Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
   5 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
   6 */
   7
   8#include "e1000.h"
   9
  10/* A table for the GG82563 cable length where the range is defined
  11 * with a lower bound at "index" and the upper bound at
  12 * "index + 5".
  13 */
  14static const u16 e1000_gg82563_cable_length_table[] = {
  15	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
  16};
  17
  18#define GG82563_CABLE_LENGTH_TABLE_SIZE \
  19		ARRAY_SIZE(e1000_gg82563_cable_length_table)
  20
  21static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
  22static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  23static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  24static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
  25static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
  26static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
  27static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
  28static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  29					   u16 *data);
  30static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  31					    u16 data);
  32static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
  33
  34/**
  35 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
  36 *  @hw: pointer to the HW structure
  37 **/
  38static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
  39{
  40	struct e1000_phy_info *phy = &hw->phy;
  41	s32 ret_val;
  42
  43	if (hw->phy.media_type != e1000_media_type_copper) {
  44		phy->type = e1000_phy_none;
  45		return 0;
  46	} else {
  47		phy->ops.power_up = e1000_power_up_phy_copper;
  48		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  49	}
  50
  51	phy->addr = 1;
  52	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  53	phy->reset_delay_us = 100;
  54	phy->type = e1000_phy_gg82563;
  55
  56	/* This can only be done after all function pointers are setup. */
  57	ret_val = e1000e_get_phy_id(hw);
  58
  59	/* Verify phy id */
  60	if (phy->id != GG82563_E_PHY_ID)
  61		return -E1000_ERR_PHY;
  62
  63	return ret_val;
  64}
  65
  66/**
  67 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  68 *  @hw: pointer to the HW structure
  69 **/
  70static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  71{
  72	struct e1000_nvm_info *nvm = &hw->nvm;
  73	u32 eecd = er32(EECD);
  74	u16 size;
  75
  76	nvm->opcode_bits = 8;
  77	nvm->delay_usec = 1;
  78	switch (nvm->override) {
  79	case e1000_nvm_override_spi_large:
  80		nvm->page_size = 32;
  81		nvm->address_bits = 16;
  82		break;
  83	case e1000_nvm_override_spi_small:
  84		nvm->page_size = 8;
  85		nvm->address_bits = 8;
  86		break;
  87	default:
  88		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
  89		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
  90		break;
  91	}
  92
  93	nvm->type = e1000_nvm_eeprom_spi;
  94
  95	size = (u16)FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
 
  96
  97	/* Added to a constant, "size" becomes the left-shift value
  98	 * for setting word_size.
  99	 */
 100	size += NVM_WORD_SIZE_BASE_SHIFT;
 101
 102	/* EEPROM access above 16k is unsupported */
 103	if (size > 14)
 104		size = 14;
 105	nvm->word_size = BIT(size);
 106
 107	return 0;
 108}
 109
 110/**
 111 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 112 *  @hw: pointer to the HW structure
 113 **/
 114static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
 115{
 116	struct e1000_mac_info *mac = &hw->mac;
 117
 118	/* Set media type and media-dependent function pointers */
 119	switch (hw->adapter->pdev->device) {
 120	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 121		hw->phy.media_type = e1000_media_type_internal_serdes;
 122		mac->ops.check_for_link = e1000e_check_for_serdes_link;
 123		mac->ops.setup_physical_interface =
 124		    e1000e_setup_fiber_serdes_link;
 125		break;
 126	default:
 127		hw->phy.media_type = e1000_media_type_copper;
 128		mac->ops.check_for_link = e1000e_check_for_copper_link;
 129		mac->ops.setup_physical_interface =
 130		    e1000_setup_copper_link_80003es2lan;
 131		break;
 132	}
 133
 134	/* Set mta register count */
 135	mac->mta_reg_count = 128;
 136	/* Set rar entry count */
 137	mac->rar_entry_count = E1000_RAR_ENTRIES;
 138	/* FWSM register */
 139	mac->has_fwsm = true;
 140	/* ARC supported; valid only if manageability features are enabled. */
 141	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
 142	/* Adaptive IFS not supported */
 143	mac->adaptive_ifs = false;
 144
 145	/* set lan id for port to determine which phy lock to use */
 146	hw->mac.ops.set_lan_id(hw);
 147
 148	return 0;
 149}
 150
 151static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 152{
 153	struct e1000_hw *hw = &adapter->hw;
 154	s32 rc;
 155
 156	rc = e1000_init_mac_params_80003es2lan(hw);
 157	if (rc)
 158		return rc;
 159
 160	rc = e1000_init_nvm_params_80003es2lan(hw);
 161	if (rc)
 162		return rc;
 163
 164	rc = e1000_init_phy_params_80003es2lan(hw);
 165	if (rc)
 166		return rc;
 167
 168	return 0;
 169}
 170
 171/**
 172 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 173 *  @hw: pointer to the HW structure
 174 *
 175 *  A wrapper to acquire access rights to the correct PHY.
 176 **/
 177static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 178{
 179	u16 mask;
 180
 181	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 182	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 183}
 184
 185/**
 186 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 187 *  @hw: pointer to the HW structure
 188 *
 189 *  A wrapper to release access rights to the correct PHY.
 190 **/
 191static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 192{
 193	u16 mask;
 194
 195	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 196	e1000_release_swfw_sync_80003es2lan(hw, mask);
 197}
 198
 199/**
 200 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 201 *  @hw: pointer to the HW structure
 202 *
 203 *  Acquire the semaphore to access the Kumeran interface.
 204 *
 205 **/
 206static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 207{
 208	u16 mask;
 209
 210	mask = E1000_SWFW_CSR_SM;
 211
 212	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 213}
 214
 215/**
 216 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 217 *  @hw: pointer to the HW structure
 218 *
 219 *  Release the semaphore used to access the Kumeran interface
 220 **/
 221static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 222{
 223	u16 mask;
 224
 225	mask = E1000_SWFW_CSR_SM;
 226
 227	e1000_release_swfw_sync_80003es2lan(hw, mask);
 228}
 229
 230/**
 231 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 232 *  @hw: pointer to the HW structure
 233 *
 234 *  Acquire the semaphore to access the EEPROM.
 235 **/
 236static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 237{
 238	s32 ret_val;
 239
 240	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 241	if (ret_val)
 242		return ret_val;
 243
 244	ret_val = e1000e_acquire_nvm(hw);
 245
 246	if (ret_val)
 247		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 248
 249	return ret_val;
 250}
 251
 252/**
 253 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 254 *  @hw: pointer to the HW structure
 255 *
 256 *  Release the semaphore used to access the EEPROM.
 257 **/
 258static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 259{
 260	e1000e_release_nvm(hw);
 261	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 262}
 263
 264/**
 265 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 266 *  @hw: pointer to the HW structure
 267 *  @mask: specifies which semaphore to acquire
 268 *
 269 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 270 *  will also specify which port we're acquiring the lock for.
 271 **/
 272static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 273{
 274	u32 swfw_sync;
 275	u32 swmask = mask;
 276	u32 fwmask = mask << 16;
 277	s32 i = 0;
 278	s32 timeout = 50;
 279
 280	while (i < timeout) {
 281		if (e1000e_get_hw_semaphore(hw))
 282			return -E1000_ERR_SWFW_SYNC;
 283
 284		swfw_sync = er32(SW_FW_SYNC);
 285		if (!(swfw_sync & (fwmask | swmask)))
 286			break;
 287
 288		/* Firmware currently using resource (fwmask)
 289		 * or other software thread using resource (swmask)
 290		 */
 291		e1000e_put_hw_semaphore(hw);
 292		mdelay(5);
 293		i++;
 294	}
 295
 296	if (i == timeout) {
 297		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 298		return -E1000_ERR_SWFW_SYNC;
 299	}
 300
 301	swfw_sync |= swmask;
 302	ew32(SW_FW_SYNC, swfw_sync);
 303
 304	e1000e_put_hw_semaphore(hw);
 305
 306	return 0;
 307}
 308
 309/**
 310 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 311 *  @hw: pointer to the HW structure
 312 *  @mask: specifies which semaphore to acquire
 313 *
 314 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 315 *  will also specify which port we're releasing the lock for.
 316 **/
 317static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 318{
 319	u32 swfw_sync;
 320
 321	while (e1000e_get_hw_semaphore(hw) != 0)
 322		; /* Empty */
 323
 324	swfw_sync = er32(SW_FW_SYNC);
 325	swfw_sync &= ~mask;
 326	ew32(SW_FW_SYNC, swfw_sync);
 327
 328	e1000e_put_hw_semaphore(hw);
 329}
 330
 331/**
 332 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 333 *  @hw: pointer to the HW structure
 334 *  @offset: offset of the register to read
 335 *  @data: pointer to the data returned from the operation
 336 *
 337 *  Read the GG82563 PHY register.
 338 **/
 339static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 340						  u32 offset, u16 *data)
 341{
 342	s32 ret_val;
 343	u32 page_select;
 344	u16 temp;
 345
 346	ret_val = e1000_acquire_phy_80003es2lan(hw);
 347	if (ret_val)
 348		return ret_val;
 349
 350	/* Select Configuration Page */
 351	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 352		page_select = GG82563_PHY_PAGE_SELECT;
 353	} else {
 354		/* Use Alternative Page Select register to access
 355		 * registers 30 and 31
 356		 */
 357		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 358	}
 359
 360	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 361	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 362	if (ret_val) {
 363		e1000_release_phy_80003es2lan(hw);
 364		return ret_val;
 365	}
 366
 367	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 368		/* The "ready" bit in the MDIC register may be incorrectly set
 369		 * before the device has completed the "Page Select" MDI
 370		 * transaction.  So we wait 200us after each MDI command...
 371		 */
 372		usleep_range(200, 400);
 373
 374		/* ...and verify the command was successful. */
 375		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 376
 377		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 378			e1000_release_phy_80003es2lan(hw);
 379			return -E1000_ERR_PHY;
 380		}
 381
 382		usleep_range(200, 400);
 383
 384		ret_val = e1000e_read_phy_reg_mdic(hw,
 385						   MAX_PHY_REG_ADDRESS & offset,
 386						   data);
 387
 388		usleep_range(200, 400);
 389	} else {
 390		ret_val = e1000e_read_phy_reg_mdic(hw,
 391						   MAX_PHY_REG_ADDRESS & offset,
 392						   data);
 393	}
 394
 395	e1000_release_phy_80003es2lan(hw);
 396
 397	return ret_val;
 398}
 399
 400/**
 401 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 402 *  @hw: pointer to the HW structure
 403 *  @offset: offset of the register to read
 404 *  @data: value to write to the register
 405 *
 406 *  Write to the GG82563 PHY register.
 407 **/
 408static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 409						   u32 offset, u16 data)
 410{
 411	s32 ret_val;
 412	u32 page_select;
 413	u16 temp;
 414
 415	ret_val = e1000_acquire_phy_80003es2lan(hw);
 416	if (ret_val)
 417		return ret_val;
 418
 419	/* Select Configuration Page */
 420	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 421		page_select = GG82563_PHY_PAGE_SELECT;
 422	} else {
 423		/* Use Alternative Page Select register to access
 424		 * registers 30 and 31
 425		 */
 426		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 427	}
 428
 429	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 430	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 431	if (ret_val) {
 432		e1000_release_phy_80003es2lan(hw);
 433		return ret_val;
 434	}
 435
 436	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 437		/* The "ready" bit in the MDIC register may be incorrectly set
 438		 * before the device has completed the "Page Select" MDI
 439		 * transaction.  So we wait 200us after each MDI command...
 440		 */
 441		usleep_range(200, 400);
 442
 443		/* ...and verify the command was successful. */
 444		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 445
 446		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 447			e1000_release_phy_80003es2lan(hw);
 448			return -E1000_ERR_PHY;
 449		}
 450
 451		usleep_range(200, 400);
 452
 453		ret_val = e1000e_write_phy_reg_mdic(hw,
 454						    MAX_PHY_REG_ADDRESS &
 455						    offset, data);
 456
 457		usleep_range(200, 400);
 458	} else {
 459		ret_val = e1000e_write_phy_reg_mdic(hw,
 460						    MAX_PHY_REG_ADDRESS &
 461						    offset, data);
 462	}
 463
 464	e1000_release_phy_80003es2lan(hw);
 465
 466	return ret_val;
 467}
 468
 469/**
 470 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 471 *  @hw: pointer to the HW structure
 472 *  @offset: offset of the register to read
 473 *  @words: number of words to write
 474 *  @data: buffer of data to write to the NVM
 475 *
 476 *  Write "words" of data to the ESB2 NVM.
 477 **/
 478static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 479				       u16 words, u16 *data)
 480{
 481	return e1000e_write_nvm_spi(hw, offset, words, data);
 482}
 483
 484/**
 485 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 486 *  @hw: pointer to the HW structure
 487 *
 488 *  Wait a specific amount of time for manageability processes to complete.
 489 *  This is a function pointer entry point called by the phy module.
 490 **/
 491static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 492{
 493	s32 timeout = PHY_CFG_TIMEOUT;
 494	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 495
 496	if (hw->bus.func == 1)
 497		mask = E1000_NVM_CFG_DONE_PORT_1;
 498
 499	while (timeout) {
 500		if (er32(EEMNGCTL) & mask)
 501			break;
 502		usleep_range(1000, 2000);
 503		timeout--;
 504	}
 505	if (!timeout) {
 506		e_dbg("MNG configuration cycle has not completed.\n");
 507		return -E1000_ERR_RESET;
 508	}
 509
 510	return 0;
 511}
 512
 513/**
 514 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 515 *  @hw: pointer to the HW structure
 516 *
 517 *  Force the speed and duplex settings onto the PHY.  This is a
 518 *  function pointer entry point called by the phy module.
 519 **/
 520static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 521{
 522	s32 ret_val;
 523	u16 phy_data;
 524	bool link;
 525
 526	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 527	 * forced whenever speed and duplex are forced.
 528	 */
 529	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 530	if (ret_val)
 531		return ret_val;
 532
 533	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 534	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 535	if (ret_val)
 536		return ret_val;
 537
 538	e_dbg("GG82563 PSCR: %X\n", phy_data);
 539
 540	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
 541	if (ret_val)
 542		return ret_val;
 543
 544	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 545
 546	/* Reset the phy to commit changes. */
 547	phy_data |= BMCR_RESET;
 548
 549	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
 550	if (ret_val)
 551		return ret_val;
 552
 553	udelay(1);
 554
 555	if (hw->phy.autoneg_wait_to_complete) {
 556		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
 557
 558		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 559						      100000, &link);
 560		if (ret_val)
 561			return ret_val;
 562
 563		if (!link) {
 564			/* We didn't get link.
 565			 * Reset the DSP and cross our fingers.
 566			 */
 567			ret_val = e1000e_phy_reset_dsp(hw);
 568			if (ret_val)
 569				return ret_val;
 570		}
 571
 572		/* Try once more */
 573		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 574						      100000, &link);
 575		if (ret_val)
 576			return ret_val;
 577	}
 578
 579	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 580	if (ret_val)
 581		return ret_val;
 582
 583	/* Resetting the phy means we need to verify the TX_CLK corresponds
 584	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 585	 */
 586	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 587	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 588		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 589	else
 590		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 591
 592	/* In addition, we must re-enable CRS on Tx for both half and full
 593	 * duplex.
 594	 */
 595	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 596	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 597
 598	return ret_val;
 599}
 600
 601/**
 602 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 603 *  @hw: pointer to the HW structure
 604 *
 605 *  Find the approximate cable length as measured by the GG82563 PHY.
 606 *  This is a function pointer entry point called by the phy module.
 607 **/
 608static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 609{
 610	struct e1000_phy_info *phy = &hw->phy;
 611	s32 ret_val;
 612	u16 phy_data, index;
 613
 614	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 615	if (ret_val)
 616		return ret_val;
 617
 618	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 619
 620	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
 621		return -E1000_ERR_PHY;
 622
 623	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 624	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 625
 626	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 627
 628	return 0;
 629}
 630
 631/**
 632 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 633 *  @hw: pointer to the HW structure
 634 *  @speed: pointer to speed buffer
 635 *  @duplex: pointer to duplex buffer
 636 *
 637 *  Retrieve the current speed and duplex configuration.
 638 **/
 639static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 640					      u16 *duplex)
 641{
 642	s32 ret_val;
 643
 644	if (hw->phy.media_type == e1000_media_type_copper) {
 645		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
 646		hw->phy.ops.cfg_on_link_up(hw);
 647	} else {
 648		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 649								   speed,
 650								   duplex);
 651	}
 652
 653	return ret_val;
 654}
 655
 656/**
 657 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 658 *  @hw: pointer to the HW structure
 659 *
 660 *  Perform a global reset to the ESB2 controller.
 661 **/
 662static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 663{
 664	u32 ctrl;
 665	s32 ret_val;
 666	u16 kum_reg_data;
 667
 668	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 669	 * on the last TLP read/write transaction when MAC is reset.
 670	 */
 671	ret_val = e1000e_disable_pcie_master(hw);
 672	if (ret_val)
 673		e_dbg("PCI-E Master disable polling has failed.\n");
 674
 675	e_dbg("Masking off all interrupts\n");
 676	ew32(IMC, 0xffffffff);
 677
 678	ew32(RCTL, 0);
 679	ew32(TCTL, E1000_TCTL_PSP);
 680	e1e_flush();
 681
 682	usleep_range(10000, 11000);
 683
 684	ctrl = er32(CTRL);
 685
 686	ret_val = e1000_acquire_phy_80003es2lan(hw);
 687	if (ret_val)
 688		return ret_val;
 689
 690	e_dbg("Issuing a global reset to MAC\n");
 691	ew32(CTRL, ctrl | E1000_CTRL_RST);
 692	e1000_release_phy_80003es2lan(hw);
 693
 694	/* Disable IBIST slave mode (far-end loopback) */
 695	ret_val =
 696	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 697					    &kum_reg_data);
 698	if (!ret_val) {
 699		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 700		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 701						 E1000_KMRNCTRLSTA_INBAND_PARAM,
 702						 kum_reg_data);
 703		if (ret_val)
 704			e_dbg("Error disabling far-end loopback\n");
 705	} else {
 706		e_dbg("Error disabling far-end loopback\n");
 707	}
 708
 709	ret_val = e1000e_get_auto_rd_done(hw);
 710	if (ret_val)
 711		/* We don't want to continue accessing MAC registers. */
 712		return ret_val;
 713
 714	/* Clear any pending interrupt events. */
 715	ew32(IMC, 0xffffffff);
 716	er32(ICR);
 717
 718	return e1000_check_alt_mac_addr_generic(hw);
 719}
 720
 721/**
 722 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 723 *  @hw: pointer to the HW structure
 724 *
 725 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 726 **/
 727static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 728{
 729	struct e1000_mac_info *mac = &hw->mac;
 730	u32 reg_data;
 731	s32 ret_val;
 732	u16 kum_reg_data;
 733	u16 i;
 734
 735	e1000_initialize_hw_bits_80003es2lan(hw);
 736
 737	/* Initialize identification LED */
 738	ret_val = mac->ops.id_led_init(hw);
 739	/* An error is not fatal and we should not stop init due to this */
 740	if (ret_val)
 741		e_dbg("Error initializing identification LED\n");
 742
 743	/* Disabling VLAN filtering */
 744	e_dbg("Initializing the IEEE VLAN\n");
 745	mac->ops.clear_vfta(hw);
 746
 747	/* Setup the receive address. */
 748	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 749
 750	/* Zero out the Multicast HASH table */
 751	e_dbg("Zeroing the MTA\n");
 752	for (i = 0; i < mac->mta_reg_count; i++)
 753		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 754
 755	/* Setup link and flow control */
 756	ret_val = mac->ops.setup_link(hw);
 757	if (ret_val)
 758		return ret_val;
 759
 760	/* Disable IBIST slave mode (far-end loopback) */
 761	ret_val =
 762	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 763					    &kum_reg_data);
 764	if (!ret_val) {
 765		kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 766		ret_val = e1000_write_kmrn_reg_80003es2lan(hw,
 767						 E1000_KMRNCTRLSTA_INBAND_PARAM,
 768						 kum_reg_data);
 769		if (ret_val)
 770			e_dbg("Error disabling far-end loopback\n");
 771	} else {
 772		e_dbg("Error disabling far-end loopback\n");
 773	}
 774
 775	/* Set the transmit descriptor write-back policy */
 776	reg_data = er32(TXDCTL(0));
 777	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 778		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 779	ew32(TXDCTL(0), reg_data);
 780
 781	/* ...for both queues. */
 782	reg_data = er32(TXDCTL(1));
 783	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 784		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 785	ew32(TXDCTL(1), reg_data);
 786
 787	/* Enable retransmit on late collisions */
 788	reg_data = er32(TCTL);
 789	reg_data |= E1000_TCTL_RTLC;
 790	ew32(TCTL, reg_data);
 791
 792	/* Configure Gigabit Carry Extend Padding */
 793	reg_data = er32(TCTL_EXT);
 794	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 795	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 796	ew32(TCTL_EXT, reg_data);
 797
 798	/* Configure Transmit Inter-Packet Gap */
 799	reg_data = er32(TIPG);
 800	reg_data &= ~E1000_TIPG_IPGT_MASK;
 801	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 802	ew32(TIPG, reg_data);
 803
 804	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 805	reg_data &= ~0x00100000;
 806	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 807
 808	/* default to true to enable the MDIC W/A */
 809	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 810
 811	ret_val =
 812	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
 813					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
 814	if (!ret_val) {
 815		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 816		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 817			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 818	}
 819
 820	/* Clear all of the statistics registers (clear on read).  It is
 821	 * important that we do this after we have tried to establish link
 822	 * because the symbol error count will increment wildly if there
 823	 * is no link.
 824	 */
 825	e1000_clear_hw_cntrs_80003es2lan(hw);
 826
 827	return ret_val;
 828}
 829
 830/**
 831 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 832 *  @hw: pointer to the HW structure
 833 *
 834 *  Initializes required hardware-dependent bits needed for normal operation.
 835 **/
 836static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 837{
 838	u32 reg;
 839
 840	/* Transmit Descriptor Control 0 */
 841	reg = er32(TXDCTL(0));
 842	reg |= BIT(22);
 843	ew32(TXDCTL(0), reg);
 844
 845	/* Transmit Descriptor Control 1 */
 846	reg = er32(TXDCTL(1));
 847	reg |= BIT(22);
 848	ew32(TXDCTL(1), reg);
 849
 850	/* Transmit Arbitration Control 0 */
 851	reg = er32(TARC(0));
 852	reg &= ~(0xF << 27);	/* 30:27 */
 853	if (hw->phy.media_type != e1000_media_type_copper)
 854		reg &= ~BIT(20);
 855	ew32(TARC(0), reg);
 856
 857	/* Transmit Arbitration Control 1 */
 858	reg = er32(TARC(1));
 859	if (er32(TCTL) & E1000_TCTL_MULR)
 860		reg &= ~BIT(28);
 861	else
 862		reg |= BIT(28);
 863	ew32(TARC(1), reg);
 864
 865	/* Disable IPv6 extension header parsing because some malformed
 866	 * IPv6 headers can hang the Rx.
 867	 */
 868	reg = er32(RFCTL);
 869	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 870	ew32(RFCTL, reg);
 871}
 872
 873/**
 874 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 875 *  @hw: pointer to the HW structure
 876 *
 877 *  Setup some GG82563 PHY registers for obtaining link
 878 **/
 879static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 880{
 881	struct e1000_phy_info *phy = &hw->phy;
 882	s32 ret_val;
 883	u32 reg;
 884	u16 data;
 885
 886	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 887	if (ret_val)
 888		return ret_val;
 889
 890	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 891	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 892	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 893
 894	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 895	if (ret_val)
 896		return ret_val;
 897
 898	/* Options:
 899	 *   MDI/MDI-X = 0 (default)
 900	 *   0 - Auto for all speeds
 901	 *   1 - MDI mode
 902	 *   2 - MDI-X mode
 903	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 904	 */
 905	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 906	if (ret_val)
 907		return ret_val;
 908
 909	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 910
 911	switch (phy->mdix) {
 912	case 1:
 913		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 914		break;
 915	case 2:
 916		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 917		break;
 918	case 0:
 919	default:
 920		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 921		break;
 922	}
 923
 924	/* Options:
 925	 *   disable_polarity_correction = 0 (default)
 926	 *       Automatic Correction for Reversed Cable Polarity
 927	 *   0 - Disabled
 928	 *   1 - Enabled
 929	 */
 930	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 931	if (phy->disable_polarity_correction)
 932		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 933
 934	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 935	if (ret_val)
 936		return ret_val;
 937
 938	/* SW Reset the PHY so all changes take effect */
 939	ret_val = hw->phy.ops.commit(hw);
 940	if (ret_val) {
 941		e_dbg("Error Resetting the PHY\n");
 942		return ret_val;
 943	}
 944
 945	/* Bypass Rx and Tx FIFO's */
 946	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 947	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 948		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 949	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 950	if (ret_val)
 951		return ret_val;
 952
 953	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 954	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 955	if (ret_val)
 956		return ret_val;
 957	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 958	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 959	if (ret_val)
 960		return ret_val;
 961
 962	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 963	if (ret_val)
 964		return ret_val;
 965
 966	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 967	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 968	if (ret_val)
 969		return ret_val;
 970
 971	reg = er32(CTRL_EXT);
 972	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 973	ew32(CTRL_EXT, reg);
 974
 975	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 976	if (ret_val)
 977		return ret_val;
 978
 979	/* Do not init these registers when the HW is in IAMT mode, since the
 980	 * firmware will have already initialized them.  We only initialize
 981	 * them if the HW is not in IAMT mode.
 982	 */
 983	if (!hw->mac.ops.check_mng_mode(hw)) {
 984		/* Enable Electrical Idle on the PHY */
 985		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 986		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 987		if (ret_val)
 988			return ret_val;
 989
 990		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
 991		if (ret_val)
 992			return ret_val;
 993
 994		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
 995		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
 996		if (ret_val)
 997			return ret_val;
 998	}
 999
1000	/* Workaround: Disable padding in Kumeran interface in the MAC
1001	 * and in the PHY to avoid CRC errors.
1002	 */
1003	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1004	if (ret_val)
1005		return ret_val;
1006
1007	data |= GG82563_ICR_DIS_PADDING;
1008	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1009	if (ret_val)
1010		return ret_val;
1011
1012	return 0;
1013}
1014
1015/**
1016 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1017 *  @hw: pointer to the HW structure
1018 *
1019 *  Essentially a wrapper for setting up all things "copper" related.
1020 *  This is a function pointer entry point called by the mac module.
1021 **/
1022static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1023{
1024	u32 ctrl;
1025	s32 ret_val;
1026	u16 reg_data;
1027
1028	ctrl = er32(CTRL);
1029	ctrl |= E1000_CTRL_SLU;
1030	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1031	ew32(CTRL, ctrl);
1032
1033	/* Set the mac to wait the maximum time between each
1034	 * iteration and increase the max iterations when
1035	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1036	 */
1037	/* these next three accesses were always meant to use page 0x34 using
1038	 * GG82563_REG(0x34, N) but never did, so we've just corrected the call
1039	 * to not drop bits
1040	 */
1041	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 4, 0xFFFF);
1042	if (ret_val)
1043		return ret_val;
1044	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, 9, &reg_data);
 
1045	if (ret_val)
1046		return ret_val;
1047	reg_data |= 0x3F;
1048	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, 9, reg_data);
 
1049	if (ret_val)
1050		return ret_val;
1051	ret_val =
1052	    e1000_read_kmrn_reg_80003es2lan(hw,
1053					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1054					    &reg_data);
1055	if (ret_val)
1056		return ret_val;
1057	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1058	ret_val =
1059	    e1000_write_kmrn_reg_80003es2lan(hw,
1060					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1061					     reg_data);
1062	if (ret_val)
1063		return ret_val;
1064
1065	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1066	if (ret_val)
1067		return ret_val;
1068
1069	return e1000e_setup_copper_link(hw);
1070}
1071
1072/**
1073 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1074 *  @hw: pointer to the HW structure
 
1075 *
1076 *  Configure the KMRN interface by applying last minute quirks for
1077 *  10/100 operation.
1078 **/
1079static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1080{
1081	s32 ret_val = 0;
1082	u16 speed;
1083	u16 duplex;
1084
1085	if (hw->phy.media_type == e1000_media_type_copper) {
1086		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1087							     &duplex);
1088		if (ret_val)
1089			return ret_val;
1090
1091		if (speed == SPEED_1000)
1092			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1093		else
1094			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1095	}
1096
1097	return ret_val;
1098}
1099
1100/**
1101 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1102 *  @hw: pointer to the HW structure
1103 *  @duplex: current duplex setting
1104 *
1105 *  Configure the KMRN interface by applying last minute quirks for
1106 *  10/100 operation.
1107 **/
1108static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1109{
1110	s32 ret_val;
1111	u32 tipg;
1112	u32 i = 0;
1113	u16 reg_data, reg_data2;
1114
1115	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1116	ret_val =
1117	    e1000_write_kmrn_reg_80003es2lan(hw,
1118					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1119					     reg_data);
1120	if (ret_val)
1121		return ret_val;
1122
1123	/* Configure Transmit Inter-Packet Gap */
1124	tipg = er32(TIPG);
1125	tipg &= ~E1000_TIPG_IPGT_MASK;
1126	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1127	ew32(TIPG, tipg);
1128
1129	do {
1130		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1131		if (ret_val)
1132			return ret_val;
1133
1134		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1135		if (ret_val)
1136			return ret_val;
1137		i++;
1138	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1139
1140	if (duplex == HALF_DUPLEX)
1141		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1142	else
1143		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1144
1145	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1146}
1147
1148/**
1149 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1150 *  @hw: pointer to the HW structure
1151 *
1152 *  Configure the KMRN interface by applying last minute quirks for
1153 *  gigabit operation.
1154 **/
1155static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1156{
1157	s32 ret_val;
1158	u16 reg_data, reg_data2;
1159	u32 tipg;
1160	u32 i = 0;
1161
1162	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1163	ret_val =
1164	    e1000_write_kmrn_reg_80003es2lan(hw,
1165					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1166					     reg_data);
1167	if (ret_val)
1168		return ret_val;
1169
1170	/* Configure Transmit Inter-Packet Gap */
1171	tipg = er32(TIPG);
1172	tipg &= ~E1000_TIPG_IPGT_MASK;
1173	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1174	ew32(TIPG, tipg);
1175
1176	do {
1177		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1178		if (ret_val)
1179			return ret_val;
1180
1181		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1182		if (ret_val)
1183			return ret_val;
1184		i++;
1185	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1186
1187	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1188
1189	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1190}
1191
1192/**
1193 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1194 *  @hw: pointer to the HW structure
1195 *  @offset: register offset to be read
1196 *  @data: pointer to the read data
1197 *
1198 *  Acquire semaphore, then read the PHY register at offset
1199 *  using the kumeran interface.  The information retrieved is stored in data.
1200 *  Release the semaphore before exiting.
1201 **/
1202static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1203					   u16 *data)
1204{
1205	u32 kmrnctrlsta;
1206	s32 ret_val;
1207
1208	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1209	if (ret_val)
1210		return ret_val;
1211
1212	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) |
1213		      E1000_KMRNCTRLSTA_REN;
1214	ew32(KMRNCTRLSTA, kmrnctrlsta);
1215	e1e_flush();
1216
1217	udelay(2);
1218
1219	kmrnctrlsta = er32(KMRNCTRLSTA);
1220	*data = (u16)kmrnctrlsta;
1221
1222	e1000_release_mac_csr_80003es2lan(hw);
1223
1224	return ret_val;
1225}
1226
1227/**
1228 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1229 *  @hw: pointer to the HW structure
1230 *  @offset: register offset to write to
1231 *  @data: data to write at register offset
1232 *
1233 *  Acquire semaphore, then write the data to PHY register
1234 *  at the offset using the kumeran interface.  Release semaphore
1235 *  before exiting.
1236 **/
1237static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1238					    u16 data)
1239{
1240	u32 kmrnctrlsta;
1241	s32 ret_val;
1242
1243	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1244	if (ret_val)
1245		return ret_val;
1246
1247	kmrnctrlsta = FIELD_PREP(E1000_KMRNCTRLSTA_OFFSET, offset) | data;
 
1248	ew32(KMRNCTRLSTA, kmrnctrlsta);
1249	e1e_flush();
1250
1251	udelay(2);
1252
1253	e1000_release_mac_csr_80003es2lan(hw);
1254
1255	return ret_val;
1256}
1257
1258/**
1259 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1260 *  @hw: pointer to the HW structure
1261 **/
1262static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1263{
1264	s32 ret_val;
1265
1266	/* If there's an alternate MAC address place it in RAR0
1267	 * so that it will override the Si installed default perm
1268	 * address.
1269	 */
1270	ret_val = e1000_check_alt_mac_addr_generic(hw);
1271	if (ret_val)
1272		return ret_val;
1273
1274	return e1000_read_mac_addr_generic(hw);
1275}
1276
1277/**
1278 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1279 * @hw: pointer to the HW structure
1280 *
1281 * In the case of a PHY power down to save power, or to turn off link during a
1282 * driver unload, or wake on lan is not enabled, remove the link.
1283 **/
1284static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1285{
1286	/* If the management interface is not enabled, then power down */
1287	if (!(hw->mac.ops.check_mng_mode(hw) ||
1288	      hw->phy.ops.check_reset_block(hw)))
1289		e1000_power_down_phy_copper(hw);
1290}
1291
1292/**
1293 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1294 *  @hw: pointer to the HW structure
1295 *
1296 *  Clears the hardware counters by reading the counter registers.
1297 **/
1298static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1299{
1300	e1000e_clear_hw_cntrs_base(hw);
1301
1302	er32(PRC64);
1303	er32(PRC127);
1304	er32(PRC255);
1305	er32(PRC511);
1306	er32(PRC1023);
1307	er32(PRC1522);
1308	er32(PTC64);
1309	er32(PTC127);
1310	er32(PTC255);
1311	er32(PTC511);
1312	er32(PTC1023);
1313	er32(PTC1522);
1314
1315	er32(ALGNERRC);
1316	er32(RXERRC);
1317	er32(TNCRS);
1318	er32(CEXTERR);
1319	er32(TSCTC);
1320	er32(TSCTFC);
1321
1322	er32(MGTPRC);
1323	er32(MGTPDC);
1324	er32(MGTPTC);
1325
1326	er32(IAC);
1327	er32(ICRXOC);
1328
1329	er32(ICRXPTC);
1330	er32(ICRXATC);
1331	er32(ICTXPTC);
1332	er32(ICTXATC);
1333	er32(ICTXQEC);
1334	er32(ICTXQMTC);
1335	er32(ICRXDMTC);
1336}
1337
1338static const struct e1000_mac_operations es2_mac_ops = {
1339	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1340	.id_led_init		= e1000e_id_led_init_generic,
1341	.blink_led		= e1000e_blink_led_generic,
1342	.check_mng_mode		= e1000e_check_mng_mode_generic,
1343	/* check_for_link dependent on media type */
1344	.cleanup_led		= e1000e_cleanup_led_generic,
1345	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1346	.get_bus_info		= e1000e_get_bus_info_pcie,
1347	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1348	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1349	.led_on			= e1000e_led_on_generic,
1350	.led_off		= e1000e_led_off_generic,
1351	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1352	.write_vfta		= e1000_write_vfta_generic,
1353	.clear_vfta		= e1000_clear_vfta_generic,
1354	.reset_hw		= e1000_reset_hw_80003es2lan,
1355	.init_hw		= e1000_init_hw_80003es2lan,
1356	.setup_link		= e1000e_setup_link_generic,
1357	/* setup_physical_interface dependent on media type */
1358	.setup_led		= e1000e_setup_led_generic,
1359	.config_collision_dist	= e1000e_config_collision_dist_generic,
1360	.rar_set		= e1000e_rar_set_generic,
1361	.rar_get_count		= e1000e_rar_get_count_generic,
1362};
1363
1364static const struct e1000_phy_operations es2_phy_ops = {
1365	.acquire		= e1000_acquire_phy_80003es2lan,
1366	.check_polarity		= e1000_check_polarity_m88,
1367	.check_reset_block	= e1000e_check_reset_block_generic,
1368	.commit			= e1000e_phy_sw_reset,
1369	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1370	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1371	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1372	.get_info		= e1000e_get_phy_info_m88,
1373	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1374	.release		= e1000_release_phy_80003es2lan,
1375	.reset			= e1000e_phy_hw_reset_generic,
1376	.set_d0_lplu_state	= NULL,
1377	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1378	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1379	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1380};
1381
1382static const struct e1000_nvm_operations es2_nvm_ops = {
1383	.acquire		= e1000_acquire_nvm_80003es2lan,
1384	.read			= e1000e_read_nvm_eerd,
1385	.release		= e1000_release_nvm_80003es2lan,
1386	.reload			= e1000e_reload_nvm_generic,
1387	.update			= e1000e_update_nvm_checksum_generic,
1388	.valid_led_default	= e1000e_valid_led_default,
1389	.validate		= e1000e_validate_nvm_checksum_generic,
1390	.write			= e1000_write_nvm_80003es2lan,
1391};
1392
1393const struct e1000_info e1000_es2_info = {
1394	.mac			= e1000_80003es2lan,
1395	.flags			= FLAG_HAS_HW_VLAN_FILTER
1396				  | FLAG_HAS_JUMBO_FRAMES
1397				  | FLAG_HAS_WOL
1398				  | FLAG_APME_IN_CTRL3
1399				  | FLAG_HAS_CTRLEXT_ON_LOAD
1400				  | FLAG_RX_NEEDS_RESTART /* errata */
1401				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1402				  | FLAG_APME_CHECK_PORT_B
1403				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1404	.flags2			= FLAG2_DMA_BURST,
1405	.pba			= 38,
1406	.max_hw_frame_size	= DEFAULT_JUMBO,
1407	.get_variants		= e1000_get_variants_80003es2lan,
1408	.mac_ops		= &es2_mac_ops,
1409	.phy_ops		= &es2_phy_ops,
1410	.nvm_ops		= &es2_nvm_ops,
1411};
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Intel PRO/1000 Linux driver
   3 * Copyright(c) 1999 - 2015 Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * The full GNU General Public License is included in this distribution in
  15 * the file called "COPYING".
  16 *
  17 * Contact Information:
  18 * Linux NICS <linux.nics@intel.com>
  19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  21 */
  22
  23/* 80003ES2LAN Gigabit Ethernet Controller (Copper)
  24 * 80003ES2LAN Gigabit Ethernet Controller (Serdes)
  25 */
  26
  27#include "e1000.h"
  28
  29/* A table for the GG82563 cable length where the range is defined
  30 * with a lower bound at "index" and the upper bound at
  31 * "index + 5".
  32 */
  33static const u16 e1000_gg82563_cable_length_table[] = {
  34	0, 60, 115, 150, 150, 60, 115, 150, 180, 180, 0xFF
  35};
  36
  37#define GG82563_CABLE_LENGTH_TABLE_SIZE \
  38		ARRAY_SIZE(e1000_gg82563_cable_length_table)
  39
  40static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw);
  41static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  42static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask);
  43static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw);
  44static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw);
  45static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw);
  46static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex);
  47static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  48					   u16 *data);
  49static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
  50					    u16 data);
  51static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw);
  52
  53/**
  54 *  e1000_init_phy_params_80003es2lan - Init ESB2 PHY func ptrs.
  55 *  @hw: pointer to the HW structure
  56 **/
  57static s32 e1000_init_phy_params_80003es2lan(struct e1000_hw *hw)
  58{
  59	struct e1000_phy_info *phy = &hw->phy;
  60	s32 ret_val;
  61
  62	if (hw->phy.media_type != e1000_media_type_copper) {
  63		phy->type = e1000_phy_none;
  64		return 0;
  65	} else {
  66		phy->ops.power_up = e1000_power_up_phy_copper;
  67		phy->ops.power_down = e1000_power_down_phy_copper_80003es2lan;
  68	}
  69
  70	phy->addr = 1;
  71	phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
  72	phy->reset_delay_us = 100;
  73	phy->type = e1000_phy_gg82563;
  74
  75	/* This can only be done after all function pointers are setup. */
  76	ret_val = e1000e_get_phy_id(hw);
  77
  78	/* Verify phy id */
  79	if (phy->id != GG82563_E_PHY_ID)
  80		return -E1000_ERR_PHY;
  81
  82	return ret_val;
  83}
  84
  85/**
  86 *  e1000_init_nvm_params_80003es2lan - Init ESB2 NVM func ptrs.
  87 *  @hw: pointer to the HW structure
  88 **/
  89static s32 e1000_init_nvm_params_80003es2lan(struct e1000_hw *hw)
  90{
  91	struct e1000_nvm_info *nvm = &hw->nvm;
  92	u32 eecd = er32(EECD);
  93	u16 size;
  94
  95	nvm->opcode_bits = 8;
  96	nvm->delay_usec = 1;
  97	switch (nvm->override) {
  98	case e1000_nvm_override_spi_large:
  99		nvm->page_size = 32;
 100		nvm->address_bits = 16;
 101		break;
 102	case e1000_nvm_override_spi_small:
 103		nvm->page_size = 8;
 104		nvm->address_bits = 8;
 105		break;
 106	default:
 107		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
 108		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
 109		break;
 110	}
 111
 112	nvm->type = e1000_nvm_eeprom_spi;
 113
 114	size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
 115		     E1000_EECD_SIZE_EX_SHIFT);
 116
 117	/* Added to a constant, "size" becomes the left-shift value
 118	 * for setting word_size.
 119	 */
 120	size += NVM_WORD_SIZE_BASE_SHIFT;
 121
 122	/* EEPROM access above 16k is unsupported */
 123	if (size > 14)
 124		size = 14;
 125	nvm->word_size = BIT(size);
 126
 127	return 0;
 128}
 129
 130/**
 131 *  e1000_init_mac_params_80003es2lan - Init ESB2 MAC func ptrs.
 132 *  @hw: pointer to the HW structure
 133 **/
 134static s32 e1000_init_mac_params_80003es2lan(struct e1000_hw *hw)
 135{
 136	struct e1000_mac_info *mac = &hw->mac;
 137
 138	/* Set media type and media-dependent function pointers */
 139	switch (hw->adapter->pdev->device) {
 140	case E1000_DEV_ID_80003ES2LAN_SERDES_DPT:
 141		hw->phy.media_type = e1000_media_type_internal_serdes;
 142		mac->ops.check_for_link = e1000e_check_for_serdes_link;
 143		mac->ops.setup_physical_interface =
 144		    e1000e_setup_fiber_serdes_link;
 145		break;
 146	default:
 147		hw->phy.media_type = e1000_media_type_copper;
 148		mac->ops.check_for_link = e1000e_check_for_copper_link;
 149		mac->ops.setup_physical_interface =
 150		    e1000_setup_copper_link_80003es2lan;
 151		break;
 152	}
 153
 154	/* Set mta register count */
 155	mac->mta_reg_count = 128;
 156	/* Set rar entry count */
 157	mac->rar_entry_count = E1000_RAR_ENTRIES;
 158	/* FWSM register */
 159	mac->has_fwsm = true;
 160	/* ARC supported; valid only if manageability features are enabled. */
 161	mac->arc_subsystem_valid = !!(er32(FWSM) & E1000_FWSM_MODE_MASK);
 162	/* Adaptive IFS not supported */
 163	mac->adaptive_ifs = false;
 164
 165	/* set lan id for port to determine which phy lock to use */
 166	hw->mac.ops.set_lan_id(hw);
 167
 168	return 0;
 169}
 170
 171static s32 e1000_get_variants_80003es2lan(struct e1000_adapter *adapter)
 172{
 173	struct e1000_hw *hw = &adapter->hw;
 174	s32 rc;
 175
 176	rc = e1000_init_mac_params_80003es2lan(hw);
 177	if (rc)
 178		return rc;
 179
 180	rc = e1000_init_nvm_params_80003es2lan(hw);
 181	if (rc)
 182		return rc;
 183
 184	rc = e1000_init_phy_params_80003es2lan(hw);
 185	if (rc)
 186		return rc;
 187
 188	return 0;
 189}
 190
 191/**
 192 *  e1000_acquire_phy_80003es2lan - Acquire rights to access PHY
 193 *  @hw: pointer to the HW structure
 194 *
 195 *  A wrapper to acquire access rights to the correct PHY.
 196 **/
 197static s32 e1000_acquire_phy_80003es2lan(struct e1000_hw *hw)
 198{
 199	u16 mask;
 200
 201	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 202	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 203}
 204
 205/**
 206 *  e1000_release_phy_80003es2lan - Release rights to access PHY
 207 *  @hw: pointer to the HW structure
 208 *
 209 *  A wrapper to release access rights to the correct PHY.
 210 **/
 211static void e1000_release_phy_80003es2lan(struct e1000_hw *hw)
 212{
 213	u16 mask;
 214
 215	mask = hw->bus.func ? E1000_SWFW_PHY1_SM : E1000_SWFW_PHY0_SM;
 216	e1000_release_swfw_sync_80003es2lan(hw, mask);
 217}
 218
 219/**
 220 *  e1000_acquire_mac_csr_80003es2lan - Acquire right to access Kumeran register
 221 *  @hw: pointer to the HW structure
 222 *
 223 *  Acquire the semaphore to access the Kumeran interface.
 224 *
 225 **/
 226static s32 e1000_acquire_mac_csr_80003es2lan(struct e1000_hw *hw)
 227{
 228	u16 mask;
 229
 230	mask = E1000_SWFW_CSR_SM;
 231
 232	return e1000_acquire_swfw_sync_80003es2lan(hw, mask);
 233}
 234
 235/**
 236 *  e1000_release_mac_csr_80003es2lan - Release right to access Kumeran Register
 237 *  @hw: pointer to the HW structure
 238 *
 239 *  Release the semaphore used to access the Kumeran interface
 240 **/
 241static void e1000_release_mac_csr_80003es2lan(struct e1000_hw *hw)
 242{
 243	u16 mask;
 244
 245	mask = E1000_SWFW_CSR_SM;
 246
 247	e1000_release_swfw_sync_80003es2lan(hw, mask);
 248}
 249
 250/**
 251 *  e1000_acquire_nvm_80003es2lan - Acquire rights to access NVM
 252 *  @hw: pointer to the HW structure
 253 *
 254 *  Acquire the semaphore to access the EEPROM.
 255 **/
 256static s32 e1000_acquire_nvm_80003es2lan(struct e1000_hw *hw)
 257{
 258	s32 ret_val;
 259
 260	ret_val = e1000_acquire_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 261	if (ret_val)
 262		return ret_val;
 263
 264	ret_val = e1000e_acquire_nvm(hw);
 265
 266	if (ret_val)
 267		e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 268
 269	return ret_val;
 270}
 271
 272/**
 273 *  e1000_release_nvm_80003es2lan - Relinquish rights to access NVM
 274 *  @hw: pointer to the HW structure
 275 *
 276 *  Release the semaphore used to access the EEPROM.
 277 **/
 278static void e1000_release_nvm_80003es2lan(struct e1000_hw *hw)
 279{
 280	e1000e_release_nvm(hw);
 281	e1000_release_swfw_sync_80003es2lan(hw, E1000_SWFW_EEP_SM);
 282}
 283
 284/**
 285 *  e1000_acquire_swfw_sync_80003es2lan - Acquire SW/FW semaphore
 286 *  @hw: pointer to the HW structure
 287 *  @mask: specifies which semaphore to acquire
 288 *
 289 *  Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 290 *  will also specify which port we're acquiring the lock for.
 291 **/
 292static s32 e1000_acquire_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 293{
 294	u32 swfw_sync;
 295	u32 swmask = mask;
 296	u32 fwmask = mask << 16;
 297	s32 i = 0;
 298	s32 timeout = 50;
 299
 300	while (i < timeout) {
 301		if (e1000e_get_hw_semaphore(hw))
 302			return -E1000_ERR_SWFW_SYNC;
 303
 304		swfw_sync = er32(SW_FW_SYNC);
 305		if (!(swfw_sync & (fwmask | swmask)))
 306			break;
 307
 308		/* Firmware currently using resource (fwmask)
 309		 * or other software thread using resource (swmask)
 310		 */
 311		e1000e_put_hw_semaphore(hw);
 312		mdelay(5);
 313		i++;
 314	}
 315
 316	if (i == timeout) {
 317		e_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
 318		return -E1000_ERR_SWFW_SYNC;
 319	}
 320
 321	swfw_sync |= swmask;
 322	ew32(SW_FW_SYNC, swfw_sync);
 323
 324	e1000e_put_hw_semaphore(hw);
 325
 326	return 0;
 327}
 328
 329/**
 330 *  e1000_release_swfw_sync_80003es2lan - Release SW/FW semaphore
 331 *  @hw: pointer to the HW structure
 332 *  @mask: specifies which semaphore to acquire
 333 *
 334 *  Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 335 *  will also specify which port we're releasing the lock for.
 336 **/
 337static void e1000_release_swfw_sync_80003es2lan(struct e1000_hw *hw, u16 mask)
 338{
 339	u32 swfw_sync;
 340
 341	while (e1000e_get_hw_semaphore(hw) != 0)
 342		; /* Empty */
 343
 344	swfw_sync = er32(SW_FW_SYNC);
 345	swfw_sync &= ~mask;
 346	ew32(SW_FW_SYNC, swfw_sync);
 347
 348	e1000e_put_hw_semaphore(hw);
 349}
 350
 351/**
 352 *  e1000_read_phy_reg_gg82563_80003es2lan - Read GG82563 PHY register
 353 *  @hw: pointer to the HW structure
 354 *  @offset: offset of the register to read
 355 *  @data: pointer to the data returned from the operation
 356 *
 357 *  Read the GG82563 PHY register.
 358 **/
 359static s32 e1000_read_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 360						  u32 offset, u16 *data)
 361{
 362	s32 ret_val;
 363	u32 page_select;
 364	u16 temp;
 365
 366	ret_val = e1000_acquire_phy_80003es2lan(hw);
 367	if (ret_val)
 368		return ret_val;
 369
 370	/* Select Configuration Page */
 371	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 372		page_select = GG82563_PHY_PAGE_SELECT;
 373	} else {
 374		/* Use Alternative Page Select register to access
 375		 * registers 30 and 31
 376		 */
 377		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 378	}
 379
 380	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 381	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 382	if (ret_val) {
 383		e1000_release_phy_80003es2lan(hw);
 384		return ret_val;
 385	}
 386
 387	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 388		/* The "ready" bit in the MDIC register may be incorrectly set
 389		 * before the device has completed the "Page Select" MDI
 390		 * transaction.  So we wait 200us after each MDI command...
 391		 */
 392		usleep_range(200, 400);
 393
 394		/* ...and verify the command was successful. */
 395		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 396
 397		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 398			e1000_release_phy_80003es2lan(hw);
 399			return -E1000_ERR_PHY;
 400		}
 401
 402		usleep_range(200, 400);
 403
 404		ret_val = e1000e_read_phy_reg_mdic(hw,
 405						   MAX_PHY_REG_ADDRESS & offset,
 406						   data);
 407
 408		usleep_range(200, 400);
 409	} else {
 410		ret_val = e1000e_read_phy_reg_mdic(hw,
 411						   MAX_PHY_REG_ADDRESS & offset,
 412						   data);
 413	}
 414
 415	e1000_release_phy_80003es2lan(hw);
 416
 417	return ret_val;
 418}
 419
 420/**
 421 *  e1000_write_phy_reg_gg82563_80003es2lan - Write GG82563 PHY register
 422 *  @hw: pointer to the HW structure
 423 *  @offset: offset of the register to read
 424 *  @data: value to write to the register
 425 *
 426 *  Write to the GG82563 PHY register.
 427 **/
 428static s32 e1000_write_phy_reg_gg82563_80003es2lan(struct e1000_hw *hw,
 429						   u32 offset, u16 data)
 430{
 431	s32 ret_val;
 432	u32 page_select;
 433	u16 temp;
 434
 435	ret_val = e1000_acquire_phy_80003es2lan(hw);
 436	if (ret_val)
 437		return ret_val;
 438
 439	/* Select Configuration Page */
 440	if ((offset & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) {
 441		page_select = GG82563_PHY_PAGE_SELECT;
 442	} else {
 443		/* Use Alternative Page Select register to access
 444		 * registers 30 and 31
 445		 */
 446		page_select = GG82563_PHY_PAGE_SELECT_ALT;
 447	}
 448
 449	temp = (u16)((u16)offset >> GG82563_PAGE_SHIFT);
 450	ret_val = e1000e_write_phy_reg_mdic(hw, page_select, temp);
 451	if (ret_val) {
 452		e1000_release_phy_80003es2lan(hw);
 453		return ret_val;
 454	}
 455
 456	if (hw->dev_spec.e80003es2lan.mdic_wa_enable) {
 457		/* The "ready" bit in the MDIC register may be incorrectly set
 458		 * before the device has completed the "Page Select" MDI
 459		 * transaction.  So we wait 200us after each MDI command...
 460		 */
 461		usleep_range(200, 400);
 462
 463		/* ...and verify the command was successful. */
 464		ret_val = e1000e_read_phy_reg_mdic(hw, page_select, &temp);
 465
 466		if (((u16)offset >> GG82563_PAGE_SHIFT) != temp) {
 467			e1000_release_phy_80003es2lan(hw);
 468			return -E1000_ERR_PHY;
 469		}
 470
 471		usleep_range(200, 400);
 472
 473		ret_val = e1000e_write_phy_reg_mdic(hw,
 474						    MAX_PHY_REG_ADDRESS &
 475						    offset, data);
 476
 477		usleep_range(200, 400);
 478	} else {
 479		ret_val = e1000e_write_phy_reg_mdic(hw,
 480						    MAX_PHY_REG_ADDRESS &
 481						    offset, data);
 482	}
 483
 484	e1000_release_phy_80003es2lan(hw);
 485
 486	return ret_val;
 487}
 488
 489/**
 490 *  e1000_write_nvm_80003es2lan - Write to ESB2 NVM
 491 *  @hw: pointer to the HW structure
 492 *  @offset: offset of the register to read
 493 *  @words: number of words to write
 494 *  @data: buffer of data to write to the NVM
 495 *
 496 *  Write "words" of data to the ESB2 NVM.
 497 **/
 498static s32 e1000_write_nvm_80003es2lan(struct e1000_hw *hw, u16 offset,
 499				       u16 words, u16 *data)
 500{
 501	return e1000e_write_nvm_spi(hw, offset, words, data);
 502}
 503
 504/**
 505 *  e1000_get_cfg_done_80003es2lan - Wait for configuration to complete
 506 *  @hw: pointer to the HW structure
 507 *
 508 *  Wait a specific amount of time for manageability processes to complete.
 509 *  This is a function pointer entry point called by the phy module.
 510 **/
 511static s32 e1000_get_cfg_done_80003es2lan(struct e1000_hw *hw)
 512{
 513	s32 timeout = PHY_CFG_TIMEOUT;
 514	u32 mask = E1000_NVM_CFG_DONE_PORT_0;
 515
 516	if (hw->bus.func == 1)
 517		mask = E1000_NVM_CFG_DONE_PORT_1;
 518
 519	while (timeout) {
 520		if (er32(EEMNGCTL) & mask)
 521			break;
 522		usleep_range(1000, 2000);
 523		timeout--;
 524	}
 525	if (!timeout) {
 526		e_dbg("MNG configuration cycle has not completed.\n");
 527		return -E1000_ERR_RESET;
 528	}
 529
 530	return 0;
 531}
 532
 533/**
 534 *  e1000_phy_force_speed_duplex_80003es2lan - Force PHY speed and duplex
 535 *  @hw: pointer to the HW structure
 536 *
 537 *  Force the speed and duplex settings onto the PHY.  This is a
 538 *  function pointer entry point called by the phy module.
 539 **/
 540static s32 e1000_phy_force_speed_duplex_80003es2lan(struct e1000_hw *hw)
 541{
 542	s32 ret_val;
 543	u16 phy_data;
 544	bool link;
 545
 546	/* Clear Auto-Crossover to force MDI manually.  M88E1000 requires MDI
 547	 * forced whenever speed and duplex are forced.
 548	 */
 549	ret_val = e1e_rphy(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 550	if (ret_val)
 551		return ret_val;
 552
 553	phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_AUTO;
 554	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, phy_data);
 555	if (ret_val)
 556		return ret_val;
 557
 558	e_dbg("GG82563 PSCR: %X\n", phy_data);
 559
 560	ret_val = e1e_rphy(hw, MII_BMCR, &phy_data);
 561	if (ret_val)
 562		return ret_val;
 563
 564	e1000e_phy_force_speed_duplex_setup(hw, &phy_data);
 565
 566	/* Reset the phy to commit changes. */
 567	phy_data |= BMCR_RESET;
 568
 569	ret_val = e1e_wphy(hw, MII_BMCR, phy_data);
 570	if (ret_val)
 571		return ret_val;
 572
 573	udelay(1);
 574
 575	if (hw->phy.autoneg_wait_to_complete) {
 576		e_dbg("Waiting for forced speed/duplex link on GG82563 phy.\n");
 577
 578		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 579						      100000, &link);
 580		if (ret_val)
 581			return ret_val;
 582
 583		if (!link) {
 584			/* We didn't get link.
 585			 * Reset the DSP and cross our fingers.
 586			 */
 587			ret_val = e1000e_phy_reset_dsp(hw);
 588			if (ret_val)
 589				return ret_val;
 590		}
 591
 592		/* Try once more */
 593		ret_val = e1000e_phy_has_link_generic(hw, PHY_FORCE_LIMIT,
 594						      100000, &link);
 595		if (ret_val)
 596			return ret_val;
 597	}
 598
 599	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data);
 600	if (ret_val)
 601		return ret_val;
 602
 603	/* Resetting the phy means we need to verify the TX_CLK corresponds
 604	 * to the link speed.  10Mbps -> 2.5MHz, else 25MHz.
 605	 */
 606	phy_data &= ~GG82563_MSCR_TX_CLK_MASK;
 607	if (hw->mac.forced_speed_duplex & E1000_ALL_10_SPEED)
 608		phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5;
 609	else
 610		phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25;
 611
 612	/* In addition, we must re-enable CRS on Tx for both half and full
 613	 * duplex.
 614	 */
 615	phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 616	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data);
 617
 618	return ret_val;
 619}
 620
 621/**
 622 *  e1000_get_cable_length_80003es2lan - Set approximate cable length
 623 *  @hw: pointer to the HW structure
 624 *
 625 *  Find the approximate cable length as measured by the GG82563 PHY.
 626 *  This is a function pointer entry point called by the phy module.
 627 **/
 628static s32 e1000_get_cable_length_80003es2lan(struct e1000_hw *hw)
 629{
 630	struct e1000_phy_info *phy = &hw->phy;
 631	s32 ret_val;
 632	u16 phy_data, index;
 633
 634	ret_val = e1e_rphy(hw, GG82563_PHY_DSP_DISTANCE, &phy_data);
 635	if (ret_val)
 636		return ret_val;
 637
 638	index = phy_data & GG82563_DSPD_CABLE_LENGTH;
 639
 640	if (index >= GG82563_CABLE_LENGTH_TABLE_SIZE - 5)
 641		return -E1000_ERR_PHY;
 642
 643	phy->min_cable_length = e1000_gg82563_cable_length_table[index];
 644	phy->max_cable_length = e1000_gg82563_cable_length_table[index + 5];
 645
 646	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
 647
 648	return 0;
 649}
 650
 651/**
 652 *  e1000_get_link_up_info_80003es2lan - Report speed and duplex
 653 *  @hw: pointer to the HW structure
 654 *  @speed: pointer to speed buffer
 655 *  @duplex: pointer to duplex buffer
 656 *
 657 *  Retrieve the current speed and duplex configuration.
 658 **/
 659static s32 e1000_get_link_up_info_80003es2lan(struct e1000_hw *hw, u16 *speed,
 660					      u16 *duplex)
 661{
 662	s32 ret_val;
 663
 664	if (hw->phy.media_type == e1000_media_type_copper) {
 665		ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
 666		hw->phy.ops.cfg_on_link_up(hw);
 667	} else {
 668		ret_val = e1000e_get_speed_and_duplex_fiber_serdes(hw,
 669								   speed,
 670								   duplex);
 671	}
 672
 673	return ret_val;
 674}
 675
 676/**
 677 *  e1000_reset_hw_80003es2lan - Reset the ESB2 controller
 678 *  @hw: pointer to the HW structure
 679 *
 680 *  Perform a global reset to the ESB2 controller.
 681 **/
 682static s32 e1000_reset_hw_80003es2lan(struct e1000_hw *hw)
 683{
 684	u32 ctrl;
 685	s32 ret_val;
 686	u16 kum_reg_data;
 687
 688	/* Prevent the PCI-E bus from sticking if there is no TLP connection
 689	 * on the last TLP read/write transaction when MAC is reset.
 690	 */
 691	ret_val = e1000e_disable_pcie_master(hw);
 692	if (ret_val)
 693		e_dbg("PCI-E Master disable polling has failed.\n");
 694
 695	e_dbg("Masking off all interrupts\n");
 696	ew32(IMC, 0xffffffff);
 697
 698	ew32(RCTL, 0);
 699	ew32(TCTL, E1000_TCTL_PSP);
 700	e1e_flush();
 701
 702	usleep_range(10000, 20000);
 703
 704	ctrl = er32(CTRL);
 705
 706	ret_val = e1000_acquire_phy_80003es2lan(hw);
 707	if (ret_val)
 708		return ret_val;
 709
 710	e_dbg("Issuing a global reset to MAC\n");
 711	ew32(CTRL, ctrl | E1000_CTRL_RST);
 712	e1000_release_phy_80003es2lan(hw);
 713
 714	/* Disable IBIST slave mode (far-end loopback) */
 715	ret_val =
 716	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 717					    &kum_reg_data);
 718	if (ret_val)
 719		return ret_val;
 720	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 721	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 722					 kum_reg_data);
 
 
 
 
 
 723
 724	ret_val = e1000e_get_auto_rd_done(hw);
 725	if (ret_val)
 726		/* We don't want to continue accessing MAC registers. */
 727		return ret_val;
 728
 729	/* Clear any pending interrupt events. */
 730	ew32(IMC, 0xffffffff);
 731	er32(ICR);
 732
 733	return e1000_check_alt_mac_addr_generic(hw);
 734}
 735
 736/**
 737 *  e1000_init_hw_80003es2lan - Initialize the ESB2 controller
 738 *  @hw: pointer to the HW structure
 739 *
 740 *  Initialize the hw bits, LED, VFTA, MTA, link and hw counters.
 741 **/
 742static s32 e1000_init_hw_80003es2lan(struct e1000_hw *hw)
 743{
 744	struct e1000_mac_info *mac = &hw->mac;
 745	u32 reg_data;
 746	s32 ret_val;
 747	u16 kum_reg_data;
 748	u16 i;
 749
 750	e1000_initialize_hw_bits_80003es2lan(hw);
 751
 752	/* Initialize identification LED */
 753	ret_val = mac->ops.id_led_init(hw);
 754	/* An error is not fatal and we should not stop init due to this */
 755	if (ret_val)
 756		e_dbg("Error initializing identification LED\n");
 757
 758	/* Disabling VLAN filtering */
 759	e_dbg("Initializing the IEEE VLAN\n");
 760	mac->ops.clear_vfta(hw);
 761
 762	/* Setup the receive address. */
 763	e1000e_init_rx_addrs(hw, mac->rar_entry_count);
 764
 765	/* Zero out the Multicast HASH table */
 766	e_dbg("Zeroing the MTA\n");
 767	for (i = 0; i < mac->mta_reg_count; i++)
 768		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
 769
 770	/* Setup link and flow control */
 771	ret_val = mac->ops.setup_link(hw);
 772	if (ret_val)
 773		return ret_val;
 774
 775	/* Disable IBIST slave mode (far-end loopback) */
 776	e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 777					&kum_reg_data);
 778	kum_reg_data |= E1000_KMRNCTRLSTA_IBIST_DISABLE;
 779	e1000_write_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
 780					 kum_reg_data);
 
 
 
 
 
 
 
 
 781
 782	/* Set the transmit descriptor write-back policy */
 783	reg_data = er32(TXDCTL(0));
 784	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 785		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 786	ew32(TXDCTL(0), reg_data);
 787
 788	/* ...for both queues. */
 789	reg_data = er32(TXDCTL(1));
 790	reg_data = ((reg_data & ~E1000_TXDCTL_WTHRESH) |
 791		    E1000_TXDCTL_FULL_TX_DESC_WB | E1000_TXDCTL_COUNT_DESC);
 792	ew32(TXDCTL(1), reg_data);
 793
 794	/* Enable retransmit on late collisions */
 795	reg_data = er32(TCTL);
 796	reg_data |= E1000_TCTL_RTLC;
 797	ew32(TCTL, reg_data);
 798
 799	/* Configure Gigabit Carry Extend Padding */
 800	reg_data = er32(TCTL_EXT);
 801	reg_data &= ~E1000_TCTL_EXT_GCEX_MASK;
 802	reg_data |= DEFAULT_TCTL_EXT_GCEX_80003ES2LAN;
 803	ew32(TCTL_EXT, reg_data);
 804
 805	/* Configure Transmit Inter-Packet Gap */
 806	reg_data = er32(TIPG);
 807	reg_data &= ~E1000_TIPG_IPGT_MASK;
 808	reg_data |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
 809	ew32(TIPG, reg_data);
 810
 811	reg_data = E1000_READ_REG_ARRAY(hw, E1000_FFLT, 0x0001);
 812	reg_data &= ~0x00100000;
 813	E1000_WRITE_REG_ARRAY(hw, E1000_FFLT, 0x0001, reg_data);
 814
 815	/* default to true to enable the MDIC W/A */
 816	hw->dev_spec.e80003es2lan.mdic_wa_enable = true;
 817
 818	ret_val =
 819	    e1000_read_kmrn_reg_80003es2lan(hw, E1000_KMRNCTRLSTA_OFFSET >>
 820					    E1000_KMRNCTRLSTA_OFFSET_SHIFT, &i);
 821	if (!ret_val) {
 822		if ((i & E1000_KMRNCTRLSTA_OPMODE_MASK) ==
 823		    E1000_KMRNCTRLSTA_OPMODE_INBAND_MDIO)
 824			hw->dev_spec.e80003es2lan.mdic_wa_enable = false;
 825	}
 826
 827	/* Clear all of the statistics registers (clear on read).  It is
 828	 * important that we do this after we have tried to establish link
 829	 * because the symbol error count will increment wildly if there
 830	 * is no link.
 831	 */
 832	e1000_clear_hw_cntrs_80003es2lan(hw);
 833
 834	return ret_val;
 835}
 836
 837/**
 838 *  e1000_initialize_hw_bits_80003es2lan - Init hw bits of ESB2
 839 *  @hw: pointer to the HW structure
 840 *
 841 *  Initializes required hardware-dependent bits needed for normal operation.
 842 **/
 843static void e1000_initialize_hw_bits_80003es2lan(struct e1000_hw *hw)
 844{
 845	u32 reg;
 846
 847	/* Transmit Descriptor Control 0 */
 848	reg = er32(TXDCTL(0));
 849	reg |= BIT(22);
 850	ew32(TXDCTL(0), reg);
 851
 852	/* Transmit Descriptor Control 1 */
 853	reg = er32(TXDCTL(1));
 854	reg |= BIT(22);
 855	ew32(TXDCTL(1), reg);
 856
 857	/* Transmit Arbitration Control 0 */
 858	reg = er32(TARC(0));
 859	reg &= ~(0xF << 27);	/* 30:27 */
 860	if (hw->phy.media_type != e1000_media_type_copper)
 861		reg &= ~BIT(20);
 862	ew32(TARC(0), reg);
 863
 864	/* Transmit Arbitration Control 1 */
 865	reg = er32(TARC(1));
 866	if (er32(TCTL) & E1000_TCTL_MULR)
 867		reg &= ~BIT(28);
 868	else
 869		reg |= BIT(28);
 870	ew32(TARC(1), reg);
 871
 872	/* Disable IPv6 extension header parsing because some malformed
 873	 * IPv6 headers can hang the Rx.
 874	 */
 875	reg = er32(RFCTL);
 876	reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
 877	ew32(RFCTL, reg);
 878}
 879
 880/**
 881 *  e1000_copper_link_setup_gg82563_80003es2lan - Configure GG82563 Link
 882 *  @hw: pointer to the HW structure
 883 *
 884 *  Setup some GG82563 PHY registers for obtaining link
 885 **/
 886static s32 e1000_copper_link_setup_gg82563_80003es2lan(struct e1000_hw *hw)
 887{
 888	struct e1000_phy_info *phy = &hw->phy;
 889	s32 ret_val;
 890	u32 reg;
 891	u16 data;
 892
 893	ret_val = e1e_rphy(hw, GG82563_PHY_MAC_SPEC_CTRL, &data);
 894	if (ret_val)
 895		return ret_val;
 896
 897	data |= GG82563_MSCR_ASSERT_CRS_ON_TX;
 898	/* Use 25MHz for both link down and 1000Base-T for Tx clock. */
 899	data |= GG82563_MSCR_TX_CLK_1000MBPS_25;
 900
 901	ret_val = e1e_wphy(hw, GG82563_PHY_MAC_SPEC_CTRL, data);
 902	if (ret_val)
 903		return ret_val;
 904
 905	/* Options:
 906	 *   MDI/MDI-X = 0 (default)
 907	 *   0 - Auto for all speeds
 908	 *   1 - MDI mode
 909	 *   2 - MDI-X mode
 910	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
 911	 */
 912	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL, &data);
 913	if (ret_val)
 914		return ret_val;
 915
 916	data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK;
 917
 918	switch (phy->mdix) {
 919	case 1:
 920		data |= GG82563_PSCR_CROSSOVER_MODE_MDI;
 921		break;
 922	case 2:
 923		data |= GG82563_PSCR_CROSSOVER_MODE_MDIX;
 924		break;
 925	case 0:
 926	default:
 927		data |= GG82563_PSCR_CROSSOVER_MODE_AUTO;
 928		break;
 929	}
 930
 931	/* Options:
 932	 *   disable_polarity_correction = 0 (default)
 933	 *       Automatic Correction for Reversed Cable Polarity
 934	 *   0 - Disabled
 935	 *   1 - Enabled
 936	 */
 937	data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 938	if (phy->disable_polarity_correction)
 939		data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE;
 940
 941	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL, data);
 942	if (ret_val)
 943		return ret_val;
 944
 945	/* SW Reset the PHY so all changes take effect */
 946	ret_val = hw->phy.ops.commit(hw);
 947	if (ret_val) {
 948		e_dbg("Error Resetting the PHY\n");
 949		return ret_val;
 950	}
 951
 952	/* Bypass Rx and Tx FIFO's */
 953	reg = E1000_KMRNCTRLSTA_OFFSET_FIFO_CTRL;
 954	data = (E1000_KMRNCTRLSTA_FIFO_CTRL_RX_BYPASS |
 955		E1000_KMRNCTRLSTA_FIFO_CTRL_TX_BYPASS);
 956	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 957	if (ret_val)
 958		return ret_val;
 959
 960	reg = E1000_KMRNCTRLSTA_OFFSET_MAC2PHY_OPMODE;
 961	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, reg, &data);
 962	if (ret_val)
 963		return ret_val;
 964	data |= E1000_KMRNCTRLSTA_OPMODE_E_IDLE;
 965	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, reg, data);
 966	if (ret_val)
 967		return ret_val;
 968
 969	ret_val = e1e_rphy(hw, GG82563_PHY_SPEC_CTRL_2, &data);
 970	if (ret_val)
 971		return ret_val;
 972
 973	data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG;
 974	ret_val = e1e_wphy(hw, GG82563_PHY_SPEC_CTRL_2, data);
 975	if (ret_val)
 976		return ret_val;
 977
 978	reg = er32(CTRL_EXT);
 979	reg &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
 980	ew32(CTRL_EXT, reg);
 981
 982	ret_val = e1e_rphy(hw, GG82563_PHY_PWR_MGMT_CTRL, &data);
 983	if (ret_val)
 984		return ret_val;
 985
 986	/* Do not init these registers when the HW is in IAMT mode, since the
 987	 * firmware will have already initialized them.  We only initialize
 988	 * them if the HW is not in IAMT mode.
 989	 */
 990	if (!hw->mac.ops.check_mng_mode(hw)) {
 991		/* Enable Electrical Idle on the PHY */
 992		data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE;
 993		ret_val = e1e_wphy(hw, GG82563_PHY_PWR_MGMT_CTRL, data);
 994		if (ret_val)
 995			return ret_val;
 996
 997		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &data);
 998		if (ret_val)
 999			return ret_val;
1000
1001		data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1002		ret_val = e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, data);
1003		if (ret_val)
1004			return ret_val;
1005	}
1006
1007	/* Workaround: Disable padding in Kumeran interface in the MAC
1008	 * and in the PHY to avoid CRC errors.
1009	 */
1010	ret_val = e1e_rphy(hw, GG82563_PHY_INBAND_CTRL, &data);
1011	if (ret_val)
1012		return ret_val;
1013
1014	data |= GG82563_ICR_DIS_PADDING;
1015	ret_val = e1e_wphy(hw, GG82563_PHY_INBAND_CTRL, data);
1016	if (ret_val)
1017		return ret_val;
1018
1019	return 0;
1020}
1021
1022/**
1023 *  e1000_setup_copper_link_80003es2lan - Setup Copper Link for ESB2
1024 *  @hw: pointer to the HW structure
1025 *
1026 *  Essentially a wrapper for setting up all things "copper" related.
1027 *  This is a function pointer entry point called by the mac module.
1028 **/
1029static s32 e1000_setup_copper_link_80003es2lan(struct e1000_hw *hw)
1030{
1031	u32 ctrl;
1032	s32 ret_val;
1033	u16 reg_data;
1034
1035	ctrl = er32(CTRL);
1036	ctrl |= E1000_CTRL_SLU;
1037	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1038	ew32(CTRL, ctrl);
1039
1040	/* Set the mac to wait the maximum time between each
1041	 * iteration and increase the max iterations when
1042	 * polling the phy; this fixes erroneous timeouts at 10Mbps.
1043	 */
1044	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 4),
1045						   0xFFFF);
 
 
 
1046	if (ret_val)
1047		return ret_val;
1048	ret_val = e1000_read_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1049						  &reg_data);
1050	if (ret_val)
1051		return ret_val;
1052	reg_data |= 0x3F;
1053	ret_val = e1000_write_kmrn_reg_80003es2lan(hw, GG82563_REG(0x34, 9),
1054						   reg_data);
1055	if (ret_val)
1056		return ret_val;
1057	ret_val =
1058	    e1000_read_kmrn_reg_80003es2lan(hw,
1059					    E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1060					    &reg_data);
1061	if (ret_val)
1062		return ret_val;
1063	reg_data |= E1000_KMRNCTRLSTA_INB_CTRL_DIS_PADDING;
1064	ret_val =
1065	    e1000_write_kmrn_reg_80003es2lan(hw,
1066					     E1000_KMRNCTRLSTA_OFFSET_INB_CTRL,
1067					     reg_data);
1068	if (ret_val)
1069		return ret_val;
1070
1071	ret_val = e1000_copper_link_setup_gg82563_80003es2lan(hw);
1072	if (ret_val)
1073		return ret_val;
1074
1075	return e1000e_setup_copper_link(hw);
1076}
1077
1078/**
1079 *  e1000_cfg_on_link_up_80003es2lan - es2 link configuration after link-up
1080 *  @hw: pointer to the HW structure
1081 *  @duplex: current duplex setting
1082 *
1083 *  Configure the KMRN interface by applying last minute quirks for
1084 *  10/100 operation.
1085 **/
1086static s32 e1000_cfg_on_link_up_80003es2lan(struct e1000_hw *hw)
1087{
1088	s32 ret_val = 0;
1089	u16 speed;
1090	u16 duplex;
1091
1092	if (hw->phy.media_type == e1000_media_type_copper) {
1093		ret_val = e1000e_get_speed_and_duplex_copper(hw, &speed,
1094							     &duplex);
1095		if (ret_val)
1096			return ret_val;
1097
1098		if (speed == SPEED_1000)
1099			ret_val = e1000_cfg_kmrn_1000_80003es2lan(hw);
1100		else
1101			ret_val = e1000_cfg_kmrn_10_100_80003es2lan(hw, duplex);
1102	}
1103
1104	return ret_val;
1105}
1106
1107/**
1108 *  e1000_cfg_kmrn_10_100_80003es2lan - Apply "quirks" for 10/100 operation
1109 *  @hw: pointer to the HW structure
1110 *  @duplex: current duplex setting
1111 *
1112 *  Configure the KMRN interface by applying last minute quirks for
1113 *  10/100 operation.
1114 **/
1115static s32 e1000_cfg_kmrn_10_100_80003es2lan(struct e1000_hw *hw, u16 duplex)
1116{
1117	s32 ret_val;
1118	u32 tipg;
1119	u32 i = 0;
1120	u16 reg_data, reg_data2;
1121
1122	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_10_100_DEFAULT;
1123	ret_val =
1124	    e1000_write_kmrn_reg_80003es2lan(hw,
1125					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1126					     reg_data);
1127	if (ret_val)
1128		return ret_val;
1129
1130	/* Configure Transmit Inter-Packet Gap */
1131	tipg = er32(TIPG);
1132	tipg &= ~E1000_TIPG_IPGT_MASK;
1133	tipg |= DEFAULT_TIPG_IPGT_10_100_80003ES2LAN;
1134	ew32(TIPG, tipg);
1135
1136	do {
1137		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1138		if (ret_val)
1139			return ret_val;
1140
1141		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1142		if (ret_val)
1143			return ret_val;
1144		i++;
1145	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1146
1147	if (duplex == HALF_DUPLEX)
1148		reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER;
1149	else
1150		reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1151
1152	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1153}
1154
1155/**
1156 *  e1000_cfg_kmrn_1000_80003es2lan - Apply "quirks" for gigabit operation
1157 *  @hw: pointer to the HW structure
1158 *
1159 *  Configure the KMRN interface by applying last minute quirks for
1160 *  gigabit operation.
1161 **/
1162static s32 e1000_cfg_kmrn_1000_80003es2lan(struct e1000_hw *hw)
1163{
1164	s32 ret_val;
1165	u16 reg_data, reg_data2;
1166	u32 tipg;
1167	u32 i = 0;
1168
1169	reg_data = E1000_KMRNCTRLSTA_HD_CTRL_1000_DEFAULT;
1170	ret_val =
1171	    e1000_write_kmrn_reg_80003es2lan(hw,
1172					     E1000_KMRNCTRLSTA_OFFSET_HD_CTRL,
1173					     reg_data);
1174	if (ret_val)
1175		return ret_val;
1176
1177	/* Configure Transmit Inter-Packet Gap */
1178	tipg = er32(TIPG);
1179	tipg &= ~E1000_TIPG_IPGT_MASK;
1180	tipg |= DEFAULT_TIPG_IPGT_1000_80003ES2LAN;
1181	ew32(TIPG, tipg);
1182
1183	do {
1184		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data);
1185		if (ret_val)
1186			return ret_val;
1187
1188		ret_val = e1e_rphy(hw, GG82563_PHY_KMRN_MODE_CTRL, &reg_data2);
1189		if (ret_val)
1190			return ret_val;
1191		i++;
1192	} while ((reg_data != reg_data2) && (i < GG82563_MAX_KMRN_RETRY));
1193
1194	reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER;
1195
1196	return e1e_wphy(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data);
1197}
1198
1199/**
1200 *  e1000_read_kmrn_reg_80003es2lan - Read kumeran register
1201 *  @hw: pointer to the HW structure
1202 *  @offset: register offset to be read
1203 *  @data: pointer to the read data
1204 *
1205 *  Acquire semaphore, then read the PHY register at offset
1206 *  using the kumeran interface.  The information retrieved is stored in data.
1207 *  Release the semaphore before exiting.
1208 **/
1209static s32 e1000_read_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1210					   u16 *data)
1211{
1212	u32 kmrnctrlsta;
1213	s32 ret_val;
1214
1215	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1216	if (ret_val)
1217		return ret_val;
1218
1219	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1220		       E1000_KMRNCTRLSTA_OFFSET) | E1000_KMRNCTRLSTA_REN;
1221	ew32(KMRNCTRLSTA, kmrnctrlsta);
1222	e1e_flush();
1223
1224	udelay(2);
1225
1226	kmrnctrlsta = er32(KMRNCTRLSTA);
1227	*data = (u16)kmrnctrlsta;
1228
1229	e1000_release_mac_csr_80003es2lan(hw);
1230
1231	return ret_val;
1232}
1233
1234/**
1235 *  e1000_write_kmrn_reg_80003es2lan - Write kumeran register
1236 *  @hw: pointer to the HW structure
1237 *  @offset: register offset to write to
1238 *  @data: data to write at register offset
1239 *
1240 *  Acquire semaphore, then write the data to PHY register
1241 *  at the offset using the kumeran interface.  Release semaphore
1242 *  before exiting.
1243 **/
1244static s32 e1000_write_kmrn_reg_80003es2lan(struct e1000_hw *hw, u32 offset,
1245					    u16 data)
1246{
1247	u32 kmrnctrlsta;
1248	s32 ret_val;
1249
1250	ret_val = e1000_acquire_mac_csr_80003es2lan(hw);
1251	if (ret_val)
1252		return ret_val;
1253
1254	kmrnctrlsta = ((offset << E1000_KMRNCTRLSTA_OFFSET_SHIFT) &
1255		       E1000_KMRNCTRLSTA_OFFSET) | data;
1256	ew32(KMRNCTRLSTA, kmrnctrlsta);
1257	e1e_flush();
1258
1259	udelay(2);
1260
1261	e1000_release_mac_csr_80003es2lan(hw);
1262
1263	return ret_val;
1264}
1265
1266/**
1267 *  e1000_read_mac_addr_80003es2lan - Read device MAC address
1268 *  @hw: pointer to the HW structure
1269 **/
1270static s32 e1000_read_mac_addr_80003es2lan(struct e1000_hw *hw)
1271{
1272	s32 ret_val;
1273
1274	/* If there's an alternate MAC address place it in RAR0
1275	 * so that it will override the Si installed default perm
1276	 * address.
1277	 */
1278	ret_val = e1000_check_alt_mac_addr_generic(hw);
1279	if (ret_val)
1280		return ret_val;
1281
1282	return e1000_read_mac_addr_generic(hw);
1283}
1284
1285/**
1286 * e1000_power_down_phy_copper_80003es2lan - Remove link during PHY power down
1287 * @hw: pointer to the HW structure
1288 *
1289 * In the case of a PHY power down to save power, or to turn off link during a
1290 * driver unload, or wake on lan is not enabled, remove the link.
1291 **/
1292static void e1000_power_down_phy_copper_80003es2lan(struct e1000_hw *hw)
1293{
1294	/* If the management interface is not enabled, then power down */
1295	if (!(hw->mac.ops.check_mng_mode(hw) ||
1296	      hw->phy.ops.check_reset_block(hw)))
1297		e1000_power_down_phy_copper(hw);
1298}
1299
1300/**
1301 *  e1000_clear_hw_cntrs_80003es2lan - Clear device specific hardware counters
1302 *  @hw: pointer to the HW structure
1303 *
1304 *  Clears the hardware counters by reading the counter registers.
1305 **/
1306static void e1000_clear_hw_cntrs_80003es2lan(struct e1000_hw *hw)
1307{
1308	e1000e_clear_hw_cntrs_base(hw);
1309
1310	er32(PRC64);
1311	er32(PRC127);
1312	er32(PRC255);
1313	er32(PRC511);
1314	er32(PRC1023);
1315	er32(PRC1522);
1316	er32(PTC64);
1317	er32(PTC127);
1318	er32(PTC255);
1319	er32(PTC511);
1320	er32(PTC1023);
1321	er32(PTC1522);
1322
1323	er32(ALGNERRC);
1324	er32(RXERRC);
1325	er32(TNCRS);
1326	er32(CEXTERR);
1327	er32(TSCTC);
1328	er32(TSCTFC);
1329
1330	er32(MGTPRC);
1331	er32(MGTPDC);
1332	er32(MGTPTC);
1333
1334	er32(IAC);
1335	er32(ICRXOC);
1336
1337	er32(ICRXPTC);
1338	er32(ICRXATC);
1339	er32(ICTXPTC);
1340	er32(ICTXATC);
1341	er32(ICTXQEC);
1342	er32(ICTXQMTC);
1343	er32(ICRXDMTC);
1344}
1345
1346static const struct e1000_mac_operations es2_mac_ops = {
1347	.read_mac_addr		= e1000_read_mac_addr_80003es2lan,
1348	.id_led_init		= e1000e_id_led_init_generic,
1349	.blink_led		= e1000e_blink_led_generic,
1350	.check_mng_mode		= e1000e_check_mng_mode_generic,
1351	/* check_for_link dependent on media type */
1352	.cleanup_led		= e1000e_cleanup_led_generic,
1353	.clear_hw_cntrs		= e1000_clear_hw_cntrs_80003es2lan,
1354	.get_bus_info		= e1000e_get_bus_info_pcie,
1355	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1356	.get_link_up_info	= e1000_get_link_up_info_80003es2lan,
1357	.led_on			= e1000e_led_on_generic,
1358	.led_off		= e1000e_led_off_generic,
1359	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1360	.write_vfta		= e1000_write_vfta_generic,
1361	.clear_vfta		= e1000_clear_vfta_generic,
1362	.reset_hw		= e1000_reset_hw_80003es2lan,
1363	.init_hw		= e1000_init_hw_80003es2lan,
1364	.setup_link		= e1000e_setup_link_generic,
1365	/* setup_physical_interface dependent on media type */
1366	.setup_led		= e1000e_setup_led_generic,
1367	.config_collision_dist	= e1000e_config_collision_dist_generic,
1368	.rar_set		= e1000e_rar_set_generic,
1369	.rar_get_count		= e1000e_rar_get_count_generic,
1370};
1371
1372static const struct e1000_phy_operations es2_phy_ops = {
1373	.acquire		= e1000_acquire_phy_80003es2lan,
1374	.check_polarity		= e1000_check_polarity_m88,
1375	.check_reset_block	= e1000e_check_reset_block_generic,
1376	.commit			= e1000e_phy_sw_reset,
1377	.force_speed_duplex	= e1000_phy_force_speed_duplex_80003es2lan,
1378	.get_cfg_done		= e1000_get_cfg_done_80003es2lan,
1379	.get_cable_length	= e1000_get_cable_length_80003es2lan,
1380	.get_info		= e1000e_get_phy_info_m88,
1381	.read_reg		= e1000_read_phy_reg_gg82563_80003es2lan,
1382	.release		= e1000_release_phy_80003es2lan,
1383	.reset			= e1000e_phy_hw_reset_generic,
1384	.set_d0_lplu_state	= NULL,
1385	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1386	.write_reg		= e1000_write_phy_reg_gg82563_80003es2lan,
1387	.cfg_on_link_up		= e1000_cfg_on_link_up_80003es2lan,
1388};
1389
1390static const struct e1000_nvm_operations es2_nvm_ops = {
1391	.acquire		= e1000_acquire_nvm_80003es2lan,
1392	.read			= e1000e_read_nvm_eerd,
1393	.release		= e1000_release_nvm_80003es2lan,
1394	.reload			= e1000e_reload_nvm_generic,
1395	.update			= e1000e_update_nvm_checksum_generic,
1396	.valid_led_default	= e1000e_valid_led_default,
1397	.validate		= e1000e_validate_nvm_checksum_generic,
1398	.write			= e1000_write_nvm_80003es2lan,
1399};
1400
1401const struct e1000_info e1000_es2_info = {
1402	.mac			= e1000_80003es2lan,
1403	.flags			= FLAG_HAS_HW_VLAN_FILTER
1404				  | FLAG_HAS_JUMBO_FRAMES
1405				  | FLAG_HAS_WOL
1406				  | FLAG_APME_IN_CTRL3
1407				  | FLAG_HAS_CTRLEXT_ON_LOAD
1408				  | FLAG_RX_NEEDS_RESTART /* errata */
1409				  | FLAG_TARC_SET_BIT_ZERO /* errata */
1410				  | FLAG_APME_CHECK_PORT_B
1411				  | FLAG_DISABLE_FC_PAUSE_TIME, /* errata */
1412	.flags2			= FLAG2_DMA_BURST,
1413	.pba			= 38,
1414	.max_hw_frame_size	= DEFAULT_JUMBO,
1415	.get_variants		= e1000_get_variants_80003es2lan,
1416	.mac_ops		= &es2_mac_ops,
1417	.phy_ops		= &es2_phy_ops,
1418	.nvm_ops		= &es2_nvm_ops,
1419};