Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2006 Intel Corporation. */
3
4#include "e1000.h"
5#include <net/ip6_checksum.h>
6#include <linux/io.h>
7#include <linux/prefetch.h>
8#include <linux/bitops.h>
9#include <linux/if_vlan.h>
10
11char e1000_driver_name[] = "e1000";
12static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
13static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
14
15/* e1000_pci_tbl - PCI Device ID Table
16 *
17 * Last entry must be all 0s
18 *
19 * Macro expands to...
20 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
21 */
22static const struct pci_device_id e1000_pci_tbl[] = {
23 INTEL_E1000_ETHERNET_DEVICE(0x1000),
24 INTEL_E1000_ETHERNET_DEVICE(0x1001),
25 INTEL_E1000_ETHERNET_DEVICE(0x1004),
26 INTEL_E1000_ETHERNET_DEVICE(0x1008),
27 INTEL_E1000_ETHERNET_DEVICE(0x1009),
28 INTEL_E1000_ETHERNET_DEVICE(0x100C),
29 INTEL_E1000_ETHERNET_DEVICE(0x100D),
30 INTEL_E1000_ETHERNET_DEVICE(0x100E),
31 INTEL_E1000_ETHERNET_DEVICE(0x100F),
32 INTEL_E1000_ETHERNET_DEVICE(0x1010),
33 INTEL_E1000_ETHERNET_DEVICE(0x1011),
34 INTEL_E1000_ETHERNET_DEVICE(0x1012),
35 INTEL_E1000_ETHERNET_DEVICE(0x1013),
36 INTEL_E1000_ETHERNET_DEVICE(0x1014),
37 INTEL_E1000_ETHERNET_DEVICE(0x1015),
38 INTEL_E1000_ETHERNET_DEVICE(0x1016),
39 INTEL_E1000_ETHERNET_DEVICE(0x1017),
40 INTEL_E1000_ETHERNET_DEVICE(0x1018),
41 INTEL_E1000_ETHERNET_DEVICE(0x1019),
42 INTEL_E1000_ETHERNET_DEVICE(0x101A),
43 INTEL_E1000_ETHERNET_DEVICE(0x101D),
44 INTEL_E1000_ETHERNET_DEVICE(0x101E),
45 INTEL_E1000_ETHERNET_DEVICE(0x1026),
46 INTEL_E1000_ETHERNET_DEVICE(0x1027),
47 INTEL_E1000_ETHERNET_DEVICE(0x1028),
48 INTEL_E1000_ETHERNET_DEVICE(0x1075),
49 INTEL_E1000_ETHERNET_DEVICE(0x1076),
50 INTEL_E1000_ETHERNET_DEVICE(0x1077),
51 INTEL_E1000_ETHERNET_DEVICE(0x1078),
52 INTEL_E1000_ETHERNET_DEVICE(0x1079),
53 INTEL_E1000_ETHERNET_DEVICE(0x107A),
54 INTEL_E1000_ETHERNET_DEVICE(0x107B),
55 INTEL_E1000_ETHERNET_DEVICE(0x107C),
56 INTEL_E1000_ETHERNET_DEVICE(0x108A),
57 INTEL_E1000_ETHERNET_DEVICE(0x1099),
58 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
59 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
60 /* required last entry */
61 {0,}
62};
63
64MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
65
66int e1000_up(struct e1000_adapter *adapter);
67void e1000_down(struct e1000_adapter *adapter);
68void e1000_reinit_locked(struct e1000_adapter *adapter);
69void e1000_reset(struct e1000_adapter *adapter);
70int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
71int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
72void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
73void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
74static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
75 struct e1000_tx_ring *txdr);
76static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
77 struct e1000_rx_ring *rxdr);
78static void e1000_free_tx_resources(struct e1000_adapter *adapter,
79 struct e1000_tx_ring *tx_ring);
80static void e1000_free_rx_resources(struct e1000_adapter *adapter,
81 struct e1000_rx_ring *rx_ring);
82void e1000_update_stats(struct e1000_adapter *adapter);
83
84static int e1000_init_module(void);
85static void e1000_exit_module(void);
86static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
87static void e1000_remove(struct pci_dev *pdev);
88static int e1000_alloc_queues(struct e1000_adapter *adapter);
89static int e1000_sw_init(struct e1000_adapter *adapter);
90int e1000_open(struct net_device *netdev);
91int e1000_close(struct net_device *netdev);
92static void e1000_configure_tx(struct e1000_adapter *adapter);
93static void e1000_configure_rx(struct e1000_adapter *adapter);
94static void e1000_setup_rctl(struct e1000_adapter *adapter);
95static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
96static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
97static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
98 struct e1000_tx_ring *tx_ring);
99static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
100 struct e1000_rx_ring *rx_ring);
101static void e1000_set_rx_mode(struct net_device *netdev);
102static void e1000_update_phy_info_task(struct work_struct *work);
103static void e1000_watchdog(struct work_struct *work);
104static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
105static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
106 struct net_device *netdev);
107static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
108static int e1000_set_mac(struct net_device *netdev, void *p);
109static irqreturn_t e1000_intr(int irq, void *data);
110static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
111 struct e1000_tx_ring *tx_ring);
112static int e1000_clean(struct napi_struct *napi, int budget);
113static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
114 struct e1000_rx_ring *rx_ring,
115 int *work_done, int work_to_do);
116static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
117 struct e1000_rx_ring *rx_ring,
118 int *work_done, int work_to_do);
119static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
120 struct e1000_rx_ring *rx_ring,
121 int cleaned_count)
122{
123}
124static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
125 struct e1000_rx_ring *rx_ring,
126 int cleaned_count);
127static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring,
129 int cleaned_count);
130static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
131static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
132 int cmd);
133static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
134static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
135static void e1000_tx_timeout(struct net_device *dev, unsigned int txqueue);
136static void e1000_reset_task(struct work_struct *work);
137static void e1000_smartspeed(struct e1000_adapter *adapter);
138static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
139 struct sk_buff *skb);
140
141static bool e1000_vlan_used(struct e1000_adapter *adapter);
142static void e1000_vlan_mode(struct net_device *netdev,
143 netdev_features_t features);
144static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
145 bool filter_on);
146static int e1000_vlan_rx_add_vid(struct net_device *netdev,
147 __be16 proto, u16 vid);
148static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
149 __be16 proto, u16 vid);
150static void e1000_restore_vlan(struct e1000_adapter *adapter);
151
152static int __maybe_unused e1000_suspend(struct device *dev);
153static int __maybe_unused e1000_resume(struct device *dev);
154static void e1000_shutdown(struct pci_dev *pdev);
155
156#ifdef CONFIG_NET_POLL_CONTROLLER
157/* for netdump / net console */
158static void e1000_netpoll (struct net_device *netdev);
159#endif
160
161#define COPYBREAK_DEFAULT 256
162static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
163module_param(copybreak, uint, 0644);
164MODULE_PARM_DESC(copybreak,
165 "Maximum size of packet that is copied to a new buffer on receive");
166
167static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
168 pci_channel_state_t state);
169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
170static void e1000_io_resume(struct pci_dev *pdev);
171
172static const struct pci_error_handlers e1000_err_handler = {
173 .error_detected = e1000_io_error_detected,
174 .slot_reset = e1000_io_slot_reset,
175 .resume = e1000_io_resume,
176};
177
178static SIMPLE_DEV_PM_OPS(e1000_pm_ops, e1000_suspend, e1000_resume);
179
180static struct pci_driver e1000_driver = {
181 .name = e1000_driver_name,
182 .id_table = e1000_pci_tbl,
183 .probe = e1000_probe,
184 .remove = e1000_remove,
185 .driver = {
186 .pm = &e1000_pm_ops,
187 },
188 .shutdown = e1000_shutdown,
189 .err_handler = &e1000_err_handler
190};
191
192MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
193MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
194MODULE_LICENSE("GPL v2");
195
196#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
197static int debug = -1;
198module_param(debug, int, 0);
199MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
200
201/**
202 * e1000_get_hw_dev - helper function for getting netdev
203 * @hw: pointer to HW struct
204 *
205 * return device used by hardware layer to print debugging information
206 *
207 **/
208struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
209{
210 struct e1000_adapter *adapter = hw->back;
211 return adapter->netdev;
212}
213
214/**
215 * e1000_init_module - Driver Registration Routine
216 *
217 * e1000_init_module is the first routine called when the driver is
218 * loaded. All it does is register with the PCI subsystem.
219 **/
220static int __init e1000_init_module(void)
221{
222 int ret;
223 pr_info("%s\n", e1000_driver_string);
224
225 pr_info("%s\n", e1000_copyright);
226
227 ret = pci_register_driver(&e1000_driver);
228 if (copybreak != COPYBREAK_DEFAULT) {
229 if (copybreak == 0)
230 pr_info("copybreak disabled\n");
231 else
232 pr_info("copybreak enabled for "
233 "packets <= %u bytes\n", copybreak);
234 }
235 return ret;
236}
237
238module_init(e1000_init_module);
239
240/**
241 * e1000_exit_module - Driver Exit Cleanup Routine
242 *
243 * e1000_exit_module is called just before the driver is removed
244 * from memory.
245 **/
246static void __exit e1000_exit_module(void)
247{
248 pci_unregister_driver(&e1000_driver);
249}
250
251module_exit(e1000_exit_module);
252
253static int e1000_request_irq(struct e1000_adapter *adapter)
254{
255 struct net_device *netdev = adapter->netdev;
256 irq_handler_t handler = e1000_intr;
257 int irq_flags = IRQF_SHARED;
258 int err;
259
260 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
261 netdev);
262 if (err) {
263 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
264 }
265
266 return err;
267}
268
269static void e1000_free_irq(struct e1000_adapter *adapter)
270{
271 struct net_device *netdev = adapter->netdev;
272
273 free_irq(adapter->pdev->irq, netdev);
274}
275
276/**
277 * e1000_irq_disable - Mask off interrupt generation on the NIC
278 * @adapter: board private structure
279 **/
280static void e1000_irq_disable(struct e1000_adapter *adapter)
281{
282 struct e1000_hw *hw = &adapter->hw;
283
284 ew32(IMC, ~0);
285 E1000_WRITE_FLUSH();
286 synchronize_irq(adapter->pdev->irq);
287}
288
289/**
290 * e1000_irq_enable - Enable default interrupt generation settings
291 * @adapter: board private structure
292 **/
293static void e1000_irq_enable(struct e1000_adapter *adapter)
294{
295 struct e1000_hw *hw = &adapter->hw;
296
297 ew32(IMS, IMS_ENABLE_MASK);
298 E1000_WRITE_FLUSH();
299}
300
301static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
302{
303 struct e1000_hw *hw = &adapter->hw;
304 struct net_device *netdev = adapter->netdev;
305 u16 vid = hw->mng_cookie.vlan_id;
306 u16 old_vid = adapter->mng_vlan_id;
307
308 if (!e1000_vlan_used(adapter))
309 return;
310
311 if (!test_bit(vid, adapter->active_vlans)) {
312 if (hw->mng_cookie.status &
313 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
314 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
315 adapter->mng_vlan_id = vid;
316 } else {
317 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
318 }
319 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
320 (vid != old_vid) &&
321 !test_bit(old_vid, adapter->active_vlans))
322 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
323 old_vid);
324 } else {
325 adapter->mng_vlan_id = vid;
326 }
327}
328
329static void e1000_init_manageability(struct e1000_adapter *adapter)
330{
331 struct e1000_hw *hw = &adapter->hw;
332
333 if (adapter->en_mng_pt) {
334 u32 manc = er32(MANC);
335
336 /* disable hardware interception of ARP */
337 manc &= ~(E1000_MANC_ARP_EN);
338
339 ew32(MANC, manc);
340 }
341}
342
343static void e1000_release_manageability(struct e1000_adapter *adapter)
344{
345 struct e1000_hw *hw = &adapter->hw;
346
347 if (adapter->en_mng_pt) {
348 u32 manc = er32(MANC);
349
350 /* re-enable hardware interception of ARP */
351 manc |= E1000_MANC_ARP_EN;
352
353 ew32(MANC, manc);
354 }
355}
356
357/**
358 * e1000_configure - configure the hardware for RX and TX
359 * @adapter: private board structure
360 **/
361static void e1000_configure(struct e1000_adapter *adapter)
362{
363 struct net_device *netdev = adapter->netdev;
364 int i;
365
366 e1000_set_rx_mode(netdev);
367
368 e1000_restore_vlan(adapter);
369 e1000_init_manageability(adapter);
370
371 e1000_configure_tx(adapter);
372 e1000_setup_rctl(adapter);
373 e1000_configure_rx(adapter);
374 /* call E1000_DESC_UNUSED which always leaves
375 * at least 1 descriptor unused to make sure
376 * next_to_use != next_to_clean
377 */
378 for (i = 0; i < adapter->num_rx_queues; i++) {
379 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
380 adapter->alloc_rx_buf(adapter, ring,
381 E1000_DESC_UNUSED(ring));
382 }
383}
384
385int e1000_up(struct e1000_adapter *adapter)
386{
387 struct e1000_hw *hw = &adapter->hw;
388
389 /* hardware has been reset, we need to reload some things */
390 e1000_configure(adapter);
391
392 clear_bit(__E1000_DOWN, &adapter->flags);
393
394 napi_enable(&adapter->napi);
395
396 e1000_irq_enable(adapter);
397
398 netif_wake_queue(adapter->netdev);
399
400 /* fire a link change interrupt to start the watchdog */
401 ew32(ICS, E1000_ICS_LSC);
402 return 0;
403}
404
405/**
406 * e1000_power_up_phy - restore link in case the phy was powered down
407 * @adapter: address of board private structure
408 *
409 * The phy may be powered down to save power and turn off link when the
410 * driver is unloaded and wake on lan is not enabled (among others)
411 * *** this routine MUST be followed by a call to e1000_reset ***
412 **/
413void e1000_power_up_phy(struct e1000_adapter *adapter)
414{
415 struct e1000_hw *hw = &adapter->hw;
416 u16 mii_reg = 0;
417
418 /* Just clear the power down bit to wake the phy back up */
419 if (hw->media_type == e1000_media_type_copper) {
420 /* according to the manual, the phy will retain its
421 * settings across a power-down/up cycle
422 */
423 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
424 mii_reg &= ~MII_CR_POWER_DOWN;
425 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
426 }
427}
428
429static void e1000_power_down_phy(struct e1000_adapter *adapter)
430{
431 struct e1000_hw *hw = &adapter->hw;
432
433 /* Power down the PHY so no link is implied when interface is down *
434 * The PHY cannot be powered down if any of the following is true *
435 * (a) WoL is enabled
436 * (b) AMT is active
437 * (c) SoL/IDER session is active
438 */
439 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
440 hw->media_type == e1000_media_type_copper) {
441 u16 mii_reg = 0;
442
443 switch (hw->mac_type) {
444 case e1000_82540:
445 case e1000_82545:
446 case e1000_82545_rev_3:
447 case e1000_82546:
448 case e1000_ce4100:
449 case e1000_82546_rev_3:
450 case e1000_82541:
451 case e1000_82541_rev_2:
452 case e1000_82547:
453 case e1000_82547_rev_2:
454 if (er32(MANC) & E1000_MANC_SMBUS_EN)
455 goto out;
456 break;
457 default:
458 goto out;
459 }
460 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
461 mii_reg |= MII_CR_POWER_DOWN;
462 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
463 msleep(1);
464 }
465out:
466 return;
467}
468
469static void e1000_down_and_stop(struct e1000_adapter *adapter)
470{
471 set_bit(__E1000_DOWN, &adapter->flags);
472
473 cancel_delayed_work_sync(&adapter->watchdog_task);
474
475 /*
476 * Since the watchdog task can reschedule other tasks, we should cancel
477 * it first, otherwise we can run into the situation when a work is
478 * still running after the adapter has been turned down.
479 */
480
481 cancel_delayed_work_sync(&adapter->phy_info_task);
482 cancel_delayed_work_sync(&adapter->fifo_stall_task);
483
484 /* Only kill reset task if adapter is not resetting */
485 if (!test_bit(__E1000_RESETTING, &adapter->flags))
486 cancel_work_sync(&adapter->reset_task);
487}
488
489void e1000_down(struct e1000_adapter *adapter)
490{
491 struct e1000_hw *hw = &adapter->hw;
492 struct net_device *netdev = adapter->netdev;
493 u32 rctl, tctl;
494
495 /* disable receives in the hardware */
496 rctl = er32(RCTL);
497 ew32(RCTL, rctl & ~E1000_RCTL_EN);
498 /* flush and sleep below */
499
500 netif_tx_disable(netdev);
501
502 /* disable transmits in the hardware */
503 tctl = er32(TCTL);
504 tctl &= ~E1000_TCTL_EN;
505 ew32(TCTL, tctl);
506 /* flush both disables and wait for them to finish */
507 E1000_WRITE_FLUSH();
508 msleep(10);
509
510 /* Set the carrier off after transmits have been disabled in the
511 * hardware, to avoid race conditions with e1000_watchdog() (which
512 * may be running concurrently to us, checking for the carrier
513 * bit to decide whether it should enable transmits again). Such
514 * a race condition would result into transmission being disabled
515 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
516 */
517 netif_carrier_off(netdev);
518
519 napi_disable(&adapter->napi);
520
521 e1000_irq_disable(adapter);
522
523 /* Setting DOWN must be after irq_disable to prevent
524 * a screaming interrupt. Setting DOWN also prevents
525 * tasks from rescheduling.
526 */
527 e1000_down_and_stop(adapter);
528
529 adapter->link_speed = 0;
530 adapter->link_duplex = 0;
531
532 e1000_reset(adapter);
533 e1000_clean_all_tx_rings(adapter);
534 e1000_clean_all_rx_rings(adapter);
535}
536
537void e1000_reinit_locked(struct e1000_adapter *adapter)
538{
539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
540 msleep(1);
541
542 /* only run the task if not already down */
543 if (!test_bit(__E1000_DOWN, &adapter->flags)) {
544 e1000_down(adapter);
545 e1000_up(adapter);
546 }
547
548 clear_bit(__E1000_RESETTING, &adapter->flags);
549}
550
551void e1000_reset(struct e1000_adapter *adapter)
552{
553 struct e1000_hw *hw = &adapter->hw;
554 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
555 bool legacy_pba_adjust = false;
556 u16 hwm;
557
558 /* Repartition Pba for greater than 9k mtu
559 * To take effect CTRL.RST is required.
560 */
561
562 switch (hw->mac_type) {
563 case e1000_82542_rev2_0:
564 case e1000_82542_rev2_1:
565 case e1000_82543:
566 case e1000_82544:
567 case e1000_82540:
568 case e1000_82541:
569 case e1000_82541_rev_2:
570 legacy_pba_adjust = true;
571 pba = E1000_PBA_48K;
572 break;
573 case e1000_82545:
574 case e1000_82545_rev_3:
575 case e1000_82546:
576 case e1000_ce4100:
577 case e1000_82546_rev_3:
578 pba = E1000_PBA_48K;
579 break;
580 case e1000_82547:
581 case e1000_82547_rev_2:
582 legacy_pba_adjust = true;
583 pba = E1000_PBA_30K;
584 break;
585 case e1000_undefined:
586 case e1000_num_macs:
587 break;
588 }
589
590 if (legacy_pba_adjust) {
591 if (hw->max_frame_size > E1000_RXBUFFER_8192)
592 pba -= 8; /* allocate more FIFO for Tx */
593
594 if (hw->mac_type == e1000_82547) {
595 adapter->tx_fifo_head = 0;
596 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
597 adapter->tx_fifo_size =
598 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
599 atomic_set(&adapter->tx_fifo_stall, 0);
600 }
601 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
602 /* adjust PBA for jumbo frames */
603 ew32(PBA, pba);
604
605 /* To maintain wire speed transmits, the Tx FIFO should be
606 * large enough to accommodate two full transmit packets,
607 * rounded up to the next 1KB and expressed in KB. Likewise,
608 * the Rx FIFO should be large enough to accommodate at least
609 * one full receive packet and is similarly rounded up and
610 * expressed in KB.
611 */
612 pba = er32(PBA);
613 /* upper 16 bits has Tx packet buffer allocation size in KB */
614 tx_space = pba >> 16;
615 /* lower 16 bits has Rx packet buffer allocation size in KB */
616 pba &= 0xffff;
617 /* the Tx fifo also stores 16 bytes of information about the Tx
618 * but don't include ethernet FCS because hardware appends it
619 */
620 min_tx_space = (hw->max_frame_size +
621 sizeof(struct e1000_tx_desc) -
622 ETH_FCS_LEN) * 2;
623 min_tx_space = ALIGN(min_tx_space, 1024);
624 min_tx_space >>= 10;
625 /* software strips receive CRC, so leave room for it */
626 min_rx_space = hw->max_frame_size;
627 min_rx_space = ALIGN(min_rx_space, 1024);
628 min_rx_space >>= 10;
629
630 /* If current Tx allocation is less than the min Tx FIFO size,
631 * and the min Tx FIFO size is less than the current Rx FIFO
632 * allocation, take space away from current Rx allocation
633 */
634 if (tx_space < min_tx_space &&
635 ((min_tx_space - tx_space) < pba)) {
636 pba = pba - (min_tx_space - tx_space);
637
638 /* PCI/PCIx hardware has PBA alignment constraints */
639 switch (hw->mac_type) {
640 case e1000_82545 ... e1000_82546_rev_3:
641 pba &= ~(E1000_PBA_8K - 1);
642 break;
643 default:
644 break;
645 }
646
647 /* if short on Rx space, Rx wins and must trump Tx
648 * adjustment or use Early Receive if available
649 */
650 if (pba < min_rx_space)
651 pba = min_rx_space;
652 }
653 }
654
655 ew32(PBA, pba);
656
657 /* flow control settings:
658 * The high water mark must be low enough to fit one full frame
659 * (or the size used for early receive) above it in the Rx FIFO.
660 * Set it to the lower of:
661 * - 90% of the Rx FIFO size, and
662 * - the full Rx FIFO size minus the early receive size (for parts
663 * with ERT support assuming ERT set to E1000_ERT_2048), or
664 * - the full Rx FIFO size minus one full frame
665 */
666 hwm = min(((pba << 10) * 9 / 10),
667 ((pba << 10) - hw->max_frame_size));
668
669 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
670 hw->fc_low_water = hw->fc_high_water - 8;
671 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
672 hw->fc_send_xon = 1;
673 hw->fc = hw->original_fc;
674
675 /* Allow time for pending master requests to run */
676 e1000_reset_hw(hw);
677 if (hw->mac_type >= e1000_82544)
678 ew32(WUC, 0);
679
680 if (e1000_init_hw(hw))
681 e_dev_err("Hardware Error\n");
682 e1000_update_mng_vlan(adapter);
683
684 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
685 if (hw->mac_type >= e1000_82544 &&
686 hw->autoneg == 1 &&
687 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
688 u32 ctrl = er32(CTRL);
689 /* clear phy power management bit if we are in gig only mode,
690 * which if enabled will attempt negotiation to 100Mb, which
691 * can cause a loss of link at power off or driver unload
692 */
693 ctrl &= ~E1000_CTRL_SWDPIN3;
694 ew32(CTRL, ctrl);
695 }
696
697 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
698 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
699
700 e1000_reset_adaptive(hw);
701 e1000_phy_get_info(hw, &adapter->phy_info);
702
703 e1000_release_manageability(adapter);
704}
705
706/* Dump the eeprom for users having checksum issues */
707static void e1000_dump_eeprom(struct e1000_adapter *adapter)
708{
709 struct net_device *netdev = adapter->netdev;
710 struct ethtool_eeprom eeprom;
711 const struct ethtool_ops *ops = netdev->ethtool_ops;
712 u8 *data;
713 int i;
714 u16 csum_old, csum_new = 0;
715
716 eeprom.len = ops->get_eeprom_len(netdev);
717 eeprom.offset = 0;
718
719 data = kmalloc(eeprom.len, GFP_KERNEL);
720 if (!data)
721 return;
722
723 ops->get_eeprom(netdev, &eeprom, data);
724
725 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
726 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
727 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
728 csum_new += data[i] + (data[i + 1] << 8);
729 csum_new = EEPROM_SUM - csum_new;
730
731 pr_err("/*********************/\n");
732 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
733 pr_err("Calculated : 0x%04x\n", csum_new);
734
735 pr_err("Offset Values\n");
736 pr_err("======== ======\n");
737 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
738
739 pr_err("Include this output when contacting your support provider.\n");
740 pr_err("This is not a software error! Something bad happened to\n");
741 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
742 pr_err("result in further problems, possibly loss of data,\n");
743 pr_err("corruption or system hangs!\n");
744 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
745 pr_err("which is invalid and requires you to set the proper MAC\n");
746 pr_err("address manually before continuing to enable this network\n");
747 pr_err("device. Please inspect the EEPROM dump and report the\n");
748 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
749 pr_err("/*********************/\n");
750
751 kfree(data);
752}
753
754/**
755 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
756 * @pdev: PCI device information struct
757 *
758 * Return true if an adapter needs ioport resources
759 **/
760static int e1000_is_need_ioport(struct pci_dev *pdev)
761{
762 switch (pdev->device) {
763 case E1000_DEV_ID_82540EM:
764 case E1000_DEV_ID_82540EM_LOM:
765 case E1000_DEV_ID_82540EP:
766 case E1000_DEV_ID_82540EP_LOM:
767 case E1000_DEV_ID_82540EP_LP:
768 case E1000_DEV_ID_82541EI:
769 case E1000_DEV_ID_82541EI_MOBILE:
770 case E1000_DEV_ID_82541ER:
771 case E1000_DEV_ID_82541ER_LOM:
772 case E1000_DEV_ID_82541GI:
773 case E1000_DEV_ID_82541GI_LF:
774 case E1000_DEV_ID_82541GI_MOBILE:
775 case E1000_DEV_ID_82544EI_COPPER:
776 case E1000_DEV_ID_82544EI_FIBER:
777 case E1000_DEV_ID_82544GC_COPPER:
778 case E1000_DEV_ID_82544GC_LOM:
779 case E1000_DEV_ID_82545EM_COPPER:
780 case E1000_DEV_ID_82545EM_FIBER:
781 case E1000_DEV_ID_82546EB_COPPER:
782 case E1000_DEV_ID_82546EB_FIBER:
783 case E1000_DEV_ID_82546EB_QUAD_COPPER:
784 return true;
785 default:
786 return false;
787 }
788}
789
790static netdev_features_t e1000_fix_features(struct net_device *netdev,
791 netdev_features_t features)
792{
793 /* Since there is no support for separate Rx/Tx vlan accel
794 * enable/disable make sure Tx flag is always in same state as Rx.
795 */
796 if (features & NETIF_F_HW_VLAN_CTAG_RX)
797 features |= NETIF_F_HW_VLAN_CTAG_TX;
798 else
799 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
800
801 return features;
802}
803
804static int e1000_set_features(struct net_device *netdev,
805 netdev_features_t features)
806{
807 struct e1000_adapter *adapter = netdev_priv(netdev);
808 netdev_features_t changed = features ^ netdev->features;
809
810 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
811 e1000_vlan_mode(netdev, features);
812
813 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
814 return 0;
815
816 netdev->features = features;
817 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
818
819 if (netif_running(netdev))
820 e1000_reinit_locked(adapter);
821 else
822 e1000_reset(adapter);
823
824 return 1;
825}
826
827static const struct net_device_ops e1000_netdev_ops = {
828 .ndo_open = e1000_open,
829 .ndo_stop = e1000_close,
830 .ndo_start_xmit = e1000_xmit_frame,
831 .ndo_set_rx_mode = e1000_set_rx_mode,
832 .ndo_set_mac_address = e1000_set_mac,
833 .ndo_tx_timeout = e1000_tx_timeout,
834 .ndo_change_mtu = e1000_change_mtu,
835 .ndo_eth_ioctl = e1000_ioctl,
836 .ndo_validate_addr = eth_validate_addr,
837 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
838 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
839#ifdef CONFIG_NET_POLL_CONTROLLER
840 .ndo_poll_controller = e1000_netpoll,
841#endif
842 .ndo_fix_features = e1000_fix_features,
843 .ndo_set_features = e1000_set_features,
844};
845
846/**
847 * e1000_init_hw_struct - initialize members of hw struct
848 * @adapter: board private struct
849 * @hw: structure used by e1000_hw.c
850 *
851 * Factors out initialization of the e1000_hw struct to its own function
852 * that can be called very early at init (just after struct allocation).
853 * Fields are initialized based on PCI device information and
854 * OS network device settings (MTU size).
855 * Returns negative error codes if MAC type setup fails.
856 */
857static int e1000_init_hw_struct(struct e1000_adapter *adapter,
858 struct e1000_hw *hw)
859{
860 struct pci_dev *pdev = adapter->pdev;
861
862 /* PCI config space info */
863 hw->vendor_id = pdev->vendor;
864 hw->device_id = pdev->device;
865 hw->subsystem_vendor_id = pdev->subsystem_vendor;
866 hw->subsystem_id = pdev->subsystem_device;
867 hw->revision_id = pdev->revision;
868
869 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
870
871 hw->max_frame_size = adapter->netdev->mtu +
872 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
873 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
874
875 /* identify the MAC */
876 if (e1000_set_mac_type(hw)) {
877 e_err(probe, "Unknown MAC Type\n");
878 return -EIO;
879 }
880
881 switch (hw->mac_type) {
882 default:
883 break;
884 case e1000_82541:
885 case e1000_82547:
886 case e1000_82541_rev_2:
887 case e1000_82547_rev_2:
888 hw->phy_init_script = 1;
889 break;
890 }
891
892 e1000_set_media_type(hw);
893 e1000_get_bus_info(hw);
894
895 hw->wait_autoneg_complete = false;
896 hw->tbi_compatibility_en = true;
897 hw->adaptive_ifs = true;
898
899 /* Copper options */
900
901 if (hw->media_type == e1000_media_type_copper) {
902 hw->mdix = AUTO_ALL_MODES;
903 hw->disable_polarity_correction = false;
904 hw->master_slave = E1000_MASTER_SLAVE;
905 }
906
907 return 0;
908}
909
910/**
911 * e1000_probe - Device Initialization Routine
912 * @pdev: PCI device information struct
913 * @ent: entry in e1000_pci_tbl
914 *
915 * Returns 0 on success, negative on failure
916 *
917 * e1000_probe initializes an adapter identified by a pci_dev structure.
918 * The OS initialization, configuring of the adapter private structure,
919 * and a hardware reset occur.
920 **/
921static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
922{
923 struct net_device *netdev;
924 struct e1000_adapter *adapter = NULL;
925 struct e1000_hw *hw;
926
927 static int cards_found;
928 static int global_quad_port_a; /* global ksp3 port a indication */
929 int i, err, pci_using_dac;
930 u16 eeprom_data = 0;
931 u16 tmp = 0;
932 u16 eeprom_apme_mask = E1000_EEPROM_APME;
933 int bars, need_ioport;
934 bool disable_dev = false;
935
936 /* do not allocate ioport bars when not needed */
937 need_ioport = e1000_is_need_ioport(pdev);
938 if (need_ioport) {
939 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
940 err = pci_enable_device(pdev);
941 } else {
942 bars = pci_select_bars(pdev, IORESOURCE_MEM);
943 err = pci_enable_device_mem(pdev);
944 }
945 if (err)
946 return err;
947
948 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
949 if (err)
950 goto err_pci_reg;
951
952 pci_set_master(pdev);
953 err = pci_save_state(pdev);
954 if (err)
955 goto err_alloc_etherdev;
956
957 err = -ENOMEM;
958 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
959 if (!netdev)
960 goto err_alloc_etherdev;
961
962 SET_NETDEV_DEV(netdev, &pdev->dev);
963
964 pci_set_drvdata(pdev, netdev);
965 adapter = netdev_priv(netdev);
966 adapter->netdev = netdev;
967 adapter->pdev = pdev;
968 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
969 adapter->bars = bars;
970 adapter->need_ioport = need_ioport;
971
972 hw = &adapter->hw;
973 hw->back = adapter;
974
975 err = -EIO;
976 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
977 if (!hw->hw_addr)
978 goto err_ioremap;
979
980 if (adapter->need_ioport) {
981 for (i = BAR_1; i < PCI_STD_NUM_BARS; i++) {
982 if (pci_resource_len(pdev, i) == 0)
983 continue;
984 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
985 hw->io_base = pci_resource_start(pdev, i);
986 break;
987 }
988 }
989 }
990
991 /* make ready for any if (hw->...) below */
992 err = e1000_init_hw_struct(adapter, hw);
993 if (err)
994 goto err_sw_init;
995
996 /* there is a workaround being applied below that limits
997 * 64-bit DMA addresses to 64-bit hardware. There are some
998 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
999 */
1000 pci_using_dac = 0;
1001 if ((hw->bus_type == e1000_bus_type_pcix) &&
1002 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1003 pci_using_dac = 1;
1004 } else {
1005 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1006 if (err) {
1007 pr_err("No usable DMA config, aborting\n");
1008 goto err_dma;
1009 }
1010 }
1011
1012 netdev->netdev_ops = &e1000_netdev_ops;
1013 e1000_set_ethtool_ops(netdev);
1014 netdev->watchdog_timeo = 5 * HZ;
1015 netif_napi_add(netdev, &adapter->napi, e1000_clean);
1016
1017 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
1018
1019 adapter->bd_number = cards_found;
1020
1021 /* setup the private structure */
1022
1023 err = e1000_sw_init(adapter);
1024 if (err)
1025 goto err_sw_init;
1026
1027 err = -EIO;
1028 if (hw->mac_type == e1000_ce4100) {
1029 hw->ce4100_gbe_mdio_base_virt =
1030 ioremap(pci_resource_start(pdev, BAR_1),
1031 pci_resource_len(pdev, BAR_1));
1032
1033 if (!hw->ce4100_gbe_mdio_base_virt)
1034 goto err_mdio_ioremap;
1035 }
1036
1037 if (hw->mac_type >= e1000_82543) {
1038 netdev->hw_features = NETIF_F_SG |
1039 NETIF_F_HW_CSUM |
1040 NETIF_F_HW_VLAN_CTAG_RX;
1041 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1042 NETIF_F_HW_VLAN_CTAG_FILTER;
1043 }
1044
1045 if ((hw->mac_type >= e1000_82544) &&
1046 (hw->mac_type != e1000_82547))
1047 netdev->hw_features |= NETIF_F_TSO;
1048
1049 netdev->priv_flags |= IFF_SUPP_NOFCS;
1050
1051 netdev->features |= netdev->hw_features;
1052 netdev->hw_features |= (NETIF_F_RXCSUM |
1053 NETIF_F_RXALL |
1054 NETIF_F_RXFCS);
1055
1056 if (pci_using_dac) {
1057 netdev->features |= NETIF_F_HIGHDMA;
1058 netdev->vlan_features |= NETIF_F_HIGHDMA;
1059 }
1060
1061 netdev->vlan_features |= (NETIF_F_TSO |
1062 NETIF_F_HW_CSUM |
1063 NETIF_F_SG);
1064
1065 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1066 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1067 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1068 netdev->priv_flags |= IFF_UNICAST_FLT;
1069
1070 /* MTU range: 46 - 16110 */
1071 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1072 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1073
1074 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1075
1076 /* initialize eeprom parameters */
1077 if (e1000_init_eeprom_params(hw)) {
1078 e_err(probe, "EEPROM initialization failed\n");
1079 goto err_eeprom;
1080 }
1081
1082 /* before reading the EEPROM, reset the controller to
1083 * put the device in a known good starting state
1084 */
1085
1086 e1000_reset_hw(hw);
1087
1088 /* make sure the EEPROM is good */
1089 if (e1000_validate_eeprom_checksum(hw) < 0) {
1090 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1091 e1000_dump_eeprom(adapter);
1092 /* set MAC address to all zeroes to invalidate and temporary
1093 * disable this device for the user. This blocks regular
1094 * traffic while still permitting ethtool ioctls from reaching
1095 * the hardware as well as allowing the user to run the
1096 * interface after manually setting a hw addr using
1097 * `ip set address`
1098 */
1099 memset(hw->mac_addr, 0, netdev->addr_len);
1100 } else {
1101 /* copy the MAC address out of the EEPROM */
1102 if (e1000_read_mac_addr(hw))
1103 e_err(probe, "EEPROM Read Error\n");
1104 }
1105 /* don't block initialization here due to bad MAC address */
1106 eth_hw_addr_set(netdev, hw->mac_addr);
1107
1108 if (!is_valid_ether_addr(netdev->dev_addr))
1109 e_err(probe, "Invalid MAC Address\n");
1110
1111
1112 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1113 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1114 e1000_82547_tx_fifo_stall_task);
1115 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1116 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1117
1118 e1000_check_options(adapter);
1119
1120 /* Initial Wake on LAN setting
1121 * If APM wake is enabled in the EEPROM,
1122 * enable the ACPI Magic Packet filter
1123 */
1124
1125 switch (hw->mac_type) {
1126 case e1000_82542_rev2_0:
1127 case e1000_82542_rev2_1:
1128 case e1000_82543:
1129 break;
1130 case e1000_82544:
1131 e1000_read_eeprom(hw,
1132 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1133 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1134 break;
1135 case e1000_82546:
1136 case e1000_82546_rev_3:
1137 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1138 e1000_read_eeprom(hw,
1139 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1140 break;
1141 }
1142 fallthrough;
1143 default:
1144 e1000_read_eeprom(hw,
1145 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1146 break;
1147 }
1148 if (eeprom_data & eeprom_apme_mask)
1149 adapter->eeprom_wol |= E1000_WUFC_MAG;
1150
1151 /* now that we have the eeprom settings, apply the special cases
1152 * where the eeprom may be wrong or the board simply won't support
1153 * wake on lan on a particular port
1154 */
1155 switch (pdev->device) {
1156 case E1000_DEV_ID_82546GB_PCIE:
1157 adapter->eeprom_wol = 0;
1158 break;
1159 case E1000_DEV_ID_82546EB_FIBER:
1160 case E1000_DEV_ID_82546GB_FIBER:
1161 /* Wake events only supported on port A for dual fiber
1162 * regardless of eeprom setting
1163 */
1164 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1165 adapter->eeprom_wol = 0;
1166 break;
1167 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1168 /* if quad port adapter, disable WoL on all but port A */
1169 if (global_quad_port_a != 0)
1170 adapter->eeprom_wol = 0;
1171 else
1172 adapter->quad_port_a = true;
1173 /* Reset for multiple quad port adapters */
1174 if (++global_quad_port_a == 4)
1175 global_quad_port_a = 0;
1176 break;
1177 }
1178
1179 /* initialize the wol settings based on the eeprom settings */
1180 adapter->wol = adapter->eeprom_wol;
1181 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1182
1183 /* Auto detect PHY address */
1184 if (hw->mac_type == e1000_ce4100) {
1185 for (i = 0; i < 32; i++) {
1186 hw->phy_addr = i;
1187 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1188
1189 if (tmp != 0 && tmp != 0xFF)
1190 break;
1191 }
1192
1193 if (i >= 32)
1194 goto err_eeprom;
1195 }
1196
1197 /* reset the hardware with the new settings */
1198 e1000_reset(adapter);
1199
1200 strcpy(netdev->name, "eth%d");
1201 err = register_netdev(netdev);
1202 if (err)
1203 goto err_register;
1204
1205 e1000_vlan_filter_on_off(adapter, false);
1206
1207 /* print bus type/speed/width info */
1208 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1209 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1210 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1211 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1212 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1213 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1214 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1215 netdev->dev_addr);
1216
1217 /* carrier off reporting is important to ethtool even BEFORE open */
1218 netif_carrier_off(netdev);
1219
1220 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1221
1222 cards_found++;
1223 return 0;
1224
1225err_register:
1226err_eeprom:
1227 e1000_phy_hw_reset(hw);
1228
1229 if (hw->flash_address)
1230 iounmap(hw->flash_address);
1231 kfree(adapter->tx_ring);
1232 kfree(adapter->rx_ring);
1233err_dma:
1234err_sw_init:
1235err_mdio_ioremap:
1236 iounmap(hw->ce4100_gbe_mdio_base_virt);
1237 iounmap(hw->hw_addr);
1238err_ioremap:
1239 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1240 free_netdev(netdev);
1241err_alloc_etherdev:
1242 pci_release_selected_regions(pdev, bars);
1243err_pci_reg:
1244 if (!adapter || disable_dev)
1245 pci_disable_device(pdev);
1246 return err;
1247}
1248
1249/**
1250 * e1000_remove - Device Removal Routine
1251 * @pdev: PCI device information struct
1252 *
1253 * e1000_remove is called by the PCI subsystem to alert the driver
1254 * that it should release a PCI device. That could be caused by a
1255 * Hot-Plug event, or because the driver is going to be removed from
1256 * memory.
1257 **/
1258static void e1000_remove(struct pci_dev *pdev)
1259{
1260 struct net_device *netdev = pci_get_drvdata(pdev);
1261 struct e1000_adapter *adapter = netdev_priv(netdev);
1262 struct e1000_hw *hw = &adapter->hw;
1263 bool disable_dev;
1264
1265 e1000_down_and_stop(adapter);
1266 e1000_release_manageability(adapter);
1267
1268 unregister_netdev(netdev);
1269
1270 e1000_phy_hw_reset(hw);
1271
1272 kfree(adapter->tx_ring);
1273 kfree(adapter->rx_ring);
1274
1275 if (hw->mac_type == e1000_ce4100)
1276 iounmap(hw->ce4100_gbe_mdio_base_virt);
1277 iounmap(hw->hw_addr);
1278 if (hw->flash_address)
1279 iounmap(hw->flash_address);
1280 pci_release_selected_regions(pdev, adapter->bars);
1281
1282 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1283 free_netdev(netdev);
1284
1285 if (disable_dev)
1286 pci_disable_device(pdev);
1287}
1288
1289/**
1290 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1291 * @adapter: board private structure to initialize
1292 *
1293 * e1000_sw_init initializes the Adapter private data structure.
1294 * e1000_init_hw_struct MUST be called before this function
1295 **/
1296static int e1000_sw_init(struct e1000_adapter *adapter)
1297{
1298 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1299
1300 adapter->num_tx_queues = 1;
1301 adapter->num_rx_queues = 1;
1302
1303 if (e1000_alloc_queues(adapter)) {
1304 e_err(probe, "Unable to allocate memory for queues\n");
1305 return -ENOMEM;
1306 }
1307
1308 /* Explicitly disable IRQ since the NIC can be in any state. */
1309 e1000_irq_disable(adapter);
1310
1311 spin_lock_init(&adapter->stats_lock);
1312
1313 set_bit(__E1000_DOWN, &adapter->flags);
1314
1315 return 0;
1316}
1317
1318/**
1319 * e1000_alloc_queues - Allocate memory for all rings
1320 * @adapter: board private structure to initialize
1321 *
1322 * We allocate one ring per queue at run-time since we don't know the
1323 * number of queues at compile-time.
1324 **/
1325static int e1000_alloc_queues(struct e1000_adapter *adapter)
1326{
1327 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1328 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1329 if (!adapter->tx_ring)
1330 return -ENOMEM;
1331
1332 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1333 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1334 if (!adapter->rx_ring) {
1335 kfree(adapter->tx_ring);
1336 return -ENOMEM;
1337 }
1338
1339 return E1000_SUCCESS;
1340}
1341
1342/**
1343 * e1000_open - Called when a network interface is made active
1344 * @netdev: network interface device structure
1345 *
1346 * Returns 0 on success, negative value on failure
1347 *
1348 * The open entry point is called when a network interface is made
1349 * active by the system (IFF_UP). At this point all resources needed
1350 * for transmit and receive operations are allocated, the interrupt
1351 * handler is registered with the OS, the watchdog task is started,
1352 * and the stack is notified that the interface is ready.
1353 **/
1354int e1000_open(struct net_device *netdev)
1355{
1356 struct e1000_adapter *adapter = netdev_priv(netdev);
1357 struct e1000_hw *hw = &adapter->hw;
1358 int err;
1359
1360 /* disallow open during test */
1361 if (test_bit(__E1000_TESTING, &adapter->flags))
1362 return -EBUSY;
1363
1364 netif_carrier_off(netdev);
1365
1366 /* allocate transmit descriptors */
1367 err = e1000_setup_all_tx_resources(adapter);
1368 if (err)
1369 goto err_setup_tx;
1370
1371 /* allocate receive descriptors */
1372 err = e1000_setup_all_rx_resources(adapter);
1373 if (err)
1374 goto err_setup_rx;
1375
1376 e1000_power_up_phy(adapter);
1377
1378 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1379 if ((hw->mng_cookie.status &
1380 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1381 e1000_update_mng_vlan(adapter);
1382 }
1383
1384 /* before we allocate an interrupt, we must be ready to handle it.
1385 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1386 * as soon as we call pci_request_irq, so we have to setup our
1387 * clean_rx handler before we do so.
1388 */
1389 e1000_configure(adapter);
1390
1391 err = e1000_request_irq(adapter);
1392 if (err)
1393 goto err_req_irq;
1394
1395 /* From here on the code is the same as e1000_up() */
1396 clear_bit(__E1000_DOWN, &adapter->flags);
1397
1398 napi_enable(&adapter->napi);
1399
1400 e1000_irq_enable(adapter);
1401
1402 netif_start_queue(netdev);
1403
1404 /* fire a link status change interrupt to start the watchdog */
1405 ew32(ICS, E1000_ICS_LSC);
1406
1407 return E1000_SUCCESS;
1408
1409err_req_irq:
1410 e1000_power_down_phy(adapter);
1411 e1000_free_all_rx_resources(adapter);
1412err_setup_rx:
1413 e1000_free_all_tx_resources(adapter);
1414err_setup_tx:
1415 e1000_reset(adapter);
1416
1417 return err;
1418}
1419
1420/**
1421 * e1000_close - Disables a network interface
1422 * @netdev: network interface device structure
1423 *
1424 * Returns 0, this is not allowed to fail
1425 *
1426 * The close entry point is called when an interface is de-activated
1427 * by the OS. The hardware is still under the drivers control, but
1428 * needs to be disabled. A global MAC reset is issued to stop the
1429 * hardware, and all transmit and receive resources are freed.
1430 **/
1431int e1000_close(struct net_device *netdev)
1432{
1433 struct e1000_adapter *adapter = netdev_priv(netdev);
1434 struct e1000_hw *hw = &adapter->hw;
1435 int count = E1000_CHECK_RESET_COUNT;
1436
1437 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags) && count--)
1438 usleep_range(10000, 20000);
1439
1440 WARN_ON(count < 0);
1441
1442 /* signal that we're down so that the reset task will no longer run */
1443 set_bit(__E1000_DOWN, &adapter->flags);
1444 clear_bit(__E1000_RESETTING, &adapter->flags);
1445
1446 e1000_down(adapter);
1447 e1000_power_down_phy(adapter);
1448 e1000_free_irq(adapter);
1449
1450 e1000_free_all_tx_resources(adapter);
1451 e1000_free_all_rx_resources(adapter);
1452
1453 /* kill manageability vlan ID if supported, but not if a vlan with
1454 * the same ID is registered on the host OS (let 8021q kill it)
1455 */
1456 if ((hw->mng_cookie.status &
1457 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1458 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1459 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1460 adapter->mng_vlan_id);
1461 }
1462
1463 return 0;
1464}
1465
1466/**
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1471 **/
1472static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1473 unsigned long len)
1474{
1475 struct e1000_hw *hw = &adapter->hw;
1476 unsigned long begin = (unsigned long)start;
1477 unsigned long end = begin + len;
1478
1479 /* First rev 82545 and 82546 need to not allow any memory
1480 * write location to cross 64k boundary due to errata 23
1481 */
1482 if (hw->mac_type == e1000_82545 ||
1483 hw->mac_type == e1000_ce4100 ||
1484 hw->mac_type == e1000_82546) {
1485 return ((begin ^ (end - 1)) >> 16) == 0;
1486 }
1487
1488 return true;
1489}
1490
1491/**
1492 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1493 * @adapter: board private structure
1494 * @txdr: tx descriptor ring (for a specific queue) to setup
1495 *
1496 * Return 0 on success, negative on failure
1497 **/
1498static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1499 struct e1000_tx_ring *txdr)
1500{
1501 struct pci_dev *pdev = adapter->pdev;
1502 int size;
1503
1504 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1505 txdr->buffer_info = vzalloc(size);
1506 if (!txdr->buffer_info)
1507 return -ENOMEM;
1508
1509 /* round up to nearest 4K */
1510
1511 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1512 txdr->size = ALIGN(txdr->size, 4096);
1513
1514 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1515 GFP_KERNEL);
1516 if (!txdr->desc) {
1517setup_tx_desc_die:
1518 vfree(txdr->buffer_info);
1519 return -ENOMEM;
1520 }
1521
1522 /* Fix for errata 23, can't cross 64kB boundary */
1523 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1524 void *olddesc = txdr->desc;
1525 dma_addr_t olddma = txdr->dma;
1526 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1527 txdr->size, txdr->desc);
1528 /* Try again, without freeing the previous */
1529 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1530 &txdr->dma, GFP_KERNEL);
1531 /* Failed allocation, critical failure */
1532 if (!txdr->desc) {
1533 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1534 olddma);
1535 goto setup_tx_desc_die;
1536 }
1537
1538 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1539 /* give up */
1540 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1541 txdr->dma);
1542 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1543 olddma);
1544 e_err(probe, "Unable to allocate aligned memory "
1545 "for the transmit descriptor ring\n");
1546 vfree(txdr->buffer_info);
1547 return -ENOMEM;
1548 } else {
1549 /* Free old allocation, new allocation was successful */
1550 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1551 olddma);
1552 }
1553 }
1554 memset(txdr->desc, 0, txdr->size);
1555
1556 txdr->next_to_use = 0;
1557 txdr->next_to_clean = 0;
1558
1559 return 0;
1560}
1561
1562/**
1563 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1564 * (Descriptors) for all queues
1565 * @adapter: board private structure
1566 *
1567 * Return 0 on success, negative on failure
1568 **/
1569int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1570{
1571 int i, err = 0;
1572
1573 for (i = 0; i < adapter->num_tx_queues; i++) {
1574 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1575 if (err) {
1576 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1577 for (i-- ; i >= 0; i--)
1578 e1000_free_tx_resources(adapter,
1579 &adapter->tx_ring[i]);
1580 break;
1581 }
1582 }
1583
1584 return err;
1585}
1586
1587/**
1588 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1589 * @adapter: board private structure
1590 *
1591 * Configure the Tx unit of the MAC after a reset.
1592 **/
1593static void e1000_configure_tx(struct e1000_adapter *adapter)
1594{
1595 u64 tdba;
1596 struct e1000_hw *hw = &adapter->hw;
1597 u32 tdlen, tctl, tipg;
1598 u32 ipgr1, ipgr2;
1599
1600 /* Setup the HW Tx Head and Tail descriptor pointers */
1601
1602 switch (adapter->num_tx_queues) {
1603 case 1:
1604 default:
1605 tdba = adapter->tx_ring[0].dma;
1606 tdlen = adapter->tx_ring[0].count *
1607 sizeof(struct e1000_tx_desc);
1608 ew32(TDLEN, tdlen);
1609 ew32(TDBAH, (tdba >> 32));
1610 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1611 ew32(TDT, 0);
1612 ew32(TDH, 0);
1613 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1614 E1000_TDH : E1000_82542_TDH);
1615 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1616 E1000_TDT : E1000_82542_TDT);
1617 break;
1618 }
1619
1620 /* Set the default values for the Tx Inter Packet Gap timer */
1621 if ((hw->media_type == e1000_media_type_fiber ||
1622 hw->media_type == e1000_media_type_internal_serdes))
1623 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1624 else
1625 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1626
1627 switch (hw->mac_type) {
1628 case e1000_82542_rev2_0:
1629 case e1000_82542_rev2_1:
1630 tipg = DEFAULT_82542_TIPG_IPGT;
1631 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1632 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1633 break;
1634 default:
1635 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1637 break;
1638 }
1639 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1640 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1641 ew32(TIPG, tipg);
1642
1643 /* Set the Tx Interrupt Delay register */
1644
1645 ew32(TIDV, adapter->tx_int_delay);
1646 if (hw->mac_type >= e1000_82540)
1647 ew32(TADV, adapter->tx_abs_int_delay);
1648
1649 /* Program the Transmit Control Register */
1650
1651 tctl = er32(TCTL);
1652 tctl &= ~E1000_TCTL_CT;
1653 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1654 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1655
1656 e1000_config_collision_dist(hw);
1657
1658 /* Setup Transmit Descriptor Settings for eop descriptor */
1659 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1660
1661 /* only set IDE if we are delaying interrupts using the timers */
1662 if (adapter->tx_int_delay)
1663 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1664
1665 if (hw->mac_type < e1000_82543)
1666 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1667 else
1668 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1669
1670 /* Cache if we're 82544 running in PCI-X because we'll
1671 * need this to apply a workaround later in the send path.
1672 */
1673 if (hw->mac_type == e1000_82544 &&
1674 hw->bus_type == e1000_bus_type_pcix)
1675 adapter->pcix_82544 = true;
1676
1677 ew32(TCTL, tctl);
1678
1679}
1680
1681/**
1682 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1683 * @adapter: board private structure
1684 * @rxdr: rx descriptor ring (for a specific queue) to setup
1685 *
1686 * Returns 0 on success, negative on failure
1687 **/
1688static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1689 struct e1000_rx_ring *rxdr)
1690{
1691 struct pci_dev *pdev = adapter->pdev;
1692 int size, desc_len;
1693
1694 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1695 rxdr->buffer_info = vzalloc(size);
1696 if (!rxdr->buffer_info)
1697 return -ENOMEM;
1698
1699 desc_len = sizeof(struct e1000_rx_desc);
1700
1701 /* Round up to nearest 4K */
1702
1703 rxdr->size = rxdr->count * desc_len;
1704 rxdr->size = ALIGN(rxdr->size, 4096);
1705
1706 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1707 GFP_KERNEL);
1708 if (!rxdr->desc) {
1709setup_rx_desc_die:
1710 vfree(rxdr->buffer_info);
1711 return -ENOMEM;
1712 }
1713
1714 /* Fix for errata 23, can't cross 64kB boundary */
1715 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1716 void *olddesc = rxdr->desc;
1717 dma_addr_t olddma = rxdr->dma;
1718 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1719 rxdr->size, rxdr->desc);
1720 /* Try again, without freeing the previous */
1721 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1722 &rxdr->dma, GFP_KERNEL);
1723 /* Failed allocation, critical failure */
1724 if (!rxdr->desc) {
1725 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1726 olddma);
1727 goto setup_rx_desc_die;
1728 }
1729
1730 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1731 /* give up */
1732 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1733 rxdr->dma);
1734 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1735 olddma);
1736 e_err(probe, "Unable to allocate aligned memory for "
1737 "the Rx descriptor ring\n");
1738 goto setup_rx_desc_die;
1739 } else {
1740 /* Free old allocation, new allocation was successful */
1741 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1742 olddma);
1743 }
1744 }
1745 memset(rxdr->desc, 0, rxdr->size);
1746
1747 rxdr->next_to_clean = 0;
1748 rxdr->next_to_use = 0;
1749 rxdr->rx_skb_top = NULL;
1750
1751 return 0;
1752}
1753
1754/**
1755 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1756 * (Descriptors) for all queues
1757 * @adapter: board private structure
1758 *
1759 * Return 0 on success, negative on failure
1760 **/
1761int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1762{
1763 int i, err = 0;
1764
1765 for (i = 0; i < adapter->num_rx_queues; i++) {
1766 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1767 if (err) {
1768 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1769 for (i-- ; i >= 0; i--)
1770 e1000_free_rx_resources(adapter,
1771 &adapter->rx_ring[i]);
1772 break;
1773 }
1774 }
1775
1776 return err;
1777}
1778
1779/**
1780 * e1000_setup_rctl - configure the receive control registers
1781 * @adapter: Board private structure
1782 **/
1783static void e1000_setup_rctl(struct e1000_adapter *adapter)
1784{
1785 struct e1000_hw *hw = &adapter->hw;
1786 u32 rctl;
1787
1788 rctl = er32(RCTL);
1789
1790 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1791
1792 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1793 E1000_RCTL_RDMTS_HALF |
1794 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1795
1796 if (hw->tbi_compatibility_on == 1)
1797 rctl |= E1000_RCTL_SBP;
1798 else
1799 rctl &= ~E1000_RCTL_SBP;
1800
1801 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1802 rctl &= ~E1000_RCTL_LPE;
1803 else
1804 rctl |= E1000_RCTL_LPE;
1805
1806 /* Setup buffer sizes */
1807 rctl &= ~E1000_RCTL_SZ_4096;
1808 rctl |= E1000_RCTL_BSEX;
1809 switch (adapter->rx_buffer_len) {
1810 case E1000_RXBUFFER_2048:
1811 default:
1812 rctl |= E1000_RCTL_SZ_2048;
1813 rctl &= ~E1000_RCTL_BSEX;
1814 break;
1815 case E1000_RXBUFFER_4096:
1816 rctl |= E1000_RCTL_SZ_4096;
1817 break;
1818 case E1000_RXBUFFER_8192:
1819 rctl |= E1000_RCTL_SZ_8192;
1820 break;
1821 case E1000_RXBUFFER_16384:
1822 rctl |= E1000_RCTL_SZ_16384;
1823 break;
1824 }
1825
1826 /* This is useful for sniffing bad packets. */
1827 if (adapter->netdev->features & NETIF_F_RXALL) {
1828 /* UPE and MPE will be handled by normal PROMISC logic
1829 * in e1000e_set_rx_mode
1830 */
1831 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1832 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1833 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1834
1835 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1836 E1000_RCTL_DPF | /* Allow filtered pause */
1837 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1838 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1839 * and that breaks VLANs.
1840 */
1841 }
1842
1843 ew32(RCTL, rctl);
1844}
1845
1846/**
1847 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1848 * @adapter: board private structure
1849 *
1850 * Configure the Rx unit of the MAC after a reset.
1851 **/
1852static void e1000_configure_rx(struct e1000_adapter *adapter)
1853{
1854 u64 rdba;
1855 struct e1000_hw *hw = &adapter->hw;
1856 u32 rdlen, rctl, rxcsum;
1857
1858 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1859 rdlen = adapter->rx_ring[0].count *
1860 sizeof(struct e1000_rx_desc);
1861 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1862 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1863 } else {
1864 rdlen = adapter->rx_ring[0].count *
1865 sizeof(struct e1000_rx_desc);
1866 adapter->clean_rx = e1000_clean_rx_irq;
1867 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1868 }
1869
1870 /* disable receives while setting up the descriptors */
1871 rctl = er32(RCTL);
1872 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1873
1874 /* set the Receive Delay Timer Register */
1875 ew32(RDTR, adapter->rx_int_delay);
1876
1877 if (hw->mac_type >= e1000_82540) {
1878 ew32(RADV, adapter->rx_abs_int_delay);
1879 if (adapter->itr_setting != 0)
1880 ew32(ITR, 1000000000 / (adapter->itr * 256));
1881 }
1882
1883 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1884 * the Base and Length of the Rx Descriptor Ring
1885 */
1886 switch (adapter->num_rx_queues) {
1887 case 1:
1888 default:
1889 rdba = adapter->rx_ring[0].dma;
1890 ew32(RDLEN, rdlen);
1891 ew32(RDBAH, (rdba >> 32));
1892 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1893 ew32(RDT, 0);
1894 ew32(RDH, 0);
1895 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1896 E1000_RDH : E1000_82542_RDH);
1897 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1898 E1000_RDT : E1000_82542_RDT);
1899 break;
1900 }
1901
1902 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1903 if (hw->mac_type >= e1000_82543) {
1904 rxcsum = er32(RXCSUM);
1905 if (adapter->rx_csum)
1906 rxcsum |= E1000_RXCSUM_TUOFL;
1907 else
1908 /* don't need to clear IPPCSE as it defaults to 0 */
1909 rxcsum &= ~E1000_RXCSUM_TUOFL;
1910 ew32(RXCSUM, rxcsum);
1911 }
1912
1913 /* Enable Receives */
1914 ew32(RCTL, rctl | E1000_RCTL_EN);
1915}
1916
1917/**
1918 * e1000_free_tx_resources - Free Tx Resources per Queue
1919 * @adapter: board private structure
1920 * @tx_ring: Tx descriptor ring for a specific queue
1921 *
1922 * Free all transmit software resources
1923 **/
1924static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1925 struct e1000_tx_ring *tx_ring)
1926{
1927 struct pci_dev *pdev = adapter->pdev;
1928
1929 e1000_clean_tx_ring(adapter, tx_ring);
1930
1931 vfree(tx_ring->buffer_info);
1932 tx_ring->buffer_info = NULL;
1933
1934 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1935 tx_ring->dma);
1936
1937 tx_ring->desc = NULL;
1938}
1939
1940/**
1941 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1942 * @adapter: board private structure
1943 *
1944 * Free all transmit software resources
1945 **/
1946void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1947{
1948 int i;
1949
1950 for (i = 0; i < adapter->num_tx_queues; i++)
1951 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1952}
1953
1954static void
1955e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1956 struct e1000_tx_buffer *buffer_info,
1957 int budget)
1958{
1959 if (buffer_info->dma) {
1960 if (buffer_info->mapped_as_page)
1961 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1962 buffer_info->length, DMA_TO_DEVICE);
1963 else
1964 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length,
1966 DMA_TO_DEVICE);
1967 buffer_info->dma = 0;
1968 }
1969 if (buffer_info->skb) {
1970 napi_consume_skb(buffer_info->skb, budget);
1971 buffer_info->skb = NULL;
1972 }
1973 buffer_info->time_stamp = 0;
1974 /* buffer_info must be completely set up in the transmit path */
1975}
1976
1977/**
1978 * e1000_clean_tx_ring - Free Tx Buffers
1979 * @adapter: board private structure
1980 * @tx_ring: ring to be cleaned
1981 **/
1982static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1983 struct e1000_tx_ring *tx_ring)
1984{
1985 struct e1000_hw *hw = &adapter->hw;
1986 struct e1000_tx_buffer *buffer_info;
1987 unsigned long size;
1988 unsigned int i;
1989
1990 /* Free all the Tx ring sk_buffs */
1991
1992 for (i = 0; i < tx_ring->count; i++) {
1993 buffer_info = &tx_ring->buffer_info[i];
1994 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
1995 }
1996
1997 netdev_reset_queue(adapter->netdev);
1998 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1999 memset(tx_ring->buffer_info, 0, size);
2000
2001 /* Zero out the descriptor ring */
2002
2003 memset(tx_ring->desc, 0, tx_ring->size);
2004
2005 tx_ring->next_to_use = 0;
2006 tx_ring->next_to_clean = 0;
2007 tx_ring->last_tx_tso = false;
2008
2009 writel(0, hw->hw_addr + tx_ring->tdh);
2010 writel(0, hw->hw_addr + tx_ring->tdt);
2011}
2012
2013/**
2014 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2015 * @adapter: board private structure
2016 **/
2017static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2018{
2019 int i;
2020
2021 for (i = 0; i < adapter->num_tx_queues; i++)
2022 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2023}
2024
2025/**
2026 * e1000_free_rx_resources - Free Rx Resources
2027 * @adapter: board private structure
2028 * @rx_ring: ring to clean the resources from
2029 *
2030 * Free all receive software resources
2031 **/
2032static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2033 struct e1000_rx_ring *rx_ring)
2034{
2035 struct pci_dev *pdev = adapter->pdev;
2036
2037 e1000_clean_rx_ring(adapter, rx_ring);
2038
2039 vfree(rx_ring->buffer_info);
2040 rx_ring->buffer_info = NULL;
2041
2042 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2043 rx_ring->dma);
2044
2045 rx_ring->desc = NULL;
2046}
2047
2048/**
2049 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2050 * @adapter: board private structure
2051 *
2052 * Free all receive software resources
2053 **/
2054void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2055{
2056 int i;
2057
2058 for (i = 0; i < adapter->num_rx_queues; i++)
2059 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2060}
2061
2062#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2063static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2064{
2065 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2066 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2067}
2068
2069static void *e1000_alloc_frag(const struct e1000_adapter *a)
2070{
2071 unsigned int len = e1000_frag_len(a);
2072 u8 *data = netdev_alloc_frag(len);
2073
2074 if (likely(data))
2075 data += E1000_HEADROOM;
2076 return data;
2077}
2078
2079/**
2080 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2081 * @adapter: board private structure
2082 * @rx_ring: ring to free buffers from
2083 **/
2084static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2085 struct e1000_rx_ring *rx_ring)
2086{
2087 struct e1000_hw *hw = &adapter->hw;
2088 struct e1000_rx_buffer *buffer_info;
2089 struct pci_dev *pdev = adapter->pdev;
2090 unsigned long size;
2091 unsigned int i;
2092
2093 /* Free all the Rx netfrags */
2094 for (i = 0; i < rx_ring->count; i++) {
2095 buffer_info = &rx_ring->buffer_info[i];
2096 if (adapter->clean_rx == e1000_clean_rx_irq) {
2097 if (buffer_info->dma)
2098 dma_unmap_single(&pdev->dev, buffer_info->dma,
2099 adapter->rx_buffer_len,
2100 DMA_FROM_DEVICE);
2101 if (buffer_info->rxbuf.data) {
2102 skb_free_frag(buffer_info->rxbuf.data);
2103 buffer_info->rxbuf.data = NULL;
2104 }
2105 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2106 if (buffer_info->dma)
2107 dma_unmap_page(&pdev->dev, buffer_info->dma,
2108 adapter->rx_buffer_len,
2109 DMA_FROM_DEVICE);
2110 if (buffer_info->rxbuf.page) {
2111 put_page(buffer_info->rxbuf.page);
2112 buffer_info->rxbuf.page = NULL;
2113 }
2114 }
2115
2116 buffer_info->dma = 0;
2117 }
2118
2119 /* there also may be some cached data from a chained receive */
2120 napi_free_frags(&adapter->napi);
2121 rx_ring->rx_skb_top = NULL;
2122
2123 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2124 memset(rx_ring->buffer_info, 0, size);
2125
2126 /* Zero out the descriptor ring */
2127 memset(rx_ring->desc, 0, rx_ring->size);
2128
2129 rx_ring->next_to_clean = 0;
2130 rx_ring->next_to_use = 0;
2131
2132 writel(0, hw->hw_addr + rx_ring->rdh);
2133 writel(0, hw->hw_addr + rx_ring->rdt);
2134}
2135
2136/**
2137 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2138 * @adapter: board private structure
2139 **/
2140static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2141{
2142 int i;
2143
2144 for (i = 0; i < adapter->num_rx_queues; i++)
2145 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2146}
2147
2148/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2149 * and memory write and invalidate disabled for certain operations
2150 */
2151static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2152{
2153 struct e1000_hw *hw = &adapter->hw;
2154 struct net_device *netdev = adapter->netdev;
2155 u32 rctl;
2156
2157 e1000_pci_clear_mwi(hw);
2158
2159 rctl = er32(RCTL);
2160 rctl |= E1000_RCTL_RST;
2161 ew32(RCTL, rctl);
2162 E1000_WRITE_FLUSH();
2163 mdelay(5);
2164
2165 if (netif_running(netdev))
2166 e1000_clean_all_rx_rings(adapter);
2167}
2168
2169static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2170{
2171 struct e1000_hw *hw = &adapter->hw;
2172 struct net_device *netdev = adapter->netdev;
2173 u32 rctl;
2174
2175 rctl = er32(RCTL);
2176 rctl &= ~E1000_RCTL_RST;
2177 ew32(RCTL, rctl);
2178 E1000_WRITE_FLUSH();
2179 mdelay(5);
2180
2181 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2182 e1000_pci_set_mwi(hw);
2183
2184 if (netif_running(netdev)) {
2185 /* No need to loop, because 82542 supports only 1 queue */
2186 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2187 e1000_configure_rx(adapter);
2188 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2189 }
2190}
2191
2192/**
2193 * e1000_set_mac - Change the Ethernet Address of the NIC
2194 * @netdev: network interface device structure
2195 * @p: pointer to an address structure
2196 *
2197 * Returns 0 on success, negative on failure
2198 **/
2199static int e1000_set_mac(struct net_device *netdev, void *p)
2200{
2201 struct e1000_adapter *adapter = netdev_priv(netdev);
2202 struct e1000_hw *hw = &adapter->hw;
2203 struct sockaddr *addr = p;
2204
2205 if (!is_valid_ether_addr(addr->sa_data))
2206 return -EADDRNOTAVAIL;
2207
2208 /* 82542 2.0 needs to be in reset to write receive address registers */
2209
2210 if (hw->mac_type == e1000_82542_rev2_0)
2211 e1000_enter_82542_rst(adapter);
2212
2213 eth_hw_addr_set(netdev, addr->sa_data);
2214 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2215
2216 e1000_rar_set(hw, hw->mac_addr, 0);
2217
2218 if (hw->mac_type == e1000_82542_rev2_0)
2219 e1000_leave_82542_rst(adapter);
2220
2221 return 0;
2222}
2223
2224/**
2225 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2226 * @netdev: network interface device structure
2227 *
2228 * The set_rx_mode entry point is called whenever the unicast or multicast
2229 * address lists or the network interface flags are updated. This routine is
2230 * responsible for configuring the hardware for proper unicast, multicast,
2231 * promiscuous mode, and all-multi behavior.
2232 **/
2233static void e1000_set_rx_mode(struct net_device *netdev)
2234{
2235 struct e1000_adapter *adapter = netdev_priv(netdev);
2236 struct e1000_hw *hw = &adapter->hw;
2237 struct netdev_hw_addr *ha;
2238 bool use_uc = false;
2239 u32 rctl;
2240 u32 hash_value;
2241 int i, rar_entries = E1000_RAR_ENTRIES;
2242 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2243 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2244
2245 if (!mcarray)
2246 return;
2247
2248 /* Check for Promiscuous and All Multicast modes */
2249
2250 rctl = er32(RCTL);
2251
2252 if (netdev->flags & IFF_PROMISC) {
2253 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2254 rctl &= ~E1000_RCTL_VFE;
2255 } else {
2256 if (netdev->flags & IFF_ALLMULTI)
2257 rctl |= E1000_RCTL_MPE;
2258 else
2259 rctl &= ~E1000_RCTL_MPE;
2260 /* Enable VLAN filter if there is a VLAN */
2261 if (e1000_vlan_used(adapter))
2262 rctl |= E1000_RCTL_VFE;
2263 }
2264
2265 if (netdev_uc_count(netdev) > rar_entries - 1) {
2266 rctl |= E1000_RCTL_UPE;
2267 } else if (!(netdev->flags & IFF_PROMISC)) {
2268 rctl &= ~E1000_RCTL_UPE;
2269 use_uc = true;
2270 }
2271
2272 ew32(RCTL, rctl);
2273
2274 /* 82542 2.0 needs to be in reset to write receive address registers */
2275
2276 if (hw->mac_type == e1000_82542_rev2_0)
2277 e1000_enter_82542_rst(adapter);
2278
2279 /* load the first 14 addresses into the exact filters 1-14. Unicast
2280 * addresses take precedence to avoid disabling unicast filtering
2281 * when possible.
2282 *
2283 * RAR 0 is used for the station MAC address
2284 * if there are not 14 addresses, go ahead and clear the filters
2285 */
2286 i = 1;
2287 if (use_uc)
2288 netdev_for_each_uc_addr(ha, netdev) {
2289 if (i == rar_entries)
2290 break;
2291 e1000_rar_set(hw, ha->addr, i++);
2292 }
2293
2294 netdev_for_each_mc_addr(ha, netdev) {
2295 if (i == rar_entries) {
2296 /* load any remaining addresses into the hash table */
2297 u32 hash_reg, hash_bit, mta;
2298 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2299 hash_reg = (hash_value >> 5) & 0x7F;
2300 hash_bit = hash_value & 0x1F;
2301 mta = (1 << hash_bit);
2302 mcarray[hash_reg] |= mta;
2303 } else {
2304 e1000_rar_set(hw, ha->addr, i++);
2305 }
2306 }
2307
2308 for (; i < rar_entries; i++) {
2309 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2310 E1000_WRITE_FLUSH();
2311 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2312 E1000_WRITE_FLUSH();
2313 }
2314
2315 /* write the hash table completely, write from bottom to avoid
2316 * both stupid write combining chipsets, and flushing each write
2317 */
2318 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2319 /* If we are on an 82544 has an errata where writing odd
2320 * offsets overwrites the previous even offset, but writing
2321 * backwards over the range solves the issue by always
2322 * writing the odd offset first
2323 */
2324 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2325 }
2326 E1000_WRITE_FLUSH();
2327
2328 if (hw->mac_type == e1000_82542_rev2_0)
2329 e1000_leave_82542_rst(adapter);
2330
2331 kfree(mcarray);
2332}
2333
2334/**
2335 * e1000_update_phy_info_task - get phy info
2336 * @work: work struct contained inside adapter struct
2337 *
2338 * Need to wait a few seconds after link up to get diagnostic information from
2339 * the phy
2340 */
2341static void e1000_update_phy_info_task(struct work_struct *work)
2342{
2343 struct e1000_adapter *adapter = container_of(work,
2344 struct e1000_adapter,
2345 phy_info_task.work);
2346
2347 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2348}
2349
2350/**
2351 * e1000_82547_tx_fifo_stall_task - task to complete work
2352 * @work: work struct contained inside adapter struct
2353 **/
2354static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2355{
2356 struct e1000_adapter *adapter = container_of(work,
2357 struct e1000_adapter,
2358 fifo_stall_task.work);
2359 struct e1000_hw *hw = &adapter->hw;
2360 struct net_device *netdev = adapter->netdev;
2361 u32 tctl;
2362
2363 if (atomic_read(&adapter->tx_fifo_stall)) {
2364 if ((er32(TDT) == er32(TDH)) &&
2365 (er32(TDFT) == er32(TDFH)) &&
2366 (er32(TDFTS) == er32(TDFHS))) {
2367 tctl = er32(TCTL);
2368 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2369 ew32(TDFT, adapter->tx_head_addr);
2370 ew32(TDFH, adapter->tx_head_addr);
2371 ew32(TDFTS, adapter->tx_head_addr);
2372 ew32(TDFHS, adapter->tx_head_addr);
2373 ew32(TCTL, tctl);
2374 E1000_WRITE_FLUSH();
2375
2376 adapter->tx_fifo_head = 0;
2377 atomic_set(&adapter->tx_fifo_stall, 0);
2378 netif_wake_queue(netdev);
2379 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2380 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2381 }
2382 }
2383}
2384
2385bool e1000_has_link(struct e1000_adapter *adapter)
2386{
2387 struct e1000_hw *hw = &adapter->hw;
2388 bool link_active = false;
2389
2390 /* get_link_status is set on LSC (link status) interrupt or rx
2391 * sequence error interrupt (except on intel ce4100).
2392 * get_link_status will stay false until the
2393 * e1000_check_for_link establishes link for copper adapters
2394 * ONLY
2395 */
2396 switch (hw->media_type) {
2397 case e1000_media_type_copper:
2398 if (hw->mac_type == e1000_ce4100)
2399 hw->get_link_status = 1;
2400 if (hw->get_link_status) {
2401 e1000_check_for_link(hw);
2402 link_active = !hw->get_link_status;
2403 } else {
2404 link_active = true;
2405 }
2406 break;
2407 case e1000_media_type_fiber:
2408 e1000_check_for_link(hw);
2409 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2410 break;
2411 case e1000_media_type_internal_serdes:
2412 e1000_check_for_link(hw);
2413 link_active = hw->serdes_has_link;
2414 break;
2415 default:
2416 break;
2417 }
2418
2419 return link_active;
2420}
2421
2422/**
2423 * e1000_watchdog - work function
2424 * @work: work struct contained inside adapter struct
2425 **/
2426static void e1000_watchdog(struct work_struct *work)
2427{
2428 struct e1000_adapter *adapter = container_of(work,
2429 struct e1000_adapter,
2430 watchdog_task.work);
2431 struct e1000_hw *hw = &adapter->hw;
2432 struct net_device *netdev = adapter->netdev;
2433 struct e1000_tx_ring *txdr = adapter->tx_ring;
2434 u32 link, tctl;
2435
2436 link = e1000_has_link(adapter);
2437 if ((netif_carrier_ok(netdev)) && link)
2438 goto link_up;
2439
2440 if (link) {
2441 if (!netif_carrier_ok(netdev)) {
2442 u32 ctrl;
2443 /* update snapshot of PHY registers on LSC */
2444 e1000_get_speed_and_duplex(hw,
2445 &adapter->link_speed,
2446 &adapter->link_duplex);
2447
2448 ctrl = er32(CTRL);
2449 pr_info("%s NIC Link is Up %d Mbps %s, "
2450 "Flow Control: %s\n",
2451 netdev->name,
2452 adapter->link_speed,
2453 adapter->link_duplex == FULL_DUPLEX ?
2454 "Full Duplex" : "Half Duplex",
2455 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2456 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2457 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2458 E1000_CTRL_TFCE) ? "TX" : "None")));
2459
2460 /* adjust timeout factor according to speed/duplex */
2461 adapter->tx_timeout_factor = 1;
2462 switch (adapter->link_speed) {
2463 case SPEED_10:
2464 adapter->tx_timeout_factor = 16;
2465 break;
2466 case SPEED_100:
2467 /* maybe add some timeout factor ? */
2468 break;
2469 }
2470
2471 /* enable transmits in the hardware */
2472 tctl = er32(TCTL);
2473 tctl |= E1000_TCTL_EN;
2474 ew32(TCTL, tctl);
2475
2476 netif_carrier_on(netdev);
2477 if (!test_bit(__E1000_DOWN, &adapter->flags))
2478 schedule_delayed_work(&adapter->phy_info_task,
2479 2 * HZ);
2480 adapter->smartspeed = 0;
2481 }
2482 } else {
2483 if (netif_carrier_ok(netdev)) {
2484 adapter->link_speed = 0;
2485 adapter->link_duplex = 0;
2486 pr_info("%s NIC Link is Down\n",
2487 netdev->name);
2488 netif_carrier_off(netdev);
2489
2490 if (!test_bit(__E1000_DOWN, &adapter->flags))
2491 schedule_delayed_work(&adapter->phy_info_task,
2492 2 * HZ);
2493 }
2494
2495 e1000_smartspeed(adapter);
2496 }
2497
2498link_up:
2499 e1000_update_stats(adapter);
2500
2501 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2502 adapter->tpt_old = adapter->stats.tpt;
2503 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2504 adapter->colc_old = adapter->stats.colc;
2505
2506 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2507 adapter->gorcl_old = adapter->stats.gorcl;
2508 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2509 adapter->gotcl_old = adapter->stats.gotcl;
2510
2511 e1000_update_adaptive(hw);
2512
2513 if (!netif_carrier_ok(netdev)) {
2514 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2515 /* We've lost link, so the controller stops DMA,
2516 * but we've got queued Tx work that's never going
2517 * to get done, so reset controller to flush Tx.
2518 * (Do the reset outside of interrupt context).
2519 */
2520 adapter->tx_timeout_count++;
2521 schedule_work(&adapter->reset_task);
2522 /* exit immediately since reset is imminent */
2523 return;
2524 }
2525 }
2526
2527 /* Simple mode for Interrupt Throttle Rate (ITR) */
2528 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2529 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2530 * Total asymmetrical Tx or Rx gets ITR=8000;
2531 * everyone else is between 2000-8000.
2532 */
2533 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2534 u32 dif = (adapter->gotcl > adapter->gorcl ?
2535 adapter->gotcl - adapter->gorcl :
2536 adapter->gorcl - adapter->gotcl) / 10000;
2537 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2538
2539 ew32(ITR, 1000000000 / (itr * 256));
2540 }
2541
2542 /* Cause software interrupt to ensure rx ring is cleaned */
2543 ew32(ICS, E1000_ICS_RXDMT0);
2544
2545 /* Force detection of hung controller every watchdog period */
2546 adapter->detect_tx_hung = true;
2547
2548 /* Reschedule the task */
2549 if (!test_bit(__E1000_DOWN, &adapter->flags))
2550 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2551}
2552
2553enum latency_range {
2554 lowest_latency = 0,
2555 low_latency = 1,
2556 bulk_latency = 2,
2557 latency_invalid = 255
2558};
2559
2560/**
2561 * e1000_update_itr - update the dynamic ITR value based on statistics
2562 * @adapter: pointer to adapter
2563 * @itr_setting: current adapter->itr
2564 * @packets: the number of packets during this measurement interval
2565 * @bytes: the number of bytes during this measurement interval
2566 *
2567 * Stores a new ITR value based on packets and byte
2568 * counts during the last interrupt. The advantage of per interrupt
2569 * computation is faster updates and more accurate ITR for the current
2570 * traffic pattern. Constants in this function were computed
2571 * based on theoretical maximum wire speed and thresholds were set based
2572 * on testing data as well as attempting to minimize response time
2573 * while increasing bulk throughput.
2574 * this functionality is controlled by the InterruptThrottleRate module
2575 * parameter (see e1000_param.c)
2576 **/
2577static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2578 u16 itr_setting, int packets, int bytes)
2579{
2580 unsigned int retval = itr_setting;
2581 struct e1000_hw *hw = &adapter->hw;
2582
2583 if (unlikely(hw->mac_type < e1000_82540))
2584 goto update_itr_done;
2585
2586 if (packets == 0)
2587 goto update_itr_done;
2588
2589 switch (itr_setting) {
2590 case lowest_latency:
2591 /* jumbo frames get bulk treatment*/
2592 if (bytes/packets > 8000)
2593 retval = bulk_latency;
2594 else if ((packets < 5) && (bytes > 512))
2595 retval = low_latency;
2596 break;
2597 case low_latency: /* 50 usec aka 20000 ints/s */
2598 if (bytes > 10000) {
2599 /* jumbo frames need bulk latency setting */
2600 if (bytes/packets > 8000)
2601 retval = bulk_latency;
2602 else if ((packets < 10) || ((bytes/packets) > 1200))
2603 retval = bulk_latency;
2604 else if ((packets > 35))
2605 retval = lowest_latency;
2606 } else if (bytes/packets > 2000)
2607 retval = bulk_latency;
2608 else if (packets <= 2 && bytes < 512)
2609 retval = lowest_latency;
2610 break;
2611 case bulk_latency: /* 250 usec aka 4000 ints/s */
2612 if (bytes > 25000) {
2613 if (packets > 35)
2614 retval = low_latency;
2615 } else if (bytes < 6000) {
2616 retval = low_latency;
2617 }
2618 break;
2619 }
2620
2621update_itr_done:
2622 return retval;
2623}
2624
2625static void e1000_set_itr(struct e1000_adapter *adapter)
2626{
2627 struct e1000_hw *hw = &adapter->hw;
2628 u16 current_itr;
2629 u32 new_itr = adapter->itr;
2630
2631 if (unlikely(hw->mac_type < e1000_82540))
2632 return;
2633
2634 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2635 if (unlikely(adapter->link_speed != SPEED_1000)) {
2636 new_itr = 4000;
2637 goto set_itr_now;
2638 }
2639
2640 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2641 adapter->total_tx_packets,
2642 adapter->total_tx_bytes);
2643 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2644 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2645 adapter->tx_itr = low_latency;
2646
2647 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2648 adapter->total_rx_packets,
2649 adapter->total_rx_bytes);
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2652 adapter->rx_itr = low_latency;
2653
2654 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2655
2656 switch (current_itr) {
2657 /* counts and packets in update_itr are dependent on these numbers */
2658 case lowest_latency:
2659 new_itr = 70000;
2660 break;
2661 case low_latency:
2662 new_itr = 20000; /* aka hwitr = ~200 */
2663 break;
2664 case bulk_latency:
2665 new_itr = 4000;
2666 break;
2667 default:
2668 break;
2669 }
2670
2671set_itr_now:
2672 if (new_itr != adapter->itr) {
2673 /* this attempts to bias the interrupt rate towards Bulk
2674 * by adding intermediate steps when interrupt rate is
2675 * increasing
2676 */
2677 new_itr = new_itr > adapter->itr ?
2678 min(adapter->itr + (new_itr >> 2), new_itr) :
2679 new_itr;
2680 adapter->itr = new_itr;
2681 ew32(ITR, 1000000000 / (new_itr * 256));
2682 }
2683}
2684
2685#define E1000_TX_FLAGS_CSUM 0x00000001
2686#define E1000_TX_FLAGS_VLAN 0x00000002
2687#define E1000_TX_FLAGS_TSO 0x00000004
2688#define E1000_TX_FLAGS_IPV4 0x00000008
2689#define E1000_TX_FLAGS_NO_FCS 0x00000010
2690#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2691#define E1000_TX_FLAGS_VLAN_SHIFT 16
2692
2693static int e1000_tso(struct e1000_adapter *adapter,
2694 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2695 __be16 protocol)
2696{
2697 struct e1000_context_desc *context_desc;
2698 struct e1000_tx_buffer *buffer_info;
2699 unsigned int i;
2700 u32 cmd_length = 0;
2701 u16 ipcse = 0, tucse, mss;
2702 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2703
2704 if (skb_is_gso(skb)) {
2705 int err;
2706
2707 err = skb_cow_head(skb, 0);
2708 if (err < 0)
2709 return err;
2710
2711 hdr_len = skb_tcp_all_headers(skb);
2712 mss = skb_shinfo(skb)->gso_size;
2713 if (protocol == htons(ETH_P_IP)) {
2714 struct iphdr *iph = ip_hdr(skb);
2715 iph->tot_len = 0;
2716 iph->check = 0;
2717 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2718 iph->daddr, 0,
2719 IPPROTO_TCP,
2720 0);
2721 cmd_length = E1000_TXD_CMD_IP;
2722 ipcse = skb_transport_offset(skb) - 1;
2723 } else if (skb_is_gso_v6(skb)) {
2724 tcp_v6_gso_csum_prep(skb);
2725 ipcse = 0;
2726 }
2727 ipcss = skb_network_offset(skb);
2728 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2729 tucss = skb_transport_offset(skb);
2730 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2731 tucse = 0;
2732
2733 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2734 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2735
2736 i = tx_ring->next_to_use;
2737 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2738 buffer_info = &tx_ring->buffer_info[i];
2739
2740 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2741 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2742 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2743 context_desc->upper_setup.tcp_fields.tucss = tucss;
2744 context_desc->upper_setup.tcp_fields.tucso = tucso;
2745 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2746 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2747 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2748 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2749
2750 buffer_info->time_stamp = jiffies;
2751 buffer_info->next_to_watch = i;
2752
2753 if (++i == tx_ring->count)
2754 i = 0;
2755
2756 tx_ring->next_to_use = i;
2757
2758 return true;
2759 }
2760 return false;
2761}
2762
2763static bool e1000_tx_csum(struct e1000_adapter *adapter,
2764 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2765 __be16 protocol)
2766{
2767 struct e1000_context_desc *context_desc;
2768 struct e1000_tx_buffer *buffer_info;
2769 unsigned int i;
2770 u8 css;
2771 u32 cmd_len = E1000_TXD_CMD_DEXT;
2772
2773 if (skb->ip_summed != CHECKSUM_PARTIAL)
2774 return false;
2775
2776 switch (protocol) {
2777 case cpu_to_be16(ETH_P_IP):
2778 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2779 cmd_len |= E1000_TXD_CMD_TCP;
2780 break;
2781 case cpu_to_be16(ETH_P_IPV6):
2782 /* XXX not handling all IPV6 headers */
2783 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2784 cmd_len |= E1000_TXD_CMD_TCP;
2785 break;
2786 default:
2787 if (unlikely(net_ratelimit()))
2788 e_warn(drv, "checksum_partial proto=%x!\n",
2789 skb->protocol);
2790 break;
2791 }
2792
2793 css = skb_checksum_start_offset(skb);
2794
2795 i = tx_ring->next_to_use;
2796 buffer_info = &tx_ring->buffer_info[i];
2797 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2798
2799 context_desc->lower_setup.ip_config = 0;
2800 context_desc->upper_setup.tcp_fields.tucss = css;
2801 context_desc->upper_setup.tcp_fields.tucso =
2802 css + skb->csum_offset;
2803 context_desc->upper_setup.tcp_fields.tucse = 0;
2804 context_desc->tcp_seg_setup.data = 0;
2805 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2806
2807 buffer_info->time_stamp = jiffies;
2808 buffer_info->next_to_watch = i;
2809
2810 if (unlikely(++i == tx_ring->count))
2811 i = 0;
2812
2813 tx_ring->next_to_use = i;
2814
2815 return true;
2816}
2817
2818#define E1000_MAX_TXD_PWR 12
2819#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2820
2821static int e1000_tx_map(struct e1000_adapter *adapter,
2822 struct e1000_tx_ring *tx_ring,
2823 struct sk_buff *skb, unsigned int first,
2824 unsigned int max_per_txd, unsigned int nr_frags,
2825 unsigned int mss)
2826{
2827 struct e1000_hw *hw = &adapter->hw;
2828 struct pci_dev *pdev = adapter->pdev;
2829 struct e1000_tx_buffer *buffer_info;
2830 unsigned int len = skb_headlen(skb);
2831 unsigned int offset = 0, size, count = 0, i;
2832 unsigned int f, bytecount, segs;
2833
2834 i = tx_ring->next_to_use;
2835
2836 while (len) {
2837 buffer_info = &tx_ring->buffer_info[i];
2838 size = min(len, max_per_txd);
2839 /* Workaround for Controller erratum --
2840 * descriptor for non-tso packet in a linear SKB that follows a
2841 * tso gets written back prematurely before the data is fully
2842 * DMA'd to the controller
2843 */
2844 if (!skb->data_len && tx_ring->last_tx_tso &&
2845 !skb_is_gso(skb)) {
2846 tx_ring->last_tx_tso = false;
2847 size -= 4;
2848 }
2849
2850 /* Workaround for premature desc write-backs
2851 * in TSO mode. Append 4-byte sentinel desc
2852 */
2853 if (unlikely(mss && !nr_frags && size == len && size > 8))
2854 size -= 4;
2855 /* work-around for errata 10 and it applies
2856 * to all controllers in PCI-X mode
2857 * The fix is to make sure that the first descriptor of a
2858 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2859 */
2860 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2861 (size > 2015) && count == 0))
2862 size = 2015;
2863
2864 /* Workaround for potential 82544 hang in PCI-X. Avoid
2865 * terminating buffers within evenly-aligned dwords.
2866 */
2867 if (unlikely(adapter->pcix_82544 &&
2868 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2869 size > 4))
2870 size -= 4;
2871
2872 buffer_info->length = size;
2873 /* set time_stamp *before* dma to help avoid a possible race */
2874 buffer_info->time_stamp = jiffies;
2875 buffer_info->mapped_as_page = false;
2876 buffer_info->dma = dma_map_single(&pdev->dev,
2877 skb->data + offset,
2878 size, DMA_TO_DEVICE);
2879 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2880 goto dma_error;
2881 buffer_info->next_to_watch = i;
2882
2883 len -= size;
2884 offset += size;
2885 count++;
2886 if (len) {
2887 i++;
2888 if (unlikely(i == tx_ring->count))
2889 i = 0;
2890 }
2891 }
2892
2893 for (f = 0; f < nr_frags; f++) {
2894 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
2895
2896 len = skb_frag_size(frag);
2897 offset = 0;
2898
2899 while (len) {
2900 unsigned long bufend;
2901 i++;
2902 if (unlikely(i == tx_ring->count))
2903 i = 0;
2904
2905 buffer_info = &tx_ring->buffer_info[i];
2906 size = min(len, max_per_txd);
2907 /* Workaround for premature desc write-backs
2908 * in TSO mode. Append 4-byte sentinel desc
2909 */
2910 if (unlikely(mss && f == (nr_frags-1) &&
2911 size == len && size > 8))
2912 size -= 4;
2913 /* Workaround for potential 82544 hang in PCI-X.
2914 * Avoid terminating buffers within evenly-aligned
2915 * dwords.
2916 */
2917 bufend = (unsigned long)
2918 page_to_phys(skb_frag_page(frag));
2919 bufend += offset + size - 1;
2920 if (unlikely(adapter->pcix_82544 &&
2921 !(bufend & 4) &&
2922 size > 4))
2923 size -= 4;
2924
2925 buffer_info->length = size;
2926 buffer_info->time_stamp = jiffies;
2927 buffer_info->mapped_as_page = true;
2928 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2929 offset, size, DMA_TO_DEVICE);
2930 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2931 goto dma_error;
2932 buffer_info->next_to_watch = i;
2933
2934 len -= size;
2935 offset += size;
2936 count++;
2937 }
2938 }
2939
2940 segs = skb_shinfo(skb)->gso_segs ?: 1;
2941 /* multiply data chunks by size of headers */
2942 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2943
2944 tx_ring->buffer_info[i].skb = skb;
2945 tx_ring->buffer_info[i].segs = segs;
2946 tx_ring->buffer_info[i].bytecount = bytecount;
2947 tx_ring->buffer_info[first].next_to_watch = i;
2948
2949 return count;
2950
2951dma_error:
2952 dev_err(&pdev->dev, "TX DMA map failed\n");
2953 buffer_info->dma = 0;
2954 if (count)
2955 count--;
2956
2957 while (count--) {
2958 if (i == 0)
2959 i += tx_ring->count;
2960 i--;
2961 buffer_info = &tx_ring->buffer_info[i];
2962 e1000_unmap_and_free_tx_resource(adapter, buffer_info, 0);
2963 }
2964
2965 return 0;
2966}
2967
2968static void e1000_tx_queue(struct e1000_adapter *adapter,
2969 struct e1000_tx_ring *tx_ring, int tx_flags,
2970 int count)
2971{
2972 struct e1000_tx_desc *tx_desc = NULL;
2973 struct e1000_tx_buffer *buffer_info;
2974 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2975 unsigned int i;
2976
2977 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2978 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2979 E1000_TXD_CMD_TSE;
2980 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2981
2982 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2983 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2984 }
2985
2986 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2987 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2988 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2989 }
2990
2991 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2992 txd_lower |= E1000_TXD_CMD_VLE;
2993 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2994 }
2995
2996 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
2997 txd_lower &= ~(E1000_TXD_CMD_IFCS);
2998
2999 i = tx_ring->next_to_use;
3000
3001 while (count--) {
3002 buffer_info = &tx_ring->buffer_info[i];
3003 tx_desc = E1000_TX_DESC(*tx_ring, i);
3004 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3005 tx_desc->lower.data =
3006 cpu_to_le32(txd_lower | buffer_info->length);
3007 tx_desc->upper.data = cpu_to_le32(txd_upper);
3008 if (unlikely(++i == tx_ring->count))
3009 i = 0;
3010 }
3011
3012 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3013
3014 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3015 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3016 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3017
3018 /* Force memory writes to complete before letting h/w
3019 * know there are new descriptors to fetch. (Only
3020 * applicable for weak-ordered memory model archs,
3021 * such as IA-64).
3022 */
3023 dma_wmb();
3024
3025 tx_ring->next_to_use = i;
3026}
3027
3028/* 82547 workaround to avoid controller hang in half-duplex environment.
3029 * The workaround is to avoid queuing a large packet that would span
3030 * the internal Tx FIFO ring boundary by notifying the stack to resend
3031 * the packet at a later time. This gives the Tx FIFO an opportunity to
3032 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3033 * to the beginning of the Tx FIFO.
3034 */
3035
3036#define E1000_FIFO_HDR 0x10
3037#define E1000_82547_PAD_LEN 0x3E0
3038
3039static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3040 struct sk_buff *skb)
3041{
3042 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3043 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3044
3045 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3046
3047 if (adapter->link_duplex != HALF_DUPLEX)
3048 goto no_fifo_stall_required;
3049
3050 if (atomic_read(&adapter->tx_fifo_stall))
3051 return 1;
3052
3053 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3054 atomic_set(&adapter->tx_fifo_stall, 1);
3055 return 1;
3056 }
3057
3058no_fifo_stall_required:
3059 adapter->tx_fifo_head += skb_fifo_len;
3060 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3061 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3062 return 0;
3063}
3064
3065static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3066{
3067 struct e1000_adapter *adapter = netdev_priv(netdev);
3068 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3069
3070 netif_stop_queue(netdev);
3071 /* Herbert's original patch had:
3072 * smp_mb__after_netif_stop_queue();
3073 * but since that doesn't exist yet, just open code it.
3074 */
3075 smp_mb();
3076
3077 /* We need to check again in a case another CPU has just
3078 * made room available.
3079 */
3080 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3081 return -EBUSY;
3082
3083 /* A reprieve! */
3084 netif_start_queue(netdev);
3085 ++adapter->restart_queue;
3086 return 0;
3087}
3088
3089static int e1000_maybe_stop_tx(struct net_device *netdev,
3090 struct e1000_tx_ring *tx_ring, int size)
3091{
3092 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3093 return 0;
3094 return __e1000_maybe_stop_tx(netdev, size);
3095}
3096
3097#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3098static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3099 struct net_device *netdev)
3100{
3101 struct e1000_adapter *adapter = netdev_priv(netdev);
3102 struct e1000_hw *hw = &adapter->hw;
3103 struct e1000_tx_ring *tx_ring;
3104 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3105 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3106 unsigned int tx_flags = 0;
3107 unsigned int len = skb_headlen(skb);
3108 unsigned int nr_frags;
3109 unsigned int mss;
3110 int count = 0;
3111 int tso;
3112 unsigned int f;
3113 __be16 protocol = vlan_get_protocol(skb);
3114
3115 /* This goes back to the question of how to logically map a Tx queue
3116 * to a flow. Right now, performance is impacted slightly negatively
3117 * if using multiple Tx queues. If the stack breaks away from a
3118 * single qdisc implementation, we can look at this again.
3119 */
3120 tx_ring = adapter->tx_ring;
3121
3122 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3123 * packets may get corrupted during padding by HW.
3124 * To WA this issue, pad all small packets manually.
3125 */
3126 if (eth_skb_pad(skb))
3127 return NETDEV_TX_OK;
3128
3129 mss = skb_shinfo(skb)->gso_size;
3130 /* The controller does a simple calculation to
3131 * make sure there is enough room in the FIFO before
3132 * initiating the DMA for each buffer. The calc is:
3133 * 4 = ceil(buffer len/mss). To make sure we don't
3134 * overrun the FIFO, adjust the max buffer len if mss
3135 * drops.
3136 */
3137 if (mss) {
3138 u8 hdr_len;
3139 max_per_txd = min(mss << 2, max_per_txd);
3140 max_txd_pwr = fls(max_per_txd) - 1;
3141
3142 hdr_len = skb_tcp_all_headers(skb);
3143 if (skb->data_len && hdr_len == len) {
3144 switch (hw->mac_type) {
3145 case e1000_82544: {
3146 unsigned int pull_size;
3147
3148 /* Make sure we have room to chop off 4 bytes,
3149 * and that the end alignment will work out to
3150 * this hardware's requirements
3151 * NOTE: this is a TSO only workaround
3152 * if end byte alignment not correct move us
3153 * into the next dword
3154 */
3155 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3156 & 4)
3157 break;
3158 pull_size = min((unsigned int)4, skb->data_len);
3159 if (!__pskb_pull_tail(skb, pull_size)) {
3160 e_err(drv, "__pskb_pull_tail "
3161 "failed.\n");
3162 dev_kfree_skb_any(skb);
3163 return NETDEV_TX_OK;
3164 }
3165 len = skb_headlen(skb);
3166 break;
3167 }
3168 default:
3169 /* do nothing */
3170 break;
3171 }
3172 }
3173 }
3174
3175 /* reserve a descriptor for the offload context */
3176 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3177 count++;
3178 count++;
3179
3180 /* Controller Erratum workaround */
3181 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3182 count++;
3183
3184 count += TXD_USE_COUNT(len, max_txd_pwr);
3185
3186 if (adapter->pcix_82544)
3187 count++;
3188
3189 /* work-around for errata 10 and it applies to all controllers
3190 * in PCI-X mode, so add one more descriptor to the count
3191 */
3192 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3193 (len > 2015)))
3194 count++;
3195
3196 nr_frags = skb_shinfo(skb)->nr_frags;
3197 for (f = 0; f < nr_frags; f++)
3198 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3199 max_txd_pwr);
3200 if (adapter->pcix_82544)
3201 count += nr_frags;
3202
3203 /* need: count + 2 desc gap to keep tail from touching
3204 * head, otherwise try next time
3205 */
3206 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3207 return NETDEV_TX_BUSY;
3208
3209 if (unlikely((hw->mac_type == e1000_82547) &&
3210 (e1000_82547_fifo_workaround(adapter, skb)))) {
3211 netif_stop_queue(netdev);
3212 if (!test_bit(__E1000_DOWN, &adapter->flags))
3213 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3214 return NETDEV_TX_BUSY;
3215 }
3216
3217 if (skb_vlan_tag_present(skb)) {
3218 tx_flags |= E1000_TX_FLAGS_VLAN;
3219 tx_flags |= (skb_vlan_tag_get(skb) <<
3220 E1000_TX_FLAGS_VLAN_SHIFT);
3221 }
3222
3223 first = tx_ring->next_to_use;
3224
3225 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3226 if (tso < 0) {
3227 dev_kfree_skb_any(skb);
3228 return NETDEV_TX_OK;
3229 }
3230
3231 if (likely(tso)) {
3232 if (likely(hw->mac_type != e1000_82544))
3233 tx_ring->last_tx_tso = true;
3234 tx_flags |= E1000_TX_FLAGS_TSO;
3235 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3236 tx_flags |= E1000_TX_FLAGS_CSUM;
3237
3238 if (protocol == htons(ETH_P_IP))
3239 tx_flags |= E1000_TX_FLAGS_IPV4;
3240
3241 if (unlikely(skb->no_fcs))
3242 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3243
3244 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3245 nr_frags, mss);
3246
3247 if (count) {
3248 /* The descriptors needed is higher than other Intel drivers
3249 * due to a number of workarounds. The breakdown is below:
3250 * Data descriptors: MAX_SKB_FRAGS + 1
3251 * Context Descriptor: 1
3252 * Keep head from touching tail: 2
3253 * Workarounds: 3
3254 */
3255 int desc_needed = MAX_SKB_FRAGS + 7;
3256
3257 netdev_sent_queue(netdev, skb->len);
3258 skb_tx_timestamp(skb);
3259
3260 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3261
3262 /* 82544 potentially requires twice as many data descriptors
3263 * in order to guarantee buffers don't end on evenly-aligned
3264 * dwords
3265 */
3266 if (adapter->pcix_82544)
3267 desc_needed += MAX_SKB_FRAGS + 1;
3268
3269 /* Make sure there is space in the ring for the next send. */
3270 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3271
3272 if (!netdev_xmit_more() ||
3273 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3274 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3275 }
3276 } else {
3277 dev_kfree_skb_any(skb);
3278 tx_ring->buffer_info[first].time_stamp = 0;
3279 tx_ring->next_to_use = first;
3280 }
3281
3282 return NETDEV_TX_OK;
3283}
3284
3285#define NUM_REGS 38 /* 1 based count */
3286static void e1000_regdump(struct e1000_adapter *adapter)
3287{
3288 struct e1000_hw *hw = &adapter->hw;
3289 u32 regs[NUM_REGS];
3290 u32 *regs_buff = regs;
3291 int i = 0;
3292
3293 static const char * const reg_name[] = {
3294 "CTRL", "STATUS",
3295 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3296 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3297 "TIDV", "TXDCTL", "TADV", "TARC0",
3298 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3299 "TXDCTL1", "TARC1",
3300 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3301 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3302 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3303 };
3304
3305 regs_buff[0] = er32(CTRL);
3306 regs_buff[1] = er32(STATUS);
3307
3308 regs_buff[2] = er32(RCTL);
3309 regs_buff[3] = er32(RDLEN);
3310 regs_buff[4] = er32(RDH);
3311 regs_buff[5] = er32(RDT);
3312 regs_buff[6] = er32(RDTR);
3313
3314 regs_buff[7] = er32(TCTL);
3315 regs_buff[8] = er32(TDBAL);
3316 regs_buff[9] = er32(TDBAH);
3317 regs_buff[10] = er32(TDLEN);
3318 regs_buff[11] = er32(TDH);
3319 regs_buff[12] = er32(TDT);
3320 regs_buff[13] = er32(TIDV);
3321 regs_buff[14] = er32(TXDCTL);
3322 regs_buff[15] = er32(TADV);
3323 regs_buff[16] = er32(TARC0);
3324
3325 regs_buff[17] = er32(TDBAL1);
3326 regs_buff[18] = er32(TDBAH1);
3327 regs_buff[19] = er32(TDLEN1);
3328 regs_buff[20] = er32(TDH1);
3329 regs_buff[21] = er32(TDT1);
3330 regs_buff[22] = er32(TXDCTL1);
3331 regs_buff[23] = er32(TARC1);
3332 regs_buff[24] = er32(CTRL_EXT);
3333 regs_buff[25] = er32(ERT);
3334 regs_buff[26] = er32(RDBAL0);
3335 regs_buff[27] = er32(RDBAH0);
3336 regs_buff[28] = er32(TDFH);
3337 regs_buff[29] = er32(TDFT);
3338 regs_buff[30] = er32(TDFHS);
3339 regs_buff[31] = er32(TDFTS);
3340 regs_buff[32] = er32(TDFPC);
3341 regs_buff[33] = er32(RDFH);
3342 regs_buff[34] = er32(RDFT);
3343 regs_buff[35] = er32(RDFHS);
3344 regs_buff[36] = er32(RDFTS);
3345 regs_buff[37] = er32(RDFPC);
3346
3347 pr_info("Register dump\n");
3348 for (i = 0; i < NUM_REGS; i++)
3349 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3350}
3351
3352/*
3353 * e1000_dump: Print registers, tx ring and rx ring
3354 */
3355static void e1000_dump(struct e1000_adapter *adapter)
3356{
3357 /* this code doesn't handle multiple rings */
3358 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3359 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3360 int i;
3361
3362 if (!netif_msg_hw(adapter))
3363 return;
3364
3365 /* Print Registers */
3366 e1000_regdump(adapter);
3367
3368 /* transmit dump */
3369 pr_info("TX Desc ring0 dump\n");
3370
3371 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3372 *
3373 * Legacy Transmit Descriptor
3374 * +--------------------------------------------------------------+
3375 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3376 * +--------------------------------------------------------------+
3377 * 8 | Special | CSS | Status | CMD | CSO | Length |
3378 * +--------------------------------------------------------------+
3379 * 63 48 47 36 35 32 31 24 23 16 15 0
3380 *
3381 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3382 * 63 48 47 40 39 32 31 16 15 8 7 0
3383 * +----------------------------------------------------------------+
3384 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3385 * +----------------------------------------------------------------+
3386 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3387 * +----------------------------------------------------------------+
3388 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3389 *
3390 * Extended Data Descriptor (DTYP=0x1)
3391 * +----------------------------------------------------------------+
3392 * 0 | Buffer Address [63:0] |
3393 * +----------------------------------------------------------------+
3394 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3395 * +----------------------------------------------------------------+
3396 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3397 */
3398 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3399 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3400
3401 if (!netif_msg_tx_done(adapter))
3402 goto rx_ring_summary;
3403
3404 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3405 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3406 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3407 struct my_u { __le64 a; __le64 b; };
3408 struct my_u *u = (struct my_u *)tx_desc;
3409 const char *type;
3410
3411 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3412 type = "NTC/U";
3413 else if (i == tx_ring->next_to_use)
3414 type = "NTU";
3415 else if (i == tx_ring->next_to_clean)
3416 type = "NTC";
3417 else
3418 type = "";
3419
3420 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3421 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3422 le64_to_cpu(u->a), le64_to_cpu(u->b),
3423 (u64)buffer_info->dma, buffer_info->length,
3424 buffer_info->next_to_watch,
3425 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3426 }
3427
3428rx_ring_summary:
3429 /* receive dump */
3430 pr_info("\nRX Desc ring dump\n");
3431
3432 /* Legacy Receive Descriptor Format
3433 *
3434 * +-----------------------------------------------------+
3435 * | Buffer Address [63:0] |
3436 * +-----------------------------------------------------+
3437 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3438 * +-----------------------------------------------------+
3439 * 63 48 47 40 39 32 31 16 15 0
3440 */
3441 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3442
3443 if (!netif_msg_rx_status(adapter))
3444 goto exit;
3445
3446 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3447 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3448 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3449 struct my_u { __le64 a; __le64 b; };
3450 struct my_u *u = (struct my_u *)rx_desc;
3451 const char *type;
3452
3453 if (i == rx_ring->next_to_use)
3454 type = "NTU";
3455 else if (i == rx_ring->next_to_clean)
3456 type = "NTC";
3457 else
3458 type = "";
3459
3460 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3461 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3462 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3463 } /* for */
3464
3465 /* dump the descriptor caches */
3466 /* rx */
3467 pr_info("Rx descriptor cache in 64bit format\n");
3468 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3469 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3470 i,
3471 readl(adapter->hw.hw_addr + i+4),
3472 readl(adapter->hw.hw_addr + i),
3473 readl(adapter->hw.hw_addr + i+12),
3474 readl(adapter->hw.hw_addr + i+8));
3475 }
3476 /* tx */
3477 pr_info("Tx descriptor cache in 64bit format\n");
3478 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3479 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3480 i,
3481 readl(adapter->hw.hw_addr + i+4),
3482 readl(adapter->hw.hw_addr + i),
3483 readl(adapter->hw.hw_addr + i+12),
3484 readl(adapter->hw.hw_addr + i+8));
3485 }
3486exit:
3487 return;
3488}
3489
3490/**
3491 * e1000_tx_timeout - Respond to a Tx Hang
3492 * @netdev: network interface device structure
3493 * @txqueue: number of the Tx queue that hung (unused)
3494 **/
3495static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
3496{
3497 struct e1000_adapter *adapter = netdev_priv(netdev);
3498
3499 /* Do the reset outside of interrupt context */
3500 adapter->tx_timeout_count++;
3501 schedule_work(&adapter->reset_task);
3502}
3503
3504static void e1000_reset_task(struct work_struct *work)
3505{
3506 struct e1000_adapter *adapter =
3507 container_of(work, struct e1000_adapter, reset_task);
3508
3509 e_err(drv, "Reset adapter\n");
3510 e1000_reinit_locked(adapter);
3511}
3512
3513/**
3514 * e1000_change_mtu - Change the Maximum Transfer Unit
3515 * @netdev: network interface device structure
3516 * @new_mtu: new value for maximum frame size
3517 *
3518 * Returns 0 on success, negative on failure
3519 **/
3520static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3521{
3522 struct e1000_adapter *adapter = netdev_priv(netdev);
3523 struct e1000_hw *hw = &adapter->hw;
3524 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3525
3526 /* Adapter-specific max frame size limits. */
3527 switch (hw->mac_type) {
3528 case e1000_undefined ... e1000_82542_rev2_1:
3529 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3530 e_err(probe, "Jumbo Frames not supported.\n");
3531 return -EINVAL;
3532 }
3533 break;
3534 default:
3535 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3536 break;
3537 }
3538
3539 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3540 msleep(1);
3541 /* e1000_down has a dependency on max_frame_size */
3542 hw->max_frame_size = max_frame;
3543 if (netif_running(netdev)) {
3544 /* prevent buffers from being reallocated */
3545 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3546 e1000_down(adapter);
3547 }
3548
3549 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3550 * means we reserve 2 more, this pushes us to allocate from the next
3551 * larger slab size.
3552 * i.e. RXBUFFER_2048 --> size-4096 slab
3553 * however with the new *_jumbo_rx* routines, jumbo receives will use
3554 * fragmented skbs
3555 */
3556
3557 if (max_frame <= E1000_RXBUFFER_2048)
3558 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3559 else
3560#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3561 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3562#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3563 adapter->rx_buffer_len = PAGE_SIZE;
3564#endif
3565
3566 /* adjust allocation if LPE protects us, and we aren't using SBP */
3567 if (!hw->tbi_compatibility_on &&
3568 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3569 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3570 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3571
3572 netdev_dbg(netdev, "changing MTU from %d to %d\n",
3573 netdev->mtu, new_mtu);
3574 netdev->mtu = new_mtu;
3575
3576 if (netif_running(netdev))
3577 e1000_up(adapter);
3578 else
3579 e1000_reset(adapter);
3580
3581 clear_bit(__E1000_RESETTING, &adapter->flags);
3582
3583 return 0;
3584}
3585
3586/**
3587 * e1000_update_stats - Update the board statistics counters
3588 * @adapter: board private structure
3589 **/
3590void e1000_update_stats(struct e1000_adapter *adapter)
3591{
3592 struct net_device *netdev = adapter->netdev;
3593 struct e1000_hw *hw = &adapter->hw;
3594 struct pci_dev *pdev = adapter->pdev;
3595 unsigned long flags;
3596 u16 phy_tmp;
3597
3598#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3599
3600 /* Prevent stats update while adapter is being reset, or if the pci
3601 * connection is down.
3602 */
3603 if (adapter->link_speed == 0)
3604 return;
3605 if (pci_channel_offline(pdev))
3606 return;
3607
3608 spin_lock_irqsave(&adapter->stats_lock, flags);
3609
3610 /* these counters are modified from e1000_tbi_adjust_stats,
3611 * called from the interrupt context, so they must only
3612 * be written while holding adapter->stats_lock
3613 */
3614
3615 adapter->stats.crcerrs += er32(CRCERRS);
3616 adapter->stats.gprc += er32(GPRC);
3617 adapter->stats.gorcl += er32(GORCL);
3618 adapter->stats.gorch += er32(GORCH);
3619 adapter->stats.bprc += er32(BPRC);
3620 adapter->stats.mprc += er32(MPRC);
3621 adapter->stats.roc += er32(ROC);
3622
3623 adapter->stats.prc64 += er32(PRC64);
3624 adapter->stats.prc127 += er32(PRC127);
3625 adapter->stats.prc255 += er32(PRC255);
3626 adapter->stats.prc511 += er32(PRC511);
3627 adapter->stats.prc1023 += er32(PRC1023);
3628 adapter->stats.prc1522 += er32(PRC1522);
3629
3630 adapter->stats.symerrs += er32(SYMERRS);
3631 adapter->stats.mpc += er32(MPC);
3632 adapter->stats.scc += er32(SCC);
3633 adapter->stats.ecol += er32(ECOL);
3634 adapter->stats.mcc += er32(MCC);
3635 adapter->stats.latecol += er32(LATECOL);
3636 adapter->stats.dc += er32(DC);
3637 adapter->stats.sec += er32(SEC);
3638 adapter->stats.rlec += er32(RLEC);
3639 adapter->stats.xonrxc += er32(XONRXC);
3640 adapter->stats.xontxc += er32(XONTXC);
3641 adapter->stats.xoffrxc += er32(XOFFRXC);
3642 adapter->stats.xofftxc += er32(XOFFTXC);
3643 adapter->stats.fcruc += er32(FCRUC);
3644 adapter->stats.gptc += er32(GPTC);
3645 adapter->stats.gotcl += er32(GOTCL);
3646 adapter->stats.gotch += er32(GOTCH);
3647 adapter->stats.rnbc += er32(RNBC);
3648 adapter->stats.ruc += er32(RUC);
3649 adapter->stats.rfc += er32(RFC);
3650 adapter->stats.rjc += er32(RJC);
3651 adapter->stats.torl += er32(TORL);
3652 adapter->stats.torh += er32(TORH);
3653 adapter->stats.totl += er32(TOTL);
3654 adapter->stats.toth += er32(TOTH);
3655 adapter->stats.tpr += er32(TPR);
3656
3657 adapter->stats.ptc64 += er32(PTC64);
3658 adapter->stats.ptc127 += er32(PTC127);
3659 adapter->stats.ptc255 += er32(PTC255);
3660 adapter->stats.ptc511 += er32(PTC511);
3661 adapter->stats.ptc1023 += er32(PTC1023);
3662 adapter->stats.ptc1522 += er32(PTC1522);
3663
3664 adapter->stats.mptc += er32(MPTC);
3665 adapter->stats.bptc += er32(BPTC);
3666
3667 /* used for adaptive IFS */
3668
3669 hw->tx_packet_delta = er32(TPT);
3670 adapter->stats.tpt += hw->tx_packet_delta;
3671 hw->collision_delta = er32(COLC);
3672 adapter->stats.colc += hw->collision_delta;
3673
3674 if (hw->mac_type >= e1000_82543) {
3675 adapter->stats.algnerrc += er32(ALGNERRC);
3676 adapter->stats.rxerrc += er32(RXERRC);
3677 adapter->stats.tncrs += er32(TNCRS);
3678 adapter->stats.cexterr += er32(CEXTERR);
3679 adapter->stats.tsctc += er32(TSCTC);
3680 adapter->stats.tsctfc += er32(TSCTFC);
3681 }
3682
3683 /* Fill out the OS statistics structure */
3684 netdev->stats.multicast = adapter->stats.mprc;
3685 netdev->stats.collisions = adapter->stats.colc;
3686
3687 /* Rx Errors */
3688
3689 /* RLEC on some newer hardware can be incorrect so build
3690 * our own version based on RUC and ROC
3691 */
3692 netdev->stats.rx_errors = adapter->stats.rxerrc +
3693 adapter->stats.crcerrs + adapter->stats.algnerrc +
3694 adapter->stats.ruc + adapter->stats.roc +
3695 adapter->stats.cexterr;
3696 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3697 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3698 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3699 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3700 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3701
3702 /* Tx Errors */
3703 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3704 netdev->stats.tx_errors = adapter->stats.txerrc;
3705 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3706 netdev->stats.tx_window_errors = adapter->stats.latecol;
3707 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3708 if (hw->bad_tx_carr_stats_fd &&
3709 adapter->link_duplex == FULL_DUPLEX) {
3710 netdev->stats.tx_carrier_errors = 0;
3711 adapter->stats.tncrs = 0;
3712 }
3713
3714 /* Tx Dropped needs to be maintained elsewhere */
3715
3716 /* Phy Stats */
3717 if (hw->media_type == e1000_media_type_copper) {
3718 if ((adapter->link_speed == SPEED_1000) &&
3719 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3720 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3721 adapter->phy_stats.idle_errors += phy_tmp;
3722 }
3723
3724 if ((hw->mac_type <= e1000_82546) &&
3725 (hw->phy_type == e1000_phy_m88) &&
3726 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3727 adapter->phy_stats.receive_errors += phy_tmp;
3728 }
3729
3730 /* Management Stats */
3731 if (hw->has_smbus) {
3732 adapter->stats.mgptc += er32(MGTPTC);
3733 adapter->stats.mgprc += er32(MGTPRC);
3734 adapter->stats.mgpdc += er32(MGTPDC);
3735 }
3736
3737 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3738}
3739
3740/**
3741 * e1000_intr - Interrupt Handler
3742 * @irq: interrupt number
3743 * @data: pointer to a network interface device structure
3744 **/
3745static irqreturn_t e1000_intr(int irq, void *data)
3746{
3747 struct net_device *netdev = data;
3748 struct e1000_adapter *adapter = netdev_priv(netdev);
3749 struct e1000_hw *hw = &adapter->hw;
3750 u32 icr = er32(ICR);
3751
3752 if (unlikely((!icr)))
3753 return IRQ_NONE; /* Not our interrupt */
3754
3755 /* we might have caused the interrupt, but the above
3756 * read cleared it, and just in case the driver is
3757 * down there is nothing to do so return handled
3758 */
3759 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3760 return IRQ_HANDLED;
3761
3762 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3763 hw->get_link_status = 1;
3764 /* guard against interrupt when we're going down */
3765 if (!test_bit(__E1000_DOWN, &adapter->flags))
3766 schedule_delayed_work(&adapter->watchdog_task, 1);
3767 }
3768
3769 /* disable interrupts, without the synchronize_irq bit */
3770 ew32(IMC, ~0);
3771 E1000_WRITE_FLUSH();
3772
3773 if (likely(napi_schedule_prep(&adapter->napi))) {
3774 adapter->total_tx_bytes = 0;
3775 adapter->total_tx_packets = 0;
3776 adapter->total_rx_bytes = 0;
3777 adapter->total_rx_packets = 0;
3778 __napi_schedule(&adapter->napi);
3779 } else {
3780 /* this really should not happen! if it does it is basically a
3781 * bug, but not a hard error, so enable ints and continue
3782 */
3783 if (!test_bit(__E1000_DOWN, &adapter->flags))
3784 e1000_irq_enable(adapter);
3785 }
3786
3787 return IRQ_HANDLED;
3788}
3789
3790/**
3791 * e1000_clean - NAPI Rx polling callback
3792 * @napi: napi struct containing references to driver info
3793 * @budget: budget given to driver for receive packets
3794 **/
3795static int e1000_clean(struct napi_struct *napi, int budget)
3796{
3797 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3798 napi);
3799 int tx_clean_complete = 0, work_done = 0;
3800
3801 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3802
3803 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3804
3805 if (!tx_clean_complete || work_done == budget)
3806 return budget;
3807
3808 /* Exit the polling mode, but don't re-enable interrupts if stack might
3809 * poll us due to busy-polling
3810 */
3811 if (likely(napi_complete_done(napi, work_done))) {
3812 if (likely(adapter->itr_setting & 3))
3813 e1000_set_itr(adapter);
3814 if (!test_bit(__E1000_DOWN, &adapter->flags))
3815 e1000_irq_enable(adapter);
3816 }
3817
3818 return work_done;
3819}
3820
3821/**
3822 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3823 * @adapter: board private structure
3824 * @tx_ring: ring to clean
3825 **/
3826static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3827 struct e1000_tx_ring *tx_ring)
3828{
3829 struct e1000_hw *hw = &adapter->hw;
3830 struct net_device *netdev = adapter->netdev;
3831 struct e1000_tx_desc *tx_desc, *eop_desc;
3832 struct e1000_tx_buffer *buffer_info;
3833 unsigned int i, eop;
3834 unsigned int count = 0;
3835 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3836 unsigned int bytes_compl = 0, pkts_compl = 0;
3837
3838 i = tx_ring->next_to_clean;
3839 eop = tx_ring->buffer_info[i].next_to_watch;
3840 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3841
3842 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3843 (count < tx_ring->count)) {
3844 bool cleaned = false;
3845 dma_rmb(); /* read buffer_info after eop_desc */
3846 for ( ; !cleaned; count++) {
3847 tx_desc = E1000_TX_DESC(*tx_ring, i);
3848 buffer_info = &tx_ring->buffer_info[i];
3849 cleaned = (i == eop);
3850
3851 if (cleaned) {
3852 total_tx_packets += buffer_info->segs;
3853 total_tx_bytes += buffer_info->bytecount;
3854 if (buffer_info->skb) {
3855 bytes_compl += buffer_info->skb->len;
3856 pkts_compl++;
3857 }
3858
3859 }
3860 e1000_unmap_and_free_tx_resource(adapter, buffer_info,
3861 64);
3862 tx_desc->upper.data = 0;
3863
3864 if (unlikely(++i == tx_ring->count))
3865 i = 0;
3866 }
3867
3868 eop = tx_ring->buffer_info[i].next_to_watch;
3869 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3870 }
3871
3872 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3873 * which will reuse the cleaned buffers.
3874 */
3875 smp_store_release(&tx_ring->next_to_clean, i);
3876
3877 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3878
3879#define TX_WAKE_THRESHOLD 32
3880 if (unlikely(count && netif_carrier_ok(netdev) &&
3881 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3882 /* Make sure that anybody stopping the queue after this
3883 * sees the new next_to_clean.
3884 */
3885 smp_mb();
3886
3887 if (netif_queue_stopped(netdev) &&
3888 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3889 netif_wake_queue(netdev);
3890 ++adapter->restart_queue;
3891 }
3892 }
3893
3894 if (adapter->detect_tx_hung) {
3895 /* Detect a transmit hang in hardware, this serializes the
3896 * check with the clearing of time_stamp and movement of i
3897 */
3898 adapter->detect_tx_hung = false;
3899 if (tx_ring->buffer_info[eop].time_stamp &&
3900 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3901 (adapter->tx_timeout_factor * HZ)) &&
3902 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3903
3904 /* detected Tx unit hang */
3905 e_err(drv, "Detected Tx Unit Hang\n"
3906 " Tx Queue <%lu>\n"
3907 " TDH <%x>\n"
3908 " TDT <%x>\n"
3909 " next_to_use <%x>\n"
3910 " next_to_clean <%x>\n"
3911 "buffer_info[next_to_clean]\n"
3912 " time_stamp <%lx>\n"
3913 " next_to_watch <%x>\n"
3914 " jiffies <%lx>\n"
3915 " next_to_watch.status <%x>\n",
3916 (unsigned long)(tx_ring - adapter->tx_ring),
3917 readl(hw->hw_addr + tx_ring->tdh),
3918 readl(hw->hw_addr + tx_ring->tdt),
3919 tx_ring->next_to_use,
3920 tx_ring->next_to_clean,
3921 tx_ring->buffer_info[eop].time_stamp,
3922 eop,
3923 jiffies,
3924 eop_desc->upper.fields.status);
3925 e1000_dump(adapter);
3926 netif_stop_queue(netdev);
3927 }
3928 }
3929 adapter->total_tx_bytes += total_tx_bytes;
3930 adapter->total_tx_packets += total_tx_packets;
3931 netdev->stats.tx_bytes += total_tx_bytes;
3932 netdev->stats.tx_packets += total_tx_packets;
3933 return count < tx_ring->count;
3934}
3935
3936/**
3937 * e1000_rx_checksum - Receive Checksum Offload for 82543
3938 * @adapter: board private structure
3939 * @status_err: receive descriptor status and error fields
3940 * @csum: receive descriptor csum field
3941 * @skb: socket buffer with received data
3942 **/
3943static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3944 u32 csum, struct sk_buff *skb)
3945{
3946 struct e1000_hw *hw = &adapter->hw;
3947 u16 status = (u16)status_err;
3948 u8 errors = (u8)(status_err >> 24);
3949
3950 skb_checksum_none_assert(skb);
3951
3952 /* 82543 or newer only */
3953 if (unlikely(hw->mac_type < e1000_82543))
3954 return;
3955 /* Ignore Checksum bit is set */
3956 if (unlikely(status & E1000_RXD_STAT_IXSM))
3957 return;
3958 /* TCP/UDP checksum error bit is set */
3959 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3960 /* let the stack verify checksum errors */
3961 adapter->hw_csum_err++;
3962 return;
3963 }
3964 /* TCP/UDP Checksum has not been calculated */
3965 if (!(status & E1000_RXD_STAT_TCPCS))
3966 return;
3967
3968 /* It must be a TCP or UDP packet with a valid checksum */
3969 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3970 /* TCP checksum is good */
3971 skb->ip_summed = CHECKSUM_UNNECESSARY;
3972 }
3973 adapter->hw_csum_good++;
3974}
3975
3976/**
3977 * e1000_consume_page - helper function for jumbo Rx path
3978 * @bi: software descriptor shadow data
3979 * @skb: skb being modified
3980 * @length: length of data being added
3981 **/
3982static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
3983 u16 length)
3984{
3985 bi->rxbuf.page = NULL;
3986 skb->len += length;
3987 skb->data_len += length;
3988 skb->truesize += PAGE_SIZE;
3989}
3990
3991/**
3992 * e1000_receive_skb - helper function to handle rx indications
3993 * @adapter: board private structure
3994 * @status: descriptor status field as written by hardware
3995 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3996 * @skb: pointer to sk_buff to be indicated to stack
3997 */
3998static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
3999 __le16 vlan, struct sk_buff *skb)
4000{
4001 skb->protocol = eth_type_trans(skb, adapter->netdev);
4002
4003 if (status & E1000_RXD_STAT_VP) {
4004 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4005
4006 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4007 }
4008 napi_gro_receive(&adapter->napi, skb);
4009}
4010
4011/**
4012 * e1000_tbi_adjust_stats
4013 * @hw: Struct containing variables accessed by shared code
4014 * @stats: point to stats struct
4015 * @frame_len: The length of the frame in question
4016 * @mac_addr: The Ethernet destination address of the frame in question
4017 *
4018 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4019 */
4020static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4021 struct e1000_hw_stats *stats,
4022 u32 frame_len, const u8 *mac_addr)
4023{
4024 u64 carry_bit;
4025
4026 /* First adjust the frame length. */
4027 frame_len--;
4028 /* We need to adjust the statistics counters, since the hardware
4029 * counters overcount this packet as a CRC error and undercount
4030 * the packet as a good packet
4031 */
4032 /* This packet should not be counted as a CRC error. */
4033 stats->crcerrs--;
4034 /* This packet does count as a Good Packet Received. */
4035 stats->gprc++;
4036
4037 /* Adjust the Good Octets received counters */
4038 carry_bit = 0x80000000 & stats->gorcl;
4039 stats->gorcl += frame_len;
4040 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4041 * Received Count) was one before the addition,
4042 * AND it is zero after, then we lost the carry out,
4043 * need to add one to Gorch (Good Octets Received Count High).
4044 * This could be simplified if all environments supported
4045 * 64-bit integers.
4046 */
4047 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4048 stats->gorch++;
4049 /* Is this a broadcast or multicast? Check broadcast first,
4050 * since the test for a multicast frame will test positive on
4051 * a broadcast frame.
4052 */
4053 if (is_broadcast_ether_addr(mac_addr))
4054 stats->bprc++;
4055 else if (is_multicast_ether_addr(mac_addr))
4056 stats->mprc++;
4057
4058 if (frame_len == hw->max_frame_size) {
4059 /* In this case, the hardware has overcounted the number of
4060 * oversize frames.
4061 */
4062 if (stats->roc > 0)
4063 stats->roc--;
4064 }
4065
4066 /* Adjust the bin counters when the extra byte put the frame in the
4067 * wrong bin. Remember that the frame_len was adjusted above.
4068 */
4069 if (frame_len == 64) {
4070 stats->prc64++;
4071 stats->prc127--;
4072 } else if (frame_len == 127) {
4073 stats->prc127++;
4074 stats->prc255--;
4075 } else if (frame_len == 255) {
4076 stats->prc255++;
4077 stats->prc511--;
4078 } else if (frame_len == 511) {
4079 stats->prc511++;
4080 stats->prc1023--;
4081 } else if (frame_len == 1023) {
4082 stats->prc1023++;
4083 stats->prc1522--;
4084 } else if (frame_len == 1522) {
4085 stats->prc1522++;
4086 }
4087}
4088
4089static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4090 u8 status, u8 errors,
4091 u32 length, const u8 *data)
4092{
4093 struct e1000_hw *hw = &adapter->hw;
4094 u8 last_byte = *(data + length - 1);
4095
4096 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4097 unsigned long irq_flags;
4098
4099 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4100 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4101 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4102
4103 return true;
4104 }
4105
4106 return false;
4107}
4108
4109static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4110 unsigned int bufsz)
4111{
4112 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4113
4114 if (unlikely(!skb))
4115 adapter->alloc_rx_buff_failed++;
4116 return skb;
4117}
4118
4119/**
4120 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4121 * @adapter: board private structure
4122 * @rx_ring: ring to clean
4123 * @work_done: amount of napi work completed this call
4124 * @work_to_do: max amount of work allowed for this call to do
4125 *
4126 * the return value indicates whether actual cleaning was done, there
4127 * is no guarantee that everything was cleaned
4128 */
4129static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4130 struct e1000_rx_ring *rx_ring,
4131 int *work_done, int work_to_do)
4132{
4133 struct net_device *netdev = adapter->netdev;
4134 struct pci_dev *pdev = adapter->pdev;
4135 struct e1000_rx_desc *rx_desc, *next_rxd;
4136 struct e1000_rx_buffer *buffer_info, *next_buffer;
4137 u32 length;
4138 unsigned int i;
4139 int cleaned_count = 0;
4140 bool cleaned = false;
4141 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4142
4143 i = rx_ring->next_to_clean;
4144 rx_desc = E1000_RX_DESC(*rx_ring, i);
4145 buffer_info = &rx_ring->buffer_info[i];
4146
4147 while (rx_desc->status & E1000_RXD_STAT_DD) {
4148 struct sk_buff *skb;
4149 u8 status;
4150
4151 if (*work_done >= work_to_do)
4152 break;
4153 (*work_done)++;
4154 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4155
4156 status = rx_desc->status;
4157
4158 if (++i == rx_ring->count)
4159 i = 0;
4160
4161 next_rxd = E1000_RX_DESC(*rx_ring, i);
4162 prefetch(next_rxd);
4163
4164 next_buffer = &rx_ring->buffer_info[i];
4165
4166 cleaned = true;
4167 cleaned_count++;
4168 dma_unmap_page(&pdev->dev, buffer_info->dma,
4169 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4170 buffer_info->dma = 0;
4171
4172 length = le16_to_cpu(rx_desc->length);
4173
4174 /* errors is only valid for DD + EOP descriptors */
4175 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4176 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4177 u8 *mapped = page_address(buffer_info->rxbuf.page);
4178
4179 if (e1000_tbi_should_accept(adapter, status,
4180 rx_desc->errors,
4181 length, mapped)) {
4182 length--;
4183 } else if (netdev->features & NETIF_F_RXALL) {
4184 goto process_skb;
4185 } else {
4186 /* an error means any chain goes out the window
4187 * too
4188 */
4189 dev_kfree_skb(rx_ring->rx_skb_top);
4190 rx_ring->rx_skb_top = NULL;
4191 goto next_desc;
4192 }
4193 }
4194
4195#define rxtop rx_ring->rx_skb_top
4196process_skb:
4197 if (!(status & E1000_RXD_STAT_EOP)) {
4198 /* this descriptor is only the beginning (or middle) */
4199 if (!rxtop) {
4200 /* this is the beginning of a chain */
4201 rxtop = napi_get_frags(&adapter->napi);
4202 if (!rxtop)
4203 break;
4204
4205 skb_fill_page_desc(rxtop, 0,
4206 buffer_info->rxbuf.page,
4207 0, length);
4208 } else {
4209 /* this is the middle of a chain */
4210 skb_fill_page_desc(rxtop,
4211 skb_shinfo(rxtop)->nr_frags,
4212 buffer_info->rxbuf.page, 0, length);
4213 }
4214 e1000_consume_page(buffer_info, rxtop, length);
4215 goto next_desc;
4216 } else {
4217 if (rxtop) {
4218 /* end of the chain */
4219 skb_fill_page_desc(rxtop,
4220 skb_shinfo(rxtop)->nr_frags,
4221 buffer_info->rxbuf.page, 0, length);
4222 skb = rxtop;
4223 rxtop = NULL;
4224 e1000_consume_page(buffer_info, skb, length);
4225 } else {
4226 struct page *p;
4227 /* no chain, got EOP, this buf is the packet
4228 * copybreak to save the put_page/alloc_page
4229 */
4230 p = buffer_info->rxbuf.page;
4231 if (length <= copybreak) {
4232 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4233 length -= 4;
4234 skb = e1000_alloc_rx_skb(adapter,
4235 length);
4236 if (!skb)
4237 break;
4238
4239 memcpy(skb_tail_pointer(skb),
4240 page_address(p), length);
4241
4242 /* re-use the page, so don't erase
4243 * buffer_info->rxbuf.page
4244 */
4245 skb_put(skb, length);
4246 e1000_rx_checksum(adapter,
4247 status | rx_desc->errors << 24,
4248 le16_to_cpu(rx_desc->csum), skb);
4249
4250 total_rx_bytes += skb->len;
4251 total_rx_packets++;
4252
4253 e1000_receive_skb(adapter, status,
4254 rx_desc->special, skb);
4255 goto next_desc;
4256 } else {
4257 skb = napi_get_frags(&adapter->napi);
4258 if (!skb) {
4259 adapter->alloc_rx_buff_failed++;
4260 break;
4261 }
4262 skb_fill_page_desc(skb, 0, p, 0,
4263 length);
4264 e1000_consume_page(buffer_info, skb,
4265 length);
4266 }
4267 }
4268 }
4269
4270 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4271 e1000_rx_checksum(adapter,
4272 (u32)(status) |
4273 ((u32)(rx_desc->errors) << 24),
4274 le16_to_cpu(rx_desc->csum), skb);
4275
4276 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4277 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4278 pskb_trim(skb, skb->len - 4);
4279 total_rx_packets++;
4280
4281 if (status & E1000_RXD_STAT_VP) {
4282 __le16 vlan = rx_desc->special;
4283 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4284
4285 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4286 }
4287
4288 napi_gro_frags(&adapter->napi);
4289
4290next_desc:
4291 rx_desc->status = 0;
4292
4293 /* return some buffers to hardware, one at a time is too slow */
4294 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4295 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4296 cleaned_count = 0;
4297 }
4298
4299 /* use prefetched values */
4300 rx_desc = next_rxd;
4301 buffer_info = next_buffer;
4302 }
4303 rx_ring->next_to_clean = i;
4304
4305 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4306 if (cleaned_count)
4307 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4308
4309 adapter->total_rx_packets += total_rx_packets;
4310 adapter->total_rx_bytes += total_rx_bytes;
4311 netdev->stats.rx_bytes += total_rx_bytes;
4312 netdev->stats.rx_packets += total_rx_packets;
4313 return cleaned;
4314}
4315
4316/* this should improve performance for small packets with large amounts
4317 * of reassembly being done in the stack
4318 */
4319static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4320 struct e1000_rx_buffer *buffer_info,
4321 u32 length, const void *data)
4322{
4323 struct sk_buff *skb;
4324
4325 if (length > copybreak)
4326 return NULL;
4327
4328 skb = e1000_alloc_rx_skb(adapter, length);
4329 if (!skb)
4330 return NULL;
4331
4332 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4333 length, DMA_FROM_DEVICE);
4334
4335 skb_put_data(skb, data, length);
4336
4337 return skb;
4338}
4339
4340/**
4341 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4342 * @adapter: board private structure
4343 * @rx_ring: ring to clean
4344 * @work_done: amount of napi work completed this call
4345 * @work_to_do: max amount of work allowed for this call to do
4346 */
4347static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4348 struct e1000_rx_ring *rx_ring,
4349 int *work_done, int work_to_do)
4350{
4351 struct net_device *netdev = adapter->netdev;
4352 struct pci_dev *pdev = adapter->pdev;
4353 struct e1000_rx_desc *rx_desc, *next_rxd;
4354 struct e1000_rx_buffer *buffer_info, *next_buffer;
4355 u32 length;
4356 unsigned int i;
4357 int cleaned_count = 0;
4358 bool cleaned = false;
4359 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4360
4361 i = rx_ring->next_to_clean;
4362 rx_desc = E1000_RX_DESC(*rx_ring, i);
4363 buffer_info = &rx_ring->buffer_info[i];
4364
4365 while (rx_desc->status & E1000_RXD_STAT_DD) {
4366 struct sk_buff *skb;
4367 u8 *data;
4368 u8 status;
4369
4370 if (*work_done >= work_to_do)
4371 break;
4372 (*work_done)++;
4373 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4374
4375 status = rx_desc->status;
4376 length = le16_to_cpu(rx_desc->length);
4377
4378 data = buffer_info->rxbuf.data;
4379 prefetch(data);
4380 skb = e1000_copybreak(adapter, buffer_info, length, data);
4381 if (!skb) {
4382 unsigned int frag_len = e1000_frag_len(adapter);
4383
4384 skb = napi_build_skb(data - E1000_HEADROOM, frag_len);
4385 if (!skb) {
4386 adapter->alloc_rx_buff_failed++;
4387 break;
4388 }
4389
4390 skb_reserve(skb, E1000_HEADROOM);
4391 dma_unmap_single(&pdev->dev, buffer_info->dma,
4392 adapter->rx_buffer_len,
4393 DMA_FROM_DEVICE);
4394 buffer_info->dma = 0;
4395 buffer_info->rxbuf.data = NULL;
4396 }
4397
4398 if (++i == rx_ring->count)
4399 i = 0;
4400
4401 next_rxd = E1000_RX_DESC(*rx_ring, i);
4402 prefetch(next_rxd);
4403
4404 next_buffer = &rx_ring->buffer_info[i];
4405
4406 cleaned = true;
4407 cleaned_count++;
4408
4409 /* !EOP means multiple descriptors were used to store a single
4410 * packet, if thats the case we need to toss it. In fact, we
4411 * to toss every packet with the EOP bit clear and the next
4412 * frame that _does_ have the EOP bit set, as it is by
4413 * definition only a frame fragment
4414 */
4415 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4416 adapter->discarding = true;
4417
4418 if (adapter->discarding) {
4419 /* All receives must fit into a single buffer */
4420 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4421 dev_kfree_skb(skb);
4422 if (status & E1000_RXD_STAT_EOP)
4423 adapter->discarding = false;
4424 goto next_desc;
4425 }
4426
4427 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4428 if (e1000_tbi_should_accept(adapter, status,
4429 rx_desc->errors,
4430 length, data)) {
4431 length--;
4432 } else if (netdev->features & NETIF_F_RXALL) {
4433 goto process_skb;
4434 } else {
4435 dev_kfree_skb(skb);
4436 goto next_desc;
4437 }
4438 }
4439
4440process_skb:
4441 total_rx_bytes += (length - 4); /* don't count FCS */
4442 total_rx_packets++;
4443
4444 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4445 /* adjust length to remove Ethernet CRC, this must be
4446 * done after the TBI_ACCEPT workaround above
4447 */
4448 length -= 4;
4449
4450 if (buffer_info->rxbuf.data == NULL)
4451 skb_put(skb, length);
4452 else /* copybreak skb */
4453 skb_trim(skb, length);
4454
4455 /* Receive Checksum Offload */
4456 e1000_rx_checksum(adapter,
4457 (u32)(status) |
4458 ((u32)(rx_desc->errors) << 24),
4459 le16_to_cpu(rx_desc->csum), skb);
4460
4461 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4462
4463next_desc:
4464 rx_desc->status = 0;
4465
4466 /* return some buffers to hardware, one at a time is too slow */
4467 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4468 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4469 cleaned_count = 0;
4470 }
4471
4472 /* use prefetched values */
4473 rx_desc = next_rxd;
4474 buffer_info = next_buffer;
4475 }
4476 rx_ring->next_to_clean = i;
4477
4478 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4479 if (cleaned_count)
4480 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4481
4482 adapter->total_rx_packets += total_rx_packets;
4483 adapter->total_rx_bytes += total_rx_bytes;
4484 netdev->stats.rx_bytes += total_rx_bytes;
4485 netdev->stats.rx_packets += total_rx_packets;
4486 return cleaned;
4487}
4488
4489/**
4490 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4491 * @adapter: address of board private structure
4492 * @rx_ring: pointer to receive ring structure
4493 * @cleaned_count: number of buffers to allocate this pass
4494 **/
4495static void
4496e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4497 struct e1000_rx_ring *rx_ring, int cleaned_count)
4498{
4499 struct pci_dev *pdev = adapter->pdev;
4500 struct e1000_rx_desc *rx_desc;
4501 struct e1000_rx_buffer *buffer_info;
4502 unsigned int i;
4503
4504 i = rx_ring->next_to_use;
4505 buffer_info = &rx_ring->buffer_info[i];
4506
4507 while (cleaned_count--) {
4508 /* allocate a new page if necessary */
4509 if (!buffer_info->rxbuf.page) {
4510 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4511 if (unlikely(!buffer_info->rxbuf.page)) {
4512 adapter->alloc_rx_buff_failed++;
4513 break;
4514 }
4515 }
4516
4517 if (!buffer_info->dma) {
4518 buffer_info->dma = dma_map_page(&pdev->dev,
4519 buffer_info->rxbuf.page, 0,
4520 adapter->rx_buffer_len,
4521 DMA_FROM_DEVICE);
4522 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4523 put_page(buffer_info->rxbuf.page);
4524 buffer_info->rxbuf.page = NULL;
4525 buffer_info->dma = 0;
4526 adapter->alloc_rx_buff_failed++;
4527 break;
4528 }
4529 }
4530
4531 rx_desc = E1000_RX_DESC(*rx_ring, i);
4532 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4533
4534 if (unlikely(++i == rx_ring->count))
4535 i = 0;
4536 buffer_info = &rx_ring->buffer_info[i];
4537 }
4538
4539 if (likely(rx_ring->next_to_use != i)) {
4540 rx_ring->next_to_use = i;
4541 if (unlikely(i-- == 0))
4542 i = (rx_ring->count - 1);
4543
4544 /* Force memory writes to complete before letting h/w
4545 * know there are new descriptors to fetch. (Only
4546 * applicable for weak-ordered memory model archs,
4547 * such as IA-64).
4548 */
4549 dma_wmb();
4550 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4551 }
4552}
4553
4554/**
4555 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4556 * @adapter: address of board private structure
4557 * @rx_ring: pointer to ring struct
4558 * @cleaned_count: number of new Rx buffers to try to allocate
4559 **/
4560static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4561 struct e1000_rx_ring *rx_ring,
4562 int cleaned_count)
4563{
4564 struct e1000_hw *hw = &adapter->hw;
4565 struct pci_dev *pdev = adapter->pdev;
4566 struct e1000_rx_desc *rx_desc;
4567 struct e1000_rx_buffer *buffer_info;
4568 unsigned int i;
4569 unsigned int bufsz = adapter->rx_buffer_len;
4570
4571 i = rx_ring->next_to_use;
4572 buffer_info = &rx_ring->buffer_info[i];
4573
4574 while (cleaned_count--) {
4575 void *data;
4576
4577 if (buffer_info->rxbuf.data)
4578 goto skip;
4579
4580 data = e1000_alloc_frag(adapter);
4581 if (!data) {
4582 /* Better luck next round */
4583 adapter->alloc_rx_buff_failed++;
4584 break;
4585 }
4586
4587 /* Fix for errata 23, can't cross 64kB boundary */
4588 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4589 void *olddata = data;
4590 e_err(rx_err, "skb align check failed: %u bytes at "
4591 "%p\n", bufsz, data);
4592 /* Try again, without freeing the previous */
4593 data = e1000_alloc_frag(adapter);
4594 /* Failed allocation, critical failure */
4595 if (!data) {
4596 skb_free_frag(olddata);
4597 adapter->alloc_rx_buff_failed++;
4598 break;
4599 }
4600
4601 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4602 /* give up */
4603 skb_free_frag(data);
4604 skb_free_frag(olddata);
4605 adapter->alloc_rx_buff_failed++;
4606 break;
4607 }
4608
4609 /* Use new allocation */
4610 skb_free_frag(olddata);
4611 }
4612 buffer_info->dma = dma_map_single(&pdev->dev,
4613 data,
4614 adapter->rx_buffer_len,
4615 DMA_FROM_DEVICE);
4616 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4617 skb_free_frag(data);
4618 buffer_info->dma = 0;
4619 adapter->alloc_rx_buff_failed++;
4620 break;
4621 }
4622
4623 /* XXX if it was allocated cleanly it will never map to a
4624 * boundary crossing
4625 */
4626
4627 /* Fix for errata 23, can't cross 64kB boundary */
4628 if (!e1000_check_64k_bound(adapter,
4629 (void *)(unsigned long)buffer_info->dma,
4630 adapter->rx_buffer_len)) {
4631 e_err(rx_err, "dma align check failed: %u bytes at "
4632 "%p\n", adapter->rx_buffer_len,
4633 (void *)(unsigned long)buffer_info->dma);
4634
4635 dma_unmap_single(&pdev->dev, buffer_info->dma,
4636 adapter->rx_buffer_len,
4637 DMA_FROM_DEVICE);
4638
4639 skb_free_frag(data);
4640 buffer_info->rxbuf.data = NULL;
4641 buffer_info->dma = 0;
4642
4643 adapter->alloc_rx_buff_failed++;
4644 break;
4645 }
4646 buffer_info->rxbuf.data = data;
4647 skip:
4648 rx_desc = E1000_RX_DESC(*rx_ring, i);
4649 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4650
4651 if (unlikely(++i == rx_ring->count))
4652 i = 0;
4653 buffer_info = &rx_ring->buffer_info[i];
4654 }
4655
4656 if (likely(rx_ring->next_to_use != i)) {
4657 rx_ring->next_to_use = i;
4658 if (unlikely(i-- == 0))
4659 i = (rx_ring->count - 1);
4660
4661 /* Force memory writes to complete before letting h/w
4662 * know there are new descriptors to fetch. (Only
4663 * applicable for weak-ordered memory model archs,
4664 * such as IA-64).
4665 */
4666 dma_wmb();
4667 writel(i, hw->hw_addr + rx_ring->rdt);
4668 }
4669}
4670
4671/**
4672 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4673 * @adapter: address of board private structure
4674 **/
4675static void e1000_smartspeed(struct e1000_adapter *adapter)
4676{
4677 struct e1000_hw *hw = &adapter->hw;
4678 u16 phy_status;
4679 u16 phy_ctrl;
4680
4681 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4682 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4683 return;
4684
4685 if (adapter->smartspeed == 0) {
4686 /* If Master/Slave config fault is asserted twice,
4687 * we assume back-to-back
4688 */
4689 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4690 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4691 return;
4692 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4693 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4694 return;
4695 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4696 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4697 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4698 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4699 phy_ctrl);
4700 adapter->smartspeed++;
4701 if (!e1000_phy_setup_autoneg(hw) &&
4702 !e1000_read_phy_reg(hw, PHY_CTRL,
4703 &phy_ctrl)) {
4704 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4705 MII_CR_RESTART_AUTO_NEG);
4706 e1000_write_phy_reg(hw, PHY_CTRL,
4707 phy_ctrl);
4708 }
4709 }
4710 return;
4711 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4712 /* If still no link, perhaps using 2/3 pair cable */
4713 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4714 phy_ctrl |= CR_1000T_MS_ENABLE;
4715 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4716 if (!e1000_phy_setup_autoneg(hw) &&
4717 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4718 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4719 MII_CR_RESTART_AUTO_NEG);
4720 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4721 }
4722 }
4723 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4724 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4725 adapter->smartspeed = 0;
4726}
4727
4728/**
4729 * e1000_ioctl - handle ioctl calls
4730 * @netdev: pointer to our netdev
4731 * @ifr: pointer to interface request structure
4732 * @cmd: ioctl data
4733 **/
4734static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4735{
4736 switch (cmd) {
4737 case SIOCGMIIPHY:
4738 case SIOCGMIIREG:
4739 case SIOCSMIIREG:
4740 return e1000_mii_ioctl(netdev, ifr, cmd);
4741 default:
4742 return -EOPNOTSUPP;
4743 }
4744}
4745
4746/**
4747 * e1000_mii_ioctl -
4748 * @netdev: pointer to our netdev
4749 * @ifr: pointer to interface request structure
4750 * @cmd: ioctl data
4751 **/
4752static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4753 int cmd)
4754{
4755 struct e1000_adapter *adapter = netdev_priv(netdev);
4756 struct e1000_hw *hw = &adapter->hw;
4757 struct mii_ioctl_data *data = if_mii(ifr);
4758 int retval;
4759 u16 mii_reg;
4760 unsigned long flags;
4761
4762 if (hw->media_type != e1000_media_type_copper)
4763 return -EOPNOTSUPP;
4764
4765 switch (cmd) {
4766 case SIOCGMIIPHY:
4767 data->phy_id = hw->phy_addr;
4768 break;
4769 case SIOCGMIIREG:
4770 spin_lock_irqsave(&adapter->stats_lock, flags);
4771 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4772 &data->val_out)) {
4773 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4774 return -EIO;
4775 }
4776 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4777 break;
4778 case SIOCSMIIREG:
4779 if (data->reg_num & ~(0x1F))
4780 return -EFAULT;
4781 mii_reg = data->val_in;
4782 spin_lock_irqsave(&adapter->stats_lock, flags);
4783 if (e1000_write_phy_reg(hw, data->reg_num,
4784 mii_reg)) {
4785 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4786 return -EIO;
4787 }
4788 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4789 if (hw->media_type == e1000_media_type_copper) {
4790 switch (data->reg_num) {
4791 case PHY_CTRL:
4792 if (mii_reg & MII_CR_POWER_DOWN)
4793 break;
4794 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4795 hw->autoneg = 1;
4796 hw->autoneg_advertised = 0x2F;
4797 } else {
4798 u32 speed;
4799 if (mii_reg & 0x40)
4800 speed = SPEED_1000;
4801 else if (mii_reg & 0x2000)
4802 speed = SPEED_100;
4803 else
4804 speed = SPEED_10;
4805 retval = e1000_set_spd_dplx(
4806 adapter, speed,
4807 ((mii_reg & 0x100)
4808 ? DUPLEX_FULL :
4809 DUPLEX_HALF));
4810 if (retval)
4811 return retval;
4812 }
4813 if (netif_running(adapter->netdev))
4814 e1000_reinit_locked(adapter);
4815 else
4816 e1000_reset(adapter);
4817 break;
4818 case M88E1000_PHY_SPEC_CTRL:
4819 case M88E1000_EXT_PHY_SPEC_CTRL:
4820 if (e1000_phy_reset(hw))
4821 return -EIO;
4822 break;
4823 }
4824 } else {
4825 switch (data->reg_num) {
4826 case PHY_CTRL:
4827 if (mii_reg & MII_CR_POWER_DOWN)
4828 break;
4829 if (netif_running(adapter->netdev))
4830 e1000_reinit_locked(adapter);
4831 else
4832 e1000_reset(adapter);
4833 break;
4834 }
4835 }
4836 break;
4837 default:
4838 return -EOPNOTSUPP;
4839 }
4840 return E1000_SUCCESS;
4841}
4842
4843void e1000_pci_set_mwi(struct e1000_hw *hw)
4844{
4845 struct e1000_adapter *adapter = hw->back;
4846 int ret_val = pci_set_mwi(adapter->pdev);
4847
4848 if (ret_val)
4849 e_err(probe, "Error in setting MWI\n");
4850}
4851
4852void e1000_pci_clear_mwi(struct e1000_hw *hw)
4853{
4854 struct e1000_adapter *adapter = hw->back;
4855
4856 pci_clear_mwi(adapter->pdev);
4857}
4858
4859int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4860{
4861 struct e1000_adapter *adapter = hw->back;
4862 return pcix_get_mmrbc(adapter->pdev);
4863}
4864
4865void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4866{
4867 struct e1000_adapter *adapter = hw->back;
4868 pcix_set_mmrbc(adapter->pdev, mmrbc);
4869}
4870
4871void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4872{
4873 outl(value, port);
4874}
4875
4876static bool e1000_vlan_used(struct e1000_adapter *adapter)
4877{
4878 u16 vid;
4879
4880 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4881 return true;
4882 return false;
4883}
4884
4885static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4886 netdev_features_t features)
4887{
4888 struct e1000_hw *hw = &adapter->hw;
4889 u32 ctrl;
4890
4891 ctrl = er32(CTRL);
4892 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4893 /* enable VLAN tag insert/strip */
4894 ctrl |= E1000_CTRL_VME;
4895 } else {
4896 /* disable VLAN tag insert/strip */
4897 ctrl &= ~E1000_CTRL_VME;
4898 }
4899 ew32(CTRL, ctrl);
4900}
4901static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4902 bool filter_on)
4903{
4904 struct e1000_hw *hw = &adapter->hw;
4905 u32 rctl;
4906
4907 if (!test_bit(__E1000_DOWN, &adapter->flags))
4908 e1000_irq_disable(adapter);
4909
4910 __e1000_vlan_mode(adapter, adapter->netdev->features);
4911 if (filter_on) {
4912 /* enable VLAN receive filtering */
4913 rctl = er32(RCTL);
4914 rctl &= ~E1000_RCTL_CFIEN;
4915 if (!(adapter->netdev->flags & IFF_PROMISC))
4916 rctl |= E1000_RCTL_VFE;
4917 ew32(RCTL, rctl);
4918 e1000_update_mng_vlan(adapter);
4919 } else {
4920 /* disable VLAN receive filtering */
4921 rctl = er32(RCTL);
4922 rctl &= ~E1000_RCTL_VFE;
4923 ew32(RCTL, rctl);
4924 }
4925
4926 if (!test_bit(__E1000_DOWN, &adapter->flags))
4927 e1000_irq_enable(adapter);
4928}
4929
4930static void e1000_vlan_mode(struct net_device *netdev,
4931 netdev_features_t features)
4932{
4933 struct e1000_adapter *adapter = netdev_priv(netdev);
4934
4935 if (!test_bit(__E1000_DOWN, &adapter->flags))
4936 e1000_irq_disable(adapter);
4937
4938 __e1000_vlan_mode(adapter, features);
4939
4940 if (!test_bit(__E1000_DOWN, &adapter->flags))
4941 e1000_irq_enable(adapter);
4942}
4943
4944static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4945 __be16 proto, u16 vid)
4946{
4947 struct e1000_adapter *adapter = netdev_priv(netdev);
4948 struct e1000_hw *hw = &adapter->hw;
4949 u32 vfta, index;
4950
4951 if ((hw->mng_cookie.status &
4952 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4953 (vid == adapter->mng_vlan_id))
4954 return 0;
4955
4956 if (!e1000_vlan_used(adapter))
4957 e1000_vlan_filter_on_off(adapter, true);
4958
4959 /* add VID to filter table */
4960 index = (vid >> 5) & 0x7F;
4961 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4962 vfta |= (1 << (vid & 0x1F));
4963 e1000_write_vfta(hw, index, vfta);
4964
4965 set_bit(vid, adapter->active_vlans);
4966
4967 return 0;
4968}
4969
4970static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4971 __be16 proto, u16 vid)
4972{
4973 struct e1000_adapter *adapter = netdev_priv(netdev);
4974 struct e1000_hw *hw = &adapter->hw;
4975 u32 vfta, index;
4976
4977 if (!test_bit(__E1000_DOWN, &adapter->flags))
4978 e1000_irq_disable(adapter);
4979 if (!test_bit(__E1000_DOWN, &adapter->flags))
4980 e1000_irq_enable(adapter);
4981
4982 /* remove VID from filter table */
4983 index = (vid >> 5) & 0x7F;
4984 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4985 vfta &= ~(1 << (vid & 0x1F));
4986 e1000_write_vfta(hw, index, vfta);
4987
4988 clear_bit(vid, adapter->active_vlans);
4989
4990 if (!e1000_vlan_used(adapter))
4991 e1000_vlan_filter_on_off(adapter, false);
4992
4993 return 0;
4994}
4995
4996static void e1000_restore_vlan(struct e1000_adapter *adapter)
4997{
4998 u16 vid;
4999
5000 if (!e1000_vlan_used(adapter))
5001 return;
5002
5003 e1000_vlan_filter_on_off(adapter, true);
5004 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5005 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5006}
5007
5008int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5009{
5010 struct e1000_hw *hw = &adapter->hw;
5011
5012 hw->autoneg = 0;
5013
5014 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5015 * for the switch() below to work
5016 */
5017 if ((spd & 1) || (dplx & ~1))
5018 goto err_inval;
5019
5020 /* Fiber NICs only allow 1000 gbps Full duplex */
5021 if ((hw->media_type == e1000_media_type_fiber) &&
5022 spd != SPEED_1000 &&
5023 dplx != DUPLEX_FULL)
5024 goto err_inval;
5025
5026 switch (spd + dplx) {
5027 case SPEED_10 + DUPLEX_HALF:
5028 hw->forced_speed_duplex = e1000_10_half;
5029 break;
5030 case SPEED_10 + DUPLEX_FULL:
5031 hw->forced_speed_duplex = e1000_10_full;
5032 break;
5033 case SPEED_100 + DUPLEX_HALF:
5034 hw->forced_speed_duplex = e1000_100_half;
5035 break;
5036 case SPEED_100 + DUPLEX_FULL:
5037 hw->forced_speed_duplex = e1000_100_full;
5038 break;
5039 case SPEED_1000 + DUPLEX_FULL:
5040 hw->autoneg = 1;
5041 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5042 break;
5043 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5044 default:
5045 goto err_inval;
5046 }
5047
5048 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5049 hw->mdix = AUTO_ALL_MODES;
5050
5051 return 0;
5052
5053err_inval:
5054 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5055 return -EINVAL;
5056}
5057
5058static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5059{
5060 struct net_device *netdev = pci_get_drvdata(pdev);
5061 struct e1000_adapter *adapter = netdev_priv(netdev);
5062 struct e1000_hw *hw = &adapter->hw;
5063 u32 ctrl, ctrl_ext, rctl, status;
5064 u32 wufc = adapter->wol;
5065
5066 netif_device_detach(netdev);
5067
5068 if (netif_running(netdev)) {
5069 int count = E1000_CHECK_RESET_COUNT;
5070
5071 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5072 usleep_range(10000, 20000);
5073
5074 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5075 e1000_down(adapter);
5076 }
5077
5078 status = er32(STATUS);
5079 if (status & E1000_STATUS_LU)
5080 wufc &= ~E1000_WUFC_LNKC;
5081
5082 if (wufc) {
5083 e1000_setup_rctl(adapter);
5084 e1000_set_rx_mode(netdev);
5085
5086 rctl = er32(RCTL);
5087
5088 /* turn on all-multi mode if wake on multicast is enabled */
5089 if (wufc & E1000_WUFC_MC)
5090 rctl |= E1000_RCTL_MPE;
5091
5092 /* enable receives in the hardware */
5093 ew32(RCTL, rctl | E1000_RCTL_EN);
5094
5095 if (hw->mac_type >= e1000_82540) {
5096 ctrl = er32(CTRL);
5097 /* advertise wake from D3Cold */
5098 #define E1000_CTRL_ADVD3WUC 0x00100000
5099 /* phy power management enable */
5100 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5101 ctrl |= E1000_CTRL_ADVD3WUC |
5102 E1000_CTRL_EN_PHY_PWR_MGMT;
5103 ew32(CTRL, ctrl);
5104 }
5105
5106 if (hw->media_type == e1000_media_type_fiber ||
5107 hw->media_type == e1000_media_type_internal_serdes) {
5108 /* keep the laser running in D3 */
5109 ctrl_ext = er32(CTRL_EXT);
5110 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5111 ew32(CTRL_EXT, ctrl_ext);
5112 }
5113
5114 ew32(WUC, E1000_WUC_PME_EN);
5115 ew32(WUFC, wufc);
5116 } else {
5117 ew32(WUC, 0);
5118 ew32(WUFC, 0);
5119 }
5120
5121 e1000_release_manageability(adapter);
5122
5123 *enable_wake = !!wufc;
5124
5125 /* make sure adapter isn't asleep if manageability is enabled */
5126 if (adapter->en_mng_pt)
5127 *enable_wake = true;
5128
5129 if (netif_running(netdev))
5130 e1000_free_irq(adapter);
5131
5132 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5133 pci_disable_device(pdev);
5134
5135 return 0;
5136}
5137
5138static int __maybe_unused e1000_suspend(struct device *dev)
5139{
5140 int retval;
5141 struct pci_dev *pdev = to_pci_dev(dev);
5142 bool wake;
5143
5144 retval = __e1000_shutdown(pdev, &wake);
5145 device_set_wakeup_enable(dev, wake);
5146
5147 return retval;
5148}
5149
5150static int __maybe_unused e1000_resume(struct device *dev)
5151{
5152 struct pci_dev *pdev = to_pci_dev(dev);
5153 struct net_device *netdev = pci_get_drvdata(pdev);
5154 struct e1000_adapter *adapter = netdev_priv(netdev);
5155 struct e1000_hw *hw = &adapter->hw;
5156 u32 err;
5157
5158 if (adapter->need_ioport)
5159 err = pci_enable_device(pdev);
5160 else
5161 err = pci_enable_device_mem(pdev);
5162 if (err) {
5163 pr_err("Cannot enable PCI device from suspend\n");
5164 return err;
5165 }
5166
5167 /* flush memory to make sure state is correct */
5168 smp_mb__before_atomic();
5169 clear_bit(__E1000_DISABLED, &adapter->flags);
5170 pci_set_master(pdev);
5171
5172 pci_enable_wake(pdev, PCI_D3hot, 0);
5173 pci_enable_wake(pdev, PCI_D3cold, 0);
5174
5175 if (netif_running(netdev)) {
5176 err = e1000_request_irq(adapter);
5177 if (err)
5178 return err;
5179 }
5180
5181 e1000_power_up_phy(adapter);
5182 e1000_reset(adapter);
5183 ew32(WUS, ~0);
5184
5185 e1000_init_manageability(adapter);
5186
5187 if (netif_running(netdev))
5188 e1000_up(adapter);
5189
5190 netif_device_attach(netdev);
5191
5192 return 0;
5193}
5194
5195static void e1000_shutdown(struct pci_dev *pdev)
5196{
5197 bool wake;
5198
5199 __e1000_shutdown(pdev, &wake);
5200
5201 if (system_state == SYSTEM_POWER_OFF) {
5202 pci_wake_from_d3(pdev, wake);
5203 pci_set_power_state(pdev, PCI_D3hot);
5204 }
5205}
5206
5207#ifdef CONFIG_NET_POLL_CONTROLLER
5208/* Polling 'interrupt' - used by things like netconsole to send skbs
5209 * without having to re-enable interrupts. It's not called while
5210 * the interrupt routine is executing.
5211 */
5212static void e1000_netpoll(struct net_device *netdev)
5213{
5214 struct e1000_adapter *adapter = netdev_priv(netdev);
5215
5216 if (disable_hardirq(adapter->pdev->irq))
5217 e1000_intr(adapter->pdev->irq, netdev);
5218 enable_irq(adapter->pdev->irq);
5219}
5220#endif
5221
5222/**
5223 * e1000_io_error_detected - called when PCI error is detected
5224 * @pdev: Pointer to PCI device
5225 * @state: The current pci connection state
5226 *
5227 * This function is called after a PCI bus error affecting
5228 * this device has been detected.
5229 */
5230static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5231 pci_channel_state_t state)
5232{
5233 struct net_device *netdev = pci_get_drvdata(pdev);
5234 struct e1000_adapter *adapter = netdev_priv(netdev);
5235
5236 netif_device_detach(netdev);
5237
5238 if (state == pci_channel_io_perm_failure)
5239 return PCI_ERS_RESULT_DISCONNECT;
5240
5241 if (netif_running(netdev))
5242 e1000_down(adapter);
5243
5244 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5245 pci_disable_device(pdev);
5246
5247 /* Request a slot reset. */
5248 return PCI_ERS_RESULT_NEED_RESET;
5249}
5250
5251/**
5252 * e1000_io_slot_reset - called after the pci bus has been reset.
5253 * @pdev: Pointer to PCI device
5254 *
5255 * Restart the card from scratch, as if from a cold-boot. Implementation
5256 * resembles the first-half of the e1000_resume routine.
5257 */
5258static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5259{
5260 struct net_device *netdev = pci_get_drvdata(pdev);
5261 struct e1000_adapter *adapter = netdev_priv(netdev);
5262 struct e1000_hw *hw = &adapter->hw;
5263 int err;
5264
5265 if (adapter->need_ioport)
5266 err = pci_enable_device(pdev);
5267 else
5268 err = pci_enable_device_mem(pdev);
5269 if (err) {
5270 pr_err("Cannot re-enable PCI device after reset.\n");
5271 return PCI_ERS_RESULT_DISCONNECT;
5272 }
5273
5274 /* flush memory to make sure state is correct */
5275 smp_mb__before_atomic();
5276 clear_bit(__E1000_DISABLED, &adapter->flags);
5277 pci_set_master(pdev);
5278
5279 pci_enable_wake(pdev, PCI_D3hot, 0);
5280 pci_enable_wake(pdev, PCI_D3cold, 0);
5281
5282 e1000_reset(adapter);
5283 ew32(WUS, ~0);
5284
5285 return PCI_ERS_RESULT_RECOVERED;
5286}
5287
5288/**
5289 * e1000_io_resume - called when traffic can start flowing again.
5290 * @pdev: Pointer to PCI device
5291 *
5292 * This callback is called when the error recovery driver tells us that
5293 * its OK to resume normal operation. Implementation resembles the
5294 * second-half of the e1000_resume routine.
5295 */
5296static void e1000_io_resume(struct pci_dev *pdev)
5297{
5298 struct net_device *netdev = pci_get_drvdata(pdev);
5299 struct e1000_adapter *adapter = netdev_priv(netdev);
5300
5301 e1000_init_manageability(adapter);
5302
5303 if (netif_running(netdev)) {
5304 if (e1000_up(adapter)) {
5305 pr_info("can't bring device back up after reset\n");
5306 return;
5307 }
5308 }
5309
5310 netif_device_attach(netdev);
5311}
5312
5313/* e1000_main.c */
1// SPDX-License-Identifier: GPL-2.0
2/*******************************************************************************
3
4 Intel PRO/1000 Linux driver
5 Copyright(c) 1999 - 2006 Intel Corporation.
6
7 This program is free software; you can redistribute it and/or modify it
8 under the terms and conditions of the GNU General Public License,
9 version 2, as published by the Free Software Foundation.
10
11 This program is distributed in the hope it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 more details.
15
16 You should have received a copy of the GNU General Public License along with
17 this program; if not, write to the Free Software Foundation, Inc.,
18 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19
20 The full GNU General Public License is included in this distribution in
21 the file called "COPYING".
22
23 Contact Information:
24 Linux NICS <linux.nics@intel.com>
25 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
26 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27
28*******************************************************************************/
29
30#include "e1000.h"
31#include <net/ip6_checksum.h>
32#include <linux/io.h>
33#include <linux/prefetch.h>
34#include <linux/bitops.h>
35#include <linux/if_vlan.h>
36
37char e1000_driver_name[] = "e1000";
38static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
39#define DRV_VERSION "7.3.21-k8-NAPI"
40const char e1000_driver_version[] = DRV_VERSION;
41static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42
43/* e1000_pci_tbl - PCI Device ID Table
44 *
45 * Last entry must be all 0s
46 *
47 * Macro expands to...
48 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 */
50static const struct pci_device_id e1000_pci_tbl[] = {
51 INTEL_E1000_ETHERNET_DEVICE(0x1000),
52 INTEL_E1000_ETHERNET_DEVICE(0x1001),
53 INTEL_E1000_ETHERNET_DEVICE(0x1004),
54 INTEL_E1000_ETHERNET_DEVICE(0x1008),
55 INTEL_E1000_ETHERNET_DEVICE(0x1009),
56 INTEL_E1000_ETHERNET_DEVICE(0x100C),
57 INTEL_E1000_ETHERNET_DEVICE(0x100D),
58 INTEL_E1000_ETHERNET_DEVICE(0x100E),
59 INTEL_E1000_ETHERNET_DEVICE(0x100F),
60 INTEL_E1000_ETHERNET_DEVICE(0x1010),
61 INTEL_E1000_ETHERNET_DEVICE(0x1011),
62 INTEL_E1000_ETHERNET_DEVICE(0x1012),
63 INTEL_E1000_ETHERNET_DEVICE(0x1013),
64 INTEL_E1000_ETHERNET_DEVICE(0x1014),
65 INTEL_E1000_ETHERNET_DEVICE(0x1015),
66 INTEL_E1000_ETHERNET_DEVICE(0x1016),
67 INTEL_E1000_ETHERNET_DEVICE(0x1017),
68 INTEL_E1000_ETHERNET_DEVICE(0x1018),
69 INTEL_E1000_ETHERNET_DEVICE(0x1019),
70 INTEL_E1000_ETHERNET_DEVICE(0x101A),
71 INTEL_E1000_ETHERNET_DEVICE(0x101D),
72 INTEL_E1000_ETHERNET_DEVICE(0x101E),
73 INTEL_E1000_ETHERNET_DEVICE(0x1026),
74 INTEL_E1000_ETHERNET_DEVICE(0x1027),
75 INTEL_E1000_ETHERNET_DEVICE(0x1028),
76 INTEL_E1000_ETHERNET_DEVICE(0x1075),
77 INTEL_E1000_ETHERNET_DEVICE(0x1076),
78 INTEL_E1000_ETHERNET_DEVICE(0x1077),
79 INTEL_E1000_ETHERNET_DEVICE(0x1078),
80 INTEL_E1000_ETHERNET_DEVICE(0x1079),
81 INTEL_E1000_ETHERNET_DEVICE(0x107A),
82 INTEL_E1000_ETHERNET_DEVICE(0x107B),
83 INTEL_E1000_ETHERNET_DEVICE(0x107C),
84 INTEL_E1000_ETHERNET_DEVICE(0x108A),
85 INTEL_E1000_ETHERNET_DEVICE(0x1099),
86 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
87 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
88 /* required last entry */
89 {0,}
90};
91
92MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
93
94int e1000_up(struct e1000_adapter *adapter);
95void e1000_down(struct e1000_adapter *adapter);
96void e1000_reinit_locked(struct e1000_adapter *adapter);
97void e1000_reset(struct e1000_adapter *adapter);
98int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
99int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
101void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
102static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
103 struct e1000_tx_ring *txdr);
104static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
105 struct e1000_rx_ring *rxdr);
106static void e1000_free_tx_resources(struct e1000_adapter *adapter,
107 struct e1000_tx_ring *tx_ring);
108static void e1000_free_rx_resources(struct e1000_adapter *adapter,
109 struct e1000_rx_ring *rx_ring);
110void e1000_update_stats(struct e1000_adapter *adapter);
111
112static int e1000_init_module(void);
113static void e1000_exit_module(void);
114static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
115static void e1000_remove(struct pci_dev *pdev);
116static int e1000_alloc_queues(struct e1000_adapter *adapter);
117static int e1000_sw_init(struct e1000_adapter *adapter);
118int e1000_open(struct net_device *netdev);
119int e1000_close(struct net_device *netdev);
120static void e1000_configure_tx(struct e1000_adapter *adapter);
121static void e1000_configure_rx(struct e1000_adapter *adapter);
122static void e1000_setup_rctl(struct e1000_adapter *adapter);
123static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
125static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *tx_ring);
127static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring);
129static void e1000_set_rx_mode(struct net_device *netdev);
130static void e1000_update_phy_info_task(struct work_struct *work);
131static void e1000_watchdog(struct work_struct *work);
132static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
133static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
134 struct net_device *netdev);
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
137static irqreturn_t e1000_intr(int irq, void *data);
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
140static int e1000_clean(struct napi_struct *napi, int budget);
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150{
151}
152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
153 struct e1000_rx_ring *rx_ring,
154 int cleaned_count);
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
164static void e1000_reset_task(struct work_struct *work);
165static void e1000_smartspeed(struct e1000_adapter *adapter);
166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
167 struct sk_buff *skb);
168
169static bool e1000_vlan_used(struct e1000_adapter *adapter);
170static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
180#ifdef CONFIG_PM
181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
182static int e1000_resume(struct pci_dev *pdev);
183#endif
184static void e1000_shutdown(struct pci_dev *pdev);
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
198 pci_channel_state_t state);
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
202static const struct pci_error_handlers e1000_err_handler = {
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206};
207
208static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
212 .remove = e1000_remove,
213#ifdef CONFIG_PM
214 /* Power Management Hooks */
215 .suspend = e1000_suspend,
216 .resume = e1000_resume,
217#endif
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241}
242
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
249static int __init e1000_init_module(void)
250{
251 int ret;
252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
253
254 pr_info("%s\n", e1000_copyright);
255
256 ret = pci_register_driver(&e1000_driver);
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
259 pr_info("copybreak disabled\n");
260 else
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
263 }
264 return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
275static void __exit e1000_exit_module(void)
276{
277 pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284 struct net_device *netdev = adapter->netdev;
285 irq_handler_t handler = e1000_intr;
286 int irq_flags = IRQF_SHARED;
287 int err;
288
289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
290 netdev);
291 if (err) {
292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
293 }
294
295 return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
303}
304
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
309static void e1000_irq_disable(struct e1000_adapter *adapter)
310{
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
315 synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
322static void e1000_irq_enable(struct e1000_adapter *adapter)
323{
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
328}
329
330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
331{
332 struct e1000_hw *hw = &adapter->hw;
333 struct net_device *netdev = adapter->netdev;
334 u16 vid = hw->mng_cookie.vlan_id;
335 u16 old_vid = adapter->mng_vlan_id;
336
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
344 adapter->mng_vlan_id = vid;
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
353 } else {
354 adapter->mng_vlan_id = vid;
355 }
356}
357
358static void e1000_init_manageability(struct e1000_adapter *adapter)
359{
360 struct e1000_hw *hw = &adapter->hw;
361
362 if (adapter->en_mng_pt) {
363 u32 manc = er32(MANC);
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
368 ew32(MANC, manc);
369 }
370}
371
372static void e1000_release_manageability(struct e1000_adapter *adapter)
373{
374 struct e1000_hw *hw = &adapter->hw;
375
376 if (adapter->en_mng_pt) {
377 u32 manc = er32(MANC);
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
382 ew32(MANC, manc);
383 }
384}
385
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
391{
392 struct net_device *netdev = adapter->netdev;
393 int i;
394
395 e1000_set_rx_mode(netdev);
396
397 e1000_restore_vlan(adapter);
398 e1000_init_manageability(adapter);
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
405 * next_to_use != next_to_clean
406 */
407 for (i = 0; i < adapter->num_rx_queues; i++) {
408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
409 adapter->alloc_rx_buf(adapter, ring,
410 E1000_DESC_UNUSED(ring));
411 }
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
416 struct e1000_hw *hw = &adapter->hw;
417
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
422
423 napi_enable(&adapter->napi);
424
425 e1000_irq_enable(adapter);
426
427 netif_wake_queue(adapter->netdev);
428
429 /* fire a link change interrupt to start the watchdog */
430 ew32(ICS, E1000_ICS_LSC);
431 return 0;
432}
433
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
441 **/
442void e1000_power_up_phy(struct e1000_adapter *adapter)
443{
444 struct e1000_hw *hw = &adapter->hw;
445 u16 mii_reg = 0;
446
447 /* Just clear the power down bit to wake the phy back up */
448 if (hw->media_type == e1000_media_type_copper) {
449 /* according to the manual, the phy will retain its
450 * settings across a power-down/up cycle
451 */
452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
453 mii_reg &= ~MII_CR_POWER_DOWN;
454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
455 }
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
460 struct e1000_hw *hw = &adapter->hw;
461
462 /* Power down the PHY so no link is implied when interface is down *
463 * The PHY cannot be powered down if any of the following is true *
464 * (a) WoL is enabled
465 * (b) AMT is active
466 * (c) SoL/IDER session is active
467 */
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
470 u16 mii_reg = 0;
471
472 switch (hw->mac_type) {
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
477 case e1000_ce4100:
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
484 goto out;
485 break;
486 default:
487 goto out;
488 }
489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
490 mii_reg |= MII_CR_POWER_DOWN;
491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
492 msleep(1);
493 }
494out:
495 return;
496}
497
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500 set_bit(__E1000_DOWN, &adapter->flags);
501
502 cancel_delayed_work_sync(&adapter->watchdog_task);
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
516}
517
518void e1000_down(struct e1000_adapter *adapter)
519{
520 struct e1000_hw *hw = &adapter->hw;
521 struct net_device *netdev = adapter->netdev;
522 u32 rctl, tctl;
523
524 /* disable receives in the hardware */
525 rctl = er32(RCTL);
526 ew32(RCTL, rctl & ~E1000_RCTL_EN);
527 /* flush and sleep below */
528
529 netif_tx_disable(netdev);
530
531 /* disable transmits in the hardware */
532 tctl = er32(TCTL);
533 tctl &= ~E1000_TCTL_EN;
534 ew32(TCTL, tctl);
535 /* flush both disables and wait for them to finish */
536 E1000_WRITE_FLUSH();
537 msleep(10);
538
539 /* Set the carrier off after transmits have been disabled in the
540 * hardware, to avoid race conditions with e1000_watchdog() (which
541 * may be running concurrently to us, checking for the carrier
542 * bit to decide whether it should enable transmits again). Such
543 * a race condition would result into transmission being disabled
544 * in the hardware until the next IFF_DOWN+IFF_UP cycle.
545 */
546 netif_carrier_off(netdev);
547
548 napi_disable(&adapter->napi);
549
550 e1000_irq_disable(adapter);
551
552 /* Setting DOWN must be after irq_disable to prevent
553 * a screaming interrupt. Setting DOWN also prevents
554 * tasks from rescheduling.
555 */
556 e1000_down_and_stop(adapter);
557
558 adapter->link_speed = 0;
559 adapter->link_duplex = 0;
560
561 e1000_reset(adapter);
562 e1000_clean_all_tx_rings(adapter);
563 e1000_clean_all_rx_rings(adapter);
564}
565
566void e1000_reinit_locked(struct e1000_adapter *adapter)
567{
568 WARN_ON(in_interrupt());
569 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
570 msleep(1);
571 e1000_down(adapter);
572 e1000_up(adapter);
573 clear_bit(__E1000_RESETTING, &adapter->flags);
574}
575
576void e1000_reset(struct e1000_adapter *adapter)
577{
578 struct e1000_hw *hw = &adapter->hw;
579 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
580 bool legacy_pba_adjust = false;
581 u16 hwm;
582
583 /* Repartition Pba for greater than 9k mtu
584 * To take effect CTRL.RST is required.
585 */
586
587 switch (hw->mac_type) {
588 case e1000_82542_rev2_0:
589 case e1000_82542_rev2_1:
590 case e1000_82543:
591 case e1000_82544:
592 case e1000_82540:
593 case e1000_82541:
594 case e1000_82541_rev_2:
595 legacy_pba_adjust = true;
596 pba = E1000_PBA_48K;
597 break;
598 case e1000_82545:
599 case e1000_82545_rev_3:
600 case e1000_82546:
601 case e1000_ce4100:
602 case e1000_82546_rev_3:
603 pba = E1000_PBA_48K;
604 break;
605 case e1000_82547:
606 case e1000_82547_rev_2:
607 legacy_pba_adjust = true;
608 pba = E1000_PBA_30K;
609 break;
610 case e1000_undefined:
611 case e1000_num_macs:
612 break;
613 }
614
615 if (legacy_pba_adjust) {
616 if (hw->max_frame_size > E1000_RXBUFFER_8192)
617 pba -= 8; /* allocate more FIFO for Tx */
618
619 if (hw->mac_type == e1000_82547) {
620 adapter->tx_fifo_head = 0;
621 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
622 adapter->tx_fifo_size =
623 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
624 atomic_set(&adapter->tx_fifo_stall, 0);
625 }
626 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
627 /* adjust PBA for jumbo frames */
628 ew32(PBA, pba);
629
630 /* To maintain wire speed transmits, the Tx FIFO should be
631 * large enough to accommodate two full transmit packets,
632 * rounded up to the next 1KB and expressed in KB. Likewise,
633 * the Rx FIFO should be large enough to accommodate at least
634 * one full receive packet and is similarly rounded up and
635 * expressed in KB.
636 */
637 pba = er32(PBA);
638 /* upper 16 bits has Tx packet buffer allocation size in KB */
639 tx_space = pba >> 16;
640 /* lower 16 bits has Rx packet buffer allocation size in KB */
641 pba &= 0xffff;
642 /* the Tx fifo also stores 16 bytes of information about the Tx
643 * but don't include ethernet FCS because hardware appends it
644 */
645 min_tx_space = (hw->max_frame_size +
646 sizeof(struct e1000_tx_desc) -
647 ETH_FCS_LEN) * 2;
648 min_tx_space = ALIGN(min_tx_space, 1024);
649 min_tx_space >>= 10;
650 /* software strips receive CRC, so leave room for it */
651 min_rx_space = hw->max_frame_size;
652 min_rx_space = ALIGN(min_rx_space, 1024);
653 min_rx_space >>= 10;
654
655 /* If current Tx allocation is less than the min Tx FIFO size,
656 * and the min Tx FIFO size is less than the current Rx FIFO
657 * allocation, take space away from current Rx allocation
658 */
659 if (tx_space < min_tx_space &&
660 ((min_tx_space - tx_space) < pba)) {
661 pba = pba - (min_tx_space - tx_space);
662
663 /* PCI/PCIx hardware has PBA alignment constraints */
664 switch (hw->mac_type) {
665 case e1000_82545 ... e1000_82546_rev_3:
666 pba &= ~(E1000_PBA_8K - 1);
667 break;
668 default:
669 break;
670 }
671
672 /* if short on Rx space, Rx wins and must trump Tx
673 * adjustment or use Early Receive if available
674 */
675 if (pba < min_rx_space)
676 pba = min_rx_space;
677 }
678 }
679
680 ew32(PBA, pba);
681
682 /* flow control settings:
683 * The high water mark must be low enough to fit one full frame
684 * (or the size used for early receive) above it in the Rx FIFO.
685 * Set it to the lower of:
686 * - 90% of the Rx FIFO size, and
687 * - the full Rx FIFO size minus the early receive size (for parts
688 * with ERT support assuming ERT set to E1000_ERT_2048), or
689 * - the full Rx FIFO size minus one full frame
690 */
691 hwm = min(((pba << 10) * 9 / 10),
692 ((pba << 10) - hw->max_frame_size));
693
694 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
695 hw->fc_low_water = hw->fc_high_water - 8;
696 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
697 hw->fc_send_xon = 1;
698 hw->fc = hw->original_fc;
699
700 /* Allow time for pending master requests to run */
701 e1000_reset_hw(hw);
702 if (hw->mac_type >= e1000_82544)
703 ew32(WUC, 0);
704
705 if (e1000_init_hw(hw))
706 e_dev_err("Hardware Error\n");
707 e1000_update_mng_vlan(adapter);
708
709 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
710 if (hw->mac_type >= e1000_82544 &&
711 hw->autoneg == 1 &&
712 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
713 u32 ctrl = er32(CTRL);
714 /* clear phy power management bit if we are in gig only mode,
715 * which if enabled will attempt negotiation to 100Mb, which
716 * can cause a loss of link at power off or driver unload
717 */
718 ctrl &= ~E1000_CTRL_SWDPIN3;
719 ew32(CTRL, ctrl);
720 }
721
722 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
723 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
724
725 e1000_reset_adaptive(hw);
726 e1000_phy_get_info(hw, &adapter->phy_info);
727
728 e1000_release_manageability(adapter);
729}
730
731/* Dump the eeprom for users having checksum issues */
732static void e1000_dump_eeprom(struct e1000_adapter *adapter)
733{
734 struct net_device *netdev = adapter->netdev;
735 struct ethtool_eeprom eeprom;
736 const struct ethtool_ops *ops = netdev->ethtool_ops;
737 u8 *data;
738 int i;
739 u16 csum_old, csum_new = 0;
740
741 eeprom.len = ops->get_eeprom_len(netdev);
742 eeprom.offset = 0;
743
744 data = kmalloc(eeprom.len, GFP_KERNEL);
745 if (!data)
746 return;
747
748 ops->get_eeprom(netdev, &eeprom, data);
749
750 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
751 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
752 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
753 csum_new += data[i] + (data[i + 1] << 8);
754 csum_new = EEPROM_SUM - csum_new;
755
756 pr_err("/*********************/\n");
757 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
758 pr_err("Calculated : 0x%04x\n", csum_new);
759
760 pr_err("Offset Values\n");
761 pr_err("======== ======\n");
762 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
763
764 pr_err("Include this output when contacting your support provider.\n");
765 pr_err("This is not a software error! Something bad happened to\n");
766 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
767 pr_err("result in further problems, possibly loss of data,\n");
768 pr_err("corruption or system hangs!\n");
769 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
770 pr_err("which is invalid and requires you to set the proper MAC\n");
771 pr_err("address manually before continuing to enable this network\n");
772 pr_err("device. Please inspect the EEPROM dump and report the\n");
773 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
774 pr_err("/*********************/\n");
775
776 kfree(data);
777}
778
779/**
780 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
781 * @pdev: PCI device information struct
782 *
783 * Return true if an adapter needs ioport resources
784 **/
785static int e1000_is_need_ioport(struct pci_dev *pdev)
786{
787 switch (pdev->device) {
788 case E1000_DEV_ID_82540EM:
789 case E1000_DEV_ID_82540EM_LOM:
790 case E1000_DEV_ID_82540EP:
791 case E1000_DEV_ID_82540EP_LOM:
792 case E1000_DEV_ID_82540EP_LP:
793 case E1000_DEV_ID_82541EI:
794 case E1000_DEV_ID_82541EI_MOBILE:
795 case E1000_DEV_ID_82541ER:
796 case E1000_DEV_ID_82541ER_LOM:
797 case E1000_DEV_ID_82541GI:
798 case E1000_DEV_ID_82541GI_LF:
799 case E1000_DEV_ID_82541GI_MOBILE:
800 case E1000_DEV_ID_82544EI_COPPER:
801 case E1000_DEV_ID_82544EI_FIBER:
802 case E1000_DEV_ID_82544GC_COPPER:
803 case E1000_DEV_ID_82544GC_LOM:
804 case E1000_DEV_ID_82545EM_COPPER:
805 case E1000_DEV_ID_82545EM_FIBER:
806 case E1000_DEV_ID_82546EB_COPPER:
807 case E1000_DEV_ID_82546EB_FIBER:
808 case E1000_DEV_ID_82546EB_QUAD_COPPER:
809 return true;
810 default:
811 return false;
812 }
813}
814
815static netdev_features_t e1000_fix_features(struct net_device *netdev,
816 netdev_features_t features)
817{
818 /* Since there is no support for separate Rx/Tx vlan accel
819 * enable/disable make sure Tx flag is always in same state as Rx.
820 */
821 if (features & NETIF_F_HW_VLAN_CTAG_RX)
822 features |= NETIF_F_HW_VLAN_CTAG_TX;
823 else
824 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
825
826 return features;
827}
828
829static int e1000_set_features(struct net_device *netdev,
830 netdev_features_t features)
831{
832 struct e1000_adapter *adapter = netdev_priv(netdev);
833 netdev_features_t changed = features ^ netdev->features;
834
835 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
836 e1000_vlan_mode(netdev, features);
837
838 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
839 return 0;
840
841 netdev->features = features;
842 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
843
844 if (netif_running(netdev))
845 e1000_reinit_locked(adapter);
846 else
847 e1000_reset(adapter);
848
849 return 0;
850}
851
852static const struct net_device_ops e1000_netdev_ops = {
853 .ndo_open = e1000_open,
854 .ndo_stop = e1000_close,
855 .ndo_start_xmit = e1000_xmit_frame,
856 .ndo_set_rx_mode = e1000_set_rx_mode,
857 .ndo_set_mac_address = e1000_set_mac,
858 .ndo_tx_timeout = e1000_tx_timeout,
859 .ndo_change_mtu = e1000_change_mtu,
860 .ndo_do_ioctl = e1000_ioctl,
861 .ndo_validate_addr = eth_validate_addr,
862 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
863 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
864#ifdef CONFIG_NET_POLL_CONTROLLER
865 .ndo_poll_controller = e1000_netpoll,
866#endif
867 .ndo_fix_features = e1000_fix_features,
868 .ndo_set_features = e1000_set_features,
869};
870
871/**
872 * e1000_init_hw_struct - initialize members of hw struct
873 * @adapter: board private struct
874 * @hw: structure used by e1000_hw.c
875 *
876 * Factors out initialization of the e1000_hw struct to its own function
877 * that can be called very early at init (just after struct allocation).
878 * Fields are initialized based on PCI device information and
879 * OS network device settings (MTU size).
880 * Returns negative error codes if MAC type setup fails.
881 */
882static int e1000_init_hw_struct(struct e1000_adapter *adapter,
883 struct e1000_hw *hw)
884{
885 struct pci_dev *pdev = adapter->pdev;
886
887 /* PCI config space info */
888 hw->vendor_id = pdev->vendor;
889 hw->device_id = pdev->device;
890 hw->subsystem_vendor_id = pdev->subsystem_vendor;
891 hw->subsystem_id = pdev->subsystem_device;
892 hw->revision_id = pdev->revision;
893
894 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
895
896 hw->max_frame_size = adapter->netdev->mtu +
897 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
898 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
899
900 /* identify the MAC */
901 if (e1000_set_mac_type(hw)) {
902 e_err(probe, "Unknown MAC Type\n");
903 return -EIO;
904 }
905
906 switch (hw->mac_type) {
907 default:
908 break;
909 case e1000_82541:
910 case e1000_82547:
911 case e1000_82541_rev_2:
912 case e1000_82547_rev_2:
913 hw->phy_init_script = 1;
914 break;
915 }
916
917 e1000_set_media_type(hw);
918 e1000_get_bus_info(hw);
919
920 hw->wait_autoneg_complete = false;
921 hw->tbi_compatibility_en = true;
922 hw->adaptive_ifs = true;
923
924 /* Copper options */
925
926 if (hw->media_type == e1000_media_type_copper) {
927 hw->mdix = AUTO_ALL_MODES;
928 hw->disable_polarity_correction = false;
929 hw->master_slave = E1000_MASTER_SLAVE;
930 }
931
932 return 0;
933}
934
935/**
936 * e1000_probe - Device Initialization Routine
937 * @pdev: PCI device information struct
938 * @ent: entry in e1000_pci_tbl
939 *
940 * Returns 0 on success, negative on failure
941 *
942 * e1000_probe initializes an adapter identified by a pci_dev structure.
943 * The OS initialization, configuring of the adapter private structure,
944 * and a hardware reset occur.
945 **/
946static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
947{
948 struct net_device *netdev;
949 struct e1000_adapter *adapter = NULL;
950 struct e1000_hw *hw;
951
952 static int cards_found;
953 static int global_quad_port_a; /* global ksp3 port a indication */
954 int i, err, pci_using_dac;
955 u16 eeprom_data = 0;
956 u16 tmp = 0;
957 u16 eeprom_apme_mask = E1000_EEPROM_APME;
958 int bars, need_ioport;
959 bool disable_dev = false;
960
961 /* do not allocate ioport bars when not needed */
962 need_ioport = e1000_is_need_ioport(pdev);
963 if (need_ioport) {
964 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
965 err = pci_enable_device(pdev);
966 } else {
967 bars = pci_select_bars(pdev, IORESOURCE_MEM);
968 err = pci_enable_device_mem(pdev);
969 }
970 if (err)
971 return err;
972
973 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
974 if (err)
975 goto err_pci_reg;
976
977 pci_set_master(pdev);
978 err = pci_save_state(pdev);
979 if (err)
980 goto err_alloc_etherdev;
981
982 err = -ENOMEM;
983 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
984 if (!netdev)
985 goto err_alloc_etherdev;
986
987 SET_NETDEV_DEV(netdev, &pdev->dev);
988
989 pci_set_drvdata(pdev, netdev);
990 adapter = netdev_priv(netdev);
991 adapter->netdev = netdev;
992 adapter->pdev = pdev;
993 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
994 adapter->bars = bars;
995 adapter->need_ioport = need_ioport;
996
997 hw = &adapter->hw;
998 hw->back = adapter;
999
1000 err = -EIO;
1001 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1002 if (!hw->hw_addr)
1003 goto err_ioremap;
1004
1005 if (adapter->need_ioport) {
1006 for (i = BAR_1; i <= BAR_5; i++) {
1007 if (pci_resource_len(pdev, i) == 0)
1008 continue;
1009 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1010 hw->io_base = pci_resource_start(pdev, i);
1011 break;
1012 }
1013 }
1014 }
1015
1016 /* make ready for any if (hw->...) below */
1017 err = e1000_init_hw_struct(adapter, hw);
1018 if (err)
1019 goto err_sw_init;
1020
1021 /* there is a workaround being applied below that limits
1022 * 64-bit DMA addresses to 64-bit hardware. There are some
1023 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1024 */
1025 pci_using_dac = 0;
1026 if ((hw->bus_type == e1000_bus_type_pcix) &&
1027 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
1028 pci_using_dac = 1;
1029 } else {
1030 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
1031 if (err) {
1032 pr_err("No usable DMA config, aborting\n");
1033 goto err_dma;
1034 }
1035 }
1036
1037 netdev->netdev_ops = &e1000_netdev_ops;
1038 e1000_set_ethtool_ops(netdev);
1039 netdev->watchdog_timeo = 5 * HZ;
1040 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
1041
1042 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1043
1044 adapter->bd_number = cards_found;
1045
1046 /* setup the private structure */
1047
1048 err = e1000_sw_init(adapter);
1049 if (err)
1050 goto err_sw_init;
1051
1052 err = -EIO;
1053 if (hw->mac_type == e1000_ce4100) {
1054 hw->ce4100_gbe_mdio_base_virt =
1055 ioremap(pci_resource_start(pdev, BAR_1),
1056 pci_resource_len(pdev, BAR_1));
1057
1058 if (!hw->ce4100_gbe_mdio_base_virt)
1059 goto err_mdio_ioremap;
1060 }
1061
1062 if (hw->mac_type >= e1000_82543) {
1063 netdev->hw_features = NETIF_F_SG |
1064 NETIF_F_HW_CSUM |
1065 NETIF_F_HW_VLAN_CTAG_RX;
1066 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1067 NETIF_F_HW_VLAN_CTAG_FILTER;
1068 }
1069
1070 if ((hw->mac_type >= e1000_82544) &&
1071 (hw->mac_type != e1000_82547))
1072 netdev->hw_features |= NETIF_F_TSO;
1073
1074 netdev->priv_flags |= IFF_SUPP_NOFCS;
1075
1076 netdev->features |= netdev->hw_features;
1077 netdev->hw_features |= (NETIF_F_RXCSUM |
1078 NETIF_F_RXALL |
1079 NETIF_F_RXFCS);
1080
1081 if (pci_using_dac) {
1082 netdev->features |= NETIF_F_HIGHDMA;
1083 netdev->vlan_features |= NETIF_F_HIGHDMA;
1084 }
1085
1086 netdev->vlan_features |= (NETIF_F_TSO |
1087 NETIF_F_HW_CSUM |
1088 NETIF_F_SG);
1089
1090 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1091 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1092 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1093 netdev->priv_flags |= IFF_UNICAST_FLT;
1094
1095 /* MTU range: 46 - 16110 */
1096 netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
1097 netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
1098
1099 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
1100
1101 /* initialize eeprom parameters */
1102 if (e1000_init_eeprom_params(hw)) {
1103 e_err(probe, "EEPROM initialization failed\n");
1104 goto err_eeprom;
1105 }
1106
1107 /* before reading the EEPROM, reset the controller to
1108 * put the device in a known good starting state
1109 */
1110
1111 e1000_reset_hw(hw);
1112
1113 /* make sure the EEPROM is good */
1114 if (e1000_validate_eeprom_checksum(hw) < 0) {
1115 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
1116 e1000_dump_eeprom(adapter);
1117 /* set MAC address to all zeroes to invalidate and temporary
1118 * disable this device for the user. This blocks regular
1119 * traffic while still permitting ethtool ioctls from reaching
1120 * the hardware as well as allowing the user to run the
1121 * interface after manually setting a hw addr using
1122 * `ip set address`
1123 */
1124 memset(hw->mac_addr, 0, netdev->addr_len);
1125 } else {
1126 /* copy the MAC address out of the EEPROM */
1127 if (e1000_read_mac_addr(hw))
1128 e_err(probe, "EEPROM Read Error\n");
1129 }
1130 /* don't block initialization here due to bad MAC address */
1131 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1132
1133 if (!is_valid_ether_addr(netdev->dev_addr))
1134 e_err(probe, "Invalid MAC Address\n");
1135
1136
1137 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1138 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1139 e1000_82547_tx_fifo_stall_task);
1140 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
1141 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1142
1143 e1000_check_options(adapter);
1144
1145 /* Initial Wake on LAN setting
1146 * If APM wake is enabled in the EEPROM,
1147 * enable the ACPI Magic Packet filter
1148 */
1149
1150 switch (hw->mac_type) {
1151 case e1000_82542_rev2_0:
1152 case e1000_82542_rev2_1:
1153 case e1000_82543:
1154 break;
1155 case e1000_82544:
1156 e1000_read_eeprom(hw,
1157 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1158 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1159 break;
1160 case e1000_82546:
1161 case e1000_82546_rev_3:
1162 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1163 e1000_read_eeprom(hw,
1164 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1165 break;
1166 }
1167 /* Fall Through */
1168 default:
1169 e1000_read_eeprom(hw,
1170 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1171 break;
1172 }
1173 if (eeprom_data & eeprom_apme_mask)
1174 adapter->eeprom_wol |= E1000_WUFC_MAG;
1175
1176 /* now that we have the eeprom settings, apply the special cases
1177 * where the eeprom may be wrong or the board simply won't support
1178 * wake on lan on a particular port
1179 */
1180 switch (pdev->device) {
1181 case E1000_DEV_ID_82546GB_PCIE:
1182 adapter->eeprom_wol = 0;
1183 break;
1184 case E1000_DEV_ID_82546EB_FIBER:
1185 case E1000_DEV_ID_82546GB_FIBER:
1186 /* Wake events only supported on port A for dual fiber
1187 * regardless of eeprom setting
1188 */
1189 if (er32(STATUS) & E1000_STATUS_FUNC_1)
1190 adapter->eeprom_wol = 0;
1191 break;
1192 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1193 /* if quad port adapter, disable WoL on all but port A */
1194 if (global_quad_port_a != 0)
1195 adapter->eeprom_wol = 0;
1196 else
1197 adapter->quad_port_a = true;
1198 /* Reset for multiple quad port adapters */
1199 if (++global_quad_port_a == 4)
1200 global_quad_port_a = 0;
1201 break;
1202 }
1203
1204 /* initialize the wol settings based on the eeprom settings */
1205 adapter->wol = adapter->eeprom_wol;
1206 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1207
1208 /* Auto detect PHY address */
1209 if (hw->mac_type == e1000_ce4100) {
1210 for (i = 0; i < 32; i++) {
1211 hw->phy_addr = i;
1212 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
1213
1214 if (tmp != 0 && tmp != 0xFF)
1215 break;
1216 }
1217
1218 if (i >= 32)
1219 goto err_eeprom;
1220 }
1221
1222 /* reset the hardware with the new settings */
1223 e1000_reset(adapter);
1224
1225 strcpy(netdev->name, "eth%d");
1226 err = register_netdev(netdev);
1227 if (err)
1228 goto err_register;
1229
1230 e1000_vlan_filter_on_off(adapter, false);
1231
1232 /* print bus type/speed/width info */
1233 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
1234 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1235 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1236 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1237 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1238 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1239 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1240 netdev->dev_addr);
1241
1242 /* carrier off reporting is important to ethtool even BEFORE open */
1243 netif_carrier_off(netdev);
1244
1245 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1246
1247 cards_found++;
1248 return 0;
1249
1250err_register:
1251err_eeprom:
1252 e1000_phy_hw_reset(hw);
1253
1254 if (hw->flash_address)
1255 iounmap(hw->flash_address);
1256 kfree(adapter->tx_ring);
1257 kfree(adapter->rx_ring);
1258err_dma:
1259err_sw_init:
1260err_mdio_ioremap:
1261 iounmap(hw->ce4100_gbe_mdio_base_virt);
1262 iounmap(hw->hw_addr);
1263err_ioremap:
1264 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1265 free_netdev(netdev);
1266err_alloc_etherdev:
1267 pci_release_selected_regions(pdev, bars);
1268err_pci_reg:
1269 if (!adapter || disable_dev)
1270 pci_disable_device(pdev);
1271 return err;
1272}
1273
1274/**
1275 * e1000_remove - Device Removal Routine
1276 * @pdev: PCI device information struct
1277 *
1278 * e1000_remove is called by the PCI subsystem to alert the driver
1279 * that it should release a PCI device. That could be caused by a
1280 * Hot-Plug event, or because the driver is going to be removed from
1281 * memory.
1282 **/
1283static void e1000_remove(struct pci_dev *pdev)
1284{
1285 struct net_device *netdev = pci_get_drvdata(pdev);
1286 struct e1000_adapter *adapter = netdev_priv(netdev);
1287 struct e1000_hw *hw = &adapter->hw;
1288 bool disable_dev;
1289
1290 e1000_down_and_stop(adapter);
1291 e1000_release_manageability(adapter);
1292
1293 unregister_netdev(netdev);
1294
1295 e1000_phy_hw_reset(hw);
1296
1297 kfree(adapter->tx_ring);
1298 kfree(adapter->rx_ring);
1299
1300 if (hw->mac_type == e1000_ce4100)
1301 iounmap(hw->ce4100_gbe_mdio_base_virt);
1302 iounmap(hw->hw_addr);
1303 if (hw->flash_address)
1304 iounmap(hw->flash_address);
1305 pci_release_selected_regions(pdev, adapter->bars);
1306
1307 disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
1308 free_netdev(netdev);
1309
1310 if (disable_dev)
1311 pci_disable_device(pdev);
1312}
1313
1314/**
1315 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1316 * @adapter: board private structure to initialize
1317 *
1318 * e1000_sw_init initializes the Adapter private data structure.
1319 * e1000_init_hw_struct MUST be called before this function
1320 **/
1321static int e1000_sw_init(struct e1000_adapter *adapter)
1322{
1323 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1324
1325 adapter->num_tx_queues = 1;
1326 adapter->num_rx_queues = 1;
1327
1328 if (e1000_alloc_queues(adapter)) {
1329 e_err(probe, "Unable to allocate memory for queues\n");
1330 return -ENOMEM;
1331 }
1332
1333 /* Explicitly disable IRQ since the NIC can be in any state. */
1334 e1000_irq_disable(adapter);
1335
1336 spin_lock_init(&adapter->stats_lock);
1337
1338 set_bit(__E1000_DOWN, &adapter->flags);
1339
1340 return 0;
1341}
1342
1343/**
1344 * e1000_alloc_queues - Allocate memory for all rings
1345 * @adapter: board private structure to initialize
1346 *
1347 * We allocate one ring per queue at run-time since we don't know the
1348 * number of queues at compile-time.
1349 **/
1350static int e1000_alloc_queues(struct e1000_adapter *adapter)
1351{
1352 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
1353 sizeof(struct e1000_tx_ring), GFP_KERNEL);
1354 if (!adapter->tx_ring)
1355 return -ENOMEM;
1356
1357 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
1358 sizeof(struct e1000_rx_ring), GFP_KERNEL);
1359 if (!adapter->rx_ring) {
1360 kfree(adapter->tx_ring);
1361 return -ENOMEM;
1362 }
1363
1364 return E1000_SUCCESS;
1365}
1366
1367/**
1368 * e1000_open - Called when a network interface is made active
1369 * @netdev: network interface device structure
1370 *
1371 * Returns 0 on success, negative value on failure
1372 *
1373 * The open entry point is called when a network interface is made
1374 * active by the system (IFF_UP). At this point all resources needed
1375 * for transmit and receive operations are allocated, the interrupt
1376 * handler is registered with the OS, the watchdog task is started,
1377 * and the stack is notified that the interface is ready.
1378 **/
1379int e1000_open(struct net_device *netdev)
1380{
1381 struct e1000_adapter *adapter = netdev_priv(netdev);
1382 struct e1000_hw *hw = &adapter->hw;
1383 int err;
1384
1385 /* disallow open during test */
1386 if (test_bit(__E1000_TESTING, &adapter->flags))
1387 return -EBUSY;
1388
1389 netif_carrier_off(netdev);
1390
1391 /* allocate transmit descriptors */
1392 err = e1000_setup_all_tx_resources(adapter);
1393 if (err)
1394 goto err_setup_tx;
1395
1396 /* allocate receive descriptors */
1397 err = e1000_setup_all_rx_resources(adapter);
1398 if (err)
1399 goto err_setup_rx;
1400
1401 e1000_power_up_phy(adapter);
1402
1403 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1404 if ((hw->mng_cookie.status &
1405 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1406 e1000_update_mng_vlan(adapter);
1407 }
1408
1409 /* before we allocate an interrupt, we must be ready to handle it.
1410 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1411 * as soon as we call pci_request_irq, so we have to setup our
1412 * clean_rx handler before we do so.
1413 */
1414 e1000_configure(adapter);
1415
1416 err = e1000_request_irq(adapter);
1417 if (err)
1418 goto err_req_irq;
1419
1420 /* From here on the code is the same as e1000_up() */
1421 clear_bit(__E1000_DOWN, &adapter->flags);
1422
1423 napi_enable(&adapter->napi);
1424
1425 e1000_irq_enable(adapter);
1426
1427 netif_start_queue(netdev);
1428
1429 /* fire a link status change interrupt to start the watchdog */
1430 ew32(ICS, E1000_ICS_LSC);
1431
1432 return E1000_SUCCESS;
1433
1434err_req_irq:
1435 e1000_power_down_phy(adapter);
1436 e1000_free_all_rx_resources(adapter);
1437err_setup_rx:
1438 e1000_free_all_tx_resources(adapter);
1439err_setup_tx:
1440 e1000_reset(adapter);
1441
1442 return err;
1443}
1444
1445/**
1446 * e1000_close - Disables a network interface
1447 * @netdev: network interface device structure
1448 *
1449 * Returns 0, this is not allowed to fail
1450 *
1451 * The close entry point is called when an interface is de-activated
1452 * by the OS. The hardware is still under the drivers control, but
1453 * needs to be disabled. A global MAC reset is issued to stop the
1454 * hardware, and all transmit and receive resources are freed.
1455 **/
1456int e1000_close(struct net_device *netdev)
1457{
1458 struct e1000_adapter *adapter = netdev_priv(netdev);
1459 struct e1000_hw *hw = &adapter->hw;
1460 int count = E1000_CHECK_RESET_COUNT;
1461
1462 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1463 usleep_range(10000, 20000);
1464
1465 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1466 e1000_down(adapter);
1467 e1000_power_down_phy(adapter);
1468 e1000_free_irq(adapter);
1469
1470 e1000_free_all_tx_resources(adapter);
1471 e1000_free_all_rx_resources(adapter);
1472
1473 /* kill manageability vlan ID if supported, but not if a vlan with
1474 * the same ID is registered on the host OS (let 8021q kill it)
1475 */
1476 if ((hw->mng_cookie.status &
1477 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1478 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
1479 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1480 adapter->mng_vlan_id);
1481 }
1482
1483 return 0;
1484}
1485
1486/**
1487 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1488 * @adapter: address of board private structure
1489 * @start: address of beginning of memory
1490 * @len: length of memory
1491 **/
1492static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1493 unsigned long len)
1494{
1495 struct e1000_hw *hw = &adapter->hw;
1496 unsigned long begin = (unsigned long)start;
1497 unsigned long end = begin + len;
1498
1499 /* First rev 82545 and 82546 need to not allow any memory
1500 * write location to cross 64k boundary due to errata 23
1501 */
1502 if (hw->mac_type == e1000_82545 ||
1503 hw->mac_type == e1000_ce4100 ||
1504 hw->mac_type == e1000_82546) {
1505 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1506 }
1507
1508 return true;
1509}
1510
1511/**
1512 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1513 * @adapter: board private structure
1514 * @txdr: tx descriptor ring (for a specific queue) to setup
1515 *
1516 * Return 0 on success, negative on failure
1517 **/
1518static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1519 struct e1000_tx_ring *txdr)
1520{
1521 struct pci_dev *pdev = adapter->pdev;
1522 int size;
1523
1524 size = sizeof(struct e1000_tx_buffer) * txdr->count;
1525 txdr->buffer_info = vzalloc(size);
1526 if (!txdr->buffer_info)
1527 return -ENOMEM;
1528
1529 /* round up to nearest 4K */
1530
1531 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1532 txdr->size = ALIGN(txdr->size, 4096);
1533
1534 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1535 GFP_KERNEL);
1536 if (!txdr->desc) {
1537setup_tx_desc_die:
1538 vfree(txdr->buffer_info);
1539 return -ENOMEM;
1540 }
1541
1542 /* Fix for errata 23, can't cross 64kB boundary */
1543 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1544 void *olddesc = txdr->desc;
1545 dma_addr_t olddma = txdr->dma;
1546 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
1547 txdr->size, txdr->desc);
1548 /* Try again, without freeing the previous */
1549 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1550 &txdr->dma, GFP_KERNEL);
1551 /* Failed allocation, critical failure */
1552 if (!txdr->desc) {
1553 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1554 olddma);
1555 goto setup_tx_desc_die;
1556 }
1557
1558 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1559 /* give up */
1560 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1561 txdr->dma);
1562 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1563 olddma);
1564 e_err(probe, "Unable to allocate aligned memory "
1565 "for the transmit descriptor ring\n");
1566 vfree(txdr->buffer_info);
1567 return -ENOMEM;
1568 } else {
1569 /* Free old allocation, new allocation was successful */
1570 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1571 olddma);
1572 }
1573 }
1574 memset(txdr->desc, 0, txdr->size);
1575
1576 txdr->next_to_use = 0;
1577 txdr->next_to_clean = 0;
1578
1579 return 0;
1580}
1581
1582/**
1583 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1584 * (Descriptors) for all queues
1585 * @adapter: board private structure
1586 *
1587 * Return 0 on success, negative on failure
1588 **/
1589int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1590{
1591 int i, err = 0;
1592
1593 for (i = 0; i < adapter->num_tx_queues; i++) {
1594 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1595 if (err) {
1596 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
1597 for (i-- ; i >= 0; i--)
1598 e1000_free_tx_resources(adapter,
1599 &adapter->tx_ring[i]);
1600 break;
1601 }
1602 }
1603
1604 return err;
1605}
1606
1607/**
1608 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1609 * @adapter: board private structure
1610 *
1611 * Configure the Tx unit of the MAC after a reset.
1612 **/
1613static void e1000_configure_tx(struct e1000_adapter *adapter)
1614{
1615 u64 tdba;
1616 struct e1000_hw *hw = &adapter->hw;
1617 u32 tdlen, tctl, tipg;
1618 u32 ipgr1, ipgr2;
1619
1620 /* Setup the HW Tx Head and Tail descriptor pointers */
1621
1622 switch (adapter->num_tx_queues) {
1623 case 1:
1624 default:
1625 tdba = adapter->tx_ring[0].dma;
1626 tdlen = adapter->tx_ring[0].count *
1627 sizeof(struct e1000_tx_desc);
1628 ew32(TDLEN, tdlen);
1629 ew32(TDBAH, (tdba >> 32));
1630 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1631 ew32(TDT, 0);
1632 ew32(TDH, 0);
1633 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1634 E1000_TDH : E1000_82542_TDH);
1635 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1636 E1000_TDT : E1000_82542_TDT);
1637 break;
1638 }
1639
1640 /* Set the default values for the Tx Inter Packet Gap timer */
1641 if ((hw->media_type == e1000_media_type_fiber ||
1642 hw->media_type == e1000_media_type_internal_serdes))
1643 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1644 else
1645 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1646
1647 switch (hw->mac_type) {
1648 case e1000_82542_rev2_0:
1649 case e1000_82542_rev2_1:
1650 tipg = DEFAULT_82542_TIPG_IPGT;
1651 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1652 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1653 break;
1654 default:
1655 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1656 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1657 break;
1658 }
1659 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1660 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1661 ew32(TIPG, tipg);
1662
1663 /* Set the Tx Interrupt Delay register */
1664
1665 ew32(TIDV, adapter->tx_int_delay);
1666 if (hw->mac_type >= e1000_82540)
1667 ew32(TADV, adapter->tx_abs_int_delay);
1668
1669 /* Program the Transmit Control Register */
1670
1671 tctl = er32(TCTL);
1672 tctl &= ~E1000_TCTL_CT;
1673 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1674 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1675
1676 e1000_config_collision_dist(hw);
1677
1678 /* Setup Transmit Descriptor Settings for eop descriptor */
1679 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1680
1681 /* only set IDE if we are delaying interrupts using the timers */
1682 if (adapter->tx_int_delay)
1683 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1684
1685 if (hw->mac_type < e1000_82543)
1686 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1687 else
1688 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1689
1690 /* Cache if we're 82544 running in PCI-X because we'll
1691 * need this to apply a workaround later in the send path.
1692 */
1693 if (hw->mac_type == e1000_82544 &&
1694 hw->bus_type == e1000_bus_type_pcix)
1695 adapter->pcix_82544 = true;
1696
1697 ew32(TCTL, tctl);
1698
1699}
1700
1701/**
1702 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1703 * @adapter: board private structure
1704 * @rxdr: rx descriptor ring (for a specific queue) to setup
1705 *
1706 * Returns 0 on success, negative on failure
1707 **/
1708static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1709 struct e1000_rx_ring *rxdr)
1710{
1711 struct pci_dev *pdev = adapter->pdev;
1712 int size, desc_len;
1713
1714 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
1715 rxdr->buffer_info = vzalloc(size);
1716 if (!rxdr->buffer_info)
1717 return -ENOMEM;
1718
1719 desc_len = sizeof(struct e1000_rx_desc);
1720
1721 /* Round up to nearest 4K */
1722
1723 rxdr->size = rxdr->count * desc_len;
1724 rxdr->size = ALIGN(rxdr->size, 4096);
1725
1726 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1727 GFP_KERNEL);
1728 if (!rxdr->desc) {
1729setup_rx_desc_die:
1730 vfree(rxdr->buffer_info);
1731 return -ENOMEM;
1732 }
1733
1734 /* Fix for errata 23, can't cross 64kB boundary */
1735 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1736 void *olddesc = rxdr->desc;
1737 dma_addr_t olddma = rxdr->dma;
1738 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
1739 rxdr->size, rxdr->desc);
1740 /* Try again, without freeing the previous */
1741 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1742 &rxdr->dma, GFP_KERNEL);
1743 /* Failed allocation, critical failure */
1744 if (!rxdr->desc) {
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 olddma);
1747 goto setup_rx_desc_die;
1748 }
1749
1750 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1751 /* give up */
1752 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1753 rxdr->dma);
1754 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1755 olddma);
1756 e_err(probe, "Unable to allocate aligned memory for "
1757 "the Rx descriptor ring\n");
1758 goto setup_rx_desc_die;
1759 } else {
1760 /* Free old allocation, new allocation was successful */
1761 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1762 olddma);
1763 }
1764 }
1765 memset(rxdr->desc, 0, rxdr->size);
1766
1767 rxdr->next_to_clean = 0;
1768 rxdr->next_to_use = 0;
1769 rxdr->rx_skb_top = NULL;
1770
1771 return 0;
1772}
1773
1774/**
1775 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1776 * (Descriptors) for all queues
1777 * @adapter: board private structure
1778 *
1779 * Return 0 on success, negative on failure
1780 **/
1781int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1782{
1783 int i, err = 0;
1784
1785 for (i = 0; i < adapter->num_rx_queues; i++) {
1786 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1787 if (err) {
1788 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
1789 for (i-- ; i >= 0; i--)
1790 e1000_free_rx_resources(adapter,
1791 &adapter->rx_ring[i]);
1792 break;
1793 }
1794 }
1795
1796 return err;
1797}
1798
1799/**
1800 * e1000_setup_rctl - configure the receive control registers
1801 * @adapter: Board private structure
1802 **/
1803static void e1000_setup_rctl(struct e1000_adapter *adapter)
1804{
1805 struct e1000_hw *hw = &adapter->hw;
1806 u32 rctl;
1807
1808 rctl = er32(RCTL);
1809
1810 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1811
1812 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1813 E1000_RCTL_RDMTS_HALF |
1814 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1815
1816 if (hw->tbi_compatibility_on == 1)
1817 rctl |= E1000_RCTL_SBP;
1818 else
1819 rctl &= ~E1000_RCTL_SBP;
1820
1821 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1822 rctl &= ~E1000_RCTL_LPE;
1823 else
1824 rctl |= E1000_RCTL_LPE;
1825
1826 /* Setup buffer sizes */
1827 rctl &= ~E1000_RCTL_SZ_4096;
1828 rctl |= E1000_RCTL_BSEX;
1829 switch (adapter->rx_buffer_len) {
1830 case E1000_RXBUFFER_2048:
1831 default:
1832 rctl |= E1000_RCTL_SZ_2048;
1833 rctl &= ~E1000_RCTL_BSEX;
1834 break;
1835 case E1000_RXBUFFER_4096:
1836 rctl |= E1000_RCTL_SZ_4096;
1837 break;
1838 case E1000_RXBUFFER_8192:
1839 rctl |= E1000_RCTL_SZ_8192;
1840 break;
1841 case E1000_RXBUFFER_16384:
1842 rctl |= E1000_RCTL_SZ_16384;
1843 break;
1844 }
1845
1846 /* This is useful for sniffing bad packets. */
1847 if (adapter->netdev->features & NETIF_F_RXALL) {
1848 /* UPE and MPE will be handled by normal PROMISC logic
1849 * in e1000e_set_rx_mode
1850 */
1851 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1852 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1853 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1854
1855 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1856 E1000_RCTL_DPF | /* Allow filtered pause */
1857 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1858 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1859 * and that breaks VLANs.
1860 */
1861 }
1862
1863 ew32(RCTL, rctl);
1864}
1865
1866/**
1867 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1868 * @adapter: board private structure
1869 *
1870 * Configure the Rx unit of the MAC after a reset.
1871 **/
1872static void e1000_configure_rx(struct e1000_adapter *adapter)
1873{
1874 u64 rdba;
1875 struct e1000_hw *hw = &adapter->hw;
1876 u32 rdlen, rctl, rxcsum;
1877
1878 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1879 rdlen = adapter->rx_ring[0].count *
1880 sizeof(struct e1000_rx_desc);
1881 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1882 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1883 } else {
1884 rdlen = adapter->rx_ring[0].count *
1885 sizeof(struct e1000_rx_desc);
1886 adapter->clean_rx = e1000_clean_rx_irq;
1887 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1888 }
1889
1890 /* disable receives while setting up the descriptors */
1891 rctl = er32(RCTL);
1892 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1893
1894 /* set the Receive Delay Timer Register */
1895 ew32(RDTR, adapter->rx_int_delay);
1896
1897 if (hw->mac_type >= e1000_82540) {
1898 ew32(RADV, adapter->rx_abs_int_delay);
1899 if (adapter->itr_setting != 0)
1900 ew32(ITR, 1000000000 / (adapter->itr * 256));
1901 }
1902
1903 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1904 * the Base and Length of the Rx Descriptor Ring
1905 */
1906 switch (adapter->num_rx_queues) {
1907 case 1:
1908 default:
1909 rdba = adapter->rx_ring[0].dma;
1910 ew32(RDLEN, rdlen);
1911 ew32(RDBAH, (rdba >> 32));
1912 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1913 ew32(RDT, 0);
1914 ew32(RDH, 0);
1915 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1916 E1000_RDH : E1000_82542_RDH);
1917 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1918 E1000_RDT : E1000_82542_RDT);
1919 break;
1920 }
1921
1922 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1923 if (hw->mac_type >= e1000_82543) {
1924 rxcsum = er32(RXCSUM);
1925 if (adapter->rx_csum)
1926 rxcsum |= E1000_RXCSUM_TUOFL;
1927 else
1928 /* don't need to clear IPPCSE as it defaults to 0 */
1929 rxcsum &= ~E1000_RXCSUM_TUOFL;
1930 ew32(RXCSUM, rxcsum);
1931 }
1932
1933 /* Enable Receives */
1934 ew32(RCTL, rctl | E1000_RCTL_EN);
1935}
1936
1937/**
1938 * e1000_free_tx_resources - Free Tx Resources per Queue
1939 * @adapter: board private structure
1940 * @tx_ring: Tx descriptor ring for a specific queue
1941 *
1942 * Free all transmit software resources
1943 **/
1944static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1945 struct e1000_tx_ring *tx_ring)
1946{
1947 struct pci_dev *pdev = adapter->pdev;
1948
1949 e1000_clean_tx_ring(adapter, tx_ring);
1950
1951 vfree(tx_ring->buffer_info);
1952 tx_ring->buffer_info = NULL;
1953
1954 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1955 tx_ring->dma);
1956
1957 tx_ring->desc = NULL;
1958}
1959
1960/**
1961 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1962 * @adapter: board private structure
1963 *
1964 * Free all transmit software resources
1965 **/
1966void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1967{
1968 int i;
1969
1970 for (i = 0; i < adapter->num_tx_queues; i++)
1971 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1972}
1973
1974static void
1975e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1976 struct e1000_tx_buffer *buffer_info)
1977{
1978 if (buffer_info->dma) {
1979 if (buffer_info->mapped_as_page)
1980 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1981 buffer_info->length, DMA_TO_DEVICE);
1982 else
1983 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1984 buffer_info->length,
1985 DMA_TO_DEVICE);
1986 buffer_info->dma = 0;
1987 }
1988 if (buffer_info->skb) {
1989 dev_kfree_skb_any(buffer_info->skb);
1990 buffer_info->skb = NULL;
1991 }
1992 buffer_info->time_stamp = 0;
1993 /* buffer_info must be completely set up in the transmit path */
1994}
1995
1996/**
1997 * e1000_clean_tx_ring - Free Tx Buffers
1998 * @adapter: board private structure
1999 * @tx_ring: ring to be cleaned
2000 **/
2001static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
2002 struct e1000_tx_ring *tx_ring)
2003{
2004 struct e1000_hw *hw = &adapter->hw;
2005 struct e1000_tx_buffer *buffer_info;
2006 unsigned long size;
2007 unsigned int i;
2008
2009 /* Free all the Tx ring sk_buffs */
2010
2011 for (i = 0; i < tx_ring->count; i++) {
2012 buffer_info = &tx_ring->buffer_info[i];
2013 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2014 }
2015
2016 netdev_reset_queue(adapter->netdev);
2017 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
2018 memset(tx_ring->buffer_info, 0, size);
2019
2020 /* Zero out the descriptor ring */
2021
2022 memset(tx_ring->desc, 0, tx_ring->size);
2023
2024 tx_ring->next_to_use = 0;
2025 tx_ring->next_to_clean = 0;
2026 tx_ring->last_tx_tso = false;
2027
2028 writel(0, hw->hw_addr + tx_ring->tdh);
2029 writel(0, hw->hw_addr + tx_ring->tdt);
2030}
2031
2032/**
2033 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2034 * @adapter: board private structure
2035 **/
2036static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2037{
2038 int i;
2039
2040 for (i = 0; i < adapter->num_tx_queues; i++)
2041 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2042}
2043
2044/**
2045 * e1000_free_rx_resources - Free Rx Resources
2046 * @adapter: board private structure
2047 * @rx_ring: ring to clean the resources from
2048 *
2049 * Free all receive software resources
2050 **/
2051static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2052 struct e1000_rx_ring *rx_ring)
2053{
2054 struct pci_dev *pdev = adapter->pdev;
2055
2056 e1000_clean_rx_ring(adapter, rx_ring);
2057
2058 vfree(rx_ring->buffer_info);
2059 rx_ring->buffer_info = NULL;
2060
2061 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2062 rx_ring->dma);
2063
2064 rx_ring->desc = NULL;
2065}
2066
2067/**
2068 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2069 * @adapter: board private structure
2070 *
2071 * Free all receive software resources
2072 **/
2073void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2074{
2075 int i;
2076
2077 for (i = 0; i < adapter->num_rx_queues; i++)
2078 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2079}
2080
2081#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2082static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2083{
2084 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2085 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2086}
2087
2088static void *e1000_alloc_frag(const struct e1000_adapter *a)
2089{
2090 unsigned int len = e1000_frag_len(a);
2091 u8 *data = netdev_alloc_frag(len);
2092
2093 if (likely(data))
2094 data += E1000_HEADROOM;
2095 return data;
2096}
2097
2098/**
2099 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2100 * @adapter: board private structure
2101 * @rx_ring: ring to free buffers from
2102 **/
2103static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2104 struct e1000_rx_ring *rx_ring)
2105{
2106 struct e1000_hw *hw = &adapter->hw;
2107 struct e1000_rx_buffer *buffer_info;
2108 struct pci_dev *pdev = adapter->pdev;
2109 unsigned long size;
2110 unsigned int i;
2111
2112 /* Free all the Rx netfrags */
2113 for (i = 0; i < rx_ring->count; i++) {
2114 buffer_info = &rx_ring->buffer_info[i];
2115 if (adapter->clean_rx == e1000_clean_rx_irq) {
2116 if (buffer_info->dma)
2117 dma_unmap_single(&pdev->dev, buffer_info->dma,
2118 adapter->rx_buffer_len,
2119 DMA_FROM_DEVICE);
2120 if (buffer_info->rxbuf.data) {
2121 skb_free_frag(buffer_info->rxbuf.data);
2122 buffer_info->rxbuf.data = NULL;
2123 }
2124 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2125 if (buffer_info->dma)
2126 dma_unmap_page(&pdev->dev, buffer_info->dma,
2127 adapter->rx_buffer_len,
2128 DMA_FROM_DEVICE);
2129 if (buffer_info->rxbuf.page) {
2130 put_page(buffer_info->rxbuf.page);
2131 buffer_info->rxbuf.page = NULL;
2132 }
2133 }
2134
2135 buffer_info->dma = 0;
2136 }
2137
2138 /* there also may be some cached data from a chained receive */
2139 napi_free_frags(&adapter->napi);
2140 rx_ring->rx_skb_top = NULL;
2141
2142 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
2143 memset(rx_ring->buffer_info, 0, size);
2144
2145 /* Zero out the descriptor ring */
2146 memset(rx_ring->desc, 0, rx_ring->size);
2147
2148 rx_ring->next_to_clean = 0;
2149 rx_ring->next_to_use = 0;
2150
2151 writel(0, hw->hw_addr + rx_ring->rdh);
2152 writel(0, hw->hw_addr + rx_ring->rdt);
2153}
2154
2155/**
2156 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2157 * @adapter: board private structure
2158 **/
2159static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2160{
2161 int i;
2162
2163 for (i = 0; i < adapter->num_rx_queues; i++)
2164 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2165}
2166
2167/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2168 * and memory write and invalidate disabled for certain operations
2169 */
2170static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
2171{
2172 struct e1000_hw *hw = &adapter->hw;
2173 struct net_device *netdev = adapter->netdev;
2174 u32 rctl;
2175
2176 e1000_pci_clear_mwi(hw);
2177
2178 rctl = er32(RCTL);
2179 rctl |= E1000_RCTL_RST;
2180 ew32(RCTL, rctl);
2181 E1000_WRITE_FLUSH();
2182 mdelay(5);
2183
2184 if (netif_running(netdev))
2185 e1000_clean_all_rx_rings(adapter);
2186}
2187
2188static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
2189{
2190 struct e1000_hw *hw = &adapter->hw;
2191 struct net_device *netdev = adapter->netdev;
2192 u32 rctl;
2193
2194 rctl = er32(RCTL);
2195 rctl &= ~E1000_RCTL_RST;
2196 ew32(RCTL, rctl);
2197 E1000_WRITE_FLUSH();
2198 mdelay(5);
2199
2200 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2201 e1000_pci_set_mwi(hw);
2202
2203 if (netif_running(netdev)) {
2204 /* No need to loop, because 82542 supports only 1 queue */
2205 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2206 e1000_configure_rx(adapter);
2207 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2208 }
2209}
2210
2211/**
2212 * e1000_set_mac - Change the Ethernet Address of the NIC
2213 * @netdev: network interface device structure
2214 * @p: pointer to an address structure
2215 *
2216 * Returns 0 on success, negative on failure
2217 **/
2218static int e1000_set_mac(struct net_device *netdev, void *p)
2219{
2220 struct e1000_adapter *adapter = netdev_priv(netdev);
2221 struct e1000_hw *hw = &adapter->hw;
2222 struct sockaddr *addr = p;
2223
2224 if (!is_valid_ether_addr(addr->sa_data))
2225 return -EADDRNOTAVAIL;
2226
2227 /* 82542 2.0 needs to be in reset to write receive address registers */
2228
2229 if (hw->mac_type == e1000_82542_rev2_0)
2230 e1000_enter_82542_rst(adapter);
2231
2232 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2233 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
2234
2235 e1000_rar_set(hw, hw->mac_addr, 0);
2236
2237 if (hw->mac_type == e1000_82542_rev2_0)
2238 e1000_leave_82542_rst(adapter);
2239
2240 return 0;
2241}
2242
2243/**
2244 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2245 * @netdev: network interface device structure
2246 *
2247 * The set_rx_mode entry point is called whenever the unicast or multicast
2248 * address lists or the network interface flags are updated. This routine is
2249 * responsible for configuring the hardware for proper unicast, multicast,
2250 * promiscuous mode, and all-multi behavior.
2251 **/
2252static void e1000_set_rx_mode(struct net_device *netdev)
2253{
2254 struct e1000_adapter *adapter = netdev_priv(netdev);
2255 struct e1000_hw *hw = &adapter->hw;
2256 struct netdev_hw_addr *ha;
2257 bool use_uc = false;
2258 u32 rctl;
2259 u32 hash_value;
2260 int i, rar_entries = E1000_RAR_ENTRIES;
2261 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
2262 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2263
2264 if (!mcarray)
2265 return;
2266
2267 /* Check for Promiscuous and All Multicast modes */
2268
2269 rctl = er32(RCTL);
2270
2271 if (netdev->flags & IFF_PROMISC) {
2272 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2273 rctl &= ~E1000_RCTL_VFE;
2274 } else {
2275 if (netdev->flags & IFF_ALLMULTI)
2276 rctl |= E1000_RCTL_MPE;
2277 else
2278 rctl &= ~E1000_RCTL_MPE;
2279 /* Enable VLAN filter if there is a VLAN */
2280 if (e1000_vlan_used(adapter))
2281 rctl |= E1000_RCTL_VFE;
2282 }
2283
2284 if (netdev_uc_count(netdev) > rar_entries - 1) {
2285 rctl |= E1000_RCTL_UPE;
2286 } else if (!(netdev->flags & IFF_PROMISC)) {
2287 rctl &= ~E1000_RCTL_UPE;
2288 use_uc = true;
2289 }
2290
2291 ew32(RCTL, rctl);
2292
2293 /* 82542 2.0 needs to be in reset to write receive address registers */
2294
2295 if (hw->mac_type == e1000_82542_rev2_0)
2296 e1000_enter_82542_rst(adapter);
2297
2298 /* load the first 14 addresses into the exact filters 1-14. Unicast
2299 * addresses take precedence to avoid disabling unicast filtering
2300 * when possible.
2301 *
2302 * RAR 0 is used for the station MAC address
2303 * if there are not 14 addresses, go ahead and clear the filters
2304 */
2305 i = 1;
2306 if (use_uc)
2307 netdev_for_each_uc_addr(ha, netdev) {
2308 if (i == rar_entries)
2309 break;
2310 e1000_rar_set(hw, ha->addr, i++);
2311 }
2312
2313 netdev_for_each_mc_addr(ha, netdev) {
2314 if (i == rar_entries) {
2315 /* load any remaining addresses into the hash table */
2316 u32 hash_reg, hash_bit, mta;
2317 hash_value = e1000_hash_mc_addr(hw, ha->addr);
2318 hash_reg = (hash_value >> 5) & 0x7F;
2319 hash_bit = hash_value & 0x1F;
2320 mta = (1 << hash_bit);
2321 mcarray[hash_reg] |= mta;
2322 } else {
2323 e1000_rar_set(hw, ha->addr, i++);
2324 }
2325 }
2326
2327 for (; i < rar_entries; i++) {
2328 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2329 E1000_WRITE_FLUSH();
2330 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2331 E1000_WRITE_FLUSH();
2332 }
2333
2334 /* write the hash table completely, write from bottom to avoid
2335 * both stupid write combining chipsets, and flushing each write
2336 */
2337 for (i = mta_reg_count - 1; i >= 0 ; i--) {
2338 /* If we are on an 82544 has an errata where writing odd
2339 * offsets overwrites the previous even offset, but writing
2340 * backwards over the range solves the issue by always
2341 * writing the odd offset first
2342 */
2343 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2344 }
2345 E1000_WRITE_FLUSH();
2346
2347 if (hw->mac_type == e1000_82542_rev2_0)
2348 e1000_leave_82542_rst(adapter);
2349
2350 kfree(mcarray);
2351}
2352
2353/**
2354 * e1000_update_phy_info_task - get phy info
2355 * @work: work struct contained inside adapter struct
2356 *
2357 * Need to wait a few seconds after link up to get diagnostic information from
2358 * the phy
2359 */
2360static void e1000_update_phy_info_task(struct work_struct *work)
2361{
2362 struct e1000_adapter *adapter = container_of(work,
2363 struct e1000_adapter,
2364 phy_info_task.work);
2365
2366 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2367}
2368
2369/**
2370 * e1000_82547_tx_fifo_stall_task - task to complete work
2371 * @work: work struct contained inside adapter struct
2372 **/
2373static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2374{
2375 struct e1000_adapter *adapter = container_of(work,
2376 struct e1000_adapter,
2377 fifo_stall_task.work);
2378 struct e1000_hw *hw = &adapter->hw;
2379 struct net_device *netdev = adapter->netdev;
2380 u32 tctl;
2381
2382 if (atomic_read(&adapter->tx_fifo_stall)) {
2383 if ((er32(TDT) == er32(TDH)) &&
2384 (er32(TDFT) == er32(TDFH)) &&
2385 (er32(TDFTS) == er32(TDFHS))) {
2386 tctl = er32(TCTL);
2387 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2388 ew32(TDFT, adapter->tx_head_addr);
2389 ew32(TDFH, adapter->tx_head_addr);
2390 ew32(TDFTS, adapter->tx_head_addr);
2391 ew32(TDFHS, adapter->tx_head_addr);
2392 ew32(TCTL, tctl);
2393 E1000_WRITE_FLUSH();
2394
2395 adapter->tx_fifo_head = 0;
2396 atomic_set(&adapter->tx_fifo_stall, 0);
2397 netif_wake_queue(netdev);
2398 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
2399 schedule_delayed_work(&adapter->fifo_stall_task, 1);
2400 }
2401 }
2402}
2403
2404bool e1000_has_link(struct e1000_adapter *adapter)
2405{
2406 struct e1000_hw *hw = &adapter->hw;
2407 bool link_active = false;
2408
2409 /* get_link_status is set on LSC (link status) interrupt or rx
2410 * sequence error interrupt (except on intel ce4100).
2411 * get_link_status will stay false until the
2412 * e1000_check_for_link establishes link for copper adapters
2413 * ONLY
2414 */
2415 switch (hw->media_type) {
2416 case e1000_media_type_copper:
2417 if (hw->mac_type == e1000_ce4100)
2418 hw->get_link_status = 1;
2419 if (hw->get_link_status) {
2420 e1000_check_for_link(hw);
2421 link_active = !hw->get_link_status;
2422 } else {
2423 link_active = true;
2424 }
2425 break;
2426 case e1000_media_type_fiber:
2427 e1000_check_for_link(hw);
2428 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2429 break;
2430 case e1000_media_type_internal_serdes:
2431 e1000_check_for_link(hw);
2432 link_active = hw->serdes_has_link;
2433 break;
2434 default:
2435 break;
2436 }
2437
2438 return link_active;
2439}
2440
2441/**
2442 * e1000_watchdog - work function
2443 * @work: work struct contained inside adapter struct
2444 **/
2445static void e1000_watchdog(struct work_struct *work)
2446{
2447 struct e1000_adapter *adapter = container_of(work,
2448 struct e1000_adapter,
2449 watchdog_task.work);
2450 struct e1000_hw *hw = &adapter->hw;
2451 struct net_device *netdev = adapter->netdev;
2452 struct e1000_tx_ring *txdr = adapter->tx_ring;
2453 u32 link, tctl;
2454
2455 link = e1000_has_link(adapter);
2456 if ((netif_carrier_ok(netdev)) && link)
2457 goto link_up;
2458
2459 if (link) {
2460 if (!netif_carrier_ok(netdev)) {
2461 u32 ctrl;
2462 bool txb2b = true;
2463 /* update snapshot of PHY registers on LSC */
2464 e1000_get_speed_and_duplex(hw,
2465 &adapter->link_speed,
2466 &adapter->link_duplex);
2467
2468 ctrl = er32(CTRL);
2469 pr_info("%s NIC Link is Up %d Mbps %s, "
2470 "Flow Control: %s\n",
2471 netdev->name,
2472 adapter->link_speed,
2473 adapter->link_duplex == FULL_DUPLEX ?
2474 "Full Duplex" : "Half Duplex",
2475 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2476 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2477 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2478 E1000_CTRL_TFCE) ? "TX" : "None")));
2479
2480 /* adjust timeout factor according to speed/duplex */
2481 adapter->tx_timeout_factor = 1;
2482 switch (adapter->link_speed) {
2483 case SPEED_10:
2484 txb2b = false;
2485 adapter->tx_timeout_factor = 16;
2486 break;
2487 case SPEED_100:
2488 txb2b = false;
2489 /* maybe add some timeout factor ? */
2490 break;
2491 }
2492
2493 /* enable transmits in the hardware */
2494 tctl = er32(TCTL);
2495 tctl |= E1000_TCTL_EN;
2496 ew32(TCTL, tctl);
2497
2498 netif_carrier_on(netdev);
2499 if (!test_bit(__E1000_DOWN, &adapter->flags))
2500 schedule_delayed_work(&adapter->phy_info_task,
2501 2 * HZ);
2502 adapter->smartspeed = 0;
2503 }
2504 } else {
2505 if (netif_carrier_ok(netdev)) {
2506 adapter->link_speed = 0;
2507 adapter->link_duplex = 0;
2508 pr_info("%s NIC Link is Down\n",
2509 netdev->name);
2510 netif_carrier_off(netdev);
2511
2512 if (!test_bit(__E1000_DOWN, &adapter->flags))
2513 schedule_delayed_work(&adapter->phy_info_task,
2514 2 * HZ);
2515 }
2516
2517 e1000_smartspeed(adapter);
2518 }
2519
2520link_up:
2521 e1000_update_stats(adapter);
2522
2523 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2524 adapter->tpt_old = adapter->stats.tpt;
2525 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
2526 adapter->colc_old = adapter->stats.colc;
2527
2528 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2529 adapter->gorcl_old = adapter->stats.gorcl;
2530 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2531 adapter->gotcl_old = adapter->stats.gotcl;
2532
2533 e1000_update_adaptive(hw);
2534
2535 if (!netif_carrier_ok(netdev)) {
2536 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2537 /* We've lost link, so the controller stops DMA,
2538 * but we've got queued Tx work that's never going
2539 * to get done, so reset controller to flush Tx.
2540 * (Do the reset outside of interrupt context).
2541 */
2542 adapter->tx_timeout_count++;
2543 schedule_work(&adapter->reset_task);
2544 /* exit immediately since reset is imminent */
2545 return;
2546 }
2547 }
2548
2549 /* Simple mode for Interrupt Throttle Rate (ITR) */
2550 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
2551 /* Symmetric Tx/Rx gets a reduced ITR=2000;
2552 * Total asymmetrical Tx or Rx gets ITR=8000;
2553 * everyone else is between 2000-8000.
2554 */
2555 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2556 u32 dif = (adapter->gotcl > adapter->gorcl ?
2557 adapter->gotcl - adapter->gorcl :
2558 adapter->gorcl - adapter->gotcl) / 10000;
2559 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2560
2561 ew32(ITR, 1000000000 / (itr * 256));
2562 }
2563
2564 /* Cause software interrupt to ensure rx ring is cleaned */
2565 ew32(ICS, E1000_ICS_RXDMT0);
2566
2567 /* Force detection of hung controller every watchdog period */
2568 adapter->detect_tx_hung = true;
2569
2570 /* Reschedule the task */
2571 if (!test_bit(__E1000_DOWN, &adapter->flags))
2572 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
2573}
2574
2575enum latency_range {
2576 lowest_latency = 0,
2577 low_latency = 1,
2578 bulk_latency = 2,
2579 latency_invalid = 255
2580};
2581
2582/**
2583 * e1000_update_itr - update the dynamic ITR value based on statistics
2584 * @adapter: pointer to adapter
2585 * @itr_setting: current adapter->itr
2586 * @packets: the number of packets during this measurement interval
2587 * @bytes: the number of bytes during this measurement interval
2588 *
2589 * Stores a new ITR value based on packets and byte
2590 * counts during the last interrupt. The advantage of per interrupt
2591 * computation is faster updates and more accurate ITR for the current
2592 * traffic pattern. Constants in this function were computed
2593 * based on theoretical maximum wire speed and thresholds were set based
2594 * on testing data as well as attempting to minimize response time
2595 * while increasing bulk throughput.
2596 * this functionality is controlled by the InterruptThrottleRate module
2597 * parameter (see e1000_param.c)
2598 **/
2599static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2600 u16 itr_setting, int packets, int bytes)
2601{
2602 unsigned int retval = itr_setting;
2603 struct e1000_hw *hw = &adapter->hw;
2604
2605 if (unlikely(hw->mac_type < e1000_82540))
2606 goto update_itr_done;
2607
2608 if (packets == 0)
2609 goto update_itr_done;
2610
2611 switch (itr_setting) {
2612 case lowest_latency:
2613 /* jumbo frames get bulk treatment*/
2614 if (bytes/packets > 8000)
2615 retval = bulk_latency;
2616 else if ((packets < 5) && (bytes > 512))
2617 retval = low_latency;
2618 break;
2619 case low_latency: /* 50 usec aka 20000 ints/s */
2620 if (bytes > 10000) {
2621 /* jumbo frames need bulk latency setting */
2622 if (bytes/packets > 8000)
2623 retval = bulk_latency;
2624 else if ((packets < 10) || ((bytes/packets) > 1200))
2625 retval = bulk_latency;
2626 else if ((packets > 35))
2627 retval = lowest_latency;
2628 } else if (bytes/packets > 2000)
2629 retval = bulk_latency;
2630 else if (packets <= 2 && bytes < 512)
2631 retval = lowest_latency;
2632 break;
2633 case bulk_latency: /* 250 usec aka 4000 ints/s */
2634 if (bytes > 25000) {
2635 if (packets > 35)
2636 retval = low_latency;
2637 } else if (bytes < 6000) {
2638 retval = low_latency;
2639 }
2640 break;
2641 }
2642
2643update_itr_done:
2644 return retval;
2645}
2646
2647static void e1000_set_itr(struct e1000_adapter *adapter)
2648{
2649 struct e1000_hw *hw = &adapter->hw;
2650 u16 current_itr;
2651 u32 new_itr = adapter->itr;
2652
2653 if (unlikely(hw->mac_type < e1000_82540))
2654 return;
2655
2656 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2657 if (unlikely(adapter->link_speed != SPEED_1000)) {
2658 current_itr = 0;
2659 new_itr = 4000;
2660 goto set_itr_now;
2661 }
2662
2663 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2664 adapter->total_tx_packets,
2665 adapter->total_tx_bytes);
2666 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2667 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2668 adapter->tx_itr = low_latency;
2669
2670 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2671 adapter->total_rx_packets,
2672 adapter->total_rx_bytes);
2673 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2674 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2675 adapter->rx_itr = low_latency;
2676
2677 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2678
2679 switch (current_itr) {
2680 /* counts and packets in update_itr are dependent on these numbers */
2681 case lowest_latency:
2682 new_itr = 70000;
2683 break;
2684 case low_latency:
2685 new_itr = 20000; /* aka hwitr = ~200 */
2686 break;
2687 case bulk_latency:
2688 new_itr = 4000;
2689 break;
2690 default:
2691 break;
2692 }
2693
2694set_itr_now:
2695 if (new_itr != adapter->itr) {
2696 /* this attempts to bias the interrupt rate towards Bulk
2697 * by adding intermediate steps when interrupt rate is
2698 * increasing
2699 */
2700 new_itr = new_itr > adapter->itr ?
2701 min(adapter->itr + (new_itr >> 2), new_itr) :
2702 new_itr;
2703 adapter->itr = new_itr;
2704 ew32(ITR, 1000000000 / (new_itr * 256));
2705 }
2706}
2707
2708#define E1000_TX_FLAGS_CSUM 0x00000001
2709#define E1000_TX_FLAGS_VLAN 0x00000002
2710#define E1000_TX_FLAGS_TSO 0x00000004
2711#define E1000_TX_FLAGS_IPV4 0x00000008
2712#define E1000_TX_FLAGS_NO_FCS 0x00000010
2713#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2714#define E1000_TX_FLAGS_VLAN_SHIFT 16
2715
2716static int e1000_tso(struct e1000_adapter *adapter,
2717 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2718 __be16 protocol)
2719{
2720 struct e1000_context_desc *context_desc;
2721 struct e1000_tx_buffer *buffer_info;
2722 unsigned int i;
2723 u32 cmd_length = 0;
2724 u16 ipcse = 0, tucse, mss;
2725 u8 ipcss, ipcso, tucss, tucso, hdr_len;
2726
2727 if (skb_is_gso(skb)) {
2728 int err;
2729
2730 err = skb_cow_head(skb, 0);
2731 if (err < 0)
2732 return err;
2733
2734 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2735 mss = skb_shinfo(skb)->gso_size;
2736 if (protocol == htons(ETH_P_IP)) {
2737 struct iphdr *iph = ip_hdr(skb);
2738 iph->tot_len = 0;
2739 iph->check = 0;
2740 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2741 iph->daddr, 0,
2742 IPPROTO_TCP,
2743 0);
2744 cmd_length = E1000_TXD_CMD_IP;
2745 ipcse = skb_transport_offset(skb) - 1;
2746 } else if (skb_is_gso_v6(skb)) {
2747 ipv6_hdr(skb)->payload_len = 0;
2748 tcp_hdr(skb)->check =
2749 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2750 &ipv6_hdr(skb)->daddr,
2751 0, IPPROTO_TCP, 0);
2752 ipcse = 0;
2753 }
2754 ipcss = skb_network_offset(skb);
2755 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
2756 tucss = skb_transport_offset(skb);
2757 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
2758 tucse = 0;
2759
2760 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2761 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2762
2763 i = tx_ring->next_to_use;
2764 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2765 buffer_info = &tx_ring->buffer_info[i];
2766
2767 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2768 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2769 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2770 context_desc->upper_setup.tcp_fields.tucss = tucss;
2771 context_desc->upper_setup.tcp_fields.tucso = tucso;
2772 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2773 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2774 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2775 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2776
2777 buffer_info->time_stamp = jiffies;
2778 buffer_info->next_to_watch = i;
2779
2780 if (++i == tx_ring->count)
2781 i = 0;
2782
2783 tx_ring->next_to_use = i;
2784
2785 return true;
2786 }
2787 return false;
2788}
2789
2790static bool e1000_tx_csum(struct e1000_adapter *adapter,
2791 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2792 __be16 protocol)
2793{
2794 struct e1000_context_desc *context_desc;
2795 struct e1000_tx_buffer *buffer_info;
2796 unsigned int i;
2797 u8 css;
2798 u32 cmd_len = E1000_TXD_CMD_DEXT;
2799
2800 if (skb->ip_summed != CHECKSUM_PARTIAL)
2801 return false;
2802
2803 switch (protocol) {
2804 case cpu_to_be16(ETH_P_IP):
2805 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2806 cmd_len |= E1000_TXD_CMD_TCP;
2807 break;
2808 case cpu_to_be16(ETH_P_IPV6):
2809 /* XXX not handling all IPV6 headers */
2810 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2811 cmd_len |= E1000_TXD_CMD_TCP;
2812 break;
2813 default:
2814 if (unlikely(net_ratelimit()))
2815 e_warn(drv, "checksum_partial proto=%x!\n",
2816 skb->protocol);
2817 break;
2818 }
2819
2820 css = skb_checksum_start_offset(skb);
2821
2822 i = tx_ring->next_to_use;
2823 buffer_info = &tx_ring->buffer_info[i];
2824 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2825
2826 context_desc->lower_setup.ip_config = 0;
2827 context_desc->upper_setup.tcp_fields.tucss = css;
2828 context_desc->upper_setup.tcp_fields.tucso =
2829 css + skb->csum_offset;
2830 context_desc->upper_setup.tcp_fields.tucse = 0;
2831 context_desc->tcp_seg_setup.data = 0;
2832 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
2833
2834 buffer_info->time_stamp = jiffies;
2835 buffer_info->next_to_watch = i;
2836
2837 if (unlikely(++i == tx_ring->count))
2838 i = 0;
2839
2840 tx_ring->next_to_use = i;
2841
2842 return true;
2843}
2844
2845#define E1000_MAX_TXD_PWR 12
2846#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2847
2848static int e1000_tx_map(struct e1000_adapter *adapter,
2849 struct e1000_tx_ring *tx_ring,
2850 struct sk_buff *skb, unsigned int first,
2851 unsigned int max_per_txd, unsigned int nr_frags,
2852 unsigned int mss)
2853{
2854 struct e1000_hw *hw = &adapter->hw;
2855 struct pci_dev *pdev = adapter->pdev;
2856 struct e1000_tx_buffer *buffer_info;
2857 unsigned int len = skb_headlen(skb);
2858 unsigned int offset = 0, size, count = 0, i;
2859 unsigned int f, bytecount, segs;
2860
2861 i = tx_ring->next_to_use;
2862
2863 while (len) {
2864 buffer_info = &tx_ring->buffer_info[i];
2865 size = min(len, max_per_txd);
2866 /* Workaround for Controller erratum --
2867 * descriptor for non-tso packet in a linear SKB that follows a
2868 * tso gets written back prematurely before the data is fully
2869 * DMA'd to the controller
2870 */
2871 if (!skb->data_len && tx_ring->last_tx_tso &&
2872 !skb_is_gso(skb)) {
2873 tx_ring->last_tx_tso = false;
2874 size -= 4;
2875 }
2876
2877 /* Workaround for premature desc write-backs
2878 * in TSO mode. Append 4-byte sentinel desc
2879 */
2880 if (unlikely(mss && !nr_frags && size == len && size > 8))
2881 size -= 4;
2882 /* work-around for errata 10 and it applies
2883 * to all controllers in PCI-X mode
2884 * The fix is to make sure that the first descriptor of a
2885 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2886 */
2887 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
2888 (size > 2015) && count == 0))
2889 size = 2015;
2890
2891 /* Workaround for potential 82544 hang in PCI-X. Avoid
2892 * terminating buffers within evenly-aligned dwords.
2893 */
2894 if (unlikely(adapter->pcix_82544 &&
2895 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2896 size > 4))
2897 size -= 4;
2898
2899 buffer_info->length = size;
2900 /* set time_stamp *before* dma to help avoid a possible race */
2901 buffer_info->time_stamp = jiffies;
2902 buffer_info->mapped_as_page = false;
2903 buffer_info->dma = dma_map_single(&pdev->dev,
2904 skb->data + offset,
2905 size, DMA_TO_DEVICE);
2906 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2907 goto dma_error;
2908 buffer_info->next_to_watch = i;
2909
2910 len -= size;
2911 offset += size;
2912 count++;
2913 if (len) {
2914 i++;
2915 if (unlikely(i == tx_ring->count))
2916 i = 0;
2917 }
2918 }
2919
2920 for (f = 0; f < nr_frags; f++) {
2921 const struct skb_frag_struct *frag;
2922
2923 frag = &skb_shinfo(skb)->frags[f];
2924 len = skb_frag_size(frag);
2925 offset = 0;
2926
2927 while (len) {
2928 unsigned long bufend;
2929 i++;
2930 if (unlikely(i == tx_ring->count))
2931 i = 0;
2932
2933 buffer_info = &tx_ring->buffer_info[i];
2934 size = min(len, max_per_txd);
2935 /* Workaround for premature desc write-backs
2936 * in TSO mode. Append 4-byte sentinel desc
2937 */
2938 if (unlikely(mss && f == (nr_frags-1) &&
2939 size == len && size > 8))
2940 size -= 4;
2941 /* Workaround for potential 82544 hang in PCI-X.
2942 * Avoid terminating buffers within evenly-aligned
2943 * dwords.
2944 */
2945 bufend = (unsigned long)
2946 page_to_phys(skb_frag_page(frag));
2947 bufend += offset + size - 1;
2948 if (unlikely(adapter->pcix_82544 &&
2949 !(bufend & 4) &&
2950 size > 4))
2951 size -= 4;
2952
2953 buffer_info->length = size;
2954 buffer_info->time_stamp = jiffies;
2955 buffer_info->mapped_as_page = true;
2956 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2957 offset, size, DMA_TO_DEVICE);
2958 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2959 goto dma_error;
2960 buffer_info->next_to_watch = i;
2961
2962 len -= size;
2963 offset += size;
2964 count++;
2965 }
2966 }
2967
2968 segs = skb_shinfo(skb)->gso_segs ?: 1;
2969 /* multiply data chunks by size of headers */
2970 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2971
2972 tx_ring->buffer_info[i].skb = skb;
2973 tx_ring->buffer_info[i].segs = segs;
2974 tx_ring->buffer_info[i].bytecount = bytecount;
2975 tx_ring->buffer_info[first].next_to_watch = i;
2976
2977 return count;
2978
2979dma_error:
2980 dev_err(&pdev->dev, "TX DMA map failed\n");
2981 buffer_info->dma = 0;
2982 if (count)
2983 count--;
2984
2985 while (count--) {
2986 if (i == 0)
2987 i += tx_ring->count;
2988 i--;
2989 buffer_info = &tx_ring->buffer_info[i];
2990 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2991 }
2992
2993 return 0;
2994}
2995
2996static void e1000_tx_queue(struct e1000_adapter *adapter,
2997 struct e1000_tx_ring *tx_ring, int tx_flags,
2998 int count)
2999{
3000 struct e1000_tx_desc *tx_desc = NULL;
3001 struct e1000_tx_buffer *buffer_info;
3002 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3003 unsigned int i;
3004
3005 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
3006 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3007 E1000_TXD_CMD_TSE;
3008 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3009
3010 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
3011 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3012 }
3013
3014 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
3015 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3016 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3017 }
3018
3019 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
3020 txd_lower |= E1000_TXD_CMD_VLE;
3021 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3022 }
3023
3024 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3025 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3026
3027 i = tx_ring->next_to_use;
3028
3029 while (count--) {
3030 buffer_info = &tx_ring->buffer_info[i];
3031 tx_desc = E1000_TX_DESC(*tx_ring, i);
3032 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3033 tx_desc->lower.data =
3034 cpu_to_le32(txd_lower | buffer_info->length);
3035 tx_desc->upper.data = cpu_to_le32(txd_upper);
3036 if (unlikely(++i == tx_ring->count))
3037 i = 0;
3038 }
3039
3040 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3041
3042 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3043 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3044 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3045
3046 /* Force memory writes to complete before letting h/w
3047 * know there are new descriptors to fetch. (Only
3048 * applicable for weak-ordered memory model archs,
3049 * such as IA-64).
3050 */
3051 wmb();
3052
3053 tx_ring->next_to_use = i;
3054}
3055
3056/* 82547 workaround to avoid controller hang in half-duplex environment.
3057 * The workaround is to avoid queuing a large packet that would span
3058 * the internal Tx FIFO ring boundary by notifying the stack to resend
3059 * the packet at a later time. This gives the Tx FIFO an opportunity to
3060 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3061 * to the beginning of the Tx FIFO.
3062 */
3063
3064#define E1000_FIFO_HDR 0x10
3065#define E1000_82547_PAD_LEN 0x3E0
3066
3067static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3068 struct sk_buff *skb)
3069{
3070 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3071 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
3072
3073 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
3074
3075 if (adapter->link_duplex != HALF_DUPLEX)
3076 goto no_fifo_stall_required;
3077
3078 if (atomic_read(&adapter->tx_fifo_stall))
3079 return 1;
3080
3081 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
3082 atomic_set(&adapter->tx_fifo_stall, 1);
3083 return 1;
3084 }
3085
3086no_fifo_stall_required:
3087 adapter->tx_fifo_head += skb_fifo_len;
3088 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
3089 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3090 return 0;
3091}
3092
3093static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3094{
3095 struct e1000_adapter *adapter = netdev_priv(netdev);
3096 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3097
3098 netif_stop_queue(netdev);
3099 /* Herbert's original patch had:
3100 * smp_mb__after_netif_stop_queue();
3101 * but since that doesn't exist yet, just open code it.
3102 */
3103 smp_mb();
3104
3105 /* We need to check again in a case another CPU has just
3106 * made room available.
3107 */
3108 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3109 return -EBUSY;
3110
3111 /* A reprieve! */
3112 netif_start_queue(netdev);
3113 ++adapter->restart_queue;
3114 return 0;
3115}
3116
3117static int e1000_maybe_stop_tx(struct net_device *netdev,
3118 struct e1000_tx_ring *tx_ring, int size)
3119{
3120 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3121 return 0;
3122 return __e1000_maybe_stop_tx(netdev, size);
3123}
3124
3125#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3126static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3127 struct net_device *netdev)
3128{
3129 struct e1000_adapter *adapter = netdev_priv(netdev);
3130 struct e1000_hw *hw = &adapter->hw;
3131 struct e1000_tx_ring *tx_ring;
3132 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3133 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3134 unsigned int tx_flags = 0;
3135 unsigned int len = skb_headlen(skb);
3136 unsigned int nr_frags;
3137 unsigned int mss;
3138 int count = 0;
3139 int tso;
3140 unsigned int f;
3141 __be16 protocol = vlan_get_protocol(skb);
3142
3143 /* This goes back to the question of how to logically map a Tx queue
3144 * to a flow. Right now, performance is impacted slightly negatively
3145 * if using multiple Tx queues. If the stack breaks away from a
3146 * single qdisc implementation, we can look at this again.
3147 */
3148 tx_ring = adapter->tx_ring;
3149
3150 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3151 * packets may get corrupted during padding by HW.
3152 * To WA this issue, pad all small packets manually.
3153 */
3154 if (eth_skb_pad(skb))
3155 return NETDEV_TX_OK;
3156
3157 mss = skb_shinfo(skb)->gso_size;
3158 /* The controller does a simple calculation to
3159 * make sure there is enough room in the FIFO before
3160 * initiating the DMA for each buffer. The calc is:
3161 * 4 = ceil(buffer len/mss). To make sure we don't
3162 * overrun the FIFO, adjust the max buffer len if mss
3163 * drops.
3164 */
3165 if (mss) {
3166 u8 hdr_len;
3167 max_per_txd = min(mss << 2, max_per_txd);
3168 max_txd_pwr = fls(max_per_txd) - 1;
3169
3170 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3171 if (skb->data_len && hdr_len == len) {
3172 switch (hw->mac_type) {
3173 unsigned int pull_size;
3174 case e1000_82544:
3175 /* Make sure we have room to chop off 4 bytes,
3176 * and that the end alignment will work out to
3177 * this hardware's requirements
3178 * NOTE: this is a TSO only workaround
3179 * if end byte alignment not correct move us
3180 * into the next dword
3181 */
3182 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3183 & 4)
3184 break;
3185 /* fall through */
3186 pull_size = min((unsigned int)4, skb->data_len);
3187 if (!__pskb_pull_tail(skb, pull_size)) {
3188 e_err(drv, "__pskb_pull_tail "
3189 "failed.\n");
3190 dev_kfree_skb_any(skb);
3191 return NETDEV_TX_OK;
3192 }
3193 len = skb_headlen(skb);
3194 break;
3195 default:
3196 /* do nothing */
3197 break;
3198 }
3199 }
3200 }
3201
3202 /* reserve a descriptor for the offload context */
3203 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3204 count++;
3205 count++;
3206
3207 /* Controller Erratum workaround */
3208 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3209 count++;
3210
3211 count += TXD_USE_COUNT(len, max_txd_pwr);
3212
3213 if (adapter->pcix_82544)
3214 count++;
3215
3216 /* work-around for errata 10 and it applies to all controllers
3217 * in PCI-X mode, so add one more descriptor to the count
3218 */
3219 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
3220 (len > 2015)))
3221 count++;
3222
3223 nr_frags = skb_shinfo(skb)->nr_frags;
3224 for (f = 0; f < nr_frags; f++)
3225 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
3226 max_txd_pwr);
3227 if (adapter->pcix_82544)
3228 count += nr_frags;
3229
3230 /* need: count + 2 desc gap to keep tail from touching
3231 * head, otherwise try next time
3232 */
3233 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
3234 return NETDEV_TX_BUSY;
3235
3236 if (unlikely((hw->mac_type == e1000_82547) &&
3237 (e1000_82547_fifo_workaround(adapter, skb)))) {
3238 netif_stop_queue(netdev);
3239 if (!test_bit(__E1000_DOWN, &adapter->flags))
3240 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3241 return NETDEV_TX_BUSY;
3242 }
3243
3244 if (skb_vlan_tag_present(skb)) {
3245 tx_flags |= E1000_TX_FLAGS_VLAN;
3246 tx_flags |= (skb_vlan_tag_get(skb) <<
3247 E1000_TX_FLAGS_VLAN_SHIFT);
3248 }
3249
3250 first = tx_ring->next_to_use;
3251
3252 tso = e1000_tso(adapter, tx_ring, skb, protocol);
3253 if (tso < 0) {
3254 dev_kfree_skb_any(skb);
3255 return NETDEV_TX_OK;
3256 }
3257
3258 if (likely(tso)) {
3259 if (likely(hw->mac_type != e1000_82544))
3260 tx_ring->last_tx_tso = true;
3261 tx_flags |= E1000_TX_FLAGS_TSO;
3262 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
3263 tx_flags |= E1000_TX_FLAGS_CSUM;
3264
3265 if (protocol == htons(ETH_P_IP))
3266 tx_flags |= E1000_TX_FLAGS_IPV4;
3267
3268 if (unlikely(skb->no_fcs))
3269 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3270
3271 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
3272 nr_frags, mss);
3273
3274 if (count) {
3275 /* The descriptors needed is higher than other Intel drivers
3276 * due to a number of workarounds. The breakdown is below:
3277 * Data descriptors: MAX_SKB_FRAGS + 1
3278 * Context Descriptor: 1
3279 * Keep head from touching tail: 2
3280 * Workarounds: 3
3281 */
3282 int desc_needed = MAX_SKB_FRAGS + 7;
3283
3284 netdev_sent_queue(netdev, skb->len);
3285 skb_tx_timestamp(skb);
3286
3287 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
3288
3289 /* 82544 potentially requires twice as many data descriptors
3290 * in order to guarantee buffers don't end on evenly-aligned
3291 * dwords
3292 */
3293 if (adapter->pcix_82544)
3294 desc_needed += MAX_SKB_FRAGS + 1;
3295
3296 /* Make sure there is space in the ring for the next send. */
3297 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
3298
3299 if (!skb->xmit_more ||
3300 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3301 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3302 /* we need this if more than one processor can write to
3303 * our tail at a time, it synchronizes IO on IA64/Altix
3304 * systems
3305 */
3306 mmiowb();
3307 }
3308 } else {
3309 dev_kfree_skb_any(skb);
3310 tx_ring->buffer_info[first].time_stamp = 0;
3311 tx_ring->next_to_use = first;
3312 }
3313
3314 return NETDEV_TX_OK;
3315}
3316
3317#define NUM_REGS 38 /* 1 based count */
3318static void e1000_regdump(struct e1000_adapter *adapter)
3319{
3320 struct e1000_hw *hw = &adapter->hw;
3321 u32 regs[NUM_REGS];
3322 u32 *regs_buff = regs;
3323 int i = 0;
3324
3325 static const char * const reg_name[] = {
3326 "CTRL", "STATUS",
3327 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3328 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3329 "TIDV", "TXDCTL", "TADV", "TARC0",
3330 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3331 "TXDCTL1", "TARC1",
3332 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3333 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3334 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
3335 };
3336
3337 regs_buff[0] = er32(CTRL);
3338 regs_buff[1] = er32(STATUS);
3339
3340 regs_buff[2] = er32(RCTL);
3341 regs_buff[3] = er32(RDLEN);
3342 regs_buff[4] = er32(RDH);
3343 regs_buff[5] = er32(RDT);
3344 regs_buff[6] = er32(RDTR);
3345
3346 regs_buff[7] = er32(TCTL);
3347 regs_buff[8] = er32(TDBAL);
3348 regs_buff[9] = er32(TDBAH);
3349 regs_buff[10] = er32(TDLEN);
3350 regs_buff[11] = er32(TDH);
3351 regs_buff[12] = er32(TDT);
3352 regs_buff[13] = er32(TIDV);
3353 regs_buff[14] = er32(TXDCTL);
3354 regs_buff[15] = er32(TADV);
3355 regs_buff[16] = er32(TARC0);
3356
3357 regs_buff[17] = er32(TDBAL1);
3358 regs_buff[18] = er32(TDBAH1);
3359 regs_buff[19] = er32(TDLEN1);
3360 regs_buff[20] = er32(TDH1);
3361 regs_buff[21] = er32(TDT1);
3362 regs_buff[22] = er32(TXDCTL1);
3363 regs_buff[23] = er32(TARC1);
3364 regs_buff[24] = er32(CTRL_EXT);
3365 regs_buff[25] = er32(ERT);
3366 regs_buff[26] = er32(RDBAL0);
3367 regs_buff[27] = er32(RDBAH0);
3368 regs_buff[28] = er32(TDFH);
3369 regs_buff[29] = er32(TDFT);
3370 regs_buff[30] = er32(TDFHS);
3371 regs_buff[31] = er32(TDFTS);
3372 regs_buff[32] = er32(TDFPC);
3373 regs_buff[33] = er32(RDFH);
3374 regs_buff[34] = er32(RDFT);
3375 regs_buff[35] = er32(RDFHS);
3376 regs_buff[36] = er32(RDFTS);
3377 regs_buff[37] = er32(RDFPC);
3378
3379 pr_info("Register dump\n");
3380 for (i = 0; i < NUM_REGS; i++)
3381 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
3382}
3383
3384/*
3385 * e1000_dump: Print registers, tx ring and rx ring
3386 */
3387static void e1000_dump(struct e1000_adapter *adapter)
3388{
3389 /* this code doesn't handle multiple rings */
3390 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3391 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3392 int i;
3393
3394 if (!netif_msg_hw(adapter))
3395 return;
3396
3397 /* Print Registers */
3398 e1000_regdump(adapter);
3399
3400 /* transmit dump */
3401 pr_info("TX Desc ring0 dump\n");
3402
3403 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3404 *
3405 * Legacy Transmit Descriptor
3406 * +--------------------------------------------------------------+
3407 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3408 * +--------------------------------------------------------------+
3409 * 8 | Special | CSS | Status | CMD | CSO | Length |
3410 * +--------------------------------------------------------------+
3411 * 63 48 47 36 35 32 31 24 23 16 15 0
3412 *
3413 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3414 * 63 48 47 40 39 32 31 16 15 8 7 0
3415 * +----------------------------------------------------------------+
3416 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3417 * +----------------------------------------------------------------+
3418 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3419 * +----------------------------------------------------------------+
3420 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3421 *
3422 * Extended Data Descriptor (DTYP=0x1)
3423 * +----------------------------------------------------------------+
3424 * 0 | Buffer Address [63:0] |
3425 * +----------------------------------------------------------------+
3426 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3427 * +----------------------------------------------------------------+
3428 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3429 */
3430 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3431 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
3432
3433 if (!netif_msg_tx_done(adapter))
3434 goto rx_ring_summary;
3435
3436 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3437 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
3438 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
3439 struct my_u { __le64 a; __le64 b; };
3440 struct my_u *u = (struct my_u *)tx_desc;
3441 const char *type;
3442
3443 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
3444 type = "NTC/U";
3445 else if (i == tx_ring->next_to_use)
3446 type = "NTU";
3447 else if (i == tx_ring->next_to_clean)
3448 type = "NTC";
3449 else
3450 type = "";
3451
3452 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3453 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3454 le64_to_cpu(u->a), le64_to_cpu(u->b),
3455 (u64)buffer_info->dma, buffer_info->length,
3456 buffer_info->next_to_watch,
3457 (u64)buffer_info->time_stamp, buffer_info->skb, type);
3458 }
3459
3460rx_ring_summary:
3461 /* receive dump */
3462 pr_info("\nRX Desc ring dump\n");
3463
3464 /* Legacy Receive Descriptor Format
3465 *
3466 * +-----------------------------------------------------+
3467 * | Buffer Address [63:0] |
3468 * +-----------------------------------------------------+
3469 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3470 * +-----------------------------------------------------+
3471 * 63 48 47 40 39 32 31 16 15 0
3472 */
3473 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
3474
3475 if (!netif_msg_rx_status(adapter))
3476 goto exit;
3477
3478 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3479 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
3480 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
3481 struct my_u { __le64 a; __le64 b; };
3482 struct my_u *u = (struct my_u *)rx_desc;
3483 const char *type;
3484
3485 if (i == rx_ring->next_to_use)
3486 type = "NTU";
3487 else if (i == rx_ring->next_to_clean)
3488 type = "NTC";
3489 else
3490 type = "";
3491
3492 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3493 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
3494 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
3495 } /* for */
3496
3497 /* dump the descriptor caches */
3498 /* rx */
3499 pr_info("Rx descriptor cache in 64bit format\n");
3500 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
3501 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3502 i,
3503 readl(adapter->hw.hw_addr + i+4),
3504 readl(adapter->hw.hw_addr + i),
3505 readl(adapter->hw.hw_addr + i+12),
3506 readl(adapter->hw.hw_addr + i+8));
3507 }
3508 /* tx */
3509 pr_info("Tx descriptor cache in 64bit format\n");
3510 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
3511 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3512 i,
3513 readl(adapter->hw.hw_addr + i+4),
3514 readl(adapter->hw.hw_addr + i),
3515 readl(adapter->hw.hw_addr + i+12),
3516 readl(adapter->hw.hw_addr + i+8));
3517 }
3518exit:
3519 return;
3520}
3521
3522/**
3523 * e1000_tx_timeout - Respond to a Tx Hang
3524 * @netdev: network interface device structure
3525 **/
3526static void e1000_tx_timeout(struct net_device *netdev)
3527{
3528 struct e1000_adapter *adapter = netdev_priv(netdev);
3529
3530 /* Do the reset outside of interrupt context */
3531 adapter->tx_timeout_count++;
3532 schedule_work(&adapter->reset_task);
3533}
3534
3535static void e1000_reset_task(struct work_struct *work)
3536{
3537 struct e1000_adapter *adapter =
3538 container_of(work, struct e1000_adapter, reset_task);
3539
3540 e_err(drv, "Reset adapter\n");
3541 e1000_reinit_locked(adapter);
3542}
3543
3544/**
3545 * e1000_change_mtu - Change the Maximum Transfer Unit
3546 * @netdev: network interface device structure
3547 * @new_mtu: new value for maximum frame size
3548 *
3549 * Returns 0 on success, negative on failure
3550 **/
3551static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
3552{
3553 struct e1000_adapter *adapter = netdev_priv(netdev);
3554 struct e1000_hw *hw = &adapter->hw;
3555 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
3556
3557 /* Adapter-specific max frame size limits. */
3558 switch (hw->mac_type) {
3559 case e1000_undefined ... e1000_82542_rev2_1:
3560 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
3561 e_err(probe, "Jumbo Frames not supported.\n");
3562 return -EINVAL;
3563 }
3564 break;
3565 default:
3566 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3567 break;
3568 }
3569
3570 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3571 msleep(1);
3572 /* e1000_down has a dependency on max_frame_size */
3573 hw->max_frame_size = max_frame;
3574 if (netif_running(netdev)) {
3575 /* prevent buffers from being reallocated */
3576 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3577 e1000_down(adapter);
3578 }
3579
3580 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3581 * means we reserve 2 more, this pushes us to allocate from the next
3582 * larger slab size.
3583 * i.e. RXBUFFER_2048 --> size-4096 slab
3584 * however with the new *_jumbo_rx* routines, jumbo receives will use
3585 * fragmented skbs
3586 */
3587
3588 if (max_frame <= E1000_RXBUFFER_2048)
3589 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3590 else
3591#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3592 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3593#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3594 adapter->rx_buffer_len = PAGE_SIZE;
3595#endif
3596
3597 /* adjust allocation if LPE protects us, and we aren't using SBP */
3598 if (!hw->tbi_compatibility_on &&
3599 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
3600 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3601 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3602
3603 pr_info("%s changing MTU from %d to %d\n",
3604 netdev->name, netdev->mtu, new_mtu);
3605 netdev->mtu = new_mtu;
3606
3607 if (netif_running(netdev))
3608 e1000_up(adapter);
3609 else
3610 e1000_reset(adapter);
3611
3612 clear_bit(__E1000_RESETTING, &adapter->flags);
3613
3614 return 0;
3615}
3616
3617/**
3618 * e1000_update_stats - Update the board statistics counters
3619 * @adapter: board private structure
3620 **/
3621void e1000_update_stats(struct e1000_adapter *adapter)
3622{
3623 struct net_device *netdev = adapter->netdev;
3624 struct e1000_hw *hw = &adapter->hw;
3625 struct pci_dev *pdev = adapter->pdev;
3626 unsigned long flags;
3627 u16 phy_tmp;
3628
3629#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3630
3631 /* Prevent stats update while adapter is being reset, or if the pci
3632 * connection is down.
3633 */
3634 if (adapter->link_speed == 0)
3635 return;
3636 if (pci_channel_offline(pdev))
3637 return;
3638
3639 spin_lock_irqsave(&adapter->stats_lock, flags);
3640
3641 /* these counters are modified from e1000_tbi_adjust_stats,
3642 * called from the interrupt context, so they must only
3643 * be written while holding adapter->stats_lock
3644 */
3645
3646 adapter->stats.crcerrs += er32(CRCERRS);
3647 adapter->stats.gprc += er32(GPRC);
3648 adapter->stats.gorcl += er32(GORCL);
3649 adapter->stats.gorch += er32(GORCH);
3650 adapter->stats.bprc += er32(BPRC);
3651 adapter->stats.mprc += er32(MPRC);
3652 adapter->stats.roc += er32(ROC);
3653
3654 adapter->stats.prc64 += er32(PRC64);
3655 adapter->stats.prc127 += er32(PRC127);
3656 adapter->stats.prc255 += er32(PRC255);
3657 adapter->stats.prc511 += er32(PRC511);
3658 adapter->stats.prc1023 += er32(PRC1023);
3659 adapter->stats.prc1522 += er32(PRC1522);
3660
3661 adapter->stats.symerrs += er32(SYMERRS);
3662 adapter->stats.mpc += er32(MPC);
3663 adapter->stats.scc += er32(SCC);
3664 adapter->stats.ecol += er32(ECOL);
3665 adapter->stats.mcc += er32(MCC);
3666 adapter->stats.latecol += er32(LATECOL);
3667 adapter->stats.dc += er32(DC);
3668 adapter->stats.sec += er32(SEC);
3669 adapter->stats.rlec += er32(RLEC);
3670 adapter->stats.xonrxc += er32(XONRXC);
3671 adapter->stats.xontxc += er32(XONTXC);
3672 adapter->stats.xoffrxc += er32(XOFFRXC);
3673 adapter->stats.xofftxc += er32(XOFFTXC);
3674 adapter->stats.fcruc += er32(FCRUC);
3675 adapter->stats.gptc += er32(GPTC);
3676 adapter->stats.gotcl += er32(GOTCL);
3677 adapter->stats.gotch += er32(GOTCH);
3678 adapter->stats.rnbc += er32(RNBC);
3679 adapter->stats.ruc += er32(RUC);
3680 adapter->stats.rfc += er32(RFC);
3681 adapter->stats.rjc += er32(RJC);
3682 adapter->stats.torl += er32(TORL);
3683 adapter->stats.torh += er32(TORH);
3684 adapter->stats.totl += er32(TOTL);
3685 adapter->stats.toth += er32(TOTH);
3686 adapter->stats.tpr += er32(TPR);
3687
3688 adapter->stats.ptc64 += er32(PTC64);
3689 adapter->stats.ptc127 += er32(PTC127);
3690 adapter->stats.ptc255 += er32(PTC255);
3691 adapter->stats.ptc511 += er32(PTC511);
3692 adapter->stats.ptc1023 += er32(PTC1023);
3693 adapter->stats.ptc1522 += er32(PTC1522);
3694
3695 adapter->stats.mptc += er32(MPTC);
3696 adapter->stats.bptc += er32(BPTC);
3697
3698 /* used for adaptive IFS */
3699
3700 hw->tx_packet_delta = er32(TPT);
3701 adapter->stats.tpt += hw->tx_packet_delta;
3702 hw->collision_delta = er32(COLC);
3703 adapter->stats.colc += hw->collision_delta;
3704
3705 if (hw->mac_type >= e1000_82543) {
3706 adapter->stats.algnerrc += er32(ALGNERRC);
3707 adapter->stats.rxerrc += er32(RXERRC);
3708 adapter->stats.tncrs += er32(TNCRS);
3709 adapter->stats.cexterr += er32(CEXTERR);
3710 adapter->stats.tsctc += er32(TSCTC);
3711 adapter->stats.tsctfc += er32(TSCTFC);
3712 }
3713
3714 /* Fill out the OS statistics structure */
3715 netdev->stats.multicast = adapter->stats.mprc;
3716 netdev->stats.collisions = adapter->stats.colc;
3717
3718 /* Rx Errors */
3719
3720 /* RLEC on some newer hardware can be incorrect so build
3721 * our own version based on RUC and ROC
3722 */
3723 netdev->stats.rx_errors = adapter->stats.rxerrc +
3724 adapter->stats.crcerrs + adapter->stats.algnerrc +
3725 adapter->stats.ruc + adapter->stats.roc +
3726 adapter->stats.cexterr;
3727 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3728 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3729 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3730 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3731 netdev->stats.rx_missed_errors = adapter->stats.mpc;
3732
3733 /* Tx Errors */
3734 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3735 netdev->stats.tx_errors = adapter->stats.txerrc;
3736 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3737 netdev->stats.tx_window_errors = adapter->stats.latecol;
3738 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
3739 if (hw->bad_tx_carr_stats_fd &&
3740 adapter->link_duplex == FULL_DUPLEX) {
3741 netdev->stats.tx_carrier_errors = 0;
3742 adapter->stats.tncrs = 0;
3743 }
3744
3745 /* Tx Dropped needs to be maintained elsewhere */
3746
3747 /* Phy Stats */
3748 if (hw->media_type == e1000_media_type_copper) {
3749 if ((adapter->link_speed == SPEED_1000) &&
3750 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3751 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3752 adapter->phy_stats.idle_errors += phy_tmp;
3753 }
3754
3755 if ((hw->mac_type <= e1000_82546) &&
3756 (hw->phy_type == e1000_phy_m88) &&
3757 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3758 adapter->phy_stats.receive_errors += phy_tmp;
3759 }
3760
3761 /* Management Stats */
3762 if (hw->has_smbus) {
3763 adapter->stats.mgptc += er32(MGTPTC);
3764 adapter->stats.mgprc += er32(MGTPRC);
3765 adapter->stats.mgpdc += er32(MGTPDC);
3766 }
3767
3768 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3769}
3770
3771/**
3772 * e1000_intr - Interrupt Handler
3773 * @irq: interrupt number
3774 * @data: pointer to a network interface device structure
3775 **/
3776static irqreturn_t e1000_intr(int irq, void *data)
3777{
3778 struct net_device *netdev = data;
3779 struct e1000_adapter *adapter = netdev_priv(netdev);
3780 struct e1000_hw *hw = &adapter->hw;
3781 u32 icr = er32(ICR);
3782
3783 if (unlikely((!icr)))
3784 return IRQ_NONE; /* Not our interrupt */
3785
3786 /* we might have caused the interrupt, but the above
3787 * read cleared it, and just in case the driver is
3788 * down there is nothing to do so return handled
3789 */
3790 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3791 return IRQ_HANDLED;
3792
3793 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3794 hw->get_link_status = 1;
3795 /* guard against interrupt when we're going down */
3796 if (!test_bit(__E1000_DOWN, &adapter->flags))
3797 schedule_delayed_work(&adapter->watchdog_task, 1);
3798 }
3799
3800 /* disable interrupts, without the synchronize_irq bit */
3801 ew32(IMC, ~0);
3802 E1000_WRITE_FLUSH();
3803
3804 if (likely(napi_schedule_prep(&adapter->napi))) {
3805 adapter->total_tx_bytes = 0;
3806 adapter->total_tx_packets = 0;
3807 adapter->total_rx_bytes = 0;
3808 adapter->total_rx_packets = 0;
3809 __napi_schedule(&adapter->napi);
3810 } else {
3811 /* this really should not happen! if it does it is basically a
3812 * bug, but not a hard error, so enable ints and continue
3813 */
3814 if (!test_bit(__E1000_DOWN, &adapter->flags))
3815 e1000_irq_enable(adapter);
3816 }
3817
3818 return IRQ_HANDLED;
3819}
3820
3821/**
3822 * e1000_clean - NAPI Rx polling callback
3823 * @adapter: board private structure
3824 **/
3825static int e1000_clean(struct napi_struct *napi, int budget)
3826{
3827 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3828 napi);
3829 int tx_clean_complete = 0, work_done = 0;
3830
3831 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
3832
3833 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
3834
3835 if (!tx_clean_complete)
3836 work_done = budget;
3837
3838 /* If budget not fully consumed, exit the polling mode */
3839 if (work_done < budget) {
3840 if (likely(adapter->itr_setting & 3))
3841 e1000_set_itr(adapter);
3842 napi_complete_done(napi, work_done);
3843 if (!test_bit(__E1000_DOWN, &adapter->flags))
3844 e1000_irq_enable(adapter);
3845 }
3846
3847 return work_done;
3848}
3849
3850/**
3851 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3852 * @adapter: board private structure
3853 **/
3854static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3855 struct e1000_tx_ring *tx_ring)
3856{
3857 struct e1000_hw *hw = &adapter->hw;
3858 struct net_device *netdev = adapter->netdev;
3859 struct e1000_tx_desc *tx_desc, *eop_desc;
3860 struct e1000_tx_buffer *buffer_info;
3861 unsigned int i, eop;
3862 unsigned int count = 0;
3863 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
3864 unsigned int bytes_compl = 0, pkts_compl = 0;
3865
3866 i = tx_ring->next_to_clean;
3867 eop = tx_ring->buffer_info[i].next_to_watch;
3868 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3869
3870 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3871 (count < tx_ring->count)) {
3872 bool cleaned = false;
3873 dma_rmb(); /* read buffer_info after eop_desc */
3874 for ( ; !cleaned; count++) {
3875 tx_desc = E1000_TX_DESC(*tx_ring, i);
3876 buffer_info = &tx_ring->buffer_info[i];
3877 cleaned = (i == eop);
3878
3879 if (cleaned) {
3880 total_tx_packets += buffer_info->segs;
3881 total_tx_bytes += buffer_info->bytecount;
3882 if (buffer_info->skb) {
3883 bytes_compl += buffer_info->skb->len;
3884 pkts_compl++;
3885 }
3886
3887 }
3888 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3889 tx_desc->upper.data = 0;
3890
3891 if (unlikely(++i == tx_ring->count))
3892 i = 0;
3893 }
3894
3895 eop = tx_ring->buffer_info[i].next_to_watch;
3896 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3897 }
3898
3899 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3900 * which will reuse the cleaned buffers.
3901 */
3902 smp_store_release(&tx_ring->next_to_clean, i);
3903
3904 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3905
3906#define TX_WAKE_THRESHOLD 32
3907 if (unlikely(count && netif_carrier_ok(netdev) &&
3908 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3909 /* Make sure that anybody stopping the queue after this
3910 * sees the new next_to_clean.
3911 */
3912 smp_mb();
3913
3914 if (netif_queue_stopped(netdev) &&
3915 !(test_bit(__E1000_DOWN, &adapter->flags))) {
3916 netif_wake_queue(netdev);
3917 ++adapter->restart_queue;
3918 }
3919 }
3920
3921 if (adapter->detect_tx_hung) {
3922 /* Detect a transmit hang in hardware, this serializes the
3923 * check with the clearing of time_stamp and movement of i
3924 */
3925 adapter->detect_tx_hung = false;
3926 if (tx_ring->buffer_info[eop].time_stamp &&
3927 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3928 (adapter->tx_timeout_factor * HZ)) &&
3929 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
3930
3931 /* detected Tx unit hang */
3932 e_err(drv, "Detected Tx Unit Hang\n"
3933 " Tx Queue <%lu>\n"
3934 " TDH <%x>\n"
3935 " TDT <%x>\n"
3936 " next_to_use <%x>\n"
3937 " next_to_clean <%x>\n"
3938 "buffer_info[next_to_clean]\n"
3939 " time_stamp <%lx>\n"
3940 " next_to_watch <%x>\n"
3941 " jiffies <%lx>\n"
3942 " next_to_watch.status <%x>\n",
3943 (unsigned long)(tx_ring - adapter->tx_ring),
3944 readl(hw->hw_addr + tx_ring->tdh),
3945 readl(hw->hw_addr + tx_ring->tdt),
3946 tx_ring->next_to_use,
3947 tx_ring->next_to_clean,
3948 tx_ring->buffer_info[eop].time_stamp,
3949 eop,
3950 jiffies,
3951 eop_desc->upper.fields.status);
3952 e1000_dump(adapter);
3953 netif_stop_queue(netdev);
3954 }
3955 }
3956 adapter->total_tx_bytes += total_tx_bytes;
3957 adapter->total_tx_packets += total_tx_packets;
3958 netdev->stats.tx_bytes += total_tx_bytes;
3959 netdev->stats.tx_packets += total_tx_packets;
3960 return count < tx_ring->count;
3961}
3962
3963/**
3964 * e1000_rx_checksum - Receive Checksum Offload for 82543
3965 * @adapter: board private structure
3966 * @status_err: receive descriptor status and error fields
3967 * @csum: receive descriptor csum field
3968 * @sk_buff: socket buffer with received data
3969 **/
3970static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3971 u32 csum, struct sk_buff *skb)
3972{
3973 struct e1000_hw *hw = &adapter->hw;
3974 u16 status = (u16)status_err;
3975 u8 errors = (u8)(status_err >> 24);
3976
3977 skb_checksum_none_assert(skb);
3978
3979 /* 82543 or newer only */
3980 if (unlikely(hw->mac_type < e1000_82543))
3981 return;
3982 /* Ignore Checksum bit is set */
3983 if (unlikely(status & E1000_RXD_STAT_IXSM))
3984 return;
3985 /* TCP/UDP checksum error bit is set */
3986 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3987 /* let the stack verify checksum errors */
3988 adapter->hw_csum_err++;
3989 return;
3990 }
3991 /* TCP/UDP Checksum has not been calculated */
3992 if (!(status & E1000_RXD_STAT_TCPCS))
3993 return;
3994
3995 /* It must be a TCP or UDP packet with a valid checksum */
3996 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3997 /* TCP checksum is good */
3998 skb->ip_summed = CHECKSUM_UNNECESSARY;
3999 }
4000 adapter->hw_csum_good++;
4001}
4002
4003/**
4004 * e1000_consume_page - helper function for jumbo Rx path
4005 **/
4006static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
4007 u16 length)
4008{
4009 bi->rxbuf.page = NULL;
4010 skb->len += length;
4011 skb->data_len += length;
4012 skb->truesize += PAGE_SIZE;
4013}
4014
4015/**
4016 * e1000_receive_skb - helper function to handle rx indications
4017 * @adapter: board private structure
4018 * @status: descriptor status field as written by hardware
4019 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4020 * @skb: pointer to sk_buff to be indicated to stack
4021 */
4022static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4023 __le16 vlan, struct sk_buff *skb)
4024{
4025 skb->protocol = eth_type_trans(skb, adapter->netdev);
4026
4027 if (status & E1000_RXD_STAT_VP) {
4028 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4029
4030 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4031 }
4032 napi_gro_receive(&adapter->napi, skb);
4033}
4034
4035/**
4036 * e1000_tbi_adjust_stats
4037 * @hw: Struct containing variables accessed by shared code
4038 * @frame_len: The length of the frame in question
4039 * @mac_addr: The Ethernet destination address of the frame in question
4040 *
4041 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4042 */
4043static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4044 struct e1000_hw_stats *stats,
4045 u32 frame_len, const u8 *mac_addr)
4046{
4047 u64 carry_bit;
4048
4049 /* First adjust the frame length. */
4050 frame_len--;
4051 /* We need to adjust the statistics counters, since the hardware
4052 * counters overcount this packet as a CRC error and undercount
4053 * the packet as a good packet
4054 */
4055 /* This packet should not be counted as a CRC error. */
4056 stats->crcerrs--;
4057 /* This packet does count as a Good Packet Received. */
4058 stats->gprc++;
4059
4060 /* Adjust the Good Octets received counters */
4061 carry_bit = 0x80000000 & stats->gorcl;
4062 stats->gorcl += frame_len;
4063 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4064 * Received Count) was one before the addition,
4065 * AND it is zero after, then we lost the carry out,
4066 * need to add one to Gorch (Good Octets Received Count High).
4067 * This could be simplified if all environments supported
4068 * 64-bit integers.
4069 */
4070 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4071 stats->gorch++;
4072 /* Is this a broadcast or multicast? Check broadcast first,
4073 * since the test for a multicast frame will test positive on
4074 * a broadcast frame.
4075 */
4076 if (is_broadcast_ether_addr(mac_addr))
4077 stats->bprc++;
4078 else if (is_multicast_ether_addr(mac_addr))
4079 stats->mprc++;
4080
4081 if (frame_len == hw->max_frame_size) {
4082 /* In this case, the hardware has overcounted the number of
4083 * oversize frames.
4084 */
4085 if (stats->roc > 0)
4086 stats->roc--;
4087 }
4088
4089 /* Adjust the bin counters when the extra byte put the frame in the
4090 * wrong bin. Remember that the frame_len was adjusted above.
4091 */
4092 if (frame_len == 64) {
4093 stats->prc64++;
4094 stats->prc127--;
4095 } else if (frame_len == 127) {
4096 stats->prc127++;
4097 stats->prc255--;
4098 } else if (frame_len == 255) {
4099 stats->prc255++;
4100 stats->prc511--;
4101 } else if (frame_len == 511) {
4102 stats->prc511++;
4103 stats->prc1023--;
4104 } else if (frame_len == 1023) {
4105 stats->prc1023++;
4106 stats->prc1522--;
4107 } else if (frame_len == 1522) {
4108 stats->prc1522++;
4109 }
4110}
4111
4112static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4113 u8 status, u8 errors,
4114 u32 length, const u8 *data)
4115{
4116 struct e1000_hw *hw = &adapter->hw;
4117 u8 last_byte = *(data + length - 1);
4118
4119 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4120 unsigned long irq_flags;
4121
4122 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4123 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4124 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4125
4126 return true;
4127 }
4128
4129 return false;
4130}
4131
4132static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4133 unsigned int bufsz)
4134{
4135 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
4136
4137 if (unlikely(!skb))
4138 adapter->alloc_rx_buff_failed++;
4139 return skb;
4140}
4141
4142/**
4143 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4144 * @adapter: board private structure
4145 * @rx_ring: ring to clean
4146 * @work_done: amount of napi work completed this call
4147 * @work_to_do: max amount of work allowed for this call to do
4148 *
4149 * the return value indicates whether actual cleaning was done, there
4150 * is no guarantee that everything was cleaned
4151 */
4152static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4153 struct e1000_rx_ring *rx_ring,
4154 int *work_done, int work_to_do)
4155{
4156 struct net_device *netdev = adapter->netdev;
4157 struct pci_dev *pdev = adapter->pdev;
4158 struct e1000_rx_desc *rx_desc, *next_rxd;
4159 struct e1000_rx_buffer *buffer_info, *next_buffer;
4160 u32 length;
4161 unsigned int i;
4162 int cleaned_count = 0;
4163 bool cleaned = false;
4164 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4165
4166 i = rx_ring->next_to_clean;
4167 rx_desc = E1000_RX_DESC(*rx_ring, i);
4168 buffer_info = &rx_ring->buffer_info[i];
4169
4170 while (rx_desc->status & E1000_RXD_STAT_DD) {
4171 struct sk_buff *skb;
4172 u8 status;
4173
4174 if (*work_done >= work_to_do)
4175 break;
4176 (*work_done)++;
4177 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4178
4179 status = rx_desc->status;
4180
4181 if (++i == rx_ring->count)
4182 i = 0;
4183
4184 next_rxd = E1000_RX_DESC(*rx_ring, i);
4185 prefetch(next_rxd);
4186
4187 next_buffer = &rx_ring->buffer_info[i];
4188
4189 cleaned = true;
4190 cleaned_count++;
4191 dma_unmap_page(&pdev->dev, buffer_info->dma,
4192 adapter->rx_buffer_len, DMA_FROM_DEVICE);
4193 buffer_info->dma = 0;
4194
4195 length = le16_to_cpu(rx_desc->length);
4196
4197 /* errors is only valid for DD + EOP descriptors */
4198 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4199 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
4200 u8 *mapped = page_address(buffer_info->rxbuf.page);
4201
4202 if (e1000_tbi_should_accept(adapter, status,
4203 rx_desc->errors,
4204 length, mapped)) {
4205 length--;
4206 } else if (netdev->features & NETIF_F_RXALL) {
4207 goto process_skb;
4208 } else {
4209 /* an error means any chain goes out the window
4210 * too
4211 */
4212 if (rx_ring->rx_skb_top)
4213 dev_kfree_skb(rx_ring->rx_skb_top);
4214 rx_ring->rx_skb_top = NULL;
4215 goto next_desc;
4216 }
4217 }
4218
4219#define rxtop rx_ring->rx_skb_top
4220process_skb:
4221 if (!(status & E1000_RXD_STAT_EOP)) {
4222 /* this descriptor is only the beginning (or middle) */
4223 if (!rxtop) {
4224 /* this is the beginning of a chain */
4225 rxtop = napi_get_frags(&adapter->napi);
4226 if (!rxtop)
4227 break;
4228
4229 skb_fill_page_desc(rxtop, 0,
4230 buffer_info->rxbuf.page,
4231 0, length);
4232 } else {
4233 /* this is the middle of a chain */
4234 skb_fill_page_desc(rxtop,
4235 skb_shinfo(rxtop)->nr_frags,
4236 buffer_info->rxbuf.page, 0, length);
4237 }
4238 e1000_consume_page(buffer_info, rxtop, length);
4239 goto next_desc;
4240 } else {
4241 if (rxtop) {
4242 /* end of the chain */
4243 skb_fill_page_desc(rxtop,
4244 skb_shinfo(rxtop)->nr_frags,
4245 buffer_info->rxbuf.page, 0, length);
4246 skb = rxtop;
4247 rxtop = NULL;
4248 e1000_consume_page(buffer_info, skb, length);
4249 } else {
4250 struct page *p;
4251 /* no chain, got EOP, this buf is the packet
4252 * copybreak to save the put_page/alloc_page
4253 */
4254 p = buffer_info->rxbuf.page;
4255 if (length <= copybreak) {
4256 u8 *vaddr;
4257
4258 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4259 length -= 4;
4260 skb = e1000_alloc_rx_skb(adapter,
4261 length);
4262 if (!skb)
4263 break;
4264
4265 vaddr = kmap_atomic(p);
4266 memcpy(skb_tail_pointer(skb), vaddr,
4267 length);
4268 kunmap_atomic(vaddr);
4269 /* re-use the page, so don't erase
4270 * buffer_info->rxbuf.page
4271 */
4272 skb_put(skb, length);
4273 e1000_rx_checksum(adapter,
4274 status | rx_desc->errors << 24,
4275 le16_to_cpu(rx_desc->csum), skb);
4276
4277 total_rx_bytes += skb->len;
4278 total_rx_packets++;
4279
4280 e1000_receive_skb(adapter, status,
4281 rx_desc->special, skb);
4282 goto next_desc;
4283 } else {
4284 skb = napi_get_frags(&adapter->napi);
4285 if (!skb) {
4286 adapter->alloc_rx_buff_failed++;
4287 break;
4288 }
4289 skb_fill_page_desc(skb, 0, p, 0,
4290 length);
4291 e1000_consume_page(buffer_info, skb,
4292 length);
4293 }
4294 }
4295 }
4296
4297 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4298 e1000_rx_checksum(adapter,
4299 (u32)(status) |
4300 ((u32)(rx_desc->errors) << 24),
4301 le16_to_cpu(rx_desc->csum), skb);
4302
4303 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4304 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4305 pskb_trim(skb, skb->len - 4);
4306 total_rx_packets++;
4307
4308 if (status & E1000_RXD_STAT_VP) {
4309 __le16 vlan = rx_desc->special;
4310 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4311
4312 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
4313 }
4314
4315 napi_gro_frags(&adapter->napi);
4316
4317next_desc:
4318 rx_desc->status = 0;
4319
4320 /* return some buffers to hardware, one at a time is too slow */
4321 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4322 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4323 cleaned_count = 0;
4324 }
4325
4326 /* use prefetched values */
4327 rx_desc = next_rxd;
4328 buffer_info = next_buffer;
4329 }
4330 rx_ring->next_to_clean = i;
4331
4332 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4333 if (cleaned_count)
4334 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4335
4336 adapter->total_rx_packets += total_rx_packets;
4337 adapter->total_rx_bytes += total_rx_bytes;
4338 netdev->stats.rx_bytes += total_rx_bytes;
4339 netdev->stats.rx_packets += total_rx_packets;
4340 return cleaned;
4341}
4342
4343/* this should improve performance for small packets with large amounts
4344 * of reassembly being done in the stack
4345 */
4346static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
4347 struct e1000_rx_buffer *buffer_info,
4348 u32 length, const void *data)
4349{
4350 struct sk_buff *skb;
4351
4352 if (length > copybreak)
4353 return NULL;
4354
4355 skb = e1000_alloc_rx_skb(adapter, length);
4356 if (!skb)
4357 return NULL;
4358
4359 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4360 length, DMA_FROM_DEVICE);
4361
4362 skb_put_data(skb, data, length);
4363
4364 return skb;
4365}
4366
4367/**
4368 * e1000_clean_rx_irq - Send received data up the network stack; legacy
4369 * @adapter: board private structure
4370 * @rx_ring: ring to clean
4371 * @work_done: amount of napi work completed this call
4372 * @work_to_do: max amount of work allowed for this call to do
4373 */
4374static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4375 struct e1000_rx_ring *rx_ring,
4376 int *work_done, int work_to_do)
4377{
4378 struct net_device *netdev = adapter->netdev;
4379 struct pci_dev *pdev = adapter->pdev;
4380 struct e1000_rx_desc *rx_desc, *next_rxd;
4381 struct e1000_rx_buffer *buffer_info, *next_buffer;
4382 u32 length;
4383 unsigned int i;
4384 int cleaned_count = 0;
4385 bool cleaned = false;
4386 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
4387
4388 i = rx_ring->next_to_clean;
4389 rx_desc = E1000_RX_DESC(*rx_ring, i);
4390 buffer_info = &rx_ring->buffer_info[i];
4391
4392 while (rx_desc->status & E1000_RXD_STAT_DD) {
4393 struct sk_buff *skb;
4394 u8 *data;
4395 u8 status;
4396
4397 if (*work_done >= work_to_do)
4398 break;
4399 (*work_done)++;
4400 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
4401
4402 status = rx_desc->status;
4403 length = le16_to_cpu(rx_desc->length);
4404
4405 data = buffer_info->rxbuf.data;
4406 prefetch(data);
4407 skb = e1000_copybreak(adapter, buffer_info, length, data);
4408 if (!skb) {
4409 unsigned int frag_len = e1000_frag_len(adapter);
4410
4411 skb = build_skb(data - E1000_HEADROOM, frag_len);
4412 if (!skb) {
4413 adapter->alloc_rx_buff_failed++;
4414 break;
4415 }
4416
4417 skb_reserve(skb, E1000_HEADROOM);
4418 dma_unmap_single(&pdev->dev, buffer_info->dma,
4419 adapter->rx_buffer_len,
4420 DMA_FROM_DEVICE);
4421 buffer_info->dma = 0;
4422 buffer_info->rxbuf.data = NULL;
4423 }
4424
4425 if (++i == rx_ring->count)
4426 i = 0;
4427
4428 next_rxd = E1000_RX_DESC(*rx_ring, i);
4429 prefetch(next_rxd);
4430
4431 next_buffer = &rx_ring->buffer_info[i];
4432
4433 cleaned = true;
4434 cleaned_count++;
4435
4436 /* !EOP means multiple descriptors were used to store a single
4437 * packet, if thats the case we need to toss it. In fact, we
4438 * to toss every packet with the EOP bit clear and the next
4439 * frame that _does_ have the EOP bit set, as it is by
4440 * definition only a frame fragment
4441 */
4442 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4443 adapter->discarding = true;
4444
4445 if (adapter->discarding) {
4446 /* All receives must fit into a single buffer */
4447 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
4448 dev_kfree_skb(skb);
4449 if (status & E1000_RXD_STAT_EOP)
4450 adapter->discarding = false;
4451 goto next_desc;
4452 }
4453
4454 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
4455 if (e1000_tbi_should_accept(adapter, status,
4456 rx_desc->errors,
4457 length, data)) {
4458 length--;
4459 } else if (netdev->features & NETIF_F_RXALL) {
4460 goto process_skb;
4461 } else {
4462 dev_kfree_skb(skb);
4463 goto next_desc;
4464 }
4465 }
4466
4467process_skb:
4468 total_rx_bytes += (length - 4); /* don't count FCS */
4469 total_rx_packets++;
4470
4471 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4472 /* adjust length to remove Ethernet CRC, this must be
4473 * done after the TBI_ACCEPT workaround above
4474 */
4475 length -= 4;
4476
4477 if (buffer_info->rxbuf.data == NULL)
4478 skb_put(skb, length);
4479 else /* copybreak skb */
4480 skb_trim(skb, length);
4481
4482 /* Receive Checksum Offload */
4483 e1000_rx_checksum(adapter,
4484 (u32)(status) |
4485 ((u32)(rx_desc->errors) << 24),
4486 le16_to_cpu(rx_desc->csum), skb);
4487
4488 e1000_receive_skb(adapter, status, rx_desc->special, skb);
4489
4490next_desc:
4491 rx_desc->status = 0;
4492
4493 /* return some buffers to hardware, one at a time is too slow */
4494 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4495 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4496 cleaned_count = 0;
4497 }
4498
4499 /* use prefetched values */
4500 rx_desc = next_rxd;
4501 buffer_info = next_buffer;
4502 }
4503 rx_ring->next_to_clean = i;
4504
4505 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4506 if (cleaned_count)
4507 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4508
4509 adapter->total_rx_packets += total_rx_packets;
4510 adapter->total_rx_bytes += total_rx_bytes;
4511 netdev->stats.rx_bytes += total_rx_bytes;
4512 netdev->stats.rx_packets += total_rx_packets;
4513 return cleaned;
4514}
4515
4516/**
4517 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4518 * @adapter: address of board private structure
4519 * @rx_ring: pointer to receive ring structure
4520 * @cleaned_count: number of buffers to allocate this pass
4521 **/
4522static void
4523e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
4524 struct e1000_rx_ring *rx_ring, int cleaned_count)
4525{
4526 struct pci_dev *pdev = adapter->pdev;
4527 struct e1000_rx_desc *rx_desc;
4528 struct e1000_rx_buffer *buffer_info;
4529 unsigned int i;
4530
4531 i = rx_ring->next_to_use;
4532 buffer_info = &rx_ring->buffer_info[i];
4533
4534 while (cleaned_count--) {
4535 /* allocate a new page if necessary */
4536 if (!buffer_info->rxbuf.page) {
4537 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4538 if (unlikely(!buffer_info->rxbuf.page)) {
4539 adapter->alloc_rx_buff_failed++;
4540 break;
4541 }
4542 }
4543
4544 if (!buffer_info->dma) {
4545 buffer_info->dma = dma_map_page(&pdev->dev,
4546 buffer_info->rxbuf.page, 0,
4547 adapter->rx_buffer_len,
4548 DMA_FROM_DEVICE);
4549 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4550 put_page(buffer_info->rxbuf.page);
4551 buffer_info->rxbuf.page = NULL;
4552 buffer_info->dma = 0;
4553 adapter->alloc_rx_buff_failed++;
4554 break;
4555 }
4556 }
4557
4558 rx_desc = E1000_RX_DESC(*rx_ring, i);
4559 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4560
4561 if (unlikely(++i == rx_ring->count))
4562 i = 0;
4563 buffer_info = &rx_ring->buffer_info[i];
4564 }
4565
4566 if (likely(rx_ring->next_to_use != i)) {
4567 rx_ring->next_to_use = i;
4568 if (unlikely(i-- == 0))
4569 i = (rx_ring->count - 1);
4570
4571 /* Force memory writes to complete before letting h/w
4572 * know there are new descriptors to fetch. (Only
4573 * applicable for weak-ordered memory model archs,
4574 * such as IA-64).
4575 */
4576 wmb();
4577 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4578 }
4579}
4580
4581/**
4582 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4583 * @adapter: address of board private structure
4584 **/
4585static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4586 struct e1000_rx_ring *rx_ring,
4587 int cleaned_count)
4588{
4589 struct e1000_hw *hw = &adapter->hw;
4590 struct pci_dev *pdev = adapter->pdev;
4591 struct e1000_rx_desc *rx_desc;
4592 struct e1000_rx_buffer *buffer_info;
4593 unsigned int i;
4594 unsigned int bufsz = adapter->rx_buffer_len;
4595
4596 i = rx_ring->next_to_use;
4597 buffer_info = &rx_ring->buffer_info[i];
4598
4599 while (cleaned_count--) {
4600 void *data;
4601
4602 if (buffer_info->rxbuf.data)
4603 goto skip;
4604
4605 data = e1000_alloc_frag(adapter);
4606 if (!data) {
4607 /* Better luck next round */
4608 adapter->alloc_rx_buff_failed++;
4609 break;
4610 }
4611
4612 /* Fix for errata 23, can't cross 64kB boundary */
4613 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4614 void *olddata = data;
4615 e_err(rx_err, "skb align check failed: %u bytes at "
4616 "%p\n", bufsz, data);
4617 /* Try again, without freeing the previous */
4618 data = e1000_alloc_frag(adapter);
4619 /* Failed allocation, critical failure */
4620 if (!data) {
4621 skb_free_frag(olddata);
4622 adapter->alloc_rx_buff_failed++;
4623 break;
4624 }
4625
4626 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4627 /* give up */
4628 skb_free_frag(data);
4629 skb_free_frag(olddata);
4630 adapter->alloc_rx_buff_failed++;
4631 break;
4632 }
4633
4634 /* Use new allocation */
4635 skb_free_frag(olddata);
4636 }
4637 buffer_info->dma = dma_map_single(&pdev->dev,
4638 data,
4639 adapter->rx_buffer_len,
4640 DMA_FROM_DEVICE);
4641 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
4642 skb_free_frag(data);
4643 buffer_info->dma = 0;
4644 adapter->alloc_rx_buff_failed++;
4645 break;
4646 }
4647
4648 /* XXX if it was allocated cleanly it will never map to a
4649 * boundary crossing
4650 */
4651
4652 /* Fix for errata 23, can't cross 64kB boundary */
4653 if (!e1000_check_64k_bound(adapter,
4654 (void *)(unsigned long)buffer_info->dma,
4655 adapter->rx_buffer_len)) {
4656 e_err(rx_err, "dma align check failed: %u bytes at "
4657 "%p\n", adapter->rx_buffer_len,
4658 (void *)(unsigned long)buffer_info->dma);
4659
4660 dma_unmap_single(&pdev->dev, buffer_info->dma,
4661 adapter->rx_buffer_len,
4662 DMA_FROM_DEVICE);
4663
4664 skb_free_frag(data);
4665 buffer_info->rxbuf.data = NULL;
4666 buffer_info->dma = 0;
4667
4668 adapter->alloc_rx_buff_failed++;
4669 break;
4670 }
4671 buffer_info->rxbuf.data = data;
4672 skip:
4673 rx_desc = E1000_RX_DESC(*rx_ring, i);
4674 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4675
4676 if (unlikely(++i == rx_ring->count))
4677 i = 0;
4678 buffer_info = &rx_ring->buffer_info[i];
4679 }
4680
4681 if (likely(rx_ring->next_to_use != i)) {
4682 rx_ring->next_to_use = i;
4683 if (unlikely(i-- == 0))
4684 i = (rx_ring->count - 1);
4685
4686 /* Force memory writes to complete before letting h/w
4687 * know there are new descriptors to fetch. (Only
4688 * applicable for weak-ordered memory model archs,
4689 * such as IA-64).
4690 */
4691 wmb();
4692 writel(i, hw->hw_addr + rx_ring->rdt);
4693 }
4694}
4695
4696/**
4697 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4698 * @adapter:
4699 **/
4700static void e1000_smartspeed(struct e1000_adapter *adapter)
4701{
4702 struct e1000_hw *hw = &adapter->hw;
4703 u16 phy_status;
4704 u16 phy_ctrl;
4705
4706 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4707 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
4708 return;
4709
4710 if (adapter->smartspeed == 0) {
4711 /* If Master/Slave config fault is asserted twice,
4712 * we assume back-to-back
4713 */
4714 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4715 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4716 return;
4717 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
4718 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719 return;
4720 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4721 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4722 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4723 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
4724 phy_ctrl);
4725 adapter->smartspeed++;
4726 if (!e1000_phy_setup_autoneg(hw) &&
4727 !e1000_read_phy_reg(hw, PHY_CTRL,
4728 &phy_ctrl)) {
4729 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4730 MII_CR_RESTART_AUTO_NEG);
4731 e1000_write_phy_reg(hw, PHY_CTRL,
4732 phy_ctrl);
4733 }
4734 }
4735 return;
4736 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4737 /* If still no link, perhaps using 2/3 pair cable */
4738 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
4739 phy_ctrl |= CR_1000T_MS_ENABLE;
4740 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4741 if (!e1000_phy_setup_autoneg(hw) &&
4742 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
4743 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4744 MII_CR_RESTART_AUTO_NEG);
4745 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
4746 }
4747 }
4748 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4749 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4750 adapter->smartspeed = 0;
4751}
4752
4753/**
4754 * e1000_ioctl -
4755 * @netdev:
4756 * @ifreq:
4757 * @cmd:
4758 **/
4759static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4760{
4761 switch (cmd) {
4762 case SIOCGMIIPHY:
4763 case SIOCGMIIREG:
4764 case SIOCSMIIREG:
4765 return e1000_mii_ioctl(netdev, ifr, cmd);
4766 default:
4767 return -EOPNOTSUPP;
4768 }
4769}
4770
4771/**
4772 * e1000_mii_ioctl -
4773 * @netdev:
4774 * @ifreq:
4775 * @cmd:
4776 **/
4777static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4778 int cmd)
4779{
4780 struct e1000_adapter *adapter = netdev_priv(netdev);
4781 struct e1000_hw *hw = &adapter->hw;
4782 struct mii_ioctl_data *data = if_mii(ifr);
4783 int retval;
4784 u16 mii_reg;
4785 unsigned long flags;
4786
4787 if (hw->media_type != e1000_media_type_copper)
4788 return -EOPNOTSUPP;
4789
4790 switch (cmd) {
4791 case SIOCGMIIPHY:
4792 data->phy_id = hw->phy_addr;
4793 break;
4794 case SIOCGMIIREG:
4795 spin_lock_irqsave(&adapter->stats_lock, flags);
4796 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
4797 &data->val_out)) {
4798 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4799 return -EIO;
4800 }
4801 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4802 break;
4803 case SIOCSMIIREG:
4804 if (data->reg_num & ~(0x1F))
4805 return -EFAULT;
4806 mii_reg = data->val_in;
4807 spin_lock_irqsave(&adapter->stats_lock, flags);
4808 if (e1000_write_phy_reg(hw, data->reg_num,
4809 mii_reg)) {
4810 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4811 return -EIO;
4812 }
4813 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4814 if (hw->media_type == e1000_media_type_copper) {
4815 switch (data->reg_num) {
4816 case PHY_CTRL:
4817 if (mii_reg & MII_CR_POWER_DOWN)
4818 break;
4819 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4820 hw->autoneg = 1;
4821 hw->autoneg_advertised = 0x2F;
4822 } else {
4823 u32 speed;
4824 if (mii_reg & 0x40)
4825 speed = SPEED_1000;
4826 else if (mii_reg & 0x2000)
4827 speed = SPEED_100;
4828 else
4829 speed = SPEED_10;
4830 retval = e1000_set_spd_dplx(
4831 adapter, speed,
4832 ((mii_reg & 0x100)
4833 ? DUPLEX_FULL :
4834 DUPLEX_HALF));
4835 if (retval)
4836 return retval;
4837 }
4838 if (netif_running(adapter->netdev))
4839 e1000_reinit_locked(adapter);
4840 else
4841 e1000_reset(adapter);
4842 break;
4843 case M88E1000_PHY_SPEC_CTRL:
4844 case M88E1000_EXT_PHY_SPEC_CTRL:
4845 if (e1000_phy_reset(hw))
4846 return -EIO;
4847 break;
4848 }
4849 } else {
4850 switch (data->reg_num) {
4851 case PHY_CTRL:
4852 if (mii_reg & MII_CR_POWER_DOWN)
4853 break;
4854 if (netif_running(adapter->netdev))
4855 e1000_reinit_locked(adapter);
4856 else
4857 e1000_reset(adapter);
4858 break;
4859 }
4860 }
4861 break;
4862 default:
4863 return -EOPNOTSUPP;
4864 }
4865 return E1000_SUCCESS;
4866}
4867
4868void e1000_pci_set_mwi(struct e1000_hw *hw)
4869{
4870 struct e1000_adapter *adapter = hw->back;
4871 int ret_val = pci_set_mwi(adapter->pdev);
4872
4873 if (ret_val)
4874 e_err(probe, "Error in setting MWI\n");
4875}
4876
4877void e1000_pci_clear_mwi(struct e1000_hw *hw)
4878{
4879 struct e1000_adapter *adapter = hw->back;
4880
4881 pci_clear_mwi(adapter->pdev);
4882}
4883
4884int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
4885{
4886 struct e1000_adapter *adapter = hw->back;
4887 return pcix_get_mmrbc(adapter->pdev);
4888}
4889
4890void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
4891{
4892 struct e1000_adapter *adapter = hw->back;
4893 pcix_set_mmrbc(adapter->pdev, mmrbc);
4894}
4895
4896void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
4897{
4898 outl(value, port);
4899}
4900
4901static bool e1000_vlan_used(struct e1000_adapter *adapter)
4902{
4903 u16 vid;
4904
4905 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4906 return true;
4907 return false;
4908}
4909
4910static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4911 netdev_features_t features)
4912{
4913 struct e1000_hw *hw = &adapter->hw;
4914 u32 ctrl;
4915
4916 ctrl = er32(CTRL);
4917 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
4918 /* enable VLAN tag insert/strip */
4919 ctrl |= E1000_CTRL_VME;
4920 } else {
4921 /* disable VLAN tag insert/strip */
4922 ctrl &= ~E1000_CTRL_VME;
4923 }
4924 ew32(CTRL, ctrl);
4925}
4926static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4927 bool filter_on)
4928{
4929 struct e1000_hw *hw = &adapter->hw;
4930 u32 rctl;
4931
4932 if (!test_bit(__E1000_DOWN, &adapter->flags))
4933 e1000_irq_disable(adapter);
4934
4935 __e1000_vlan_mode(adapter, adapter->netdev->features);
4936 if (filter_on) {
4937 /* enable VLAN receive filtering */
4938 rctl = er32(RCTL);
4939 rctl &= ~E1000_RCTL_CFIEN;
4940 if (!(adapter->netdev->flags & IFF_PROMISC))
4941 rctl |= E1000_RCTL_VFE;
4942 ew32(RCTL, rctl);
4943 e1000_update_mng_vlan(adapter);
4944 } else {
4945 /* disable VLAN receive filtering */
4946 rctl = er32(RCTL);
4947 rctl &= ~E1000_RCTL_VFE;
4948 ew32(RCTL, rctl);
4949 }
4950
4951 if (!test_bit(__E1000_DOWN, &adapter->flags))
4952 e1000_irq_enable(adapter);
4953}
4954
4955static void e1000_vlan_mode(struct net_device *netdev,
4956 netdev_features_t features)
4957{
4958 struct e1000_adapter *adapter = netdev_priv(netdev);
4959
4960 if (!test_bit(__E1000_DOWN, &adapter->flags))
4961 e1000_irq_disable(adapter);
4962
4963 __e1000_vlan_mode(adapter, features);
4964
4965 if (!test_bit(__E1000_DOWN, &adapter->flags))
4966 e1000_irq_enable(adapter);
4967}
4968
4969static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4970 __be16 proto, u16 vid)
4971{
4972 struct e1000_adapter *adapter = netdev_priv(netdev);
4973 struct e1000_hw *hw = &adapter->hw;
4974 u32 vfta, index;
4975
4976 if ((hw->mng_cookie.status &
4977 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4978 (vid == adapter->mng_vlan_id))
4979 return 0;
4980
4981 if (!e1000_vlan_used(adapter))
4982 e1000_vlan_filter_on_off(adapter, true);
4983
4984 /* add VID to filter table */
4985 index = (vid >> 5) & 0x7F;
4986 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
4987 vfta |= (1 << (vid & 0x1F));
4988 e1000_write_vfta(hw, index, vfta);
4989
4990 set_bit(vid, adapter->active_vlans);
4991
4992 return 0;
4993}
4994
4995static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4996 __be16 proto, u16 vid)
4997{
4998 struct e1000_adapter *adapter = netdev_priv(netdev);
4999 struct e1000_hw *hw = &adapter->hw;
5000 u32 vfta, index;
5001
5002 if (!test_bit(__E1000_DOWN, &adapter->flags))
5003 e1000_irq_disable(adapter);
5004 if (!test_bit(__E1000_DOWN, &adapter->flags))
5005 e1000_irq_enable(adapter);
5006
5007 /* remove VID from filter table */
5008 index = (vid >> 5) & 0x7F;
5009 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
5010 vfta &= ~(1 << (vid & 0x1F));
5011 e1000_write_vfta(hw, index, vfta);
5012
5013 clear_bit(vid, adapter->active_vlans);
5014
5015 if (!e1000_vlan_used(adapter))
5016 e1000_vlan_filter_on_off(adapter, false);
5017
5018 return 0;
5019}
5020
5021static void e1000_restore_vlan(struct e1000_adapter *adapter)
5022{
5023 u16 vid;
5024
5025 if (!e1000_vlan_used(adapter))
5026 return;
5027
5028 e1000_vlan_filter_on_off(adapter, true);
5029 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
5030 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
5031}
5032
5033int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
5034{
5035 struct e1000_hw *hw = &adapter->hw;
5036
5037 hw->autoneg = 0;
5038
5039 /* Make sure dplx is at most 1 bit and lsb of speed is not set
5040 * for the switch() below to work
5041 */
5042 if ((spd & 1) || (dplx & ~1))
5043 goto err_inval;
5044
5045 /* Fiber NICs only allow 1000 gbps Full duplex */
5046 if ((hw->media_type == e1000_media_type_fiber) &&
5047 spd != SPEED_1000 &&
5048 dplx != DUPLEX_FULL)
5049 goto err_inval;
5050
5051 switch (spd + dplx) {
5052 case SPEED_10 + DUPLEX_HALF:
5053 hw->forced_speed_duplex = e1000_10_half;
5054 break;
5055 case SPEED_10 + DUPLEX_FULL:
5056 hw->forced_speed_duplex = e1000_10_full;
5057 break;
5058 case SPEED_100 + DUPLEX_HALF:
5059 hw->forced_speed_duplex = e1000_100_half;
5060 break;
5061 case SPEED_100 + DUPLEX_FULL:
5062 hw->forced_speed_duplex = e1000_100_full;
5063 break;
5064 case SPEED_1000 + DUPLEX_FULL:
5065 hw->autoneg = 1;
5066 hw->autoneg_advertised = ADVERTISE_1000_FULL;
5067 break;
5068 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5069 default:
5070 goto err_inval;
5071 }
5072
5073 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5074 hw->mdix = AUTO_ALL_MODES;
5075
5076 return 0;
5077
5078err_inval:
5079 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5080 return -EINVAL;
5081}
5082
5083static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
5084{
5085 struct net_device *netdev = pci_get_drvdata(pdev);
5086 struct e1000_adapter *adapter = netdev_priv(netdev);
5087 struct e1000_hw *hw = &adapter->hw;
5088 u32 ctrl, ctrl_ext, rctl, status;
5089 u32 wufc = adapter->wol;
5090#ifdef CONFIG_PM
5091 int retval = 0;
5092#endif
5093
5094 netif_device_detach(netdev);
5095
5096 if (netif_running(netdev)) {
5097 int count = E1000_CHECK_RESET_COUNT;
5098
5099 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5100 usleep_range(10000, 20000);
5101
5102 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
5103 e1000_down(adapter);
5104 }
5105
5106#ifdef CONFIG_PM
5107 retval = pci_save_state(pdev);
5108 if (retval)
5109 return retval;
5110#endif
5111
5112 status = er32(STATUS);
5113 if (status & E1000_STATUS_LU)
5114 wufc &= ~E1000_WUFC_LNKC;
5115
5116 if (wufc) {
5117 e1000_setup_rctl(adapter);
5118 e1000_set_rx_mode(netdev);
5119
5120 rctl = er32(RCTL);
5121
5122 /* turn on all-multi mode if wake on multicast is enabled */
5123 if (wufc & E1000_WUFC_MC)
5124 rctl |= E1000_RCTL_MPE;
5125
5126 /* enable receives in the hardware */
5127 ew32(RCTL, rctl | E1000_RCTL_EN);
5128
5129 if (hw->mac_type >= e1000_82540) {
5130 ctrl = er32(CTRL);
5131 /* advertise wake from D3Cold */
5132 #define E1000_CTRL_ADVD3WUC 0x00100000
5133 /* phy power management enable */
5134 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5135 ctrl |= E1000_CTRL_ADVD3WUC |
5136 E1000_CTRL_EN_PHY_PWR_MGMT;
5137 ew32(CTRL, ctrl);
5138 }
5139
5140 if (hw->media_type == e1000_media_type_fiber ||
5141 hw->media_type == e1000_media_type_internal_serdes) {
5142 /* keep the laser running in D3 */
5143 ctrl_ext = er32(CTRL_EXT);
5144 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
5145 ew32(CTRL_EXT, ctrl_ext);
5146 }
5147
5148 ew32(WUC, E1000_WUC_PME_EN);
5149 ew32(WUFC, wufc);
5150 } else {
5151 ew32(WUC, 0);
5152 ew32(WUFC, 0);
5153 }
5154
5155 e1000_release_manageability(adapter);
5156
5157 *enable_wake = !!wufc;
5158
5159 /* make sure adapter isn't asleep if manageability is enabled */
5160 if (adapter->en_mng_pt)
5161 *enable_wake = true;
5162
5163 if (netif_running(netdev))
5164 e1000_free_irq(adapter);
5165
5166 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5167 pci_disable_device(pdev);
5168
5169 return 0;
5170}
5171
5172#ifdef CONFIG_PM
5173static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5174{
5175 int retval;
5176 bool wake;
5177
5178 retval = __e1000_shutdown(pdev, &wake);
5179 if (retval)
5180 return retval;
5181
5182 if (wake) {
5183 pci_prepare_to_sleep(pdev);
5184 } else {
5185 pci_wake_from_d3(pdev, false);
5186 pci_set_power_state(pdev, PCI_D3hot);
5187 }
5188
5189 return 0;
5190}
5191
5192static int e1000_resume(struct pci_dev *pdev)
5193{
5194 struct net_device *netdev = pci_get_drvdata(pdev);
5195 struct e1000_adapter *adapter = netdev_priv(netdev);
5196 struct e1000_hw *hw = &adapter->hw;
5197 u32 err;
5198
5199 pci_set_power_state(pdev, PCI_D0);
5200 pci_restore_state(pdev);
5201 pci_save_state(pdev);
5202
5203 if (adapter->need_ioport)
5204 err = pci_enable_device(pdev);
5205 else
5206 err = pci_enable_device_mem(pdev);
5207 if (err) {
5208 pr_err("Cannot enable PCI device from suspend\n");
5209 return err;
5210 }
5211
5212 /* flush memory to make sure state is correct */
5213 smp_mb__before_atomic();
5214 clear_bit(__E1000_DISABLED, &adapter->flags);
5215 pci_set_master(pdev);
5216
5217 pci_enable_wake(pdev, PCI_D3hot, 0);
5218 pci_enable_wake(pdev, PCI_D3cold, 0);
5219
5220 if (netif_running(netdev)) {
5221 err = e1000_request_irq(adapter);
5222 if (err)
5223 return err;
5224 }
5225
5226 e1000_power_up_phy(adapter);
5227 e1000_reset(adapter);
5228 ew32(WUS, ~0);
5229
5230 e1000_init_manageability(adapter);
5231
5232 if (netif_running(netdev))
5233 e1000_up(adapter);
5234
5235 netif_device_attach(netdev);
5236
5237 return 0;
5238}
5239#endif
5240
5241static void e1000_shutdown(struct pci_dev *pdev)
5242{
5243 bool wake;
5244
5245 __e1000_shutdown(pdev, &wake);
5246
5247 if (system_state == SYSTEM_POWER_OFF) {
5248 pci_wake_from_d3(pdev, wake);
5249 pci_set_power_state(pdev, PCI_D3hot);
5250 }
5251}
5252
5253#ifdef CONFIG_NET_POLL_CONTROLLER
5254/* Polling 'interrupt' - used by things like netconsole to send skbs
5255 * without having to re-enable interrupts. It's not called while
5256 * the interrupt routine is executing.
5257 */
5258static void e1000_netpoll(struct net_device *netdev)
5259{
5260 struct e1000_adapter *adapter = netdev_priv(netdev);
5261
5262 if (disable_hardirq(adapter->pdev->irq))
5263 e1000_intr(adapter->pdev->irq, netdev);
5264 enable_irq(adapter->pdev->irq);
5265}
5266#endif
5267
5268/**
5269 * e1000_io_error_detected - called when PCI error is detected
5270 * @pdev: Pointer to PCI device
5271 * @state: The current pci connection state
5272 *
5273 * This function is called after a PCI bus error affecting
5274 * this device has been detected.
5275 */
5276static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5277 pci_channel_state_t state)
5278{
5279 struct net_device *netdev = pci_get_drvdata(pdev);
5280 struct e1000_adapter *adapter = netdev_priv(netdev);
5281
5282 netif_device_detach(netdev);
5283
5284 if (state == pci_channel_io_perm_failure)
5285 return PCI_ERS_RESULT_DISCONNECT;
5286
5287 if (netif_running(netdev))
5288 e1000_down(adapter);
5289
5290 if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
5291 pci_disable_device(pdev);
5292
5293 /* Request a slot slot reset. */
5294 return PCI_ERS_RESULT_NEED_RESET;
5295}
5296
5297/**
5298 * e1000_io_slot_reset - called after the pci bus has been reset.
5299 * @pdev: Pointer to PCI device
5300 *
5301 * Restart the card from scratch, as if from a cold-boot. Implementation
5302 * resembles the first-half of the e1000_resume routine.
5303 */
5304static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5305{
5306 struct net_device *netdev = pci_get_drvdata(pdev);
5307 struct e1000_adapter *adapter = netdev_priv(netdev);
5308 struct e1000_hw *hw = &adapter->hw;
5309 int err;
5310
5311 if (adapter->need_ioport)
5312 err = pci_enable_device(pdev);
5313 else
5314 err = pci_enable_device_mem(pdev);
5315 if (err) {
5316 pr_err("Cannot re-enable PCI device after reset.\n");
5317 return PCI_ERS_RESULT_DISCONNECT;
5318 }
5319
5320 /* flush memory to make sure state is correct */
5321 smp_mb__before_atomic();
5322 clear_bit(__E1000_DISABLED, &adapter->flags);
5323 pci_set_master(pdev);
5324
5325 pci_enable_wake(pdev, PCI_D3hot, 0);
5326 pci_enable_wake(pdev, PCI_D3cold, 0);
5327
5328 e1000_reset(adapter);
5329 ew32(WUS, ~0);
5330
5331 return PCI_ERS_RESULT_RECOVERED;
5332}
5333
5334/**
5335 * e1000_io_resume - called when traffic can start flowing again.
5336 * @pdev: Pointer to PCI device
5337 *
5338 * This callback is called when the error recovery driver tells us that
5339 * its OK to resume normal operation. Implementation resembles the
5340 * second-half of the e1000_resume routine.
5341 */
5342static void e1000_io_resume(struct pci_dev *pdev)
5343{
5344 struct net_device *netdev = pci_get_drvdata(pdev);
5345 struct e1000_adapter *adapter = netdev_priv(netdev);
5346
5347 e1000_init_manageability(adapter);
5348
5349 if (netif_running(netdev)) {
5350 if (e1000_up(adapter)) {
5351 pr_info("can't bring device back up after reset\n");
5352 return;
5353 }
5354 }
5355
5356 netif_device_attach(netdev);
5357}
5358
5359/* e1000_main.c */