318	return ret_val;
1319}
1320
1321/**
1322 *  igb_check_for_link_82575 - Check for link
1323 *  @hw: pointer to the HW structure
1324 *
1325 *  If sgmii is enabled, then use the pcs register to determine link, otherwise
1326 *  use the generic interface for determining link.
1327 **/
1328static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1329{
1330	s32 ret_val;
1331	u16 speed, duplex;
1332
1333	if (hw->phy.media_type != e1000_media_type_copper) {
1334		ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1335							     &duplex);
1336		/* Use this flag to determine if link needs to be checked or
1337		 * not.  If  we have link clear the flag so that we do not
1338		 * continue to check for link.
1339		 */
1340		hw->mac.get_link_status = !hw->mac.serdes_has_link;
1341
1342		/* Configure Flow Control now that Auto-Neg has completed.
1343		 * First, we need to restore the desired flow control
1344		 * settings because we may have had to re-autoneg with a
1345		 * different link partner.
1346		 */
1347		ret_val = igb_config_fc_after_link_up(hw);
1348		if (ret_val)
1349			hw_dbg("Error configuring flow control\n");
1350	} else {
1351		ret_val = igb_check_for_copper_link(hw);
1352	}
1353
1354	return ret_val;
1355}
1356
1357/**
1358 *  igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1359 *  @hw: pointer to the HW structure
1360 **/
1361void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1362{
1363	u32 reg;
1364
1365
1366	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1367	    !igb_sgmii_active_82575(hw))
1368		return;
1369
1370	/* Enable PCS to turn on link */
1371	reg = rd32(E1000_PCS_CFG0);
1372	reg |= E1000_PCS_CFG_PCS_EN;
1373	wr32(E1000_PCS_CFG0, reg);
1374
1375	/* Power up the laser */
1376	reg = rd32(E1000_CTRL_EXT);
1377	reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1378	wr32(E1000_CTRL_EXT, reg);
1379
1380	/* flush the write to verify completion */
1381	wrfl();
1382	usleep_range(1000, 2000);
1383}
1384
1385/**
1386 *  igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1387 *  @hw: pointer to the HW structure
1388 *  @speed: stores the current speed
1389 *  @duplex: stores the current duplex
1390 *
1391 *  Using the physical coding sub-layer (PCS), retrieve the current speed and
1392 *  duplex, then store the values in the pointers provided.
1393 **/
1394static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1395						u16 *duplex)
1396{
1397	struct e1000_mac_info *mac = &hw->mac;
1398	u32 pcs, status;
1399
1400	/* Set up defaults for the return values of this function */
1401	mac->serdes_has_link = false;
1402	*speed = 0;
1403	*duplex = 0;
1404
1405	/* Read the PCS Status register for link state. For non-copper mode,
1406	 * the status register is not accurate. The PCS status register is
1407	 * used instead.
1408	 */
1409	pcs = rd32(E1000_PCS_LSTAT);
1410
1411	/* The link up bit determines when link is up on autoneg. The sync ok
1412	 * gets set once both sides sync up and agree upon link. Stable link
1413	 * can be determined by checking for both link up and link sync ok
1414	 */
1415	if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1416		mac->serdes_has_link = true;
1417
1418		/* Detect and store PCS speed */
1419		if (pcs & E1000_PCS_LSTS_SPEED_1000)
1420			*speed = SPEED_1000;
1421		else if (pcs & E1000_PCS_LSTS_SPEED_100)
1422			*speed = SPEED_100;
1423		else
1424			*speed = SPEED_10;
1425
1426		/* Detect and store PCS duplex */
1427		if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1428			*duplex = FULL_DUPLEX;
1429		else
1430			*duplex = HALF_DUPLEX;
1431
1432	/* Check if it is an I354 2.5Gb backplane connection. */
1433		if (mac->type == e1000_i354) {
1434			status = rd32(E1000_STATUS);
1435			if ((status & E1000_STATUS_2P5_SKU) &&
1436			    !(status & E1000_STATUS_2P5_SKU_OVER)) {
1437				*speed = SPEED_2500;
1438				*duplex = FULL_DUPLEX;
1439				hw_dbg("2500 Mbs, ");
1440				hw_dbg("Full Duplex\n");
1441			}
1442		}
1443
1444	}
1445
1446	return 0;
1447}
1448
1449/**
1450 *  igb_shutdown_serdes_link_82575 - Remove link during power down
1451 *  @hw: pointer to the HW structure
1452 *
1453 *  In the case of fiber serdes, shut down optics and PCS on driver unload
1454 *  when management pass thru is not enabled.
1455 **/
1456void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1457{
1458	u32 reg;
1459
1460	if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1461	    igb_sgmii_active_82575(hw))
1462		return;
1463
1464	if (!igb_enable_mng_pass_thru(hw)) {
1465		/* Disable PCS to turn off link */
1466		reg = rd32(E1000_PCS_CFG0);
1467		reg &= ~E1000_PCS_CFG_PCS_EN;
1468		wr32(E1000_PCS_CFG0, reg);
1469
1470		/* shutdown the laser */
1471		reg = rd32(E1000_CTRL_EXT);
1472		reg |= E1000_CTRL_EXT_SDP3_DATA;
1473		wr32(E1000_CTRL_EXT, reg);
1474
1475		/* flush the write to verify completion */
1476		wrfl();
1477		usleep_range(1000, 2000);
1478	}
1479}
1480
1481/**
1482 *  igb_reset_hw_82575 - Reset hardware
1483 *  @hw: pointer to the HW structure
1484 *
1485 *  This resets the hardware into a known state.  This is a
1486 *  function pointer entry point called by the api module.
1487 **/
1488static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1489{
1490	u32 ctrl;
1491	s32 ret_val;
1492
1493	/* Prevent the PCI-E bus from sticking if there is no TLP connection
1494	 * on the last TLP read/write transaction when MAC is reset.
1495	 */
1496	ret_val = igb_disable_pcie_master(hw);
1497	if (ret_val)
1498		hw_dbg("PCI-E Master disable polling has failed.\n");
1499
1500	/* set the completion timeout for interface */
1501	ret_val = igb_set_pcie_completion_timeout(hw);
1502	if (ret_val)
1503		hw_dbg("PCI-E Set completion timeout has failed.\n");
1504
1505	hw_dbg("Masking off all interrupts\n");
1506	wr32(E1000_IMC, 0xffffffff);
1507
1508	wr32(E1000_RCTL, 0);
1509	wr32(E1000_TCTL, E1000_TCTL_PSP);
1510	wrfl();
1511
1512	usleep_range(10000, 20000);
1513
1514	ctrl = rd32(E1000_CTRL);
1515
1516	hw_dbg("Issuing a global reset to MAC\n");
1517	wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1518
1519	ret_val = igb_get_auto_rd_done(hw);
1520	if (ret_val) {
1521		/* When auto config read does not complete, do not
1522		 * return with an error. This can happen in situations
1523		 * where there is no eeprom and prevents getting link.
1524		 */
1525		hw_dbg("Auto Read Done did not complete\n");
1526	}
1527
1528	/* If EEPROM is not present, run manual init scripts */
1529	if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1530		igb_reset_init_script_82575(hw);
1531
1532	/* Clear any pending interrupt events. */
1533	wr32(E1000_IMC, 0xffffffff);
1534	rd32(E1000_ICR);
1535
1536	/* Install any alternate MAC address into RAR0 */
1537	ret_val = igb_check_alt_mac_addr(hw);
1538
1539	return ret_val;
1540}
1541
1542/**
1543 *  igb_init_hw_82575 - Initialize hardware
1544 *  @hw: pointer to the HW structure
1545 *
1546 *  This inits the hardware readying it for operation.
1547 **/
1548static s32 igb_init_hw_82575(struct e1000_hw *hw)
1549{
1550	struct e1000_mac_info *mac = &hw->mac;
1551	s32 ret_val;
1552	u16 i, rar_count = mac->rar_entry_count;
1553
1554	if ((hw->mac.type >= e1000_i210) &&
1555	    !(igb_get_flash_presence_i210(hw))) {
1556		ret_val = igb_pll_workaround_i210(hw);
1557		if (ret_val)
1558			return ret_val;
1559	}
1560
1561	/* Initialize identification LED */
1562	ret_val = igb_id_led_init(hw);
1563	if (ret_val) {
1564		hw_dbg("Error initializing identification LED\n");
1565		/* This is not fatal and we should not stop init due to this */
1566	}
1567
1568	/* Disabling VLAN filtering */
1569	hw_dbg("Initializing the IEEE VLAN\n");
1570	igb_clear_vfta(hw);
1571
1572	/* Setup the receive address */
1573	igb_init_rx_addrs(hw, rar_count);
1574
1575	/* Zero out the Multicast HASH table */
1576	hw_dbg("Zeroing the MTA\n");
1577	for (i = 0; i < mac->mta_reg_count; i++)
1578		array_wr32(E1000_MTA, i, 0);
1579
1580	/* Zero out the Unicast HASH table */
1581	hw_dbg("Zeroing the UTA\n");
1582	for (i = 0; i < mac->uta_reg_count; i++)
1583		array_wr32(E1000_UTA, i, 0);
1584
1585	/* Setup link and flow control */
1586	ret_val = igb_setup_link(hw);
1587
1588	/* Clear all of the statistics registers (clear on read).  It is
1589	 * important that we do this after we have tried to establish link
1590	 * because the symbol error count will increment wildly if there
1591	 * is no link.
1592	 */
1593	igb_clear_hw_cntrs_82575(hw);
1594	return ret_val;
1595}
1596
1597/**
1598 *  igb_setup_copper_link_82575 - Configure copper link settings
1599 *  @hw: pointer to the HW structure
1600 *
1601 *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1602 *  for link, once link is established calls to configure collision distance
1603 *  and flow control are called.
1604 **/
1605static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1606{
1607	u32 ctrl;
1608	s32  ret_val;
1609	u32 phpm_reg;
1610
1611	ctrl = rd32(E1000_CTRL);
1612	ctrl |= E1000_CTRL_SLU;
1613	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1614	wr32(E1000_CTRL, ctrl);
1615
1616	/* Clear Go Link Disconnect bit on supported devices */
1617	switch (hw->mac.type) {
1618	case e1000_82580:
1619	case e1000_i350:
1620	case e1000_i210:
1621	case e1000_i211:
1622		phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1623		phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1624		wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1625		break;
1626	default:
1627		break;
1628	}
1629
1630	ret_val = igb_setup_serdes_link_82575(hw);
1631	if (ret_val)
1632		goto out;
1633
1634	if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1635		/* allow time for SFP cage time to power up phy */
1636		msleep(300);
1637
1638		ret_val = hw->phy.ops.reset(hw);
1639		if (ret_val) {
1640			hw_dbg("Error resetting the PHY.\n");
1641			goto out;
1642		}
1643	}
1644	switch (hw->phy.type) {
1645	case e1000_phy_i210:
1646	case e1000_phy_m88:
1647		switch (hw->phy.id) {
1648		case I347AT4_E_PHY_ID:
1649		case M88E1112_E_PHY_ID:
1650		case M88E1543_E_PHY_ID:
1651		case M88E1512_E_PHY_ID:
1652		case I210_I_PHY_ID:
1653			ret_val = igb_copper_link_setup_m88_gen2(hw);
1654			break;
1655		default:
1656			ret_val = igb_copper_link_setup_m88(hw);
1657			break;
1658		}
1659		break;
1660	case e1000_phy_igp_3:
1661		ret_val = igb_copper_link_setup_igp(hw);
1662		break;
1663	case e1000_phy_82580:
1664		ret_val = igb_copper_link_setup_82580(hw);
1665		break;
1666	case e1000_phy_bcm54616:
1667		ret_val = 0;
1668		break;
1669	default:
1670		ret_val = -E1000_ERR_PHY;
1671		break;
1672	}
1673
1674	if (ret_val)
1675		goto out;
1676
1677	ret_val = igb_setup_copper_link(hw);
1678out:
1679	return ret_val;
1680}
1681
1682/**
1683 *  igb_setup_serdes_link_82575 - Setup link for serdes
1684 *  @hw: pointer to the HW structure
1685 *
1686 *  Configure the physical coding sub-layer (PCS) link.  The PCS link is
1687 *  used on copper connections where the serialized gigabit media independent
1688 *  interface (sgmii), or serdes fiber is being used.  Configures the link
1689 *  for auto-negotiation or forces speed/duplex.
1690 **/
1691static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1692{
1693	u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1694	bool pcs_autoneg;
1695	s32 ret_val = 0;
1696	u16 data;
1697
1698	if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1699	    !igb_sgmii_active_82575(hw))
1700		return ret_val;
1701
1702
1703	/* On the 82575, SerDes loopback mode persists until it is
1704	 * explicitly turned off or a power cycle is performed.  A read to
1705	 * the register does not indicate its status.  Therefore, we ensure
1706	 * loopback mode is disabled during initialization.
1707	 */
1708	wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1709
1710	/* power on the sfp cage if present and turn on I2C */
1711	ctrl_ext = rd32(E1000_CTRL_EXT);
1712	ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1713	ctrl_ext |= E1000_CTRL_I2C_ENA;
1714	wr32(E1000_CTRL_EXT, ctrl_ext);
1715
1716	ctrl_reg = rd32(E1000_CTRL);
1717	ctrl_reg |= E1000_CTRL_SLU;
1718
1719	if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1720		/* set both sw defined pins */
1721		ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1722
1723		/* Set switch control to serdes energy detect */
1724		reg = rd32(E1000_CONNSW);
1725		reg |= E1000_CONNSW_ENRGSRC;
1726		wr32(E1000_CONNSW, reg);
1727	}
1728
1729	reg = rd32(E1000_PCS_LCTL);
1730
1731	/* default pcs_autoneg to the same setting as mac autoneg */
1732	pcs_autoneg = hw->mac.autoneg;
1733
1734	switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1735	case E1000_CTRL_EXT_LINK_MODE_SGMII:
1736		/* sgmii mode lets the phy handle forcing speed/duplex */
1737		pcs_autoneg = true;
1738		/* autoneg time out should be disabled for SGMII mode */
1739		reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1740		break;
1741	case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1742		/* disable PCS autoneg and support parallel detect only */
1743		pcs_autoneg = false;
 
1744	default:
1745		if (hw->mac.type == e1000_82575 ||
1746		    hw->mac.type == e1000_82576) {
1747			ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1748			if (ret_val) {
1749				hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1750				return ret_val;
1751			}
1752
1753			if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1754				pcs_autoneg = false;
1755		}
1756
1757		/* non-SGMII modes only supports a speed of 1000/Full for the
1758		 * link so it is best to just force the MAC and let the pcs
1759		 * link either autoneg or be forced to 1000/Full
1760		 */
1761		ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1762				E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1763
1764		/* set speed of 1000/Full if speed/duplex is forced */
1765		reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1766		break;
1767	}
1768
1769	wr32(E1000_CTRL, ctrl_reg);
1770
1771	/* New SerDes mode allows for forcing speed or autonegotiating speed
1772	 * at 1gb. Autoneg should be default set by most drivers. This is the
1773	 * mode that will be compatible with older link partners and switches.
1774	 * However, both are supported by the hardware and some drivers/tools.
1775	 */
1776	reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1777		E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1778
1779	if (pcs_autoneg) {
1780		/* Set PCS register for autoneg */
1781		reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1782		       E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1783
1784		/* Disable force flow control for autoneg */
1785		reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1786
1787		/* Configure flow control advertisement for autoneg */
1788		anadv_reg = rd32(E1000_PCS_ANADV);
1789		anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1790		switch (hw->fc.requested_mode) {
1791		case e1000_fc_full:
1792		case e1000_fc_rx_pause:
1793			anadv_reg |= E1000_TXCW_ASM_DIR;
1794			anadv_reg |= E1000_TXCW_PAUSE;
1795			break;
1796		case e1000_fc_tx_pause:
1797			anadv_reg |= E1000_TXCW_ASM_DIR;
1798			break;
1799		default:
1800			break;
1801		}
1802		wr32(E1000_PCS_ANADV, anadv_reg);
1803
1804		hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1805	} else {
1806		/* Set PCS register for forced link */
1807		reg |= E1000_PCS_LCTL_FSD;        /* Force Speed */
1808
1809		/* Force flow control for forced link */
1810		reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1811
1812		hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1813	}
1814
1815	wr32(E1000_PCS_LCTL, reg);
1816
1817	if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1818		igb_force_mac_fc(hw);
1819
1820	return ret_val;
1821}
1822
1823/**
1824 *  igb_sgmii_active_82575 - Return sgmii state
1825 *  @hw: pointer to the HW structure
1826 *
1827 *  82575 silicon has a serialized gigabit media independent interface (sgmii)
1828 *  which can be enabled for use in the embedded applications.  Simply
1829 *  return the current state of the sgmii interface.
1830 **/
1831static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1832{
1833	struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1834	return dev_spec->sgmii_active;
1835}
1836
1837/**
1838 *  igb_reset_init_script_82575 - Inits HW defaults after reset
1839 *  @hw: pointer to the HW structure
1840 *
1841 *  Inits recommended HW defaults after a reset when there is no EEPROM
1842 *  detected. This is only for the 82575.
1843 **/
1844static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1845{
1846	if (hw->mac.type == e1000_82575) {
1847		hw_dbg("Running reset init script for 82575\n");
1848		/* SerDes configuration via SERDESCTRL */
1849		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1850		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1851		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1852		igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1853
1854		/* CCM configuration via CCMCTL register */
1855		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1856		igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1857
1858		/* PCIe lanes configuration */
1859		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1860		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1861		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1862		igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1863
1864		/* PCIe PLL Configuration */
1865		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1866		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1867		igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1868	}
1869
1870	return 0;
1871}
1872
1873/**
1874 *  igb_read_mac_addr_82575 - Read device MAC address
1875 *  @hw: pointer to the HW structure
1876 **/
1877static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1878{
1879	s32 ret_val = 0;
1880
1881	/* If there's an alternate MAC address place it in RAR0
1882	 * so that it will override the Si installed default perm
1883	 * address.
1884	 */
1885	ret_val = igb_check_alt_mac_addr(hw);
1886	if (ret_val)
1887		goto out;
1888
1889	ret_val = igb_read_mac_addr(hw);
1890
1891out:
1892	return ret_val;
1893}
1894
1895/**
1896 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1897 * @hw: pointer to the HW structure
1898 *
1899 * In the case of a PHY power down to save power, or to turn off link during a
1900 * driver unload, or wake on lan is not enabled, remove the link.
1901 **/
1902void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1903{
1904	/* If the management interface is not enabled, then power down */
1905	if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1906		igb_power_down_phy_copper(hw);
1907}
1908
1909/**
1910 *  igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1911 *  @hw: pointer to the HW structure
1912 *
1913 *  Clears the hardware counters by reading the counter registers.
1914 **/
1915static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1916{
1917	igb_clear_hw_cntrs_base(hw);
1918
1919	rd32(E1000_PRC64);
1920	rd32(E1000_PRC127);
1921	rd32(E1000_PRC255);
1922	rd32(E1000_PRC511);
1923	rd32(E1000_PRC1023);
1924	rd32(E1000_PRC1522);
1925	rd32(E1000_PTC64);
1926	rd32(E1000_PTC127);
1927	rd32(E1000_PTC255);
1928	rd32(E1000_PTC511);
1929	rd32(E1000_PTC1023);
1930	rd32(E1000_PTC1522);
1931
1932	rd32(E1000_ALGNERRC);
1933	rd32(E1000_RXERRC);
1934	rd32(E1000_TNCRS);
1935	rd32(E1000_CEXTERR);
1936	rd32(E1000_TSCTC);
1937	rd32(E1000_TSCTFC);
1938
1939	rd32(E1000_MGTPRC);
1940	rd32(E1000_MGTPDC);
1941	rd32(E1000_MGTPTC);
1942
1943	rd32(E1000_IAC);
1944	rd32(E1000_ICRXOC);
1945
1946	rd32(E1000_ICRXPTC);
1947	rd32(E1000_ICRXATC);
1948	rd32(E1000_ICTXPTC);
1949	rd32(E1000_ICTXATC);
1950	rd32(E1000_ICTXQEC);
1951	rd32(E1000_ICTXQMTC);
1952	rd32(E1000_ICRXDMTC);
1953
1954	rd32(E1000_CBTMPC);
1955	rd32(E1000_HTDPMC);
1956	rd32(E1000_CBRMPC);
1957	rd32(E1000_RPTHC);
1958	rd32(E1000_HGPTC);
1959	rd32(E1000_HTCBDPC);
1960	rd32(E1000_HGORCL);
1961	rd32(E1000_HGORCH);
1962	rd32(E1000_HGOTCL);
1963	rd32(E1000_HGOTCH);
1964	rd32(E1000_LENERRS);
1965
1966	/* This register should not be read in copper configurations */
1967	if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1968	    igb_sgmii_active_82575(hw))
1969		rd32(E1000_SCVPC);
1970}
1971
1972/**
1973 *  igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1974 *  @hw: pointer to the HW structure
1975 *
1976 *  After rx enable if manageability is enabled then there is likely some
1977 *  bad data at the start of the fifo and possibly in the DMA fifo. This
1978 *  function clears the fifos and flushes any packets that came in as rx was
1979 *  being enabled.
1980 **/
1981void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1982{
1983	u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1984	int i, ms_wait;
1985
1986	/* disable IPv6 options as per hardware errata */
1987	rfctl = rd32(E1000_RFCTL);
1988	rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1989	wr32(E1000_RFCTL, rfctl);
1990
1991	if (hw->mac.type != e1000_82575 ||
1992	    !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1993		return;
1994
1995	/* Disable all RX queues */
1996	for (i = 0; i < 4; i++) {
1997		rxdctl[i] = rd32(E1000_RXDCTL(i));
1998		wr32(E1000_RXDCTL(i),
1999		     rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
2000	}
2001	/* Poll all queues to verify they have shut down */
2002	for (ms_wait = 0; ms_wait < 10; ms_wait++) {
2003		usleep_range(1000, 2000);
2004		rx_enabled = 0;
2005		for (i = 0; i < 4; i++)
2006			rx_enabled |= rd32(E1000_RXDCTL(i));
2007		if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
2008			break;
2009	}
2010
2011	if (ms_wait == 10)
2012		hw_dbg("Queue disable timed out after 10ms\n");
2013
2014	/* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
2015	 * incoming packets are rejected.  Set enable and wait 2ms so that
2016	 * any packet that was coming in as RCTL.EN was set is flushed
2017	 */
2018	wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2019
2020	rlpml = rd32(E1000_RLPML);
2021	wr32(E1000_RLPML, 0);
2022
2023	rctl = rd32(E1000_RCTL);
2024	temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2025	temp_rctl |= E1000_RCTL_LPE;
2026
2027	wr32(E1000_RCTL, temp_rctl);
2028	wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2029	wrfl();
2030	usleep_range(2000, 3000);
2031
2032	/* Enable RX queues that were previously enabled and restore our
2033	 * previous state
2034	 */
2035	for (i = 0; i < 4; i++)
2036		wr32(E1000_RXDCTL(i), rxdctl[i]);
2037	wr32(E1000_RCTL, rctl);
2038	wrfl();
2039
2040	wr32(E1000_RLPML, rlpml);
2041	wr32(E1000_RFCTL, rfctl);
2042
2043	/* Flush receive errors generated by workaround */
2044	rd32(E1000_ROC);
2045	rd32(E1000_RNBC);
2046	rd32(E1000_MPC);
2047}
2048
2049/**
2050 *  igb_set_pcie_completion_timeout - set pci-e completion timeout
2051 *  @hw: pointer to the HW structure
2052 *
2053 *  The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2054 *  however the hardware default for these parts is 500us to 1ms which is less
2055 *  than the 10ms recommended by the pci-e spec.  To address this we need to
2056 *  increase the value to either 10ms to 200ms for capability version 1 config,
2057 *  or 16ms to 55ms for version 2.
2058 **/
2059static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2060{
2061	u32 gcr = rd32(E1000_GCR);
2062	s32 ret_val = 0;
2063	u16 pcie_devctl2;
2064
2065	/* only take action if timeout value is defaulted to 0 */
2066	if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2067		goto out;
2068
2069	/* if capabilities version is type 1 we can write the
2070	 * timeout of 10ms to 200ms through the GCR register
2071	 */
2072	if (!(gcr & E1000_GCR_CAP_VER2)) {
2073		gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2074		goto out;
2075	}
2076
2077	/* for version 2 capabilities we need to write the config space
2078	 * directly in order to set the completion timeout value for
2079	 * 16ms to 55ms
2080	 */
2081	ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2082					&pcie_devctl2);
2083	if (ret_val)
2084		goto out;
2085
2086	pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2087
2088	ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2089					 &pcie_devctl2);
2090out:
2091	/* disable completion timeout resend */
2092	gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2093
2094	wr32(E1000_GCR, gcr);
2095	return ret_val;
2096}
2097
2098/**
2099 *  igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2100 *  @hw: pointer to the hardware struct
2101 *  @enable: state to enter, either enabled or disabled
2102 *  @pf: Physical Function pool - do not set anti-spoofing for the PF
2103 *
2104 *  enables/disables L2 switch anti-spoofing functionality.
2105 **/
2106void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2107{
2108	u32 reg_val, reg_offset;
2109
2110	switch (hw->mac.type) {
2111	case e1000_82576:
2112		reg_offset = E1000_DTXSWC;
2113		break;
2114	case e1000_i350:
2115	case e1000_i354:
2116		reg_offset = E1000_TXSWC;
2117		break;
2118	default:
2119		return;
2120	}
2121
2122	reg_val = rd32(reg_offset);
2123	if (enable) {
2124		reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2125			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2126		/* The PF can spoof - it has to in order to
2127		 * support emulation mode NICs
2128		 */
2129		reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2130	} else {
2131		reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2132			     E1000_DTXSWC_VLAN_SPOOF_MASK);
2133	}
2134	wr32(reg_offset, reg_val);
2135}
2136
2137/**
2138 *  igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2139 *  @hw: pointer to the hardware struct
2140 *  @enable: state to enter, either enabled or disabled
2141 *
2142 *  enables/disables L2 switch loopback functionality.
2143 **/
2144void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2145{
2146	u32 dtxswc;
2147
2148	switch (hw->mac.type) {
2149	case e1000_82576:
2150		dtxswc = rd32(E1000_DTXSWC);
2151		if (enable)
2152			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2153		else
2154			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2155		wr32(E1000_DTXSWC, dtxswc);
2156		break;
2157	case e1000_i354:
2158	case e1000_i350:
2159		dtxswc = rd32(E1000_TXSWC);
2160		if (enable)
2161			dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2162		else
2163			dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2164		wr32(E1000_TXSWC, dtxswc);
2165		break;
2166	default:
2167		/* Currently no other hardware supports loopback */
2168		break;
2169	}
2170
2171}
2172
2173/**
2174 *  igb_vmdq_set_replication_pf - enable or disable vmdq replication
2175 *  @hw: pointer to the hardware struct
2176 *  @enable: state to enter, either enabled or disabled
2177 *
2178 *  enables/disables replication of packets across multiple pools.
2179 **/
2180void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2181{
2182	u32 vt_ctl = rd32(E1000_VT_CTL);
2183
2184	if (enable)
2185		vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2186	else
2187		vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2188
2189	wr32(E1000_VT_CTL, vt_ctl);
2190}
2191
2192/**
2193 *  igb_read_phy_reg_82580 - Read 82580 MDI control register
2194 *  @hw: pointer to the HW structure
2195 *  @offset: register offset to be read
2196 *  @data: pointer to the read data
2197 *
2198 *  Reads the MDI control register in the PHY at offset and stores the
2199 *  information read to data.
2200 **/
2201s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2202{
2203	s32 ret_val;
2204
2205	ret_val = hw->phy.ops.acquire(hw);
2206	if (ret_val)
2207		goto out;
2208
2209	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2210
2211	hw->phy.ops.release(hw);
2212
2213out:
2214	return ret_val;
2215}
2216
2217/**
2218 *  igb_write_phy_reg_82580 - Write 82580 MDI control register
2219 *  @hw: pointer to the HW structure
2220 *  @offset: register offset to write to
2221 *  @data: data to write to register at offset
2222 *
2223 *  Writes data to MDI control register in the PHY at offset.
2224 **/
2225s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2226{
2227	s32 ret_val;
2228
2229
2230	ret_val = hw->phy.ops.acquire(hw);
2231	if (ret_val)
2232		goto out;
2233
2234	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2235
2236	hw->phy.ops.release(hw);
2237
2238out:
2239	return ret_val;
2240}
2241
2242/**
2243 *  igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2244 *  @hw: pointer to the HW structure
2245 *
2246 *  This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2247 *  the values found in the EEPROM.  This addresses an issue in which these
2248 *  bits are not restored from EEPROM after reset.
2249 **/
2250static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2251{
2252	s32 ret_val = 0;
2253	u32 mdicnfg;
2254	u16 nvm_data = 0;
2255
2256	if (hw->mac.type != e1000_82580)
2257		goto out;
2258	if (!igb_sgmii_active_82575(hw))
2259		goto out;
2260
2261	ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2262				   NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2263				   &nvm_data);
2264	if (ret_val) {
2265		hw_dbg("NVM Read Error\n");
2266		goto out;
2267	}
2268
2269	mdicnfg = rd32(E1000_MDICNFG);
2270	if (nvm_data & NVM_WORD24_EXT_MDIO)
2271		mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2272	if (nvm_data & NVM_WORD24_COM_MDIO)
2273		mdicnfg |= E1000_MDICNFG_COM_MDIO;
2274	wr32(E1000_MDICNFG, mdicnfg);
2275out:
2276	return ret_val;
2277}
2278
2279/**
2280 *  igb_reset_hw_82580 - Reset hardware
2281 *  @hw: pointer to the HW structure
2282 *
2283 *  This resets function or entire device (all ports, etc.)
2284 *  to a known state.
2285 **/
2286static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2287{
2288	s32 ret_val = 0;
2289	/* BH SW mailbox bit in SW_FW_SYNC */
2290	u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2291	u32 ctrl;
2292	bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2293
2294	hw->dev_spec._82575.global_device_reset = false;
2295
2296	/* due to hw errata, global device reset doesn't always
2297	 * work on 82580
2298	 */
2299	if (hw->mac.type == e1000_82580)
2300		global_device_reset = false;
2301
2302	/* Get current control state. */
2303	ctrl = rd32(E1000_CTRL);
2304
2305	/* Prevent the PCI-E bus from sticking if there is no TLP connection
2306	 * on the last TLP read/write transaction when MAC is reset.
2307	 */
2308	ret_val = igb_disable_pcie_master(hw);
2309	if (ret_val)
2310		hw_dbg("PCI-E Master disable polling has failed.\n");
2311
2312	hw_dbg("Masking off all interrupts\n");
2313	wr32(E1000_IMC, 0xffffffff);
2314	wr32(E1000_RCTL, 0);
2315	wr32(E1000_TCTL, E1000_TCTL_PSP);
2316	wrfl();
2317
2318	usleep_range(10000, 11000);
2319
2320	/* Determine whether or not a global dev reset is requested */
2321	if (global_device_reset &&
2322		hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2323			global_device_reset = false;
2324
2325	if (global_device_reset &&
2326		!(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2327		ctrl |= E1000_CTRL_DEV_RST;
2328	else
2329		ctrl |= E1000_CTRL_RST;
2330
2331	wr32(E1000_CTRL, ctrl);
2332	wrfl();
2333
2334	/* Add delay to insure DEV_RST has time to complete */
2335	if (global_device_reset)
2336		usleep_range(5000, 6000);
2337
2338	ret_val = igb_get_auto_rd_done(hw);
2339	if (ret_val) {
2340		/* When auto config read does not complete, do not
2341		 * return with an error. This can happen in situations
2342		 * where there is no eeprom and prevents getting link.
2343		 */
2344		hw_dbg("Auto Read Done did not complete\n");
2345	}
2346
2347	/* clear global device reset status bit */
2348	wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2349
2350	/* Clear any pending interrupt events. */
2351	wr32(E1000_IMC, 0xffffffff);
2352	rd32(E1000_ICR);
2353
2354	ret_val = igb_reset_mdicnfg_82580(hw);
2355	if (ret_val)
2356		hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2357
2358	/* Install any alternate MAC address into RAR0 */
2359	ret_val = igb_check_alt_mac_addr(hw);
2360
2361	/* Release semaphore */
2362	if (global_device_reset)
2363		hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2364
2365	return ret_val;
2366}
2367
2368/**
2369 *  igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2370 *  @data: data received by reading RXPBS register
2371 *
2372 *  The 82580 uses a table based approach for packet buffer allocation sizes.
2373 *  This function converts the retrieved value into the correct table value
2374 *     0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2375 *  0x0 36  72 144   1   2   4   8  16
2376 *  0x8 35  70 140 rsv rsv rsv rsv rsv
2377 */
2378u16 igb_rxpbs_adjust_82580(u32 data)
2379{
2380	u16 ret_val = 0;
2381
2382	if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2383		ret_val = e1000_82580_rxpbs_table[data];
2384
2385	return ret_val;
2386}
2387
2388/**
2389 *  igb_validate_nvm_checksum_with_offset - Validate EEPROM
2390 *  checksum
2391 *  @hw: pointer to the HW structure
2392 *  @offset: offset in words of the checksum protected region
2393 *
2394 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2395 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
2396 **/
2397static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2398						 u16 offset)
2399{
2400	s32 ret_val = 0;
2401	u16 checksum = 0;
2402	u16 i, nvm_data;
2403
2404	for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2405		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2406		if (ret_val) {
2407			hw_dbg("NVM Read Error\n");
2408			goto out;
2409		}
2410		checksum += nvm_data;
2411	}
2412
2413	if (checksum != (u16) NVM_SUM) {
2414		hw_dbg("NVM Checksum Invalid\n");
2415		ret_val = -E1000_ERR_NVM;
2416		goto out;
2417	}
2418
2419out:
2420	return ret_val;
2421}
2422
2423/**
2424 *  igb_update_nvm_checksum_with_offset - Update EEPROM
2425 *  checksum
2426 *  @hw: pointer to the HW structure
2427 *  @offset: offset in words of the checksum protected region
2428 *
2429 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
2430 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
2431 *  value to the EEPROM.
2432 **/
2433static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2434{
2435	s32 ret_val;
2436	u16 checksum = 0;
2437	u16 i, nvm_data;
2438
2439	for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2440		ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2441		if (ret_val) {
2442			hw_dbg("NVM Read Error while updating checksum.\n");
2443			goto out;
2444		}
2445		checksum += nvm_data;
2446	}
2447	checksum = (u16) NVM_SUM - checksum;
2448	ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2449				&checksum);
2450	if (ret_val)
2451		hw_dbg("NVM Write Error while updating checksum.\n");
2452
2453out:
2454	return ret_val;
2455}
2456
2457/**
2458 *  igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2459 *  @hw: pointer to the HW structure
2460 *
2461 *  Calculates the EEPROM section checksum by reading/adding each word of
2462 *  the EEPROM and then verifies that the sum of the EEPROM is
2463 *  equal to 0xBABA.
2464 **/
2465static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2466{
2467	s32 ret_val = 0;
2468	u16 eeprom_regions_count = 1;
2469	u16 j, nvm_data;
2470	u16 nvm_offset;
2471
2472	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2473	if (ret_val) {
2474		hw_dbg("NVM Read Error\n");
2475		goto out;
2476	}
2477
2478	if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2479		/* if checksums compatibility bit is set validate checksums
2480		 * for all 4 ports.
2481		 */
2482		eeprom_regions_count = 4;
2483	}
2484
2485	for (j = 0; j < eeprom_regions_count; j++) {
2486		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2487		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2488								nvm_offset);
2489		if (ret_val != 0)
2490			goto out;
2491	}
2492
2493out:
2494	return ret_val;
2495}
2496
2497/**
2498 *  igb_update_nvm_checksum_82580 - Update EEPROM checksum
2499 *  @hw: pointer to the HW structure
2500 *
2501 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2502 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2503 *  checksum and writes the value to the EEPROM.
2504 **/
2505static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2506{
2507	s32 ret_val;
2508	u16 j, nvm_data;
2509	u16 nvm_offset;
2510
2511	ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2512	if (ret_val) {
2513		hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2514		goto out;
2515	}
2516
2517	if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2518		/* set compatibility bit to validate checksums appropriately */
2519		nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2520		ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2521					&nvm_data);
2522		if (ret_val) {
2523			hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2524			goto out;
2525		}
2526	}
2527
2528	for (j = 0; j < 4; j++) {
2529		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2530		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2531		if (ret_val)
2532			goto out;
2533	}
2534
2535out:
2536	return ret_val;
2537}
2538
2539/**
2540 *  igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2541 *  @hw: pointer to the HW structure
2542 *
2543 *  Calculates the EEPROM section checksum by reading/adding each word of
2544 *  the EEPROM and then verifies that the sum of the EEPROM is
2545 *  equal to 0xBABA.
2546 **/
2547static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2548{
2549	s32 ret_val = 0;
2550	u16 j;
2551	u16 nvm_offset;
2552
2553	for (j = 0; j < 4; j++) {
2554		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2555		ret_val = igb_validate_nvm_checksum_with_offset(hw,
2556								nvm_offset);
2557		if (ret_val != 0)
2558			goto out;
2559	}
2560
2561out:
2562	return ret_val;
2563}
2564
2565/**
2566 *  igb_update_nvm_checksum_i350 - Update EEPROM checksum
2567 *  @hw: pointer to the HW structure
2568 *
2569 *  Updates the EEPROM section checksums for all 4 ports by reading/adding
2570 *  each word of the EEPROM up to the checksum.  Then calculates the EEPROM
2571 *  checksum and writes the value to the EEPROM.
2572 **/
2573static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2574{
2575	s32 ret_val = 0;
2576	u16 j;
2577	u16 nvm_offset;
2578
2579	for (j = 0; j < 4; j++) {
2580		nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2581		ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2582		if (ret_val != 0)
2583			goto out;
2584	}
2585
2586out:
2587	return ret_val;
2588}
2589
2590/**
2591 *  __igb_access_emi_reg - Read/write EMI register
2592 *  @hw: pointer to the HW structure
2593 *  @addr: EMI address to program
2594 *  @data: pointer to value to read/write from/to the EMI address
2595 *  @read: boolean flag to indicate read or write
2596 **/
2597static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2598				  u16 *data, bool read)
2599{
2600	s32 ret_val = 0;
2601
2602	ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2603	if (ret_val)
2604		return ret_val;
2605
2606	if (read)
2607		ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2608	else
2609		ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2610
2611	return ret_val;
2612}
2613
2614/**
2615 *  igb_read_emi_reg - Read Extended Management Interface register
2616 *  @hw: pointer to the HW structure
2617 *  @addr: EMI address to program
2618 *  @data: value to be read from the EMI address
2619 **/
2620s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2621{
2622	return __igb_access_emi_reg(hw, addr, data, true);
2623}
2624
2625/**
2626 *  igb_set_eee_i350 - Enable/disable EEE support
2627 *  @hw: pointer to the HW structure
2628 *  @adv1G: boolean flag enabling 1G EEE advertisement
2629 *  @adv100m: boolean flag enabling 100M EEE advertisement
2630 *
2631 *  Enable/disable EEE based on setting in dev_spec structure.
2632 *
2633 **/
2634s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2635{
2636	u32 ipcnfg, eeer;
2637
2638	if ((hw->mac.type < e1000_i350) ||
2639	    (hw->phy.media_type != e1000_media_type_copper))
2640		goto out;
2641	ipcnfg = rd32(E1000_IPCNFG);
2642	eeer = rd32(E1000_EEER);
2643
2644	/* enable or disable per user setting */
2645	if (!(hw->dev_spec._82575.eee_disable)) {
2646		u32 eee_su = rd32(E1000_EEE_SU);
2647
2648		if (adv100M)
2649			ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2650		else
2651			ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2652
2653		if (adv1G)
2654			ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2655		else
2656			ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2657
2658		eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2659			E1000_EEER_LPI_FC);
2660
2661		/* This bit should not be set in normal operation. */
2662		if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2663			hw_dbg("LPI Clock Stop Bit should not be set!\n");
2664
2665	} else {
2666		ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2667			E1000_IPCNFG_EEE_100M_AN);
2668		eeer &= ~(E1000_EEER_TX_LPI_EN |
2669			E1000_EEER_RX_LPI_EN |
2670			E1000_EEER_LPI_FC);
2671	}
2672	wr32(E1000_IPCNFG, ipcnfg);
2673	wr32(E1000_EEER, eeer);
2674	rd32(E1000_IPCNFG);
2675	rd32(E1000_EEER);
2676out:
2677
2678	return 0;
2679}
2680
2681/**
2682 *  igb_set_eee_i354 - Enable/disable EEE support
2683 *  @hw: pointer to the HW structure
2684 *  @adv1G: boolean flag enabling 1G EEE advertisement
2685 *  @adv100m: boolean flag enabling 100M EEE advertisement
2686 *
2687 *  Enable/disable EEE legacy mode based on setting in dev_spec structure.
2688 *
2689 **/
2690s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2691{
2692	struct e1000_phy_info *phy = &hw->phy;
2693	s32 ret_val = 0;
2694	u16 phy_data;
2695
2696	if ((hw->phy.media_type != e1000_media_type_copper) ||
2697	    ((phy->id != M88E1543_E_PHY_ID) &&
2698	     (phy->id != M88E1512_E_PHY_ID)))
2699		goto out;
2700
2701	if (!hw->dev_spec._82575.eee_disable) {
2702		/* Switch to PHY page 18. */
2703		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2704		if (ret_val)
2705			goto out;
2706
2707		ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2708					    &phy_data);
2709		if (ret_val)
2710			goto out;
2711
2712		phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2713		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2714					     phy_data);
2715		if (ret_val)
2716			goto out;
2717
2718		/* Return the PHY to page 0. */
2719		ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2720		if (ret_val)
2721			goto out;
2722
2723		/* Turn on EEE advertisement. */
2724		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2725					     E1000_EEE_ADV_DEV_I354,
2726					     &phy_data);
2727		if (ret_val)
2728			goto out;
2729
2730		if (adv100M)
2731			phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2732		else
2733			phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2734
2735		if (adv1G)
2736			phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2737		else
2738			phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2739
2740		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2741						E1000_EEE_ADV_DEV_I354,
2742						phy_data);
2743	} else {
2744		/* Turn off EEE advertisement. */
2745		ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2746					     E1000_EEE_ADV_DEV_I354,
2747					     &phy_data);
2748		if (ret_val)
2749			goto out;
2750
2751		phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2752			      E1000_EEE_ADV_1000_SUPPORTED);
2753		ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2754					      E1000_EEE_ADV_DEV_I354,
2755					      phy_data);
2756	}
2757
2758out:
2759	return ret_val;
2760}
2761
2762/**
2763 *  igb_get_eee_status_i354 - Get EEE status
2764 *  @hw: pointer to the HW structure
2765 *  @status: EEE status
2766 *
2767 *  Get EEE status by guessing based on whether Tx or Rx LPI indications have
2768 *  been received.
2769 **/
2770s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2771{
2772	struct e1000_phy_info *phy = &hw->phy;
2773	s32 ret_val = 0;
2774	u16 phy_data;
2775
2776	/* Check if EEE is supported on this device. */
2777	if ((hw->phy.media_type != e1000_media_type_copper) ||
2778	    ((phy->id != M88E1543_E_PHY_ID) &&
2779	     (phy->id != M88E1512_E_PHY_ID)))
2780		goto out;
2781
2782	ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2783				     E1000_PCS_STATUS_DEV_I354,
2784				     &phy_data);
2785	if (ret_val)
2786		goto out;
2787
2788	*status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2789			      E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2790
2791out:
2792	return ret_val;
2793}
2794
 
2795static const u8 e1000_emc_temp_data[4] = {
2796	E1000_EMC_INTERNAL_DATA,
2797	E1000_EMC_DIODE1_DATA,
2798	E1000_EMC_DIODE2_DATA,
2799	E1000_EMC_DIODE3_DATA
2800};
2801static const u8 e1000_emc_therm_limit[4] = {
2802	E1000_EMC_INTERNAL_THERM_LIMIT,
2803	E1000_EMC_DIODE1_THERM_LIMIT,
2804	E1000_EMC_DIODE2_THERM_LIMIT,
2805	E1000_EMC_DIODE3_THERM_LIMIT
2806};
2807
2808#ifdef CONFIG_IGB_HWMON
2809/**
2810 *  igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2811 *  @hw: pointer to hardware structure
2812 *
2813 *  Updates the temperatures in mac.thermal_sensor_data
2814 **/
2815static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2816{
2817	u16 ets_offset;
2818	u16 ets_cfg;
2819	u16 ets_sensor;
2820	u8  num_sensors;
2821	u8  sensor_index;
2822	u8  sensor_location;
2823	u8  i;
2824	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2825
2826	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2827		return E1000_NOT_IMPLEMENTED;
2828
2829	data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2830
2831	/* Return the internal sensor only if ETS is unsupported */
2832	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2833	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2834		return 0;
2835
2836	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2837	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2838	    != NVM_ETS_TYPE_EMC)
2839		return E1000_NOT_IMPLEMENTED;
2840
2841	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2842	if (num_sensors > E1000_MAX_SENSORS)
2843		num_sensors = E1000_MAX_SENSORS;
2844
2845	for (i = 1; i < num_sensors; i++) {
2846		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2847		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2848				NVM_ETS_DATA_INDEX_SHIFT);
2849		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2850				   NVM_ETS_DATA_LOC_SHIFT);
2851
2852		if (sensor_location != 0)
2853			hw->phy.ops.read_i2c_byte(hw,
2854					e1000_emc_temp_data[sensor_index],
2855					E1000_I2C_THERMAL_SENSOR_ADDR,
2856					&data->sensor[i].temp);
2857	}
2858	return 0;
2859}
2860
2861/**
2862 *  igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2863 *  @hw: pointer to hardware structure
2864 *
2865 *  Sets the thermal sensor thresholds according to the NVM map
2866 *  and save off the threshold and location values into mac.thermal_sensor_data
2867 **/
2868static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2869{
2870	u16 ets_offset;
2871	u16 ets_cfg;
2872	u16 ets_sensor;
2873	u8  low_thresh_delta;
2874	u8  num_sensors;
2875	u8  sensor_index;
2876	u8  sensor_location;
2877	u8  therm_limit;
2878	u8  i;
2879	struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2880
2881	if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2882		return E1000_NOT_IMPLEMENTED;
2883
2884	memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2885
2886	data->sensor[0].location = 0x1;
2887	data->sensor[0].caution_thresh =
2888		(rd32(E1000_THHIGHTC) & 0xFF);
2889	data->sensor[0].max_op_thresh =
2890		(rd32(E1000_THLOWTC) & 0xFF);
2891
2892	/* Return the internal sensor only if ETS is unsupported */
2893	hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2894	if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2895		return 0;
2896
2897	hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2898	if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2899	    != NVM_ETS_TYPE_EMC)
2900		return E1000_NOT_IMPLEMENTED;
2901
2902	low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2903			    NVM_ETS_LTHRES_DELTA_SHIFT);
2904	num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2905
2906	for (i = 1; i <= num_sensors; i++) {
2907		hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2908		sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2909				NVM_ETS_DATA_INDEX_SHIFT);
2910		sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2911				   NVM_ETS_DATA_LOC_SHIFT);
2912		therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2913
2914		hw->phy.ops.write_i2c_byte(hw,
2915			e1000_emc_therm_limit[sensor_index],
2916			E1000_I2C_THERMAL_SENSOR_ADDR,
2917			therm_limit);
2918
2919		if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2920			data->sensor[i].location = sensor_location;
2921			data->sensor[i].caution_thresh = therm_limit;
2922			data->sensor[i].max_op_thresh = therm_limit -
2923							low_thresh_delta;
2924		}
2925	}
2926	return 0;
2927}
2928
2929#endif
2930static struct e1000_mac_operations e1000_mac_ops_82575 = {
2931	.init_hw              = igb_init_hw_82575,
2932	.check_for_link       = igb_check_for_link_82575,
2933	.rar_set              = igb_rar_set,
2934	.read_mac_addr        = igb_read_mac_addr_82575,
2935	.get_speed_and_duplex = igb_get_link_up_info_82575,
2936#ifdef CONFIG_IGB_HWMON
2937	.get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2938	.init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2939#endif
2940};
2941
2942static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2943	.acquire              = igb_acquire_phy_82575,
2944	.get_cfg_done         = igb_get_cfg_done_82575,
2945	.release              = igb_release_phy_82575,
2946	.write_i2c_byte       = igb_write_i2c_byte,
2947	.read_i2c_byte        = igb_read_i2c_byte,
2948};
2949
2950static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2951	.acquire              = igb_acquire_nvm_82575,
2952	.read                 = igb_read_nvm_eerd,
2953	.release              = igb_release_nvm_82575,
2954	.write                = igb_write_nvm_spi,
2955};
2956
2957const struct e1000_info e1000_82575_info = {
2958	.get_invariants = igb_get_invariants_82575,
2959	.mac_ops = &e1000_mac_ops_82575,
2960	.phy_ops = &e1000_phy_ops_82575,
2961	.nvm_ops = &e1000_nvm_ops_82575,
2962};
2963