Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/mutex.h>
  25#include <linux/log2.h>
  26#include <linux/sched.h>
  27#include <linux/sched/mm.h>
  28#include <linux/sched/task.h>
  29#include <linux/mmu_context.h>
  30#include <linux/slab.h>
 
  31#include <linux/notifier.h>
  32#include <linux/compat.h>
  33#include <linux/mman.h>
  34#include <linux/file.h>
  35#include <linux/pm_runtime.h>
  36#include "amdgpu_amdkfd.h"
  37#include "amdgpu.h"
  38
  39struct mm_struct;
  40
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
  43#include "kfd_svm.h"
  44#include "kfd_smi_events.h"
  45#include "kfd_debug.h"
  46
  47/*
  48 * List of struct kfd_process (field kfd_process).
  49 * Unique/indexed by mm_struct*
  50 */
  51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  52DEFINE_MUTEX(kfd_processes_mutex);
  53
  54DEFINE_SRCU(kfd_processes_srcu);
  55
  56/* For process termination handling */
  57static struct workqueue_struct *kfd_process_wq;
  58
  59/* Ordered, single-threaded workqueue for restoring evicted
  60 * processes. Restoring multiple processes concurrently under memory
  61 * pressure can lead to processes blocking each other from validating
  62 * their BOs and result in a live-lock situation where processes
  63 * remain evicted indefinitely.
  64 */
  65static struct workqueue_struct *kfd_restore_wq;
  66
  67static struct kfd_process *find_process(const struct task_struct *thread,
  68					bool ref);
  69static void kfd_process_ref_release(struct kref *ref);
  70static struct kfd_process *create_process(const struct task_struct *thread);
 
  71
  72static void evict_process_worker(struct work_struct *work);
  73static void restore_process_worker(struct work_struct *work);
  74
  75static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
  76
  77struct kfd_procfs_tree {
  78	struct kobject *kobj;
  79};
  80
  81static struct kfd_procfs_tree procfs;
  82
  83/*
  84 * Structure for SDMA activity tracking
  85 */
  86struct kfd_sdma_activity_handler_workarea {
  87	struct work_struct sdma_activity_work;
  88	struct kfd_process_device *pdd;
  89	uint64_t sdma_activity_counter;
  90};
  91
  92struct temp_sdma_queue_list {
  93	uint64_t __user *rptr;
  94	uint64_t sdma_val;
  95	unsigned int queue_id;
  96	struct list_head list;
  97};
  98
  99static void kfd_sdma_activity_worker(struct work_struct *work)
 100{
 101	struct kfd_sdma_activity_handler_workarea *workarea;
 102	struct kfd_process_device *pdd;
 103	uint64_t val;
 104	struct mm_struct *mm;
 105	struct queue *q;
 106	struct qcm_process_device *qpd;
 107	struct device_queue_manager *dqm;
 108	int ret = 0;
 109	struct temp_sdma_queue_list sdma_q_list;
 110	struct temp_sdma_queue_list *sdma_q, *next;
 111
 112	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
 113				sdma_activity_work);
 114
 115	pdd = workarea->pdd;
 116	if (!pdd)
 117		return;
 118	dqm = pdd->dev->dqm;
 119	qpd = &pdd->qpd;
 120	if (!dqm || !qpd)
 121		return;
 122	/*
 123	 * Total SDMA activity is current SDMA activity + past SDMA activity
 124	 * Past SDMA count is stored in pdd.
 125	 * To get the current activity counters for all active SDMA queues,
 126	 * we loop over all SDMA queues and get their counts from user-space.
 127	 *
 128	 * We cannot call get_user() with dqm_lock held as it can cause
 129	 * a circular lock dependency situation. To read the SDMA stats,
 130	 * we need to do the following:
 131	 *
 132	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
 133	 *    with dqm_lock/dqm_unlock().
 134	 * 2. Call get_user() for each node in temporary list without dqm_lock.
 135	 *    Save the SDMA count for each node and also add the count to the total
 136	 *    SDMA count counter.
 137	 *    Its possible, during this step, a few SDMA queue nodes got deleted
 138	 *    from the qpd->queues_list.
 139	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
 140	 *    If any node got deleted, its SDMA count would be captured in the sdma
 141	 *    past activity counter. So subtract the SDMA counter stored in step 2
 142	 *    for this node from the total SDMA count.
 143	 */
 144	INIT_LIST_HEAD(&sdma_q_list.list);
 145
 146	/*
 147	 * Create the temp list of all SDMA queues
 148	 */
 149	dqm_lock(dqm);
 150
 151	list_for_each_entry(q, &qpd->queues_list, list) {
 152		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 153		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 154			continue;
 155
 156		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
 157		if (!sdma_q) {
 158			dqm_unlock(dqm);
 159			goto cleanup;
 160		}
 161
 162		INIT_LIST_HEAD(&sdma_q->list);
 163		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
 164		sdma_q->queue_id = q->properties.queue_id;
 165		list_add_tail(&sdma_q->list, &sdma_q_list.list);
 166	}
 167
 168	/*
 169	 * If the temp list is empty, then no SDMA queues nodes were found in
 170	 * qpd->queues_list. Return the past activity count as the total sdma
 171	 * count
 172	 */
 173	if (list_empty(&sdma_q_list.list)) {
 174		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
 175		dqm_unlock(dqm);
 176		return;
 177	}
 178
 179	dqm_unlock(dqm);
 180
 181	/*
 182	 * Get the usage count for each SDMA queue in temp_list.
 183	 */
 184	mm = get_task_mm(pdd->process->lead_thread);
 185	if (!mm)
 186		goto cleanup;
 187
 188	kthread_use_mm(mm);
 189
 190	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
 191		val = 0;
 192		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
 193		if (ret) {
 194			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
 195				 sdma_q->queue_id);
 196		} else {
 197			sdma_q->sdma_val = val;
 198			workarea->sdma_activity_counter += val;
 199		}
 200	}
 201
 202	kthread_unuse_mm(mm);
 203	mmput(mm);
 204
 205	/*
 206	 * Do a second iteration over qpd_queues_list to check if any SDMA
 207	 * nodes got deleted while fetching SDMA counter.
 208	 */
 209	dqm_lock(dqm);
 210
 211	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
 212
 213	list_for_each_entry(q, &qpd->queues_list, list) {
 214		if (list_empty(&sdma_q_list.list))
 215			break;
 216
 217		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 218		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 219			continue;
 220
 221		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 222			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
 223			     (sdma_q->queue_id == q->properties.queue_id)) {
 224				list_del(&sdma_q->list);
 225				kfree(sdma_q);
 226				break;
 227			}
 228		}
 229	}
 230
 231	dqm_unlock(dqm);
 232
 233	/*
 234	 * If temp list is not empty, it implies some queues got deleted
 235	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
 236	 * count for each node from the total SDMA count.
 237	 */
 238	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 239		workarea->sdma_activity_counter -= sdma_q->sdma_val;
 240		list_del(&sdma_q->list);
 241		kfree(sdma_q);
 242	}
 243
 244	return;
 245
 246cleanup:
 247	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 248		list_del(&sdma_q->list);
 249		kfree(sdma_q);
 250	}
 251}
 252
 253/**
 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
 255 * by current process. Translates acquired wave count into number of compute units
 256 * that are occupied.
 257 *
 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
 259 * handle encapsulates GPU device it is associated with, thereby allowing collection
 260 * of waves in flight, etc
 261 * @buffer: Handle of user provided buffer updated with wave count
 262 *
 263 * Return: Number of bytes written to user buffer or an error value
 264 */
 265static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
 266{
 267	int cu_cnt;
 268	int wave_cnt;
 269	int max_waves_per_cu;
 270	struct kfd_node *dev = NULL;
 271	struct kfd_process *proc = NULL;
 272	struct kfd_process_device *pdd = NULL;
 273
 274	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
 275	dev = pdd->dev;
 276	if (dev->kfd2kgd->get_cu_occupancy == NULL)
 277		return -EINVAL;
 278
 279	cu_cnt = 0;
 280	proc = pdd->process;
 281	if (pdd->qpd.queue_count == 0) {
 282		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
 283			 dev->id, proc->pasid);
 284		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 285	}
 286
 287	/* Collect wave count from device if it supports */
 288	wave_cnt = 0;
 289	max_waves_per_cu = 0;
 290	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
 291			&max_waves_per_cu, 0);
 292
 293	/* Translate wave count to number of compute units */
 294	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
 295	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 296}
 297
 298static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
 299			       char *buffer)
 300{
 301	if (strcmp(attr->name, "pasid") == 0) {
 302		struct kfd_process *p = container_of(attr, struct kfd_process,
 303						     attr_pasid);
 304
 305		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
 306	} else if (strncmp(attr->name, "vram_", 5) == 0) {
 307		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 308							      attr_vram);
 309		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
 310	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
 311		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 312							      attr_sdma);
 313		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
 314
 315		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
 316					kfd_sdma_activity_worker);
 317
 318		sdma_activity_work_handler.pdd = pdd;
 319		sdma_activity_work_handler.sdma_activity_counter = 0;
 320
 321		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
 322
 323		flush_work(&sdma_activity_work_handler.sdma_activity_work);
 324
 325		return snprintf(buffer, PAGE_SIZE, "%llu\n",
 326				(sdma_activity_work_handler.sdma_activity_counter)/
 327				 SDMA_ACTIVITY_DIVISOR);
 328	} else {
 329		pr_err("Invalid attribute");
 330		return -EINVAL;
 331	}
 332
 333	return 0;
 334}
 335
 336static void kfd_procfs_kobj_release(struct kobject *kobj)
 337{
 338	kfree(kobj);
 339}
 340
 341static const struct sysfs_ops kfd_procfs_ops = {
 342	.show = kfd_procfs_show,
 343};
 344
 345static const struct kobj_type procfs_type = {
 346	.release = kfd_procfs_kobj_release,
 347	.sysfs_ops = &kfd_procfs_ops,
 348};
 349
 350void kfd_procfs_init(void)
 351{
 352	int ret = 0;
 353
 354	procfs.kobj = kfd_alloc_struct(procfs.kobj);
 355	if (!procfs.kobj)
 356		return;
 357
 358	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
 359				   &kfd_device->kobj, "proc");
 360	if (ret) {
 361		pr_warn("Could not create procfs proc folder");
 362		/* If we fail to create the procfs, clean up */
 363		kfd_procfs_shutdown();
 364	}
 365}
 366
 367void kfd_procfs_shutdown(void)
 368{
 369	if (procfs.kobj) {
 370		kobject_del(procfs.kobj);
 371		kobject_put(procfs.kobj);
 372		procfs.kobj = NULL;
 373	}
 374}
 375
 376static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
 377				     struct attribute *attr, char *buffer)
 378{
 379	struct queue *q = container_of(kobj, struct queue, kobj);
 380
 381	if (!strcmp(attr->name, "size"))
 382		return snprintf(buffer, PAGE_SIZE, "%llu",
 383				q->properties.queue_size);
 384	else if (!strcmp(attr->name, "type"))
 385		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
 386	else if (!strcmp(attr->name, "gpuid"))
 387		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
 388	else
 389		pr_err("Invalid attribute");
 390
 391	return 0;
 392}
 393
 394static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
 395				     struct attribute *attr, char *buffer)
 396{
 397	if (strcmp(attr->name, "evicted_ms") == 0) {
 398		struct kfd_process_device *pdd = container_of(attr,
 399				struct kfd_process_device,
 400				attr_evict);
 401		uint64_t evict_jiffies;
 402
 403		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
 404
 405		return snprintf(buffer,
 406				PAGE_SIZE,
 407				"%llu\n",
 408				jiffies64_to_msecs(evict_jiffies));
 409
 410	/* Sysfs handle that gets CU occupancy is per device */
 411	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
 412		return kfd_get_cu_occupancy(attr, buffer);
 413	} else {
 414		pr_err("Invalid attribute");
 415	}
 416
 417	return 0;
 418}
 419
 420static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
 421				       struct attribute *attr, char *buf)
 422{
 423	struct kfd_process_device *pdd;
 424
 425	if (!strcmp(attr->name, "faults")) {
 426		pdd = container_of(attr, struct kfd_process_device,
 427				   attr_faults);
 428		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
 429	}
 430	if (!strcmp(attr->name, "page_in")) {
 431		pdd = container_of(attr, struct kfd_process_device,
 432				   attr_page_in);
 433		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
 434	}
 435	if (!strcmp(attr->name, "page_out")) {
 436		pdd = container_of(attr, struct kfd_process_device,
 437				   attr_page_out);
 438		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
 439	}
 440	return 0;
 441}
 442
 443static struct attribute attr_queue_size = {
 444	.name = "size",
 445	.mode = KFD_SYSFS_FILE_MODE
 446};
 447
 448static struct attribute attr_queue_type = {
 449	.name = "type",
 450	.mode = KFD_SYSFS_FILE_MODE
 451};
 452
 453static struct attribute attr_queue_gpuid = {
 454	.name = "gpuid",
 455	.mode = KFD_SYSFS_FILE_MODE
 456};
 457
 458static struct attribute *procfs_queue_attrs[] = {
 459	&attr_queue_size,
 460	&attr_queue_type,
 461	&attr_queue_gpuid,
 462	NULL
 463};
 464ATTRIBUTE_GROUPS(procfs_queue);
 465
 466static const struct sysfs_ops procfs_queue_ops = {
 467	.show = kfd_procfs_queue_show,
 468};
 469
 470static const struct kobj_type procfs_queue_type = {
 471	.sysfs_ops = &procfs_queue_ops,
 472	.default_groups = procfs_queue_groups,
 473};
 474
 475static const struct sysfs_ops procfs_stats_ops = {
 476	.show = kfd_procfs_stats_show,
 477};
 478
 479static const struct kobj_type procfs_stats_type = {
 480	.sysfs_ops = &procfs_stats_ops,
 481	.release = kfd_procfs_kobj_release,
 482};
 483
 484static const struct sysfs_ops sysfs_counters_ops = {
 485	.show = kfd_sysfs_counters_show,
 486};
 487
 488static const struct kobj_type sysfs_counters_type = {
 489	.sysfs_ops = &sysfs_counters_ops,
 490	.release = kfd_procfs_kobj_release,
 491};
 492
 493int kfd_procfs_add_queue(struct queue *q)
 494{
 495	struct kfd_process *proc;
 496	int ret;
 497
 498	if (!q || !q->process)
 499		return -EINVAL;
 500	proc = q->process;
 501
 502	/* Create proc/<pid>/queues/<queue id> folder */
 503	if (!proc->kobj_queues)
 504		return -EFAULT;
 505	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
 506			proc->kobj_queues, "%u", q->properties.queue_id);
 507	if (ret < 0) {
 508		pr_warn("Creating proc/<pid>/queues/%u failed",
 509			q->properties.queue_id);
 510		kobject_put(&q->kobj);
 511		return ret;
 512	}
 513
 514	return 0;
 515}
 516
 517static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
 518				 char *name)
 519{
 520	int ret;
 521
 522	if (!kobj || !attr || !name)
 523		return;
 524
 525	attr->name = name;
 526	attr->mode = KFD_SYSFS_FILE_MODE;
 527	sysfs_attr_init(attr);
 528
 529	ret = sysfs_create_file(kobj, attr);
 530	if (ret)
 531		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
 532}
 533
 534static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
 535{
 536	int ret;
 537	int i;
 538	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
 539
 540	if (!p || !p->kobj)
 541		return;
 542
 543	/*
 544	 * Create sysfs files for each GPU:
 545	 * - proc/<pid>/stats_<gpuid>/
 546	 * - proc/<pid>/stats_<gpuid>/evicted_ms
 547	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
 548	 */
 549	for (i = 0; i < p->n_pdds; i++) {
 550		struct kfd_process_device *pdd = p->pdds[i];
 551
 552		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
 553				"stats_%u", pdd->dev->id);
 554		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
 555		if (!pdd->kobj_stats)
 556			return;
 557
 558		ret = kobject_init_and_add(pdd->kobj_stats,
 559					   &procfs_stats_type,
 560					   p->kobj,
 561					   stats_dir_filename);
 562
 563		if (ret) {
 564			pr_warn("Creating KFD proc/stats_%s folder failed",
 565				stats_dir_filename);
 566			kobject_put(pdd->kobj_stats);
 567			pdd->kobj_stats = NULL;
 568			return;
 569		}
 570
 571		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
 572				      "evicted_ms");
 573		/* Add sysfs file to report compute unit occupancy */
 574		if (pdd->dev->kfd2kgd->get_cu_occupancy)
 575			kfd_sysfs_create_file(pdd->kobj_stats,
 576					      &pdd->attr_cu_occupancy,
 577					      "cu_occupancy");
 578	}
 579}
 580
 581static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
 582{
 583	int ret = 0;
 584	int i;
 585	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
 586
 587	if (!p || !p->kobj)
 588		return;
 589
 590	/*
 591	 * Create sysfs files for each GPU which supports SVM
 592	 * - proc/<pid>/counters_<gpuid>/
 593	 * - proc/<pid>/counters_<gpuid>/faults
 594	 * - proc/<pid>/counters_<gpuid>/page_in
 595	 * - proc/<pid>/counters_<gpuid>/page_out
 596	 */
 597	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
 598		struct kfd_process_device *pdd = p->pdds[i];
 599		struct kobject *kobj_counters;
 600
 601		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
 602			"counters_%u", pdd->dev->id);
 603		kobj_counters = kfd_alloc_struct(kobj_counters);
 604		if (!kobj_counters)
 605			return;
 606
 607		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
 608					   p->kobj, counters_dir_filename);
 609		if (ret) {
 610			pr_warn("Creating KFD proc/%s folder failed",
 611				counters_dir_filename);
 612			kobject_put(kobj_counters);
 613			return;
 614		}
 615
 616		pdd->kobj_counters = kobj_counters;
 617		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
 618				      "faults");
 619		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
 620				      "page_in");
 621		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
 622				      "page_out");
 623	}
 624}
 625
 626static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
 627{
 628	int i;
 629
 630	if (!p || !p->kobj)
 631		return;
 632
 633	/*
 634	 * Create sysfs files for each GPU:
 635	 * - proc/<pid>/vram_<gpuid>
 636	 * - proc/<pid>/sdma_<gpuid>
 637	 */
 638	for (i = 0; i < p->n_pdds; i++) {
 639		struct kfd_process_device *pdd = p->pdds[i];
 640
 641		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
 642			 pdd->dev->id);
 643		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
 644				      pdd->vram_filename);
 645
 646		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
 647			 pdd->dev->id);
 648		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
 649					    pdd->sdma_filename);
 650	}
 651}
 652
 653void kfd_procfs_del_queue(struct queue *q)
 654{
 655	if (!q)
 656		return;
 657
 658	kobject_del(&q->kobj);
 659	kobject_put(&q->kobj);
 660}
 661
 662int kfd_process_create_wq(void)
 663{
 664	if (!kfd_process_wq)
 665		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
 666	if (!kfd_restore_wq)
 667		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
 668							 WQ_FREEZABLE);
 669
 670	if (!kfd_process_wq || !kfd_restore_wq) {
 671		kfd_process_destroy_wq();
 672		return -ENOMEM;
 673	}
 674
 675	return 0;
 676}
 677
 678void kfd_process_destroy_wq(void)
 679{
 680	if (kfd_process_wq) {
 681		destroy_workqueue(kfd_process_wq);
 682		kfd_process_wq = NULL;
 683	}
 684	if (kfd_restore_wq) {
 685		destroy_workqueue(kfd_restore_wq);
 686		kfd_restore_wq = NULL;
 687	}
 688}
 689
 690static void kfd_process_free_gpuvm(struct kgd_mem *mem,
 691			struct kfd_process_device *pdd, void **kptr)
 692{
 693	struct kfd_node *dev = pdd->dev;
 694
 695	if (kptr && *kptr) {
 696		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
 697		*kptr = NULL;
 698	}
 699
 700	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
 701	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
 702					       NULL);
 703}
 704
 705/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 706 *	This function should be only called right after the process
 707 *	is created and when kfd_processes_mutex is still being held
 708 *	to avoid concurrency. Because of that exclusiveness, we do
 709 *	not need to take p->mutex.
 710 */
 711static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 712				   uint64_t gpu_va, uint32_t size,
 713				   uint32_t flags, struct kgd_mem **mem, void **kptr)
 714{
 715	struct kfd_node *kdev = pdd->dev;
 
 
 716	int err;
 717
 718	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
 719						 pdd->drm_priv, mem, NULL,
 720						 flags, false);
 721	if (err)
 722		goto err_alloc_mem;
 723
 724	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
 725			pdd->drm_priv);
 726	if (err)
 727		goto err_map_mem;
 728
 729	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
 730	if (err) {
 731		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 732		goto sync_memory_failed;
 733	}
 734
 
 
 
 
 
 
 
 
 
 
 
 
 735	if (kptr) {
 736		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
 737				(struct kgd_mem *)*mem, kptr, NULL);
 738		if (err) {
 739			pr_debug("Map GTT BO to kernel failed\n");
 740			goto sync_memory_failed;
 741		}
 742	}
 743
 744	return err;
 745
 
 
 
 746sync_memory_failed:
 747	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
 
 748
 749err_map_mem:
 750	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
 751					       NULL);
 752err_alloc_mem:
 753	*mem = NULL;
 754	*kptr = NULL;
 755	return err;
 756}
 757
 758/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 759 *	process for IB usage The memory reserved is for KFD to submit
 760 *	IB to AMDGPU from kernel.  If the memory is reserved
 761 *	successfully, ib_kaddr will have the CPU/kernel
 762 *	address. Check ib_kaddr before accessing the memory.
 763 */
 764static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 765{
 766	struct qcm_process_device *qpd = &pdd->qpd;
 767	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
 768			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 769			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
 770			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 771	struct kgd_mem *mem;
 772	void *kaddr;
 773	int ret;
 774
 775	if (qpd->ib_kaddr || !qpd->ib_base)
 776		return 0;
 777
 778	/* ib_base is only set for dGPU */
 779	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 780				      &mem, &kaddr);
 781	if (ret)
 782		return ret;
 783
 784	qpd->ib_mem = mem;
 785	qpd->ib_kaddr = kaddr;
 786
 787	return 0;
 788}
 789
 790static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
 791{
 792	struct qcm_process_device *qpd = &pdd->qpd;
 793
 794	if (!qpd->ib_kaddr || !qpd->ib_base)
 795		return;
 796
 797	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
 798}
 799
 800struct kfd_process *kfd_create_process(struct task_struct *thread)
 801{
 802	struct kfd_process *process;
 803	int ret;
 804
 805	if (!(thread->mm && mmget_not_zero(thread->mm)))
 806		return ERR_PTR(-EINVAL);
 807
 808	/* Only the pthreads threading model is supported. */
 809	if (thread->group_leader->mm != thread->mm) {
 810		mmput(thread->mm);
 811		return ERR_PTR(-EINVAL);
 812	}
 813
 814	/*
 815	 * take kfd processes mutex before starting of process creation
 816	 * so there won't be a case where two threads of the same process
 817	 * create two kfd_process structures
 818	 */
 819	mutex_lock(&kfd_processes_mutex);
 820
 821	if (kfd_is_locked()) {
 822		pr_debug("KFD is locked! Cannot create process");
 823		process = ERR_PTR(-EINVAL);
 824		goto out;
 825	}
 826
 827	/* A prior open of /dev/kfd could have already created the process. */
 828	process = find_process(thread, false);
 829	if (process) {
 830		pr_debug("Process already found\n");
 831	} else {
 832		/* If the process just called exec(3), it is possible that the
 833		 * cleanup of the kfd_process (following the release of the mm
 834		 * of the old process image) is still in the cleanup work queue.
 835		 * Make sure to drain any job before trying to recreate any
 836		 * resource for this process.
 837		 */
 838		flush_workqueue(kfd_process_wq);
 839
 840		process = create_process(thread);
 841		if (IS_ERR(process))
 842			goto out;
 843
 844		if (!procfs.kobj)
 845			goto out;
 846
 847		process->kobj = kfd_alloc_struct(process->kobj);
 848		if (!process->kobj) {
 849			pr_warn("Creating procfs kobject failed");
 850			goto out;
 851		}
 852		ret = kobject_init_and_add(process->kobj, &procfs_type,
 853					   procfs.kobj, "%d",
 854					   (int)process->lead_thread->pid);
 855		if (ret) {
 856			pr_warn("Creating procfs pid directory failed");
 857			kobject_put(process->kobj);
 858			goto out;
 859		}
 860
 861		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
 862				      "pasid");
 863
 864		process->kobj_queues = kobject_create_and_add("queues",
 865							process->kobj);
 866		if (!process->kobj_queues)
 867			pr_warn("Creating KFD proc/queues folder failed");
 868
 869		kfd_procfs_add_sysfs_stats(process);
 870		kfd_procfs_add_sysfs_files(process);
 871		kfd_procfs_add_sysfs_counters(process);
 872
 873		init_waitqueue_head(&process->wait_irq_drain);
 874	}
 875out:
 876	if (!IS_ERR(process))
 877		kref_get(&process->ref);
 878	mutex_unlock(&kfd_processes_mutex);
 879	mmput(thread->mm);
 880
 881	return process;
 882}
 883
 884struct kfd_process *kfd_get_process(const struct task_struct *thread)
 885{
 886	struct kfd_process *process;
 887
 888	if (!thread->mm)
 889		return ERR_PTR(-EINVAL);
 890
 891	/* Only the pthreads threading model is supported. */
 892	if (thread->group_leader->mm != thread->mm)
 893		return ERR_PTR(-EINVAL);
 894
 895	process = find_process(thread, false);
 896	if (!process)
 897		return ERR_PTR(-EINVAL);
 898
 899	return process;
 900}
 901
 902static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 903{
 904	struct kfd_process *process;
 905
 906	hash_for_each_possible_rcu(kfd_processes_table, process,
 907					kfd_processes, (uintptr_t)mm)
 908		if (process->mm == mm)
 909			return process;
 910
 911	return NULL;
 912}
 913
 914static struct kfd_process *find_process(const struct task_struct *thread,
 915					bool ref)
 916{
 917	struct kfd_process *p;
 918	int idx;
 919
 920	idx = srcu_read_lock(&kfd_processes_srcu);
 921	p = find_process_by_mm(thread->mm);
 922	if (p && ref)
 923		kref_get(&p->ref);
 924	srcu_read_unlock(&kfd_processes_srcu, idx);
 925
 926	return p;
 927}
 928
 929void kfd_unref_process(struct kfd_process *p)
 930{
 931	kref_put(&p->ref, kfd_process_ref_release);
 932}
 933
 934/* This increments the process->ref counter. */
 935struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
 936{
 937	struct task_struct *task = NULL;
 938	struct kfd_process *p    = NULL;
 939
 940	if (!pid) {
 941		task = current;
 942		get_task_struct(task);
 943	} else {
 944		task = get_pid_task(pid, PIDTYPE_PID);
 945	}
 946
 947	if (task) {
 948		p = find_process(task, true);
 949		put_task_struct(task);
 950	}
 951
 952	return p;
 953}
 954
 955static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 956{
 957	struct kfd_process *p = pdd->process;
 958	void *mem;
 959	int id;
 960	int i;
 961
 962	/*
 963	 * Remove all handles from idr and release appropriate
 964	 * local memory object
 965	 */
 966	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 
 967
 968		for (i = 0; i < p->n_pdds; i++) {
 969			struct kfd_process_device *peer_pdd = p->pdds[i];
 970
 971			if (!peer_pdd->drm_priv)
 972				continue;
 973			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
 974				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
 975		}
 976
 977		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
 978						       pdd->drm_priv, NULL);
 979		kfd_process_device_remove_obj_handle(pdd, id);
 980	}
 981}
 982
 983/*
 984 * Just kunmap and unpin signal BO here. It will be freed in
 985 * kfd_process_free_outstanding_kfd_bos()
 986 */
 987static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
 988{
 989	struct kfd_process_device *pdd;
 990	struct kfd_node *kdev;
 991	void *mem;
 992
 993	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
 994	if (!kdev)
 995		return;
 996
 997	mutex_lock(&p->mutex);
 998
 999	pdd = kfd_get_process_device_data(kdev, p);
1000	if (!pdd)
1001		goto out;
1002
1003	mem = kfd_process_device_translate_handle(
1004		pdd, GET_IDR_HANDLE(p->signal_handle));
1005	if (!mem)
1006		goto out;
1007
1008	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1009
1010out:
1011	mutex_unlock(&p->mutex);
1012}
1013
1014static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1015{
1016	int i;
1017
1018	for (i = 0; i < p->n_pdds; i++)
1019		kfd_process_device_free_bos(p->pdds[i]);
1020}
1021
1022static void kfd_process_destroy_pdds(struct kfd_process *p)
1023{
1024	int i;
1025
1026	for (i = 0; i < p->n_pdds; i++) {
1027		struct kfd_process_device *pdd = p->pdds[i];
1028
1029		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1030				pdd->dev->id, p->pasid);
1031
1032		kfd_process_device_destroy_cwsr_dgpu(pdd);
1033		kfd_process_device_destroy_ib_mem(pdd);
1034
1035		if (pdd->drm_file) {
1036			amdgpu_amdkfd_gpuvm_release_process_vm(
1037					pdd->dev->adev, pdd->drm_priv);
1038			fput(pdd->drm_file);
1039		}
 
 
 
 
1040
1041		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1042			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1043				get_order(KFD_CWSR_TBA_TMA_SIZE));
1044
1045		idr_destroy(&pdd->alloc_idr);
1046
1047		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1048
1049		if (pdd->dev->kfd->shared_resources.enable_mes)
1050			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1051						   pdd->proc_ctx_bo);
1052		/*
1053		 * before destroying pdd, make sure to report availability
1054		 * for auto suspend
1055		 */
1056		if (pdd->runtime_inuse) {
1057			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1058			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1059			pdd->runtime_inuse = false;
1060		}
1061
1062		kfree(pdd);
1063		p->pdds[i] = NULL;
1064	}
1065	p->n_pdds = 0;
1066}
1067
1068static void kfd_process_remove_sysfs(struct kfd_process *p)
1069{
1070	struct kfd_process_device *pdd;
1071	int i;
1072
1073	if (!p->kobj)
1074		return;
1075
1076	sysfs_remove_file(p->kobj, &p->attr_pasid);
1077	kobject_del(p->kobj_queues);
1078	kobject_put(p->kobj_queues);
1079	p->kobj_queues = NULL;
1080
1081	for (i = 0; i < p->n_pdds; i++) {
1082		pdd = p->pdds[i];
1083
1084		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1085		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1086
1087		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1088		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1089			sysfs_remove_file(pdd->kobj_stats,
1090					  &pdd->attr_cu_occupancy);
1091		kobject_del(pdd->kobj_stats);
1092		kobject_put(pdd->kobj_stats);
1093		pdd->kobj_stats = NULL;
1094	}
1095
1096	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1097		pdd = p->pdds[i];
1098
1099		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1100		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1101		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1102		kobject_del(pdd->kobj_counters);
1103		kobject_put(pdd->kobj_counters);
1104		pdd->kobj_counters = NULL;
1105	}
1106
1107	kobject_del(p->kobj);
1108	kobject_put(p->kobj);
1109	p->kobj = NULL;
1110}
1111
1112/* No process locking is needed in this function, because the process
1113 * is not findable any more. We must assume that no other thread is
1114 * using it any more, otherwise we couldn't safely free the process
1115 * structure in the end.
1116 */
1117static void kfd_process_wq_release(struct work_struct *work)
1118{
1119	struct kfd_process *p = container_of(work, struct kfd_process,
1120					     release_work);
1121	struct dma_fence *ef;
1122
1123	kfd_process_dequeue_from_all_devices(p);
1124	pqm_uninit(&p->pqm);
1125
1126	/* Signal the eviction fence after user mode queues are
1127	 * destroyed. This allows any BOs to be freed without
1128	 * triggering pointless evictions or waiting for fences.
1129	 */
1130	synchronize_rcu();
1131	ef = rcu_access_pointer(p->ef);
1132	dma_fence_signal(ef);
1133
1134	kfd_process_remove_sysfs(p);
1135
1136	kfd_process_kunmap_signal_bo(p);
1137	kfd_process_free_outstanding_kfd_bos(p);
1138	svm_range_list_fini(p);
1139
1140	kfd_process_destroy_pdds(p);
1141	dma_fence_put(ef);
1142
1143	kfd_event_free_process(p);
1144
1145	kfd_pasid_free(p->pasid);
 
 
1146	mutex_destroy(&p->mutex);
1147
1148	put_task_struct(p->lead_thread);
1149
1150	kfree(p);
1151}
1152
1153static void kfd_process_ref_release(struct kref *ref)
1154{
1155	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1156
1157	INIT_WORK(&p->release_work, kfd_process_wq_release);
1158	queue_work(kfd_process_wq, &p->release_work);
1159}
1160
1161static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1162{
1163	int idx = srcu_read_lock(&kfd_processes_srcu);
1164	struct kfd_process *p = find_process_by_mm(mm);
1165
1166	srcu_read_unlock(&kfd_processes_srcu, idx);
1167
1168	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1169}
1170
1171static void kfd_process_free_notifier(struct mmu_notifier *mn)
1172{
1173	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1174}
1175
1176static void kfd_process_notifier_release_internal(struct kfd_process *p)
1177{
1178	int i;
1179
1180	cancel_delayed_work_sync(&p->eviction_work);
1181	cancel_delayed_work_sync(&p->restore_work);
1182
1183	for (i = 0; i < p->n_pdds; i++) {
1184		struct kfd_process_device *pdd = p->pdds[i];
1185
1186		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1187		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1188			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1189	}
1190
1191	/* Indicate to other users that MM is no longer valid */
1192	p->mm = NULL;
1193	kfd_dbg_trap_disable(p);
1194
1195	if (atomic_read(&p->debugged_process_count) > 0) {
1196		struct kfd_process *target;
1197		unsigned int temp;
1198		int idx = srcu_read_lock(&kfd_processes_srcu);
1199
1200		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1201			if (target->debugger_process && target->debugger_process == p) {
1202				mutex_lock_nested(&target->mutex, 1);
1203				kfd_dbg_trap_disable(target);
1204				mutex_unlock(&target->mutex);
1205				if (atomic_read(&p->debugged_process_count) == 0)
1206					break;
1207			}
1208		}
1209
1210		srcu_read_unlock(&kfd_processes_srcu, idx);
1211	}
1212
1213	mmu_notifier_put(&p->mmu_notifier);
1214}
1215
1216static void kfd_process_notifier_release(struct mmu_notifier *mn,
1217					struct mm_struct *mm)
1218{
1219	struct kfd_process *p;
 
1220
1221	/*
1222	 * The kfd_process structure can not be free because the
1223	 * mmu_notifier srcu is read locked
1224	 */
1225	p = container_of(mn, struct kfd_process, mmu_notifier);
1226	if (WARN_ON(p->mm != mm))
1227		return;
1228
1229	mutex_lock(&kfd_processes_mutex);
1230	/*
1231	 * Do early return if table is empty.
1232	 *
1233	 * This could potentially happen if this function is called concurrently
1234	 * by mmu_notifier and by kfd_cleanup_pocesses.
1235	 *
1236	 */
1237	if (hash_empty(kfd_processes_table)) {
1238		mutex_unlock(&kfd_processes_mutex);
1239		return;
1240	}
1241	hash_del_rcu(&p->kfd_processes);
1242	mutex_unlock(&kfd_processes_mutex);
1243	synchronize_srcu(&kfd_processes_srcu);
1244
1245	kfd_process_notifier_release_internal(p);
1246}
1247
1248static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1249	.release = kfd_process_notifier_release,
1250	.alloc_notifier = kfd_process_alloc_notifier,
1251	.free_notifier = kfd_process_free_notifier,
1252};
1253
1254/*
1255 * This code handles the case when driver is being unloaded before all
1256 * mm_struct are released.  We need to safely free the kfd_process and
1257 * avoid race conditions with mmu_notifier that might try to free them.
1258 *
1259 */
1260void kfd_cleanup_processes(void)
1261{
1262	struct kfd_process *p;
1263	struct hlist_node *p_temp;
1264	unsigned int temp;
1265	HLIST_HEAD(cleanup_list);
1266
1267	/*
1268	 * Move all remaining kfd_process from the process table to a
1269	 * temp list for processing.   Once done, callback from mmu_notifier
1270	 * release will not see the kfd_process in the table and do early return,
1271	 * avoiding double free issues.
1272	 */
1273	mutex_lock(&kfd_processes_mutex);
1274	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1275		hash_del_rcu(&p->kfd_processes);
1276		synchronize_srcu(&kfd_processes_srcu);
1277		hlist_add_head(&p->kfd_processes, &cleanup_list);
 
 
 
 
1278	}
1279	mutex_unlock(&kfd_processes_mutex);
1280
1281	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1282		kfd_process_notifier_release_internal(p);
1283
1284	/*
1285	 * Ensures that all outstanding free_notifier get called, triggering
1286	 * the release of the kfd_process struct.
1287	 */
1288	mmu_notifier_synchronize();
 
 
1289}
1290
1291int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
 
 
 
 
1292{
1293	unsigned long  offset;
1294	int i;
1295
1296	if (p->has_cwsr)
1297		return 0;
1298
1299	for (i = 0; i < p->n_pdds; i++) {
1300		struct kfd_node *dev = p->pdds[i]->dev;
1301		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1302
1303		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1304			continue;
1305
1306		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1307		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1308			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1309			MAP_SHARED, offset);
1310
1311		if (IS_ERR_VALUE(qpd->tba_addr)) {
1312			int err = qpd->tba_addr;
1313
1314			pr_err("Failure to set tba address. error %d.\n", err);
1315			qpd->tba_addr = 0;
1316			qpd->cwsr_kaddr = NULL;
1317			return err;
1318		}
1319
1320		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1321
1322		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1323
1324		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1325		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1326			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1327	}
1328
1329	p->has_cwsr = true;
1330
1331	return 0;
1332}
1333
1334static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1335{
1336	struct kfd_node *dev = pdd->dev;
1337	struct qcm_process_device *qpd = &pdd->qpd;
1338	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1339			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1340			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1341	struct kgd_mem *mem;
1342	void *kaddr;
1343	int ret;
1344
1345	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1346		return 0;
1347
1348	/* cwsr_base is only set for dGPU */
1349	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1350				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1351	if (ret)
1352		return ret;
1353
1354	qpd->cwsr_mem = mem;
1355	qpd->cwsr_kaddr = kaddr;
1356	qpd->tba_addr = qpd->cwsr_base;
1357
1358	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1359
1360	kfd_process_set_trap_debug_flag(&pdd->qpd,
1361					pdd->process->debug_trap_enabled);
1362
1363	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1364	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1365		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1366
1367	return 0;
1368}
1369
1370static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1371{
1372	struct kfd_node *dev = pdd->dev;
1373	struct qcm_process_device *qpd = &pdd->qpd;
1374
1375	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1376		return;
1377
1378	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1379}
1380
1381void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1382				  uint64_t tba_addr,
1383				  uint64_t tma_addr)
1384{
1385	if (qpd->cwsr_kaddr) {
1386		/* KFD trap handler is bound, record as second-level TBA/TMA
1387		 * in first-level TMA. First-level trap will jump to second.
1388		 */
1389		uint64_t *tma =
1390			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1391		tma[0] = tba_addr;
1392		tma[1] = tma_addr;
1393	} else {
1394		/* No trap handler bound, bind as first-level TBA/TMA. */
1395		qpd->tba_addr = tba_addr;
1396		qpd->tma_addr = tma_addr;
1397	}
1398}
1399
1400bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1401{
1402	int i;
1403
1404	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1405	 * boot time retry setting. Mixing processes with different
1406	 * XNACK/retry settings can hang the GPU.
1407	 *
1408	 * Different GPUs can have different noretry settings depending
1409	 * on HW bugs or limitations. We need to find at least one
1410	 * XNACK mode for this process that's compatible with all GPUs.
1411	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1412	 * built for XNACK-off. On GFXv9 it may perform slower.
1413	 *
1414	 * Therefore applications built for XNACK-off can always be
1415	 * supported and will be our fallback if any GPU does not
1416	 * support retry.
1417	 */
1418	for (i = 0; i < p->n_pdds; i++) {
1419		struct kfd_node *dev = p->pdds[i]->dev;
1420
1421		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1422		 * support the SVM APIs and don't need to be considered
1423		 * for the XNACK mode selection.
1424		 */
1425		if (!KFD_IS_SOC15(dev))
1426			continue;
1427		/* Aldebaran can always support XNACK because it can support
1428		 * per-process XNACK mode selection. But let the dev->noretry
1429		 * setting still influence the default XNACK mode.
1430		 */
1431		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1432			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1433				pr_debug("SRIOV platform xnack not supported\n");
1434				return false;
1435			}
1436			continue;
1437		}
1438
1439		/* GFXv10 and later GPUs do not support shader preemption
1440		 * during page faults. This can lead to poor QoS for queue
1441		 * management and memory-manager-related preemptions or
1442		 * even deadlocks.
1443		 */
1444		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1445			return false;
1446
1447		if (dev->kfd->noretry)
1448			return false;
1449	}
1450
1451	return true;
1452}
1453
1454void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1455				     bool enabled)
1456{
1457	if (qpd->cwsr_kaddr) {
1458		uint64_t *tma =
1459			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1460		tma[2] = enabled;
1461	}
1462}
1463
1464/*
1465 * On return the kfd_process is fully operational and will be freed when the
1466 * mm is released
1467 */
1468static struct kfd_process *create_process(const struct task_struct *thread)
1469{
1470	struct kfd_process *process;
1471	struct mmu_notifier *mn;
1472	int err = -ENOMEM;
1473
1474	process = kzalloc(sizeof(*process), GFP_KERNEL);
 
1475	if (!process)
1476		goto err_alloc_process;
1477
 
 
 
 
 
 
 
1478	kref_init(&process->ref);
 
1479	mutex_init(&process->mutex);
 
1480	process->mm = thread->mm;
1481	process->lead_thread = thread->group_leader;
1482	process->n_pdds = 0;
1483	process->queues_paused = false;
1484	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1485	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1486	process->last_restore_timestamp = get_jiffies_64();
1487	err = kfd_event_init_process(process);
1488	if (err)
1489		goto err_event_init;
1490	process->is_32bit_user_mode = in_compat_syscall();
1491	process->debug_trap_enabled = false;
1492	process->debugger_process = NULL;
1493	process->exception_enable_mask = 0;
1494	atomic_set(&process->debugged_process_count, 0);
1495	sema_init(&process->runtime_enable_sema, 0);
1496
1497	process->pasid = kfd_pasid_alloc();
1498	if (process->pasid == 0) {
1499		err = -ENOSPC;
1500		goto err_alloc_pasid;
1501	}
 
 
 
 
1502
1503	err = pqm_init(&process->pqm, process);
1504	if (err != 0)
1505		goto err_process_pqm_init;
1506
1507	/* init process apertures*/
 
1508	err = kfd_init_apertures(process);
1509	if (err != 0)
1510		goto err_init_apertures;
1511
1512	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1513	process->xnack_enabled = kfd_process_xnack_mode(process, false);
 
1514
1515	err = svm_range_list_init(process);
1516	if (err)
1517		goto err_init_svm_range_list;
1518
1519	/* alloc_notifier needs to find the process in the hash table */
1520	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1521			(uintptr_t)process->mm);
1522
1523	/* Avoid free_notifier to start kfd_process_wq_release if
1524	 * mmu_notifier_get failed because of pending signal.
1525	 */
1526	kref_get(&process->ref);
1527
1528	/* MMU notifier registration must be the last call that can fail
1529	 * because after this point we cannot unwind the process creation.
1530	 * After this point, mmu_notifier_put will trigger the cleanup by
1531	 * dropping the last process reference in the free_notifier.
1532	 */
1533	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1534	if (IS_ERR(mn)) {
1535		err = PTR_ERR(mn);
1536		goto err_register_notifier;
1537	}
1538	BUG_ON(mn != &process->mmu_notifier);
1539
1540	kfd_unref_process(process);
1541	get_task_struct(process->lead_thread);
1542
1543	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1544
1545	return process;
1546
1547err_register_notifier:
1548	hash_del_rcu(&process->kfd_processes);
1549	svm_range_list_fini(process);
1550err_init_svm_range_list:
1551	kfd_process_free_outstanding_kfd_bos(process);
1552	kfd_process_destroy_pdds(process);
1553err_init_apertures:
1554	pqm_uninit(&process->pqm);
1555err_process_pqm_init:
 
 
 
 
 
 
 
1556	kfd_pasid_free(process->pasid);
1557err_alloc_pasid:
1558	kfd_event_free_process(process);
1559err_event_init:
1560	mutex_destroy(&process->mutex);
1561	kfree(process);
1562err_alloc_process:
1563	return ERR_PTR(err);
1564}
1565
1566struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1567							struct kfd_process *p)
1568{
1569	int i;
1570
1571	for (i = 0; i < p->n_pdds; i++)
1572		if (p->pdds[i]->dev == dev)
1573			return p->pdds[i];
1574
1575	return NULL;
1576}
1577
1578struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1579							struct kfd_process *p)
1580{
1581	struct kfd_process_device *pdd = NULL;
1582	int retval = 0;
1583
1584	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1585		return NULL;
1586	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1587	if (!pdd)
1588		return NULL;
1589
1590	pdd->dev = dev;
1591	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1592	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1593	pdd->qpd.dqm = dev->dqm;
1594	pdd->qpd.pqm = &p->pqm;
1595	pdd->qpd.evicted = 0;
1596	pdd->qpd.mapped_gws_queue = false;
1597	pdd->process = p;
1598	pdd->bound = PDD_UNBOUND;
1599	pdd->already_dequeued = false;
1600	pdd->runtime_inuse = false;
1601	pdd->vram_usage = 0;
1602	pdd->sdma_past_activity_counter = 0;
1603	pdd->user_gpu_id = dev->id;
1604	atomic64_set(&pdd->evict_duration_counter, 0);
1605
1606	if (dev->kfd->shared_resources.enable_mes) {
1607		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1608						AMDGPU_MES_PROC_CTX_SIZE,
1609						&pdd->proc_ctx_bo,
1610						&pdd->proc_ctx_gpu_addr,
1611						&pdd->proc_ctx_cpu_ptr,
1612						false);
1613		if (retval) {
1614			pr_err("failed to allocate process context bo\n");
1615			goto err_free_pdd;
1616		}
1617		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1618	}
1619
1620	p->pdds[p->n_pdds++] = pdd;
1621	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1622		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1623							pdd->dev->adev,
1624							false,
1625							0);
1626
1627	/* Init idr used for memory handle translation */
1628	idr_init(&pdd->alloc_idr);
1629
1630	return pdd;
1631
1632err_free_pdd:
1633	kfree(pdd);
1634	return NULL;
1635}
1636
1637/**
1638 * kfd_process_device_init_vm - Initialize a VM for a process-device
1639 *
1640 * @pdd: The process-device
1641 * @drm_file: Optional pointer to a DRM file descriptor
1642 *
1643 * If @drm_file is specified, it will be used to acquire the VM from
1644 * that file descriptor. If successful, the @pdd takes ownership of
1645 * the file descriptor.
1646 *
1647 * If @drm_file is NULL, a new VM is created.
1648 *
1649 * Returns 0 on success, -errno on failure.
1650 */
1651int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1652			       struct file *drm_file)
1653{
1654	struct amdgpu_fpriv *drv_priv;
1655	struct amdgpu_vm *avm;
1656	struct kfd_process *p;
1657	struct dma_fence *ef;
1658	struct kfd_node *dev;
1659	int ret;
1660
1661	if (!drm_file)
1662		return -EINVAL;
1663
1664	if (pdd->drm_priv)
1665		return -EBUSY;
1666
1667	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1668	if (ret)
1669		return ret;
1670	avm = &drv_priv->vm;
1671
1672	p = pdd->process;
1673	dev = pdd->dev;
1674
1675	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1676						     &p->kgd_process_info,
1677						     &ef);
 
 
 
 
1678	if (ret) {
1679		pr_err("Failed to create process VM object\n");
1680		return ret;
1681	}
1682	RCU_INIT_POINTER(p->ef, ef);
1683	pdd->drm_priv = drm_file->private_data;
1684
1685	ret = kfd_process_device_reserve_ib_mem(pdd);
1686	if (ret)
1687		goto err_reserve_ib_mem;
1688	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1689	if (ret)
1690		goto err_init_cwsr;
1691
1692	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1693	if (ret)
1694		goto err_set_pasid;
1695
1696	pdd->drm_file = drm_file;
1697
1698	return 0;
1699
1700err_set_pasid:
1701	kfd_process_device_destroy_cwsr_dgpu(pdd);
1702err_init_cwsr:
1703	kfd_process_device_destroy_ib_mem(pdd);
1704err_reserve_ib_mem:
1705	pdd->drm_priv = NULL;
1706	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
 
 
1707
1708	return ret;
1709}
1710
1711/*
1712 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1713 * to the device.
1714 * Unbinding occurs when the process dies or the device is removed.
1715 *
1716 * Assumes that the process lock is held.
1717 */
1718struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1719							struct kfd_process *p)
1720{
1721	struct kfd_process_device *pdd;
1722	int err;
1723
1724	pdd = kfd_get_process_device_data(dev, p);
1725	if (!pdd) {
1726		pr_err("Process device data doesn't exist\n");
1727		return ERR_PTR(-ENOMEM);
1728	}
1729
1730	if (!pdd->drm_priv)
1731		return ERR_PTR(-ENODEV);
1732
1733	/*
1734	 * signal runtime-pm system to auto resume and prevent
1735	 * further runtime suspend once device pdd is created until
1736	 * pdd is destroyed.
1737	 */
1738	if (!pdd->runtime_inuse) {
1739		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1740		if (err < 0) {
1741			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1742			return ERR_PTR(err);
1743		}
1744	}
1745
1746	/*
1747	 * make sure that runtime_usage counter is incremented just once
1748	 * per pdd
1749	 */
1750	pdd->runtime_inuse = true;
1751
1752	return pdd;
1753}
1754
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1755/* Create specific handle mapped to mem from process local memory idr
1756 * Assumes that the process lock is held.
1757 */
1758int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1759					void *mem)
1760{
1761	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1762}
1763
1764/* Translate specific handle from process local memory idr
1765 * Assumes that the process lock is held.
1766 */
1767void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1768					int handle)
1769{
1770	if (handle < 0)
1771		return NULL;
1772
1773	return idr_find(&pdd->alloc_idr, handle);
1774}
1775
1776/* Remove specific handle from process local memory idr
1777 * Assumes that the process lock is held.
1778 */
1779void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1780					int handle)
1781{
1782	if (handle >= 0)
1783		idr_remove(&pdd->alloc_idr, handle);
1784}
1785
1786/* This increments the process->ref counter. */
1787struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1788{
1789	struct kfd_process *p, *ret_p = NULL;
1790	unsigned int temp;
1791
1792	int idx = srcu_read_lock(&kfd_processes_srcu);
1793
1794	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1795		if (p->pasid == pasid) {
1796			kref_get(&p->ref);
1797			ret_p = p;
1798			break;
1799		}
1800	}
1801
1802	srcu_read_unlock(&kfd_processes_srcu, idx);
1803
1804	return ret_p;
1805}
1806
1807/* This increments the process->ref counter. */
1808struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1809{
1810	struct kfd_process *p;
1811
1812	int idx = srcu_read_lock(&kfd_processes_srcu);
1813
1814	p = find_process_by_mm(mm);
1815	if (p)
1816		kref_get(&p->ref);
1817
1818	srcu_read_unlock(&kfd_processes_srcu, idx);
1819
1820	return p;
1821}
1822
1823/* kfd_process_evict_queues - Evict all user queues of a process
1824 *
1825 * Eviction is reference-counted per process-device. This means multiple
1826 * evictions from different sources can be nested safely.
1827 */
1828int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1829{
 
1830	int r = 0;
1831	int i;
1832	unsigned int n_evicted = 0;
1833
1834	for (i = 0; i < p->n_pdds; i++) {
1835		struct kfd_process_device *pdd = p->pdds[i];
1836
1837		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1838					     trigger);
1839
1840		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1841							    &pdd->qpd);
1842		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1843		 * we would like to set all the queues to be in evicted state to prevent
1844		 * them been add back since they actually not be saved right now.
1845		 */
1846		if (r && r != -EIO) {
1847			pr_err("Failed to evict process queues\n");
1848			goto fail;
1849		}
1850		n_evicted++;
1851	}
1852
1853	return r;
1854
1855fail:
1856	/* To keep state consistent, roll back partial eviction by
1857	 * restoring queues
1858	 */
1859	for (i = 0; i < p->n_pdds; i++) {
1860		struct kfd_process_device *pdd = p->pdds[i];
1861
1862		if (n_evicted == 0)
1863			break;
1864
1865		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1866
1867		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1868							      &pdd->qpd))
1869			pr_err("Failed to restore queues\n");
1870
1871		n_evicted--;
1872	}
1873
1874	return r;
1875}
1876
1877/* kfd_process_restore_queues - Restore all user queues of a process */
1878int kfd_process_restore_queues(struct kfd_process *p)
1879{
 
1880	int r, ret = 0;
1881	int i;
1882
1883	for (i = 0; i < p->n_pdds; i++) {
1884		struct kfd_process_device *pdd = p->pdds[i];
1885
1886		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1887
 
1888		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1889							      &pdd->qpd);
1890		if (r) {
1891			pr_err("Failed to restore process queues\n");
1892			if (!ret)
1893				ret = r;
1894		}
1895	}
1896
1897	return ret;
1898}
1899
1900int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1901{
1902	int i;
1903
1904	for (i = 0; i < p->n_pdds; i++)
1905		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1906			return i;
1907	return -EINVAL;
1908}
1909
1910int
1911kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1912			    uint32_t *gpuid, uint32_t *gpuidx)
1913{
1914	int i;
1915
1916	for (i = 0; i < p->n_pdds; i++)
1917		if (p->pdds[i] && p->pdds[i]->dev == node) {
1918			*gpuid = p->pdds[i]->user_gpu_id;
1919			*gpuidx = i;
1920			return 0;
1921		}
1922	return -EINVAL;
1923}
1924
1925static int signal_eviction_fence(struct kfd_process *p)
1926{
1927	struct dma_fence *ef;
1928	int ret;
1929
1930	rcu_read_lock();
1931	ef = dma_fence_get_rcu_safe(&p->ef);
1932	rcu_read_unlock();
1933	if (!ef)
1934		return -EINVAL;
1935
1936	ret = dma_fence_signal(ef);
1937	dma_fence_put(ef);
1938
1939	return ret;
1940}
1941
1942static void evict_process_worker(struct work_struct *work)
1943{
1944	int ret;
1945	struct kfd_process *p;
1946	struct delayed_work *dwork;
1947
1948	dwork = to_delayed_work(work);
1949
1950	/* Process termination destroys this worker thread. So during the
1951	 * lifetime of this thread, kfd_process p will be valid
1952	 */
1953	p = container_of(dwork, struct kfd_process, eviction_work);
 
 
1954
1955	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1956	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
 
 
 
 
 
 
 
 
1957	if (!ret) {
1958		/* If another thread already signaled the eviction fence,
1959		 * they are responsible stopping the queues and scheduling
1960		 * the restore work.
1961		 */
1962		if (signal_eviction_fence(p) ||
1963		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
1964				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
1965			kfd_process_restore_queues(p);
1966
1967		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1968	} else
1969		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1970}
1971
1972static int restore_process_helper(struct kfd_process *p)
1973{
1974	int ret = 0;
1975
1976	/* VMs may not have been acquired yet during debugging. */
1977	if (p->kgd_process_info) {
1978		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1979			p->kgd_process_info, &p->ef);
1980		if (ret)
1981			return ret;
1982	}
1983
1984	ret = kfd_process_restore_queues(p);
1985	if (!ret)
1986		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1987	else
1988		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1989
1990	return ret;
1991}
1992
1993static void restore_process_worker(struct work_struct *work)
1994{
1995	struct delayed_work *dwork;
1996	struct kfd_process *p;
 
1997	int ret = 0;
1998
1999	dwork = to_delayed_work(work);
2000
2001	/* Process termination destroys this worker thread. So during the
2002	 * lifetime of this thread, kfd_process p will be valid
2003	 */
2004	p = container_of(dwork, struct kfd_process, restore_work);
2005	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
 
 
 
 
 
 
 
 
 
 
2006
2007	/* Setting last_restore_timestamp before successful restoration.
2008	 * Otherwise this would have to be set by KGD (restore_process_bos)
2009	 * before KFD BOs are unreserved. If not, the process can be evicted
2010	 * again before the timestamp is set.
2011	 * If restore fails, the timestamp will be set again in the next
2012	 * attempt. This would mean that the minimum GPU quanta would be
2013	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2014	 * functions)
2015	 */
2016
2017	p->last_restore_timestamp = get_jiffies_64();
2018
2019	ret = restore_process_helper(p);
2020	if (ret) {
2021		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2022			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2023		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2024				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2025			kfd_process_restore_queues(p);
 
2026	}
 
 
 
 
 
 
2027}
2028
2029void kfd_suspend_all_processes(void)
2030{
2031	struct kfd_process *p;
2032	unsigned int temp;
2033	int idx = srcu_read_lock(&kfd_processes_srcu);
2034
2035	WARN(debug_evictions, "Evicting all processes");
2036	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2037		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2038			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2039		signal_eviction_fence(p);
 
 
 
 
 
2040	}
2041	srcu_read_unlock(&kfd_processes_srcu, idx);
2042}
2043
2044int kfd_resume_all_processes(void)
2045{
2046	struct kfd_process *p;
2047	unsigned int temp;
2048	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2049
2050	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2051		if (restore_process_helper(p)) {
2052			pr_err("Restore process %d failed during resume\n",
2053			       p->pasid);
2054			ret = -EFAULT;
2055		}
2056	}
2057	srcu_read_unlock(&kfd_processes_srcu, idx);
2058	return ret;
2059}
2060
2061int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2062			  struct vm_area_struct *vma)
2063{
 
2064	struct kfd_process_device *pdd;
2065	struct qcm_process_device *qpd;
2066
 
 
2067	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2068		pr_err("Incorrect CWSR mapping size.\n");
2069		return -EINVAL;
2070	}
2071
2072	pdd = kfd_get_process_device_data(dev, process);
2073	if (!pdd)
2074		return -EINVAL;
2075	qpd = &pdd->qpd;
2076
2077	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2078					get_order(KFD_CWSR_TBA_TMA_SIZE));
2079	if (!qpd->cwsr_kaddr) {
2080		pr_err("Error allocating per process CWSR buffer.\n");
2081		return -ENOMEM;
2082	}
2083
2084	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2085		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2086	/* Mapping pages to user process */
2087	return remap_pfn_range(vma, vma->vm_start,
2088			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2089			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2090}
2091
2092/* assumes caller holds process lock. */
2093int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2094{
2095	uint32_t irq_drain_fence[8];
2096	uint8_t node_id = 0;
2097	int r = 0;
2098
2099	if (!KFD_IS_SOC15(pdd->dev))
2100		return 0;
2101
2102	pdd->process->irq_drain_is_open = true;
2103
2104	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2105	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2106							KFD_IRQ_FENCE_CLIENTID;
2107	irq_drain_fence[3] = pdd->process->pasid;
2108
2109	/*
2110	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2111	 */
2112	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2113		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2114		irq_drain_fence[3] |= node_id << 16;
2115	}
2116
2117	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2118	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2119						     irq_drain_fence)) {
2120		pdd->process->irq_drain_is_open = false;
2121		return 0;
2122	}
2123
2124	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2125				     !READ_ONCE(pdd->process->irq_drain_is_open));
2126	if (r)
2127		pdd->process->irq_drain_is_open = false;
2128
2129	return r;
2130}
2131
2132void kfd_process_close_interrupt_drain(unsigned int pasid)
2133{
2134	struct kfd_process *p;
2135
2136	p = kfd_lookup_process_by_pasid(pasid);
2137
2138	if (!p)
2139		return;
2140
2141	WRITE_ONCE(p->irq_drain_is_open, false);
2142	wake_up_all(&p->wait_irq_drain);
2143	kfd_unref_process(p);
2144}
2145
2146struct send_exception_work_handler_workarea {
2147	struct work_struct work;
2148	struct kfd_process *p;
2149	unsigned int queue_id;
2150	uint64_t error_reason;
2151};
2152
2153static void send_exception_work_handler(struct work_struct *work)
2154{
2155	struct send_exception_work_handler_workarea *workarea;
2156	struct kfd_process *p;
2157	struct queue *q;
2158	struct mm_struct *mm;
2159	struct kfd_context_save_area_header __user *csa_header;
2160	uint64_t __user *err_payload_ptr;
2161	uint64_t cur_err;
2162	uint32_t ev_id;
2163
2164	workarea = container_of(work,
2165				struct send_exception_work_handler_workarea,
2166				work);
2167	p = workarea->p;
2168
2169	mm = get_task_mm(p->lead_thread);
2170
2171	if (!mm)
2172		return;
2173
2174	kthread_use_mm(mm);
2175
2176	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2177
2178	if (!q)
2179		goto out;
2180
2181	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2182
2183	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2184	get_user(cur_err, err_payload_ptr);
2185	cur_err |= workarea->error_reason;
2186	put_user(cur_err, err_payload_ptr);
2187	get_user(ev_id, &csa_header->err_event_id);
2188
2189	kfd_set_event(p, ev_id);
2190
2191out:
2192	kthread_unuse_mm(mm);
2193	mmput(mm);
2194}
2195
2196int kfd_send_exception_to_runtime(struct kfd_process *p,
2197			unsigned int queue_id,
2198			uint64_t error_reason)
2199{
2200	struct send_exception_work_handler_workarea worker;
2201
2202	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2203
2204	worker.p = p;
2205	worker.queue_id = queue_id;
2206	worker.error_reason = error_reason;
2207
2208	schedule_work(&worker.work);
2209	flush_work(&worker.work);
2210	destroy_work_on_stack(&worker.work);
2211
2212	return 0;
2213}
2214
2215struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2216{
2217	int i;
2218
2219	if (gpu_id) {
2220		for (i = 0; i < p->n_pdds; i++) {
2221			struct kfd_process_device *pdd = p->pdds[i];
2222
2223			if (pdd->user_gpu_id == gpu_id)
2224				return pdd;
2225		}
2226	}
2227	return NULL;
2228}
2229
2230int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2231{
2232	int i;
2233
2234	if (!actual_gpu_id)
2235		return 0;
2236
2237	for (i = 0; i < p->n_pdds; i++) {
2238		struct kfd_process_device *pdd = p->pdds[i];
2239
2240		if (pdd->dev->id == actual_gpu_id)
2241			return pdd->user_gpu_id;
2242	}
2243	return -EINVAL;
2244}
2245
2246#if defined(CONFIG_DEBUG_FS)
2247
2248int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2249{
2250	struct kfd_process *p;
2251	unsigned int temp;
2252	int r = 0;
2253
2254	int idx = srcu_read_lock(&kfd_processes_srcu);
2255
2256	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2257		seq_printf(m, "Process %d PASID 0x%x:\n",
2258			   p->lead_thread->tgid, p->pasid);
2259
2260		mutex_lock(&p->mutex);
2261		r = pqm_debugfs_mqds(m, &p->pqm);
2262		mutex_unlock(&p->mutex);
2263
2264		if (r)
2265			break;
2266	}
2267
2268	srcu_read_unlock(&kfd_processes_srcu, idx);
2269
2270	return r;
2271}
2272
2273#endif
v4.17
 
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/mutex.h>
  24#include <linux/log2.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/task.h>
 
  28#include <linux/slab.h>
  29#include <linux/amd-iommu.h>
  30#include <linux/notifier.h>
  31#include <linux/compat.h>
  32#include <linux/mman.h>
  33#include <linux/file.h>
 
 
 
  34
  35struct mm_struct;
  36
  37#include "kfd_priv.h"
  38#include "kfd_device_queue_manager.h"
  39#include "kfd_dbgmgr.h"
  40#include "kfd_iommu.h"
 
  41
  42/*
  43 * List of struct kfd_process (field kfd_process).
  44 * Unique/indexed by mm_struct*
  45 */
  46DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  47static DEFINE_MUTEX(kfd_processes_mutex);
  48
  49DEFINE_SRCU(kfd_processes_srcu);
  50
  51/* For process termination handling */
  52static struct workqueue_struct *kfd_process_wq;
  53
  54/* Ordered, single-threaded workqueue for restoring evicted
  55 * processes. Restoring multiple processes concurrently under memory
  56 * pressure can lead to processes blocking each other from validating
  57 * their BOs and result in a live-lock situation where processes
  58 * remain evicted indefinitely.
  59 */
  60static struct workqueue_struct *kfd_restore_wq;
  61
  62static struct kfd_process *find_process(const struct task_struct *thread);
 
  63static void kfd_process_ref_release(struct kref *ref);
  64static struct kfd_process *create_process(const struct task_struct *thread,
  65					struct file *filep);
  66
  67static void evict_process_worker(struct work_struct *work);
  68static void restore_process_worker(struct work_struct *work);
  69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70
  71int kfd_process_create_wq(void)
  72{
  73	if (!kfd_process_wq)
  74		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
  75	if (!kfd_restore_wq)
  76		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
 
  77
  78	if (!kfd_process_wq || !kfd_restore_wq) {
  79		kfd_process_destroy_wq();
  80		return -ENOMEM;
  81	}
  82
  83	return 0;
  84}
  85
  86void kfd_process_destroy_wq(void)
  87{
  88	if (kfd_process_wq) {
  89		destroy_workqueue(kfd_process_wq);
  90		kfd_process_wq = NULL;
  91	}
  92	if (kfd_restore_wq) {
  93		destroy_workqueue(kfd_restore_wq);
  94		kfd_restore_wq = NULL;
  95	}
  96}
  97
  98static void kfd_process_free_gpuvm(struct kgd_mem *mem,
  99			struct kfd_process_device *pdd)
 100{
 101	struct kfd_dev *dev = pdd->dev;
 102
 103	dev->kfd2kgd->unmap_memory_to_gpu(dev->kgd, mem, pdd->vm);
 104	dev->kfd2kgd->free_memory_of_gpu(dev->kgd, mem);
 
 
 
 
 
 
 105}
 106
 107/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 108 *	This function should be only called right after the process
 109 *	is created and when kfd_processes_mutex is still being held
 110 *	to avoid concurrency. Because of that exclusiveness, we do
 111 *	not need to take p->mutex.
 112 */
 113static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 114				   uint64_t gpu_va, uint32_t size,
 115				   uint32_t flags, void **kptr)
 116{
 117	struct kfd_dev *kdev = pdd->dev;
 118	struct kgd_mem *mem = NULL;
 119	int handle;
 120	int err;
 121
 122	err = kdev->kfd2kgd->alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
 123						 pdd->vm, &mem, NULL, flags);
 
 124	if (err)
 125		goto err_alloc_mem;
 126
 127	err = kdev->kfd2kgd->map_memory_to_gpu(kdev->kgd, mem, pdd->vm);
 
 128	if (err)
 129		goto err_map_mem;
 130
 131	err = kdev->kfd2kgd->sync_memory(kdev->kgd, mem, true);
 132	if (err) {
 133		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 134		goto sync_memory_failed;
 135	}
 136
 137	/* Create an obj handle so kfd_process_device_remove_obj_handle
 138	 * will take care of the bo removal when the process finishes.
 139	 * We do not need to take p->mutex, because the process is just
 140	 * created and the ioctls have not had the chance to run.
 141	 */
 142	handle = kfd_process_device_create_obj_handle(pdd, mem);
 143
 144	if (handle < 0) {
 145		err = handle;
 146		goto free_gpuvm;
 147	}
 148
 149	if (kptr) {
 150		err = kdev->kfd2kgd->map_gtt_bo_to_kernel(kdev->kgd,
 151				(struct kgd_mem *)mem, kptr, NULL);
 152		if (err) {
 153			pr_debug("Map GTT BO to kernel failed\n");
 154			goto free_obj_handle;
 155		}
 156	}
 157
 158	return err;
 159
 160free_obj_handle:
 161	kfd_process_device_remove_obj_handle(pdd, handle);
 162free_gpuvm:
 163sync_memory_failed:
 164	kfd_process_free_gpuvm(mem, pdd);
 165	return err;
 166
 167err_map_mem:
 168	kdev->kfd2kgd->free_memory_of_gpu(kdev->kgd, mem);
 
 169err_alloc_mem:
 
 170	*kptr = NULL;
 171	return err;
 172}
 173
 174/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 175 *	process for IB usage The memory reserved is for KFD to submit
 176 *	IB to AMDGPU from kernel.  If the memory is reserved
 177 *	successfully, ib_kaddr will have the CPU/kernel
 178 *	address. Check ib_kaddr before accessing the memory.
 179 */
 180static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 181{
 182	struct qcm_process_device *qpd = &pdd->qpd;
 183	uint32_t flags = ALLOC_MEM_FLAGS_GTT |
 184			 ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 185			 ALLOC_MEM_FLAGS_WRITABLE |
 186			 ALLOC_MEM_FLAGS_EXECUTABLE;
 
 187	void *kaddr;
 188	int ret;
 189
 190	if (qpd->ib_kaddr || !qpd->ib_base)
 191		return 0;
 192
 193	/* ib_base is only set for dGPU */
 194	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 195				      &kaddr);
 196	if (ret)
 197		return ret;
 198
 
 199	qpd->ib_kaddr = kaddr;
 200
 201	return 0;
 202}
 203
 204struct kfd_process *kfd_create_process(struct file *filep)
 
 
 
 
 
 
 
 
 
 
 205{
 206	struct kfd_process *process;
 207	struct task_struct *thread = current;
 208
 209	if (!thread->mm)
 210		return ERR_PTR(-EINVAL);
 211
 212	/* Only the pthreads threading model is supported. */
 213	if (thread->group_leader->mm != thread->mm)
 
 214		return ERR_PTR(-EINVAL);
 
 215
 216	/*
 217	 * take kfd processes mutex before starting of process creation
 218	 * so there won't be a case where two threads of the same process
 219	 * create two kfd_process structures
 220	 */
 221	mutex_lock(&kfd_processes_mutex);
 222
 
 
 
 
 
 
 223	/* A prior open of /dev/kfd could have already created the process. */
 224	process = find_process(thread);
 225	if (process)
 226		pr_debug("Process already found\n");
 227	else
 228		process = create_process(thread, filep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 230	mutex_unlock(&kfd_processes_mutex);
 
 231
 232	return process;
 233}
 234
 235struct kfd_process *kfd_get_process(const struct task_struct *thread)
 236{
 237	struct kfd_process *process;
 238
 239	if (!thread->mm)
 240		return ERR_PTR(-EINVAL);
 241
 242	/* Only the pthreads threading model is supported. */
 243	if (thread->group_leader->mm != thread->mm)
 244		return ERR_PTR(-EINVAL);
 245
 246	process = find_process(thread);
 
 
 247
 248	return process;
 249}
 250
 251static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 252{
 253	struct kfd_process *process;
 254
 255	hash_for_each_possible_rcu(kfd_processes_table, process,
 256					kfd_processes, (uintptr_t)mm)
 257		if (process->mm == mm)
 258			return process;
 259
 260	return NULL;
 261}
 262
 263static struct kfd_process *find_process(const struct task_struct *thread)
 
 264{
 265	struct kfd_process *p;
 266	int idx;
 267
 268	idx = srcu_read_lock(&kfd_processes_srcu);
 269	p = find_process_by_mm(thread->mm);
 
 
 270	srcu_read_unlock(&kfd_processes_srcu, idx);
 271
 272	return p;
 273}
 274
 275void kfd_unref_process(struct kfd_process *p)
 276{
 277	kref_put(&p->ref, kfd_process_ref_release);
 278}
 279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 280static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 281{
 282	struct kfd_process *p = pdd->process;
 283	void *mem;
 284	int id;
 
 285
 286	/*
 287	 * Remove all handles from idr and release appropriate
 288	 * local memory object
 289	 */
 290	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 291		struct kfd_process_device *peer_pdd;
 292
 293		list_for_each_entry(peer_pdd, &p->per_device_data,
 294				    per_device_list) {
 295			if (!peer_pdd->vm)
 
 296				continue;
 297			peer_pdd->dev->kfd2kgd->unmap_memory_to_gpu(
 298				peer_pdd->dev->kgd, mem, peer_pdd->vm);
 299		}
 300
 301		pdd->dev->kfd2kgd->free_memory_of_gpu(pdd->dev->kgd, mem);
 
 302		kfd_process_device_remove_obj_handle(pdd, id);
 303	}
 304}
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
 307{
 308	struct kfd_process_device *pdd;
 309
 310	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
 311		kfd_process_device_free_bos(pdd);
 312}
 313
 314static void kfd_process_destroy_pdds(struct kfd_process *p)
 315{
 316	struct kfd_process_device *pdd, *temp;
 317
 318	list_for_each_entry_safe(pdd, temp, &p->per_device_data,
 319				 per_device_list) {
 320		pr_debug("Releasing pdd (topology id %d) for process (pasid %d)\n",
 
 321				pdd->dev->id, p->pasid);
 322
 323		if (pdd->drm_file)
 
 
 
 
 
 324			fput(pdd->drm_file);
 325		else if (pdd->vm)
 326			pdd->dev->kfd2kgd->destroy_process_vm(
 327				pdd->dev->kgd, pdd->vm);
 328
 329		list_del(&pdd->per_device_list);
 330
 331		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
 332			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
 333				get_order(KFD_CWSR_TBA_TMA_SIZE));
 334
 335		idr_destroy(&pdd->alloc_idr);
 336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 337		kfree(pdd);
 
 338	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 339}
 340
 341/* No process locking is needed in this function, because the process
 342 * is not findable any more. We must assume that no other thread is
 343 * using it any more, otherwise we couldn't safely free the process
 344 * structure in the end.
 345 */
 346static void kfd_process_wq_release(struct work_struct *work)
 347{
 348	struct kfd_process *p = container_of(work, struct kfd_process,
 349					     release_work);
 
 350
 351	kfd_iommu_unbind_process(p);
 
 352
 
 
 
 
 
 
 
 
 
 
 
 353	kfd_process_free_outstanding_kfd_bos(p);
 
 354
 355	kfd_process_destroy_pdds(p);
 356	dma_fence_put(p->ef);
 357
 358	kfd_event_free_process(p);
 359
 360	kfd_pasid_free(p->pasid);
 361	kfd_free_process_doorbells(p);
 362
 363	mutex_destroy(&p->mutex);
 364
 365	put_task_struct(p->lead_thread);
 366
 367	kfree(p);
 368}
 369
 370static void kfd_process_ref_release(struct kref *ref)
 371{
 372	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
 373
 374	INIT_WORK(&p->release_work, kfd_process_wq_release);
 375	queue_work(kfd_process_wq, &p->release_work);
 376}
 377
 378static void kfd_process_destroy_delayed(struct rcu_head *rcu)
 379{
 380	struct kfd_process *p = container_of(rcu, struct kfd_process, rcu);
 
 
 
 
 
 
 381
 382	kfd_unref_process(p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383}
 384
 385static void kfd_process_notifier_release(struct mmu_notifier *mn,
 386					struct mm_struct *mm)
 387{
 388	struct kfd_process *p;
 389	struct kfd_process_device *pdd = NULL;
 390
 391	/*
 392	 * The kfd_process structure can not be free because the
 393	 * mmu_notifier srcu is read locked
 394	 */
 395	p = container_of(mn, struct kfd_process, mmu_notifier);
 396	if (WARN_ON(p->mm != mm))
 397		return;
 398
 399	mutex_lock(&kfd_processes_mutex);
 
 
 
 
 
 
 
 
 
 
 
 400	hash_del_rcu(&p->kfd_processes);
 401	mutex_unlock(&kfd_processes_mutex);
 402	synchronize_srcu(&kfd_processes_srcu);
 403
 404	cancel_delayed_work_sync(&p->eviction_work);
 405	cancel_delayed_work_sync(&p->restore_work);
 
 
 
 
 
 
 406
 407	mutex_lock(&p->mutex);
 
 
 
 
 
 
 
 
 
 
 
 408
 409	/* Iterate over all process device data structures and if the
 410	 * pdd is in debug mode, we should first force unregistration,
 411	 * then we will be able to destroy the queues
 412	 */
 413	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 414		struct kfd_dev *dev = pdd->dev;
 415
 416		mutex_lock(kfd_get_dbgmgr_mutex());
 417		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
 418			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
 419				kfd_dbgmgr_destroy(dev->dbgmgr);
 420				dev->dbgmgr = NULL;
 421			}
 422		}
 423		mutex_unlock(kfd_get_dbgmgr_mutex());
 424	}
 
 425
 426	kfd_process_dequeue_from_all_devices(p);
 427	pqm_uninit(&p->pqm);
 428
 429	/* Indicate to other users that MM is no longer valid */
 430	p->mm = NULL;
 431
 432	mutex_unlock(&p->mutex);
 433
 434	mmu_notifier_unregister_no_release(&p->mmu_notifier, mm);
 435	mmu_notifier_call_srcu(&p->rcu, &kfd_process_destroy_delayed);
 436}
 437
 438static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
 439	.release = kfd_process_notifier_release,
 440};
 441
 442static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
 443{
 444	unsigned long  offset;
 445	struct kfd_process_device *pdd;
 
 
 
 446
 447	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 448		struct kfd_dev *dev = pdd->dev;
 449		struct qcm_process_device *qpd = &pdd->qpd;
 450
 451		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
 452			continue;
 453
 454		offset = (dev->id | KFD_MMAP_RESERVED_MEM_MASK) << PAGE_SHIFT;
 455		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
 456			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
 457			MAP_SHARED, offset);
 458
 459		if (IS_ERR_VALUE(qpd->tba_addr)) {
 460			int err = qpd->tba_addr;
 461
 462			pr_err("Failure to set tba address. error %d.\n", err);
 463			qpd->tba_addr = 0;
 464			qpd->cwsr_kaddr = NULL;
 465			return err;
 466		}
 467
 468		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
 
 
 469
 470		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
 471		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
 472			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
 473	}
 474
 
 
 475	return 0;
 476}
 477
 478static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
 479{
 480	struct kfd_dev *dev = pdd->dev;
 481	struct qcm_process_device *qpd = &pdd->qpd;
 482	uint32_t flags = ALLOC_MEM_FLAGS_GTT |
 483		ALLOC_MEM_FLAGS_NO_SUBSTITUTE | ALLOC_MEM_FLAGS_EXECUTABLE;
 
 
 484	void *kaddr;
 485	int ret;
 486
 487	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
 488		return 0;
 489
 490	/* cwsr_base is only set for dGPU */
 491	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
 492				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
 493	if (ret)
 494		return ret;
 495
 
 496	qpd->cwsr_kaddr = kaddr;
 497	qpd->tba_addr = qpd->cwsr_base;
 498
 499	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
 
 
 
 500
 501	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
 502	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
 503		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
 504
 505	return 0;
 506}
 507
 508static struct kfd_process *create_process(const struct task_struct *thread,
 509					struct file *filep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 510{
 511	struct kfd_process *process;
 
 512	int err = -ENOMEM;
 513
 514	process = kzalloc(sizeof(*process), GFP_KERNEL);
 515
 516	if (!process)
 517		goto err_alloc_process;
 518
 519	process->pasid = kfd_pasid_alloc();
 520	if (process->pasid == 0)
 521		goto err_alloc_pasid;
 522
 523	if (kfd_alloc_process_doorbells(process) < 0)
 524		goto err_alloc_doorbells;
 525
 526	kref_init(&process->ref);
 527
 528	mutex_init(&process->mutex);
 529
 530	process->mm = thread->mm;
 531
 532	/* register notifier */
 533	process->mmu_notifier.ops = &kfd_process_mmu_notifier_ops;
 534	err = mmu_notifier_register(&process->mmu_notifier, process->mm);
 
 
 
 535	if (err)
 536		goto err_mmu_notifier;
 
 
 
 
 
 
 537
 538	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
 539			(uintptr_t)process->mm);
 540
 541	process->lead_thread = thread->group_leader;
 542	get_task_struct(process->lead_thread);
 543
 544	INIT_LIST_HEAD(&process->per_device_data);
 545
 546	kfd_event_init_process(process);
 547
 548	err = pqm_init(&process->pqm, process);
 549	if (err != 0)
 550		goto err_process_pqm_init;
 551
 552	/* init process apertures*/
 553	process->is_32bit_user_mode = in_compat_syscall();
 554	err = kfd_init_apertures(process);
 555	if (err != 0)
 556		goto err_init_apertures;
 557
 558	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
 559	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
 560	process->last_restore_timestamp = get_jiffies_64();
 561
 562	err = kfd_process_init_cwsr_apu(process, filep);
 563	if (err)
 564		goto err_init_cwsr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 565
 566	return process;
 567
 568err_init_cwsr:
 
 
 
 569	kfd_process_free_outstanding_kfd_bos(process);
 570	kfd_process_destroy_pdds(process);
 571err_init_apertures:
 572	pqm_uninit(&process->pqm);
 573err_process_pqm_init:
 574	hash_del_rcu(&process->kfd_processes);
 575	synchronize_rcu();
 576	mmu_notifier_unregister_no_release(&process->mmu_notifier, process->mm);
 577err_mmu_notifier:
 578	mutex_destroy(&process->mutex);
 579	kfd_free_process_doorbells(process);
 580err_alloc_doorbells:
 581	kfd_pasid_free(process->pasid);
 582err_alloc_pasid:
 
 
 
 583	kfree(process);
 584err_alloc_process:
 585	return ERR_PTR(err);
 586}
 587
 588struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
 589							struct kfd_process *p)
 590{
 591	struct kfd_process_device *pdd = NULL;
 592
 593	list_for_each_entry(pdd, &p->per_device_data, per_device_list)
 594		if (pdd->dev == dev)
 595			return pdd;
 596
 597	return NULL;
 598}
 599
 600struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
 601							struct kfd_process *p)
 602{
 603	struct kfd_process_device *pdd = NULL;
 
 604
 
 
 605	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
 606	if (!pdd)
 607		return NULL;
 608
 609	pdd->dev = dev;
 610	INIT_LIST_HEAD(&pdd->qpd.queues_list);
 611	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
 612	pdd->qpd.dqm = dev->dqm;
 613	pdd->qpd.pqm = &p->pqm;
 614	pdd->qpd.evicted = 0;
 
 615	pdd->process = p;
 616	pdd->bound = PDD_UNBOUND;
 617	pdd->already_dequeued = false;
 618	list_add(&pdd->per_device_list, &p->per_device_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619
 620	/* Init idr used for memory handle translation */
 621	idr_init(&pdd->alloc_idr);
 622
 623	return pdd;
 
 
 
 
 624}
 625
 626/**
 627 * kfd_process_device_init_vm - Initialize a VM for a process-device
 628 *
 629 * @pdd: The process-device
 630 * @drm_file: Optional pointer to a DRM file descriptor
 631 *
 632 * If @drm_file is specified, it will be used to acquire the VM from
 633 * that file descriptor. If successful, the @pdd takes ownership of
 634 * the file descriptor.
 635 *
 636 * If @drm_file is NULL, a new VM is created.
 637 *
 638 * Returns 0 on success, -errno on failure.
 639 */
 640int kfd_process_device_init_vm(struct kfd_process_device *pdd,
 641			       struct file *drm_file)
 642{
 
 
 643	struct kfd_process *p;
 644	struct kfd_dev *dev;
 
 645	int ret;
 646
 647	if (pdd->vm)
 648		return drm_file ? -EBUSY : 0;
 
 
 
 
 
 
 
 
 649
 650	p = pdd->process;
 651	dev = pdd->dev;
 652
 653	if (drm_file)
 654		ret = dev->kfd2kgd->acquire_process_vm(
 655			dev->kgd, drm_file,
 656			&pdd->vm, &p->kgd_process_info, &p->ef);
 657	else
 658		ret = dev->kfd2kgd->create_process_vm(
 659			dev->kgd, &pdd->vm, &p->kgd_process_info, &p->ef);
 660	if (ret) {
 661		pr_err("Failed to create process VM object\n");
 662		return ret;
 663	}
 
 
 664
 665	ret = kfd_process_device_reserve_ib_mem(pdd);
 666	if (ret)
 667		goto err_reserve_ib_mem;
 668	ret = kfd_process_device_init_cwsr_dgpu(pdd);
 669	if (ret)
 670		goto err_init_cwsr;
 671
 
 
 
 
 672	pdd->drm_file = drm_file;
 673
 674	return 0;
 675
 
 
 676err_init_cwsr:
 
 677err_reserve_ib_mem:
 678	kfd_process_device_free_bos(pdd);
 679	if (!drm_file)
 680		dev->kfd2kgd->destroy_process_vm(dev->kgd, pdd->vm);
 681	pdd->vm = NULL;
 682
 683	return ret;
 684}
 685
 686/*
 687 * Direct the IOMMU to bind the process (specifically the pasid->mm)
 688 * to the device.
 689 * Unbinding occurs when the process dies or the device is removed.
 690 *
 691 * Assumes that the process lock is held.
 692 */
 693struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
 694							struct kfd_process *p)
 695{
 696	struct kfd_process_device *pdd;
 697	int err;
 698
 699	pdd = kfd_get_process_device_data(dev, p);
 700	if (!pdd) {
 701		pr_err("Process device data doesn't exist\n");
 702		return ERR_PTR(-ENOMEM);
 703	}
 704
 705	err = kfd_iommu_bind_process_to_device(pdd);
 706	if (err)
 707		return ERR_PTR(err);
 
 
 
 
 
 
 
 
 
 
 
 
 708
 709	err = kfd_process_device_init_vm(pdd, NULL);
 710	if (err)
 711		return ERR_PTR(err);
 
 
 712
 713	return pdd;
 714}
 715
 716struct kfd_process_device *kfd_get_first_process_device_data(
 717						struct kfd_process *p)
 718{
 719	return list_first_entry(&p->per_device_data,
 720				struct kfd_process_device,
 721				per_device_list);
 722}
 723
 724struct kfd_process_device *kfd_get_next_process_device_data(
 725						struct kfd_process *p,
 726						struct kfd_process_device *pdd)
 727{
 728	if (list_is_last(&pdd->per_device_list, &p->per_device_data))
 729		return NULL;
 730	return list_next_entry(pdd, per_device_list);
 731}
 732
 733bool kfd_has_process_device_data(struct kfd_process *p)
 734{
 735	return !(list_empty(&p->per_device_data));
 736}
 737
 738/* Create specific handle mapped to mem from process local memory idr
 739 * Assumes that the process lock is held.
 740 */
 741int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
 742					void *mem)
 743{
 744	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
 745}
 746
 747/* Translate specific handle from process local memory idr
 748 * Assumes that the process lock is held.
 749 */
 750void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
 751					int handle)
 752{
 753	if (handle < 0)
 754		return NULL;
 755
 756	return idr_find(&pdd->alloc_idr, handle);
 757}
 758
 759/* Remove specific handle from process local memory idr
 760 * Assumes that the process lock is held.
 761 */
 762void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
 763					int handle)
 764{
 765	if (handle >= 0)
 766		idr_remove(&pdd->alloc_idr, handle);
 767}
 768
 769/* This increments the process->ref counter. */
 770struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid)
 771{
 772	struct kfd_process *p, *ret_p = NULL;
 773	unsigned int temp;
 774
 775	int idx = srcu_read_lock(&kfd_processes_srcu);
 776
 777	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
 778		if (p->pasid == pasid) {
 779			kref_get(&p->ref);
 780			ret_p = p;
 781			break;
 782		}
 783	}
 784
 785	srcu_read_unlock(&kfd_processes_srcu, idx);
 786
 787	return ret_p;
 788}
 789
 790/* This increments the process->ref counter. */
 791struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
 792{
 793	struct kfd_process *p;
 794
 795	int idx = srcu_read_lock(&kfd_processes_srcu);
 796
 797	p = find_process_by_mm(mm);
 798	if (p)
 799		kref_get(&p->ref);
 800
 801	srcu_read_unlock(&kfd_processes_srcu, idx);
 802
 803	return p;
 804}
 805
 806/* process_evict_queues - Evict all user queues of a process
 807 *
 808 * Eviction is reference-counted per process-device. This means multiple
 809 * evictions from different sources can be nested safely.
 810 */
 811static int process_evict_queues(struct kfd_process *p)
 812{
 813	struct kfd_process_device *pdd;
 814	int r = 0;
 
 815	unsigned int n_evicted = 0;
 816
 817	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 
 
 
 
 
 818		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
 819							    &pdd->qpd);
 820		if (r) {
 
 
 
 
 821			pr_err("Failed to evict process queues\n");
 822			goto fail;
 823		}
 824		n_evicted++;
 825	}
 826
 827	return r;
 828
 829fail:
 830	/* To keep state consistent, roll back partial eviction by
 831	 * restoring queues
 832	 */
 833	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 
 
 834		if (n_evicted == 0)
 835			break;
 
 
 
 836		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
 837							      &pdd->qpd))
 838			pr_err("Failed to restore queues\n");
 839
 840		n_evicted--;
 841	}
 842
 843	return r;
 844}
 845
 846/* process_restore_queues - Restore all user queues of a process */
 847static  int process_restore_queues(struct kfd_process *p)
 848{
 849	struct kfd_process_device *pdd;
 850	int r, ret = 0;
 
 
 
 
 
 
 851
 852	list_for_each_entry(pdd, &p->per_device_data, per_device_list) {
 853		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
 854							      &pdd->qpd);
 855		if (r) {
 856			pr_err("Failed to restore process queues\n");
 857			if (!ret)
 858				ret = r;
 859		}
 860	}
 861
 862	return ret;
 863}
 864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865static void evict_process_worker(struct work_struct *work)
 866{
 867	int ret;
 868	struct kfd_process *p;
 869	struct delayed_work *dwork;
 870
 871	dwork = to_delayed_work(work);
 872
 873	/* Process termination destroys this worker thread. So during the
 874	 * lifetime of this thread, kfd_process p will be valid
 875	 */
 876	p = container_of(dwork, struct kfd_process, eviction_work);
 877	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
 878		  "Eviction fence mismatch\n");
 879
 880	/* Narrow window of overlap between restore and evict work
 881	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
 882	 * unreserves KFD BOs, it is possible to evicted again. But
 883	 * restore has few more steps of finish. So lets wait for any
 884	 * previous restore work to complete
 885	 */
 886	flush_delayed_work(&p->restore_work);
 887
 888	pr_debug("Started evicting pasid %d\n", p->pasid);
 889	ret = process_evict_queues(p);
 890	if (!ret) {
 891		dma_fence_signal(p->ef);
 892		dma_fence_put(p->ef);
 893		p->ef = NULL;
 894		queue_delayed_work(kfd_restore_wq, &p->restore_work,
 895				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
 
 
 
 896
 897		pr_debug("Finished evicting pasid %d\n", p->pasid);
 898	} else
 899		pr_err("Failed to evict queues of pasid %d\n", p->pasid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 900}
 901
 902static void restore_process_worker(struct work_struct *work)
 903{
 904	struct delayed_work *dwork;
 905	struct kfd_process *p;
 906	struct kfd_process_device *pdd;
 907	int ret = 0;
 908
 909	dwork = to_delayed_work(work);
 910
 911	/* Process termination destroys this worker thread. So during the
 912	 * lifetime of this thread, kfd_process p will be valid
 913	 */
 914	p = container_of(dwork, struct kfd_process, restore_work);
 915
 916	/* Call restore_process_bos on the first KGD device. This function
 917	 * takes care of restoring the whole process including other devices.
 918	 * Restore can fail if enough memory is not available. If so,
 919	 * reschedule again.
 920	 */
 921	pdd = list_first_entry(&p->per_device_data,
 922			       struct kfd_process_device,
 923			       per_device_list);
 924
 925	pr_debug("Started restoring pasid %d\n", p->pasid);
 926
 927	/* Setting last_restore_timestamp before successful restoration.
 928	 * Otherwise this would have to be set by KGD (restore_process_bos)
 929	 * before KFD BOs are unreserved. If not, the process can be evicted
 930	 * again before the timestamp is set.
 931	 * If restore fails, the timestamp will be set again in the next
 932	 * attempt. This would mean that the minimum GPU quanta would be
 933	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
 934	 * functions)
 935	 */
 936
 937	p->last_restore_timestamp = get_jiffies_64();
 938	ret = pdd->dev->kfd2kgd->restore_process_bos(p->kgd_process_info,
 939						     &p->ef);
 940	if (ret) {
 941		pr_debug("Failed to restore BOs of pasid %d, retry after %d ms\n",
 942			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
 943		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
 944				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
 945		WARN(!ret, "reschedule restore work failed\n");
 946		return;
 947	}
 948
 949	ret = process_restore_queues(p);
 950	if (!ret)
 951		pr_debug("Finished restoring pasid %d\n", p->pasid);
 952	else
 953		pr_err("Failed to restore queues of pasid %d\n", p->pasid);
 954}
 955
 956void kfd_suspend_all_processes(void)
 957{
 958	struct kfd_process *p;
 959	unsigned int temp;
 960	int idx = srcu_read_lock(&kfd_processes_srcu);
 961
 
 962	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
 963		cancel_delayed_work_sync(&p->eviction_work);
 964		cancel_delayed_work_sync(&p->restore_work);
 965
 966		if (process_evict_queues(p))
 967			pr_err("Failed to suspend process %d\n", p->pasid);
 968		dma_fence_signal(p->ef);
 969		dma_fence_put(p->ef);
 970		p->ef = NULL;
 971	}
 972	srcu_read_unlock(&kfd_processes_srcu, idx);
 973}
 974
 975int kfd_resume_all_processes(void)
 976{
 977	struct kfd_process *p;
 978	unsigned int temp;
 979	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
 980
 981	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
 982		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
 983			pr_err("Restore process %d failed during resume\n",
 984			       p->pasid);
 985			ret = -EFAULT;
 986		}
 987	}
 988	srcu_read_unlock(&kfd_processes_srcu, idx);
 989	return ret;
 990}
 991
 992int kfd_reserved_mem_mmap(struct kfd_process *process,
 993			  struct vm_area_struct *vma)
 994{
 995	struct kfd_dev *dev = kfd_device_by_id(vma->vm_pgoff);
 996	struct kfd_process_device *pdd;
 997	struct qcm_process_device *qpd;
 998
 999	if (!dev)
1000		return -EINVAL;
1001	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1002		pr_err("Incorrect CWSR mapping size.\n");
1003		return -EINVAL;
1004	}
1005
1006	pdd = kfd_get_process_device_data(dev, process);
1007	if (!pdd)
1008		return -EINVAL;
1009	qpd = &pdd->qpd;
1010
1011	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1012					get_order(KFD_CWSR_TBA_TMA_SIZE));
1013	if (!qpd->cwsr_kaddr) {
1014		pr_err("Error allocating per process CWSR buffer.\n");
1015		return -ENOMEM;
1016	}
1017
1018	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1019		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1020	/* Mapping pages to user process */
1021	return remap_pfn_range(vma, vma->vm_start,
1022			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1023			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1024}
1025
1026void kfd_flush_tlb(struct kfd_process_device *pdd)
 
1027{
1028	struct kfd_dev *dev = pdd->dev;
1029	const struct kfd2kgd_calls *f2g = dev->kfd2kgd;
 
1030
1031	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1032		/* Nothing to flush until a VMID is assigned, which
1033		 * only happens when the first queue is created.
1034		 */
1035		if (pdd->qpd.vmid)
1036			f2g->invalidate_tlbs_vmid(dev->kgd, pdd->qpd.vmid);
1037	} else {
1038		f2g->invalidate_tlbs(dev->kgd, pdd->process->pasid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039	}
 
1040}
1041
1042#if defined(CONFIG_DEBUG_FS)
1043
1044int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1045{
1046	struct kfd_process *p;
1047	unsigned int temp;
1048	int r = 0;
1049
1050	int idx = srcu_read_lock(&kfd_processes_srcu);
1051
1052	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1053		seq_printf(m, "Process %d PASID %d:\n",
1054			   p->lead_thread->tgid, p->pasid);
1055
1056		mutex_lock(&p->mutex);
1057		r = pqm_debugfs_mqds(m, &p->pqm);
1058		mutex_unlock(&p->mutex);
1059
1060		if (r)
1061			break;
1062	}
1063
1064	srcu_read_unlock(&kfd_processes_srcu, idx);
1065
1066	return r;
1067}
1068
1069#endif