Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/mm_types.h>
  25#include <linux/slab.h>
  26#include <linux/types.h>
  27#include <linux/sched/signal.h>
  28#include <linux/sched/mm.h>
  29#include <linux/uaccess.h>
  30#include <linux/mman.h>
  31#include <linux/memory.h>
  32#include "kfd_priv.h"
  33#include "kfd_events.h"
 
  34#include <linux/device.h>
  35
  36/*
  37 * Wrapper around wait_queue_entry_t
  38 */
  39struct kfd_event_waiter {
  40	wait_queue_entry_t wait;
  41	struct kfd_event *event; /* Event to wait for */
  42	bool activated;		 /* Becomes true when event is signaled */
  43	bool event_age_enabled;  /* set to true when last_event_age is non-zero */
  44};
  45
  46/*
  47 * Each signal event needs a 64-bit signal slot where the signaler will write
  48 * a 1 before sending an interrupt. (This is needed because some interrupts
  49 * do not contain enough spare data bits to identify an event.)
  50 * We get whole pages and map them to the process VA.
  51 * Individual signal events use their event_id as slot index.
  52 */
  53struct kfd_signal_page {
  54	uint64_t *kernel_address;
  55	uint64_t __user *user_address;
  56	bool need_to_free_pages;
  57};
  58
 
  59static uint64_t *page_slots(struct kfd_signal_page *page)
  60{
  61	return page->kernel_address;
  62}
  63
  64static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
  65{
  66	void *backing_store;
  67	struct kfd_signal_page *page;
  68
  69	page = kzalloc(sizeof(*page), GFP_KERNEL);
  70	if (!page)
  71		return NULL;
  72
  73	backing_store = (void *) __get_free_pages(GFP_KERNEL,
  74					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
  75	if (!backing_store)
  76		goto fail_alloc_signal_store;
  77
  78	/* Initialize all events to unsignaled */
  79	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
  80	       KFD_SIGNAL_EVENT_LIMIT * 8);
  81
  82	page->kernel_address = backing_store;
  83	page->need_to_free_pages = true;
  84	pr_debug("Allocated new event signal page at %p, for process %p\n",
  85			page, p);
  86
  87	return page;
  88
  89fail_alloc_signal_store:
  90	kfree(page);
  91	return NULL;
  92}
  93
  94static int allocate_event_notification_slot(struct kfd_process *p,
  95					    struct kfd_event *ev,
  96					    const int *restore_id)
  97{
  98	int id;
  99
 100	if (!p->signal_page) {
 101		p->signal_page = allocate_signal_page(p);
 102		if (!p->signal_page)
 103			return -ENOMEM;
 104		/* Oldest user mode expects 256 event slots */
 105		p->signal_mapped_size = 256*8;
 106	}
 107
 108	if (restore_id) {
 109		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
 110				GFP_KERNEL);
 111	} else {
 112		/*
 113		 * Compatibility with old user mode: Only use signal slots
 114		 * user mode has mapped, may be less than
 115		 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
 116		 * of the event limit without breaking user mode.
 117		 */
 118		id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
 119				GFP_KERNEL);
 120	}
 121	if (id < 0)
 122		return id;
 123
 124	ev->event_id = id;
 125	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
 126
 127	return 0;
 128}
 129
 130/*
 131 * Assumes that p->event_mutex or rcu_readlock is held and of course that p is
 132 * not going away.
 133 */
 134static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
 135{
 136	return idr_find(&p->event_idr, id);
 137}
 138
 139/**
 140 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
 141 * @p:     Pointer to struct kfd_process
 142 * @id:    ID to look up
 143 * @bits:  Number of valid bits in @id
 144 *
 145 * Finds the first signaled event with a matching partial ID. If no
 146 * matching signaled event is found, returns NULL. In that case the
 147 * caller should assume that the partial ID is invalid and do an
 148 * exhaustive search of all siglaned events.
 149 *
 150 * If multiple events with the same partial ID signal at the same
 151 * time, they will be found one interrupt at a time, not necessarily
 152 * in the same order the interrupts occurred. As long as the number of
 153 * interrupts is correct, all signaled events will be seen by the
 154 * driver.
 155 */
 156static struct kfd_event *lookup_signaled_event_by_partial_id(
 157	struct kfd_process *p, uint32_t id, uint32_t bits)
 158{
 159	struct kfd_event *ev;
 160
 161	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
 162		return NULL;
 163
 164	/* Fast path for the common case that @id is not a partial ID
 165	 * and we only need a single lookup.
 166	 */
 167	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
 168		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
 169			return NULL;
 170
 171		return idr_find(&p->event_idr, id);
 172	}
 173
 174	/* General case for partial IDs: Iterate over all matching IDs
 175	 * and find the first one that has signaled.
 176	 */
 177	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
 178		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
 179			continue;
 180
 181		ev = idr_find(&p->event_idr, id);
 182	}
 183
 184	return ev;
 185}
 186
 187static int create_signal_event(struct file *devkfd, struct kfd_process *p,
 188				struct kfd_event *ev, const int *restore_id)
 
 189{
 190	int ret;
 191
 192	if (p->signal_mapped_size &&
 193	    p->signal_event_count == p->signal_mapped_size / 8) {
 194		if (!p->signal_event_limit_reached) {
 195			pr_debug("Signal event wasn't created because limit was reached\n");
 196			p->signal_event_limit_reached = true;
 197		}
 198		return -ENOSPC;
 199	}
 200
 201	ret = allocate_event_notification_slot(p, ev, restore_id);
 202	if (ret) {
 203		pr_warn("Signal event wasn't created because out of kernel memory\n");
 204		return ret;
 205	}
 206
 207	p->signal_event_count++;
 208
 209	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
 210	pr_debug("Signal event number %zu created with id %d, address %p\n",
 211			p->signal_event_count, ev->event_id,
 212			ev->user_signal_address);
 213
 214	return 0;
 215}
 216
 217static int create_other_event(struct kfd_process *p, struct kfd_event *ev, const int *restore_id)
 218{
 219	int id;
 220
 221	if (restore_id)
 222		id = idr_alloc(&p->event_idr, ev, *restore_id, *restore_id + 1,
 223			GFP_KERNEL);
 224	else
 225		/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
 226		 * intentional integer overflow to -1 without a compiler
 227		 * warning. idr_alloc treats a negative value as "maximum
 228		 * signed integer".
 229		 */
 230		id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
 231				(uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
 232				GFP_KERNEL);
 233
 234	if (id < 0)
 235		return id;
 236	ev->event_id = id;
 237
 238	return 0;
 239}
 240
 241int kfd_event_init_process(struct kfd_process *p)
 242{
 243	int id;
 244
 245	mutex_init(&p->event_mutex);
 246	idr_init(&p->event_idr);
 247	p->signal_page = NULL;
 248	p->signal_event_count = 1;
 249	/* Allocate event ID 0. It is used for a fast path to ignore bogus events
 250	 * that are sent by the CP without a context ID
 251	 */
 252	id = idr_alloc(&p->event_idr, NULL, 0, 1, GFP_KERNEL);
 253	if (id < 0) {
 254		idr_destroy(&p->event_idr);
 255		mutex_destroy(&p->event_mutex);
 256		return id;
 257	}
 258	return 0;
 259}
 260
 261static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
 262{
 263	struct kfd_event_waiter *waiter;
 264
 265	/* Wake up pending waiters. They will return failure */
 266	spin_lock(&ev->lock);
 267	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
 268		WRITE_ONCE(waiter->event, NULL);
 269	wake_up_all(&ev->wq);
 270	spin_unlock(&ev->lock);
 271
 272	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
 273	    ev->type == KFD_EVENT_TYPE_DEBUG)
 274		p->signal_event_count--;
 275
 276	idr_remove(&p->event_idr, ev->event_id);
 277	kfree_rcu(ev, rcu);
 278}
 279
 280static void destroy_events(struct kfd_process *p)
 281{
 282	struct kfd_event *ev;
 283	uint32_t id;
 284
 285	idr_for_each_entry(&p->event_idr, ev, id)
 286		if (ev)
 287			destroy_event(p, ev);
 288	idr_destroy(&p->event_idr);
 289	mutex_destroy(&p->event_mutex);
 290}
 291
 292/*
 293 * We assume that the process is being destroyed and there is no need to
 294 * unmap the pages or keep bookkeeping data in order.
 295 */
 296static void shutdown_signal_page(struct kfd_process *p)
 297{
 298	struct kfd_signal_page *page = p->signal_page;
 299
 300	if (page) {
 301		if (page->need_to_free_pages)
 302			free_pages((unsigned long)page->kernel_address,
 303				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
 304		kfree(page);
 305	}
 306}
 307
 308void kfd_event_free_process(struct kfd_process *p)
 309{
 310	destroy_events(p);
 311	shutdown_signal_page(p);
 312}
 313
 314static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
 315{
 316	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
 317					ev->type == KFD_EVENT_TYPE_DEBUG;
 318}
 319
 320static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
 321{
 322	return ev->type == KFD_EVENT_TYPE_SIGNAL;
 323}
 324
 325static int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
 326		       uint64_t size, uint64_t user_handle)
 327{
 328	struct kfd_signal_page *page;
 329
 330	if (p->signal_page)
 331		return -EBUSY;
 332
 333	page = kzalloc(sizeof(*page), GFP_KERNEL);
 334	if (!page)
 335		return -ENOMEM;
 336
 337	/* Initialize all events to unsignaled */
 338	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
 339	       KFD_SIGNAL_EVENT_LIMIT * 8);
 340
 341	page->kernel_address = kernel_address;
 342
 343	p->signal_page = page;
 344	p->signal_mapped_size = size;
 345	p->signal_handle = user_handle;
 346	return 0;
 347}
 348
 349int kfd_kmap_event_page(struct kfd_process *p, uint64_t event_page_offset)
 350{
 351	struct kfd_node *kfd;
 352	struct kfd_process_device *pdd;
 353	void *mem, *kern_addr;
 354	uint64_t size;
 355	int err = 0;
 356
 357	if (p->signal_page) {
 358		pr_err("Event page is already set\n");
 359		return -EINVAL;
 360	}
 361
 362	pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(event_page_offset));
 363	if (!pdd) {
 364		pr_err("Getting device by id failed in %s\n", __func__);
 365		return -EINVAL;
 366	}
 367	kfd = pdd->dev;
 368
 369	pdd = kfd_bind_process_to_device(kfd, p);
 370	if (IS_ERR(pdd))
 371		return PTR_ERR(pdd);
 372
 373	mem = kfd_process_device_translate_handle(pdd,
 374			GET_IDR_HANDLE(event_page_offset));
 375	if (!mem) {
 376		pr_err("Can't find BO, offset is 0x%llx\n", event_page_offset);
 377		return -EINVAL;
 378	}
 379
 380	err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(mem, &kern_addr, &size);
 381	if (err) {
 382		pr_err("Failed to map event page to kernel\n");
 383		return err;
 384	}
 385
 386	err = kfd_event_page_set(p, kern_addr, size, event_page_offset);
 387	if (err) {
 388		pr_err("Failed to set event page\n");
 389		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
 390		return err;
 391	}
 392	return err;
 393}
 394
 395int kfd_event_create(struct file *devkfd, struct kfd_process *p,
 396		     uint32_t event_type, bool auto_reset, uint32_t node_id,
 397		     uint32_t *event_id, uint32_t *event_trigger_data,
 398		     uint64_t *event_page_offset, uint32_t *event_slot_index)
 399{
 400	int ret = 0;
 401	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 402
 403	if (!ev)
 404		return -ENOMEM;
 405
 406	ev->type = event_type;
 407	ev->auto_reset = auto_reset;
 408	ev->signaled = false;
 409
 410	spin_lock_init(&ev->lock);
 411	init_waitqueue_head(&ev->wq);
 412
 413	*event_page_offset = 0;
 414
 415	mutex_lock(&p->event_mutex);
 416
 417	switch (event_type) {
 418	case KFD_EVENT_TYPE_SIGNAL:
 419	case KFD_EVENT_TYPE_DEBUG:
 420		ret = create_signal_event(devkfd, p, ev, NULL);
 421		if (!ret) {
 422			*event_page_offset = KFD_MMAP_TYPE_EVENTS;
 
 423			*event_slot_index = ev->event_id;
 424		}
 425		break;
 426	default:
 427		ret = create_other_event(p, ev, NULL);
 428		break;
 429	}
 430
 431	if (!ret) {
 432		*event_id = ev->event_id;
 433		*event_trigger_data = ev->event_id;
 434		ev->event_age = 1;
 435	} else {
 436		kfree(ev);
 437	}
 438
 439	mutex_unlock(&p->event_mutex);
 440
 441	return ret;
 442}
 443
 444int kfd_criu_restore_event(struct file *devkfd,
 445			   struct kfd_process *p,
 446			   uint8_t __user *user_priv_ptr,
 447			   uint64_t *priv_data_offset,
 448			   uint64_t max_priv_data_size)
 449{
 450	struct kfd_criu_event_priv_data *ev_priv;
 451	struct kfd_event *ev = NULL;
 452	int ret = 0;
 453
 454	ev_priv = kmalloc(sizeof(*ev_priv), GFP_KERNEL);
 455	if (!ev_priv)
 456		return -ENOMEM;
 457
 458	ev = kzalloc(sizeof(*ev), GFP_KERNEL);
 459	if (!ev) {
 460		ret = -ENOMEM;
 461		goto exit;
 462	}
 463
 464	if (*priv_data_offset + sizeof(*ev_priv) > max_priv_data_size) {
 465		ret = -EINVAL;
 466		goto exit;
 467	}
 468
 469	ret = copy_from_user(ev_priv, user_priv_ptr + *priv_data_offset, sizeof(*ev_priv));
 470	if (ret) {
 471		ret = -EFAULT;
 472		goto exit;
 473	}
 474	*priv_data_offset += sizeof(*ev_priv);
 475
 476	if (ev_priv->user_handle) {
 477		ret = kfd_kmap_event_page(p, ev_priv->user_handle);
 478		if (ret)
 479			goto exit;
 480	}
 481
 482	ev->type = ev_priv->type;
 483	ev->auto_reset = ev_priv->auto_reset;
 484	ev->signaled = ev_priv->signaled;
 485
 486	spin_lock_init(&ev->lock);
 487	init_waitqueue_head(&ev->wq);
 488
 489	mutex_lock(&p->event_mutex);
 490	switch (ev->type) {
 491	case KFD_EVENT_TYPE_SIGNAL:
 492	case KFD_EVENT_TYPE_DEBUG:
 493		ret = create_signal_event(devkfd, p, ev, &ev_priv->event_id);
 494		break;
 495	case KFD_EVENT_TYPE_MEMORY:
 496		memcpy(&ev->memory_exception_data,
 497			&ev_priv->memory_exception_data,
 498			sizeof(struct kfd_hsa_memory_exception_data));
 499
 500		ret = create_other_event(p, ev, &ev_priv->event_id);
 501		break;
 502	case KFD_EVENT_TYPE_HW_EXCEPTION:
 503		memcpy(&ev->hw_exception_data,
 504			&ev_priv->hw_exception_data,
 505			sizeof(struct kfd_hsa_hw_exception_data));
 506
 507		ret = create_other_event(p, ev, &ev_priv->event_id);
 508		break;
 509	}
 510	mutex_unlock(&p->event_mutex);
 511
 512exit:
 513	if (ret)
 514		kfree(ev);
 515
 516	kfree(ev_priv);
 517
 518	return ret;
 519}
 520
 521int kfd_criu_checkpoint_events(struct kfd_process *p,
 522			 uint8_t __user *user_priv_data,
 523			 uint64_t *priv_data_offset)
 524{
 525	struct kfd_criu_event_priv_data *ev_privs;
 526	int i = 0;
 527	int ret =  0;
 528	struct kfd_event *ev;
 529	uint32_t ev_id;
 530
 531	uint32_t num_events = kfd_get_num_events(p);
 532
 533	if (!num_events)
 534		return 0;
 535
 536	ev_privs = kvzalloc(num_events * sizeof(*ev_privs), GFP_KERNEL);
 537	if (!ev_privs)
 538		return -ENOMEM;
 539
 540
 541	idr_for_each_entry(&p->event_idr, ev, ev_id) {
 542		struct kfd_criu_event_priv_data *ev_priv;
 543
 544		/*
 545		 * Currently, all events have same size of private_data, but the current ioctl's
 546		 * and CRIU plugin supports private_data of variable sizes
 547		 */
 548		ev_priv = &ev_privs[i];
 549
 550		ev_priv->object_type = KFD_CRIU_OBJECT_TYPE_EVENT;
 551
 552		/* We store the user_handle with the first event */
 553		if (i == 0 && p->signal_page)
 554			ev_priv->user_handle = p->signal_handle;
 555
 556		ev_priv->event_id = ev->event_id;
 557		ev_priv->auto_reset = ev->auto_reset;
 558		ev_priv->type = ev->type;
 559		ev_priv->signaled = ev->signaled;
 560
 561		if (ev_priv->type == KFD_EVENT_TYPE_MEMORY)
 562			memcpy(&ev_priv->memory_exception_data,
 563				&ev->memory_exception_data,
 564				sizeof(struct kfd_hsa_memory_exception_data));
 565		else if (ev_priv->type == KFD_EVENT_TYPE_HW_EXCEPTION)
 566			memcpy(&ev_priv->hw_exception_data,
 567				&ev->hw_exception_data,
 568				sizeof(struct kfd_hsa_hw_exception_data));
 569
 570		pr_debug("Checkpointed event[%d] id = 0x%08x auto_reset = %x type = %x signaled = %x\n",
 571			  i,
 572			  ev_priv->event_id,
 573			  ev_priv->auto_reset,
 574			  ev_priv->type,
 575			  ev_priv->signaled);
 576		i++;
 577	}
 578
 579	ret = copy_to_user(user_priv_data + *priv_data_offset,
 580			   ev_privs, num_events * sizeof(*ev_privs));
 581	if (ret) {
 582		pr_err("Failed to copy events priv to user\n");
 583		ret = -EFAULT;
 584	}
 585
 586	*priv_data_offset += num_events * sizeof(*ev_privs);
 587
 588	kvfree(ev_privs);
 589	return ret;
 590}
 591
 592int kfd_get_num_events(struct kfd_process *p)
 593{
 594	struct kfd_event *ev;
 595	uint32_t id;
 596	u32 num_events = 0;
 597
 598	idr_for_each_entry(&p->event_idr, ev, id)
 599		num_events++;
 600
 601	return num_events;
 602}
 603
 604/* Assumes that p is current. */
 605int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
 606{
 607	struct kfd_event *ev;
 608	int ret = 0;
 609
 610	mutex_lock(&p->event_mutex);
 611
 612	ev = lookup_event_by_id(p, event_id);
 613
 614	if (ev)
 615		destroy_event(p, ev);
 616	else
 617		ret = -EINVAL;
 618
 619	mutex_unlock(&p->event_mutex);
 620	return ret;
 621}
 622
 623static void set_event(struct kfd_event *ev)
 624{
 625	struct kfd_event_waiter *waiter;
 626
 627	/* Auto reset if the list is non-empty and we're waking
 628	 * someone. waitqueue_active is safe here because we're
 629	 * protected by the ev->lock, which is also held when
 630	 * updating the wait queues in kfd_wait_on_events.
 631	 */
 632	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
 633	if (!(++ev->event_age)) {
 634		/* Never wrap back to reserved/default event age 0/1 */
 635		ev->event_age = 2;
 636		WARN_ONCE(1, "event_age wrap back!");
 637	}
 638
 639	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
 640		WRITE_ONCE(waiter->activated, true);
 641
 642	wake_up_all(&ev->wq);
 643}
 644
 645/* Assumes that p is current. */
 646int kfd_set_event(struct kfd_process *p, uint32_t event_id)
 647{
 648	int ret = 0;
 649	struct kfd_event *ev;
 650
 651	rcu_read_lock();
 652
 653	ev = lookup_event_by_id(p, event_id);
 654	if (!ev) {
 655		ret = -EINVAL;
 656		goto unlock_rcu;
 657	}
 658	spin_lock(&ev->lock);
 659
 660	if (event_can_be_cpu_signaled(ev))
 661		set_event(ev);
 662	else
 663		ret = -EINVAL;
 664
 665	spin_unlock(&ev->lock);
 666unlock_rcu:
 667	rcu_read_unlock();
 668	return ret;
 669}
 670
 671static void reset_event(struct kfd_event *ev)
 672{
 673	ev->signaled = false;
 674}
 675
 676/* Assumes that p is current. */
 677int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
 678{
 679	int ret = 0;
 680	struct kfd_event *ev;
 681
 682	rcu_read_lock();
 683
 684	ev = lookup_event_by_id(p, event_id);
 685	if (!ev) {
 686		ret = -EINVAL;
 687		goto unlock_rcu;
 688	}
 689	spin_lock(&ev->lock);
 690
 691	if (event_can_be_cpu_signaled(ev))
 692		reset_event(ev);
 693	else
 694		ret = -EINVAL;
 695
 696	spin_unlock(&ev->lock);
 697unlock_rcu:
 698	rcu_read_unlock();
 699	return ret;
 700
 701}
 702
 703static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
 704{
 705	WRITE_ONCE(page_slots(p->signal_page)[ev->event_id], UNSIGNALED_EVENT_SLOT);
 706}
 707
 708static void set_event_from_interrupt(struct kfd_process *p,
 709					struct kfd_event *ev)
 710{
 711	if (ev && event_can_be_gpu_signaled(ev)) {
 712		acknowledge_signal(p, ev);
 713		spin_lock(&ev->lock);
 714		set_event(ev);
 715		spin_unlock(&ev->lock);
 716	}
 717}
 718
 719void kfd_signal_event_interrupt(u32 pasid, uint32_t partial_id,
 720				uint32_t valid_id_bits)
 721{
 722	struct kfd_event *ev = NULL;
 723
 724	/*
 725	 * Because we are called from arbitrary context (workqueue) as opposed
 726	 * to process context, kfd_process could attempt to exit while we are
 727	 * running so the lookup function increments the process ref count.
 728	 */
 729	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 730
 731	if (!p)
 732		return; /* Presumably process exited. */
 733
 734	rcu_read_lock();
 735
 736	if (valid_id_bits)
 737		ev = lookup_signaled_event_by_partial_id(p, partial_id,
 738							 valid_id_bits);
 739	if (ev) {
 740		set_event_from_interrupt(p, ev);
 741	} else if (p->signal_page) {
 742		/*
 743		 * Partial ID lookup failed. Assume that the event ID
 744		 * in the interrupt payload was invalid and do an
 745		 * exhaustive search of signaled events.
 746		 */
 747		uint64_t *slots = page_slots(p->signal_page);
 748		uint32_t id;
 749
 750		if (valid_id_bits)
 751			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
 752					     partial_id, valid_id_bits);
 753
 754		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT / 64) {
 755			/* With relatively few events, it's faster to
 756			 * iterate over the event IDR
 757			 */
 758			idr_for_each_entry(&p->event_idr, ev, id) {
 759				if (id >= KFD_SIGNAL_EVENT_LIMIT)
 760					break;
 761
 762				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT)
 763					set_event_from_interrupt(p, ev);
 764			}
 765		} else {
 766			/* With relatively many events, it's faster to
 767			 * iterate over the signal slots and lookup
 768			 * only signaled events from the IDR.
 769			 */
 770			for (id = 1; id < KFD_SIGNAL_EVENT_LIMIT; id++)
 771				if (READ_ONCE(slots[id]) != UNSIGNALED_EVENT_SLOT) {
 772					ev = lookup_event_by_id(p, id);
 773					set_event_from_interrupt(p, ev);
 774				}
 775		}
 776	}
 777
 778	rcu_read_unlock();
 779	kfd_unref_process(p);
 780}
 781
 782static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
 783{
 784	struct kfd_event_waiter *event_waiters;
 785	uint32_t i;
 786
 787	event_waiters = kcalloc(num_events, sizeof(struct kfd_event_waiter),
 788				GFP_KERNEL);
 789	if (!event_waiters)
 790		return NULL;
 791
 792	for (i = 0; i < num_events; i++)
 793		init_wait(&event_waiters[i].wait);
 
 
 794
 795	return event_waiters;
 796}
 797
 798static int init_event_waiter(struct kfd_process *p,
 799		struct kfd_event_waiter *waiter,
 800		struct kfd_event_data *event_data)
 801{
 802	struct kfd_event *ev = lookup_event_by_id(p, event_data->event_id);
 803
 804	if (!ev)
 805		return -EINVAL;
 806
 807	spin_lock(&ev->lock);
 808	waiter->event = ev;
 809	waiter->activated = ev->signaled;
 810	ev->signaled = ev->signaled && !ev->auto_reset;
 811
 812	/* last_event_age = 0 reserved for backward compatible */
 813	if (waiter->event->type == KFD_EVENT_TYPE_SIGNAL &&
 814		event_data->signal_event_data.last_event_age) {
 815		waiter->event_age_enabled = true;
 816		if (ev->event_age != event_data->signal_event_data.last_event_age)
 817			waiter->activated = true;
 818	}
 819
 
 
 
 820	if (!waiter->activated)
 821		add_wait_queue(&ev->wq, &waiter->wait);
 822	spin_unlock(&ev->lock);
 823
 824	return 0;
 825}
 826
 827/* test_event_condition - Test condition of events being waited for
 828 * @all:           Return completion only if all events have signaled
 829 * @num_events:    Number of events to wait for
 830 * @event_waiters: Array of event waiters, one per event
 831 *
 832 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
 833 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
 834 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
 835 * the events have been destroyed.
 836 */
 837static uint32_t test_event_condition(bool all, uint32_t num_events,
 838				struct kfd_event_waiter *event_waiters)
 839{
 840	uint32_t i;
 841	uint32_t activated_count = 0;
 842
 843	for (i = 0; i < num_events; i++) {
 844		if (!READ_ONCE(event_waiters[i].event))
 845			return KFD_IOC_WAIT_RESULT_FAIL;
 846
 847		if (READ_ONCE(event_waiters[i].activated)) {
 848			if (!all)
 849				return KFD_IOC_WAIT_RESULT_COMPLETE;
 850
 851			activated_count++;
 852		}
 853	}
 854
 855	return activated_count == num_events ?
 856		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
 857}
 858
 859/*
 860 * Copy event specific data, if defined.
 861 * Currently only memory exception events have additional data to copy to user
 862 */
 863static int copy_signaled_event_data(uint32_t num_events,
 864		struct kfd_event_waiter *event_waiters,
 865		struct kfd_event_data __user *data)
 866{
 867	void *src;
 868	void __user *dst;
 869	struct kfd_event_waiter *waiter;
 870	struct kfd_event *event;
 871	uint32_t i, size = 0;
 872
 873	for (i = 0; i < num_events; i++) {
 874		waiter = &event_waiters[i];
 875		event = waiter->event;
 876		if (!event)
 877			return -EINVAL; /* event was destroyed */
 878		if (waiter->activated) {
 879			if (event->type == KFD_EVENT_TYPE_MEMORY) {
 880				dst = &data[i].memory_exception_data;
 881				src = &event->memory_exception_data;
 882				size = sizeof(struct kfd_hsa_memory_exception_data);
 883			} else if (event->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
 884				dst = &data[i].memory_exception_data;
 885				src = &event->hw_exception_data;
 886				size = sizeof(struct kfd_hsa_hw_exception_data);
 887			} else if (event->type == KFD_EVENT_TYPE_SIGNAL &&
 888				waiter->event_age_enabled) {
 889				dst = &data[i].signal_event_data.last_event_age;
 890				src = &event->event_age;
 891				size = sizeof(u64);
 892			}
 893			if (size && copy_to_user(dst, src, size))
 894				return -EFAULT;
 895		}
 896	}
 897
 898	return 0;
 
 899}
 900
 
 
 901static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
 902{
 903	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
 904		return 0;
 905
 906	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
 907		return MAX_SCHEDULE_TIMEOUT;
 908
 909	/*
 910	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
 911	 * but we consider them finite.
 912	 * This hack is wrong, but nobody is likely to notice.
 913	 */
 914	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
 915
 916	return msecs_to_jiffies(user_timeout_ms) + 1;
 917}
 918
 919static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters,
 920			 bool undo_auto_reset)
 921{
 922	uint32_t i;
 923
 924	for (i = 0; i < num_events; i++)
 925		if (waiters[i].event) {
 926			spin_lock(&waiters[i].event->lock);
 927			remove_wait_queue(&waiters[i].event->wq,
 928					  &waiters[i].wait);
 929			if (undo_auto_reset && waiters[i].activated &&
 930			    waiters[i].event && waiters[i].event->auto_reset)
 931				set_event(waiters[i].event);
 932			spin_unlock(&waiters[i].event->lock);
 933		}
 934
 935	kfree(waiters);
 936}
 937
 938int kfd_wait_on_events(struct kfd_process *p,
 939		       uint32_t num_events, void __user *data,
 940		       bool all, uint32_t *user_timeout_ms,
 941		       uint32_t *wait_result)
 942{
 943	struct kfd_event_data __user *events =
 944			(struct kfd_event_data __user *) data;
 945	uint32_t i;
 946	int ret = 0;
 947
 948	struct kfd_event_waiter *event_waiters = NULL;
 949	long timeout = user_timeout_to_jiffies(*user_timeout_ms);
 950
 951	event_waiters = alloc_event_waiters(num_events);
 952	if (!event_waiters) {
 953		ret = -ENOMEM;
 954		goto out;
 955	}
 956
 957	/* Use p->event_mutex here to protect against concurrent creation and
 958	 * destruction of events while we initialize event_waiters.
 959	 */
 960	mutex_lock(&p->event_mutex);
 961
 962	for (i = 0; i < num_events; i++) {
 963		struct kfd_event_data event_data;
 964
 965		if (copy_from_user(&event_data, &events[i],
 966				sizeof(struct kfd_event_data))) {
 967			ret = -EFAULT;
 968			goto out_unlock;
 969		}
 970
 971		ret = init_event_waiter(p, &event_waiters[i], &event_data);
 
 972		if (ret)
 973			goto out_unlock;
 974	}
 975
 976	/* Check condition once. */
 977	*wait_result = test_event_condition(all, num_events, event_waiters);
 978	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
 979		ret = copy_signaled_event_data(num_events,
 980					       event_waiters, events);
 981		goto out_unlock;
 982	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
 983		/* This should not happen. Events shouldn't be
 984		 * destroyed while we're holding the event_mutex
 985		 */
 986		goto out_unlock;
 987	}
 988
 
 
 
 
 989	mutex_unlock(&p->event_mutex);
 990
 991	while (true) {
 992		if (fatal_signal_pending(current)) {
 993			ret = -EINTR;
 994			break;
 995		}
 996
 997		if (signal_pending(current)) {
 
 
 
 
 
 
 
 
 998			ret = -ERESTARTSYS;
 999			if (*user_timeout_ms != KFD_EVENT_TIMEOUT_IMMEDIATE &&
1000			    *user_timeout_ms != KFD_EVENT_TIMEOUT_INFINITE)
1001				*user_timeout_ms = jiffies_to_msecs(
1002					max(0l, timeout-1));
1003			break;
1004		}
1005
1006		/* Set task state to interruptible sleep before
1007		 * checking wake-up conditions. A concurrent wake-up
1008		 * will put the task back into runnable state. In that
1009		 * case schedule_timeout will not put the task to
1010		 * sleep and we'll get a chance to re-check the
1011		 * updated conditions almost immediately. Otherwise,
1012		 * this race condition would lead to a soft hang or a
1013		 * very long sleep.
1014		 */
1015		set_current_state(TASK_INTERRUPTIBLE);
1016
1017		*wait_result = test_event_condition(all, num_events,
1018						    event_waiters);
1019		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
1020			break;
1021
1022		if (timeout <= 0)
1023			break;
1024
1025		timeout = schedule_timeout(timeout);
1026	}
1027	__set_current_state(TASK_RUNNING);
1028
1029	mutex_lock(&p->event_mutex);
1030	/* copy_signaled_event_data may sleep. So this has to happen
1031	 * after the task state is set back to RUNNING.
1032	 *
1033	 * The event may also have been destroyed after signaling. So
1034	 * copy_signaled_event_data also must confirm that the event
1035	 * still exists. Therefore this must be under the p->event_mutex
1036	 * which is also held when events are destroyed.
1037	 */
1038	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
1039		ret = copy_signaled_event_data(num_events,
1040					       event_waiters, events);
1041
 
1042out_unlock:
1043	free_waiters(num_events, event_waiters, ret == -ERESTARTSYS);
1044	mutex_unlock(&p->event_mutex);
1045out:
1046	if (ret)
1047		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
1048	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
1049		ret = -EIO;
1050
1051	return ret;
1052}
1053
1054int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
1055{
1056	unsigned long pfn;
1057	struct kfd_signal_page *page;
1058	int ret;
1059
1060	/* check required size doesn't exceed the allocated size */
1061	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
1062			get_order(vma->vm_end - vma->vm_start)) {
1063		pr_err("Event page mmap requested illegal size\n");
1064		return -EINVAL;
1065	}
1066
1067	page = p->signal_page;
1068	if (!page) {
1069		/* Probably KFD bug, but mmap is user-accessible. */
1070		pr_debug("Signal page could not be found\n");
1071		return -EINVAL;
1072	}
1073
1074	pfn = __pa(page->kernel_address);
1075	pfn >>= PAGE_SHIFT;
1076
1077	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
1078		       | VM_DONTDUMP | VM_PFNMAP);
1079
1080	pr_debug("Mapping signal page\n");
1081	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
1082	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
1083	pr_debug("     pfn                 == 0x%016lX\n", pfn);
1084	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
1085	pr_debug("     size                == 0x%08lX\n",
1086			vma->vm_end - vma->vm_start);
1087
1088	page->user_address = (uint64_t __user *)vma->vm_start;
1089
1090	/* mapping the page to user process */
1091	ret = remap_pfn_range(vma, vma->vm_start, pfn,
1092			vma->vm_end - vma->vm_start, vma->vm_page_prot);
1093	if (!ret)
1094		p->signal_mapped_size = vma->vm_end - vma->vm_start;
1095
1096	return ret;
1097}
1098
1099/*
1100 * Assumes that p is not going away.
 
1101 */
1102static void lookup_events_by_type_and_signal(struct kfd_process *p,
1103		int type, void *event_data)
1104{
1105	struct kfd_hsa_memory_exception_data *ev_data;
1106	struct kfd_event *ev;
1107	uint32_t id;
1108	bool send_signal = true;
1109
1110	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
1111
1112	rcu_read_lock();
1113
1114	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1115	idr_for_each_entry_continue(&p->event_idr, ev, id)
1116		if (ev->type == type) {
1117			send_signal = false;
1118			dev_dbg(kfd_device,
1119					"Event found: id %X type %d",
1120					ev->event_id, ev->type);
1121			spin_lock(&ev->lock);
1122			set_event(ev);
1123			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
1124				ev->memory_exception_data = *ev_data;
1125			spin_unlock(&ev->lock);
1126		}
1127
1128	if (type == KFD_EVENT_TYPE_MEMORY) {
1129		dev_warn(kfd_device,
1130			"Sending SIGSEGV to process %d (pasid 0x%x)",
1131				p->lead_thread->pid, p->pasid);
1132		send_sig(SIGSEGV, p->lead_thread, 0);
1133	}
1134
1135	/* Send SIGTERM no event of type "type" has been found*/
1136	if (send_signal) {
1137		if (send_sigterm) {
1138			dev_warn(kfd_device,
1139				"Sending SIGTERM to process %d (pasid 0x%x)",
1140					p->lead_thread->pid, p->pasid);
1141			send_sig(SIGTERM, p->lead_thread, 0);
1142		} else {
1143			dev_err(kfd_device,
1144				"Process %d (pasid 0x%x) got unhandled exception",
1145				p->lead_thread->pid, p->pasid);
1146		}
1147	}
1148
1149	rcu_read_unlock();
1150}
1151
1152void kfd_signal_hw_exception_event(u32 pasid)
 
 
 
1153{
 
 
 
1154	/*
1155	 * Because we are called from arbitrary context (workqueue) as opposed
1156	 * to process context, kfd_process could attempt to exit while we are
1157	 * running so the lookup function increments the process ref count.
1158	 */
1159	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 
1160
1161	if (!p)
1162		return; /* Presumably process exited. */
1163
1164	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
1165	kfd_unref_process(p);
1166}
1167
1168void kfd_signal_vm_fault_event(struct kfd_node *dev, u32 pasid,
1169				struct kfd_vm_fault_info *info,
1170				struct kfd_hsa_memory_exception_data *data)
1171{
1172	struct kfd_event *ev;
1173	uint32_t id;
1174	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1175	struct kfd_hsa_memory_exception_data memory_exception_data;
1176	int user_gpu_id;
1177
1178	if (!p)
1179		return; /* Presumably process exited. */
1180
1181	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1182	if (unlikely(user_gpu_id == -EINVAL)) {
1183		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1184		return;
1185	}
1186
1187	/* SoC15 chips and onwards will pass in data from now on. */
1188	if (!data) {
1189		memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1190		memory_exception_data.gpu_id = user_gpu_id;
1191		memory_exception_data.failure.imprecise = true;
1192
1193		/* Set failure reason */
1194		if (info) {
1195			memory_exception_data.va = (info->page_addr) <<
1196								PAGE_SHIFT;
1197			memory_exception_data.failure.NotPresent =
1198				info->prot_valid ? 1 : 0;
1199			memory_exception_data.failure.NoExecute =
1200				info->prot_exec ? 1 : 0;
1201			memory_exception_data.failure.ReadOnly =
1202				info->prot_write ? 1 : 0;
1203			memory_exception_data.failure.imprecise = 0;
1204		}
1205	}
1206
1207	rcu_read_lock();
1208
1209	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1210	idr_for_each_entry_continue(&p->event_idr, ev, id)
1211		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1212			spin_lock(&ev->lock);
1213			ev->memory_exception_data = data ? *data :
1214							memory_exception_data;
1215			set_event(ev);
1216			spin_unlock(&ev->lock);
1217		}
1218
1219	rcu_read_unlock();
1220	kfd_unref_process(p);
1221}
1222
1223void kfd_signal_reset_event(struct kfd_node *dev)
1224{
1225	struct kfd_hsa_hw_exception_data hw_exception_data;
1226	struct kfd_hsa_memory_exception_data memory_exception_data;
1227	struct kfd_process *p;
1228	struct kfd_event *ev;
1229	unsigned int temp;
1230	uint32_t id, idx;
1231	int reset_cause = atomic_read(&dev->sram_ecc_flag) ?
1232			KFD_HW_EXCEPTION_ECC :
1233			KFD_HW_EXCEPTION_GPU_HANG;
1234
1235	/* Whole gpu reset caused by GPU hang and memory is lost */
1236	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1237	hw_exception_data.memory_lost = 1;
1238	hw_exception_data.reset_cause = reset_cause;
1239
1240	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1241	memory_exception_data.ErrorType = KFD_MEM_ERR_SRAM_ECC;
1242	memory_exception_data.failure.imprecise = true;
1243
1244	idx = srcu_read_lock(&kfd_processes_srcu);
1245	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1246		int user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1247
1248		if (unlikely(user_gpu_id == -EINVAL)) {
1249			WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1250			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251		}
 
1252
1253		rcu_read_lock();
 
1254
1255		id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1256		idr_for_each_entry_continue(&p->event_idr, ev, id) {
1257			if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1258				spin_lock(&ev->lock);
1259				ev->hw_exception_data = hw_exception_data;
1260				ev->hw_exception_data.gpu_id = user_gpu_id;
1261				set_event(ev);
1262				spin_unlock(&ev->lock);
1263			}
1264			if (ev->type == KFD_EVENT_TYPE_MEMORY &&
1265			    reset_cause == KFD_HW_EXCEPTION_ECC) {
1266				spin_lock(&ev->lock);
1267				ev->memory_exception_data = memory_exception_data;
1268				ev->memory_exception_data.gpu_id = user_gpu_id;
1269				set_event(ev);
1270				spin_unlock(&ev->lock);
1271			}
1272		}
1273
1274		rcu_read_unlock();
1275	}
1276	srcu_read_unlock(&kfd_processes_srcu, idx);
 
 
 
1277}
 
1278
1279void kfd_signal_poison_consumed_event(struct kfd_node *dev, u32 pasid)
1280{
 
 
 
 
 
1281	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
1282	struct kfd_hsa_memory_exception_data memory_exception_data;
1283	struct kfd_hsa_hw_exception_data hw_exception_data;
1284	struct kfd_event *ev;
1285	uint32_t id = KFD_FIRST_NONSIGNAL_EVENT_ID;
1286	int user_gpu_id;
1287
1288	if (!p) {
1289		dev_warn(dev->adev->dev, "Not find process with pasid:%d\n", pasid);
1290		return; /* Presumably process exited. */
1291	}
1292
1293	user_gpu_id = kfd_process_get_user_gpu_id(p, dev->id);
1294	if (unlikely(user_gpu_id == -EINVAL)) {
1295		WARN_ONCE(1, "Could not get user_gpu_id from dev->id:%x\n", dev->id);
1296		return;
1297	}
1298
1299	memset(&hw_exception_data, 0, sizeof(hw_exception_data));
1300	hw_exception_data.gpu_id = user_gpu_id;
1301	hw_exception_data.memory_lost = 1;
1302	hw_exception_data.reset_cause = KFD_HW_EXCEPTION_ECC;
1303
1304	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
1305	memory_exception_data.ErrorType = KFD_MEM_ERR_POISON_CONSUMED;
1306	memory_exception_data.gpu_id = user_gpu_id;
1307	memory_exception_data.failure.imprecise = true;
1308
1309	rcu_read_lock();
1310
1311	idr_for_each_entry_continue(&p->event_idr, ev, id) {
1312		if (ev->type == KFD_EVENT_TYPE_HW_EXCEPTION) {
1313			spin_lock(&ev->lock);
1314			ev->hw_exception_data = hw_exception_data;
1315			set_event(ev);
1316			spin_unlock(&ev->lock);
1317		}
1318
1319		if (ev->type == KFD_EVENT_TYPE_MEMORY) {
1320			spin_lock(&ev->lock);
1321			ev->memory_exception_data = memory_exception_data;
1322			set_event(ev);
1323			spin_unlock(&ev->lock);
1324		}
1325	}
1326
1327	dev_warn(dev->adev->dev, "Send SIGBUS to process %s(pasid:%d)\n",
1328		p->lead_thread->comm, pasid);
1329	rcu_read_unlock();
1330
1331	/* user application will handle SIGBUS signal */
1332	send_sig(SIGBUS, p->lead_thread, 0);
1333
 
1334	kfd_unref_process(p);
1335}
v4.17
 
  1/*
  2 * Copyright 2014 Advanced Micro Devices, Inc.
  3 *
  4 * Permission is hereby granted, free of charge, to any person obtaining a
  5 * copy of this software and associated documentation files (the "Software"),
  6 * to deal in the Software without restriction, including without limitation
  7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8 * and/or sell copies of the Software, and to permit persons to whom the
  9 * Software is furnished to do so, subject to the following conditions:
 10 *
 11 * The above copyright notice and this permission notice shall be included in
 12 * all copies or substantial portions of the Software.
 13 *
 14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 20 * OTHER DEALINGS IN THE SOFTWARE.
 21 */
 22
 23#include <linux/mm_types.h>
 24#include <linux/slab.h>
 25#include <linux/types.h>
 26#include <linux/sched/signal.h>
 27#include <linux/sched/mm.h>
 28#include <linux/uaccess.h>
 29#include <linux/mman.h>
 30#include <linux/memory.h>
 31#include "kfd_priv.h"
 32#include "kfd_events.h"
 33#include "kfd_iommu.h"
 34#include <linux/device.h>
 35
 36/*
 37 * Wrapper around wait_queue_entry_t
 38 */
 39struct kfd_event_waiter {
 40	wait_queue_entry_t wait;
 41	struct kfd_event *event; /* Event to wait for */
 42	bool activated;		 /* Becomes true when event is signaled */
 
 43};
 44
 45/*
 46 * Each signal event needs a 64-bit signal slot where the signaler will write
 47 * a 1 before sending an interrupt. (This is needed because some interrupts
 48 * do not contain enough spare data bits to identify an event.)
 49 * We get whole pages and map them to the process VA.
 50 * Individual signal events use their event_id as slot index.
 51 */
 52struct kfd_signal_page {
 53	uint64_t *kernel_address;
 54	uint64_t __user *user_address;
 55	bool need_to_free_pages;
 56};
 57
 58
 59static uint64_t *page_slots(struct kfd_signal_page *page)
 60{
 61	return page->kernel_address;
 62}
 63
 64static struct kfd_signal_page *allocate_signal_page(struct kfd_process *p)
 65{
 66	void *backing_store;
 67	struct kfd_signal_page *page;
 68
 69	page = kzalloc(sizeof(*page), GFP_KERNEL);
 70	if (!page)
 71		return NULL;
 72
 73	backing_store = (void *) __get_free_pages(GFP_KERNEL,
 74					get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
 75	if (!backing_store)
 76		goto fail_alloc_signal_store;
 77
 78	/* Initialize all events to unsignaled */
 79	memset(backing_store, (uint8_t) UNSIGNALED_EVENT_SLOT,
 80	       KFD_SIGNAL_EVENT_LIMIT * 8);
 81
 82	page->kernel_address = backing_store;
 83	page->need_to_free_pages = true;
 84	pr_debug("Allocated new event signal page at %p, for process %p\n",
 85			page, p);
 86
 87	return page;
 88
 89fail_alloc_signal_store:
 90	kfree(page);
 91	return NULL;
 92}
 93
 94static int allocate_event_notification_slot(struct kfd_process *p,
 95					    struct kfd_event *ev)
 
 96{
 97	int id;
 98
 99	if (!p->signal_page) {
100		p->signal_page = allocate_signal_page(p);
101		if (!p->signal_page)
102			return -ENOMEM;
103		/* Oldest user mode expects 256 event slots */
104		p->signal_mapped_size = 256*8;
105	}
106
107	/*
108	 * Compatibility with old user mode: Only use signal slots
109	 * user mode has mapped, may be less than
110	 * KFD_SIGNAL_EVENT_LIMIT. This also allows future increase
111	 * of the event limit without breaking user mode.
112	 */
113	id = idr_alloc(&p->event_idr, ev, 0, p->signal_mapped_size / 8,
114		       GFP_KERNEL);
 
 
 
 
 
115	if (id < 0)
116		return id;
117
118	ev->event_id = id;
119	page_slots(p->signal_page)[id] = UNSIGNALED_EVENT_SLOT;
120
121	return 0;
122}
123
124/*
125 * Assumes that p->event_mutex is held and of course that p is not going
126 * away (current or locked).
127 */
128static struct kfd_event *lookup_event_by_id(struct kfd_process *p, uint32_t id)
129{
130	return idr_find(&p->event_idr, id);
131}
132
133/**
134 * lookup_signaled_event_by_partial_id - Lookup signaled event from partial ID
135 * @p:     Pointer to struct kfd_process
136 * @id:    ID to look up
137 * @bits:  Number of valid bits in @id
138 *
139 * Finds the first signaled event with a matching partial ID. If no
140 * matching signaled event is found, returns NULL. In that case the
141 * caller should assume that the partial ID is invalid and do an
142 * exhaustive search of all siglaned events.
143 *
144 * If multiple events with the same partial ID signal at the same
145 * time, they will be found one interrupt at a time, not necessarily
146 * in the same order the interrupts occurred. As long as the number of
147 * interrupts is correct, all signaled events will be seen by the
148 * driver.
149 */
150static struct kfd_event *lookup_signaled_event_by_partial_id(
151	struct kfd_process *p, uint32_t id, uint32_t bits)
152{
153	struct kfd_event *ev;
154
155	if (!p->signal_page || id >= KFD_SIGNAL_EVENT_LIMIT)
156		return NULL;
157
158	/* Fast path for the common case that @id is not a partial ID
159	 * and we only need a single lookup.
160	 */
161	if (bits > 31 || (1U << bits) >= KFD_SIGNAL_EVENT_LIMIT) {
162		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
163			return NULL;
164
165		return idr_find(&p->event_idr, id);
166	}
167
168	/* General case for partial IDs: Iterate over all matching IDs
169	 * and find the first one that has signaled.
170	 */
171	for (ev = NULL; id < KFD_SIGNAL_EVENT_LIMIT && !ev; id += 1U << bits) {
172		if (page_slots(p->signal_page)[id] == UNSIGNALED_EVENT_SLOT)
173			continue;
174
175		ev = idr_find(&p->event_idr, id);
176	}
177
178	return ev;
179}
180
181static int create_signal_event(struct file *devkfd,
182				struct kfd_process *p,
183				struct kfd_event *ev)
184{
185	int ret;
186
187	if (p->signal_mapped_size &&
188	    p->signal_event_count == p->signal_mapped_size / 8) {
189		if (!p->signal_event_limit_reached) {
190			pr_warn("Signal event wasn't created because limit was reached\n");
191			p->signal_event_limit_reached = true;
192		}
193		return -ENOSPC;
194	}
195
196	ret = allocate_event_notification_slot(p, ev);
197	if (ret) {
198		pr_warn("Signal event wasn't created because out of kernel memory\n");
199		return ret;
200	}
201
202	p->signal_event_count++;
203
204	ev->user_signal_address = &p->signal_page->user_address[ev->event_id];
205	pr_debug("Signal event number %zu created with id %d, address %p\n",
206			p->signal_event_count, ev->event_id,
207			ev->user_signal_address);
208
209	return 0;
210}
211
212static int create_other_event(struct kfd_process *p, struct kfd_event *ev)
213{
214	/* Cast KFD_LAST_NONSIGNAL_EVENT to uint32_t. This allows an
215	 * intentional integer overflow to -1 without a compiler
216	 * warning. idr_alloc treats a negative value as "maximum
217	 * signed integer".
218	 */
219	int id = idr_alloc(&p->event_idr, ev, KFD_FIRST_NONSIGNAL_EVENT_ID,
220			   (uint32_t)KFD_LAST_NONSIGNAL_EVENT_ID + 1,
221			   GFP_KERNEL);
 
 
 
 
 
 
222
223	if (id < 0)
224		return id;
225	ev->event_id = id;
226
227	return 0;
228}
229
230void kfd_event_init_process(struct kfd_process *p)
231{
 
 
232	mutex_init(&p->event_mutex);
233	idr_init(&p->event_idr);
234	p->signal_page = NULL;
235	p->signal_event_count = 0;
 
 
 
 
 
 
 
 
 
 
236}
237
238static void destroy_event(struct kfd_process *p, struct kfd_event *ev)
239{
240	struct kfd_event_waiter *waiter;
241
242	/* Wake up pending waiters. They will return failure */
 
243	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
244		waiter->event = NULL;
245	wake_up_all(&ev->wq);
 
246
247	if (ev->type == KFD_EVENT_TYPE_SIGNAL ||
248	    ev->type == KFD_EVENT_TYPE_DEBUG)
249		p->signal_event_count--;
250
251	idr_remove(&p->event_idr, ev->event_id);
252	kfree(ev);
253}
254
255static void destroy_events(struct kfd_process *p)
256{
257	struct kfd_event *ev;
258	uint32_t id;
259
260	idr_for_each_entry(&p->event_idr, ev, id)
261		destroy_event(p, ev);
 
262	idr_destroy(&p->event_idr);
 
263}
264
265/*
266 * We assume that the process is being destroyed and there is no need to
267 * unmap the pages or keep bookkeeping data in order.
268 */
269static void shutdown_signal_page(struct kfd_process *p)
270{
271	struct kfd_signal_page *page = p->signal_page;
272
273	if (page) {
274		if (page->need_to_free_pages)
275			free_pages((unsigned long)page->kernel_address,
276				   get_order(KFD_SIGNAL_EVENT_LIMIT * 8));
277		kfree(page);
278	}
279}
280
281void kfd_event_free_process(struct kfd_process *p)
282{
283	destroy_events(p);
284	shutdown_signal_page(p);
285}
286
287static bool event_can_be_gpu_signaled(const struct kfd_event *ev)
288{
289	return ev->type == KFD_EVENT_TYPE_SIGNAL ||
290					ev->type == KFD_EVENT_TYPE_DEBUG;
291}
292
293static bool event_can_be_cpu_signaled(const struct kfd_event *ev)
294{
295	return ev->type == KFD_EVENT_TYPE_SIGNAL;
296}
297
298int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
299		       uint64_t size)
300{
301	struct kfd_signal_page *page;
302
303	if (p->signal_page)
304		return -EBUSY;
305
306	page = kzalloc(sizeof(*page), GFP_KERNEL);
307	if (!page)
308		return -ENOMEM;
309
310	/* Initialize all events to unsignaled */
311	memset(kernel_address, (uint8_t) UNSIGNALED_EVENT_SLOT,
312	       KFD_SIGNAL_EVENT_LIMIT * 8);
313
314	page->kernel_address = kernel_address;
315
316	p->signal_page = page;
317	p->signal_mapped_size = size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
318
319	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
320}
321
322int kfd_event_create(struct file *devkfd, struct kfd_process *p,
323		     uint32_t event_type, bool auto_reset, uint32_t node_id,
324		     uint32_t *event_id, uint32_t *event_trigger_data,
325		     uint64_t *event_page_offset, uint32_t *event_slot_index)
326{
327	int ret = 0;
328	struct kfd_event *ev = kzalloc(sizeof(*ev), GFP_KERNEL);
329
330	if (!ev)
331		return -ENOMEM;
332
333	ev->type = event_type;
334	ev->auto_reset = auto_reset;
335	ev->signaled = false;
336
 
337	init_waitqueue_head(&ev->wq);
338
339	*event_page_offset = 0;
340
341	mutex_lock(&p->event_mutex);
342
343	switch (event_type) {
344	case KFD_EVENT_TYPE_SIGNAL:
345	case KFD_EVENT_TYPE_DEBUG:
346		ret = create_signal_event(devkfd, p, ev);
347		if (!ret) {
348			*event_page_offset = KFD_MMAP_EVENTS_MASK;
349			*event_page_offset <<= PAGE_SHIFT;
350			*event_slot_index = ev->event_id;
351		}
352		break;
353	default:
354		ret = create_other_event(p, ev);
355		break;
356	}
357
358	if (!ret) {
359		*event_id = ev->event_id;
360		*event_trigger_data = ev->event_id;
 
361	} else {
362		kfree(ev);
363	}
364
365	mutex_unlock(&p->event_mutex);
366
367	return ret;
368}
369
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
370/* Assumes that p is current. */
371int kfd_event_destroy(struct kfd_process *p, uint32_t event_id)
372{
373	struct kfd_event *ev;
374	int ret = 0;
375
376	mutex_lock(&p->event_mutex);
377
378	ev = lookup_event_by_id(p, event_id);
379
380	if (ev)
381		destroy_event(p, ev);
382	else
383		ret = -EINVAL;
384
385	mutex_unlock(&p->event_mutex);
386	return ret;
387}
388
389static void set_event(struct kfd_event *ev)
390{
391	struct kfd_event_waiter *waiter;
392
393	/* Auto reset if the list is non-empty and we're waking
394	 * someone. waitqueue_active is safe here because we're
395	 * protected by the p->event_mutex, which is also held when
396	 * updating the wait queues in kfd_wait_on_events.
397	 */
398	ev->signaled = !ev->auto_reset || !waitqueue_active(&ev->wq);
 
 
 
 
 
399
400	list_for_each_entry(waiter, &ev->wq.head, wait.entry)
401		waiter->activated = true;
402
403	wake_up_all(&ev->wq);
404}
405
406/* Assumes that p is current. */
407int kfd_set_event(struct kfd_process *p, uint32_t event_id)
408{
409	int ret = 0;
410	struct kfd_event *ev;
411
412	mutex_lock(&p->event_mutex);
413
414	ev = lookup_event_by_id(p, event_id);
 
 
 
 
 
415
416	if (ev && event_can_be_cpu_signaled(ev))
417		set_event(ev);
418	else
419		ret = -EINVAL;
420
421	mutex_unlock(&p->event_mutex);
 
 
422	return ret;
423}
424
425static void reset_event(struct kfd_event *ev)
426{
427	ev->signaled = false;
428}
429
430/* Assumes that p is current. */
431int kfd_reset_event(struct kfd_process *p, uint32_t event_id)
432{
433	int ret = 0;
434	struct kfd_event *ev;
435
436	mutex_lock(&p->event_mutex);
437
438	ev = lookup_event_by_id(p, event_id);
 
 
 
 
 
439
440	if (ev && event_can_be_cpu_signaled(ev))
441		reset_event(ev);
442	else
443		ret = -EINVAL;
444
445	mutex_unlock(&p->event_mutex);
 
 
446	return ret;
447
448}
449
450static void acknowledge_signal(struct kfd_process *p, struct kfd_event *ev)
451{
452	page_slots(p->signal_page)[ev->event_id] = UNSIGNALED_EVENT_SLOT;
453}
454
455static void set_event_from_interrupt(struct kfd_process *p,
456					struct kfd_event *ev)
457{
458	if (ev && event_can_be_gpu_signaled(ev)) {
459		acknowledge_signal(p, ev);
 
460		set_event(ev);
 
461	}
462}
463
464void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
465				uint32_t valid_id_bits)
466{
467	struct kfd_event *ev = NULL;
468
469	/*
470	 * Because we are called from arbitrary context (workqueue) as opposed
471	 * to process context, kfd_process could attempt to exit while we are
472	 * running so the lookup function increments the process ref count.
473	 */
474	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
475
476	if (!p)
477		return; /* Presumably process exited. */
478
479	mutex_lock(&p->event_mutex);
480
481	if (valid_id_bits)
482		ev = lookup_signaled_event_by_partial_id(p, partial_id,
483							 valid_id_bits);
484	if (ev) {
485		set_event_from_interrupt(p, ev);
486	} else if (p->signal_page) {
487		/*
488		 * Partial ID lookup failed. Assume that the event ID
489		 * in the interrupt payload was invalid and do an
490		 * exhaustive search of signaled events.
491		 */
492		uint64_t *slots = page_slots(p->signal_page);
493		uint32_t id;
494
495		if (valid_id_bits)
496			pr_debug_ratelimited("Partial ID invalid: %u (%u valid bits)\n",
497					     partial_id, valid_id_bits);
498
499		if (p->signal_event_count < KFD_SIGNAL_EVENT_LIMIT/2) {
500			/* With relatively few events, it's faster to
501			 * iterate over the event IDR
502			 */
503			idr_for_each_entry(&p->event_idr, ev, id) {
504				if (id >= KFD_SIGNAL_EVENT_LIMIT)
505					break;
506
507				if (slots[id] != UNSIGNALED_EVENT_SLOT)
508					set_event_from_interrupt(p, ev);
509			}
510		} else {
511			/* With relatively many events, it's faster to
512			 * iterate over the signal slots and lookup
513			 * only signaled events from the IDR.
514			 */
515			for (id = 0; id < KFD_SIGNAL_EVENT_LIMIT; id++)
516				if (slots[id] != UNSIGNALED_EVENT_SLOT) {
517					ev = lookup_event_by_id(p, id);
518					set_event_from_interrupt(p, ev);
519				}
520		}
521	}
522
523	mutex_unlock(&p->event_mutex);
524	kfd_unref_process(p);
525}
526
527static struct kfd_event_waiter *alloc_event_waiters(uint32_t num_events)
528{
529	struct kfd_event_waiter *event_waiters;
530	uint32_t i;
531
532	event_waiters = kmalloc_array(num_events,
533					sizeof(struct kfd_event_waiter),
534					GFP_KERNEL);
 
535
536	for (i = 0; (event_waiters) && (i < num_events) ; i++) {
537		init_wait(&event_waiters[i].wait);
538		event_waiters[i].activated = false;
539	}
540
541	return event_waiters;
542}
543
544static int init_event_waiter_get_status(struct kfd_process *p,
545		struct kfd_event_waiter *waiter,
546		uint32_t event_id)
547{
548	struct kfd_event *ev = lookup_event_by_id(p, event_id);
549
550	if (!ev)
551		return -EINVAL;
552
 
553	waiter->event = ev;
554	waiter->activated = ev->signaled;
555	ev->signaled = ev->signaled && !ev->auto_reset;
556
557	return 0;
558}
559
560static void init_event_waiter_add_to_waitlist(struct kfd_event_waiter *waiter)
561{
562	struct kfd_event *ev = waiter->event;
 
563
564	/* Only add to the wait list if we actually need to
565	 * wait on this event.
566	 */
567	if (!waiter->activated)
568		add_wait_queue(&ev->wq, &waiter->wait);
 
 
 
569}
570
571/* test_event_condition - Test condition of events being waited for
572 * @all:           Return completion only if all events have signaled
573 * @num_events:    Number of events to wait for
574 * @event_waiters: Array of event waiters, one per event
575 *
576 * Returns KFD_IOC_WAIT_RESULT_COMPLETE if all (or one) event(s) have
577 * signaled. Returns KFD_IOC_WAIT_RESULT_TIMEOUT if no (or not all)
578 * events have signaled. Returns KFD_IOC_WAIT_RESULT_FAIL if any of
579 * the events have been destroyed.
580 */
581static uint32_t test_event_condition(bool all, uint32_t num_events,
582				struct kfd_event_waiter *event_waiters)
583{
584	uint32_t i;
585	uint32_t activated_count = 0;
586
587	for (i = 0; i < num_events; i++) {
588		if (!event_waiters[i].event)
589			return KFD_IOC_WAIT_RESULT_FAIL;
590
591		if (event_waiters[i].activated) {
592			if (!all)
593				return KFD_IOC_WAIT_RESULT_COMPLETE;
594
595			activated_count++;
596		}
597	}
598
599	return activated_count == num_events ?
600		KFD_IOC_WAIT_RESULT_COMPLETE : KFD_IOC_WAIT_RESULT_TIMEOUT;
601}
602
603/*
604 * Copy event specific data, if defined.
605 * Currently only memory exception events have additional data to copy to user
606 */
607static int copy_signaled_event_data(uint32_t num_events,
608		struct kfd_event_waiter *event_waiters,
609		struct kfd_event_data __user *data)
610{
611	struct kfd_hsa_memory_exception_data *src;
612	struct kfd_hsa_memory_exception_data __user *dst;
613	struct kfd_event_waiter *waiter;
614	struct kfd_event *event;
615	uint32_t i;
616
617	for (i = 0; i < num_events; i++) {
618		waiter = &event_waiters[i];
619		event = waiter->event;
620		if (waiter->activated && event->type == KFD_EVENT_TYPE_MEMORY) {
621			dst = &data[i].memory_exception_data;
622			src = &event->memory_exception_data;
623			if (copy_to_user(dst, src,
624				sizeof(struct kfd_hsa_memory_exception_data)))
 
 
 
 
 
 
 
 
 
 
 
 
 
625				return -EFAULT;
626		}
627	}
628
629	return 0;
630
631}
632
633
634
635static long user_timeout_to_jiffies(uint32_t user_timeout_ms)
636{
637	if (user_timeout_ms == KFD_EVENT_TIMEOUT_IMMEDIATE)
638		return 0;
639
640	if (user_timeout_ms == KFD_EVENT_TIMEOUT_INFINITE)
641		return MAX_SCHEDULE_TIMEOUT;
642
643	/*
644	 * msecs_to_jiffies interprets all values above 2^31-1 as infinite,
645	 * but we consider them finite.
646	 * This hack is wrong, but nobody is likely to notice.
647	 */
648	user_timeout_ms = min_t(uint32_t, user_timeout_ms, 0x7FFFFFFF);
649
650	return msecs_to_jiffies(user_timeout_ms) + 1;
651}
652
653static void free_waiters(uint32_t num_events, struct kfd_event_waiter *waiters)
 
654{
655	uint32_t i;
656
657	for (i = 0; i < num_events; i++)
658		if (waiters[i].event)
 
659			remove_wait_queue(&waiters[i].event->wq,
660					  &waiters[i].wait);
 
 
 
 
 
661
662	kfree(waiters);
663}
664
665int kfd_wait_on_events(struct kfd_process *p,
666		       uint32_t num_events, void __user *data,
667		       bool all, uint32_t user_timeout_ms,
668		       uint32_t *wait_result)
669{
670	struct kfd_event_data __user *events =
671			(struct kfd_event_data __user *) data;
672	uint32_t i;
673	int ret = 0;
674
675	struct kfd_event_waiter *event_waiters = NULL;
676	long timeout = user_timeout_to_jiffies(user_timeout_ms);
677
678	event_waiters = alloc_event_waiters(num_events);
679	if (!event_waiters) {
680		ret = -ENOMEM;
681		goto out;
682	}
683
 
 
 
684	mutex_lock(&p->event_mutex);
685
686	for (i = 0; i < num_events; i++) {
687		struct kfd_event_data event_data;
688
689		if (copy_from_user(&event_data, &events[i],
690				sizeof(struct kfd_event_data))) {
691			ret = -EFAULT;
692			goto out_unlock;
693		}
694
695		ret = init_event_waiter_get_status(p, &event_waiters[i],
696				event_data.event_id);
697		if (ret)
698			goto out_unlock;
699	}
700
701	/* Check condition once. */
702	*wait_result = test_event_condition(all, num_events, event_waiters);
703	if (*wait_result == KFD_IOC_WAIT_RESULT_COMPLETE) {
704		ret = copy_signaled_event_data(num_events,
705					       event_waiters, events);
706		goto out_unlock;
707	} else if (WARN_ON(*wait_result == KFD_IOC_WAIT_RESULT_FAIL)) {
708		/* This should not happen. Events shouldn't be
709		 * destroyed while we're holding the event_mutex
710		 */
711		goto out_unlock;
712	}
713
714	/* Add to wait lists if we need to wait. */
715	for (i = 0; i < num_events; i++)
716		init_event_waiter_add_to_waitlist(&event_waiters[i]);
717
718	mutex_unlock(&p->event_mutex);
719
720	while (true) {
721		if (fatal_signal_pending(current)) {
722			ret = -EINTR;
723			break;
724		}
725
726		if (signal_pending(current)) {
727			/*
728			 * This is wrong when a nonzero, non-infinite timeout
729			 * is specified. We need to use
730			 * ERESTARTSYS_RESTARTBLOCK, but struct restart_block
731			 * contains a union with data for each user and it's
732			 * in generic kernel code that I don't want to
733			 * touch yet.
734			 */
735			ret = -ERESTARTSYS;
 
 
 
 
736			break;
737		}
738
739		/* Set task state to interruptible sleep before
740		 * checking wake-up conditions. A concurrent wake-up
741		 * will put the task back into runnable state. In that
742		 * case schedule_timeout will not put the task to
743		 * sleep and we'll get a chance to re-check the
744		 * updated conditions almost immediately. Otherwise,
745		 * this race condition would lead to a soft hang or a
746		 * very long sleep.
747		 */
748		set_current_state(TASK_INTERRUPTIBLE);
749
750		*wait_result = test_event_condition(all, num_events,
751						    event_waiters);
752		if (*wait_result != KFD_IOC_WAIT_RESULT_TIMEOUT)
753			break;
754
755		if (timeout <= 0)
756			break;
757
758		timeout = schedule_timeout(timeout);
759	}
760	__set_current_state(TASK_RUNNING);
761
 
762	/* copy_signaled_event_data may sleep. So this has to happen
763	 * after the task state is set back to RUNNING.
 
 
 
 
 
764	 */
765	if (!ret && *wait_result == KFD_IOC_WAIT_RESULT_COMPLETE)
766		ret = copy_signaled_event_data(num_events,
767					       event_waiters, events);
768
769	mutex_lock(&p->event_mutex);
770out_unlock:
771	free_waiters(num_events, event_waiters);
772	mutex_unlock(&p->event_mutex);
773out:
774	if (ret)
775		*wait_result = KFD_IOC_WAIT_RESULT_FAIL;
776	else if (*wait_result == KFD_IOC_WAIT_RESULT_FAIL)
777		ret = -EIO;
778
779	return ret;
780}
781
782int kfd_event_mmap(struct kfd_process *p, struct vm_area_struct *vma)
783{
784	unsigned long pfn;
785	struct kfd_signal_page *page;
786	int ret;
787
788	/* check required size doesn't exceed the allocated size */
789	if (get_order(KFD_SIGNAL_EVENT_LIMIT * 8) <
790			get_order(vma->vm_end - vma->vm_start)) {
791		pr_err("Event page mmap requested illegal size\n");
792		return -EINVAL;
793	}
794
795	page = p->signal_page;
796	if (!page) {
797		/* Probably KFD bug, but mmap is user-accessible. */
798		pr_debug("Signal page could not be found\n");
799		return -EINVAL;
800	}
801
802	pfn = __pa(page->kernel_address);
803	pfn >>= PAGE_SHIFT;
804
805	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE
806		       | VM_DONTDUMP | VM_PFNMAP;
807
808	pr_debug("Mapping signal page\n");
809	pr_debug("     start user address  == 0x%08lx\n", vma->vm_start);
810	pr_debug("     end user address    == 0x%08lx\n", vma->vm_end);
811	pr_debug("     pfn                 == 0x%016lX\n", pfn);
812	pr_debug("     vm_flags            == 0x%08lX\n", vma->vm_flags);
813	pr_debug("     size                == 0x%08lX\n",
814			vma->vm_end - vma->vm_start);
815
816	page->user_address = (uint64_t __user *)vma->vm_start;
817
818	/* mapping the page to user process */
819	ret = remap_pfn_range(vma, vma->vm_start, pfn,
820			vma->vm_end - vma->vm_start, vma->vm_page_prot);
821	if (!ret)
822		p->signal_mapped_size = vma->vm_end - vma->vm_start;
823
824	return ret;
825}
826
827/*
828 * Assumes that p->event_mutex is held and of course
829 * that p is not going away (current or locked).
830 */
831static void lookup_events_by_type_and_signal(struct kfd_process *p,
832		int type, void *event_data)
833{
834	struct kfd_hsa_memory_exception_data *ev_data;
835	struct kfd_event *ev;
836	uint32_t id;
837	bool send_signal = true;
838
839	ev_data = (struct kfd_hsa_memory_exception_data *) event_data;
840
 
 
841	id = KFD_FIRST_NONSIGNAL_EVENT_ID;
842	idr_for_each_entry_continue(&p->event_idr, ev, id)
843		if (ev->type == type) {
844			send_signal = false;
845			dev_dbg(kfd_device,
846					"Event found: id %X type %d",
847					ev->event_id, ev->type);
 
848			set_event(ev);
849			if (ev->type == KFD_EVENT_TYPE_MEMORY && ev_data)
850				ev->memory_exception_data = *ev_data;
 
851		}
852
 
 
 
 
 
 
 
853	/* Send SIGTERM no event of type "type" has been found*/
854	if (send_signal) {
855		if (send_sigterm) {
856			dev_warn(kfd_device,
857				"Sending SIGTERM to HSA Process with PID %d ",
858					p->lead_thread->pid);
859			send_sig(SIGTERM, p->lead_thread, 0);
860		} else {
861			dev_err(kfd_device,
862				"HSA Process (PID %d) got unhandled exception",
863				p->lead_thread->pid);
864		}
865	}
 
 
866}
867
868#ifdef KFD_SUPPORT_IOMMU_V2
869void kfd_signal_iommu_event(struct kfd_dev *dev, unsigned int pasid,
870		unsigned long address, bool is_write_requested,
871		bool is_execute_requested)
872{
873	struct kfd_hsa_memory_exception_data memory_exception_data;
874	struct vm_area_struct *vma;
875
876	/*
877	 * Because we are called from arbitrary context (workqueue) as opposed
878	 * to process context, kfd_process could attempt to exit while we are
879	 * running so the lookup function increments the process ref count.
880	 */
881	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
882	struct mm_struct *mm;
883
884	if (!p)
885		return; /* Presumably process exited. */
886
887	/* Take a safe reference to the mm_struct, which may otherwise
888	 * disappear even while the kfd_process is still referenced.
889	 */
890	mm = get_task_mm(p->lead_thread);
891	if (!mm) {
892		kfd_unref_process(p);
893		return; /* Process is exiting */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
894	}
895
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
896	memset(&memory_exception_data, 0, sizeof(memory_exception_data));
 
 
897
898	down_read(&mm->mmap_sem);
899	vma = find_vma(mm, address);
 
900
901	memory_exception_data.gpu_id = dev->id;
902	memory_exception_data.va = address;
903	/* Set failure reason */
904	memory_exception_data.failure.NotPresent = 1;
905	memory_exception_data.failure.NoExecute = 0;
906	memory_exception_data.failure.ReadOnly = 0;
907	if (vma) {
908		if (vma->vm_start > address) {
909			memory_exception_data.failure.NotPresent = 1;
910			memory_exception_data.failure.NoExecute = 0;
911			memory_exception_data.failure.ReadOnly = 0;
912		} else {
913			memory_exception_data.failure.NotPresent = 0;
914			if (is_write_requested && !(vma->vm_flags & VM_WRITE))
915				memory_exception_data.failure.ReadOnly = 1;
916			else
917				memory_exception_data.failure.ReadOnly = 0;
918			if (is_execute_requested && !(vma->vm_flags & VM_EXEC))
919				memory_exception_data.failure.NoExecute = 1;
920			else
921				memory_exception_data.failure.NoExecute = 0;
922		}
923	}
924
925	up_read(&mm->mmap_sem);
926	mmput(mm);
927
928	mutex_lock(&p->event_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
929
930	/* Lookup events by type and signal them */
931	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_MEMORY,
932			&memory_exception_data);
933
934	mutex_unlock(&p->event_mutex);
935	kfd_unref_process(p);
936}
937#endif /* KFD_SUPPORT_IOMMU_V2 */
938
939void kfd_signal_hw_exception_event(unsigned int pasid)
940{
941	/*
942	 * Because we are called from arbitrary context (workqueue) as opposed
943	 * to process context, kfd_process could attempt to exit while we are
944	 * running so the lookup function increments the process ref count.
945	 */
946	struct kfd_process *p = kfd_lookup_process_by_pasid(pasid);
 
 
 
 
 
947
948	if (!p)
 
949		return; /* Presumably process exited. */
 
 
 
 
 
 
 
950
951	mutex_lock(&p->event_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
952
953	/* Lookup events by type and signal them */
954	lookup_events_by_type_and_signal(p, KFD_EVENT_TYPE_HW_EXCEPTION, NULL);
955
956	mutex_unlock(&p->event_mutex);
957	kfd_unref_process(p);
958}