Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2006 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#include "e1000.h"
   5#include <net/ip6_checksum.h>
   6#include <linux/io.h>
   7#include <linux/prefetch.h>
   8#include <linux/bitops.h>
   9#include <linux/if_vlan.h>
  10
  11char e1000_driver_name[] = "e1000";
  12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
 
 
  13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  14
  15/* e1000_pci_tbl - PCI Device ID Table
  16 *
  17 * Last entry must be all 0s
  18 *
  19 * Macro expands to...
  20 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  21 */
  22static const struct pci_device_id e1000_pci_tbl[] = {
  23	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  24	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  25	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  26	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  27	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  28	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  29	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  30	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  31	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  32	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  33	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  34	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  35	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  36	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  37	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  38	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  39	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  40	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  41	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  42	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  43	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  44	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  45	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  46	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  47	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  48	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  49	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  50	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  51	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  53	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  54	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  55	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  56	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  57	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  58	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  59	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  60	/* required last entry */
  61	{0,}
  62};
  63
  64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  65
  66int e1000_up(struct e1000_adapter *adapter);
  67void e1000_down(struct e1000_adapter *adapter);
  68void e1000_reinit_locked(struct e1000_adapter *adapter);
  69void e1000_reset(struct e1000_adapter *adapter);
  70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
  75				    struct e1000_tx_ring *txdr);
  76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
  77				    struct e1000_rx_ring *rxdr);
  78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
  79				    struct e1000_tx_ring *tx_ring);
  80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
  81				    struct e1000_rx_ring *rx_ring);
  82void e1000_update_stats(struct e1000_adapter *adapter);
  83
  84static int e1000_init_module(void);
  85static void e1000_exit_module(void);
  86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
  87static void e1000_remove(struct pci_dev *pdev);
  88static int e1000_alloc_queues(struct e1000_adapter *adapter);
  89static int e1000_sw_init(struct e1000_adapter *adapter);
  90int e1000_open(struct net_device *netdev);
  91int e1000_close(struct net_device *netdev);
  92static void e1000_configure_tx(struct e1000_adapter *adapter);
  93static void e1000_configure_rx(struct e1000_adapter *adapter);
  94static void e1000_setup_rctl(struct e1000_adapter *adapter);
  95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
  96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
  97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
  98				struct e1000_tx_ring *tx_ring);
  99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 100				struct e1000_rx_ring *rx_ring);
 101static void e1000_set_rx_mode(struct net_device *netdev);
 102static void e1000_update_phy_info_task(struct work_struct *work);
 103static void e1000_watchdog(struct work_struct *work);
 104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 106				    struct net_device *netdev);
 107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 108static int e1000_set_mac(struct net_device *netdev, void *p);
 109static irqreturn_t e1000_intr(int irq, void *data);
 110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 111			       struct e1000_tx_ring *tx_ring);
 112static int e1000_clean(struct napi_struct *napi, int budget);
 113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 114			       struct e1000_rx_ring *rx_ring,
 115			       int *work_done, int work_to_do);
 116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 117				     struct e1000_rx_ring *rx_ring,
 118				     int *work_done, int work_to_do);
 119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 120					 struct e1000_rx_ring *rx_ring,
 121					 int cleaned_count)
 122{
 123}
 124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 125				   struct e1000_rx_ring *rx_ring,
 126				   int cleaned_count);
 127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 128					 struct e1000_rx_ring *rx_ring,
 129					 int cleaned_count);
 130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 132			   int cmd);
 133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
 136static void e1000_reset_task(struct work_struct *work);
 137static void e1000_smartspeed(struct e1000_adapter *adapter);
 138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 139				       struct sk_buff *skb);
 140
 141static bool e1000_vlan_used(struct e1000_adapter *adapter);
 142static void e1000_vlan_mode(struct net_device *netdev,
 143			    netdev_features_t features);
 144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 145				     bool filter_on);
 146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 147				 __be16 proto, u16 vid);
 148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 149				  __be16 proto, u16 vid);
 150static void e1000_restore_vlan(struct e1000_adapter *adapter);
 151
 152static int __maybe_unused e1000_suspend(struct device *dev);
 153static int __maybe_unused e1000_resume(struct device *dev);
 
 
 154static void e1000_shutdown(struct pci_dev *pdev);
 155
 156#ifdef CONFIG_NET_POLL_CONTROLLER
 157/* for netdump / net console */
 158static void e1000_netpoll (struct net_device *netdev);
 159#endif
 160
 161#define COPYBREAK_DEFAULT 256
 162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 163module_param(copybreak, uint, 0644);
 164MODULE_PARM_DESC(copybreak,
 165	"Maximum size of packet that is copied to a new buffer on receive");
 166
 167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 168						pci_channel_state_t state);
 169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 170static void e1000_io_resume(struct pci_dev *pdev);
 171
 172static const struct pci_error_handlers e1000_err_handler = {
 173	.error_detected = e1000_io_error_detected,
 174	.slot_reset = e1000_io_slot_reset,
 175	.resume = e1000_io_resume,
 176};
 177
 178static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
 179
 180static struct pci_driver e1000_driver = {
 181	.name     = e1000_driver_name,
 182	.id_table = e1000_pci_tbl,
 183	.probe    = e1000_probe,
 184	.remove   = e1000_remove,
 185	.driver = {
 186		.pm = &e1000_pm_ops,
 187	},
 
 
 188	.shutdown = e1000_shutdown,
 189	.err_handler = &e1000_err_handler
 190};
 191
 192MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 193MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 194MODULE_LICENSE("GPL v2");
 
 195
 196#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 197static int debug = -1;
 198module_param(debug, int, 0);
 199MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 200
 201/**
 202 * e1000_get_hw_dev - helper function for getting netdev
 203 * @hw: pointer to HW struct
 204 *
 205 * return device used by hardware layer to print debugging information
 206 *
 207 **/
 208struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 209{
 210	struct e1000_adapter *adapter = hw->back;
 211	return adapter->netdev;
 212}
 213
 214/**
 215 * e1000_init_module - Driver Registration Routine
 216 *
 217 * e1000_init_module is the first routine called when the driver is
 218 * loaded. All it does is register with the PCI subsystem.
 219 **/
 220static int __init e1000_init_module(void)
 221{
 222	int ret;
 223	pr_info("%s\n", e1000_driver_string);
 224
 225	pr_info("%s\n", e1000_copyright);
 226
 227	ret = pci_register_driver(&e1000_driver);
 228	if (copybreak != COPYBREAK_DEFAULT) {
 229		if (copybreak == 0)
 230			pr_info("copybreak disabled\n");
 231		else
 232			pr_info("copybreak enabled for "
 233				   "packets <= %u bytes\n", copybreak);
 234	}
 235	return ret;
 236}
 237
 238module_init(e1000_init_module);
 239
 240/**
 241 * e1000_exit_module - Driver Exit Cleanup Routine
 242 *
 243 * e1000_exit_module is called just before the driver is removed
 244 * from memory.
 245 **/
 246static void __exit e1000_exit_module(void)
 247{
 248	pci_unregister_driver(&e1000_driver);
 249}
 250
 251module_exit(e1000_exit_module);
 252
 253static int e1000_request_irq(struct e1000_adapter *adapter)
 254{
 255	struct net_device *netdev = adapter->netdev;
 256	irq_handler_t handler = e1000_intr;
 257	int irq_flags = IRQF_SHARED;
 258	int err;
 259
 260	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 261			  netdev);
 262	if (err) {
 263		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 264	}
 265
 266	return err;
 267}
 268
 269static void e1000_free_irq(struct e1000_adapter *adapter)
 270{
 271	struct net_device *netdev = adapter->netdev;
 272
 273	free_irq(adapter->pdev->irq, netdev);
 274}
 275
 276/**
 277 * e1000_irq_disable - Mask off interrupt generation on the NIC
 278 * @adapter: board private structure
 279 **/
 280static void e1000_irq_disable(struct e1000_adapter *adapter)
 281{
 282	struct e1000_hw *hw = &adapter->hw;
 283
 284	ew32(IMC, ~0);
 285	E1000_WRITE_FLUSH();
 286	synchronize_irq(adapter->pdev->irq);
 287}
 288
 289/**
 290 * e1000_irq_enable - Enable default interrupt generation settings
 291 * @adapter: board private structure
 292 **/
 293static void e1000_irq_enable(struct e1000_adapter *adapter)
 294{
 295	struct e1000_hw *hw = &adapter->hw;
 296
 297	ew32(IMS, IMS_ENABLE_MASK);
 298	E1000_WRITE_FLUSH();
 299}
 300
 301static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 302{
 303	struct e1000_hw *hw = &adapter->hw;
 304	struct net_device *netdev = adapter->netdev;
 305	u16 vid = hw->mng_cookie.vlan_id;
 306	u16 old_vid = adapter->mng_vlan_id;
 307
 308	if (!e1000_vlan_used(adapter))
 309		return;
 310
 311	if (!test_bit(vid, adapter->active_vlans)) {
 312		if (hw->mng_cookie.status &
 313		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 314			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 315			adapter->mng_vlan_id = vid;
 316		} else {
 317			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 318		}
 319		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 320		    (vid != old_vid) &&
 321		    !test_bit(old_vid, adapter->active_vlans))
 322			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 323					       old_vid);
 324	} else {
 325		adapter->mng_vlan_id = vid;
 326	}
 327}
 328
 329static void e1000_init_manageability(struct e1000_adapter *adapter)
 330{
 331	struct e1000_hw *hw = &adapter->hw;
 332
 333	if (adapter->en_mng_pt) {
 334		u32 manc = er32(MANC);
 335
 336		/* disable hardware interception of ARP */
 337		manc &= ~(E1000_MANC_ARP_EN);
 338
 339		ew32(MANC, manc);
 340	}
 341}
 342
 343static void e1000_release_manageability(struct e1000_adapter *adapter)
 344{
 345	struct e1000_hw *hw = &adapter->hw;
 346
 347	if (adapter->en_mng_pt) {
 348		u32 manc = er32(MANC);
 349
 350		/* re-enable hardware interception of ARP */
 351		manc |= E1000_MANC_ARP_EN;
 352
 353		ew32(MANC, manc);
 354	}
 355}
 356
 357/**
 358 * e1000_configure - configure the hardware for RX and TX
 359 * @adapter: private board structure
 360 **/
 361static void e1000_configure(struct e1000_adapter *adapter)
 362{
 363	struct net_device *netdev = adapter->netdev;
 364	int i;
 365
 366	e1000_set_rx_mode(netdev);
 367
 368	e1000_restore_vlan(adapter);
 369	e1000_init_manageability(adapter);
 370
 371	e1000_configure_tx(adapter);
 372	e1000_setup_rctl(adapter);
 373	e1000_configure_rx(adapter);
 374	/* call E1000_DESC_UNUSED which always leaves
 375	 * at least 1 descriptor unused to make sure
 376	 * next_to_use != next_to_clean
 377	 */
 378	for (i = 0; i < adapter->num_rx_queues; i++) {
 379		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 380		adapter->alloc_rx_buf(adapter, ring,
 381				      E1000_DESC_UNUSED(ring));
 382	}
 383}
 384
 385int e1000_up(struct e1000_adapter *adapter)
 386{
 387	struct e1000_hw *hw = &adapter->hw;
 388
 389	/* hardware has been reset, we need to reload some things */
 390	e1000_configure(adapter);
 391
 392	clear_bit(__E1000_DOWN, &adapter->flags);
 393
 394	napi_enable(&adapter->napi);
 395
 396	e1000_irq_enable(adapter);
 397
 398	netif_wake_queue(adapter->netdev);
 399
 400	/* fire a link change interrupt to start the watchdog */
 401	ew32(ICS, E1000_ICS_LSC);
 402	return 0;
 403}
 404
 405/**
 406 * e1000_power_up_phy - restore link in case the phy was powered down
 407 * @adapter: address of board private structure
 408 *
 409 * The phy may be powered down to save power and turn off link when the
 410 * driver is unloaded and wake on lan is not enabled (among others)
 411 * *** this routine MUST be followed by a call to e1000_reset ***
 412 **/
 413void e1000_power_up_phy(struct e1000_adapter *adapter)
 414{
 415	struct e1000_hw *hw = &adapter->hw;
 416	u16 mii_reg = 0;
 417
 418	/* Just clear the power down bit to wake the phy back up */
 419	if (hw->media_type == e1000_media_type_copper) {
 420		/* according to the manual, the phy will retain its
 421		 * settings across a power-down/up cycle
 422		 */
 423		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 424		mii_reg &= ~MII_CR_POWER_DOWN;
 425		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 426	}
 427}
 428
 429static void e1000_power_down_phy(struct e1000_adapter *adapter)
 430{
 431	struct e1000_hw *hw = &adapter->hw;
 432
 433	/* Power down the PHY so no link is implied when interface is down *
 434	 * The PHY cannot be powered down if any of the following is true *
 435	 * (a) WoL is enabled
 436	 * (b) AMT is active
 437	 * (c) SoL/IDER session is active
 438	 */
 439	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 440	   hw->media_type == e1000_media_type_copper) {
 441		u16 mii_reg = 0;
 442
 443		switch (hw->mac_type) {
 444		case e1000_82540:
 445		case e1000_82545:
 446		case e1000_82545_rev_3:
 447		case e1000_82546:
 448		case e1000_ce4100:
 449		case e1000_82546_rev_3:
 450		case e1000_82541:
 451		case e1000_82541_rev_2:
 452		case e1000_82547:
 453		case e1000_82547_rev_2:
 454			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 455				goto out;
 456			break;
 457		default:
 458			goto out;
 459		}
 460		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 461		mii_reg |= MII_CR_POWER_DOWN;
 462		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 463		msleep(1);
 464	}
 465out:
 466	return;
 467}
 468
 469static void e1000_down_and_stop(struct e1000_adapter *adapter)
 470{
 471	set_bit(__E1000_DOWN, &adapter->flags);
 472
 473	cancel_delayed_work_sync(&adapter->watchdog_task);
 474
 475	/*
 476	 * Since the watchdog task can reschedule other tasks, we should cancel
 477	 * it first, otherwise we can run into the situation when a work is
 478	 * still running after the adapter has been turned down.
 479	 */
 480
 481	cancel_delayed_work_sync(&adapter->phy_info_task);
 482	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 483
 484	/* Only kill reset task if adapter is not resetting */
 485	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 486		cancel_work_sync(&adapter->reset_task);
 487}
 488
 489void e1000_down(struct e1000_adapter *adapter)
 490{
 491	struct e1000_hw *hw = &adapter->hw;
 492	struct net_device *netdev = adapter->netdev;
 493	u32 rctl, tctl;
 494
 495	/* disable receives in the hardware */
 496	rctl = er32(RCTL);
 497	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 498	/* flush and sleep below */
 499
 500	netif_tx_disable(netdev);
 501
 502	/* disable transmits in the hardware */
 503	tctl = er32(TCTL);
 504	tctl &= ~E1000_TCTL_EN;
 505	ew32(TCTL, tctl);
 506	/* flush both disables and wait for them to finish */
 507	E1000_WRITE_FLUSH();
 508	msleep(10);
 509
 510	/* Set the carrier off after transmits have been disabled in the
 511	 * hardware, to avoid race conditions with e1000_watchdog() (which
 512	 * may be running concurrently to us, checking for the carrier
 513	 * bit to decide whether it should enable transmits again). Such
 514	 * a race condition would result into transmission being disabled
 515	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 516	 */
 517	netif_carrier_off(netdev);
 518
 519	napi_disable(&adapter->napi);
 520
 521	e1000_irq_disable(adapter);
 522
 523	/* Setting DOWN must be after irq_disable to prevent
 524	 * a screaming interrupt.  Setting DOWN also prevents
 525	 * tasks from rescheduling.
 526	 */
 527	e1000_down_and_stop(adapter);
 528
 529	adapter->link_speed = 0;
 530	adapter->link_duplex = 0;
 531
 532	e1000_reset(adapter);
 533	e1000_clean_all_tx_rings(adapter);
 534	e1000_clean_all_rx_rings(adapter);
 535}
 536
 537void e1000_reinit_locked(struct e1000_adapter *adapter)
 538{
 
 539	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 540		msleep(1);
 541
 542	/* only run the task if not already down */
 543	if (!test_bit(__E1000_DOWN, &adapter->flags)) {
 544		e1000_down(adapter);
 545		e1000_up(adapter);
 546	}
 547
 548	clear_bit(__E1000_RESETTING, &adapter->flags);
 549}
 550
 551void e1000_reset(struct e1000_adapter *adapter)
 552{
 553	struct e1000_hw *hw = &adapter->hw;
 554	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 555	bool legacy_pba_adjust = false;
 556	u16 hwm;
 557
 558	/* Repartition Pba for greater than 9k mtu
 559	 * To take effect CTRL.RST is required.
 560	 */
 561
 562	switch (hw->mac_type) {
 563	case e1000_82542_rev2_0:
 564	case e1000_82542_rev2_1:
 565	case e1000_82543:
 566	case e1000_82544:
 567	case e1000_82540:
 568	case e1000_82541:
 569	case e1000_82541_rev_2:
 570		legacy_pba_adjust = true;
 571		pba = E1000_PBA_48K;
 572		break;
 573	case e1000_82545:
 574	case e1000_82545_rev_3:
 575	case e1000_82546:
 576	case e1000_ce4100:
 577	case e1000_82546_rev_3:
 578		pba = E1000_PBA_48K;
 579		break;
 580	case e1000_82547:
 581	case e1000_82547_rev_2:
 582		legacy_pba_adjust = true;
 583		pba = E1000_PBA_30K;
 584		break;
 585	case e1000_undefined:
 586	case e1000_num_macs:
 587		break;
 588	}
 589
 590	if (legacy_pba_adjust) {
 591		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 592			pba -= 8; /* allocate more FIFO for Tx */
 593
 594		if (hw->mac_type == e1000_82547) {
 595			adapter->tx_fifo_head = 0;
 596			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 597			adapter->tx_fifo_size =
 598				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 599			atomic_set(&adapter->tx_fifo_stall, 0);
 600		}
 601	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 602		/* adjust PBA for jumbo frames */
 603		ew32(PBA, pba);
 604
 605		/* To maintain wire speed transmits, the Tx FIFO should be
 606		 * large enough to accommodate two full transmit packets,
 607		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 608		 * the Rx FIFO should be large enough to accommodate at least
 609		 * one full receive packet and is similarly rounded up and
 610		 * expressed in KB.
 611		 */
 612		pba = er32(PBA);
 613		/* upper 16 bits has Tx packet buffer allocation size in KB */
 614		tx_space = pba >> 16;
 615		/* lower 16 bits has Rx packet buffer allocation size in KB */
 616		pba &= 0xffff;
 617		/* the Tx fifo also stores 16 bytes of information about the Tx
 618		 * but don't include ethernet FCS because hardware appends it
 619		 */
 620		min_tx_space = (hw->max_frame_size +
 621				sizeof(struct e1000_tx_desc) -
 622				ETH_FCS_LEN) * 2;
 623		min_tx_space = ALIGN(min_tx_space, 1024);
 624		min_tx_space >>= 10;
 625		/* software strips receive CRC, so leave room for it */
 626		min_rx_space = hw->max_frame_size;
 627		min_rx_space = ALIGN(min_rx_space, 1024);
 628		min_rx_space >>= 10;
 629
 630		/* If current Tx allocation is less than the min Tx FIFO size,
 631		 * and the min Tx FIFO size is less than the current Rx FIFO
 632		 * allocation, take space away from current Rx allocation
 633		 */
 634		if (tx_space < min_tx_space &&
 635		    ((min_tx_space - tx_space) < pba)) {
 636			pba = pba - (min_tx_space - tx_space);
 637
 638			/* PCI/PCIx hardware has PBA alignment constraints */
 639			switch (hw->mac_type) {
 640			case e1000_82545 ... e1000_82546_rev_3:
 641				pba &= ~(E1000_PBA_8K - 1);
 642				break;
 643			default:
 644				break;
 645			}
 646
 647			/* if short on Rx space, Rx wins and must trump Tx
 648			 * adjustment or use Early Receive if available
 649			 */
 650			if (pba < min_rx_space)
 651				pba = min_rx_space;
 652		}
 653	}
 654
 655	ew32(PBA, pba);
 656
 657	/* flow control settings:
 658	 * The high water mark must be low enough to fit one full frame
 659	 * (or the size used for early receive) above it in the Rx FIFO.
 660	 * Set it to the lower of:
 661	 * - 90% of the Rx FIFO size, and
 662	 * - the full Rx FIFO size minus the early receive size (for parts
 663	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 664	 * - the full Rx FIFO size minus one full frame
 665	 */
 666	hwm = min(((pba << 10) * 9 / 10),
 667		  ((pba << 10) - hw->max_frame_size));
 668
 669	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 670	hw->fc_low_water = hw->fc_high_water - 8;
 671	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 672	hw->fc_send_xon = 1;
 673	hw->fc = hw->original_fc;
 674
 675	/* Allow time for pending master requests to run */
 676	e1000_reset_hw(hw);
 677	if (hw->mac_type >= e1000_82544)
 678		ew32(WUC, 0);
 679
 680	if (e1000_init_hw(hw))
 681		e_dev_err("Hardware Error\n");
 682	e1000_update_mng_vlan(adapter);
 683
 684	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 685	if (hw->mac_type >= e1000_82544 &&
 686	    hw->autoneg == 1 &&
 687	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 688		u32 ctrl = er32(CTRL);
 689		/* clear phy power management bit if we are in gig only mode,
 690		 * which if enabled will attempt negotiation to 100Mb, which
 691		 * can cause a loss of link at power off or driver unload
 692		 */
 693		ctrl &= ~E1000_CTRL_SWDPIN3;
 694		ew32(CTRL, ctrl);
 695	}
 696
 697	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 698	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 699
 700	e1000_reset_adaptive(hw);
 701	e1000_phy_get_info(hw, &adapter->phy_info);
 702
 703	e1000_release_manageability(adapter);
 704}
 705
 706/* Dump the eeprom for users having checksum issues */
 707static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 708{
 709	struct net_device *netdev = adapter->netdev;
 710	struct ethtool_eeprom eeprom;
 711	const struct ethtool_ops *ops = netdev->ethtool_ops;
 712	u8 *data;
 713	int i;
 714	u16 csum_old, csum_new = 0;
 715
 716	eeprom.len = ops->get_eeprom_len(netdev);
 717	eeprom.offset = 0;
 718
 719	data = kmalloc(eeprom.len, GFP_KERNEL);
 720	if (!data)
 721		return;
 722
 723	ops->get_eeprom(netdev, &eeprom, data);
 724
 725	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 726		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 727	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 728		csum_new += data[i] + (data[i + 1] << 8);
 729	csum_new = EEPROM_SUM - csum_new;
 730
 731	pr_err("/*********************/\n");
 732	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 733	pr_err("Calculated              : 0x%04x\n", csum_new);
 734
 735	pr_err("Offset    Values\n");
 736	pr_err("========  ======\n");
 737	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 738
 739	pr_err("Include this output when contacting your support provider.\n");
 740	pr_err("This is not a software error! Something bad happened to\n");
 741	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 742	pr_err("result in further problems, possibly loss of data,\n");
 743	pr_err("corruption or system hangs!\n");
 744	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 745	pr_err("which is invalid and requires you to set the proper MAC\n");
 746	pr_err("address manually before continuing to enable this network\n");
 747	pr_err("device. Please inspect the EEPROM dump and report the\n");
 748	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 749	pr_err("/*********************/\n");
 750
 751	kfree(data);
 752}
 753
 754/**
 755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 756 * @pdev: PCI device information struct
 757 *
 758 * Return true if an adapter needs ioport resources
 759 **/
 760static int e1000_is_need_ioport(struct pci_dev *pdev)
 761{
 762	switch (pdev->device) {
 763	case E1000_DEV_ID_82540EM:
 764	case E1000_DEV_ID_82540EM_LOM:
 765	case E1000_DEV_ID_82540EP:
 766	case E1000_DEV_ID_82540EP_LOM:
 767	case E1000_DEV_ID_82540EP_LP:
 768	case E1000_DEV_ID_82541EI:
 769	case E1000_DEV_ID_82541EI_MOBILE:
 770	case E1000_DEV_ID_82541ER:
 771	case E1000_DEV_ID_82541ER_LOM:
 772	case E1000_DEV_ID_82541GI:
 773	case E1000_DEV_ID_82541GI_LF:
 774	case E1000_DEV_ID_82541GI_MOBILE:
 775	case E1000_DEV_ID_82544EI_COPPER:
 776	case E1000_DEV_ID_82544EI_FIBER:
 777	case E1000_DEV_ID_82544GC_COPPER:
 778	case E1000_DEV_ID_82544GC_LOM:
 779	case E1000_DEV_ID_82545EM_COPPER:
 780	case E1000_DEV_ID_82545EM_FIBER:
 781	case E1000_DEV_ID_82546EB_COPPER:
 782	case E1000_DEV_ID_82546EB_FIBER:
 783	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 784		return true;
 785	default:
 786		return false;
 787	}
 788}
 789
 790static netdev_features_t e1000_fix_features(struct net_device *netdev,
 791	netdev_features_t features)
 792{
 793	/* Since there is no support for separate Rx/Tx vlan accel
 794	 * enable/disable make sure Tx flag is always in same state as Rx.
 795	 */
 796	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 797		features |= NETIF_F_HW_VLAN_CTAG_TX;
 798	else
 799		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 800
 801	return features;
 802}
 803
 804static int e1000_set_features(struct net_device *netdev,
 805	netdev_features_t features)
 806{
 807	struct e1000_adapter *adapter = netdev_priv(netdev);
 808	netdev_features_t changed = features ^ netdev->features;
 809
 810	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 811		e1000_vlan_mode(netdev, features);
 812
 813	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 814		return 0;
 815
 816	netdev->features = features;
 817	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 818
 819	if (netif_running(netdev))
 820		e1000_reinit_locked(adapter);
 821	else
 822		e1000_reset(adapter);
 823
 824	return 1;
 825}
 826
 827static const struct net_device_ops e1000_netdev_ops = {
 828	.ndo_open		= e1000_open,
 829	.ndo_stop		= e1000_close,
 830	.ndo_start_xmit		= e1000_xmit_frame,
 831	.ndo_set_rx_mode	= e1000_set_rx_mode,
 832	.ndo_set_mac_address	= e1000_set_mac,
 833	.ndo_tx_timeout		= e1000_tx_timeout,
 834	.ndo_change_mtu		= e1000_change_mtu,
 835	.ndo_eth_ioctl		= e1000_ioctl,
 836	.ndo_validate_addr	= eth_validate_addr,
 837	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 838	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 839#ifdef CONFIG_NET_POLL_CONTROLLER
 840	.ndo_poll_controller	= e1000_netpoll,
 841#endif
 842	.ndo_fix_features	= e1000_fix_features,
 843	.ndo_set_features	= e1000_set_features,
 844};
 845
 846/**
 847 * e1000_init_hw_struct - initialize members of hw struct
 848 * @adapter: board private struct
 849 * @hw: structure used by e1000_hw.c
 850 *
 851 * Factors out initialization of the e1000_hw struct to its own function
 852 * that can be called very early at init (just after struct allocation).
 853 * Fields are initialized based on PCI device information and
 854 * OS network device settings (MTU size).
 855 * Returns negative error codes if MAC type setup fails.
 856 */
 857static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 858				struct e1000_hw *hw)
 859{
 860	struct pci_dev *pdev = adapter->pdev;
 861
 862	/* PCI config space info */
 863	hw->vendor_id = pdev->vendor;
 864	hw->device_id = pdev->device;
 865	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 866	hw->subsystem_id = pdev->subsystem_device;
 867	hw->revision_id = pdev->revision;
 868
 869	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 870
 871	hw->max_frame_size = adapter->netdev->mtu +
 872			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 873	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 874
 875	/* identify the MAC */
 876	if (e1000_set_mac_type(hw)) {
 877		e_err(probe, "Unknown MAC Type\n");
 878		return -EIO;
 879	}
 880
 881	switch (hw->mac_type) {
 882	default:
 883		break;
 884	case e1000_82541:
 885	case e1000_82547:
 886	case e1000_82541_rev_2:
 887	case e1000_82547_rev_2:
 888		hw->phy_init_script = 1;
 889		break;
 890	}
 891
 892	e1000_set_media_type(hw);
 893	e1000_get_bus_info(hw);
 894
 895	hw->wait_autoneg_complete = false;
 896	hw->tbi_compatibility_en = true;
 897	hw->adaptive_ifs = true;
 898
 899	/* Copper options */
 900
 901	if (hw->media_type == e1000_media_type_copper) {
 902		hw->mdix = AUTO_ALL_MODES;
 903		hw->disable_polarity_correction = false;
 904		hw->master_slave = E1000_MASTER_SLAVE;
 905	}
 906
 907	return 0;
 908}
 909
 910/**
 911 * e1000_probe - Device Initialization Routine
 912 * @pdev: PCI device information struct
 913 * @ent: entry in e1000_pci_tbl
 914 *
 915 * Returns 0 on success, negative on failure
 916 *
 917 * e1000_probe initializes an adapter identified by a pci_dev structure.
 918 * The OS initialization, configuring of the adapter private structure,
 919 * and a hardware reset occur.
 920 **/
 921static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 922{
 923	struct net_device *netdev;
 924	struct e1000_adapter *adapter = NULL;
 925	struct e1000_hw *hw;
 926
 927	static int cards_found;
 928	static int global_quad_port_a; /* global ksp3 port a indication */
 929	int i, err, pci_using_dac;
 930	u16 eeprom_data = 0;
 931	u16 tmp = 0;
 932	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 933	int bars, need_ioport;
 934	bool disable_dev = false;
 935
 936	/* do not allocate ioport bars when not needed */
 937	need_ioport = e1000_is_need_ioport(pdev);
 938	if (need_ioport) {
 939		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 940		err = pci_enable_device(pdev);
 941	} else {
 942		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 943		err = pci_enable_device_mem(pdev);
 944	}
 945	if (err)
 946		return err;
 947
 948	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 949	if (err)
 950		goto err_pci_reg;
 951
 952	pci_set_master(pdev);
 953	err = pci_save_state(pdev);
 954	if (err)
 955		goto err_alloc_etherdev;
 956
 957	err = -ENOMEM;
 958	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 959	if (!netdev)
 960		goto err_alloc_etherdev;
 961
 962	SET_NETDEV_DEV(netdev, &pdev->dev);
 963
 964	pci_set_drvdata(pdev, netdev);
 965	adapter = netdev_priv(netdev);
 966	adapter->netdev = netdev;
 967	adapter->pdev = pdev;
 968	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 969	adapter->bars = bars;
 970	adapter->need_ioport = need_ioport;
 971
 972	hw = &adapter->hw;
 973	hw->back = adapter;
 974
 975	err = -EIO;
 976	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
 977	if (!hw->hw_addr)
 978		goto err_ioremap;
 979
 980	if (adapter->need_ioport) {
 981		for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
 982			if (pci_resource_len(pdev, i) == 0)
 983				continue;
 984			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
 985				hw->io_base = pci_resource_start(pdev, i);
 986				break;
 987			}
 988		}
 989	}
 990
 991	/* make ready for any if (hw->...) below */
 992	err = e1000_init_hw_struct(adapter, hw);
 993	if (err)
 994		goto err_sw_init;
 995
 996	/* there is a workaround being applied below that limits
 997	 * 64-bit DMA addresses to 64-bit hardware.  There are some
 998	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
 999	 */
1000	pci_using_dac = 0;
1001	if ((hw->bus_type == e1000_bus_type_pcix) &&
1002	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1003		pci_using_dac = 1;
1004	} else {
1005		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1006		if (err) {
1007			pr_err("No usable DMA config, aborting\n");
1008			goto err_dma;
1009		}
1010	}
1011
1012	netdev->netdev_ops = &e1000_netdev_ops;
1013	e1000_set_ethtool_ops(netdev);
1014	netdev->watchdog_timeo = 5 * HZ;
1015	netif_napi_add(netdev, &adapter->napi, e1000_clean);
1016
1017	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1018
1019	adapter->bd_number = cards_found;
1020
1021	/* setup the private structure */
1022
1023	err = e1000_sw_init(adapter);
1024	if (err)
1025		goto err_sw_init;
1026
1027	err = -EIO;
1028	if (hw->mac_type == e1000_ce4100) {
1029		hw->ce4100_gbe_mdio_base_virt =
1030					ioremap(pci_resource_start(pdev, BAR_1),
1031						pci_resource_len(pdev, BAR_1));
1032
1033		if (!hw->ce4100_gbe_mdio_base_virt)
1034			goto err_mdio_ioremap;
1035	}
1036
1037	if (hw->mac_type >= e1000_82543) {
1038		netdev->hw_features = NETIF_F_SG |
1039				   NETIF_F_HW_CSUM |
1040				   NETIF_F_HW_VLAN_CTAG_RX;
1041		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1042				   NETIF_F_HW_VLAN_CTAG_FILTER;
1043	}
1044
1045	if ((hw->mac_type >= e1000_82544) &&
1046	   (hw->mac_type != e1000_82547))
1047		netdev->hw_features |= NETIF_F_TSO;
1048
1049	netdev->priv_flags |= IFF_SUPP_NOFCS;
1050
1051	netdev->features |= netdev->hw_features;
1052	netdev->hw_features |= (NETIF_F_RXCSUM |
1053				NETIF_F_RXALL |
1054				NETIF_F_RXFCS);
1055
1056	if (pci_using_dac) {
1057		netdev->features |= NETIF_F_HIGHDMA;
1058		netdev->vlan_features |= NETIF_F_HIGHDMA;
1059	}
1060
1061	netdev->vlan_features |= (NETIF_F_TSO |
1062				  NETIF_F_HW_CSUM |
1063				  NETIF_F_SG);
1064
1065	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1066	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1067	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1068		netdev->priv_flags |= IFF_UNICAST_FLT;
1069
1070	/* MTU range: 46 - 16110 */
1071	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1072	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1073
1074	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1075
1076	/* initialize eeprom parameters */
1077	if (e1000_init_eeprom_params(hw)) {
1078		e_err(probe, "EEPROM initialization failed\n");
1079		goto err_eeprom;
1080	}
1081
1082	/* before reading the EEPROM, reset the controller to
1083	 * put the device in a known good starting state
1084	 */
1085
1086	e1000_reset_hw(hw);
1087
1088	/* make sure the EEPROM is good */
1089	if (e1000_validate_eeprom_checksum(hw) < 0) {
1090		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1091		e1000_dump_eeprom(adapter);
1092		/* set MAC address to all zeroes to invalidate and temporary
1093		 * disable this device for the user. This blocks regular
1094		 * traffic while still permitting ethtool ioctls from reaching
1095		 * the hardware as well as allowing the user to run the
1096		 * interface after manually setting a hw addr using
1097		 * `ip set address`
1098		 */
1099		memset(hw->mac_addr, 0, netdev->addr_len);
1100	} else {
1101		/* copy the MAC address out of the EEPROM */
1102		if (e1000_read_mac_addr(hw))
1103			e_err(probe, "EEPROM Read Error\n");
1104	}
1105	/* don't block initialization here due to bad MAC address */
1106	eth_hw_addr_set(netdev, hw->mac_addr);
1107
1108	if (!is_valid_ether_addr(netdev->dev_addr))
1109		e_err(probe, "Invalid MAC Address\n");
1110
1111
1112	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1113	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1114			  e1000_82547_tx_fifo_stall_task);
1115	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1116	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1117
1118	e1000_check_options(adapter);
1119
1120	/* Initial Wake on LAN setting
1121	 * If APM wake is enabled in the EEPROM,
1122	 * enable the ACPI Magic Packet filter
1123	 */
1124
1125	switch (hw->mac_type) {
1126	case e1000_82542_rev2_0:
1127	case e1000_82542_rev2_1:
1128	case e1000_82543:
1129		break;
1130	case e1000_82544:
1131		e1000_read_eeprom(hw,
1132			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1133		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1134		break;
1135	case e1000_82546:
1136	case e1000_82546_rev_3:
1137		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1138			e1000_read_eeprom(hw,
1139				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1140			break;
1141		}
1142		fallthrough;
1143	default:
1144		e1000_read_eeprom(hw,
1145			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1146		break;
1147	}
1148	if (eeprom_data & eeprom_apme_mask)
1149		adapter->eeprom_wol |= E1000_WUFC_MAG;
1150
1151	/* now that we have the eeprom settings, apply the special cases
1152	 * where the eeprom may be wrong or the board simply won't support
1153	 * wake on lan on a particular port
1154	 */
1155	switch (pdev->device) {
1156	case E1000_DEV_ID_82546GB_PCIE:
1157		adapter->eeprom_wol = 0;
1158		break;
1159	case E1000_DEV_ID_82546EB_FIBER:
1160	case E1000_DEV_ID_82546GB_FIBER:
1161		/* Wake events only supported on port A for dual fiber
1162		 * regardless of eeprom setting
1163		 */
1164		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165			adapter->eeprom_wol = 0;
1166		break;
1167	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168		/* if quad port adapter, disable WoL on all but port A */
1169		if (global_quad_port_a != 0)
1170			adapter->eeprom_wol = 0;
1171		else
1172			adapter->quad_port_a = true;
1173		/* Reset for multiple quad port adapters */
1174		if (++global_quad_port_a == 4)
1175			global_quad_port_a = 0;
1176		break;
1177	}
1178
1179	/* initialize the wol settings based on the eeprom settings */
1180	adapter->wol = adapter->eeprom_wol;
1181	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1182
1183	/* Auto detect PHY address */
1184	if (hw->mac_type == e1000_ce4100) {
1185		for (i = 0; i < 32; i++) {
1186			hw->phy_addr = i;
1187			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1188
1189			if (tmp != 0 && tmp != 0xFF)
1190				break;
1191		}
1192
1193		if (i >= 32)
1194			goto err_eeprom;
1195	}
1196
1197	/* reset the hardware with the new settings */
1198	e1000_reset(adapter);
1199
1200	strcpy(netdev->name, "eth%d");
1201	err = register_netdev(netdev);
1202	if (err)
1203		goto err_register;
1204
1205	e1000_vlan_filter_on_off(adapter, false);
1206
1207	/* print bus type/speed/width info */
1208	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1209	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1210	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1211		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1212		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1213		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1214	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1215	       netdev->dev_addr);
1216
1217	/* carrier off reporting is important to ethtool even BEFORE open */
1218	netif_carrier_off(netdev);
1219
1220	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1221
1222	cards_found++;
1223	return 0;
1224
1225err_register:
1226err_eeprom:
1227	e1000_phy_hw_reset(hw);
1228
1229	if (hw->flash_address)
1230		iounmap(hw->flash_address);
1231	kfree(adapter->tx_ring);
1232	kfree(adapter->rx_ring);
1233err_dma:
1234err_sw_init:
1235err_mdio_ioremap:
1236	iounmap(hw->ce4100_gbe_mdio_base_virt);
1237	iounmap(hw->hw_addr);
1238err_ioremap:
1239	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1240	free_netdev(netdev);
1241err_alloc_etherdev:
1242	pci_release_selected_regions(pdev, bars);
1243err_pci_reg:
1244	if (!adapter || disable_dev)
1245		pci_disable_device(pdev);
1246	return err;
1247}
1248
1249/**
1250 * e1000_remove - Device Removal Routine
1251 * @pdev: PCI device information struct
1252 *
1253 * e1000_remove is called by the PCI subsystem to alert the driver
1254 * that it should release a PCI device. That could be caused by a
1255 * Hot-Plug event, or because the driver is going to be removed from
1256 * memory.
1257 **/
1258static void e1000_remove(struct pci_dev *pdev)
1259{
1260	struct net_device *netdev = pci_get_drvdata(pdev);
1261	struct e1000_adapter *adapter = netdev_priv(netdev);
1262	struct e1000_hw *hw = &adapter->hw;
1263	bool disable_dev;
1264
1265	e1000_down_and_stop(adapter);
1266	e1000_release_manageability(adapter);
1267
1268	unregister_netdev(netdev);
1269
1270	e1000_phy_hw_reset(hw);
1271
1272	kfree(adapter->tx_ring);
1273	kfree(adapter->rx_ring);
1274
1275	if (hw->mac_type == e1000_ce4100)
1276		iounmap(hw->ce4100_gbe_mdio_base_virt);
1277	iounmap(hw->hw_addr);
1278	if (hw->flash_address)
1279		iounmap(hw->flash_address);
1280	pci_release_selected_regions(pdev, adapter->bars);
1281
1282	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1283	free_netdev(netdev);
1284
1285	if (disable_dev)
1286		pci_disable_device(pdev);
1287}
1288
1289/**
1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1291 * @adapter: board private structure to initialize
1292 *
1293 * e1000_sw_init initializes the Adapter private data structure.
1294 * e1000_init_hw_struct MUST be called before this function
1295 **/
1296static int e1000_sw_init(struct e1000_adapter *adapter)
1297{
1298	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1299
1300	adapter->num_tx_queues = 1;
1301	adapter->num_rx_queues = 1;
1302
1303	if (e1000_alloc_queues(adapter)) {
1304		e_err(probe, "Unable to allocate memory for queues\n");
1305		return -ENOMEM;
1306	}
1307
1308	/* Explicitly disable IRQ since the NIC can be in any state. */
1309	e1000_irq_disable(adapter);
1310
1311	spin_lock_init(&adapter->stats_lock);
1312
1313	set_bit(__E1000_DOWN, &adapter->flags);
1314
1315	return 0;
1316}
1317
1318/**
1319 * e1000_alloc_queues - Allocate memory for all rings
1320 * @adapter: board private structure to initialize
1321 *
1322 * We allocate one ring per queue at run-time since we don't know the
1323 * number of queues at compile-time.
1324 **/
1325static int e1000_alloc_queues(struct e1000_adapter *adapter)
1326{
1327	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1328				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1329	if (!adapter->tx_ring)
1330		return -ENOMEM;
1331
1332	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1333				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1334	if (!adapter->rx_ring) {
1335		kfree(adapter->tx_ring);
1336		return -ENOMEM;
1337	}
1338
1339	return E1000_SUCCESS;
1340}
1341
1342/**
1343 * e1000_open - Called when a network interface is made active
1344 * @netdev: network interface device structure
1345 *
1346 * Returns 0 on success, negative value on failure
1347 *
1348 * The open entry point is called when a network interface is made
1349 * active by the system (IFF_UP).  At this point all resources needed
1350 * for transmit and receive operations are allocated, the interrupt
1351 * handler is registered with the OS, the watchdog task is started,
1352 * and the stack is notified that the interface is ready.
1353 **/
1354int e1000_open(struct net_device *netdev)
1355{
1356	struct e1000_adapter *adapter = netdev_priv(netdev);
1357	struct e1000_hw *hw = &adapter->hw;
1358	int err;
1359
1360	/* disallow open during test */
1361	if (test_bit(__E1000_TESTING, &adapter->flags))
1362		return -EBUSY;
1363
1364	netif_carrier_off(netdev);
1365
1366	/* allocate transmit descriptors */
1367	err = e1000_setup_all_tx_resources(adapter);
1368	if (err)
1369		goto err_setup_tx;
1370
1371	/* allocate receive descriptors */
1372	err = e1000_setup_all_rx_resources(adapter);
1373	if (err)
1374		goto err_setup_rx;
1375
1376	e1000_power_up_phy(adapter);
1377
1378	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1379	if ((hw->mng_cookie.status &
1380			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1381		e1000_update_mng_vlan(adapter);
1382	}
1383
1384	/* before we allocate an interrupt, we must be ready to handle it.
1385	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1386	 * as soon as we call pci_request_irq, so we have to setup our
1387	 * clean_rx handler before we do so.
1388	 */
1389	e1000_configure(adapter);
1390
1391	err = e1000_request_irq(adapter);
1392	if (err)
1393		goto err_req_irq;
1394
1395	/* From here on the code is the same as e1000_up() */
1396	clear_bit(__E1000_DOWN, &adapter->flags);
1397
1398	napi_enable(&adapter->napi);
1399
1400	e1000_irq_enable(adapter);
1401
1402	netif_start_queue(netdev);
1403
1404	/* fire a link status change interrupt to start the watchdog */
1405	ew32(ICS, E1000_ICS_LSC);
1406
1407	return E1000_SUCCESS;
1408
1409err_req_irq:
1410	e1000_power_down_phy(adapter);
1411	e1000_free_all_rx_resources(adapter);
1412err_setup_rx:
1413	e1000_free_all_tx_resources(adapter);
1414err_setup_tx:
1415	e1000_reset(adapter);
1416
1417	return err;
1418}
1419
1420/**
1421 * e1000_close - Disables a network interface
1422 * @netdev: network interface device structure
1423 *
1424 * Returns 0, this is not allowed to fail
1425 *
1426 * The close entry point is called when an interface is de-activated
1427 * by the OS.  The hardware is still under the drivers control, but
1428 * needs to be disabled.  A global MAC reset is issued to stop the
1429 * hardware, and all transmit and receive resources are freed.
1430 **/
1431int e1000_close(struct net_device *netdev)
1432{
1433	struct e1000_adapter *adapter = netdev_priv(netdev);
1434	struct e1000_hw *hw = &adapter->hw;
1435	int count = E1000_CHECK_RESET_COUNT;
1436
1437	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1438		usleep_range(10000, 20000);
1439
1440	WARN_ON(count < 0);
1441
1442	/* signal that we're down so that the reset task will no longer run */
1443	set_bit(__E1000_DOWN, &adapter->flags);
1444	clear_bit(__E1000_RESETTING, &adapter->flags);
1445
1446	e1000_down(adapter);
1447	e1000_power_down_phy(adapter);
1448	e1000_free_irq(adapter);
1449
1450	e1000_free_all_tx_resources(adapter);
1451	e1000_free_all_rx_resources(adapter);
1452
1453	/* kill manageability vlan ID if supported, but not if a vlan with
1454	 * the same ID is registered on the host OS (let 8021q kill it)
1455	 */
1456	if ((hw->mng_cookie.status &
1457	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1460				       adapter->mng_vlan_id);
1461	}
1462
1463	return 0;
1464}
1465
1466/**
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1471 **/
1472static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473				  unsigned long len)
1474{
1475	struct e1000_hw *hw = &adapter->hw;
1476	unsigned long begin = (unsigned long)start;
1477	unsigned long end = begin + len;
1478
1479	/* First rev 82545 and 82546 need to not allow any memory
1480	 * write location to cross 64k boundary due to errata 23
1481	 */
1482	if (hw->mac_type == e1000_82545 ||
1483	    hw->mac_type == e1000_ce4100 ||
1484	    hw->mac_type == e1000_82546) {
1485		return ((begin ^ (end - 1)) >> 16) == 0;
1486	}
1487
1488	return true;
1489}
1490
1491/**
1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493 * @adapter: board private structure
1494 * @txdr:    tx descriptor ring (for a specific queue) to setup
1495 *
1496 * Return 0 on success, negative on failure
1497 **/
1498static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499				    struct e1000_tx_ring *txdr)
1500{
1501	struct pci_dev *pdev = adapter->pdev;
1502	int size;
1503
1504	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1505	txdr->buffer_info = vzalloc(size);
1506	if (!txdr->buffer_info)
1507		return -ENOMEM;
1508
1509	/* round up to nearest 4K */
1510
1511	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512	txdr->size = ALIGN(txdr->size, 4096);
1513
1514	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1515					GFP_KERNEL);
1516	if (!txdr->desc) {
1517setup_tx_desc_die:
1518		vfree(txdr->buffer_info);
1519		return -ENOMEM;
1520	}
1521
1522	/* Fix for errata 23, can't cross 64kB boundary */
1523	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524		void *olddesc = txdr->desc;
1525		dma_addr_t olddma = txdr->dma;
1526		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527		      txdr->size, txdr->desc);
1528		/* Try again, without freeing the previous */
1529		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530						&txdr->dma, GFP_KERNEL);
1531		/* Failed allocation, critical failure */
1532		if (!txdr->desc) {
1533			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1534					  olddma);
1535			goto setup_tx_desc_die;
1536		}
1537
1538		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539			/* give up */
1540			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1541					  txdr->dma);
1542			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1543					  olddma);
1544			e_err(probe, "Unable to allocate aligned memory "
1545			      "for the transmit descriptor ring\n");
1546			vfree(txdr->buffer_info);
1547			return -ENOMEM;
1548		} else {
1549			/* Free old allocation, new allocation was successful */
1550			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551					  olddma);
1552		}
1553	}
1554	memset(txdr->desc, 0, txdr->size);
1555
1556	txdr->next_to_use = 0;
1557	txdr->next_to_clean = 0;
1558
1559	return 0;
1560}
1561
1562/**
1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564 * 				  (Descriptors) for all queues
1565 * @adapter: board private structure
1566 *
1567 * Return 0 on success, negative on failure
1568 **/
1569int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570{
1571	int i, err = 0;
1572
1573	for (i = 0; i < adapter->num_tx_queues; i++) {
1574		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1575		if (err) {
1576			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577			for (i-- ; i >= 0; i--)
1578				e1000_free_tx_resources(adapter,
1579							&adapter->tx_ring[i]);
1580			break;
1581		}
1582	}
1583
1584	return err;
1585}
1586
1587/**
1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589 * @adapter: board private structure
1590 *
1591 * Configure the Tx unit of the MAC after a reset.
1592 **/
1593static void e1000_configure_tx(struct e1000_adapter *adapter)
1594{
1595	u64 tdba;
1596	struct e1000_hw *hw = &adapter->hw;
1597	u32 tdlen, tctl, tipg;
1598	u32 ipgr1, ipgr2;
1599
1600	/* Setup the HW Tx Head and Tail descriptor pointers */
1601
1602	switch (adapter->num_tx_queues) {
1603	case 1:
1604	default:
1605		tdba = adapter->tx_ring[0].dma;
1606		tdlen = adapter->tx_ring[0].count *
1607			sizeof(struct e1000_tx_desc);
1608		ew32(TDLEN, tdlen);
1609		ew32(TDBAH, (tdba >> 32));
1610		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611		ew32(TDT, 0);
1612		ew32(TDH, 0);
1613		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614					   E1000_TDH : E1000_82542_TDH);
1615		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616					   E1000_TDT : E1000_82542_TDT);
1617		break;
1618	}
1619
1620	/* Set the default values for the Tx Inter Packet Gap timer */
1621	if ((hw->media_type == e1000_media_type_fiber ||
1622	     hw->media_type == e1000_media_type_internal_serdes))
1623		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624	else
1625		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626
1627	switch (hw->mac_type) {
1628	case e1000_82542_rev2_0:
1629	case e1000_82542_rev2_1:
1630		tipg = DEFAULT_82542_TIPG_IPGT;
1631		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633		break;
1634	default:
1635		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637		break;
1638	}
1639	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641	ew32(TIPG, tipg);
1642
1643	/* Set the Tx Interrupt Delay register */
1644
1645	ew32(TIDV, adapter->tx_int_delay);
1646	if (hw->mac_type >= e1000_82540)
1647		ew32(TADV, adapter->tx_abs_int_delay);
1648
1649	/* Program the Transmit Control Register */
1650
1651	tctl = er32(TCTL);
1652	tctl &= ~E1000_TCTL_CT;
1653	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655
1656	e1000_config_collision_dist(hw);
1657
1658	/* Setup Transmit Descriptor Settings for eop descriptor */
1659	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660
1661	/* only set IDE if we are delaying interrupts using the timers */
1662	if (adapter->tx_int_delay)
1663		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664
1665	if (hw->mac_type < e1000_82543)
1666		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667	else
1668		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669
1670	/* Cache if we're 82544 running in PCI-X because we'll
1671	 * need this to apply a workaround later in the send path.
1672	 */
1673	if (hw->mac_type == e1000_82544 &&
1674	    hw->bus_type == e1000_bus_type_pcix)
1675		adapter->pcix_82544 = true;
1676
1677	ew32(TCTL, tctl);
1678
1679}
1680
1681/**
1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683 * @adapter: board private structure
1684 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1685 *
1686 * Returns 0 on success, negative on failure
1687 **/
1688static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689				    struct e1000_rx_ring *rxdr)
1690{
1691	struct pci_dev *pdev = adapter->pdev;
1692	int size, desc_len;
1693
1694	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1695	rxdr->buffer_info = vzalloc(size);
1696	if (!rxdr->buffer_info)
1697		return -ENOMEM;
1698
1699	desc_len = sizeof(struct e1000_rx_desc);
1700
1701	/* Round up to nearest 4K */
1702
1703	rxdr->size = rxdr->count * desc_len;
1704	rxdr->size = ALIGN(rxdr->size, 4096);
1705
1706	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1707					GFP_KERNEL);
1708	if (!rxdr->desc) {
1709setup_rx_desc_die:
1710		vfree(rxdr->buffer_info);
1711		return -ENOMEM;
1712	}
1713
1714	/* Fix for errata 23, can't cross 64kB boundary */
1715	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716		void *olddesc = rxdr->desc;
1717		dma_addr_t olddma = rxdr->dma;
1718		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719		      rxdr->size, rxdr->desc);
1720		/* Try again, without freeing the previous */
1721		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722						&rxdr->dma, GFP_KERNEL);
1723		/* Failed allocation, critical failure */
1724		if (!rxdr->desc) {
1725			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1726					  olddma);
1727			goto setup_rx_desc_die;
1728		}
1729
1730		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1731			/* give up */
1732			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1733					  rxdr->dma);
1734			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735					  olddma);
1736			e_err(probe, "Unable to allocate aligned memory for "
1737			      "the Rx descriptor ring\n");
1738			goto setup_rx_desc_die;
1739		} else {
1740			/* Free old allocation, new allocation was successful */
1741			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742					  olddma);
1743		}
1744	}
1745	memset(rxdr->desc, 0, rxdr->size);
1746
1747	rxdr->next_to_clean = 0;
1748	rxdr->next_to_use = 0;
1749	rxdr->rx_skb_top = NULL;
1750
1751	return 0;
1752}
1753
1754/**
1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756 * 				  (Descriptors) for all queues
1757 * @adapter: board private structure
1758 *
1759 * Return 0 on success, negative on failure
1760 **/
1761int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762{
1763	int i, err = 0;
1764
1765	for (i = 0; i < adapter->num_rx_queues; i++) {
1766		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1767		if (err) {
1768			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769			for (i-- ; i >= 0; i--)
1770				e1000_free_rx_resources(adapter,
1771							&adapter->rx_ring[i]);
1772			break;
1773		}
1774	}
1775
1776	return err;
1777}
1778
1779/**
1780 * e1000_setup_rctl - configure the receive control registers
1781 * @adapter: Board private structure
1782 **/
1783static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784{
1785	struct e1000_hw *hw = &adapter->hw;
1786	u32 rctl;
1787
1788	rctl = er32(RCTL);
1789
1790	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791
1792	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793		E1000_RCTL_RDMTS_HALF |
1794		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795
1796	if (hw->tbi_compatibility_on == 1)
1797		rctl |= E1000_RCTL_SBP;
1798	else
1799		rctl &= ~E1000_RCTL_SBP;
1800
1801	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802		rctl &= ~E1000_RCTL_LPE;
1803	else
1804		rctl |= E1000_RCTL_LPE;
1805
1806	/* Setup buffer sizes */
1807	rctl &= ~E1000_RCTL_SZ_4096;
1808	rctl |= E1000_RCTL_BSEX;
1809	switch (adapter->rx_buffer_len) {
1810	case E1000_RXBUFFER_2048:
1811	default:
1812		rctl |= E1000_RCTL_SZ_2048;
1813		rctl &= ~E1000_RCTL_BSEX;
1814		break;
1815	case E1000_RXBUFFER_4096:
1816		rctl |= E1000_RCTL_SZ_4096;
1817		break;
1818	case E1000_RXBUFFER_8192:
1819		rctl |= E1000_RCTL_SZ_8192;
1820		break;
1821	case E1000_RXBUFFER_16384:
1822		rctl |= E1000_RCTL_SZ_16384;
1823		break;
1824	}
1825
1826	/* This is useful for sniffing bad packets. */
1827	if (adapter->netdev->features & NETIF_F_RXALL) {
1828		/* UPE and MPE will be handled by normal PROMISC logic
1829		 * in e1000e_set_rx_mode
1830		 */
1831		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834
1835		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836			  E1000_RCTL_DPF | /* Allow filtered pause */
1837			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839		 * and that breaks VLANs.
1840		 */
1841	}
1842
1843	ew32(RCTL, rctl);
1844}
1845
1846/**
1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848 * @adapter: board private structure
1849 *
1850 * Configure the Rx unit of the MAC after a reset.
1851 **/
1852static void e1000_configure_rx(struct e1000_adapter *adapter)
1853{
1854	u64 rdba;
1855	struct e1000_hw *hw = &adapter->hw;
1856	u32 rdlen, rctl, rxcsum;
1857
1858	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859		rdlen = adapter->rx_ring[0].count *
1860			sizeof(struct e1000_rx_desc);
1861		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863	} else {
1864		rdlen = adapter->rx_ring[0].count *
1865			sizeof(struct e1000_rx_desc);
1866		adapter->clean_rx = e1000_clean_rx_irq;
1867		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868	}
1869
1870	/* disable receives while setting up the descriptors */
1871	rctl = er32(RCTL);
1872	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873
1874	/* set the Receive Delay Timer Register */
1875	ew32(RDTR, adapter->rx_int_delay);
1876
1877	if (hw->mac_type >= e1000_82540) {
1878		ew32(RADV, adapter->rx_abs_int_delay);
1879		if (adapter->itr_setting != 0)
1880			ew32(ITR, 1000000000 / (adapter->itr * 256));
1881	}
1882
1883	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1884	 * the Base and Length of the Rx Descriptor Ring
1885	 */
1886	switch (adapter->num_rx_queues) {
1887	case 1:
1888	default:
1889		rdba = adapter->rx_ring[0].dma;
1890		ew32(RDLEN, rdlen);
1891		ew32(RDBAH, (rdba >> 32));
1892		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893		ew32(RDT, 0);
1894		ew32(RDH, 0);
1895		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896					   E1000_RDH : E1000_82542_RDH);
1897		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898					   E1000_RDT : E1000_82542_RDT);
1899		break;
1900	}
1901
1902	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903	if (hw->mac_type >= e1000_82543) {
1904		rxcsum = er32(RXCSUM);
1905		if (adapter->rx_csum)
1906			rxcsum |= E1000_RXCSUM_TUOFL;
1907		else
1908			/* don't need to clear IPPCSE as it defaults to 0 */
1909			rxcsum &= ~E1000_RXCSUM_TUOFL;
1910		ew32(RXCSUM, rxcsum);
1911	}
1912
1913	/* Enable Receives */
1914	ew32(RCTL, rctl | E1000_RCTL_EN);
1915}
1916
1917/**
1918 * e1000_free_tx_resources - Free Tx Resources per Queue
1919 * @adapter: board private structure
1920 * @tx_ring: Tx descriptor ring for a specific queue
1921 *
1922 * Free all transmit software resources
1923 **/
1924static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925				    struct e1000_tx_ring *tx_ring)
1926{
1927	struct pci_dev *pdev = adapter->pdev;
1928
1929	e1000_clean_tx_ring(adapter, tx_ring);
1930
1931	vfree(tx_ring->buffer_info);
1932	tx_ring->buffer_info = NULL;
1933
1934	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1935			  tx_ring->dma);
1936
1937	tx_ring->desc = NULL;
1938}
1939
1940/**
1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942 * @adapter: board private structure
1943 *
1944 * Free all transmit software resources
1945 **/
1946void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947{
1948	int i;
1949
1950	for (i = 0; i < adapter->num_tx_queues; i++)
1951		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1952}
1953
1954static void
1955e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1956				 struct e1000_tx_buffer *buffer_info,
1957				 int budget)
1958{
1959	if (buffer_info->dma) {
1960		if (buffer_info->mapped_as_page)
1961			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1962				       buffer_info->length, DMA_TO_DEVICE);
1963		else
1964			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1965					 buffer_info->length,
1966					 DMA_TO_DEVICE);
1967		buffer_info->dma = 0;
1968	}
1969	if (buffer_info->skb) {
1970		napi_consume_skb(buffer_info->skb, budget);
1971		buffer_info->skb = NULL;
1972	}
1973	buffer_info->time_stamp = 0;
1974	/* buffer_info must be completely set up in the transmit path */
1975}
1976
1977/**
1978 * e1000_clean_tx_ring - Free Tx Buffers
1979 * @adapter: board private structure
1980 * @tx_ring: ring to be cleaned
1981 **/
1982static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1983				struct e1000_tx_ring *tx_ring)
1984{
1985	struct e1000_hw *hw = &adapter->hw;
1986	struct e1000_tx_buffer *buffer_info;
1987	unsigned long size;
1988	unsigned int i;
1989
1990	/* Free all the Tx ring sk_buffs */
1991
1992	for (i = 0; i < tx_ring->count; i++) {
1993		buffer_info = &tx_ring->buffer_info[i];
1994		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1995	}
1996
1997	netdev_reset_queue(adapter->netdev);
1998	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1999	memset(tx_ring->buffer_info, 0, size);
2000
2001	/* Zero out the descriptor ring */
2002
2003	memset(tx_ring->desc, 0, tx_ring->size);
2004
2005	tx_ring->next_to_use = 0;
2006	tx_ring->next_to_clean = 0;
2007	tx_ring->last_tx_tso = false;
2008
2009	writel(0, hw->hw_addr + tx_ring->tdh);
2010	writel(0, hw->hw_addr + tx_ring->tdt);
2011}
2012
2013/**
2014 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2015 * @adapter: board private structure
2016 **/
2017static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2018{
2019	int i;
2020
2021	for (i = 0; i < adapter->num_tx_queues; i++)
2022		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2023}
2024
2025/**
2026 * e1000_free_rx_resources - Free Rx Resources
2027 * @adapter: board private structure
2028 * @rx_ring: ring to clean the resources from
2029 *
2030 * Free all receive software resources
2031 **/
2032static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2033				    struct e1000_rx_ring *rx_ring)
2034{
2035	struct pci_dev *pdev = adapter->pdev;
2036
2037	e1000_clean_rx_ring(adapter, rx_ring);
2038
2039	vfree(rx_ring->buffer_info);
2040	rx_ring->buffer_info = NULL;
2041
2042	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2043			  rx_ring->dma);
2044
2045	rx_ring->desc = NULL;
2046}
2047
2048/**
2049 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2050 * @adapter: board private structure
2051 *
2052 * Free all receive software resources
2053 **/
2054void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2055{
2056	int i;
2057
2058	for (i = 0; i < adapter->num_rx_queues; i++)
2059		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2060}
2061
2062#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2063static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2064{
2065	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2066		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2067}
2068
2069static void *e1000_alloc_frag(const struct e1000_adapter *a)
2070{
2071	unsigned int len = e1000_frag_len(a);
2072	u8 *data = netdev_alloc_frag(len);
2073
2074	if (likely(data))
2075		data += E1000_HEADROOM;
2076	return data;
2077}
2078
2079/**
2080 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2081 * @adapter: board private structure
2082 * @rx_ring: ring to free buffers from
2083 **/
2084static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2085				struct e1000_rx_ring *rx_ring)
2086{
2087	struct e1000_hw *hw = &adapter->hw;
2088	struct e1000_rx_buffer *buffer_info;
2089	struct pci_dev *pdev = adapter->pdev;
2090	unsigned long size;
2091	unsigned int i;
2092
2093	/* Free all the Rx netfrags */
2094	for (i = 0; i < rx_ring->count; i++) {
2095		buffer_info = &rx_ring->buffer_info[i];
2096		if (adapter->clean_rx == e1000_clean_rx_irq) {
2097			if (buffer_info->dma)
2098				dma_unmap_single(&pdev->dev, buffer_info->dma,
2099						 adapter->rx_buffer_len,
2100						 DMA_FROM_DEVICE);
2101			if (buffer_info->rxbuf.data) {
2102				skb_free_frag(buffer_info->rxbuf.data);
2103				buffer_info->rxbuf.data = NULL;
2104			}
2105		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2106			if (buffer_info->dma)
2107				dma_unmap_page(&pdev->dev, buffer_info->dma,
2108					       adapter->rx_buffer_len,
2109					       DMA_FROM_DEVICE);
2110			if (buffer_info->rxbuf.page) {
2111				put_page(buffer_info->rxbuf.page);
2112				buffer_info->rxbuf.page = NULL;
2113			}
2114		}
2115
2116		buffer_info->dma = 0;
2117	}
2118
2119	/* there also may be some cached data from a chained receive */
2120	napi_free_frags(&adapter->napi);
2121	rx_ring->rx_skb_top = NULL;
2122
2123	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2124	memset(rx_ring->buffer_info, 0, size);
2125
2126	/* Zero out the descriptor ring */
2127	memset(rx_ring->desc, 0, rx_ring->size);
2128
2129	rx_ring->next_to_clean = 0;
2130	rx_ring->next_to_use = 0;
2131
2132	writel(0, hw->hw_addr + rx_ring->rdh);
2133	writel(0, hw->hw_addr + rx_ring->rdt);
2134}
2135
2136/**
2137 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2138 * @adapter: board private structure
2139 **/
2140static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2141{
2142	int i;
2143
2144	for (i = 0; i < adapter->num_rx_queues; i++)
2145		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2146}
2147
2148/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2149 * and memory write and invalidate disabled for certain operations
2150 */
2151static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2152{
2153	struct e1000_hw *hw = &adapter->hw;
2154	struct net_device *netdev = adapter->netdev;
2155	u32 rctl;
2156
2157	e1000_pci_clear_mwi(hw);
2158
2159	rctl = er32(RCTL);
2160	rctl |= E1000_RCTL_RST;
2161	ew32(RCTL, rctl);
2162	E1000_WRITE_FLUSH();
2163	mdelay(5);
2164
2165	if (netif_running(netdev))
2166		e1000_clean_all_rx_rings(adapter);
2167}
2168
2169static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2170{
2171	struct e1000_hw *hw = &adapter->hw;
2172	struct net_device *netdev = adapter->netdev;
2173	u32 rctl;
2174
2175	rctl = er32(RCTL);
2176	rctl &= ~E1000_RCTL_RST;
2177	ew32(RCTL, rctl);
2178	E1000_WRITE_FLUSH();
2179	mdelay(5);
2180
2181	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2182		e1000_pci_set_mwi(hw);
2183
2184	if (netif_running(netdev)) {
2185		/* No need to loop, because 82542 supports only 1 queue */
2186		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2187		e1000_configure_rx(adapter);
2188		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2189	}
2190}
2191
2192/**
2193 * e1000_set_mac - Change the Ethernet Address of the NIC
2194 * @netdev: network interface device structure
2195 * @p: pointer to an address structure
2196 *
2197 * Returns 0 on success, negative on failure
2198 **/
2199static int e1000_set_mac(struct net_device *netdev, void *p)
2200{
2201	struct e1000_adapter *adapter = netdev_priv(netdev);
2202	struct e1000_hw *hw = &adapter->hw;
2203	struct sockaddr *addr = p;
2204
2205	if (!is_valid_ether_addr(addr->sa_data))
2206		return -EADDRNOTAVAIL;
2207
2208	/* 82542 2.0 needs to be in reset to write receive address registers */
2209
2210	if (hw->mac_type == e1000_82542_rev2_0)
2211		e1000_enter_82542_rst(adapter);
2212
2213	eth_hw_addr_set(netdev, addr->sa_data);
2214	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2215
2216	e1000_rar_set(hw, hw->mac_addr, 0);
2217
2218	if (hw->mac_type == e1000_82542_rev2_0)
2219		e1000_leave_82542_rst(adapter);
2220
2221	return 0;
2222}
2223
2224/**
2225 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2226 * @netdev: network interface device structure
2227 *
2228 * The set_rx_mode entry point is called whenever the unicast or multicast
2229 * address lists or the network interface flags are updated. This routine is
2230 * responsible for configuring the hardware for proper unicast, multicast,
2231 * promiscuous mode, and all-multi behavior.
2232 **/
2233static void e1000_set_rx_mode(struct net_device *netdev)
2234{
2235	struct e1000_adapter *adapter = netdev_priv(netdev);
2236	struct e1000_hw *hw = &adapter->hw;
2237	struct netdev_hw_addr *ha;
2238	bool use_uc = false;
2239	u32 rctl;
2240	u32 hash_value;
2241	int i, rar_entries = E1000_RAR_ENTRIES;
2242	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2243	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2244
2245	if (!mcarray)
2246		return;
2247
2248	/* Check for Promiscuous and All Multicast modes */
2249
2250	rctl = er32(RCTL);
2251
2252	if (netdev->flags & IFF_PROMISC) {
2253		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2254		rctl &= ~E1000_RCTL_VFE;
2255	} else {
2256		if (netdev->flags & IFF_ALLMULTI)
2257			rctl |= E1000_RCTL_MPE;
2258		else
2259			rctl &= ~E1000_RCTL_MPE;
2260		/* Enable VLAN filter if there is a VLAN */
2261		if (e1000_vlan_used(adapter))
2262			rctl |= E1000_RCTL_VFE;
2263	}
2264
2265	if (netdev_uc_count(netdev) > rar_entries - 1) {
2266		rctl |= E1000_RCTL_UPE;
2267	} else if (!(netdev->flags & IFF_PROMISC)) {
2268		rctl &= ~E1000_RCTL_UPE;
2269		use_uc = true;
2270	}
2271
2272	ew32(RCTL, rctl);
2273
2274	/* 82542 2.0 needs to be in reset to write receive address registers */
2275
2276	if (hw->mac_type == e1000_82542_rev2_0)
2277		e1000_enter_82542_rst(adapter);
2278
2279	/* load the first 14 addresses into the exact filters 1-14. Unicast
2280	 * addresses take precedence to avoid disabling unicast filtering
2281	 * when possible.
2282	 *
2283	 * RAR 0 is used for the station MAC address
2284	 * if there are not 14 addresses, go ahead and clear the filters
2285	 */
2286	i = 1;
2287	if (use_uc)
2288		netdev_for_each_uc_addr(ha, netdev) {
2289			if (i == rar_entries)
2290				break;
2291			e1000_rar_set(hw, ha->addr, i++);
2292		}
2293
2294	netdev_for_each_mc_addr(ha, netdev) {
2295		if (i == rar_entries) {
2296			/* load any remaining addresses into the hash table */
2297			u32 hash_reg, hash_bit, mta;
2298			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2299			hash_reg = (hash_value >> 5) & 0x7F;
2300			hash_bit = hash_value & 0x1F;
2301			mta = (1 << hash_bit);
2302			mcarray[hash_reg] |= mta;
2303		} else {
2304			e1000_rar_set(hw, ha->addr, i++);
2305		}
2306	}
2307
2308	for (; i < rar_entries; i++) {
2309		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2310		E1000_WRITE_FLUSH();
2311		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2312		E1000_WRITE_FLUSH();
2313	}
2314
2315	/* write the hash table completely, write from bottom to avoid
2316	 * both stupid write combining chipsets, and flushing each write
2317	 */
2318	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2319		/* If we are on an 82544 has an errata where writing odd
2320		 * offsets overwrites the previous even offset, but writing
2321		 * backwards over the range solves the issue by always
2322		 * writing the odd offset first
2323		 */
2324		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2325	}
2326	E1000_WRITE_FLUSH();
2327
2328	if (hw->mac_type == e1000_82542_rev2_0)
2329		e1000_leave_82542_rst(adapter);
2330
2331	kfree(mcarray);
2332}
2333
2334/**
2335 * e1000_update_phy_info_task - get phy info
2336 * @work: work struct contained inside adapter struct
2337 *
2338 * Need to wait a few seconds after link up to get diagnostic information from
2339 * the phy
2340 */
2341static void e1000_update_phy_info_task(struct work_struct *work)
2342{
2343	struct e1000_adapter *adapter = container_of(work,
2344						     struct e1000_adapter,
2345						     phy_info_task.work);
2346
2347	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2348}
2349
2350/**
2351 * e1000_82547_tx_fifo_stall_task - task to complete work
2352 * @work: work struct contained inside adapter struct
2353 **/
2354static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2355{
2356	struct e1000_adapter *adapter = container_of(work,
2357						     struct e1000_adapter,
2358						     fifo_stall_task.work);
2359	struct e1000_hw *hw = &adapter->hw;
2360	struct net_device *netdev = adapter->netdev;
2361	u32 tctl;
2362
2363	if (atomic_read(&adapter->tx_fifo_stall)) {
2364		if ((er32(TDT) == er32(TDH)) &&
2365		   (er32(TDFT) == er32(TDFH)) &&
2366		   (er32(TDFTS) == er32(TDFHS))) {
2367			tctl = er32(TCTL);
2368			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2369			ew32(TDFT, adapter->tx_head_addr);
2370			ew32(TDFH, adapter->tx_head_addr);
2371			ew32(TDFTS, adapter->tx_head_addr);
2372			ew32(TDFHS, adapter->tx_head_addr);
2373			ew32(TCTL, tctl);
2374			E1000_WRITE_FLUSH();
2375
2376			adapter->tx_fifo_head = 0;
2377			atomic_set(&adapter->tx_fifo_stall, 0);
2378			netif_wake_queue(netdev);
2379		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2380			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2381		}
2382	}
2383}
2384
2385bool e1000_has_link(struct e1000_adapter *adapter)
2386{
2387	struct e1000_hw *hw = &adapter->hw;
2388	bool link_active = false;
2389
2390	/* get_link_status is set on LSC (link status) interrupt or rx
2391	 * sequence error interrupt (except on intel ce4100).
2392	 * get_link_status will stay false until the
2393	 * e1000_check_for_link establishes link for copper adapters
2394	 * ONLY
2395	 */
2396	switch (hw->media_type) {
2397	case e1000_media_type_copper:
2398		if (hw->mac_type == e1000_ce4100)
2399			hw->get_link_status = 1;
2400		if (hw->get_link_status) {
2401			e1000_check_for_link(hw);
2402			link_active = !hw->get_link_status;
2403		} else {
2404			link_active = true;
2405		}
2406		break;
2407	case e1000_media_type_fiber:
2408		e1000_check_for_link(hw);
2409		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2410		break;
2411	case e1000_media_type_internal_serdes:
2412		e1000_check_for_link(hw);
2413		link_active = hw->serdes_has_link;
2414		break;
2415	default:
2416		break;
2417	}
2418
2419	return link_active;
2420}
2421
2422/**
2423 * e1000_watchdog - work function
2424 * @work: work struct contained inside adapter struct
2425 **/
2426static void e1000_watchdog(struct work_struct *work)
2427{
2428	struct e1000_adapter *adapter = container_of(work,
2429						     struct e1000_adapter,
2430						     watchdog_task.work);
2431	struct e1000_hw *hw = &adapter->hw;
2432	struct net_device *netdev = adapter->netdev;
2433	struct e1000_tx_ring *txdr = adapter->tx_ring;
2434	u32 link, tctl;
2435
2436	link = e1000_has_link(adapter);
2437	if ((netif_carrier_ok(netdev)) && link)
2438		goto link_up;
2439
2440	if (link) {
2441		if (!netif_carrier_ok(netdev)) {
2442			u32 ctrl;
 
2443			/* update snapshot of PHY registers on LSC */
2444			e1000_get_speed_and_duplex(hw,
2445						   &adapter->link_speed,
2446						   &adapter->link_duplex);
2447
2448			ctrl = er32(CTRL);
2449			pr_info("%s NIC Link is Up %d Mbps %s, "
2450				"Flow Control: %s\n",
2451				netdev->name,
2452				adapter->link_speed,
2453				adapter->link_duplex == FULL_DUPLEX ?
2454				"Full Duplex" : "Half Duplex",
2455				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2456				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2457				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2458				E1000_CTRL_TFCE) ? "TX" : "None")));
2459
2460			/* adjust timeout factor according to speed/duplex */
2461			adapter->tx_timeout_factor = 1;
2462			switch (adapter->link_speed) {
2463			case SPEED_10:
 
2464				adapter->tx_timeout_factor = 16;
2465				break;
2466			case SPEED_100:
 
2467				/* maybe add some timeout factor ? */
2468				break;
2469			}
2470
2471			/* enable transmits in the hardware */
2472			tctl = er32(TCTL);
2473			tctl |= E1000_TCTL_EN;
2474			ew32(TCTL, tctl);
2475
2476			netif_carrier_on(netdev);
2477			if (!test_bit(__E1000_DOWN, &adapter->flags))
2478				schedule_delayed_work(&adapter->phy_info_task,
2479						      2 * HZ);
2480			adapter->smartspeed = 0;
2481		}
2482	} else {
2483		if (netif_carrier_ok(netdev)) {
2484			adapter->link_speed = 0;
2485			adapter->link_duplex = 0;
2486			pr_info("%s NIC Link is Down\n",
2487				netdev->name);
2488			netif_carrier_off(netdev);
2489
2490			if (!test_bit(__E1000_DOWN, &adapter->flags))
2491				schedule_delayed_work(&adapter->phy_info_task,
2492						      2 * HZ);
2493		}
2494
2495		e1000_smartspeed(adapter);
2496	}
2497
2498link_up:
2499	e1000_update_stats(adapter);
2500
2501	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2502	adapter->tpt_old = adapter->stats.tpt;
2503	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2504	adapter->colc_old = adapter->stats.colc;
2505
2506	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2507	adapter->gorcl_old = adapter->stats.gorcl;
2508	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2509	adapter->gotcl_old = adapter->stats.gotcl;
2510
2511	e1000_update_adaptive(hw);
2512
2513	if (!netif_carrier_ok(netdev)) {
2514		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2515			/* We've lost link, so the controller stops DMA,
2516			 * but we've got queued Tx work that's never going
2517			 * to get done, so reset controller to flush Tx.
2518			 * (Do the reset outside of interrupt context).
2519			 */
2520			adapter->tx_timeout_count++;
2521			schedule_work(&adapter->reset_task);
2522			/* exit immediately since reset is imminent */
2523			return;
2524		}
2525	}
2526
2527	/* Simple mode for Interrupt Throttle Rate (ITR) */
2528	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2529		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2530		 * Total asymmetrical Tx or Rx gets ITR=8000;
2531		 * everyone else is between 2000-8000.
2532		 */
2533		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2534		u32 dif = (adapter->gotcl > adapter->gorcl ?
2535			    adapter->gotcl - adapter->gorcl :
2536			    adapter->gorcl - adapter->gotcl) / 10000;
2537		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2538
2539		ew32(ITR, 1000000000 / (itr * 256));
2540	}
2541
2542	/* Cause software interrupt to ensure rx ring is cleaned */
2543	ew32(ICS, E1000_ICS_RXDMT0);
2544
2545	/* Force detection of hung controller every watchdog period */
2546	adapter->detect_tx_hung = true;
2547
2548	/* Reschedule the task */
2549	if (!test_bit(__E1000_DOWN, &adapter->flags))
2550		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2551}
2552
2553enum latency_range {
2554	lowest_latency = 0,
2555	low_latency = 1,
2556	bulk_latency = 2,
2557	latency_invalid = 255
2558};
2559
2560/**
2561 * e1000_update_itr - update the dynamic ITR value based on statistics
2562 * @adapter: pointer to adapter
2563 * @itr_setting: current adapter->itr
2564 * @packets: the number of packets during this measurement interval
2565 * @bytes: the number of bytes during this measurement interval
2566 *
2567 *      Stores a new ITR value based on packets and byte
2568 *      counts during the last interrupt.  The advantage of per interrupt
2569 *      computation is faster updates and more accurate ITR for the current
2570 *      traffic pattern.  Constants in this function were computed
2571 *      based on theoretical maximum wire speed and thresholds were set based
2572 *      on testing data as well as attempting to minimize response time
2573 *      while increasing bulk throughput.
2574 *      this functionality is controlled by the InterruptThrottleRate module
2575 *      parameter (see e1000_param.c)
2576 **/
2577static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2578				     u16 itr_setting, int packets, int bytes)
2579{
2580	unsigned int retval = itr_setting;
2581	struct e1000_hw *hw = &adapter->hw;
2582
2583	if (unlikely(hw->mac_type < e1000_82540))
2584		goto update_itr_done;
2585
2586	if (packets == 0)
2587		goto update_itr_done;
2588
2589	switch (itr_setting) {
2590	case lowest_latency:
2591		/* jumbo frames get bulk treatment*/
2592		if (bytes/packets > 8000)
2593			retval = bulk_latency;
2594		else if ((packets < 5) && (bytes > 512))
2595			retval = low_latency;
2596		break;
2597	case low_latency:  /* 50 usec aka 20000 ints/s */
2598		if (bytes > 10000) {
2599			/* jumbo frames need bulk latency setting */
2600			if (bytes/packets > 8000)
2601				retval = bulk_latency;
2602			else if ((packets < 10) || ((bytes/packets) > 1200))
2603				retval = bulk_latency;
2604			else if ((packets > 35))
2605				retval = lowest_latency;
2606		} else if (bytes/packets > 2000)
2607			retval = bulk_latency;
2608		else if (packets <= 2 && bytes < 512)
2609			retval = lowest_latency;
2610		break;
2611	case bulk_latency: /* 250 usec aka 4000 ints/s */
2612		if (bytes > 25000) {
2613			if (packets > 35)
2614				retval = low_latency;
2615		} else if (bytes < 6000) {
2616			retval = low_latency;
2617		}
2618		break;
2619	}
2620
2621update_itr_done:
2622	return retval;
2623}
2624
2625static void e1000_set_itr(struct e1000_adapter *adapter)
2626{
2627	struct e1000_hw *hw = &adapter->hw;
2628	u16 current_itr;
2629	u32 new_itr = adapter->itr;
2630
2631	if (unlikely(hw->mac_type < e1000_82540))
2632		return;
2633
2634	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2635	if (unlikely(adapter->link_speed != SPEED_1000)) {
 
2636		new_itr = 4000;
2637		goto set_itr_now;
2638	}
2639
2640	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2641					   adapter->total_tx_packets,
2642					   adapter->total_tx_bytes);
2643	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2644	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2645		adapter->tx_itr = low_latency;
2646
2647	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2648					   adapter->total_rx_packets,
2649					   adapter->total_rx_bytes);
2650	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2651	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2652		adapter->rx_itr = low_latency;
2653
2654	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2655
2656	switch (current_itr) {
2657	/* counts and packets in update_itr are dependent on these numbers */
2658	case lowest_latency:
2659		new_itr = 70000;
2660		break;
2661	case low_latency:
2662		new_itr = 20000; /* aka hwitr = ~200 */
2663		break;
2664	case bulk_latency:
2665		new_itr = 4000;
2666		break;
2667	default:
2668		break;
2669	}
2670
2671set_itr_now:
2672	if (new_itr != adapter->itr) {
2673		/* this attempts to bias the interrupt rate towards Bulk
2674		 * by adding intermediate steps when interrupt rate is
2675		 * increasing
2676		 */
2677		new_itr = new_itr > adapter->itr ?
2678			  min(adapter->itr + (new_itr >> 2), new_itr) :
2679			  new_itr;
2680		adapter->itr = new_itr;
2681		ew32(ITR, 1000000000 / (new_itr * 256));
2682	}
2683}
2684
2685#define E1000_TX_FLAGS_CSUM		0x00000001
2686#define E1000_TX_FLAGS_VLAN		0x00000002
2687#define E1000_TX_FLAGS_TSO		0x00000004
2688#define E1000_TX_FLAGS_IPV4		0x00000008
2689#define E1000_TX_FLAGS_NO_FCS		0x00000010
2690#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2691#define E1000_TX_FLAGS_VLAN_SHIFT	16
2692
2693static int e1000_tso(struct e1000_adapter *adapter,
2694		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2695		     __be16 protocol)
2696{
2697	struct e1000_context_desc *context_desc;
2698	struct e1000_tx_buffer *buffer_info;
2699	unsigned int i;
2700	u32 cmd_length = 0;
2701	u16 ipcse = 0, tucse, mss;
2702	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2703
2704	if (skb_is_gso(skb)) {
2705		int err;
2706
2707		err = skb_cow_head(skb, 0);
2708		if (err < 0)
2709			return err;
2710
2711		hdr_len = skb_tcp_all_headers(skb);
2712		mss = skb_shinfo(skb)->gso_size;
2713		if (protocol == htons(ETH_P_IP)) {
2714			struct iphdr *iph = ip_hdr(skb);
2715			iph->tot_len = 0;
2716			iph->check = 0;
2717			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2718								 iph->daddr, 0,
2719								 IPPROTO_TCP,
2720								 0);
2721			cmd_length = E1000_TXD_CMD_IP;
2722			ipcse = skb_transport_offset(skb) - 1;
2723		} else if (skb_is_gso_v6(skb)) {
2724			tcp_v6_gso_csum_prep(skb);
 
 
 
 
2725			ipcse = 0;
2726		}
2727		ipcss = skb_network_offset(skb);
2728		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2729		tucss = skb_transport_offset(skb);
2730		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2731		tucse = 0;
2732
2733		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2734			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2735
2736		i = tx_ring->next_to_use;
2737		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2738		buffer_info = &tx_ring->buffer_info[i];
2739
2740		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2741		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2742		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2743		context_desc->upper_setup.tcp_fields.tucss = tucss;
2744		context_desc->upper_setup.tcp_fields.tucso = tucso;
2745		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2746		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2747		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2748		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2749
2750		buffer_info->time_stamp = jiffies;
2751		buffer_info->next_to_watch = i;
2752
2753		if (++i == tx_ring->count)
2754			i = 0;
2755
2756		tx_ring->next_to_use = i;
2757
2758		return true;
2759	}
2760	return false;
2761}
2762
2763static bool e1000_tx_csum(struct e1000_adapter *adapter,
2764			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2765			  __be16 protocol)
2766{
2767	struct e1000_context_desc *context_desc;
2768	struct e1000_tx_buffer *buffer_info;
2769	unsigned int i;
2770	u8 css;
2771	u32 cmd_len = E1000_TXD_CMD_DEXT;
2772
2773	if (skb->ip_summed != CHECKSUM_PARTIAL)
2774		return false;
2775
2776	switch (protocol) {
2777	case cpu_to_be16(ETH_P_IP):
2778		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2779			cmd_len |= E1000_TXD_CMD_TCP;
2780		break;
2781	case cpu_to_be16(ETH_P_IPV6):
2782		/* XXX not handling all IPV6 headers */
2783		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2784			cmd_len |= E1000_TXD_CMD_TCP;
2785		break;
2786	default:
2787		if (unlikely(net_ratelimit()))
2788			e_warn(drv, "checksum_partial proto=%x!\n",
2789			       skb->protocol);
2790		break;
2791	}
2792
2793	css = skb_checksum_start_offset(skb);
2794
2795	i = tx_ring->next_to_use;
2796	buffer_info = &tx_ring->buffer_info[i];
2797	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2798
2799	context_desc->lower_setup.ip_config = 0;
2800	context_desc->upper_setup.tcp_fields.tucss = css;
2801	context_desc->upper_setup.tcp_fields.tucso =
2802		css + skb->csum_offset;
2803	context_desc->upper_setup.tcp_fields.tucse = 0;
2804	context_desc->tcp_seg_setup.data = 0;
2805	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2806
2807	buffer_info->time_stamp = jiffies;
2808	buffer_info->next_to_watch = i;
2809
2810	if (unlikely(++i == tx_ring->count))
2811		i = 0;
2812
2813	tx_ring->next_to_use = i;
2814
2815	return true;
2816}
2817
2818#define E1000_MAX_TXD_PWR	12
2819#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2820
2821static int e1000_tx_map(struct e1000_adapter *adapter,
2822			struct e1000_tx_ring *tx_ring,
2823			struct sk_buff *skb, unsigned int first,
2824			unsigned int max_per_txd, unsigned int nr_frags,
2825			unsigned int mss)
2826{
2827	struct e1000_hw *hw = &adapter->hw;
2828	struct pci_dev *pdev = adapter->pdev;
2829	struct e1000_tx_buffer *buffer_info;
2830	unsigned int len = skb_headlen(skb);
2831	unsigned int offset = 0, size, count = 0, i;
2832	unsigned int f, bytecount, segs;
2833
2834	i = tx_ring->next_to_use;
2835
2836	while (len) {
2837		buffer_info = &tx_ring->buffer_info[i];
2838		size = min(len, max_per_txd);
2839		/* Workaround for Controller erratum --
2840		 * descriptor for non-tso packet in a linear SKB that follows a
2841		 * tso gets written back prematurely before the data is fully
2842		 * DMA'd to the controller
2843		 */
2844		if (!skb->data_len && tx_ring->last_tx_tso &&
2845		    !skb_is_gso(skb)) {
2846			tx_ring->last_tx_tso = false;
2847			size -= 4;
2848		}
2849
2850		/* Workaround for premature desc write-backs
2851		 * in TSO mode.  Append 4-byte sentinel desc
2852		 */
2853		if (unlikely(mss && !nr_frags && size == len && size > 8))
2854			size -= 4;
2855		/* work-around for errata 10 and it applies
2856		 * to all controllers in PCI-X mode
2857		 * The fix is to make sure that the first descriptor of a
2858		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2859		 */
2860		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2861			     (size > 2015) && count == 0))
2862			size = 2015;
2863
2864		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2865		 * terminating buffers within evenly-aligned dwords.
2866		 */
2867		if (unlikely(adapter->pcix_82544 &&
2868		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2869		   size > 4))
2870			size -= 4;
2871
2872		buffer_info->length = size;
2873		/* set time_stamp *before* dma to help avoid a possible race */
2874		buffer_info->time_stamp = jiffies;
2875		buffer_info->mapped_as_page = false;
2876		buffer_info->dma = dma_map_single(&pdev->dev,
2877						  skb->data + offset,
2878						  size, DMA_TO_DEVICE);
2879		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2880			goto dma_error;
2881		buffer_info->next_to_watch = i;
2882
2883		len -= size;
2884		offset += size;
2885		count++;
2886		if (len) {
2887			i++;
2888			if (unlikely(i == tx_ring->count))
2889				i = 0;
2890		}
2891	}
2892
2893	for (f = 0; f < nr_frags; f++) {
2894		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2895
 
2896		len = skb_frag_size(frag);
2897		offset = 0;
2898
2899		while (len) {
2900			unsigned long bufend;
2901			i++;
2902			if (unlikely(i == tx_ring->count))
2903				i = 0;
2904
2905			buffer_info = &tx_ring->buffer_info[i];
2906			size = min(len, max_per_txd);
2907			/* Workaround for premature desc write-backs
2908			 * in TSO mode.  Append 4-byte sentinel desc
2909			 */
2910			if (unlikely(mss && f == (nr_frags-1) &&
2911			    size == len && size > 8))
2912				size -= 4;
2913			/* Workaround for potential 82544 hang in PCI-X.
2914			 * Avoid terminating buffers within evenly-aligned
2915			 * dwords.
2916			 */
2917			bufend = (unsigned long)
2918				page_to_phys(skb_frag_page(frag));
2919			bufend += offset + size - 1;
2920			if (unlikely(adapter->pcix_82544 &&
2921				     !(bufend & 4) &&
2922				     size > 4))
2923				size -= 4;
2924
2925			buffer_info->length = size;
2926			buffer_info->time_stamp = jiffies;
2927			buffer_info->mapped_as_page = true;
2928			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2929						offset, size, DMA_TO_DEVICE);
2930			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2931				goto dma_error;
2932			buffer_info->next_to_watch = i;
2933
2934			len -= size;
2935			offset += size;
2936			count++;
2937		}
2938	}
2939
2940	segs = skb_shinfo(skb)->gso_segs ?: 1;
2941	/* multiply data chunks by size of headers */
2942	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2943
2944	tx_ring->buffer_info[i].skb = skb;
2945	tx_ring->buffer_info[i].segs = segs;
2946	tx_ring->buffer_info[i].bytecount = bytecount;
2947	tx_ring->buffer_info[first].next_to_watch = i;
2948
2949	return count;
2950
2951dma_error:
2952	dev_err(&pdev->dev, "TX DMA map failed\n");
2953	buffer_info->dma = 0;
2954	if (count)
2955		count--;
2956
2957	while (count--) {
2958		if (i == 0)
2959			i += tx_ring->count;
2960		i--;
2961		buffer_info = &tx_ring->buffer_info[i];
2962		e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2963	}
2964
2965	return 0;
2966}
2967
2968static void e1000_tx_queue(struct e1000_adapter *adapter,
2969			   struct e1000_tx_ring *tx_ring, int tx_flags,
2970			   int count)
2971{
2972	struct e1000_tx_desc *tx_desc = NULL;
2973	struct e1000_tx_buffer *buffer_info;
2974	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2975	unsigned int i;
2976
2977	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2978		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2979			     E1000_TXD_CMD_TSE;
2980		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2981
2982		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2983			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2984	}
2985
2986	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2987		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2988		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2989	}
2990
2991	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2992		txd_lower |= E1000_TXD_CMD_VLE;
2993		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2994	}
2995
2996	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2997		txd_lower &= ~(E1000_TXD_CMD_IFCS);
2998
2999	i = tx_ring->next_to_use;
3000
3001	while (count--) {
3002		buffer_info = &tx_ring->buffer_info[i];
3003		tx_desc = E1000_TX_DESC(*tx_ring, i);
3004		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3005		tx_desc->lower.data =
3006			cpu_to_le32(txd_lower | buffer_info->length);
3007		tx_desc->upper.data = cpu_to_le32(txd_upper);
3008		if (unlikely(++i == tx_ring->count))
3009			i = 0;
3010	}
3011
3012	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3013
3014	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3015	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3016		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3017
3018	/* Force memory writes to complete before letting h/w
3019	 * know there are new descriptors to fetch.  (Only
3020	 * applicable for weak-ordered memory model archs,
3021	 * such as IA-64).
3022	 */
3023	dma_wmb();
3024
3025	tx_ring->next_to_use = i;
3026}
3027
3028/* 82547 workaround to avoid controller hang in half-duplex environment.
3029 * The workaround is to avoid queuing a large packet that would span
3030 * the internal Tx FIFO ring boundary by notifying the stack to resend
3031 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3032 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3033 * to the beginning of the Tx FIFO.
3034 */
3035
3036#define E1000_FIFO_HDR			0x10
3037#define E1000_82547_PAD_LEN		0x3E0
3038
3039static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3040				       struct sk_buff *skb)
3041{
3042	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3043	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3044
3045	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3046
3047	if (adapter->link_duplex != HALF_DUPLEX)
3048		goto no_fifo_stall_required;
3049
3050	if (atomic_read(&adapter->tx_fifo_stall))
3051		return 1;
3052
3053	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3054		atomic_set(&adapter->tx_fifo_stall, 1);
3055		return 1;
3056	}
3057
3058no_fifo_stall_required:
3059	adapter->tx_fifo_head += skb_fifo_len;
3060	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3061		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3062	return 0;
3063}
3064
3065static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3066{
3067	struct e1000_adapter *adapter = netdev_priv(netdev);
3068	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3069
3070	netif_stop_queue(netdev);
3071	/* Herbert's original patch had:
3072	 *  smp_mb__after_netif_stop_queue();
3073	 * but since that doesn't exist yet, just open code it.
3074	 */
3075	smp_mb();
3076
3077	/* We need to check again in a case another CPU has just
3078	 * made room available.
3079	 */
3080	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3081		return -EBUSY;
3082
3083	/* A reprieve! */
3084	netif_start_queue(netdev);
3085	++adapter->restart_queue;
3086	return 0;
3087}
3088
3089static int e1000_maybe_stop_tx(struct net_device *netdev,
3090			       struct e1000_tx_ring *tx_ring, int size)
3091{
3092	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3093		return 0;
3094	return __e1000_maybe_stop_tx(netdev, size);
3095}
3096
3097#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3098static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3099				    struct net_device *netdev)
3100{
3101	struct e1000_adapter *adapter = netdev_priv(netdev);
3102	struct e1000_hw *hw = &adapter->hw;
3103	struct e1000_tx_ring *tx_ring;
3104	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3105	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3106	unsigned int tx_flags = 0;
3107	unsigned int len = skb_headlen(skb);
3108	unsigned int nr_frags;
3109	unsigned int mss;
3110	int count = 0;
3111	int tso;
3112	unsigned int f;
3113	__be16 protocol = vlan_get_protocol(skb);
3114
3115	/* This goes back to the question of how to logically map a Tx queue
3116	 * to a flow.  Right now, performance is impacted slightly negatively
3117	 * if using multiple Tx queues.  If the stack breaks away from a
3118	 * single qdisc implementation, we can look at this again.
3119	 */
3120	tx_ring = adapter->tx_ring;
3121
3122	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3123	 * packets may get corrupted during padding by HW.
3124	 * To WA this issue, pad all small packets manually.
3125	 */
3126	if (eth_skb_pad(skb))
3127		return NETDEV_TX_OK;
3128
3129	mss = skb_shinfo(skb)->gso_size;
3130	/* The controller does a simple calculation to
3131	 * make sure there is enough room in the FIFO before
3132	 * initiating the DMA for each buffer.  The calc is:
3133	 * 4 = ceil(buffer len/mss).  To make sure we don't
3134	 * overrun the FIFO, adjust the max buffer len if mss
3135	 * drops.
3136	 */
3137	if (mss) {
3138		u8 hdr_len;
3139		max_per_txd = min(mss << 2, max_per_txd);
3140		max_txd_pwr = fls(max_per_txd) - 1;
3141
3142		hdr_len = skb_tcp_all_headers(skb);
3143		if (skb->data_len && hdr_len == len) {
3144			switch (hw->mac_type) {
3145			case e1000_82544: {
3146				unsigned int pull_size;
3147
3148				/* Make sure we have room to chop off 4 bytes,
3149				 * and that the end alignment will work out to
3150				 * this hardware's requirements
3151				 * NOTE: this is a TSO only workaround
3152				 * if end byte alignment not correct move us
3153				 * into the next dword
3154				 */
3155				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3156				    & 4)
3157					break;
 
3158				pull_size = min((unsigned int)4, skb->data_len);
3159				if (!__pskb_pull_tail(skb, pull_size)) {
3160					e_err(drv, "__pskb_pull_tail "
3161					      "failed.\n");
3162					dev_kfree_skb_any(skb);
3163					return NETDEV_TX_OK;
3164				}
3165				len = skb_headlen(skb);
3166				break;
3167			}
3168			default:
3169				/* do nothing */
3170				break;
3171			}
3172		}
3173	}
3174
3175	/* reserve a descriptor for the offload context */
3176	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3177		count++;
3178	count++;
3179
3180	/* Controller Erratum workaround */
3181	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3182		count++;
3183
3184	count += TXD_USE_COUNT(len, max_txd_pwr);
3185
3186	if (adapter->pcix_82544)
3187		count++;
3188
3189	/* work-around for errata 10 and it applies to all controllers
3190	 * in PCI-X mode, so add one more descriptor to the count
3191	 */
3192	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3193			(len > 2015)))
3194		count++;
3195
3196	nr_frags = skb_shinfo(skb)->nr_frags;
3197	for (f = 0; f < nr_frags; f++)
3198		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3199				       max_txd_pwr);
3200	if (adapter->pcix_82544)
3201		count += nr_frags;
3202
3203	/* need: count + 2 desc gap to keep tail from touching
3204	 * head, otherwise try next time
3205	 */
3206	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3207		return NETDEV_TX_BUSY;
3208
3209	if (unlikely((hw->mac_type == e1000_82547) &&
3210		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3211		netif_stop_queue(netdev);
3212		if (!test_bit(__E1000_DOWN, &adapter->flags))
3213			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3214		return NETDEV_TX_BUSY;
3215	}
3216
3217	if (skb_vlan_tag_present(skb)) {
3218		tx_flags |= E1000_TX_FLAGS_VLAN;
3219		tx_flags |= (skb_vlan_tag_get(skb) <<
3220			     E1000_TX_FLAGS_VLAN_SHIFT);
3221	}
3222
3223	first = tx_ring->next_to_use;
3224
3225	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3226	if (tso < 0) {
3227		dev_kfree_skb_any(skb);
3228		return NETDEV_TX_OK;
3229	}
3230
3231	if (likely(tso)) {
3232		if (likely(hw->mac_type != e1000_82544))
3233			tx_ring->last_tx_tso = true;
3234		tx_flags |= E1000_TX_FLAGS_TSO;
3235	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3236		tx_flags |= E1000_TX_FLAGS_CSUM;
3237
3238	if (protocol == htons(ETH_P_IP))
3239		tx_flags |= E1000_TX_FLAGS_IPV4;
3240
3241	if (unlikely(skb->no_fcs))
3242		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3243
3244	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3245			     nr_frags, mss);
3246
3247	if (count) {
3248		/* The descriptors needed is higher than other Intel drivers
3249		 * due to a number of workarounds.  The breakdown is below:
3250		 * Data descriptors: MAX_SKB_FRAGS + 1
3251		 * Context Descriptor: 1
3252		 * Keep head from touching tail: 2
3253		 * Workarounds: 3
3254		 */
3255		int desc_needed = MAX_SKB_FRAGS + 7;
3256
3257		netdev_sent_queue(netdev, skb->len);
3258		skb_tx_timestamp(skb);
3259
3260		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3261
3262		/* 82544 potentially requires twice as many data descriptors
3263		 * in order to guarantee buffers don't end on evenly-aligned
3264		 * dwords
3265		 */
3266		if (adapter->pcix_82544)
3267			desc_needed += MAX_SKB_FRAGS + 1;
3268
3269		/* Make sure there is space in the ring for the next send. */
3270		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3271
3272		if (!netdev_xmit_more() ||
3273		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3274			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
 
 
 
 
 
3275		}
3276	} else {
3277		dev_kfree_skb_any(skb);
3278		tx_ring->buffer_info[first].time_stamp = 0;
3279		tx_ring->next_to_use = first;
3280	}
3281
3282	return NETDEV_TX_OK;
3283}
3284
3285#define NUM_REGS 38 /* 1 based count */
3286static void e1000_regdump(struct e1000_adapter *adapter)
3287{
3288	struct e1000_hw *hw = &adapter->hw;
3289	u32 regs[NUM_REGS];
3290	u32 *regs_buff = regs;
3291	int i = 0;
3292
3293	static const char * const reg_name[] = {
3294		"CTRL",  "STATUS",
3295		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3296		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3297		"TIDV", "TXDCTL", "TADV", "TARC0",
3298		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3299		"TXDCTL1", "TARC1",
3300		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3301		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3302		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3303	};
3304
3305	regs_buff[0]  = er32(CTRL);
3306	regs_buff[1]  = er32(STATUS);
3307
3308	regs_buff[2]  = er32(RCTL);
3309	regs_buff[3]  = er32(RDLEN);
3310	regs_buff[4]  = er32(RDH);
3311	regs_buff[5]  = er32(RDT);
3312	regs_buff[6]  = er32(RDTR);
3313
3314	regs_buff[7]  = er32(TCTL);
3315	regs_buff[8]  = er32(TDBAL);
3316	regs_buff[9]  = er32(TDBAH);
3317	regs_buff[10] = er32(TDLEN);
3318	regs_buff[11] = er32(TDH);
3319	regs_buff[12] = er32(TDT);
3320	regs_buff[13] = er32(TIDV);
3321	regs_buff[14] = er32(TXDCTL);
3322	regs_buff[15] = er32(TADV);
3323	regs_buff[16] = er32(TARC0);
3324
3325	regs_buff[17] = er32(TDBAL1);
3326	regs_buff[18] = er32(TDBAH1);
3327	regs_buff[19] = er32(TDLEN1);
3328	regs_buff[20] = er32(TDH1);
3329	regs_buff[21] = er32(TDT1);
3330	regs_buff[22] = er32(TXDCTL1);
3331	regs_buff[23] = er32(TARC1);
3332	regs_buff[24] = er32(CTRL_EXT);
3333	regs_buff[25] = er32(ERT);
3334	regs_buff[26] = er32(RDBAL0);
3335	regs_buff[27] = er32(RDBAH0);
3336	regs_buff[28] = er32(TDFH);
3337	regs_buff[29] = er32(TDFT);
3338	regs_buff[30] = er32(TDFHS);
3339	regs_buff[31] = er32(TDFTS);
3340	regs_buff[32] = er32(TDFPC);
3341	regs_buff[33] = er32(RDFH);
3342	regs_buff[34] = er32(RDFT);
3343	regs_buff[35] = er32(RDFHS);
3344	regs_buff[36] = er32(RDFTS);
3345	regs_buff[37] = er32(RDFPC);
3346
3347	pr_info("Register dump\n");
3348	for (i = 0; i < NUM_REGS; i++)
3349		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3350}
3351
3352/*
3353 * e1000_dump: Print registers, tx ring and rx ring
3354 */
3355static void e1000_dump(struct e1000_adapter *adapter)
3356{
3357	/* this code doesn't handle multiple rings */
3358	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3359	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3360	int i;
3361
3362	if (!netif_msg_hw(adapter))
3363		return;
3364
3365	/* Print Registers */
3366	e1000_regdump(adapter);
3367
3368	/* transmit dump */
3369	pr_info("TX Desc ring0 dump\n");
3370
3371	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372	 *
3373	 * Legacy Transmit Descriptor
3374	 *   +--------------------------------------------------------------+
3375	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3376	 *   +--------------------------------------------------------------+
3377	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3378	 *   +--------------------------------------------------------------+
3379	 *   63       48 47        36 35    32 31     24 23    16 15        0
3380	 *
3381	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382	 *   63      48 47    40 39       32 31             16 15    8 7      0
3383	 *   +----------------------------------------------------------------+
3384	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3385	 *   +----------------------------------------------------------------+
3386	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3387	 *   +----------------------------------------------------------------+
3388	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3389	 *
3390	 * Extended Data Descriptor (DTYP=0x1)
3391	 *   +----------------------------------------------------------------+
3392	 * 0 |                     Buffer Address [63:0]                      |
3393	 *   +----------------------------------------------------------------+
3394	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3395	 *   +----------------------------------------------------------------+
3396	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3397	 */
3398	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3399	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3400
3401	if (!netif_msg_tx_done(adapter))
3402		goto rx_ring_summary;
3403
3404	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3407		struct my_u { __le64 a; __le64 b; };
3408		struct my_u *u = (struct my_u *)tx_desc;
3409		const char *type;
3410
3411		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412			type = "NTC/U";
3413		else if (i == tx_ring->next_to_use)
3414			type = "NTU";
3415		else if (i == tx_ring->next_to_clean)
3416			type = "NTC";
3417		else
3418			type = "";
3419
3420		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3421			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422			le64_to_cpu(u->a), le64_to_cpu(u->b),
3423			(u64)buffer_info->dma, buffer_info->length,
3424			buffer_info->next_to_watch,
3425			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3426	}
3427
3428rx_ring_summary:
3429	/* receive dump */
3430	pr_info("\nRX Desc ring dump\n");
3431
3432	/* Legacy Receive Descriptor Format
3433	 *
3434	 * +-----------------------------------------------------+
3435	 * |                Buffer Address [63:0]                |
3436	 * +-----------------------------------------------------+
3437	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3438	 * +-----------------------------------------------------+
3439	 * 63       48 47    40 39      32 31         16 15      0
3440	 */
3441	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3442
3443	if (!netif_msg_rx_status(adapter))
3444		goto exit;
3445
3446	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3447		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3448		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3449		struct my_u { __le64 a; __le64 b; };
3450		struct my_u *u = (struct my_u *)rx_desc;
3451		const char *type;
3452
3453		if (i == rx_ring->next_to_use)
3454			type = "NTU";
3455		else if (i == rx_ring->next_to_clean)
3456			type = "NTC";
3457		else
3458			type = "";
3459
3460		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3461			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3462			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3463	} /* for */
3464
3465	/* dump the descriptor caches */
3466	/* rx */
3467	pr_info("Rx descriptor cache in 64bit format\n");
3468	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3469		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3470			i,
3471			readl(adapter->hw.hw_addr + i+4),
3472			readl(adapter->hw.hw_addr + i),
3473			readl(adapter->hw.hw_addr + i+12),
3474			readl(adapter->hw.hw_addr + i+8));
3475	}
3476	/* tx */
3477	pr_info("Tx descriptor cache in 64bit format\n");
3478	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3479		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3480			i,
3481			readl(adapter->hw.hw_addr + i+4),
3482			readl(adapter->hw.hw_addr + i),
3483			readl(adapter->hw.hw_addr + i+12),
3484			readl(adapter->hw.hw_addr + i+8));
3485	}
3486exit:
3487	return;
3488}
3489
3490/**
3491 * e1000_tx_timeout - Respond to a Tx Hang
3492 * @netdev: network interface device structure
3493 * @txqueue: number of the Tx queue that hung (unused)
3494 **/
3495static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3496{
3497	struct e1000_adapter *adapter = netdev_priv(netdev);
3498
3499	/* Do the reset outside of interrupt context */
3500	adapter->tx_timeout_count++;
3501	schedule_work(&adapter->reset_task);
3502}
3503
3504static void e1000_reset_task(struct work_struct *work)
3505{
3506	struct e1000_adapter *adapter =
3507		container_of(work, struct e1000_adapter, reset_task);
3508
3509	e_err(drv, "Reset adapter\n");
3510	e1000_reinit_locked(adapter);
3511}
3512
3513/**
3514 * e1000_change_mtu - Change the Maximum Transfer Unit
3515 * @netdev: network interface device structure
3516 * @new_mtu: new value for maximum frame size
3517 *
3518 * Returns 0 on success, negative on failure
3519 **/
3520static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3521{
3522	struct e1000_adapter *adapter = netdev_priv(netdev);
3523	struct e1000_hw *hw = &adapter->hw;
3524	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3525
3526	/* Adapter-specific max frame size limits. */
3527	switch (hw->mac_type) {
3528	case e1000_undefined ... e1000_82542_rev2_1:
3529		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3530			e_err(probe, "Jumbo Frames not supported.\n");
3531			return -EINVAL;
3532		}
3533		break;
3534	default:
3535		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3536		break;
3537	}
3538
3539	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3540		msleep(1);
3541	/* e1000_down has a dependency on max_frame_size */
3542	hw->max_frame_size = max_frame;
3543	if (netif_running(netdev)) {
3544		/* prevent buffers from being reallocated */
3545		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3546		e1000_down(adapter);
3547	}
3548
3549	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3550	 * means we reserve 2 more, this pushes us to allocate from the next
3551	 * larger slab size.
3552	 * i.e. RXBUFFER_2048 --> size-4096 slab
3553	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3554	 * fragmented skbs
3555	 */
3556
3557	if (max_frame <= E1000_RXBUFFER_2048)
3558		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3559	else
3560#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3561		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3562#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3563		adapter->rx_buffer_len = PAGE_SIZE;
3564#endif
3565
3566	/* adjust allocation if LPE protects us, and we aren't using SBP */
3567	if (!hw->tbi_compatibility_on &&
3568	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3569	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3570		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3571
3572	netdev_dbg(netdev, "changing MTU from %d to %d\n",
3573		   netdev->mtu, new_mtu);
3574	netdev->mtu = new_mtu;
3575
3576	if (netif_running(netdev))
3577		e1000_up(adapter);
3578	else
3579		e1000_reset(adapter);
3580
3581	clear_bit(__E1000_RESETTING, &adapter->flags);
3582
3583	return 0;
3584}
3585
3586/**
3587 * e1000_update_stats - Update the board statistics counters
3588 * @adapter: board private structure
3589 **/
3590void e1000_update_stats(struct e1000_adapter *adapter)
3591{
3592	struct net_device *netdev = adapter->netdev;
3593	struct e1000_hw *hw = &adapter->hw;
3594	struct pci_dev *pdev = adapter->pdev;
3595	unsigned long flags;
3596	u16 phy_tmp;
3597
3598#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3599
3600	/* Prevent stats update while adapter is being reset, or if the pci
3601	 * connection is down.
3602	 */
3603	if (adapter->link_speed == 0)
3604		return;
3605	if (pci_channel_offline(pdev))
3606		return;
3607
3608	spin_lock_irqsave(&adapter->stats_lock, flags);
3609
3610	/* these counters are modified from e1000_tbi_adjust_stats,
3611	 * called from the interrupt context, so they must only
3612	 * be written while holding adapter->stats_lock
3613	 */
3614
3615	adapter->stats.crcerrs += er32(CRCERRS);
3616	adapter->stats.gprc += er32(GPRC);
3617	adapter->stats.gorcl += er32(GORCL);
3618	adapter->stats.gorch += er32(GORCH);
3619	adapter->stats.bprc += er32(BPRC);
3620	adapter->stats.mprc += er32(MPRC);
3621	adapter->stats.roc += er32(ROC);
3622
3623	adapter->stats.prc64 += er32(PRC64);
3624	adapter->stats.prc127 += er32(PRC127);
3625	adapter->stats.prc255 += er32(PRC255);
3626	adapter->stats.prc511 += er32(PRC511);
3627	adapter->stats.prc1023 += er32(PRC1023);
3628	adapter->stats.prc1522 += er32(PRC1522);
3629
3630	adapter->stats.symerrs += er32(SYMERRS);
3631	adapter->stats.mpc += er32(MPC);
3632	adapter->stats.scc += er32(SCC);
3633	adapter->stats.ecol += er32(ECOL);
3634	adapter->stats.mcc += er32(MCC);
3635	adapter->stats.latecol += er32(LATECOL);
3636	adapter->stats.dc += er32(DC);
3637	adapter->stats.sec += er32(SEC);
3638	adapter->stats.rlec += er32(RLEC);
3639	adapter->stats.xonrxc += er32(XONRXC);
3640	adapter->stats.xontxc += er32(XONTXC);
3641	adapter->stats.xoffrxc += er32(XOFFRXC);
3642	adapter->stats.xofftxc += er32(XOFFTXC);
3643	adapter->stats.fcruc += er32(FCRUC);
3644	adapter->stats.gptc += er32(GPTC);
3645	adapter->stats.gotcl += er32(GOTCL);
3646	adapter->stats.gotch += er32(GOTCH);
3647	adapter->stats.rnbc += er32(RNBC);
3648	adapter->stats.ruc += er32(RUC);
3649	adapter->stats.rfc += er32(RFC);
3650	adapter->stats.rjc += er32(RJC);
3651	adapter->stats.torl += er32(TORL);
3652	adapter->stats.torh += er32(TORH);
3653	adapter->stats.totl += er32(TOTL);
3654	adapter->stats.toth += er32(TOTH);
3655	adapter->stats.tpr += er32(TPR);
3656
3657	adapter->stats.ptc64 += er32(PTC64);
3658	adapter->stats.ptc127 += er32(PTC127);
3659	adapter->stats.ptc255 += er32(PTC255);
3660	adapter->stats.ptc511 += er32(PTC511);
3661	adapter->stats.ptc1023 += er32(PTC1023);
3662	adapter->stats.ptc1522 += er32(PTC1522);
3663
3664	adapter->stats.mptc += er32(MPTC);
3665	adapter->stats.bptc += er32(BPTC);
3666
3667	/* used for adaptive IFS */
3668
3669	hw->tx_packet_delta = er32(TPT);
3670	adapter->stats.tpt += hw->tx_packet_delta;
3671	hw->collision_delta = er32(COLC);
3672	adapter->stats.colc += hw->collision_delta;
3673
3674	if (hw->mac_type >= e1000_82543) {
3675		adapter->stats.algnerrc += er32(ALGNERRC);
3676		adapter->stats.rxerrc += er32(RXERRC);
3677		adapter->stats.tncrs += er32(TNCRS);
3678		adapter->stats.cexterr += er32(CEXTERR);
3679		adapter->stats.tsctc += er32(TSCTC);
3680		adapter->stats.tsctfc += er32(TSCTFC);
3681	}
3682
3683	/* Fill out the OS statistics structure */
3684	netdev->stats.multicast = adapter->stats.mprc;
3685	netdev->stats.collisions = adapter->stats.colc;
3686
3687	/* Rx Errors */
3688
3689	/* RLEC on some newer hardware can be incorrect so build
3690	 * our own version based on RUC and ROC
3691	 */
3692	netdev->stats.rx_errors = adapter->stats.rxerrc +
3693		adapter->stats.crcerrs + adapter->stats.algnerrc +
3694		adapter->stats.ruc + adapter->stats.roc +
3695		adapter->stats.cexterr;
3696	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3697	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3698	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3699	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3700	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3701
3702	/* Tx Errors */
3703	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3704	netdev->stats.tx_errors = adapter->stats.txerrc;
3705	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3706	netdev->stats.tx_window_errors = adapter->stats.latecol;
3707	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3708	if (hw->bad_tx_carr_stats_fd &&
3709	    adapter->link_duplex == FULL_DUPLEX) {
3710		netdev->stats.tx_carrier_errors = 0;
3711		adapter->stats.tncrs = 0;
3712	}
3713
3714	/* Tx Dropped needs to be maintained elsewhere */
3715
3716	/* Phy Stats */
3717	if (hw->media_type == e1000_media_type_copper) {
3718		if ((adapter->link_speed == SPEED_1000) &&
3719		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3720			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3721			adapter->phy_stats.idle_errors += phy_tmp;
3722		}
3723
3724		if ((hw->mac_type <= e1000_82546) &&
3725		   (hw->phy_type == e1000_phy_m88) &&
3726		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3727			adapter->phy_stats.receive_errors += phy_tmp;
3728	}
3729
3730	/* Management Stats */
3731	if (hw->has_smbus) {
3732		adapter->stats.mgptc += er32(MGTPTC);
3733		adapter->stats.mgprc += er32(MGTPRC);
3734		adapter->stats.mgpdc += er32(MGTPDC);
3735	}
3736
3737	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3738}
3739
3740/**
3741 * e1000_intr - Interrupt Handler
3742 * @irq: interrupt number
3743 * @data: pointer to a network interface device structure
3744 **/
3745static irqreturn_t e1000_intr(int irq, void *data)
3746{
3747	struct net_device *netdev = data;
3748	struct e1000_adapter *adapter = netdev_priv(netdev);
3749	struct e1000_hw *hw = &adapter->hw;
3750	u32 icr = er32(ICR);
3751
3752	if (unlikely((!icr)))
3753		return IRQ_NONE;  /* Not our interrupt */
3754
3755	/* we might have caused the interrupt, but the above
3756	 * read cleared it, and just in case the driver is
3757	 * down there is nothing to do so return handled
3758	 */
3759	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3760		return IRQ_HANDLED;
3761
3762	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3763		hw->get_link_status = 1;
3764		/* guard against interrupt when we're going down */
3765		if (!test_bit(__E1000_DOWN, &adapter->flags))
3766			schedule_delayed_work(&adapter->watchdog_task, 1);
3767	}
3768
3769	/* disable interrupts, without the synchronize_irq bit */
3770	ew32(IMC, ~0);
3771	E1000_WRITE_FLUSH();
3772
3773	if (likely(napi_schedule_prep(&adapter->napi))) {
3774		adapter->total_tx_bytes = 0;
3775		adapter->total_tx_packets = 0;
3776		adapter->total_rx_bytes = 0;
3777		adapter->total_rx_packets = 0;
3778		__napi_schedule(&adapter->napi);
3779	} else {
3780		/* this really should not happen! if it does it is basically a
3781		 * bug, but not a hard error, so enable ints and continue
3782		 */
3783		if (!test_bit(__E1000_DOWN, &adapter->flags))
3784			e1000_irq_enable(adapter);
3785	}
3786
3787	return IRQ_HANDLED;
3788}
3789
3790/**
3791 * e1000_clean - NAPI Rx polling callback
3792 * @napi: napi struct containing references to driver info
3793 * @budget: budget given to driver for receive packets
3794 **/
3795static int e1000_clean(struct napi_struct *napi, int budget)
3796{
3797	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3798						     napi);
3799	int tx_clean_complete = 0, work_done = 0;
3800
3801	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3802
3803	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3804
3805	if (!tx_clean_complete || work_done == budget)
3806		return budget;
3807
3808	/* Exit the polling mode, but don't re-enable interrupts if stack might
3809	 * poll us due to busy-polling
3810	 */
3811	if (likely(napi_complete_done(napi, work_done))) {
3812		if (likely(adapter->itr_setting & 3))
3813			e1000_set_itr(adapter);
 
3814		if (!test_bit(__E1000_DOWN, &adapter->flags))
3815			e1000_irq_enable(adapter);
3816	}
3817
3818	return work_done;
3819}
3820
3821/**
3822 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3823 * @adapter: board private structure
3824 * @tx_ring: ring to clean
3825 **/
3826static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3827			       struct e1000_tx_ring *tx_ring)
3828{
3829	struct e1000_hw *hw = &adapter->hw;
3830	struct net_device *netdev = adapter->netdev;
3831	struct e1000_tx_desc *tx_desc, *eop_desc;
3832	struct e1000_tx_buffer *buffer_info;
3833	unsigned int i, eop;
3834	unsigned int count = 0;
3835	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3836	unsigned int bytes_compl = 0, pkts_compl = 0;
3837
3838	i = tx_ring->next_to_clean;
3839	eop = tx_ring->buffer_info[i].next_to_watch;
3840	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3841
3842	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3843	       (count < tx_ring->count)) {
3844		bool cleaned = false;
3845		dma_rmb();	/* read buffer_info after eop_desc */
3846		for ( ; !cleaned; count++) {
3847			tx_desc = E1000_TX_DESC(*tx_ring, i);
3848			buffer_info = &tx_ring->buffer_info[i];
3849			cleaned = (i == eop);
3850
3851			if (cleaned) {
3852				total_tx_packets += buffer_info->segs;
3853				total_tx_bytes += buffer_info->bytecount;
3854				if (buffer_info->skb) {
3855					bytes_compl += buffer_info->skb->len;
3856					pkts_compl++;
3857				}
3858
3859			}
3860			e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3861							 64);
3862			tx_desc->upper.data = 0;
3863
3864			if (unlikely(++i == tx_ring->count))
3865				i = 0;
3866		}
3867
3868		eop = tx_ring->buffer_info[i].next_to_watch;
3869		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870	}
3871
3872	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3873	 * which will reuse the cleaned buffers.
3874	 */
3875	smp_store_release(&tx_ring->next_to_clean, i);
3876
3877	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3878
3879#define TX_WAKE_THRESHOLD 32
3880	if (unlikely(count && netif_carrier_ok(netdev) &&
3881		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3882		/* Make sure that anybody stopping the queue after this
3883		 * sees the new next_to_clean.
3884		 */
3885		smp_mb();
3886
3887		if (netif_queue_stopped(netdev) &&
3888		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3889			netif_wake_queue(netdev);
3890			++adapter->restart_queue;
3891		}
3892	}
3893
3894	if (adapter->detect_tx_hung) {
3895		/* Detect a transmit hang in hardware, this serializes the
3896		 * check with the clearing of time_stamp and movement of i
3897		 */
3898		adapter->detect_tx_hung = false;
3899		if (tx_ring->buffer_info[eop].time_stamp &&
3900		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3901			       (adapter->tx_timeout_factor * HZ)) &&
3902		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3903
3904			/* detected Tx unit hang */
3905			e_err(drv, "Detected Tx Unit Hang\n"
3906			      "  Tx Queue             <%lu>\n"
3907			      "  TDH                  <%x>\n"
3908			      "  TDT                  <%x>\n"
3909			      "  next_to_use          <%x>\n"
3910			      "  next_to_clean        <%x>\n"
3911			      "buffer_info[next_to_clean]\n"
3912			      "  time_stamp           <%lx>\n"
3913			      "  next_to_watch        <%x>\n"
3914			      "  jiffies              <%lx>\n"
3915			      "  next_to_watch.status <%x>\n",
3916				(unsigned long)(tx_ring - adapter->tx_ring),
3917				readl(hw->hw_addr + tx_ring->tdh),
3918				readl(hw->hw_addr + tx_ring->tdt),
3919				tx_ring->next_to_use,
3920				tx_ring->next_to_clean,
3921				tx_ring->buffer_info[eop].time_stamp,
3922				eop,
3923				jiffies,
3924				eop_desc->upper.fields.status);
3925			e1000_dump(adapter);
3926			netif_stop_queue(netdev);
3927		}
3928	}
3929	adapter->total_tx_bytes += total_tx_bytes;
3930	adapter->total_tx_packets += total_tx_packets;
3931	netdev->stats.tx_bytes += total_tx_bytes;
3932	netdev->stats.tx_packets += total_tx_packets;
3933	return count < tx_ring->count;
3934}
3935
3936/**
3937 * e1000_rx_checksum - Receive Checksum Offload for 82543
3938 * @adapter:     board private structure
3939 * @status_err:  receive descriptor status and error fields
3940 * @csum:        receive descriptor csum field
3941 * @skb:         socket buffer with received data
3942 **/
3943static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3944			      u32 csum, struct sk_buff *skb)
3945{
3946	struct e1000_hw *hw = &adapter->hw;
3947	u16 status = (u16)status_err;
3948	u8 errors = (u8)(status_err >> 24);
3949
3950	skb_checksum_none_assert(skb);
3951
3952	/* 82543 or newer only */
3953	if (unlikely(hw->mac_type < e1000_82543))
3954		return;
3955	/* Ignore Checksum bit is set */
3956	if (unlikely(status & E1000_RXD_STAT_IXSM))
3957		return;
3958	/* TCP/UDP checksum error bit is set */
3959	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3960		/* let the stack verify checksum errors */
3961		adapter->hw_csum_err++;
3962		return;
3963	}
3964	/* TCP/UDP Checksum has not been calculated */
3965	if (!(status & E1000_RXD_STAT_TCPCS))
3966		return;
3967
3968	/* It must be a TCP or UDP packet with a valid checksum */
3969	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3970		/* TCP checksum is good */
3971		skb->ip_summed = CHECKSUM_UNNECESSARY;
3972	}
3973	adapter->hw_csum_good++;
3974}
3975
3976/**
3977 * e1000_consume_page - helper function for jumbo Rx path
3978 * @bi: software descriptor shadow data
3979 * @skb: skb being modified
3980 * @length: length of data being added
3981 **/
3982static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3983			       u16 length)
3984{
3985	bi->rxbuf.page = NULL;
3986	skb->len += length;
3987	skb->data_len += length;
3988	skb->truesize += PAGE_SIZE;
3989}
3990
3991/**
3992 * e1000_receive_skb - helper function to handle rx indications
3993 * @adapter: board private structure
3994 * @status: descriptor status field as written by hardware
3995 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3996 * @skb: pointer to sk_buff to be indicated to stack
3997 */
3998static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3999			      __le16 vlan, struct sk_buff *skb)
4000{
4001	skb->protocol = eth_type_trans(skb, adapter->netdev);
4002
4003	if (status & E1000_RXD_STAT_VP) {
4004		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4005
4006		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4007	}
4008	napi_gro_receive(&adapter->napi, skb);
4009}
4010
4011/**
4012 * e1000_tbi_adjust_stats
4013 * @hw: Struct containing variables accessed by shared code
4014 * @stats: point to stats struct
4015 * @frame_len: The length of the frame in question
4016 * @mac_addr: The Ethernet destination address of the frame in question
4017 *
4018 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4019 */
4020static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4021				   struct e1000_hw_stats *stats,
4022				   u32 frame_len, const u8 *mac_addr)
4023{
4024	u64 carry_bit;
4025
4026	/* First adjust the frame length. */
4027	frame_len--;
4028	/* We need to adjust the statistics counters, since the hardware
4029	 * counters overcount this packet as a CRC error and undercount
4030	 * the packet as a good packet
4031	 */
4032	/* This packet should not be counted as a CRC error. */
4033	stats->crcerrs--;
4034	/* This packet does count as a Good Packet Received. */
4035	stats->gprc++;
4036
4037	/* Adjust the Good Octets received counters */
4038	carry_bit = 0x80000000 & stats->gorcl;
4039	stats->gorcl += frame_len;
4040	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4041	 * Received Count) was one before the addition,
4042	 * AND it is zero after, then we lost the carry out,
4043	 * need to add one to Gorch (Good Octets Received Count High).
4044	 * This could be simplified if all environments supported
4045	 * 64-bit integers.
4046	 */
4047	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4048		stats->gorch++;
4049	/* Is this a broadcast or multicast?  Check broadcast first,
4050	 * since the test for a multicast frame will test positive on
4051	 * a broadcast frame.
4052	 */
4053	if (is_broadcast_ether_addr(mac_addr))
4054		stats->bprc++;
4055	else if (is_multicast_ether_addr(mac_addr))
4056		stats->mprc++;
4057
4058	if (frame_len == hw->max_frame_size) {
4059		/* In this case, the hardware has overcounted the number of
4060		 * oversize frames.
4061		 */
4062		if (stats->roc > 0)
4063			stats->roc--;
4064	}
4065
4066	/* Adjust the bin counters when the extra byte put the frame in the
4067	 * wrong bin. Remember that the frame_len was adjusted above.
4068	 */
4069	if (frame_len == 64) {
4070		stats->prc64++;
4071		stats->prc127--;
4072	} else if (frame_len == 127) {
4073		stats->prc127++;
4074		stats->prc255--;
4075	} else if (frame_len == 255) {
4076		stats->prc255++;
4077		stats->prc511--;
4078	} else if (frame_len == 511) {
4079		stats->prc511++;
4080		stats->prc1023--;
4081	} else if (frame_len == 1023) {
4082		stats->prc1023++;
4083		stats->prc1522--;
4084	} else if (frame_len == 1522) {
4085		stats->prc1522++;
4086	}
4087}
4088
4089static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4090				    u8 status, u8 errors,
4091				    u32 length, const u8 *data)
4092{
4093	struct e1000_hw *hw = &adapter->hw;
4094	u8 last_byte = *(data + length - 1);
4095
4096	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4097		unsigned long irq_flags;
4098
4099		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4100		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4101		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4102
4103		return true;
4104	}
4105
4106	return false;
4107}
4108
4109static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4110					  unsigned int bufsz)
4111{
4112	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4113
4114	if (unlikely(!skb))
4115		adapter->alloc_rx_buff_failed++;
4116	return skb;
4117}
4118
4119/**
4120 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4121 * @adapter: board private structure
4122 * @rx_ring: ring to clean
4123 * @work_done: amount of napi work completed this call
4124 * @work_to_do: max amount of work allowed for this call to do
4125 *
4126 * the return value indicates whether actual cleaning was done, there
4127 * is no guarantee that everything was cleaned
4128 */
4129static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4130				     struct e1000_rx_ring *rx_ring,
4131				     int *work_done, int work_to_do)
4132{
4133	struct net_device *netdev = adapter->netdev;
4134	struct pci_dev *pdev = adapter->pdev;
4135	struct e1000_rx_desc *rx_desc, *next_rxd;
4136	struct e1000_rx_buffer *buffer_info, *next_buffer;
4137	u32 length;
4138	unsigned int i;
4139	int cleaned_count = 0;
4140	bool cleaned = false;
4141	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4142
4143	i = rx_ring->next_to_clean;
4144	rx_desc = E1000_RX_DESC(*rx_ring, i);
4145	buffer_info = &rx_ring->buffer_info[i];
4146
4147	while (rx_desc->status & E1000_RXD_STAT_DD) {
4148		struct sk_buff *skb;
4149		u8 status;
4150
4151		if (*work_done >= work_to_do)
4152			break;
4153		(*work_done)++;
4154		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4155
4156		status = rx_desc->status;
4157
4158		if (++i == rx_ring->count)
4159			i = 0;
4160
4161		next_rxd = E1000_RX_DESC(*rx_ring, i);
4162		prefetch(next_rxd);
4163
4164		next_buffer = &rx_ring->buffer_info[i];
4165
4166		cleaned = true;
4167		cleaned_count++;
4168		dma_unmap_page(&pdev->dev, buffer_info->dma,
4169			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4170		buffer_info->dma = 0;
4171
4172		length = le16_to_cpu(rx_desc->length);
4173
4174		/* errors is only valid for DD + EOP descriptors */
4175		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4176		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4177			u8 *mapped = page_address(buffer_info->rxbuf.page);
4178
4179			if (e1000_tbi_should_accept(adapter, status,
4180						    rx_desc->errors,
4181						    length, mapped)) {
4182				length--;
4183			} else if (netdev->features & NETIF_F_RXALL) {
4184				goto process_skb;
4185			} else {
4186				/* an error means any chain goes out the window
4187				 * too
4188				 */
4189				dev_kfree_skb(rx_ring->rx_skb_top);
 
4190				rx_ring->rx_skb_top = NULL;
4191				goto next_desc;
4192			}
4193		}
4194
4195#define rxtop rx_ring->rx_skb_top
4196process_skb:
4197		if (!(status & E1000_RXD_STAT_EOP)) {
4198			/* this descriptor is only the beginning (or middle) */
4199			if (!rxtop) {
4200				/* this is the beginning of a chain */
4201				rxtop = napi_get_frags(&adapter->napi);
4202				if (!rxtop)
4203					break;
4204
4205				skb_fill_page_desc(rxtop, 0,
4206						   buffer_info->rxbuf.page,
4207						   0, length);
4208			} else {
4209				/* this is the middle of a chain */
4210				skb_fill_page_desc(rxtop,
4211				    skb_shinfo(rxtop)->nr_frags,
4212				    buffer_info->rxbuf.page, 0, length);
4213			}
4214			e1000_consume_page(buffer_info, rxtop, length);
4215			goto next_desc;
4216		} else {
4217			if (rxtop) {
4218				/* end of the chain */
4219				skb_fill_page_desc(rxtop,
4220				    skb_shinfo(rxtop)->nr_frags,
4221				    buffer_info->rxbuf.page, 0, length);
4222				skb = rxtop;
4223				rxtop = NULL;
4224				e1000_consume_page(buffer_info, skb, length);
4225			} else {
4226				struct page *p;
4227				/* no chain, got EOP, this buf is the packet
4228				 * copybreak to save the put_page/alloc_page
4229				 */
4230				p = buffer_info->rxbuf.page;
4231				if (length <= copybreak) {
 
 
4232					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4233						length -= 4;
4234					skb = e1000_alloc_rx_skb(adapter,
4235								 length);
4236					if (!skb)
4237						break;
4238
4239					memcpy(skb_tail_pointer(skb),
4240					       page_address(p), length);
4241
 
4242					/* re-use the page, so don't erase
4243					 * buffer_info->rxbuf.page
4244					 */
4245					skb_put(skb, length);
4246					e1000_rx_checksum(adapter,
4247							  status | rx_desc->errors << 24,
4248							  le16_to_cpu(rx_desc->csum), skb);
4249
4250					total_rx_bytes += skb->len;
4251					total_rx_packets++;
4252
4253					e1000_receive_skb(adapter, status,
4254							  rx_desc->special, skb);
4255					goto next_desc;
4256				} else {
4257					skb = napi_get_frags(&adapter->napi);
4258					if (!skb) {
4259						adapter->alloc_rx_buff_failed++;
4260						break;
4261					}
4262					skb_fill_page_desc(skb, 0, p, 0,
4263							   length);
4264					e1000_consume_page(buffer_info, skb,
4265							   length);
4266				}
4267			}
4268		}
4269
4270		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4271		e1000_rx_checksum(adapter,
4272				  (u32)(status) |
4273				  ((u32)(rx_desc->errors) << 24),
4274				  le16_to_cpu(rx_desc->csum), skb);
4275
4276		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4277		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4278			pskb_trim(skb, skb->len - 4);
4279		total_rx_packets++;
4280
4281		if (status & E1000_RXD_STAT_VP) {
4282			__le16 vlan = rx_desc->special;
4283			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4284
4285			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4286		}
4287
4288		napi_gro_frags(&adapter->napi);
4289
4290next_desc:
4291		rx_desc->status = 0;
4292
4293		/* return some buffers to hardware, one at a time is too slow */
4294		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4295			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4296			cleaned_count = 0;
4297		}
4298
4299		/* use prefetched values */
4300		rx_desc = next_rxd;
4301		buffer_info = next_buffer;
4302	}
4303	rx_ring->next_to_clean = i;
4304
4305	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4306	if (cleaned_count)
4307		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4308
4309	adapter->total_rx_packets += total_rx_packets;
4310	adapter->total_rx_bytes += total_rx_bytes;
4311	netdev->stats.rx_bytes += total_rx_bytes;
4312	netdev->stats.rx_packets += total_rx_packets;
4313	return cleaned;
4314}
4315
4316/* this should improve performance for small packets with large amounts
4317 * of reassembly being done in the stack
4318 */
4319static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4320				       struct e1000_rx_buffer *buffer_info,
4321				       u32 length, const void *data)
4322{
4323	struct sk_buff *skb;
4324
4325	if (length > copybreak)
4326		return NULL;
4327
4328	skb = e1000_alloc_rx_skb(adapter, length);
4329	if (!skb)
4330		return NULL;
4331
4332	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4333				length, DMA_FROM_DEVICE);
4334
4335	skb_put_data(skb, data, length);
4336
4337	return skb;
4338}
4339
4340/**
4341 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4342 * @adapter: board private structure
4343 * @rx_ring: ring to clean
4344 * @work_done: amount of napi work completed this call
4345 * @work_to_do: max amount of work allowed for this call to do
4346 */
4347static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4348			       struct e1000_rx_ring *rx_ring,
4349			       int *work_done, int work_to_do)
4350{
4351	struct net_device *netdev = adapter->netdev;
4352	struct pci_dev *pdev = adapter->pdev;
4353	struct e1000_rx_desc *rx_desc, *next_rxd;
4354	struct e1000_rx_buffer *buffer_info, *next_buffer;
4355	u32 length;
4356	unsigned int i;
4357	int cleaned_count = 0;
4358	bool cleaned = false;
4359	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4360
4361	i = rx_ring->next_to_clean;
4362	rx_desc = E1000_RX_DESC(*rx_ring, i);
4363	buffer_info = &rx_ring->buffer_info[i];
4364
4365	while (rx_desc->status & E1000_RXD_STAT_DD) {
4366		struct sk_buff *skb;
4367		u8 *data;
4368		u8 status;
4369
4370		if (*work_done >= work_to_do)
4371			break;
4372		(*work_done)++;
4373		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4374
4375		status = rx_desc->status;
4376		length = le16_to_cpu(rx_desc->length);
4377
4378		data = buffer_info->rxbuf.data;
4379		prefetch(data);
4380		skb = e1000_copybreak(adapter, buffer_info, length, data);
4381		if (!skb) {
4382			unsigned int frag_len = e1000_frag_len(adapter);
4383
4384			skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4385			if (!skb) {
4386				adapter->alloc_rx_buff_failed++;
4387				break;
4388			}
4389
4390			skb_reserve(skb, E1000_HEADROOM);
4391			dma_unmap_single(&pdev->dev, buffer_info->dma,
4392					 adapter->rx_buffer_len,
4393					 DMA_FROM_DEVICE);
4394			buffer_info->dma = 0;
4395			buffer_info->rxbuf.data = NULL;
4396		}
4397
4398		if (++i == rx_ring->count)
4399			i = 0;
4400
4401		next_rxd = E1000_RX_DESC(*rx_ring, i);
4402		prefetch(next_rxd);
4403
4404		next_buffer = &rx_ring->buffer_info[i];
4405
4406		cleaned = true;
4407		cleaned_count++;
4408
4409		/* !EOP means multiple descriptors were used to store a single
4410		 * packet, if thats the case we need to toss it.  In fact, we
4411		 * to toss every packet with the EOP bit clear and the next
4412		 * frame that _does_ have the EOP bit set, as it is by
4413		 * definition only a frame fragment
4414		 */
4415		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4416			adapter->discarding = true;
4417
4418		if (adapter->discarding) {
4419			/* All receives must fit into a single buffer */
4420			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4421			dev_kfree_skb(skb);
4422			if (status & E1000_RXD_STAT_EOP)
4423				adapter->discarding = false;
4424			goto next_desc;
4425		}
4426
4427		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4428			if (e1000_tbi_should_accept(adapter, status,
4429						    rx_desc->errors,
4430						    length, data)) {
4431				length--;
4432			} else if (netdev->features & NETIF_F_RXALL) {
4433				goto process_skb;
4434			} else {
4435				dev_kfree_skb(skb);
4436				goto next_desc;
4437			}
4438		}
4439
4440process_skb:
4441		total_rx_bytes += (length - 4); /* don't count FCS */
4442		total_rx_packets++;
4443
4444		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4445			/* adjust length to remove Ethernet CRC, this must be
4446			 * done after the TBI_ACCEPT workaround above
4447			 */
4448			length -= 4;
4449
4450		if (buffer_info->rxbuf.data == NULL)
4451			skb_put(skb, length);
4452		else /* copybreak skb */
4453			skb_trim(skb, length);
4454
4455		/* Receive Checksum Offload */
4456		e1000_rx_checksum(adapter,
4457				  (u32)(status) |
4458				  ((u32)(rx_desc->errors) << 24),
4459				  le16_to_cpu(rx_desc->csum), skb);
4460
4461		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4462
4463next_desc:
4464		rx_desc->status = 0;
4465
4466		/* return some buffers to hardware, one at a time is too slow */
4467		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4468			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4469			cleaned_count = 0;
4470		}
4471
4472		/* use prefetched values */
4473		rx_desc = next_rxd;
4474		buffer_info = next_buffer;
4475	}
4476	rx_ring->next_to_clean = i;
4477
4478	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4479	if (cleaned_count)
4480		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4481
4482	adapter->total_rx_packets += total_rx_packets;
4483	adapter->total_rx_bytes += total_rx_bytes;
4484	netdev->stats.rx_bytes += total_rx_bytes;
4485	netdev->stats.rx_packets += total_rx_packets;
4486	return cleaned;
4487}
4488
4489/**
4490 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4491 * @adapter: address of board private structure
4492 * @rx_ring: pointer to receive ring structure
4493 * @cleaned_count: number of buffers to allocate this pass
4494 **/
4495static void
4496e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4497			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4498{
4499	struct pci_dev *pdev = adapter->pdev;
4500	struct e1000_rx_desc *rx_desc;
4501	struct e1000_rx_buffer *buffer_info;
4502	unsigned int i;
4503
4504	i = rx_ring->next_to_use;
4505	buffer_info = &rx_ring->buffer_info[i];
4506
4507	while (cleaned_count--) {
4508		/* allocate a new page if necessary */
4509		if (!buffer_info->rxbuf.page) {
4510			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4511			if (unlikely(!buffer_info->rxbuf.page)) {
4512				adapter->alloc_rx_buff_failed++;
4513				break;
4514			}
4515		}
4516
4517		if (!buffer_info->dma) {
4518			buffer_info->dma = dma_map_page(&pdev->dev,
4519							buffer_info->rxbuf.page, 0,
4520							adapter->rx_buffer_len,
4521							DMA_FROM_DEVICE);
4522			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4523				put_page(buffer_info->rxbuf.page);
4524				buffer_info->rxbuf.page = NULL;
4525				buffer_info->dma = 0;
4526				adapter->alloc_rx_buff_failed++;
4527				break;
4528			}
4529		}
4530
4531		rx_desc = E1000_RX_DESC(*rx_ring, i);
4532		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4533
4534		if (unlikely(++i == rx_ring->count))
4535			i = 0;
4536		buffer_info = &rx_ring->buffer_info[i];
4537	}
4538
4539	if (likely(rx_ring->next_to_use != i)) {
4540		rx_ring->next_to_use = i;
4541		if (unlikely(i-- == 0))
4542			i = (rx_ring->count - 1);
4543
4544		/* Force memory writes to complete before letting h/w
4545		 * know there are new descriptors to fetch.  (Only
4546		 * applicable for weak-ordered memory model archs,
4547		 * such as IA-64).
4548		 */
4549		dma_wmb();
4550		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4551	}
4552}
4553
4554/**
4555 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4556 * @adapter: address of board private structure
4557 * @rx_ring: pointer to ring struct
4558 * @cleaned_count: number of new Rx buffers to try to allocate
4559 **/
4560static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4561				   struct e1000_rx_ring *rx_ring,
4562				   int cleaned_count)
4563{
4564	struct e1000_hw *hw = &adapter->hw;
4565	struct pci_dev *pdev = adapter->pdev;
4566	struct e1000_rx_desc *rx_desc;
4567	struct e1000_rx_buffer *buffer_info;
4568	unsigned int i;
4569	unsigned int bufsz = adapter->rx_buffer_len;
4570
4571	i = rx_ring->next_to_use;
4572	buffer_info = &rx_ring->buffer_info[i];
4573
4574	while (cleaned_count--) {
4575		void *data;
4576
4577		if (buffer_info->rxbuf.data)
4578			goto skip;
4579
4580		data = e1000_alloc_frag(adapter);
4581		if (!data) {
4582			/* Better luck next round */
4583			adapter->alloc_rx_buff_failed++;
4584			break;
4585		}
4586
4587		/* Fix for errata 23, can't cross 64kB boundary */
4588		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4589			void *olddata = data;
4590			e_err(rx_err, "skb align check failed: %u bytes at "
4591			      "%p\n", bufsz, data);
4592			/* Try again, without freeing the previous */
4593			data = e1000_alloc_frag(adapter);
4594			/* Failed allocation, critical failure */
4595			if (!data) {
4596				skb_free_frag(olddata);
4597				adapter->alloc_rx_buff_failed++;
4598				break;
4599			}
4600
4601			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4602				/* give up */
4603				skb_free_frag(data);
4604				skb_free_frag(olddata);
4605				adapter->alloc_rx_buff_failed++;
4606				break;
4607			}
4608
4609			/* Use new allocation */
4610			skb_free_frag(olddata);
4611		}
4612		buffer_info->dma = dma_map_single(&pdev->dev,
4613						  data,
4614						  adapter->rx_buffer_len,
4615						  DMA_FROM_DEVICE);
4616		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4617			skb_free_frag(data);
4618			buffer_info->dma = 0;
4619			adapter->alloc_rx_buff_failed++;
4620			break;
4621		}
4622
4623		/* XXX if it was allocated cleanly it will never map to a
4624		 * boundary crossing
4625		 */
4626
4627		/* Fix for errata 23, can't cross 64kB boundary */
4628		if (!e1000_check_64k_bound(adapter,
4629					(void *)(unsigned long)buffer_info->dma,
4630					adapter->rx_buffer_len)) {
4631			e_err(rx_err, "dma align check failed: %u bytes at "
4632			      "%p\n", adapter->rx_buffer_len,
4633			      (void *)(unsigned long)buffer_info->dma);
4634
4635			dma_unmap_single(&pdev->dev, buffer_info->dma,
4636					 adapter->rx_buffer_len,
4637					 DMA_FROM_DEVICE);
4638
4639			skb_free_frag(data);
4640			buffer_info->rxbuf.data = NULL;
4641			buffer_info->dma = 0;
4642
4643			adapter->alloc_rx_buff_failed++;
4644			break;
4645		}
4646		buffer_info->rxbuf.data = data;
4647 skip:
4648		rx_desc = E1000_RX_DESC(*rx_ring, i);
4649		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4650
4651		if (unlikely(++i == rx_ring->count))
4652			i = 0;
4653		buffer_info = &rx_ring->buffer_info[i];
4654	}
4655
4656	if (likely(rx_ring->next_to_use != i)) {
4657		rx_ring->next_to_use = i;
4658		if (unlikely(i-- == 0))
4659			i = (rx_ring->count - 1);
4660
4661		/* Force memory writes to complete before letting h/w
4662		 * know there are new descriptors to fetch.  (Only
4663		 * applicable for weak-ordered memory model archs,
4664		 * such as IA-64).
4665		 */
4666		dma_wmb();
4667		writel(i, hw->hw_addr + rx_ring->rdt);
4668	}
4669}
4670
4671/**
4672 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4673 * @adapter: address of board private structure
4674 **/
4675static void e1000_smartspeed(struct e1000_adapter *adapter)
4676{
4677	struct e1000_hw *hw = &adapter->hw;
4678	u16 phy_status;
4679	u16 phy_ctrl;
4680
4681	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4682	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4683		return;
4684
4685	if (adapter->smartspeed == 0) {
4686		/* If Master/Slave config fault is asserted twice,
4687		 * we assume back-to-back
4688		 */
4689		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4690		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4691			return;
4692		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4693		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4694			return;
4695		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4696		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4697			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4698			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4699					    phy_ctrl);
4700			adapter->smartspeed++;
4701			if (!e1000_phy_setup_autoneg(hw) &&
4702			   !e1000_read_phy_reg(hw, PHY_CTRL,
4703					       &phy_ctrl)) {
4704				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4705					     MII_CR_RESTART_AUTO_NEG);
4706				e1000_write_phy_reg(hw, PHY_CTRL,
4707						    phy_ctrl);
4708			}
4709		}
4710		return;
4711	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4712		/* If still no link, perhaps using 2/3 pair cable */
4713		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4714		phy_ctrl |= CR_1000T_MS_ENABLE;
4715		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4716		if (!e1000_phy_setup_autoneg(hw) &&
4717		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4718			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4719				     MII_CR_RESTART_AUTO_NEG);
4720			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4721		}
4722	}
4723	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4724	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4725		adapter->smartspeed = 0;
4726}
4727
4728/**
4729 * e1000_ioctl - handle ioctl calls
4730 * @netdev: pointer to our netdev
4731 * @ifr: pointer to interface request structure
4732 * @cmd: ioctl data
4733 **/
4734static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4735{
4736	switch (cmd) {
4737	case SIOCGMIIPHY:
4738	case SIOCGMIIREG:
4739	case SIOCSMIIREG:
4740		return e1000_mii_ioctl(netdev, ifr, cmd);
4741	default:
4742		return -EOPNOTSUPP;
4743	}
4744}
4745
4746/**
4747 * e1000_mii_ioctl -
4748 * @netdev: pointer to our netdev
4749 * @ifr: pointer to interface request structure
4750 * @cmd: ioctl data
4751 **/
4752static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4753			   int cmd)
4754{
4755	struct e1000_adapter *adapter = netdev_priv(netdev);
4756	struct e1000_hw *hw = &adapter->hw;
4757	struct mii_ioctl_data *data = if_mii(ifr);
4758	int retval;
4759	u16 mii_reg;
4760	unsigned long flags;
4761
4762	if (hw->media_type != e1000_media_type_copper)
4763		return -EOPNOTSUPP;
4764
4765	switch (cmd) {
4766	case SIOCGMIIPHY:
4767		data->phy_id = hw->phy_addr;
4768		break;
4769	case SIOCGMIIREG:
4770		spin_lock_irqsave(&adapter->stats_lock, flags);
4771		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4772				   &data->val_out)) {
4773			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4774			return -EIO;
4775		}
4776		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4777		break;
4778	case SIOCSMIIREG:
4779		if (data->reg_num & ~(0x1F))
4780			return -EFAULT;
4781		mii_reg = data->val_in;
4782		spin_lock_irqsave(&adapter->stats_lock, flags);
4783		if (e1000_write_phy_reg(hw, data->reg_num,
4784					mii_reg)) {
4785			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4786			return -EIO;
4787		}
4788		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4789		if (hw->media_type == e1000_media_type_copper) {
4790			switch (data->reg_num) {
4791			case PHY_CTRL:
4792				if (mii_reg & MII_CR_POWER_DOWN)
4793					break;
4794				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4795					hw->autoneg = 1;
4796					hw->autoneg_advertised = 0x2F;
4797				} else {
4798					u32 speed;
4799					if (mii_reg & 0x40)
4800						speed = SPEED_1000;
4801					else if (mii_reg & 0x2000)
4802						speed = SPEED_100;
4803					else
4804						speed = SPEED_10;
4805					retval = e1000_set_spd_dplx(
4806						adapter, speed,
4807						((mii_reg & 0x100)
4808						 ? DUPLEX_FULL :
4809						 DUPLEX_HALF));
4810					if (retval)
4811						return retval;
4812				}
4813				if (netif_running(adapter->netdev))
4814					e1000_reinit_locked(adapter);
4815				else
4816					e1000_reset(adapter);
4817				break;
4818			case M88E1000_PHY_SPEC_CTRL:
4819			case M88E1000_EXT_PHY_SPEC_CTRL:
4820				if (e1000_phy_reset(hw))
4821					return -EIO;
4822				break;
4823			}
4824		} else {
4825			switch (data->reg_num) {
4826			case PHY_CTRL:
4827				if (mii_reg & MII_CR_POWER_DOWN)
4828					break;
4829				if (netif_running(adapter->netdev))
4830					e1000_reinit_locked(adapter);
4831				else
4832					e1000_reset(adapter);
4833				break;
4834			}
4835		}
4836		break;
4837	default:
4838		return -EOPNOTSUPP;
4839	}
4840	return E1000_SUCCESS;
4841}
4842
4843void e1000_pci_set_mwi(struct e1000_hw *hw)
4844{
4845	struct e1000_adapter *adapter = hw->back;
4846	int ret_val = pci_set_mwi(adapter->pdev);
4847
4848	if (ret_val)
4849		e_err(probe, "Error in setting MWI\n");
4850}
4851
4852void e1000_pci_clear_mwi(struct e1000_hw *hw)
4853{
4854	struct e1000_adapter *adapter = hw->back;
4855
4856	pci_clear_mwi(adapter->pdev);
4857}
4858
4859int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4860{
4861	struct e1000_adapter *adapter = hw->back;
4862	return pcix_get_mmrbc(adapter->pdev);
4863}
4864
4865void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4866{
4867	struct e1000_adapter *adapter = hw->back;
4868	pcix_set_mmrbc(adapter->pdev, mmrbc);
4869}
4870
4871void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4872{
4873	outl(value, port);
4874}
4875
4876static bool e1000_vlan_used(struct e1000_adapter *adapter)
4877{
4878	u16 vid;
4879
4880	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4881		return true;
4882	return false;
4883}
4884
4885static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4886			      netdev_features_t features)
4887{
4888	struct e1000_hw *hw = &adapter->hw;
4889	u32 ctrl;
4890
4891	ctrl = er32(CTRL);
4892	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4893		/* enable VLAN tag insert/strip */
4894		ctrl |= E1000_CTRL_VME;
4895	} else {
4896		/* disable VLAN tag insert/strip */
4897		ctrl &= ~E1000_CTRL_VME;
4898	}
4899	ew32(CTRL, ctrl);
4900}
4901static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4902				     bool filter_on)
4903{
4904	struct e1000_hw *hw = &adapter->hw;
4905	u32 rctl;
4906
4907	if (!test_bit(__E1000_DOWN, &adapter->flags))
4908		e1000_irq_disable(adapter);
4909
4910	__e1000_vlan_mode(adapter, adapter->netdev->features);
4911	if (filter_on) {
4912		/* enable VLAN receive filtering */
4913		rctl = er32(RCTL);
4914		rctl &= ~E1000_RCTL_CFIEN;
4915		if (!(adapter->netdev->flags & IFF_PROMISC))
4916			rctl |= E1000_RCTL_VFE;
4917		ew32(RCTL, rctl);
4918		e1000_update_mng_vlan(adapter);
4919	} else {
4920		/* disable VLAN receive filtering */
4921		rctl = er32(RCTL);
4922		rctl &= ~E1000_RCTL_VFE;
4923		ew32(RCTL, rctl);
4924	}
4925
4926	if (!test_bit(__E1000_DOWN, &adapter->flags))
4927		e1000_irq_enable(adapter);
4928}
4929
4930static void e1000_vlan_mode(struct net_device *netdev,
4931			    netdev_features_t features)
4932{
4933	struct e1000_adapter *adapter = netdev_priv(netdev);
4934
4935	if (!test_bit(__E1000_DOWN, &adapter->flags))
4936		e1000_irq_disable(adapter);
4937
4938	__e1000_vlan_mode(adapter, features);
4939
4940	if (!test_bit(__E1000_DOWN, &adapter->flags))
4941		e1000_irq_enable(adapter);
4942}
4943
4944static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4945				 __be16 proto, u16 vid)
4946{
4947	struct e1000_adapter *adapter = netdev_priv(netdev);
4948	struct e1000_hw *hw = &adapter->hw;
4949	u32 vfta, index;
4950
4951	if ((hw->mng_cookie.status &
4952	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4953	    (vid == adapter->mng_vlan_id))
4954		return 0;
4955
4956	if (!e1000_vlan_used(adapter))
4957		e1000_vlan_filter_on_off(adapter, true);
4958
4959	/* add VID to filter table */
4960	index = (vid >> 5) & 0x7F;
4961	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4962	vfta |= (1 << (vid & 0x1F));
4963	e1000_write_vfta(hw, index, vfta);
4964
4965	set_bit(vid, adapter->active_vlans);
4966
4967	return 0;
4968}
4969
4970static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4971				  __be16 proto, u16 vid)
4972{
4973	struct e1000_adapter *adapter = netdev_priv(netdev);
4974	struct e1000_hw *hw = &adapter->hw;
4975	u32 vfta, index;
4976
4977	if (!test_bit(__E1000_DOWN, &adapter->flags))
4978		e1000_irq_disable(adapter);
4979	if (!test_bit(__E1000_DOWN, &adapter->flags))
4980		e1000_irq_enable(adapter);
4981
4982	/* remove VID from filter table */
4983	index = (vid >> 5) & 0x7F;
4984	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4985	vfta &= ~(1 << (vid & 0x1F));
4986	e1000_write_vfta(hw, index, vfta);
4987
4988	clear_bit(vid, adapter->active_vlans);
4989
4990	if (!e1000_vlan_used(adapter))
4991		e1000_vlan_filter_on_off(adapter, false);
4992
4993	return 0;
4994}
4995
4996static void e1000_restore_vlan(struct e1000_adapter *adapter)
4997{
4998	u16 vid;
4999
5000	if (!e1000_vlan_used(adapter))
5001		return;
5002
5003	e1000_vlan_filter_on_off(adapter, true);
5004	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5005		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5006}
5007
5008int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5009{
5010	struct e1000_hw *hw = &adapter->hw;
5011
5012	hw->autoneg = 0;
5013
5014	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5015	 * for the switch() below to work
5016	 */
5017	if ((spd & 1) || (dplx & ~1))
5018		goto err_inval;
5019
5020	/* Fiber NICs only allow 1000 gbps Full duplex */
5021	if ((hw->media_type == e1000_media_type_fiber) &&
5022	    spd != SPEED_1000 &&
5023	    dplx != DUPLEX_FULL)
5024		goto err_inval;
5025
5026	switch (spd + dplx) {
5027	case SPEED_10 + DUPLEX_HALF:
5028		hw->forced_speed_duplex = e1000_10_half;
5029		break;
5030	case SPEED_10 + DUPLEX_FULL:
5031		hw->forced_speed_duplex = e1000_10_full;
5032		break;
5033	case SPEED_100 + DUPLEX_HALF:
5034		hw->forced_speed_duplex = e1000_100_half;
5035		break;
5036	case SPEED_100 + DUPLEX_FULL:
5037		hw->forced_speed_duplex = e1000_100_full;
5038		break;
5039	case SPEED_1000 + DUPLEX_FULL:
5040		hw->autoneg = 1;
5041		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5042		break;
5043	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5044	default:
5045		goto err_inval;
5046	}
5047
5048	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5049	hw->mdix = AUTO_ALL_MODES;
5050
5051	return 0;
5052
5053err_inval:
5054	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5055	return -EINVAL;
5056}
5057
5058static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5059{
5060	struct net_device *netdev = pci_get_drvdata(pdev);
5061	struct e1000_adapter *adapter = netdev_priv(netdev);
5062	struct e1000_hw *hw = &adapter->hw;
5063	u32 ctrl, ctrl_ext, rctl, status;
5064	u32 wufc = adapter->wol;
 
 
 
5065
5066	netif_device_detach(netdev);
5067
5068	if (netif_running(netdev)) {
5069		int count = E1000_CHECK_RESET_COUNT;
5070
5071		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5072			usleep_range(10000, 20000);
5073
5074		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5075		e1000_down(adapter);
5076	}
5077
 
 
 
 
 
 
5078	status = er32(STATUS);
5079	if (status & E1000_STATUS_LU)
5080		wufc &= ~E1000_WUFC_LNKC;
5081
5082	if (wufc) {
5083		e1000_setup_rctl(adapter);
5084		e1000_set_rx_mode(netdev);
5085
5086		rctl = er32(RCTL);
5087
5088		/* turn on all-multi mode if wake on multicast is enabled */
5089		if (wufc & E1000_WUFC_MC)
5090			rctl |= E1000_RCTL_MPE;
5091
5092		/* enable receives in the hardware */
5093		ew32(RCTL, rctl | E1000_RCTL_EN);
5094
5095		if (hw->mac_type >= e1000_82540) {
5096			ctrl = er32(CTRL);
5097			/* advertise wake from D3Cold */
5098			#define E1000_CTRL_ADVD3WUC 0x00100000
5099			/* phy power management enable */
5100			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5101			ctrl |= E1000_CTRL_ADVD3WUC |
5102				E1000_CTRL_EN_PHY_PWR_MGMT;
5103			ew32(CTRL, ctrl);
5104		}
5105
5106		if (hw->media_type == e1000_media_type_fiber ||
5107		    hw->media_type == e1000_media_type_internal_serdes) {
5108			/* keep the laser running in D3 */
5109			ctrl_ext = er32(CTRL_EXT);
5110			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5111			ew32(CTRL_EXT, ctrl_ext);
5112		}
5113
5114		ew32(WUC, E1000_WUC_PME_EN);
5115		ew32(WUFC, wufc);
5116	} else {
5117		ew32(WUC, 0);
5118		ew32(WUFC, 0);
5119	}
5120
5121	e1000_release_manageability(adapter);
5122
5123	*enable_wake = !!wufc;
5124
5125	/* make sure adapter isn't asleep if manageability is enabled */
5126	if (adapter->en_mng_pt)
5127		*enable_wake = true;
5128
5129	if (netif_running(netdev))
5130		e1000_free_irq(adapter);
5131
5132	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5133		pci_disable_device(pdev);
5134
5135	return 0;
5136}
5137
5138static int __maybe_unused e1000_suspend(struct device *dev)
 
5139{
5140	int retval;
5141	struct pci_dev *pdev = to_pci_dev(dev);
5142	bool wake;
5143
5144	retval = __e1000_shutdown(pdev, &wake);
5145	device_set_wakeup_enable(dev, wake);
 
5146
5147	return retval;
 
 
 
 
 
 
 
5148}
5149
5150static int __maybe_unused e1000_resume(struct device *dev)
5151{
5152	struct pci_dev *pdev = to_pci_dev(dev);
5153	struct net_device *netdev = pci_get_drvdata(pdev);
5154	struct e1000_adapter *adapter = netdev_priv(netdev);
5155	struct e1000_hw *hw = &adapter->hw;
5156	u32 err;
5157
 
 
 
 
5158	if (adapter->need_ioport)
5159		err = pci_enable_device(pdev);
5160	else
5161		err = pci_enable_device_mem(pdev);
5162	if (err) {
5163		pr_err("Cannot enable PCI device from suspend\n");
5164		return err;
5165	}
5166
5167	/* flush memory to make sure state is correct */
5168	smp_mb__before_atomic();
5169	clear_bit(__E1000_DISABLED, &adapter->flags);
5170	pci_set_master(pdev);
5171
5172	pci_enable_wake(pdev, PCI_D3hot, 0);
5173	pci_enable_wake(pdev, PCI_D3cold, 0);
5174
5175	if (netif_running(netdev)) {
5176		err = e1000_request_irq(adapter);
5177		if (err)
5178			return err;
5179	}
5180
5181	e1000_power_up_phy(adapter);
5182	e1000_reset(adapter);
5183	ew32(WUS, ~0);
5184
5185	e1000_init_manageability(adapter);
5186
5187	if (netif_running(netdev))
5188		e1000_up(adapter);
5189
5190	netif_device_attach(netdev);
5191
5192	return 0;
5193}
 
5194
5195static void e1000_shutdown(struct pci_dev *pdev)
5196{
5197	bool wake;
5198
5199	__e1000_shutdown(pdev, &wake);
5200
5201	if (system_state == SYSTEM_POWER_OFF) {
5202		pci_wake_from_d3(pdev, wake);
5203		pci_set_power_state(pdev, PCI_D3hot);
5204	}
5205}
5206
5207#ifdef CONFIG_NET_POLL_CONTROLLER
5208/* Polling 'interrupt' - used by things like netconsole to send skbs
5209 * without having to re-enable interrupts. It's not called while
5210 * the interrupt routine is executing.
5211 */
5212static void e1000_netpoll(struct net_device *netdev)
5213{
5214	struct e1000_adapter *adapter = netdev_priv(netdev);
5215
5216	if (disable_hardirq(adapter->pdev->irq))
5217		e1000_intr(adapter->pdev->irq, netdev);
5218	enable_irq(adapter->pdev->irq);
5219}
5220#endif
5221
5222/**
5223 * e1000_io_error_detected - called when PCI error is detected
5224 * @pdev: Pointer to PCI device
5225 * @state: The current pci connection state
5226 *
5227 * This function is called after a PCI bus error affecting
5228 * this device has been detected.
5229 */
5230static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5231						pci_channel_state_t state)
5232{
5233	struct net_device *netdev = pci_get_drvdata(pdev);
5234	struct e1000_adapter *adapter = netdev_priv(netdev);
5235
5236	netif_device_detach(netdev);
5237
5238	if (state == pci_channel_io_perm_failure)
5239		return PCI_ERS_RESULT_DISCONNECT;
5240
5241	if (netif_running(netdev))
5242		e1000_down(adapter);
5243
5244	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5245		pci_disable_device(pdev);
5246
5247	/* Request a slot reset. */
5248	return PCI_ERS_RESULT_NEED_RESET;
5249}
5250
5251/**
5252 * e1000_io_slot_reset - called after the pci bus has been reset.
5253 * @pdev: Pointer to PCI device
5254 *
5255 * Restart the card from scratch, as if from a cold-boot. Implementation
5256 * resembles the first-half of the e1000_resume routine.
5257 */
5258static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5259{
5260	struct net_device *netdev = pci_get_drvdata(pdev);
5261	struct e1000_adapter *adapter = netdev_priv(netdev);
5262	struct e1000_hw *hw = &adapter->hw;
5263	int err;
5264
5265	if (adapter->need_ioport)
5266		err = pci_enable_device(pdev);
5267	else
5268		err = pci_enable_device_mem(pdev);
5269	if (err) {
5270		pr_err("Cannot re-enable PCI device after reset.\n");
5271		return PCI_ERS_RESULT_DISCONNECT;
5272	}
5273
5274	/* flush memory to make sure state is correct */
5275	smp_mb__before_atomic();
5276	clear_bit(__E1000_DISABLED, &adapter->flags);
5277	pci_set_master(pdev);
5278
5279	pci_enable_wake(pdev, PCI_D3hot, 0);
5280	pci_enable_wake(pdev, PCI_D3cold, 0);
5281
5282	e1000_reset(adapter);
5283	ew32(WUS, ~0);
5284
5285	return PCI_ERS_RESULT_RECOVERED;
5286}
5287
5288/**
5289 * e1000_io_resume - called when traffic can start flowing again.
5290 * @pdev: Pointer to PCI device
5291 *
5292 * This callback is called when the error recovery driver tells us that
5293 * its OK to resume normal operation. Implementation resembles the
5294 * second-half of the e1000_resume routine.
5295 */
5296static void e1000_io_resume(struct pci_dev *pdev)
5297{
5298	struct net_device *netdev = pci_get_drvdata(pdev);
5299	struct e1000_adapter *adapter = netdev_priv(netdev);
5300
5301	e1000_init_manageability(adapter);
5302
5303	if (netif_running(netdev)) {
5304		if (e1000_up(adapter)) {
5305			pr_info("can't bring device back up after reset\n");
5306			return;
5307		}
5308	}
5309
5310	netif_device_attach(netdev);
5311}
5312
5313/* e1000_main.c */
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*******************************************************************************
   3
   4  Intel PRO/1000 Linux driver
   5  Copyright(c) 1999 - 2006 Intel Corporation.
   6
   7  This program is free software; you can redistribute it and/or modify it
   8  under the terms and conditions of the GNU General Public License,
   9  version 2, as published by the Free Software Foundation.
  10
  11  This program is distributed in the hope it will be useful, but WITHOUT
  12  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14  more details.
  15
  16  You should have received a copy of the GNU General Public License along with
  17  this program; if not, write to the Free Software Foundation, Inc.,
  18  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  19
  20  The full GNU General Public License is included in this distribution in
  21  the file called "COPYING".
  22
  23  Contact Information:
  24  Linux NICS <linux.nics@intel.com>
  25  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  26  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  27
  28*******************************************************************************/
  29
  30#include "e1000.h"
  31#include <net/ip6_checksum.h>
  32#include <linux/io.h>
  33#include <linux/prefetch.h>
  34#include <linux/bitops.h>
  35#include <linux/if_vlan.h>
  36
  37char e1000_driver_name[] = "e1000";
  38static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
  39#define DRV_VERSION "7.3.21-k8-NAPI"
  40const char e1000_driver_version[] = DRV_VERSION;
  41static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
  42
  43/* e1000_pci_tbl - PCI Device ID Table
  44 *
  45 * Last entry must be all 0s
  46 *
  47 * Macro expands to...
  48 *   {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
  49 */
  50static const struct pci_device_id e1000_pci_tbl[] = {
  51	INTEL_E1000_ETHERNET_DEVICE(0x1000),
  52	INTEL_E1000_ETHERNET_DEVICE(0x1001),
  53	INTEL_E1000_ETHERNET_DEVICE(0x1004),
  54	INTEL_E1000_ETHERNET_DEVICE(0x1008),
  55	INTEL_E1000_ETHERNET_DEVICE(0x1009),
  56	INTEL_E1000_ETHERNET_DEVICE(0x100C),
  57	INTEL_E1000_ETHERNET_DEVICE(0x100D),
  58	INTEL_E1000_ETHERNET_DEVICE(0x100E),
  59	INTEL_E1000_ETHERNET_DEVICE(0x100F),
  60	INTEL_E1000_ETHERNET_DEVICE(0x1010),
  61	INTEL_E1000_ETHERNET_DEVICE(0x1011),
  62	INTEL_E1000_ETHERNET_DEVICE(0x1012),
  63	INTEL_E1000_ETHERNET_DEVICE(0x1013),
  64	INTEL_E1000_ETHERNET_DEVICE(0x1014),
  65	INTEL_E1000_ETHERNET_DEVICE(0x1015),
  66	INTEL_E1000_ETHERNET_DEVICE(0x1016),
  67	INTEL_E1000_ETHERNET_DEVICE(0x1017),
  68	INTEL_E1000_ETHERNET_DEVICE(0x1018),
  69	INTEL_E1000_ETHERNET_DEVICE(0x1019),
  70	INTEL_E1000_ETHERNET_DEVICE(0x101A),
  71	INTEL_E1000_ETHERNET_DEVICE(0x101D),
  72	INTEL_E1000_ETHERNET_DEVICE(0x101E),
  73	INTEL_E1000_ETHERNET_DEVICE(0x1026),
  74	INTEL_E1000_ETHERNET_DEVICE(0x1027),
  75	INTEL_E1000_ETHERNET_DEVICE(0x1028),
  76	INTEL_E1000_ETHERNET_DEVICE(0x1075),
  77	INTEL_E1000_ETHERNET_DEVICE(0x1076),
  78	INTEL_E1000_ETHERNET_DEVICE(0x1077),
  79	INTEL_E1000_ETHERNET_DEVICE(0x1078),
  80	INTEL_E1000_ETHERNET_DEVICE(0x1079),
  81	INTEL_E1000_ETHERNET_DEVICE(0x107A),
  82	INTEL_E1000_ETHERNET_DEVICE(0x107B),
  83	INTEL_E1000_ETHERNET_DEVICE(0x107C),
  84	INTEL_E1000_ETHERNET_DEVICE(0x108A),
  85	INTEL_E1000_ETHERNET_DEVICE(0x1099),
  86	INTEL_E1000_ETHERNET_DEVICE(0x10B5),
  87	INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
  88	/* required last entry */
  89	{0,}
  90};
  91
  92MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
  93
  94int e1000_up(struct e1000_adapter *adapter);
  95void e1000_down(struct e1000_adapter *adapter);
  96void e1000_reinit_locked(struct e1000_adapter *adapter);
  97void e1000_reset(struct e1000_adapter *adapter);
  98int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  99int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
 100void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
 101void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
 102static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
 103				    struct e1000_tx_ring *txdr);
 104static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
 105				    struct e1000_rx_ring *rxdr);
 106static void e1000_free_tx_resources(struct e1000_adapter *adapter,
 107				    struct e1000_tx_ring *tx_ring);
 108static void e1000_free_rx_resources(struct e1000_adapter *adapter,
 109				    struct e1000_rx_ring *rx_ring);
 110void e1000_update_stats(struct e1000_adapter *adapter);
 111
 112static int e1000_init_module(void);
 113static void e1000_exit_module(void);
 114static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
 115static void e1000_remove(struct pci_dev *pdev);
 116static int e1000_alloc_queues(struct e1000_adapter *adapter);
 117static int e1000_sw_init(struct e1000_adapter *adapter);
 118int e1000_open(struct net_device *netdev);
 119int e1000_close(struct net_device *netdev);
 120static void e1000_configure_tx(struct e1000_adapter *adapter);
 121static void e1000_configure_rx(struct e1000_adapter *adapter);
 122static void e1000_setup_rctl(struct e1000_adapter *adapter);
 123static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
 124static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
 125static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
 126				struct e1000_tx_ring *tx_ring);
 127static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
 128				struct e1000_rx_ring *rx_ring);
 129static void e1000_set_rx_mode(struct net_device *netdev);
 130static void e1000_update_phy_info_task(struct work_struct *work);
 131static void e1000_watchdog(struct work_struct *work);
 132static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
 133static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
 134				    struct net_device *netdev);
 135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
 136static int e1000_set_mac(struct net_device *netdev, void *p);
 137static irqreturn_t e1000_intr(int irq, void *data);
 138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
 139			       struct e1000_tx_ring *tx_ring);
 140static int e1000_clean(struct napi_struct *napi, int budget);
 141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
 142			       struct e1000_rx_ring *rx_ring,
 143			       int *work_done, int work_to_do);
 144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
 145				     struct e1000_rx_ring *rx_ring,
 146				     int *work_done, int work_to_do);
 147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
 148					 struct e1000_rx_ring *rx_ring,
 149					 int cleaned_count)
 150{
 151}
 152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
 153				   struct e1000_rx_ring *rx_ring,
 154				   int cleaned_count);
 155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
 156					 struct e1000_rx_ring *rx_ring,
 157					 int cleaned_count);
 158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
 159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
 160			   int cmd);
 161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
 162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
 163static void e1000_tx_timeout(struct net_device *dev);
 164static void e1000_reset_task(struct work_struct *work);
 165static void e1000_smartspeed(struct e1000_adapter *adapter);
 166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
 167				       struct sk_buff *skb);
 168
 169static bool e1000_vlan_used(struct e1000_adapter *adapter);
 170static void e1000_vlan_mode(struct net_device *netdev,
 171			    netdev_features_t features);
 172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
 173				     bool filter_on);
 174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
 175				 __be16 proto, u16 vid);
 176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
 177				  __be16 proto, u16 vid);
 178static void e1000_restore_vlan(struct e1000_adapter *adapter);
 179
 180#ifdef CONFIG_PM
 181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
 182static int e1000_resume(struct pci_dev *pdev);
 183#endif
 184static void e1000_shutdown(struct pci_dev *pdev);
 185
 186#ifdef CONFIG_NET_POLL_CONTROLLER
 187/* for netdump / net console */
 188static void e1000_netpoll (struct net_device *netdev);
 189#endif
 190
 191#define COPYBREAK_DEFAULT 256
 192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
 193module_param(copybreak, uint, 0644);
 194MODULE_PARM_DESC(copybreak,
 195	"Maximum size of packet that is copied to a new buffer on receive");
 196
 197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
 198						pci_channel_state_t state);
 199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
 200static void e1000_io_resume(struct pci_dev *pdev);
 201
 202static const struct pci_error_handlers e1000_err_handler = {
 203	.error_detected = e1000_io_error_detected,
 204	.slot_reset = e1000_io_slot_reset,
 205	.resume = e1000_io_resume,
 206};
 207
 
 
 208static struct pci_driver e1000_driver = {
 209	.name     = e1000_driver_name,
 210	.id_table = e1000_pci_tbl,
 211	.probe    = e1000_probe,
 212	.remove   = e1000_remove,
 213#ifdef CONFIG_PM
 214	/* Power Management Hooks */
 215	.suspend  = e1000_suspend,
 216	.resume   = e1000_resume,
 217#endif
 218	.shutdown = e1000_shutdown,
 219	.err_handler = &e1000_err_handler
 220};
 221
 222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
 223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
 224MODULE_LICENSE("GPL");
 225MODULE_VERSION(DRV_VERSION);
 226
 227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
 228static int debug = -1;
 229module_param(debug, int, 0);
 230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
 231
 232/**
 233 * e1000_get_hw_dev - return device
 234 * used by hardware layer to print debugging information
 
 
 235 *
 236 **/
 237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
 238{
 239	struct e1000_adapter *adapter = hw->back;
 240	return adapter->netdev;
 241}
 242
 243/**
 244 * e1000_init_module - Driver Registration Routine
 245 *
 246 * e1000_init_module is the first routine called when the driver is
 247 * loaded. All it does is register with the PCI subsystem.
 248 **/
 249static int __init e1000_init_module(void)
 250{
 251	int ret;
 252	pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
 253
 254	pr_info("%s\n", e1000_copyright);
 255
 256	ret = pci_register_driver(&e1000_driver);
 257	if (copybreak != COPYBREAK_DEFAULT) {
 258		if (copybreak == 0)
 259			pr_info("copybreak disabled\n");
 260		else
 261			pr_info("copybreak enabled for "
 262				   "packets <= %u bytes\n", copybreak);
 263	}
 264	return ret;
 265}
 266
 267module_init(e1000_init_module);
 268
 269/**
 270 * e1000_exit_module - Driver Exit Cleanup Routine
 271 *
 272 * e1000_exit_module is called just before the driver is removed
 273 * from memory.
 274 **/
 275static void __exit e1000_exit_module(void)
 276{
 277	pci_unregister_driver(&e1000_driver);
 278}
 279
 280module_exit(e1000_exit_module);
 281
 282static int e1000_request_irq(struct e1000_adapter *adapter)
 283{
 284	struct net_device *netdev = adapter->netdev;
 285	irq_handler_t handler = e1000_intr;
 286	int irq_flags = IRQF_SHARED;
 287	int err;
 288
 289	err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
 290			  netdev);
 291	if (err) {
 292		e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
 293	}
 294
 295	return err;
 296}
 297
 298static void e1000_free_irq(struct e1000_adapter *adapter)
 299{
 300	struct net_device *netdev = adapter->netdev;
 301
 302	free_irq(adapter->pdev->irq, netdev);
 303}
 304
 305/**
 306 * e1000_irq_disable - Mask off interrupt generation on the NIC
 307 * @adapter: board private structure
 308 **/
 309static void e1000_irq_disable(struct e1000_adapter *adapter)
 310{
 311	struct e1000_hw *hw = &adapter->hw;
 312
 313	ew32(IMC, ~0);
 314	E1000_WRITE_FLUSH();
 315	synchronize_irq(adapter->pdev->irq);
 316}
 317
 318/**
 319 * e1000_irq_enable - Enable default interrupt generation settings
 320 * @adapter: board private structure
 321 **/
 322static void e1000_irq_enable(struct e1000_adapter *adapter)
 323{
 324	struct e1000_hw *hw = &adapter->hw;
 325
 326	ew32(IMS, IMS_ENABLE_MASK);
 327	E1000_WRITE_FLUSH();
 328}
 329
 330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
 331{
 332	struct e1000_hw *hw = &adapter->hw;
 333	struct net_device *netdev = adapter->netdev;
 334	u16 vid = hw->mng_cookie.vlan_id;
 335	u16 old_vid = adapter->mng_vlan_id;
 336
 337	if (!e1000_vlan_used(adapter))
 338		return;
 339
 340	if (!test_bit(vid, adapter->active_vlans)) {
 341		if (hw->mng_cookie.status &
 342		    E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
 343			e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 344			adapter->mng_vlan_id = vid;
 345		} else {
 346			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
 347		}
 348		if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
 349		    (vid != old_vid) &&
 350		    !test_bit(old_vid, adapter->active_vlans))
 351			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
 352					       old_vid);
 353	} else {
 354		adapter->mng_vlan_id = vid;
 355	}
 356}
 357
 358static void e1000_init_manageability(struct e1000_adapter *adapter)
 359{
 360	struct e1000_hw *hw = &adapter->hw;
 361
 362	if (adapter->en_mng_pt) {
 363		u32 manc = er32(MANC);
 364
 365		/* disable hardware interception of ARP */
 366		manc &= ~(E1000_MANC_ARP_EN);
 367
 368		ew32(MANC, manc);
 369	}
 370}
 371
 372static void e1000_release_manageability(struct e1000_adapter *adapter)
 373{
 374	struct e1000_hw *hw = &adapter->hw;
 375
 376	if (adapter->en_mng_pt) {
 377		u32 manc = er32(MANC);
 378
 379		/* re-enable hardware interception of ARP */
 380		manc |= E1000_MANC_ARP_EN;
 381
 382		ew32(MANC, manc);
 383	}
 384}
 385
 386/**
 387 * e1000_configure - configure the hardware for RX and TX
 388 * @adapter = private board structure
 389 **/
 390static void e1000_configure(struct e1000_adapter *adapter)
 391{
 392	struct net_device *netdev = adapter->netdev;
 393	int i;
 394
 395	e1000_set_rx_mode(netdev);
 396
 397	e1000_restore_vlan(adapter);
 398	e1000_init_manageability(adapter);
 399
 400	e1000_configure_tx(adapter);
 401	e1000_setup_rctl(adapter);
 402	e1000_configure_rx(adapter);
 403	/* call E1000_DESC_UNUSED which always leaves
 404	 * at least 1 descriptor unused to make sure
 405	 * next_to_use != next_to_clean
 406	 */
 407	for (i = 0; i < adapter->num_rx_queues; i++) {
 408		struct e1000_rx_ring *ring = &adapter->rx_ring[i];
 409		adapter->alloc_rx_buf(adapter, ring,
 410				      E1000_DESC_UNUSED(ring));
 411	}
 412}
 413
 414int e1000_up(struct e1000_adapter *adapter)
 415{
 416	struct e1000_hw *hw = &adapter->hw;
 417
 418	/* hardware has been reset, we need to reload some things */
 419	e1000_configure(adapter);
 420
 421	clear_bit(__E1000_DOWN, &adapter->flags);
 422
 423	napi_enable(&adapter->napi);
 424
 425	e1000_irq_enable(adapter);
 426
 427	netif_wake_queue(adapter->netdev);
 428
 429	/* fire a link change interrupt to start the watchdog */
 430	ew32(ICS, E1000_ICS_LSC);
 431	return 0;
 432}
 433
 434/**
 435 * e1000_power_up_phy - restore link in case the phy was powered down
 436 * @adapter: address of board private structure
 437 *
 438 * The phy may be powered down to save power and turn off link when the
 439 * driver is unloaded and wake on lan is not enabled (among others)
 440 * *** this routine MUST be followed by a call to e1000_reset ***
 441 **/
 442void e1000_power_up_phy(struct e1000_adapter *adapter)
 443{
 444	struct e1000_hw *hw = &adapter->hw;
 445	u16 mii_reg = 0;
 446
 447	/* Just clear the power down bit to wake the phy back up */
 448	if (hw->media_type == e1000_media_type_copper) {
 449		/* according to the manual, the phy will retain its
 450		 * settings across a power-down/up cycle
 451		 */
 452		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 453		mii_reg &= ~MII_CR_POWER_DOWN;
 454		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 455	}
 456}
 457
 458static void e1000_power_down_phy(struct e1000_adapter *adapter)
 459{
 460	struct e1000_hw *hw = &adapter->hw;
 461
 462	/* Power down the PHY so no link is implied when interface is down *
 463	 * The PHY cannot be powered down if any of the following is true *
 464	 * (a) WoL is enabled
 465	 * (b) AMT is active
 466	 * (c) SoL/IDER session is active
 467	 */
 468	if (!adapter->wol && hw->mac_type >= e1000_82540 &&
 469	   hw->media_type == e1000_media_type_copper) {
 470		u16 mii_reg = 0;
 471
 472		switch (hw->mac_type) {
 473		case e1000_82540:
 474		case e1000_82545:
 475		case e1000_82545_rev_3:
 476		case e1000_82546:
 477		case e1000_ce4100:
 478		case e1000_82546_rev_3:
 479		case e1000_82541:
 480		case e1000_82541_rev_2:
 481		case e1000_82547:
 482		case e1000_82547_rev_2:
 483			if (er32(MANC) & E1000_MANC_SMBUS_EN)
 484				goto out;
 485			break;
 486		default:
 487			goto out;
 488		}
 489		e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
 490		mii_reg |= MII_CR_POWER_DOWN;
 491		e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
 492		msleep(1);
 493	}
 494out:
 495	return;
 496}
 497
 498static void e1000_down_and_stop(struct e1000_adapter *adapter)
 499{
 500	set_bit(__E1000_DOWN, &adapter->flags);
 501
 502	cancel_delayed_work_sync(&adapter->watchdog_task);
 503
 504	/*
 505	 * Since the watchdog task can reschedule other tasks, we should cancel
 506	 * it first, otherwise we can run into the situation when a work is
 507	 * still running after the adapter has been turned down.
 508	 */
 509
 510	cancel_delayed_work_sync(&adapter->phy_info_task);
 511	cancel_delayed_work_sync(&adapter->fifo_stall_task);
 512
 513	/* Only kill reset task if adapter is not resetting */
 514	if (!test_bit(__E1000_RESETTING, &adapter->flags))
 515		cancel_work_sync(&adapter->reset_task);
 516}
 517
 518void e1000_down(struct e1000_adapter *adapter)
 519{
 520	struct e1000_hw *hw = &adapter->hw;
 521	struct net_device *netdev = adapter->netdev;
 522	u32 rctl, tctl;
 523
 524	/* disable receives in the hardware */
 525	rctl = er32(RCTL);
 526	ew32(RCTL, rctl & ~E1000_RCTL_EN);
 527	/* flush and sleep below */
 528
 529	netif_tx_disable(netdev);
 530
 531	/* disable transmits in the hardware */
 532	tctl = er32(TCTL);
 533	tctl &= ~E1000_TCTL_EN;
 534	ew32(TCTL, tctl);
 535	/* flush both disables and wait for them to finish */
 536	E1000_WRITE_FLUSH();
 537	msleep(10);
 538
 539	/* Set the carrier off after transmits have been disabled in the
 540	 * hardware, to avoid race conditions with e1000_watchdog() (which
 541	 * may be running concurrently to us, checking for the carrier
 542	 * bit to decide whether it should enable transmits again). Such
 543	 * a race condition would result into transmission being disabled
 544	 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
 545	 */
 546	netif_carrier_off(netdev);
 547
 548	napi_disable(&adapter->napi);
 549
 550	e1000_irq_disable(adapter);
 551
 552	/* Setting DOWN must be after irq_disable to prevent
 553	 * a screaming interrupt.  Setting DOWN also prevents
 554	 * tasks from rescheduling.
 555	 */
 556	e1000_down_and_stop(adapter);
 557
 558	adapter->link_speed = 0;
 559	adapter->link_duplex = 0;
 560
 561	e1000_reset(adapter);
 562	e1000_clean_all_tx_rings(adapter);
 563	e1000_clean_all_rx_rings(adapter);
 564}
 565
 566void e1000_reinit_locked(struct e1000_adapter *adapter)
 567{
 568	WARN_ON(in_interrupt());
 569	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 570		msleep(1);
 571	e1000_down(adapter);
 572	e1000_up(adapter);
 
 
 
 
 
 573	clear_bit(__E1000_RESETTING, &adapter->flags);
 574}
 575
 576void e1000_reset(struct e1000_adapter *adapter)
 577{
 578	struct e1000_hw *hw = &adapter->hw;
 579	u32 pba = 0, tx_space, min_tx_space, min_rx_space;
 580	bool legacy_pba_adjust = false;
 581	u16 hwm;
 582
 583	/* Repartition Pba for greater than 9k mtu
 584	 * To take effect CTRL.RST is required.
 585	 */
 586
 587	switch (hw->mac_type) {
 588	case e1000_82542_rev2_0:
 589	case e1000_82542_rev2_1:
 590	case e1000_82543:
 591	case e1000_82544:
 592	case e1000_82540:
 593	case e1000_82541:
 594	case e1000_82541_rev_2:
 595		legacy_pba_adjust = true;
 596		pba = E1000_PBA_48K;
 597		break;
 598	case e1000_82545:
 599	case e1000_82545_rev_3:
 600	case e1000_82546:
 601	case e1000_ce4100:
 602	case e1000_82546_rev_3:
 603		pba = E1000_PBA_48K;
 604		break;
 605	case e1000_82547:
 606	case e1000_82547_rev_2:
 607		legacy_pba_adjust = true;
 608		pba = E1000_PBA_30K;
 609		break;
 610	case e1000_undefined:
 611	case e1000_num_macs:
 612		break;
 613	}
 614
 615	if (legacy_pba_adjust) {
 616		if (hw->max_frame_size > E1000_RXBUFFER_8192)
 617			pba -= 8; /* allocate more FIFO for Tx */
 618
 619		if (hw->mac_type == e1000_82547) {
 620			adapter->tx_fifo_head = 0;
 621			adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
 622			adapter->tx_fifo_size =
 623				(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
 624			atomic_set(&adapter->tx_fifo_stall, 0);
 625		}
 626	} else if (hw->max_frame_size >  ETH_FRAME_LEN + ETH_FCS_LEN) {
 627		/* adjust PBA for jumbo frames */
 628		ew32(PBA, pba);
 629
 630		/* To maintain wire speed transmits, the Tx FIFO should be
 631		 * large enough to accommodate two full transmit packets,
 632		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 633		 * the Rx FIFO should be large enough to accommodate at least
 634		 * one full receive packet and is similarly rounded up and
 635		 * expressed in KB.
 636		 */
 637		pba = er32(PBA);
 638		/* upper 16 bits has Tx packet buffer allocation size in KB */
 639		tx_space = pba >> 16;
 640		/* lower 16 bits has Rx packet buffer allocation size in KB */
 641		pba &= 0xffff;
 642		/* the Tx fifo also stores 16 bytes of information about the Tx
 643		 * but don't include ethernet FCS because hardware appends it
 644		 */
 645		min_tx_space = (hw->max_frame_size +
 646				sizeof(struct e1000_tx_desc) -
 647				ETH_FCS_LEN) * 2;
 648		min_tx_space = ALIGN(min_tx_space, 1024);
 649		min_tx_space >>= 10;
 650		/* software strips receive CRC, so leave room for it */
 651		min_rx_space = hw->max_frame_size;
 652		min_rx_space = ALIGN(min_rx_space, 1024);
 653		min_rx_space >>= 10;
 654
 655		/* If current Tx allocation is less than the min Tx FIFO size,
 656		 * and the min Tx FIFO size is less than the current Rx FIFO
 657		 * allocation, take space away from current Rx allocation
 658		 */
 659		if (tx_space < min_tx_space &&
 660		    ((min_tx_space - tx_space) < pba)) {
 661			pba = pba - (min_tx_space - tx_space);
 662
 663			/* PCI/PCIx hardware has PBA alignment constraints */
 664			switch (hw->mac_type) {
 665			case e1000_82545 ... e1000_82546_rev_3:
 666				pba &= ~(E1000_PBA_8K - 1);
 667				break;
 668			default:
 669				break;
 670			}
 671
 672			/* if short on Rx space, Rx wins and must trump Tx
 673			 * adjustment or use Early Receive if available
 674			 */
 675			if (pba < min_rx_space)
 676				pba = min_rx_space;
 677		}
 678	}
 679
 680	ew32(PBA, pba);
 681
 682	/* flow control settings:
 683	 * The high water mark must be low enough to fit one full frame
 684	 * (or the size used for early receive) above it in the Rx FIFO.
 685	 * Set it to the lower of:
 686	 * - 90% of the Rx FIFO size, and
 687	 * - the full Rx FIFO size minus the early receive size (for parts
 688	 *   with ERT support assuming ERT set to E1000_ERT_2048), or
 689	 * - the full Rx FIFO size minus one full frame
 690	 */
 691	hwm = min(((pba << 10) * 9 / 10),
 692		  ((pba << 10) - hw->max_frame_size));
 693
 694	hw->fc_high_water = hwm & 0xFFF8;	/* 8-byte granularity */
 695	hw->fc_low_water = hw->fc_high_water - 8;
 696	hw->fc_pause_time = E1000_FC_PAUSE_TIME;
 697	hw->fc_send_xon = 1;
 698	hw->fc = hw->original_fc;
 699
 700	/* Allow time for pending master requests to run */
 701	e1000_reset_hw(hw);
 702	if (hw->mac_type >= e1000_82544)
 703		ew32(WUC, 0);
 704
 705	if (e1000_init_hw(hw))
 706		e_dev_err("Hardware Error\n");
 707	e1000_update_mng_vlan(adapter);
 708
 709	/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
 710	if (hw->mac_type >= e1000_82544 &&
 711	    hw->autoneg == 1 &&
 712	    hw->autoneg_advertised == ADVERTISE_1000_FULL) {
 713		u32 ctrl = er32(CTRL);
 714		/* clear phy power management bit if we are in gig only mode,
 715		 * which if enabled will attempt negotiation to 100Mb, which
 716		 * can cause a loss of link at power off or driver unload
 717		 */
 718		ctrl &= ~E1000_CTRL_SWDPIN3;
 719		ew32(CTRL, ctrl);
 720	}
 721
 722	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 723	ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
 724
 725	e1000_reset_adaptive(hw);
 726	e1000_phy_get_info(hw, &adapter->phy_info);
 727
 728	e1000_release_manageability(adapter);
 729}
 730
 731/* Dump the eeprom for users having checksum issues */
 732static void e1000_dump_eeprom(struct e1000_adapter *adapter)
 733{
 734	struct net_device *netdev = adapter->netdev;
 735	struct ethtool_eeprom eeprom;
 736	const struct ethtool_ops *ops = netdev->ethtool_ops;
 737	u8 *data;
 738	int i;
 739	u16 csum_old, csum_new = 0;
 740
 741	eeprom.len = ops->get_eeprom_len(netdev);
 742	eeprom.offset = 0;
 743
 744	data = kmalloc(eeprom.len, GFP_KERNEL);
 745	if (!data)
 746		return;
 747
 748	ops->get_eeprom(netdev, &eeprom, data);
 749
 750	csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
 751		   (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
 752	for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
 753		csum_new += data[i] + (data[i + 1] << 8);
 754	csum_new = EEPROM_SUM - csum_new;
 755
 756	pr_err("/*********************/\n");
 757	pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
 758	pr_err("Calculated              : 0x%04x\n", csum_new);
 759
 760	pr_err("Offset    Values\n");
 761	pr_err("========  ======\n");
 762	print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
 763
 764	pr_err("Include this output when contacting your support provider.\n");
 765	pr_err("This is not a software error! Something bad happened to\n");
 766	pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
 767	pr_err("result in further problems, possibly loss of data,\n");
 768	pr_err("corruption or system hangs!\n");
 769	pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
 770	pr_err("which is invalid and requires you to set the proper MAC\n");
 771	pr_err("address manually before continuing to enable this network\n");
 772	pr_err("device. Please inspect the EEPROM dump and report the\n");
 773	pr_err("issue to your hardware vendor or Intel Customer Support.\n");
 774	pr_err("/*********************/\n");
 775
 776	kfree(data);
 777}
 778
 779/**
 780 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
 781 * @pdev: PCI device information struct
 782 *
 783 * Return true if an adapter needs ioport resources
 784 **/
 785static int e1000_is_need_ioport(struct pci_dev *pdev)
 786{
 787	switch (pdev->device) {
 788	case E1000_DEV_ID_82540EM:
 789	case E1000_DEV_ID_82540EM_LOM:
 790	case E1000_DEV_ID_82540EP:
 791	case E1000_DEV_ID_82540EP_LOM:
 792	case E1000_DEV_ID_82540EP_LP:
 793	case E1000_DEV_ID_82541EI:
 794	case E1000_DEV_ID_82541EI_MOBILE:
 795	case E1000_DEV_ID_82541ER:
 796	case E1000_DEV_ID_82541ER_LOM:
 797	case E1000_DEV_ID_82541GI:
 798	case E1000_DEV_ID_82541GI_LF:
 799	case E1000_DEV_ID_82541GI_MOBILE:
 800	case E1000_DEV_ID_82544EI_COPPER:
 801	case E1000_DEV_ID_82544EI_FIBER:
 802	case E1000_DEV_ID_82544GC_COPPER:
 803	case E1000_DEV_ID_82544GC_LOM:
 804	case E1000_DEV_ID_82545EM_COPPER:
 805	case E1000_DEV_ID_82545EM_FIBER:
 806	case E1000_DEV_ID_82546EB_COPPER:
 807	case E1000_DEV_ID_82546EB_FIBER:
 808	case E1000_DEV_ID_82546EB_QUAD_COPPER:
 809		return true;
 810	default:
 811		return false;
 812	}
 813}
 814
 815static netdev_features_t e1000_fix_features(struct net_device *netdev,
 816	netdev_features_t features)
 817{
 818	/* Since there is no support for separate Rx/Tx vlan accel
 819	 * enable/disable make sure Tx flag is always in same state as Rx.
 820	 */
 821	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 822		features |= NETIF_F_HW_VLAN_CTAG_TX;
 823	else
 824		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 825
 826	return features;
 827}
 828
 829static int e1000_set_features(struct net_device *netdev,
 830	netdev_features_t features)
 831{
 832	struct e1000_adapter *adapter = netdev_priv(netdev);
 833	netdev_features_t changed = features ^ netdev->features;
 834
 835	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 836		e1000_vlan_mode(netdev, features);
 837
 838	if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
 839		return 0;
 840
 841	netdev->features = features;
 842	adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
 843
 844	if (netif_running(netdev))
 845		e1000_reinit_locked(adapter);
 846	else
 847		e1000_reset(adapter);
 848
 849	return 0;
 850}
 851
 852static const struct net_device_ops e1000_netdev_ops = {
 853	.ndo_open		= e1000_open,
 854	.ndo_stop		= e1000_close,
 855	.ndo_start_xmit		= e1000_xmit_frame,
 856	.ndo_set_rx_mode	= e1000_set_rx_mode,
 857	.ndo_set_mac_address	= e1000_set_mac,
 858	.ndo_tx_timeout		= e1000_tx_timeout,
 859	.ndo_change_mtu		= e1000_change_mtu,
 860	.ndo_do_ioctl		= e1000_ioctl,
 861	.ndo_validate_addr	= eth_validate_addr,
 862	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
 863	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
 864#ifdef CONFIG_NET_POLL_CONTROLLER
 865	.ndo_poll_controller	= e1000_netpoll,
 866#endif
 867	.ndo_fix_features	= e1000_fix_features,
 868	.ndo_set_features	= e1000_set_features,
 869};
 870
 871/**
 872 * e1000_init_hw_struct - initialize members of hw struct
 873 * @adapter: board private struct
 874 * @hw: structure used by e1000_hw.c
 875 *
 876 * Factors out initialization of the e1000_hw struct to its own function
 877 * that can be called very early at init (just after struct allocation).
 878 * Fields are initialized based on PCI device information and
 879 * OS network device settings (MTU size).
 880 * Returns negative error codes if MAC type setup fails.
 881 */
 882static int e1000_init_hw_struct(struct e1000_adapter *adapter,
 883				struct e1000_hw *hw)
 884{
 885	struct pci_dev *pdev = adapter->pdev;
 886
 887	/* PCI config space info */
 888	hw->vendor_id = pdev->vendor;
 889	hw->device_id = pdev->device;
 890	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 891	hw->subsystem_id = pdev->subsystem_device;
 892	hw->revision_id = pdev->revision;
 893
 894	pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
 895
 896	hw->max_frame_size = adapter->netdev->mtu +
 897			     ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
 898	hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
 899
 900	/* identify the MAC */
 901	if (e1000_set_mac_type(hw)) {
 902		e_err(probe, "Unknown MAC Type\n");
 903		return -EIO;
 904	}
 905
 906	switch (hw->mac_type) {
 907	default:
 908		break;
 909	case e1000_82541:
 910	case e1000_82547:
 911	case e1000_82541_rev_2:
 912	case e1000_82547_rev_2:
 913		hw->phy_init_script = 1;
 914		break;
 915	}
 916
 917	e1000_set_media_type(hw);
 918	e1000_get_bus_info(hw);
 919
 920	hw->wait_autoneg_complete = false;
 921	hw->tbi_compatibility_en = true;
 922	hw->adaptive_ifs = true;
 923
 924	/* Copper options */
 925
 926	if (hw->media_type == e1000_media_type_copper) {
 927		hw->mdix = AUTO_ALL_MODES;
 928		hw->disable_polarity_correction = false;
 929		hw->master_slave = E1000_MASTER_SLAVE;
 930	}
 931
 932	return 0;
 933}
 934
 935/**
 936 * e1000_probe - Device Initialization Routine
 937 * @pdev: PCI device information struct
 938 * @ent: entry in e1000_pci_tbl
 939 *
 940 * Returns 0 on success, negative on failure
 941 *
 942 * e1000_probe initializes an adapter identified by a pci_dev structure.
 943 * The OS initialization, configuring of the adapter private structure,
 944 * and a hardware reset occur.
 945 **/
 946static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 947{
 948	struct net_device *netdev;
 949	struct e1000_adapter *adapter = NULL;
 950	struct e1000_hw *hw;
 951
 952	static int cards_found;
 953	static int global_quad_port_a; /* global ksp3 port a indication */
 954	int i, err, pci_using_dac;
 955	u16 eeprom_data = 0;
 956	u16 tmp = 0;
 957	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 958	int bars, need_ioport;
 959	bool disable_dev = false;
 960
 961	/* do not allocate ioport bars when not needed */
 962	need_ioport = e1000_is_need_ioport(pdev);
 963	if (need_ioport) {
 964		bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
 965		err = pci_enable_device(pdev);
 966	} else {
 967		bars = pci_select_bars(pdev, IORESOURCE_MEM);
 968		err = pci_enable_device_mem(pdev);
 969	}
 970	if (err)
 971		return err;
 972
 973	err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
 974	if (err)
 975		goto err_pci_reg;
 976
 977	pci_set_master(pdev);
 978	err = pci_save_state(pdev);
 979	if (err)
 980		goto err_alloc_etherdev;
 981
 982	err = -ENOMEM;
 983	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
 984	if (!netdev)
 985		goto err_alloc_etherdev;
 986
 987	SET_NETDEV_DEV(netdev, &pdev->dev);
 988
 989	pci_set_drvdata(pdev, netdev);
 990	adapter = netdev_priv(netdev);
 991	adapter->netdev = netdev;
 992	adapter->pdev = pdev;
 993	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 994	adapter->bars = bars;
 995	adapter->need_ioport = need_ioport;
 996
 997	hw = &adapter->hw;
 998	hw->back = adapter;
 999
1000	err = -EIO;
1001	hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1002	if (!hw->hw_addr)
1003		goto err_ioremap;
1004
1005	if (adapter->need_ioport) {
1006		for (i = BAR_1; i <= BAR_5; i++) {
1007			if (pci_resource_len(pdev, i) == 0)
1008				continue;
1009			if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1010				hw->io_base = pci_resource_start(pdev, i);
1011				break;
1012			}
1013		}
1014	}
1015
1016	/* make ready for any if (hw->...) below */
1017	err = e1000_init_hw_struct(adapter, hw);
1018	if (err)
1019		goto err_sw_init;
1020
1021	/* there is a workaround being applied below that limits
1022	 * 64-bit DMA addresses to 64-bit hardware.  There are some
1023	 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1024	 */
1025	pci_using_dac = 0;
1026	if ((hw->bus_type == e1000_bus_type_pcix) &&
1027	    !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1028		pci_using_dac = 1;
1029	} else {
1030		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1031		if (err) {
1032			pr_err("No usable DMA config, aborting\n");
1033			goto err_dma;
1034		}
1035	}
1036
1037	netdev->netdev_ops = &e1000_netdev_ops;
1038	e1000_set_ethtool_ops(netdev);
1039	netdev->watchdog_timeo = 5 * HZ;
1040	netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1041
1042	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1043
1044	adapter->bd_number = cards_found;
1045
1046	/* setup the private structure */
1047
1048	err = e1000_sw_init(adapter);
1049	if (err)
1050		goto err_sw_init;
1051
1052	err = -EIO;
1053	if (hw->mac_type == e1000_ce4100) {
1054		hw->ce4100_gbe_mdio_base_virt =
1055					ioremap(pci_resource_start(pdev, BAR_1),
1056						pci_resource_len(pdev, BAR_1));
1057
1058		if (!hw->ce4100_gbe_mdio_base_virt)
1059			goto err_mdio_ioremap;
1060	}
1061
1062	if (hw->mac_type >= e1000_82543) {
1063		netdev->hw_features = NETIF_F_SG |
1064				   NETIF_F_HW_CSUM |
1065				   NETIF_F_HW_VLAN_CTAG_RX;
1066		netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1067				   NETIF_F_HW_VLAN_CTAG_FILTER;
1068	}
1069
1070	if ((hw->mac_type >= e1000_82544) &&
1071	   (hw->mac_type != e1000_82547))
1072		netdev->hw_features |= NETIF_F_TSO;
1073
1074	netdev->priv_flags |= IFF_SUPP_NOFCS;
1075
1076	netdev->features |= netdev->hw_features;
1077	netdev->hw_features |= (NETIF_F_RXCSUM |
1078				NETIF_F_RXALL |
1079				NETIF_F_RXFCS);
1080
1081	if (pci_using_dac) {
1082		netdev->features |= NETIF_F_HIGHDMA;
1083		netdev->vlan_features |= NETIF_F_HIGHDMA;
1084	}
1085
1086	netdev->vlan_features |= (NETIF_F_TSO |
1087				  NETIF_F_HW_CSUM |
1088				  NETIF_F_SG);
1089
1090	/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1091	if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1092	    hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1093		netdev->priv_flags |= IFF_UNICAST_FLT;
1094
1095	/* MTU range: 46 - 16110 */
1096	netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1097	netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1098
1099	adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1100
1101	/* initialize eeprom parameters */
1102	if (e1000_init_eeprom_params(hw)) {
1103		e_err(probe, "EEPROM initialization failed\n");
1104		goto err_eeprom;
1105	}
1106
1107	/* before reading the EEPROM, reset the controller to
1108	 * put the device in a known good starting state
1109	 */
1110
1111	e1000_reset_hw(hw);
1112
1113	/* make sure the EEPROM is good */
1114	if (e1000_validate_eeprom_checksum(hw) < 0) {
1115		e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1116		e1000_dump_eeprom(adapter);
1117		/* set MAC address to all zeroes to invalidate and temporary
1118		 * disable this device for the user. This blocks regular
1119		 * traffic while still permitting ethtool ioctls from reaching
1120		 * the hardware as well as allowing the user to run the
1121		 * interface after manually setting a hw addr using
1122		 * `ip set address`
1123		 */
1124		memset(hw->mac_addr, 0, netdev->addr_len);
1125	} else {
1126		/* copy the MAC address out of the EEPROM */
1127		if (e1000_read_mac_addr(hw))
1128			e_err(probe, "EEPROM Read Error\n");
1129	}
1130	/* don't block initialization here due to bad MAC address */
1131	memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1132
1133	if (!is_valid_ether_addr(netdev->dev_addr))
1134		e_err(probe, "Invalid MAC Address\n");
1135
1136
1137	INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1138	INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1139			  e1000_82547_tx_fifo_stall_task);
1140	INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1141	INIT_WORK(&adapter->reset_task, e1000_reset_task);
1142
1143	e1000_check_options(adapter);
1144
1145	/* Initial Wake on LAN setting
1146	 * If APM wake is enabled in the EEPROM,
1147	 * enable the ACPI Magic Packet filter
1148	 */
1149
1150	switch (hw->mac_type) {
1151	case e1000_82542_rev2_0:
1152	case e1000_82542_rev2_1:
1153	case e1000_82543:
1154		break;
1155	case e1000_82544:
1156		e1000_read_eeprom(hw,
1157			EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1158		eeprom_apme_mask = E1000_EEPROM_82544_APM;
1159		break;
1160	case e1000_82546:
1161	case e1000_82546_rev_3:
1162		if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1163			e1000_read_eeprom(hw,
1164				EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1165			break;
1166		}
1167		/* Fall Through */
1168	default:
1169		e1000_read_eeprom(hw,
1170			EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1171		break;
1172	}
1173	if (eeprom_data & eeprom_apme_mask)
1174		adapter->eeprom_wol |= E1000_WUFC_MAG;
1175
1176	/* now that we have the eeprom settings, apply the special cases
1177	 * where the eeprom may be wrong or the board simply won't support
1178	 * wake on lan on a particular port
1179	 */
1180	switch (pdev->device) {
1181	case E1000_DEV_ID_82546GB_PCIE:
1182		adapter->eeprom_wol = 0;
1183		break;
1184	case E1000_DEV_ID_82546EB_FIBER:
1185	case E1000_DEV_ID_82546GB_FIBER:
1186		/* Wake events only supported on port A for dual fiber
1187		 * regardless of eeprom setting
1188		 */
1189		if (er32(STATUS) & E1000_STATUS_FUNC_1)
1190			adapter->eeprom_wol = 0;
1191		break;
1192	case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1193		/* if quad port adapter, disable WoL on all but port A */
1194		if (global_quad_port_a != 0)
1195			adapter->eeprom_wol = 0;
1196		else
1197			adapter->quad_port_a = true;
1198		/* Reset for multiple quad port adapters */
1199		if (++global_quad_port_a == 4)
1200			global_quad_port_a = 0;
1201		break;
1202	}
1203
1204	/* initialize the wol settings based on the eeprom settings */
1205	adapter->wol = adapter->eeprom_wol;
1206	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1207
1208	/* Auto detect PHY address */
1209	if (hw->mac_type == e1000_ce4100) {
1210		for (i = 0; i < 32; i++) {
1211			hw->phy_addr = i;
1212			e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1213
1214			if (tmp != 0 && tmp != 0xFF)
1215				break;
1216		}
1217
1218		if (i >= 32)
1219			goto err_eeprom;
1220	}
1221
1222	/* reset the hardware with the new settings */
1223	e1000_reset(adapter);
1224
1225	strcpy(netdev->name, "eth%d");
1226	err = register_netdev(netdev);
1227	if (err)
1228		goto err_register;
1229
1230	e1000_vlan_filter_on_off(adapter, false);
1231
1232	/* print bus type/speed/width info */
1233	e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1234	       ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1235	       ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1236		(hw->bus_speed == e1000_bus_speed_120) ? 120 :
1237		(hw->bus_speed == e1000_bus_speed_100) ? 100 :
1238		(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1239	       ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1240	       netdev->dev_addr);
1241
1242	/* carrier off reporting is important to ethtool even BEFORE open */
1243	netif_carrier_off(netdev);
1244
1245	e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1246
1247	cards_found++;
1248	return 0;
1249
1250err_register:
1251err_eeprom:
1252	e1000_phy_hw_reset(hw);
1253
1254	if (hw->flash_address)
1255		iounmap(hw->flash_address);
1256	kfree(adapter->tx_ring);
1257	kfree(adapter->rx_ring);
1258err_dma:
1259err_sw_init:
1260err_mdio_ioremap:
1261	iounmap(hw->ce4100_gbe_mdio_base_virt);
1262	iounmap(hw->hw_addr);
1263err_ioremap:
1264	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1265	free_netdev(netdev);
1266err_alloc_etherdev:
1267	pci_release_selected_regions(pdev, bars);
1268err_pci_reg:
1269	if (!adapter || disable_dev)
1270		pci_disable_device(pdev);
1271	return err;
1272}
1273
1274/**
1275 * e1000_remove - Device Removal Routine
1276 * @pdev: PCI device information struct
1277 *
1278 * e1000_remove is called by the PCI subsystem to alert the driver
1279 * that it should release a PCI device. That could be caused by a
1280 * Hot-Plug event, or because the driver is going to be removed from
1281 * memory.
1282 **/
1283static void e1000_remove(struct pci_dev *pdev)
1284{
1285	struct net_device *netdev = pci_get_drvdata(pdev);
1286	struct e1000_adapter *adapter = netdev_priv(netdev);
1287	struct e1000_hw *hw = &adapter->hw;
1288	bool disable_dev;
1289
1290	e1000_down_and_stop(adapter);
1291	e1000_release_manageability(adapter);
1292
1293	unregister_netdev(netdev);
1294
1295	e1000_phy_hw_reset(hw);
1296
1297	kfree(adapter->tx_ring);
1298	kfree(adapter->rx_ring);
1299
1300	if (hw->mac_type == e1000_ce4100)
1301		iounmap(hw->ce4100_gbe_mdio_base_virt);
1302	iounmap(hw->hw_addr);
1303	if (hw->flash_address)
1304		iounmap(hw->flash_address);
1305	pci_release_selected_regions(pdev, adapter->bars);
1306
1307	disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1308	free_netdev(netdev);
1309
1310	if (disable_dev)
1311		pci_disable_device(pdev);
1312}
1313
1314/**
1315 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1316 * @adapter: board private structure to initialize
1317 *
1318 * e1000_sw_init initializes the Adapter private data structure.
1319 * e1000_init_hw_struct MUST be called before this function
1320 **/
1321static int e1000_sw_init(struct e1000_adapter *adapter)
1322{
1323	adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1324
1325	adapter->num_tx_queues = 1;
1326	adapter->num_rx_queues = 1;
1327
1328	if (e1000_alloc_queues(adapter)) {
1329		e_err(probe, "Unable to allocate memory for queues\n");
1330		return -ENOMEM;
1331	}
1332
1333	/* Explicitly disable IRQ since the NIC can be in any state. */
1334	e1000_irq_disable(adapter);
1335
1336	spin_lock_init(&adapter->stats_lock);
1337
1338	set_bit(__E1000_DOWN, &adapter->flags);
1339
1340	return 0;
1341}
1342
1343/**
1344 * e1000_alloc_queues - Allocate memory for all rings
1345 * @adapter: board private structure to initialize
1346 *
1347 * We allocate one ring per queue at run-time since we don't know the
1348 * number of queues at compile-time.
1349 **/
1350static int e1000_alloc_queues(struct e1000_adapter *adapter)
1351{
1352	adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1353				   sizeof(struct e1000_tx_ring), GFP_KERNEL);
1354	if (!adapter->tx_ring)
1355		return -ENOMEM;
1356
1357	adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1358				   sizeof(struct e1000_rx_ring), GFP_KERNEL);
1359	if (!adapter->rx_ring) {
1360		kfree(adapter->tx_ring);
1361		return -ENOMEM;
1362	}
1363
1364	return E1000_SUCCESS;
1365}
1366
1367/**
1368 * e1000_open - Called when a network interface is made active
1369 * @netdev: network interface device structure
1370 *
1371 * Returns 0 on success, negative value on failure
1372 *
1373 * The open entry point is called when a network interface is made
1374 * active by the system (IFF_UP).  At this point all resources needed
1375 * for transmit and receive operations are allocated, the interrupt
1376 * handler is registered with the OS, the watchdog task is started,
1377 * and the stack is notified that the interface is ready.
1378 **/
1379int e1000_open(struct net_device *netdev)
1380{
1381	struct e1000_adapter *adapter = netdev_priv(netdev);
1382	struct e1000_hw *hw = &adapter->hw;
1383	int err;
1384
1385	/* disallow open during test */
1386	if (test_bit(__E1000_TESTING, &adapter->flags))
1387		return -EBUSY;
1388
1389	netif_carrier_off(netdev);
1390
1391	/* allocate transmit descriptors */
1392	err = e1000_setup_all_tx_resources(adapter);
1393	if (err)
1394		goto err_setup_tx;
1395
1396	/* allocate receive descriptors */
1397	err = e1000_setup_all_rx_resources(adapter);
1398	if (err)
1399		goto err_setup_rx;
1400
1401	e1000_power_up_phy(adapter);
1402
1403	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1404	if ((hw->mng_cookie.status &
1405			  E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1406		e1000_update_mng_vlan(adapter);
1407	}
1408
1409	/* before we allocate an interrupt, we must be ready to handle it.
1410	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1411	 * as soon as we call pci_request_irq, so we have to setup our
1412	 * clean_rx handler before we do so.
1413	 */
1414	e1000_configure(adapter);
1415
1416	err = e1000_request_irq(adapter);
1417	if (err)
1418		goto err_req_irq;
1419
1420	/* From here on the code is the same as e1000_up() */
1421	clear_bit(__E1000_DOWN, &adapter->flags);
1422
1423	napi_enable(&adapter->napi);
1424
1425	e1000_irq_enable(adapter);
1426
1427	netif_start_queue(netdev);
1428
1429	/* fire a link status change interrupt to start the watchdog */
1430	ew32(ICS, E1000_ICS_LSC);
1431
1432	return E1000_SUCCESS;
1433
1434err_req_irq:
1435	e1000_power_down_phy(adapter);
1436	e1000_free_all_rx_resources(adapter);
1437err_setup_rx:
1438	e1000_free_all_tx_resources(adapter);
1439err_setup_tx:
1440	e1000_reset(adapter);
1441
1442	return err;
1443}
1444
1445/**
1446 * e1000_close - Disables a network interface
1447 * @netdev: network interface device structure
1448 *
1449 * Returns 0, this is not allowed to fail
1450 *
1451 * The close entry point is called when an interface is de-activated
1452 * by the OS.  The hardware is still under the drivers control, but
1453 * needs to be disabled.  A global MAC reset is issued to stop the
1454 * hardware, and all transmit and receive resources are freed.
1455 **/
1456int e1000_close(struct net_device *netdev)
1457{
1458	struct e1000_adapter *adapter = netdev_priv(netdev);
1459	struct e1000_hw *hw = &adapter->hw;
1460	int count = E1000_CHECK_RESET_COUNT;
1461
1462	while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1463		usleep_range(10000, 20000);
1464
1465	WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
 
 
 
 
 
1466	e1000_down(adapter);
1467	e1000_power_down_phy(adapter);
1468	e1000_free_irq(adapter);
1469
1470	e1000_free_all_tx_resources(adapter);
1471	e1000_free_all_rx_resources(adapter);
1472
1473	/* kill manageability vlan ID if supported, but not if a vlan with
1474	 * the same ID is registered on the host OS (let 8021q kill it)
1475	 */
1476	if ((hw->mng_cookie.status &
1477	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1478	    !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1479		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1480				       adapter->mng_vlan_id);
1481	}
1482
1483	return 0;
1484}
1485
1486/**
1487 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1488 * @adapter: address of board private structure
1489 * @start: address of beginning of memory
1490 * @len: length of memory
1491 **/
1492static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1493				  unsigned long len)
1494{
1495	struct e1000_hw *hw = &adapter->hw;
1496	unsigned long begin = (unsigned long)start;
1497	unsigned long end = begin + len;
1498
1499	/* First rev 82545 and 82546 need to not allow any memory
1500	 * write location to cross 64k boundary due to errata 23
1501	 */
1502	if (hw->mac_type == e1000_82545 ||
1503	    hw->mac_type == e1000_ce4100 ||
1504	    hw->mac_type == e1000_82546) {
1505		return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1506	}
1507
1508	return true;
1509}
1510
1511/**
1512 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1513 * @adapter: board private structure
1514 * @txdr:    tx descriptor ring (for a specific queue) to setup
1515 *
1516 * Return 0 on success, negative on failure
1517 **/
1518static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1519				    struct e1000_tx_ring *txdr)
1520{
1521	struct pci_dev *pdev = adapter->pdev;
1522	int size;
1523
1524	size = sizeof(struct e1000_tx_buffer) * txdr->count;
1525	txdr->buffer_info = vzalloc(size);
1526	if (!txdr->buffer_info)
1527		return -ENOMEM;
1528
1529	/* round up to nearest 4K */
1530
1531	txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1532	txdr->size = ALIGN(txdr->size, 4096);
1533
1534	txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1535					GFP_KERNEL);
1536	if (!txdr->desc) {
1537setup_tx_desc_die:
1538		vfree(txdr->buffer_info);
1539		return -ENOMEM;
1540	}
1541
1542	/* Fix for errata 23, can't cross 64kB boundary */
1543	if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1544		void *olddesc = txdr->desc;
1545		dma_addr_t olddma = txdr->dma;
1546		e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1547		      txdr->size, txdr->desc);
1548		/* Try again, without freeing the previous */
1549		txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1550						&txdr->dma, GFP_KERNEL);
1551		/* Failed allocation, critical failure */
1552		if (!txdr->desc) {
1553			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1554					  olddma);
1555			goto setup_tx_desc_die;
1556		}
1557
1558		if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1559			/* give up */
1560			dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1561					  txdr->dma);
1562			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1563					  olddma);
1564			e_err(probe, "Unable to allocate aligned memory "
1565			      "for the transmit descriptor ring\n");
1566			vfree(txdr->buffer_info);
1567			return -ENOMEM;
1568		} else {
1569			/* Free old allocation, new allocation was successful */
1570			dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1571					  olddma);
1572		}
1573	}
1574	memset(txdr->desc, 0, txdr->size);
1575
1576	txdr->next_to_use = 0;
1577	txdr->next_to_clean = 0;
1578
1579	return 0;
1580}
1581
1582/**
1583 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1584 * 				  (Descriptors) for all queues
1585 * @adapter: board private structure
1586 *
1587 * Return 0 on success, negative on failure
1588 **/
1589int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1590{
1591	int i, err = 0;
1592
1593	for (i = 0; i < adapter->num_tx_queues; i++) {
1594		err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1595		if (err) {
1596			e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1597			for (i-- ; i >= 0; i--)
1598				e1000_free_tx_resources(adapter,
1599							&adapter->tx_ring[i]);
1600			break;
1601		}
1602	}
1603
1604	return err;
1605}
1606
1607/**
1608 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1609 * @adapter: board private structure
1610 *
1611 * Configure the Tx unit of the MAC after a reset.
1612 **/
1613static void e1000_configure_tx(struct e1000_adapter *adapter)
1614{
1615	u64 tdba;
1616	struct e1000_hw *hw = &adapter->hw;
1617	u32 tdlen, tctl, tipg;
1618	u32 ipgr1, ipgr2;
1619
1620	/* Setup the HW Tx Head and Tail descriptor pointers */
1621
1622	switch (adapter->num_tx_queues) {
1623	case 1:
1624	default:
1625		tdba = adapter->tx_ring[0].dma;
1626		tdlen = adapter->tx_ring[0].count *
1627			sizeof(struct e1000_tx_desc);
1628		ew32(TDLEN, tdlen);
1629		ew32(TDBAH, (tdba >> 32));
1630		ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1631		ew32(TDT, 0);
1632		ew32(TDH, 0);
1633		adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1634					   E1000_TDH : E1000_82542_TDH);
1635		adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1636					   E1000_TDT : E1000_82542_TDT);
1637		break;
1638	}
1639
1640	/* Set the default values for the Tx Inter Packet Gap timer */
1641	if ((hw->media_type == e1000_media_type_fiber ||
1642	     hw->media_type == e1000_media_type_internal_serdes))
1643		tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1644	else
1645		tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1646
1647	switch (hw->mac_type) {
1648	case e1000_82542_rev2_0:
1649	case e1000_82542_rev2_1:
1650		tipg = DEFAULT_82542_TIPG_IPGT;
1651		ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1652		ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1653		break;
1654	default:
1655		ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1656		ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1657		break;
1658	}
1659	tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1660	tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1661	ew32(TIPG, tipg);
1662
1663	/* Set the Tx Interrupt Delay register */
1664
1665	ew32(TIDV, adapter->tx_int_delay);
1666	if (hw->mac_type >= e1000_82540)
1667		ew32(TADV, adapter->tx_abs_int_delay);
1668
1669	/* Program the Transmit Control Register */
1670
1671	tctl = er32(TCTL);
1672	tctl &= ~E1000_TCTL_CT;
1673	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1674		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1675
1676	e1000_config_collision_dist(hw);
1677
1678	/* Setup Transmit Descriptor Settings for eop descriptor */
1679	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1680
1681	/* only set IDE if we are delaying interrupts using the timers */
1682	if (adapter->tx_int_delay)
1683		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1684
1685	if (hw->mac_type < e1000_82543)
1686		adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1687	else
1688		adapter->txd_cmd |= E1000_TXD_CMD_RS;
1689
1690	/* Cache if we're 82544 running in PCI-X because we'll
1691	 * need this to apply a workaround later in the send path.
1692	 */
1693	if (hw->mac_type == e1000_82544 &&
1694	    hw->bus_type == e1000_bus_type_pcix)
1695		adapter->pcix_82544 = true;
1696
1697	ew32(TCTL, tctl);
1698
1699}
1700
1701/**
1702 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1703 * @adapter: board private structure
1704 * @rxdr:    rx descriptor ring (for a specific queue) to setup
1705 *
1706 * Returns 0 on success, negative on failure
1707 **/
1708static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1709				    struct e1000_rx_ring *rxdr)
1710{
1711	struct pci_dev *pdev = adapter->pdev;
1712	int size, desc_len;
1713
1714	size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1715	rxdr->buffer_info = vzalloc(size);
1716	if (!rxdr->buffer_info)
1717		return -ENOMEM;
1718
1719	desc_len = sizeof(struct e1000_rx_desc);
1720
1721	/* Round up to nearest 4K */
1722
1723	rxdr->size = rxdr->count * desc_len;
1724	rxdr->size = ALIGN(rxdr->size, 4096);
1725
1726	rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1727					GFP_KERNEL);
1728	if (!rxdr->desc) {
1729setup_rx_desc_die:
1730		vfree(rxdr->buffer_info);
1731		return -ENOMEM;
1732	}
1733
1734	/* Fix for errata 23, can't cross 64kB boundary */
1735	if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1736		void *olddesc = rxdr->desc;
1737		dma_addr_t olddma = rxdr->dma;
1738		e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1739		      rxdr->size, rxdr->desc);
1740		/* Try again, without freeing the previous */
1741		rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1742						&rxdr->dma, GFP_KERNEL);
1743		/* Failed allocation, critical failure */
1744		if (!rxdr->desc) {
1745			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746					  olddma);
1747			goto setup_rx_desc_die;
1748		}
1749
1750		if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1751			/* give up */
1752			dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1753					  rxdr->dma);
1754			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755					  olddma);
1756			e_err(probe, "Unable to allocate aligned memory for "
1757			      "the Rx descriptor ring\n");
1758			goto setup_rx_desc_die;
1759		} else {
1760			/* Free old allocation, new allocation was successful */
1761			dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1762					  olddma);
1763		}
1764	}
1765	memset(rxdr->desc, 0, rxdr->size);
1766
1767	rxdr->next_to_clean = 0;
1768	rxdr->next_to_use = 0;
1769	rxdr->rx_skb_top = NULL;
1770
1771	return 0;
1772}
1773
1774/**
1775 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1776 * 				  (Descriptors) for all queues
1777 * @adapter: board private structure
1778 *
1779 * Return 0 on success, negative on failure
1780 **/
1781int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1782{
1783	int i, err = 0;
1784
1785	for (i = 0; i < adapter->num_rx_queues; i++) {
1786		err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1787		if (err) {
1788			e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1789			for (i-- ; i >= 0; i--)
1790				e1000_free_rx_resources(adapter,
1791							&adapter->rx_ring[i]);
1792			break;
1793		}
1794	}
1795
1796	return err;
1797}
1798
1799/**
1800 * e1000_setup_rctl - configure the receive control registers
1801 * @adapter: Board private structure
1802 **/
1803static void e1000_setup_rctl(struct e1000_adapter *adapter)
1804{
1805	struct e1000_hw *hw = &adapter->hw;
1806	u32 rctl;
1807
1808	rctl = er32(RCTL);
1809
1810	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1811
1812	rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1813		E1000_RCTL_RDMTS_HALF |
1814		(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1815
1816	if (hw->tbi_compatibility_on == 1)
1817		rctl |= E1000_RCTL_SBP;
1818	else
1819		rctl &= ~E1000_RCTL_SBP;
1820
1821	if (adapter->netdev->mtu <= ETH_DATA_LEN)
1822		rctl &= ~E1000_RCTL_LPE;
1823	else
1824		rctl |= E1000_RCTL_LPE;
1825
1826	/* Setup buffer sizes */
1827	rctl &= ~E1000_RCTL_SZ_4096;
1828	rctl |= E1000_RCTL_BSEX;
1829	switch (adapter->rx_buffer_len) {
1830	case E1000_RXBUFFER_2048:
1831	default:
1832		rctl |= E1000_RCTL_SZ_2048;
1833		rctl &= ~E1000_RCTL_BSEX;
1834		break;
1835	case E1000_RXBUFFER_4096:
1836		rctl |= E1000_RCTL_SZ_4096;
1837		break;
1838	case E1000_RXBUFFER_8192:
1839		rctl |= E1000_RCTL_SZ_8192;
1840		break;
1841	case E1000_RXBUFFER_16384:
1842		rctl |= E1000_RCTL_SZ_16384;
1843		break;
1844	}
1845
1846	/* This is useful for sniffing bad packets. */
1847	if (adapter->netdev->features & NETIF_F_RXALL) {
1848		/* UPE and MPE will be handled by normal PROMISC logic
1849		 * in e1000e_set_rx_mode
1850		 */
1851		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1852			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1853			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1854
1855		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1856			  E1000_RCTL_DPF | /* Allow filtered pause */
1857			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1858		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1859		 * and that breaks VLANs.
1860		 */
1861	}
1862
1863	ew32(RCTL, rctl);
1864}
1865
1866/**
1867 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1868 * @adapter: board private structure
1869 *
1870 * Configure the Rx unit of the MAC after a reset.
1871 **/
1872static void e1000_configure_rx(struct e1000_adapter *adapter)
1873{
1874	u64 rdba;
1875	struct e1000_hw *hw = &adapter->hw;
1876	u32 rdlen, rctl, rxcsum;
1877
1878	if (adapter->netdev->mtu > ETH_DATA_LEN) {
1879		rdlen = adapter->rx_ring[0].count *
1880			sizeof(struct e1000_rx_desc);
1881		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1882		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1883	} else {
1884		rdlen = adapter->rx_ring[0].count *
1885			sizeof(struct e1000_rx_desc);
1886		adapter->clean_rx = e1000_clean_rx_irq;
1887		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1888	}
1889
1890	/* disable receives while setting up the descriptors */
1891	rctl = er32(RCTL);
1892	ew32(RCTL, rctl & ~E1000_RCTL_EN);
1893
1894	/* set the Receive Delay Timer Register */
1895	ew32(RDTR, adapter->rx_int_delay);
1896
1897	if (hw->mac_type >= e1000_82540) {
1898		ew32(RADV, adapter->rx_abs_int_delay);
1899		if (adapter->itr_setting != 0)
1900			ew32(ITR, 1000000000 / (adapter->itr * 256));
1901	}
1902
1903	/* Setup the HW Rx Head and Tail Descriptor Pointers and
1904	 * the Base and Length of the Rx Descriptor Ring
1905	 */
1906	switch (adapter->num_rx_queues) {
1907	case 1:
1908	default:
1909		rdba = adapter->rx_ring[0].dma;
1910		ew32(RDLEN, rdlen);
1911		ew32(RDBAH, (rdba >> 32));
1912		ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1913		ew32(RDT, 0);
1914		ew32(RDH, 0);
1915		adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1916					   E1000_RDH : E1000_82542_RDH);
1917		adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1918					   E1000_RDT : E1000_82542_RDT);
1919		break;
1920	}
1921
1922	/* Enable 82543 Receive Checksum Offload for TCP and UDP */
1923	if (hw->mac_type >= e1000_82543) {
1924		rxcsum = er32(RXCSUM);
1925		if (adapter->rx_csum)
1926			rxcsum |= E1000_RXCSUM_TUOFL;
1927		else
1928			/* don't need to clear IPPCSE as it defaults to 0 */
1929			rxcsum &= ~E1000_RXCSUM_TUOFL;
1930		ew32(RXCSUM, rxcsum);
1931	}
1932
1933	/* Enable Receives */
1934	ew32(RCTL, rctl | E1000_RCTL_EN);
1935}
1936
1937/**
1938 * e1000_free_tx_resources - Free Tx Resources per Queue
1939 * @adapter: board private structure
1940 * @tx_ring: Tx descriptor ring for a specific queue
1941 *
1942 * Free all transmit software resources
1943 **/
1944static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1945				    struct e1000_tx_ring *tx_ring)
1946{
1947	struct pci_dev *pdev = adapter->pdev;
1948
1949	e1000_clean_tx_ring(adapter, tx_ring);
1950
1951	vfree(tx_ring->buffer_info);
1952	tx_ring->buffer_info = NULL;
1953
1954	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1955			  tx_ring->dma);
1956
1957	tx_ring->desc = NULL;
1958}
1959
1960/**
1961 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1962 * @adapter: board private structure
1963 *
1964 * Free all transmit software resources
1965 **/
1966void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1967{
1968	int i;
1969
1970	for (i = 0; i < adapter->num_tx_queues; i++)
1971		e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1972}
1973
1974static void
1975e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1976				 struct e1000_tx_buffer *buffer_info)
 
1977{
1978	if (buffer_info->dma) {
1979		if (buffer_info->mapped_as_page)
1980			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1981				       buffer_info->length, DMA_TO_DEVICE);
1982		else
1983			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1984					 buffer_info->length,
1985					 DMA_TO_DEVICE);
1986		buffer_info->dma = 0;
1987	}
1988	if (buffer_info->skb) {
1989		dev_kfree_skb_any(buffer_info->skb);
1990		buffer_info->skb = NULL;
1991	}
1992	buffer_info->time_stamp = 0;
1993	/* buffer_info must be completely set up in the transmit path */
1994}
1995
1996/**
1997 * e1000_clean_tx_ring - Free Tx Buffers
1998 * @adapter: board private structure
1999 * @tx_ring: ring to be cleaned
2000 **/
2001static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2002				struct e1000_tx_ring *tx_ring)
2003{
2004	struct e1000_hw *hw = &adapter->hw;
2005	struct e1000_tx_buffer *buffer_info;
2006	unsigned long size;
2007	unsigned int i;
2008
2009	/* Free all the Tx ring sk_buffs */
2010
2011	for (i = 0; i < tx_ring->count; i++) {
2012		buffer_info = &tx_ring->buffer_info[i];
2013		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2014	}
2015
2016	netdev_reset_queue(adapter->netdev);
2017	size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2018	memset(tx_ring->buffer_info, 0, size);
2019
2020	/* Zero out the descriptor ring */
2021
2022	memset(tx_ring->desc, 0, tx_ring->size);
2023
2024	tx_ring->next_to_use = 0;
2025	tx_ring->next_to_clean = 0;
2026	tx_ring->last_tx_tso = false;
2027
2028	writel(0, hw->hw_addr + tx_ring->tdh);
2029	writel(0, hw->hw_addr + tx_ring->tdt);
2030}
2031
2032/**
2033 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2034 * @adapter: board private structure
2035 **/
2036static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2037{
2038	int i;
2039
2040	for (i = 0; i < adapter->num_tx_queues; i++)
2041		e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2042}
2043
2044/**
2045 * e1000_free_rx_resources - Free Rx Resources
2046 * @adapter: board private structure
2047 * @rx_ring: ring to clean the resources from
2048 *
2049 * Free all receive software resources
2050 **/
2051static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2052				    struct e1000_rx_ring *rx_ring)
2053{
2054	struct pci_dev *pdev = adapter->pdev;
2055
2056	e1000_clean_rx_ring(adapter, rx_ring);
2057
2058	vfree(rx_ring->buffer_info);
2059	rx_ring->buffer_info = NULL;
2060
2061	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2062			  rx_ring->dma);
2063
2064	rx_ring->desc = NULL;
2065}
2066
2067/**
2068 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2069 * @adapter: board private structure
2070 *
2071 * Free all receive software resources
2072 **/
2073void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2074{
2075	int i;
2076
2077	for (i = 0; i < adapter->num_rx_queues; i++)
2078		e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2079}
2080
2081#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2082static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2083{
2084	return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2085		SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2086}
2087
2088static void *e1000_alloc_frag(const struct e1000_adapter *a)
2089{
2090	unsigned int len = e1000_frag_len(a);
2091	u8 *data = netdev_alloc_frag(len);
2092
2093	if (likely(data))
2094		data += E1000_HEADROOM;
2095	return data;
2096}
2097
2098/**
2099 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2100 * @adapter: board private structure
2101 * @rx_ring: ring to free buffers from
2102 **/
2103static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2104				struct e1000_rx_ring *rx_ring)
2105{
2106	struct e1000_hw *hw = &adapter->hw;
2107	struct e1000_rx_buffer *buffer_info;
2108	struct pci_dev *pdev = adapter->pdev;
2109	unsigned long size;
2110	unsigned int i;
2111
2112	/* Free all the Rx netfrags */
2113	for (i = 0; i < rx_ring->count; i++) {
2114		buffer_info = &rx_ring->buffer_info[i];
2115		if (adapter->clean_rx == e1000_clean_rx_irq) {
2116			if (buffer_info->dma)
2117				dma_unmap_single(&pdev->dev, buffer_info->dma,
2118						 adapter->rx_buffer_len,
2119						 DMA_FROM_DEVICE);
2120			if (buffer_info->rxbuf.data) {
2121				skb_free_frag(buffer_info->rxbuf.data);
2122				buffer_info->rxbuf.data = NULL;
2123			}
2124		} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2125			if (buffer_info->dma)
2126				dma_unmap_page(&pdev->dev, buffer_info->dma,
2127					       adapter->rx_buffer_len,
2128					       DMA_FROM_DEVICE);
2129			if (buffer_info->rxbuf.page) {
2130				put_page(buffer_info->rxbuf.page);
2131				buffer_info->rxbuf.page = NULL;
2132			}
2133		}
2134
2135		buffer_info->dma = 0;
2136	}
2137
2138	/* there also may be some cached data from a chained receive */
2139	napi_free_frags(&adapter->napi);
2140	rx_ring->rx_skb_top = NULL;
2141
2142	size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2143	memset(rx_ring->buffer_info, 0, size);
2144
2145	/* Zero out the descriptor ring */
2146	memset(rx_ring->desc, 0, rx_ring->size);
2147
2148	rx_ring->next_to_clean = 0;
2149	rx_ring->next_to_use = 0;
2150
2151	writel(0, hw->hw_addr + rx_ring->rdh);
2152	writel(0, hw->hw_addr + rx_ring->rdt);
2153}
2154
2155/**
2156 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2157 * @adapter: board private structure
2158 **/
2159static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2160{
2161	int i;
2162
2163	for (i = 0; i < adapter->num_rx_queues; i++)
2164		e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2165}
2166
2167/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2168 * and memory write and invalidate disabled for certain operations
2169 */
2170static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2171{
2172	struct e1000_hw *hw = &adapter->hw;
2173	struct net_device *netdev = adapter->netdev;
2174	u32 rctl;
2175
2176	e1000_pci_clear_mwi(hw);
2177
2178	rctl = er32(RCTL);
2179	rctl |= E1000_RCTL_RST;
2180	ew32(RCTL, rctl);
2181	E1000_WRITE_FLUSH();
2182	mdelay(5);
2183
2184	if (netif_running(netdev))
2185		e1000_clean_all_rx_rings(adapter);
2186}
2187
2188static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2189{
2190	struct e1000_hw *hw = &adapter->hw;
2191	struct net_device *netdev = adapter->netdev;
2192	u32 rctl;
2193
2194	rctl = er32(RCTL);
2195	rctl &= ~E1000_RCTL_RST;
2196	ew32(RCTL, rctl);
2197	E1000_WRITE_FLUSH();
2198	mdelay(5);
2199
2200	if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2201		e1000_pci_set_mwi(hw);
2202
2203	if (netif_running(netdev)) {
2204		/* No need to loop, because 82542 supports only 1 queue */
2205		struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2206		e1000_configure_rx(adapter);
2207		adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2208	}
2209}
2210
2211/**
2212 * e1000_set_mac - Change the Ethernet Address of the NIC
2213 * @netdev: network interface device structure
2214 * @p: pointer to an address structure
2215 *
2216 * Returns 0 on success, negative on failure
2217 **/
2218static int e1000_set_mac(struct net_device *netdev, void *p)
2219{
2220	struct e1000_adapter *adapter = netdev_priv(netdev);
2221	struct e1000_hw *hw = &adapter->hw;
2222	struct sockaddr *addr = p;
2223
2224	if (!is_valid_ether_addr(addr->sa_data))
2225		return -EADDRNOTAVAIL;
2226
2227	/* 82542 2.0 needs to be in reset to write receive address registers */
2228
2229	if (hw->mac_type == e1000_82542_rev2_0)
2230		e1000_enter_82542_rst(adapter);
2231
2232	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2233	memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2234
2235	e1000_rar_set(hw, hw->mac_addr, 0);
2236
2237	if (hw->mac_type == e1000_82542_rev2_0)
2238		e1000_leave_82542_rst(adapter);
2239
2240	return 0;
2241}
2242
2243/**
2244 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2245 * @netdev: network interface device structure
2246 *
2247 * The set_rx_mode entry point is called whenever the unicast or multicast
2248 * address lists or the network interface flags are updated. This routine is
2249 * responsible for configuring the hardware for proper unicast, multicast,
2250 * promiscuous mode, and all-multi behavior.
2251 **/
2252static void e1000_set_rx_mode(struct net_device *netdev)
2253{
2254	struct e1000_adapter *adapter = netdev_priv(netdev);
2255	struct e1000_hw *hw = &adapter->hw;
2256	struct netdev_hw_addr *ha;
2257	bool use_uc = false;
2258	u32 rctl;
2259	u32 hash_value;
2260	int i, rar_entries = E1000_RAR_ENTRIES;
2261	int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2262	u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2263
2264	if (!mcarray)
2265		return;
2266
2267	/* Check for Promiscuous and All Multicast modes */
2268
2269	rctl = er32(RCTL);
2270
2271	if (netdev->flags & IFF_PROMISC) {
2272		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2273		rctl &= ~E1000_RCTL_VFE;
2274	} else {
2275		if (netdev->flags & IFF_ALLMULTI)
2276			rctl |= E1000_RCTL_MPE;
2277		else
2278			rctl &= ~E1000_RCTL_MPE;
2279		/* Enable VLAN filter if there is a VLAN */
2280		if (e1000_vlan_used(adapter))
2281			rctl |= E1000_RCTL_VFE;
2282	}
2283
2284	if (netdev_uc_count(netdev) > rar_entries - 1) {
2285		rctl |= E1000_RCTL_UPE;
2286	} else if (!(netdev->flags & IFF_PROMISC)) {
2287		rctl &= ~E1000_RCTL_UPE;
2288		use_uc = true;
2289	}
2290
2291	ew32(RCTL, rctl);
2292
2293	/* 82542 2.0 needs to be in reset to write receive address registers */
2294
2295	if (hw->mac_type == e1000_82542_rev2_0)
2296		e1000_enter_82542_rst(adapter);
2297
2298	/* load the first 14 addresses into the exact filters 1-14. Unicast
2299	 * addresses take precedence to avoid disabling unicast filtering
2300	 * when possible.
2301	 *
2302	 * RAR 0 is used for the station MAC address
2303	 * if there are not 14 addresses, go ahead and clear the filters
2304	 */
2305	i = 1;
2306	if (use_uc)
2307		netdev_for_each_uc_addr(ha, netdev) {
2308			if (i == rar_entries)
2309				break;
2310			e1000_rar_set(hw, ha->addr, i++);
2311		}
2312
2313	netdev_for_each_mc_addr(ha, netdev) {
2314		if (i == rar_entries) {
2315			/* load any remaining addresses into the hash table */
2316			u32 hash_reg, hash_bit, mta;
2317			hash_value = e1000_hash_mc_addr(hw, ha->addr);
2318			hash_reg = (hash_value >> 5) & 0x7F;
2319			hash_bit = hash_value & 0x1F;
2320			mta = (1 << hash_bit);
2321			mcarray[hash_reg] |= mta;
2322		} else {
2323			e1000_rar_set(hw, ha->addr, i++);
2324		}
2325	}
2326
2327	for (; i < rar_entries; i++) {
2328		E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2329		E1000_WRITE_FLUSH();
2330		E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2331		E1000_WRITE_FLUSH();
2332	}
2333
2334	/* write the hash table completely, write from bottom to avoid
2335	 * both stupid write combining chipsets, and flushing each write
2336	 */
2337	for (i = mta_reg_count - 1; i >= 0 ; i--) {
2338		/* If we are on an 82544 has an errata where writing odd
2339		 * offsets overwrites the previous even offset, but writing
2340		 * backwards over the range solves the issue by always
2341		 * writing the odd offset first
2342		 */
2343		E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2344	}
2345	E1000_WRITE_FLUSH();
2346
2347	if (hw->mac_type == e1000_82542_rev2_0)
2348		e1000_leave_82542_rst(adapter);
2349
2350	kfree(mcarray);
2351}
2352
2353/**
2354 * e1000_update_phy_info_task - get phy info
2355 * @work: work struct contained inside adapter struct
2356 *
2357 * Need to wait a few seconds after link up to get diagnostic information from
2358 * the phy
2359 */
2360static void e1000_update_phy_info_task(struct work_struct *work)
2361{
2362	struct e1000_adapter *adapter = container_of(work,
2363						     struct e1000_adapter,
2364						     phy_info_task.work);
2365
2366	e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2367}
2368
2369/**
2370 * e1000_82547_tx_fifo_stall_task - task to complete work
2371 * @work: work struct contained inside adapter struct
2372 **/
2373static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2374{
2375	struct e1000_adapter *adapter = container_of(work,
2376						     struct e1000_adapter,
2377						     fifo_stall_task.work);
2378	struct e1000_hw *hw = &adapter->hw;
2379	struct net_device *netdev = adapter->netdev;
2380	u32 tctl;
2381
2382	if (atomic_read(&adapter->tx_fifo_stall)) {
2383		if ((er32(TDT) == er32(TDH)) &&
2384		   (er32(TDFT) == er32(TDFH)) &&
2385		   (er32(TDFTS) == er32(TDFHS))) {
2386			tctl = er32(TCTL);
2387			ew32(TCTL, tctl & ~E1000_TCTL_EN);
2388			ew32(TDFT, adapter->tx_head_addr);
2389			ew32(TDFH, adapter->tx_head_addr);
2390			ew32(TDFTS, adapter->tx_head_addr);
2391			ew32(TDFHS, adapter->tx_head_addr);
2392			ew32(TCTL, tctl);
2393			E1000_WRITE_FLUSH();
2394
2395			adapter->tx_fifo_head = 0;
2396			atomic_set(&adapter->tx_fifo_stall, 0);
2397			netif_wake_queue(netdev);
2398		} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2399			schedule_delayed_work(&adapter->fifo_stall_task, 1);
2400		}
2401	}
2402}
2403
2404bool e1000_has_link(struct e1000_adapter *adapter)
2405{
2406	struct e1000_hw *hw = &adapter->hw;
2407	bool link_active = false;
2408
2409	/* get_link_status is set on LSC (link status) interrupt or rx
2410	 * sequence error interrupt (except on intel ce4100).
2411	 * get_link_status will stay false until the
2412	 * e1000_check_for_link establishes link for copper adapters
2413	 * ONLY
2414	 */
2415	switch (hw->media_type) {
2416	case e1000_media_type_copper:
2417		if (hw->mac_type == e1000_ce4100)
2418			hw->get_link_status = 1;
2419		if (hw->get_link_status) {
2420			e1000_check_for_link(hw);
2421			link_active = !hw->get_link_status;
2422		} else {
2423			link_active = true;
2424		}
2425		break;
2426	case e1000_media_type_fiber:
2427		e1000_check_for_link(hw);
2428		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2429		break;
2430	case e1000_media_type_internal_serdes:
2431		e1000_check_for_link(hw);
2432		link_active = hw->serdes_has_link;
2433		break;
2434	default:
2435		break;
2436	}
2437
2438	return link_active;
2439}
2440
2441/**
2442 * e1000_watchdog - work function
2443 * @work: work struct contained inside adapter struct
2444 **/
2445static void e1000_watchdog(struct work_struct *work)
2446{
2447	struct e1000_adapter *adapter = container_of(work,
2448						     struct e1000_adapter,
2449						     watchdog_task.work);
2450	struct e1000_hw *hw = &adapter->hw;
2451	struct net_device *netdev = adapter->netdev;
2452	struct e1000_tx_ring *txdr = adapter->tx_ring;
2453	u32 link, tctl;
2454
2455	link = e1000_has_link(adapter);
2456	if ((netif_carrier_ok(netdev)) && link)
2457		goto link_up;
2458
2459	if (link) {
2460		if (!netif_carrier_ok(netdev)) {
2461			u32 ctrl;
2462			bool txb2b = true;
2463			/* update snapshot of PHY registers on LSC */
2464			e1000_get_speed_and_duplex(hw,
2465						   &adapter->link_speed,
2466						   &adapter->link_duplex);
2467
2468			ctrl = er32(CTRL);
2469			pr_info("%s NIC Link is Up %d Mbps %s, "
2470				"Flow Control: %s\n",
2471				netdev->name,
2472				adapter->link_speed,
2473				adapter->link_duplex == FULL_DUPLEX ?
2474				"Full Duplex" : "Half Duplex",
2475				((ctrl & E1000_CTRL_TFCE) && (ctrl &
2476				E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2477				E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2478				E1000_CTRL_TFCE) ? "TX" : "None")));
2479
2480			/* adjust timeout factor according to speed/duplex */
2481			adapter->tx_timeout_factor = 1;
2482			switch (adapter->link_speed) {
2483			case SPEED_10:
2484				txb2b = false;
2485				adapter->tx_timeout_factor = 16;
2486				break;
2487			case SPEED_100:
2488				txb2b = false;
2489				/* maybe add some timeout factor ? */
2490				break;
2491			}
2492
2493			/* enable transmits in the hardware */
2494			tctl = er32(TCTL);
2495			tctl |= E1000_TCTL_EN;
2496			ew32(TCTL, tctl);
2497
2498			netif_carrier_on(netdev);
2499			if (!test_bit(__E1000_DOWN, &adapter->flags))
2500				schedule_delayed_work(&adapter->phy_info_task,
2501						      2 * HZ);
2502			adapter->smartspeed = 0;
2503		}
2504	} else {
2505		if (netif_carrier_ok(netdev)) {
2506			adapter->link_speed = 0;
2507			adapter->link_duplex = 0;
2508			pr_info("%s NIC Link is Down\n",
2509				netdev->name);
2510			netif_carrier_off(netdev);
2511
2512			if (!test_bit(__E1000_DOWN, &adapter->flags))
2513				schedule_delayed_work(&adapter->phy_info_task,
2514						      2 * HZ);
2515		}
2516
2517		e1000_smartspeed(adapter);
2518	}
2519
2520link_up:
2521	e1000_update_stats(adapter);
2522
2523	hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2524	adapter->tpt_old = adapter->stats.tpt;
2525	hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2526	adapter->colc_old = adapter->stats.colc;
2527
2528	adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2529	adapter->gorcl_old = adapter->stats.gorcl;
2530	adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2531	adapter->gotcl_old = adapter->stats.gotcl;
2532
2533	e1000_update_adaptive(hw);
2534
2535	if (!netif_carrier_ok(netdev)) {
2536		if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2537			/* We've lost link, so the controller stops DMA,
2538			 * but we've got queued Tx work that's never going
2539			 * to get done, so reset controller to flush Tx.
2540			 * (Do the reset outside of interrupt context).
2541			 */
2542			adapter->tx_timeout_count++;
2543			schedule_work(&adapter->reset_task);
2544			/* exit immediately since reset is imminent */
2545			return;
2546		}
2547	}
2548
2549	/* Simple mode for Interrupt Throttle Rate (ITR) */
2550	if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2551		/* Symmetric Tx/Rx gets a reduced ITR=2000;
2552		 * Total asymmetrical Tx or Rx gets ITR=8000;
2553		 * everyone else is between 2000-8000.
2554		 */
2555		u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2556		u32 dif = (adapter->gotcl > adapter->gorcl ?
2557			    adapter->gotcl - adapter->gorcl :
2558			    adapter->gorcl - adapter->gotcl) / 10000;
2559		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2560
2561		ew32(ITR, 1000000000 / (itr * 256));
2562	}
2563
2564	/* Cause software interrupt to ensure rx ring is cleaned */
2565	ew32(ICS, E1000_ICS_RXDMT0);
2566
2567	/* Force detection of hung controller every watchdog period */
2568	adapter->detect_tx_hung = true;
2569
2570	/* Reschedule the task */
2571	if (!test_bit(__E1000_DOWN, &adapter->flags))
2572		schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2573}
2574
2575enum latency_range {
2576	lowest_latency = 0,
2577	low_latency = 1,
2578	bulk_latency = 2,
2579	latency_invalid = 255
2580};
2581
2582/**
2583 * e1000_update_itr - update the dynamic ITR value based on statistics
2584 * @adapter: pointer to adapter
2585 * @itr_setting: current adapter->itr
2586 * @packets: the number of packets during this measurement interval
2587 * @bytes: the number of bytes during this measurement interval
2588 *
2589 *      Stores a new ITR value based on packets and byte
2590 *      counts during the last interrupt.  The advantage of per interrupt
2591 *      computation is faster updates and more accurate ITR for the current
2592 *      traffic pattern.  Constants in this function were computed
2593 *      based on theoretical maximum wire speed and thresholds were set based
2594 *      on testing data as well as attempting to minimize response time
2595 *      while increasing bulk throughput.
2596 *      this functionality is controlled by the InterruptThrottleRate module
2597 *      parameter (see e1000_param.c)
2598 **/
2599static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2600				     u16 itr_setting, int packets, int bytes)
2601{
2602	unsigned int retval = itr_setting;
2603	struct e1000_hw *hw = &adapter->hw;
2604
2605	if (unlikely(hw->mac_type < e1000_82540))
2606		goto update_itr_done;
2607
2608	if (packets == 0)
2609		goto update_itr_done;
2610
2611	switch (itr_setting) {
2612	case lowest_latency:
2613		/* jumbo frames get bulk treatment*/
2614		if (bytes/packets > 8000)
2615			retval = bulk_latency;
2616		else if ((packets < 5) && (bytes > 512))
2617			retval = low_latency;
2618		break;
2619	case low_latency:  /* 50 usec aka 20000 ints/s */
2620		if (bytes > 10000) {
2621			/* jumbo frames need bulk latency setting */
2622			if (bytes/packets > 8000)
2623				retval = bulk_latency;
2624			else if ((packets < 10) || ((bytes/packets) > 1200))
2625				retval = bulk_latency;
2626			else if ((packets > 35))
2627				retval = lowest_latency;
2628		} else if (bytes/packets > 2000)
2629			retval = bulk_latency;
2630		else if (packets <= 2 && bytes < 512)
2631			retval = lowest_latency;
2632		break;
2633	case bulk_latency: /* 250 usec aka 4000 ints/s */
2634		if (bytes > 25000) {
2635			if (packets > 35)
2636				retval = low_latency;
2637		} else if (bytes < 6000) {
2638			retval = low_latency;
2639		}
2640		break;
2641	}
2642
2643update_itr_done:
2644	return retval;
2645}
2646
2647static void e1000_set_itr(struct e1000_adapter *adapter)
2648{
2649	struct e1000_hw *hw = &adapter->hw;
2650	u16 current_itr;
2651	u32 new_itr = adapter->itr;
2652
2653	if (unlikely(hw->mac_type < e1000_82540))
2654		return;
2655
2656	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2657	if (unlikely(adapter->link_speed != SPEED_1000)) {
2658		current_itr = 0;
2659		new_itr = 4000;
2660		goto set_itr_now;
2661	}
2662
2663	adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2664					   adapter->total_tx_packets,
2665					   adapter->total_tx_bytes);
2666	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2667	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2668		adapter->tx_itr = low_latency;
2669
2670	adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2671					   adapter->total_rx_packets,
2672					   adapter->total_rx_bytes);
2673	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2674	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2675		adapter->rx_itr = low_latency;
2676
2677	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2678
2679	switch (current_itr) {
2680	/* counts and packets in update_itr are dependent on these numbers */
2681	case lowest_latency:
2682		new_itr = 70000;
2683		break;
2684	case low_latency:
2685		new_itr = 20000; /* aka hwitr = ~200 */
2686		break;
2687	case bulk_latency:
2688		new_itr = 4000;
2689		break;
2690	default:
2691		break;
2692	}
2693
2694set_itr_now:
2695	if (new_itr != adapter->itr) {
2696		/* this attempts to bias the interrupt rate towards Bulk
2697		 * by adding intermediate steps when interrupt rate is
2698		 * increasing
2699		 */
2700		new_itr = new_itr > adapter->itr ?
2701			  min(adapter->itr + (new_itr >> 2), new_itr) :
2702			  new_itr;
2703		adapter->itr = new_itr;
2704		ew32(ITR, 1000000000 / (new_itr * 256));
2705	}
2706}
2707
2708#define E1000_TX_FLAGS_CSUM		0x00000001
2709#define E1000_TX_FLAGS_VLAN		0x00000002
2710#define E1000_TX_FLAGS_TSO		0x00000004
2711#define E1000_TX_FLAGS_IPV4		0x00000008
2712#define E1000_TX_FLAGS_NO_FCS		0x00000010
2713#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
2714#define E1000_TX_FLAGS_VLAN_SHIFT	16
2715
2716static int e1000_tso(struct e1000_adapter *adapter,
2717		     struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2718		     __be16 protocol)
2719{
2720	struct e1000_context_desc *context_desc;
2721	struct e1000_tx_buffer *buffer_info;
2722	unsigned int i;
2723	u32 cmd_length = 0;
2724	u16 ipcse = 0, tucse, mss;
2725	u8 ipcss, ipcso, tucss, tucso, hdr_len;
2726
2727	if (skb_is_gso(skb)) {
2728		int err;
2729
2730		err = skb_cow_head(skb, 0);
2731		if (err < 0)
2732			return err;
2733
2734		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2735		mss = skb_shinfo(skb)->gso_size;
2736		if (protocol == htons(ETH_P_IP)) {
2737			struct iphdr *iph = ip_hdr(skb);
2738			iph->tot_len = 0;
2739			iph->check = 0;
2740			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2741								 iph->daddr, 0,
2742								 IPPROTO_TCP,
2743								 0);
2744			cmd_length = E1000_TXD_CMD_IP;
2745			ipcse = skb_transport_offset(skb) - 1;
2746		} else if (skb_is_gso_v6(skb)) {
2747			ipv6_hdr(skb)->payload_len = 0;
2748			tcp_hdr(skb)->check =
2749				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2750						 &ipv6_hdr(skb)->daddr,
2751						 0, IPPROTO_TCP, 0);
2752			ipcse = 0;
2753		}
2754		ipcss = skb_network_offset(skb);
2755		ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2756		tucss = skb_transport_offset(skb);
2757		tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2758		tucse = 0;
2759
2760		cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2761			       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2762
2763		i = tx_ring->next_to_use;
2764		context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2765		buffer_info = &tx_ring->buffer_info[i];
2766
2767		context_desc->lower_setup.ip_fields.ipcss  = ipcss;
2768		context_desc->lower_setup.ip_fields.ipcso  = ipcso;
2769		context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
2770		context_desc->upper_setup.tcp_fields.tucss = tucss;
2771		context_desc->upper_setup.tcp_fields.tucso = tucso;
2772		context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2773		context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
2774		context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2775		context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2776
2777		buffer_info->time_stamp = jiffies;
2778		buffer_info->next_to_watch = i;
2779
2780		if (++i == tx_ring->count)
2781			i = 0;
2782
2783		tx_ring->next_to_use = i;
2784
2785		return true;
2786	}
2787	return false;
2788}
2789
2790static bool e1000_tx_csum(struct e1000_adapter *adapter,
2791			  struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2792			  __be16 protocol)
2793{
2794	struct e1000_context_desc *context_desc;
2795	struct e1000_tx_buffer *buffer_info;
2796	unsigned int i;
2797	u8 css;
2798	u32 cmd_len = E1000_TXD_CMD_DEXT;
2799
2800	if (skb->ip_summed != CHECKSUM_PARTIAL)
2801		return false;
2802
2803	switch (protocol) {
2804	case cpu_to_be16(ETH_P_IP):
2805		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2806			cmd_len |= E1000_TXD_CMD_TCP;
2807		break;
2808	case cpu_to_be16(ETH_P_IPV6):
2809		/* XXX not handling all IPV6 headers */
2810		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2811			cmd_len |= E1000_TXD_CMD_TCP;
2812		break;
2813	default:
2814		if (unlikely(net_ratelimit()))
2815			e_warn(drv, "checksum_partial proto=%x!\n",
2816			       skb->protocol);
2817		break;
2818	}
2819
2820	css = skb_checksum_start_offset(skb);
2821
2822	i = tx_ring->next_to_use;
2823	buffer_info = &tx_ring->buffer_info[i];
2824	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2825
2826	context_desc->lower_setup.ip_config = 0;
2827	context_desc->upper_setup.tcp_fields.tucss = css;
2828	context_desc->upper_setup.tcp_fields.tucso =
2829		css + skb->csum_offset;
2830	context_desc->upper_setup.tcp_fields.tucse = 0;
2831	context_desc->tcp_seg_setup.data = 0;
2832	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2833
2834	buffer_info->time_stamp = jiffies;
2835	buffer_info->next_to_watch = i;
2836
2837	if (unlikely(++i == tx_ring->count))
2838		i = 0;
2839
2840	tx_ring->next_to_use = i;
2841
2842	return true;
2843}
2844
2845#define E1000_MAX_TXD_PWR	12
2846#define E1000_MAX_DATA_PER_TXD	(1<<E1000_MAX_TXD_PWR)
2847
2848static int e1000_tx_map(struct e1000_adapter *adapter,
2849			struct e1000_tx_ring *tx_ring,
2850			struct sk_buff *skb, unsigned int first,
2851			unsigned int max_per_txd, unsigned int nr_frags,
2852			unsigned int mss)
2853{
2854	struct e1000_hw *hw = &adapter->hw;
2855	struct pci_dev *pdev = adapter->pdev;
2856	struct e1000_tx_buffer *buffer_info;
2857	unsigned int len = skb_headlen(skb);
2858	unsigned int offset = 0, size, count = 0, i;
2859	unsigned int f, bytecount, segs;
2860
2861	i = tx_ring->next_to_use;
2862
2863	while (len) {
2864		buffer_info = &tx_ring->buffer_info[i];
2865		size = min(len, max_per_txd);
2866		/* Workaround for Controller erratum --
2867		 * descriptor for non-tso packet in a linear SKB that follows a
2868		 * tso gets written back prematurely before the data is fully
2869		 * DMA'd to the controller
2870		 */
2871		if (!skb->data_len && tx_ring->last_tx_tso &&
2872		    !skb_is_gso(skb)) {
2873			tx_ring->last_tx_tso = false;
2874			size -= 4;
2875		}
2876
2877		/* Workaround for premature desc write-backs
2878		 * in TSO mode.  Append 4-byte sentinel desc
2879		 */
2880		if (unlikely(mss && !nr_frags && size == len && size > 8))
2881			size -= 4;
2882		/* work-around for errata 10 and it applies
2883		 * to all controllers in PCI-X mode
2884		 * The fix is to make sure that the first descriptor of a
2885		 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2886		 */
2887		if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2888			     (size > 2015) && count == 0))
2889			size = 2015;
2890
2891		/* Workaround for potential 82544 hang in PCI-X.  Avoid
2892		 * terminating buffers within evenly-aligned dwords.
2893		 */
2894		if (unlikely(adapter->pcix_82544 &&
2895		   !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2896		   size > 4))
2897			size -= 4;
2898
2899		buffer_info->length = size;
2900		/* set time_stamp *before* dma to help avoid a possible race */
2901		buffer_info->time_stamp = jiffies;
2902		buffer_info->mapped_as_page = false;
2903		buffer_info->dma = dma_map_single(&pdev->dev,
2904						  skb->data + offset,
2905						  size, DMA_TO_DEVICE);
2906		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2907			goto dma_error;
2908		buffer_info->next_to_watch = i;
2909
2910		len -= size;
2911		offset += size;
2912		count++;
2913		if (len) {
2914			i++;
2915			if (unlikely(i == tx_ring->count))
2916				i = 0;
2917		}
2918	}
2919
2920	for (f = 0; f < nr_frags; f++) {
2921		const struct skb_frag_struct *frag;
2922
2923		frag = &skb_shinfo(skb)->frags[f];
2924		len = skb_frag_size(frag);
2925		offset = 0;
2926
2927		while (len) {
2928			unsigned long bufend;
2929			i++;
2930			if (unlikely(i == tx_ring->count))
2931				i = 0;
2932
2933			buffer_info = &tx_ring->buffer_info[i];
2934			size = min(len, max_per_txd);
2935			/* Workaround for premature desc write-backs
2936			 * in TSO mode.  Append 4-byte sentinel desc
2937			 */
2938			if (unlikely(mss && f == (nr_frags-1) &&
2939			    size == len && size > 8))
2940				size -= 4;
2941			/* Workaround for potential 82544 hang in PCI-X.
2942			 * Avoid terminating buffers within evenly-aligned
2943			 * dwords.
2944			 */
2945			bufend = (unsigned long)
2946				page_to_phys(skb_frag_page(frag));
2947			bufend += offset + size - 1;
2948			if (unlikely(adapter->pcix_82544 &&
2949				     !(bufend & 4) &&
2950				     size > 4))
2951				size -= 4;
2952
2953			buffer_info->length = size;
2954			buffer_info->time_stamp = jiffies;
2955			buffer_info->mapped_as_page = true;
2956			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2957						offset, size, DMA_TO_DEVICE);
2958			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2959				goto dma_error;
2960			buffer_info->next_to_watch = i;
2961
2962			len -= size;
2963			offset += size;
2964			count++;
2965		}
2966	}
2967
2968	segs = skb_shinfo(skb)->gso_segs ?: 1;
2969	/* multiply data chunks by size of headers */
2970	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2971
2972	tx_ring->buffer_info[i].skb = skb;
2973	tx_ring->buffer_info[i].segs = segs;
2974	tx_ring->buffer_info[i].bytecount = bytecount;
2975	tx_ring->buffer_info[first].next_to_watch = i;
2976
2977	return count;
2978
2979dma_error:
2980	dev_err(&pdev->dev, "TX DMA map failed\n");
2981	buffer_info->dma = 0;
2982	if (count)
2983		count--;
2984
2985	while (count--) {
2986		if (i == 0)
2987			i += tx_ring->count;
2988		i--;
2989		buffer_info = &tx_ring->buffer_info[i];
2990		e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2991	}
2992
2993	return 0;
2994}
2995
2996static void e1000_tx_queue(struct e1000_adapter *adapter,
2997			   struct e1000_tx_ring *tx_ring, int tx_flags,
2998			   int count)
2999{
3000	struct e1000_tx_desc *tx_desc = NULL;
3001	struct e1000_tx_buffer *buffer_info;
3002	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3003	unsigned int i;
3004
3005	if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3006		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3007			     E1000_TXD_CMD_TSE;
3008		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3009
3010		if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3011			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3012	}
3013
3014	if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3015		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3016		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3017	}
3018
3019	if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3020		txd_lower |= E1000_TXD_CMD_VLE;
3021		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3022	}
3023
3024	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3025		txd_lower &= ~(E1000_TXD_CMD_IFCS);
3026
3027	i = tx_ring->next_to_use;
3028
3029	while (count--) {
3030		buffer_info = &tx_ring->buffer_info[i];
3031		tx_desc = E1000_TX_DESC(*tx_ring, i);
3032		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3033		tx_desc->lower.data =
3034			cpu_to_le32(txd_lower | buffer_info->length);
3035		tx_desc->upper.data = cpu_to_le32(txd_upper);
3036		if (unlikely(++i == tx_ring->count))
3037			i = 0;
3038	}
3039
3040	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3041
3042	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3043	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3044		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3045
3046	/* Force memory writes to complete before letting h/w
3047	 * know there are new descriptors to fetch.  (Only
3048	 * applicable for weak-ordered memory model archs,
3049	 * such as IA-64).
3050	 */
3051	wmb();
3052
3053	tx_ring->next_to_use = i;
3054}
3055
3056/* 82547 workaround to avoid controller hang in half-duplex environment.
3057 * The workaround is to avoid queuing a large packet that would span
3058 * the internal Tx FIFO ring boundary by notifying the stack to resend
3059 * the packet at a later time.  This gives the Tx FIFO an opportunity to
3060 * flush all packets.  When that occurs, we reset the Tx FIFO pointers
3061 * to the beginning of the Tx FIFO.
3062 */
3063
3064#define E1000_FIFO_HDR			0x10
3065#define E1000_82547_PAD_LEN		0x3E0
3066
3067static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3068				       struct sk_buff *skb)
3069{
3070	u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3071	u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3072
3073	skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3074
3075	if (adapter->link_duplex != HALF_DUPLEX)
3076		goto no_fifo_stall_required;
3077
3078	if (atomic_read(&adapter->tx_fifo_stall))
3079		return 1;
3080
3081	if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3082		atomic_set(&adapter->tx_fifo_stall, 1);
3083		return 1;
3084	}
3085
3086no_fifo_stall_required:
3087	adapter->tx_fifo_head += skb_fifo_len;
3088	if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3089		adapter->tx_fifo_head -= adapter->tx_fifo_size;
3090	return 0;
3091}
3092
3093static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3094{
3095	struct e1000_adapter *adapter = netdev_priv(netdev);
3096	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3097
3098	netif_stop_queue(netdev);
3099	/* Herbert's original patch had:
3100	 *  smp_mb__after_netif_stop_queue();
3101	 * but since that doesn't exist yet, just open code it.
3102	 */
3103	smp_mb();
3104
3105	/* We need to check again in a case another CPU has just
3106	 * made room available.
3107	 */
3108	if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3109		return -EBUSY;
3110
3111	/* A reprieve! */
3112	netif_start_queue(netdev);
3113	++adapter->restart_queue;
3114	return 0;
3115}
3116
3117static int e1000_maybe_stop_tx(struct net_device *netdev,
3118			       struct e1000_tx_ring *tx_ring, int size)
3119{
3120	if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3121		return 0;
3122	return __e1000_maybe_stop_tx(netdev, size);
3123}
3124
3125#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3126static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3127				    struct net_device *netdev)
3128{
3129	struct e1000_adapter *adapter = netdev_priv(netdev);
3130	struct e1000_hw *hw = &adapter->hw;
3131	struct e1000_tx_ring *tx_ring;
3132	unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3133	unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3134	unsigned int tx_flags = 0;
3135	unsigned int len = skb_headlen(skb);
3136	unsigned int nr_frags;
3137	unsigned int mss;
3138	int count = 0;
3139	int tso;
3140	unsigned int f;
3141	__be16 protocol = vlan_get_protocol(skb);
3142
3143	/* This goes back to the question of how to logically map a Tx queue
3144	 * to a flow.  Right now, performance is impacted slightly negatively
3145	 * if using multiple Tx queues.  If the stack breaks away from a
3146	 * single qdisc implementation, we can look at this again.
3147	 */
3148	tx_ring = adapter->tx_ring;
3149
3150	/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3151	 * packets may get corrupted during padding by HW.
3152	 * To WA this issue, pad all small packets manually.
3153	 */
3154	if (eth_skb_pad(skb))
3155		return NETDEV_TX_OK;
3156
3157	mss = skb_shinfo(skb)->gso_size;
3158	/* The controller does a simple calculation to
3159	 * make sure there is enough room in the FIFO before
3160	 * initiating the DMA for each buffer.  The calc is:
3161	 * 4 = ceil(buffer len/mss).  To make sure we don't
3162	 * overrun the FIFO, adjust the max buffer len if mss
3163	 * drops.
3164	 */
3165	if (mss) {
3166		u8 hdr_len;
3167		max_per_txd = min(mss << 2, max_per_txd);
3168		max_txd_pwr = fls(max_per_txd) - 1;
3169
3170		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3171		if (skb->data_len && hdr_len == len) {
3172			switch (hw->mac_type) {
 
3173				unsigned int pull_size;
3174			case e1000_82544:
3175				/* Make sure we have room to chop off 4 bytes,
3176				 * and that the end alignment will work out to
3177				 * this hardware's requirements
3178				 * NOTE: this is a TSO only workaround
3179				 * if end byte alignment not correct move us
3180				 * into the next dword
3181				 */
3182				if ((unsigned long)(skb_tail_pointer(skb) - 1)
3183				    & 4)
3184					break;
3185				/* fall through */
3186				pull_size = min((unsigned int)4, skb->data_len);
3187				if (!__pskb_pull_tail(skb, pull_size)) {
3188					e_err(drv, "__pskb_pull_tail "
3189					      "failed.\n");
3190					dev_kfree_skb_any(skb);
3191					return NETDEV_TX_OK;
3192				}
3193				len = skb_headlen(skb);
3194				break;
 
3195			default:
3196				/* do nothing */
3197				break;
3198			}
3199		}
3200	}
3201
3202	/* reserve a descriptor for the offload context */
3203	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3204		count++;
3205	count++;
3206
3207	/* Controller Erratum workaround */
3208	if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3209		count++;
3210
3211	count += TXD_USE_COUNT(len, max_txd_pwr);
3212
3213	if (adapter->pcix_82544)
3214		count++;
3215
3216	/* work-around for errata 10 and it applies to all controllers
3217	 * in PCI-X mode, so add one more descriptor to the count
3218	 */
3219	if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3220			(len > 2015)))
3221		count++;
3222
3223	nr_frags = skb_shinfo(skb)->nr_frags;
3224	for (f = 0; f < nr_frags; f++)
3225		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3226				       max_txd_pwr);
3227	if (adapter->pcix_82544)
3228		count += nr_frags;
3229
3230	/* need: count + 2 desc gap to keep tail from touching
3231	 * head, otherwise try next time
3232	 */
3233	if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3234		return NETDEV_TX_BUSY;
3235
3236	if (unlikely((hw->mac_type == e1000_82547) &&
3237		     (e1000_82547_fifo_workaround(adapter, skb)))) {
3238		netif_stop_queue(netdev);
3239		if (!test_bit(__E1000_DOWN, &adapter->flags))
3240			schedule_delayed_work(&adapter->fifo_stall_task, 1);
3241		return NETDEV_TX_BUSY;
3242	}
3243
3244	if (skb_vlan_tag_present(skb)) {
3245		tx_flags |= E1000_TX_FLAGS_VLAN;
3246		tx_flags |= (skb_vlan_tag_get(skb) <<
3247			     E1000_TX_FLAGS_VLAN_SHIFT);
3248	}
3249
3250	first = tx_ring->next_to_use;
3251
3252	tso = e1000_tso(adapter, tx_ring, skb, protocol);
3253	if (tso < 0) {
3254		dev_kfree_skb_any(skb);
3255		return NETDEV_TX_OK;
3256	}
3257
3258	if (likely(tso)) {
3259		if (likely(hw->mac_type != e1000_82544))
3260			tx_ring->last_tx_tso = true;
3261		tx_flags |= E1000_TX_FLAGS_TSO;
3262	} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3263		tx_flags |= E1000_TX_FLAGS_CSUM;
3264
3265	if (protocol == htons(ETH_P_IP))
3266		tx_flags |= E1000_TX_FLAGS_IPV4;
3267
3268	if (unlikely(skb->no_fcs))
3269		tx_flags |= E1000_TX_FLAGS_NO_FCS;
3270
3271	count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3272			     nr_frags, mss);
3273
3274	if (count) {
3275		/* The descriptors needed is higher than other Intel drivers
3276		 * due to a number of workarounds.  The breakdown is below:
3277		 * Data descriptors: MAX_SKB_FRAGS + 1
3278		 * Context Descriptor: 1
3279		 * Keep head from touching tail: 2
3280		 * Workarounds: 3
3281		 */
3282		int desc_needed = MAX_SKB_FRAGS + 7;
3283
3284		netdev_sent_queue(netdev, skb->len);
3285		skb_tx_timestamp(skb);
3286
3287		e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3288
3289		/* 82544 potentially requires twice as many data descriptors
3290		 * in order to guarantee buffers don't end on evenly-aligned
3291		 * dwords
3292		 */
3293		if (adapter->pcix_82544)
3294			desc_needed += MAX_SKB_FRAGS + 1;
3295
3296		/* Make sure there is space in the ring for the next send. */
3297		e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3298
3299		if (!skb->xmit_more ||
3300		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3301			writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3302			/* we need this if more than one processor can write to
3303			 * our tail at a time, it synchronizes IO on IA64/Altix
3304			 * systems
3305			 */
3306			mmiowb();
3307		}
3308	} else {
3309		dev_kfree_skb_any(skb);
3310		tx_ring->buffer_info[first].time_stamp = 0;
3311		tx_ring->next_to_use = first;
3312	}
3313
3314	return NETDEV_TX_OK;
3315}
3316
3317#define NUM_REGS 38 /* 1 based count */
3318static void e1000_regdump(struct e1000_adapter *adapter)
3319{
3320	struct e1000_hw *hw = &adapter->hw;
3321	u32 regs[NUM_REGS];
3322	u32 *regs_buff = regs;
3323	int i = 0;
3324
3325	static const char * const reg_name[] = {
3326		"CTRL",  "STATUS",
3327		"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3328		"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3329		"TIDV", "TXDCTL", "TADV", "TARC0",
3330		"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3331		"TXDCTL1", "TARC1",
3332		"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3333		"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3334		"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3335	};
3336
3337	regs_buff[0]  = er32(CTRL);
3338	regs_buff[1]  = er32(STATUS);
3339
3340	regs_buff[2]  = er32(RCTL);
3341	regs_buff[3]  = er32(RDLEN);
3342	regs_buff[4]  = er32(RDH);
3343	regs_buff[5]  = er32(RDT);
3344	regs_buff[6]  = er32(RDTR);
3345
3346	regs_buff[7]  = er32(TCTL);
3347	regs_buff[8]  = er32(TDBAL);
3348	regs_buff[9]  = er32(TDBAH);
3349	regs_buff[10] = er32(TDLEN);
3350	regs_buff[11] = er32(TDH);
3351	regs_buff[12] = er32(TDT);
3352	regs_buff[13] = er32(TIDV);
3353	regs_buff[14] = er32(TXDCTL);
3354	regs_buff[15] = er32(TADV);
3355	regs_buff[16] = er32(TARC0);
3356
3357	regs_buff[17] = er32(TDBAL1);
3358	regs_buff[18] = er32(TDBAH1);
3359	regs_buff[19] = er32(TDLEN1);
3360	regs_buff[20] = er32(TDH1);
3361	regs_buff[21] = er32(TDT1);
3362	regs_buff[22] = er32(TXDCTL1);
3363	regs_buff[23] = er32(TARC1);
3364	regs_buff[24] = er32(CTRL_EXT);
3365	regs_buff[25] = er32(ERT);
3366	regs_buff[26] = er32(RDBAL0);
3367	regs_buff[27] = er32(RDBAH0);
3368	regs_buff[28] = er32(TDFH);
3369	regs_buff[29] = er32(TDFT);
3370	regs_buff[30] = er32(TDFHS);
3371	regs_buff[31] = er32(TDFTS);
3372	regs_buff[32] = er32(TDFPC);
3373	regs_buff[33] = er32(RDFH);
3374	regs_buff[34] = er32(RDFT);
3375	regs_buff[35] = er32(RDFHS);
3376	regs_buff[36] = er32(RDFTS);
3377	regs_buff[37] = er32(RDFPC);
3378
3379	pr_info("Register dump\n");
3380	for (i = 0; i < NUM_REGS; i++)
3381		pr_info("%-15s  %08x\n", reg_name[i], regs_buff[i]);
3382}
3383
3384/*
3385 * e1000_dump: Print registers, tx ring and rx ring
3386 */
3387static void e1000_dump(struct e1000_adapter *adapter)
3388{
3389	/* this code doesn't handle multiple rings */
3390	struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3391	struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3392	int i;
3393
3394	if (!netif_msg_hw(adapter))
3395		return;
3396
3397	/* Print Registers */
3398	e1000_regdump(adapter);
3399
3400	/* transmit dump */
3401	pr_info("TX Desc ring0 dump\n");
3402
3403	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3404	 *
3405	 * Legacy Transmit Descriptor
3406	 *   +--------------------------------------------------------------+
3407	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
3408	 *   +--------------------------------------------------------------+
3409	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
3410	 *   +--------------------------------------------------------------+
3411	 *   63       48 47        36 35    32 31     24 23    16 15        0
3412	 *
3413	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3414	 *   63      48 47    40 39       32 31             16 15    8 7      0
3415	 *   +----------------------------------------------------------------+
3416	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
3417	 *   +----------------------------------------------------------------+
3418	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
3419	 *   +----------------------------------------------------------------+
3420	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
3421	 *
3422	 * Extended Data Descriptor (DTYP=0x1)
3423	 *   +----------------------------------------------------------------+
3424	 * 0 |                     Buffer Address [63:0]                      |
3425	 *   +----------------------------------------------------------------+
3426	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
3427	 *   +----------------------------------------------------------------+
3428	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
3429	 */
3430	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3431	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestmp         bi->skb\n");
3432
3433	if (!netif_msg_tx_done(adapter))
3434		goto rx_ring_summary;
3435
3436	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3437		struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3438		struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3439		struct my_u { __le64 a; __le64 b; };
3440		struct my_u *u = (struct my_u *)tx_desc;
3441		const char *type;
3442
3443		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3444			type = "NTC/U";
3445		else if (i == tx_ring->next_to_use)
3446			type = "NTU";
3447		else if (i == tx_ring->next_to_clean)
3448			type = "NTC";
3449		else
3450			type = "";
3451
3452		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p %s\n",
3453			((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3454			le64_to_cpu(u->a), le64_to_cpu(u->b),
3455			(u64)buffer_info->dma, buffer_info->length,
3456			buffer_info->next_to_watch,
3457			(u64)buffer_info->time_stamp, buffer_info->skb, type);
3458	}
3459
3460rx_ring_summary:
3461	/* receive dump */
3462	pr_info("\nRX Desc ring dump\n");
3463
3464	/* Legacy Receive Descriptor Format
3465	 *
3466	 * +-----------------------------------------------------+
3467	 * |                Buffer Address [63:0]                |
3468	 * +-----------------------------------------------------+
3469	 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3470	 * +-----------------------------------------------------+
3471	 * 63       48 47    40 39      32 31         16 15      0
3472	 */
3473	pr_info("R[desc]      [address 63:0  ] [vl er S cks ln] [bi->dma       ] [bi->skb]\n");
3474
3475	if (!netif_msg_rx_status(adapter))
3476		goto exit;
3477
3478	for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3479		struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3480		struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3481		struct my_u { __le64 a; __le64 b; };
3482		struct my_u *u = (struct my_u *)rx_desc;
3483		const char *type;
3484
3485		if (i == rx_ring->next_to_use)
3486			type = "NTU";
3487		else if (i == rx_ring->next_to_clean)
3488			type = "NTC";
3489		else
3490			type = "";
3491
3492		pr_info("R[0x%03X]     %016llX %016llX %016llX %p %s\n",
3493			i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3494			(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3495	} /* for */
3496
3497	/* dump the descriptor caches */
3498	/* rx */
3499	pr_info("Rx descriptor cache in 64bit format\n");
3500	for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3501		pr_info("R%04X: %08X|%08X %08X|%08X\n",
3502			i,
3503			readl(adapter->hw.hw_addr + i+4),
3504			readl(adapter->hw.hw_addr + i),
3505			readl(adapter->hw.hw_addr + i+12),
3506			readl(adapter->hw.hw_addr + i+8));
3507	}
3508	/* tx */
3509	pr_info("Tx descriptor cache in 64bit format\n");
3510	for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3511		pr_info("T%04X: %08X|%08X %08X|%08X\n",
3512			i,
3513			readl(adapter->hw.hw_addr + i+4),
3514			readl(adapter->hw.hw_addr + i),
3515			readl(adapter->hw.hw_addr + i+12),
3516			readl(adapter->hw.hw_addr + i+8));
3517	}
3518exit:
3519	return;
3520}
3521
3522/**
3523 * e1000_tx_timeout - Respond to a Tx Hang
3524 * @netdev: network interface device structure
 
3525 **/
3526static void e1000_tx_timeout(struct net_device *netdev)
3527{
3528	struct e1000_adapter *adapter = netdev_priv(netdev);
3529
3530	/* Do the reset outside of interrupt context */
3531	adapter->tx_timeout_count++;
3532	schedule_work(&adapter->reset_task);
3533}
3534
3535static void e1000_reset_task(struct work_struct *work)
3536{
3537	struct e1000_adapter *adapter =
3538		container_of(work, struct e1000_adapter, reset_task);
3539
3540	e_err(drv, "Reset adapter\n");
3541	e1000_reinit_locked(adapter);
3542}
3543
3544/**
3545 * e1000_change_mtu - Change the Maximum Transfer Unit
3546 * @netdev: network interface device structure
3547 * @new_mtu: new value for maximum frame size
3548 *
3549 * Returns 0 on success, negative on failure
3550 **/
3551static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3552{
3553	struct e1000_adapter *adapter = netdev_priv(netdev);
3554	struct e1000_hw *hw = &adapter->hw;
3555	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3556
3557	/* Adapter-specific max frame size limits. */
3558	switch (hw->mac_type) {
3559	case e1000_undefined ... e1000_82542_rev2_1:
3560		if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3561			e_err(probe, "Jumbo Frames not supported.\n");
3562			return -EINVAL;
3563		}
3564		break;
3565	default:
3566		/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3567		break;
3568	}
3569
3570	while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3571		msleep(1);
3572	/* e1000_down has a dependency on max_frame_size */
3573	hw->max_frame_size = max_frame;
3574	if (netif_running(netdev)) {
3575		/* prevent buffers from being reallocated */
3576		adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3577		e1000_down(adapter);
3578	}
3579
3580	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3581	 * means we reserve 2 more, this pushes us to allocate from the next
3582	 * larger slab size.
3583	 * i.e. RXBUFFER_2048 --> size-4096 slab
3584	 * however with the new *_jumbo_rx* routines, jumbo receives will use
3585	 * fragmented skbs
3586	 */
3587
3588	if (max_frame <= E1000_RXBUFFER_2048)
3589		adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3590	else
3591#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3592		adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3593#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3594		adapter->rx_buffer_len = PAGE_SIZE;
3595#endif
3596
3597	/* adjust allocation if LPE protects us, and we aren't using SBP */
3598	if (!hw->tbi_compatibility_on &&
3599	    ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3600	     (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3601		adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3602
3603	pr_info("%s changing MTU from %d to %d\n",
3604		netdev->name, netdev->mtu, new_mtu);
3605	netdev->mtu = new_mtu;
3606
3607	if (netif_running(netdev))
3608		e1000_up(adapter);
3609	else
3610		e1000_reset(adapter);
3611
3612	clear_bit(__E1000_RESETTING, &adapter->flags);
3613
3614	return 0;
3615}
3616
3617/**
3618 * e1000_update_stats - Update the board statistics counters
3619 * @adapter: board private structure
3620 **/
3621void e1000_update_stats(struct e1000_adapter *adapter)
3622{
3623	struct net_device *netdev = adapter->netdev;
3624	struct e1000_hw *hw = &adapter->hw;
3625	struct pci_dev *pdev = adapter->pdev;
3626	unsigned long flags;
3627	u16 phy_tmp;
3628
3629#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3630
3631	/* Prevent stats update while adapter is being reset, or if the pci
3632	 * connection is down.
3633	 */
3634	if (adapter->link_speed == 0)
3635		return;
3636	if (pci_channel_offline(pdev))
3637		return;
3638
3639	spin_lock_irqsave(&adapter->stats_lock, flags);
3640
3641	/* these counters are modified from e1000_tbi_adjust_stats,
3642	 * called from the interrupt context, so they must only
3643	 * be written while holding adapter->stats_lock
3644	 */
3645
3646	adapter->stats.crcerrs += er32(CRCERRS);
3647	adapter->stats.gprc += er32(GPRC);
3648	adapter->stats.gorcl += er32(GORCL);
3649	adapter->stats.gorch += er32(GORCH);
3650	adapter->stats.bprc += er32(BPRC);
3651	adapter->stats.mprc += er32(MPRC);
3652	adapter->stats.roc += er32(ROC);
3653
3654	adapter->stats.prc64 += er32(PRC64);
3655	adapter->stats.prc127 += er32(PRC127);
3656	adapter->stats.prc255 += er32(PRC255);
3657	adapter->stats.prc511 += er32(PRC511);
3658	adapter->stats.prc1023 += er32(PRC1023);
3659	adapter->stats.prc1522 += er32(PRC1522);
3660
3661	adapter->stats.symerrs += er32(SYMERRS);
3662	adapter->stats.mpc += er32(MPC);
3663	adapter->stats.scc += er32(SCC);
3664	adapter->stats.ecol += er32(ECOL);
3665	adapter->stats.mcc += er32(MCC);
3666	adapter->stats.latecol += er32(LATECOL);
3667	adapter->stats.dc += er32(DC);
3668	adapter->stats.sec += er32(SEC);
3669	adapter->stats.rlec += er32(RLEC);
3670	adapter->stats.xonrxc += er32(XONRXC);
3671	adapter->stats.xontxc += er32(XONTXC);
3672	adapter->stats.xoffrxc += er32(XOFFRXC);
3673	adapter->stats.xofftxc += er32(XOFFTXC);
3674	adapter->stats.fcruc += er32(FCRUC);
3675	adapter->stats.gptc += er32(GPTC);
3676	adapter->stats.gotcl += er32(GOTCL);
3677	adapter->stats.gotch += er32(GOTCH);
3678	adapter->stats.rnbc += er32(RNBC);
3679	adapter->stats.ruc += er32(RUC);
3680	adapter->stats.rfc += er32(RFC);
3681	adapter->stats.rjc += er32(RJC);
3682	adapter->stats.torl += er32(TORL);
3683	adapter->stats.torh += er32(TORH);
3684	adapter->stats.totl += er32(TOTL);
3685	adapter->stats.toth += er32(TOTH);
3686	adapter->stats.tpr += er32(TPR);
3687
3688	adapter->stats.ptc64 += er32(PTC64);
3689	adapter->stats.ptc127 += er32(PTC127);
3690	adapter->stats.ptc255 += er32(PTC255);
3691	adapter->stats.ptc511 += er32(PTC511);
3692	adapter->stats.ptc1023 += er32(PTC1023);
3693	adapter->stats.ptc1522 += er32(PTC1522);
3694
3695	adapter->stats.mptc += er32(MPTC);
3696	adapter->stats.bptc += er32(BPTC);
3697
3698	/* used for adaptive IFS */
3699
3700	hw->tx_packet_delta = er32(TPT);
3701	adapter->stats.tpt += hw->tx_packet_delta;
3702	hw->collision_delta = er32(COLC);
3703	adapter->stats.colc += hw->collision_delta;
3704
3705	if (hw->mac_type >= e1000_82543) {
3706		adapter->stats.algnerrc += er32(ALGNERRC);
3707		adapter->stats.rxerrc += er32(RXERRC);
3708		adapter->stats.tncrs += er32(TNCRS);
3709		adapter->stats.cexterr += er32(CEXTERR);
3710		adapter->stats.tsctc += er32(TSCTC);
3711		adapter->stats.tsctfc += er32(TSCTFC);
3712	}
3713
3714	/* Fill out the OS statistics structure */
3715	netdev->stats.multicast = adapter->stats.mprc;
3716	netdev->stats.collisions = adapter->stats.colc;
3717
3718	/* Rx Errors */
3719
3720	/* RLEC on some newer hardware can be incorrect so build
3721	 * our own version based on RUC and ROC
3722	 */
3723	netdev->stats.rx_errors = adapter->stats.rxerrc +
3724		adapter->stats.crcerrs + adapter->stats.algnerrc +
3725		adapter->stats.ruc + adapter->stats.roc +
3726		adapter->stats.cexterr;
3727	adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3728	netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3729	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3730	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3731	netdev->stats.rx_missed_errors = adapter->stats.mpc;
3732
3733	/* Tx Errors */
3734	adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3735	netdev->stats.tx_errors = adapter->stats.txerrc;
3736	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3737	netdev->stats.tx_window_errors = adapter->stats.latecol;
3738	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3739	if (hw->bad_tx_carr_stats_fd &&
3740	    adapter->link_duplex == FULL_DUPLEX) {
3741		netdev->stats.tx_carrier_errors = 0;
3742		adapter->stats.tncrs = 0;
3743	}
3744
3745	/* Tx Dropped needs to be maintained elsewhere */
3746
3747	/* Phy Stats */
3748	if (hw->media_type == e1000_media_type_copper) {
3749		if ((adapter->link_speed == SPEED_1000) &&
3750		   (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3751			phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3752			adapter->phy_stats.idle_errors += phy_tmp;
3753		}
3754
3755		if ((hw->mac_type <= e1000_82546) &&
3756		   (hw->phy_type == e1000_phy_m88) &&
3757		   !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3758			adapter->phy_stats.receive_errors += phy_tmp;
3759	}
3760
3761	/* Management Stats */
3762	if (hw->has_smbus) {
3763		adapter->stats.mgptc += er32(MGTPTC);
3764		adapter->stats.mgprc += er32(MGTPRC);
3765		adapter->stats.mgpdc += er32(MGTPDC);
3766	}
3767
3768	spin_unlock_irqrestore(&adapter->stats_lock, flags);
3769}
3770
3771/**
3772 * e1000_intr - Interrupt Handler
3773 * @irq: interrupt number
3774 * @data: pointer to a network interface device structure
3775 **/
3776static irqreturn_t e1000_intr(int irq, void *data)
3777{
3778	struct net_device *netdev = data;
3779	struct e1000_adapter *adapter = netdev_priv(netdev);
3780	struct e1000_hw *hw = &adapter->hw;
3781	u32 icr = er32(ICR);
3782
3783	if (unlikely((!icr)))
3784		return IRQ_NONE;  /* Not our interrupt */
3785
3786	/* we might have caused the interrupt, but the above
3787	 * read cleared it, and just in case the driver is
3788	 * down there is nothing to do so return handled
3789	 */
3790	if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3791		return IRQ_HANDLED;
3792
3793	if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3794		hw->get_link_status = 1;
3795		/* guard against interrupt when we're going down */
3796		if (!test_bit(__E1000_DOWN, &adapter->flags))
3797			schedule_delayed_work(&adapter->watchdog_task, 1);
3798	}
3799
3800	/* disable interrupts, without the synchronize_irq bit */
3801	ew32(IMC, ~0);
3802	E1000_WRITE_FLUSH();
3803
3804	if (likely(napi_schedule_prep(&adapter->napi))) {
3805		adapter->total_tx_bytes = 0;
3806		adapter->total_tx_packets = 0;
3807		adapter->total_rx_bytes = 0;
3808		adapter->total_rx_packets = 0;
3809		__napi_schedule(&adapter->napi);
3810	} else {
3811		/* this really should not happen! if it does it is basically a
3812		 * bug, but not a hard error, so enable ints and continue
3813		 */
3814		if (!test_bit(__E1000_DOWN, &adapter->flags))
3815			e1000_irq_enable(adapter);
3816	}
3817
3818	return IRQ_HANDLED;
3819}
3820
3821/**
3822 * e1000_clean - NAPI Rx polling callback
3823 * @adapter: board private structure
 
3824 **/
3825static int e1000_clean(struct napi_struct *napi, int budget)
3826{
3827	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3828						     napi);
3829	int tx_clean_complete = 0, work_done = 0;
3830
3831	tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3832
3833	adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3834
3835	if (!tx_clean_complete)
3836		work_done = budget;
3837
3838	/* If budget not fully consumed, exit the polling mode */
3839	if (work_done < budget) {
 
 
3840		if (likely(adapter->itr_setting & 3))
3841			e1000_set_itr(adapter);
3842		napi_complete_done(napi, work_done);
3843		if (!test_bit(__E1000_DOWN, &adapter->flags))
3844			e1000_irq_enable(adapter);
3845	}
3846
3847	return work_done;
3848}
3849
3850/**
3851 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3852 * @adapter: board private structure
 
3853 **/
3854static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3855			       struct e1000_tx_ring *tx_ring)
3856{
3857	struct e1000_hw *hw = &adapter->hw;
3858	struct net_device *netdev = adapter->netdev;
3859	struct e1000_tx_desc *tx_desc, *eop_desc;
3860	struct e1000_tx_buffer *buffer_info;
3861	unsigned int i, eop;
3862	unsigned int count = 0;
3863	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3864	unsigned int bytes_compl = 0, pkts_compl = 0;
3865
3866	i = tx_ring->next_to_clean;
3867	eop = tx_ring->buffer_info[i].next_to_watch;
3868	eop_desc = E1000_TX_DESC(*tx_ring, eop);
3869
3870	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3871	       (count < tx_ring->count)) {
3872		bool cleaned = false;
3873		dma_rmb();	/* read buffer_info after eop_desc */
3874		for ( ; !cleaned; count++) {
3875			tx_desc = E1000_TX_DESC(*tx_ring, i);
3876			buffer_info = &tx_ring->buffer_info[i];
3877			cleaned = (i == eop);
3878
3879			if (cleaned) {
3880				total_tx_packets += buffer_info->segs;
3881				total_tx_bytes += buffer_info->bytecount;
3882				if (buffer_info->skb) {
3883					bytes_compl += buffer_info->skb->len;
3884					pkts_compl++;
3885				}
3886
3887			}
3888			e1000_unmap_and_free_tx_resource(adapter, buffer_info);
 
3889			tx_desc->upper.data = 0;
3890
3891			if (unlikely(++i == tx_ring->count))
3892				i = 0;
3893		}
3894
3895		eop = tx_ring->buffer_info[i].next_to_watch;
3896		eop_desc = E1000_TX_DESC(*tx_ring, eop);
3897	}
3898
3899	/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3900	 * which will reuse the cleaned buffers.
3901	 */
3902	smp_store_release(&tx_ring->next_to_clean, i);
3903
3904	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3905
3906#define TX_WAKE_THRESHOLD 32
3907	if (unlikely(count && netif_carrier_ok(netdev) &&
3908		     E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3909		/* Make sure that anybody stopping the queue after this
3910		 * sees the new next_to_clean.
3911		 */
3912		smp_mb();
3913
3914		if (netif_queue_stopped(netdev) &&
3915		    !(test_bit(__E1000_DOWN, &adapter->flags))) {
3916			netif_wake_queue(netdev);
3917			++adapter->restart_queue;
3918		}
3919	}
3920
3921	if (adapter->detect_tx_hung) {
3922		/* Detect a transmit hang in hardware, this serializes the
3923		 * check with the clearing of time_stamp and movement of i
3924		 */
3925		adapter->detect_tx_hung = false;
3926		if (tx_ring->buffer_info[eop].time_stamp &&
3927		    time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3928			       (adapter->tx_timeout_factor * HZ)) &&
3929		    !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3930
3931			/* detected Tx unit hang */
3932			e_err(drv, "Detected Tx Unit Hang\n"
3933			      "  Tx Queue             <%lu>\n"
3934			      "  TDH                  <%x>\n"
3935			      "  TDT                  <%x>\n"
3936			      "  next_to_use          <%x>\n"
3937			      "  next_to_clean        <%x>\n"
3938			      "buffer_info[next_to_clean]\n"
3939			      "  time_stamp           <%lx>\n"
3940			      "  next_to_watch        <%x>\n"
3941			      "  jiffies              <%lx>\n"
3942			      "  next_to_watch.status <%x>\n",
3943				(unsigned long)(tx_ring - adapter->tx_ring),
3944				readl(hw->hw_addr + tx_ring->tdh),
3945				readl(hw->hw_addr + tx_ring->tdt),
3946				tx_ring->next_to_use,
3947				tx_ring->next_to_clean,
3948				tx_ring->buffer_info[eop].time_stamp,
3949				eop,
3950				jiffies,
3951				eop_desc->upper.fields.status);
3952			e1000_dump(adapter);
3953			netif_stop_queue(netdev);
3954		}
3955	}
3956	adapter->total_tx_bytes += total_tx_bytes;
3957	adapter->total_tx_packets += total_tx_packets;
3958	netdev->stats.tx_bytes += total_tx_bytes;
3959	netdev->stats.tx_packets += total_tx_packets;
3960	return count < tx_ring->count;
3961}
3962
3963/**
3964 * e1000_rx_checksum - Receive Checksum Offload for 82543
3965 * @adapter:     board private structure
3966 * @status_err:  receive descriptor status and error fields
3967 * @csum:        receive descriptor csum field
3968 * @sk_buff:     socket buffer with received data
3969 **/
3970static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3971			      u32 csum, struct sk_buff *skb)
3972{
3973	struct e1000_hw *hw = &adapter->hw;
3974	u16 status = (u16)status_err;
3975	u8 errors = (u8)(status_err >> 24);
3976
3977	skb_checksum_none_assert(skb);
3978
3979	/* 82543 or newer only */
3980	if (unlikely(hw->mac_type < e1000_82543))
3981		return;
3982	/* Ignore Checksum bit is set */
3983	if (unlikely(status & E1000_RXD_STAT_IXSM))
3984		return;
3985	/* TCP/UDP checksum error bit is set */
3986	if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3987		/* let the stack verify checksum errors */
3988		adapter->hw_csum_err++;
3989		return;
3990	}
3991	/* TCP/UDP Checksum has not been calculated */
3992	if (!(status & E1000_RXD_STAT_TCPCS))
3993		return;
3994
3995	/* It must be a TCP or UDP packet with a valid checksum */
3996	if (likely(status & E1000_RXD_STAT_TCPCS)) {
3997		/* TCP checksum is good */
3998		skb->ip_summed = CHECKSUM_UNNECESSARY;
3999	}
4000	adapter->hw_csum_good++;
4001}
4002
4003/**
4004 * e1000_consume_page - helper function for jumbo Rx path
 
 
 
4005 **/
4006static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4007			       u16 length)
4008{
4009	bi->rxbuf.page = NULL;
4010	skb->len += length;
4011	skb->data_len += length;
4012	skb->truesize += PAGE_SIZE;
4013}
4014
4015/**
4016 * e1000_receive_skb - helper function to handle rx indications
4017 * @adapter: board private structure
4018 * @status: descriptor status field as written by hardware
4019 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4020 * @skb: pointer to sk_buff to be indicated to stack
4021 */
4022static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4023			      __le16 vlan, struct sk_buff *skb)
4024{
4025	skb->protocol = eth_type_trans(skb, adapter->netdev);
4026
4027	if (status & E1000_RXD_STAT_VP) {
4028		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4029
4030		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4031	}
4032	napi_gro_receive(&adapter->napi, skb);
4033}
4034
4035/**
4036 * e1000_tbi_adjust_stats
4037 * @hw: Struct containing variables accessed by shared code
 
4038 * @frame_len: The length of the frame in question
4039 * @mac_addr: The Ethernet destination address of the frame in question
4040 *
4041 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4042 */
4043static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4044				   struct e1000_hw_stats *stats,
4045				   u32 frame_len, const u8 *mac_addr)
4046{
4047	u64 carry_bit;
4048
4049	/* First adjust the frame length. */
4050	frame_len--;
4051	/* We need to adjust the statistics counters, since the hardware
4052	 * counters overcount this packet as a CRC error and undercount
4053	 * the packet as a good packet
4054	 */
4055	/* This packet should not be counted as a CRC error. */
4056	stats->crcerrs--;
4057	/* This packet does count as a Good Packet Received. */
4058	stats->gprc++;
4059
4060	/* Adjust the Good Octets received counters */
4061	carry_bit = 0x80000000 & stats->gorcl;
4062	stats->gorcl += frame_len;
4063	/* If the high bit of Gorcl (the low 32 bits of the Good Octets
4064	 * Received Count) was one before the addition,
4065	 * AND it is zero after, then we lost the carry out,
4066	 * need to add one to Gorch (Good Octets Received Count High).
4067	 * This could be simplified if all environments supported
4068	 * 64-bit integers.
4069	 */
4070	if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4071		stats->gorch++;
4072	/* Is this a broadcast or multicast?  Check broadcast first,
4073	 * since the test for a multicast frame will test positive on
4074	 * a broadcast frame.
4075	 */
4076	if (is_broadcast_ether_addr(mac_addr))
4077		stats->bprc++;
4078	else if (is_multicast_ether_addr(mac_addr))
4079		stats->mprc++;
4080
4081	if (frame_len == hw->max_frame_size) {
4082		/* In this case, the hardware has overcounted the number of
4083		 * oversize frames.
4084		 */
4085		if (stats->roc > 0)
4086			stats->roc--;
4087	}
4088
4089	/* Adjust the bin counters when the extra byte put the frame in the
4090	 * wrong bin. Remember that the frame_len was adjusted above.
4091	 */
4092	if (frame_len == 64) {
4093		stats->prc64++;
4094		stats->prc127--;
4095	} else if (frame_len == 127) {
4096		stats->prc127++;
4097		stats->prc255--;
4098	} else if (frame_len == 255) {
4099		stats->prc255++;
4100		stats->prc511--;
4101	} else if (frame_len == 511) {
4102		stats->prc511++;
4103		stats->prc1023--;
4104	} else if (frame_len == 1023) {
4105		stats->prc1023++;
4106		stats->prc1522--;
4107	} else if (frame_len == 1522) {
4108		stats->prc1522++;
4109	}
4110}
4111
4112static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4113				    u8 status, u8 errors,
4114				    u32 length, const u8 *data)
4115{
4116	struct e1000_hw *hw = &adapter->hw;
4117	u8 last_byte = *(data + length - 1);
4118
4119	if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4120		unsigned long irq_flags;
4121
4122		spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4123		e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4124		spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4125
4126		return true;
4127	}
4128
4129	return false;
4130}
4131
4132static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4133					  unsigned int bufsz)
4134{
4135	struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4136
4137	if (unlikely(!skb))
4138		adapter->alloc_rx_buff_failed++;
4139	return skb;
4140}
4141
4142/**
4143 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4144 * @adapter: board private structure
4145 * @rx_ring: ring to clean
4146 * @work_done: amount of napi work completed this call
4147 * @work_to_do: max amount of work allowed for this call to do
4148 *
4149 * the return value indicates whether actual cleaning was done, there
4150 * is no guarantee that everything was cleaned
4151 */
4152static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4153				     struct e1000_rx_ring *rx_ring,
4154				     int *work_done, int work_to_do)
4155{
4156	struct net_device *netdev = adapter->netdev;
4157	struct pci_dev *pdev = adapter->pdev;
4158	struct e1000_rx_desc *rx_desc, *next_rxd;
4159	struct e1000_rx_buffer *buffer_info, *next_buffer;
4160	u32 length;
4161	unsigned int i;
4162	int cleaned_count = 0;
4163	bool cleaned = false;
4164	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4165
4166	i = rx_ring->next_to_clean;
4167	rx_desc = E1000_RX_DESC(*rx_ring, i);
4168	buffer_info = &rx_ring->buffer_info[i];
4169
4170	while (rx_desc->status & E1000_RXD_STAT_DD) {
4171		struct sk_buff *skb;
4172		u8 status;
4173
4174		if (*work_done >= work_to_do)
4175			break;
4176		(*work_done)++;
4177		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4178
4179		status = rx_desc->status;
4180
4181		if (++i == rx_ring->count)
4182			i = 0;
4183
4184		next_rxd = E1000_RX_DESC(*rx_ring, i);
4185		prefetch(next_rxd);
4186
4187		next_buffer = &rx_ring->buffer_info[i];
4188
4189		cleaned = true;
4190		cleaned_count++;
4191		dma_unmap_page(&pdev->dev, buffer_info->dma,
4192			       adapter->rx_buffer_len, DMA_FROM_DEVICE);
4193		buffer_info->dma = 0;
4194
4195		length = le16_to_cpu(rx_desc->length);
4196
4197		/* errors is only valid for DD + EOP descriptors */
4198		if (unlikely((status & E1000_RXD_STAT_EOP) &&
4199		    (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4200			u8 *mapped = page_address(buffer_info->rxbuf.page);
4201
4202			if (e1000_tbi_should_accept(adapter, status,
4203						    rx_desc->errors,
4204						    length, mapped)) {
4205				length--;
4206			} else if (netdev->features & NETIF_F_RXALL) {
4207				goto process_skb;
4208			} else {
4209				/* an error means any chain goes out the window
4210				 * too
4211				 */
4212				if (rx_ring->rx_skb_top)
4213					dev_kfree_skb(rx_ring->rx_skb_top);
4214				rx_ring->rx_skb_top = NULL;
4215				goto next_desc;
4216			}
4217		}
4218
4219#define rxtop rx_ring->rx_skb_top
4220process_skb:
4221		if (!(status & E1000_RXD_STAT_EOP)) {
4222			/* this descriptor is only the beginning (or middle) */
4223			if (!rxtop) {
4224				/* this is the beginning of a chain */
4225				rxtop = napi_get_frags(&adapter->napi);
4226				if (!rxtop)
4227					break;
4228
4229				skb_fill_page_desc(rxtop, 0,
4230						   buffer_info->rxbuf.page,
4231						   0, length);
4232			} else {
4233				/* this is the middle of a chain */
4234				skb_fill_page_desc(rxtop,
4235				    skb_shinfo(rxtop)->nr_frags,
4236				    buffer_info->rxbuf.page, 0, length);
4237			}
4238			e1000_consume_page(buffer_info, rxtop, length);
4239			goto next_desc;
4240		} else {
4241			if (rxtop) {
4242				/* end of the chain */
4243				skb_fill_page_desc(rxtop,
4244				    skb_shinfo(rxtop)->nr_frags,
4245				    buffer_info->rxbuf.page, 0, length);
4246				skb = rxtop;
4247				rxtop = NULL;
4248				e1000_consume_page(buffer_info, skb, length);
4249			} else {
4250				struct page *p;
4251				/* no chain, got EOP, this buf is the packet
4252				 * copybreak to save the put_page/alloc_page
4253				 */
4254				p = buffer_info->rxbuf.page;
4255				if (length <= copybreak) {
4256					u8 *vaddr;
4257
4258					if (likely(!(netdev->features & NETIF_F_RXFCS)))
4259						length -= 4;
4260					skb = e1000_alloc_rx_skb(adapter,
4261								 length);
4262					if (!skb)
4263						break;
4264
4265					vaddr = kmap_atomic(p);
4266					memcpy(skb_tail_pointer(skb), vaddr,
4267					       length);
4268					kunmap_atomic(vaddr);
4269					/* re-use the page, so don't erase
4270					 * buffer_info->rxbuf.page
4271					 */
4272					skb_put(skb, length);
4273					e1000_rx_checksum(adapter,
4274							  status | rx_desc->errors << 24,
4275							  le16_to_cpu(rx_desc->csum), skb);
4276
4277					total_rx_bytes += skb->len;
4278					total_rx_packets++;
4279
4280					e1000_receive_skb(adapter, status,
4281							  rx_desc->special, skb);
4282					goto next_desc;
4283				} else {
4284					skb = napi_get_frags(&adapter->napi);
4285					if (!skb) {
4286						adapter->alloc_rx_buff_failed++;
4287						break;
4288					}
4289					skb_fill_page_desc(skb, 0, p, 0,
4290							   length);
4291					e1000_consume_page(buffer_info, skb,
4292							   length);
4293				}
4294			}
4295		}
4296
4297		/* Receive Checksum Offload XXX recompute due to CRC strip? */
4298		e1000_rx_checksum(adapter,
4299				  (u32)(status) |
4300				  ((u32)(rx_desc->errors) << 24),
4301				  le16_to_cpu(rx_desc->csum), skb);
4302
4303		total_rx_bytes += (skb->len - 4); /* don't count FCS */
4304		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4305			pskb_trim(skb, skb->len - 4);
4306		total_rx_packets++;
4307
4308		if (status & E1000_RXD_STAT_VP) {
4309			__le16 vlan = rx_desc->special;
4310			u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4311
4312			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4313		}
4314
4315		napi_gro_frags(&adapter->napi);
4316
4317next_desc:
4318		rx_desc->status = 0;
4319
4320		/* return some buffers to hardware, one at a time is too slow */
4321		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4322			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4323			cleaned_count = 0;
4324		}
4325
4326		/* use prefetched values */
4327		rx_desc = next_rxd;
4328		buffer_info = next_buffer;
4329	}
4330	rx_ring->next_to_clean = i;
4331
4332	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4333	if (cleaned_count)
4334		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4335
4336	adapter->total_rx_packets += total_rx_packets;
4337	adapter->total_rx_bytes += total_rx_bytes;
4338	netdev->stats.rx_bytes += total_rx_bytes;
4339	netdev->stats.rx_packets += total_rx_packets;
4340	return cleaned;
4341}
4342
4343/* this should improve performance for small packets with large amounts
4344 * of reassembly being done in the stack
4345 */
4346static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4347				       struct e1000_rx_buffer *buffer_info,
4348				       u32 length, const void *data)
4349{
4350	struct sk_buff *skb;
4351
4352	if (length > copybreak)
4353		return NULL;
4354
4355	skb = e1000_alloc_rx_skb(adapter, length);
4356	if (!skb)
4357		return NULL;
4358
4359	dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4360				length, DMA_FROM_DEVICE);
4361
4362	skb_put_data(skb, data, length);
4363
4364	return skb;
4365}
4366
4367/**
4368 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4369 * @adapter: board private structure
4370 * @rx_ring: ring to clean
4371 * @work_done: amount of napi work completed this call
4372 * @work_to_do: max amount of work allowed for this call to do
4373 */
4374static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4375			       struct e1000_rx_ring *rx_ring,
4376			       int *work_done, int work_to_do)
4377{
4378	struct net_device *netdev = adapter->netdev;
4379	struct pci_dev *pdev = adapter->pdev;
4380	struct e1000_rx_desc *rx_desc, *next_rxd;
4381	struct e1000_rx_buffer *buffer_info, *next_buffer;
4382	u32 length;
4383	unsigned int i;
4384	int cleaned_count = 0;
4385	bool cleaned = false;
4386	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4387
4388	i = rx_ring->next_to_clean;
4389	rx_desc = E1000_RX_DESC(*rx_ring, i);
4390	buffer_info = &rx_ring->buffer_info[i];
4391
4392	while (rx_desc->status & E1000_RXD_STAT_DD) {
4393		struct sk_buff *skb;
4394		u8 *data;
4395		u8 status;
4396
4397		if (*work_done >= work_to_do)
4398			break;
4399		(*work_done)++;
4400		dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4401
4402		status = rx_desc->status;
4403		length = le16_to_cpu(rx_desc->length);
4404
4405		data = buffer_info->rxbuf.data;
4406		prefetch(data);
4407		skb = e1000_copybreak(adapter, buffer_info, length, data);
4408		if (!skb) {
4409			unsigned int frag_len = e1000_frag_len(adapter);
4410
4411			skb = build_skb(data - E1000_HEADROOM, frag_len);
4412			if (!skb) {
4413				adapter->alloc_rx_buff_failed++;
4414				break;
4415			}
4416
4417			skb_reserve(skb, E1000_HEADROOM);
4418			dma_unmap_single(&pdev->dev, buffer_info->dma,
4419					 adapter->rx_buffer_len,
4420					 DMA_FROM_DEVICE);
4421			buffer_info->dma = 0;
4422			buffer_info->rxbuf.data = NULL;
4423		}
4424
4425		if (++i == rx_ring->count)
4426			i = 0;
4427
4428		next_rxd = E1000_RX_DESC(*rx_ring, i);
4429		prefetch(next_rxd);
4430
4431		next_buffer = &rx_ring->buffer_info[i];
4432
4433		cleaned = true;
4434		cleaned_count++;
4435
4436		/* !EOP means multiple descriptors were used to store a single
4437		 * packet, if thats the case we need to toss it.  In fact, we
4438		 * to toss every packet with the EOP bit clear and the next
4439		 * frame that _does_ have the EOP bit set, as it is by
4440		 * definition only a frame fragment
4441		 */
4442		if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4443			adapter->discarding = true;
4444
4445		if (adapter->discarding) {
4446			/* All receives must fit into a single buffer */
4447			netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4448			dev_kfree_skb(skb);
4449			if (status & E1000_RXD_STAT_EOP)
4450				adapter->discarding = false;
4451			goto next_desc;
4452		}
4453
4454		if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4455			if (e1000_tbi_should_accept(adapter, status,
4456						    rx_desc->errors,
4457						    length, data)) {
4458				length--;
4459			} else if (netdev->features & NETIF_F_RXALL) {
4460				goto process_skb;
4461			} else {
4462				dev_kfree_skb(skb);
4463				goto next_desc;
4464			}
4465		}
4466
4467process_skb:
4468		total_rx_bytes += (length - 4); /* don't count FCS */
4469		total_rx_packets++;
4470
4471		if (likely(!(netdev->features & NETIF_F_RXFCS)))
4472			/* adjust length to remove Ethernet CRC, this must be
4473			 * done after the TBI_ACCEPT workaround above
4474			 */
4475			length -= 4;
4476
4477		if (buffer_info->rxbuf.data == NULL)
4478			skb_put(skb, length);
4479		else /* copybreak skb */
4480			skb_trim(skb, length);
4481
4482		/* Receive Checksum Offload */
4483		e1000_rx_checksum(adapter,
4484				  (u32)(status) |
4485				  ((u32)(rx_desc->errors) << 24),
4486				  le16_to_cpu(rx_desc->csum), skb);
4487
4488		e1000_receive_skb(adapter, status, rx_desc->special, skb);
4489
4490next_desc:
4491		rx_desc->status = 0;
4492
4493		/* return some buffers to hardware, one at a time is too slow */
4494		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4495			adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4496			cleaned_count = 0;
4497		}
4498
4499		/* use prefetched values */
4500		rx_desc = next_rxd;
4501		buffer_info = next_buffer;
4502	}
4503	rx_ring->next_to_clean = i;
4504
4505	cleaned_count = E1000_DESC_UNUSED(rx_ring);
4506	if (cleaned_count)
4507		adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4508
4509	adapter->total_rx_packets += total_rx_packets;
4510	adapter->total_rx_bytes += total_rx_bytes;
4511	netdev->stats.rx_bytes += total_rx_bytes;
4512	netdev->stats.rx_packets += total_rx_packets;
4513	return cleaned;
4514}
4515
4516/**
4517 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4518 * @adapter: address of board private structure
4519 * @rx_ring: pointer to receive ring structure
4520 * @cleaned_count: number of buffers to allocate this pass
4521 **/
4522static void
4523e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4524			     struct e1000_rx_ring *rx_ring, int cleaned_count)
4525{
4526	struct pci_dev *pdev = adapter->pdev;
4527	struct e1000_rx_desc *rx_desc;
4528	struct e1000_rx_buffer *buffer_info;
4529	unsigned int i;
4530
4531	i = rx_ring->next_to_use;
4532	buffer_info = &rx_ring->buffer_info[i];
4533
4534	while (cleaned_count--) {
4535		/* allocate a new page if necessary */
4536		if (!buffer_info->rxbuf.page) {
4537			buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4538			if (unlikely(!buffer_info->rxbuf.page)) {
4539				adapter->alloc_rx_buff_failed++;
4540				break;
4541			}
4542		}
4543
4544		if (!buffer_info->dma) {
4545			buffer_info->dma = dma_map_page(&pdev->dev,
4546							buffer_info->rxbuf.page, 0,
4547							adapter->rx_buffer_len,
4548							DMA_FROM_DEVICE);
4549			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4550				put_page(buffer_info->rxbuf.page);
4551				buffer_info->rxbuf.page = NULL;
4552				buffer_info->dma = 0;
4553				adapter->alloc_rx_buff_failed++;
4554				break;
4555			}
4556		}
4557
4558		rx_desc = E1000_RX_DESC(*rx_ring, i);
4559		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4560
4561		if (unlikely(++i == rx_ring->count))
4562			i = 0;
4563		buffer_info = &rx_ring->buffer_info[i];
4564	}
4565
4566	if (likely(rx_ring->next_to_use != i)) {
4567		rx_ring->next_to_use = i;
4568		if (unlikely(i-- == 0))
4569			i = (rx_ring->count - 1);
4570
4571		/* Force memory writes to complete before letting h/w
4572		 * know there are new descriptors to fetch.  (Only
4573		 * applicable for weak-ordered memory model archs,
4574		 * such as IA-64).
4575		 */
4576		wmb();
4577		writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4578	}
4579}
4580
4581/**
4582 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4583 * @adapter: address of board private structure
 
 
4584 **/
4585static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4586				   struct e1000_rx_ring *rx_ring,
4587				   int cleaned_count)
4588{
4589	struct e1000_hw *hw = &adapter->hw;
4590	struct pci_dev *pdev = adapter->pdev;
4591	struct e1000_rx_desc *rx_desc;
4592	struct e1000_rx_buffer *buffer_info;
4593	unsigned int i;
4594	unsigned int bufsz = adapter->rx_buffer_len;
4595
4596	i = rx_ring->next_to_use;
4597	buffer_info = &rx_ring->buffer_info[i];
4598
4599	while (cleaned_count--) {
4600		void *data;
4601
4602		if (buffer_info->rxbuf.data)
4603			goto skip;
4604
4605		data = e1000_alloc_frag(adapter);
4606		if (!data) {
4607			/* Better luck next round */
4608			adapter->alloc_rx_buff_failed++;
4609			break;
4610		}
4611
4612		/* Fix for errata 23, can't cross 64kB boundary */
4613		if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4614			void *olddata = data;
4615			e_err(rx_err, "skb align check failed: %u bytes at "
4616			      "%p\n", bufsz, data);
4617			/* Try again, without freeing the previous */
4618			data = e1000_alloc_frag(adapter);
4619			/* Failed allocation, critical failure */
4620			if (!data) {
4621				skb_free_frag(olddata);
4622				adapter->alloc_rx_buff_failed++;
4623				break;
4624			}
4625
4626			if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4627				/* give up */
4628				skb_free_frag(data);
4629				skb_free_frag(olddata);
4630				adapter->alloc_rx_buff_failed++;
4631				break;
4632			}
4633
4634			/* Use new allocation */
4635			skb_free_frag(olddata);
4636		}
4637		buffer_info->dma = dma_map_single(&pdev->dev,
4638						  data,
4639						  adapter->rx_buffer_len,
4640						  DMA_FROM_DEVICE);
4641		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4642			skb_free_frag(data);
4643			buffer_info->dma = 0;
4644			adapter->alloc_rx_buff_failed++;
4645			break;
4646		}
4647
4648		/* XXX if it was allocated cleanly it will never map to a
4649		 * boundary crossing
4650		 */
4651
4652		/* Fix for errata 23, can't cross 64kB boundary */
4653		if (!e1000_check_64k_bound(adapter,
4654					(void *)(unsigned long)buffer_info->dma,
4655					adapter->rx_buffer_len)) {
4656			e_err(rx_err, "dma align check failed: %u bytes at "
4657			      "%p\n", adapter->rx_buffer_len,
4658			      (void *)(unsigned long)buffer_info->dma);
4659
4660			dma_unmap_single(&pdev->dev, buffer_info->dma,
4661					 adapter->rx_buffer_len,
4662					 DMA_FROM_DEVICE);
4663
4664			skb_free_frag(data);
4665			buffer_info->rxbuf.data = NULL;
4666			buffer_info->dma = 0;
4667
4668			adapter->alloc_rx_buff_failed++;
4669			break;
4670		}
4671		buffer_info->rxbuf.data = data;
4672 skip:
4673		rx_desc = E1000_RX_DESC(*rx_ring, i);
4674		rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4675
4676		if (unlikely(++i == rx_ring->count))
4677			i = 0;
4678		buffer_info = &rx_ring->buffer_info[i];
4679	}
4680
4681	if (likely(rx_ring->next_to_use != i)) {
4682		rx_ring->next_to_use = i;
4683		if (unlikely(i-- == 0))
4684			i = (rx_ring->count - 1);
4685
4686		/* Force memory writes to complete before letting h/w
4687		 * know there are new descriptors to fetch.  (Only
4688		 * applicable for weak-ordered memory model archs,
4689		 * such as IA-64).
4690		 */
4691		wmb();
4692		writel(i, hw->hw_addr + rx_ring->rdt);
4693	}
4694}
4695
4696/**
4697 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4698 * @adapter:
4699 **/
4700static void e1000_smartspeed(struct e1000_adapter *adapter)
4701{
4702	struct e1000_hw *hw = &adapter->hw;
4703	u16 phy_status;
4704	u16 phy_ctrl;
4705
4706	if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4707	   !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4708		return;
4709
4710	if (adapter->smartspeed == 0) {
4711		/* If Master/Slave config fault is asserted twice,
4712		 * we assume back-to-back
4713		 */
4714		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4715		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4716			return;
4717		e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718		if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719			return;
4720		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4721		if (phy_ctrl & CR_1000T_MS_ENABLE) {
4722			phy_ctrl &= ~CR_1000T_MS_ENABLE;
4723			e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4724					    phy_ctrl);
4725			adapter->smartspeed++;
4726			if (!e1000_phy_setup_autoneg(hw) &&
4727			   !e1000_read_phy_reg(hw, PHY_CTRL,
4728					       &phy_ctrl)) {
4729				phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4730					     MII_CR_RESTART_AUTO_NEG);
4731				e1000_write_phy_reg(hw, PHY_CTRL,
4732						    phy_ctrl);
4733			}
4734		}
4735		return;
4736	} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4737		/* If still no link, perhaps using 2/3 pair cable */
4738		e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4739		phy_ctrl |= CR_1000T_MS_ENABLE;
4740		e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4741		if (!e1000_phy_setup_autoneg(hw) &&
4742		   !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4743			phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4744				     MII_CR_RESTART_AUTO_NEG);
4745			e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4746		}
4747	}
4748	/* Restart process after E1000_SMARTSPEED_MAX iterations */
4749	if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4750		adapter->smartspeed = 0;
4751}
4752
4753/**
4754 * e1000_ioctl -
4755 * @netdev:
4756 * @ifreq:
4757 * @cmd:
4758 **/
4759static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4760{
4761	switch (cmd) {
4762	case SIOCGMIIPHY:
4763	case SIOCGMIIREG:
4764	case SIOCSMIIREG:
4765		return e1000_mii_ioctl(netdev, ifr, cmd);
4766	default:
4767		return -EOPNOTSUPP;
4768	}
4769}
4770
4771/**
4772 * e1000_mii_ioctl -
4773 * @netdev:
4774 * @ifreq:
4775 * @cmd:
4776 **/
4777static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4778			   int cmd)
4779{
4780	struct e1000_adapter *adapter = netdev_priv(netdev);
4781	struct e1000_hw *hw = &adapter->hw;
4782	struct mii_ioctl_data *data = if_mii(ifr);
4783	int retval;
4784	u16 mii_reg;
4785	unsigned long flags;
4786
4787	if (hw->media_type != e1000_media_type_copper)
4788		return -EOPNOTSUPP;
4789
4790	switch (cmd) {
4791	case SIOCGMIIPHY:
4792		data->phy_id = hw->phy_addr;
4793		break;
4794	case SIOCGMIIREG:
4795		spin_lock_irqsave(&adapter->stats_lock, flags);
4796		if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4797				   &data->val_out)) {
4798			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4799			return -EIO;
4800		}
4801		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802		break;
4803	case SIOCSMIIREG:
4804		if (data->reg_num & ~(0x1F))
4805			return -EFAULT;
4806		mii_reg = data->val_in;
4807		spin_lock_irqsave(&adapter->stats_lock, flags);
4808		if (e1000_write_phy_reg(hw, data->reg_num,
4809					mii_reg)) {
4810			spin_unlock_irqrestore(&adapter->stats_lock, flags);
4811			return -EIO;
4812		}
4813		spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814		if (hw->media_type == e1000_media_type_copper) {
4815			switch (data->reg_num) {
4816			case PHY_CTRL:
4817				if (mii_reg & MII_CR_POWER_DOWN)
4818					break;
4819				if (mii_reg & MII_CR_AUTO_NEG_EN) {
4820					hw->autoneg = 1;
4821					hw->autoneg_advertised = 0x2F;
4822				} else {
4823					u32 speed;
4824					if (mii_reg & 0x40)
4825						speed = SPEED_1000;
4826					else if (mii_reg & 0x2000)
4827						speed = SPEED_100;
4828					else
4829						speed = SPEED_10;
4830					retval = e1000_set_spd_dplx(
4831						adapter, speed,
4832						((mii_reg & 0x100)
4833						 ? DUPLEX_FULL :
4834						 DUPLEX_HALF));
4835					if (retval)
4836						return retval;
4837				}
4838				if (netif_running(adapter->netdev))
4839					e1000_reinit_locked(adapter);
4840				else
4841					e1000_reset(adapter);
4842				break;
4843			case M88E1000_PHY_SPEC_CTRL:
4844			case M88E1000_EXT_PHY_SPEC_CTRL:
4845				if (e1000_phy_reset(hw))
4846					return -EIO;
4847				break;
4848			}
4849		} else {
4850			switch (data->reg_num) {
4851			case PHY_CTRL:
4852				if (mii_reg & MII_CR_POWER_DOWN)
4853					break;
4854				if (netif_running(adapter->netdev))
4855					e1000_reinit_locked(adapter);
4856				else
4857					e1000_reset(adapter);
4858				break;
4859			}
4860		}
4861		break;
4862	default:
4863		return -EOPNOTSUPP;
4864	}
4865	return E1000_SUCCESS;
4866}
4867
4868void e1000_pci_set_mwi(struct e1000_hw *hw)
4869{
4870	struct e1000_adapter *adapter = hw->back;
4871	int ret_val = pci_set_mwi(adapter->pdev);
4872
4873	if (ret_val)
4874		e_err(probe, "Error in setting MWI\n");
4875}
4876
4877void e1000_pci_clear_mwi(struct e1000_hw *hw)
4878{
4879	struct e1000_adapter *adapter = hw->back;
4880
4881	pci_clear_mwi(adapter->pdev);
4882}
4883
4884int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4885{
4886	struct e1000_adapter *adapter = hw->back;
4887	return pcix_get_mmrbc(adapter->pdev);
4888}
4889
4890void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4891{
4892	struct e1000_adapter *adapter = hw->back;
4893	pcix_set_mmrbc(adapter->pdev, mmrbc);
4894}
4895
4896void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4897{
4898	outl(value, port);
4899}
4900
4901static bool e1000_vlan_used(struct e1000_adapter *adapter)
4902{
4903	u16 vid;
4904
4905	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4906		return true;
4907	return false;
4908}
4909
4910static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4911			      netdev_features_t features)
4912{
4913	struct e1000_hw *hw = &adapter->hw;
4914	u32 ctrl;
4915
4916	ctrl = er32(CTRL);
4917	if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4918		/* enable VLAN tag insert/strip */
4919		ctrl |= E1000_CTRL_VME;
4920	} else {
4921		/* disable VLAN tag insert/strip */
4922		ctrl &= ~E1000_CTRL_VME;
4923	}
4924	ew32(CTRL, ctrl);
4925}
4926static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4927				     bool filter_on)
4928{
4929	struct e1000_hw *hw = &adapter->hw;
4930	u32 rctl;
4931
4932	if (!test_bit(__E1000_DOWN, &adapter->flags))
4933		e1000_irq_disable(adapter);
4934
4935	__e1000_vlan_mode(adapter, adapter->netdev->features);
4936	if (filter_on) {
4937		/* enable VLAN receive filtering */
4938		rctl = er32(RCTL);
4939		rctl &= ~E1000_RCTL_CFIEN;
4940		if (!(adapter->netdev->flags & IFF_PROMISC))
4941			rctl |= E1000_RCTL_VFE;
4942		ew32(RCTL, rctl);
4943		e1000_update_mng_vlan(adapter);
4944	} else {
4945		/* disable VLAN receive filtering */
4946		rctl = er32(RCTL);
4947		rctl &= ~E1000_RCTL_VFE;
4948		ew32(RCTL, rctl);
4949	}
4950
4951	if (!test_bit(__E1000_DOWN, &adapter->flags))
4952		e1000_irq_enable(adapter);
4953}
4954
4955static void e1000_vlan_mode(struct net_device *netdev,
4956			    netdev_features_t features)
4957{
4958	struct e1000_adapter *adapter = netdev_priv(netdev);
4959
4960	if (!test_bit(__E1000_DOWN, &adapter->flags))
4961		e1000_irq_disable(adapter);
4962
4963	__e1000_vlan_mode(adapter, features);
4964
4965	if (!test_bit(__E1000_DOWN, &adapter->flags))
4966		e1000_irq_enable(adapter);
4967}
4968
4969static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4970				 __be16 proto, u16 vid)
4971{
4972	struct e1000_adapter *adapter = netdev_priv(netdev);
4973	struct e1000_hw *hw = &adapter->hw;
4974	u32 vfta, index;
4975
4976	if ((hw->mng_cookie.status &
4977	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4978	    (vid == adapter->mng_vlan_id))
4979		return 0;
4980
4981	if (!e1000_vlan_used(adapter))
4982		e1000_vlan_filter_on_off(adapter, true);
4983
4984	/* add VID to filter table */
4985	index = (vid >> 5) & 0x7F;
4986	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4987	vfta |= (1 << (vid & 0x1F));
4988	e1000_write_vfta(hw, index, vfta);
4989
4990	set_bit(vid, adapter->active_vlans);
4991
4992	return 0;
4993}
4994
4995static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4996				  __be16 proto, u16 vid)
4997{
4998	struct e1000_adapter *adapter = netdev_priv(netdev);
4999	struct e1000_hw *hw = &adapter->hw;
5000	u32 vfta, index;
5001
5002	if (!test_bit(__E1000_DOWN, &adapter->flags))
5003		e1000_irq_disable(adapter);
5004	if (!test_bit(__E1000_DOWN, &adapter->flags))
5005		e1000_irq_enable(adapter);
5006
5007	/* remove VID from filter table */
5008	index = (vid >> 5) & 0x7F;
5009	vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5010	vfta &= ~(1 << (vid & 0x1F));
5011	e1000_write_vfta(hw, index, vfta);
5012
5013	clear_bit(vid, adapter->active_vlans);
5014
5015	if (!e1000_vlan_used(adapter))
5016		e1000_vlan_filter_on_off(adapter, false);
5017
5018	return 0;
5019}
5020
5021static void e1000_restore_vlan(struct e1000_adapter *adapter)
5022{
5023	u16 vid;
5024
5025	if (!e1000_vlan_used(adapter))
5026		return;
5027
5028	e1000_vlan_filter_on_off(adapter, true);
5029	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5030		e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5031}
5032
5033int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5034{
5035	struct e1000_hw *hw = &adapter->hw;
5036
5037	hw->autoneg = 0;
5038
5039	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5040	 * for the switch() below to work
5041	 */
5042	if ((spd & 1) || (dplx & ~1))
5043		goto err_inval;
5044
5045	/* Fiber NICs only allow 1000 gbps Full duplex */
5046	if ((hw->media_type == e1000_media_type_fiber) &&
5047	    spd != SPEED_1000 &&
5048	    dplx != DUPLEX_FULL)
5049		goto err_inval;
5050
5051	switch (spd + dplx) {
5052	case SPEED_10 + DUPLEX_HALF:
5053		hw->forced_speed_duplex = e1000_10_half;
5054		break;
5055	case SPEED_10 + DUPLEX_FULL:
5056		hw->forced_speed_duplex = e1000_10_full;
5057		break;
5058	case SPEED_100 + DUPLEX_HALF:
5059		hw->forced_speed_duplex = e1000_100_half;
5060		break;
5061	case SPEED_100 + DUPLEX_FULL:
5062		hw->forced_speed_duplex = e1000_100_full;
5063		break;
5064	case SPEED_1000 + DUPLEX_FULL:
5065		hw->autoneg = 1;
5066		hw->autoneg_advertised = ADVERTISE_1000_FULL;
5067		break;
5068	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5069	default:
5070		goto err_inval;
5071	}
5072
5073	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5074	hw->mdix = AUTO_ALL_MODES;
5075
5076	return 0;
5077
5078err_inval:
5079	e_err(probe, "Unsupported Speed/Duplex configuration\n");
5080	return -EINVAL;
5081}
5082
5083static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5084{
5085	struct net_device *netdev = pci_get_drvdata(pdev);
5086	struct e1000_adapter *adapter = netdev_priv(netdev);
5087	struct e1000_hw *hw = &adapter->hw;
5088	u32 ctrl, ctrl_ext, rctl, status;
5089	u32 wufc = adapter->wol;
5090#ifdef CONFIG_PM
5091	int retval = 0;
5092#endif
5093
5094	netif_device_detach(netdev);
5095
5096	if (netif_running(netdev)) {
5097		int count = E1000_CHECK_RESET_COUNT;
5098
5099		while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5100			usleep_range(10000, 20000);
5101
5102		WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5103		e1000_down(adapter);
5104	}
5105
5106#ifdef CONFIG_PM
5107	retval = pci_save_state(pdev);
5108	if (retval)
5109		return retval;
5110#endif
5111
5112	status = er32(STATUS);
5113	if (status & E1000_STATUS_LU)
5114		wufc &= ~E1000_WUFC_LNKC;
5115
5116	if (wufc) {
5117		e1000_setup_rctl(adapter);
5118		e1000_set_rx_mode(netdev);
5119
5120		rctl = er32(RCTL);
5121
5122		/* turn on all-multi mode if wake on multicast is enabled */
5123		if (wufc & E1000_WUFC_MC)
5124			rctl |= E1000_RCTL_MPE;
5125
5126		/* enable receives in the hardware */
5127		ew32(RCTL, rctl | E1000_RCTL_EN);
5128
5129		if (hw->mac_type >= e1000_82540) {
5130			ctrl = er32(CTRL);
5131			/* advertise wake from D3Cold */
5132			#define E1000_CTRL_ADVD3WUC 0x00100000
5133			/* phy power management enable */
5134			#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5135			ctrl |= E1000_CTRL_ADVD3WUC |
5136				E1000_CTRL_EN_PHY_PWR_MGMT;
5137			ew32(CTRL, ctrl);
5138		}
5139
5140		if (hw->media_type == e1000_media_type_fiber ||
5141		    hw->media_type == e1000_media_type_internal_serdes) {
5142			/* keep the laser running in D3 */
5143			ctrl_ext = er32(CTRL_EXT);
5144			ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5145			ew32(CTRL_EXT, ctrl_ext);
5146		}
5147
5148		ew32(WUC, E1000_WUC_PME_EN);
5149		ew32(WUFC, wufc);
5150	} else {
5151		ew32(WUC, 0);
5152		ew32(WUFC, 0);
5153	}
5154
5155	e1000_release_manageability(adapter);
5156
5157	*enable_wake = !!wufc;
5158
5159	/* make sure adapter isn't asleep if manageability is enabled */
5160	if (adapter->en_mng_pt)
5161		*enable_wake = true;
5162
5163	if (netif_running(netdev))
5164		e1000_free_irq(adapter);
5165
5166	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5167		pci_disable_device(pdev);
5168
5169	return 0;
5170}
5171
5172#ifdef CONFIG_PM
5173static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5174{
5175	int retval;
 
5176	bool wake;
5177
5178	retval = __e1000_shutdown(pdev, &wake);
5179	if (retval)
5180		return retval;
5181
5182	if (wake) {
5183		pci_prepare_to_sleep(pdev);
5184	} else {
5185		pci_wake_from_d3(pdev, false);
5186		pci_set_power_state(pdev, PCI_D3hot);
5187	}
5188
5189	return 0;
5190}
5191
5192static int e1000_resume(struct pci_dev *pdev)
5193{
 
5194	struct net_device *netdev = pci_get_drvdata(pdev);
5195	struct e1000_adapter *adapter = netdev_priv(netdev);
5196	struct e1000_hw *hw = &adapter->hw;
5197	u32 err;
5198
5199	pci_set_power_state(pdev, PCI_D0);
5200	pci_restore_state(pdev);
5201	pci_save_state(pdev);
5202
5203	if (adapter->need_ioport)
5204		err = pci_enable_device(pdev);
5205	else
5206		err = pci_enable_device_mem(pdev);
5207	if (err) {
5208		pr_err("Cannot enable PCI device from suspend\n");
5209		return err;
5210	}
5211
5212	/* flush memory to make sure state is correct */
5213	smp_mb__before_atomic();
5214	clear_bit(__E1000_DISABLED, &adapter->flags);
5215	pci_set_master(pdev);
5216
5217	pci_enable_wake(pdev, PCI_D3hot, 0);
5218	pci_enable_wake(pdev, PCI_D3cold, 0);
5219
5220	if (netif_running(netdev)) {
5221		err = e1000_request_irq(adapter);
5222		if (err)
5223			return err;
5224	}
5225
5226	e1000_power_up_phy(adapter);
5227	e1000_reset(adapter);
5228	ew32(WUS, ~0);
5229
5230	e1000_init_manageability(adapter);
5231
5232	if (netif_running(netdev))
5233		e1000_up(adapter);
5234
5235	netif_device_attach(netdev);
5236
5237	return 0;
5238}
5239#endif
5240
5241static void e1000_shutdown(struct pci_dev *pdev)
5242{
5243	bool wake;
5244
5245	__e1000_shutdown(pdev, &wake);
5246
5247	if (system_state == SYSTEM_POWER_OFF) {
5248		pci_wake_from_d3(pdev, wake);
5249		pci_set_power_state(pdev, PCI_D3hot);
5250	}
5251}
5252
5253#ifdef CONFIG_NET_POLL_CONTROLLER
5254/* Polling 'interrupt' - used by things like netconsole to send skbs
5255 * without having to re-enable interrupts. It's not called while
5256 * the interrupt routine is executing.
5257 */
5258static void e1000_netpoll(struct net_device *netdev)
5259{
5260	struct e1000_adapter *adapter = netdev_priv(netdev);
5261
5262	if (disable_hardirq(adapter->pdev->irq))
5263		e1000_intr(adapter->pdev->irq, netdev);
5264	enable_irq(adapter->pdev->irq);
5265}
5266#endif
5267
5268/**
5269 * e1000_io_error_detected - called when PCI error is detected
5270 * @pdev: Pointer to PCI device
5271 * @state: The current pci connection state
5272 *
5273 * This function is called after a PCI bus error affecting
5274 * this device has been detected.
5275 */
5276static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5277						pci_channel_state_t state)
5278{
5279	struct net_device *netdev = pci_get_drvdata(pdev);
5280	struct e1000_adapter *adapter = netdev_priv(netdev);
5281
5282	netif_device_detach(netdev);
5283
5284	if (state == pci_channel_io_perm_failure)
5285		return PCI_ERS_RESULT_DISCONNECT;
5286
5287	if (netif_running(netdev))
5288		e1000_down(adapter);
5289
5290	if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5291		pci_disable_device(pdev);
5292
5293	/* Request a slot slot reset. */
5294	return PCI_ERS_RESULT_NEED_RESET;
5295}
5296
5297/**
5298 * e1000_io_slot_reset - called after the pci bus has been reset.
5299 * @pdev: Pointer to PCI device
5300 *
5301 * Restart the card from scratch, as if from a cold-boot. Implementation
5302 * resembles the first-half of the e1000_resume routine.
5303 */
5304static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5305{
5306	struct net_device *netdev = pci_get_drvdata(pdev);
5307	struct e1000_adapter *adapter = netdev_priv(netdev);
5308	struct e1000_hw *hw = &adapter->hw;
5309	int err;
5310
5311	if (adapter->need_ioport)
5312		err = pci_enable_device(pdev);
5313	else
5314		err = pci_enable_device_mem(pdev);
5315	if (err) {
5316		pr_err("Cannot re-enable PCI device after reset.\n");
5317		return PCI_ERS_RESULT_DISCONNECT;
5318	}
5319
5320	/* flush memory to make sure state is correct */
5321	smp_mb__before_atomic();
5322	clear_bit(__E1000_DISABLED, &adapter->flags);
5323	pci_set_master(pdev);
5324
5325	pci_enable_wake(pdev, PCI_D3hot, 0);
5326	pci_enable_wake(pdev, PCI_D3cold, 0);
5327
5328	e1000_reset(adapter);
5329	ew32(WUS, ~0);
5330
5331	return PCI_ERS_RESULT_RECOVERED;
5332}
5333
5334/**
5335 * e1000_io_resume - called when traffic can start flowing again.
5336 * @pdev: Pointer to PCI device
5337 *
5338 * This callback is called when the error recovery driver tells us that
5339 * its OK to resume normal operation. Implementation resembles the
5340 * second-half of the e1000_resume routine.
5341 */
5342static void e1000_io_resume(struct pci_dev *pdev)
5343{
5344	struct net_device *netdev = pci_get_drvdata(pdev);
5345	struct e1000_adapter *adapter = netdev_priv(netdev);
5346
5347	e1000_init_manageability(adapter);
5348
5349	if (netif_running(netdev)) {
5350		if (e1000_up(adapter)) {
5351			pr_info("can't bring device back up after reset\n");
5352			return;
5353		}
5354	}
5355
5356	netif_device_attach(netdev);
5357}
5358
5359/* e1000_main.c */