Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2013 - 2018 Intel Corporation. */
3
4#include <linux/bitfield.h>
5#include <linux/delay.h>
6#include "i40e_alloc.h"
7#include "i40e_prototype.h"
8
9/**
10 * i40e_init_nvm - Initialize NVM function pointers
11 * @hw: pointer to the HW structure
12 *
13 * Setup the function pointers and the NVM info structure. Should be called
14 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
15 * Please notice that the NVM term is used here (& in all methods covered
16 * in this file) as an equivalent of the FLASH part mapped into the SR.
17 * We are accessing FLASH always thru the Shadow RAM.
18 **/
19int i40e_init_nvm(struct i40e_hw *hw)
20{
21 struct i40e_nvm_info *nvm = &hw->nvm;
22 int ret_code = 0;
23 u32 fla, gens;
24 u8 sr_size;
25
26 /* The SR size is stored regardless of the nvm programming mode
27 * as the blank mode may be used in the factory line.
28 */
29 gens = rd32(hw, I40E_GLNVM_GENS);
30 sr_size = FIELD_GET(I40E_GLNVM_GENS_SR_SIZE_MASK, gens);
31 /* Switching to words (sr_size contains power of 2KB) */
32 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
33
34 /* Check if we are in the normal or blank NVM programming mode */
35 fla = rd32(hw, I40E_GLNVM_FLA);
36 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
37 /* Max NVM timeout */
38 nvm->timeout = I40E_MAX_NVM_TIMEOUT;
39 nvm->blank_nvm_mode = false;
40 } else { /* Blank programming mode */
41 nvm->blank_nvm_mode = true;
42 ret_code = -EIO;
43 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
44 }
45
46 return ret_code;
47}
48
49/**
50 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
51 * @hw: pointer to the HW structure
52 * @access: NVM access type (read or write)
53 *
54 * This function will request NVM ownership for reading
55 * via the proper Admin Command.
56 **/
57int i40e_acquire_nvm(struct i40e_hw *hw,
58 enum i40e_aq_resource_access_type access)
59{
60 u64 gtime, timeout;
61 u64 time_left = 0;
62 int ret_code = 0;
63
64 if (hw->nvm.blank_nvm_mode)
65 goto i40e_i40e_acquire_nvm_exit;
66
67 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
68 0, &time_left, NULL);
69 /* Reading the Global Device Timer */
70 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
71
72 /* Store the timeout */
73 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
74
75 if (ret_code)
76 i40e_debug(hw, I40E_DEBUG_NVM,
77 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
78 access, time_left, ret_code, hw->aq.asq_last_status);
79
80 if (ret_code && time_left) {
81 /* Poll until the current NVM owner timeouts */
82 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
83 while ((gtime < timeout) && time_left) {
84 usleep_range(10000, 20000);
85 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
86 ret_code = i40e_aq_request_resource(hw,
87 I40E_NVM_RESOURCE_ID,
88 access, 0, &time_left,
89 NULL);
90 if (!ret_code) {
91 hw->nvm.hw_semaphore_timeout =
92 I40E_MS_TO_GTIME(time_left) + gtime;
93 break;
94 }
95 }
96 if (ret_code) {
97 hw->nvm.hw_semaphore_timeout = 0;
98 i40e_debug(hw, I40E_DEBUG_NVM,
99 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
100 time_left, ret_code, hw->aq.asq_last_status);
101 }
102 }
103
104i40e_i40e_acquire_nvm_exit:
105 return ret_code;
106}
107
108/**
109 * i40e_release_nvm - Generic request for releasing the NVM ownership
110 * @hw: pointer to the HW structure
111 *
112 * This function will release NVM resource via the proper Admin Command.
113 **/
114void i40e_release_nvm(struct i40e_hw *hw)
115{
116 u32 total_delay = 0;
117 int ret_code = 0;
118
119 if (hw->nvm.blank_nvm_mode)
120 return;
121
122 ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
123
124 /* there are some rare cases when trying to release the resource
125 * results in an admin Q timeout, so handle them correctly
126 */
127 while ((ret_code == -EIO) &&
128 (total_delay < hw->aq.asq_cmd_timeout)) {
129 usleep_range(1000, 2000);
130 ret_code = i40e_aq_release_resource(hw,
131 I40E_NVM_RESOURCE_ID,
132 0, NULL);
133 total_delay++;
134 }
135}
136
137/**
138 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
139 * @hw: pointer to the HW structure
140 *
141 * Polls the SRCTL Shadow RAM register done bit.
142 **/
143static int i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
144{
145 int ret_code = -EIO;
146 u32 srctl, wait_cnt;
147
148 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */
149 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
150 srctl = rd32(hw, I40E_GLNVM_SRCTL);
151 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
152 ret_code = 0;
153 break;
154 }
155 udelay(5);
156 }
157 if (ret_code == -EIO)
158 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
159 return ret_code;
160}
161
162/**
163 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
164 * @hw: pointer to the HW structure
165 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
166 * @data: word read from the Shadow RAM
167 *
168 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
169 **/
170static int i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
171 u16 *data)
172{
173 int ret_code = -EIO;
174 u32 sr_reg;
175
176 if (offset >= hw->nvm.sr_size) {
177 i40e_debug(hw, I40E_DEBUG_NVM,
178 "NVM read error: offset %d beyond Shadow RAM limit %d\n",
179 offset, hw->nvm.sr_size);
180 ret_code = -EINVAL;
181 goto read_nvm_exit;
182 }
183
184 /* Poll the done bit first */
185 ret_code = i40e_poll_sr_srctl_done_bit(hw);
186 if (!ret_code) {
187 /* Write the address and start reading */
188 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
189 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
190 wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
191
192 /* Poll I40E_GLNVM_SRCTL until the done bit is set */
193 ret_code = i40e_poll_sr_srctl_done_bit(hw);
194 if (!ret_code) {
195 sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
196 *data = FIELD_GET(I40E_GLNVM_SRDATA_RDDATA_MASK,
197 sr_reg);
198 }
199 }
200 if (ret_code)
201 i40e_debug(hw, I40E_DEBUG_NVM,
202 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
203 offset);
204
205read_nvm_exit:
206 return ret_code;
207}
208
209/**
210 * i40e_read_nvm_aq - Read Shadow RAM.
211 * @hw: pointer to the HW structure.
212 * @module_pointer: module pointer location in words from the NVM beginning
213 * @offset: offset in words from module start
214 * @words: number of words to read
215 * @data: buffer with words to read to the Shadow RAM
216 * @last_command: tells the AdminQ that this is the last command
217 *
218 * Reads a 16 bit words buffer to the Shadow RAM using the admin command.
219 **/
220static int i40e_read_nvm_aq(struct i40e_hw *hw,
221 u8 module_pointer, u32 offset,
222 u16 words, void *data,
223 bool last_command)
224{
225 struct i40e_asq_cmd_details cmd_details;
226 int ret_code = -EIO;
227
228 memset(&cmd_details, 0, sizeof(cmd_details));
229 cmd_details.wb_desc = &hw->nvm_wb_desc;
230
231 /* Here we are checking the SR limit only for the flat memory model.
232 * We cannot do it for the module-based model, as we did not acquire
233 * the NVM resource yet (we cannot get the module pointer value).
234 * Firmware will check the module-based model.
235 */
236 if ((offset + words) > hw->nvm.sr_size)
237 i40e_debug(hw, I40E_DEBUG_NVM,
238 "NVM read error: offset %d beyond Shadow RAM limit %d\n",
239 (offset + words), hw->nvm.sr_size);
240 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
241 /* We can read only up to 4KB (one sector), in one AQ write */
242 i40e_debug(hw, I40E_DEBUG_NVM,
243 "NVM read fail error: tried to read %d words, limit is %d.\n",
244 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
245 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
246 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
247 /* A single read cannot spread over two sectors */
248 i40e_debug(hw, I40E_DEBUG_NVM,
249 "NVM read error: cannot spread over two sectors in a single read offset=%d words=%d\n",
250 offset, words);
251 else
252 ret_code = i40e_aq_read_nvm(hw, module_pointer,
253 2 * offset, /*bytes*/
254 2 * words, /*bytes*/
255 data, last_command, &cmd_details);
256
257 return ret_code;
258}
259
260/**
261 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
262 * @hw: pointer to the HW structure
263 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
264 * @data: word read from the Shadow RAM
265 *
266 * Reads one 16 bit word from the Shadow RAM using the AdminQ
267 **/
268static int i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
269 u16 *data)
270{
271 int ret_code = -EIO;
272
273 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
274 *data = le16_to_cpu(*(__le16 *)data);
275
276 return ret_code;
277}
278
279/**
280 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
281 * @hw: pointer to the HW structure
282 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
283 * @data: word read from the Shadow RAM
284 *
285 * Reads one 16 bit word from the Shadow RAM.
286 *
287 * Do not use this function except in cases where the nvm lock is already
288 * taken via i40e_acquire_nvm().
289 **/
290static int __i40e_read_nvm_word(struct i40e_hw *hw,
291 u16 offset, u16 *data)
292{
293 if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
294 return i40e_read_nvm_word_aq(hw, offset, data);
295
296 return i40e_read_nvm_word_srctl(hw, offset, data);
297}
298
299/**
300 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
301 * @hw: pointer to the HW structure
302 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
303 * @data: word read from the Shadow RAM
304 *
305 * Reads one 16 bit word from the Shadow RAM.
306 **/
307int i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
308 u16 *data)
309{
310 int ret_code = 0;
311
312 if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
313 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
314 if (ret_code)
315 return ret_code;
316
317 ret_code = __i40e_read_nvm_word(hw, offset, data);
318
319 if (test_bit(I40E_HW_CAP_NVM_READ_REQUIRES_LOCK, hw->caps))
320 i40e_release_nvm(hw);
321
322 return ret_code;
323}
324
325/**
326 * i40e_read_nvm_module_data - Reads NVM Buffer to specified memory location
327 * @hw: Pointer to the HW structure
328 * @module_ptr: Pointer to module in words with respect to NVM beginning
329 * @module_offset: Offset in words from module start
330 * @data_offset: Offset in words from reading data area start
331 * @words_data_size: Words to read from NVM
332 * @data_ptr: Pointer to memory location where resulting buffer will be stored
333 **/
334int i40e_read_nvm_module_data(struct i40e_hw *hw,
335 u8 module_ptr,
336 u16 module_offset,
337 u16 data_offset,
338 u16 words_data_size,
339 u16 *data_ptr)
340{
341 u16 specific_ptr = 0;
342 u16 ptr_value = 0;
343 u32 offset = 0;
344 int status;
345
346 if (module_ptr != 0) {
347 status = i40e_read_nvm_word(hw, module_ptr, &ptr_value);
348 if (status) {
349 i40e_debug(hw, I40E_DEBUG_ALL,
350 "Reading nvm word failed.Error code: %d.\n",
351 status);
352 return -EIO;
353 }
354 }
355#define I40E_NVM_INVALID_PTR_VAL 0x7FFF
356#define I40E_NVM_INVALID_VAL 0xFFFF
357
358 /* Pointer not initialized */
359 if (ptr_value == I40E_NVM_INVALID_PTR_VAL ||
360 ptr_value == I40E_NVM_INVALID_VAL) {
361 i40e_debug(hw, I40E_DEBUG_ALL, "Pointer not initialized.\n");
362 return -EINVAL;
363 }
364
365 /* Check whether the module is in SR mapped area or outside */
366 if (ptr_value & I40E_PTR_TYPE) {
367 /* Pointer points outside of the Shared RAM mapped area */
368 i40e_debug(hw, I40E_DEBUG_ALL,
369 "Reading nvm data failed. Pointer points outside of the Shared RAM mapped area.\n");
370
371 return -EINVAL;
372 } else {
373 /* Read from the Shadow RAM */
374
375 status = i40e_read_nvm_word(hw, ptr_value + module_offset,
376 &specific_ptr);
377 if (status) {
378 i40e_debug(hw, I40E_DEBUG_ALL,
379 "Reading nvm word failed.Error code: %d.\n",
380 status);
381 return -EIO;
382 }
383
384 offset = ptr_value + module_offset + specific_ptr +
385 data_offset;
386
387 status = i40e_read_nvm_buffer(hw, offset, &words_data_size,
388 data_ptr);
389 if (status) {
390 i40e_debug(hw, I40E_DEBUG_ALL,
391 "Reading nvm buffer failed.Error code: %d.\n",
392 status);
393 }
394 }
395
396 return status;
397}
398
399/**
400 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
401 * @hw: pointer to the HW structure
402 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
403 * @words: (in) number of words to read; (out) number of words actually read
404 * @data: words read from the Shadow RAM
405 *
406 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
407 * method. The buffer read is preceded by the NVM ownership take
408 * and followed by the release.
409 **/
410static int i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
411 u16 *words, u16 *data)
412{
413 int ret_code = 0;
414 u16 index, word;
415
416 /* Loop thru the selected region */
417 for (word = 0; word < *words; word++) {
418 index = offset + word;
419 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
420 if (ret_code)
421 break;
422 }
423
424 /* Update the number of words read from the Shadow RAM */
425 *words = word;
426
427 return ret_code;
428}
429
430/**
431 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
432 * @hw: pointer to the HW structure
433 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
434 * @words: (in) number of words to read; (out) number of words actually read
435 * @data: words read from the Shadow RAM
436 *
437 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
438 * method. The buffer read is preceded by the NVM ownership take
439 * and followed by the release.
440 **/
441static int i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
442 u16 *words, u16 *data)
443{
444 bool last_cmd = false;
445 u16 words_read = 0;
446 u16 read_size;
447 int ret_code;
448 u16 i = 0;
449
450 do {
451 /* Calculate number of bytes we should read in this step.
452 * FVL AQ do not allow to read more than one page at a time or
453 * to cross page boundaries.
454 */
455 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
456 read_size = min(*words,
457 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
458 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
459 else
460 read_size = min((*words - words_read),
461 I40E_SR_SECTOR_SIZE_IN_WORDS);
462
463 /* Check if this is last command, if so set proper flag */
464 if ((words_read + read_size) >= *words)
465 last_cmd = true;
466
467 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
468 data + words_read, last_cmd);
469 if (ret_code)
470 goto read_nvm_buffer_aq_exit;
471
472 /* Increment counter for words already read and move offset to
473 * new read location
474 */
475 words_read += read_size;
476 offset += read_size;
477 } while (words_read < *words);
478
479 for (i = 0; i < *words; i++)
480 data[i] = le16_to_cpu(((__le16 *)data)[i]);
481
482read_nvm_buffer_aq_exit:
483 *words = words_read;
484 return ret_code;
485}
486
487/**
488 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
489 * @hw: pointer to the HW structure
490 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
491 * @words: (in) number of words to read; (out) number of words actually read
492 * @data: words read from the Shadow RAM
493 *
494 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
495 * method.
496 **/
497static int __i40e_read_nvm_buffer(struct i40e_hw *hw,
498 u16 offset, u16 *words,
499 u16 *data)
500{
501 if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps))
502 return i40e_read_nvm_buffer_aq(hw, offset, words, data);
503
504 return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
505}
506
507/**
508 * i40e_read_nvm_buffer - Reads Shadow RAM buffer and acquire lock if necessary
509 * @hw: pointer to the HW structure
510 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
511 * @words: (in) number of words to read; (out) number of words actually read
512 * @data: words read from the Shadow RAM
513 *
514 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
515 * method. The buffer read is preceded by the NVM ownership take
516 * and followed by the release.
517 **/
518int i40e_read_nvm_buffer(struct i40e_hw *hw, u16 offset,
519 u16 *words, u16 *data)
520{
521 int ret_code = 0;
522
523 if (test_bit(I40E_HW_CAP_AQ_SRCTL_ACCESS_ENABLE, hw->caps)) {
524 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
525 if (!ret_code) {
526 ret_code = i40e_read_nvm_buffer_aq(hw, offset, words,
527 data);
528 i40e_release_nvm(hw);
529 }
530 } else {
531 ret_code = i40e_read_nvm_buffer_srctl(hw, offset, words, data);
532 }
533
534 return ret_code;
535}
536
537/**
538 * i40e_write_nvm_aq - Writes Shadow RAM.
539 * @hw: pointer to the HW structure.
540 * @module_pointer: module pointer location in words from the NVM beginning
541 * @offset: offset in words from module start
542 * @words: number of words to write
543 * @data: buffer with words to write to the Shadow RAM
544 * @last_command: tells the AdminQ that this is the last command
545 *
546 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
547 **/
548static int i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
549 u32 offset, u16 words, void *data,
550 bool last_command)
551{
552 struct i40e_asq_cmd_details cmd_details;
553 int ret_code = -EIO;
554
555 memset(&cmd_details, 0, sizeof(cmd_details));
556 cmd_details.wb_desc = &hw->nvm_wb_desc;
557
558 /* Here we are checking the SR limit only for the flat memory model.
559 * We cannot do it for the module-based model, as we did not acquire
560 * the NVM resource yet (we cannot get the module pointer value).
561 * Firmware will check the module-based model.
562 */
563 if ((offset + words) > hw->nvm.sr_size)
564 i40e_debug(hw, I40E_DEBUG_NVM,
565 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
566 (offset + words), hw->nvm.sr_size);
567 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
568 /* We can write only up to 4KB (one sector), in one AQ write */
569 i40e_debug(hw, I40E_DEBUG_NVM,
570 "NVM write fail error: tried to write %d words, limit is %d.\n",
571 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
572 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
573 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
574 /* A single write cannot spread over two sectors */
575 i40e_debug(hw, I40E_DEBUG_NVM,
576 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
577 offset, words);
578 else
579 ret_code = i40e_aq_update_nvm(hw, module_pointer,
580 2 * offset, /*bytes*/
581 2 * words, /*bytes*/
582 data, last_command, 0,
583 &cmd_details);
584
585 return ret_code;
586}
587
588/**
589 * i40e_calc_nvm_checksum - Calculates and returns the checksum
590 * @hw: pointer to hardware structure
591 * @checksum: pointer to the checksum
592 *
593 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
594 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
595 * is customer specific and unknown. Therefore, this function skips all maximum
596 * possible size of VPD (1kB).
597 **/
598static int i40e_calc_nvm_checksum(struct i40e_hw *hw,
599 u16 *checksum)
600{
601 struct i40e_virt_mem vmem;
602 u16 pcie_alt_module = 0;
603 u16 checksum_local = 0;
604 u16 vpd_module = 0;
605 int ret_code;
606 u16 *data;
607 u16 i = 0;
608
609 ret_code = i40e_allocate_virt_mem(hw, &vmem,
610 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
611 if (ret_code)
612 goto i40e_calc_nvm_checksum_exit;
613 data = (u16 *)vmem.va;
614
615 /* read pointer to VPD area */
616 ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
617 if (ret_code) {
618 ret_code = -EIO;
619 goto i40e_calc_nvm_checksum_exit;
620 }
621
622 /* read pointer to PCIe Alt Auto-load module */
623 ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
624 &pcie_alt_module);
625 if (ret_code) {
626 ret_code = -EIO;
627 goto i40e_calc_nvm_checksum_exit;
628 }
629
630 /* Calculate SW checksum that covers the whole 64kB shadow RAM
631 * except the VPD and PCIe ALT Auto-load modules
632 */
633 for (i = 0; i < hw->nvm.sr_size; i++) {
634 /* Read SR page */
635 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
636 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
637
638 ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
639 if (ret_code) {
640 ret_code = -EIO;
641 goto i40e_calc_nvm_checksum_exit;
642 }
643 }
644
645 /* Skip Checksum word */
646 if (i == I40E_SR_SW_CHECKSUM_WORD)
647 continue;
648 /* Skip VPD module (convert byte size to word count) */
649 if ((i >= (u32)vpd_module) &&
650 (i < ((u32)vpd_module +
651 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
652 continue;
653 }
654 /* Skip PCIe ALT module (convert byte size to word count) */
655 if ((i >= (u32)pcie_alt_module) &&
656 (i < ((u32)pcie_alt_module +
657 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
658 continue;
659 }
660
661 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
662 }
663
664 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
665
666i40e_calc_nvm_checksum_exit:
667 i40e_free_virt_mem(hw, &vmem);
668 return ret_code;
669}
670
671/**
672 * i40e_update_nvm_checksum - Updates the NVM checksum
673 * @hw: pointer to hardware structure
674 *
675 * NVM ownership must be acquired before calling this function and released
676 * on ARQ completion event reception by caller.
677 * This function will commit SR to NVM.
678 **/
679int i40e_update_nvm_checksum(struct i40e_hw *hw)
680{
681 __le16 le_sum;
682 int ret_code;
683 u16 checksum;
684
685 ret_code = i40e_calc_nvm_checksum(hw, &checksum);
686 if (!ret_code) {
687 le_sum = cpu_to_le16(checksum);
688 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
689 1, &le_sum, true);
690 }
691
692 return ret_code;
693}
694
695/**
696 * i40e_validate_nvm_checksum - Validate EEPROM checksum
697 * @hw: pointer to hardware structure
698 * @checksum: calculated checksum
699 *
700 * Performs checksum calculation and validates the NVM SW checksum. If the
701 * caller does not need checksum, the value can be NULL.
702 **/
703int i40e_validate_nvm_checksum(struct i40e_hw *hw,
704 u16 *checksum)
705{
706 u16 checksum_local = 0;
707 u16 checksum_sr = 0;
708 int ret_code = 0;
709
710 /* We must acquire the NVM lock in order to correctly synchronize the
711 * NVM accesses across multiple PFs. Without doing so it is possible
712 * for one of the PFs to read invalid data potentially indicating that
713 * the checksum is invalid.
714 */
715 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
716 if (ret_code)
717 return ret_code;
718 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
719 __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
720 i40e_release_nvm(hw);
721 if (ret_code)
722 return ret_code;
723
724 /* Verify read checksum from EEPROM is the same as
725 * calculated checksum
726 */
727 if (checksum_local != checksum_sr)
728 ret_code = -EIO;
729
730 /* If the user cares, return the calculated checksum */
731 if (checksum)
732 *checksum = checksum_local;
733
734 return ret_code;
735}
736
737static int i40e_nvmupd_state_init(struct i40e_hw *hw,
738 struct i40e_nvm_access *cmd,
739 u8 *bytes, int *perrno);
740static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
741 struct i40e_nvm_access *cmd,
742 u8 *bytes, int *perrno);
743static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
744 struct i40e_nvm_access *cmd,
745 u8 *bytes, int *errno);
746static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
747 struct i40e_nvm_access *cmd,
748 int *perrno);
749static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
750 struct i40e_nvm_access *cmd,
751 int *perrno);
752static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
753 struct i40e_nvm_access *cmd,
754 u8 *bytes, int *perrno);
755static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
756 struct i40e_nvm_access *cmd,
757 u8 *bytes, int *perrno);
758static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
759 struct i40e_nvm_access *cmd,
760 u8 *bytes, int *perrno);
761static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
762 struct i40e_nvm_access *cmd,
763 u8 *bytes, int *perrno);
764static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
765 struct i40e_nvm_access *cmd,
766 u8 *bytes, int *perrno);
767static inline u8 i40e_nvmupd_get_module(u32 val)
768{
769 return (u8)(val & I40E_NVM_MOD_PNT_MASK);
770}
771static inline u8 i40e_nvmupd_get_transaction(u32 val)
772{
773 return FIELD_GET(I40E_NVM_TRANS_MASK, val);
774}
775
776static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
777{
778 return FIELD_GET(I40E_NVM_PRESERVATION_FLAGS_MASK, val);
779}
780
781static const char * const i40e_nvm_update_state_str[] = {
782 "I40E_NVMUPD_INVALID",
783 "I40E_NVMUPD_READ_CON",
784 "I40E_NVMUPD_READ_SNT",
785 "I40E_NVMUPD_READ_LCB",
786 "I40E_NVMUPD_READ_SA",
787 "I40E_NVMUPD_WRITE_ERA",
788 "I40E_NVMUPD_WRITE_CON",
789 "I40E_NVMUPD_WRITE_SNT",
790 "I40E_NVMUPD_WRITE_LCB",
791 "I40E_NVMUPD_WRITE_SA",
792 "I40E_NVMUPD_CSUM_CON",
793 "I40E_NVMUPD_CSUM_SA",
794 "I40E_NVMUPD_CSUM_LCB",
795 "I40E_NVMUPD_STATUS",
796 "I40E_NVMUPD_EXEC_AQ",
797 "I40E_NVMUPD_GET_AQ_RESULT",
798 "I40E_NVMUPD_GET_AQ_EVENT",
799};
800
801/**
802 * i40e_nvmupd_command - Process an NVM update command
803 * @hw: pointer to hardware structure
804 * @cmd: pointer to nvm update command
805 * @bytes: pointer to the data buffer
806 * @perrno: pointer to return error code
807 *
808 * Dispatches command depending on what update state is current
809 **/
810int i40e_nvmupd_command(struct i40e_hw *hw,
811 struct i40e_nvm_access *cmd,
812 u8 *bytes, int *perrno)
813{
814 enum i40e_nvmupd_cmd upd_cmd;
815 int status;
816
817 /* assume success */
818 *perrno = 0;
819
820 /* early check for status command and debug msgs */
821 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
822
823 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
824 i40e_nvm_update_state_str[upd_cmd],
825 hw->nvmupd_state,
826 hw->nvm_release_on_done, hw->nvm_wait_opcode,
827 cmd->command, cmd->config, cmd->offset, cmd->data_size);
828
829 if (upd_cmd == I40E_NVMUPD_INVALID) {
830 *perrno = -EFAULT;
831 i40e_debug(hw, I40E_DEBUG_NVM,
832 "i40e_nvmupd_validate_command returns %d errno %d\n",
833 upd_cmd, *perrno);
834 }
835
836 /* a status request returns immediately rather than
837 * going into the state machine
838 */
839 if (upd_cmd == I40E_NVMUPD_STATUS) {
840 if (!cmd->data_size) {
841 *perrno = -EFAULT;
842 return -EINVAL;
843 }
844
845 bytes[0] = hw->nvmupd_state;
846
847 if (cmd->data_size >= 4) {
848 bytes[1] = 0;
849 *((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
850 }
851
852 /* Clear error status on read */
853 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
854 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
855
856 return 0;
857 }
858
859 /* Clear status even it is not read and log */
860 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
861 i40e_debug(hw, I40E_DEBUG_NVM,
862 "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
863 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
864 }
865
866 /* Acquire lock to prevent race condition where adminq_task
867 * can execute after i40e_nvmupd_nvm_read/write but before state
868 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
869 *
870 * During NVMUpdate, it is observed that lock could be held for
871 * ~5ms for most commands. However lock is held for ~60ms for
872 * NVMUPD_CSUM_LCB command.
873 */
874 mutex_lock(&hw->aq.arq_mutex);
875 switch (hw->nvmupd_state) {
876 case I40E_NVMUPD_STATE_INIT:
877 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
878 break;
879
880 case I40E_NVMUPD_STATE_READING:
881 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
882 break;
883
884 case I40E_NVMUPD_STATE_WRITING:
885 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
886 break;
887
888 case I40E_NVMUPD_STATE_INIT_WAIT:
889 case I40E_NVMUPD_STATE_WRITE_WAIT:
890 /* if we need to stop waiting for an event, clear
891 * the wait info and return before doing anything else
892 */
893 if (cmd->offset == 0xffff) {
894 i40e_nvmupd_clear_wait_state(hw);
895 status = 0;
896 break;
897 }
898
899 status = -EBUSY;
900 *perrno = -EBUSY;
901 break;
902
903 default:
904 /* invalid state, should never happen */
905 i40e_debug(hw, I40E_DEBUG_NVM,
906 "NVMUPD: no such state %d\n", hw->nvmupd_state);
907 status = -EOPNOTSUPP;
908 *perrno = -ESRCH;
909 break;
910 }
911
912 mutex_unlock(&hw->aq.arq_mutex);
913 return status;
914}
915
916/**
917 * i40e_nvmupd_state_init - Handle NVM update state Init
918 * @hw: pointer to hardware structure
919 * @cmd: pointer to nvm update command buffer
920 * @bytes: pointer to the data buffer
921 * @perrno: pointer to return error code
922 *
923 * Process legitimate commands of the Init state and conditionally set next
924 * state. Reject all other commands.
925 **/
926static int i40e_nvmupd_state_init(struct i40e_hw *hw,
927 struct i40e_nvm_access *cmd,
928 u8 *bytes, int *perrno)
929{
930 enum i40e_nvmupd_cmd upd_cmd;
931 int status = 0;
932
933 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
934
935 switch (upd_cmd) {
936 case I40E_NVMUPD_READ_SA:
937 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
938 if (status) {
939 *perrno = i40e_aq_rc_to_posix(status,
940 hw->aq.asq_last_status);
941 } else {
942 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
943 i40e_release_nvm(hw);
944 }
945 break;
946
947 case I40E_NVMUPD_READ_SNT:
948 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
949 if (status) {
950 *perrno = i40e_aq_rc_to_posix(status,
951 hw->aq.asq_last_status);
952 } else {
953 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
954 if (status)
955 i40e_release_nvm(hw);
956 else
957 hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
958 }
959 break;
960
961 case I40E_NVMUPD_WRITE_ERA:
962 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
963 if (status) {
964 *perrno = i40e_aq_rc_to_posix(status,
965 hw->aq.asq_last_status);
966 } else {
967 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
968 if (status) {
969 i40e_release_nvm(hw);
970 } else {
971 hw->nvm_release_on_done = true;
972 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
973 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
974 }
975 }
976 break;
977
978 case I40E_NVMUPD_WRITE_SA:
979 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
980 if (status) {
981 *perrno = i40e_aq_rc_to_posix(status,
982 hw->aq.asq_last_status);
983 } else {
984 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
985 if (status) {
986 i40e_release_nvm(hw);
987 } else {
988 hw->nvm_release_on_done = true;
989 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
990 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
991 }
992 }
993 break;
994
995 case I40E_NVMUPD_WRITE_SNT:
996 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
997 if (status) {
998 *perrno = i40e_aq_rc_to_posix(status,
999 hw->aq.asq_last_status);
1000 } else {
1001 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1002 if (status) {
1003 i40e_release_nvm(hw);
1004 } else {
1005 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1006 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1007 }
1008 }
1009 break;
1010
1011 case I40E_NVMUPD_CSUM_SA:
1012 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1013 if (status) {
1014 *perrno = i40e_aq_rc_to_posix(status,
1015 hw->aq.asq_last_status);
1016 } else {
1017 status = i40e_update_nvm_checksum(hw);
1018 if (status) {
1019 *perrno = hw->aq.asq_last_status ?
1020 i40e_aq_rc_to_posix(status,
1021 hw->aq.asq_last_status) :
1022 -EIO;
1023 i40e_release_nvm(hw);
1024 } else {
1025 hw->nvm_release_on_done = true;
1026 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1027 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1028 }
1029 }
1030 break;
1031
1032 case I40E_NVMUPD_EXEC_AQ:
1033 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
1034 break;
1035
1036 case I40E_NVMUPD_GET_AQ_RESULT:
1037 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
1038 break;
1039
1040 case I40E_NVMUPD_GET_AQ_EVENT:
1041 status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
1042 break;
1043
1044 default:
1045 i40e_debug(hw, I40E_DEBUG_NVM,
1046 "NVMUPD: bad cmd %s in init state\n",
1047 i40e_nvm_update_state_str[upd_cmd]);
1048 status = -EIO;
1049 *perrno = -ESRCH;
1050 break;
1051 }
1052 return status;
1053}
1054
1055/**
1056 * i40e_nvmupd_state_reading - Handle NVM update state Reading
1057 * @hw: pointer to hardware structure
1058 * @cmd: pointer to nvm update command buffer
1059 * @bytes: pointer to the data buffer
1060 * @perrno: pointer to return error code
1061 *
1062 * NVM ownership is already held. Process legitimate commands and set any
1063 * change in state; reject all other commands.
1064 **/
1065static int i40e_nvmupd_state_reading(struct i40e_hw *hw,
1066 struct i40e_nvm_access *cmd,
1067 u8 *bytes, int *perrno)
1068{
1069 enum i40e_nvmupd_cmd upd_cmd;
1070 int status = 0;
1071
1072 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1073
1074 switch (upd_cmd) {
1075 case I40E_NVMUPD_READ_SA:
1076 case I40E_NVMUPD_READ_CON:
1077 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1078 break;
1079
1080 case I40E_NVMUPD_READ_LCB:
1081 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1082 i40e_release_nvm(hw);
1083 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1084 break;
1085
1086 default:
1087 i40e_debug(hw, I40E_DEBUG_NVM,
1088 "NVMUPD: bad cmd %s in reading state.\n",
1089 i40e_nvm_update_state_str[upd_cmd]);
1090 status = -EOPNOTSUPP;
1091 *perrno = -ESRCH;
1092 break;
1093 }
1094 return status;
1095}
1096
1097/**
1098 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1099 * @hw: pointer to hardware structure
1100 * @cmd: pointer to nvm update command buffer
1101 * @bytes: pointer to the data buffer
1102 * @perrno: pointer to return error code
1103 *
1104 * NVM ownership is already held. Process legitimate commands and set any
1105 * change in state; reject all other commands
1106 **/
1107static int i40e_nvmupd_state_writing(struct i40e_hw *hw,
1108 struct i40e_nvm_access *cmd,
1109 u8 *bytes, int *perrno)
1110{
1111 enum i40e_nvmupd_cmd upd_cmd;
1112 bool retry_attempt = false;
1113 int status = 0;
1114
1115 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1116
1117retry:
1118 switch (upd_cmd) {
1119 case I40E_NVMUPD_WRITE_CON:
1120 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1121 if (!status) {
1122 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1123 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1124 }
1125 break;
1126
1127 case I40E_NVMUPD_WRITE_LCB:
1128 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1129 if (status) {
1130 *perrno = hw->aq.asq_last_status ?
1131 i40e_aq_rc_to_posix(status,
1132 hw->aq.asq_last_status) :
1133 -EIO;
1134 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1135 } else {
1136 hw->nvm_release_on_done = true;
1137 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1138 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1139 }
1140 break;
1141
1142 case I40E_NVMUPD_CSUM_CON:
1143 /* Assumes the caller has acquired the nvm */
1144 status = i40e_update_nvm_checksum(hw);
1145 if (status) {
1146 *perrno = hw->aq.asq_last_status ?
1147 i40e_aq_rc_to_posix(status,
1148 hw->aq.asq_last_status) :
1149 -EIO;
1150 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1151 } else {
1152 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1153 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1154 }
1155 break;
1156
1157 case I40E_NVMUPD_CSUM_LCB:
1158 /* Assumes the caller has acquired the nvm */
1159 status = i40e_update_nvm_checksum(hw);
1160 if (status) {
1161 *perrno = hw->aq.asq_last_status ?
1162 i40e_aq_rc_to_posix(status,
1163 hw->aq.asq_last_status) :
1164 -EIO;
1165 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1166 } else {
1167 hw->nvm_release_on_done = true;
1168 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1169 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1170 }
1171 break;
1172
1173 default:
1174 i40e_debug(hw, I40E_DEBUG_NVM,
1175 "NVMUPD: bad cmd %s in writing state.\n",
1176 i40e_nvm_update_state_str[upd_cmd]);
1177 status = -EOPNOTSUPP;
1178 *perrno = -ESRCH;
1179 break;
1180 }
1181
1182 /* In some circumstances, a multi-write transaction takes longer
1183 * than the default 3 minute timeout on the write semaphore. If
1184 * the write failed with an EBUSY status, this is likely the problem,
1185 * so here we try to reacquire the semaphore then retry the write.
1186 * We only do one retry, then give up.
1187 */
1188 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1189 !retry_attempt) {
1190 u32 old_asq_status = hw->aq.asq_last_status;
1191 int old_status = status;
1192 u32 gtime;
1193
1194 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1195 if (gtime >= hw->nvm.hw_semaphore_timeout) {
1196 i40e_debug(hw, I40E_DEBUG_ALL,
1197 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1198 gtime, hw->nvm.hw_semaphore_timeout);
1199 i40e_release_nvm(hw);
1200 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1201 if (status) {
1202 i40e_debug(hw, I40E_DEBUG_ALL,
1203 "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1204 hw->aq.asq_last_status);
1205 status = old_status;
1206 hw->aq.asq_last_status = old_asq_status;
1207 } else {
1208 retry_attempt = true;
1209 goto retry;
1210 }
1211 }
1212 }
1213
1214 return status;
1215}
1216
1217/**
1218 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1219 * @hw: pointer to the hardware structure
1220 **/
1221void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1222{
1223 i40e_debug(hw, I40E_DEBUG_NVM,
1224 "NVMUPD: clearing wait on opcode 0x%04x\n",
1225 hw->nvm_wait_opcode);
1226
1227 if (hw->nvm_release_on_done) {
1228 i40e_release_nvm(hw);
1229 hw->nvm_release_on_done = false;
1230 }
1231 hw->nvm_wait_opcode = 0;
1232
1233 if (hw->aq.arq_last_status) {
1234 hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1235 return;
1236 }
1237
1238 switch (hw->nvmupd_state) {
1239 case I40E_NVMUPD_STATE_INIT_WAIT:
1240 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1241 break;
1242
1243 case I40E_NVMUPD_STATE_WRITE_WAIT:
1244 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1245 break;
1246
1247 default:
1248 break;
1249 }
1250}
1251
1252/**
1253 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1254 * @hw: pointer to the hardware structure
1255 * @opcode: the event that just happened
1256 * @desc: AdminQ descriptor
1257 **/
1258void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1259 struct i40e_aq_desc *desc)
1260{
1261 u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1262
1263 if (opcode == hw->nvm_wait_opcode) {
1264 memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1265 i40e_nvmupd_clear_wait_state(hw);
1266 }
1267}
1268
1269/**
1270 * i40e_nvmupd_validate_command - Validate given command
1271 * @hw: pointer to hardware structure
1272 * @cmd: pointer to nvm update command buffer
1273 * @perrno: pointer to return error code
1274 *
1275 * Return one of the valid command types or I40E_NVMUPD_INVALID
1276 **/
1277static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1278 struct i40e_nvm_access *cmd,
1279 int *perrno)
1280{
1281 enum i40e_nvmupd_cmd upd_cmd;
1282 u8 module, transaction;
1283
1284 /* anything that doesn't match a recognized case is an error */
1285 upd_cmd = I40E_NVMUPD_INVALID;
1286
1287 transaction = i40e_nvmupd_get_transaction(cmd->config);
1288 module = i40e_nvmupd_get_module(cmd->config);
1289
1290 /* limits on data size */
1291 if ((cmd->data_size < 1) ||
1292 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1293 i40e_debug(hw, I40E_DEBUG_NVM,
1294 "i40e_nvmupd_validate_command data_size %d\n",
1295 cmd->data_size);
1296 *perrno = -EFAULT;
1297 return I40E_NVMUPD_INVALID;
1298 }
1299
1300 switch (cmd->command) {
1301 case I40E_NVM_READ:
1302 switch (transaction) {
1303 case I40E_NVM_CON:
1304 upd_cmd = I40E_NVMUPD_READ_CON;
1305 break;
1306 case I40E_NVM_SNT:
1307 upd_cmd = I40E_NVMUPD_READ_SNT;
1308 break;
1309 case I40E_NVM_LCB:
1310 upd_cmd = I40E_NVMUPD_READ_LCB;
1311 break;
1312 case I40E_NVM_SA:
1313 upd_cmd = I40E_NVMUPD_READ_SA;
1314 break;
1315 case I40E_NVM_EXEC:
1316 if (module == 0xf)
1317 upd_cmd = I40E_NVMUPD_STATUS;
1318 else if (module == 0)
1319 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1320 break;
1321 case I40E_NVM_AQE:
1322 upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1323 break;
1324 }
1325 break;
1326
1327 case I40E_NVM_WRITE:
1328 switch (transaction) {
1329 case I40E_NVM_CON:
1330 upd_cmd = I40E_NVMUPD_WRITE_CON;
1331 break;
1332 case I40E_NVM_SNT:
1333 upd_cmd = I40E_NVMUPD_WRITE_SNT;
1334 break;
1335 case I40E_NVM_LCB:
1336 upd_cmd = I40E_NVMUPD_WRITE_LCB;
1337 break;
1338 case I40E_NVM_SA:
1339 upd_cmd = I40E_NVMUPD_WRITE_SA;
1340 break;
1341 case I40E_NVM_ERA:
1342 upd_cmd = I40E_NVMUPD_WRITE_ERA;
1343 break;
1344 case I40E_NVM_CSUM:
1345 upd_cmd = I40E_NVMUPD_CSUM_CON;
1346 break;
1347 case (I40E_NVM_CSUM|I40E_NVM_SA):
1348 upd_cmd = I40E_NVMUPD_CSUM_SA;
1349 break;
1350 case (I40E_NVM_CSUM|I40E_NVM_LCB):
1351 upd_cmd = I40E_NVMUPD_CSUM_LCB;
1352 break;
1353 case I40E_NVM_EXEC:
1354 if (module == 0)
1355 upd_cmd = I40E_NVMUPD_EXEC_AQ;
1356 break;
1357 }
1358 break;
1359 }
1360
1361 return upd_cmd;
1362}
1363
1364/**
1365 * i40e_nvmupd_exec_aq - Run an AQ command
1366 * @hw: pointer to hardware structure
1367 * @cmd: pointer to nvm update command buffer
1368 * @bytes: pointer to the data buffer
1369 * @perrno: pointer to return error code
1370 *
1371 * cmd structure contains identifiers and data buffer
1372 **/
1373static int i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1374 struct i40e_nvm_access *cmd,
1375 u8 *bytes, int *perrno)
1376{
1377 struct i40e_asq_cmd_details cmd_details;
1378 struct i40e_aq_desc *aq_desc;
1379 u32 buff_size = 0;
1380 u8 *buff = NULL;
1381 u32 aq_desc_len;
1382 u32 aq_data_len;
1383 int status;
1384
1385 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1386 if (cmd->offset == 0xffff)
1387 return 0;
1388
1389 memset(&cmd_details, 0, sizeof(cmd_details));
1390 cmd_details.wb_desc = &hw->nvm_wb_desc;
1391
1392 aq_desc_len = sizeof(struct i40e_aq_desc);
1393 memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1394
1395 /* get the aq descriptor */
1396 if (cmd->data_size < aq_desc_len) {
1397 i40e_debug(hw, I40E_DEBUG_NVM,
1398 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1399 cmd->data_size, aq_desc_len);
1400 *perrno = -EINVAL;
1401 return -EINVAL;
1402 }
1403 aq_desc = (struct i40e_aq_desc *)bytes;
1404
1405 /* if data buffer needed, make sure it's ready */
1406 aq_data_len = cmd->data_size - aq_desc_len;
1407 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1408 if (buff_size) {
1409 if (!hw->nvm_buff.va) {
1410 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1411 hw->aq.asq_buf_size);
1412 if (status)
1413 i40e_debug(hw, I40E_DEBUG_NVM,
1414 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1415 status);
1416 }
1417
1418 if (hw->nvm_buff.va) {
1419 buff = hw->nvm_buff.va;
1420 memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1421 }
1422 }
1423
1424 if (cmd->offset)
1425 memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1426
1427 /* and away we go! */
1428 status = i40e_asq_send_command(hw, aq_desc, buff,
1429 buff_size, &cmd_details);
1430 if (status) {
1431 i40e_debug(hw, I40E_DEBUG_NVM,
1432 "%s err %pe aq_err %s\n",
1433 __func__, ERR_PTR(status),
1434 i40e_aq_str(hw, hw->aq.asq_last_status));
1435 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1436 return status;
1437 }
1438
1439 /* should we wait for a followup event? */
1440 if (cmd->offset) {
1441 hw->nvm_wait_opcode = cmd->offset;
1442 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1443 }
1444
1445 return status;
1446}
1447
1448/**
1449 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1450 * @hw: pointer to hardware structure
1451 * @cmd: pointer to nvm update command buffer
1452 * @bytes: pointer to the data buffer
1453 * @perrno: pointer to return error code
1454 *
1455 * cmd structure contains identifiers and data buffer
1456 **/
1457static int i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1458 struct i40e_nvm_access *cmd,
1459 u8 *bytes, int *perrno)
1460{
1461 u32 aq_total_len;
1462 u32 aq_desc_len;
1463 int remainder;
1464 u8 *buff;
1465
1466 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1467
1468 aq_desc_len = sizeof(struct i40e_aq_desc);
1469 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1470
1471 /* check offset range */
1472 if (cmd->offset > aq_total_len) {
1473 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1474 __func__, cmd->offset, aq_total_len);
1475 *perrno = -EINVAL;
1476 return -EINVAL;
1477 }
1478
1479 /* check copylength range */
1480 if (cmd->data_size > (aq_total_len - cmd->offset)) {
1481 int new_len = aq_total_len - cmd->offset;
1482
1483 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1484 __func__, cmd->data_size, new_len);
1485 cmd->data_size = new_len;
1486 }
1487
1488 remainder = cmd->data_size;
1489 if (cmd->offset < aq_desc_len) {
1490 u32 len = aq_desc_len - cmd->offset;
1491
1492 len = min(len, cmd->data_size);
1493 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1494 __func__, cmd->offset, cmd->offset + len);
1495
1496 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1497 memcpy(bytes, buff, len);
1498
1499 bytes += len;
1500 remainder -= len;
1501 buff = hw->nvm_buff.va;
1502 } else {
1503 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1504 }
1505
1506 if (remainder > 0) {
1507 int start_byte = buff - (u8 *)hw->nvm_buff.va;
1508
1509 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1510 __func__, start_byte, start_byte + remainder);
1511 memcpy(bytes, buff, remainder);
1512 }
1513
1514 return 0;
1515}
1516
1517/**
1518 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1519 * @hw: pointer to hardware structure
1520 * @cmd: pointer to nvm update command buffer
1521 * @bytes: pointer to the data buffer
1522 * @perrno: pointer to return error code
1523 *
1524 * cmd structure contains identifiers and data buffer
1525 **/
1526static int i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1527 struct i40e_nvm_access *cmd,
1528 u8 *bytes, int *perrno)
1529{
1530 u32 aq_total_len;
1531 u32 aq_desc_len;
1532
1533 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1534
1535 aq_desc_len = sizeof(struct i40e_aq_desc);
1536 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1537
1538 /* check copylength range */
1539 if (cmd->data_size > aq_total_len) {
1540 i40e_debug(hw, I40E_DEBUG_NVM,
1541 "%s: copy length %d too big, trimming to %d\n",
1542 __func__, cmd->data_size, aq_total_len);
1543 cmd->data_size = aq_total_len;
1544 }
1545
1546 memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1547
1548 return 0;
1549}
1550
1551/**
1552 * i40e_nvmupd_nvm_read - Read NVM
1553 * @hw: pointer to hardware structure
1554 * @cmd: pointer to nvm update command buffer
1555 * @bytes: pointer to the data buffer
1556 * @perrno: pointer to return error code
1557 *
1558 * cmd structure contains identifiers and data buffer
1559 **/
1560static int i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1561 struct i40e_nvm_access *cmd,
1562 u8 *bytes, int *perrno)
1563{
1564 struct i40e_asq_cmd_details cmd_details;
1565 u8 module, transaction;
1566 int status;
1567 bool last;
1568
1569 transaction = i40e_nvmupd_get_transaction(cmd->config);
1570 module = i40e_nvmupd_get_module(cmd->config);
1571 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1572
1573 memset(&cmd_details, 0, sizeof(cmd_details));
1574 cmd_details.wb_desc = &hw->nvm_wb_desc;
1575
1576 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1577 bytes, last, &cmd_details);
1578 if (status) {
1579 i40e_debug(hw, I40E_DEBUG_NVM,
1580 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n",
1581 module, cmd->offset, cmd->data_size);
1582 i40e_debug(hw, I40E_DEBUG_NVM,
1583 "i40e_nvmupd_nvm_read status %d aq %d\n",
1584 status, hw->aq.asq_last_status);
1585 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1586 }
1587
1588 return status;
1589}
1590
1591/**
1592 * i40e_nvmupd_nvm_erase - Erase an NVM module
1593 * @hw: pointer to hardware structure
1594 * @cmd: pointer to nvm update command buffer
1595 * @perrno: pointer to return error code
1596 *
1597 * module, offset, data_size and data are in cmd structure
1598 **/
1599static int i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1600 struct i40e_nvm_access *cmd,
1601 int *perrno)
1602{
1603 struct i40e_asq_cmd_details cmd_details;
1604 u8 module, transaction;
1605 int status = 0;
1606 bool last;
1607
1608 transaction = i40e_nvmupd_get_transaction(cmd->config);
1609 module = i40e_nvmupd_get_module(cmd->config);
1610 last = (transaction & I40E_NVM_LCB);
1611
1612 memset(&cmd_details, 0, sizeof(cmd_details));
1613 cmd_details.wb_desc = &hw->nvm_wb_desc;
1614
1615 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1616 last, &cmd_details);
1617 if (status) {
1618 i40e_debug(hw, I40E_DEBUG_NVM,
1619 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n",
1620 module, cmd->offset, cmd->data_size);
1621 i40e_debug(hw, I40E_DEBUG_NVM,
1622 "i40e_nvmupd_nvm_erase status %d aq %d\n",
1623 status, hw->aq.asq_last_status);
1624 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1625 }
1626
1627 return status;
1628}
1629
1630/**
1631 * i40e_nvmupd_nvm_write - Write NVM
1632 * @hw: pointer to hardware structure
1633 * @cmd: pointer to nvm update command buffer
1634 * @bytes: pointer to the data buffer
1635 * @perrno: pointer to return error code
1636 *
1637 * module, offset, data_size and data are in cmd structure
1638 **/
1639static int i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1640 struct i40e_nvm_access *cmd,
1641 u8 *bytes, int *perrno)
1642{
1643 struct i40e_asq_cmd_details cmd_details;
1644 u8 module, transaction;
1645 u8 preservation_flags;
1646 int status = 0;
1647 bool last;
1648
1649 transaction = i40e_nvmupd_get_transaction(cmd->config);
1650 module = i40e_nvmupd_get_module(cmd->config);
1651 last = (transaction & I40E_NVM_LCB);
1652 preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1653
1654 memset(&cmd_details, 0, sizeof(cmd_details));
1655 cmd_details.wb_desc = &hw->nvm_wb_desc;
1656
1657 status = i40e_aq_update_nvm(hw, module, cmd->offset,
1658 (u16)cmd->data_size, bytes, last,
1659 preservation_flags, &cmd_details);
1660 if (status) {
1661 i40e_debug(hw, I40E_DEBUG_NVM,
1662 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1663 module, cmd->offset, cmd->data_size);
1664 i40e_debug(hw, I40E_DEBUG_NVM,
1665 "i40e_nvmupd_nvm_write status %d aq %d\n",
1666 status, hw->aq.asq_last_status);
1667 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1668 }
1669
1670 return status;
1671}
1// SPDX-License-Identifier: GPL-2.0
2/*******************************************************************************
3 *
4 * Intel Ethernet Controller XL710 Family Linux Driver
5 * Copyright(c) 2013 - 2014 Intel Corporation.
6 *
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2, as published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
15 *
16 * You should have received a copy of the GNU General Public License along
17 * with this program. If not, see <http://www.gnu.org/licenses/>.
18 *
19 * The full GNU General Public License is included in this distribution in
20 * the file called "COPYING".
21 *
22 * Contact Information:
23 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 *
26 ******************************************************************************/
27
28#include "i40e_prototype.h"
29
30/**
31 * i40e_init_nvm_ops - Initialize NVM function pointers
32 * @hw: pointer to the HW structure
33 *
34 * Setup the function pointers and the NVM info structure. Should be called
35 * once per NVM initialization, e.g. inside the i40e_init_shared_code().
36 * Please notice that the NVM term is used here (& in all methods covered
37 * in this file) as an equivalent of the FLASH part mapped into the SR.
38 * We are accessing FLASH always thru the Shadow RAM.
39 **/
40i40e_status i40e_init_nvm(struct i40e_hw *hw)
41{
42 struct i40e_nvm_info *nvm = &hw->nvm;
43 i40e_status ret_code = 0;
44 u32 fla, gens;
45 u8 sr_size;
46
47 /* The SR size is stored regardless of the nvm programming mode
48 * as the blank mode may be used in the factory line.
49 */
50 gens = rd32(hw, I40E_GLNVM_GENS);
51 sr_size = ((gens & I40E_GLNVM_GENS_SR_SIZE_MASK) >>
52 I40E_GLNVM_GENS_SR_SIZE_SHIFT);
53 /* Switching to words (sr_size contains power of 2KB) */
54 nvm->sr_size = BIT(sr_size) * I40E_SR_WORDS_IN_1KB;
55
56 /* Check if we are in the normal or blank NVM programming mode */
57 fla = rd32(hw, I40E_GLNVM_FLA);
58 if (fla & I40E_GLNVM_FLA_LOCKED_MASK) { /* Normal programming mode */
59 /* Max NVM timeout */
60 nvm->timeout = I40E_MAX_NVM_TIMEOUT;
61 nvm->blank_nvm_mode = false;
62 } else { /* Blank programming mode */
63 nvm->blank_nvm_mode = true;
64 ret_code = I40E_ERR_NVM_BLANK_MODE;
65 i40e_debug(hw, I40E_DEBUG_NVM, "NVM init error: unsupported blank mode.\n");
66 }
67
68 return ret_code;
69}
70
71/**
72 * i40e_acquire_nvm - Generic request for acquiring the NVM ownership
73 * @hw: pointer to the HW structure
74 * @access: NVM access type (read or write)
75 *
76 * This function will request NVM ownership for reading
77 * via the proper Admin Command.
78 **/
79i40e_status i40e_acquire_nvm(struct i40e_hw *hw,
80 enum i40e_aq_resource_access_type access)
81{
82 i40e_status ret_code = 0;
83 u64 gtime, timeout;
84 u64 time_left = 0;
85
86 if (hw->nvm.blank_nvm_mode)
87 goto i40e_i40e_acquire_nvm_exit;
88
89 ret_code = i40e_aq_request_resource(hw, I40E_NVM_RESOURCE_ID, access,
90 0, &time_left, NULL);
91 /* Reading the Global Device Timer */
92 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
93
94 /* Store the timeout */
95 hw->nvm.hw_semaphore_timeout = I40E_MS_TO_GTIME(time_left) + gtime;
96
97 if (ret_code)
98 i40e_debug(hw, I40E_DEBUG_NVM,
99 "NVM acquire type %d failed time_left=%llu ret=%d aq_err=%d\n",
100 access, time_left, ret_code, hw->aq.asq_last_status);
101
102 if (ret_code && time_left) {
103 /* Poll until the current NVM owner timeouts */
104 timeout = I40E_MS_TO_GTIME(I40E_MAX_NVM_TIMEOUT) + gtime;
105 while ((gtime < timeout) && time_left) {
106 usleep_range(10000, 20000);
107 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
108 ret_code = i40e_aq_request_resource(hw,
109 I40E_NVM_RESOURCE_ID,
110 access, 0, &time_left,
111 NULL);
112 if (!ret_code) {
113 hw->nvm.hw_semaphore_timeout =
114 I40E_MS_TO_GTIME(time_left) + gtime;
115 break;
116 }
117 }
118 if (ret_code) {
119 hw->nvm.hw_semaphore_timeout = 0;
120 i40e_debug(hw, I40E_DEBUG_NVM,
121 "NVM acquire timed out, wait %llu ms before trying again. status=%d aq_err=%d\n",
122 time_left, ret_code, hw->aq.asq_last_status);
123 }
124 }
125
126i40e_i40e_acquire_nvm_exit:
127 return ret_code;
128}
129
130/**
131 * i40e_release_nvm - Generic request for releasing the NVM ownership
132 * @hw: pointer to the HW structure
133 *
134 * This function will release NVM resource via the proper Admin Command.
135 **/
136void i40e_release_nvm(struct i40e_hw *hw)
137{
138 i40e_status ret_code = I40E_SUCCESS;
139 u32 total_delay = 0;
140
141 if (hw->nvm.blank_nvm_mode)
142 return;
143
144 ret_code = i40e_aq_release_resource(hw, I40E_NVM_RESOURCE_ID, 0, NULL);
145
146 /* there are some rare cases when trying to release the resource
147 * results in an admin Q timeout, so handle them correctly
148 */
149 while ((ret_code == I40E_ERR_ADMIN_QUEUE_TIMEOUT) &&
150 (total_delay < hw->aq.asq_cmd_timeout)) {
151 usleep_range(1000, 2000);
152 ret_code = i40e_aq_release_resource(hw,
153 I40E_NVM_RESOURCE_ID,
154 0, NULL);
155 total_delay++;
156 }
157}
158
159/**
160 * i40e_poll_sr_srctl_done_bit - Polls the GLNVM_SRCTL done bit
161 * @hw: pointer to the HW structure
162 *
163 * Polls the SRCTL Shadow RAM register done bit.
164 **/
165static i40e_status i40e_poll_sr_srctl_done_bit(struct i40e_hw *hw)
166{
167 i40e_status ret_code = I40E_ERR_TIMEOUT;
168 u32 srctl, wait_cnt;
169
170 /* Poll the I40E_GLNVM_SRCTL until the done bit is set */
171 for (wait_cnt = 0; wait_cnt < I40E_SRRD_SRCTL_ATTEMPTS; wait_cnt++) {
172 srctl = rd32(hw, I40E_GLNVM_SRCTL);
173 if (srctl & I40E_GLNVM_SRCTL_DONE_MASK) {
174 ret_code = 0;
175 break;
176 }
177 udelay(5);
178 }
179 if (ret_code == I40E_ERR_TIMEOUT)
180 i40e_debug(hw, I40E_DEBUG_NVM, "Done bit in GLNVM_SRCTL not set");
181 return ret_code;
182}
183
184/**
185 * i40e_read_nvm_word_srctl - Reads Shadow RAM via SRCTL register
186 * @hw: pointer to the HW structure
187 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
188 * @data: word read from the Shadow RAM
189 *
190 * Reads one 16 bit word from the Shadow RAM using the GLNVM_SRCTL register.
191 **/
192static i40e_status i40e_read_nvm_word_srctl(struct i40e_hw *hw, u16 offset,
193 u16 *data)
194{
195 i40e_status ret_code = I40E_ERR_TIMEOUT;
196 u32 sr_reg;
197
198 if (offset >= hw->nvm.sr_size) {
199 i40e_debug(hw, I40E_DEBUG_NVM,
200 "NVM read error: offset %d beyond Shadow RAM limit %d\n",
201 offset, hw->nvm.sr_size);
202 ret_code = I40E_ERR_PARAM;
203 goto read_nvm_exit;
204 }
205
206 /* Poll the done bit first */
207 ret_code = i40e_poll_sr_srctl_done_bit(hw);
208 if (!ret_code) {
209 /* Write the address and start reading */
210 sr_reg = ((u32)offset << I40E_GLNVM_SRCTL_ADDR_SHIFT) |
211 BIT(I40E_GLNVM_SRCTL_START_SHIFT);
212 wr32(hw, I40E_GLNVM_SRCTL, sr_reg);
213
214 /* Poll I40E_GLNVM_SRCTL until the done bit is set */
215 ret_code = i40e_poll_sr_srctl_done_bit(hw);
216 if (!ret_code) {
217 sr_reg = rd32(hw, I40E_GLNVM_SRDATA);
218 *data = (u16)((sr_reg &
219 I40E_GLNVM_SRDATA_RDDATA_MASK)
220 >> I40E_GLNVM_SRDATA_RDDATA_SHIFT);
221 }
222 }
223 if (ret_code)
224 i40e_debug(hw, I40E_DEBUG_NVM,
225 "NVM read error: Couldn't access Shadow RAM address: 0x%x\n",
226 offset);
227
228read_nvm_exit:
229 return ret_code;
230}
231
232/**
233 * i40e_read_nvm_aq - Read Shadow RAM.
234 * @hw: pointer to the HW structure.
235 * @module_pointer: module pointer location in words from the NVM beginning
236 * @offset: offset in words from module start
237 * @words: number of words to write
238 * @data: buffer with words to write to the Shadow RAM
239 * @last_command: tells the AdminQ that this is the last command
240 *
241 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
242 **/
243static i40e_status i40e_read_nvm_aq(struct i40e_hw *hw,
244 u8 module_pointer, u32 offset,
245 u16 words, void *data,
246 bool last_command)
247{
248 i40e_status ret_code = I40E_ERR_NVM;
249 struct i40e_asq_cmd_details cmd_details;
250
251 memset(&cmd_details, 0, sizeof(cmd_details));
252 cmd_details.wb_desc = &hw->nvm_wb_desc;
253
254 /* Here we are checking the SR limit only for the flat memory model.
255 * We cannot do it for the module-based model, as we did not acquire
256 * the NVM resource yet (we cannot get the module pointer value).
257 * Firmware will check the module-based model.
258 */
259 if ((offset + words) > hw->nvm.sr_size)
260 i40e_debug(hw, I40E_DEBUG_NVM,
261 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
262 (offset + words), hw->nvm.sr_size);
263 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
264 /* We can write only up to 4KB (one sector), in one AQ write */
265 i40e_debug(hw, I40E_DEBUG_NVM,
266 "NVM write fail error: tried to write %d words, limit is %d.\n",
267 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
268 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
269 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
270 /* A single write cannot spread over two sectors */
271 i40e_debug(hw, I40E_DEBUG_NVM,
272 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
273 offset, words);
274 else
275 ret_code = i40e_aq_read_nvm(hw, module_pointer,
276 2 * offset, /*bytes*/
277 2 * words, /*bytes*/
278 data, last_command, &cmd_details);
279
280 return ret_code;
281}
282
283/**
284 * i40e_read_nvm_word_aq - Reads Shadow RAM via AQ
285 * @hw: pointer to the HW structure
286 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
287 * @data: word read from the Shadow RAM
288 *
289 * Reads one 16 bit word from the Shadow RAM using the AdminQ
290 **/
291static i40e_status i40e_read_nvm_word_aq(struct i40e_hw *hw, u16 offset,
292 u16 *data)
293{
294 i40e_status ret_code = I40E_ERR_TIMEOUT;
295
296 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, 1, data, true);
297 *data = le16_to_cpu(*(__le16 *)data);
298
299 return ret_code;
300}
301
302/**
303 * __i40e_read_nvm_word - Reads nvm word, assumes caller does the locking
304 * @hw: pointer to the HW structure
305 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
306 * @data: word read from the Shadow RAM
307 *
308 * Reads one 16 bit word from the Shadow RAM.
309 *
310 * Do not use this function except in cases where the nvm lock is already
311 * taken via i40e_acquire_nvm().
312 **/
313static i40e_status __i40e_read_nvm_word(struct i40e_hw *hw,
314 u16 offset, u16 *data)
315{
316 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
317 return i40e_read_nvm_word_aq(hw, offset, data);
318
319 return i40e_read_nvm_word_srctl(hw, offset, data);
320}
321
322/**
323 * i40e_read_nvm_word - Reads nvm word and acquire lock if necessary
324 * @hw: pointer to the HW structure
325 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF)
326 * @data: word read from the Shadow RAM
327 *
328 * Reads one 16 bit word from the Shadow RAM.
329 **/
330i40e_status i40e_read_nvm_word(struct i40e_hw *hw, u16 offset,
331 u16 *data)
332{
333 i40e_status ret_code = 0;
334
335 if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
336 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
337 if (ret_code)
338 return ret_code;
339
340 ret_code = __i40e_read_nvm_word(hw, offset, data);
341
342 if (hw->flags & I40E_HW_FLAG_NVM_READ_REQUIRES_LOCK)
343 i40e_release_nvm(hw);
344
345 return ret_code;
346}
347
348/**
349 * i40e_read_nvm_buffer_srctl - Reads Shadow RAM buffer via SRCTL register
350 * @hw: pointer to the HW structure
351 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
352 * @words: (in) number of words to read; (out) number of words actually read
353 * @data: words read from the Shadow RAM
354 *
355 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
356 * method. The buffer read is preceded by the NVM ownership take
357 * and followed by the release.
358 **/
359static i40e_status i40e_read_nvm_buffer_srctl(struct i40e_hw *hw, u16 offset,
360 u16 *words, u16 *data)
361{
362 i40e_status ret_code = 0;
363 u16 index, word;
364
365 /* Loop thru the selected region */
366 for (word = 0; word < *words; word++) {
367 index = offset + word;
368 ret_code = i40e_read_nvm_word_srctl(hw, index, &data[word]);
369 if (ret_code)
370 break;
371 }
372
373 /* Update the number of words read from the Shadow RAM */
374 *words = word;
375
376 return ret_code;
377}
378
379/**
380 * i40e_read_nvm_buffer_aq - Reads Shadow RAM buffer via AQ
381 * @hw: pointer to the HW structure
382 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
383 * @words: (in) number of words to read; (out) number of words actually read
384 * @data: words read from the Shadow RAM
385 *
386 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_aq()
387 * method. The buffer read is preceded by the NVM ownership take
388 * and followed by the release.
389 **/
390static i40e_status i40e_read_nvm_buffer_aq(struct i40e_hw *hw, u16 offset,
391 u16 *words, u16 *data)
392{
393 i40e_status ret_code;
394 u16 read_size;
395 bool last_cmd = false;
396 u16 words_read = 0;
397 u16 i = 0;
398
399 do {
400 /* Calculate number of bytes we should read in this step.
401 * FVL AQ do not allow to read more than one page at a time or
402 * to cross page boundaries.
403 */
404 if (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)
405 read_size = min(*words,
406 (u16)(I40E_SR_SECTOR_SIZE_IN_WORDS -
407 (offset % I40E_SR_SECTOR_SIZE_IN_WORDS)));
408 else
409 read_size = min((*words - words_read),
410 I40E_SR_SECTOR_SIZE_IN_WORDS);
411
412 /* Check if this is last command, if so set proper flag */
413 if ((words_read + read_size) >= *words)
414 last_cmd = true;
415
416 ret_code = i40e_read_nvm_aq(hw, 0x0, offset, read_size,
417 data + words_read, last_cmd);
418 if (ret_code)
419 goto read_nvm_buffer_aq_exit;
420
421 /* Increment counter for words already read and move offset to
422 * new read location
423 */
424 words_read += read_size;
425 offset += read_size;
426 } while (words_read < *words);
427
428 for (i = 0; i < *words; i++)
429 data[i] = le16_to_cpu(((__le16 *)data)[i]);
430
431read_nvm_buffer_aq_exit:
432 *words = words_read;
433 return ret_code;
434}
435
436/**
437 * __i40e_read_nvm_buffer - Reads nvm buffer, caller must acquire lock
438 * @hw: pointer to the HW structure
439 * @offset: offset of the Shadow RAM word to read (0x000000 - 0x001FFF).
440 * @words: (in) number of words to read; (out) number of words actually read
441 * @data: words read from the Shadow RAM
442 *
443 * Reads 16 bit words (data buffer) from the SR using the i40e_read_nvm_srrd()
444 * method.
445 **/
446static i40e_status __i40e_read_nvm_buffer(struct i40e_hw *hw,
447 u16 offset, u16 *words,
448 u16 *data)
449{
450 if (hw->flags & I40E_HW_FLAG_AQ_SRCTL_ACCESS_ENABLE)
451 return i40e_read_nvm_buffer_aq(hw, offset, words, data);
452
453 return i40e_read_nvm_buffer_srctl(hw, offset, words, data);
454}
455
456/**
457 * i40e_write_nvm_aq - Writes Shadow RAM.
458 * @hw: pointer to the HW structure.
459 * @module_pointer: module pointer location in words from the NVM beginning
460 * @offset: offset in words from module start
461 * @words: number of words to write
462 * @data: buffer with words to write to the Shadow RAM
463 * @last_command: tells the AdminQ that this is the last command
464 *
465 * Writes a 16 bit words buffer to the Shadow RAM using the admin command.
466 **/
467static i40e_status i40e_write_nvm_aq(struct i40e_hw *hw, u8 module_pointer,
468 u32 offset, u16 words, void *data,
469 bool last_command)
470{
471 i40e_status ret_code = I40E_ERR_NVM;
472 struct i40e_asq_cmd_details cmd_details;
473
474 memset(&cmd_details, 0, sizeof(cmd_details));
475 cmd_details.wb_desc = &hw->nvm_wb_desc;
476
477 /* Here we are checking the SR limit only for the flat memory model.
478 * We cannot do it for the module-based model, as we did not acquire
479 * the NVM resource yet (we cannot get the module pointer value).
480 * Firmware will check the module-based model.
481 */
482 if ((offset + words) > hw->nvm.sr_size)
483 i40e_debug(hw, I40E_DEBUG_NVM,
484 "NVM write error: offset %d beyond Shadow RAM limit %d\n",
485 (offset + words), hw->nvm.sr_size);
486 else if (words > I40E_SR_SECTOR_SIZE_IN_WORDS)
487 /* We can write only up to 4KB (one sector), in one AQ write */
488 i40e_debug(hw, I40E_DEBUG_NVM,
489 "NVM write fail error: tried to write %d words, limit is %d.\n",
490 words, I40E_SR_SECTOR_SIZE_IN_WORDS);
491 else if (((offset + (words - 1)) / I40E_SR_SECTOR_SIZE_IN_WORDS)
492 != (offset / I40E_SR_SECTOR_SIZE_IN_WORDS))
493 /* A single write cannot spread over two sectors */
494 i40e_debug(hw, I40E_DEBUG_NVM,
495 "NVM write error: cannot spread over two sectors in a single write offset=%d words=%d\n",
496 offset, words);
497 else
498 ret_code = i40e_aq_update_nvm(hw, module_pointer,
499 2 * offset, /*bytes*/
500 2 * words, /*bytes*/
501 data, last_command, 0,
502 &cmd_details);
503
504 return ret_code;
505}
506
507/**
508 * i40e_calc_nvm_checksum - Calculates and returns the checksum
509 * @hw: pointer to hardware structure
510 * @checksum: pointer to the checksum
511 *
512 * This function calculates SW Checksum that covers the whole 64kB shadow RAM
513 * except the VPD and PCIe ALT Auto-load modules. The structure and size of VPD
514 * is customer specific and unknown. Therefore, this function skips all maximum
515 * possible size of VPD (1kB).
516 **/
517static i40e_status i40e_calc_nvm_checksum(struct i40e_hw *hw,
518 u16 *checksum)
519{
520 i40e_status ret_code;
521 struct i40e_virt_mem vmem;
522 u16 pcie_alt_module = 0;
523 u16 checksum_local = 0;
524 u16 vpd_module = 0;
525 u16 *data;
526 u16 i = 0;
527
528 ret_code = i40e_allocate_virt_mem(hw, &vmem,
529 I40E_SR_SECTOR_SIZE_IN_WORDS * sizeof(u16));
530 if (ret_code)
531 goto i40e_calc_nvm_checksum_exit;
532 data = (u16 *)vmem.va;
533
534 /* read pointer to VPD area */
535 ret_code = __i40e_read_nvm_word(hw, I40E_SR_VPD_PTR, &vpd_module);
536 if (ret_code) {
537 ret_code = I40E_ERR_NVM_CHECKSUM;
538 goto i40e_calc_nvm_checksum_exit;
539 }
540
541 /* read pointer to PCIe Alt Auto-load module */
542 ret_code = __i40e_read_nvm_word(hw, I40E_SR_PCIE_ALT_AUTO_LOAD_PTR,
543 &pcie_alt_module);
544 if (ret_code) {
545 ret_code = I40E_ERR_NVM_CHECKSUM;
546 goto i40e_calc_nvm_checksum_exit;
547 }
548
549 /* Calculate SW checksum that covers the whole 64kB shadow RAM
550 * except the VPD and PCIe ALT Auto-load modules
551 */
552 for (i = 0; i < hw->nvm.sr_size; i++) {
553 /* Read SR page */
554 if ((i % I40E_SR_SECTOR_SIZE_IN_WORDS) == 0) {
555 u16 words = I40E_SR_SECTOR_SIZE_IN_WORDS;
556
557 ret_code = __i40e_read_nvm_buffer(hw, i, &words, data);
558 if (ret_code) {
559 ret_code = I40E_ERR_NVM_CHECKSUM;
560 goto i40e_calc_nvm_checksum_exit;
561 }
562 }
563
564 /* Skip Checksum word */
565 if (i == I40E_SR_SW_CHECKSUM_WORD)
566 continue;
567 /* Skip VPD module (convert byte size to word count) */
568 if ((i >= (u32)vpd_module) &&
569 (i < ((u32)vpd_module +
570 (I40E_SR_VPD_MODULE_MAX_SIZE / 2)))) {
571 continue;
572 }
573 /* Skip PCIe ALT module (convert byte size to word count) */
574 if ((i >= (u32)pcie_alt_module) &&
575 (i < ((u32)pcie_alt_module +
576 (I40E_SR_PCIE_ALT_MODULE_MAX_SIZE / 2)))) {
577 continue;
578 }
579
580 checksum_local += data[i % I40E_SR_SECTOR_SIZE_IN_WORDS];
581 }
582
583 *checksum = (u16)I40E_SR_SW_CHECKSUM_BASE - checksum_local;
584
585i40e_calc_nvm_checksum_exit:
586 i40e_free_virt_mem(hw, &vmem);
587 return ret_code;
588}
589
590/**
591 * i40e_update_nvm_checksum - Updates the NVM checksum
592 * @hw: pointer to hardware structure
593 *
594 * NVM ownership must be acquired before calling this function and released
595 * on ARQ completion event reception by caller.
596 * This function will commit SR to NVM.
597 **/
598i40e_status i40e_update_nvm_checksum(struct i40e_hw *hw)
599{
600 i40e_status ret_code;
601 u16 checksum;
602 __le16 le_sum;
603
604 ret_code = i40e_calc_nvm_checksum(hw, &checksum);
605 if (!ret_code) {
606 le_sum = cpu_to_le16(checksum);
607 ret_code = i40e_write_nvm_aq(hw, 0x00, I40E_SR_SW_CHECKSUM_WORD,
608 1, &le_sum, true);
609 }
610
611 return ret_code;
612}
613
614/**
615 * i40e_validate_nvm_checksum - Validate EEPROM checksum
616 * @hw: pointer to hardware structure
617 * @checksum: calculated checksum
618 *
619 * Performs checksum calculation and validates the NVM SW checksum. If the
620 * caller does not need checksum, the value can be NULL.
621 **/
622i40e_status i40e_validate_nvm_checksum(struct i40e_hw *hw,
623 u16 *checksum)
624{
625 i40e_status ret_code = 0;
626 u16 checksum_sr = 0;
627 u16 checksum_local = 0;
628
629 /* We must acquire the NVM lock in order to correctly synchronize the
630 * NVM accesses across multiple PFs. Without doing so it is possible
631 * for one of the PFs to read invalid data potentially indicating that
632 * the checksum is invalid.
633 */
634 ret_code = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
635 if (ret_code)
636 return ret_code;
637 ret_code = i40e_calc_nvm_checksum(hw, &checksum_local);
638 __i40e_read_nvm_word(hw, I40E_SR_SW_CHECKSUM_WORD, &checksum_sr);
639 i40e_release_nvm(hw);
640 if (ret_code)
641 return ret_code;
642
643 /* Verify read checksum from EEPROM is the same as
644 * calculated checksum
645 */
646 if (checksum_local != checksum_sr)
647 ret_code = I40E_ERR_NVM_CHECKSUM;
648
649 /* If the user cares, return the calculated checksum */
650 if (checksum)
651 *checksum = checksum_local;
652
653 return ret_code;
654}
655
656static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
657 struct i40e_nvm_access *cmd,
658 u8 *bytes, int *perrno);
659static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
660 struct i40e_nvm_access *cmd,
661 u8 *bytes, int *perrno);
662static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
663 struct i40e_nvm_access *cmd,
664 u8 *bytes, int *errno);
665static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
666 struct i40e_nvm_access *cmd,
667 int *perrno);
668static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
669 struct i40e_nvm_access *cmd,
670 int *perrno);
671static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
672 struct i40e_nvm_access *cmd,
673 u8 *bytes, int *perrno);
674static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
675 struct i40e_nvm_access *cmd,
676 u8 *bytes, int *perrno);
677static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
678 struct i40e_nvm_access *cmd,
679 u8 *bytes, int *perrno);
680static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
681 struct i40e_nvm_access *cmd,
682 u8 *bytes, int *perrno);
683static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
684 struct i40e_nvm_access *cmd,
685 u8 *bytes, int *perrno);
686static inline u8 i40e_nvmupd_get_module(u32 val)
687{
688 return (u8)(val & I40E_NVM_MOD_PNT_MASK);
689}
690static inline u8 i40e_nvmupd_get_transaction(u32 val)
691{
692 return (u8)((val & I40E_NVM_TRANS_MASK) >> I40E_NVM_TRANS_SHIFT);
693}
694
695static inline u8 i40e_nvmupd_get_preservation_flags(u32 val)
696{
697 return (u8)((val & I40E_NVM_PRESERVATION_FLAGS_MASK) >>
698 I40E_NVM_PRESERVATION_FLAGS_SHIFT);
699}
700
701static const char * const i40e_nvm_update_state_str[] = {
702 "I40E_NVMUPD_INVALID",
703 "I40E_NVMUPD_READ_CON",
704 "I40E_NVMUPD_READ_SNT",
705 "I40E_NVMUPD_READ_LCB",
706 "I40E_NVMUPD_READ_SA",
707 "I40E_NVMUPD_WRITE_ERA",
708 "I40E_NVMUPD_WRITE_CON",
709 "I40E_NVMUPD_WRITE_SNT",
710 "I40E_NVMUPD_WRITE_LCB",
711 "I40E_NVMUPD_WRITE_SA",
712 "I40E_NVMUPD_CSUM_CON",
713 "I40E_NVMUPD_CSUM_SA",
714 "I40E_NVMUPD_CSUM_LCB",
715 "I40E_NVMUPD_STATUS",
716 "I40E_NVMUPD_EXEC_AQ",
717 "I40E_NVMUPD_GET_AQ_RESULT",
718 "I40E_NVMUPD_GET_AQ_EVENT",
719};
720
721/**
722 * i40e_nvmupd_command - Process an NVM update command
723 * @hw: pointer to hardware structure
724 * @cmd: pointer to nvm update command
725 * @bytes: pointer to the data buffer
726 * @perrno: pointer to return error code
727 *
728 * Dispatches command depending on what update state is current
729 **/
730i40e_status i40e_nvmupd_command(struct i40e_hw *hw,
731 struct i40e_nvm_access *cmd,
732 u8 *bytes, int *perrno)
733{
734 i40e_status status;
735 enum i40e_nvmupd_cmd upd_cmd;
736
737 /* assume success */
738 *perrno = 0;
739
740 /* early check for status command and debug msgs */
741 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
742
743 i40e_debug(hw, I40E_DEBUG_NVM, "%s state %d nvm_release_on_hold %d opc 0x%04x cmd 0x%08x config 0x%08x offset 0x%08x data_size 0x%08x\n",
744 i40e_nvm_update_state_str[upd_cmd],
745 hw->nvmupd_state,
746 hw->nvm_release_on_done, hw->nvm_wait_opcode,
747 cmd->command, cmd->config, cmd->offset, cmd->data_size);
748
749 if (upd_cmd == I40E_NVMUPD_INVALID) {
750 *perrno = -EFAULT;
751 i40e_debug(hw, I40E_DEBUG_NVM,
752 "i40e_nvmupd_validate_command returns %d errno %d\n",
753 upd_cmd, *perrno);
754 }
755
756 /* a status request returns immediately rather than
757 * going into the state machine
758 */
759 if (upd_cmd == I40E_NVMUPD_STATUS) {
760 if (!cmd->data_size) {
761 *perrno = -EFAULT;
762 return I40E_ERR_BUF_TOO_SHORT;
763 }
764
765 bytes[0] = hw->nvmupd_state;
766
767 if (cmd->data_size >= 4) {
768 bytes[1] = 0;
769 *((u16 *)&bytes[2]) = hw->nvm_wait_opcode;
770 }
771
772 /* Clear error status on read */
773 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR)
774 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
775
776 return 0;
777 }
778
779 /* Clear status even it is not read and log */
780 if (hw->nvmupd_state == I40E_NVMUPD_STATE_ERROR) {
781 i40e_debug(hw, I40E_DEBUG_NVM,
782 "Clearing I40E_NVMUPD_STATE_ERROR state without reading\n");
783 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
784 }
785
786 /* Acquire lock to prevent race condition where adminq_task
787 * can execute after i40e_nvmupd_nvm_read/write but before state
788 * variables (nvm_wait_opcode, nvm_release_on_done) are updated.
789 *
790 * During NVMUpdate, it is observed that lock could be held for
791 * ~5ms for most commands. However lock is held for ~60ms for
792 * NVMUPD_CSUM_LCB command.
793 */
794 mutex_lock(&hw->aq.arq_mutex);
795 switch (hw->nvmupd_state) {
796 case I40E_NVMUPD_STATE_INIT:
797 status = i40e_nvmupd_state_init(hw, cmd, bytes, perrno);
798 break;
799
800 case I40E_NVMUPD_STATE_READING:
801 status = i40e_nvmupd_state_reading(hw, cmd, bytes, perrno);
802 break;
803
804 case I40E_NVMUPD_STATE_WRITING:
805 status = i40e_nvmupd_state_writing(hw, cmd, bytes, perrno);
806 break;
807
808 case I40E_NVMUPD_STATE_INIT_WAIT:
809 case I40E_NVMUPD_STATE_WRITE_WAIT:
810 /* if we need to stop waiting for an event, clear
811 * the wait info and return before doing anything else
812 */
813 if (cmd->offset == 0xffff) {
814 i40e_nvmupd_clear_wait_state(hw);
815 status = 0;
816 break;
817 }
818
819 status = I40E_ERR_NOT_READY;
820 *perrno = -EBUSY;
821 break;
822
823 default:
824 /* invalid state, should never happen */
825 i40e_debug(hw, I40E_DEBUG_NVM,
826 "NVMUPD: no such state %d\n", hw->nvmupd_state);
827 status = I40E_NOT_SUPPORTED;
828 *perrno = -ESRCH;
829 break;
830 }
831
832 mutex_unlock(&hw->aq.arq_mutex);
833 return status;
834}
835
836/**
837 * i40e_nvmupd_state_init - Handle NVM update state Init
838 * @hw: pointer to hardware structure
839 * @cmd: pointer to nvm update command buffer
840 * @bytes: pointer to the data buffer
841 * @perrno: pointer to return error code
842 *
843 * Process legitimate commands of the Init state and conditionally set next
844 * state. Reject all other commands.
845 **/
846static i40e_status i40e_nvmupd_state_init(struct i40e_hw *hw,
847 struct i40e_nvm_access *cmd,
848 u8 *bytes, int *perrno)
849{
850 i40e_status status = 0;
851 enum i40e_nvmupd_cmd upd_cmd;
852
853 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
854
855 switch (upd_cmd) {
856 case I40E_NVMUPD_READ_SA:
857 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
858 if (status) {
859 *perrno = i40e_aq_rc_to_posix(status,
860 hw->aq.asq_last_status);
861 } else {
862 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
863 i40e_release_nvm(hw);
864 }
865 break;
866
867 case I40E_NVMUPD_READ_SNT:
868 status = i40e_acquire_nvm(hw, I40E_RESOURCE_READ);
869 if (status) {
870 *perrno = i40e_aq_rc_to_posix(status,
871 hw->aq.asq_last_status);
872 } else {
873 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
874 if (status)
875 i40e_release_nvm(hw);
876 else
877 hw->nvmupd_state = I40E_NVMUPD_STATE_READING;
878 }
879 break;
880
881 case I40E_NVMUPD_WRITE_ERA:
882 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
883 if (status) {
884 *perrno = i40e_aq_rc_to_posix(status,
885 hw->aq.asq_last_status);
886 } else {
887 status = i40e_nvmupd_nvm_erase(hw, cmd, perrno);
888 if (status) {
889 i40e_release_nvm(hw);
890 } else {
891 hw->nvm_release_on_done = true;
892 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_erase;
893 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
894 }
895 }
896 break;
897
898 case I40E_NVMUPD_WRITE_SA:
899 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
900 if (status) {
901 *perrno = i40e_aq_rc_to_posix(status,
902 hw->aq.asq_last_status);
903 } else {
904 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
905 if (status) {
906 i40e_release_nvm(hw);
907 } else {
908 hw->nvm_release_on_done = true;
909 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
910 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
911 }
912 }
913 break;
914
915 case I40E_NVMUPD_WRITE_SNT:
916 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
917 if (status) {
918 *perrno = i40e_aq_rc_to_posix(status,
919 hw->aq.asq_last_status);
920 } else {
921 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
922 if (status) {
923 i40e_release_nvm(hw);
924 } else {
925 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
926 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
927 }
928 }
929 break;
930
931 case I40E_NVMUPD_CSUM_SA:
932 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
933 if (status) {
934 *perrno = i40e_aq_rc_to_posix(status,
935 hw->aq.asq_last_status);
936 } else {
937 status = i40e_update_nvm_checksum(hw);
938 if (status) {
939 *perrno = hw->aq.asq_last_status ?
940 i40e_aq_rc_to_posix(status,
941 hw->aq.asq_last_status) :
942 -EIO;
943 i40e_release_nvm(hw);
944 } else {
945 hw->nvm_release_on_done = true;
946 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
947 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
948 }
949 }
950 break;
951
952 case I40E_NVMUPD_EXEC_AQ:
953 status = i40e_nvmupd_exec_aq(hw, cmd, bytes, perrno);
954 break;
955
956 case I40E_NVMUPD_GET_AQ_RESULT:
957 status = i40e_nvmupd_get_aq_result(hw, cmd, bytes, perrno);
958 break;
959
960 case I40E_NVMUPD_GET_AQ_EVENT:
961 status = i40e_nvmupd_get_aq_event(hw, cmd, bytes, perrno);
962 break;
963
964 default:
965 i40e_debug(hw, I40E_DEBUG_NVM,
966 "NVMUPD: bad cmd %s in init state\n",
967 i40e_nvm_update_state_str[upd_cmd]);
968 status = I40E_ERR_NVM;
969 *perrno = -ESRCH;
970 break;
971 }
972 return status;
973}
974
975/**
976 * i40e_nvmupd_state_reading - Handle NVM update state Reading
977 * @hw: pointer to hardware structure
978 * @cmd: pointer to nvm update command buffer
979 * @bytes: pointer to the data buffer
980 * @perrno: pointer to return error code
981 *
982 * NVM ownership is already held. Process legitimate commands and set any
983 * change in state; reject all other commands.
984 **/
985static i40e_status i40e_nvmupd_state_reading(struct i40e_hw *hw,
986 struct i40e_nvm_access *cmd,
987 u8 *bytes, int *perrno)
988{
989 i40e_status status = 0;
990 enum i40e_nvmupd_cmd upd_cmd;
991
992 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
993
994 switch (upd_cmd) {
995 case I40E_NVMUPD_READ_SA:
996 case I40E_NVMUPD_READ_CON:
997 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
998 break;
999
1000 case I40E_NVMUPD_READ_LCB:
1001 status = i40e_nvmupd_nvm_read(hw, cmd, bytes, perrno);
1002 i40e_release_nvm(hw);
1003 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1004 break;
1005
1006 default:
1007 i40e_debug(hw, I40E_DEBUG_NVM,
1008 "NVMUPD: bad cmd %s in reading state.\n",
1009 i40e_nvm_update_state_str[upd_cmd]);
1010 status = I40E_NOT_SUPPORTED;
1011 *perrno = -ESRCH;
1012 break;
1013 }
1014 return status;
1015}
1016
1017/**
1018 * i40e_nvmupd_state_writing - Handle NVM update state Writing
1019 * @hw: pointer to hardware structure
1020 * @cmd: pointer to nvm update command buffer
1021 * @bytes: pointer to the data buffer
1022 * @perrno: pointer to return error code
1023 *
1024 * NVM ownership is already held. Process legitimate commands and set any
1025 * change in state; reject all other commands
1026 **/
1027static i40e_status i40e_nvmupd_state_writing(struct i40e_hw *hw,
1028 struct i40e_nvm_access *cmd,
1029 u8 *bytes, int *perrno)
1030{
1031 i40e_status status = 0;
1032 enum i40e_nvmupd_cmd upd_cmd;
1033 bool retry_attempt = false;
1034
1035 upd_cmd = i40e_nvmupd_validate_command(hw, cmd, perrno);
1036
1037retry:
1038 switch (upd_cmd) {
1039 case I40E_NVMUPD_WRITE_CON:
1040 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1041 if (!status) {
1042 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1043 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1044 }
1045 break;
1046
1047 case I40E_NVMUPD_WRITE_LCB:
1048 status = i40e_nvmupd_nvm_write(hw, cmd, bytes, perrno);
1049 if (status) {
1050 *perrno = hw->aq.asq_last_status ?
1051 i40e_aq_rc_to_posix(status,
1052 hw->aq.asq_last_status) :
1053 -EIO;
1054 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1055 } else {
1056 hw->nvm_release_on_done = true;
1057 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1058 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1059 }
1060 break;
1061
1062 case I40E_NVMUPD_CSUM_CON:
1063 /* Assumes the caller has acquired the nvm */
1064 status = i40e_update_nvm_checksum(hw);
1065 if (status) {
1066 *perrno = hw->aq.asq_last_status ?
1067 i40e_aq_rc_to_posix(status,
1068 hw->aq.asq_last_status) :
1069 -EIO;
1070 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1071 } else {
1072 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1073 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITE_WAIT;
1074 }
1075 break;
1076
1077 case I40E_NVMUPD_CSUM_LCB:
1078 /* Assumes the caller has acquired the nvm */
1079 status = i40e_update_nvm_checksum(hw);
1080 if (status) {
1081 *perrno = hw->aq.asq_last_status ?
1082 i40e_aq_rc_to_posix(status,
1083 hw->aq.asq_last_status) :
1084 -EIO;
1085 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1086 } else {
1087 hw->nvm_release_on_done = true;
1088 hw->nvm_wait_opcode = i40e_aqc_opc_nvm_update;
1089 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1090 }
1091 break;
1092
1093 default:
1094 i40e_debug(hw, I40E_DEBUG_NVM,
1095 "NVMUPD: bad cmd %s in writing state.\n",
1096 i40e_nvm_update_state_str[upd_cmd]);
1097 status = I40E_NOT_SUPPORTED;
1098 *perrno = -ESRCH;
1099 break;
1100 }
1101
1102 /* In some circumstances, a multi-write transaction takes longer
1103 * than the default 3 minute timeout on the write semaphore. If
1104 * the write failed with an EBUSY status, this is likely the problem,
1105 * so here we try to reacquire the semaphore then retry the write.
1106 * We only do one retry, then give up.
1107 */
1108 if (status && (hw->aq.asq_last_status == I40E_AQ_RC_EBUSY) &&
1109 !retry_attempt) {
1110 i40e_status old_status = status;
1111 u32 old_asq_status = hw->aq.asq_last_status;
1112 u32 gtime;
1113
1114 gtime = rd32(hw, I40E_GLVFGEN_TIMER);
1115 if (gtime >= hw->nvm.hw_semaphore_timeout) {
1116 i40e_debug(hw, I40E_DEBUG_ALL,
1117 "NVMUPD: write semaphore expired (%d >= %lld), retrying\n",
1118 gtime, hw->nvm.hw_semaphore_timeout);
1119 i40e_release_nvm(hw);
1120 status = i40e_acquire_nvm(hw, I40E_RESOURCE_WRITE);
1121 if (status) {
1122 i40e_debug(hw, I40E_DEBUG_ALL,
1123 "NVMUPD: write semaphore reacquire failed aq_err = %d\n",
1124 hw->aq.asq_last_status);
1125 status = old_status;
1126 hw->aq.asq_last_status = old_asq_status;
1127 } else {
1128 retry_attempt = true;
1129 goto retry;
1130 }
1131 }
1132 }
1133
1134 return status;
1135}
1136
1137/**
1138 * i40e_nvmupd_clear_wait_state - clear wait state on hw
1139 * @hw: pointer to the hardware structure
1140 **/
1141void i40e_nvmupd_clear_wait_state(struct i40e_hw *hw)
1142{
1143 i40e_debug(hw, I40E_DEBUG_NVM,
1144 "NVMUPD: clearing wait on opcode 0x%04x\n",
1145 hw->nvm_wait_opcode);
1146
1147 if (hw->nvm_release_on_done) {
1148 i40e_release_nvm(hw);
1149 hw->nvm_release_on_done = false;
1150 }
1151 hw->nvm_wait_opcode = 0;
1152
1153 if (hw->aq.arq_last_status) {
1154 hw->nvmupd_state = I40E_NVMUPD_STATE_ERROR;
1155 return;
1156 }
1157
1158 switch (hw->nvmupd_state) {
1159 case I40E_NVMUPD_STATE_INIT_WAIT:
1160 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT;
1161 break;
1162
1163 case I40E_NVMUPD_STATE_WRITE_WAIT:
1164 hw->nvmupd_state = I40E_NVMUPD_STATE_WRITING;
1165 break;
1166
1167 default:
1168 break;
1169 }
1170}
1171
1172/**
1173 * i40e_nvmupd_check_wait_event - handle NVM update operation events
1174 * @hw: pointer to the hardware structure
1175 * @opcode: the event that just happened
1176 **/
1177void i40e_nvmupd_check_wait_event(struct i40e_hw *hw, u16 opcode,
1178 struct i40e_aq_desc *desc)
1179{
1180 u32 aq_desc_len = sizeof(struct i40e_aq_desc);
1181
1182 if (opcode == hw->nvm_wait_opcode) {
1183 memcpy(&hw->nvm_aq_event_desc, desc, aq_desc_len);
1184 i40e_nvmupd_clear_wait_state(hw);
1185 }
1186}
1187
1188/**
1189 * i40e_nvmupd_validate_command - Validate given command
1190 * @hw: pointer to hardware structure
1191 * @cmd: pointer to nvm update command buffer
1192 * @perrno: pointer to return error code
1193 *
1194 * Return one of the valid command types or I40E_NVMUPD_INVALID
1195 **/
1196static enum i40e_nvmupd_cmd i40e_nvmupd_validate_command(struct i40e_hw *hw,
1197 struct i40e_nvm_access *cmd,
1198 int *perrno)
1199{
1200 enum i40e_nvmupd_cmd upd_cmd;
1201 u8 module, transaction;
1202
1203 /* anything that doesn't match a recognized case is an error */
1204 upd_cmd = I40E_NVMUPD_INVALID;
1205
1206 transaction = i40e_nvmupd_get_transaction(cmd->config);
1207 module = i40e_nvmupd_get_module(cmd->config);
1208
1209 /* limits on data size */
1210 if ((cmd->data_size < 1) ||
1211 (cmd->data_size > I40E_NVMUPD_MAX_DATA)) {
1212 i40e_debug(hw, I40E_DEBUG_NVM,
1213 "i40e_nvmupd_validate_command data_size %d\n",
1214 cmd->data_size);
1215 *perrno = -EFAULT;
1216 return I40E_NVMUPD_INVALID;
1217 }
1218
1219 switch (cmd->command) {
1220 case I40E_NVM_READ:
1221 switch (transaction) {
1222 case I40E_NVM_CON:
1223 upd_cmd = I40E_NVMUPD_READ_CON;
1224 break;
1225 case I40E_NVM_SNT:
1226 upd_cmd = I40E_NVMUPD_READ_SNT;
1227 break;
1228 case I40E_NVM_LCB:
1229 upd_cmd = I40E_NVMUPD_READ_LCB;
1230 break;
1231 case I40E_NVM_SA:
1232 upd_cmd = I40E_NVMUPD_READ_SA;
1233 break;
1234 case I40E_NVM_EXEC:
1235 if (module == 0xf)
1236 upd_cmd = I40E_NVMUPD_STATUS;
1237 else if (module == 0)
1238 upd_cmd = I40E_NVMUPD_GET_AQ_RESULT;
1239 break;
1240 case I40E_NVM_AQE:
1241 upd_cmd = I40E_NVMUPD_GET_AQ_EVENT;
1242 break;
1243 }
1244 break;
1245
1246 case I40E_NVM_WRITE:
1247 switch (transaction) {
1248 case I40E_NVM_CON:
1249 upd_cmd = I40E_NVMUPD_WRITE_CON;
1250 break;
1251 case I40E_NVM_SNT:
1252 upd_cmd = I40E_NVMUPD_WRITE_SNT;
1253 break;
1254 case I40E_NVM_LCB:
1255 upd_cmd = I40E_NVMUPD_WRITE_LCB;
1256 break;
1257 case I40E_NVM_SA:
1258 upd_cmd = I40E_NVMUPD_WRITE_SA;
1259 break;
1260 case I40E_NVM_ERA:
1261 upd_cmd = I40E_NVMUPD_WRITE_ERA;
1262 break;
1263 case I40E_NVM_CSUM:
1264 upd_cmd = I40E_NVMUPD_CSUM_CON;
1265 break;
1266 case (I40E_NVM_CSUM|I40E_NVM_SA):
1267 upd_cmd = I40E_NVMUPD_CSUM_SA;
1268 break;
1269 case (I40E_NVM_CSUM|I40E_NVM_LCB):
1270 upd_cmd = I40E_NVMUPD_CSUM_LCB;
1271 break;
1272 case I40E_NVM_EXEC:
1273 if (module == 0)
1274 upd_cmd = I40E_NVMUPD_EXEC_AQ;
1275 break;
1276 }
1277 break;
1278 }
1279
1280 return upd_cmd;
1281}
1282
1283/**
1284 * i40e_nvmupd_exec_aq - Run an AQ command
1285 * @hw: pointer to hardware structure
1286 * @cmd: pointer to nvm update command buffer
1287 * @bytes: pointer to the data buffer
1288 * @perrno: pointer to return error code
1289 *
1290 * cmd structure contains identifiers and data buffer
1291 **/
1292static i40e_status i40e_nvmupd_exec_aq(struct i40e_hw *hw,
1293 struct i40e_nvm_access *cmd,
1294 u8 *bytes, int *perrno)
1295{
1296 struct i40e_asq_cmd_details cmd_details;
1297 i40e_status status;
1298 struct i40e_aq_desc *aq_desc;
1299 u32 buff_size = 0;
1300 u8 *buff = NULL;
1301 u32 aq_desc_len;
1302 u32 aq_data_len;
1303
1304 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1305 if (cmd->offset == 0xffff)
1306 return 0;
1307
1308 memset(&cmd_details, 0, sizeof(cmd_details));
1309 cmd_details.wb_desc = &hw->nvm_wb_desc;
1310
1311 aq_desc_len = sizeof(struct i40e_aq_desc);
1312 memset(&hw->nvm_wb_desc, 0, aq_desc_len);
1313
1314 /* get the aq descriptor */
1315 if (cmd->data_size < aq_desc_len) {
1316 i40e_debug(hw, I40E_DEBUG_NVM,
1317 "NVMUPD: not enough aq desc bytes for exec, size %d < %d\n",
1318 cmd->data_size, aq_desc_len);
1319 *perrno = -EINVAL;
1320 return I40E_ERR_PARAM;
1321 }
1322 aq_desc = (struct i40e_aq_desc *)bytes;
1323
1324 /* if data buffer needed, make sure it's ready */
1325 aq_data_len = cmd->data_size - aq_desc_len;
1326 buff_size = max_t(u32, aq_data_len, le16_to_cpu(aq_desc->datalen));
1327 if (buff_size) {
1328 if (!hw->nvm_buff.va) {
1329 status = i40e_allocate_virt_mem(hw, &hw->nvm_buff,
1330 hw->aq.asq_buf_size);
1331 if (status)
1332 i40e_debug(hw, I40E_DEBUG_NVM,
1333 "NVMUPD: i40e_allocate_virt_mem for exec buff failed, %d\n",
1334 status);
1335 }
1336
1337 if (hw->nvm_buff.va) {
1338 buff = hw->nvm_buff.va;
1339 memcpy(buff, &bytes[aq_desc_len], aq_data_len);
1340 }
1341 }
1342
1343 if (cmd->offset)
1344 memset(&hw->nvm_aq_event_desc, 0, aq_desc_len);
1345
1346 /* and away we go! */
1347 status = i40e_asq_send_command(hw, aq_desc, buff,
1348 buff_size, &cmd_details);
1349 if (status) {
1350 i40e_debug(hw, I40E_DEBUG_NVM,
1351 "i40e_nvmupd_exec_aq err %s aq_err %s\n",
1352 i40e_stat_str(hw, status),
1353 i40e_aq_str(hw, hw->aq.asq_last_status));
1354 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1355 return status;
1356 }
1357
1358 /* should we wait for a followup event? */
1359 if (cmd->offset) {
1360 hw->nvm_wait_opcode = cmd->offset;
1361 hw->nvmupd_state = I40E_NVMUPD_STATE_INIT_WAIT;
1362 }
1363
1364 return status;
1365}
1366
1367/**
1368 * i40e_nvmupd_get_aq_result - Get the results from the previous exec_aq
1369 * @hw: pointer to hardware structure
1370 * @cmd: pointer to nvm update command buffer
1371 * @bytes: pointer to the data buffer
1372 * @perrno: pointer to return error code
1373 *
1374 * cmd structure contains identifiers and data buffer
1375 **/
1376static i40e_status i40e_nvmupd_get_aq_result(struct i40e_hw *hw,
1377 struct i40e_nvm_access *cmd,
1378 u8 *bytes, int *perrno)
1379{
1380 u32 aq_total_len;
1381 u32 aq_desc_len;
1382 int remainder;
1383 u8 *buff;
1384
1385 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1386
1387 aq_desc_len = sizeof(struct i40e_aq_desc);
1388 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_wb_desc.datalen);
1389
1390 /* check offset range */
1391 if (cmd->offset > aq_total_len) {
1392 i40e_debug(hw, I40E_DEBUG_NVM, "%s: offset too big %d > %d\n",
1393 __func__, cmd->offset, aq_total_len);
1394 *perrno = -EINVAL;
1395 return I40E_ERR_PARAM;
1396 }
1397
1398 /* check copylength range */
1399 if (cmd->data_size > (aq_total_len - cmd->offset)) {
1400 int new_len = aq_total_len - cmd->offset;
1401
1402 i40e_debug(hw, I40E_DEBUG_NVM, "%s: copy length %d too big, trimming to %d\n",
1403 __func__, cmd->data_size, new_len);
1404 cmd->data_size = new_len;
1405 }
1406
1407 remainder = cmd->data_size;
1408 if (cmd->offset < aq_desc_len) {
1409 u32 len = aq_desc_len - cmd->offset;
1410
1411 len = min(len, cmd->data_size);
1412 i40e_debug(hw, I40E_DEBUG_NVM, "%s: aq_desc bytes %d to %d\n",
1413 __func__, cmd->offset, cmd->offset + len);
1414
1415 buff = ((u8 *)&hw->nvm_wb_desc) + cmd->offset;
1416 memcpy(bytes, buff, len);
1417
1418 bytes += len;
1419 remainder -= len;
1420 buff = hw->nvm_buff.va;
1421 } else {
1422 buff = hw->nvm_buff.va + (cmd->offset - aq_desc_len);
1423 }
1424
1425 if (remainder > 0) {
1426 int start_byte = buff - (u8 *)hw->nvm_buff.va;
1427
1428 i40e_debug(hw, I40E_DEBUG_NVM, "%s: databuf bytes %d to %d\n",
1429 __func__, start_byte, start_byte + remainder);
1430 memcpy(bytes, buff, remainder);
1431 }
1432
1433 return 0;
1434}
1435
1436/**
1437 * i40e_nvmupd_get_aq_event - Get the Admin Queue event from previous exec_aq
1438 * @hw: pointer to hardware structure
1439 * @cmd: pointer to nvm update command buffer
1440 * @bytes: pointer to the data buffer
1441 * @perrno: pointer to return error code
1442 *
1443 * cmd structure contains identifiers and data buffer
1444 **/
1445static i40e_status i40e_nvmupd_get_aq_event(struct i40e_hw *hw,
1446 struct i40e_nvm_access *cmd,
1447 u8 *bytes, int *perrno)
1448{
1449 u32 aq_total_len;
1450 u32 aq_desc_len;
1451
1452 i40e_debug(hw, I40E_DEBUG_NVM, "NVMUPD: %s\n", __func__);
1453
1454 aq_desc_len = sizeof(struct i40e_aq_desc);
1455 aq_total_len = aq_desc_len + le16_to_cpu(hw->nvm_aq_event_desc.datalen);
1456
1457 /* check copylength range */
1458 if (cmd->data_size > aq_total_len) {
1459 i40e_debug(hw, I40E_DEBUG_NVM,
1460 "%s: copy length %d too big, trimming to %d\n",
1461 __func__, cmd->data_size, aq_total_len);
1462 cmd->data_size = aq_total_len;
1463 }
1464
1465 memcpy(bytes, &hw->nvm_aq_event_desc, cmd->data_size);
1466
1467 return 0;
1468}
1469
1470/**
1471 * i40e_nvmupd_nvm_read - Read NVM
1472 * @hw: pointer to hardware structure
1473 * @cmd: pointer to nvm update command buffer
1474 * @bytes: pointer to the data buffer
1475 * @perrno: pointer to return error code
1476 *
1477 * cmd structure contains identifiers and data buffer
1478 **/
1479static i40e_status i40e_nvmupd_nvm_read(struct i40e_hw *hw,
1480 struct i40e_nvm_access *cmd,
1481 u8 *bytes, int *perrno)
1482{
1483 struct i40e_asq_cmd_details cmd_details;
1484 i40e_status status;
1485 u8 module, transaction;
1486 bool last;
1487
1488 transaction = i40e_nvmupd_get_transaction(cmd->config);
1489 module = i40e_nvmupd_get_module(cmd->config);
1490 last = (transaction == I40E_NVM_LCB) || (transaction == I40E_NVM_SA);
1491
1492 memset(&cmd_details, 0, sizeof(cmd_details));
1493 cmd_details.wb_desc = &hw->nvm_wb_desc;
1494
1495 status = i40e_aq_read_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1496 bytes, last, &cmd_details);
1497 if (status) {
1498 i40e_debug(hw, I40E_DEBUG_NVM,
1499 "i40e_nvmupd_nvm_read mod 0x%x off 0x%x len 0x%x\n",
1500 module, cmd->offset, cmd->data_size);
1501 i40e_debug(hw, I40E_DEBUG_NVM,
1502 "i40e_nvmupd_nvm_read status %d aq %d\n",
1503 status, hw->aq.asq_last_status);
1504 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1505 }
1506
1507 return status;
1508}
1509
1510/**
1511 * i40e_nvmupd_nvm_erase - Erase an NVM module
1512 * @hw: pointer to hardware structure
1513 * @cmd: pointer to nvm update command buffer
1514 * @perrno: pointer to return error code
1515 *
1516 * module, offset, data_size and data are in cmd structure
1517 **/
1518static i40e_status i40e_nvmupd_nvm_erase(struct i40e_hw *hw,
1519 struct i40e_nvm_access *cmd,
1520 int *perrno)
1521{
1522 i40e_status status = 0;
1523 struct i40e_asq_cmd_details cmd_details;
1524 u8 module, transaction;
1525 bool last;
1526
1527 transaction = i40e_nvmupd_get_transaction(cmd->config);
1528 module = i40e_nvmupd_get_module(cmd->config);
1529 last = (transaction & I40E_NVM_LCB);
1530
1531 memset(&cmd_details, 0, sizeof(cmd_details));
1532 cmd_details.wb_desc = &hw->nvm_wb_desc;
1533
1534 status = i40e_aq_erase_nvm(hw, module, cmd->offset, (u16)cmd->data_size,
1535 last, &cmd_details);
1536 if (status) {
1537 i40e_debug(hw, I40E_DEBUG_NVM,
1538 "i40e_nvmupd_nvm_erase mod 0x%x off 0x%x len 0x%x\n",
1539 module, cmd->offset, cmd->data_size);
1540 i40e_debug(hw, I40E_DEBUG_NVM,
1541 "i40e_nvmupd_nvm_erase status %d aq %d\n",
1542 status, hw->aq.asq_last_status);
1543 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1544 }
1545
1546 return status;
1547}
1548
1549/**
1550 * i40e_nvmupd_nvm_write - Write NVM
1551 * @hw: pointer to hardware structure
1552 * @cmd: pointer to nvm update command buffer
1553 * @bytes: pointer to the data buffer
1554 * @perrno: pointer to return error code
1555 *
1556 * module, offset, data_size and data are in cmd structure
1557 **/
1558static i40e_status i40e_nvmupd_nvm_write(struct i40e_hw *hw,
1559 struct i40e_nvm_access *cmd,
1560 u8 *bytes, int *perrno)
1561{
1562 i40e_status status = 0;
1563 struct i40e_asq_cmd_details cmd_details;
1564 u8 module, transaction;
1565 u8 preservation_flags;
1566 bool last;
1567
1568 transaction = i40e_nvmupd_get_transaction(cmd->config);
1569 module = i40e_nvmupd_get_module(cmd->config);
1570 last = (transaction & I40E_NVM_LCB);
1571 preservation_flags = i40e_nvmupd_get_preservation_flags(cmd->config);
1572
1573 memset(&cmd_details, 0, sizeof(cmd_details));
1574 cmd_details.wb_desc = &hw->nvm_wb_desc;
1575
1576 status = i40e_aq_update_nvm(hw, module, cmd->offset,
1577 (u16)cmd->data_size, bytes, last,
1578 preservation_flags, &cmd_details);
1579 if (status) {
1580 i40e_debug(hw, I40E_DEBUG_NVM,
1581 "i40e_nvmupd_nvm_write mod 0x%x off 0x%x len 0x%x\n",
1582 module, cmd->offset, cmd->data_size);
1583 i40e_debug(hw, I40E_DEBUG_NVM,
1584 "i40e_nvmupd_nvm_write status %d aq %d\n",
1585 status, hw->aq.asq_last_status);
1586 *perrno = i40e_aq_rc_to_posix(status, hw->aq.asq_last_status);
1587 }
1588
1589 return status;
1590}