Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 2013 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include <linux/bpf_trace.h>
   5#include <linux/prefetch.h>
   6#include <linux/sctp.h>
   7#include <net/mpls.h>
   8#include <net/xdp.h>
   9#include "i40e_txrx_common.h"
  10#include "i40e_trace.h"
  11#include "i40e_xsk.h"
 
 
 
 
 
 
 
 
 
 
  12
  13#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  14/**
  15 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  16 * @tx_ring: Tx ring to send buffer on
  17 * @fdata: Flow director filter data
  18 * @add: Indicate if we are adding a rule or deleting one
  19 *
  20 **/
  21static void i40e_fdir(struct i40e_ring *tx_ring,
  22		      struct i40e_fdir_filter *fdata, bool add)
  23{
  24	struct i40e_filter_program_desc *fdir_desc;
  25	struct i40e_pf *pf = tx_ring->vsi->back;
  26	u32 flex_ptype, dtype_cmd;
  27	u16 i;
  28
  29	/* grab the next descriptor */
  30	i = tx_ring->next_to_use;
  31	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  32
  33	i++;
  34	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  35
  36	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK, fdata->q_index);
 
 
 
 
  37
  38	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_FLEXOFF_MASK,
  39				 fdata->flex_off);
  40
  41	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_PCTYPE_MASK, fdata->pctype);
 
  42
  43	/* Use LAN VSI Id if not programmed by user */
  44	flex_ptype |= FIELD_PREP(I40E_TXD_FLTR_QW0_DEST_VSI_MASK,
  45				 fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id);
 
  46
  47	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  48
  49	dtype_cmd |= add ?
  50		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  51		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  52		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  53		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  54
  55	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_DEST_MASK, fdata->dest_ctl);
 
  56
  57	dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_FD_STATUS_MASK,
  58				fdata->fd_status);
  59
  60	if (fdata->cnt_index) {
  61		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
  62		dtype_cmd |= FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
  63					fdata->cnt_index);
 
  64	}
  65
  66	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
  67	fdir_desc->rsvd = cpu_to_le32(0);
  68	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
  69	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
  70}
  71
  72#define I40E_FD_CLEAN_DELAY 10
  73/**
  74 * i40e_program_fdir_filter - Program a Flow Director filter
  75 * @fdir_data: Packet data that will be filter parameters
  76 * @raw_packet: the pre-allocated packet buffer for FDir
  77 * @pf: The PF pointer
  78 * @add: True for add/update, False for remove
  79 **/
  80static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
  81				    u8 *raw_packet, struct i40e_pf *pf,
  82				    bool add)
  83{
  84	struct i40e_tx_buffer *tx_buf, *first;
  85	struct i40e_tx_desc *tx_desc;
  86	struct i40e_ring *tx_ring;
  87	struct i40e_vsi *vsi;
  88	struct device *dev;
  89	dma_addr_t dma;
  90	u32 td_cmd = 0;
  91	u16 i;
  92
  93	/* find existing FDIR VSI */
  94	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
  95	if (!vsi)
  96		return -ENOENT;
  97
  98	tx_ring = vsi->tx_rings[0];
  99	dev = tx_ring->dev;
 100
 101	/* we need two descriptors to add/del a filter and we can wait */
 102	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 103		if (!i)
 104			return -EAGAIN;
 105		msleep_interruptible(1);
 106	}
 107
 108	dma = dma_map_single(dev, raw_packet,
 109			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 110	if (dma_mapping_error(dev, dma))
 111		goto dma_fail;
 112
 113	/* grab the next descriptor */
 114	i = tx_ring->next_to_use;
 115	first = &tx_ring->tx_bi[i];
 116	i40e_fdir(tx_ring, fdir_data, add);
 117
 118	/* Now program a dummy descriptor */
 119	i = tx_ring->next_to_use;
 120	tx_desc = I40E_TX_DESC(tx_ring, i);
 121	tx_buf = &tx_ring->tx_bi[i];
 122
 123	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 124
 125	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 126
 127	/* record length, and DMA address */
 128	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 129	dma_unmap_addr_set(tx_buf, dma, dma);
 130
 131	tx_desc->buffer_addr = cpu_to_le64(dma);
 132	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 133
 134	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 135	tx_buf->raw_buf = (void *)raw_packet;
 136
 137	tx_desc->cmd_type_offset_bsz =
 138		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 139
 140	/* Force memory writes to complete before letting h/w
 141	 * know there are new descriptors to fetch.
 142	 */
 143	wmb();
 144
 145	/* Mark the data descriptor to be watched */
 146	first->next_to_watch = tx_desc;
 147
 148	writel(tx_ring->next_to_use, tx_ring->tail);
 149	return 0;
 150
 151dma_fail:
 152	return -1;
 153}
 154
 
 
 155/**
 156 * i40e_create_dummy_packet - Constructs dummy packet for HW
 157 * @dummy_packet: preallocated space for dummy packet
 158 * @ipv4: is layer 3 packet of version 4 or 6
 159 * @l4proto: next level protocol used in data portion of l3
 160 * @data: filter data
 161 *
 162 * Returns address of layer 4 protocol dummy packet.
 163 **/
 164static char *i40e_create_dummy_packet(u8 *dummy_packet, bool ipv4, u8 l4proto,
 165				      struct i40e_fdir_filter *data)
 166{
 167	bool is_vlan = !!data->vlan_tag;
 168	struct vlan_hdr vlan = {};
 169	struct ipv6hdr ipv6 = {};
 170	struct ethhdr eth = {};
 171	struct iphdr ip = {};
 172	u8 *tmp;
 173
 174	if (ipv4) {
 175		eth.h_proto = cpu_to_be16(ETH_P_IP);
 176		ip.protocol = l4proto;
 177		ip.version = 0x4;
 178		ip.ihl = 0x5;
 179
 180		ip.daddr = data->dst_ip;
 181		ip.saddr = data->src_ip;
 182	} else {
 183		eth.h_proto = cpu_to_be16(ETH_P_IPV6);
 184		ipv6.nexthdr = l4proto;
 185		ipv6.version = 0x6;
 186
 187		memcpy(&ipv6.saddr.in6_u.u6_addr32, data->src_ip6,
 188		       sizeof(__be32) * 4);
 189		memcpy(&ipv6.daddr.in6_u.u6_addr32, data->dst_ip6,
 190		       sizeof(__be32) * 4);
 191	}
 192
 193	if (is_vlan) {
 194		vlan.h_vlan_TCI = data->vlan_tag;
 195		vlan.h_vlan_encapsulated_proto = eth.h_proto;
 196		eth.h_proto = data->vlan_etype;
 197	}
 198
 199	tmp = dummy_packet;
 200	memcpy(tmp, &eth, sizeof(eth));
 201	tmp += sizeof(eth);
 202
 203	if (is_vlan) {
 204		memcpy(tmp, &vlan, sizeof(vlan));
 205		tmp += sizeof(vlan);
 206	}
 207
 208	if (ipv4) {
 209		memcpy(tmp, &ip, sizeof(ip));
 210		tmp += sizeof(ip);
 211	} else {
 212		memcpy(tmp, &ipv6, sizeof(ipv6));
 213		tmp += sizeof(ipv6);
 214	}
 215
 216	return tmp;
 217}
 218
 219/**
 220 * i40e_create_dummy_udp_packet - helper function to create UDP packet
 221 * @raw_packet: preallocated space for dummy packet
 222 * @ipv4: is layer 3 packet of version 4 or 6
 223 * @l4proto: next level protocol used in data portion of l3
 224 * @data: filter data
 225 *
 226 * Helper function to populate udp fields.
 227 **/
 228static void i40e_create_dummy_udp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 229					 struct i40e_fdir_filter *data)
 
 230{
 
 231	struct udphdr *udp;
 232	u8 *tmp;
 233
 234	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_UDP, data);
 235	udp = (struct udphdr *)(tmp);
 236	udp->dest = data->dst_port;
 237	udp->source = data->src_port;
 238}
 239
 240/**
 241 * i40e_create_dummy_tcp_packet - helper function to create TCP packet
 242 * @raw_packet: preallocated space for dummy packet
 243 * @ipv4: is layer 3 packet of version 4 or 6
 244 * @l4proto: next level protocol used in data portion of l3
 245 * @data: filter data
 246 *
 247 * Helper function to populate tcp fields.
 248 **/
 249static void i40e_create_dummy_tcp_packet(u8 *raw_packet, bool ipv4, u8 l4proto,
 250					 struct i40e_fdir_filter *data)
 251{
 252	struct tcphdr *tcp;
 253	u8 *tmp;
 254	/* Dummy tcp packet */
 255	static const char tcp_packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
 256		0x50, 0x11, 0x0, 0x72, 0, 0, 0, 0};
 257
 258	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_TCP, data);
 259
 260	tcp = (struct tcphdr *)tmp;
 261	memcpy(tcp, tcp_packet, sizeof(tcp_packet));
 262	tcp->dest = data->dst_port;
 263	tcp->source = data->src_port;
 264}
 265
 266/**
 267 * i40e_create_dummy_sctp_packet - helper function to create SCTP packet
 268 * @raw_packet: preallocated space for dummy packet
 269 * @ipv4: is layer 3 packet of version 4 or 6
 270 * @l4proto: next level protocol used in data portion of l3
 271 * @data: filter data
 272 *
 273 * Helper function to populate sctp fields.
 274 **/
 275static void i40e_create_dummy_sctp_packet(u8 *raw_packet, bool ipv4,
 276					  u8 l4proto,
 277					  struct i40e_fdir_filter *data)
 278{
 279	struct sctphdr *sctp;
 280	u8 *tmp;
 281
 282	tmp = i40e_create_dummy_packet(raw_packet, ipv4, IPPROTO_SCTP, data);
 283
 284	sctp = (struct sctphdr *)tmp;
 285	sctp->dest = data->dst_port;
 286	sctp->source = data->src_port;
 287}
 288
 289/**
 290 * i40e_prepare_fdir_filter - Prepare and program fdir filter
 291 * @pf: physical function to attach filter to
 292 * @fd_data: filter data
 293 * @add: add or delete filter
 294 * @packet_addr: address of dummy packet, used in filtering
 295 * @payload_offset: offset from dummy packet address to user defined data
 296 * @pctype: Packet type for which filter is used
 297 *
 298 * Helper function to offset data of dummy packet, program it and
 299 * handle errors.
 300 **/
 301static int i40e_prepare_fdir_filter(struct i40e_pf *pf,
 302				    struct i40e_fdir_filter *fd_data,
 303				    bool add, char *packet_addr,
 304				    int payload_offset, u8 pctype)
 305{
 306	int ret;
 307
 308	if (fd_data->flex_filter) {
 309		u8 *payload;
 310		__be16 pattern = fd_data->flex_word;
 311		u16 off = fd_data->flex_offset;
 312
 313		payload = packet_addr + payload_offset;
 314
 315		/* If user provided vlan, offset payload by vlan header length */
 316		if (!!fd_data->vlan_tag)
 317			payload += VLAN_HLEN;
 318
 319		*((__force __be16 *)(payload + off)) = pattern;
 320	}
 321
 322	fd_data->pctype = pctype;
 323	ret = i40e_program_fdir_filter(fd_data, packet_addr, pf, add);
 324	if (ret) {
 325		dev_info(&pf->pdev->dev,
 326			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 327			 fd_data->pctype, fd_data->fd_id, ret);
 328		/* Free the packet buffer since it wasn't added to the ring */
 
 329		return -EOPNOTSUPP;
 330	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 331		if (add)
 332			dev_info(&pf->pdev->dev,
 333				 "Filter OK for PCTYPE %d loc = %d\n",
 334				 fd_data->pctype, fd_data->fd_id);
 335		else
 336			dev_info(&pf->pdev->dev,
 337				 "Filter deleted for PCTYPE %d loc = %d\n",
 338				 fd_data->pctype, fd_data->fd_id);
 339	}
 340
 341	return ret;
 342}
 
 
 343
 344/**
 345 * i40e_change_filter_num - Prepare and program fdir filter
 346 * @ipv4: is layer 3 packet of version 4 or 6
 347 * @add: add or delete filter
 348 * @ipv4_filter_num: field to update
 349 * @ipv6_filter_num: field to update
 350 *
 351 * Update filter number field for pf.
 352 **/
 353static void i40e_change_filter_num(bool ipv4, bool add, u16 *ipv4_filter_num,
 354				   u16 *ipv6_filter_num)
 355{
 356	if (add) {
 357		if (ipv4)
 358			(*ipv4_filter_num)++;
 359		else
 360			(*ipv6_filter_num)++;
 361	} else {
 362		if (ipv4)
 363			(*ipv4_filter_num)--;
 364		else
 365			(*ipv6_filter_num)--;
 366	}
 367}
 368
 369#define I40E_UDPIP_DUMMY_PACKET_LEN	42
 370#define I40E_UDPIP6_DUMMY_PACKET_LEN	62
 371/**
 372 * i40e_add_del_fdir_udp - Add/Remove UDP filters
 373 * @vsi: pointer to the targeted VSI
 374 * @fd_data: the flow director data required for the FDir descriptor
 375 * @add: true adds a filter, false removes it
 376 * @ipv4: true is v4, false is v6
 377 *
 378 * Returns 0 if the filters were successfully added or removed
 379 **/
 380static int i40e_add_del_fdir_udp(struct i40e_vsi *vsi,
 381				 struct i40e_fdir_filter *fd_data,
 382				 bool add,
 383				 bool ipv4)
 384{
 385	struct i40e_pf *pf = vsi->back;
 
 
 386	u8 *raw_packet;
 387	int ret;
 
 
 
 
 
 388
 389	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 390	if (!raw_packet)
 391		return -ENOMEM;
 
 392
 393	i40e_create_dummy_udp_packet(raw_packet, ipv4, IPPROTO_UDP, fd_data);
 
 
 
 
 
 
 
 394
 395	if (ipv4)
 396		ret = i40e_prepare_fdir_filter
 397			(pf, fd_data, add, raw_packet,
 398			 I40E_UDPIP_DUMMY_PACKET_LEN,
 399			 I40E_FILTER_PCTYPE_NONF_IPV4_UDP);
 400	else
 401		ret = i40e_prepare_fdir_filter
 402			(pf, fd_data, add, raw_packet,
 403			 I40E_UDPIP6_DUMMY_PACKET_LEN,
 404			 I40E_FILTER_PCTYPE_NONF_IPV6_UDP);
 405
 406	if (ret) {
 407		kfree(raw_packet);
 408		return ret;
 409	}
 410
 411	i40e_change_filter_num(ipv4, add, &pf->fd_udp4_filter_cnt,
 412			       &pf->fd_udp6_filter_cnt);
 413
 414	return 0;
 415}
 416
 417#define I40E_TCPIP_DUMMY_PACKET_LEN	54
 418#define I40E_TCPIP6_DUMMY_PACKET_LEN	74
 419/**
 420 * i40e_add_del_fdir_tcp - Add/Remove TCPv4 filters
 421 * @vsi: pointer to the targeted VSI
 422 * @fd_data: the flow director data required for the FDir descriptor
 423 * @add: true adds a filter, false removes it
 424 * @ipv4: true is v4, false is v6
 425 *
 426 * Returns 0 if the filters were successfully added or removed
 427 **/
 428static int i40e_add_del_fdir_tcp(struct i40e_vsi *vsi,
 429				 struct i40e_fdir_filter *fd_data,
 430				 bool add,
 431				 bool ipv4)
 432{
 433	struct i40e_pf *pf = vsi->back;
 434	u8 *raw_packet;
 435	int ret;
 436
 437	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 438	if (!raw_packet)
 439		return -ENOMEM;
 440
 441	i40e_create_dummy_tcp_packet(raw_packet, ipv4, IPPROTO_TCP, fd_data);
 442	if (ipv4)
 443		ret = i40e_prepare_fdir_filter
 444			(pf, fd_data, add, raw_packet,
 445			 I40E_TCPIP_DUMMY_PACKET_LEN,
 446			 I40E_FILTER_PCTYPE_NONF_IPV4_TCP);
 447	else
 448		ret = i40e_prepare_fdir_filter
 449			(pf, fd_data, add, raw_packet,
 450			 I40E_TCPIP6_DUMMY_PACKET_LEN,
 451			 I40E_FILTER_PCTYPE_NONF_IPV6_TCP);
 452
 453	if (ret) {
 
 
 
 
 454		kfree(raw_packet);
 455		return ret;
 
 
 
 
 
 
 
 
 456	}
 457
 458	i40e_change_filter_num(ipv4, add, &pf->fd_tcp4_filter_cnt,
 459			       &pf->fd_tcp6_filter_cnt);
 460
 461	if (add) {
 462		if (test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags) &&
 
 463		    I40E_DEBUG_FD & pf->hw.debug_mask)
 464			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 465		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 
 
 466	}
 
 467	return 0;
 468}
 469
 470#define I40E_SCTPIP_DUMMY_PACKET_LEN	46
 471#define I40E_SCTPIP6_DUMMY_PACKET_LEN	66
 472/**
 473 * i40e_add_del_fdir_sctp - Add/Remove SCTPv4 Flow Director filters for
 474 * a specific flow spec
 475 * @vsi: pointer to the targeted VSI
 476 * @fd_data: the flow director data required for the FDir descriptor
 477 * @add: true adds a filter, false removes it
 478 * @ipv4: true is v4, false is v6
 479 *
 480 * Returns 0 if the filters were successfully added or removed
 481 **/
 482static int i40e_add_del_fdir_sctp(struct i40e_vsi *vsi,
 483				  struct i40e_fdir_filter *fd_data,
 484				  bool add,
 485				  bool ipv4)
 486{
 487	struct i40e_pf *pf = vsi->back;
 
 
 488	u8 *raw_packet;
 489	int ret;
 
 
 
 
 490
 491	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 492	if (!raw_packet)
 493		return -ENOMEM;
 
 494
 495	i40e_create_dummy_sctp_packet(raw_packet, ipv4, IPPROTO_SCTP, fd_data);
 
 
 
 
 
 
 
 496
 497	if (ipv4)
 498		ret = i40e_prepare_fdir_filter
 499			(pf, fd_data, add, raw_packet,
 500			 I40E_SCTPIP_DUMMY_PACKET_LEN,
 501			 I40E_FILTER_PCTYPE_NONF_IPV4_SCTP);
 502	else
 503		ret = i40e_prepare_fdir_filter
 504			(pf, fd_data, add, raw_packet,
 505			 I40E_SCTPIP6_DUMMY_PACKET_LEN,
 506			 I40E_FILTER_PCTYPE_NONF_IPV6_SCTP);
 507
 
 
 508	if (ret) {
 
 
 
 
 509		kfree(raw_packet);
 510		return ret;
 
 
 
 
 
 
 
 
 
 511	}
 512
 513	i40e_change_filter_num(ipv4, add, &pf->fd_sctp4_filter_cnt,
 514			       &pf->fd_sctp6_filter_cnt);
 
 
 515
 516	return 0;
 517}
 518
 519#define I40E_IP_DUMMY_PACKET_LEN	34
 520#define I40E_IP6_DUMMY_PACKET_LEN	54
 521/**
 522 * i40e_add_del_fdir_ip - Add/Remove IPv4 Flow Director filters for
 523 * a specific flow spec
 524 * @vsi: pointer to the targeted VSI
 525 * @fd_data: the flow director data required for the FDir descriptor
 526 * @add: true adds a filter, false removes it
 527 * @ipv4: true is v4, false is v6
 528 *
 529 * Returns 0 if the filters were successfully added or removed
 530 **/
 531static int i40e_add_del_fdir_ip(struct i40e_vsi *vsi,
 532				struct i40e_fdir_filter *fd_data,
 533				bool add,
 534				bool ipv4)
 535{
 536	struct i40e_pf *pf = vsi->back;
 537	int payload_offset;
 538	u8 *raw_packet;
 539	int iter_start;
 540	int iter_end;
 541	int ret;
 542	int i;
 
 
 
 543
 544	if (ipv4) {
 545		iter_start = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 546		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV4;
 547	} else {
 548		iter_start = I40E_FILTER_PCTYPE_NONF_IPV6_OTHER;
 549		iter_end = I40E_FILTER_PCTYPE_FRAG_IPV6;
 550	}
 551
 552	for (i = iter_start; i <= iter_end; i++) {
 553		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 554		if (!raw_packet)
 555			return -ENOMEM;
 
 
 556
 557		/* IPv6 no header option differs from IPv4 */
 558		(void)i40e_create_dummy_packet
 559			(raw_packet, ipv4, (ipv4) ? IPPROTO_IP : IPPROTO_NONE,
 560			 fd_data);
 561
 562		payload_offset = (ipv4) ? I40E_IP_DUMMY_PACKET_LEN :
 563			I40E_IP6_DUMMY_PACKET_LEN;
 564		ret = i40e_prepare_fdir_filter(pf, fd_data, add, raw_packet,
 565					       payload_offset, i);
 566		if (ret)
 567			goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568	}
 569
 570	i40e_change_filter_num(ipv4, add, &pf->fd_ip4_filter_cnt,
 571			       &pf->fd_ip6_filter_cnt);
 
 
 572
 573	return 0;
 574err:
 575	kfree(raw_packet);
 576	return ret;
 577}
 578
 579/**
 580 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 581 * @vsi: pointer to the targeted VSI
 582 * @input: filter to add or delete
 583 * @add: true adds a filter, false removes it
 584 *
 585 **/
 586int i40e_add_del_fdir(struct i40e_vsi *vsi,
 587		      struct i40e_fdir_filter *input, bool add)
 588{
 589	enum ip_ver { ipv6 = 0, ipv4 = 1 };
 590	struct i40e_pf *pf = vsi->back;
 591	int ret;
 592
 593	switch (input->flow_type & ~FLOW_EXT) {
 594	case TCP_V4_FLOW:
 595		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 596		break;
 597	case UDP_V4_FLOW:
 598		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 599		break;
 600	case SCTP_V4_FLOW:
 601		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 602		break;
 603	case TCP_V6_FLOW:
 604		ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 605		break;
 606	case UDP_V6_FLOW:
 607		ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 608		break;
 609	case SCTP_V6_FLOW:
 610		ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 611		break;
 612	case IP_USER_FLOW:
 613		switch (input->ipl4_proto) {
 614		case IPPROTO_TCP:
 615			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv4);
 616			break;
 617		case IPPROTO_UDP:
 618			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv4);
 619			break;
 620		case IPPROTO_SCTP:
 621			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv4);
 622			break;
 623		case IPPROTO_IP:
 624			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv4);
 625			break;
 626		default:
 627			/* We cannot support masking based on protocol */
 628			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 629				 input->ipl4_proto);
 630			return -EINVAL;
 631		}
 632		break;
 633	case IPV6_USER_FLOW:
 634		switch (input->ipl4_proto) {
 635		case IPPROTO_TCP:
 636			ret = i40e_add_del_fdir_tcp(vsi, input, add, ipv6);
 637			break;
 638		case IPPROTO_UDP:
 639			ret = i40e_add_del_fdir_udp(vsi, input, add, ipv6);
 640			break;
 641		case IPPROTO_SCTP:
 642			ret = i40e_add_del_fdir_sctp(vsi, input, add, ipv6);
 643			break;
 644		case IPPROTO_IP:
 645			ret = i40e_add_del_fdir_ip(vsi, input, add, ipv6);
 646			break;
 647		default:
 648			/* We cannot support masking based on protocol */
 649			dev_info(&pf->pdev->dev, "Unsupported IPv6 protocol 0x%02x\n",
 650				 input->ipl4_proto);
 651			return -EINVAL;
 652		}
 653		break;
 654	default:
 655		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 656			 input->flow_type);
 657		return -EINVAL;
 658	}
 659
 660	/* The buffer allocated here will be normally be freed by
 661	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 662	 * completion. In the event of an error adding the buffer to the FDIR
 663	 * ring, it will immediately be freed. It may also be freed by
 664	 * i40e_clean_tx_ring() when closing the VSI.
 665	 */
 666	return ret;
 667}
 668
 669/**
 670 * i40e_fd_handle_status - check the Programming Status for FD
 671 * @rx_ring: the Rx ring for this descriptor
 672 * @qword0_raw: qword0
 673 * @qword1: qword1 after le_to_cpu
 674 * @prog_id: the id originally used for programming
 675 *
 676 * This is used to verify if the FD programming or invalidation
 677 * requested by SW to the HW is successful or not and take actions accordingly.
 678 **/
 679static void i40e_fd_handle_status(struct i40e_ring *rx_ring, u64 qword0_raw,
 680				  u64 qword1, u8 prog_id)
 681{
 682	struct i40e_pf *pf = rx_ring->vsi->back;
 683	struct pci_dev *pdev = pf->pdev;
 684	struct i40e_16b_rx_wb_qw0 *qw0;
 685	u32 fcnt_prog, fcnt_avail;
 686	u32 error;
 
 687
 688	qw0 = (struct i40e_16b_rx_wb_qw0 *)&qword0_raw;
 689	error = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK, qword1);
 
 690
 691	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 692		pf->fd_inv = le32_to_cpu(qw0->hi_dword.fd_id);
 693		if (qw0->hi_dword.fd_id != 0 ||
 694		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 695			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 696				 pf->fd_inv);
 697
 698		/* Check if the programming error is for ATR.
 699		 * If so, auto disable ATR and set a state for
 700		 * flush in progress. Next time we come here if flush is in
 701		 * progress do nothing, once flush is complete the state will
 702		 * be cleared.
 703		 */
 704		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 705			return;
 706
 707		pf->fd_add_err++;
 708		/* store the current atr filter count */
 709		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 710
 711		if (qw0->hi_dword.fd_id == 0 &&
 712		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 713			/* These set_bit() calls aren't atomic with the
 714			 * test_bit() here, but worse case we potentially
 715			 * disable ATR and queue a flush right after SB
 716			 * support is re-enabled. That shouldn't cause an
 717			 * issue in practice
 718			 */
 719			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 720			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 721		}
 722
 723		/* filter programming failed most likely due to table full */
 724		fcnt_prog = i40e_get_global_fd_count(pf);
 725		fcnt_avail = pf->fdir_pf_filter_count;
 726		/* If ATR is running fcnt_prog can quickly change,
 727		 * if we are very close to full, it makes sense to disable
 728		 * FD ATR/SB and then re-enable it when there is room.
 729		 */
 730		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 731			if (test_bit(I40E_FLAG_FD_SB_ENA, pf->flags) &&
 732			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 733					      pf->state))
 734				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 735					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 736		}
 737	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 738		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 739			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 740				 qw0->hi_dword.fd_id);
 741	}
 742}
 743
 744/**
 745 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 746 * @ring:      the ring that owns the buffer
 747 * @tx_buffer: the buffer to free
 748 **/
 749static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 750					    struct i40e_tx_buffer *tx_buffer)
 751{
 752	if (tx_buffer->skb) {
 753		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 754			kfree(tx_buffer->raw_buf);
 755		else if (ring_is_xdp(ring))
 756			xdp_return_frame(tx_buffer->xdpf);
 757		else
 758			dev_kfree_skb_any(tx_buffer->skb);
 759		if (dma_unmap_len(tx_buffer, len))
 760			dma_unmap_single(ring->dev,
 761					 dma_unmap_addr(tx_buffer, dma),
 762					 dma_unmap_len(tx_buffer, len),
 763					 DMA_TO_DEVICE);
 764	} else if (dma_unmap_len(tx_buffer, len)) {
 765		dma_unmap_page(ring->dev,
 766			       dma_unmap_addr(tx_buffer, dma),
 767			       dma_unmap_len(tx_buffer, len),
 768			       DMA_TO_DEVICE);
 769	}
 770
 771	tx_buffer->next_to_watch = NULL;
 772	tx_buffer->skb = NULL;
 773	dma_unmap_len_set(tx_buffer, len, 0);
 774	/* tx_buffer must be completely set up in the transmit path */
 775}
 776
 777/**
 778 * i40e_clean_tx_ring - Free any empty Tx buffers
 779 * @tx_ring: ring to be cleaned
 780 **/
 781void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 782{
 783	unsigned long bi_size;
 784	u16 i;
 785
 786	if (ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
 787		i40e_xsk_clean_tx_ring(tx_ring);
 788	} else {
 789		/* ring already cleared, nothing to do */
 790		if (!tx_ring->tx_bi)
 791			return;
 792
 793		/* Free all the Tx ring sk_buffs */
 794		for (i = 0; i < tx_ring->count; i++)
 795			i40e_unmap_and_free_tx_resource(tx_ring,
 796							&tx_ring->tx_bi[i]);
 797	}
 798
 799	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 800	memset(tx_ring->tx_bi, 0, bi_size);
 801
 802	/* Zero out the descriptor ring */
 803	memset(tx_ring->desc, 0, tx_ring->size);
 804
 805	tx_ring->next_to_use = 0;
 806	tx_ring->next_to_clean = 0;
 807
 808	if (!tx_ring->netdev)
 809		return;
 810
 811	/* cleanup Tx queue statistics */
 812	netdev_tx_reset_queue(txring_txq(tx_ring));
 813}
 814
 815/**
 816 * i40e_free_tx_resources - Free Tx resources per queue
 817 * @tx_ring: Tx descriptor ring for a specific queue
 818 *
 819 * Free all transmit software resources
 820 **/
 821void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 822{
 823	i40e_clean_tx_ring(tx_ring);
 824	kfree(tx_ring->tx_bi);
 825	tx_ring->tx_bi = NULL;
 826
 827	if (tx_ring->desc) {
 828		dma_free_coherent(tx_ring->dev, tx_ring->size,
 829				  tx_ring->desc, tx_ring->dma);
 830		tx_ring->desc = NULL;
 831	}
 832}
 833
 834/**
 835 * i40e_get_tx_pending - how many tx descriptors not processed
 836 * @ring: the ring of descriptors
 837 * @in_sw: use SW variables
 838 *
 839 * Since there is no access to the ring head register
 840 * in XL710, we need to use our local copies
 841 **/
 842u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 843{
 844	u32 head, tail;
 845
 846	if (!in_sw) {
 847		head = i40e_get_head(ring);
 848		tail = readl(ring->tail);
 849	} else {
 850		head = ring->next_to_clean;
 851		tail = ring->next_to_use;
 852	}
 853
 854	if (head != tail)
 855		return (head < tail) ?
 856			tail - head : (tail + ring->count - head);
 857
 858	return 0;
 859}
 860
 861/**
 862 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 863 * @vsi:  pointer to vsi struct with tx queues
 864 *
 865 * VSI has netdev and netdev has TX queues. This function is to check each of
 866 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 867 **/
 868void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 869{
 870	struct i40e_ring *tx_ring = NULL;
 871	struct net_device *netdev;
 872	unsigned int i;
 873	int packets;
 874
 875	if (!vsi)
 876		return;
 877
 878	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 879		return;
 880
 881	netdev = vsi->netdev;
 882	if (!netdev)
 883		return;
 884
 885	if (!netif_carrier_ok(netdev))
 886		return;
 887
 888	for (i = 0; i < vsi->num_queue_pairs; i++) {
 889		tx_ring = vsi->tx_rings[i];
 890		if (tx_ring && tx_ring->desc) {
 891			/* If packet counter has not changed the queue is
 892			 * likely stalled, so force an interrupt for this
 893			 * queue.
 894			 *
 895			 * prev_pkt_ctr would be negative if there was no
 896			 * pending work.
 897			 */
 898			packets = tx_ring->stats.packets & INT_MAX;
 899			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 900				i40e_force_wb(vsi, tx_ring->q_vector);
 901				continue;
 902			}
 903
 904			/* Memory barrier between read of packet count and call
 905			 * to i40e_get_tx_pending()
 906			 */
 907			smp_rmb();
 908			tx_ring->tx_stats.prev_pkt_ctr =
 909			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 910		}
 911	}
 912}
 913
 
 
 914/**
 915 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 916 * @vsi: the VSI we care about
 917 * @tx_ring: Tx ring to clean
 918 * @napi_budget: Used to determine if we are in netpoll
 919 * @tx_cleaned: Out parameter set to the number of TXes cleaned
 920 *
 921 * Returns true if there's any budget left (e.g. the clean is finished)
 922 **/
 923static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 924			      struct i40e_ring *tx_ring, int napi_budget,
 925			      unsigned int *tx_cleaned)
 926{
 927	int i = tx_ring->next_to_clean;
 928	struct i40e_tx_buffer *tx_buf;
 929	struct i40e_tx_desc *tx_head;
 930	struct i40e_tx_desc *tx_desc;
 931	unsigned int total_bytes = 0, total_packets = 0;
 932	unsigned int budget = vsi->work_limit;
 933
 934	tx_buf = &tx_ring->tx_bi[i];
 935	tx_desc = I40E_TX_DESC(tx_ring, i);
 936	i -= tx_ring->count;
 937
 938	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 939
 940	do {
 941		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 942
 943		/* if next_to_watch is not set then there is no work pending */
 944		if (!eop_desc)
 945			break;
 946
 947		/* prevent any other reads prior to eop_desc */
 948		smp_rmb();
 949
 950		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 951		/* we have caught up to head, no work left to do */
 952		if (tx_head == tx_desc)
 953			break;
 954
 955		/* clear next_to_watch to prevent false hangs */
 956		tx_buf->next_to_watch = NULL;
 957
 958		/* update the statistics for this packet */
 959		total_bytes += tx_buf->bytecount;
 960		total_packets += tx_buf->gso_segs;
 961
 962		/* free the skb/XDP data */
 963		if (ring_is_xdp(tx_ring))
 964			xdp_return_frame(tx_buf->xdpf);
 965		else
 966			napi_consume_skb(tx_buf->skb, napi_budget);
 967
 968		/* unmap skb header data */
 969		dma_unmap_single(tx_ring->dev,
 970				 dma_unmap_addr(tx_buf, dma),
 971				 dma_unmap_len(tx_buf, len),
 972				 DMA_TO_DEVICE);
 973
 974		/* clear tx_buffer data */
 975		tx_buf->skb = NULL;
 976		dma_unmap_len_set(tx_buf, len, 0);
 977
 978		/* unmap remaining buffers */
 979		while (tx_desc != eop_desc) {
 980			i40e_trace(clean_tx_irq_unmap,
 981				   tx_ring, tx_desc, tx_buf);
 982
 983			tx_buf++;
 984			tx_desc++;
 985			i++;
 986			if (unlikely(!i)) {
 987				i -= tx_ring->count;
 988				tx_buf = tx_ring->tx_bi;
 989				tx_desc = I40E_TX_DESC(tx_ring, 0);
 990			}
 991
 992			/* unmap any remaining paged data */
 993			if (dma_unmap_len(tx_buf, len)) {
 994				dma_unmap_page(tx_ring->dev,
 995					       dma_unmap_addr(tx_buf, dma),
 996					       dma_unmap_len(tx_buf, len),
 997					       DMA_TO_DEVICE);
 998				dma_unmap_len_set(tx_buf, len, 0);
 999			}
1000		}
1001
1002		/* move us one more past the eop_desc for start of next pkt */
1003		tx_buf++;
1004		tx_desc++;
1005		i++;
1006		if (unlikely(!i)) {
1007			i -= tx_ring->count;
1008			tx_buf = tx_ring->tx_bi;
1009			tx_desc = I40E_TX_DESC(tx_ring, 0);
1010		}
1011
1012		prefetch(tx_desc);
1013
1014		/* update budget accounting */
1015		budget--;
1016	} while (likely(budget));
1017
1018	i += tx_ring->count;
1019	tx_ring->next_to_clean = i;
1020	i40e_update_tx_stats(tx_ring, total_packets, total_bytes);
1021	i40e_arm_wb(tx_ring, vsi, budget);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1022
1023	if (ring_is_xdp(tx_ring))
1024		return !!budget;
1025
1026	/* notify netdev of completed buffers */
1027	netdev_tx_completed_queue(txring_txq(tx_ring),
1028				  total_packets, total_bytes);
1029
1030#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
1031	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
1032		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
1033		/* Make sure that anybody stopping the queue after this
1034		 * sees the new next_to_clean.
1035		 */
1036		smp_mb();
1037		if (__netif_subqueue_stopped(tx_ring->netdev,
1038					     tx_ring->queue_index) &&
1039		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
1040			netif_wake_subqueue(tx_ring->netdev,
1041					    tx_ring->queue_index);
1042			++tx_ring->tx_stats.restart_queue;
1043		}
1044	}
1045
1046	*tx_cleaned = total_packets;
1047	return !!budget;
1048}
1049
1050/**
1051 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
1052 * @vsi: the VSI we care about
1053 * @q_vector: the vector on which to enable writeback
1054 *
1055 **/
1056static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
1057				  struct i40e_q_vector *q_vector)
1058{
1059	u16 flags = q_vector->tx.ring[0].flags;
1060	u32 val;
1061
1062	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
1063		return;
1064
1065	if (q_vector->arm_wb_state)
1066		return;
1067
1068	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1069		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
1070		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
1071
1072		wr32(&vsi->back->hw,
1073		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
1074		     val);
1075	} else {
1076		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
1077		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
1078
1079		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1080	}
1081	q_vector->arm_wb_state = true;
1082}
1083
1084/**
1085 * i40e_force_wb - Issue SW Interrupt so HW does a wb
1086 * @vsi: the VSI we care about
1087 * @q_vector: the vector  on which to force writeback
1088 *
1089 **/
1090void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
1091{
1092	if (test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
1093		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
1094			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
1095			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
1096			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
1097			  /* allow 00 to be written to the index */
1098
1099		wr32(&vsi->back->hw,
1100		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
1101	} else {
1102		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1103			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1104			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1105			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1106			/* allow 00 to be written to the index */
1107
1108		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1109	}
1110}
1111
1112static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1113					struct i40e_ring_container *rc)
1114{
1115	return &q_vector->rx == rc;
1116}
1117
1118static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1119{
1120	unsigned int divisor;
1121
1122	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1123	case I40E_LINK_SPEED_40GB:
1124		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1125		break;
1126	case I40E_LINK_SPEED_25GB:
1127	case I40E_LINK_SPEED_20GB:
1128		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1129		break;
1130	default:
1131	case I40E_LINK_SPEED_10GB:
1132		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1133		break;
1134	case I40E_LINK_SPEED_1GB:
1135	case I40E_LINK_SPEED_100MB:
1136		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1137		break;
1138	}
1139
1140	return divisor;
1141}
1142
1143/**
1144 * i40e_update_itr - update the dynamic ITR value based on statistics
1145 * @q_vector: structure containing interrupt and ring information
1146 * @rc: structure containing ring performance data
1147 *
1148 * Stores a new ITR value based on packets and byte
1149 * counts during the last interrupt.  The advantage of per interrupt
1150 * computation is faster updates and more accurate ITR for the current
1151 * traffic pattern.  Constants in this function were computed
1152 * based on theoretical maximum wire speed and thresholds were set based
1153 * on testing data as well as attempting to minimize response time
1154 * while increasing bulk throughput.
1155 **/
1156static void i40e_update_itr(struct i40e_q_vector *q_vector,
1157			    struct i40e_ring_container *rc)
1158{
1159	unsigned int avg_wire_size, packets, bytes, itr;
1160	unsigned long next_update = jiffies;
1161
1162	/* If we don't have any rings just leave ourselves set for maximum
1163	 * possible latency so we take ourselves out of the equation.
1164	 */
1165	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1166		return;
1167
1168	/* For Rx we want to push the delay up and default to low latency.
1169	 * for Tx we want to pull the delay down and default to high latency.
1170	 */
1171	itr = i40e_container_is_rx(q_vector, rc) ?
1172	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1173	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1174
1175	/* If we didn't update within up to 1 - 2 jiffies we can assume
1176	 * that either packets are coming in so slow there hasn't been
1177	 * any work, or that there is so much work that NAPI is dealing
1178	 * with interrupt moderation and we don't need to do anything.
1179	 */
1180	if (time_after(next_update, rc->next_update))
1181		goto clear_counts;
1182
1183	/* If itr_countdown is set it means we programmed an ITR within
1184	 * the last 4 interrupt cycles. This has a side effect of us
1185	 * potentially firing an early interrupt. In order to work around
1186	 * this we need to throw out any data received for a few
1187	 * interrupts following the update.
1188	 */
1189	if (q_vector->itr_countdown) {
1190		itr = rc->target_itr;
1191		goto clear_counts;
1192	}
1193
1194	packets = rc->total_packets;
1195	bytes = rc->total_bytes;
1196
1197	if (i40e_container_is_rx(q_vector, rc)) {
1198		/* If Rx there are 1 to 4 packets and bytes are less than
1199		 * 9000 assume insufficient data to use bulk rate limiting
1200		 * approach unless Tx is already in bulk rate limiting. We
1201		 * are likely latency driven.
1202		 */
1203		if (packets && packets < 4 && bytes < 9000 &&
1204		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1205			itr = I40E_ITR_ADAPTIVE_LATENCY;
1206			goto adjust_by_size;
1207		}
1208	} else if (packets < 4) {
1209		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1210		 * bulk mode and we are receiving 4 or fewer packets just
1211		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1212		 * that the Rx can relax.
1213		 */
1214		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1215		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1216		     I40E_ITR_ADAPTIVE_MAX_USECS)
1217			goto clear_counts;
1218	} else if (packets > 32) {
1219		/* If we have processed over 32 packets in a single interrupt
1220		 * for Tx assume we need to switch over to "bulk" mode.
1221		 */
1222		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1223	}
1224
1225	/* We have no packets to actually measure against. This means
1226	 * either one of the other queues on this vector is active or
1227	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1228	 *
1229	 * Between 4 and 56 we can assume that our current interrupt delay
1230	 * is only slightly too low. As such we should increase it by a small
1231	 * fixed amount.
1232	 */
1233	if (packets < 56) {
1234		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1235		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1236			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1237			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1238		}
1239		goto clear_counts;
1240	}
1241
1242	if (packets <= 256) {
1243		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1244		itr &= I40E_ITR_MASK;
1245
1246		/* Between 56 and 112 is our "goldilocks" zone where we are
1247		 * working out "just right". Just report that our current
1248		 * ITR is good for us.
1249		 */
1250		if (packets <= 112)
1251			goto clear_counts;
1252
1253		/* If packet count is 128 or greater we are likely looking
1254		 * at a slight overrun of the delay we want. Try halving
1255		 * our delay to see if that will cut the number of packets
1256		 * in half per interrupt.
1257		 */
1258		itr /= 2;
1259		itr &= I40E_ITR_MASK;
1260		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1261			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1262
1263		goto clear_counts;
1264	}
1265
1266	/* The paths below assume we are dealing with a bulk ITR since
1267	 * number of packets is greater than 256. We are just going to have
1268	 * to compute a value and try to bring the count under control,
1269	 * though for smaller packet sizes there isn't much we can do as
1270	 * NAPI polling will likely be kicking in sooner rather than later.
1271	 */
1272	itr = I40E_ITR_ADAPTIVE_BULK;
1273
1274adjust_by_size:
1275	/* If packet counts are 256 or greater we can assume we have a gross
1276	 * overestimation of what the rate should be. Instead of trying to fine
1277	 * tune it just use the formula below to try and dial in an exact value
1278	 * give the current packet size of the frame.
1279	 */
1280	avg_wire_size = bytes / packets;
1281
1282	/* The following is a crude approximation of:
1283	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1284	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1285	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1286	 *
1287	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1288	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1289	 * formula down to
1290	 *
1291	 *  (170 * (size + 24)) / (size + 640) = ITR
1292	 *
1293	 * We first do some math on the packet size and then finally bitshift
1294	 * by 8 after rounding up. We also have to account for PCIe link speed
1295	 * difference as ITR scales based on this.
1296	 */
1297	if (avg_wire_size <= 60) {
1298		/* Start at 250k ints/sec */
1299		avg_wire_size = 4096;
1300	} else if (avg_wire_size <= 380) {
1301		/* 250K ints/sec to 60K ints/sec */
1302		avg_wire_size *= 40;
1303		avg_wire_size += 1696;
1304	} else if (avg_wire_size <= 1084) {
1305		/* 60K ints/sec to 36K ints/sec */
1306		avg_wire_size *= 15;
1307		avg_wire_size += 11452;
1308	} else if (avg_wire_size <= 1980) {
1309		/* 36K ints/sec to 30K ints/sec */
1310		avg_wire_size *= 5;
1311		avg_wire_size += 22420;
1312	} else {
1313		/* plateau at a limit of 30K ints/sec */
1314		avg_wire_size = 32256;
1315	}
1316
1317	/* If we are in low latency mode halve our delay which doubles the
1318	 * rate to somewhere between 100K to 16K ints/sec
1319	 */
1320	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1321		avg_wire_size /= 2;
1322
1323	/* Resultant value is 256 times larger than it needs to be. This
1324	 * gives us room to adjust the value as needed to either increase
1325	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1326	 *
1327	 * Use addition as we have already recorded the new latency flag
1328	 * for the ITR value.
1329	 */
1330	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1331	       I40E_ITR_ADAPTIVE_MIN_INC;
1332
1333	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1334		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1335		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1336	}
1337
1338clear_counts:
1339	/* write back value */
1340	rc->target_itr = itr;
1341
1342	/* next update should occur within next jiffy */
1343	rc->next_update = next_update + 1;
1344
1345	rc->total_bytes = 0;
1346	rc->total_packets = 0;
1347}
1348
1349static struct i40e_rx_buffer *i40e_rx_bi(struct i40e_ring *rx_ring, u32 idx)
1350{
1351	return &rx_ring->rx_bi[idx];
1352}
1353
1354/**
1355 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1356 * @rx_ring: rx descriptor ring to store buffers on
1357 * @old_buff: donor buffer to have page reused
1358 *
1359 * Synchronizes page for reuse by the adapter
1360 **/
1361static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1362			       struct i40e_rx_buffer *old_buff)
1363{
1364	struct i40e_rx_buffer *new_buff;
1365	u16 nta = rx_ring->next_to_alloc;
1366
1367	new_buff = i40e_rx_bi(rx_ring, nta);
1368
1369	/* update, and store next to alloc */
1370	nta++;
1371	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1372
1373	/* transfer page from old buffer to new buffer */
1374	new_buff->dma		= old_buff->dma;
1375	new_buff->page		= old_buff->page;
1376	new_buff->page_offset	= old_buff->page_offset;
1377	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
 
1378
1379	/* clear contents of buffer_info */
1380	old_buff->page = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381}
1382
1383/**
1384 * i40e_clean_programming_status - clean the programming status descriptor
1385 * @rx_ring: the rx ring that has this descriptor
1386 * @qword0_raw: qword0
1387 * @qword1: qword1 representing status_error_len in CPU ordering
1388 *
1389 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1390 * status being successful or not and take actions accordingly. FCoE should
1391 * handle its context/filter programming/invalidation status and take actions.
1392 *
1393 * Returns an i40e_rx_buffer to reuse if the cleanup occurred, otherwise NULL.
1394 **/
1395void i40e_clean_programming_status(struct i40e_ring *rx_ring, u64 qword0_raw,
1396				   u64 qword1)
 
1397{
 
 
1398	u8 id;
1399
1400	id = FIELD_GET(I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK, qword1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1401
1402	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1403		i40e_fd_handle_status(rx_ring, qword0_raw, qword1, id);
1404}
1405
1406/**
1407 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1408 * @tx_ring: the tx ring to set up
1409 *
1410 * Return 0 on success, negative on error
1411 **/
1412int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1413{
1414	struct device *dev = tx_ring->dev;
1415	int bi_size;
1416
1417	if (!dev)
1418		return -ENOMEM;
1419
1420	/* warn if we are about to overwrite the pointer */
1421	WARN_ON(tx_ring->tx_bi);
1422	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1423	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1424	if (!tx_ring->tx_bi)
1425		goto err;
1426
1427	u64_stats_init(&tx_ring->syncp);
1428
1429	/* round up to nearest 4K */
1430	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1431	/* add u32 for head writeback, align after this takes care of
1432	 * guaranteeing this is at least one cache line in size
1433	 */
1434	tx_ring->size += sizeof(u32);
1435	tx_ring->size = ALIGN(tx_ring->size, 4096);
1436	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1437					   &tx_ring->dma, GFP_KERNEL);
1438	if (!tx_ring->desc) {
1439		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1440			 tx_ring->size);
1441		goto err;
1442	}
1443
1444	tx_ring->next_to_use = 0;
1445	tx_ring->next_to_clean = 0;
1446	tx_ring->tx_stats.prev_pkt_ctr = -1;
1447	return 0;
1448
1449err:
1450	kfree(tx_ring->tx_bi);
1451	tx_ring->tx_bi = NULL;
1452	return -ENOMEM;
1453}
1454
1455static void i40e_clear_rx_bi(struct i40e_ring *rx_ring)
1456{
1457	memset(rx_ring->rx_bi, 0, sizeof(*rx_ring->rx_bi) * rx_ring->count);
1458}
1459
1460/**
1461 * i40e_clean_rx_ring - Free Rx buffers
1462 * @rx_ring: ring to be cleaned
1463 **/
1464void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1465{
 
1466	u16 i;
1467
1468	/* ring already cleared, nothing to do */
1469	if (!rx_ring->rx_bi)
1470		return;
1471
1472	if (rx_ring->xsk_pool) {
1473		i40e_xsk_clean_rx_ring(rx_ring);
1474		goto skip_free;
1475	}
1476
1477	/* Free all the Rx ring sk_buffs */
1478	for (i = 0; i < rx_ring->count; i++) {
1479		struct i40e_rx_buffer *rx_bi = i40e_rx_bi(rx_ring, i);
1480
1481		if (!rx_bi->page)
1482			continue;
1483
1484		/* Invalidate cache lines that may have been written to by
1485		 * device so that we avoid corrupting memory.
1486		 */
1487		dma_sync_single_range_for_cpu(rx_ring->dev,
1488					      rx_bi->dma,
1489					      rx_bi->page_offset,
1490					      rx_ring->rx_buf_len,
1491					      DMA_FROM_DEVICE);
1492
1493		/* free resources associated with mapping */
1494		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1495				     i40e_rx_pg_size(rx_ring),
1496				     DMA_FROM_DEVICE,
1497				     I40E_RX_DMA_ATTR);
1498
1499		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1500
1501		rx_bi->page = NULL;
1502		rx_bi->page_offset = 0;
1503	}
1504
1505skip_free:
1506	if (rx_ring->xsk_pool)
1507		i40e_clear_rx_bi_zc(rx_ring);
1508	else
1509		i40e_clear_rx_bi(rx_ring);
1510
1511	/* Zero out the descriptor ring */
1512	memset(rx_ring->desc, 0, rx_ring->size);
1513
1514	rx_ring->next_to_alloc = 0;
1515	rx_ring->next_to_clean = 0;
1516	rx_ring->next_to_process = 0;
1517	rx_ring->next_to_use = 0;
1518}
1519
1520/**
1521 * i40e_free_rx_resources - Free Rx resources
1522 * @rx_ring: ring to clean the resources from
1523 *
1524 * Free all receive software resources
1525 **/
1526void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1527{
1528	i40e_clean_rx_ring(rx_ring);
1529	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1530		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1531	rx_ring->xdp_prog = NULL;
1532	kfree(rx_ring->rx_bi);
1533	rx_ring->rx_bi = NULL;
1534
1535	if (rx_ring->desc) {
1536		dma_free_coherent(rx_ring->dev, rx_ring->size,
1537				  rx_ring->desc, rx_ring->dma);
1538		rx_ring->desc = NULL;
1539	}
1540}
1541
1542/**
1543 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1544 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1545 *
1546 * Returns 0 on success, negative on failure
1547 **/
1548int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1549{
1550	struct device *dev = rx_ring->dev;
 
 
 
 
 
 
 
 
 
1551
1552	u64_stats_init(&rx_ring->syncp);
1553
1554	/* Round up to nearest 4K */
1555	rx_ring->size = rx_ring->count * sizeof(union i40e_rx_desc);
1556	rx_ring->size = ALIGN(rx_ring->size, 4096);
1557	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1558					   &rx_ring->dma, GFP_KERNEL);
1559
1560	if (!rx_ring->desc) {
1561		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1562			 rx_ring->size);
1563		return -ENOMEM;
1564	}
1565
1566	rx_ring->next_to_alloc = 0;
1567	rx_ring->next_to_clean = 0;
1568	rx_ring->next_to_process = 0;
1569	rx_ring->next_to_use = 0;
1570
1571	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
 
 
 
 
 
 
1572
1573	rx_ring->rx_bi =
1574		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_bi), GFP_KERNEL);
1575	if (!rx_ring->rx_bi)
1576		return -ENOMEM;
1577
1578	return 0;
 
 
 
 
1579}
1580
1581/**
1582 * i40e_release_rx_desc - Store the new tail and head values
1583 * @rx_ring: ring to bump
1584 * @val: new head index
1585 **/
1586void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1587{
1588	rx_ring->next_to_use = val;
1589
1590	/* update next to alloc since we have filled the ring */
1591	rx_ring->next_to_alloc = val;
1592
1593	/* Force memory writes to complete before letting h/w
1594	 * know there are new descriptors to fetch.  (Only
1595	 * applicable for weak-ordered memory model archs,
1596	 * such as IA-64).
1597	 */
1598	wmb();
1599	writel(val, rx_ring->tail);
1600}
1601
1602#if (PAGE_SIZE >= 8192)
1603static unsigned int i40e_rx_frame_truesize(struct i40e_ring *rx_ring,
1604					   unsigned int size)
1605{
1606	unsigned int truesize;
1607
1608	truesize = rx_ring->rx_offset ?
1609		SKB_DATA_ALIGN(size + rx_ring->rx_offset) +
1610		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
1611		SKB_DATA_ALIGN(size);
1612	return truesize;
1613}
1614#endif
1615
1616/**
1617 * i40e_alloc_mapped_page - recycle or make a new page
1618 * @rx_ring: ring to use
1619 * @bi: rx_buffer struct to modify
1620 *
1621 * Returns true if the page was successfully allocated or
1622 * reused.
1623 **/
1624static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1625				   struct i40e_rx_buffer *bi)
1626{
1627	struct page *page = bi->page;
1628	dma_addr_t dma;
1629
1630	/* since we are recycling buffers we should seldom need to alloc */
1631	if (likely(page)) {
1632		rx_ring->rx_stats.page_reuse_count++;
1633		return true;
1634	}
1635
1636	/* alloc new page for storage */
1637	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1638	if (unlikely(!page)) {
1639		rx_ring->rx_stats.alloc_page_failed++;
1640		return false;
1641	}
1642
1643	rx_ring->rx_stats.page_alloc_count++;
1644
1645	/* map page for use */
1646	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1647				 i40e_rx_pg_size(rx_ring),
1648				 DMA_FROM_DEVICE,
1649				 I40E_RX_DMA_ATTR);
1650
1651	/* if mapping failed free memory back to system since
1652	 * there isn't much point in holding memory we can't use
1653	 */
1654	if (dma_mapping_error(rx_ring->dev, dma)) {
1655		__free_pages(page, i40e_rx_pg_order(rx_ring));
1656		rx_ring->rx_stats.alloc_page_failed++;
1657		return false;
1658	}
1659
1660	bi->dma = dma;
1661	bi->page = page;
1662	bi->page_offset = rx_ring->rx_offset;
1663	page_ref_add(page, USHRT_MAX - 1);
1664	bi->pagecnt_bias = USHRT_MAX;
1665
1666	return true;
1667}
1668
1669/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1670 * i40e_alloc_rx_buffers - Replace used receive buffers
1671 * @rx_ring: ring to place buffers on
1672 * @cleaned_count: number of buffers to replace
1673 *
1674 * Returns false if all allocations were successful, true if any fail
1675 **/
1676bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1677{
1678	u16 ntu = rx_ring->next_to_use;
1679	union i40e_rx_desc *rx_desc;
1680	struct i40e_rx_buffer *bi;
1681
1682	/* do nothing if no valid netdev defined */
1683	if (!rx_ring->netdev || !cleaned_count)
1684		return false;
1685
1686	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1687	bi = i40e_rx_bi(rx_ring, ntu);
1688
1689	do {
1690		if (!i40e_alloc_mapped_page(rx_ring, bi))
1691			goto no_buffers;
1692
1693		/* sync the buffer for use by the device */
1694		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1695						 bi->page_offset,
1696						 rx_ring->rx_buf_len,
1697						 DMA_FROM_DEVICE);
1698
1699		/* Refresh the desc even if buffer_addrs didn't change
1700		 * because each write-back erases this info.
1701		 */
1702		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1703
1704		rx_desc++;
1705		bi++;
1706		ntu++;
1707		if (unlikely(ntu == rx_ring->count)) {
1708			rx_desc = I40E_RX_DESC(rx_ring, 0);
1709			bi = i40e_rx_bi(rx_ring, 0);
1710			ntu = 0;
1711		}
1712
1713		/* clear the status bits for the next_to_use descriptor */
1714		rx_desc->wb.qword1.status_error_len = 0;
1715
1716		cleaned_count--;
1717	} while (cleaned_count);
1718
1719	if (rx_ring->next_to_use != ntu)
1720		i40e_release_rx_desc(rx_ring, ntu);
1721
1722	return false;
1723
1724no_buffers:
1725	if (rx_ring->next_to_use != ntu)
1726		i40e_release_rx_desc(rx_ring, ntu);
1727
1728	/* make sure to come back via polling to try again after
1729	 * allocation failure
1730	 */
1731	return true;
1732}
1733
1734/**
1735 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1736 * @vsi: the VSI we care about
1737 * @skb: skb currently being received and modified
1738 * @rx_desc: the receive descriptor
1739 **/
1740static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1741				    struct sk_buff *skb,
1742				    union i40e_rx_desc *rx_desc)
1743{
1744	struct i40e_rx_ptype_decoded decoded;
1745	u32 rx_error, rx_status;
1746	bool ipv4, ipv6;
1747	u8 ptype;
1748	u64 qword;
1749
1750	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1751	ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1752	rx_error = FIELD_GET(I40E_RXD_QW1_ERROR_MASK, qword);
1753	rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
 
 
1754	decoded = decode_rx_desc_ptype(ptype);
1755
1756	skb->ip_summed = CHECKSUM_NONE;
1757
1758	skb_checksum_none_assert(skb);
1759
1760	/* Rx csum enabled and ip headers found? */
1761	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1762		return;
1763
1764	/* did the hardware decode the packet and checksum? */
1765	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1766		return;
1767
1768	/* both known and outer_ip must be set for the below code to work */
1769	if (!(decoded.known && decoded.outer_ip))
1770		return;
1771
1772	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1773	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1774	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1775	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1776
1777	if (ipv4 &&
1778	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1779			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1780		goto checksum_fail;
1781
1782	/* likely incorrect csum if alternate IP extension headers found */
1783	if (ipv6 &&
1784	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1785		/* don't increment checksum err here, non-fatal err */
1786		return;
1787
1788	/* there was some L4 error, count error and punt packet to the stack */
1789	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1790		goto checksum_fail;
1791
1792	/* handle packets that were not able to be checksummed due
1793	 * to arrival speed, in this case the stack can compute
1794	 * the csum.
1795	 */
1796	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1797		return;
1798
1799	/* If there is an outer header present that might contain a checksum
1800	 * we need to bump the checksum level by 1 to reflect the fact that
1801	 * we are indicating we validated the inner checksum.
1802	 */
1803	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1804		skb->csum_level = 1;
1805
1806	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1807	switch (decoded.inner_prot) {
1808	case I40E_RX_PTYPE_INNER_PROT_TCP:
1809	case I40E_RX_PTYPE_INNER_PROT_UDP:
1810	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1811		skb->ip_summed = CHECKSUM_UNNECESSARY;
1812		fallthrough;
1813	default:
1814		break;
1815	}
1816
1817	return;
1818
1819checksum_fail:
1820	vsi->back->hw_csum_rx_error++;
1821}
1822
1823/**
1824 * i40e_ptype_to_htype - get a hash type
1825 * @ptype: the ptype value from the descriptor
1826 *
1827 * Returns a hash type to be used by skb_set_hash
1828 **/
1829static inline int i40e_ptype_to_htype(u8 ptype)
1830{
1831	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1832
1833	if (!decoded.known)
1834		return PKT_HASH_TYPE_NONE;
1835
1836	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1837	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1838		return PKT_HASH_TYPE_L4;
1839	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1840		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1841		return PKT_HASH_TYPE_L3;
1842	else
1843		return PKT_HASH_TYPE_L2;
1844}
1845
1846/**
1847 * i40e_rx_hash - set the hash value in the skb
1848 * @ring: descriptor ring
1849 * @rx_desc: specific descriptor
1850 * @skb: skb currently being received and modified
1851 * @rx_ptype: Rx packet type
1852 **/
1853static inline void i40e_rx_hash(struct i40e_ring *ring,
1854				union i40e_rx_desc *rx_desc,
1855				struct sk_buff *skb,
1856				u8 rx_ptype)
1857{
1858	u32 hash;
1859	const __le64 rss_mask =
1860		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1861			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1862
1863	if (!(ring->netdev->features & NETIF_F_RXHASH))
1864		return;
1865
1866	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1867		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1868		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1869	}
1870}
1871
1872/**
1873 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1874 * @rx_ring: rx descriptor ring packet is being transacted on
1875 * @rx_desc: pointer to the EOP Rx descriptor
1876 * @skb: pointer to current skb being populated
 
1877 *
1878 * This function checks the ring, descriptor, and packet information in
1879 * order to populate the hash, checksum, VLAN, protocol, and
1880 * other fields within the skb.
1881 **/
 
1882void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1883			     union i40e_rx_desc *rx_desc, struct sk_buff *skb)
 
1884{
1885	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1886	u32 rx_status = FIELD_GET(I40E_RXD_QW1_STATUS_MASK, qword);
 
1887	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1888	u32 tsyn = FIELD_GET(I40E_RXD_QW1_STATUS_TSYNINDX_MASK, rx_status);
1889	u8 rx_ptype = FIELD_GET(I40E_RXD_QW1_PTYPE_MASK, qword);
1890
1891	if (unlikely(tsynvalid))
1892		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1893
1894	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1895
1896	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1897
1898	skb_record_rx_queue(skb, rx_ring->queue_index);
1899
1900	if (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) {
1901		__le16 vlan_tag = rx_desc->wb.qword0.lo_dword.l2tag1;
1902
1903		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1904				       le16_to_cpu(vlan_tag));
1905	}
1906
1907	/* modifies the skb - consumes the enet header */
1908	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1909}
1910
1911/**
1912 * i40e_cleanup_headers - Correct empty headers
1913 * @rx_ring: rx descriptor ring packet is being transacted on
1914 * @skb: pointer to current skb being fixed
1915 * @rx_desc: pointer to the EOP Rx descriptor
1916 *
 
 
 
1917 * In addition if skb is not at least 60 bytes we need to pad it so that
1918 * it is large enough to qualify as a valid Ethernet frame.
1919 *
1920 * Returns true if an error was encountered and skb was freed.
1921 **/
1922static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1923				 union i40e_rx_desc *rx_desc)
1924
1925{
 
 
 
 
1926	/* ERR_MASK will only have valid bits if EOP set, and
1927	 * what we are doing here is actually checking
1928	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1929	 * the error field
1930	 */
1931	if (unlikely(i40e_test_staterr(rx_desc,
1932				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1933		dev_kfree_skb_any(skb);
1934		return true;
1935	}
1936
1937	/* if eth_skb_pad returns an error the skb was freed */
1938	if (eth_skb_pad(skb))
1939		return true;
1940
1941	return false;
1942}
1943
1944/**
1945 * i40e_can_reuse_rx_page - Determine if page can be reused for another Rx
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1946 * @rx_buffer: buffer containing the page
1947 * @rx_stats: rx stats structure for the rx ring
1948 *
1949 * If page is reusable, we have a green light for calling i40e_reuse_rx_page,
1950 * which will assign the current buffer to the buffer that next_to_alloc is
1951 * pointing to; otherwise, the DMA mapping needs to be destroyed and
1952 * page freed.
1953 *
1954 * rx_stats will be updated to indicate whether the page was waived
1955 * or busy if it could not be reused.
1956 */
1957static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer,
1958				   struct i40e_rx_queue_stats *rx_stats)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1959{
1960	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1961	struct page *page = rx_buffer->page;
1962
1963	/* Is any reuse possible? */
1964	if (!dev_page_is_reusable(page)) {
1965		rx_stats->page_waive_count++;
1966		return false;
1967	}
1968
1969#if (PAGE_SIZE < 8192)
1970	/* if we are only owner of page we can reuse it */
1971	if (unlikely((rx_buffer->page_count - pagecnt_bias) > 1)) {
1972		rx_stats->page_busy_count++;
1973		return false;
1974	}
1975#else
1976#define I40E_LAST_OFFSET \
1977	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1978	if (rx_buffer->page_offset > I40E_LAST_OFFSET) {
1979		rx_stats->page_busy_count++;
1980		return false;
1981	}
1982#endif
1983
1984	/* If we have drained the page fragment pool we need to update
1985	 * the pagecnt_bias and page count so that we fully restock the
1986	 * number of references the driver holds.
1987	 */
1988	if (unlikely(pagecnt_bias == 1)) {
1989		page_ref_add(page, USHRT_MAX - 1);
1990		rx_buffer->pagecnt_bias = USHRT_MAX;
1991	}
1992
1993	return true;
1994}
1995
1996/**
1997 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
1998 * @rx_buffer: Rx buffer to adjust
1999 * @truesize: Size of adjustment
2000 **/
2001static void i40e_rx_buffer_flip(struct i40e_rx_buffer *rx_buffer,
2002				unsigned int truesize)
 
 
 
 
 
 
 
 
 
2003{
2004#if (PAGE_SIZE < 8192)
 
 
 
 
 
 
 
 
 
 
2005	rx_buffer->page_offset ^= truesize;
2006#else
2007	rx_buffer->page_offset += truesize;
2008#endif
2009}
2010
2011/**
2012 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2013 * @rx_ring: rx descriptor ring to transact packets on
2014 * @size: size of buffer to add to skb
2015 *
2016 * This function will pull an Rx buffer from the ring and synchronize it
2017 * for use by the CPU.
2018 */
2019static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2020						 const unsigned int size)
2021{
2022	struct i40e_rx_buffer *rx_buffer;
2023
2024	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_process);
2025	rx_buffer->page_count =
2026#if (PAGE_SIZE < 8192)
2027		page_count(rx_buffer->page);
2028#else
2029		0;
2030#endif
2031	prefetch_page_address(rx_buffer->page);
2032
2033	/* we are reusing so sync this buffer for CPU use */
2034	dma_sync_single_range_for_cpu(rx_ring->dev,
2035				      rx_buffer->dma,
2036				      rx_buffer->page_offset,
2037				      size,
2038				      DMA_FROM_DEVICE);
2039
2040	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2041	rx_buffer->pagecnt_bias--;
2042
2043	return rx_buffer;
2044}
2045
2046/**
2047 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2048 * @rx_ring: rx descriptor ring to transact packets on
2049 * @rx_buffer: rx buffer to pull data from
2050 *
2051 * This function will clean up the contents of the rx_buffer.  It will
2052 * either recycle the buffer or unmap it and free the associated resources.
2053 */
2054static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2055			       struct i40e_rx_buffer *rx_buffer)
2056{
2057	if (i40e_can_reuse_rx_page(rx_buffer, &rx_ring->rx_stats)) {
2058		/* hand second half of page back to the ring */
2059		i40e_reuse_rx_page(rx_ring, rx_buffer);
2060	} else {
2061		/* we are not reusing the buffer so unmap it */
2062		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2063				     i40e_rx_pg_size(rx_ring),
2064				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2065		__page_frag_cache_drain(rx_buffer->page,
2066					rx_buffer->pagecnt_bias);
2067		/* clear contents of buffer_info */
2068		rx_buffer->page = NULL;
2069	}
2070}
2071
2072/**
2073 * i40e_process_rx_buffs- Processing of buffers post XDP prog or on error
2074 * @rx_ring: Rx descriptor ring to transact packets on
2075 * @xdp_res: Result of the XDP program
2076 * @xdp: xdp_buff pointing to the data
2077 **/
2078static void i40e_process_rx_buffs(struct i40e_ring *rx_ring, int xdp_res,
2079				  struct xdp_buff *xdp)
2080{
2081	u32 nr_frags = xdp_get_shared_info_from_buff(xdp)->nr_frags;
2082	u32 next = rx_ring->next_to_clean, i = 0;
2083	struct i40e_rx_buffer *rx_buffer;
2084
2085	xdp->flags = 0;
2086
2087	while (1) {
2088		rx_buffer = i40e_rx_bi(rx_ring, next);
2089		if (++next == rx_ring->count)
2090			next = 0;
2091
2092		if (!rx_buffer->page)
2093			continue;
2094
2095		if (xdp_res != I40E_XDP_CONSUMED)
2096			i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2097		else if (i++ <= nr_frags)
2098			rx_buffer->pagecnt_bias++;
2099
2100		/* EOP buffer will be put in i40e_clean_rx_irq() */
2101		if (next == rx_ring->next_to_process)
2102			return;
2103
2104		i40e_put_rx_buffer(rx_ring, rx_buffer);
2105	}
2106}
2107
2108/**
2109 * i40e_construct_skb - Allocate skb and populate it
2110 * @rx_ring: rx descriptor ring to transact packets on
 
2111 * @xdp: xdp_buff pointing to the data
2112 *
2113 * This function allocates an skb.  It then populates it with the page
2114 * data from the current receive descriptor, taking care to set up the
2115 * skb correctly.
2116 */
2117static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
 
2118					  struct xdp_buff *xdp)
2119{
2120	unsigned int size = xdp->data_end - xdp->data;
2121	struct i40e_rx_buffer *rx_buffer;
2122	struct skb_shared_info *sinfo;
 
 
 
2123	unsigned int headlen;
2124	struct sk_buff *skb;
2125	u32 nr_frags = 0;
2126
2127	/* prefetch first cache line of first page */
2128	net_prefetch(xdp->data);
2129
2130	/* Note, we get here by enabling legacy-rx via:
2131	 *
2132	 *    ethtool --set-priv-flags <dev> legacy-rx on
2133	 *
2134	 * In this mode, we currently get 0 extra XDP headroom as
2135	 * opposed to having legacy-rx off, where we process XDP
2136	 * packets going to stack via i40e_build_skb(). The latter
2137	 * provides us currently with 192 bytes of headroom.
2138	 *
2139	 * For i40e_construct_skb() mode it means that the
2140	 * xdp->data_meta will always point to xdp->data, since
2141	 * the helper cannot expand the head. Should this ever
2142	 * change in future for legacy-rx mode on, then lets also
2143	 * add xdp->data_meta handling here.
2144	 */
2145
2146	/* allocate a skb to store the frags */
2147	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2148			       I40E_RX_HDR_SIZE,
2149			       GFP_ATOMIC | __GFP_NOWARN);
2150	if (unlikely(!skb))
2151		return NULL;
2152
2153	/* Determine available headroom for copy */
2154	headlen = size;
2155	if (headlen > I40E_RX_HDR_SIZE)
2156		headlen = eth_get_headlen(skb->dev, xdp->data,
2157					  I40E_RX_HDR_SIZE);
2158
2159	/* align pull length to size of long to optimize memcpy performance */
2160	memcpy(__skb_put(skb, headlen), xdp->data,
2161	       ALIGN(headlen, sizeof(long)));
2162
2163	if (unlikely(xdp_buff_has_frags(xdp))) {
2164		sinfo = xdp_get_shared_info_from_buff(xdp);
2165		nr_frags = sinfo->nr_frags;
2166	}
2167	rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2168	/* update all of the pointers */
2169	size -= headlen;
2170	if (size) {
2171		if (unlikely(nr_frags >= MAX_SKB_FRAGS)) {
2172			dev_kfree_skb(skb);
2173			return NULL;
2174		}
2175		skb_add_rx_frag(skb, 0, rx_buffer->page,
2176				rx_buffer->page_offset + headlen,
2177				size, xdp->frame_sz);
 
2178		/* buffer is used by skb, update page_offset */
2179		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
 
 
 
 
2180	} else {
2181		/* buffer is unused, reset bias back to rx_buffer */
2182		rx_buffer->pagecnt_bias++;
2183	}
2184
2185	if (unlikely(xdp_buff_has_frags(xdp))) {
2186		struct skb_shared_info *skinfo = skb_shinfo(skb);
2187
2188		memcpy(&skinfo->frags[skinfo->nr_frags], &sinfo->frags[0],
2189		       sizeof(skb_frag_t) * nr_frags);
2190
2191		xdp_update_skb_shared_info(skb, skinfo->nr_frags + nr_frags,
2192					   sinfo->xdp_frags_size,
2193					   nr_frags * xdp->frame_sz,
2194					   xdp_buff_is_frag_pfmemalloc(xdp));
2195
2196		/* First buffer has already been processed, so bump ntc */
2197		if (++rx_ring->next_to_clean == rx_ring->count)
2198			rx_ring->next_to_clean = 0;
2199
2200		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2201	}
2202
2203	return skb;
2204}
2205
2206/**
2207 * i40e_build_skb - Build skb around an existing buffer
2208 * @rx_ring: Rx descriptor ring to transact packets on
 
2209 * @xdp: xdp_buff pointing to the data
2210 *
2211 * This function builds an skb around an existing Rx buffer, taking care
2212 * to set up the skb correctly and avoid any memcpy overhead.
2213 */
2214static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
 
2215				      struct xdp_buff *xdp)
2216{
2217	unsigned int metasize = xdp->data - xdp->data_meta;
2218	struct skb_shared_info *sinfo;
 
 
 
 
 
2219	struct sk_buff *skb;
2220	u32 nr_frags;
2221
2222	/* Prefetch first cache line of first page. If xdp->data_meta
2223	 * is unused, this points exactly as xdp->data, otherwise we
2224	 * likely have a consumer accessing first few bytes of meta
2225	 * data, and then actual data.
2226	 */
2227	net_prefetch(xdp->data_meta);
2228
2229	if (unlikely(xdp_buff_has_frags(xdp))) {
2230		sinfo = xdp_get_shared_info_from_buff(xdp);
2231		nr_frags = sinfo->nr_frags;
2232	}
2233
 
 
 
 
 
2234	/* build an skb around the page buffer */
2235	skb = napi_build_skb(xdp->data_hard_start, xdp->frame_sz);
2236	if (unlikely(!skb))
2237		return NULL;
2238
2239	/* update pointers within the skb to store the data */
2240	skb_reserve(skb, xdp->data - xdp->data_hard_start);
2241	__skb_put(skb, xdp->data_end - xdp->data);
2242	if (metasize)
2243		skb_metadata_set(skb, metasize);
2244
2245	if (unlikely(xdp_buff_has_frags(xdp))) {
2246		xdp_update_skb_shared_info(skb, nr_frags,
2247					   sinfo->xdp_frags_size,
2248					   nr_frags * xdp->frame_sz,
2249					   xdp_buff_is_frag_pfmemalloc(xdp));
2250
2251		i40e_process_rx_buffs(rx_ring, I40E_XDP_PASS, xdp);
2252	} else {
2253		struct i40e_rx_buffer *rx_buffer;
 
 
 
2254
2255		rx_buffer = i40e_rx_bi(rx_ring, rx_ring->next_to_clean);
2256		/* buffer is used by skb, update page_offset */
2257		i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2258	}
2259
2260	return skb;
 
2261}
2262
2263/**
2264 * i40e_is_non_eop - process handling of non-EOP buffers
2265 * @rx_ring: Rx ring being processed
2266 * @rx_desc: Rx descriptor for current buffer
 
2267 *
2268 * If the buffer is an EOP buffer, this function exits returning false,
2269 * otherwise return true indicating that this is in fact a non-EOP buffer.
2270 */
2271bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2272		     union i40e_rx_desc *rx_desc)
 
 
 
2273{
 
 
 
 
 
 
 
 
2274	/* if we are the last buffer then there is nothing else to do */
2275#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2276	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2277		return false;
2278
2279	rx_ring->rx_stats.non_eop_descs++;
2280
2281	return true;
2282}
2283
2284static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
2285			      struct i40e_ring *xdp_ring);
 
2286
2287int i40e_xmit_xdp_tx_ring(struct xdp_buff *xdp, struct i40e_ring *xdp_ring)
2288{
2289	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2290
2291	if (unlikely(!xdpf))
2292		return I40E_XDP_CONSUMED;
2293
2294	return i40e_xmit_xdp_ring(xdpf, xdp_ring);
2295}
2296
2297/**
2298 * i40e_run_xdp - run an XDP program
2299 * @rx_ring: Rx ring being processed
2300 * @xdp: XDP buffer containing the frame
2301 * @xdp_prog: XDP program to run
2302 **/
2303static int i40e_run_xdp(struct i40e_ring *rx_ring, struct xdp_buff *xdp, struct bpf_prog *xdp_prog)
 
2304{
2305	int err, result = I40E_XDP_PASS;
2306	struct i40e_ring *xdp_ring;
 
2307	u32 act;
2308
 
 
 
2309	if (!xdp_prog)
2310		goto xdp_out;
2311
2312	prefetchw(xdp->data_hard_start); /* xdp_frame write */
2313
2314	act = bpf_prog_run_xdp(xdp_prog, xdp);
2315	switch (act) {
2316	case XDP_PASS:
2317		break;
2318	case XDP_TX:
2319		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2320		result = i40e_xmit_xdp_tx_ring(xdp, xdp_ring);
2321		if (result == I40E_XDP_CONSUMED)
2322			goto out_failure;
2323		break;
2324	case XDP_REDIRECT:
2325		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2326		if (err)
2327			goto out_failure;
2328		result = I40E_XDP_REDIR;
2329		break;
2330	default:
2331		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
2332		fallthrough;
2333	case XDP_ABORTED:
2334out_failure:
2335		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2336		fallthrough; /* handle aborts by dropping packet */
2337	case XDP_DROP:
2338		result = I40E_XDP_CONSUMED;
2339		break;
2340	}
2341xdp_out:
2342	return result;
2343}
2344
2345/**
2346 * i40e_xdp_ring_update_tail - Updates the XDP Tx ring tail register
2347 * @xdp_ring: XDP Tx ring
2348 *
2349 * This function updates the XDP Tx ring tail register.
2350 **/
2351void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
2352{
2353	/* Force memory writes to complete before letting h/w
2354	 * know there are new descriptors to fetch.
2355	 */
2356	wmb();
2357	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
2358}
2359
2360/**
2361 * i40e_update_rx_stats - Update Rx ring statistics
2362 * @rx_ring: rx descriptor ring
2363 * @total_rx_bytes: number of bytes received
2364 * @total_rx_packets: number of packets received
2365 *
2366 * This function updates the Rx ring statistics.
2367 **/
2368void i40e_update_rx_stats(struct i40e_ring *rx_ring,
2369			  unsigned int total_rx_bytes,
2370			  unsigned int total_rx_packets)
2371{
2372	u64_stats_update_begin(&rx_ring->syncp);
2373	rx_ring->stats.packets += total_rx_packets;
2374	rx_ring->stats.bytes += total_rx_bytes;
2375	u64_stats_update_end(&rx_ring->syncp);
2376	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2377	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2378}
2379
2380/**
2381 * i40e_finalize_xdp_rx - Bump XDP Tx tail and/or flush redirect map
2382 * @rx_ring: Rx ring
2383 * @xdp_res: Result of the receive batch
2384 *
2385 * This function bumps XDP Tx tail and/or flush redirect map, and
2386 * should be called when a batch of packets has been processed in the
2387 * napi loop.
2388 **/
2389void i40e_finalize_xdp_rx(struct i40e_ring *rx_ring, unsigned int xdp_res)
 
 
2390{
2391	if (xdp_res & I40E_XDP_REDIR)
2392		xdp_do_flush();
2393
2394	if (xdp_res & I40E_XDP_TX) {
2395		struct i40e_ring *xdp_ring =
2396			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2397
2398		i40e_xdp_ring_update_tail(xdp_ring);
2399	}
2400}
2401
2402/**
2403 * i40e_inc_ntp: Advance the next_to_process index
2404 * @rx_ring: Rx ring
2405 **/
2406static void i40e_inc_ntp(struct i40e_ring *rx_ring)
2407{
2408	u32 ntp = rx_ring->next_to_process + 1;
2409
2410	ntp = (ntp < rx_ring->count) ? ntp : 0;
2411	rx_ring->next_to_process = ntp;
2412	prefetch(I40E_RX_DESC(rx_ring, ntp));
2413}
2414
2415/**
2416 * i40e_add_xdp_frag: Add a frag to xdp_buff
2417 * @xdp: xdp_buff pointing to the data
2418 * @nr_frags: return number of buffers for the packet
2419 * @rx_buffer: rx_buffer holding data of the current frag
2420 * @size: size of data of current frag
2421 */
2422static int i40e_add_xdp_frag(struct xdp_buff *xdp, u32 *nr_frags,
2423			     struct i40e_rx_buffer *rx_buffer, u32 size)
2424{
2425	struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp);
2426
2427	if (!xdp_buff_has_frags(xdp)) {
2428		sinfo->nr_frags = 0;
2429		sinfo->xdp_frags_size = 0;
2430		xdp_buff_set_frags_flag(xdp);
2431	} else if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) {
2432		/* Overflowing packet: All frags need to be dropped */
2433		return -ENOMEM;
2434	}
2435
2436	__skb_fill_page_desc_noacc(sinfo, sinfo->nr_frags++, rx_buffer->page,
2437				   rx_buffer->page_offset, size);
2438
2439	sinfo->xdp_frags_size += size;
2440
2441	if (page_is_pfmemalloc(rx_buffer->page))
2442		xdp_buff_set_frag_pfmemalloc(xdp);
2443	*nr_frags = sinfo->nr_frags;
2444
2445	return 0;
2446}
2447
2448/**
2449 * i40e_consume_xdp_buff - Consume all the buffers of the packet and update ntc
2450 * @rx_ring: rx descriptor ring to transact packets on
2451 * @xdp: xdp_buff pointing to the data
2452 * @rx_buffer: rx_buffer of eop desc
2453 */
2454static void i40e_consume_xdp_buff(struct i40e_ring *rx_ring,
2455				  struct xdp_buff *xdp,
2456				  struct i40e_rx_buffer *rx_buffer)
2457{
2458	i40e_process_rx_buffs(rx_ring, I40E_XDP_CONSUMED, xdp);
2459	i40e_put_rx_buffer(rx_ring, rx_buffer);
2460	rx_ring->next_to_clean = rx_ring->next_to_process;
2461	xdp->data = NULL;
2462}
2463
2464/**
2465 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2466 * @rx_ring: rx descriptor ring to transact packets on
2467 * @budget: Total limit on number of packets to process
2468 * @rx_cleaned: Out parameter of the number of packets processed
2469 *
2470 * This function provides a "bounce buffer" approach to Rx interrupt
2471 * processing.  The advantage to this is that on systems that have
2472 * expensive overhead for IOMMU access this provides a means of avoiding
2473 * it by maintaining the mapping of the page to the system.
2474 *
2475 * Returns amount of work completed
2476 **/
2477static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget,
2478			     unsigned int *rx_cleaned)
2479{
2480	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 
2481	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2482	u16 clean_threshold = rx_ring->count / 2;
2483	unsigned int offset = rx_ring->rx_offset;
2484	struct xdp_buff *xdp = &rx_ring->xdp;
2485	unsigned int xdp_xmit = 0;
2486	struct bpf_prog *xdp_prog;
2487	bool failure = false;
2488	int xdp_res = 0;
2489
2490	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2491
2492	while (likely(total_rx_packets < (unsigned int)budget)) {
2493		u16 ntp = rx_ring->next_to_process;
2494		struct i40e_rx_buffer *rx_buffer;
2495		union i40e_rx_desc *rx_desc;
2496		struct sk_buff *skb;
2497		unsigned int size;
2498		u32 nfrags = 0;
2499		bool neop;
2500		u64 qword;
2501
2502		/* return some buffers to hardware, one at a time is too slow */
2503		if (cleaned_count >= clean_threshold) {
2504			failure = failure ||
2505				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2506			cleaned_count = 0;
2507		}
2508
2509		rx_desc = I40E_RX_DESC(rx_ring, ntp);
2510
2511		/* status_error_len will always be zero for unused descriptors
2512		 * because it's cleared in cleanup, and overlaps with hdr_addr
2513		 * which is always zero because packet split isn't used, if the
2514		 * hardware wrote DD then the length will be non-zero
2515		 */
2516		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2517
2518		/* This memory barrier is needed to keep us from reading
2519		 * any other fields out of the rx_desc until we have
2520		 * verified the descriptor has been written back.
2521		 */
2522		dma_rmb();
2523
2524		if (i40e_rx_is_programming_status(qword)) {
2525			i40e_clean_programming_status(rx_ring,
2526						      rx_desc->raw.qword[0],
2527						      qword);
2528			rx_buffer = i40e_rx_bi(rx_ring, ntp);
2529			i40e_inc_ntp(rx_ring);
2530			i40e_reuse_rx_page(rx_ring, rx_buffer);
2531			/* Update ntc and bump cleaned count if not in the
2532			 * middle of mb packet.
2533			 */
2534			if (rx_ring->next_to_clean == ntp) {
2535				rx_ring->next_to_clean =
2536					rx_ring->next_to_process;
2537				cleaned_count++;
2538			}
2539			continue;
2540		}
2541
2542		size = FIELD_GET(I40E_RXD_QW1_LENGTH_PBUF_MASK, qword);
2543		if (!size)
2544			break;
2545
2546		i40e_trace(clean_rx_irq, rx_ring, rx_desc, xdp);
2547		/* retrieve a buffer from the ring */
2548		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2549
2550		neop = i40e_is_non_eop(rx_ring, rx_desc);
2551		i40e_inc_ntp(rx_ring);
2552
2553		if (!xdp->data) {
2554			unsigned char *hard_start;
2555
2556			hard_start = page_address(rx_buffer->page) +
2557				     rx_buffer->page_offset - offset;
2558			xdp_prepare_buff(xdp, hard_start, offset, size, true);
2559#if (PAGE_SIZE > 4096)
2560			/* At larger PAGE_SIZE, frame_sz depend on len size */
2561			xdp->frame_sz = i40e_rx_frame_truesize(rx_ring, size);
2562#endif
2563		} else if (i40e_add_xdp_frag(xdp, &nfrags, rx_buffer, size) &&
2564			   !neop) {
2565			/* Overflowing packet: Drop all frags on EOP */
2566			i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2567			break;
2568		}
2569
2570		if (neop)
2571			continue;
2572
2573		xdp_res = i40e_run_xdp(rx_ring, xdp, xdp_prog);
2574
2575		if (xdp_res) {
2576			xdp_xmit |= xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR);
2577
2578			if (unlikely(xdp_buff_has_frags(xdp))) {
2579				i40e_process_rx_buffs(rx_ring, xdp_res, xdp);
2580				size = xdp_get_buff_len(xdp);
2581			} else if (xdp_res & (I40E_XDP_TX | I40E_XDP_REDIR)) {
2582				i40e_rx_buffer_flip(rx_buffer, xdp->frame_sz);
2583			} else {
2584				rx_buffer->pagecnt_bias++;
2585			}
2586			total_rx_bytes += size;
 
 
 
 
 
2587		} else {
2588			if (ring_uses_build_skb(rx_ring))
2589				skb = i40e_build_skb(rx_ring, xdp);
2590			else
2591				skb = i40e_construct_skb(rx_ring, xdp);
2592
2593			/* drop if we failed to retrieve a buffer */
2594			if (!skb) {
2595				rx_ring->rx_stats.alloc_buff_failed++;
2596				i40e_consume_xdp_buff(rx_ring, xdp, rx_buffer);
2597				break;
2598			}
2599
2600			if (i40e_cleanup_headers(rx_ring, skb, rx_desc))
2601				goto process_next;
 
 
 
 
2602
2603			/* probably a little skewed due to removing CRC */
2604			total_rx_bytes += skb->len;
2605
2606			/* populate checksum, VLAN, and protocol */
2607			i40e_process_skb_fields(rx_ring, rx_desc, skb);
2608
2609			i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, xdp);
2610			napi_gro_receive(&rx_ring->q_vector->napi, skb);
 
2611		}
2612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2613		/* update budget accounting */
2614		total_rx_packets++;
2615process_next:
2616		cleaned_count += nfrags + 1;
2617		i40e_put_rx_buffer(rx_ring, rx_buffer);
2618		rx_ring->next_to_clean = rx_ring->next_to_process;
2619
2620		xdp->data = NULL;
2621	}
2622
2623	i40e_finalize_xdp_rx(rx_ring, xdp_xmit);
 
 
2624
2625	i40e_update_rx_stats(rx_ring, total_rx_bytes, total_rx_packets);
 
 
2626
2627	*rx_cleaned = total_rx_packets;
 
 
 
 
 
 
 
2628
2629	/* guarantee a trip back through this routine if there was a failure */
2630	return failure ? budget : (int)total_rx_packets;
2631}
2632
2633/**
2634 * i40e_buildreg_itr - build a value for writing to I40E_PFINT_DYN_CTLN register
2635 * @itr_idx: interrupt throttling index
2636 * @interval: interrupt throttling interval value in usecs
2637 * @force_swint: force software interrupt
2638 *
2639 * The function builds a value for I40E_PFINT_DYN_CTLN register that
2640 * is used to update interrupt throttling interval for specified ITR index
2641 * and optionally enforces a software interrupt. If the @itr_idx is equal
2642 * to I40E_ITR_NONE then no interval change is applied and only @force_swint
2643 * parameter is taken into account. If the interval change and enforced
2644 * software interrupt are not requested then the built value just enables
2645 * appropriate vector interrupt.
2646 **/
2647static u32 i40e_buildreg_itr(enum i40e_dyn_idx itr_idx, u16 interval,
2648			     bool force_swint)
2649{
2650	u32 val;
2651
2652	/* We don't bother with setting the CLEARPBA bit as the data sheet
2653	 * points out doing so is "meaningless since it was already
2654	 * auto-cleared". The auto-clearing happens when the interrupt is
2655	 * asserted.
2656	 *
2657	 * Hardware errata 28 for also indicates that writing to a
2658	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2659	 * an event in the PBA anyway so we need to rely on the automask
2660	 * to hold pending events for us until the interrupt is re-enabled
2661	 *
2662	 * We have to shift the given value as it is reported in microseconds
2663	 * and the register value is recorded in 2 microsecond units.
 
 
2664	 */
2665	interval >>= 1;
2666
2667	/* 1. Enable vector interrupt
2668	 * 2. Update the interval for the specified ITR index
2669	 *    (I40E_ITR_NONE in the register is used to indicate that
2670	 *     no interval update is requested)
2671	 */
2672	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2673	      FIELD_PREP(I40E_PFINT_DYN_CTLN_ITR_INDX_MASK, itr_idx) |
2674	      FIELD_PREP(I40E_PFINT_DYN_CTLN_INTERVAL_MASK, interval);
2675
2676	/* 3. Enforce software interrupt trigger if requested
2677	 *    (These software interrupts rate is limited by ITR2 that is
2678	 *     set to 20K interrupts per second)
2679	 */
2680	if (force_swint)
2681		val |= I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
2682		       I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK |
2683		       FIELD_PREP(I40E_PFINT_DYN_CTLN_SW_ITR_INDX_MASK,
2684				  I40E_SW_ITR);
2685
2686	return val;
2687}
2688
 
 
 
2689/* The act of updating the ITR will cause it to immediately trigger. In order
2690 * to prevent this from throwing off adaptive update statistics we defer the
2691 * update so that it can only happen so often. So after either Tx or Rx are
2692 * updated we make the adaptive scheme wait until either the ITR completely
2693 * expires via the next_update expiration or we have been through at least
2694 * 3 interrupts.
2695 */
2696#define ITR_COUNTDOWN_START 3
2697
2698/**
2699 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2700 * @vsi: the VSI we care about
2701 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2702 *
2703 **/
2704static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2705					  struct i40e_q_vector *q_vector)
2706{
2707	enum i40e_dyn_idx itr_idx = I40E_ITR_NONE;
2708	struct i40e_hw *hw = &vsi->back->hw;
2709	u16 interval = 0;
2710	u32 itr_val;
2711
2712	/* If we don't have MSIX, then we only need to re-enable icr0 */
2713	if (!test_bit(I40E_FLAG_MSIX_ENA, vsi->back->flags)) {
2714		i40e_irq_dynamic_enable_icr0(vsi->back);
2715		return;
2716	}
2717
2718	/* These will do nothing if dynamic updates are not enabled */
2719	i40e_update_itr(q_vector, &q_vector->tx);
2720	i40e_update_itr(q_vector, &q_vector->rx);
2721
2722	/* This block of logic allows us to get away with only updating
2723	 * one ITR value with each interrupt. The idea is to perform a
2724	 * pseudo-lazy update with the following criteria.
2725	 *
2726	 * 1. Rx is given higher priority than Tx if both are in same state
2727	 * 2. If we must reduce an ITR that is given highest priority.
2728	 * 3. We then give priority to increasing ITR based on amount.
2729	 */
2730	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2731		/* Rx ITR needs to be reduced, this is highest priority */
2732		itr_idx = I40E_RX_ITR;
2733		interval = q_vector->rx.target_itr;
2734		q_vector->rx.current_itr = q_vector->rx.target_itr;
2735		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2736	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2737		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2738		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2739		/* Tx ITR needs to be reduced, this is second priority
2740		 * Tx ITR needs to be increased more than Rx, fourth priority
2741		 */
2742		itr_idx = I40E_TX_ITR;
2743		interval = q_vector->tx.target_itr;
2744		q_vector->tx.current_itr = q_vector->tx.target_itr;
2745		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2746	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2747		/* Rx ITR needs to be increased, third priority */
2748		itr_idx = I40E_RX_ITR;
2749		interval = q_vector->rx.target_itr;
2750		q_vector->rx.current_itr = q_vector->rx.target_itr;
2751		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2752	} else {
2753		/* No ITR update, lowest priority */
 
2754		if (q_vector->itr_countdown)
2755			q_vector->itr_countdown--;
2756	}
2757
2758	/* Do not update interrupt control register if VSI is down */
2759	if (test_bit(__I40E_VSI_DOWN, vsi->state))
2760		return;
2761
2762	/* Update ITR interval if necessary and enforce software interrupt
2763	 * if we are exiting busy poll.
2764	 */
2765	if (q_vector->in_busy_poll) {
2766		itr_val = i40e_buildreg_itr(itr_idx, interval, true);
2767		q_vector->in_busy_poll = false;
2768	} else {
2769		itr_val = i40e_buildreg_itr(itr_idx, interval, false);
2770	}
2771	wr32(hw, I40E_PFINT_DYN_CTLN(q_vector->reg_idx), itr_val);
2772}
2773
2774/**
2775 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2776 * @napi: napi struct with our devices info in it
2777 * @budget: amount of work driver is allowed to do this pass, in packets
2778 *
2779 * This function will clean all queues associated with a q_vector.
2780 *
2781 * Returns the amount of work done
2782 **/
2783int i40e_napi_poll(struct napi_struct *napi, int budget)
2784{
2785	struct i40e_q_vector *q_vector =
2786			       container_of(napi, struct i40e_q_vector, napi);
2787	struct i40e_vsi *vsi = q_vector->vsi;
2788	struct i40e_ring *ring;
2789	bool tx_clean_complete = true;
2790	bool rx_clean_complete = true;
2791	unsigned int tx_cleaned = 0;
2792	unsigned int rx_cleaned = 0;
2793	bool clean_complete = true;
2794	bool arm_wb = false;
2795	int budget_per_ring;
2796	int work_done = 0;
2797
2798	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2799		napi_complete(napi);
2800		return 0;
2801	}
2802
2803	/* Since the actual Tx work is minimal, we can give the Tx a larger
2804	 * budget and be more aggressive about cleaning up the Tx descriptors.
2805	 */
2806	i40e_for_each_ring(ring, q_vector->tx) {
2807		bool wd = ring->xsk_pool ?
2808			  i40e_clean_xdp_tx_irq(vsi, ring) :
2809			  i40e_clean_tx_irq(vsi, ring, budget, &tx_cleaned);
2810
2811		if (!wd) {
2812			clean_complete = tx_clean_complete = false;
2813			continue;
2814		}
2815		arm_wb |= ring->arm_wb;
2816		ring->arm_wb = false;
2817	}
2818
2819	/* Handle case where we are called by netpoll with a budget of 0 */
2820	if (budget <= 0)
2821		goto tx_only;
2822
2823	/* normally we have 1 Rx ring per q_vector */
2824	if (unlikely(q_vector->num_ringpairs > 1))
2825		/* We attempt to distribute budget to each Rx queue fairly, but
2826		 * don't allow the budget to go below 1 because that would exit
2827		 * polling early.
2828		 */
2829		budget_per_ring = max_t(int, budget / q_vector->num_ringpairs, 1);
2830	else
2831		/* Max of 1 Rx ring in this q_vector so give it the budget */
2832		budget_per_ring = budget;
2833
2834	i40e_for_each_ring(ring, q_vector->rx) {
2835		int cleaned = ring->xsk_pool ?
2836			      i40e_clean_rx_irq_zc(ring, budget_per_ring) :
2837			      i40e_clean_rx_irq(ring, budget_per_ring, &rx_cleaned);
2838
2839		work_done += cleaned;
2840		/* if we clean as many as budgeted, we must not be done */
2841		if (cleaned >= budget_per_ring)
2842			clean_complete = rx_clean_complete = false;
2843	}
2844
2845	if (!i40e_enabled_xdp_vsi(vsi))
2846		trace_i40e_napi_poll(napi, q_vector, budget, budget_per_ring, rx_cleaned,
2847				     tx_cleaned, rx_clean_complete, tx_clean_complete);
2848
2849	/* If work not completed, return budget and polling will return */
2850	if (!clean_complete) {
2851		int cpu_id = smp_processor_id();
2852
2853		/* It is possible that the interrupt affinity has changed but,
2854		 * if the cpu is pegged at 100%, polling will never exit while
2855		 * traffic continues and the interrupt will be stuck on this
2856		 * cpu.  We check to make sure affinity is correct before we
2857		 * continue to poll, otherwise we must stop polling so the
2858		 * interrupt can move to the correct cpu.
2859		 */
2860		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2861			/* Tell napi that we are done polling */
2862			napi_complete_done(napi, work_done);
2863
2864			/* Force an interrupt */
2865			i40e_force_wb(vsi, q_vector);
2866
2867			/* Return budget-1 so that polling stops */
2868			return budget - 1;
2869		}
2870tx_only:
2871		if (arm_wb) {
2872			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2873			i40e_enable_wb_on_itr(vsi, q_vector);
2874		}
2875		return budget;
2876	}
2877
2878	if (q_vector->tx.ring[0].flags & I40E_TXR_FLAGS_WB_ON_ITR)
2879		q_vector->arm_wb_state = false;
2880
2881	/* Exit the polling mode, but don't re-enable interrupts if stack might
2882	 * poll us due to busy-polling
2883	 */
2884	if (likely(napi_complete_done(napi, work_done)))
2885		i40e_update_enable_itr(vsi, q_vector);
2886	else
2887		q_vector->in_busy_poll = true;
2888
2889	return min(work_done, budget - 1);
2890}
2891
2892/**
2893 * i40e_atr - Add a Flow Director ATR filter
2894 * @tx_ring:  ring to add programming descriptor to
2895 * @skb:      send buffer
2896 * @tx_flags: send tx flags
2897 **/
2898static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2899		     u32 tx_flags)
2900{
2901	struct i40e_filter_program_desc *fdir_desc;
2902	struct i40e_pf *pf = tx_ring->vsi->back;
2903	union {
2904		unsigned char *network;
2905		struct iphdr *ipv4;
2906		struct ipv6hdr *ipv6;
2907	} hdr;
2908	struct tcphdr *th;
2909	unsigned int hlen;
2910	u32 flex_ptype, dtype_cmd;
2911	int l4_proto;
2912	u16 i;
2913
2914	/* make sure ATR is enabled */
2915	if (!test_bit(I40E_FLAG_FD_ATR_ENA, pf->flags))
2916		return;
2917
2918	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2919		return;
2920
2921	/* if sampling is disabled do nothing */
2922	if (!tx_ring->atr_sample_rate)
2923		return;
2924
2925	/* Currently only IPv4/IPv6 with TCP is supported */
2926	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2927		return;
2928
2929	/* snag network header to get L4 type and address */
2930	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2931		      skb_inner_network_header(skb) : skb_network_header(skb);
2932
2933	/* Note: tx_flags gets modified to reflect inner protocols in
2934	 * tx_enable_csum function if encap is enabled.
2935	 */
2936	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2937		/* access ihl as u8 to avoid unaligned access on ia64 */
2938		hlen = (hdr.network[0] & 0x0F) << 2;
2939		l4_proto = hdr.ipv4->protocol;
2940	} else {
2941		/* find the start of the innermost ipv6 header */
2942		unsigned int inner_hlen = hdr.network - skb->data;
2943		unsigned int h_offset = inner_hlen;
2944
2945		/* this function updates h_offset to the end of the header */
2946		l4_proto =
2947		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2948		/* hlen will contain our best estimate of the tcp header */
2949		hlen = h_offset - inner_hlen;
2950	}
2951
2952	if (l4_proto != IPPROTO_TCP)
2953		return;
2954
2955	th = (struct tcphdr *)(hdr.network + hlen);
2956
2957	/* Due to lack of space, no more new filters can be programmed */
2958	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2959		return;
2960	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags)) {
2961		/* HW ATR eviction will take care of removing filters on FIN
2962		 * and RST packets.
2963		 */
2964		if (th->fin || th->rst)
2965			return;
2966	}
2967
2968	tx_ring->atr_count++;
2969
2970	/* sample on all syn/fin/rst packets or once every atr sample rate */
2971	if (!th->fin &&
2972	    !th->syn &&
2973	    !th->rst &&
2974	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2975		return;
2976
2977	tx_ring->atr_count = 0;
2978
2979	/* grab the next descriptor */
2980	i = tx_ring->next_to_use;
2981	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2982
2983	i++;
2984	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2985
2986	flex_ptype = FIELD_PREP(I40E_TXD_FLTR_QW0_QINDEX_MASK,
2987				tx_ring->queue_index);
2988	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2989		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2990		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2991		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2992		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2993
2994	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2995
2996	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2997
2998	dtype_cmd |= (th->fin || th->rst) ?
2999		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
3000		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
3001		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
3002		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
3003
3004	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
3005		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
3006
3007	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
3008		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
3009
3010	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
3011	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
3012		dtype_cmd |=
3013			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
3014				   I40E_FD_ATR_STAT_IDX(pf->hw.pf_id));
 
3015	else
3016		dtype_cmd |=
3017			FIELD_PREP(I40E_TXD_FLTR_QW1_CNTINDEX_MASK,
3018				   I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id));
 
3019
3020	if (test_bit(I40E_FLAG_HW_ATR_EVICT_ENA, pf->flags))
3021		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
3022
3023	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
3024	fdir_desc->rsvd = cpu_to_le32(0);
3025	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
3026	fdir_desc->fd_id = cpu_to_le32(0);
3027}
3028
3029/**
3030 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
3031 * @skb:     send buffer
3032 * @tx_ring: ring to send buffer on
3033 * @flags:   the tx flags to be set
3034 *
3035 * Checks the skb and set up correspondingly several generic transmit flags
3036 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
3037 *
3038 * Returns error code indicate the frame should be dropped upon error and the
3039 * otherwise  returns 0 to indicate the flags has been set properly.
3040 **/
3041static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
3042					     struct i40e_ring *tx_ring,
3043					     u32 *flags)
3044{
3045	__be16 protocol = skb->protocol;
3046	u32  tx_flags = 0;
3047
3048	if (protocol == htons(ETH_P_8021Q) &&
3049	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
3050		/* When HW VLAN acceleration is turned off by the user the
3051		 * stack sets the protocol to 8021q so that the driver
3052		 * can take any steps required to support the SW only
3053		 * VLAN handling.  In our case the driver doesn't need
3054		 * to take any further steps so just set the protocol
3055		 * to the encapsulated ethertype.
3056		 */
3057		skb->protocol = vlan_get_protocol(skb);
3058		goto out;
3059	}
3060
3061	/* if we have a HW VLAN tag being added, default to the HW one */
3062	if (skb_vlan_tag_present(skb)) {
3063		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
3064		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3065	/* else if it is a SW VLAN, check the next protocol and store the tag */
3066	} else if (protocol == htons(ETH_P_8021Q)) {
3067		struct vlan_hdr *vhdr, _vhdr;
3068
3069		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
3070		if (!vhdr)
3071			return -EINVAL;
3072
3073		protocol = vhdr->h_vlan_encapsulated_proto;
3074		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
3075		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
3076	}
3077
3078	if (!test_bit(I40E_FLAG_DCB_ENA, tx_ring->vsi->back->flags))
3079		goto out;
3080
3081	/* Insert 802.1p priority into VLAN header */
3082	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
3083	    (skb->priority != TC_PRIO_CONTROL)) {
3084		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
3085		tx_flags |= (skb->priority & 0x7) <<
3086				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
3087		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
3088			struct vlan_ethhdr *vhdr;
3089			int rc;
3090
3091			rc = skb_cow_head(skb, 0);
3092			if (rc < 0)
3093				return rc;
3094			vhdr = skb_vlan_eth_hdr(skb);
3095			vhdr->h_vlan_TCI = htons(tx_flags >>
3096						 I40E_TX_FLAGS_VLAN_SHIFT);
3097		} else {
3098			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
3099		}
3100	}
3101
3102out:
3103	*flags = tx_flags;
3104	return 0;
3105}
3106
3107/**
3108 * i40e_tso - set up the tso context descriptor
3109 * @first:    pointer to first Tx buffer for xmit
3110 * @hdr_len:  ptr to the size of the packet header
3111 * @cd_type_cmd_tso_mss: Quad Word 1
3112 *
3113 * Returns 0 if no TSO can happen, 1 if tso is going, or error
3114 **/
3115static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
3116		    u64 *cd_type_cmd_tso_mss)
3117{
3118	struct sk_buff *skb = first->skb;
3119	u64 cd_cmd, cd_tso_len, cd_mss;
3120	__be16 protocol;
3121	union {
3122		struct iphdr *v4;
3123		struct ipv6hdr *v6;
3124		unsigned char *hdr;
3125	} ip;
3126	union {
3127		struct tcphdr *tcp;
3128		struct udphdr *udp;
3129		unsigned char *hdr;
3130	} l4;
3131	u32 paylen, l4_offset;
3132	u16 gso_size;
3133	int err;
3134
3135	if (skb->ip_summed != CHECKSUM_PARTIAL)
3136		return 0;
3137
3138	if (!skb_is_gso(skb))
3139		return 0;
3140
3141	err = skb_cow_head(skb, 0);
3142	if (err < 0)
3143		return err;
3144
3145	protocol = vlan_get_protocol(skb);
3146
3147	if (eth_p_mpls(protocol))
3148		ip.hdr = skb_inner_network_header(skb);
3149	else
3150		ip.hdr = skb_network_header(skb);
3151	l4.hdr = skb_checksum_start(skb);
3152
3153	/* initialize outer IP header fields */
3154	if (ip.v4->version == 4) {
3155		ip.v4->tot_len = 0;
3156		ip.v4->check = 0;
3157
3158		first->tx_flags |= I40E_TX_FLAGS_TSO;
3159	} else {
3160		ip.v6->payload_len = 0;
3161		first->tx_flags |= I40E_TX_FLAGS_TSO;
3162	}
3163
3164	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
3165					 SKB_GSO_GRE_CSUM |
3166					 SKB_GSO_IPXIP4 |
3167					 SKB_GSO_IPXIP6 |
3168					 SKB_GSO_UDP_TUNNEL |
3169					 SKB_GSO_UDP_TUNNEL_CSUM)) {
3170		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3171		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
3172			l4.udp->len = 0;
3173
3174			/* determine offset of outer transport header */
3175			l4_offset = l4.hdr - skb->data;
3176
3177			/* remove payload length from outer checksum */
3178			paylen = skb->len - l4_offset;
3179			csum_replace_by_diff(&l4.udp->check,
3180					     (__force __wsum)htonl(paylen));
3181		}
3182
3183		/* reset pointers to inner headers */
3184		ip.hdr = skb_inner_network_header(skb);
3185		l4.hdr = skb_inner_transport_header(skb);
3186
3187		/* initialize inner IP header fields */
3188		if (ip.v4->version == 4) {
3189			ip.v4->tot_len = 0;
3190			ip.v4->check = 0;
3191		} else {
3192			ip.v6->payload_len = 0;
3193		}
3194	}
3195
3196	/* determine offset of inner transport header */
3197	l4_offset = l4.hdr - skb->data;
3198
3199	/* remove payload length from inner checksum */
3200	paylen = skb->len - l4_offset;
 
3201
3202	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
3203		csum_replace_by_diff(&l4.udp->check, (__force __wsum)htonl(paylen));
3204		/* compute length of segmentation header */
3205		*hdr_len = sizeof(*l4.udp) + l4_offset;
3206	} else {
3207		csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
3208		/* compute length of segmentation header */
3209		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
3210	}
3211
3212	/* pull values out of skb_shinfo */
3213	gso_size = skb_shinfo(skb)->gso_size;
 
3214
3215	/* update GSO size and bytecount with header size */
3216	first->gso_segs = skb_shinfo(skb)->gso_segs;
3217	first->bytecount += (first->gso_segs - 1) * *hdr_len;
3218
3219	/* find the field values */
3220	cd_cmd = I40E_TX_CTX_DESC_TSO;
3221	cd_tso_len = skb->len - *hdr_len;
3222	cd_mss = gso_size;
3223	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
3224				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
3225				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
3226	return 1;
3227}
3228
3229/**
3230 * i40e_tsyn - set up the tsyn context descriptor
3231 * @tx_ring:  ptr to the ring to send
3232 * @skb:      ptr to the skb we're sending
3233 * @tx_flags: the collected send information
3234 * @cd_type_cmd_tso_mss: Quad Word 1
3235 *
3236 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
3237 **/
3238static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
3239		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
3240{
3241	struct i40e_pf *pf;
3242
3243	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
3244		return 0;
3245
3246	/* Tx timestamps cannot be sampled when doing TSO */
3247	if (tx_flags & I40E_TX_FLAGS_TSO)
3248		return 0;
3249
3250	/* only timestamp the outbound packet if the user has requested it and
3251	 * we are not already transmitting a packet to be timestamped
3252	 */
3253	pf = i40e_netdev_to_pf(tx_ring->netdev);
3254	if (!test_bit(I40E_FLAG_PTP_ENA, pf->flags))
3255		return 0;
3256
3257	if (pf->ptp_tx &&
3258	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
3259		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3260		pf->ptp_tx_start = jiffies;
3261		pf->ptp_tx_skb = skb_get(skb);
3262	} else {
3263		pf->tx_hwtstamp_skipped++;
3264		return 0;
3265	}
3266
3267	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3268				I40E_TXD_CTX_QW1_CMD_SHIFT;
3269
3270	return 1;
3271}
3272
3273/**
3274 * i40e_tx_enable_csum - Enable Tx checksum offloads
3275 * @skb: send buffer
3276 * @tx_flags: pointer to Tx flags currently set
3277 * @td_cmd: Tx descriptor command bits to set
3278 * @td_offset: Tx descriptor header offsets to set
3279 * @tx_ring: Tx descriptor ring
3280 * @cd_tunneling: ptr to context desc bits
3281 **/
3282static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3283			       u32 *td_cmd, u32 *td_offset,
3284			       struct i40e_ring *tx_ring,
3285			       u32 *cd_tunneling)
3286{
3287	union {
3288		struct iphdr *v4;
3289		struct ipv6hdr *v6;
3290		unsigned char *hdr;
3291	} ip;
3292	union {
3293		struct tcphdr *tcp;
3294		struct udphdr *udp;
3295		unsigned char *hdr;
3296	} l4;
3297	unsigned char *exthdr;
3298	u32 offset, cmd = 0;
3299	__be16 frag_off;
3300	__be16 protocol;
3301	u8 l4_proto = 0;
3302
3303	if (skb->ip_summed != CHECKSUM_PARTIAL)
3304		return 0;
3305
3306	protocol = vlan_get_protocol(skb);
3307
3308	if (eth_p_mpls(protocol)) {
3309		ip.hdr = skb_inner_network_header(skb);
3310		l4.hdr = skb_checksum_start(skb);
3311	} else {
3312		ip.hdr = skb_network_header(skb);
3313		l4.hdr = skb_transport_header(skb);
3314	}
3315
3316	/* set the tx_flags to indicate the IP protocol type. this is
3317	 * required so that checksum header computation below is accurate.
3318	 */
3319	if (ip.v4->version == 4)
3320		*tx_flags |= I40E_TX_FLAGS_IPV4;
3321	else
3322		*tx_flags |= I40E_TX_FLAGS_IPV6;
3323
3324	/* compute outer L2 header size */
3325	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3326
3327	if (skb->encapsulation) {
3328		u32 tunnel = 0;
3329		/* define outer network header type */
3330		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3331			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3332				  I40E_TX_CTX_EXT_IP_IPV4 :
3333				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3334
3335			l4_proto = ip.v4->protocol;
3336		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3337			int ret;
3338
3339			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3340
3341			exthdr = ip.hdr + sizeof(*ip.v6);
3342			l4_proto = ip.v6->nexthdr;
3343			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
3344					       &l4_proto, &frag_off);
3345			if (ret < 0)
3346				return -1;
3347		}
3348
3349		/* define outer transport */
3350		switch (l4_proto) {
3351		case IPPROTO_UDP:
3352			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3353			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3354			break;
3355		case IPPROTO_GRE:
3356			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3357			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3358			break;
3359		case IPPROTO_IPIP:
3360		case IPPROTO_IPV6:
3361			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3362			l4.hdr = skb_inner_network_header(skb);
3363			break;
3364		default:
3365			if (*tx_flags & I40E_TX_FLAGS_TSO)
3366				return -1;
3367
3368			skb_checksum_help(skb);
3369			return 0;
3370		}
3371
3372		/* compute outer L3 header size */
3373		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3374			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3375
3376		/* switch IP header pointer from outer to inner header */
3377		ip.hdr = skb_inner_network_header(skb);
3378
3379		/* compute tunnel header size */
3380		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3381			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3382
3383		/* indicate if we need to offload outer UDP header */
3384		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3385		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3386		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3387			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3388
3389		/* record tunnel offload values */
3390		*cd_tunneling |= tunnel;
3391
3392		/* switch L4 header pointer from outer to inner */
3393		l4.hdr = skb_inner_transport_header(skb);
3394		l4_proto = 0;
3395
3396		/* reset type as we transition from outer to inner headers */
3397		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3398		if (ip.v4->version == 4)
3399			*tx_flags |= I40E_TX_FLAGS_IPV4;
3400		if (ip.v6->version == 6)
3401			*tx_flags |= I40E_TX_FLAGS_IPV6;
3402	}
3403
3404	/* Enable IP checksum offloads */
3405	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3406		l4_proto = ip.v4->protocol;
3407		/* the stack computes the IP header already, the only time we
3408		 * need the hardware to recompute it is in the case of TSO.
3409		 */
3410		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3411		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3412		       I40E_TX_DESC_CMD_IIPT_IPV4;
3413	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3414		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3415
3416		exthdr = ip.hdr + sizeof(*ip.v6);
3417		l4_proto = ip.v6->nexthdr;
3418		if (l4.hdr != exthdr)
3419			ipv6_skip_exthdr(skb, exthdr - skb->data,
3420					 &l4_proto, &frag_off);
3421	}
3422
3423	/* compute inner L3 header size */
3424	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3425
3426	/* Enable L4 checksum offloads */
3427	switch (l4_proto) {
3428	case IPPROTO_TCP:
3429		/* enable checksum offloads */
3430		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3431		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3432		break;
3433	case IPPROTO_SCTP:
3434		/* enable SCTP checksum offload */
3435		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3436		offset |= (sizeof(struct sctphdr) >> 2) <<
3437			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3438		break;
3439	case IPPROTO_UDP:
3440		/* enable UDP checksum offload */
3441		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3442		offset |= (sizeof(struct udphdr) >> 2) <<
3443			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3444		break;
3445	default:
3446		if (*tx_flags & I40E_TX_FLAGS_TSO)
3447			return -1;
3448		skb_checksum_help(skb);
3449		return 0;
3450	}
3451
3452	*td_cmd |= cmd;
3453	*td_offset |= offset;
3454
3455	return 1;
3456}
3457
3458/**
3459 * i40e_create_tx_ctx - Build the Tx context descriptor
3460 * @tx_ring:  ring to create the descriptor on
3461 * @cd_type_cmd_tso_mss: Quad Word 1
3462 * @cd_tunneling: Quad Word 0 - bits 0-31
3463 * @cd_l2tag2: Quad Word 0 - bits 32-63
3464 **/
3465static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3466			       const u64 cd_type_cmd_tso_mss,
3467			       const u32 cd_tunneling, const u32 cd_l2tag2)
3468{
3469	struct i40e_tx_context_desc *context_desc;
3470	int i = tx_ring->next_to_use;
3471
3472	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3473	    !cd_tunneling && !cd_l2tag2)
3474		return;
3475
3476	/* grab the next descriptor */
3477	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3478
3479	i++;
3480	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3481
3482	/* cpu_to_le32 and assign to struct fields */
3483	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3484	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3485	context_desc->rsvd = cpu_to_le16(0);
3486	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3487}
3488
3489/**
3490 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3491 * @tx_ring: the ring to be checked
3492 * @size:    the size buffer we want to assure is available
3493 *
3494 * Returns -EBUSY if a stop is needed, else 0
3495 **/
3496int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3497{
3498	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3499	/* Memory barrier before checking head and tail */
3500	smp_mb();
3501
3502	++tx_ring->tx_stats.tx_stopped;
3503
3504	/* Check again in a case another CPU has just made room available. */
3505	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3506		return -EBUSY;
3507
3508	/* A reprieve! - use start_queue because it doesn't call schedule */
3509	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3510	++tx_ring->tx_stats.restart_queue;
3511	return 0;
3512}
3513
3514/**
3515 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3516 * @skb:      send buffer
3517 *
3518 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3519 * and so we need to figure out the cases where we need to linearize the skb.
3520 *
3521 * For TSO we need to count the TSO header and segment payload separately.
3522 * As such we need to check cases where we have 7 fragments or more as we
3523 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3524 * the segment payload in the first descriptor, and another 7 for the
3525 * fragments.
3526 **/
3527bool __i40e_chk_linearize(struct sk_buff *skb)
3528{
3529	const skb_frag_t *frag, *stale;
3530	int nr_frags, sum;
3531
3532	/* no need to check if number of frags is less than 7 */
3533	nr_frags = skb_shinfo(skb)->nr_frags;
3534	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3535		return false;
3536
3537	/* We need to walk through the list and validate that each group
3538	 * of 6 fragments totals at least gso_size.
3539	 */
3540	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3541	frag = &skb_shinfo(skb)->frags[0];
3542
3543	/* Initialize size to the negative value of gso_size minus 1.  We
3544	 * use this as the worst case scenerio in which the frag ahead
3545	 * of us only provides one byte which is why we are limited to 6
3546	 * descriptors for a single transmit as the header and previous
3547	 * fragment are already consuming 2 descriptors.
3548	 */
3549	sum = 1 - skb_shinfo(skb)->gso_size;
3550
3551	/* Add size of frags 0 through 4 to create our initial sum */
3552	sum += skb_frag_size(frag++);
3553	sum += skb_frag_size(frag++);
3554	sum += skb_frag_size(frag++);
3555	sum += skb_frag_size(frag++);
3556	sum += skb_frag_size(frag++);
3557
3558	/* Walk through fragments adding latest fragment, testing it, and
3559	 * then removing stale fragments from the sum.
3560	 */
3561	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3562		int stale_size = skb_frag_size(stale);
3563
3564		sum += skb_frag_size(frag++);
3565
3566		/* The stale fragment may present us with a smaller
3567		 * descriptor than the actual fragment size. To account
3568		 * for that we need to remove all the data on the front and
3569		 * figure out what the remainder would be in the last
3570		 * descriptor associated with the fragment.
3571		 */
3572		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3573			int align_pad = -(skb_frag_off(stale)) &
3574					(I40E_MAX_READ_REQ_SIZE - 1);
3575
3576			sum -= align_pad;
3577			stale_size -= align_pad;
3578
3579			do {
3580				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3581				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3582			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3583		}
3584
3585		/* if sum is negative we failed to make sufficient progress */
3586		if (sum < 0)
3587			return true;
3588
3589		if (!nr_frags--)
3590			break;
3591
3592		sum -= stale_size;
3593	}
3594
3595	return false;
3596}
3597
3598/**
3599 * i40e_tx_map - Build the Tx descriptor
3600 * @tx_ring:  ring to send buffer on
3601 * @skb:      send buffer
3602 * @first:    first buffer info buffer to use
3603 * @tx_flags: collected send information
3604 * @hdr_len:  size of the packet header
3605 * @td_cmd:   the command field in the descriptor
3606 * @td_offset: offset for checksum or crc
3607 *
3608 * Returns 0 on success, -1 on failure to DMA
3609 **/
3610static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3611			      struct i40e_tx_buffer *first, u32 tx_flags,
3612			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3613{
3614	unsigned int data_len = skb->data_len;
3615	unsigned int size = skb_headlen(skb);
3616	skb_frag_t *frag;
3617	struct i40e_tx_buffer *tx_bi;
3618	struct i40e_tx_desc *tx_desc;
3619	u16 i = tx_ring->next_to_use;
3620	u32 td_tag = 0;
3621	dma_addr_t dma;
3622	u16 desc_count = 1;
3623
3624	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3625		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3626		td_tag = FIELD_GET(I40E_TX_FLAGS_VLAN_MASK, tx_flags);
 
3627	}
3628
3629	first->tx_flags = tx_flags;
3630
3631	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3632
3633	tx_desc = I40E_TX_DESC(tx_ring, i);
3634	tx_bi = first;
3635
3636	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3637		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3638
3639		if (dma_mapping_error(tx_ring->dev, dma))
3640			goto dma_error;
3641
3642		/* record length, and DMA address */
3643		dma_unmap_len_set(tx_bi, len, size);
3644		dma_unmap_addr_set(tx_bi, dma, dma);
3645
3646		/* align size to end of page */
3647		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3648		tx_desc->buffer_addr = cpu_to_le64(dma);
3649
3650		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3651			tx_desc->cmd_type_offset_bsz =
3652				build_ctob(td_cmd, td_offset,
3653					   max_data, td_tag);
3654
3655			tx_desc++;
3656			i++;
3657			desc_count++;
3658
3659			if (i == tx_ring->count) {
3660				tx_desc = I40E_TX_DESC(tx_ring, 0);
3661				i = 0;
3662			}
3663
3664			dma += max_data;
3665			size -= max_data;
3666
3667			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3668			tx_desc->buffer_addr = cpu_to_le64(dma);
3669		}
3670
3671		if (likely(!data_len))
3672			break;
3673
3674		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3675							  size, td_tag);
3676
3677		tx_desc++;
3678		i++;
3679		desc_count++;
3680
3681		if (i == tx_ring->count) {
3682			tx_desc = I40E_TX_DESC(tx_ring, 0);
3683			i = 0;
3684		}
3685
3686		size = skb_frag_size(frag);
3687		data_len -= size;
3688
3689		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3690				       DMA_TO_DEVICE);
3691
3692		tx_bi = &tx_ring->tx_bi[i];
3693	}
3694
3695	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3696
3697	i++;
3698	if (i == tx_ring->count)
3699		i = 0;
3700
3701	tx_ring->next_to_use = i;
3702
3703	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3704
3705	/* write last descriptor with EOP bit */
3706	td_cmd |= I40E_TX_DESC_CMD_EOP;
3707
3708	/* We OR these values together to check both against 4 (WB_STRIDE)
3709	 * below. This is safe since we don't re-use desc_count afterwards.
3710	 */
3711	desc_count |= ++tx_ring->packet_stride;
3712
3713	if (desc_count >= WB_STRIDE) {
3714		/* write last descriptor with RS bit set */
3715		td_cmd |= I40E_TX_DESC_CMD_RS;
3716		tx_ring->packet_stride = 0;
3717	}
3718
3719	tx_desc->cmd_type_offset_bsz =
3720			build_ctob(td_cmd, td_offset, size, td_tag);
3721
3722	skb_tx_timestamp(skb);
3723
3724	/* Force memory writes to complete before letting h/w know there
3725	 * are new descriptors to fetch.
3726	 *
3727	 * We also use this memory barrier to make certain all of the
3728	 * status bits have been updated before next_to_watch is written.
3729	 */
3730	wmb();
3731
3732	/* set next_to_watch value indicating a packet is present */
3733	first->next_to_watch = tx_desc;
3734
3735	/* notify HW of packet */
3736	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
3737		writel(i, tx_ring->tail);
 
 
 
 
 
3738	}
3739
3740	return 0;
3741
3742dma_error:
3743	dev_info(tx_ring->dev, "TX DMA map failed\n");
3744
3745	/* clear dma mappings for failed tx_bi map */
3746	for (;;) {
3747		tx_bi = &tx_ring->tx_bi[i];
3748		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3749		if (tx_bi == first)
3750			break;
3751		if (i == 0)
3752			i = tx_ring->count;
3753		i--;
3754	}
3755
3756	tx_ring->next_to_use = i;
3757
3758	return -1;
3759}
3760
3761static u16 i40e_swdcb_skb_tx_hash(struct net_device *dev,
3762				  const struct sk_buff *skb,
3763				  u16 num_tx_queues)
3764{
3765	u32 jhash_initval_salt = 0xd631614b;
3766	u32 hash;
3767
3768	if (skb->sk && skb->sk->sk_hash)
3769		hash = skb->sk->sk_hash;
3770	else
3771		hash = (__force u16)skb->protocol ^ skb->hash;
3772
3773	hash = jhash_1word(hash, jhash_initval_salt);
3774
3775	return (u16)(((u64)hash * num_tx_queues) >> 32);
3776}
3777
3778u16 i40e_lan_select_queue(struct net_device *netdev,
3779			  struct sk_buff *skb,
3780			  struct net_device __always_unused *sb_dev)
3781{
3782	struct i40e_netdev_priv *np = netdev_priv(netdev);
3783	struct i40e_vsi *vsi = np->vsi;
3784	struct i40e_hw *hw;
3785	u16 qoffset;
3786	u16 qcount;
3787	u8 tclass;
3788	u16 hash;
3789	u8 prio;
3790
3791	/* is DCB enabled at all? */
3792	if (vsi->tc_config.numtc == 1 ||
3793	    i40e_is_tc_mqprio_enabled(vsi->back))
3794		return netdev_pick_tx(netdev, skb, sb_dev);
3795
3796	prio = skb->priority;
3797	hw = &vsi->back->hw;
3798	tclass = hw->local_dcbx_config.etscfg.prioritytable[prio];
3799	/* sanity check */
3800	if (unlikely(!(vsi->tc_config.enabled_tc & BIT(tclass))))
3801		tclass = 0;
3802
3803	/* select a queue assigned for the given TC */
3804	qcount = vsi->tc_config.tc_info[tclass].qcount;
3805	hash = i40e_swdcb_skb_tx_hash(netdev, skb, qcount);
3806
3807	qoffset = vsi->tc_config.tc_info[tclass].qoffset;
3808	return qoffset + hash;
3809}
3810
3811/**
3812 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3813 * @xdpf: data to transmit
3814 * @xdp_ring: XDP Tx ring
3815 **/
3816static int i40e_xmit_xdp_ring(struct xdp_frame *xdpf,
3817			      struct i40e_ring *xdp_ring)
3818{
3819	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
3820	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
3821	u16 i = 0, index = xdp_ring->next_to_use;
3822	struct i40e_tx_buffer *tx_head = &xdp_ring->tx_bi[index];
3823	struct i40e_tx_buffer *tx_bi = tx_head;
3824	struct i40e_tx_desc *tx_desc = I40E_TX_DESC(xdp_ring, index);
3825	void *data = xdpf->data;
3826	u32 size = xdpf->len;
3827
3828	if (unlikely(I40E_DESC_UNUSED(xdp_ring) < 1 + nr_frags)) {
3829		xdp_ring->tx_stats.tx_busy++;
3830		return I40E_XDP_CONSUMED;
3831	}
3832
3833	tx_head->bytecount = xdp_get_frame_len(xdpf);
3834	tx_head->gso_segs = 1;
3835	tx_head->xdpf = xdpf;
3836
3837	for (;;) {
3838		dma_addr_t dma;
3839
3840		dma = dma_map_single(xdp_ring->dev, data, size, DMA_TO_DEVICE);
3841		if (dma_mapping_error(xdp_ring->dev, dma))
3842			goto unmap;
3843
3844		/* record length, and DMA address */
3845		dma_unmap_len_set(tx_bi, len, size);
3846		dma_unmap_addr_set(tx_bi, dma, dma);
3847
3848		tx_desc->buffer_addr = cpu_to_le64(dma);
3849		tx_desc->cmd_type_offset_bsz =
3850			build_ctob(I40E_TX_DESC_CMD_ICRC, 0, size, 0);
3851
3852		if (++index == xdp_ring->count)
3853			index = 0;
3854
3855		if (i == nr_frags)
3856			break;
3857
3858		tx_bi = &xdp_ring->tx_bi[index];
3859		tx_desc = I40E_TX_DESC(xdp_ring, index);
 
 
3860
3861		data = skb_frag_address(&sinfo->frags[i]);
3862		size = skb_frag_size(&sinfo->frags[i]);
3863		i++;
3864	}
3865
3866	tx_desc->cmd_type_offset_bsz |=
3867		cpu_to_le64(I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
 
 
 
3868
3869	/* Make certain all of the status bits have been updated
3870	 * before next_to_watch is written.
3871	 */
3872	smp_wmb();
3873
3874	xdp_ring->xdp_tx_active++;
 
 
3875
3876	tx_head->next_to_watch = tx_desc;
3877	xdp_ring->next_to_use = index;
3878
3879	return I40E_XDP_TX;
3880
3881unmap:
3882	for (;;) {
3883		tx_bi = &xdp_ring->tx_bi[index];
3884		if (dma_unmap_len(tx_bi, len))
3885			dma_unmap_page(xdp_ring->dev,
3886				       dma_unmap_addr(tx_bi, dma),
3887				       dma_unmap_len(tx_bi, len),
3888				       DMA_TO_DEVICE);
3889		dma_unmap_len_set(tx_bi, len, 0);
3890		if (tx_bi == tx_head)
3891			break;
3892
3893		if (!index)
3894			index += xdp_ring->count;
3895		index--;
3896	}
3897
3898	return I40E_XDP_CONSUMED;
3899}
3900
3901/**
3902 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3903 * @skb:     send buffer
3904 * @tx_ring: ring to send buffer on
3905 *
3906 * Returns NETDEV_TX_OK if sent, else an error code
3907 **/
3908static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3909					struct i40e_ring *tx_ring)
3910{
3911	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3912	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3913	struct i40e_tx_buffer *first;
3914	u32 td_offset = 0;
3915	u32 tx_flags = 0;
 
3916	u32 td_cmd = 0;
3917	u8 hdr_len = 0;
3918	int tso, count;
3919	int tsyn;
3920
3921	/* prefetch the data, we'll need it later */
3922	prefetch(skb->data);
3923
3924	i40e_trace(xmit_frame_ring, skb, tx_ring);
3925
3926	count = i40e_xmit_descriptor_count(skb);
3927	if (i40e_chk_linearize(skb, count)) {
3928		if (__skb_linearize(skb)) {
3929			dev_kfree_skb_any(skb);
3930			return NETDEV_TX_OK;
3931		}
3932		count = i40e_txd_use_count(skb->len);
3933		tx_ring->tx_stats.tx_linearize++;
3934	}
3935
3936	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3937	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3938	 *       + 4 desc gap to avoid the cache line where head is,
3939	 *       + 1 desc for context descriptor,
3940	 * otherwise try next time
3941	 */
3942	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3943		tx_ring->tx_stats.tx_busy++;
3944		return NETDEV_TX_BUSY;
3945	}
3946
3947	/* record the location of the first descriptor for this packet */
3948	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3949	first->skb = skb;
3950	first->bytecount = skb->len;
3951	first->gso_segs = 1;
3952
3953	/* prepare the xmit flags */
3954	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3955		goto out_drop;
3956
 
 
 
 
 
 
 
 
 
3957	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3958
3959	if (tso < 0)
3960		goto out_drop;
3961	else if (tso)
3962		tx_flags |= I40E_TX_FLAGS_TSO;
3963
3964	/* Always offload the checksum, since it's in the data descriptor */
3965	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3966				  tx_ring, &cd_tunneling);
3967	if (tso < 0)
3968		goto out_drop;
3969
3970	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3971
3972	if (tsyn)
3973		tx_flags |= I40E_TX_FLAGS_TSYN;
3974
 
 
3975	/* always enable CRC insertion offload */
3976	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3977
3978	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3979			   cd_tunneling, cd_l2tag2);
3980
3981	/* Add Flow Director ATR if it's enabled.
3982	 *
3983	 * NOTE: this must always be directly before the data descriptor.
3984	 */
3985	i40e_atr(tx_ring, skb, tx_flags);
3986
3987	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3988			td_cmd, td_offset))
3989		goto cleanup_tx_tstamp;
3990
3991	return NETDEV_TX_OK;
3992
3993out_drop:
3994	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3995	dev_kfree_skb_any(first->skb);
3996	first->skb = NULL;
3997cleanup_tx_tstamp:
3998	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3999		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
4000
4001		dev_kfree_skb_any(pf->ptp_tx_skb);
4002		pf->ptp_tx_skb = NULL;
4003		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
4004	}
4005
4006	return NETDEV_TX_OK;
4007}
4008
4009/**
4010 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
4011 * @skb:    send buffer
4012 * @netdev: network interface device structure
4013 *
4014 * Returns NETDEV_TX_OK if sent, else an error code
4015 **/
4016netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4017{
4018	struct i40e_netdev_priv *np = netdev_priv(netdev);
4019	struct i40e_vsi *vsi = np->vsi;
4020	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
4021
4022	/* hardware can't handle really short frames, hardware padding works
4023	 * beyond this point
4024	 */
4025	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
4026		return NETDEV_TX_OK;
4027
4028	return i40e_xmit_frame_ring(skb, tx_ring);
4029}
4030
4031/**
4032 * i40e_xdp_xmit - Implements ndo_xdp_xmit
4033 * @dev: netdev
4034 * @n: number of frames
4035 * @frames: array of XDP buffer pointers
4036 * @flags: XDP extra info
4037 *
4038 * Returns number of frames successfully sent. Failed frames
4039 * will be free'ed by XDP core.
4040 *
4041 * For error cases, a negative errno code is returned and no-frames
4042 * are transmitted (caller must handle freeing frames).
4043 **/
4044int i40e_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
4045		  u32 flags)
4046{
4047	struct i40e_netdev_priv *np = netdev_priv(dev);
4048	unsigned int queue_index = smp_processor_id();
4049	struct i40e_vsi *vsi = np->vsi;
4050	struct i40e_pf *pf = vsi->back;
4051	struct i40e_ring *xdp_ring;
4052	int nxmit = 0;
4053	int i;
4054
4055	if (test_bit(__I40E_VSI_DOWN, vsi->state))
4056		return -ENETDOWN;
4057
4058	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs ||
4059	    test_bit(__I40E_CONFIG_BUSY, pf->state))
4060		return -ENXIO;
4061
4062	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
4063		return -EINVAL;
 
4064
4065	xdp_ring = vsi->xdp_rings[queue_index];
 
4066
4067	for (i = 0; i < n; i++) {
4068		struct xdp_frame *xdpf = frames[i];
4069		int err;
 
 
 
 
 
 
4070
4071		err = i40e_xmit_xdp_ring(xdpf, xdp_ring);
4072		if (err != I40E_XDP_TX)
4073			break;
4074		nxmit++;
4075	}
4076
4077	if (unlikely(flags & XDP_XMIT_FLUSH))
4078		i40e_xdp_ring_update_tail(xdp_ring);
4079
4080	return nxmit;
4081}
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*******************************************************************************
   3 *
   4 * Intel Ethernet Controller XL710 Family Linux Driver
   5 * Copyright(c) 2013 - 2016 Intel Corporation.
   6 *
   7 * This program is free software; you can redistribute it and/or modify it
   8 * under the terms and conditions of the GNU General Public License,
   9 * version 2, as published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope it will be useful, but WITHOUT
  12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14 * more details.
  15 *
  16 * You should have received a copy of the GNU General Public License along
  17 * with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 *
  19 * The full GNU General Public License is included in this distribution in
  20 * the file called "COPYING".
  21 *
  22 * Contact Information:
  23 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25 *
  26 ******************************************************************************/
  27
 
  28#include <linux/prefetch.h>
  29#include <net/busy_poll.h>
  30#include <linux/bpf_trace.h>
  31#include <net/xdp.h>
  32#include "i40e.h"
  33#include "i40e_trace.h"
  34#include "i40e_prototype.h"
  35
  36static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
  37				u32 td_tag)
  38{
  39	return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
  40			   ((u64)td_cmd  << I40E_TXD_QW1_CMD_SHIFT) |
  41			   ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
  42			   ((u64)size  << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
  43			   ((u64)td_tag  << I40E_TXD_QW1_L2TAG1_SHIFT));
  44}
  45
  46#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
  47/**
  48 * i40e_fdir - Generate a Flow Director descriptor based on fdata
  49 * @tx_ring: Tx ring to send buffer on
  50 * @fdata: Flow director filter data
  51 * @add: Indicate if we are adding a rule or deleting one
  52 *
  53 **/
  54static void i40e_fdir(struct i40e_ring *tx_ring,
  55		      struct i40e_fdir_filter *fdata, bool add)
  56{
  57	struct i40e_filter_program_desc *fdir_desc;
  58	struct i40e_pf *pf = tx_ring->vsi->back;
  59	u32 flex_ptype, dtype_cmd;
  60	u16 i;
  61
  62	/* grab the next descriptor */
  63	i = tx_ring->next_to_use;
  64	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
  65
  66	i++;
  67	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
  68
  69	flex_ptype = I40E_TXD_FLTR_QW0_QINDEX_MASK &
  70		     (fdata->q_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT);
  71
  72	flex_ptype |= I40E_TXD_FLTR_QW0_FLEXOFF_MASK &
  73		      (fdata->flex_off << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  74
  75	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  76		      (fdata->pctype << I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
  77
  78	flex_ptype |= I40E_TXD_FLTR_QW0_PCTYPE_MASK &
  79		      (fdata->flex_offset << I40E_TXD_FLTR_QW0_FLEXOFF_SHIFT);
  80
  81	/* Use LAN VSI Id if not programmed by user */
  82	flex_ptype |= I40E_TXD_FLTR_QW0_DEST_VSI_MASK &
  83		      ((u32)(fdata->dest_vsi ? : pf->vsi[pf->lan_vsi]->id) <<
  84		       I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT);
  85
  86	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
  87
  88	dtype_cmd |= add ?
  89		     I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
  90		     I40E_TXD_FLTR_QW1_PCMD_SHIFT :
  91		     I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
  92		     I40E_TXD_FLTR_QW1_PCMD_SHIFT;
  93
  94	dtype_cmd |= I40E_TXD_FLTR_QW1_DEST_MASK &
  95		     (fdata->dest_ctl << I40E_TXD_FLTR_QW1_DEST_SHIFT);
  96
  97	dtype_cmd |= I40E_TXD_FLTR_QW1_FD_STATUS_MASK &
  98		     (fdata->fd_status << I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT);
  99
 100	if (fdata->cnt_index) {
 101		dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
 102		dtype_cmd |= I40E_TXD_FLTR_QW1_CNTINDEX_MASK &
 103			     ((u32)fdata->cnt_index <<
 104			      I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT);
 105	}
 106
 107	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
 108	fdir_desc->rsvd = cpu_to_le32(0);
 109	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
 110	fdir_desc->fd_id = cpu_to_le32(fdata->fd_id);
 111}
 112
 113#define I40E_FD_CLEAN_DELAY 10
 114/**
 115 * i40e_program_fdir_filter - Program a Flow Director filter
 116 * @fdir_data: Packet data that will be filter parameters
 117 * @raw_packet: the pre-allocated packet buffer for FDir
 118 * @pf: The PF pointer
 119 * @add: True for add/update, False for remove
 120 **/
 121static int i40e_program_fdir_filter(struct i40e_fdir_filter *fdir_data,
 122				    u8 *raw_packet, struct i40e_pf *pf,
 123				    bool add)
 124{
 125	struct i40e_tx_buffer *tx_buf, *first;
 126	struct i40e_tx_desc *tx_desc;
 127	struct i40e_ring *tx_ring;
 128	struct i40e_vsi *vsi;
 129	struct device *dev;
 130	dma_addr_t dma;
 131	u32 td_cmd = 0;
 132	u16 i;
 133
 134	/* find existing FDIR VSI */
 135	vsi = i40e_find_vsi_by_type(pf, I40E_VSI_FDIR);
 136	if (!vsi)
 137		return -ENOENT;
 138
 139	tx_ring = vsi->tx_rings[0];
 140	dev = tx_ring->dev;
 141
 142	/* we need two descriptors to add/del a filter and we can wait */
 143	for (i = I40E_FD_CLEAN_DELAY; I40E_DESC_UNUSED(tx_ring) < 2; i--) {
 144		if (!i)
 145			return -EAGAIN;
 146		msleep_interruptible(1);
 147	}
 148
 149	dma = dma_map_single(dev, raw_packet,
 150			     I40E_FDIR_MAX_RAW_PACKET_SIZE, DMA_TO_DEVICE);
 151	if (dma_mapping_error(dev, dma))
 152		goto dma_fail;
 153
 154	/* grab the next descriptor */
 155	i = tx_ring->next_to_use;
 156	first = &tx_ring->tx_bi[i];
 157	i40e_fdir(tx_ring, fdir_data, add);
 158
 159	/* Now program a dummy descriptor */
 160	i = tx_ring->next_to_use;
 161	tx_desc = I40E_TX_DESC(tx_ring, i);
 162	tx_buf = &tx_ring->tx_bi[i];
 163
 164	tx_ring->next_to_use = ((i + 1) < tx_ring->count) ? i + 1 : 0;
 165
 166	memset(tx_buf, 0, sizeof(struct i40e_tx_buffer));
 167
 168	/* record length, and DMA address */
 169	dma_unmap_len_set(tx_buf, len, I40E_FDIR_MAX_RAW_PACKET_SIZE);
 170	dma_unmap_addr_set(tx_buf, dma, dma);
 171
 172	tx_desc->buffer_addr = cpu_to_le64(dma);
 173	td_cmd = I40E_TXD_CMD | I40E_TX_DESC_CMD_DUMMY;
 174
 175	tx_buf->tx_flags = I40E_TX_FLAGS_FD_SB;
 176	tx_buf->raw_buf = (void *)raw_packet;
 177
 178	tx_desc->cmd_type_offset_bsz =
 179		build_ctob(td_cmd, 0, I40E_FDIR_MAX_RAW_PACKET_SIZE, 0);
 180
 181	/* Force memory writes to complete before letting h/w
 182	 * know there are new descriptors to fetch.
 183	 */
 184	wmb();
 185
 186	/* Mark the data descriptor to be watched */
 187	first->next_to_watch = tx_desc;
 188
 189	writel(tx_ring->next_to_use, tx_ring->tail);
 190	return 0;
 191
 192dma_fail:
 193	return -1;
 194}
 195
 196#define IP_HEADER_OFFSET 14
 197#define I40E_UDPIP_DUMMY_PACKET_LEN 42
 198/**
 199 * i40e_add_del_fdir_udpv4 - Add/Remove UDPv4 filters
 200 * @vsi: pointer to the targeted VSI
 201 * @fd_data: the flow director data required for the FDir descriptor
 202 * @add: true adds a filter, false removes it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203 *
 204 * Returns 0 if the filters were successfully added or removed
 205 **/
 206static int i40e_add_del_fdir_udpv4(struct i40e_vsi *vsi,
 207				   struct i40e_fdir_filter *fd_data,
 208				   bool add)
 209{
 210	struct i40e_pf *pf = vsi->back;
 211	struct udphdr *udp;
 212	struct iphdr *ip;
 213	u8 *raw_packet;
 214	int ret;
 215	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 216		0x45, 0, 0, 0x1c, 0, 0, 0x40, 0, 0x40, 0x11, 0, 0, 0, 0, 0, 0,
 217		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218
 219	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 220	if (!raw_packet)
 221		return -ENOMEM;
 222	memcpy(raw_packet, packet, I40E_UDPIP_DUMMY_PACKET_LEN);
 223
 224	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 225	udp = (struct udphdr *)(raw_packet + IP_HEADER_OFFSET
 226	      + sizeof(struct iphdr));
 227
 228	ip->daddr = fd_data->dst_ip;
 229	udp->dest = fd_data->dst_port;
 230	ip->saddr = fd_data->src_ip;
 231	udp->source = fd_data->src_port;
 
 
 
 
 
 
 
 
 
 
 232
 233	if (fd_data->flex_filter) {
 234		u8 *payload = raw_packet + I40E_UDPIP_DUMMY_PACKET_LEN;
 235		__be16 pattern = fd_data->flex_word;
 236		u16 off = fd_data->flex_offset;
 237
 
 
 
 
 
 
 238		*((__force __be16 *)(payload + off)) = pattern;
 239	}
 240
 241	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_UDP;
 242	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 243	if (ret) {
 244		dev_info(&pf->pdev->dev,
 245			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 246			 fd_data->pctype, fd_data->fd_id, ret);
 247		/* Free the packet buffer since it wasn't added to the ring */
 248		kfree(raw_packet);
 249		return -EOPNOTSUPP;
 250	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 251		if (add)
 252			dev_info(&pf->pdev->dev,
 253				 "Filter OK for PCTYPE %d loc = %d\n",
 254				 fd_data->pctype, fd_data->fd_id);
 255		else
 256			dev_info(&pf->pdev->dev,
 257				 "Filter deleted for PCTYPE %d loc = %d\n",
 258				 fd_data->pctype, fd_data->fd_id);
 259	}
 260
 261	if (add)
 262		pf->fd_udp4_filter_cnt++;
 263	else
 264		pf->fd_udp4_filter_cnt--;
 265
 266	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 267}
 268
 269#define I40E_TCPIP_DUMMY_PACKET_LEN 54
 
 270/**
 271 * i40e_add_del_fdir_tcpv4 - Add/Remove TCPv4 filters
 272 * @vsi: pointer to the targeted VSI
 273 * @fd_data: the flow director data required for the FDir descriptor
 274 * @add: true adds a filter, false removes it
 
 275 *
 276 * Returns 0 if the filters were successfully added or removed
 277 **/
 278static int i40e_add_del_fdir_tcpv4(struct i40e_vsi *vsi,
 279				   struct i40e_fdir_filter *fd_data,
 280				   bool add)
 
 281{
 282	struct i40e_pf *pf = vsi->back;
 283	struct tcphdr *tcp;
 284	struct iphdr *ip;
 285	u8 *raw_packet;
 286	int ret;
 287	/* Dummy packet */
 288	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 289		0x45, 0, 0, 0x28, 0, 0, 0x40, 0, 0x40, 0x6, 0, 0, 0, 0, 0, 0,
 290		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x80, 0x11,
 291		0x0, 0x72, 0, 0, 0, 0};
 292
 293	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 294	if (!raw_packet)
 295		return -ENOMEM;
 296	memcpy(raw_packet, packet, I40E_TCPIP_DUMMY_PACKET_LEN);
 297
 298	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 299	tcp = (struct tcphdr *)(raw_packet + IP_HEADER_OFFSET
 300	      + sizeof(struct iphdr));
 301
 302	ip->daddr = fd_data->dst_ip;
 303	tcp->dest = fd_data->dst_port;
 304	ip->saddr = fd_data->src_ip;
 305	tcp->source = fd_data->src_port;
 306
 307	if (fd_data->flex_filter) {
 308		u8 *payload = raw_packet + I40E_TCPIP_DUMMY_PACKET_LEN;
 309		__be16 pattern = fd_data->flex_word;
 310		u16 off = fd_data->flex_offset;
 
 
 
 
 
 
 311
 312		*((__force __be16 *)(payload + off)) = pattern;
 
 
 313	}
 314
 315	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_TCP;
 316	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317	if (ret) {
 318		dev_info(&pf->pdev->dev,
 319			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 320			 fd_data->pctype, fd_data->fd_id, ret);
 321		/* Free the packet buffer since it wasn't added to the ring */
 322		kfree(raw_packet);
 323		return -EOPNOTSUPP;
 324	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 325		if (add)
 326			dev_info(&pf->pdev->dev, "Filter OK for PCTYPE %d loc = %d)\n",
 327				 fd_data->pctype, fd_data->fd_id);
 328		else
 329			dev_info(&pf->pdev->dev,
 330				 "Filter deleted for PCTYPE %d loc = %d\n",
 331				 fd_data->pctype, fd_data->fd_id);
 332	}
 333
 
 
 
 334	if (add) {
 335		pf->fd_tcp4_filter_cnt++;
 336		if ((pf->flags & I40E_FLAG_FD_ATR_ENABLED) &&
 337		    I40E_DEBUG_FD & pf->hw.debug_mask)
 338			dev_info(&pf->pdev->dev, "Forcing ATR off, sideband rules for TCP/IPv4 flow being applied\n");
 339		set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 340	} else {
 341		pf->fd_tcp4_filter_cnt--;
 342	}
 343
 344	return 0;
 345}
 346
 347#define I40E_SCTPIP_DUMMY_PACKET_LEN 46
 
 348/**
 349 * i40e_add_del_fdir_sctpv4 - Add/Remove SCTPv4 Flow Director filters for
 350 * a specific flow spec
 351 * @vsi: pointer to the targeted VSI
 352 * @fd_data: the flow director data required for the FDir descriptor
 353 * @add: true adds a filter, false removes it
 
 354 *
 355 * Returns 0 if the filters were successfully added or removed
 356 **/
 357static int i40e_add_del_fdir_sctpv4(struct i40e_vsi *vsi,
 358				    struct i40e_fdir_filter *fd_data,
 359				    bool add)
 
 360{
 361	struct i40e_pf *pf = vsi->back;
 362	struct sctphdr *sctp;
 363	struct iphdr *ip;
 364	u8 *raw_packet;
 365	int ret;
 366	/* Dummy packet */
 367	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 368		0x45, 0, 0, 0x20, 0, 0, 0x40, 0, 0x40, 0x84, 0, 0, 0, 0, 0, 0,
 369		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
 370
 371	raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 372	if (!raw_packet)
 373		return -ENOMEM;
 374	memcpy(raw_packet, packet, I40E_SCTPIP_DUMMY_PACKET_LEN);
 375
 376	ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 377	sctp = (struct sctphdr *)(raw_packet + IP_HEADER_OFFSET
 378	      + sizeof(struct iphdr));
 379
 380	ip->daddr = fd_data->dst_ip;
 381	sctp->dest = fd_data->dst_port;
 382	ip->saddr = fd_data->src_ip;
 383	sctp->source = fd_data->src_port;
 384
 385	if (fd_data->flex_filter) {
 386		u8 *payload = raw_packet + I40E_SCTPIP_DUMMY_PACKET_LEN;
 387		__be16 pattern = fd_data->flex_word;
 388		u16 off = fd_data->flex_offset;
 389
 390		*((__force __be16 *)(payload + off)) = pattern;
 391	}
 
 
 
 392
 393	fd_data->pctype = I40E_FILTER_PCTYPE_NONF_IPV4_SCTP;
 394	ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 395	if (ret) {
 396		dev_info(&pf->pdev->dev,
 397			 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 398			 fd_data->pctype, fd_data->fd_id, ret);
 399		/* Free the packet buffer since it wasn't added to the ring */
 400		kfree(raw_packet);
 401		return -EOPNOTSUPP;
 402	} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 403		if (add)
 404			dev_info(&pf->pdev->dev,
 405				 "Filter OK for PCTYPE %d loc = %d\n",
 406				 fd_data->pctype, fd_data->fd_id);
 407		else
 408			dev_info(&pf->pdev->dev,
 409				 "Filter deleted for PCTYPE %d loc = %d\n",
 410				 fd_data->pctype, fd_data->fd_id);
 411	}
 412
 413	if (add)
 414		pf->fd_sctp4_filter_cnt++;
 415	else
 416		pf->fd_sctp4_filter_cnt--;
 417
 418	return 0;
 419}
 420
 421#define I40E_IP_DUMMY_PACKET_LEN 34
 
 422/**
 423 * i40e_add_del_fdir_ipv4 - Add/Remove IPv4 Flow Director filters for
 424 * a specific flow spec
 425 * @vsi: pointer to the targeted VSI
 426 * @fd_data: the flow director data required for the FDir descriptor
 427 * @add: true adds a filter, false removes it
 
 428 *
 429 * Returns 0 if the filters were successfully added or removed
 430 **/
 431static int i40e_add_del_fdir_ipv4(struct i40e_vsi *vsi,
 432				  struct i40e_fdir_filter *fd_data,
 433				  bool add)
 
 434{
 435	struct i40e_pf *pf = vsi->back;
 436	struct iphdr *ip;
 437	u8 *raw_packet;
 
 
 438	int ret;
 439	int i;
 440	static char packet[] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0x08, 0,
 441		0x45, 0, 0, 0x14, 0, 0, 0x40, 0, 0x40, 0x10, 0, 0, 0, 0, 0, 0,
 442		0, 0, 0, 0};
 443
 444	for (i = I40E_FILTER_PCTYPE_NONF_IPV4_OTHER;
 445	     i <= I40E_FILTER_PCTYPE_FRAG_IPV4;	i++) {
 
 
 
 
 
 
 
 446		raw_packet = kzalloc(I40E_FDIR_MAX_RAW_PACKET_SIZE, GFP_KERNEL);
 447		if (!raw_packet)
 448			return -ENOMEM;
 449		memcpy(raw_packet, packet, I40E_IP_DUMMY_PACKET_LEN);
 450		ip = (struct iphdr *)(raw_packet + IP_HEADER_OFFSET);
 451
 452		ip->saddr = fd_data->src_ip;
 453		ip->daddr = fd_data->dst_ip;
 454		ip->protocol = 0;
 455
 456		if (fd_data->flex_filter) {
 457			u8 *payload = raw_packet + I40E_IP_DUMMY_PACKET_LEN;
 458			__be16 pattern = fd_data->flex_word;
 459			u16 off = fd_data->flex_offset;
 460
 461			*((__force __be16 *)(payload + off)) = pattern;
 462		}
 463
 464		fd_data->pctype = i;
 465		ret = i40e_program_fdir_filter(fd_data, raw_packet, pf, add);
 466		if (ret) {
 467			dev_info(&pf->pdev->dev,
 468				 "PCTYPE:%d, Filter command send failed for fd_id:%d (ret = %d)\n",
 469				 fd_data->pctype, fd_data->fd_id, ret);
 470			/* The packet buffer wasn't added to the ring so we
 471			 * need to free it now.
 472			 */
 473			kfree(raw_packet);
 474			return -EOPNOTSUPP;
 475		} else if (I40E_DEBUG_FD & pf->hw.debug_mask) {
 476			if (add)
 477				dev_info(&pf->pdev->dev,
 478					 "Filter OK for PCTYPE %d loc = %d\n",
 479					 fd_data->pctype, fd_data->fd_id);
 480			else
 481				dev_info(&pf->pdev->dev,
 482					 "Filter deleted for PCTYPE %d loc = %d\n",
 483					 fd_data->pctype, fd_data->fd_id);
 484		}
 485	}
 486
 487	if (add)
 488		pf->fd_ip4_filter_cnt++;
 489	else
 490		pf->fd_ip4_filter_cnt--;
 491
 492	return 0;
 
 
 
 493}
 494
 495/**
 496 * i40e_add_del_fdir - Build raw packets to add/del fdir filter
 497 * @vsi: pointer to the targeted VSI
 498 * @cmd: command to get or set RX flow classification rules
 499 * @add: true adds a filter, false removes it
 500 *
 501 **/
 502int i40e_add_del_fdir(struct i40e_vsi *vsi,
 503		      struct i40e_fdir_filter *input, bool add)
 504{
 
 505	struct i40e_pf *pf = vsi->back;
 506	int ret;
 507
 508	switch (input->flow_type & ~FLOW_EXT) {
 509	case TCP_V4_FLOW:
 510		ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 511		break;
 512	case UDP_V4_FLOW:
 513		ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 514		break;
 515	case SCTP_V4_FLOW:
 516		ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 
 
 
 
 
 
 
 
 
 517		break;
 518	case IP_USER_FLOW:
 519		switch (input->ip4_proto) {
 520		case IPPROTO_TCP:
 521			ret = i40e_add_del_fdir_tcpv4(vsi, input, add);
 522			break;
 523		case IPPROTO_UDP:
 524			ret = i40e_add_del_fdir_udpv4(vsi, input, add);
 525			break;
 526		case IPPROTO_SCTP:
 527			ret = i40e_add_del_fdir_sctpv4(vsi, input, add);
 528			break;
 529		case IPPROTO_IP:
 530			ret = i40e_add_del_fdir_ipv4(vsi, input, add);
 531			break;
 532		default:
 533			/* We cannot support masking based on protocol */
 534			dev_info(&pf->pdev->dev, "Unsupported IPv4 protocol 0x%02x\n",
 535				 input->ip4_proto);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 536			return -EINVAL;
 537		}
 538		break;
 539	default:
 540		dev_info(&pf->pdev->dev, "Unsupported flow type 0x%02x\n",
 541			 input->flow_type);
 542		return -EINVAL;
 543	}
 544
 545	/* The buffer allocated here will be normally be freed by
 546	 * i40e_clean_fdir_tx_irq() as it reclaims resources after transmit
 547	 * completion. In the event of an error adding the buffer to the FDIR
 548	 * ring, it will immediately be freed. It may also be freed by
 549	 * i40e_clean_tx_ring() when closing the VSI.
 550	 */
 551	return ret;
 552}
 553
 554/**
 555 * i40e_fd_handle_status - check the Programming Status for FD
 556 * @rx_ring: the Rx ring for this descriptor
 557 * @rx_desc: the Rx descriptor for programming Status, not a packet descriptor.
 
 558 * @prog_id: the id originally used for programming
 559 *
 560 * This is used to verify if the FD programming or invalidation
 561 * requested by SW to the HW is successful or not and take actions accordingly.
 562 **/
 563static void i40e_fd_handle_status(struct i40e_ring *rx_ring,
 564				  union i40e_rx_desc *rx_desc, u8 prog_id)
 565{
 566	struct i40e_pf *pf = rx_ring->vsi->back;
 567	struct pci_dev *pdev = pf->pdev;
 
 568	u32 fcnt_prog, fcnt_avail;
 569	u32 error;
 570	u64 qw;
 571
 572	qw = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
 573	error = (qw & I40E_RX_PROG_STATUS_DESC_QW1_ERROR_MASK) >>
 574		I40E_RX_PROG_STATUS_DESC_QW1_ERROR_SHIFT;
 575
 576	if (error == BIT(I40E_RX_PROG_STATUS_DESC_FD_TBL_FULL_SHIFT)) {
 577		pf->fd_inv = le32_to_cpu(rx_desc->wb.qword0.hi_dword.fd_id);
 578		if ((rx_desc->wb.qword0.hi_dword.fd_id != 0) ||
 579		    (I40E_DEBUG_FD & pf->hw.debug_mask))
 580			dev_warn(&pdev->dev, "ntuple filter loc = %d, could not be added\n",
 581				 pf->fd_inv);
 582
 583		/* Check if the programming error is for ATR.
 584		 * If so, auto disable ATR and set a state for
 585		 * flush in progress. Next time we come here if flush is in
 586		 * progress do nothing, once flush is complete the state will
 587		 * be cleared.
 588		 */
 589		if (test_bit(__I40E_FD_FLUSH_REQUESTED, pf->state))
 590			return;
 591
 592		pf->fd_add_err++;
 593		/* store the current atr filter count */
 594		pf->fd_atr_cnt = i40e_get_current_atr_cnt(pf);
 595
 596		if ((rx_desc->wb.qword0.hi_dword.fd_id == 0) &&
 597		    test_bit(__I40E_FD_SB_AUTO_DISABLED, pf->state)) {
 598			/* These set_bit() calls aren't atomic with the
 599			 * test_bit() here, but worse case we potentially
 600			 * disable ATR and queue a flush right after SB
 601			 * support is re-enabled. That shouldn't cause an
 602			 * issue in practice
 603			 */
 604			set_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state);
 605			set_bit(__I40E_FD_FLUSH_REQUESTED, pf->state);
 606		}
 607
 608		/* filter programming failed most likely due to table full */
 609		fcnt_prog = i40e_get_global_fd_count(pf);
 610		fcnt_avail = pf->fdir_pf_filter_count;
 611		/* If ATR is running fcnt_prog can quickly change,
 612		 * if we are very close to full, it makes sense to disable
 613		 * FD ATR/SB and then re-enable it when there is room.
 614		 */
 615		if (fcnt_prog >= (fcnt_avail - I40E_FDIR_BUFFER_FULL_MARGIN)) {
 616			if ((pf->flags & I40E_FLAG_FD_SB_ENABLED) &&
 617			    !test_and_set_bit(__I40E_FD_SB_AUTO_DISABLED,
 618					      pf->state))
 619				if (I40E_DEBUG_FD & pf->hw.debug_mask)
 620					dev_warn(&pdev->dev, "FD filter space full, new ntuple rules will not be added\n");
 621		}
 622	} else if (error == BIT(I40E_RX_PROG_STATUS_DESC_NO_FD_ENTRY_SHIFT)) {
 623		if (I40E_DEBUG_FD & pf->hw.debug_mask)
 624			dev_info(&pdev->dev, "ntuple filter fd_id = %d, could not be removed\n",
 625				 rx_desc->wb.qword0.hi_dword.fd_id);
 626	}
 627}
 628
 629/**
 630 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
 631 * @ring:      the ring that owns the buffer
 632 * @tx_buffer: the buffer to free
 633 **/
 634static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
 635					    struct i40e_tx_buffer *tx_buffer)
 636{
 637	if (tx_buffer->skb) {
 638		if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
 639			kfree(tx_buffer->raw_buf);
 640		else if (ring_is_xdp(ring))
 641			page_frag_free(tx_buffer->raw_buf);
 642		else
 643			dev_kfree_skb_any(tx_buffer->skb);
 644		if (dma_unmap_len(tx_buffer, len))
 645			dma_unmap_single(ring->dev,
 646					 dma_unmap_addr(tx_buffer, dma),
 647					 dma_unmap_len(tx_buffer, len),
 648					 DMA_TO_DEVICE);
 649	} else if (dma_unmap_len(tx_buffer, len)) {
 650		dma_unmap_page(ring->dev,
 651			       dma_unmap_addr(tx_buffer, dma),
 652			       dma_unmap_len(tx_buffer, len),
 653			       DMA_TO_DEVICE);
 654	}
 655
 656	tx_buffer->next_to_watch = NULL;
 657	tx_buffer->skb = NULL;
 658	dma_unmap_len_set(tx_buffer, len, 0);
 659	/* tx_buffer must be completely set up in the transmit path */
 660}
 661
 662/**
 663 * i40e_clean_tx_ring - Free any empty Tx buffers
 664 * @tx_ring: ring to be cleaned
 665 **/
 666void i40e_clean_tx_ring(struct i40e_ring *tx_ring)
 667{
 668	unsigned long bi_size;
 669	u16 i;
 670
 671	/* ring already cleared, nothing to do */
 672	if (!tx_ring->tx_bi)
 673		return;
 
 
 
 674
 675	/* Free all the Tx ring sk_buffs */
 676	for (i = 0; i < tx_ring->count; i++)
 677		i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
 
 
 678
 679	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
 680	memset(tx_ring->tx_bi, 0, bi_size);
 681
 682	/* Zero out the descriptor ring */
 683	memset(tx_ring->desc, 0, tx_ring->size);
 684
 685	tx_ring->next_to_use = 0;
 686	tx_ring->next_to_clean = 0;
 687
 688	if (!tx_ring->netdev)
 689		return;
 690
 691	/* cleanup Tx queue statistics */
 692	netdev_tx_reset_queue(txring_txq(tx_ring));
 693}
 694
 695/**
 696 * i40e_free_tx_resources - Free Tx resources per queue
 697 * @tx_ring: Tx descriptor ring for a specific queue
 698 *
 699 * Free all transmit software resources
 700 **/
 701void i40e_free_tx_resources(struct i40e_ring *tx_ring)
 702{
 703	i40e_clean_tx_ring(tx_ring);
 704	kfree(tx_ring->tx_bi);
 705	tx_ring->tx_bi = NULL;
 706
 707	if (tx_ring->desc) {
 708		dma_free_coherent(tx_ring->dev, tx_ring->size,
 709				  tx_ring->desc, tx_ring->dma);
 710		tx_ring->desc = NULL;
 711	}
 712}
 713
 714/**
 715 * i40e_get_tx_pending - how many tx descriptors not processed
 716 * @tx_ring: the ring of descriptors
 717 * @in_sw: use SW variables
 718 *
 719 * Since there is no access to the ring head register
 720 * in XL710, we need to use our local copies
 721 **/
 722u32 i40e_get_tx_pending(struct i40e_ring *ring, bool in_sw)
 723{
 724	u32 head, tail;
 725
 726	if (!in_sw) {
 727		head = i40e_get_head(ring);
 728		tail = readl(ring->tail);
 729	} else {
 730		head = ring->next_to_clean;
 731		tail = ring->next_to_use;
 732	}
 733
 734	if (head != tail)
 735		return (head < tail) ?
 736			tail - head : (tail + ring->count - head);
 737
 738	return 0;
 739}
 740
 741/**
 742 * i40e_detect_recover_hung - Function to detect and recover hung_queues
 743 * @vsi:  pointer to vsi struct with tx queues
 744 *
 745 * VSI has netdev and netdev has TX queues. This function is to check each of
 746 * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
 747 **/
 748void i40e_detect_recover_hung(struct i40e_vsi *vsi)
 749{
 750	struct i40e_ring *tx_ring = NULL;
 751	struct net_device *netdev;
 752	unsigned int i;
 753	int packets;
 754
 755	if (!vsi)
 756		return;
 757
 758	if (test_bit(__I40E_VSI_DOWN, vsi->state))
 759		return;
 760
 761	netdev = vsi->netdev;
 762	if (!netdev)
 763		return;
 764
 765	if (!netif_carrier_ok(netdev))
 766		return;
 767
 768	for (i = 0; i < vsi->num_queue_pairs; i++) {
 769		tx_ring = vsi->tx_rings[i];
 770		if (tx_ring && tx_ring->desc) {
 771			/* If packet counter has not changed the queue is
 772			 * likely stalled, so force an interrupt for this
 773			 * queue.
 774			 *
 775			 * prev_pkt_ctr would be negative if there was no
 776			 * pending work.
 777			 */
 778			packets = tx_ring->stats.packets & INT_MAX;
 779			if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
 780				i40e_force_wb(vsi, tx_ring->q_vector);
 781				continue;
 782			}
 783
 784			/* Memory barrier between read of packet count and call
 785			 * to i40e_get_tx_pending()
 786			 */
 787			smp_rmb();
 788			tx_ring->tx_stats.prev_pkt_ctr =
 789			    i40e_get_tx_pending(tx_ring, true) ? packets : -1;
 790		}
 791	}
 792}
 793
 794#define WB_STRIDE 4
 795
 796/**
 797 * i40e_clean_tx_irq - Reclaim resources after transmit completes
 798 * @vsi: the VSI we care about
 799 * @tx_ring: Tx ring to clean
 800 * @napi_budget: Used to determine if we are in netpoll
 
 801 *
 802 * Returns true if there's any budget left (e.g. the clean is finished)
 803 **/
 804static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
 805			      struct i40e_ring *tx_ring, int napi_budget)
 
 806{
 807	u16 i = tx_ring->next_to_clean;
 808	struct i40e_tx_buffer *tx_buf;
 809	struct i40e_tx_desc *tx_head;
 810	struct i40e_tx_desc *tx_desc;
 811	unsigned int total_bytes = 0, total_packets = 0;
 812	unsigned int budget = vsi->work_limit;
 813
 814	tx_buf = &tx_ring->tx_bi[i];
 815	tx_desc = I40E_TX_DESC(tx_ring, i);
 816	i -= tx_ring->count;
 817
 818	tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
 819
 820	do {
 821		struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
 822
 823		/* if next_to_watch is not set then there is no work pending */
 824		if (!eop_desc)
 825			break;
 826
 827		/* prevent any other reads prior to eop_desc */
 828		smp_rmb();
 829
 830		i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
 831		/* we have caught up to head, no work left to do */
 832		if (tx_head == tx_desc)
 833			break;
 834
 835		/* clear next_to_watch to prevent false hangs */
 836		tx_buf->next_to_watch = NULL;
 837
 838		/* update the statistics for this packet */
 839		total_bytes += tx_buf->bytecount;
 840		total_packets += tx_buf->gso_segs;
 841
 842		/* free the skb/XDP data */
 843		if (ring_is_xdp(tx_ring))
 844			page_frag_free(tx_buf->raw_buf);
 845		else
 846			napi_consume_skb(tx_buf->skb, napi_budget);
 847
 848		/* unmap skb header data */
 849		dma_unmap_single(tx_ring->dev,
 850				 dma_unmap_addr(tx_buf, dma),
 851				 dma_unmap_len(tx_buf, len),
 852				 DMA_TO_DEVICE);
 853
 854		/* clear tx_buffer data */
 855		tx_buf->skb = NULL;
 856		dma_unmap_len_set(tx_buf, len, 0);
 857
 858		/* unmap remaining buffers */
 859		while (tx_desc != eop_desc) {
 860			i40e_trace(clean_tx_irq_unmap,
 861				   tx_ring, tx_desc, tx_buf);
 862
 863			tx_buf++;
 864			tx_desc++;
 865			i++;
 866			if (unlikely(!i)) {
 867				i -= tx_ring->count;
 868				tx_buf = tx_ring->tx_bi;
 869				tx_desc = I40E_TX_DESC(tx_ring, 0);
 870			}
 871
 872			/* unmap any remaining paged data */
 873			if (dma_unmap_len(tx_buf, len)) {
 874				dma_unmap_page(tx_ring->dev,
 875					       dma_unmap_addr(tx_buf, dma),
 876					       dma_unmap_len(tx_buf, len),
 877					       DMA_TO_DEVICE);
 878				dma_unmap_len_set(tx_buf, len, 0);
 879			}
 880		}
 881
 882		/* move us one more past the eop_desc for start of next pkt */
 883		tx_buf++;
 884		tx_desc++;
 885		i++;
 886		if (unlikely(!i)) {
 887			i -= tx_ring->count;
 888			tx_buf = tx_ring->tx_bi;
 889			tx_desc = I40E_TX_DESC(tx_ring, 0);
 890		}
 891
 892		prefetch(tx_desc);
 893
 894		/* update budget accounting */
 895		budget--;
 896	} while (likely(budget));
 897
 898	i += tx_ring->count;
 899	tx_ring->next_to_clean = i;
 900	u64_stats_update_begin(&tx_ring->syncp);
 901	tx_ring->stats.bytes += total_bytes;
 902	tx_ring->stats.packets += total_packets;
 903	u64_stats_update_end(&tx_ring->syncp);
 904	tx_ring->q_vector->tx.total_bytes += total_bytes;
 905	tx_ring->q_vector->tx.total_packets += total_packets;
 906
 907	if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
 908		/* check to see if there are < 4 descriptors
 909		 * waiting to be written back, then kick the hardware to force
 910		 * them to be written back in case we stay in NAPI.
 911		 * In this mode on X722 we do not enable Interrupt.
 912		 */
 913		unsigned int j = i40e_get_tx_pending(tx_ring, false);
 914
 915		if (budget &&
 916		    ((j / WB_STRIDE) == 0) && (j > 0) &&
 917		    !test_bit(__I40E_VSI_DOWN, vsi->state) &&
 918		    (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
 919			tx_ring->arm_wb = true;
 920	}
 921
 922	if (ring_is_xdp(tx_ring))
 923		return !!budget;
 924
 925	/* notify netdev of completed buffers */
 926	netdev_tx_completed_queue(txring_txq(tx_ring),
 927				  total_packets, total_bytes);
 928
 929#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
 930	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
 931		     (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
 932		/* Make sure that anybody stopping the queue after this
 933		 * sees the new next_to_clean.
 934		 */
 935		smp_mb();
 936		if (__netif_subqueue_stopped(tx_ring->netdev,
 937					     tx_ring->queue_index) &&
 938		   !test_bit(__I40E_VSI_DOWN, vsi->state)) {
 939			netif_wake_subqueue(tx_ring->netdev,
 940					    tx_ring->queue_index);
 941			++tx_ring->tx_stats.restart_queue;
 942		}
 943	}
 944
 
 945	return !!budget;
 946}
 947
 948/**
 949 * i40e_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
 950 * @vsi: the VSI we care about
 951 * @q_vector: the vector on which to enable writeback
 952 *
 953 **/
 954static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
 955				  struct i40e_q_vector *q_vector)
 956{
 957	u16 flags = q_vector->tx.ring[0].flags;
 958	u32 val;
 959
 960	if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
 961		return;
 962
 963	if (q_vector->arm_wb_state)
 964		return;
 965
 966	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 967		val = I40E_PFINT_DYN_CTLN_WB_ON_ITR_MASK |
 968		      I40E_PFINT_DYN_CTLN_ITR_INDX_MASK; /* set noitr */
 969
 970		wr32(&vsi->back->hw,
 971		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx),
 972		     val);
 973	} else {
 974		val = I40E_PFINT_DYN_CTL0_WB_ON_ITR_MASK |
 975		      I40E_PFINT_DYN_CTL0_ITR_INDX_MASK; /* set noitr */
 976
 977		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
 978	}
 979	q_vector->arm_wb_state = true;
 980}
 981
 982/**
 983 * i40e_force_wb - Issue SW Interrupt so HW does a wb
 984 * @vsi: the VSI we care about
 985 * @q_vector: the vector  on which to force writeback
 986 *
 987 **/
 988void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
 989{
 990	if (vsi->back->flags & I40E_FLAG_MSIX_ENABLED) {
 991		u32 val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
 992			  I40E_PFINT_DYN_CTLN_ITR_INDX_MASK | /* set noitr */
 993			  I40E_PFINT_DYN_CTLN_SWINT_TRIG_MASK |
 994			  I40E_PFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
 995			  /* allow 00 to be written to the index */
 996
 997		wr32(&vsi->back->hw,
 998		     I40E_PFINT_DYN_CTLN(q_vector->reg_idx), val);
 999	} else {
1000		u32 val = I40E_PFINT_DYN_CTL0_INTENA_MASK |
1001			  I40E_PFINT_DYN_CTL0_ITR_INDX_MASK | /* set noitr */
1002			  I40E_PFINT_DYN_CTL0_SWINT_TRIG_MASK |
1003			  I40E_PFINT_DYN_CTL0_SW_ITR_INDX_ENA_MASK;
1004			/* allow 00 to be written to the index */
1005
1006		wr32(&vsi->back->hw, I40E_PFINT_DYN_CTL0, val);
1007	}
1008}
1009
1010static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
1011					struct i40e_ring_container *rc)
1012{
1013	return &q_vector->rx == rc;
1014}
1015
1016static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
1017{
1018	unsigned int divisor;
1019
1020	switch (q_vector->vsi->back->hw.phy.link_info.link_speed) {
1021	case I40E_LINK_SPEED_40GB:
1022		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
1023		break;
1024	case I40E_LINK_SPEED_25GB:
1025	case I40E_LINK_SPEED_20GB:
1026		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
1027		break;
1028	default:
1029	case I40E_LINK_SPEED_10GB:
1030		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
1031		break;
1032	case I40E_LINK_SPEED_1GB:
1033	case I40E_LINK_SPEED_100MB:
1034		divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
1035		break;
1036	}
1037
1038	return divisor;
1039}
1040
1041/**
1042 * i40e_update_itr - update the dynamic ITR value based on statistics
1043 * @q_vector: structure containing interrupt and ring information
1044 * @rc: structure containing ring performance data
1045 *
1046 * Stores a new ITR value based on packets and byte
1047 * counts during the last interrupt.  The advantage of per interrupt
1048 * computation is faster updates and more accurate ITR for the current
1049 * traffic pattern.  Constants in this function were computed
1050 * based on theoretical maximum wire speed and thresholds were set based
1051 * on testing data as well as attempting to minimize response time
1052 * while increasing bulk throughput.
1053 **/
1054static void i40e_update_itr(struct i40e_q_vector *q_vector,
1055			    struct i40e_ring_container *rc)
1056{
1057	unsigned int avg_wire_size, packets, bytes, itr;
1058	unsigned long next_update = jiffies;
1059
1060	/* If we don't have any rings just leave ourselves set for maximum
1061	 * possible latency so we take ourselves out of the equation.
1062	 */
1063	if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
1064		return;
1065
1066	/* For Rx we want to push the delay up and default to low latency.
1067	 * for Tx we want to pull the delay down and default to high latency.
1068	 */
1069	itr = i40e_container_is_rx(q_vector, rc) ?
1070	      I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
1071	      I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
1072
1073	/* If we didn't update within up to 1 - 2 jiffies we can assume
1074	 * that either packets are coming in so slow there hasn't been
1075	 * any work, or that there is so much work that NAPI is dealing
1076	 * with interrupt moderation and we don't need to do anything.
1077	 */
1078	if (time_after(next_update, rc->next_update))
1079		goto clear_counts;
1080
1081	/* If itr_countdown is set it means we programmed an ITR within
1082	 * the last 4 interrupt cycles. This has a side effect of us
1083	 * potentially firing an early interrupt. In order to work around
1084	 * this we need to throw out any data received for a few
1085	 * interrupts following the update.
1086	 */
1087	if (q_vector->itr_countdown) {
1088		itr = rc->target_itr;
1089		goto clear_counts;
1090	}
1091
1092	packets = rc->total_packets;
1093	bytes = rc->total_bytes;
1094
1095	if (i40e_container_is_rx(q_vector, rc)) {
1096		/* If Rx there are 1 to 4 packets and bytes are less than
1097		 * 9000 assume insufficient data to use bulk rate limiting
1098		 * approach unless Tx is already in bulk rate limiting. We
1099		 * are likely latency driven.
1100		 */
1101		if (packets && packets < 4 && bytes < 9000 &&
1102		    (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
1103			itr = I40E_ITR_ADAPTIVE_LATENCY;
1104			goto adjust_by_size;
1105		}
1106	} else if (packets < 4) {
1107		/* If we have Tx and Rx ITR maxed and Tx ITR is running in
1108		 * bulk mode and we are receiving 4 or fewer packets just
1109		 * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
1110		 * that the Rx can relax.
1111		 */
1112		if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
1113		    (q_vector->rx.target_itr & I40E_ITR_MASK) ==
1114		     I40E_ITR_ADAPTIVE_MAX_USECS)
1115			goto clear_counts;
1116	} else if (packets > 32) {
1117		/* If we have processed over 32 packets in a single interrupt
1118		 * for Tx assume we need to switch over to "bulk" mode.
1119		 */
1120		rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
1121	}
1122
1123	/* We have no packets to actually measure against. This means
1124	 * either one of the other queues on this vector is active or
1125	 * we are a Tx queue doing TSO with too high of an interrupt rate.
1126	 *
1127	 * Between 4 and 56 we can assume that our current interrupt delay
1128	 * is only slightly too low. As such we should increase it by a small
1129	 * fixed amount.
1130	 */
1131	if (packets < 56) {
1132		itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
1133		if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1134			itr &= I40E_ITR_ADAPTIVE_LATENCY;
1135			itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1136		}
1137		goto clear_counts;
1138	}
1139
1140	if (packets <= 256) {
1141		itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
1142		itr &= I40E_ITR_MASK;
1143
1144		/* Between 56 and 112 is our "goldilocks" zone where we are
1145		 * working out "just right". Just report that our current
1146		 * ITR is good for us.
1147		 */
1148		if (packets <= 112)
1149			goto clear_counts;
1150
1151		/* If packet count is 128 or greater we are likely looking
1152		 * at a slight overrun of the delay we want. Try halving
1153		 * our delay to see if that will cut the number of packets
1154		 * in half per interrupt.
1155		 */
1156		itr /= 2;
1157		itr &= I40E_ITR_MASK;
1158		if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
1159			itr = I40E_ITR_ADAPTIVE_MIN_USECS;
1160
1161		goto clear_counts;
1162	}
1163
1164	/* The paths below assume we are dealing with a bulk ITR since
1165	 * number of packets is greater than 256. We are just going to have
1166	 * to compute a value and try to bring the count under control,
1167	 * though for smaller packet sizes there isn't much we can do as
1168	 * NAPI polling will likely be kicking in sooner rather than later.
1169	 */
1170	itr = I40E_ITR_ADAPTIVE_BULK;
1171
1172adjust_by_size:
1173	/* If packet counts are 256 or greater we can assume we have a gross
1174	 * overestimation of what the rate should be. Instead of trying to fine
1175	 * tune it just use the formula below to try and dial in an exact value
1176	 * give the current packet size of the frame.
1177	 */
1178	avg_wire_size = bytes / packets;
1179
1180	/* The following is a crude approximation of:
1181	 *  wmem_default / (size + overhead) = desired_pkts_per_int
1182	 *  rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
1183	 *  (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
1184	 *
1185	 * Assuming wmem_default is 212992 and overhead is 640 bytes per
1186	 * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
1187	 * formula down to
1188	 *
1189	 *  (170 * (size + 24)) / (size + 640) = ITR
1190	 *
1191	 * We first do some math on the packet size and then finally bitshift
1192	 * by 8 after rounding up. We also have to account for PCIe link speed
1193	 * difference as ITR scales based on this.
1194	 */
1195	if (avg_wire_size <= 60) {
1196		/* Start at 250k ints/sec */
1197		avg_wire_size = 4096;
1198	} else if (avg_wire_size <= 380) {
1199		/* 250K ints/sec to 60K ints/sec */
1200		avg_wire_size *= 40;
1201		avg_wire_size += 1696;
1202	} else if (avg_wire_size <= 1084) {
1203		/* 60K ints/sec to 36K ints/sec */
1204		avg_wire_size *= 15;
1205		avg_wire_size += 11452;
1206	} else if (avg_wire_size <= 1980) {
1207		/* 36K ints/sec to 30K ints/sec */
1208		avg_wire_size *= 5;
1209		avg_wire_size += 22420;
1210	} else {
1211		/* plateau at a limit of 30K ints/sec */
1212		avg_wire_size = 32256;
1213	}
1214
1215	/* If we are in low latency mode halve our delay which doubles the
1216	 * rate to somewhere between 100K to 16K ints/sec
1217	 */
1218	if (itr & I40E_ITR_ADAPTIVE_LATENCY)
1219		avg_wire_size /= 2;
1220
1221	/* Resultant value is 256 times larger than it needs to be. This
1222	 * gives us room to adjust the value as needed to either increase
1223	 * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
1224	 *
1225	 * Use addition as we have already recorded the new latency flag
1226	 * for the ITR value.
1227	 */
1228	itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
1229	       I40E_ITR_ADAPTIVE_MIN_INC;
1230
1231	if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
1232		itr &= I40E_ITR_ADAPTIVE_LATENCY;
1233		itr += I40E_ITR_ADAPTIVE_MAX_USECS;
1234	}
1235
1236clear_counts:
1237	/* write back value */
1238	rc->target_itr = itr;
1239
1240	/* next update should occur within next jiffy */
1241	rc->next_update = next_update + 1;
1242
1243	rc->total_bytes = 0;
1244	rc->total_packets = 0;
1245}
1246
 
 
 
 
 
1247/**
1248 * i40e_reuse_rx_page - page flip buffer and store it back on the ring
1249 * @rx_ring: rx descriptor ring to store buffers on
1250 * @old_buff: donor buffer to have page reused
1251 *
1252 * Synchronizes page for reuse by the adapter
1253 **/
1254static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
1255			       struct i40e_rx_buffer *old_buff)
1256{
1257	struct i40e_rx_buffer *new_buff;
1258	u16 nta = rx_ring->next_to_alloc;
1259
1260	new_buff = &rx_ring->rx_bi[nta];
1261
1262	/* update, and store next to alloc */
1263	nta++;
1264	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1265
1266	/* transfer page from old buffer to new buffer */
1267	new_buff->dma		= old_buff->dma;
1268	new_buff->page		= old_buff->page;
1269	new_buff->page_offset	= old_buff->page_offset;
1270	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1271}
1272
1273/**
1274 * i40e_rx_is_programming_status - check for programming status descriptor
1275 * @qw: qword representing status_error_len in CPU ordering
1276 *
1277 * The value of in the descriptor length field indicate if this
1278 * is a programming status descriptor for flow director or FCoE
1279 * by the value of I40E_RX_PROG_STATUS_DESC_LENGTH, otherwise
1280 * it is a packet descriptor.
1281 **/
1282static inline bool i40e_rx_is_programming_status(u64 qw)
1283{
1284	/* The Rx filter programming status and SPH bit occupy the same
1285	 * spot in the descriptor. Since we don't support packet split we
1286	 * can just reuse the bit as an indication that this is a
1287	 * programming status descriptor.
1288	 */
1289	return qw & I40E_RXD_QW1_LENGTH_SPH_MASK;
1290}
1291
1292/**
1293 * i40e_clean_programming_status - clean the programming status descriptor
1294 * @rx_ring: the rx ring that has this descriptor
1295 * @rx_desc: the rx descriptor written back by HW
1296 * @qw: qword representing status_error_len in CPU ordering
1297 *
1298 * Flow director should handle FD_FILTER_STATUS to check its filter programming
1299 * status being successful or not and take actions accordingly. FCoE should
1300 * handle its context/filter programming/invalidation status and take actions.
1301 *
 
1302 **/
1303static void i40e_clean_programming_status(struct i40e_ring *rx_ring,
1304					  union i40e_rx_desc *rx_desc,
1305					  u64 qw)
1306{
1307	struct i40e_rx_buffer *rx_buffer;
1308	u32 ntc = rx_ring->next_to_clean;
1309	u8 id;
1310
1311	/* fetch, update, and store next to clean */
1312	rx_buffer = &rx_ring->rx_bi[ntc++];
1313	ntc = (ntc < rx_ring->count) ? ntc : 0;
1314	rx_ring->next_to_clean = ntc;
1315
1316	prefetch(I40E_RX_DESC(rx_ring, ntc));
1317
1318	/* place unused page back on the ring */
1319	i40e_reuse_rx_page(rx_ring, rx_buffer);
1320	rx_ring->rx_stats.page_reuse_count++;
1321
1322	/* clear contents of buffer_info */
1323	rx_buffer->page = NULL;
1324
1325	id = (qw & I40E_RX_PROG_STATUS_DESC_QW1_PROGID_MASK) >>
1326		  I40E_RX_PROG_STATUS_DESC_QW1_PROGID_SHIFT;
1327
1328	if (id == I40E_RX_PROG_STATUS_DESC_FD_FILTER_STATUS)
1329		i40e_fd_handle_status(rx_ring, rx_desc, id);
1330}
1331
1332/**
1333 * i40e_setup_tx_descriptors - Allocate the Tx descriptors
1334 * @tx_ring: the tx ring to set up
1335 *
1336 * Return 0 on success, negative on error
1337 **/
1338int i40e_setup_tx_descriptors(struct i40e_ring *tx_ring)
1339{
1340	struct device *dev = tx_ring->dev;
1341	int bi_size;
1342
1343	if (!dev)
1344		return -ENOMEM;
1345
1346	/* warn if we are about to overwrite the pointer */
1347	WARN_ON(tx_ring->tx_bi);
1348	bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
1349	tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
1350	if (!tx_ring->tx_bi)
1351		goto err;
1352
1353	u64_stats_init(&tx_ring->syncp);
1354
1355	/* round up to nearest 4K */
1356	tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1357	/* add u32 for head writeback, align after this takes care of
1358	 * guaranteeing this is at least one cache line in size
1359	 */
1360	tx_ring->size += sizeof(u32);
1361	tx_ring->size = ALIGN(tx_ring->size, 4096);
1362	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
1363					   &tx_ring->dma, GFP_KERNEL);
1364	if (!tx_ring->desc) {
1365		dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
1366			 tx_ring->size);
1367		goto err;
1368	}
1369
1370	tx_ring->next_to_use = 0;
1371	tx_ring->next_to_clean = 0;
1372	tx_ring->tx_stats.prev_pkt_ctr = -1;
1373	return 0;
1374
1375err:
1376	kfree(tx_ring->tx_bi);
1377	tx_ring->tx_bi = NULL;
1378	return -ENOMEM;
1379}
1380
 
 
 
 
 
1381/**
1382 * i40e_clean_rx_ring - Free Rx buffers
1383 * @rx_ring: ring to be cleaned
1384 **/
1385void i40e_clean_rx_ring(struct i40e_ring *rx_ring)
1386{
1387	unsigned long bi_size;
1388	u16 i;
1389
1390	/* ring already cleared, nothing to do */
1391	if (!rx_ring->rx_bi)
1392		return;
1393
1394	if (rx_ring->skb) {
1395		dev_kfree_skb(rx_ring->skb);
1396		rx_ring->skb = NULL;
1397	}
1398
1399	/* Free all the Rx ring sk_buffs */
1400	for (i = 0; i < rx_ring->count; i++) {
1401		struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
1402
1403		if (!rx_bi->page)
1404			continue;
1405
1406		/* Invalidate cache lines that may have been written to by
1407		 * device so that we avoid corrupting memory.
1408		 */
1409		dma_sync_single_range_for_cpu(rx_ring->dev,
1410					      rx_bi->dma,
1411					      rx_bi->page_offset,
1412					      rx_ring->rx_buf_len,
1413					      DMA_FROM_DEVICE);
1414
1415		/* free resources associated with mapping */
1416		dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
1417				     i40e_rx_pg_size(rx_ring),
1418				     DMA_FROM_DEVICE,
1419				     I40E_RX_DMA_ATTR);
1420
1421		__page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
1422
1423		rx_bi->page = NULL;
1424		rx_bi->page_offset = 0;
1425	}
1426
1427	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1428	memset(rx_ring->rx_bi, 0, bi_size);
 
 
 
1429
1430	/* Zero out the descriptor ring */
1431	memset(rx_ring->desc, 0, rx_ring->size);
1432
1433	rx_ring->next_to_alloc = 0;
1434	rx_ring->next_to_clean = 0;
 
1435	rx_ring->next_to_use = 0;
1436}
1437
1438/**
1439 * i40e_free_rx_resources - Free Rx resources
1440 * @rx_ring: ring to clean the resources from
1441 *
1442 * Free all receive software resources
1443 **/
1444void i40e_free_rx_resources(struct i40e_ring *rx_ring)
1445{
1446	i40e_clean_rx_ring(rx_ring);
1447	if (rx_ring->vsi->type == I40E_VSI_MAIN)
1448		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
1449	rx_ring->xdp_prog = NULL;
1450	kfree(rx_ring->rx_bi);
1451	rx_ring->rx_bi = NULL;
1452
1453	if (rx_ring->desc) {
1454		dma_free_coherent(rx_ring->dev, rx_ring->size,
1455				  rx_ring->desc, rx_ring->dma);
1456		rx_ring->desc = NULL;
1457	}
1458}
1459
1460/**
1461 * i40e_setup_rx_descriptors - Allocate Rx descriptors
1462 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
1463 *
1464 * Returns 0 on success, negative on failure
1465 **/
1466int i40e_setup_rx_descriptors(struct i40e_ring *rx_ring)
1467{
1468	struct device *dev = rx_ring->dev;
1469	int err = -ENOMEM;
1470	int bi_size;
1471
1472	/* warn if we are about to overwrite the pointer */
1473	WARN_ON(rx_ring->rx_bi);
1474	bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
1475	rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
1476	if (!rx_ring->rx_bi)
1477		goto err;
1478
1479	u64_stats_init(&rx_ring->syncp);
1480
1481	/* Round up to nearest 4K */
1482	rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
1483	rx_ring->size = ALIGN(rx_ring->size, 4096);
1484	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
1485					   &rx_ring->dma, GFP_KERNEL);
1486
1487	if (!rx_ring->desc) {
1488		dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
1489			 rx_ring->size);
1490		goto err;
1491	}
1492
1493	rx_ring->next_to_alloc = 0;
1494	rx_ring->next_to_clean = 0;
 
1495	rx_ring->next_to_use = 0;
1496
1497	/* XDP RX-queue info only needed for RX rings exposed to XDP */
1498	if (rx_ring->vsi->type == I40E_VSI_MAIN) {
1499		err = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
1500				       rx_ring->queue_index);
1501		if (err < 0)
1502			goto err;
1503	}
1504
1505	rx_ring->xdp_prog = rx_ring->vsi->xdp_prog;
 
 
 
1506
1507	return 0;
1508err:
1509	kfree(rx_ring->rx_bi);
1510	rx_ring->rx_bi = NULL;
1511	return err;
1512}
1513
1514/**
1515 * i40e_release_rx_desc - Store the new tail and head values
1516 * @rx_ring: ring to bump
1517 * @val: new head index
1518 **/
1519static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
1520{
1521	rx_ring->next_to_use = val;
1522
1523	/* update next to alloc since we have filled the ring */
1524	rx_ring->next_to_alloc = val;
1525
1526	/* Force memory writes to complete before letting h/w
1527	 * know there are new descriptors to fetch.  (Only
1528	 * applicable for weak-ordered memory model archs,
1529	 * such as IA-64).
1530	 */
1531	wmb();
1532	writel(val, rx_ring->tail);
1533}
1534
1535/**
1536 * i40e_rx_offset - Return expected offset into page to access data
1537 * @rx_ring: Ring we are requesting offset of
1538 *
1539 * Returns the offset value for ring into the data buffer.
1540 */
1541static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
1542{
1543	return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
 
 
1544}
 
1545
1546/**
1547 * i40e_alloc_mapped_page - recycle or make a new page
1548 * @rx_ring: ring to use
1549 * @bi: rx_buffer struct to modify
1550 *
1551 * Returns true if the page was successfully allocated or
1552 * reused.
1553 **/
1554static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
1555				   struct i40e_rx_buffer *bi)
1556{
1557	struct page *page = bi->page;
1558	dma_addr_t dma;
1559
1560	/* since we are recycling buffers we should seldom need to alloc */
1561	if (likely(page)) {
1562		rx_ring->rx_stats.page_reuse_count++;
1563		return true;
1564	}
1565
1566	/* alloc new page for storage */
1567	page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
1568	if (unlikely(!page)) {
1569		rx_ring->rx_stats.alloc_page_failed++;
1570		return false;
1571	}
1572
 
 
1573	/* map page for use */
1574	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1575				 i40e_rx_pg_size(rx_ring),
1576				 DMA_FROM_DEVICE,
1577				 I40E_RX_DMA_ATTR);
1578
1579	/* if mapping failed free memory back to system since
1580	 * there isn't much point in holding memory we can't use
1581	 */
1582	if (dma_mapping_error(rx_ring->dev, dma)) {
1583		__free_pages(page, i40e_rx_pg_order(rx_ring));
1584		rx_ring->rx_stats.alloc_page_failed++;
1585		return false;
1586	}
1587
1588	bi->dma = dma;
1589	bi->page = page;
1590	bi->page_offset = i40e_rx_offset(rx_ring);
1591	page_ref_add(page, USHRT_MAX - 1);
1592	bi->pagecnt_bias = USHRT_MAX;
1593
1594	return true;
1595}
1596
1597/**
1598 * i40e_receive_skb - Send a completed packet up the stack
1599 * @rx_ring:  rx ring in play
1600 * @skb: packet to send up
1601 * @vlan_tag: vlan tag for packet
1602 **/
1603static void i40e_receive_skb(struct i40e_ring *rx_ring,
1604			     struct sk_buff *skb, u16 vlan_tag)
1605{
1606	struct i40e_q_vector *q_vector = rx_ring->q_vector;
1607
1608	if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1609	    (vlan_tag & VLAN_VID_MASK))
1610		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
1611
1612	napi_gro_receive(&q_vector->napi, skb);
1613}
1614
1615/**
1616 * i40e_alloc_rx_buffers - Replace used receive buffers
1617 * @rx_ring: ring to place buffers on
1618 * @cleaned_count: number of buffers to replace
1619 *
1620 * Returns false if all allocations were successful, true if any fail
1621 **/
1622bool i40e_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
1623{
1624	u16 ntu = rx_ring->next_to_use;
1625	union i40e_rx_desc *rx_desc;
1626	struct i40e_rx_buffer *bi;
1627
1628	/* do nothing if no valid netdev defined */
1629	if (!rx_ring->netdev || !cleaned_count)
1630		return false;
1631
1632	rx_desc = I40E_RX_DESC(rx_ring, ntu);
1633	bi = &rx_ring->rx_bi[ntu];
1634
1635	do {
1636		if (!i40e_alloc_mapped_page(rx_ring, bi))
1637			goto no_buffers;
1638
1639		/* sync the buffer for use by the device */
1640		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1641						 bi->page_offset,
1642						 rx_ring->rx_buf_len,
1643						 DMA_FROM_DEVICE);
1644
1645		/* Refresh the desc even if buffer_addrs didn't change
1646		 * because each write-back erases this info.
1647		 */
1648		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1649
1650		rx_desc++;
1651		bi++;
1652		ntu++;
1653		if (unlikely(ntu == rx_ring->count)) {
1654			rx_desc = I40E_RX_DESC(rx_ring, 0);
1655			bi = rx_ring->rx_bi;
1656			ntu = 0;
1657		}
1658
1659		/* clear the status bits for the next_to_use descriptor */
1660		rx_desc->wb.qword1.status_error_len = 0;
1661
1662		cleaned_count--;
1663	} while (cleaned_count);
1664
1665	if (rx_ring->next_to_use != ntu)
1666		i40e_release_rx_desc(rx_ring, ntu);
1667
1668	return false;
1669
1670no_buffers:
1671	if (rx_ring->next_to_use != ntu)
1672		i40e_release_rx_desc(rx_ring, ntu);
1673
1674	/* make sure to come back via polling to try again after
1675	 * allocation failure
1676	 */
1677	return true;
1678}
1679
1680/**
1681 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
1682 * @vsi: the VSI we care about
1683 * @skb: skb currently being received and modified
1684 * @rx_desc: the receive descriptor
1685 **/
1686static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
1687				    struct sk_buff *skb,
1688				    union i40e_rx_desc *rx_desc)
1689{
1690	struct i40e_rx_ptype_decoded decoded;
1691	u32 rx_error, rx_status;
1692	bool ipv4, ipv6;
1693	u8 ptype;
1694	u64 qword;
1695
1696	qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1697	ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
1698	rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1699		   I40E_RXD_QW1_ERROR_SHIFT;
1700	rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1701		    I40E_RXD_QW1_STATUS_SHIFT;
1702	decoded = decode_rx_desc_ptype(ptype);
1703
1704	skb->ip_summed = CHECKSUM_NONE;
1705
1706	skb_checksum_none_assert(skb);
1707
1708	/* Rx csum enabled and ip headers found? */
1709	if (!(vsi->netdev->features & NETIF_F_RXCSUM))
1710		return;
1711
1712	/* did the hardware decode the packet and checksum? */
1713	if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
1714		return;
1715
1716	/* both known and outer_ip must be set for the below code to work */
1717	if (!(decoded.known && decoded.outer_ip))
1718		return;
1719
1720	ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1721	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
1722	ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
1723	       (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
1724
1725	if (ipv4 &&
1726	    (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
1727			 BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
1728		goto checksum_fail;
1729
1730	/* likely incorrect csum if alternate IP extension headers found */
1731	if (ipv6 &&
1732	    rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
1733		/* don't increment checksum err here, non-fatal err */
1734		return;
1735
1736	/* there was some L4 error, count error and punt packet to the stack */
1737	if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
1738		goto checksum_fail;
1739
1740	/* handle packets that were not able to be checksummed due
1741	 * to arrival speed, in this case the stack can compute
1742	 * the csum.
1743	 */
1744	if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
1745		return;
1746
1747	/* If there is an outer header present that might contain a checksum
1748	 * we need to bump the checksum level by 1 to reflect the fact that
1749	 * we are indicating we validated the inner checksum.
1750	 */
1751	if (decoded.tunnel_type >= I40E_RX_PTYPE_TUNNEL_IP_GRENAT)
1752		skb->csum_level = 1;
1753
1754	/* Only report checksum unnecessary for TCP, UDP, or SCTP */
1755	switch (decoded.inner_prot) {
1756	case I40E_RX_PTYPE_INNER_PROT_TCP:
1757	case I40E_RX_PTYPE_INNER_PROT_UDP:
1758	case I40E_RX_PTYPE_INNER_PROT_SCTP:
1759		skb->ip_summed = CHECKSUM_UNNECESSARY;
1760		/* fall though */
1761	default:
1762		break;
1763	}
1764
1765	return;
1766
1767checksum_fail:
1768	vsi->back->hw_csum_rx_error++;
1769}
1770
1771/**
1772 * i40e_ptype_to_htype - get a hash type
1773 * @ptype: the ptype value from the descriptor
1774 *
1775 * Returns a hash type to be used by skb_set_hash
1776 **/
1777static inline int i40e_ptype_to_htype(u8 ptype)
1778{
1779	struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
1780
1781	if (!decoded.known)
1782		return PKT_HASH_TYPE_NONE;
1783
1784	if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1785	    decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
1786		return PKT_HASH_TYPE_L4;
1787	else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
1788		 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
1789		return PKT_HASH_TYPE_L3;
1790	else
1791		return PKT_HASH_TYPE_L2;
1792}
1793
1794/**
1795 * i40e_rx_hash - set the hash value in the skb
1796 * @ring: descriptor ring
1797 * @rx_desc: specific descriptor
 
 
1798 **/
1799static inline void i40e_rx_hash(struct i40e_ring *ring,
1800				union i40e_rx_desc *rx_desc,
1801				struct sk_buff *skb,
1802				u8 rx_ptype)
1803{
1804	u32 hash;
1805	const __le64 rss_mask =
1806		cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
1807			    I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
1808
1809	if (!(ring->netdev->features & NETIF_F_RXHASH))
1810		return;
1811
1812	if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
1813		hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
1814		skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
1815	}
1816}
1817
1818/**
1819 * i40e_process_skb_fields - Populate skb header fields from Rx descriptor
1820 * @rx_ring: rx descriptor ring packet is being transacted on
1821 * @rx_desc: pointer to the EOP Rx descriptor
1822 * @skb: pointer to current skb being populated
1823 * @rx_ptype: the packet type decoded by hardware
1824 *
1825 * This function checks the ring, descriptor, and packet information in
1826 * order to populate the hash, checksum, VLAN, protocol, and
1827 * other fields within the skb.
1828 **/
1829static inline
1830void i40e_process_skb_fields(struct i40e_ring *rx_ring,
1831			     union i40e_rx_desc *rx_desc, struct sk_buff *skb,
1832			     u8 rx_ptype)
1833{
1834	u64 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1835	u32 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1836			I40E_RXD_QW1_STATUS_SHIFT;
1837	u32 tsynvalid = rx_status & I40E_RXD_QW1_STATUS_TSYNVALID_MASK;
1838	u32 tsyn = (rx_status & I40E_RXD_QW1_STATUS_TSYNINDX_MASK) >>
1839		   I40E_RXD_QW1_STATUS_TSYNINDX_SHIFT;
1840
1841	if (unlikely(tsynvalid))
1842		i40e_ptp_rx_hwtstamp(rx_ring->vsi->back, skb, tsyn);
1843
1844	i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
1845
1846	i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
1847
1848	skb_record_rx_queue(skb, rx_ring->queue_index);
1849
 
 
 
 
 
 
 
1850	/* modifies the skb - consumes the enet header */
1851	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1852}
1853
1854/**
1855 * i40e_cleanup_headers - Correct empty headers
1856 * @rx_ring: rx descriptor ring packet is being transacted on
1857 * @skb: pointer to current skb being fixed
1858 * @rx_desc: pointer to the EOP Rx descriptor
1859 *
1860 * Also address the case where we are pulling data in on pages only
1861 * and as such no data is present in the skb header.
1862 *
1863 * In addition if skb is not at least 60 bytes we need to pad it so that
1864 * it is large enough to qualify as a valid Ethernet frame.
1865 *
1866 * Returns true if an error was encountered and skb was freed.
1867 **/
1868static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb,
1869				 union i40e_rx_desc *rx_desc)
1870
1871{
1872	/* XDP packets use error pointer so abort at this point */
1873	if (IS_ERR(skb))
1874		return true;
1875
1876	/* ERR_MASK will only have valid bits if EOP set, and
1877	 * what we are doing here is actually checking
1878	 * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
1879	 * the error field
1880	 */
1881	if (unlikely(i40e_test_staterr(rx_desc,
1882				       BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
1883		dev_kfree_skb_any(skb);
1884		return true;
1885	}
1886
1887	/* if eth_skb_pad returns an error the skb was freed */
1888	if (eth_skb_pad(skb))
1889		return true;
1890
1891	return false;
1892}
1893
1894/**
1895 * i40e_page_is_reusable - check if any reuse is possible
1896 * @page: page struct to check
1897 *
1898 * A page is not reusable if it was allocated under low memory
1899 * conditions, or it's not in the same NUMA node as this CPU.
1900 */
1901static inline bool i40e_page_is_reusable(struct page *page)
1902{
1903	return (page_to_nid(page) == numa_mem_id()) &&
1904		!page_is_pfmemalloc(page);
1905}
1906
1907/**
1908 * i40e_can_reuse_rx_page - Determine if this page can be reused by
1909 * the adapter for another receive
1910 *
1911 * @rx_buffer: buffer containing the page
 
1912 *
1913 * If page is reusable, rx_buffer->page_offset is adjusted to point to
1914 * an unused region in the page.
 
 
1915 *
1916 * For small pages, @truesize will be a constant value, half the size
1917 * of the memory at page.  We'll attempt to alternate between high and
1918 * low halves of the page, with one half ready for use by the hardware
1919 * and the other half being consumed by the stack.  We use the page
1920 * ref count to determine whether the stack has finished consuming the
1921 * portion of this page that was passed up with a previous packet.  If
1922 * the page ref count is >1, we'll assume the "other" half page is
1923 * still busy, and this page cannot be reused.
1924 *
1925 * For larger pages, @truesize will be the actual space used by the
1926 * received packet (adjusted upward to an even multiple of the cache
1927 * line size).  This will advance through the page by the amount
1928 * actually consumed by the received packets while there is still
1929 * space for a buffer.  Each region of larger pages will be used at
1930 * most once, after which the page will not be reused.
1931 *
1932 * In either case, if the page is reusable its refcount is increased.
1933 **/
1934static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
1935{
1936	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1937	struct page *page = rx_buffer->page;
1938
1939	/* Is any reuse possible? */
1940	if (unlikely(!i40e_page_is_reusable(page)))
 
1941		return false;
 
1942
1943#if (PAGE_SIZE < 8192)
1944	/* if we are only owner of page we can reuse it */
1945	if (unlikely((page_count(page) - pagecnt_bias) > 1))
 
1946		return false;
 
1947#else
1948#define I40E_LAST_OFFSET \
1949	(SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
1950	if (rx_buffer->page_offset > I40E_LAST_OFFSET)
 
1951		return false;
 
1952#endif
1953
1954	/* If we have drained the page fragment pool we need to update
1955	 * the pagecnt_bias and page count so that we fully restock the
1956	 * number of references the driver holds.
1957	 */
1958	if (unlikely(pagecnt_bias == 1)) {
1959		page_ref_add(page, USHRT_MAX - 1);
1960		rx_buffer->pagecnt_bias = USHRT_MAX;
1961	}
1962
1963	return true;
1964}
1965
1966/**
1967 * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
1968 * @rx_ring: rx descriptor ring to transact packets on
1969 * @rx_buffer: buffer containing page to add
1970 * @skb: sk_buff to place the data into
1971 * @size: packet length from rx_desc
1972 *
1973 * This function will add the data contained in rx_buffer->page to the skb.
1974 * It will just attach the page as a frag to the skb.
1975 *
1976 * The function will then update the page offset.
1977 **/
1978static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
1979			     struct i40e_rx_buffer *rx_buffer,
1980			     struct sk_buff *skb,
1981			     unsigned int size)
1982{
1983#if (PAGE_SIZE < 8192)
1984	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
1985#else
1986	unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
1987#endif
1988
1989	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1990			rx_buffer->page_offset, size, truesize);
1991
1992	/* page is being used so we must update the page offset */
1993#if (PAGE_SIZE < 8192)
1994	rx_buffer->page_offset ^= truesize;
1995#else
1996	rx_buffer->page_offset += truesize;
1997#endif
1998}
1999
2000/**
2001 * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
2002 * @rx_ring: rx descriptor ring to transact packets on
2003 * @size: size of buffer to add to skb
2004 *
2005 * This function will pull an Rx buffer from the ring and synchronize it
2006 * for use by the CPU.
2007 */
2008static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
2009						 const unsigned int size)
2010{
2011	struct i40e_rx_buffer *rx_buffer;
2012
2013	rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
2014	prefetchw(rx_buffer->page);
 
 
 
 
 
 
2015
2016	/* we are reusing so sync this buffer for CPU use */
2017	dma_sync_single_range_for_cpu(rx_ring->dev,
2018				      rx_buffer->dma,
2019				      rx_buffer->page_offset,
2020				      size,
2021				      DMA_FROM_DEVICE);
2022
2023	/* We have pulled a buffer for use, so decrement pagecnt_bias */
2024	rx_buffer->pagecnt_bias--;
2025
2026	return rx_buffer;
2027}
2028
2029/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2030 * i40e_construct_skb - Allocate skb and populate it
2031 * @rx_ring: rx descriptor ring to transact packets on
2032 * @rx_buffer: rx buffer to pull data from
2033 * @xdp: xdp_buff pointing to the data
2034 *
2035 * This function allocates an skb.  It then populates it with the page
2036 * data from the current receive descriptor, taking care to set up the
2037 * skb correctly.
2038 */
2039static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
2040					  struct i40e_rx_buffer *rx_buffer,
2041					  struct xdp_buff *xdp)
2042{
2043	unsigned int size = xdp->data_end - xdp->data;
2044#if (PAGE_SIZE < 8192)
2045	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2046#else
2047	unsigned int truesize = SKB_DATA_ALIGN(size);
2048#endif
2049	unsigned int headlen;
2050	struct sk_buff *skb;
 
2051
2052	/* prefetch first cache line of first page */
2053	prefetch(xdp->data);
2054#if L1_CACHE_BYTES < 128
2055	prefetch(xdp->data + L1_CACHE_BYTES);
2056#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
2057
2058	/* allocate a skb to store the frags */
2059	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
2060			       I40E_RX_HDR_SIZE,
2061			       GFP_ATOMIC | __GFP_NOWARN);
2062	if (unlikely(!skb))
2063		return NULL;
2064
2065	/* Determine available headroom for copy */
2066	headlen = size;
2067	if (headlen > I40E_RX_HDR_SIZE)
2068		headlen = eth_get_headlen(xdp->data, I40E_RX_HDR_SIZE);
 
2069
2070	/* align pull length to size of long to optimize memcpy performance */
2071	memcpy(__skb_put(skb, headlen), xdp->data,
2072	       ALIGN(headlen, sizeof(long)));
2073
 
 
 
 
 
2074	/* update all of the pointers */
2075	size -= headlen;
2076	if (size) {
 
 
 
 
2077		skb_add_rx_frag(skb, 0, rx_buffer->page,
2078				rx_buffer->page_offset + headlen,
2079				size, truesize);
2080
2081		/* buffer is used by skb, update page_offset */
2082#if (PAGE_SIZE < 8192)
2083		rx_buffer->page_offset ^= truesize;
2084#else
2085		rx_buffer->page_offset += truesize;
2086#endif
2087	} else {
2088		/* buffer is unused, reset bias back to rx_buffer */
2089		rx_buffer->pagecnt_bias++;
2090	}
2091
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2092	return skb;
2093}
2094
2095/**
2096 * i40e_build_skb - Build skb around an existing buffer
2097 * @rx_ring: Rx descriptor ring to transact packets on
2098 * @rx_buffer: Rx buffer to pull data from
2099 * @xdp: xdp_buff pointing to the data
2100 *
2101 * This function builds an skb around an existing Rx buffer, taking care
2102 * to set up the skb correctly and avoid any memcpy overhead.
2103 */
2104static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
2105				      struct i40e_rx_buffer *rx_buffer,
2106				      struct xdp_buff *xdp)
2107{
2108	unsigned int size = xdp->data_end - xdp->data;
2109#if (PAGE_SIZE < 8192)
2110	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
2111#else
2112	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
2113				SKB_DATA_ALIGN(I40E_SKB_PAD + size);
2114#endif
2115	struct sk_buff *skb;
 
 
 
 
 
 
 
 
 
 
 
 
 
2116
2117	/* prefetch first cache line of first page */
2118	prefetch(xdp->data);
2119#if L1_CACHE_BYTES < 128
2120	prefetch(xdp->data + L1_CACHE_BYTES);
2121#endif
2122	/* build an skb around the page buffer */
2123	skb = build_skb(xdp->data_hard_start, truesize);
2124	if (unlikely(!skb))
2125		return NULL;
2126
2127	/* update pointers within the skb to store the data */
2128	skb_reserve(skb, I40E_SKB_PAD);
2129	__skb_put(skb, size);
 
 
 
 
 
 
 
 
2130
2131	/* buffer is used by skb, update page_offset */
2132#if (PAGE_SIZE < 8192)
2133	rx_buffer->page_offset ^= truesize;
2134#else
2135	rx_buffer->page_offset += truesize;
2136#endif
2137
2138	return skb;
2139}
2140
2141/**
2142 * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
2143 * @rx_ring: rx descriptor ring to transact packets on
2144 * @rx_buffer: rx buffer to pull data from
2145 *
2146 * This function will clean up the contents of the rx_buffer.  It will
2147 * either recycle the buffer or unmap it and free the associated resources.
2148 */
2149static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
2150			       struct i40e_rx_buffer *rx_buffer)
2151{
2152	if (i40e_can_reuse_rx_page(rx_buffer)) {
2153		/* hand second half of page back to the ring */
2154		i40e_reuse_rx_page(rx_ring, rx_buffer);
2155		rx_ring->rx_stats.page_reuse_count++;
2156	} else {
2157		/* we are not reusing the buffer so unmap it */
2158		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
2159				     i40e_rx_pg_size(rx_ring),
2160				     DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
2161		__page_frag_cache_drain(rx_buffer->page,
2162					rx_buffer->pagecnt_bias);
2163	}
2164
2165	/* clear contents of buffer_info */
2166	rx_buffer->page = NULL;
2167}
2168
2169/**
2170 * i40e_is_non_eop - process handling of non-EOP buffers
2171 * @rx_ring: Rx ring being processed
2172 * @rx_desc: Rx descriptor for current buffer
2173 * @skb: Current socket buffer containing buffer in progress
2174 *
2175 * This function updates next to clean.  If the buffer is an EOP buffer
2176 * this function exits returning false, otherwise it will place the
2177 * sk_buff in the next buffer to be chained and return true indicating
2178 * that this is in fact a non-EOP buffer.
2179 **/
2180static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
2181			    union i40e_rx_desc *rx_desc,
2182			    struct sk_buff *skb)
2183{
2184	u32 ntc = rx_ring->next_to_clean + 1;
2185
2186	/* fetch, update, and store next to clean */
2187	ntc = (ntc < rx_ring->count) ? ntc : 0;
2188	rx_ring->next_to_clean = ntc;
2189
2190	prefetch(I40E_RX_DESC(rx_ring, ntc));
2191
2192	/* if we are the last buffer then there is nothing else to do */
2193#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
2194	if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
2195		return false;
2196
2197	rx_ring->rx_stats.non_eop_descs++;
2198
2199	return true;
2200}
2201
2202#define I40E_XDP_PASS 0
2203#define I40E_XDP_CONSUMED 1
2204#define I40E_XDP_TX 2
2205
2206static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
2207			      struct i40e_ring *xdp_ring);
 
 
 
 
 
 
 
2208
2209/**
2210 * i40e_run_xdp - run an XDP program
2211 * @rx_ring: Rx ring being processed
2212 * @xdp: XDP buffer containing the frame
 
2213 **/
2214static struct sk_buff *i40e_run_xdp(struct i40e_ring *rx_ring,
2215				    struct xdp_buff *xdp)
2216{
2217	int err, result = I40E_XDP_PASS;
2218	struct i40e_ring *xdp_ring;
2219	struct bpf_prog *xdp_prog;
2220	u32 act;
2221
2222	rcu_read_lock();
2223	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
2224
2225	if (!xdp_prog)
2226		goto xdp_out;
2227
 
 
2228	act = bpf_prog_run_xdp(xdp_prog, xdp);
2229	switch (act) {
2230	case XDP_PASS:
2231		break;
2232	case XDP_TX:
2233		xdp_ring = rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2234		result = i40e_xmit_xdp_ring(xdp, xdp_ring);
 
 
2235		break;
2236	case XDP_REDIRECT:
2237		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
2238		result = !err ? I40E_XDP_TX : I40E_XDP_CONSUMED;
 
 
2239		break;
2240	default:
2241		bpf_warn_invalid_xdp_action(act);
 
2242	case XDP_ABORTED:
 
2243		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
2244		/* fallthrough -- handle aborts by dropping packet */
2245	case XDP_DROP:
2246		result = I40E_XDP_CONSUMED;
2247		break;
2248	}
2249xdp_out:
2250	rcu_read_unlock();
2251	return ERR_PTR(-result);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2252}
2253
2254/**
2255 * i40e_rx_buffer_flip - adjusted rx_buffer to point to an unused region
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2256 * @rx_ring: Rx ring
2257 * @rx_buffer: Rx buffer to adjust
2258 * @size: Size of adjustment
 
 
 
2259 **/
2260static void i40e_rx_buffer_flip(struct i40e_ring *rx_ring,
2261				struct i40e_rx_buffer *rx_buffer,
2262				unsigned int size)
2263{
2264#if (PAGE_SIZE < 8192)
2265	unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
 
 
 
 
 
 
 
 
2266
2267	rx_buffer->page_offset ^= truesize;
2268#else
2269	unsigned int truesize = SKB_DATA_ALIGN(i40e_rx_offset(rx_ring) + size);
 
 
 
 
2270
2271	rx_buffer->page_offset += truesize;
2272#endif
 
2273}
2274
2275static inline void i40e_xdp_ring_update_tail(struct i40e_ring *xdp_ring)
 
 
 
 
 
 
 
 
2276{
2277	/* Force memory writes to complete before letting h/w
2278	 * know there are new descriptors to fetch.
2279	 */
2280	wmb();
2281	writel_relaxed(xdp_ring->next_to_use, xdp_ring->tail);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2282}
2283
2284/**
2285 * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
2286 * @rx_ring: rx descriptor ring to transact packets on
2287 * @budget: Total limit on number of packets to process
 
2288 *
2289 * This function provides a "bounce buffer" approach to Rx interrupt
2290 * processing.  The advantage to this is that on systems that have
2291 * expensive overhead for IOMMU access this provides a means of avoiding
2292 * it by maintaining the mapping of the page to the system.
2293 *
2294 * Returns amount of work completed
2295 **/
2296static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
 
2297{
2298	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
2299	struct sk_buff *skb = rx_ring->skb;
2300	u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
2301	bool failure = false, xdp_xmit = false;
2302	struct xdp_buff xdp;
 
 
 
 
 
2303
2304	xdp.rxq = &rx_ring->xdp_rxq;
2305
2306	while (likely(total_rx_packets < (unsigned int)budget)) {
 
2307		struct i40e_rx_buffer *rx_buffer;
2308		union i40e_rx_desc *rx_desc;
 
2309		unsigned int size;
2310		u16 vlan_tag;
2311		u8 rx_ptype;
2312		u64 qword;
2313
2314		/* return some buffers to hardware, one at a time is too slow */
2315		if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
2316			failure = failure ||
2317				  i40e_alloc_rx_buffers(rx_ring, cleaned_count);
2318			cleaned_count = 0;
2319		}
2320
2321		rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
2322
2323		/* status_error_len will always be zero for unused descriptors
2324		 * because it's cleared in cleanup, and overlaps with hdr_addr
2325		 * which is always zero because packet split isn't used, if the
2326		 * hardware wrote DD then the length will be non-zero
2327		 */
2328		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2329
2330		/* This memory barrier is needed to keep us from reading
2331		 * any other fields out of the rx_desc until we have
2332		 * verified the descriptor has been written back.
2333		 */
2334		dma_rmb();
2335
2336		if (unlikely(i40e_rx_is_programming_status(qword))) {
2337			i40e_clean_programming_status(rx_ring, rx_desc, qword);
2338			cleaned_count++;
 
 
 
 
 
 
 
 
 
 
 
 
2339			continue;
2340		}
2341		size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
2342		       I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
2343		if (!size)
2344			break;
2345
2346		i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
 
2347		rx_buffer = i40e_get_rx_buffer(rx_ring, size);
2348
2349		/* retrieve a buffer from the ring */
2350		if (!skb) {
2351			xdp.data = page_address(rx_buffer->page) +
2352				   rx_buffer->page_offset;
2353			xdp_set_data_meta_invalid(&xdp);
2354			xdp.data_hard_start = xdp.data -
2355					      i40e_rx_offset(rx_ring);
2356			xdp.data_end = xdp.data + size;
2357
2358			skb = i40e_run_xdp(rx_ring, &xdp);
 
 
 
 
 
 
 
 
2359		}
2360
2361		if (IS_ERR(skb)) {
2362			if (PTR_ERR(skb) == -I40E_XDP_TX) {
2363				xdp_xmit = true;
2364				i40e_rx_buffer_flip(rx_ring, rx_buffer, size);
 
 
 
 
 
 
 
 
 
2365			} else {
2366				rx_buffer->pagecnt_bias++;
2367			}
2368			total_rx_bytes += size;
2369			total_rx_packets++;
2370		} else if (skb) {
2371			i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
2372		} else if (ring_uses_build_skb(rx_ring)) {
2373			skb = i40e_build_skb(rx_ring, rx_buffer, &xdp);
2374		} else {
2375			skb = i40e_construct_skb(rx_ring, rx_buffer, &xdp);
2376		}
 
 
 
 
 
 
 
 
 
2377
2378		/* exit if we failed to retrieve a buffer */
2379		if (!skb) {
2380			rx_ring->rx_stats.alloc_buff_failed++;
2381			rx_buffer->pagecnt_bias++;
2382			break;
2383		}
2384
2385		i40e_put_rx_buffer(rx_ring, rx_buffer);
2386		cleaned_count++;
2387
2388		if (i40e_is_non_eop(rx_ring, rx_desc, skb))
2389			continue;
2390
2391		if (i40e_cleanup_headers(rx_ring, skb, rx_desc)) {
2392			skb = NULL;
2393			continue;
2394		}
2395
2396		/* probably a little skewed due to removing CRC */
2397		total_rx_bytes += skb->len;
2398
2399		qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
2400		rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
2401			   I40E_RXD_QW1_PTYPE_SHIFT;
2402
2403		/* populate checksum, VLAN, and protocol */
2404		i40e_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
2405
2406		vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
2407			   le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
2408
2409		i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
2410		i40e_receive_skb(rx_ring, skb, vlan_tag);
2411		skb = NULL;
2412
2413		/* update budget accounting */
2414		total_rx_packets++;
 
 
 
 
 
 
2415	}
2416
2417	if (xdp_xmit) {
2418		struct i40e_ring *xdp_ring =
2419			rx_ring->vsi->xdp_rings[rx_ring->queue_index];
2420
2421		i40e_xdp_ring_update_tail(xdp_ring);
2422		xdp_do_flush_map();
2423	}
2424
2425	rx_ring->skb = skb;
2426
2427	u64_stats_update_begin(&rx_ring->syncp);
2428	rx_ring->stats.packets += total_rx_packets;
2429	rx_ring->stats.bytes += total_rx_bytes;
2430	u64_stats_update_end(&rx_ring->syncp);
2431	rx_ring->q_vector->rx.total_packets += total_rx_packets;
2432	rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
2433
2434	/* guarantee a trip back through this routine if there was a failure */
2435	return failure ? budget : (int)total_rx_packets;
2436}
2437
2438static inline u32 i40e_buildreg_itr(const int type, u16 itr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2439{
2440	u32 val;
2441
2442	/* We don't bother with setting the CLEARPBA bit as the data sheet
2443	 * points out doing so is "meaningless since it was already
2444	 * auto-cleared". The auto-clearing happens when the interrupt is
2445	 * asserted.
2446	 *
2447	 * Hardware errata 28 for also indicates that writing to a
2448	 * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
2449	 * an event in the PBA anyway so we need to rely on the automask
2450	 * to hold pending events for us until the interrupt is re-enabled
2451	 *
2452	 * The itr value is reported in microseconds, and the register
2453	 * value is recorded in 2 microsecond units. For this reason we
2454	 * only need to shift by the interval shift - 1 instead of the
2455	 * full value.
2456	 */
2457	itr &= I40E_ITR_MASK;
2458
 
 
 
 
 
2459	val = I40E_PFINT_DYN_CTLN_INTENA_MASK |
2460	      (type << I40E_PFINT_DYN_CTLN_ITR_INDX_SHIFT) |
2461	      (itr << (I40E_PFINT_DYN_CTLN_INTERVAL_SHIFT - 1));
 
 
 
 
 
 
 
 
 
 
2462
2463	return val;
2464}
2465
2466/* a small macro to shorten up some long lines */
2467#define INTREG I40E_PFINT_DYN_CTLN
2468
2469/* The act of updating the ITR will cause it to immediately trigger. In order
2470 * to prevent this from throwing off adaptive update statistics we defer the
2471 * update so that it can only happen so often. So after either Tx or Rx are
2472 * updated we make the adaptive scheme wait until either the ITR completely
2473 * expires via the next_update expiration or we have been through at least
2474 * 3 interrupts.
2475 */
2476#define ITR_COUNTDOWN_START 3
2477
2478/**
2479 * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
2480 * @vsi: the VSI we care about
2481 * @q_vector: q_vector for which itr is being updated and interrupt enabled
2482 *
2483 **/
2484static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
2485					  struct i40e_q_vector *q_vector)
2486{
 
2487	struct i40e_hw *hw = &vsi->back->hw;
2488	u32 intval;
 
2489
2490	/* If we don't have MSIX, then we only need to re-enable icr0 */
2491	if (!(vsi->back->flags & I40E_FLAG_MSIX_ENABLED)) {
2492		i40e_irq_dynamic_enable_icr0(vsi->back);
2493		return;
2494	}
2495
2496	/* These will do nothing if dynamic updates are not enabled */
2497	i40e_update_itr(q_vector, &q_vector->tx);
2498	i40e_update_itr(q_vector, &q_vector->rx);
2499
2500	/* This block of logic allows us to get away with only updating
2501	 * one ITR value with each interrupt. The idea is to perform a
2502	 * pseudo-lazy update with the following criteria.
2503	 *
2504	 * 1. Rx is given higher priority than Tx if both are in same state
2505	 * 2. If we must reduce an ITR that is given highest priority.
2506	 * 3. We then give priority to increasing ITR based on amount.
2507	 */
2508	if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
2509		/* Rx ITR needs to be reduced, this is highest priority */
2510		intval = i40e_buildreg_itr(I40E_RX_ITR,
2511					   q_vector->rx.target_itr);
2512		q_vector->rx.current_itr = q_vector->rx.target_itr;
2513		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2514	} else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
2515		   ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
2516		    (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
2517		/* Tx ITR needs to be reduced, this is second priority
2518		 * Tx ITR needs to be increased more than Rx, fourth priority
2519		 */
2520		intval = i40e_buildreg_itr(I40E_TX_ITR,
2521					   q_vector->tx.target_itr);
2522		q_vector->tx.current_itr = q_vector->tx.target_itr;
2523		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2524	} else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
2525		/* Rx ITR needs to be increased, third priority */
2526		intval = i40e_buildreg_itr(I40E_RX_ITR,
2527					   q_vector->rx.target_itr);
2528		q_vector->rx.current_itr = q_vector->rx.target_itr;
2529		q_vector->itr_countdown = ITR_COUNTDOWN_START;
2530	} else {
2531		/* No ITR update, lowest priority */
2532		intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
2533		if (q_vector->itr_countdown)
2534			q_vector->itr_countdown--;
2535	}
2536
2537	if (!test_bit(__I40E_VSI_DOWN, vsi->state))
2538		wr32(hw, INTREG(q_vector->reg_idx), intval);
 
 
 
 
 
 
 
 
 
 
 
 
2539}
2540
2541/**
2542 * i40e_napi_poll - NAPI polling Rx/Tx cleanup routine
2543 * @napi: napi struct with our devices info in it
2544 * @budget: amount of work driver is allowed to do this pass, in packets
2545 *
2546 * This function will clean all queues associated with a q_vector.
2547 *
2548 * Returns the amount of work done
2549 **/
2550int i40e_napi_poll(struct napi_struct *napi, int budget)
2551{
2552	struct i40e_q_vector *q_vector =
2553			       container_of(napi, struct i40e_q_vector, napi);
2554	struct i40e_vsi *vsi = q_vector->vsi;
2555	struct i40e_ring *ring;
 
 
 
 
2556	bool clean_complete = true;
2557	bool arm_wb = false;
2558	int budget_per_ring;
2559	int work_done = 0;
2560
2561	if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
2562		napi_complete(napi);
2563		return 0;
2564	}
2565
2566	/* Since the actual Tx work is minimal, we can give the Tx a larger
2567	 * budget and be more aggressive about cleaning up the Tx descriptors.
2568	 */
2569	i40e_for_each_ring(ring, q_vector->tx) {
2570		if (!i40e_clean_tx_irq(vsi, ring, budget)) {
2571			clean_complete = false;
 
 
 
 
2572			continue;
2573		}
2574		arm_wb |= ring->arm_wb;
2575		ring->arm_wb = false;
2576	}
2577
2578	/* Handle case where we are called by netpoll with a budget of 0 */
2579	if (budget <= 0)
2580		goto tx_only;
2581
2582	/* We attempt to distribute budget to each Rx queue fairly, but don't
2583	 * allow the budget to go below 1 because that would exit polling early.
2584	 */
2585	budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
 
 
 
 
 
 
2586
2587	i40e_for_each_ring(ring, q_vector->rx) {
2588		int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
 
 
2589
2590		work_done += cleaned;
2591		/* if we clean as many as budgeted, we must not be done */
2592		if (cleaned >= budget_per_ring)
2593			clean_complete = false;
2594	}
2595
 
 
 
 
2596	/* If work not completed, return budget and polling will return */
2597	if (!clean_complete) {
2598		int cpu_id = smp_processor_id();
2599
2600		/* It is possible that the interrupt affinity has changed but,
2601		 * if the cpu is pegged at 100%, polling will never exit while
2602		 * traffic continues and the interrupt will be stuck on this
2603		 * cpu.  We check to make sure affinity is correct before we
2604		 * continue to poll, otherwise we must stop polling so the
2605		 * interrupt can move to the correct cpu.
2606		 */
2607		if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
2608			/* Tell napi that we are done polling */
2609			napi_complete_done(napi, work_done);
2610
2611			/* Force an interrupt */
2612			i40e_force_wb(vsi, q_vector);
2613
2614			/* Return budget-1 so that polling stops */
2615			return budget - 1;
2616		}
2617tx_only:
2618		if (arm_wb) {
2619			q_vector->tx.ring[0].tx_stats.tx_force_wb++;
2620			i40e_enable_wb_on_itr(vsi, q_vector);
2621		}
2622		return budget;
2623	}
2624
2625	if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
2626		q_vector->arm_wb_state = false;
2627
2628	/* Work is done so exit the polling mode and re-enable the interrupt */
2629	napi_complete_done(napi, work_done);
2630
2631	i40e_update_enable_itr(vsi, q_vector);
 
 
 
2632
2633	return min(work_done, budget - 1);
2634}
2635
2636/**
2637 * i40e_atr - Add a Flow Director ATR filter
2638 * @tx_ring:  ring to add programming descriptor to
2639 * @skb:      send buffer
2640 * @tx_flags: send tx flags
2641 **/
2642static void i40e_atr(struct i40e_ring *tx_ring, struct sk_buff *skb,
2643		     u32 tx_flags)
2644{
2645	struct i40e_filter_program_desc *fdir_desc;
2646	struct i40e_pf *pf = tx_ring->vsi->back;
2647	union {
2648		unsigned char *network;
2649		struct iphdr *ipv4;
2650		struct ipv6hdr *ipv6;
2651	} hdr;
2652	struct tcphdr *th;
2653	unsigned int hlen;
2654	u32 flex_ptype, dtype_cmd;
2655	int l4_proto;
2656	u16 i;
2657
2658	/* make sure ATR is enabled */
2659	if (!(pf->flags & I40E_FLAG_FD_ATR_ENABLED))
2660		return;
2661
2662	if (test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2663		return;
2664
2665	/* if sampling is disabled do nothing */
2666	if (!tx_ring->atr_sample_rate)
2667		return;
2668
2669	/* Currently only IPv4/IPv6 with TCP is supported */
2670	if (!(tx_flags & (I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6)))
2671		return;
2672
2673	/* snag network header to get L4 type and address */
2674	hdr.network = (tx_flags & I40E_TX_FLAGS_UDP_TUNNEL) ?
2675		      skb_inner_network_header(skb) : skb_network_header(skb);
2676
2677	/* Note: tx_flags gets modified to reflect inner protocols in
2678	 * tx_enable_csum function if encap is enabled.
2679	 */
2680	if (tx_flags & I40E_TX_FLAGS_IPV4) {
2681		/* access ihl as u8 to avoid unaligned access on ia64 */
2682		hlen = (hdr.network[0] & 0x0F) << 2;
2683		l4_proto = hdr.ipv4->protocol;
2684	} else {
2685		/* find the start of the innermost ipv6 header */
2686		unsigned int inner_hlen = hdr.network - skb->data;
2687		unsigned int h_offset = inner_hlen;
2688
2689		/* this function updates h_offset to the end of the header */
2690		l4_proto =
2691		  ipv6_find_hdr(skb, &h_offset, IPPROTO_TCP, NULL, NULL);
2692		/* hlen will contain our best estimate of the tcp header */
2693		hlen = h_offset - inner_hlen;
2694	}
2695
2696	if (l4_proto != IPPROTO_TCP)
2697		return;
2698
2699	th = (struct tcphdr *)(hdr.network + hlen);
2700
2701	/* Due to lack of space, no more new filters can be programmed */
2702	if (th->syn && test_bit(__I40E_FD_ATR_AUTO_DISABLED, pf->state))
2703		return;
2704	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED) {
2705		/* HW ATR eviction will take care of removing filters on FIN
2706		 * and RST packets.
2707		 */
2708		if (th->fin || th->rst)
2709			return;
2710	}
2711
2712	tx_ring->atr_count++;
2713
2714	/* sample on all syn/fin/rst packets or once every atr sample rate */
2715	if (!th->fin &&
2716	    !th->syn &&
2717	    !th->rst &&
2718	    (tx_ring->atr_count < tx_ring->atr_sample_rate))
2719		return;
2720
2721	tx_ring->atr_count = 0;
2722
2723	/* grab the next descriptor */
2724	i = tx_ring->next_to_use;
2725	fdir_desc = I40E_TX_FDIRDESC(tx_ring, i);
2726
2727	i++;
2728	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2729
2730	flex_ptype = (tx_ring->queue_index << I40E_TXD_FLTR_QW0_QINDEX_SHIFT) &
2731		      I40E_TXD_FLTR_QW0_QINDEX_MASK;
2732	flex_ptype |= (tx_flags & I40E_TX_FLAGS_IPV4) ?
2733		      (I40E_FILTER_PCTYPE_NONF_IPV4_TCP <<
2734		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT) :
2735		      (I40E_FILTER_PCTYPE_NONF_IPV6_TCP <<
2736		       I40E_TXD_FLTR_QW0_PCTYPE_SHIFT);
2737
2738	flex_ptype |= tx_ring->vsi->id << I40E_TXD_FLTR_QW0_DEST_VSI_SHIFT;
2739
2740	dtype_cmd = I40E_TX_DESC_DTYPE_FILTER_PROG;
2741
2742	dtype_cmd |= (th->fin || th->rst) ?
2743		     (I40E_FILTER_PROGRAM_DESC_PCMD_REMOVE <<
2744		      I40E_TXD_FLTR_QW1_PCMD_SHIFT) :
2745		     (I40E_FILTER_PROGRAM_DESC_PCMD_ADD_UPDATE <<
2746		      I40E_TXD_FLTR_QW1_PCMD_SHIFT);
2747
2748	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_DEST_DIRECT_PACKET_QINDEX <<
2749		     I40E_TXD_FLTR_QW1_DEST_SHIFT;
2750
2751	dtype_cmd |= I40E_FILTER_PROGRAM_DESC_FD_STATUS_FD_ID <<
2752		     I40E_TXD_FLTR_QW1_FD_STATUS_SHIFT;
2753
2754	dtype_cmd |= I40E_TXD_FLTR_QW1_CNT_ENA_MASK;
2755	if (!(tx_flags & I40E_TX_FLAGS_UDP_TUNNEL))
2756		dtype_cmd |=
2757			((u32)I40E_FD_ATR_STAT_IDX(pf->hw.pf_id) <<
2758			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2759			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2760	else
2761		dtype_cmd |=
2762			((u32)I40E_FD_ATR_TUNNEL_STAT_IDX(pf->hw.pf_id) <<
2763			I40E_TXD_FLTR_QW1_CNTINDEX_SHIFT) &
2764			I40E_TXD_FLTR_QW1_CNTINDEX_MASK;
2765
2766	if (pf->flags & I40E_FLAG_HW_ATR_EVICT_ENABLED)
2767		dtype_cmd |= I40E_TXD_FLTR_QW1_ATR_MASK;
2768
2769	fdir_desc->qindex_flex_ptype_vsi = cpu_to_le32(flex_ptype);
2770	fdir_desc->rsvd = cpu_to_le32(0);
2771	fdir_desc->dtype_cmd_cntindex = cpu_to_le32(dtype_cmd);
2772	fdir_desc->fd_id = cpu_to_le32(0);
2773}
2774
2775/**
2776 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
2777 * @skb:     send buffer
2778 * @tx_ring: ring to send buffer on
2779 * @flags:   the tx flags to be set
2780 *
2781 * Checks the skb and set up correspondingly several generic transmit flags
2782 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
2783 *
2784 * Returns error code indicate the frame should be dropped upon error and the
2785 * otherwise  returns 0 to indicate the flags has been set properly.
2786 **/
2787static inline int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
2788					     struct i40e_ring *tx_ring,
2789					     u32 *flags)
2790{
2791	__be16 protocol = skb->protocol;
2792	u32  tx_flags = 0;
2793
2794	if (protocol == htons(ETH_P_8021Q) &&
2795	    !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
2796		/* When HW VLAN acceleration is turned off by the user the
2797		 * stack sets the protocol to 8021q so that the driver
2798		 * can take any steps required to support the SW only
2799		 * VLAN handling.  In our case the driver doesn't need
2800		 * to take any further steps so just set the protocol
2801		 * to the encapsulated ethertype.
2802		 */
2803		skb->protocol = vlan_get_protocol(skb);
2804		goto out;
2805	}
2806
2807	/* if we have a HW VLAN tag being added, default to the HW one */
2808	if (skb_vlan_tag_present(skb)) {
2809		tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
2810		tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2811	/* else if it is a SW VLAN, check the next protocol and store the tag */
2812	} else if (protocol == htons(ETH_P_8021Q)) {
2813		struct vlan_hdr *vhdr, _vhdr;
2814
2815		vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
2816		if (!vhdr)
2817			return -EINVAL;
2818
2819		protocol = vhdr->h_vlan_encapsulated_proto;
2820		tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
2821		tx_flags |= I40E_TX_FLAGS_SW_VLAN;
2822	}
2823
2824	if (!(tx_ring->vsi->back->flags & I40E_FLAG_DCB_ENABLED))
2825		goto out;
2826
2827	/* Insert 802.1p priority into VLAN header */
2828	if ((tx_flags & (I40E_TX_FLAGS_HW_VLAN | I40E_TX_FLAGS_SW_VLAN)) ||
2829	    (skb->priority != TC_PRIO_CONTROL)) {
2830		tx_flags &= ~I40E_TX_FLAGS_VLAN_PRIO_MASK;
2831		tx_flags |= (skb->priority & 0x7) <<
2832				I40E_TX_FLAGS_VLAN_PRIO_SHIFT;
2833		if (tx_flags & I40E_TX_FLAGS_SW_VLAN) {
2834			struct vlan_ethhdr *vhdr;
2835			int rc;
2836
2837			rc = skb_cow_head(skb, 0);
2838			if (rc < 0)
2839				return rc;
2840			vhdr = (struct vlan_ethhdr *)skb->data;
2841			vhdr->h_vlan_TCI = htons(tx_flags >>
2842						 I40E_TX_FLAGS_VLAN_SHIFT);
2843		} else {
2844			tx_flags |= I40E_TX_FLAGS_HW_VLAN;
2845		}
2846	}
2847
2848out:
2849	*flags = tx_flags;
2850	return 0;
2851}
2852
2853/**
2854 * i40e_tso - set up the tso context descriptor
2855 * @first:    pointer to first Tx buffer for xmit
2856 * @hdr_len:  ptr to the size of the packet header
2857 * @cd_type_cmd_tso_mss: Quad Word 1
2858 *
2859 * Returns 0 if no TSO can happen, 1 if tso is going, or error
2860 **/
2861static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
2862		    u64 *cd_type_cmd_tso_mss)
2863{
2864	struct sk_buff *skb = first->skb;
2865	u64 cd_cmd, cd_tso_len, cd_mss;
 
2866	union {
2867		struct iphdr *v4;
2868		struct ipv6hdr *v6;
2869		unsigned char *hdr;
2870	} ip;
2871	union {
2872		struct tcphdr *tcp;
2873		struct udphdr *udp;
2874		unsigned char *hdr;
2875	} l4;
2876	u32 paylen, l4_offset;
2877	u16 gso_segs, gso_size;
2878	int err;
2879
2880	if (skb->ip_summed != CHECKSUM_PARTIAL)
2881		return 0;
2882
2883	if (!skb_is_gso(skb))
2884		return 0;
2885
2886	err = skb_cow_head(skb, 0);
2887	if (err < 0)
2888		return err;
2889
2890	ip.hdr = skb_network_header(skb);
2891	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
2892
2893	/* initialize outer IP header fields */
2894	if (ip.v4->version == 4) {
2895		ip.v4->tot_len = 0;
2896		ip.v4->check = 0;
 
 
2897	} else {
2898		ip.v6->payload_len = 0;
 
2899	}
2900
2901	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2902					 SKB_GSO_GRE_CSUM |
2903					 SKB_GSO_IPXIP4 |
2904					 SKB_GSO_IPXIP6 |
2905					 SKB_GSO_UDP_TUNNEL |
2906					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2907		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2908		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2909			l4.udp->len = 0;
2910
2911			/* determine offset of outer transport header */
2912			l4_offset = l4.hdr - skb->data;
2913
2914			/* remove payload length from outer checksum */
2915			paylen = skb->len - l4_offset;
2916			csum_replace_by_diff(&l4.udp->check,
2917					     (__force __wsum)htonl(paylen));
2918		}
2919
2920		/* reset pointers to inner headers */
2921		ip.hdr = skb_inner_network_header(skb);
2922		l4.hdr = skb_inner_transport_header(skb);
2923
2924		/* initialize inner IP header fields */
2925		if (ip.v4->version == 4) {
2926			ip.v4->tot_len = 0;
2927			ip.v4->check = 0;
2928		} else {
2929			ip.v6->payload_len = 0;
2930		}
2931	}
2932
2933	/* determine offset of inner transport header */
2934	l4_offset = l4.hdr - skb->data;
2935
2936	/* remove payload length from inner checksum */
2937	paylen = skb->len - l4_offset;
2938	csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
2939
2940	/* compute length of segmentation header */
2941	*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 
 
 
 
 
 
 
2942
2943	/* pull values out of skb_shinfo */
2944	gso_size = skb_shinfo(skb)->gso_size;
2945	gso_segs = skb_shinfo(skb)->gso_segs;
2946
2947	/* update GSO size and bytecount with header size */
2948	first->gso_segs = gso_segs;
2949	first->bytecount += (first->gso_segs - 1) * *hdr_len;
2950
2951	/* find the field values */
2952	cd_cmd = I40E_TX_CTX_DESC_TSO;
2953	cd_tso_len = skb->len - *hdr_len;
2954	cd_mss = gso_size;
2955	*cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
2956				(cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
2957				(cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
2958	return 1;
2959}
2960
2961/**
2962 * i40e_tsyn - set up the tsyn context descriptor
2963 * @tx_ring:  ptr to the ring to send
2964 * @skb:      ptr to the skb we're sending
2965 * @tx_flags: the collected send information
2966 * @cd_type_cmd_tso_mss: Quad Word 1
2967 *
2968 * Returns 0 if no Tx timestamp can happen and 1 if the timestamp will happen
2969 **/
2970static int i40e_tsyn(struct i40e_ring *tx_ring, struct sk_buff *skb,
2971		     u32 tx_flags, u64 *cd_type_cmd_tso_mss)
2972{
2973	struct i40e_pf *pf;
2974
2975	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2976		return 0;
2977
2978	/* Tx timestamps cannot be sampled when doing TSO */
2979	if (tx_flags & I40E_TX_FLAGS_TSO)
2980		return 0;
2981
2982	/* only timestamp the outbound packet if the user has requested it and
2983	 * we are not already transmitting a packet to be timestamped
2984	 */
2985	pf = i40e_netdev_to_pf(tx_ring->netdev);
2986	if (!(pf->flags & I40E_FLAG_PTP))
2987		return 0;
2988
2989	if (pf->ptp_tx &&
2990	    !test_and_set_bit_lock(__I40E_PTP_TX_IN_PROGRESS, pf->state)) {
2991		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2992		pf->ptp_tx_start = jiffies;
2993		pf->ptp_tx_skb = skb_get(skb);
2994	} else {
2995		pf->tx_hwtstamp_skipped++;
2996		return 0;
2997	}
2998
2999	*cd_type_cmd_tso_mss |= (u64)I40E_TX_CTX_DESC_TSYN <<
3000				I40E_TXD_CTX_QW1_CMD_SHIFT;
3001
3002	return 1;
3003}
3004
3005/**
3006 * i40e_tx_enable_csum - Enable Tx checksum offloads
3007 * @skb: send buffer
3008 * @tx_flags: pointer to Tx flags currently set
3009 * @td_cmd: Tx descriptor command bits to set
3010 * @td_offset: Tx descriptor header offsets to set
3011 * @tx_ring: Tx descriptor ring
3012 * @cd_tunneling: ptr to context desc bits
3013 **/
3014static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
3015			       u32 *td_cmd, u32 *td_offset,
3016			       struct i40e_ring *tx_ring,
3017			       u32 *cd_tunneling)
3018{
3019	union {
3020		struct iphdr *v4;
3021		struct ipv6hdr *v6;
3022		unsigned char *hdr;
3023	} ip;
3024	union {
3025		struct tcphdr *tcp;
3026		struct udphdr *udp;
3027		unsigned char *hdr;
3028	} l4;
3029	unsigned char *exthdr;
3030	u32 offset, cmd = 0;
3031	__be16 frag_off;
 
3032	u8 l4_proto = 0;
3033
3034	if (skb->ip_summed != CHECKSUM_PARTIAL)
3035		return 0;
3036
3037	ip.hdr = skb_network_header(skb);
3038	l4.hdr = skb_transport_header(skb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3039
3040	/* compute outer L2 header size */
3041	offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
3042
3043	if (skb->encapsulation) {
3044		u32 tunnel = 0;
3045		/* define outer network header type */
3046		if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3047			tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3048				  I40E_TX_CTX_EXT_IP_IPV4 :
3049				  I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
3050
3051			l4_proto = ip.v4->protocol;
3052		} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
 
 
3053			tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
3054
3055			exthdr = ip.hdr + sizeof(*ip.v6);
3056			l4_proto = ip.v6->nexthdr;
3057			if (l4.hdr != exthdr)
3058				ipv6_skip_exthdr(skb, exthdr - skb->data,
3059						 &l4_proto, &frag_off);
 
3060		}
3061
3062		/* define outer transport */
3063		switch (l4_proto) {
3064		case IPPROTO_UDP:
3065			tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
3066			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3067			break;
3068		case IPPROTO_GRE:
3069			tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
3070			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3071			break;
3072		case IPPROTO_IPIP:
3073		case IPPROTO_IPV6:
3074			*tx_flags |= I40E_TX_FLAGS_UDP_TUNNEL;
3075			l4.hdr = skb_inner_network_header(skb);
3076			break;
3077		default:
3078			if (*tx_flags & I40E_TX_FLAGS_TSO)
3079				return -1;
3080
3081			skb_checksum_help(skb);
3082			return 0;
3083		}
3084
3085		/* compute outer L3 header size */
3086		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
3087			  I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
3088
3089		/* switch IP header pointer from outer to inner header */
3090		ip.hdr = skb_inner_network_header(skb);
3091
3092		/* compute tunnel header size */
3093		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
3094			  I40E_TXD_CTX_QW0_NATLEN_SHIFT;
3095
3096		/* indicate if we need to offload outer UDP header */
3097		if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
3098		    !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
3099		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
3100			tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
3101
3102		/* record tunnel offload values */
3103		*cd_tunneling |= tunnel;
3104
3105		/* switch L4 header pointer from outer to inner */
3106		l4.hdr = skb_inner_transport_header(skb);
3107		l4_proto = 0;
3108
3109		/* reset type as we transition from outer to inner headers */
3110		*tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
3111		if (ip.v4->version == 4)
3112			*tx_flags |= I40E_TX_FLAGS_IPV4;
3113		if (ip.v6->version == 6)
3114			*tx_flags |= I40E_TX_FLAGS_IPV6;
3115	}
3116
3117	/* Enable IP checksum offloads */
3118	if (*tx_flags & I40E_TX_FLAGS_IPV4) {
3119		l4_proto = ip.v4->protocol;
3120		/* the stack computes the IP header already, the only time we
3121		 * need the hardware to recompute it is in the case of TSO.
3122		 */
3123		cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
3124		       I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
3125		       I40E_TX_DESC_CMD_IIPT_IPV4;
3126	} else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
3127		cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
3128
3129		exthdr = ip.hdr + sizeof(*ip.v6);
3130		l4_proto = ip.v6->nexthdr;
3131		if (l4.hdr != exthdr)
3132			ipv6_skip_exthdr(skb, exthdr - skb->data,
3133					 &l4_proto, &frag_off);
3134	}
3135
3136	/* compute inner L3 header size */
3137	offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
3138
3139	/* Enable L4 checksum offloads */
3140	switch (l4_proto) {
3141	case IPPROTO_TCP:
3142		/* enable checksum offloads */
3143		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
3144		offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3145		break;
3146	case IPPROTO_SCTP:
3147		/* enable SCTP checksum offload */
3148		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
3149		offset |= (sizeof(struct sctphdr) >> 2) <<
3150			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3151		break;
3152	case IPPROTO_UDP:
3153		/* enable UDP checksum offload */
3154		cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
3155		offset |= (sizeof(struct udphdr) >> 2) <<
3156			  I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
3157		break;
3158	default:
3159		if (*tx_flags & I40E_TX_FLAGS_TSO)
3160			return -1;
3161		skb_checksum_help(skb);
3162		return 0;
3163	}
3164
3165	*td_cmd |= cmd;
3166	*td_offset |= offset;
3167
3168	return 1;
3169}
3170
3171/**
3172 * i40e_create_tx_ctx Build the Tx context descriptor
3173 * @tx_ring:  ring to create the descriptor on
3174 * @cd_type_cmd_tso_mss: Quad Word 1
3175 * @cd_tunneling: Quad Word 0 - bits 0-31
3176 * @cd_l2tag2: Quad Word 0 - bits 32-63
3177 **/
3178static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
3179			       const u64 cd_type_cmd_tso_mss,
3180			       const u32 cd_tunneling, const u32 cd_l2tag2)
3181{
3182	struct i40e_tx_context_desc *context_desc;
3183	int i = tx_ring->next_to_use;
3184
3185	if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
3186	    !cd_tunneling && !cd_l2tag2)
3187		return;
3188
3189	/* grab the next descriptor */
3190	context_desc = I40E_TX_CTXTDESC(tx_ring, i);
3191
3192	i++;
3193	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
3194
3195	/* cpu_to_le32 and assign to struct fields */
3196	context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
3197	context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3198	context_desc->rsvd = cpu_to_le16(0);
3199	context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
3200}
3201
3202/**
3203 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
3204 * @tx_ring: the ring to be checked
3205 * @size:    the size buffer we want to assure is available
3206 *
3207 * Returns -EBUSY if a stop is needed, else 0
3208 **/
3209int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
3210{
3211	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
3212	/* Memory barrier before checking head and tail */
3213	smp_mb();
3214
 
 
3215	/* Check again in a case another CPU has just made room available. */
3216	if (likely(I40E_DESC_UNUSED(tx_ring) < size))
3217		return -EBUSY;
3218
3219	/* A reprieve! - use start_queue because it doesn't call schedule */
3220	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
3221	++tx_ring->tx_stats.restart_queue;
3222	return 0;
3223}
3224
3225/**
3226 * __i40e_chk_linearize - Check if there are more than 8 buffers per packet
3227 * @skb:      send buffer
3228 *
3229 * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
3230 * and so we need to figure out the cases where we need to linearize the skb.
3231 *
3232 * For TSO we need to count the TSO header and segment payload separately.
3233 * As such we need to check cases where we have 7 fragments or more as we
3234 * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
3235 * the segment payload in the first descriptor, and another 7 for the
3236 * fragments.
3237 **/
3238bool __i40e_chk_linearize(struct sk_buff *skb)
3239{
3240	const struct skb_frag_struct *frag, *stale;
3241	int nr_frags, sum;
3242
3243	/* no need to check if number of frags is less than 7 */
3244	nr_frags = skb_shinfo(skb)->nr_frags;
3245	if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
3246		return false;
3247
3248	/* We need to walk through the list and validate that each group
3249	 * of 6 fragments totals at least gso_size.
3250	 */
3251	nr_frags -= I40E_MAX_BUFFER_TXD - 2;
3252	frag = &skb_shinfo(skb)->frags[0];
3253
3254	/* Initialize size to the negative value of gso_size minus 1.  We
3255	 * use this as the worst case scenerio in which the frag ahead
3256	 * of us only provides one byte which is why we are limited to 6
3257	 * descriptors for a single transmit as the header and previous
3258	 * fragment are already consuming 2 descriptors.
3259	 */
3260	sum = 1 - skb_shinfo(skb)->gso_size;
3261
3262	/* Add size of frags 0 through 4 to create our initial sum */
3263	sum += skb_frag_size(frag++);
3264	sum += skb_frag_size(frag++);
3265	sum += skb_frag_size(frag++);
3266	sum += skb_frag_size(frag++);
3267	sum += skb_frag_size(frag++);
3268
3269	/* Walk through fragments adding latest fragment, testing it, and
3270	 * then removing stale fragments from the sum.
3271	 */
3272	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
3273		int stale_size = skb_frag_size(stale);
3274
3275		sum += skb_frag_size(frag++);
3276
3277		/* The stale fragment may present us with a smaller
3278		 * descriptor than the actual fragment size. To account
3279		 * for that we need to remove all the data on the front and
3280		 * figure out what the remainder would be in the last
3281		 * descriptor associated with the fragment.
3282		 */
3283		if (stale_size > I40E_MAX_DATA_PER_TXD) {
3284			int align_pad = -(stale->page_offset) &
3285					(I40E_MAX_READ_REQ_SIZE - 1);
3286
3287			sum -= align_pad;
3288			stale_size -= align_pad;
3289
3290			do {
3291				sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3292				stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
3293			} while (stale_size > I40E_MAX_DATA_PER_TXD);
3294		}
3295
3296		/* if sum is negative we failed to make sufficient progress */
3297		if (sum < 0)
3298			return true;
3299
3300		if (!nr_frags--)
3301			break;
3302
3303		sum -= stale_size;
3304	}
3305
3306	return false;
3307}
3308
3309/**
3310 * i40e_tx_map - Build the Tx descriptor
3311 * @tx_ring:  ring to send buffer on
3312 * @skb:      send buffer
3313 * @first:    first buffer info buffer to use
3314 * @tx_flags: collected send information
3315 * @hdr_len:  size of the packet header
3316 * @td_cmd:   the command field in the descriptor
3317 * @td_offset: offset for checksum or crc
3318 *
3319 * Returns 0 on success, -1 on failure to DMA
3320 **/
3321static inline int i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
3322			      struct i40e_tx_buffer *first, u32 tx_flags,
3323			      const u8 hdr_len, u32 td_cmd, u32 td_offset)
3324{
3325	unsigned int data_len = skb->data_len;
3326	unsigned int size = skb_headlen(skb);
3327	struct skb_frag_struct *frag;
3328	struct i40e_tx_buffer *tx_bi;
3329	struct i40e_tx_desc *tx_desc;
3330	u16 i = tx_ring->next_to_use;
3331	u32 td_tag = 0;
3332	dma_addr_t dma;
3333	u16 desc_count = 1;
3334
3335	if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
3336		td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
3337		td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
3338			 I40E_TX_FLAGS_VLAN_SHIFT;
3339	}
3340
3341	first->tx_flags = tx_flags;
3342
3343	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
3344
3345	tx_desc = I40E_TX_DESC(tx_ring, i);
3346	tx_bi = first;
3347
3348	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
3349		unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3350
3351		if (dma_mapping_error(tx_ring->dev, dma))
3352			goto dma_error;
3353
3354		/* record length, and DMA address */
3355		dma_unmap_len_set(tx_bi, len, size);
3356		dma_unmap_addr_set(tx_bi, dma, dma);
3357
3358		/* align size to end of page */
3359		max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
3360		tx_desc->buffer_addr = cpu_to_le64(dma);
3361
3362		while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
3363			tx_desc->cmd_type_offset_bsz =
3364				build_ctob(td_cmd, td_offset,
3365					   max_data, td_tag);
3366
3367			tx_desc++;
3368			i++;
3369			desc_count++;
3370
3371			if (i == tx_ring->count) {
3372				tx_desc = I40E_TX_DESC(tx_ring, 0);
3373				i = 0;
3374			}
3375
3376			dma += max_data;
3377			size -= max_data;
3378
3379			max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
3380			tx_desc->buffer_addr = cpu_to_le64(dma);
3381		}
3382
3383		if (likely(!data_len))
3384			break;
3385
3386		tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
3387							  size, td_tag);
3388
3389		tx_desc++;
3390		i++;
3391		desc_count++;
3392
3393		if (i == tx_ring->count) {
3394			tx_desc = I40E_TX_DESC(tx_ring, 0);
3395			i = 0;
3396		}
3397
3398		size = skb_frag_size(frag);
3399		data_len -= size;
3400
3401		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
3402				       DMA_TO_DEVICE);
3403
3404		tx_bi = &tx_ring->tx_bi[i];
3405	}
3406
3407	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
3408
3409	i++;
3410	if (i == tx_ring->count)
3411		i = 0;
3412
3413	tx_ring->next_to_use = i;
3414
3415	i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
3416
3417	/* write last descriptor with EOP bit */
3418	td_cmd |= I40E_TX_DESC_CMD_EOP;
3419
3420	/* We OR these values together to check both against 4 (WB_STRIDE)
3421	 * below. This is safe since we don't re-use desc_count afterwards.
3422	 */
3423	desc_count |= ++tx_ring->packet_stride;
3424
3425	if (desc_count >= WB_STRIDE) {
3426		/* write last descriptor with RS bit set */
3427		td_cmd |= I40E_TX_DESC_CMD_RS;
3428		tx_ring->packet_stride = 0;
3429	}
3430
3431	tx_desc->cmd_type_offset_bsz =
3432			build_ctob(td_cmd, td_offset, size, td_tag);
3433
 
 
3434	/* Force memory writes to complete before letting h/w know there
3435	 * are new descriptors to fetch.
3436	 *
3437	 * We also use this memory barrier to make certain all of the
3438	 * status bits have been updated before next_to_watch is written.
3439	 */
3440	wmb();
3441
3442	/* set next_to_watch value indicating a packet is present */
3443	first->next_to_watch = tx_desc;
3444
3445	/* notify HW of packet */
3446	if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
3447		writel(i, tx_ring->tail);
3448
3449		/* we need this if more than one processor can write to our tail
3450		 * at a time, it synchronizes IO on IA64/Altix systems
3451		 */
3452		mmiowb();
3453	}
3454
3455	return 0;
3456
3457dma_error:
3458	dev_info(tx_ring->dev, "TX DMA map failed\n");
3459
3460	/* clear dma mappings for failed tx_bi map */
3461	for (;;) {
3462		tx_bi = &tx_ring->tx_bi[i];
3463		i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
3464		if (tx_bi == first)
3465			break;
3466		if (i == 0)
3467			i = tx_ring->count;
3468		i--;
3469	}
3470
3471	tx_ring->next_to_use = i;
3472
3473	return -1;
3474}
3475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3476/**
3477 * i40e_xmit_xdp_ring - transmits an XDP buffer to an XDP Tx ring
3478 * @xdp: data to transmit
3479 * @xdp_ring: XDP Tx ring
3480 **/
3481static int i40e_xmit_xdp_ring(struct xdp_buff *xdp,
3482			      struct i40e_ring *xdp_ring)
3483{
3484	u32 size = xdp->data_end - xdp->data;
3485	u16 i = xdp_ring->next_to_use;
3486	struct i40e_tx_buffer *tx_bi;
3487	struct i40e_tx_desc *tx_desc;
3488	dma_addr_t dma;
 
 
 
3489
3490	if (!unlikely(I40E_DESC_UNUSED(xdp_ring))) {
3491		xdp_ring->tx_stats.tx_busy++;
3492		return I40E_XDP_CONSUMED;
3493	}
3494
3495	dma = dma_map_single(xdp_ring->dev, xdp->data, size, DMA_TO_DEVICE);
3496	if (dma_mapping_error(xdp_ring->dev, dma))
3497		return I40E_XDP_CONSUMED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3498
3499	tx_bi = &xdp_ring->tx_bi[i];
3500	tx_bi->bytecount = size;
3501	tx_bi->gso_segs = 1;
3502	tx_bi->raw_buf = xdp->data;
3503
3504	/* record length, and DMA address */
3505	dma_unmap_len_set(tx_bi, len, size);
3506	dma_unmap_addr_set(tx_bi, dma, dma);
 
3507
3508	tx_desc = I40E_TX_DESC(xdp_ring, i);
3509	tx_desc->buffer_addr = cpu_to_le64(dma);
3510	tx_desc->cmd_type_offset_bsz = build_ctob(I40E_TX_DESC_CMD_ICRC
3511						  | I40E_TXD_CMD,
3512						  0, size, 0);
3513
3514	/* Make certain all of the status bits have been updated
3515	 * before next_to_watch is written.
3516	 */
3517	smp_wmb();
3518
3519	i++;
3520	if (i == xdp_ring->count)
3521		i = 0;
3522
3523	tx_bi->next_to_watch = tx_desc;
3524	xdp_ring->next_to_use = i;
3525
3526	return I40E_XDP_TX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527}
3528
3529/**
3530 * i40e_xmit_frame_ring - Sends buffer on Tx ring
3531 * @skb:     send buffer
3532 * @tx_ring: ring to send buffer on
3533 *
3534 * Returns NETDEV_TX_OK if sent, else an error code
3535 **/
3536static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
3537					struct i40e_ring *tx_ring)
3538{
3539	u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
3540	u32 cd_tunneling = 0, cd_l2tag2 = 0;
3541	struct i40e_tx_buffer *first;
3542	u32 td_offset = 0;
3543	u32 tx_flags = 0;
3544	__be16 protocol;
3545	u32 td_cmd = 0;
3546	u8 hdr_len = 0;
3547	int tso, count;
3548	int tsyn;
3549
3550	/* prefetch the data, we'll need it later */
3551	prefetch(skb->data);
3552
3553	i40e_trace(xmit_frame_ring, skb, tx_ring);
3554
3555	count = i40e_xmit_descriptor_count(skb);
3556	if (i40e_chk_linearize(skb, count)) {
3557		if (__skb_linearize(skb)) {
3558			dev_kfree_skb_any(skb);
3559			return NETDEV_TX_OK;
3560		}
3561		count = i40e_txd_use_count(skb->len);
3562		tx_ring->tx_stats.tx_linearize++;
3563	}
3564
3565	/* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
3566	 *       + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
3567	 *       + 4 desc gap to avoid the cache line where head is,
3568	 *       + 1 desc for context descriptor,
3569	 * otherwise try next time
3570	 */
3571	if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
3572		tx_ring->tx_stats.tx_busy++;
3573		return NETDEV_TX_BUSY;
3574	}
3575
3576	/* record the location of the first descriptor for this packet */
3577	first = &tx_ring->tx_bi[tx_ring->next_to_use];
3578	first->skb = skb;
3579	first->bytecount = skb->len;
3580	first->gso_segs = 1;
3581
3582	/* prepare the xmit flags */
3583	if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
3584		goto out_drop;
3585
3586	/* obtain protocol of skb */
3587	protocol = vlan_get_protocol(skb);
3588
3589	/* setup IPv4/IPv6 offloads */
3590	if (protocol == htons(ETH_P_IP))
3591		tx_flags |= I40E_TX_FLAGS_IPV4;
3592	else if (protocol == htons(ETH_P_IPV6))
3593		tx_flags |= I40E_TX_FLAGS_IPV6;
3594
3595	tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
3596
3597	if (tso < 0)
3598		goto out_drop;
3599	else if (tso)
3600		tx_flags |= I40E_TX_FLAGS_TSO;
3601
3602	/* Always offload the checksum, since it's in the data descriptor */
3603	tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
3604				  tx_ring, &cd_tunneling);
3605	if (tso < 0)
3606		goto out_drop;
3607
3608	tsyn = i40e_tsyn(tx_ring, skb, tx_flags, &cd_type_cmd_tso_mss);
3609
3610	if (tsyn)
3611		tx_flags |= I40E_TX_FLAGS_TSYN;
3612
3613	skb_tx_timestamp(skb);
3614
3615	/* always enable CRC insertion offload */
3616	td_cmd |= I40E_TX_DESC_CMD_ICRC;
3617
3618	i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
3619			   cd_tunneling, cd_l2tag2);
3620
3621	/* Add Flow Director ATR if it's enabled.
3622	 *
3623	 * NOTE: this must always be directly before the data descriptor.
3624	 */
3625	i40e_atr(tx_ring, skb, tx_flags);
3626
3627	if (i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
3628			td_cmd, td_offset))
3629		goto cleanup_tx_tstamp;
3630
3631	return NETDEV_TX_OK;
3632
3633out_drop:
3634	i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
3635	dev_kfree_skb_any(first->skb);
3636	first->skb = NULL;
3637cleanup_tx_tstamp:
3638	if (unlikely(tx_flags & I40E_TX_FLAGS_TSYN)) {
3639		struct i40e_pf *pf = i40e_netdev_to_pf(tx_ring->netdev);
3640
3641		dev_kfree_skb_any(pf->ptp_tx_skb);
3642		pf->ptp_tx_skb = NULL;
3643		clear_bit_unlock(__I40E_PTP_TX_IN_PROGRESS, pf->state);
3644	}
3645
3646	return NETDEV_TX_OK;
3647}
3648
3649/**
3650 * i40e_lan_xmit_frame - Selects the correct VSI and Tx queue to send buffer
3651 * @skb:    send buffer
3652 * @netdev: network interface device structure
3653 *
3654 * Returns NETDEV_TX_OK if sent, else an error code
3655 **/
3656netdev_tx_t i40e_lan_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
3657{
3658	struct i40e_netdev_priv *np = netdev_priv(netdev);
3659	struct i40e_vsi *vsi = np->vsi;
3660	struct i40e_ring *tx_ring = vsi->tx_rings[skb->queue_mapping];
3661
3662	/* hardware can't handle really short frames, hardware padding works
3663	 * beyond this point
3664	 */
3665	if (skb_put_padto(skb, I40E_MIN_TX_LEN))
3666		return NETDEV_TX_OK;
3667
3668	return i40e_xmit_frame_ring(skb, tx_ring);
3669}
3670
3671/**
3672 * i40e_xdp_xmit - Implements ndo_xdp_xmit
3673 * @dev: netdev
3674 * @xdp: XDP buffer
 
 
3675 *
3676 * Returns Zero if sent, else an error code
 
 
 
 
3677 **/
3678int i40e_xdp_xmit(struct net_device *dev, struct xdp_buff *xdp)
 
3679{
3680	struct i40e_netdev_priv *np = netdev_priv(dev);
3681	unsigned int queue_index = smp_processor_id();
3682	struct i40e_vsi *vsi = np->vsi;
3683	int err;
 
 
 
3684
3685	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3686		return -ENETDOWN;
3687
3688	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
 
3689		return -ENXIO;
3690
3691	err = i40e_xmit_xdp_ring(xdp, vsi->xdp_rings[queue_index]);
3692	if (err != I40E_XDP_TX)
3693		return -ENOSPC;
3694
3695	return 0;
3696}
3697
3698/**
3699 * i40e_xdp_flush - Implements ndo_xdp_flush
3700 * @dev: netdev
3701 **/
3702void i40e_xdp_flush(struct net_device *dev)
3703{
3704	struct i40e_netdev_priv *np = netdev_priv(dev);
3705	unsigned int queue_index = smp_processor_id();
3706	struct i40e_vsi *vsi = np->vsi;
3707
3708	if (test_bit(__I40E_VSI_DOWN, vsi->state))
3709		return;
 
 
 
3710
3711	if (!i40e_enabled_xdp_vsi(vsi) || queue_index >= vsi->num_queue_pairs)
3712		return;
3713
3714	i40e_xdp_ring_update_tail(vsi->xdp_rings[queue_index]);
3715}