Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com>
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/kmemleak.h>
  35#include <linux/moduleparam.h>
  36#include <linux/panic.h>
  37#include <linux/panic_notifier.h>
  38#include <linux/percpu.h>
  39#include <linux/notifier.h>
  40#include <linux/cpu.h>
  41#include <linux/mutex.h>
  42#include <linux/time.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/wait.h>
  45#include <linux/kthread.h>
  46#include <uapi/linux/sched/types.h>
  47#include <linux/prefetch.h>
  48#include <linux/delay.h>
 
  49#include <linux/random.h>
  50#include <linux/trace_events.h>
  51#include <linux/suspend.h>
  52#include <linux/ftrace.h>
  53#include <linux/tick.h>
  54#include <linux/sysrq.h>
  55#include <linux/kprobes.h>
  56#include <linux/gfp.h>
  57#include <linux/oom.h>
  58#include <linux/smpboot.h>
  59#include <linux/jiffies.h>
  60#include <linux/slab.h>
  61#include <linux/sched/isolation.h>
  62#include <linux/sched/clock.h>
  63#include <linux/vmalloc.h>
  64#include <linux/mm.h>
  65#include <linux/kasan.h>
  66#include <linux/context_tracking.h>
  67#include "../time/tick-internal.h"
  68
  69#include "tree.h"
  70#include "rcu.h"
  71
  72#ifdef MODULE_PARAM_PREFIX
  73#undef MODULE_PARAM_PREFIX
  74#endif
  75#define MODULE_PARAM_PREFIX "rcutree."
  76
  77/* Data structures. */
  78
  79static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  80	.gpwrap = true,
  81#ifdef CONFIG_RCU_NOCB_CPU
  82	.cblist.flags = SEGCBLIST_RCU_CORE,
 
 
 
 
 
 
 
 
 
 
 
 
  83#endif
  84};
  85static struct rcu_state rcu_state = {
  86	.level = { &rcu_state.node[0] },
  87	.gp_state = RCU_GP_IDLE,
  88	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  89	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  90	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
  91	.name = RCU_NAME,
  92	.abbr = RCU_ABBR,
  93	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  94	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  95	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
  96};
 
 
 
 
 
 
 
 
 
 
  97
  98/* Dump rcu_node combining tree at boot to verify correct setup. */
  99static bool dump_tree;
 100module_param(dump_tree, bool, 0444);
 101/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 102static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 103#ifndef CONFIG_PREEMPT_RT
 104module_param(use_softirq, bool, 0444);
 105#endif
 106/* Control rcu_node-tree auto-balancing at boot time. */
 107static bool rcu_fanout_exact;
 108module_param(rcu_fanout_exact, bool, 0444);
 109/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 110static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 111module_param(rcu_fanout_leaf, int, 0444);
 112int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 113/* Number of rcu_nodes at specified level. */
 114int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 115int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 
 
 116
 117/*
 118 * The rcu_scheduler_active variable is initialized to the value
 119 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 120 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 121 * RCU can assume that there is but one task, allowing RCU to (for example)
 122 * optimize synchronize_rcu() to a simple barrier().  When this variable
 123 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 124 * to detect real grace periods.  This variable is also used to suppress
 125 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 126 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 127 * is fully initialized, including all of its kthreads having been spawned.
 128 */
 129int rcu_scheduler_active __read_mostly;
 130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 131
 132/*
 133 * The rcu_scheduler_fully_active variable transitions from zero to one
 134 * during the early_initcall() processing, which is after the scheduler
 135 * is capable of creating new tasks.  So RCU processing (for example,
 136 * creating tasks for RCU priority boosting) must be delayed until after
 137 * rcu_scheduler_fully_active transitions from zero to one.  We also
 138 * currently delay invocation of any RCU callbacks until after this point.
 139 *
 140 * It might later prove better for people registering RCU callbacks during
 141 * early boot to take responsibility for these callbacks, but one step at
 142 * a time.
 143 */
 144static int rcu_scheduler_fully_active __read_mostly;
 145
 146static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 147			      unsigned long gps, unsigned long flags);
 148static struct task_struct *rcu_boost_task(struct rcu_node *rnp);
 149static void invoke_rcu_core(void);
 150static void rcu_report_exp_rdp(struct rcu_data *rdp);
 
 
 151static void sync_sched_exp_online_cleanup(int cpu);
 152static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 153static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 154static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
 155static bool rcu_init_invoked(void);
 156static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 157static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 158
 159/*
 160 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
 161 * real-time priority(enabling/disabling) is controlled by
 162 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
 163 */
 164static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 165module_param(kthread_prio, int, 0444);
 166
 167/* Delay in jiffies for grace-period initialization delays, debug only. */
 168
 169static int gp_preinit_delay;
 170module_param(gp_preinit_delay, int, 0444);
 171static int gp_init_delay;
 172module_param(gp_init_delay, int, 0444);
 173static int gp_cleanup_delay;
 174module_param(gp_cleanup_delay, int, 0444);
 175
 176// Add delay to rcu_read_unlock() for strict grace periods.
 177static int rcu_unlock_delay;
 178#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 179module_param(rcu_unlock_delay, int, 0444);
 180#endif
 181
 182/*
 183 * This rcu parameter is runtime-read-only. It reflects
 184 * a minimum allowed number of objects which can be cached
 185 * per-CPU. Object size is equal to one page. This value
 186 * can be changed at boot time.
 187 */
 188static int rcu_min_cached_objs = 5;
 189module_param(rcu_min_cached_objs, int, 0444);
 190
 191// A page shrinker can ask for pages to be freed to make them
 192// available for other parts of the system. This usually happens
 193// under low memory conditions, and in that case we should also
 194// defer page-cache filling for a short time period.
 195//
 196// The default value is 5 seconds, which is long enough to reduce
 197// interference with the shrinker while it asks other systems to
 198// drain their caches.
 199static int rcu_delay_page_cache_fill_msec = 5000;
 200module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 201
 202/* Retrieve RCU kthreads priority for rcutorture */
 203int rcu_get_gp_kthreads_prio(void)
 204{
 205	return kthread_prio;
 206}
 207EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 208
 209/*
 210 * Number of grace periods between delays, normalized by the duration of
 211 * the delay.  The longer the delay, the more the grace periods between
 212 * each delay.  The reason for this normalization is that it means that,
 213 * for non-zero delays, the overall slowdown of grace periods is constant
 214 * regardless of the duration of the delay.  This arrangement balances
 215 * the need for long delays to increase some race probabilities with the
 216 * need for fast grace periods to increase other race probabilities.
 217 */
 218#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219
 220/*
 221 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 222 * permit this function to be invoked without holding the root rcu_node
 223 * structure's ->lock, but of course results can be subject to change.
 224 */
 225static int rcu_gp_in_progress(void)
 226{
 227	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 228}
 229
 230/*
 231 * Return the number of callbacks queued on the specified CPU.
 232 * Handles both the nocbs and normal cases.
 
 
 233 */
 234static long rcu_get_n_cbs_cpu(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 235{
 236	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 
 
 
 
 
 
 
 237
 238	if (rcu_segcblist_is_enabled(&rdp->cblist))
 239		return rcu_segcblist_n_cbs(&rdp->cblist);
 240	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 241}
 242
 243void rcu_softirq_qs(void)
 
 
 
 
 244{
 245	rcu_qs();
 246	rcu_preempt_deferred_qs(current);
 247	rcu_tasks_qs(current, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248}
 249
 250/*
 251 * Reset the current CPU's ->dynticks counter to indicate that the
 252 * newly onlined CPU is no longer in an extended quiescent state.
 253 * This will either leave the counter unchanged, or increment it
 254 * to the next non-quiescent value.
 255 *
 256 * The non-atomic test/increment sequence works because the upper bits
 257 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 258 * or when the corresponding CPU is offline.
 259 */
 260static void rcu_dynticks_eqs_online(void)
 261{
 262	if (ct_dynticks() & RCU_DYNTICKS_IDX)
 
 
 263		return;
 264	ct_state_inc(RCU_DYNTICKS_IDX);
 
 
 
 
 
 
 
 
 
 
 
 
 265}
 266
 267/*
 268 * Snapshot the ->dynticks counter with full ordering so as to allow
 269 * stable comparison of this counter with past and future snapshots.
 270 */
 271static int rcu_dynticks_snap(int cpu)
 272{
 273	smp_mb();  // Fundamental RCU ordering guarantee.
 274	return ct_dynticks_cpu_acquire(cpu);
 
 275}
 276
 277/*
 278 * Return true if the snapshot returned from rcu_dynticks_snap()
 279 * indicates that RCU is in an extended quiescent state.
 280 */
 281static bool rcu_dynticks_in_eqs(int snap)
 282{
 283	return !(snap & RCU_DYNTICKS_IDX);
 284}
 285
 286/*
 287 * Return true if the CPU corresponding to the specified rcu_data
 288 * structure has spent some time in an extended quiescent state since
 289 * rcu_dynticks_snap() returned the specified snapshot.
 290 */
 291static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 292{
 293	return snap != rcu_dynticks_snap(rdp->cpu);
 294}
 295
 296/*
 297 * Return true if the referenced integer is zero while the specified
 298 * CPU remains within a single extended quiescent state.
 299 */
 300bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
 301{
 302	int snap;
 
 
 303
 304	// If not quiescent, force back to earlier extended quiescent state.
 305	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
 306	smp_rmb(); // Order ->dynticks and *vp reads.
 307	if (READ_ONCE(*vp))
 308		return false;  // Non-zero, so report failure;
 309	smp_rmb(); // Order *vp read and ->dynticks re-read.
 
 
 
 
 
 
 
 
 
 
 310
 311	// If still in the same extended quiescent state, we are good!
 312	return snap == ct_dynticks_cpu(cpu);
 
 
 
 
 
 313}
 314
 315/*
 316 * Let the RCU core know that this CPU has gone through the scheduler,
 317 * which is a quiescent state.  This is called when the need for a
 318 * quiescent state is urgent, so we burn an atomic operation and full
 319 * memory barriers to let the RCU core know about it, regardless of what
 320 * this CPU might (or might not) do in the near future.
 321 *
 322 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 323 *
 324 * The caller must have disabled interrupts and must not be idle.
 325 */
 326notrace void rcu_momentary_dyntick_idle(void)
 327{
 328	int seq;
 
 
 329
 330	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 331	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
 332	/* It is illegal to call this from idle state. */
 333	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
 334	rcu_preempt_deferred_qs(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335}
 336EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
 337
 338/**
 339 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 
 
 
 
 
 340 *
 341 * If the current CPU is idle and running at a first-level (not nested)
 342 * interrupt, or directly, from idle, return true.
 
 343 *
 344 * The caller must have at least disabled IRQs.
 345 */
 346static int rcu_is_cpu_rrupt_from_idle(void)
 347{
 348	long nesting;
 349
 350	/*
 351	 * Usually called from the tick; but also used from smp_function_call()
 352	 * for expedited grace periods. This latter can result in running from
 353	 * the idle task, instead of an actual IPI.
 354	 */
 355	lockdep_assert_irqs_disabled();
 356
 357	/* Check for counter underflows */
 358	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
 359			 "RCU dynticks_nesting counter underflow!");
 360	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
 361			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 362
 363	/* Are we at first interrupt nesting level? */
 364	nesting = ct_dynticks_nmi_nesting();
 365	if (nesting > 1)
 366		return false;
 367
 368	/*
 369	 * If we're not in an interrupt, we must be in the idle task!
 370	 */
 371	WARN_ON_ONCE(!nesting && !is_idle_task(current));
 372
 373	/* Does CPU appear to be idle from an RCU standpoint? */
 374	return ct_dynticks_nesting() == 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 375}
 
 376
 377#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 378				// Maximum callbacks per rcu_do_batch ...
 379#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 380static long blimit = DEFAULT_RCU_BLIMIT;
 381#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 382static long qhimark = DEFAULT_RCU_QHIMARK;
 383#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 384static long qlowmark = DEFAULT_RCU_QLOMARK;
 385#define DEFAULT_RCU_QOVLD_MULT 2
 386#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 387static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 388static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
 389
 390module_param(blimit, long, 0444);
 391module_param(qhimark, long, 0444);
 392module_param(qlowmark, long, 0444);
 393module_param(qovld, long, 0444);
 394
 395static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 396static ulong jiffies_till_next_fqs = ULONG_MAX;
 397static bool rcu_kick_kthreads;
 398static int rcu_divisor = 7;
 399module_param(rcu_divisor, int, 0644);
 400
 401/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 402static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 403module_param(rcu_resched_ns, long, 0644);
 404
 405/*
 406 * How long the grace period must be before we start recruiting
 407 * quiescent-state help from rcu_note_context_switch().
 408 */
 409static ulong jiffies_till_sched_qs = ULONG_MAX;
 410module_param(jiffies_till_sched_qs, ulong, 0444);
 411static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 412module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 
 
 
 
 413
 414/*
 415 * Make sure that we give the grace-period kthread time to detect any
 416 * idle CPUs before taking active measures to force quiescent states.
 417 * However, don't go below 100 milliseconds, adjusted upwards for really
 418 * large systems.
 419 */
 420static void adjust_jiffies_till_sched_qs(void)
 421{
 422	unsigned long j;
 423
 424	/* If jiffies_till_sched_qs was specified, respect the request. */
 425	if (jiffies_till_sched_qs != ULONG_MAX) {
 426		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 427		return;
 428	}
 429	/* Otherwise, set to third fqs scan, but bound below on large system. */
 430	j = READ_ONCE(jiffies_till_first_fqs) +
 431		      2 * READ_ONCE(jiffies_till_next_fqs);
 432	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 433		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 434	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 435	WRITE_ONCE(jiffies_to_sched_qs, j);
 436}
 437
 438static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 439{
 440	ulong j;
 441	int ret = kstrtoul(val, 0, &j);
 442
 443	if (!ret) {
 444		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 445		adjust_jiffies_till_sched_qs();
 446	}
 447	return ret;
 448}
 
 449
 450static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 
 
 
 451{
 452	ulong j;
 453	int ret = kstrtoul(val, 0, &j);
 454
 455	if (!ret) {
 456		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 457		adjust_jiffies_till_sched_qs();
 458	}
 459	return ret;
 460}
 
 461
 462static const struct kernel_param_ops first_fqs_jiffies_ops = {
 463	.set = param_set_first_fqs_jiffies,
 464	.get = param_get_ulong,
 465};
 466
 467static const struct kernel_param_ops next_fqs_jiffies_ops = {
 468	.set = param_set_next_fqs_jiffies,
 469	.get = param_get_ulong,
 470};
 471
 472module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 473module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 474module_param(rcu_kick_kthreads, bool, 0644);
 
 
 
 
 
 475
 476static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 477static int rcu_pending(int user);
 
 
 
 
 
 
 478
 479/*
 480 * Return the number of RCU GPs completed thus far for debug & stats.
 481 */
 482unsigned long rcu_get_gp_seq(void)
 483{
 484	return READ_ONCE(rcu_state.gp_seq);
 485}
 486EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 487
 488/*
 489 * Return the number of RCU expedited batches completed thus far for
 490 * debug & stats.  Odd numbers mean that a batch is in progress, even
 491 * numbers mean idle.  The value returned will thus be roughly double
 492 * the cumulative batches since boot.
 493 */
 494unsigned long rcu_exp_batches_completed(void)
 495{
 496	return rcu_state.expedited_sequence;
 497}
 498EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 499
 500/*
 501 * Return the root node of the rcu_state structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 502 */
 503static struct rcu_node *rcu_get_root(void)
 504{
 505	return &rcu_state.node[0];
 506}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 507
 508/*
 509 * Send along grace-period-related data for rcutorture diagnostics.
 510 */
 511void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 512			    unsigned long *gp_seq)
 513{
 
 
 514	switch (test_type) {
 515	case RCU_FLAVOR:
 516		*flags = READ_ONCE(rcu_state.gp_flags);
 517		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 
 
 
 
 
 518		break;
 519	default:
 520		break;
 521	}
 
 
 
 
 
 522}
 523EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 524
 525#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
 526/*
 527 * An empty function that will trigger a reschedule on
 528 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 
 529 */
 530static void late_wakeup_func(struct irq_work *work)
 531{
 
 532}
 
 533
 534static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 535	IRQ_WORK_INIT(late_wakeup_func);
 
 
 
 
 
 536
 537/*
 538 * If either:
 539 *
 540 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 541 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 542 *
 543 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 544 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 545 * get re-enabled again.
 546 */
 547noinstr void rcu_irq_work_resched(void)
 548{
 549	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 550
 551	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 552		return;
 
 553
 554	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 555		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556
 557	instrumentation_begin();
 558	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 559		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 
 
 
 
 560	}
 561	instrumentation_end();
 
 
 
 
 
 
 
 
 
 
 
 562}
 563#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
 564
 565#ifdef CONFIG_PROVE_RCU
 566/**
 567 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 
 
 
 
 
 
 
 
 568 */
 569void rcu_irq_exit_check_preempt(void)
 570{
 571	lockdep_assert_irqs_disabled();
 572
 573	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
 574			 "RCU dynticks_nesting counter underflow/zero!");
 575	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
 576			 DYNTICK_IRQ_NONIDLE,
 577			 "Bad RCU  dynticks_nmi_nesting counter\n");
 578	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 579			 "RCU in extended quiescent state!");
 580}
 581#endif /* #ifdef CONFIG_PROVE_RCU */
 582
 583#ifdef CONFIG_NO_HZ_FULL
 584/**
 585 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 586 *
 587 * The scheduler tick is not normally enabled when CPUs enter the kernel
 588 * from nohz_full userspace execution.  After all, nohz_full userspace
 589 * execution is an RCU quiescent state and the time executing in the kernel
 590 * is quite short.  Except of course when it isn't.  And it is not hard to
 591 * cause a large system to spend tens of seconds or even minutes looping
 592 * in the kernel, which can cause a number of problems, include RCU CPU
 593 * stall warnings.
 594 *
 595 * Therefore, if a nohz_full CPU fails to report a quiescent state
 596 * in a timely manner, the RCU grace-period kthread sets that CPU's
 597 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 598 * exception will invoke this function, which will turn on the scheduler
 599 * tick, which will enable RCU to detect that CPU's quiescent states,
 600 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 601 * The tick will be disabled once a quiescent state is reported for
 602 * this CPU.
 603 *
 604 * Of course, in carefully tuned systems, there might never be an
 605 * interrupt or exception.  In that case, the RCU grace-period kthread
 606 * will eventually cause one to happen.  However, in less carefully
 607 * controlled environments, this function allows RCU to get what it
 608 * needs without creating otherwise useless interruptions.
 609 */
 610void __rcu_irq_enter_check_tick(void)
 611{
 612	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 
 613
 614	// If we're here from NMI there's nothing to do.
 615	if (in_nmi())
 616		return;
 
 
 
 
 
 
 
 
 
 
 
 617
 618	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 619			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 
 
 
 
 
 620
 621	if (!tick_nohz_full_cpu(rdp->cpu) ||
 622	    !READ_ONCE(rdp->rcu_urgent_qs) ||
 623	    READ_ONCE(rdp->rcu_forced_tick)) {
 624		// RCU doesn't need nohz_full help from this CPU, or it is
 625		// already getting that help.
 
 
 
 626		return;
 627	}
 628
 629	// We get here only when not in an extended quiescent state and
 630	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
 631	// already watching and (2) The fact that we are in an interrupt
 632	// handler and that the rcu_node lock is an irq-disabled lock
 633	// prevents self-deadlock.  So we can safely recheck under the lock.
 634	// Note that the nohz_full state currently cannot change.
 635	raw_spin_lock_rcu_node(rdp->mynode);
 636	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
 637		// A nohz_full CPU is in the kernel and RCU needs a
 638		// quiescent state.  Turn on the tick!
 639		WRITE_ONCE(rdp->rcu_forced_tick, true);
 640		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 641	}
 642	raw_spin_unlock_rcu_node(rdp->mynode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 643}
 644NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
 645#endif /* CONFIG_NO_HZ_FULL */
 646
 647/*
 648 * Check to see if any future non-offloaded RCU-related work will need
 649 * to be done by the current CPU, even if none need be done immediately,
 650 * returning 1 if so.  This function is part of the RCU implementation;
 651 * it is -not- an exported member of the RCU API.  This is used by
 652 * the idle-entry code to figure out whether it is safe to disable the
 653 * scheduler-clock interrupt.
 654 *
 655 * Just check whether or not this CPU has non-offloaded RCU callbacks
 656 * queued.
 657 */
 658int rcu_needs_cpu(void)
 659{
 660	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
 661		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
 
 
 
 662}
 663
 664/*
 665 * If any sort of urgency was applied to the current CPU (for example,
 666 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
 667 * to get to a quiescent state, disable it.
 
 
 
 668 */
 669static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
 670{
 671	raw_lockdep_assert_held_rcu_node(rdp->mynode);
 672	WRITE_ONCE(rdp->rcu_urgent_qs, false);
 673	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
 674	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
 675		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 676		WRITE_ONCE(rdp->rcu_forced_tick, false);
 
 
 
 
 677	}
 
 
 
 
 
 
 
 678}
 679
 680/**
 681 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682 *
 683 * Return @true if RCU is watching the running CPU and @false otherwise.
 684 * An @true return means that this CPU can safely enter RCU read-side
 685 * critical sections.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 686 *
 687 * Although calls to rcu_is_watching() from most parts of the kernel
 688 * will return @true, there are important exceptions.  For example, if the
 689 * current CPU is deep within its idle loop, in kernel entry/exit code,
 690 * or offline, rcu_is_watching() will return @false.
 
 
 
 
 
 
 
 
 
 
 691 *
 692 * Make notrace because it can be called by the internal functions of
 693 * ftrace, and making this notrace removes unnecessary recursion calls.
 
 
 694 */
 695notrace bool rcu_is_watching(void)
 696{
 697	bool ret;
 698
 699	preempt_disable_notrace();
 700	ret = !rcu_dynticks_curr_cpu_in_eqs();
 701	preempt_enable_notrace();
 702	return ret;
 703}
 704EXPORT_SYMBOL_GPL(rcu_is_watching);
 705
 706/*
 707 * If a holdout task is actually running, request an urgent quiescent
 708 * state from its CPU.  This is unsynchronized, so migrations can cause
 709 * the request to go to the wrong CPU.  Which is OK, all that will happen
 710 * is that the CPU's next context switch will be a bit slower and next
 711 * time around this task will generate another request.
 712 */
 713void rcu_request_urgent_qs_task(struct task_struct *t)
 714{
 715	int cpu;
 716
 717	barrier();
 718	cpu = task_cpu(t);
 719	if (!task_curr(t))
 720		return; /* This task is not running on that CPU. */
 721	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 722}
 723
 
 
 724/*
 725 * When trying to report a quiescent state on behalf of some other CPU,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726 * it is our responsibility to check for and handle potential overflow
 727 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 728 * After all, the CPU might be in deep idle state, and thus executing no
 729 * code whatsoever.
 730 */
 731static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 732{
 733	raw_lockdep_assert_held_rcu_node(rnp);
 734	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 735			 rnp->gp_seq))
 736		WRITE_ONCE(rdp->gpwrap, true);
 737	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 738		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 739}
 740
 741/*
 742 * Snapshot the specified CPU's dynticks counter so that we can later
 743 * credit them with an implicit quiescent state.  Return 1 if this CPU
 744 * is in dynticks idle mode, which is an extended quiescent state.
 745 */
 746static int dyntick_save_progress_counter(struct rcu_data *rdp)
 747{
 748	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
 749	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 750		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 751		rcu_gpnum_ovf(rdp->mynode, rdp);
 752		return 1;
 753	}
 754	return 0;
 755}
 756
 757/*
 758 * Returns positive if the specified CPU has passed through a quiescent state
 759 * by virtue of being in or having passed through an dynticks idle state since
 760 * the last call to dyntick_save_progress_counter() for this same CPU, or by
 761 * virtue of having been offline.
 762 *
 763 * Returns negative if the specified CPU needs a force resched.
 764 *
 765 * Returns zero otherwise.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766 */
 767static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 768{
 769	unsigned long jtsq;
 770	int ret = 0;
 
 771	struct rcu_node *rnp = rdp->mynode;
 772
 773	/*
 774	 * If the CPU passed through or entered a dynticks idle phase with
 775	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 776	 * already acknowledged the request to pass through a quiescent
 777	 * state.  Either way, that CPU cannot possibly be in an RCU
 778	 * read-side critical section that started before the beginning
 779	 * of the current RCU grace period.
 780	 */
 781	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
 782		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 
 783		rcu_gpnum_ovf(rnp, rdp);
 784		return 1;
 785	}
 786
 787	/*
 788	 * Complain if a CPU that is considered to be offline from RCU's
 789	 * perspective has not yet reported a quiescent state.  After all,
 790	 * the offline CPU should have reported a quiescent state during
 791	 * the CPU-offline process, or, failing that, by rcu_gp_init()
 792	 * if it ran concurrently with either the CPU going offline or the
 793	 * last task on a leaf rcu_node structure exiting its RCU read-side
 794	 * critical section while all CPUs corresponding to that structure
 795	 * are offline.  This added warning detects bugs in any of these
 796	 * code paths.
 797	 *
 798	 * The rcu_node structure's ->lock is held here, which excludes
 799	 * the relevant portions the CPU-hotplug code, the grace-period
 800	 * initialization code, and the rcu_read_unlock() code paths.
 801	 *
 802	 * For more detail, please refer to the "Hotplug CPU" section
 803	 * of RCU's Requirements documentation.
 804	 */
 805	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
 806		struct rcu_node *rnp1;
 807
 808		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 809			__func__, rnp->grplo, rnp->grphi, rnp->level,
 810			(long)rnp->gp_seq, (long)rnp->completedqs);
 811		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 812			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
 813				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
 814		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
 815			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
 816			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 817			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 818		return 1; /* Break things loose after complaining. */
 819	}
 820
 821	/*
 822	 * A CPU running for an extended time within the kernel can
 823	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
 824	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
 825	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
 826	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
 827	 * variable are safe because the assignments are repeated if this
 828	 * CPU failed to pass through a quiescent state.  This code
 829	 * also checks .jiffies_resched in case jiffies_to_sched_qs
 830	 * is set way high.
 831	 */
 832	jtsq = READ_ONCE(jiffies_to_sched_qs);
 833	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
 834	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
 835	     time_after(jiffies, rcu_state.jiffies_resched) ||
 836	     rcu_state.cbovld)) {
 837		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
 
 
 
 
 
 838		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 839		smp_store_release(&rdp->rcu_urgent_qs, true);
 840	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
 841		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 842	}
 843
 844	/*
 845	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
 846	 * The above code handles this, but only for straight cond_resched().
 847	 * And some in-kernel loops check need_resched() before calling
 848	 * cond_resched(), which defeats the above code for CPUs that are
 849	 * running in-kernel with scheduling-clock interrupts disabled.
 850	 * So hit them over the head with the resched_cpu() hammer!
 851	 */
 852	if (tick_nohz_full_cpu(rdp->cpu) &&
 853	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
 854	     rcu_state.cbovld)) {
 855		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 856		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 857		ret = -1;
 858	}
 859
 860	/*
 861	 * If more than halfway to RCU CPU stall-warning time, invoke
 862	 * resched_cpu() more frequently to try to loosen things up a bit.
 863	 * Also check to see if the CPU is getting hammered with interrupts,
 864	 * but only once per grace period, just to keep the IPIs down to
 865	 * a dull roar.
 866	 */
 867	if (time_after(jiffies, rcu_state.jiffies_resched)) {
 868		if (time_after(jiffies,
 869			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
 870			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 871			ret = -1;
 872		}
 873		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
 874		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
 875		    (rnp->ffmask & rdp->grpmask)) {
 
 876			rdp->rcu_iw_pending = true;
 877			rdp->rcu_iw_gp_seq = rnp->gp_seq;
 878			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 879		}
 880
 881		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
 882			int cpu = rdp->cpu;
 883			struct rcu_snap_record *rsrp;
 884			struct kernel_cpustat *kcsp;
 885
 886			kcsp = &kcpustat_cpu(cpu);
 887
 888			rsrp = &rdp->snap_record;
 889			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
 890			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
 891			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
 892			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
 893			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
 894			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
 895			rsrp->jiffies = jiffies;
 896			rsrp->gp_seq = rdp->gp_seq;
 897		}
 898	}
 899
 900	return ret;
 901}
 902
 903/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
 904static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 905			      unsigned long gp_seq_req, const char *s)
 906{
 907	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
 908				      gp_seq_req, rnp->level,
 909				      rnp->grplo, rnp->grphi, s);
 
 
 
 
 
 
 910}
 911
 912/*
 913 * rcu_start_this_gp - Request the start of a particular grace period
 914 * @rnp_start: The leaf node of the CPU from which to start.
 915 * @rdp: The rcu_data corresponding to the CPU from which to start.
 916 * @gp_seq_req: The gp_seq of the grace period to start.
 917 *
 918 * Start the specified grace period, as needed to handle newly arrived
 919 * callbacks.  The required future grace periods are recorded in each
 920 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 921 * is reason to awaken the grace-period kthread.
 922 *
 923 * The caller must hold the specified rcu_node structure's ->lock, which
 924 * is why the caller is responsible for waking the grace-period kthread.
 925 *
 926 * Returns true if the GP thread needs to be awakened else false.
 927 */
 928static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
 929			      unsigned long gp_seq_req)
 930{
 931	bool ret = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932	struct rcu_node *rnp;
 933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934	/*
 935	 * Use funnel locking to either acquire the root rcu_node
 936	 * structure's lock or bail out if the need for this grace period
 937	 * has already been recorded -- or if that grace period has in
 938	 * fact already started.  If there is already a grace period in
 939	 * progress in a non-leaf node, no recording is needed because the
 940	 * end of the grace period will scan the leaf rcu_node structures.
 941	 * Note that rnp_start->lock must not be released.
 942	 */
 943	raw_lockdep_assert_held_rcu_node(rnp_start);
 944	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
 945	for (rnp = rnp_start; 1; rnp = rnp->parent) {
 946		if (rnp != rnp_start)
 947			raw_spin_lock_rcu_node(rnp);
 948		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
 949		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
 950		    (rnp != rnp_start &&
 951		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
 952			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
 953					  TPS("Prestarted"));
 954			goto unlock_out;
 955		}
 956		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
 957		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
 958			/*
 959			 * We just marked the leaf or internal node, and a
 960			 * grace period is in progress, which means that
 961			 * rcu_gp_cleanup() will see the marking.  Bail to
 962			 * reduce contention.
 963			 */
 964			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
 965					  TPS("Startedleaf"));
 966			goto unlock_out;
 967		}
 968		if (rnp != rnp_start && rnp->parent != NULL)
 969			raw_spin_unlock_rcu_node(rnp);
 970		if (!rnp->parent)
 971			break;  /* At root, and perhaps also leaf. */
 972	}
 973
 974	/* If GP already in progress, just leave, otherwise start one. */
 975	if (rcu_gp_in_progress()) {
 976		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
 977		goto unlock_out;
 978	}
 979	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
 980	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
 981	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
 982	if (!READ_ONCE(rcu_state.gp_kthread)) {
 983		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
 984		goto unlock_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985	}
 986	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
 987	ret = true;  /* Caller must wake GP kthread. */
 988unlock_out:
 989	/* Push furthest requested GP to leaf node and rcu_data structure. */
 990	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
 991		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
 992		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993	}
 994	if (rnp != rnp_start)
 995		raw_spin_unlock_rcu_node(rnp);
 996	return ret;
 997}
 998
 999/*
1000 * Clean up any old requests for the just-ended grace period.  Also return
1001 * whether any additional grace periods have been requested.
 
 
 
 
 
1002 */
1003static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1004{
1005	bool needmore;
1006	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1007
1008	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1009	if (!needmore)
1010		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1011	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1012			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1013	return needmore;
1014}
1015
1016static void swake_up_one_online_ipi(void *arg)
 
 
 
 
 
 
 
 
 
 
1017{
1018	struct swait_queue_head *wqh = arg;
 
 
 
 
 
 
 
 
 
 
1019
1020	swake_up_one(wqh);
 
 
 
 
1021}
1022
1023static void swake_up_one_online(struct swait_queue_head *wqh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1024{
1025	int cpu = get_cpu();
 
 
 
 
1026
1027	/*
1028	 * If called from rcutree_report_cpu_starting(), wake up
1029	 * is dangerous that late in the CPU-down hotplug process. The
1030	 * scheduler might queue an ignored hrtimer. Defer the wake up
1031	 * to an online CPU instead.
1032	 */
1033	if (unlikely(cpu_is_offline(cpu))) {
1034		int target;
 
 
 
 
1035
1036		target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1037					 cpu_online_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038
1039		smp_call_function_single(target, swake_up_one_online_ipi,
1040					 wqh, 0);
1041		put_cpu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1042	} else {
1043		put_cpu();
1044		swake_up_one(wqh);
1045	}
 
 
 
 
 
 
 
1046}
1047
1048/*
1049 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1050 * interrupt or softirq handler, in which case we just might immediately
1051 * sleep upon return, resulting in a grace-period hang), and don't bother
1052 * awakening when there is nothing for the grace-period kthread to do
1053 * (as in several CPUs raced to awaken, we lost), and finally don't try
1054 * to awaken a kthread that has not yet been created.  If all those checks
1055 * are passed, track some debug information and awaken.
1056 *
1057 * So why do the self-wakeup when in an interrupt or softirq handler
1058 * in the grace-period kthread's context?  Because the kthread might have
1059 * been interrupted just as it was going to sleep, and just after the final
1060 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1061 * is required, and is therefore supplied.
1062 */
1063static void rcu_gp_kthread_wake(void)
1064{
1065	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
 
 
 
 
 
 
 
 
 
1066
1067	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1068	    !READ_ONCE(rcu_state.gp_flags) || !t)
 
 
 
 
 
 
 
 
 
 
1069		return;
1070	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1071	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1072	swake_up_one_online(&rcu_state.gp_wq);
1073}
1074
1075/*
1076 * If there is room, assign a ->gp_seq number to any callbacks on this
1077 * CPU that have not already been assigned.  Also accelerate any callbacks
1078 * that were previously assigned a ->gp_seq number that has since proven
1079 * to be too conservative, which can happen if callbacks get assigned a
1080 * ->gp_seq number while RCU is idle, but with reference to a non-root
1081 * rcu_node structure.  This function is idempotent, so it does not hurt
1082 * to call it repeatedly.  Returns an flag saying that we should awaken
1083 * the RCU grace-period kthread.
1084 *
1085 * The caller must hold rnp->lock with interrupts disabled.
1086 */
1087static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 
1088{
1089	unsigned long gp_seq_req;
1090	bool ret = false;
1091
1092	rcu_lockdep_assert_cblist_protected(rdp);
1093	raw_lockdep_assert_held_rcu_node(rnp);
1094
1095	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1096	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1097		return false;
1098
1099	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1100
1101	/*
1102	 * Callbacks are often registered with incomplete grace-period
1103	 * information.  Something about the fact that getting exact
1104	 * information requires acquiring a global lock...  RCU therefore
1105	 * makes a conservative estimate of the grace period number at which
1106	 * a given callback will become ready to invoke.	The following
1107	 * code checks this estimate and improves it when possible, thus
1108	 * accelerating callback invocation to an earlier grace-period
1109	 * number.
1110	 */
1111	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1112	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1113		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1114
1115	/* Trace depending on how much we were able to accelerate. */
1116	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1117		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1118	else
1119		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1120
1121	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1122
1123	return ret;
1124}
1125
1126/*
1127 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1128 * rcu_node structure's ->lock be held.  It consults the cached value
1129 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1130 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1131 * while holding the leaf rcu_node structure's ->lock.
1132 */
1133static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1134					struct rcu_data *rdp)
1135{
1136	unsigned long c;
1137	bool needwake;
1138
1139	rcu_lockdep_assert_cblist_protected(rdp);
1140	c = rcu_seq_snap(&rcu_state.gp_seq);
1141	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1142		/* Old request still live, so mark recent callbacks. */
1143		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1144		return;
1145	}
1146	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1147	needwake = rcu_accelerate_cbs(rnp, rdp);
1148	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1149	if (needwake)
1150		rcu_gp_kthread_wake();
1151}
1152
1153/*
1154 * Move any callbacks whose grace period has completed to the
1155 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1156 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1157 * sublist.  This function is idempotent, so it does not hurt to
1158 * invoke it repeatedly.  As long as it is not invoked -too- often...
1159 * Returns true if the RCU grace-period kthread needs to be awakened.
1160 *
1161 * The caller must hold rnp->lock with interrupts disabled.
1162 */
1163static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 
1164{
1165	rcu_lockdep_assert_cblist_protected(rdp);
1166	raw_lockdep_assert_held_rcu_node(rnp);
1167
1168	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1169	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1170		return false;
1171
1172	/*
1173	 * Find all callbacks whose ->gp_seq numbers indicate that they
1174	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1175	 */
1176	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1177
1178	/* Classify any remaining callbacks. */
1179	return rcu_accelerate_cbs(rnp, rdp);
1180}
1181
1182/*
1183 * Move and classify callbacks, but only if doing so won't require
1184 * that the RCU grace-period kthread be awakened.
1185 */
1186static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1187						  struct rcu_data *rdp)
1188{
1189	rcu_lockdep_assert_cblist_protected(rdp);
1190	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1191		return;
1192	// The grace period cannot end while we hold the rcu_node lock.
1193	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1194		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1195	raw_spin_unlock_rcu_node(rnp);
1196}
1197
1198/*
1199 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1200 * quiescent state.  This is intended to be invoked when the CPU notices
1201 * a new grace period.
1202 */
1203static void rcu_strict_gp_check_qs(void)
1204{
1205	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1206		rcu_read_lock();
1207		rcu_read_unlock();
1208	}
1209}
1210
1211/*
1212 * Update CPU-local rcu_data state to record the beginnings and ends of
1213 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1214 * structure corresponding to the current CPU, and must have irqs disabled.
1215 * Returns true if the grace-period kthread needs to be awakened.
1216 */
1217static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
 
1218{
1219	bool ret = false;
1220	bool need_qs;
1221	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1222
1223	raw_lockdep_assert_held_rcu_node(rnp);
1224
1225	if (rdp->gp_seq == rnp->gp_seq)
1226		return false; /* Nothing to do. */
1227
1228	/* Handle the ends of any preceding grace periods first. */
1229	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1230	    unlikely(READ_ONCE(rdp->gpwrap))) {
1231		if (!offloaded)
1232			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1233		rdp->core_needs_qs = false;
1234		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1235	} else {
1236		if (!offloaded)
1237			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1238		if (rdp->core_needs_qs)
1239			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
 
 
 
1240	}
1241
1242	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1243	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1244	    unlikely(READ_ONCE(rdp->gpwrap))) {
1245		/*
1246		 * If the current grace period is waiting for this CPU,
1247		 * set up to detect a quiescent state, otherwise don't
1248		 * go looking for one.
1249		 */
1250		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1251		need_qs = !!(rnp->qsmask & rdp->grpmask);
1252		rdp->cpu_no_qs.b.norm = need_qs;
1253		rdp->core_needs_qs = need_qs;
 
 
1254		zero_cpu_stall_ticks(rdp);
 
 
1255	}
1256	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1257	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1258		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1259	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1260		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1261	WRITE_ONCE(rdp->gpwrap, false);
1262	rcu_gpnum_ovf(rnp, rdp);
1263	return ret;
1264}
1265
1266static void note_gp_changes(struct rcu_data *rdp)
1267{
1268	unsigned long flags;
1269	bool needwake;
1270	struct rcu_node *rnp;
1271
1272	local_irq_save(flags);
1273	rnp = rdp->mynode;
1274	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
 
1275	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1276	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1277		local_irq_restore(flags);
1278		return;
1279	}
1280	needwake = __note_gp_changes(rnp, rdp);
1281	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1282	rcu_strict_gp_check_qs();
1283	if (needwake)
1284		rcu_gp_kthread_wake();
1285}
1286
1287static atomic_t *rcu_gp_slow_suppress;
1288
1289/* Register a counter to suppress debugging grace-period delays. */
1290void rcu_gp_slow_register(atomic_t *rgssp)
1291{
1292	WARN_ON_ONCE(rcu_gp_slow_suppress);
1293
1294	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1295}
1296EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1297
1298/* Unregister a counter, with NULL for not caring which. */
1299void rcu_gp_slow_unregister(atomic_t *rgssp)
1300{
1301	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1302
1303	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1304}
1305EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1306
1307static bool rcu_gp_slow_is_suppressed(void)
1308{
1309	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1310
1311	return rgssp && atomic_read(rgssp);
1312}
1313
1314static void rcu_gp_slow(int delay)
1315{
1316	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1317	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1318		schedule_timeout_idle(delay);
1319}
1320
1321static unsigned long sleep_duration;
1322
1323/* Allow rcutorture to stall the grace-period kthread. */
1324void rcu_gp_set_torture_wait(int duration)
1325{
1326	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1327		WRITE_ONCE(sleep_duration, duration);
1328}
1329EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1330
1331/* Actually implement the aforementioned wait. */
1332static void rcu_gp_torture_wait(void)
1333{
1334	unsigned long duration;
1335
1336	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1337		return;
1338	duration = xchg(&sleep_duration, 0UL);
1339	if (duration > 0) {
1340		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1341		schedule_timeout_idle(duration);
1342		pr_alert("%s: Wait complete\n", __func__);
1343	}
1344}
1345
1346/*
1347 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1348 * processing.
1349 */
1350static void rcu_strict_gp_boundary(void *unused)
1351{
1352	invoke_rcu_core();
1353}
1354
1355// Make the polled API aware of the beginning of a grace period.
1356static void rcu_poll_gp_seq_start(unsigned long *snap)
1357{
1358	struct rcu_node *rnp = rcu_get_root();
1359
1360	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1361		raw_lockdep_assert_held_rcu_node(rnp);
1362
1363	// If RCU was idle, note beginning of GP.
1364	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1365		rcu_seq_start(&rcu_state.gp_seq_polled);
1366
1367	// Either way, record current state.
1368	*snap = rcu_state.gp_seq_polled;
1369}
1370
1371// Make the polled API aware of the end of a grace period.
1372static void rcu_poll_gp_seq_end(unsigned long *snap)
1373{
1374	struct rcu_node *rnp = rcu_get_root();
1375
1376	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1377		raw_lockdep_assert_held_rcu_node(rnp);
1378
1379	// If the previously noted GP is still in effect, record the
1380	// end of that GP.  Either way, zero counter to avoid counter-wrap
1381	// problems.
1382	if (*snap && *snap == rcu_state.gp_seq_polled) {
1383		rcu_seq_end(&rcu_state.gp_seq_polled);
1384		rcu_state.gp_seq_polled_snap = 0;
1385		rcu_state.gp_seq_polled_exp_snap = 0;
1386	} else {
1387		*snap = 0;
1388	}
1389}
1390
1391// Make the polled API aware of the beginning of a grace period, but
1392// where caller does not hold the root rcu_node structure's lock.
1393static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1394{
1395	unsigned long flags;
1396	struct rcu_node *rnp = rcu_get_root();
1397
1398	if (rcu_init_invoked()) {
1399		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1400			lockdep_assert_irqs_enabled();
1401		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1402	}
1403	rcu_poll_gp_seq_start(snap);
1404	if (rcu_init_invoked())
1405		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1406}
1407
1408// Make the polled API aware of the end of a grace period, but where
1409// caller does not hold the root rcu_node structure's lock.
1410static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1411{
1412	unsigned long flags;
1413	struct rcu_node *rnp = rcu_get_root();
1414
1415	if (rcu_init_invoked()) {
1416		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1417			lockdep_assert_irqs_enabled();
1418		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1419	}
1420	rcu_poll_gp_seq_end(snap);
1421	if (rcu_init_invoked())
1422		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1423}
1424
1425/*
1426 * Initialize a new grace period.  Return false if no grace period required.
1427 */
1428static noinline_for_stack bool rcu_gp_init(void)
1429{
1430	unsigned long flags;
1431	unsigned long oldmask;
1432	unsigned long mask;
1433	struct rcu_data *rdp;
1434	struct rcu_node *rnp = rcu_get_root();
1435
1436	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1437	raw_spin_lock_irq_rcu_node(rnp);
1438	if (!READ_ONCE(rcu_state.gp_flags)) {
1439		/* Spurious wakeup, tell caller to go back to sleep.  */
1440		raw_spin_unlock_irq_rcu_node(rnp);
1441		return false;
1442	}
1443	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1444
1445	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1446		/*
1447		 * Grace period already in progress, don't start another.
1448		 * Not supposed to be able to happen.
1449		 */
1450		raw_spin_unlock_irq_rcu_node(rnp);
1451		return false;
1452	}
1453
1454	/* Advance to a new grace period and initialize state. */
1455	record_gp_stall_check_time();
1456	/* Record GP times before starting GP, hence rcu_seq_start(). */
1457	rcu_seq_start(&rcu_state.gp_seq);
1458	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1459	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1460	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1461	raw_spin_unlock_irq_rcu_node(rnp);
1462
1463	/*
1464	 * Apply per-leaf buffered online and offline operations to
1465	 * the rcu_node tree. Note that this new grace period need not
1466	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1467	 * offlining path, when combined with checks in this function,
1468	 * will handle CPUs that are currently going offline or that will
1469	 * go offline later.  Please also refer to "Hotplug CPU" section
1470	 * of RCU's Requirements documentation.
1471	 */
1472	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1473	/* Exclude CPU hotplug operations. */
1474	rcu_for_each_leaf_node(rnp) {
1475		local_irq_save(flags);
1476		arch_spin_lock(&rcu_state.ofl_lock);
1477		raw_spin_lock_rcu_node(rnp);
1478		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1479		    !rnp->wait_blkd_tasks) {
1480			/* Nothing to do on this leaf rcu_node structure. */
1481			raw_spin_unlock_rcu_node(rnp);
1482			arch_spin_unlock(&rcu_state.ofl_lock);
1483			local_irq_restore(flags);
1484			continue;
1485		}
1486
1487		/* Record old state, apply changes to ->qsmaskinit field. */
1488		oldmask = rnp->qsmaskinit;
1489		rnp->qsmaskinit = rnp->qsmaskinitnext;
1490
1491		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1492		if (!oldmask != !rnp->qsmaskinit) {
1493			if (!oldmask) { /* First online CPU for rcu_node. */
1494				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1495					rcu_init_new_rnp(rnp);
1496			} else if (rcu_preempt_has_tasks(rnp)) {
1497				rnp->wait_blkd_tasks = true; /* blocked tasks */
1498			} else { /* Last offline CPU and can propagate. */
1499				rcu_cleanup_dead_rnp(rnp);
1500			}
1501		}
1502
1503		/*
1504		 * If all waited-on tasks from prior grace period are
1505		 * done, and if all this rcu_node structure's CPUs are
1506		 * still offline, propagate up the rcu_node tree and
1507		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1508		 * rcu_node structure's CPUs has since come back online,
1509		 * simply clear ->wait_blkd_tasks.
 
1510		 */
1511		if (rnp->wait_blkd_tasks &&
1512		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
 
1513			rnp->wait_blkd_tasks = false;
1514			if (!rnp->qsmaskinit)
1515				rcu_cleanup_dead_rnp(rnp);
1516		}
1517
1518		raw_spin_unlock_rcu_node(rnp);
1519		arch_spin_unlock(&rcu_state.ofl_lock);
1520		local_irq_restore(flags);
1521	}
1522	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1523
1524	/*
1525	 * Set the quiescent-state-needed bits in all the rcu_node
1526	 * structures for all currently online CPUs in breadth-first
1527	 * order, starting from the root rcu_node structure, relying on the
1528	 * layout of the tree within the rcu_state.node[] array.  Note that
1529	 * other CPUs will access only the leaves of the hierarchy, thus
1530	 * seeing that no grace period is in progress, at least until the
1531	 * corresponding leaf node has been initialized.
1532	 *
1533	 * The grace period cannot complete until the initialization
1534	 * process finishes, because this kthread handles both.
1535	 */
1536	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1537	rcu_for_each_node_breadth_first(rnp) {
1538		rcu_gp_slow(gp_init_delay);
1539		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1540		rdp = this_cpu_ptr(&rcu_data);
1541		rcu_preempt_check_blocked_tasks(rnp);
1542		rnp->qsmask = rnp->qsmaskinit;
1543		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
 
 
1544		if (rnp == rdp->mynode)
1545			(void)__note_gp_changes(rnp, rdp);
1546		rcu_preempt_boost_start_gp(rnp);
1547		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1548					    rnp->level, rnp->grplo,
1549					    rnp->grphi, rnp->qsmask);
1550		/* Quiescent states for tasks on any now-offline CPUs. */
1551		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1552		rnp->rcu_gp_init_mask = mask;
1553		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1554			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1555		else
1556			raw_spin_unlock_irq_rcu_node(rnp);
1557		cond_resched_tasks_rcu_qs();
1558		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1559	}
1560
1561	// If strict, make all CPUs aware of new grace period.
1562	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1563		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1564
1565	return true;
1566}
1567
1568/*
1569 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1570 * time.
1571 */
1572static bool rcu_gp_fqs_check_wake(int *gfp)
1573{
1574	struct rcu_node *rnp = rcu_get_root();
1575
1576	// If under overload conditions, force an immediate FQS scan.
1577	if (*gfp & RCU_GP_FLAG_OVLD)
1578		return true;
1579
1580	// Someone like call_rcu() requested a force-quiescent-state scan.
1581	*gfp = READ_ONCE(rcu_state.gp_flags);
1582	if (*gfp & RCU_GP_FLAG_FQS)
1583		return true;
1584
1585	// The current grace period has completed.
1586	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1587		return true;
1588
1589	return false;
1590}
1591
1592/*
1593 * Do one round of quiescent-state forcing.
1594 */
1595static void rcu_gp_fqs(bool first_time)
1596{
1597	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1598	struct rcu_node *rnp = rcu_get_root();
1599
1600	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1601	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1602
1603	WARN_ON_ONCE(nr_fqs > 3);
1604	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1605	if (nr_fqs) {
1606		if (nr_fqs == 1) {
1607			WRITE_ONCE(rcu_state.jiffies_stall,
1608				   jiffies + rcu_jiffies_till_stall_check());
1609		}
1610		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1611	}
1612
 
 
1613	if (first_time) {
1614		/* Collect dyntick-idle snapshots. */
1615		force_qs_rnp(dyntick_save_progress_counter);
1616	} else {
1617		/* Handle dyntick-idle and offline CPUs. */
1618		force_qs_rnp(rcu_implicit_dynticks_qs);
1619	}
1620	/* Clear flag to prevent immediate re-entry. */
1621	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1622		raw_spin_lock_irq_rcu_node(rnp);
1623		WRITE_ONCE(rcu_state.gp_flags,
1624			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1625		raw_spin_unlock_irq_rcu_node(rnp);
1626	}
1627}
1628
1629/*
1630 * Loop doing repeated quiescent-state forcing until the grace period ends.
1631 */
1632static noinline_for_stack void rcu_gp_fqs_loop(void)
1633{
1634	bool first_gp_fqs = true;
1635	int gf = 0;
1636	unsigned long j;
1637	int ret;
1638	struct rcu_node *rnp = rcu_get_root();
1639
1640	j = READ_ONCE(jiffies_till_first_fqs);
1641	if (rcu_state.cbovld)
1642		gf = RCU_GP_FLAG_OVLD;
1643	ret = 0;
1644	for (;;) {
1645		if (rcu_state.cbovld) {
1646			j = (j + 2) / 3;
1647			if (j <= 0)
1648				j = 1;
1649		}
1650		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1651			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1652			/*
1653			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1654			 * update; required for stall checks.
1655			 */
1656			smp_wmb();
1657			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1658				   jiffies + (j ? 3 * j : 2));
1659		}
1660		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1661				       TPS("fqswait"));
1662		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1663		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1664				 rcu_gp_fqs_check_wake(&gf), j);
1665		rcu_gp_torture_wait();
1666		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1667		/* Locking provides needed memory barriers. */
1668		/*
1669		 * Exit the loop if the root rcu_node structure indicates that the grace period
1670		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1671		 * is required only for single-node rcu_node trees because readers blocking
1672		 * the current grace period are queued only on leaf rcu_node structures.
1673		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1674		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1675		 * the corresponding leaf nodes have passed through their quiescent state.
1676		 */
1677		if (!READ_ONCE(rnp->qsmask) &&
1678		    !rcu_preempt_blocked_readers_cgp(rnp))
1679			break;
1680		/* If time for quiescent-state forcing, do it. */
1681		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1682		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1683			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1684					       TPS("fqsstart"));
1685			rcu_gp_fqs(first_gp_fqs);
1686			gf = 0;
1687			if (first_gp_fqs) {
1688				first_gp_fqs = false;
1689				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1690			}
1691			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1692					       TPS("fqsend"));
1693			cond_resched_tasks_rcu_qs();
1694			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1695			ret = 0; /* Force full wait till next FQS. */
1696			j = READ_ONCE(jiffies_till_next_fqs);
1697		} else {
1698			/* Deal with stray signal. */
1699			cond_resched_tasks_rcu_qs();
1700			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1701			WARN_ON(signal_pending(current));
1702			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1703					       TPS("fqswaitsig"));
1704			ret = 1; /* Keep old FQS timing. */
1705			j = jiffies;
1706			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1707				j = 1;
1708			else
1709				j = rcu_state.jiffies_force_qs - j;
1710			gf = 0;
1711		}
1712	}
1713}
1714
1715/*
1716 * Clean up after the old grace period.
1717 */
1718static noinline void rcu_gp_cleanup(void)
1719{
1720	int cpu;
1721	bool needgp = false;
1722	unsigned long gp_duration;
1723	unsigned long new_gp_seq;
1724	bool offloaded;
1725	struct rcu_data *rdp;
1726	struct rcu_node *rnp = rcu_get_root();
1727	struct swait_queue_head *sq;
1728
1729	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1730	raw_spin_lock_irq_rcu_node(rnp);
1731	rcu_state.gp_end = jiffies;
1732	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1733	if (gp_duration > rcu_state.gp_max)
1734		rcu_state.gp_max = gp_duration;
1735
1736	/*
1737	 * We know the grace period is complete, but to everyone else
1738	 * it appears to still be ongoing.  But it is also the case
1739	 * that to everyone else it looks like there is nothing that
1740	 * they can do to advance the grace period.  It is therefore
1741	 * safe for us to drop the lock in order to mark the grace
1742	 * period as completed in all of the rcu_node structures.
1743	 */
1744	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1745	raw_spin_unlock_irq_rcu_node(rnp);
1746
1747	/*
1748	 * Propagate new ->gp_seq value to rcu_node structures so that
1749	 * other CPUs don't have to wait until the start of the next grace
1750	 * period to process their callbacks.  This also avoids some nasty
1751	 * RCU grace-period initialization races by forcing the end of
1752	 * the current grace period to be completely recorded in all of
1753	 * the rcu_node structures before the beginning of the next grace
1754	 * period is recorded in any of the rcu_node structures.
1755	 */
1756	new_gp_seq = rcu_state.gp_seq;
1757	rcu_seq_end(&new_gp_seq);
1758	rcu_for_each_node_breadth_first(rnp) {
1759		raw_spin_lock_irq_rcu_node(rnp);
1760		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1761			dump_blkd_tasks(rnp, 10);
1762		WARN_ON_ONCE(rnp->qsmask);
1763		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1764		if (!rnp->parent)
1765			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1766		rdp = this_cpu_ptr(&rcu_data);
1767		if (rnp == rdp->mynode)
1768			needgp = __note_gp_changes(rnp, rdp) || needgp;
1769		/* smp_mb() provided by prior unlock-lock pair. */
1770		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1771		// Reset overload indication for CPUs no longer overloaded
1772		if (rcu_is_leaf_node(rnp))
1773			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1774				rdp = per_cpu_ptr(&rcu_data, cpu);
1775				check_cb_ovld_locked(rdp, rnp);
1776			}
1777		sq = rcu_nocb_gp_get(rnp);
1778		raw_spin_unlock_irq_rcu_node(rnp);
1779		rcu_nocb_gp_cleanup(sq);
1780		cond_resched_tasks_rcu_qs();
1781		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1782		rcu_gp_slow(gp_cleanup_delay);
1783	}
1784	rnp = rcu_get_root();
1785	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1786
1787	/* Declare grace period done, trace first to use old GP number. */
1788	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1789	rcu_seq_end(&rcu_state.gp_seq);
1790	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1791	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1792	/* Check for GP requests since above loop. */
1793	rdp = this_cpu_ptr(&rcu_data);
1794	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1795		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1796				  TPS("CleanupMore"));
1797		needgp = true;
1798	}
1799	/* Advance CBs to reduce false positives below. */
1800	offloaded = rcu_rdp_is_offloaded(rdp);
1801	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1802
1803		// We get here if a grace period was needed (“needgp”)
1804		// and the above call to rcu_accelerate_cbs() did not set
1805		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1806		// the need for another grace period).  The purpose
1807		// of the “offloaded” check is to avoid invoking
1808		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1809		// hold the ->nocb_lock needed to safely access an offloaded
1810		// ->cblist.  We do not want to acquire that lock because
1811		// it can be heavily contended during callback floods.
1812
1813		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1814		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1815		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1816	} else {
1817
1818		// We get here either if there is no need for an
1819		// additional grace period or if rcu_accelerate_cbs() has
1820		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1821		// So all we need to do is to clear all of the other
1822		// ->gp_flags bits.
1823
1824		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1825	}
1826	raw_spin_unlock_irq_rcu_node(rnp);
1827
1828	// If strict, make all CPUs aware of the end of the old grace period.
1829	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1830		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1831}
1832
1833/*
1834 * Body of kthread that handles grace periods.
1835 */
1836static int __noreturn rcu_gp_kthread(void *unused)
1837{
 
 
 
 
 
 
 
1838	rcu_bind_gp_kthread();
1839	for (;;) {
1840
1841		/* Handle grace-period start. */
1842		for (;;) {
1843			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
1844					       TPS("reqwait"));
1845			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1846			swait_event_idle_exclusive(rcu_state.gp_wq,
1847					 READ_ONCE(rcu_state.gp_flags) &
1848					 RCU_GP_FLAG_INIT);
1849			rcu_gp_torture_wait();
1850			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1851			/* Locking provides needed memory barrier. */
1852			if (rcu_gp_init())
1853				break;
1854			cond_resched_tasks_rcu_qs();
1855			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1856			WARN_ON(signal_pending(current));
1857			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
1858					       TPS("reqwaitsig"));
1859		}
1860
1861		/* Handle quiescent-state forcing. */
1862		rcu_gp_fqs_loop();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1863
1864		/* Handle grace-period end. */
1865		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1866		rcu_gp_cleanup();
1867		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1868	}
1869}
1870
1871/*
1872 * Report a full set of quiescent states to the rcu_state data structure.
1873 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1874 * another grace period is required.  Whether we wake the grace-period
1875 * kthread or it awakens itself for the next round of quiescent-state
1876 * forcing, that kthread will clean up after the just-completed grace
1877 * period.  Note that the caller must hold rnp->lock, which is released
1878 * before return.
1879 */
1880static void rcu_report_qs_rsp(unsigned long flags)
1881	__releases(rcu_get_root()->lock)
1882{
1883	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1884	WARN_ON_ONCE(!rcu_gp_in_progress());
1885	WRITE_ONCE(rcu_state.gp_flags,
1886		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1887	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1888	rcu_gp_kthread_wake();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889}
1890
1891/*
1892 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1893 * Allows quiescent states for a group of CPUs to be reported at one go
1894 * to the specified rcu_node structure, though all the CPUs in the group
1895 * must be represented by the same rcu_node structure (which need not be a
1896 * leaf rcu_node structure, though it often will be).  The gps parameter
1897 * is the grace-period snapshot, which means that the quiescent states
1898 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1899 * must be held upon entry, and it is released before return.
1900 *
1901 * As a special case, if mask is zero, the bit-already-cleared check is
1902 * disabled.  This allows propagating quiescent state due to resumed tasks
1903 * during grace-period initialization.
1904 */
1905static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1906			      unsigned long gps, unsigned long flags)
 
1907	__releases(rnp->lock)
1908{
1909	unsigned long oldmask = 0;
1910	struct rcu_node *rnp_c;
1911
1912	raw_lockdep_assert_held_rcu_node(rnp);
1913
1914	/* Walk up the rcu_node hierarchy. */
1915	for (;;) {
1916		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1917
1918			/*
1919			 * Our bit has already been cleared, or the
1920			 * relevant grace period is already over, so done.
1921			 */
1922			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1923			return;
1924		}
1925		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1926		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1927			     rcu_preempt_blocked_readers_cgp(rnp));
1928		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1929		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1930						 mask, rnp->qsmask, rnp->level,
1931						 rnp->grplo, rnp->grphi,
1932						 !!rnp->gp_tasks);
1933		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1934
1935			/* Other bits still set at this level, so done. */
1936			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1937			return;
1938		}
1939		rnp->completedqs = rnp->gp_seq;
1940		mask = rnp->grpmask;
1941		if (rnp->parent == NULL) {
1942
1943			/* No more levels.  Exit loop holding root lock. */
1944
1945			break;
1946		}
1947		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1948		rnp_c = rnp;
1949		rnp = rnp->parent;
1950		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1951		oldmask = READ_ONCE(rnp_c->qsmask);
1952	}
1953
1954	/*
1955	 * Get here if we are the last CPU to pass through a quiescent
1956	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1957	 * to clean up and start the next grace period if one is needed.
1958	 */
1959	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1960}
1961
1962/*
1963 * Record a quiescent state for all tasks that were previously queued
1964 * on the specified rcu_node structure and that were blocking the current
1965 * RCU grace period.  The caller must hold the corresponding rnp->lock with
1966 * irqs disabled, and this lock is released upon return, but irqs remain
1967 * disabled.
1968 */
1969static void __maybe_unused
1970rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1971	__releases(rnp->lock)
1972{
1973	unsigned long gps;
1974	unsigned long mask;
1975	struct rcu_node *rnp_p;
1976
1977	raw_lockdep_assert_held_rcu_node(rnp);
1978	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1979	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1980	    rnp->qsmask != 0) {
1981		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1982		return;  /* Still need more quiescent states! */
1983	}
1984
1985	rnp->completedqs = rnp->gp_seq;
1986	rnp_p = rnp->parent;
1987	if (rnp_p == NULL) {
1988		/*
1989		 * Only one rcu_node structure in the tree, so don't
1990		 * try to report up to its nonexistent parent!
1991		 */
1992		rcu_report_qs_rsp(flags);
1993		return;
1994	}
1995
1996	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1997	gps = rnp->gp_seq;
1998	mask = rnp->grpmask;
1999	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2000	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2001	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2002}
2003
2004/*
2005 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2006 * structure.  This must be called from the specified CPU.
2007 */
2008static void
2009rcu_report_qs_rdp(struct rcu_data *rdp)
2010{
2011	unsigned long flags;
2012	unsigned long mask;
2013	bool needacc = false;
2014	struct rcu_node *rnp;
2015
2016	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2017	rnp = rdp->mynode;
2018	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2019	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2020	    rdp->gpwrap) {
2021
2022		/*
2023		 * The grace period in which this quiescent state was
2024		 * recorded has ended, so don't report it upwards.
2025		 * We will instead need a new quiescent state that lies
2026		 * within the current grace period.
2027		 */
2028		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
 
2029		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2030		return;
2031	}
2032	mask = rdp->grpmask;
2033	rdp->core_needs_qs = false;
2034	if ((rnp->qsmask & mask) == 0) {
2035		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2036	} else {
 
 
2037		/*
2038		 * This GP can't end until cpu checks in, so all of our
2039		 * callbacks can be processed during the next GP.
2040		 *
2041		 * NOCB kthreads have their own way to deal with that...
2042		 */
2043		if (!rcu_rdp_is_offloaded(rdp)) {
2044			/*
2045			 * The current GP has not yet ended, so it
2046			 * should not be possible for rcu_accelerate_cbs()
2047			 * to return true.  So complain, but don't awaken.
2048			 */
2049			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2050		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2051			/*
2052			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2053			 * if in the middle of a (de-)offloading process.
2054			 */
2055			needacc = true;
2056		}
2057
2058		rcu_disable_urgency_upon_qs(rdp);
2059		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2060		/* ^^^ Released rnp->lock */
2061
2062		if (needacc) {
2063			rcu_nocb_lock_irqsave(rdp, flags);
2064			rcu_accelerate_cbs_unlocked(rnp, rdp);
2065			rcu_nocb_unlock_irqrestore(rdp, flags);
2066		}
2067	}
2068}
2069
2070/*
2071 * Check to see if there is a new grace period of which this CPU
2072 * is not yet aware, and if so, set up local rcu_data state for it.
2073 * Otherwise, see if this CPU has just passed through its first
2074 * quiescent state for this grace period, and record that fact if so.
2075 */
2076static void
2077rcu_check_quiescent_state(struct rcu_data *rdp)
2078{
2079	/* Check for grace-period ends and beginnings. */
2080	note_gp_changes(rdp);
2081
2082	/*
2083	 * Does this CPU still need to do its part for current grace period?
2084	 * If no, return and let the other CPUs do their part as well.
2085	 */
2086	if (!rdp->core_needs_qs)
2087		return;
2088
2089	/*
2090	 * Was there a quiescent state since the beginning of the grace
2091	 * period? If no, then exit and wait for the next call.
2092	 */
2093	if (rdp->cpu_no_qs.b.norm)
2094		return;
2095
2096	/*
2097	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2098	 * judge of that).
2099	 */
2100	rcu_report_qs_rdp(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2101}
2102
2103/* Return true if callback-invocation time limit exceeded. */
2104static bool rcu_do_batch_check_time(long count, long tlimit,
2105				    bool jlimit_check, unsigned long jlimit)
2106{
2107	// Invoke local_clock() only once per 32 consecutive callbacks.
2108	return unlikely(tlimit) &&
2109	       (!likely(count & 31) ||
2110		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2111		 jlimit_check && time_after(jiffies, jlimit))) &&
2112	       local_clock() >= tlimit;
 
 
 
 
 
 
2113}
2114
2115/*
2116 * Invoke any RCU callbacks that have made it to the end of their grace
2117 * period.  Throttle as specified by rdp->blimit.
2118 */
2119static void rcu_do_batch(struct rcu_data *rdp)
2120{
2121	long bl;
2122	long count = 0;
2123	int div;
2124	bool __maybe_unused empty;
2125	unsigned long flags;
2126	unsigned long jlimit;
2127	bool jlimit_check = false;
2128	long pending;
2129	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2130	struct rcu_head *rhp;
2131	long tlimit = 0;
 
2132
2133	/* If no callbacks are ready, just return. */
2134	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2135		trace_rcu_batch_start(rcu_state.name,
 
2136				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2137		trace_rcu_batch_end(rcu_state.name, 0,
2138				    !rcu_segcblist_empty(&rdp->cblist),
2139				    need_resched(), is_idle_task(current),
2140				    rcu_is_callbacks_kthread(rdp));
2141		return;
2142	}
2143
2144	/*
2145	 * Extract the list of ready callbacks, disabling IRQs to prevent
2146	 * races with call_rcu() from interrupt handlers.  Leave the
2147	 * callback counts, as rcu_barrier() needs to be conservative.
2148	 *
2149	 * Callbacks execution is fully ordered against preceding grace period
2150	 * completion (materialized by rnp->gp_seq update) thanks to the
2151	 * smp_mb__after_unlock_lock() upon node locking required for callbacks
2152	 * advancing. In NOCB mode this ordering is then further relayed through
2153	 * the nocb locking that protects both callbacks advancing and extraction.
2154	 */
2155	rcu_nocb_lock_irqsave(rdp, flags);
2156	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2157	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2158	div = READ_ONCE(rcu_divisor);
2159	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2160	bl = max(rdp->blimit, pending >> div);
2161	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2162	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2163		const long npj = NSEC_PER_SEC / HZ;
2164		long rrn = READ_ONCE(rcu_resched_ns);
2165
2166		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2167		tlimit = local_clock() + rrn;
2168		jlimit = jiffies + (rrn + npj + 1) / npj;
2169		jlimit_check = true;
2170	}
2171	trace_rcu_batch_start(rcu_state.name,
2172			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2173	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2174	if (rcu_rdp_is_offloaded(rdp))
2175		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2176
2177	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2178	rcu_nocb_unlock_irqrestore(rdp, flags);
2179
2180	/* Invoke callbacks. */
2181	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2182	rhp = rcu_cblist_dequeue(&rcl);
2183
2184	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2185		rcu_callback_t f;
2186
2187		count++;
2188		debug_rcu_head_unqueue(rhp);
2189
2190		rcu_lock_acquire(&rcu_callback_map);
2191		trace_rcu_invoke_callback(rcu_state.name, rhp);
2192
2193		f = rhp->func;
2194		debug_rcu_head_callback(rhp);
2195		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2196		f(rhp);
2197
2198		rcu_lock_release(&rcu_callback_map);
2199
2200		/*
2201		 * Stop only if limit reached and CPU has something to do.
 
2202		 */
2203		if (in_serving_softirq()) {
2204			if (count >= bl && (need_resched() || !is_idle_task(current)))
2205				break;
2206			/*
2207			 * Make sure we don't spend too much time here and deprive other
2208			 * softirq vectors of CPU cycles.
2209			 */
2210			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
2211				break;
2212		} else {
2213			// In rcuc/rcuoc context, so no worries about
2214			// depriving other softirq vectors of CPU cycles.
2215			local_bh_enable();
2216			lockdep_assert_irqs_enabled();
2217			cond_resched_tasks_rcu_qs();
2218			lockdep_assert_irqs_enabled();
2219			local_bh_disable();
2220			// But rcuc kthreads can delay quiescent-state
2221			// reporting, so check time limits for them.
2222			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2223			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2224				rdp->rcu_cpu_has_work = 1;
2225				break;
2226			}
2227		}
2228	}
2229
2230	rcu_nocb_lock_irqsave(rdp, flags);
2231	rdp->n_cbs_invoked += count;
2232	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2233			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2234
2235	/* Update counts and requeue any remaining callbacks. */
2236	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2237	rcu_segcblist_add_len(&rdp->cblist, -count);
 
2238
2239	/* Reinstate batch limit if we have worked down the excess. */
2240	count = rcu_segcblist_n_cbs(&rdp->cblist);
2241	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2242		rdp->blimit = blimit;
2243
2244	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2245	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2246		rdp->qlen_last_fqs_check = 0;
2247		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2248	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2249		rdp->qlen_last_fqs_check = count;
2250
2251	/*
2252	 * The following usually indicates a double call_rcu().  To track
2253	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2254	 */
2255	empty = rcu_segcblist_empty(&rdp->cblist);
2256	WARN_ON_ONCE(count == 0 && !empty);
2257	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2258		     count != 0 && empty);
2259	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2260	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2261
2262	rcu_nocb_unlock_irqrestore(rdp, flags);
2263
2264	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
 
 
2265}
2266
2267/*
2268 * This function is invoked from each scheduling-clock interrupt,
2269 * and checks to see if this CPU is in a non-context-switch quiescent
2270 * state, for example, user mode or idle loop.  It also schedules RCU
2271 * core processing.  If the current grace period has gone on too long,
2272 * it will ask the scheduler to manufacture a context switch for the sole
2273 * purpose of providing the needed quiescent state.
2274 */
2275void rcu_sched_clock_irq(int user)
2276{
2277	unsigned long j;
2278
2279	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2280		j = jiffies;
2281		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2282		__this_cpu_write(rcu_data.last_sched_clock, j);
2283	}
2284	trace_rcu_utilization(TPS("Start scheduler-tick"));
2285	lockdep_assert_irqs_disabled();
2286	raw_cpu_inc(rcu_data.ticks_this_gp);
2287	/* The load-acquire pairs with the store-release setting to true. */
2288	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2289		/* Idle and userspace execution already are quiescent states. */
2290		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2291			set_tsk_need_resched(current);
2292			set_preempt_need_resched();
2293		}
2294		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2295	}
2296	rcu_flavor_sched_clock_irq(user);
2297	if (rcu_pending(user))
2298		invoke_rcu_core();
2299	if (user || rcu_is_cpu_rrupt_from_idle())
2300		rcu_note_voluntary_context_switch(current);
2301	lockdep_assert_irqs_disabled();
2302
2303	trace_rcu_utilization(TPS("End scheduler-tick"));
2304}
2305
2306/*
2307 * Scan the leaf rcu_node structures.  For each structure on which all
2308 * CPUs have reported a quiescent state and on which there are tasks
2309 * blocking the current grace period, initiate RCU priority boosting.
2310 * Otherwise, invoke the specified function to check dyntick state for
2311 * each CPU that has not yet reported a quiescent state.
2312 */
2313static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2314{
2315	int cpu;
2316	unsigned long flags;
 
2317	struct rcu_node *rnp;
2318
2319	rcu_state.cbovld = rcu_state.cbovldnext;
2320	rcu_state.cbovldnext = false;
2321	rcu_for_each_leaf_node(rnp) {
2322		unsigned long mask = 0;
2323		unsigned long rsmask = 0;
2324
2325		cond_resched_tasks_rcu_qs();
2326		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2327		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2328		if (rnp->qsmask == 0) {
2329			if (rcu_preempt_blocked_readers_cgp(rnp)) {
 
 
2330				/*
2331				 * No point in scanning bits because they
2332				 * are all zero.  But we might need to
2333				 * priority-boost blocked readers.
2334				 */
2335				rcu_initiate_boost(rnp, flags);
2336				/* rcu_initiate_boost() releases rnp->lock */
2337				continue;
2338			}
2339			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2340			continue;
 
 
 
 
 
 
 
 
 
2341		}
2342		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2343			struct rcu_data *rdp;
2344			int ret;
2345
2346			rdp = per_cpu_ptr(&rcu_data, cpu);
2347			ret = f(rdp);
2348			if (ret > 0) {
2349				mask |= rdp->grpmask;
2350				rcu_disable_urgency_upon_qs(rdp);
2351			}
2352			if (ret < 0)
2353				rsmask |= rdp->grpmask;
2354		}
2355		if (mask != 0) {
2356			/* Idle/offline CPUs, report (releases rnp->lock). */
2357			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2358		} else {
2359			/* Nothing to do here, so just drop the lock. */
2360			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2361		}
2362
2363		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2364			resched_cpu(cpu);
2365	}
2366}
2367
2368/*
2369 * Force quiescent states on reluctant CPUs, and also detect which
2370 * CPUs are in dyntick-idle mode.
2371 */
2372void rcu_force_quiescent_state(void)
2373{
2374	unsigned long flags;
2375	bool ret;
2376	struct rcu_node *rnp;
2377	struct rcu_node *rnp_old = NULL;
2378
2379	if (!rcu_gp_in_progress())
2380		return;
2381	/* Funnel through hierarchy to reduce memory contention. */
2382	rnp = raw_cpu_read(rcu_data.mynode);
2383	for (; rnp != NULL; rnp = rnp->parent) {
2384		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2385		       !raw_spin_trylock(&rnp->fqslock);
2386		if (rnp_old != NULL)
2387			raw_spin_unlock(&rnp_old->fqslock);
2388		if (ret)
2389			return;
2390		rnp_old = rnp;
2391	}
2392	/* rnp_old == rcu_get_root(), rnp == NULL. */
2393
2394	/* Reached the root of the rcu_node tree, acquire lock. */
2395	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2396	raw_spin_unlock(&rnp_old->fqslock);
2397	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2398		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2399		return;  /* Someone beat us to it. */
2400	}
2401	WRITE_ONCE(rcu_state.gp_flags,
2402		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2403	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2404	rcu_gp_kthread_wake();
2405}
2406EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2407
2408// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2409// grace periods.
2410static void strict_work_handler(struct work_struct *work)
2411{
2412	rcu_read_lock();
2413	rcu_read_unlock();
2414}
2415
2416/* Perform RCU core processing work for the current CPU.  */
2417static __latent_entropy void rcu_core(void)
 
 
 
 
 
2418{
2419	unsigned long flags;
2420	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2421	struct rcu_node *rnp = rdp->mynode;
2422	/*
2423	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2424	 * Therefore this function can race with concurrent NOCB (de-)offloading
2425	 * on this CPU and the below condition must be considered volatile.
2426	 * However if we race with:
2427	 *
2428	 * _ Offloading:   In the worst case we accelerate or process callbacks
2429	 *                 concurrently with NOCB kthreads. We are guaranteed to
2430	 *                 call rcu_nocb_lock() if that happens.
2431	 *
2432	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2433	 *                 processing. This is fine because the early stage
2434	 *                 of deoffloading invokes rcu_core() after setting
2435	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2436	 *                 what could have been dismissed without the need to wait
2437	 *                 for the next rcu_pending() check in the next jiffy.
2438	 */
2439	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2440
2441	if (cpu_is_offline(smp_processor_id()))
2442		return;
2443	trace_rcu_utilization(TPS("Start RCU core"));
2444	WARN_ON_ONCE(!rdp->beenonline);
2445
2446	/* Report any deferred quiescent states if preemption enabled. */
2447	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2448		rcu_preempt_deferred_qs(current);
2449	} else if (rcu_preempt_need_deferred_qs(current)) {
2450		set_tsk_need_resched(current);
2451		set_preempt_need_resched();
2452	}
2453
2454	/* Update RCU state based on any recent quiescent states. */
2455	rcu_check_quiescent_state(rdp);
2456
2457	/* No grace period and unregistered callbacks? */
2458	if (!rcu_gp_in_progress() &&
2459	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2460		rcu_nocb_lock_irqsave(rdp, flags);
2461		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2462			rcu_accelerate_cbs_unlocked(rnp, rdp);
2463		rcu_nocb_unlock_irqrestore(rdp, flags);
 
 
 
2464	}
2465
2466	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2467
2468	/* If there are callbacks ready, invoke them. */
2469	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2470	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2471		rcu_do_batch(rdp);
2472		/* Re-invoke RCU core processing if there are callbacks remaining. */
2473		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2474			invoke_rcu_core();
2475	}
2476
2477	/* Do any needed deferred wakeups of rcuo kthreads. */
2478	do_nocb_deferred_wakeup(rdp);
2479	trace_rcu_utilization(TPS("End RCU core"));
2480
2481	// If strict GPs, schedule an RCU reader in a clean environment.
2482	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2483		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2484}
2485
2486static void rcu_core_si(struct softirq_action *h)
2487{
2488	rcu_core();
2489}
2490
2491static void rcu_wake_cond(struct task_struct *t, int status)
2492{
2493	/*
2494	 * If the thread is yielding, only wake it when this
2495	 * is invoked from idle
2496	 */
2497	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2498		wake_up_process(t);
2499}
2500
2501static void invoke_rcu_core_kthread(void)
2502{
2503	struct task_struct *t;
2504	unsigned long flags;
2505
2506	local_irq_save(flags);
2507	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2508	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2509	if (t != NULL && t != current)
2510		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2511	local_irq_restore(flags);
2512}
2513
2514/*
2515 * Wake up this CPU's rcuc kthread to do RCU core processing.
2516 */
2517static void invoke_rcu_core(void)
2518{
2519	if (!cpu_online(smp_processor_id()))
2520		return;
2521	if (use_softirq)
2522		raise_softirq(RCU_SOFTIRQ);
2523	else
2524		invoke_rcu_core_kthread();
2525}
2526
2527static void rcu_cpu_kthread_park(unsigned int cpu)
2528{
2529	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2530}
2531
2532static int rcu_cpu_kthread_should_run(unsigned int cpu)
2533{
2534	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2535}
2536
2537/*
2538 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2539 * the RCU softirq used in configurations of RCU that do not support RCU
2540 * priority boosting.
 
 
2541 */
2542static void rcu_cpu_kthread(unsigned int cpu)
2543{
2544	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2545	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2546	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2547	int spincnt;
2548
2549	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2550	for (spincnt = 0; spincnt < 10; spincnt++) {
2551		WRITE_ONCE(*j, jiffies);
2552		local_bh_disable();
2553		*statusp = RCU_KTHREAD_RUNNING;
2554		local_irq_disable();
2555		work = *workp;
2556		WRITE_ONCE(*workp, 0);
2557		local_irq_enable();
2558		if (work)
2559			rcu_core();
2560		local_bh_enable();
2561		if (!READ_ONCE(*workp)) {
2562			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2563			*statusp = RCU_KTHREAD_WAITING;
2564			return;
2565		}
2566	}
2567	*statusp = RCU_KTHREAD_YIELDING;
2568	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2569	schedule_timeout_idle(2);
2570	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2571	*statusp = RCU_KTHREAD_WAITING;
2572	WRITE_ONCE(*j, jiffies);
2573}
2574
2575static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2576	.store			= &rcu_data.rcu_cpu_kthread_task,
2577	.thread_should_run	= rcu_cpu_kthread_should_run,
2578	.thread_fn		= rcu_cpu_kthread,
2579	.thread_comm		= "rcuc/%u",
2580	.setup			= rcu_cpu_kthread_setup,
2581	.park			= rcu_cpu_kthread_park,
2582};
2583
2584/*
2585 * Spawn per-CPU RCU core processing kthreads.
2586 */
2587static int __init rcu_spawn_core_kthreads(void)
2588{
2589	int cpu;
2590
2591	for_each_possible_cpu(cpu)
2592		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2593	if (use_softirq)
2594		return 0;
2595	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2596		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2597	return 0;
2598}
2599
2600static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
2601{
2602	rcu_segcblist_enqueue(&rdp->cblist, head);
2603	if (__is_kvfree_rcu_offset((unsigned long)func))
2604		trace_rcu_kvfree_callback(rcu_state.name, head,
2605					 (unsigned long)func,
2606					 rcu_segcblist_n_cbs(&rdp->cblist));
2607	else
2608		trace_rcu_callback(rcu_state.name, head,
2609				   rcu_segcblist_n_cbs(&rdp->cblist));
2610	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2611}
2612
2613/*
2614 * Handle any core-RCU processing required by a call_rcu() invocation.
2615 */
2616static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2617			  rcu_callback_t func, unsigned long flags)
2618{
2619	rcutree_enqueue(rdp, head, func);
 
2620	/*
2621	 * If called from an extended quiescent state, invoke the RCU
2622	 * core in order to force a re-evaluation of RCU's idleness.
2623	 */
2624	if (!rcu_is_watching())
2625		invoke_rcu_core();
2626
2627	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2628	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2629		return;
2630
2631	/*
2632	 * Force the grace period if too many callbacks or too long waiting.
2633	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2634	 * if some other CPU has recently done so.  Also, don't bother
2635	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2636	 * is the only one waiting for a grace period to complete.
2637	 */
2638	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2639		     rdp->qlen_last_fqs_check + qhimark)) {
2640
2641		/* Are we ignoring a completed grace period? */
2642		note_gp_changes(rdp);
2643
2644		/* Start a new grace period if one not already started. */
2645		if (!rcu_gp_in_progress()) {
2646			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
 
 
 
 
 
 
2647		} else {
2648			/* Give the grace period a kick. */
2649			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2650			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2651			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2652				rcu_force_quiescent_state();
2653			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2654			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2655		}
2656	}
2657}
2658
2659/*
2660 * RCU callback function to leak a callback.
2661 */
2662static void rcu_leak_callback(struct rcu_head *rhp)
2663{
2664}
2665
2666/*
2667 * Check and if necessary update the leaf rcu_node structure's
2668 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2669 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2670 * structure's ->lock.
2671 */
2672static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2673{
2674	raw_lockdep_assert_held_rcu_node(rnp);
2675	if (qovld_calc <= 0)
2676		return; // Early boot and wildcard value set.
2677	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2678		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2679	else
2680		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2681}
2682
2683/*
2684 * Check and if necessary update the leaf rcu_node structure's
2685 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2686 * number of queued RCU callbacks.  No locks need be held, but the
2687 * caller must have disabled interrupts.
2688 *
2689 * Note that this function ignores the possibility that there are a lot
2690 * of callbacks all of which have already seen the end of their respective
2691 * grace periods.  This omission is due to the need for no-CBs CPUs to
2692 * be holding ->nocb_lock to do this check, which is too heavy for a
2693 * common-case operation.
2694 */
2695static void check_cb_ovld(struct rcu_data *rdp)
2696{
2697	struct rcu_node *const rnp = rdp->mynode;
2698
2699	if (qovld_calc <= 0 ||
2700	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2701	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2702		return; // Early boot wildcard value or already set correctly.
2703	raw_spin_lock_rcu_node(rnp);
2704	check_cb_ovld_locked(rdp, rnp);
2705	raw_spin_unlock_rcu_node(rnp);
2706}
2707
2708static void
2709__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
 
2710{
2711	static atomic_t doublefrees;
2712	unsigned long flags;
2713	bool lazy;
2714	struct rcu_data *rdp;
2715
2716	/* Misaligned rcu_head! */
2717	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2718
2719	if (debug_rcu_head_queue(head)) {
2720		/*
2721		 * Probable double call_rcu(), so leak the callback.
2722		 * Use rcu:rcu_callback trace event to find the previous
2723		 * time callback was passed to call_rcu().
2724		 */
2725		if (atomic_inc_return(&doublefrees) < 4) {
2726			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2727			mem_dump_obj(head);
2728		}
2729		WRITE_ONCE(head->func, rcu_leak_callback);
2730		return;
2731	}
2732	head->func = func;
2733	head->next = NULL;
2734	kasan_record_aux_stack_noalloc(head);
2735	local_irq_save(flags);
2736	rdp = this_cpu_ptr(&rcu_data);
2737	lazy = lazy_in && !rcu_async_should_hurry();
2738
2739	/* Add the callback to our list. */
2740	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2741		// This can trigger due to call_rcu() from offline CPU:
2742		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2743		WARN_ON_ONCE(!rcu_is_watching());
2744		// Very early boot, before rcu_init().  Initialize if needed
2745		// and then drop through to queue the callback.
2746		if (rcu_segcblist_empty(&rdp->cblist))
2747			rcu_segcblist_init(&rdp->cblist);
2748	}
2749
2750	check_cb_ovld(rdp);
2751
2752	if (unlikely(rcu_rdp_is_offloaded(rdp)))
2753		call_rcu_nocb(rdp, head, func, flags, lazy);
 
 
 
2754	else
2755		call_rcu_core(rdp, head, func, flags);
 
 
 
 
 
2756	local_irq_restore(flags);
2757}
2758
2759#ifdef CONFIG_RCU_LAZY
2760static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
2761module_param(enable_rcu_lazy, bool, 0444);
2762
2763/**
2764 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2765 * flush all lazy callbacks (including the new one) to the main ->cblist while
2766 * doing so.
2767 *
2768 * @head: structure to be used for queueing the RCU updates.
2769 * @func: actual callback function to be invoked after the grace period
2770 *
2771 * The callback function will be invoked some time after a full grace
2772 * period elapses, in other words after all pre-existing RCU read-side
2773 * critical sections have completed.
 
 
 
 
 
 
 
 
2774 *
2775 * Use this API instead of call_rcu() if you don't want the callback to be
2776 * invoked after very long periods of time, which can happen on systems without
2777 * memory pressure and on systems which are lightly loaded or mostly idle.
2778 * This function will cause callbacks to be invoked sooner than later at the
2779 * expense of extra power. Other than that, this function is identical to, and
2780 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2781 * ordering and other functionality.
2782 */
2783void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2784{
2785	__call_rcu_common(head, func, false);
2786}
2787EXPORT_SYMBOL_GPL(call_rcu_hurry);
2788#else
2789#define enable_rcu_lazy		false
2790#endif
2791
2792/**
2793 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2794 * By default the callbacks are 'lazy' and are kept hidden from the main
2795 * ->cblist to prevent starting of grace periods too soon.
2796 * If you desire grace periods to start very soon, use call_rcu_hurry().
2797 *
2798 * @head: structure to be used for queueing the RCU updates.
2799 * @func: actual callback function to be invoked after the grace period
2800 *
2801 * The callback function will be invoked some time after a full grace
2802 * period elapses, in other words after all pre-existing RCU read-side
2803 * critical sections have completed.  However, the callback function
2804 * might well execute concurrently with RCU read-side critical sections
2805 * that started after call_rcu() was invoked.
2806 *
2807 * RCU read-side critical sections are delimited by rcu_read_lock()
2808 * and rcu_read_unlock(), and may be nested.  In addition, but only in
2809 * v5.0 and later, regions of code across which interrupts, preemption,
2810 * or softirqs have been disabled also serve as RCU read-side critical
2811 * sections.  This includes hardware interrupt handlers, softirq handlers,
2812 * and NMI handlers.
2813 *
2814 * Note that all CPUs must agree that the grace period extended beyond
2815 * all pre-existing RCU read-side critical section.  On systems with more
2816 * than one CPU, this means that when "func()" is invoked, each CPU is
2817 * guaranteed to have executed a full memory barrier since the end of its
2818 * last RCU read-side critical section whose beginning preceded the call
2819 * to call_rcu().  It also means that each CPU executing an RCU read-side
2820 * critical section that continues beyond the start of "func()" must have
2821 * executed a memory barrier after the call_rcu() but before the beginning
2822 * of that RCU read-side critical section.  Note that these guarantees
2823 * include CPUs that are offline, idle, or executing in user mode, as
2824 * well as CPUs that are executing in the kernel.
2825 *
2826 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2827 * resulting RCU callback function "func()", then both CPU A and CPU B are
2828 * guaranteed to execute a full memory barrier during the time interval
2829 * between the call to call_rcu() and the invocation of "func()" -- even
2830 * if CPU A and CPU B are the same CPU (but again only if the system has
2831 * more than one CPU).
2832 *
2833 * Implementation of these memory-ordering guarantees is described here:
2834 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2835 */
2836void call_rcu(struct rcu_head *head, rcu_callback_t func)
2837{
2838	__call_rcu_common(head, func, enable_rcu_lazy);
2839}
2840EXPORT_SYMBOL_GPL(call_rcu);
2841
2842/* Maximum number of jiffies to wait before draining a batch. */
2843#define KFREE_DRAIN_JIFFIES (5 * HZ)
2844#define KFREE_N_BATCHES 2
2845#define FREE_N_CHANNELS 2
2846
2847/**
2848 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2849 * @list: List node. All blocks are linked between each other
2850 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
2851 * @nr_records: Number of active pointers in the array
2852 * @records: Array of the kvfree_rcu() pointers
2853 */
2854struct kvfree_rcu_bulk_data {
2855	struct list_head list;
2856	struct rcu_gp_oldstate gp_snap;
2857	unsigned long nr_records;
2858	void *records[];
2859};
2860
2861/*
2862 * This macro defines how many entries the "records" array
2863 * will contain. It is based on the fact that the size of
2864 * kvfree_rcu_bulk_data structure becomes exactly one page.
2865 */
2866#define KVFREE_BULK_MAX_ENTR \
2867	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2868
2869/**
2870 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2871 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2872 * @head_free: List of kfree_rcu() objects waiting for a grace period
2873 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
2874 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2875 * @krcp: Pointer to @kfree_rcu_cpu structure
2876 */
2877
2878struct kfree_rcu_cpu_work {
2879	struct rcu_work rcu_work;
2880	struct rcu_head *head_free;
2881	struct rcu_gp_oldstate head_free_gp_snap;
2882	struct list_head bulk_head_free[FREE_N_CHANNELS];
2883	struct kfree_rcu_cpu *krcp;
2884};
2885
2886/**
2887 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2888 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2889 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
2890 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2891 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2892 * @lock: Synchronize access to this structure
2893 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2894 * @initialized: The @rcu_work fields have been initialized
2895 * @head_count: Number of objects in rcu_head singular list
2896 * @bulk_count: Number of objects in bulk-list
2897 * @bkvcache:
2898 *	A simple cache list that contains objects for reuse purpose.
2899 *	In order to save some per-cpu space the list is singular.
2900 *	Even though it is lockless an access has to be protected by the
2901 *	per-cpu lock.
2902 * @page_cache_work: A work to refill the cache when it is empty
2903 * @backoff_page_cache_fill: Delay cache refills
2904 * @work_in_progress: Indicates that page_cache_work is running
2905 * @hrtimer: A hrtimer for scheduling a page_cache_work
2906 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2907 *
2908 * This is a per-CPU structure.  The reason that it is not included in
2909 * the rcu_data structure is to permit this code to be extracted from
2910 * the RCU files.  Such extraction could allow further optimization of
2911 * the interactions with the slab allocators.
2912 */
2913struct kfree_rcu_cpu {
2914	// Objects queued on a linked list
2915	// through their rcu_head structures.
2916	struct rcu_head *head;
2917	unsigned long head_gp_snap;
2918	atomic_t head_count;
2919
2920	// Objects queued on a bulk-list.
2921	struct list_head bulk_head[FREE_N_CHANNELS];
2922	atomic_t bulk_count[FREE_N_CHANNELS];
2923
2924	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2925	raw_spinlock_t lock;
2926	struct delayed_work monitor_work;
2927	bool initialized;
2928
2929	struct delayed_work page_cache_work;
2930	atomic_t backoff_page_cache_fill;
2931	atomic_t work_in_progress;
2932	struct hrtimer hrtimer;
2933
2934	struct llist_head bkvcache;
2935	int nr_bkv_objs;
2936};
2937
2938static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2939	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2940};
2941
2942static __always_inline void
2943debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2944{
2945#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2946	int i;
2947
2948	for (i = 0; i < bhead->nr_records; i++)
2949		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2950#endif
2951}
2952
2953static inline struct kfree_rcu_cpu *
2954krc_this_cpu_lock(unsigned long *flags)
2955{
2956	struct kfree_rcu_cpu *krcp;
2957
2958	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2959	krcp = this_cpu_ptr(&krc);
2960	raw_spin_lock(&krcp->lock);
2961
2962	return krcp;
2963}
2964
2965static inline void
2966krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2967{
2968	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2969}
2970
2971static inline struct kvfree_rcu_bulk_data *
2972get_cached_bnode(struct kfree_rcu_cpu *krcp)
2973{
2974	if (!krcp->nr_bkv_objs)
2975		return NULL;
2976
2977	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2978	return (struct kvfree_rcu_bulk_data *)
2979		llist_del_first(&krcp->bkvcache);
2980}
2981
2982static inline bool
2983put_cached_bnode(struct kfree_rcu_cpu *krcp,
2984	struct kvfree_rcu_bulk_data *bnode)
2985{
2986	// Check the limit.
2987	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
2988		return false;
2989
2990	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
2991	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
2992	return true;
2993}
2994
2995static int
2996drain_page_cache(struct kfree_rcu_cpu *krcp)
2997{
2998	unsigned long flags;
2999	struct llist_node *page_list, *pos, *n;
3000	int freed = 0;
3001
3002	if (!rcu_min_cached_objs)
3003		return 0;
3004
3005	raw_spin_lock_irqsave(&krcp->lock, flags);
3006	page_list = llist_del_all(&krcp->bkvcache);
3007	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3008	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3009
3010	llist_for_each_safe(pos, n, page_list) {
3011		free_page((unsigned long)pos);
3012		freed++;
3013	}
3014
3015	return freed;
3016}
3017
3018static void
3019kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3020	struct kvfree_rcu_bulk_data *bnode, int idx)
3021{
3022	unsigned long flags;
3023	int i;
3024
3025	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3026		debug_rcu_bhead_unqueue(bnode);
3027		rcu_lock_acquire(&rcu_callback_map);
3028		if (idx == 0) { // kmalloc() / kfree().
3029			trace_rcu_invoke_kfree_bulk_callback(
3030				rcu_state.name, bnode->nr_records,
3031				bnode->records);
3032
3033			kfree_bulk(bnode->nr_records, bnode->records);
3034		} else { // vmalloc() / vfree().
3035			for (i = 0; i < bnode->nr_records; i++) {
3036				trace_rcu_invoke_kvfree_callback(
3037					rcu_state.name, bnode->records[i], 0);
3038
3039				vfree(bnode->records[i]);
3040			}
3041		}
3042		rcu_lock_release(&rcu_callback_map);
3043	}
3044
3045	raw_spin_lock_irqsave(&krcp->lock, flags);
3046	if (put_cached_bnode(krcp, bnode))
3047		bnode = NULL;
3048	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3049
3050	if (bnode)
3051		free_page((unsigned long) bnode);
3052
3053	cond_resched_tasks_rcu_qs();
3054}
3055
3056static void
3057kvfree_rcu_list(struct rcu_head *head)
3058{
3059	struct rcu_head *next;
3060
3061	for (; head; head = next) {
3062		void *ptr = (void *) head->func;
3063		unsigned long offset = (void *) head - ptr;
3064
3065		next = head->next;
3066		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3067		rcu_lock_acquire(&rcu_callback_map);
3068		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3069
3070		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3071			kvfree(ptr);
3072
3073		rcu_lock_release(&rcu_callback_map);
3074		cond_resched_tasks_rcu_qs();
3075	}
3076}
3077
3078/*
3079 * This function is invoked in workqueue context after a grace period.
3080 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3081 */
3082static void kfree_rcu_work(struct work_struct *work)
3083{
3084	unsigned long flags;
3085	struct kvfree_rcu_bulk_data *bnode, *n;
3086	struct list_head bulk_head[FREE_N_CHANNELS];
3087	struct rcu_head *head;
3088	struct kfree_rcu_cpu *krcp;
3089	struct kfree_rcu_cpu_work *krwp;
3090	struct rcu_gp_oldstate head_gp_snap;
3091	int i;
3092
3093	krwp = container_of(to_rcu_work(work),
3094		struct kfree_rcu_cpu_work, rcu_work);
3095	krcp = krwp->krcp;
3096
3097	raw_spin_lock_irqsave(&krcp->lock, flags);
3098	// Channels 1 and 2.
3099	for (i = 0; i < FREE_N_CHANNELS; i++)
3100		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
3101
3102	// Channel 3.
3103	head = krwp->head_free;
3104	krwp->head_free = NULL;
3105	head_gp_snap = krwp->head_free_gp_snap;
3106	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3107
3108	// Handle the first two channels.
3109	for (i = 0; i < FREE_N_CHANNELS; i++) {
3110		// Start from the tail page, so a GP is likely passed for it.
3111		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3112			kvfree_rcu_bulk(krcp, bnode, i);
3113	}
3114
3115	/*
3116	 * This is used when the "bulk" path can not be used for the
3117	 * double-argument of kvfree_rcu().  This happens when the
3118	 * page-cache is empty, which means that objects are instead
3119	 * queued on a linked list through their rcu_head structures.
3120	 * This list is named "Channel 3".
3121	 */
3122	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3123		kvfree_rcu_list(head);
3124}
3125
3126static bool
3127need_offload_krc(struct kfree_rcu_cpu *krcp)
3128{
3129	int i;
3130
3131	for (i = 0; i < FREE_N_CHANNELS; i++)
3132		if (!list_empty(&krcp->bulk_head[i]))
3133			return true;
3134
3135	return !!READ_ONCE(krcp->head);
3136}
3137
3138static bool
3139need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3140{
3141	int i;
3142
3143	for (i = 0; i < FREE_N_CHANNELS; i++)
3144		if (!list_empty(&krwp->bulk_head_free[i]))
3145			return true;
3146
3147	return !!krwp->head_free;
3148}
3149
3150static int krc_count(struct kfree_rcu_cpu *krcp)
3151{
3152	int sum = atomic_read(&krcp->head_count);
3153	int i;
3154
3155	for (i = 0; i < FREE_N_CHANNELS; i++)
3156		sum += atomic_read(&krcp->bulk_count[i]);
3157
3158	return sum;
3159}
3160
3161static void
3162schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3163{
3164	long delay, delay_left;
3165
3166	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3167	if (delayed_work_pending(&krcp->monitor_work)) {
3168		delay_left = krcp->monitor_work.timer.expires - jiffies;
3169		if (delay < delay_left)
3170			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3171		return;
3172	}
3173	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3174}
3175
3176static void
3177kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3178{
3179	struct list_head bulk_ready[FREE_N_CHANNELS];
3180	struct kvfree_rcu_bulk_data *bnode, *n;
3181	struct rcu_head *head_ready = NULL;
3182	unsigned long flags;
3183	int i;
3184
3185	raw_spin_lock_irqsave(&krcp->lock, flags);
3186	for (i = 0; i < FREE_N_CHANNELS; i++) {
3187		INIT_LIST_HEAD(&bulk_ready[i]);
3188
3189		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3190			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3191				break;
3192
3193			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3194			list_move(&bnode->list, &bulk_ready[i]);
3195		}
3196	}
3197
3198	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3199		head_ready = krcp->head;
3200		atomic_set(&krcp->head_count, 0);
3201		WRITE_ONCE(krcp->head, NULL);
3202	}
3203	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3204
3205	for (i = 0; i < FREE_N_CHANNELS; i++) {
3206		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3207			kvfree_rcu_bulk(krcp, bnode, i);
3208	}
3209
3210	if (head_ready)
3211		kvfree_rcu_list(head_ready);
3212}
 
3213
3214/*
3215 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
 
 
 
 
3216 */
3217static void kfree_rcu_monitor(struct work_struct *work)
3218{
3219	struct kfree_rcu_cpu *krcp = container_of(work,
3220		struct kfree_rcu_cpu, monitor_work.work);
3221	unsigned long flags;
3222	int i, j;
3223
3224	// Drain ready for reclaim.
3225	kvfree_rcu_drain_ready(krcp);
3226
3227	raw_spin_lock_irqsave(&krcp->lock, flags);
3228
3229	// Attempt to start a new batch.
3230	for (i = 0; i < KFREE_N_BATCHES; i++) {
3231		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3232
3233		// Try to detach bulk_head or head and attach it, only when
3234		// all channels are free.  Any channel is not free means at krwp
3235		// there is on-going rcu work to handle krwp's free business.
3236		if (need_wait_for_krwp_work(krwp))
3237			continue;
3238
3239		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3240		if (need_offload_krc(krcp)) {
3241			// Channel 1 corresponds to the SLAB-pointer bulk path.
3242			// Channel 2 corresponds to vmalloc-pointer bulk path.
3243			for (j = 0; j < FREE_N_CHANNELS; j++) {
3244				if (list_empty(&krwp->bulk_head_free[j])) {
3245					atomic_set(&krcp->bulk_count[j], 0);
3246					list_replace_init(&krcp->bulk_head[j],
3247						&krwp->bulk_head_free[j]);
3248				}
3249			}
3250
3251			// Channel 3 corresponds to both SLAB and vmalloc
3252			// objects queued on the linked list.
3253			if (!krwp->head_free) {
3254				krwp->head_free = krcp->head;
3255				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3256				atomic_set(&krcp->head_count, 0);
3257				WRITE_ONCE(krcp->head, NULL);
3258			}
3259
3260			// One work is per one batch, so there are three
3261			// "free channels", the batch can handle. It can
3262			// be that the work is in the pending state when
3263			// channels have been detached following by each
3264			// other.
3265			queue_rcu_work(system_wq, &krwp->rcu_work);
3266		}
3267	}
3268
3269	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3270
3271	// If there is nothing to detach, it means that our job is
3272	// successfully done here. In case of having at least one
3273	// of the channels that is still busy we should rearm the
3274	// work to repeat an attempt. Because previous batches are
3275	// still in progress.
3276	if (need_offload_krc(krcp))
3277		schedule_delayed_monitor_work(krcp);
3278}
3279
3280static enum hrtimer_restart
3281schedule_page_work_fn(struct hrtimer *t)
3282{
3283	struct kfree_rcu_cpu *krcp =
3284		container_of(t, struct kfree_rcu_cpu, hrtimer);
3285
3286	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3287	return HRTIMER_NORESTART;
3288}
3289
3290static void fill_page_cache_func(struct work_struct *work)
3291{
3292	struct kvfree_rcu_bulk_data *bnode;
3293	struct kfree_rcu_cpu *krcp =
3294		container_of(work, struct kfree_rcu_cpu,
3295			page_cache_work.work);
3296	unsigned long flags;
3297	int nr_pages;
3298	bool pushed;
3299	int i;
3300
3301	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3302		1 : rcu_min_cached_objs;
3303
3304	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3305		bnode = (struct kvfree_rcu_bulk_data *)
3306			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3307
3308		if (!bnode)
3309			break;
3310
3311		raw_spin_lock_irqsave(&krcp->lock, flags);
3312		pushed = put_cached_bnode(krcp, bnode);
3313		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3314
3315		if (!pushed) {
3316			free_page((unsigned long) bnode);
3317			break;
3318		}
3319	}
3320
3321	atomic_set(&krcp->work_in_progress, 0);
3322	atomic_set(&krcp->backoff_page_cache_fill, 0);
3323}
3324
3325static void
3326run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3327{
3328	// If cache disabled, bail out.
3329	if (!rcu_min_cached_objs)
3330		return;
3331
3332	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3333			!atomic_xchg(&krcp->work_in_progress, 1)) {
3334		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3335			queue_delayed_work(system_wq,
3336				&krcp->page_cache_work,
3337					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3338		} else {
3339			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3340			krcp->hrtimer.function = schedule_page_work_fn;
3341			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3342		}
3343	}
3344}
3345
3346// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3347// state specified by flags.  If can_alloc is true, the caller must
3348// be schedulable and not be holding any locks or mutexes that might be
3349// acquired by the memory allocator or anything that it might invoke.
3350// Returns true if ptr was successfully recorded, else the caller must
3351// use a fallback.
3352static inline bool
3353add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3354	unsigned long *flags, void *ptr, bool can_alloc)
3355{
3356	struct kvfree_rcu_bulk_data *bnode;
3357	int idx;
3358
3359	*krcp = krc_this_cpu_lock(flags);
3360	if (unlikely(!(*krcp)->initialized))
3361		return false;
3362
3363	idx = !!is_vmalloc_addr(ptr);
3364	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3365		struct kvfree_rcu_bulk_data, list);
3366
3367	/* Check if a new block is required. */
3368	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
3369		bnode = get_cached_bnode(*krcp);
3370		if (!bnode && can_alloc) {
3371			krc_this_cpu_unlock(*krcp, *flags);
3372
3373			// __GFP_NORETRY - allows a light-weight direct reclaim
3374			// what is OK from minimizing of fallback hitting point of
3375			// view. Apart of that it forbids any OOM invoking what is
3376			// also beneficial since we are about to release memory soon.
3377			//
3378			// __GFP_NOMEMALLOC - prevents from consuming of all the
3379			// memory reserves. Please note we have a fallback path.
3380			//
3381			// __GFP_NOWARN - it is supposed that an allocation can
3382			// be failed under low memory or high memory pressure
3383			// scenarios.
3384			bnode = (struct kvfree_rcu_bulk_data *)
3385				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3386			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3387		}
3388
3389		if (!bnode)
3390			return false;
3391
3392		// Initialize the new block and attach it.
3393		bnode->nr_records = 0;
3394		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
3395	}
3396
3397	// Finally insert and update the GP for this page.
3398	bnode->records[bnode->nr_records++] = ptr;
3399	get_state_synchronize_rcu_full(&bnode->gp_snap);
3400	atomic_inc(&(*krcp)->bulk_count[idx]);
3401
3402	return true;
3403}
 
3404
3405/*
3406 * Queue a request for lazy invocation of the appropriate free routine
3407 * after a grace period.  Please note that three paths are maintained,
3408 * two for the common case using arrays of pointers and a third one that
3409 * is used only when the main paths cannot be used, for example, due to
3410 * memory pressure.
3411 *
3412 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3413 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3414 * be free'd in workqueue context. This allows us to: batch requests together to
3415 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3416 */
3417void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3418{
3419	unsigned long flags;
3420	struct kfree_rcu_cpu *krcp;
3421	bool success;
3422
3423	/*
3424	 * Please note there is a limitation for the head-less
3425	 * variant, that is why there is a clear rule for such
3426	 * objects: it can be used from might_sleep() context
3427	 * only. For other places please embed an rcu_head to
3428	 * your data.
3429	 */
3430	if (!head)
3431		might_sleep();
3432
3433	// Queue the object but don't yet schedule the batch.
3434	if (debug_rcu_head_queue(ptr)) {
3435		// Probable double kfree_rcu(), just leak.
3436		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3437			  __func__, head);
3438
3439		// Mark as success and leave.
3440		return;
3441	}
3442
3443	kasan_record_aux_stack_noalloc(ptr);
3444	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3445	if (!success) {
3446		run_page_cache_worker(krcp);
3447
3448		if (head == NULL)
3449			// Inline if kvfree_rcu(one_arg) call.
3450			goto unlock_return;
3451
3452		head->func = ptr;
3453		head->next = krcp->head;
3454		WRITE_ONCE(krcp->head, head);
3455		atomic_inc(&krcp->head_count);
3456
3457		// Take a snapshot for this krcp.
3458		krcp->head_gp_snap = get_state_synchronize_rcu();
3459		success = true;
3460	}
3461
3462	/*
3463	 * The kvfree_rcu() caller considers the pointer freed at this point
3464	 * and likely removes any references to it. Since the actual slab
3465	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3466	 * this object (no scanning or false positives reporting).
3467	 */
3468	kmemleak_ignore(ptr);
3469
3470	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3471	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3472		schedule_delayed_monitor_work(krcp);
3473
3474unlock_return:
3475	krc_this_cpu_unlock(krcp, flags);
3476
3477	/*
3478	 * Inline kvfree() after synchronize_rcu(). We can do
3479	 * it from might_sleep() context only, so the current
3480	 * CPU can pass the QS state.
3481	 */
3482	if (!success) {
3483		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3484		synchronize_rcu();
3485		kvfree(ptr);
3486	}
3487}
3488EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3489
3490static unsigned long
3491kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3492{
3493	int cpu;
3494	unsigned long count = 0;
3495
3496	/* Snapshot count of all CPUs */
3497	for_each_possible_cpu(cpu) {
3498		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3499
3500		count += krc_count(krcp);
3501		count += READ_ONCE(krcp->nr_bkv_objs);
3502		atomic_set(&krcp->backoff_page_cache_fill, 1);
3503	}
3504
3505	return count == 0 ? SHRINK_EMPTY : count;
3506}
3507
3508static unsigned long
3509kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3510{
3511	int cpu, freed = 0;
3512
3513	for_each_possible_cpu(cpu) {
3514		int count;
3515		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3516
3517		count = krc_count(krcp);
3518		count += drain_page_cache(krcp);
3519		kfree_rcu_monitor(&krcp->monitor_work.work);
3520
3521		sc->nr_to_scan -= count;
3522		freed += count;
3523
3524		if (sc->nr_to_scan <= 0)
3525			break;
3526	}
3527
3528	return freed == 0 ? SHRINK_STOP : freed;
3529}
3530
3531void __init kfree_rcu_scheduler_running(void)
3532{
3533	int cpu;
3534
3535	for_each_possible_cpu(cpu) {
3536		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3537
3538		if (need_offload_krc(krcp))
3539			schedule_delayed_monitor_work(krcp);
3540	}
3541}
3542
3543/*
3544 * During early boot, any blocking grace-period wait automatically
3545 * implies a grace period.
3546 *
3547 * Later on, this could in theory be the case for kernels built with
3548 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3549 * is not a common case.  Furthermore, this optimization would cause
3550 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3551 * grace-period optimization is ignored once the scheduler is running.
3552 */
3553static int rcu_blocking_is_gp(void)
3554{
3555	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
3556		might_sleep();
3557		return false;
3558	}
3559	return true;
3560}
3561
3562/**
3563 * synchronize_rcu - wait until a grace period has elapsed.
3564 *
3565 * Control will return to the caller some time after a full grace
3566 * period has elapsed, in other words after all currently executing RCU
3567 * read-side critical sections have completed.  Note, however, that
3568 * upon return from synchronize_rcu(), the caller might well be executing
3569 * concurrently with new RCU read-side critical sections that began while
3570 * synchronize_rcu() was waiting.
3571 *
3572 * RCU read-side critical sections are delimited by rcu_read_lock()
3573 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3574 * v5.0 and later, regions of code across which interrupts, preemption,
3575 * or softirqs have been disabled also serve as RCU read-side critical
3576 * sections.  This includes hardware interrupt handlers, softirq handlers,
3577 * and NMI handlers.
3578 *
3579 * Note that this guarantee implies further memory-ordering guarantees.
3580 * On systems with more than one CPU, when synchronize_rcu() returns,
3581 * each CPU is guaranteed to have executed a full memory barrier since
3582 * the end of its last RCU read-side critical section whose beginning
3583 * preceded the call to synchronize_rcu().  In addition, each CPU having
3584 * an RCU read-side critical section that extends beyond the return from
3585 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3586 * after the beginning of synchronize_rcu() and before the beginning of
3587 * that RCU read-side critical section.  Note that these guarantees include
3588 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3589 * that are executing in the kernel.
3590 *
3591 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3592 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3593 * to have executed a full memory barrier during the execution of
3594 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3595 * again only if the system has more than one CPU).
3596 *
3597 * Implementation of these memory-ordering guarantees is described here:
3598 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3599 */
3600void synchronize_rcu(void)
3601{
3602	unsigned long flags;
3603	struct rcu_node *rnp;
3604
3605	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3606			 lock_is_held(&rcu_lock_map) ||
3607			 lock_is_held(&rcu_sched_lock_map),
3608			 "Illegal synchronize_rcu() in RCU read-side critical section");
3609	if (!rcu_blocking_is_gp()) {
3610		if (rcu_gp_is_expedited())
3611			synchronize_rcu_expedited();
3612		else
3613			wait_rcu_gp(call_rcu_hurry);
3614		return;
3615	}
3616
3617	// Context allows vacuous grace periods.
3618	// Note well that this code runs with !PREEMPT && !SMP.
3619	// In addition, all code that advances grace periods runs at
3620	// process level.  Therefore, this normal GP overlaps with other
3621	// normal GPs only by being fully nested within them, which allows
3622	// reuse of ->gp_seq_polled_snap.
3623	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3624	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3625
3626	// Update the normal grace-period counters to record
3627	// this grace period, but only those used by the boot CPU.
3628	// The rcu_scheduler_starting() will take care of the rest of
3629	// these counters.
3630	local_irq_save(flags);
3631	WARN_ON_ONCE(num_online_cpus() > 1);
3632	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3633	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3634		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3635	local_irq_restore(flags);
3636}
3637EXPORT_SYMBOL_GPL(synchronize_rcu);
3638
3639/**
3640 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3641 * @rgosp: Place to put state cookie
 
 
 
 
 
3642 *
3643 * Stores into @rgosp a value that will always be treated by functions
3644 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3645 * has already completed.
3646 */
3647void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3648{
3649	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3650	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
 
 
 
 
 
 
 
 
3651}
3652EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3653
3654/**
3655 * get_state_synchronize_rcu - Snapshot current RCU state
3656 *
3657 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3658 * or poll_state_synchronize_rcu() to determine whether or not a full
3659 * grace period has elapsed in the meantime.
3660 */
3661unsigned long get_state_synchronize_rcu(void)
3662{
3663	/*
3664	 * Any prior manipulation of RCU-protected data must happen
3665	 * before the load from ->gp_seq.
3666	 */
3667	smp_mb();  /* ^^^ */
3668	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3669}
3670EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3671
3672/**
3673 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3674 * @rgosp: location to place combined normal/expedited grace-period state
3675 *
3676 * Places the normal and expedited grace-period states in @rgosp.  This
3677 * state value can be passed to a later call to cond_synchronize_rcu_full()
3678 * or poll_state_synchronize_rcu_full() to determine whether or not a
3679 * grace period (whether normal or expedited) has elapsed in the meantime.
3680 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3681 * long, but is guaranteed to see all grace periods.  In contrast, the
3682 * combined state occupies less memory, but can sometimes fail to take
3683 * grace periods into account.
3684 *
3685 * This does not guarantee that the needed grace period will actually
3686 * start.
3687 */
3688void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3689{
3690	struct rcu_node *rnp = rcu_get_root();
3691
3692	/*
3693	 * Any prior manipulation of RCU-protected data must happen
3694	 * before the loads from ->gp_seq and ->expedited_sequence.
 
3695	 */
3696	smp_mb();  /* ^^^ */
3697	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3698	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3699}
3700EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3701
3702/*
3703 * Helper function for start_poll_synchronize_rcu() and
3704 * start_poll_synchronize_rcu_full().
3705 */
3706static void start_poll_synchronize_rcu_common(void)
3707{
3708	unsigned long flags;
3709	bool needwake;
3710	struct rcu_data *rdp;
3711	struct rcu_node *rnp;
3712
3713	lockdep_assert_irqs_enabled();
3714	local_irq_save(flags);
3715	rdp = this_cpu_ptr(&rcu_data);
3716	rnp = rdp->mynode;
3717	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3718	// Note it is possible for a grace period to have elapsed between
3719	// the above call to get_state_synchronize_rcu() and the below call
3720	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3721	// get a grace period that no one needed.  These accesses are ordered
3722	// by smp_mb(), and we are accessing them in the opposite order
3723	// from which they are updated at grace-period start, as required.
3724	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3725	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3726	if (needwake)
3727		rcu_gp_kthread_wake();
3728}
 
3729
3730/**
3731 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3732 *
3733 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3734 * or poll_state_synchronize_rcu() to determine whether or not a full
3735 * grace period has elapsed in the meantime.  If the needed grace period
3736 * is not already slated to start, notifies RCU core of the need for that
3737 * grace period.
3738 *
3739 * Interrupts must be enabled for the case where it is necessary to awaken
3740 * the grace-period kthread.
 
 
3741 */
3742unsigned long start_poll_synchronize_rcu(void)
3743{
3744	unsigned long gp_seq = get_state_synchronize_rcu();
3745
3746	start_poll_synchronize_rcu_common();
3747	return gp_seq;
 
 
 
 
 
3748}
3749EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3750
3751/**
3752 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3753 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3754 *
3755 * Places the normal and expedited grace-period states in *@rgos.  This
3756 * state value can be passed to a later call to cond_synchronize_rcu_full()
3757 * or poll_state_synchronize_rcu_full() to determine whether or not a
3758 * grace period (whether normal or expedited) has elapsed in the meantime.
3759 * If the needed grace period is not already slated to start, notifies
3760 * RCU core of the need for that grace period.
3761 *
3762 * Interrupts must be enabled for the case where it is necessary to awaken
3763 * the grace-period kthread.
3764 */
3765void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3766{
3767	get_state_synchronize_rcu_full(rgosp);
3768
3769	start_poll_synchronize_rcu_common();
3770}
3771EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3772
3773/**
3774 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3775 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3776 *
3777 * If a full RCU grace period has elapsed since the earlier call from
3778 * which @oldstate was obtained, return @true, otherwise return @false.
3779 * If @false is returned, it is the caller's responsibility to invoke this
3780 * function later on until it does return @true.  Alternatively, the caller
3781 * can explicitly wait for a grace period, for example, by passing @oldstate
3782 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
3783 * on the one hand or by directly invoking either synchronize_rcu() or
3784 * synchronize_rcu_expedited() on the other.
3785 *
3786 * Yes, this function does not take counter wrap into account.
3787 * But counter wrap is harmless.  If the counter wraps, we have waited for
3788 * more than a billion grace periods (and way more on a 64-bit system!).
3789 * Those needing to keep old state values for very long time periods
3790 * (many hours even on 32-bit systems) should check them occasionally and
3791 * either refresh them or set a flag indicating that the grace period has
3792 * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3793 * to get a guaranteed-completed grace-period state.
3794 *
3795 * In addition, because oldstate compresses the grace-period state for
3796 * both normal and expedited grace periods into a single unsigned long,
3797 * it can miss a grace period when synchronize_rcu() runs concurrently
3798 * with synchronize_rcu_expedited().  If this is unacceptable, please
3799 * instead use the _full() variant of these polling APIs.
3800 *
3801 * This function provides the same memory-ordering guarantees that
3802 * would be provided by a synchronize_rcu() that was invoked at the call
3803 * to the function that provided @oldstate, and that returned at the end
3804 * of this function.
3805 */
3806bool poll_state_synchronize_rcu(unsigned long oldstate)
3807{
3808	if (oldstate == RCU_GET_STATE_COMPLETED ||
3809	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3810		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3811		return true;
3812	}
3813	return false;
3814}
3815EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3816
3817/**
3818 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3819 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3820 *
3821 * If a full RCU grace period has elapsed since the earlier call from
3822 * which *rgosp was obtained, return @true, otherwise return @false.
3823 * If @false is returned, it is the caller's responsibility to invoke this
3824 * function later on until it does return @true.  Alternatively, the caller
3825 * can explicitly wait for a grace period, for example, by passing @rgosp
3826 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3827 *
3828 * Yes, this function does not take counter wrap into account.
3829 * But counter wrap is harmless.  If the counter wraps, we have waited
3830 * for more than a billion grace periods (and way more on a 64-bit
3831 * system!).  Those needing to keep rcu_gp_oldstate values for very
3832 * long time periods (many hours even on 32-bit systems) should check
3833 * them occasionally and either refresh them or set a flag indicating
3834 * that the grace period has completed.  Alternatively, they can use
3835 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3836 * grace-period state.
3837 *
3838 * This function provides the same memory-ordering guarantees that would
3839 * be provided by a synchronize_rcu() that was invoked at the call to
3840 * the function that provided @rgosp, and that returned at the end of this
3841 * function.  And this guarantee requires that the root rcu_node structure's
3842 * ->gp_seq field be checked instead of that of the rcu_state structure.
3843 * The problem is that the just-ending grace-period's callbacks can be
3844 * invoked between the time that the root rcu_node structure's ->gp_seq
3845 * field is updated and the time that the rcu_state structure's ->gp_seq
3846 * field is updated.  Therefore, if a single synchronize_rcu() is to
3847 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3848 * then the root rcu_node structure is the one that needs to be polled.
3849 */
3850bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3851{
3852	struct rcu_node *rnp = rcu_get_root();
3853
3854	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3855	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3856	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3857	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3858	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3859		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3860		return true;
3861	}
3862	return false;
3863}
3864EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3865
3866/**
3867 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3868 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3869 *
3870 * If a full RCU grace period has elapsed since the earlier call to
3871 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3872 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3873 *
3874 * Yes, this function does not take counter wrap into account.
3875 * But counter wrap is harmless.  If the counter wraps, we have waited for
3876 * more than 2 billion grace periods (and way more on a 64-bit system!),
3877 * so waiting for a couple of additional grace periods should be just fine.
3878 *
3879 * This function provides the same memory-ordering guarantees that
3880 * would be provided by a synchronize_rcu() that was invoked at the call
3881 * to the function that provided @oldstate and that returned at the end
3882 * of this function.
3883 */
3884void cond_synchronize_rcu(unsigned long oldstate)
3885{
3886	if (!poll_state_synchronize_rcu(oldstate))
3887		synchronize_rcu();
3888}
3889EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3890
3891/**
3892 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3893 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3894 *
3895 * If a full RCU grace period has elapsed since the call to
3896 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3897 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3898 * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3899 * for a full grace period.
3900 *
3901 * Yes, this function does not take counter wrap into account.
3902 * But counter wrap is harmless.  If the counter wraps, we have waited for
3903 * more than 2 billion grace periods (and way more on a 64-bit system!),
3904 * so waiting for a couple of additional grace periods should be just fine.
3905 *
3906 * This function provides the same memory-ordering guarantees that
3907 * would be provided by a synchronize_rcu() that was invoked at the call
3908 * to the function that provided @rgosp and that returned at the end of
3909 * this function.
3910 */
3911void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3912{
3913	if (!poll_state_synchronize_rcu_full(rgosp))
3914		synchronize_rcu();
3915}
3916EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3917
3918/*
3919 * Check to see if there is any immediate RCU-related work to be done by
3920 * the current CPU, returning 1 if so and zero otherwise.  The checks are
3921 * in order of increasing expense: checks that can be carried out against
3922 * CPU-local state are performed first.  However, we must check for CPU
3923 * stalls first, else we might not get a chance.
3924 */
3925static int rcu_pending(int user)
3926{
3927	bool gp_in_progress;
3928	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3929	struct rcu_node *rnp = rdp->mynode;
3930
3931	lockdep_assert_irqs_disabled();
3932
3933	/* Check for CPU stalls, if enabled. */
3934	check_cpu_stall(rdp);
3935
3936	/* Does this CPU need a deferred NOCB wakeup? */
3937	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3938		return 1;
3939
3940	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3941	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3942		return 0;
3943
3944	/* Is the RCU core waiting for a quiescent state from this CPU? */
3945	gp_in_progress = rcu_gp_in_progress();
3946	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3947		return 1;
3948
3949	/* Does this CPU have callbacks ready to invoke? */
3950	if (!rcu_rdp_is_offloaded(rdp) &&
3951	    rcu_segcblist_ready_cbs(&rdp->cblist))
3952		return 1;
3953
3954	/* Has RCU gone idle with this CPU needing another grace period? */
3955	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3956	    !rcu_rdp_is_offloaded(rdp) &&
3957	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3958		return 1;
3959
3960	/* Have RCU grace period completed or started?  */
3961	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
 
 
 
 
3962	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3963		return 1;
3964
 
 
 
 
3965	/* nothing to do */
3966	return 0;
3967}
3968
3969/*
3970 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3971 * the compiler is expected to optimize this away.
 
3972 */
3973static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3974{
3975	trace_rcu_barrier(rcu_state.name, s, cpu,
3976			  atomic_read(&rcu_state.barrier_cpu_count), done);
 
 
 
 
3977}
3978
3979/*
3980 * RCU callback function for rcu_barrier().  If we are last, wake
3981 * up the task executing rcu_barrier().
3982 *
3983 * Note that the value of rcu_state.barrier_sequence must be captured
3984 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3985 * other CPUs might count the value down to zero before this CPU gets
3986 * around to invoking rcu_barrier_trace(), which might result in bogus
3987 * data from the next instance of rcu_barrier().
3988 */
3989static void rcu_barrier_callback(struct rcu_head *rhp)
3990{
3991	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
 
 
 
3992
3993	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3994		rcu_barrier_trace(TPS("LastCB"), -1, s);
3995		complete(&rcu_state.barrier_completion);
3996	} else {
3997		rcu_barrier_trace(TPS("CB"), -1, s);
 
 
 
 
3998	}
 
 
 
3999}
4000
4001/*
4002 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
 
4003 */
4004static void rcu_barrier_entrain(struct rcu_data *rdp)
 
4005{
4006	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4007	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4008	bool wake_nocb = false;
4009	bool was_alldone = false;
4010
4011	lockdep_assert_held(&rcu_state.barrier_lock);
4012	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4013		return;
4014	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4015	rdp->barrier_head.func = rcu_barrier_callback;
4016	debug_rcu_head_queue(&rdp->barrier_head);
4017	rcu_nocb_lock(rdp);
4018	/*
4019	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4020	 * queue. This way we don't wait for bypass timer that can reach seconds
4021	 * if it's fully lazy.
4022	 */
4023	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4024	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4025	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4026	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4027		atomic_inc(&rcu_state.barrier_cpu_count);
4028	} else {
4029		debug_rcu_head_unqueue(&rdp->barrier_head);
4030		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4031	}
4032	rcu_nocb_unlock(rdp);
4033	if (wake_nocb)
4034		wake_nocb_gp(rdp, false);
4035	smp_store_release(&rdp->barrier_seq_snap, gseq);
4036}
4037
4038/*
4039 * Called with preemption disabled, and from cross-cpu IRQ context.
4040 */
4041static void rcu_barrier_handler(void *cpu_in)
4042{
4043	uintptr_t cpu = (uintptr_t)cpu_in;
4044	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4045
4046	lockdep_assert_irqs_disabled();
4047	WARN_ON_ONCE(cpu != rdp->cpu);
4048	WARN_ON_ONCE(cpu != smp_processor_id());
4049	raw_spin_lock(&rcu_state.barrier_lock);
4050	rcu_barrier_entrain(rdp);
4051	raw_spin_unlock(&rcu_state.barrier_lock);
 
 
 
 
4052}
4053
4054/**
4055 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4056 *
4057 * Note that this primitive does not necessarily wait for an RCU grace period
4058 * to complete.  For example, if there are no RCU callbacks queued anywhere
4059 * in the system, then rcu_barrier() is within its rights to return
4060 * immediately, without waiting for anything, much less an RCU grace period.
4061 */
4062void rcu_barrier(void)
4063{
4064	uintptr_t cpu;
4065	unsigned long flags;
4066	unsigned long gseq;
4067	struct rcu_data *rdp;
4068	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4069
4070	rcu_barrier_trace(TPS("Begin"), -1, s);
4071
4072	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4073	mutex_lock(&rcu_state.barrier_mutex);
4074
4075	/* Did someone else do our work for us? */
4076	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4077		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
 
4078		smp_mb(); /* caller's subsequent code after above check. */
4079		mutex_unlock(&rcu_state.barrier_mutex);
4080		return;
4081	}
4082
4083	/* Mark the start of the barrier operation. */
4084	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4085	rcu_seq_start(&rcu_state.barrier_sequence);
4086	gseq = rcu_state.barrier_sequence;
4087	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4088
4089	/*
4090	 * Initialize the count to two rather than to zero in order
4091	 * to avoid a too-soon return to zero in case of an immediate
4092	 * invocation of the just-enqueued callback (or preemption of
4093	 * this task).  Exclude CPU-hotplug operations to ensure that no
4094	 * offline non-offloaded CPU has callbacks queued.
4095	 */
4096	init_completion(&rcu_state.barrier_completion);
4097	atomic_set(&rcu_state.barrier_cpu_count, 2);
4098	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4099
4100	/*
4101	 * Force each CPU with callbacks to register a new callback.
4102	 * When that callback is invoked, we will know that all of the
4103	 * corresponding CPU's preceding callbacks have been invoked.
4104	 */
4105	for_each_possible_cpu(cpu) {
4106		rdp = per_cpu_ptr(&rcu_data, cpu);
4107retry:
4108		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4109			continue;
4110		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4111		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4112			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4113			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4114			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4115			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4116		}
4117		if (!rcu_rdp_cpu_online(rdp)) {
4118			rcu_barrier_entrain(rdp);
4119			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4120			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4121			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4122			continue;
4123		}
4124		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4125		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4126			schedule_timeout_uninterruptible(1);
4127			goto retry;
4128		}
4129		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4130		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4131	}
 
4132
4133	/*
4134	 * Now that we have an rcu_barrier_callback() callback on each
4135	 * CPU, and thus each counted, remove the initial count.
4136	 */
4137	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4138		complete(&rcu_state.barrier_completion);
4139
4140	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4141	wait_for_completion(&rcu_state.barrier_completion);
4142
4143	/* Mark the end of the barrier operation. */
4144	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4145	rcu_seq_end(&rcu_state.barrier_sequence);
4146	gseq = rcu_state.barrier_sequence;
4147	for_each_possible_cpu(cpu) {
4148		rdp = per_cpu_ptr(&rcu_data, cpu);
4149
4150		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4151	}
4152
4153	/* Other rcu_barrier() invocations can now safely proceed. */
4154	mutex_unlock(&rcu_state.barrier_mutex);
4155}
4156EXPORT_SYMBOL_GPL(rcu_barrier);
4157
4158static unsigned long rcu_barrier_last_throttle;
4159
4160/**
4161 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
4162 *
4163 * This can be thought of as guard rails around rcu_barrier() that
4164 * permits unrestricted userspace use, at least assuming the hardware's
4165 * try_cmpxchg() is robust.  There will be at most one call per second to
4166 * rcu_barrier() system-wide from use of this function, which means that
4167 * callers might needlessly wait a second or three.
4168 *
4169 * This is intended for use by test suites to avoid OOM by flushing RCU
4170 * callbacks from the previous test before starting the next.  See the
4171 * rcutree.do_rcu_barrier module parameter for more information.
4172 *
4173 * Why not simply make rcu_barrier() more scalable?  That might be
4174 * the eventual endpoint, but let's keep it simple for the time being.
4175 * Note that the module parameter infrastructure serializes calls to a
4176 * given .set() function, but should concurrent .set() invocation ever be
4177 * possible, we are ready!
4178 */
4179static void rcu_barrier_throttled(void)
4180{
4181	unsigned long j = jiffies;
4182	unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
4183	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4184
4185	while (time_in_range(j, old, old + HZ / 16) ||
4186	       !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
4187		schedule_timeout_idle(HZ / 16);
4188		if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4189			smp_mb(); /* caller's subsequent code after above check. */
4190			return;
4191		}
4192		j = jiffies;
4193		old = READ_ONCE(rcu_barrier_last_throttle);
4194	}
4195	rcu_barrier();
4196}
 
4197
4198/*
4199 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
4200 * request arrives.  We insist on a true value to allow for possible
4201 * future expansion.
4202 */
4203static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
4204{
4205	bool b;
4206	int ret;
4207
4208	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
4209		return -EAGAIN;
4210	ret = kstrtobool(val, &b);
4211	if (!ret && b) {
4212		atomic_inc((atomic_t *)kp->arg);
4213		rcu_barrier_throttled();
4214		atomic_dec((atomic_t *)kp->arg);
4215	}
4216	return ret;
4217}
4218
4219/*
4220 * Output the number of outstanding rcutree.do_rcu_barrier requests.
4221 */
4222static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
4223{
4224	return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
4225}
4226
4227static const struct kernel_param_ops do_rcu_barrier_ops = {
4228	.set = param_set_do_rcu_barrier,
4229	.get = param_get_do_rcu_barrier,
4230};
4231static atomic_t do_rcu_barrier;
4232module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
4233
4234/*
4235 * Compute the mask of online CPUs for the specified rcu_node structure.
4236 * This will not be stable unless the rcu_node structure's ->lock is
4237 * held, but the bit corresponding to the current CPU will be stable
4238 * in most contexts.
4239 */
4240static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4241{
4242	return READ_ONCE(rnp->qsmaskinitnext);
4243}
4244
4245/*
4246 * Is the CPU corresponding to the specified rcu_data structure online
4247 * from RCU's perspective?  This perspective is given by that structure's
4248 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4249 */
4250static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4251{
4252	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4253}
4254
4255bool rcu_cpu_online(int cpu)
4256{
4257	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4258
4259	return rcu_rdp_cpu_online(rdp);
4260}
4261
4262#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4263
4264/*
4265 * Is the current CPU online as far as RCU is concerned?
4266 *
4267 * Disable preemption to avoid false positives that could otherwise
4268 * happen due to the current CPU number being sampled, this task being
4269 * preempted, its old CPU being taken offline, resuming on some other CPU,
4270 * then determining that its old CPU is now offline.
4271 *
4272 * Disable checking if in an NMI handler because we cannot safely
4273 * report errors from NMI handlers anyway.  In addition, it is OK to use
4274 * RCU on an offline processor during initial boot, hence the check for
4275 * rcu_scheduler_fully_active.
4276 */
4277bool rcu_lockdep_current_cpu_online(void)
4278{
4279	struct rcu_data *rdp;
4280	bool ret = false;
4281
4282	if (in_nmi() || !rcu_scheduler_fully_active)
4283		return true;
4284	preempt_disable_notrace();
4285	rdp = this_cpu_ptr(&rcu_data);
4286	/*
4287	 * Strictly, we care here about the case where the current CPU is
4288	 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
4289	 * not being up to date. So arch_spin_is_locked() might have a
4290	 * false positive if it's held by some *other* CPU, but that's
4291	 * OK because that just means a false *negative* on the warning.
4292	 */
4293	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4294		ret = true;
4295	preempt_enable_notrace();
4296	return ret;
4297}
4298EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4299
4300#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4301
4302// Has rcu_init() been invoked?  This is used (for example) to determine
4303// whether spinlocks may be acquired safely.
4304static bool rcu_init_invoked(void)
4305{
4306	return !!rcu_state.n_online_cpus;
4307}
4308
4309/*
4310 * All CPUs for the specified rcu_node structure have gone offline,
4311 * and all tasks that were preempted within an RCU read-side critical
4312 * section while running on one of those CPUs have since exited their RCU
4313 * read-side critical section.  Some other CPU is reporting this fact with
4314 * the specified rcu_node structure's ->lock held and interrupts disabled.
4315 * This function therefore goes up the tree of rcu_node structures,
4316 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4317 * the leaf rcu_node structure's ->qsmaskinit field has already been
4318 * updated.
4319 *
4320 * This function does check that the specified rcu_node structure has
4321 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4322 * prematurely.  That said, invoking it after the fact will cost you
4323 * a needless lock acquisition.  So once it has done its work, don't
4324 * invoke it again.
4325 */
4326static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4327{
4328	long mask;
4329	struct rcu_node *rnp = rnp_leaf;
4330
4331	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4332	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4333	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4334	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4335		return;
4336	for (;;) {
4337		mask = rnp->grpmask;
4338		rnp = rnp->parent;
4339		if (!rnp)
4340			break;
4341		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4342		rnp->qsmaskinit &= ~mask;
4343		/* Between grace periods, so better already be zero! */
4344		WARN_ON_ONCE(rnp->qsmask);
4345		if (rnp->qsmaskinit) {
4346			raw_spin_unlock_rcu_node(rnp);
4347			/* irqs remain disabled. */
4348			return;
4349		}
4350		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4351	}
4352}
 
4353
4354/*
4355 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4356 * first CPU in a given leaf rcu_node structure coming online.  The caller
4357 * must hold the corresponding leaf rcu_node ->lock with interrupts
4358 * disabled.
4359 */
4360static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4361{
4362	long mask;
4363	long oldmask;
4364	struct rcu_node *rnp = rnp_leaf;
4365
4366	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4367	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4368	for (;;) {
4369		mask = rnp->grpmask;
4370		rnp = rnp->parent;
4371		if (rnp == NULL)
4372			return;
4373		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4374		oldmask = rnp->qsmaskinit;
4375		rnp->qsmaskinit |= mask;
4376		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4377		if (oldmask)
4378			return;
4379	}
4380}
4381
4382/*
4383 * Do boot-time initialization of a CPU's per-CPU RCU data.
4384 */
4385static void __init
4386rcu_boot_init_percpu_data(int cpu)
4387{
4388	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4389	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4390
4391	/* Set up local state, ensuring consistent view of global state. */
4392	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4393	INIT_WORK(&rdp->strict_work, strict_work_handler);
4394	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4395	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4396	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4397	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4398	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4399	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4400	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4401	rdp->last_sched_clock = jiffies;
4402	rdp->cpu = cpu;
 
4403	rcu_boot_init_nocb_percpu_data(rdp);
4404}
4405
4406struct kthread_worker *rcu_exp_gp_kworker;
4407
4408static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
4409{
4410	struct kthread_worker *kworker;
4411	const char *name = "rcu_exp_par_gp_kthread_worker/%d";
4412	struct sched_param param = { .sched_priority = kthread_prio };
4413	int rnp_index = rnp - rcu_get_root();
4414
4415	if (rnp->exp_kworker)
4416		return;
4417
4418	kworker = kthread_create_worker(0, name, rnp_index);
4419	if (IS_ERR_OR_NULL(kworker)) {
4420		pr_err("Failed to create par gp kworker on %d/%d\n",
4421		       rnp->grplo, rnp->grphi);
4422		return;
4423	}
4424	WRITE_ONCE(rnp->exp_kworker, kworker);
4425
4426	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4427		sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, &param);
4428}
4429
4430static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp)
4431{
4432	struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker);
4433
4434	if (!kworker)
4435		return NULL;
4436
4437	return kworker->task;
4438}
4439
4440static void __init rcu_start_exp_gp_kworker(void)
4441{
4442	const char *name = "rcu_exp_gp_kthread_worker";
4443	struct sched_param param = { .sched_priority = kthread_prio };
4444
4445	rcu_exp_gp_kworker = kthread_create_worker(0, name);
4446	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4447		pr_err("Failed to create %s!\n", name);
4448		rcu_exp_gp_kworker = NULL;
4449		return;
4450	}
4451
4452	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4453		sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4454}
4455
4456static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
4457{
4458	if (rcu_scheduler_fully_active) {
4459		mutex_lock(&rnp->kthread_mutex);
4460		rcu_spawn_one_boost_kthread(rnp);
4461		rcu_spawn_exp_par_gp_kworker(rnp);
4462		mutex_unlock(&rnp->kthread_mutex);
4463	}
4464}
4465
4466/*
4467 * Invoked early in the CPU-online process, when pretty much all services
4468 * are available.  The incoming CPU is not present.
4469 *
4470 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4471 * offline event can be happening at a given time.  Note also that we can
4472 * accept some slop in the rsp->gp_seq access due to the fact that this
4473 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4474 * And any offloaded callbacks are being numbered elsewhere.
4475 */
4476int rcutree_prepare_cpu(unsigned int cpu)
 
4477{
4478	unsigned long flags;
4479	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4480	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4481	struct rcu_node *rnp = rcu_get_root();
4482
4483	/* Set up local state, ensuring consistent view of global state. */
4484	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4485	rdp->qlen_last_fqs_check = 0;
4486	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4487	rdp->blimit = blimit;
4488	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4489	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4490
4491	/*
4492	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4493	 * (re-)initialized.
4494	 */
4495	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4496		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
 
 
 
4497
4498	/*
4499	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4500	 * propagation up the rcu_node tree will happen at the beginning
4501	 * of the next grace period.
4502	 */
4503	rnp = rdp->mynode;
4504	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4505	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4506	rdp->gp_seq_needed = rdp->gp_seq;
 
4507	rdp->cpu_no_qs.b.norm = true;
 
4508	rdp->core_needs_qs = false;
4509	rdp->rcu_iw_pending = false;
4510	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4511	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4512	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4513	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4514	rcu_spawn_rnp_kthreads(rnp);
4515	rcu_spawn_cpu_nocb_kthread(cpu);
4516	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4517
4518	return 0;
4519}
4520
4521/*
4522 * Update kthreads affinity during CPU-hotplug changes.
4523 *
4524 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
4525 * served by the rcu_node in question.  The CPU hotplug lock is still
4526 * held, so the value of rnp->qsmaskinit will be stable.
4527 *
4528 * We don't include outgoingcpu in the affinity set, use -1 if there is
4529 * no outgoing CPU.  If there are no CPUs left in the affinity set,
4530 * this function allows the kthread to execute on any CPU.
4531 *
4532 * Any future concurrent calls are serialized via ->kthread_mutex.
4533 */
4534static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu)
4535{
4536	cpumask_var_t cm;
4537	unsigned long mask;
4538	struct rcu_data *rdp;
4539	struct rcu_node *rnp;
4540	struct task_struct *task_boost, *task_exp;
4541
4542	rdp = per_cpu_ptr(&rcu_data, cpu);
4543	rnp = rdp->mynode;
4544
4545	task_boost = rcu_boost_task(rnp);
4546	task_exp = rcu_exp_par_gp_task(rnp);
4547
4548	/*
4549	 * If CPU is the boot one, those tasks are created later from early
4550	 * initcall since kthreadd must be created first.
4551	 */
4552	if (!task_boost && !task_exp)
4553		return;
4554
4555	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
4556		return;
4557
4558	mutex_lock(&rnp->kthread_mutex);
4559	mask = rcu_rnp_online_cpus(rnp);
4560	for_each_leaf_node_possible_cpu(rnp, cpu)
4561		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
4562		    cpu != outgoingcpu)
4563			cpumask_set_cpu(cpu, cm);
4564	cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
4565	if (cpumask_empty(cm)) {
4566		cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
4567		if (outgoingcpu >= 0)
4568			cpumask_clear_cpu(outgoingcpu, cm);
4569	}
4570
4571	if (task_exp)
4572		set_cpus_allowed_ptr(task_exp, cm);
4573
4574	if (task_boost)
4575		set_cpus_allowed_ptr(task_boost, cm);
4576
4577	mutex_unlock(&rnp->kthread_mutex);
 
4578
4579	free_cpumask_var(cm);
4580}
4581
4582/*
4583 * Has the specified (known valid) CPU ever been fully online?
4584 */
4585bool rcu_cpu_beenfullyonline(int cpu)
4586{
4587	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4588
4589	return smp_load_acquire(&rdp->beenonline);
4590}
4591
4592/*
4593 * Near the end of the CPU-online process.  Pretty much all services
4594 * enabled, and the CPU is now very much alive.
4595 */
4596int rcutree_online_cpu(unsigned int cpu)
4597{
4598	unsigned long flags;
4599	struct rcu_data *rdp;
4600	struct rcu_node *rnp;
 
4601
4602	rdp = per_cpu_ptr(&rcu_data, cpu);
4603	rnp = rdp->mynode;
4604	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4605	rnp->ffmask |= rdp->grpmask;
4606	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
 
 
4607	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4608		return 0; /* Too early in boot for scheduler work. */
4609	sync_sched_exp_online_cleanup(cpu);
4610	rcutree_affinity_setting(cpu, -1);
 
 
4611
4612	// Stop-machine done, so allow nohz_full to disable tick.
4613	tick_dep_clear(TICK_DEP_BIT_RCU);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4614	return 0;
4615}
4616
4617/*
4618 * Mark the specified CPU as being online so that subsequent grace periods
4619 * (both expedited and normal) will wait on it.  Note that this means that
4620 * incoming CPUs are not allowed to use RCU read-side critical sections
4621 * until this function is called.  Failing to observe this restriction
4622 * will result in lockdep splats.
4623 *
4624 * Note that this function is special in that it is invoked directly
4625 * from the incoming CPU rather than from the cpuhp_step mechanism.
4626 * This is because this function must be invoked at a precise location.
4627 * This incoming CPU must not have enabled interrupts yet.
4628 *
4629 * This mirrors the effects of rcutree_report_cpu_dead().
4630 */
4631void rcutree_report_cpu_starting(unsigned int cpu)
4632{
 
4633	unsigned long mask;
 
 
4634	struct rcu_data *rdp;
4635	struct rcu_node *rnp;
4636	bool newcpu;
4637
4638	lockdep_assert_irqs_disabled();
4639	rdp = per_cpu_ptr(&rcu_data, cpu);
4640	if (rdp->cpu_started)
4641		return;
4642	rdp->cpu_started = true;
4643
4644	rnp = rdp->mynode;
4645	mask = rdp->grpmask;
4646	arch_spin_lock(&rcu_state.ofl_lock);
4647	rcu_dynticks_eqs_online();
4648	raw_spin_lock(&rcu_state.barrier_lock);
4649	raw_spin_lock_rcu_node(rnp);
4650	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4651	raw_spin_unlock(&rcu_state.barrier_lock);
4652	newcpu = !(rnp->expmaskinitnext & mask);
4653	rnp->expmaskinitnext |= mask;
4654	/* Allow lockless access for expedited grace periods. */
4655	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4656	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4657	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4658	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4659	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4660
4661	/* An incoming CPU should never be blocking a grace period. */
4662	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4663		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4664		unsigned long flags;
4665
4666		local_irq_save(flags);
4667		rcu_disable_urgency_upon_qs(rdp);
4668		/* Report QS -after- changing ->qsmaskinitnext! */
4669		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4670	} else {
4671		raw_spin_unlock_rcu_node(rnp);
 
 
 
 
 
 
 
4672	}
4673	arch_spin_unlock(&rcu_state.ofl_lock);
4674	smp_store_release(&rdp->beenonline, true);
4675	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4676}
4677
 
4678/*
4679 * The outgoing function has no further need of RCU, so remove it from
4680 * the rcu_node tree's ->qsmaskinitnext bit masks.
4681 *
4682 * Note that this function is special in that it is invoked directly
4683 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4684 * This is because this function must be invoked at a precise location.
4685 *
4686 * This mirrors the effect of rcutree_report_cpu_starting().
4687 */
4688void rcutree_report_cpu_dead(void)
4689{
4690	unsigned long flags;
4691	unsigned long mask;
4692	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4693	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4694
4695	/*
4696	 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
4697	 * may introduce a new READ-side while it is actually off the QS masks.
4698	 */
4699	lockdep_assert_irqs_disabled();
4700	// Do any dangling deferred wakeups.
4701	do_nocb_deferred_wakeup(rdp);
4702
4703	rcu_preempt_deferred_qs(current);
4704
4705	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4706	mask = rdp->grpmask;
4707	arch_spin_lock(&rcu_state.ofl_lock);
4708	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4709	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4710	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4711	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4712		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4713		rcu_disable_urgency_upon_qs(rdp);
4714		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4715		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4716	}
4717	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4718	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4719	arch_spin_unlock(&rcu_state.ofl_lock);
4720	rdp->cpu_started = false;
4721}
4722
4723#ifdef CONFIG_HOTPLUG_CPU
4724/*
4725 * The outgoing CPU has just passed through the dying-idle state, and we
4726 * are being invoked from the CPU that was IPIed to continue the offline
4727 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
 
 
 
4728 */
4729void rcutree_migrate_callbacks(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4730{
4731	unsigned long flags;
4732	struct rcu_data *my_rdp;
4733	struct rcu_node *my_rnp;
4734	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4735	bool needwake;
4736
4737	if (rcu_rdp_is_offloaded(rdp) ||
4738	    rcu_segcblist_empty(&rdp->cblist))
4739		return;  /* No callbacks to migrate. */
4740
4741	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4742	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4743	rcu_barrier_entrain(rdp);
4744	my_rdp = this_cpu_ptr(&rcu_data);
4745	my_rnp = my_rdp->mynode;
4746	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4747	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4748	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4749	/* Leverage recent GPs and set GP for new callbacks. */
4750	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4751		   rcu_advance_cbs(my_rnp, my_rdp);
4752	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4753	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4754	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4755	rcu_segcblist_disable(&rdp->cblist);
4756	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4757	check_cb_ovld_locked(my_rdp, my_rnp);
4758	if (rcu_rdp_is_offloaded(my_rdp)) {
4759		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4760		__call_rcu_nocb_wake(my_rdp, true, flags);
4761	} else {
4762		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4763		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4764	}
4765	local_irq_restore(flags);
4766	if (needwake)
4767		rcu_gp_kthread_wake();
4768	lockdep_assert_irqs_enabled();
 
 
 
4769	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4770		  !rcu_segcblist_empty(&rdp->cblist),
4771		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4772		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4773		  rcu_segcblist_first_cb(&rdp->cblist));
4774}
4775
4776/*
4777 * The CPU has been completely removed, and some other CPU is reporting
4778 * this fact from process context.  Do the remainder of the cleanup.
4779 * There can only be one CPU hotplug operation at a time, so no need for
4780 * explicit locking.
4781 */
4782int rcutree_dead_cpu(unsigned int cpu)
4783{
4784	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
4785	// Stop-machine done, so allow nohz_full to disable tick.
4786	tick_dep_clear(TICK_DEP_BIT_RCU);
4787	return 0;
4788}
4789
4790/*
4791 * Near the end of the offline process.  Trace the fact that this CPU
4792 * is going offline.
4793 */
4794int rcutree_dying_cpu(unsigned int cpu)
4795{
4796	bool blkd;
4797	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4798	struct rcu_node *rnp = rdp->mynode;
4799
4800	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
4801	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
4802			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
4803	return 0;
4804}
4805
4806/*
4807 * Near the beginning of the process.  The CPU is still very much alive
4808 * with pretty much all services enabled.
4809 */
4810int rcutree_offline_cpu(unsigned int cpu)
4811{
4812	unsigned long flags;
4813	struct rcu_data *rdp;
4814	struct rcu_node *rnp;
4815
4816	rdp = per_cpu_ptr(&rcu_data, cpu);
4817	rnp = rdp->mynode;
4818	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4819	rnp->ffmask &= ~rdp->grpmask;
4820	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4821
4822	rcutree_affinity_setting(cpu, cpu);
4823
4824	// nohz_full CPUs need the tick for stop-machine to work quickly
4825	tick_dep_set(TICK_DEP_BIT_RCU);
4826	return 0;
4827}
4828#endif /* #ifdef CONFIG_HOTPLUG_CPU */
4829
4830/*
4831 * On non-huge systems, use expedited RCU grace periods to make suspend
4832 * and hibernation run faster.
4833 */
4834static int rcu_pm_notify(struct notifier_block *self,
4835			 unsigned long action, void *hcpu)
4836{
4837	switch (action) {
4838	case PM_HIBERNATION_PREPARE:
4839	case PM_SUSPEND_PREPARE:
4840		rcu_async_hurry();
4841		rcu_expedite_gp();
4842		break;
4843	case PM_POST_HIBERNATION:
4844	case PM_POST_SUSPEND:
4845		rcu_unexpedite_gp();
4846		rcu_async_relax();
4847		break;
4848	default:
4849		break;
4850	}
4851	return NOTIFY_OK;
4852}
4853
4854/*
4855 * Spawn the kthreads that handle RCU's grace periods.
4856 */
4857static int __init rcu_spawn_gp_kthread(void)
4858{
4859	unsigned long flags;
 
4860	struct rcu_node *rnp;
 
4861	struct sched_param sp;
4862	struct task_struct *t;
4863	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 
 
 
 
 
 
 
 
4864
4865	rcu_scheduler_fully_active = 1;
4866	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4867	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4868		return 0;
4869	if (kthread_prio) {
4870		sp.sched_priority = kthread_prio;
4871		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 
 
 
 
 
 
4872	}
4873	rnp = rcu_get_root();
4874	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4875	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4876	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4877	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4878	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4879	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4880	wake_up_process(t);
4881	/* This is a pre-SMP initcall, we expect a single CPU */
4882	WARN_ON(num_online_cpus() > 1);
4883	/*
4884	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4885	 * due to rcu_scheduler_fully_active.
4886	 */
4887	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4888	rcu_spawn_rnp_kthreads(rdp->mynode);
4889	rcu_spawn_core_kthreads();
4890	/* Create kthread worker for expedited GPs */
4891	rcu_start_exp_gp_kworker();
4892	return 0;
4893}
4894early_initcall(rcu_spawn_gp_kthread);
4895
4896/*
4897 * This function is invoked towards the end of the scheduler's
4898 * initialization process.  Before this is called, the idle task might
4899 * contain synchronous grace-period primitives (during which time, this idle
4900 * task is booting the system, and such primitives are no-ops).  After this
4901 * function is called, any synchronous grace-period primitives are run as
4902 * expedited, with the requesting task driving the grace period forward.
4903 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4904 * runtime RCU functionality.
4905 */
4906void rcu_scheduler_starting(void)
4907{
4908	unsigned long flags;
4909	struct rcu_node *rnp;
4910
4911	WARN_ON(num_online_cpus() != 1);
4912	WARN_ON(nr_context_switches() > 0);
4913	rcu_test_sync_prims();
4914
4915	// Fix up the ->gp_seq counters.
4916	local_irq_save(flags);
4917	rcu_for_each_node_breadth_first(rnp)
4918		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4919	local_irq_restore(flags);
4920
4921	// Switch out of early boot mode.
4922	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4923	rcu_test_sync_prims();
4924}
4925
4926/*
4927 * Helper function for rcu_init() that initializes the rcu_state structure.
4928 */
4929static void __init rcu_init_one(void)
4930{
4931	static const char * const buf[] = RCU_NODE_NAME_INIT;
4932	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4933	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4934	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4935
4936	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4937	int cpustride = 1;
4938	int i;
4939	int j;
4940	struct rcu_node *rnp;
4941
4942	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4943
4944	/* Silence gcc 4.8 false positive about array index out of range. */
4945	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4946		panic("rcu_init_one: rcu_num_lvls out of range");
4947
4948	/* Initialize the level-tracking arrays. */
4949
4950	for (i = 1; i < rcu_num_lvls; i++)
4951		rcu_state.level[i] =
4952			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4953	rcu_init_levelspread(levelspread, num_rcu_lvl);
4954
4955	/* Initialize the elements themselves, starting from the leaves. */
4956
4957	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4958		cpustride *= levelspread[i];
4959		rnp = rcu_state.level[i];
4960		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4961			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4962			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4963						   &rcu_node_class[i], buf[i]);
4964			raw_spin_lock_init(&rnp->fqslock);
4965			lockdep_set_class_and_name(&rnp->fqslock,
4966						   &rcu_fqs_class[i], fqs[i]);
4967			rnp->gp_seq = rcu_state.gp_seq;
4968			rnp->gp_seq_needed = rcu_state.gp_seq;
4969			rnp->completedqs = rcu_state.gp_seq;
4970			rnp->qsmask = 0;
4971			rnp->qsmaskinit = 0;
4972			rnp->grplo = j * cpustride;
4973			rnp->grphi = (j + 1) * cpustride - 1;
4974			if (rnp->grphi >= nr_cpu_ids)
4975				rnp->grphi = nr_cpu_ids - 1;
4976			if (i == 0) {
4977				rnp->grpnum = 0;
4978				rnp->grpmask = 0;
4979				rnp->parent = NULL;
4980			} else {
4981				rnp->grpnum = j % levelspread[i - 1];
4982				rnp->grpmask = BIT(rnp->grpnum);
4983				rnp->parent = rcu_state.level[i - 1] +
4984					      j / levelspread[i - 1];
4985			}
4986			rnp->level = i;
4987			INIT_LIST_HEAD(&rnp->blkd_tasks);
4988			rcu_init_one_nocb(rnp);
4989			init_waitqueue_head(&rnp->exp_wq[0]);
4990			init_waitqueue_head(&rnp->exp_wq[1]);
4991			init_waitqueue_head(&rnp->exp_wq[2]);
4992			init_waitqueue_head(&rnp->exp_wq[3]);
4993			spin_lock_init(&rnp->exp_lock);
4994			mutex_init(&rnp->kthread_mutex);
4995			raw_spin_lock_init(&rnp->exp_poll_lock);
4996			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4997			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4998		}
4999	}
5000
5001	init_swait_queue_head(&rcu_state.gp_wq);
5002	init_swait_queue_head(&rcu_state.expedited_wq);
5003	rnp = rcu_first_leaf_node();
5004	for_each_possible_cpu(i) {
5005		while (i > rnp->grphi)
5006			rnp++;
5007		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
5008		rcu_boot_init_percpu_data(i);
5009	}
5010}
5011
5012/*
5013 * Force priority from the kernel command-line into range.
5014 */
5015static void __init sanitize_kthread_prio(void)
5016{
5017	int kthread_prio_in = kthread_prio;
5018
5019	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
5020	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
5021		kthread_prio = 2;
5022	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
5023		kthread_prio = 1;
5024	else if (kthread_prio < 0)
5025		kthread_prio = 0;
5026	else if (kthread_prio > 99)
5027		kthread_prio = 99;
5028
5029	if (kthread_prio != kthread_prio_in)
5030		pr_alert("%s: Limited prio to %d from %d\n",
5031			 __func__, kthread_prio, kthread_prio_in);
5032}
5033
5034/*
5035 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
5036 * replace the definitions in tree.h because those are needed to size
5037 * the ->node array in the rcu_state structure.
5038 */
5039void rcu_init_geometry(void)
5040{
5041	ulong d;
5042	int i;
5043	static unsigned long old_nr_cpu_ids;
5044	int rcu_capacity[RCU_NUM_LVLS];
5045	static bool initialized;
5046
5047	if (initialized) {
5048		/*
5049		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
5050		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
5051		 */
5052		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
5053		return;
5054	}
5055
5056	old_nr_cpu_ids = nr_cpu_ids;
5057	initialized = true;
5058
5059	/*
5060	 * Initialize any unspecified boot parameters.
5061	 * The default values of jiffies_till_first_fqs and
5062	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
5063	 * value, which is a function of HZ, then adding one for each
5064	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
5065	 */
5066	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
5067	if (jiffies_till_first_fqs == ULONG_MAX)
5068		jiffies_till_first_fqs = d;
5069	if (jiffies_till_next_fqs == ULONG_MAX)
5070		jiffies_till_next_fqs = d;
5071	adjust_jiffies_till_sched_qs();
5072
5073	/* If the compile-time values are accurate, just leave. */
5074	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
5075	    nr_cpu_ids == NR_CPUS)
5076		return;
5077	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
5078		rcu_fanout_leaf, nr_cpu_ids);
5079
5080	/*
5081	 * The boot-time rcu_fanout_leaf parameter must be at least two
5082	 * and cannot exceed the number of bits in the rcu_node masks.
5083	 * Complain and fall back to the compile-time values if this
5084	 * limit is exceeded.
5085	 */
5086	if (rcu_fanout_leaf < 2 ||
5087	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
5088		rcu_fanout_leaf = RCU_FANOUT_LEAF;
5089		WARN_ON(1);
5090		return;
5091	}
5092
5093	/*
5094	 * Compute number of nodes that can be handled an rcu_node tree
5095	 * with the given number of levels.
5096	 */
5097	rcu_capacity[0] = rcu_fanout_leaf;
5098	for (i = 1; i < RCU_NUM_LVLS; i++)
5099		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
5100
5101	/*
5102	 * The tree must be able to accommodate the configured number of CPUs.
5103	 * If this limit is exceeded, fall back to the compile-time values.
5104	 */
5105	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
5106		rcu_fanout_leaf = RCU_FANOUT_LEAF;
5107		WARN_ON(1);
5108		return;
5109	}
5110
5111	/* Calculate the number of levels in the tree. */
5112	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
5113	}
5114	rcu_num_lvls = i + 1;
5115
5116	/* Calculate the number of rcu_nodes at each level of the tree. */
5117	for (i = 0; i < rcu_num_lvls; i++) {
5118		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5119		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5120	}
5121
5122	/* Calculate the total number of rcu_node structures. */
5123	rcu_num_nodes = 0;
5124	for (i = 0; i < rcu_num_lvls; i++)
5125		rcu_num_nodes += num_rcu_lvl[i];
5126}
5127
5128/*
5129 * Dump out the structure of the rcu_node combining tree associated
5130 * with the rcu_state structure.
5131 */
5132static void __init rcu_dump_rcu_node_tree(void)
5133{
5134	int level = 0;
5135	struct rcu_node *rnp;
5136
5137	pr_info("rcu_node tree layout dump\n");
5138	pr_info(" ");
5139	rcu_for_each_node_breadth_first(rnp) {
5140		if (rnp->level != level) {
5141			pr_cont("\n");
5142			pr_info(" ");
5143			level = rnp->level;
5144		}
5145		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
5146	}
5147	pr_cont("\n");
5148}
5149
5150struct workqueue_struct *rcu_gp_wq;
5151
5152static void __init kfree_rcu_batch_init(void)
5153{
5154	int cpu;
5155	int i, j;
5156	struct shrinker *kfree_rcu_shrinker;
5157
5158	/* Clamp it to [0:100] seconds interval. */
5159	if (rcu_delay_page_cache_fill_msec < 0 ||
5160		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5161
5162		rcu_delay_page_cache_fill_msec =
5163			clamp(rcu_delay_page_cache_fill_msec, 0,
5164				(int) (100 * MSEC_PER_SEC));
5165
5166		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5167			rcu_delay_page_cache_fill_msec);
5168	}
5169
5170	for_each_possible_cpu(cpu) {
5171		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5172
5173		for (i = 0; i < KFREE_N_BATCHES; i++) {
5174			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5175			krcp->krw_arr[i].krcp = krcp;
5176
5177			for (j = 0; j < FREE_N_CHANNELS; j++)
5178				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5179		}
5180
5181		for (i = 0; i < FREE_N_CHANNELS; i++)
5182			INIT_LIST_HEAD(&krcp->bulk_head[i]);
5183
5184		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5185		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5186		krcp->initialized = true;
5187	}
5188
5189	kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree");
5190	if (!kfree_rcu_shrinker) {
5191		pr_err("Failed to allocate kfree_rcu() shrinker!\n");
5192		return;
5193	}
5194
5195	kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
5196	kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
5197
5198	shrinker_register(kfree_rcu_shrinker);
5199}
5200
5201void __init rcu_init(void)
5202{
5203	int cpu = smp_processor_id();
5204
5205	rcu_early_boot_tests();
5206
5207	kfree_rcu_batch_init();
5208	rcu_bootup_announce();
5209	sanitize_kthread_prio();
5210	rcu_init_geometry();
5211	rcu_init_one();
 
5212	if (dump_tree)
5213		rcu_dump_rcu_node_tree();
5214	if (use_softirq)
5215		open_softirq(RCU_SOFTIRQ, rcu_core_si);
5216
5217	/*
5218	 * We don't need protection against CPU-hotplug here because
5219	 * this is called early in boot, before either interrupts
5220	 * or the scheduler are operational.
5221	 */
5222	pm_notifier(rcu_pm_notify, 0);
5223	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5224	rcutree_prepare_cpu(cpu);
5225	rcutree_report_cpu_starting(cpu);
5226	rcutree_online_cpu(cpu);
 
5227
5228	/* Create workqueue for Tree SRCU and for expedited GPs. */
5229	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5230	WARN_ON(!rcu_gp_wq);
5231
5232	/* Fill in default value for rcutree.qovld boot parameter. */
5233	/* -After- the rcu_node ->lock fields are initialized! */
5234	if (qovld < 0)
5235		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5236	else
5237		qovld_calc = qovld;
5238
5239	// Kick-start in case any polled grace periods started early.
5240	(void)start_poll_synchronize_rcu_expedited();
5241
5242	rcu_test_sync_prims();
5243
5244	tasks_cblist_init_generic();
5245}
5246
5247#include "tree_stall.h"
5248#include "tree_exp.h"
5249#include "tree_nocb.h"
5250#include "tree_plugin.h"
v4.17
 
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *	Documentation/RCU
  29 */
 
 
 
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate_wait.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/sched/debug.h>
  39#include <linux/nmi.h>
  40#include <linux/atomic.h>
  41#include <linux/bitops.h>
  42#include <linux/export.h>
  43#include <linux/completion.h>
 
  44#include <linux/moduleparam.h>
 
 
  45#include <linux/percpu.h>
  46#include <linux/notifier.h>
  47#include <linux/cpu.h>
  48#include <linux/mutex.h>
  49#include <linux/time.h>
  50#include <linux/kernel_stat.h>
  51#include <linux/wait.h>
  52#include <linux/kthread.h>
  53#include <uapi/linux/sched/types.h>
  54#include <linux/prefetch.h>
  55#include <linux/delay.h>
  56#include <linux/stop_machine.h>
  57#include <linux/random.h>
  58#include <linux/trace_events.h>
  59#include <linux/suspend.h>
  60#include <linux/ftrace.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62#include "tree.h"
  63#include "rcu.h"
  64
  65#ifdef MODULE_PARAM_PREFIX
  66#undef MODULE_PARAM_PREFIX
  67#endif
  68#define MODULE_PARAM_PREFIX "rcutree."
  69
  70/* Data structures. */
  71
  72/*
  73 * In order to export the rcu_state name to the tracing tools, it
  74 * needs to be added in the __tracepoint_string section.
  75 * This requires defining a separate variable tp_<sname>_varname
  76 * that points to the string being used, and this will allow
  77 * the tracing userspace tools to be able to decipher the string
  78 * address to the matching string.
  79 */
  80#ifdef CONFIG_TRACING
  81# define DEFINE_RCU_TPS(sname) \
  82static char sname##_varname[] = #sname; \
  83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  84# define RCU_STATE_NAME(sname) sname##_varname
  85#else
  86# define DEFINE_RCU_TPS(sname)
  87# define RCU_STATE_NAME(sname) __stringify(sname)
  88#endif
  89
  90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  91DEFINE_RCU_TPS(sname) \
  92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  93struct rcu_state sname##_state = { \
  94	.level = { &sname##_state.node[0] }, \
  95	.rda = &sname##_data, \
  96	.call = cr, \
  97	.gp_state = RCU_GP_IDLE, \
  98	.gpnum = 0UL - 300UL, \
  99	.completed = 0UL - 300UL, \
 100	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 101	.name = RCU_STATE_NAME(sname), \
 102	.abbr = sabbr, \
 103	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
 104	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
 105}
 106
 107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 109
 110static struct rcu_state *const rcu_state_p;
 111LIST_HEAD(rcu_struct_flavors);
 112
 113/* Dump rcu_node combining tree at boot to verify correct setup. */
 114static bool dump_tree;
 115module_param(dump_tree, bool, 0444);
 
 
 
 
 
 116/* Control rcu_node-tree auto-balancing at boot time. */
 117static bool rcu_fanout_exact;
 118module_param(rcu_fanout_exact, bool, 0444);
 119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 121module_param(rcu_fanout_leaf, int, 0444);
 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 123/* Number of rcu_nodes at specified level. */
 124int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 126/* panic() on RCU Stall sysctl. */
 127int sysctl_panic_on_rcu_stall __read_mostly;
 128
 129/*
 130 * The rcu_scheduler_active variable is initialized to the value
 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 132 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 133 * RCU can assume that there is but one task, allowing RCU to (for example)
 134 * optimize synchronize_rcu() to a simple barrier().  When this variable
 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 136 * to detect real grace periods.  This variable is also used to suppress
 137 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 139 * is fully initialized, including all of its kthreads having been spawned.
 140 */
 141int rcu_scheduler_active __read_mostly;
 142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 143
 144/*
 145 * The rcu_scheduler_fully_active variable transitions from zero to one
 146 * during the early_initcall() processing, which is after the scheduler
 147 * is capable of creating new tasks.  So RCU processing (for example,
 148 * creating tasks for RCU priority boosting) must be delayed until after
 149 * rcu_scheduler_fully_active transitions from zero to one.  We also
 150 * currently delay invocation of any RCU callbacks until after this point.
 151 *
 152 * It might later prove better for people registering RCU callbacks during
 153 * early boot to take responsibility for these callbacks, but one step at
 154 * a time.
 155 */
 156static int rcu_scheduler_fully_active __read_mostly;
 157
 158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 161static void invoke_rcu_core(void);
 162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 163static void rcu_report_exp_rdp(struct rcu_state *rsp,
 164			       struct rcu_data *rdp, bool wake);
 165static void sync_sched_exp_online_cleanup(int cpu);
 
 
 
 
 
 
 166
 167/* rcuc/rcub kthread realtime priority */
 
 
 
 
 168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 169module_param(kthread_prio, int, 0644);
 170
 171/* Delay in jiffies for grace-period initialization delays, debug only. */
 172
 173static int gp_preinit_delay;
 174module_param(gp_preinit_delay, int, 0444);
 175static int gp_init_delay;
 176module_param(gp_init_delay, int, 0444);
 177static int gp_cleanup_delay;
 178module_param(gp_cleanup_delay, int, 0444);
 179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180/*
 181 * Number of grace periods between delays, normalized by the duration of
 182 * the delay.  The longer the delay, the more the grace periods between
 183 * each delay.  The reason for this normalization is that it means that,
 184 * for non-zero delays, the overall slowdown of grace periods is constant
 185 * regardless of the duration of the delay.  This arrangement balances
 186 * the need for long delays to increase some race probabilities with the
 187 * need for fast grace periods to increase other race probabilities.
 188 */
 189#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 190
 191/*
 192 * Track the rcutorture test sequence number and the update version
 193 * number within a given test.  The rcutorture_testseq is incremented
 194 * on every rcutorture module load and unload, so has an odd value
 195 * when a test is running.  The rcutorture_vernum is set to zero
 196 * when rcutorture starts and is incremented on each rcutorture update.
 197 * These variables enable correlating rcutorture output with the
 198 * RCU tracing information.
 199 */
 200unsigned long rcutorture_testseq;
 201unsigned long rcutorture_vernum;
 202
 203/*
 204 * Compute the mask of online CPUs for the specified rcu_node structure.
 205 * This will not be stable unless the rcu_node structure's ->lock is
 206 * held, but the bit corresponding to the current CPU will be stable
 207 * in most contexts.
 208 */
 209unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 210{
 211	return READ_ONCE(rnp->qsmaskinitnext);
 212}
 213
 214/*
 215 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 216 * permit this function to be invoked without holding the root rcu_node
 217 * structure's ->lock, but of course results can be subject to change.
 218 */
 219static int rcu_gp_in_progress(struct rcu_state *rsp)
 220{
 221	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 222}
 223
 224/*
 225 * Note a quiescent state.  Because we do not need to know
 226 * how many quiescent states passed, just if there was at least
 227 * one since the start of the grace period, this just sets a flag.
 228 * The caller must have disabled preemption.
 229 */
 230void rcu_sched_qs(void)
 231{
 232	RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
 233	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 234		return;
 235	trace_rcu_grace_period(TPS("rcu_sched"),
 236			       __this_cpu_read(rcu_sched_data.gpnum),
 237			       TPS("cpuqs"));
 238	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 239	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 240		return;
 241	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 242	rcu_report_exp_rdp(&rcu_sched_state,
 243			   this_cpu_ptr(&rcu_sched_data), true);
 244}
 245
 246void rcu_bh_qs(void)
 247{
 248	RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
 249	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 250		trace_rcu_grace_period(TPS("rcu_bh"),
 251				       __this_cpu_read(rcu_bh_data.gpnum),
 252				       TPS("cpuqs"));
 253		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 254	}
 255}
 256
 257/*
 258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 259 * control.  Initially this is for TLB flushing.
 260 */
 261#define RCU_DYNTICK_CTRL_MASK 0x1
 262#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
 263#ifndef rcu_eqs_special_exit
 264#define rcu_eqs_special_exit() do { } while (0)
 265#endif
 266
 267static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 268	.dynticks_nesting = 1,
 269	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
 270	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
 271};
 272
 273/*
 274 * Record entry into an extended quiescent state.  This is only to be
 275 * called when not already in an extended quiescent state.
 276 */
 277static void rcu_dynticks_eqs_enter(void)
 278{
 279	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 280	int seq;
 281
 282	/*
 283	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 284	 * critical sections, and we also must force ordering with the
 285	 * next idle sojourn.
 286	 */
 287	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 288	/* Better be in an extended quiescent state! */
 289	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 290		     (seq & RCU_DYNTICK_CTRL_CTR));
 291	/* Better not have special action (TLB flush) pending! */
 292	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 293		     (seq & RCU_DYNTICK_CTRL_MASK));
 294}
 295
 296/*
 297 * Record exit from an extended quiescent state.  This is only to be
 298 * called from an extended quiescent state.
 299 */
 300static void rcu_dynticks_eqs_exit(void)
 301{
 302	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 303	int seq;
 304
 305	/*
 306	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
 307	 * and we also must force ordering with the next RCU read-side
 308	 * critical section.
 309	 */
 310	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 311	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 312		     !(seq & RCU_DYNTICK_CTRL_CTR));
 313	if (seq & RCU_DYNTICK_CTRL_MASK) {
 314		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
 315		smp_mb__after_atomic(); /* _exit after clearing mask. */
 316		/* Prefer duplicate flushes to losing a flush. */
 317		rcu_eqs_special_exit();
 318	}
 319}
 320
 321/*
 322 * Reset the current CPU's ->dynticks counter to indicate that the
 323 * newly onlined CPU is no longer in an extended quiescent state.
 324 * This will either leave the counter unchanged, or increment it
 325 * to the next non-quiescent value.
 326 *
 327 * The non-atomic test/increment sequence works because the upper bits
 328 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 329 * or when the corresponding CPU is offline.
 330 */
 331static void rcu_dynticks_eqs_online(void)
 332{
 333	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 334
 335	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 336		return;
 337	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 338}
 339
 340/*
 341 * Is the current CPU in an extended quiescent state?
 342 *
 343 * No ordering, as we are sampling CPU-local information.
 344 */
 345bool rcu_dynticks_curr_cpu_in_eqs(void)
 346{
 347	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 348
 349	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 350}
 351
 352/*
 353 * Snapshot the ->dynticks counter with full ordering so as to allow
 354 * stable comparison of this counter with past and future snapshots.
 355 */
 356int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
 357{
 358	int snap = atomic_add_return(0, &rdtp->dynticks);
 359
 360	return snap & ~RCU_DYNTICK_CTRL_MASK;
 361}
 362
 363/*
 364 * Return true if the snapshot returned from rcu_dynticks_snap()
 365 * indicates that RCU is in an extended quiescent state.
 366 */
 367static bool rcu_dynticks_in_eqs(int snap)
 368{
 369	return !(snap & RCU_DYNTICK_CTRL_CTR);
 370}
 371
 372/*
 373 * Return true if the CPU corresponding to the specified rcu_dynticks
 374 * structure has spent some time in an extended quiescent state since
 375 * rcu_dynticks_snap() returned the specified snapshot.
 376 */
 377static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
 378{
 379	return snap != rcu_dynticks_snap(rdtp);
 380}
 381
 382/*
 383 * Do a double-increment of the ->dynticks counter to emulate a
 384 * momentary idle-CPU quiescent state.
 385 */
 386static void rcu_dynticks_momentary_idle(void)
 387{
 388	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 389	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 390					&rdtp->dynticks);
 391
 392	/* It is illegal to call this from idle state. */
 393	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 394}
 395
 396/*
 397 * Set the special (bottom) bit of the specified CPU so that it
 398 * will take special action (such as flushing its TLB) on the
 399 * next exit from an extended quiescent state.  Returns true if
 400 * the bit was successfully set, or false if the CPU was not in
 401 * an extended quiescent state.
 402 */
 403bool rcu_eqs_special_set(int cpu)
 404{
 405	int old;
 406	int new;
 407	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
 408
 409	do {
 410		old = atomic_read(&rdtp->dynticks);
 411		if (old & RCU_DYNTICK_CTRL_CTR)
 412			return false;
 413		new = old | RCU_DYNTICK_CTRL_MASK;
 414	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
 415	return true;
 416}
 417
 418/*
 419 * Let the RCU core know that this CPU has gone through the scheduler,
 420 * which is a quiescent state.  This is called when the need for a
 421 * quiescent state is urgent, so we burn an atomic operation and full
 422 * memory barriers to let the RCU core know about it, regardless of what
 423 * this CPU might (or might not) do in the near future.
 424 *
 425 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 426 *
 427 * The caller must have disabled interrupts.
 428 */
 429static void rcu_momentary_dyntick_idle(void)
 430{
 431	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
 432	rcu_dynticks_momentary_idle();
 433}
 434
 435/*
 436 * Note a context switch.  This is a quiescent state for RCU-sched,
 437 * and requires special handling for preemptible RCU.
 438 * The caller must have disabled interrupts.
 439 */
 440void rcu_note_context_switch(bool preempt)
 441{
 442	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 443	trace_rcu_utilization(TPS("Start context switch"));
 444	rcu_sched_qs();
 445	rcu_preempt_note_context_switch(preempt);
 446	/* Load rcu_urgent_qs before other flags. */
 447	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
 448		goto out;
 449	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 450	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
 451		rcu_momentary_dyntick_idle();
 452	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 453	if (!preempt)
 454		rcu_note_voluntary_context_switch_lite(current);
 455out:
 456	trace_rcu_utilization(TPS("End context switch"));
 457	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 458}
 459EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 460
 461/*
 462 * Register a quiescent state for all RCU flavors.  If there is an
 463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 464 * dyntick-idle quiescent state visible to other CPUs (but only for those
 465 * RCU flavors in desperate need of a quiescent state, which will normally
 466 * be none of them).  Either way, do a lightweight quiescent state for
 467 * all RCU flavors.
 468 *
 469 * The barrier() calls are redundant in the common case when this is
 470 * called externally, but just in case this is called from within this
 471 * file.
 472 *
 
 473 */
 474void rcu_all_qs(void)
 475{
 476	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477
 478	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
 479		return;
 480	preempt_disable();
 481	/* Load rcu_urgent_qs before other flags. */
 482	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
 483		preempt_enable();
 484		return;
 485	}
 486	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 487	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 488	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
 489		local_irq_save(flags);
 490		rcu_momentary_dyntick_idle();
 491		local_irq_restore(flags);
 492	}
 493	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
 494		rcu_sched_qs();
 495	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 496	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 497	preempt_enable();
 498}
 499EXPORT_SYMBOL_GPL(rcu_all_qs);
 500
 501#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
 
 
 502static long blimit = DEFAULT_RCU_BLIMIT;
 503#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 504static long qhimark = DEFAULT_RCU_QHIMARK;
 505#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 506static long qlowmark = DEFAULT_RCU_QLOMARK;
 
 
 
 
 507
 508module_param(blimit, long, 0444);
 509module_param(qhimark, long, 0444);
 510module_param(qlowmark, long, 0444);
 
 511
 512static ulong jiffies_till_first_fqs = ULONG_MAX;
 513static ulong jiffies_till_next_fqs = ULONG_MAX;
 514static bool rcu_kick_kthreads;
 
 
 515
 516module_param(jiffies_till_first_fqs, ulong, 0644);
 517module_param(jiffies_till_next_fqs, ulong, 0644);
 518module_param(rcu_kick_kthreads, bool, 0644);
 519
 520/*
 521 * How long the grace period must be before we start recruiting
 522 * quiescent-state help from rcu_note_context_switch().
 523 */
 524static ulong jiffies_till_sched_qs = HZ / 10;
 525module_param(jiffies_till_sched_qs, ulong, 0444);
 526
 527static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 528				  struct rcu_data *rdp);
 529static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
 530static void force_quiescent_state(struct rcu_state *rsp);
 531static int rcu_pending(void);
 532
 533/*
 534 * Return the number of RCU batches started thus far for debug & stats.
 
 
 
 535 */
 536unsigned long rcu_batches_started(void)
 537{
 538	return rcu_state_p->gpnum;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539}
 540EXPORT_SYMBOL_GPL(rcu_batches_started);
 541
 542/*
 543 * Return the number of RCU-sched batches started thus far for debug & stats.
 544 */
 545unsigned long rcu_batches_started_sched(void)
 546{
 547	return rcu_sched_state.gpnum;
 
 
 
 
 
 
 
 548}
 549EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 550
 551/*
 552 * Return the number of RCU BH batches started thus far for debug & stats.
 553 */
 554unsigned long rcu_batches_started_bh(void)
 555{
 556	return rcu_bh_state.gpnum;
 557}
 558EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 
 559
 560/*
 561 * Return the number of RCU batches completed thus far for debug & stats.
 562 */
 563unsigned long rcu_batches_completed(void)
 564{
 565	return rcu_state_p->completed;
 566}
 567EXPORT_SYMBOL_GPL(rcu_batches_completed);
 568
 569/*
 570 * Return the number of RCU-sched batches completed thus far for debug & stats.
 571 */
 572unsigned long rcu_batches_completed_sched(void)
 573{
 574	return rcu_sched_state.completed;
 575}
 576EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 577
 578/*
 579 * Return the number of RCU BH batches completed thus far for debug & stats.
 580 */
 581unsigned long rcu_batches_completed_bh(void)
 582{
 583	return rcu_bh_state.completed;
 584}
 585EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 586
 587/*
 588 * Return the number of RCU expedited batches completed thus far for
 589 * debug & stats.  Odd numbers mean that a batch is in progress, even
 590 * numbers mean idle.  The value returned will thus be roughly double
 591 * the cumulative batches since boot.
 592 */
 593unsigned long rcu_exp_batches_completed(void)
 594{
 595	return rcu_state_p->expedited_sequence;
 596}
 597EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 598
 599/*
 600 * Return the number of RCU-sched expedited batches completed thus far
 601 * for debug & stats.  Similar to rcu_exp_batches_completed().
 602 */
 603unsigned long rcu_exp_batches_completed_sched(void)
 604{
 605	return rcu_sched_state.expedited_sequence;
 606}
 607EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
 608
 609/*
 610 * Force a quiescent state.
 611 */
 612void rcu_force_quiescent_state(void)
 613{
 614	force_quiescent_state(rcu_state_p);
 615}
 616EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 617
 618/*
 619 * Force a quiescent state for RCU BH.
 620 */
 621void rcu_bh_force_quiescent_state(void)
 622{
 623	force_quiescent_state(&rcu_bh_state);
 624}
 625EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 626
 627/*
 628 * Force a quiescent state for RCU-sched.
 629 */
 630void rcu_sched_force_quiescent_state(void)
 631{
 632	force_quiescent_state(&rcu_sched_state);
 633}
 634EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 635
 636/*
 637 * Show the state of the grace-period kthreads.
 638 */
 639void show_rcu_gp_kthreads(void)
 640{
 641	struct rcu_state *rsp;
 642
 643	for_each_rcu_flavor(rsp) {
 644		pr_info("%s: wait state: %d ->state: %#lx\n",
 645			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 646		/* sched_show_task(rsp->gp_kthread); */
 647	}
 648}
 649EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 650
 651/*
 652 * Record the number of times rcutorture tests have been initiated and
 653 * terminated.  This information allows the debugfs tracing stats to be
 654 * correlated to the rcutorture messages, even when the rcutorture module
 655 * is being repeatedly loaded and unloaded.  In other words, we cannot
 656 * store this state in rcutorture itself.
 657 */
 658void rcutorture_record_test_transition(void)
 659{
 660	rcutorture_testseq++;
 661	rcutorture_vernum = 0;
 662}
 663EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 664
 665/*
 666 * Send along grace-period-related data for rcutorture diagnostics.
 667 */
 668void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 669			    unsigned long *gpnum, unsigned long *completed)
 670{
 671	struct rcu_state *rsp = NULL;
 672
 673	switch (test_type) {
 674	case RCU_FLAVOR:
 675		rsp = rcu_state_p;
 676		break;
 677	case RCU_BH_FLAVOR:
 678		rsp = &rcu_bh_state;
 679		break;
 680	case RCU_SCHED_FLAVOR:
 681		rsp = &rcu_sched_state;
 682		break;
 683	default:
 684		break;
 685	}
 686	if (rsp == NULL)
 687		return;
 688	*flags = READ_ONCE(rsp->gp_flags);
 689	*gpnum = READ_ONCE(rsp->gpnum);
 690	*completed = READ_ONCE(rsp->completed);
 691}
 692EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 693
 
 694/*
 695 * Record the number of writer passes through the current rcutorture test.
 696 * This is also used to correlate debugfs tracing stats with the rcutorture
 697 * messages.
 698 */
 699void rcutorture_record_progress(unsigned long vernum)
 700{
 701	rcutorture_vernum++;
 702}
 703EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 704
 705/*
 706 * Return the root node of the specified rcu_state structure.
 707 */
 708static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 709{
 710	return &rsp->node[0];
 711}
 712
 713/*
 714 * Is there any need for future grace periods?
 715 * Interrupts must be disabled.  If the caller does not hold the root
 716 * rnp_node structure's ->lock, the results are advisory only.
 
 
 
 
 
 717 */
 718static int rcu_future_needs_gp(struct rcu_state *rsp)
 719{
 720	struct rcu_node *rnp = rcu_get_root(rsp);
 721	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 722	int *fp = &rnp->need_future_gp[idx];
 723
 724	lockdep_assert_irqs_disabled();
 725	return READ_ONCE(*fp);
 726}
 727
 728/*
 729 * Does the current CPU require a not-yet-started grace period?
 730 * The caller must have disabled interrupts to prevent races with
 731 * normal callback registry.
 732 */
 733static bool
 734cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 735{
 736	lockdep_assert_irqs_disabled();
 737	if (rcu_gp_in_progress(rsp))
 738		return false;  /* No, a grace period is already in progress. */
 739	if (rcu_future_needs_gp(rsp))
 740		return true;  /* Yes, a no-CBs CPU needs one. */
 741	if (!rcu_segcblist_is_enabled(&rdp->cblist))
 742		return false;  /* No, this is a no-CBs (or offline) CPU. */
 743	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 744		return true;  /* Yes, CPU has newly registered callbacks. */
 745	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
 746					   READ_ONCE(rsp->completed)))
 747		return true;  /* Yes, CBs for future grace period. */
 748	return false; /* No grace period needed. */
 749}
 750
 751/*
 752 * Enter an RCU extended quiescent state, which can be either the
 753 * idle loop or adaptive-tickless usermode execution.
 754 *
 755 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 756 * the possibility of usermode upcalls having messed up our count
 757 * of interrupt nesting level during the prior busy period.
 758 */
 759static void rcu_eqs_enter(bool user)
 760{
 761	struct rcu_state *rsp;
 762	struct rcu_data *rdp;
 763	struct rcu_dynticks *rdtp;
 764
 765	rdtp = this_cpu_ptr(&rcu_dynticks);
 766	WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
 767	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 768		     rdtp->dynticks_nesting == 0);
 769	if (rdtp->dynticks_nesting != 1) {
 770		rdtp->dynticks_nesting--;
 771		return;
 772	}
 773
 774	lockdep_assert_irqs_disabled();
 775	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
 776	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 777	for_each_rcu_flavor(rsp) {
 778		rdp = this_cpu_ptr(rsp->rda);
 779		do_nocb_deferred_wakeup(rdp);
 780	}
 781	rcu_prepare_for_idle();
 782	WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 783	rcu_dynticks_eqs_enter();
 784	rcu_dynticks_task_enter();
 785}
 
 786
 
 787/**
 788 * rcu_idle_enter - inform RCU that current CPU is entering idle
 789 *
 790 * Enter idle mode, in other words, -leave- the mode in which RCU
 791 * read-side critical sections can occur.  (Though RCU read-side
 792 * critical sections can occur in irq handlers in idle, a possibility
 793 * handled by irq_enter() and irq_exit().)
 794 *
 795 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 796 * CONFIG_RCU_EQS_DEBUG=y.
 797 */
 798void rcu_idle_enter(void)
 799{
 800	lockdep_assert_irqs_disabled();
 801	rcu_eqs_enter(false);
 
 
 
 
 
 
 
 802}
 
 803
 804#ifdef CONFIG_NO_HZ_FULL
 805/**
 806 * rcu_user_enter - inform RCU that we are resuming userspace.
 807 *
 808 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 809 * is permitted between this call and rcu_user_exit(). This way the
 810 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 811 * when the CPU runs in userspace.
 812 *
 813 * If you add or remove a call to rcu_user_enter(), be sure to test with
 814 * CONFIG_RCU_EQS_DEBUG=y.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815 */
 816void rcu_user_enter(void)
 817{
 818	lockdep_assert_irqs_disabled();
 819	rcu_eqs_enter(true);
 820}
 821#endif /* CONFIG_NO_HZ_FULL */
 822
 823/**
 824 * rcu_nmi_exit - inform RCU of exit from NMI context
 825 *
 826 * If we are returning from the outermost NMI handler that interrupted an
 827 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 828 * to let the RCU grace-period handling know that the CPU is back to
 829 * being RCU-idle.
 830 *
 831 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 832 * with CONFIG_RCU_EQS_DEBUG=y.
 833 */
 834void rcu_nmi_exit(void)
 835{
 836	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 837
 838	/*
 839	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 840	 * (We are exiting an NMI handler, so RCU better be paying attention
 841	 * to us!)
 842	 */
 843	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
 844	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 845
 846	/*
 847	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 848	 * leave it in non-RCU-idle state.
 849	 */
 850	if (rdtp->dynticks_nmi_nesting != 1) {
 851		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
 852		WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
 853			   rdtp->dynticks_nmi_nesting - 2);
 854		return;
 855	}
 856
 857	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 858	trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
 859	WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 860	rcu_dynticks_eqs_enter();
 861}
 862
 863/**
 864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 865 *
 866 * Exit from an interrupt handler, which might possibly result in entering
 867 * idle mode, in other words, leaving the mode in which read-side critical
 868 * sections can occur.  The caller must have disabled interrupts.
 869 *
 870 * This code assumes that the idle loop never does anything that might
 871 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 872 * architecture's idle loop violates this assumption, RCU will give you what
 873 * you deserve, good and hard.  But very infrequently and irreproducibly.
 874 *
 875 * Use things like work queues to work around this limitation.
 876 *
 877 * You have been warned.
 878 *
 879 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 880 * CONFIG_RCU_EQS_DEBUG=y.
 881 */
 882void rcu_irq_exit(void)
 883{
 884	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 885
 886	lockdep_assert_irqs_disabled();
 887	if (rdtp->dynticks_nmi_nesting == 1)
 888		rcu_prepare_for_idle();
 889	rcu_nmi_exit();
 890	if (rdtp->dynticks_nmi_nesting == 0)
 891		rcu_dynticks_task_enter();
 892}
 
 
 893
 894/*
 895 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 
 
 
 
 
 896 *
 897 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 898 * with CONFIG_RCU_EQS_DEBUG=y.
 899 */
 900void rcu_irq_exit_irqson(void)
 901{
 902	unsigned long flags;
 903
 904	local_irq_save(flags);
 905	rcu_irq_exit();
 906	local_irq_restore(flags);
 907}
 908
 909/*
 910 * Exit an RCU extended quiescent state, which can be either the
 911 * idle loop or adaptive-tickless usermode execution.
 912 *
 913 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 914 * allow for the possibility of usermode upcalls messing up our count of
 915 * interrupt nesting level during the busy period that is just now starting.
 916 */
 917static void rcu_eqs_exit(bool user)
 918{
 919	struct rcu_dynticks *rdtp;
 920	long oldval;
 921
 922	lockdep_assert_irqs_disabled();
 923	rdtp = this_cpu_ptr(&rcu_dynticks);
 924	oldval = rdtp->dynticks_nesting;
 925	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 926	if (oldval) {
 927		rdtp->dynticks_nesting++;
 928		return;
 929	}
 930	rcu_dynticks_task_exit();
 931	rcu_dynticks_eqs_exit();
 932	rcu_cleanup_after_idle();
 933	trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
 934	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 935	WRITE_ONCE(rdtp->dynticks_nesting, 1);
 936	WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 937}
 938
 939/**
 940 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 941 *
 942 * Exit idle mode, in other words, -enter- the mode in which RCU
 943 * read-side critical sections can occur.
 944 *
 945 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 946 * CONFIG_RCU_EQS_DEBUG=y.
 947 */
 948void rcu_idle_exit(void)
 949{
 950	unsigned long flags;
 951
 952	local_irq_save(flags);
 953	rcu_eqs_exit(false);
 954	local_irq_restore(flags);
 955}
 956
 957#ifdef CONFIG_NO_HZ_FULL
 958/**
 959 * rcu_user_exit - inform RCU that we are exiting userspace.
 960 *
 961 * Exit RCU idle mode while entering the kernel because it can
 962 * run a RCU read side critical section anytime.
 963 *
 964 * If you add or remove a call to rcu_user_exit(), be sure to test with
 965 * CONFIG_RCU_EQS_DEBUG=y.
 966 */
 967void rcu_user_exit(void)
 968{
 969	rcu_eqs_exit(1);
 970}
 971#endif /* CONFIG_NO_HZ_FULL */
 972
 973/**
 974 * rcu_nmi_enter - inform RCU of entry to NMI context
 975 *
 976 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 977 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 978 * that the CPU is active.  This implementation permits nested NMIs, as
 979 * long as the nesting level does not overflow an int.  (You will probably
 980 * run out of stack space first.)
 981 *
 982 * If you add or remove a call to rcu_nmi_enter(), be sure to test
 983 * with CONFIG_RCU_EQS_DEBUG=y.
 984 */
 985void rcu_nmi_enter(void)
 986{
 987	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 988	long incby = 2;
 989
 990	/* Complain about underflow. */
 991	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
 992
 993	/*
 994	 * If idle from RCU viewpoint, atomically increment ->dynticks
 995	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 996	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 997	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 998	 * to be in the outermost NMI handler that interrupted an RCU-idle
 999	 * period (observation due to Andy Lutomirski).
1000	 */
1001	if (rcu_dynticks_curr_cpu_in_eqs()) {
1002		rcu_dynticks_eqs_exit();
1003		incby = 1;
1004	}
1005	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1006			  rdtp->dynticks_nmi_nesting,
1007			  rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
1008	WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
1009		   rdtp->dynticks_nmi_nesting + incby);
1010	barrier();
1011}
1012
1013/**
1014 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1015 *
1016 * Enter an interrupt handler, which might possibly result in exiting
1017 * idle mode, in other words, entering the mode in which read-side critical
1018 * sections can occur.  The caller must have disabled interrupts.
1019 *
1020 * Note that the Linux kernel is fully capable of entering an interrupt
1021 * handler that it never exits, for example when doing upcalls to user mode!
1022 * This code assumes that the idle loop never does upcalls to user mode.
1023 * If your architecture's idle loop does do upcalls to user mode (or does
1024 * anything else that results in unbalanced calls to the irq_enter() and
1025 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1026 * But very infrequently and irreproducibly.
1027 *
1028 * Use things like work queues to work around this limitation.
1029 *
1030 * You have been warned.
1031 *
1032 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1033 * CONFIG_RCU_EQS_DEBUG=y.
1034 */
1035void rcu_irq_enter(void)
1036{
1037	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1038
1039	lockdep_assert_irqs_disabled();
1040	if (rdtp->dynticks_nmi_nesting == 0)
1041		rcu_dynticks_task_exit();
1042	rcu_nmi_enter();
1043	if (rdtp->dynticks_nmi_nesting == 1)
1044		rcu_cleanup_after_idle();
1045}
1046
1047/*
1048 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1049 *
1050 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1051 * with CONFIG_RCU_EQS_DEBUG=y.
1052 */
1053void rcu_irq_enter_irqson(void)
1054{
1055	unsigned long flags;
1056
1057	local_irq_save(flags);
1058	rcu_irq_enter();
1059	local_irq_restore(flags);
1060}
1061
1062/**
1063 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1064 *
1065 * Return true if RCU is watching the running CPU, which means that this
1066 * CPU can safely enter RCU read-side critical sections.  In other words,
1067 * if the current CPU is in its idle loop and is neither in an interrupt
1068 * or NMI handler, return true.
1069 */
1070bool notrace rcu_is_watching(void)
1071{
1072	bool ret;
1073
1074	preempt_disable_notrace();
1075	ret = !rcu_dynticks_curr_cpu_in_eqs();
1076	preempt_enable_notrace();
1077	return ret;
1078}
1079EXPORT_SYMBOL_GPL(rcu_is_watching);
1080
1081/*
1082 * If a holdout task is actually running, request an urgent quiescent
1083 * state from its CPU.  This is unsynchronized, so migrations can cause
1084 * the request to go to the wrong CPU.  Which is OK, all that will happen
1085 * is that the CPU's next context switch will be a bit slower and next
1086 * time around this task will generate another request.
1087 */
1088void rcu_request_urgent_qs_task(struct task_struct *t)
1089{
1090	int cpu;
1091
1092	barrier();
1093	cpu = task_cpu(t);
1094	if (!task_curr(t))
1095		return; /* This task is not running on that CPU. */
1096	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1097}
1098
1099#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1100
1101/*
1102 * Is the current CPU online?  Disable preemption to avoid false positives
1103 * that could otherwise happen due to the current CPU number being sampled,
1104 * this task being preempted, its old CPU being taken offline, resuming
1105 * on some other CPU, then determining that its old CPU is now offline.
1106 * It is OK to use RCU on an offline processor during initial boot, hence
1107 * the check for rcu_scheduler_fully_active.  Note also that it is OK
1108 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1109 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1110 * offline to continue to use RCU for one jiffy after marking itself
1111 * offline in the cpu_online_mask.  This leniency is necessary given the
1112 * non-atomic nature of the online and offline processing, for example,
1113 * the fact that a CPU enters the scheduler after completing the teardown
1114 * of the CPU.
1115 *
1116 * This is also why RCU internally marks CPUs online during in the
1117 * preparation phase and offline after the CPU has been taken down.
1118 *
1119 * Disable checking if in an NMI handler because we cannot safely report
1120 * errors from NMI handlers anyway.
1121 */
1122bool rcu_lockdep_current_cpu_online(void)
1123{
1124	struct rcu_data *rdp;
1125	struct rcu_node *rnp;
1126	bool ret;
1127
1128	if (in_nmi())
1129		return true;
1130	preempt_disable();
1131	rdp = this_cpu_ptr(&rcu_sched_data);
1132	rnp = rdp->mynode;
1133	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1134	      !rcu_scheduler_fully_active;
1135	preempt_enable();
1136	return ret;
1137}
1138EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1139
1140#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1141
1142/**
1143 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1144 *
1145 * If the current CPU is idle or running at a first-level (not nested)
1146 * interrupt from idle, return true.  The caller must have at least
1147 * disabled preemption.
1148 */
1149static int rcu_is_cpu_rrupt_from_idle(void)
1150{
1151	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1152	       __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
1153}
1154
1155/*
1156 * We are reporting a quiescent state on behalf of some other CPU, so
1157 * it is our responsibility to check for and handle potential overflow
1158 * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1159 * After all, the CPU might be in deep idle state, and thus executing no
1160 * code whatsoever.
1161 */
1162static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1163{
1164	raw_lockdep_assert_held_rcu_node(rnp);
1165	if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
 
1166		WRITE_ONCE(rdp->gpwrap, true);
1167	if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1168		rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1169}
1170
1171/*
1172 * Snapshot the specified CPU's dynticks counter so that we can later
1173 * credit them with an implicit quiescent state.  Return 1 if this CPU
1174 * is in dynticks idle mode, which is an extended quiescent state.
1175 */
1176static int dyntick_save_progress_counter(struct rcu_data *rdp)
1177{
1178	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1179	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1180		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1181		rcu_gpnum_ovf(rdp->mynode, rdp);
1182		return 1;
1183	}
1184	return 0;
1185}
1186
1187/*
1188 * Handler for the irq_work request posted when a grace period has
1189 * gone on for too long, but not yet long enough for an RCU CPU
1190 * stall warning.  Set state appropriately, but just complain if
1191 * there is unexpected state on entry.
1192 */
1193static void rcu_iw_handler(struct irq_work *iwp)
1194{
1195	struct rcu_data *rdp;
1196	struct rcu_node *rnp;
1197
1198	rdp = container_of(iwp, struct rcu_data, rcu_iw);
1199	rnp = rdp->mynode;
1200	raw_spin_lock_rcu_node(rnp);
1201	if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1202		rdp->rcu_iw_gpnum = rnp->gpnum;
1203		rdp->rcu_iw_pending = false;
1204	}
1205	raw_spin_unlock_rcu_node(rnp);
1206}
1207
1208/*
1209 * Return true if the specified CPU has passed through a quiescent
1210 * state by virtue of being in or having passed through an dynticks
1211 * idle state since the last call to dyntick_save_progress_counter()
1212 * for this same CPU, or by virtue of having been offline.
1213 */
1214static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1215{
1216	unsigned long jtsq;
1217	bool *rnhqp;
1218	bool *ruqp;
1219	struct rcu_node *rnp = rdp->mynode;
1220
1221	/*
1222	 * If the CPU passed through or entered a dynticks idle phase with
1223	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1224	 * already acknowledged the request to pass through a quiescent
1225	 * state.  Either way, that CPU cannot possibly be in an RCU
1226	 * read-side critical section that started before the beginning
1227	 * of the current RCU grace period.
1228	 */
1229	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1230		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1231		rdp->dynticks_fqs++;
1232		rcu_gpnum_ovf(rnp, rdp);
1233		return 1;
1234	}
1235
1236	/*
1237	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1238	 * beginning of the grace period?  For this to be the case,
1239	 * the CPU has to have noticed the current grace period.  This
1240	 * might not be the case for nohz_full CPUs looping in the kernel.
1241	 */
1242	jtsq = jiffies_till_sched_qs;
1243	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1244	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1245	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1246	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1247		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1248		rcu_gpnum_ovf(rnp, rdp);
1249		return 1;
1250	} else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
1251		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1252		smp_store_release(ruqp, true);
1253	}
 
 
1254
1255	/* Check for the CPU being offline. */
1256	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1257		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1258		rdp->offline_fqs++;
1259		rcu_gpnum_ovf(rnp, rdp);
1260		return 1;
 
 
 
 
 
1261	}
1262
1263	/*
1264	 * A CPU running for an extended time within the kernel can
1265	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1266	 * even context-switching back and forth between a pair of
1267	 * in-kernel CPU-bound tasks cannot advance grace periods.
1268	 * So if the grace period is old enough, make the CPU pay attention.
1269	 * Note that the unsynchronized assignments to the per-CPU
1270	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1271	 * bits can be lost, but they will be set again on the next
1272	 * force-quiescent-state pass.  So lost bit sets do not result
1273	 * in incorrect behavior, merely in a grace period lasting
1274	 * a few jiffies longer than it might otherwise.  Because
1275	 * there are at most four threads involved, and because the
1276	 * updates are only once every few jiffies, the probability of
1277	 * lossage (and thus of slight grace-period extension) is
1278	 * quite low.
1279	 */
1280	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1281	if (!READ_ONCE(*rnhqp) &&
1282	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1283	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
1284		WRITE_ONCE(*rnhqp, true);
1285		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1286		smp_store_release(ruqp, true);
1287		rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
 
1288	}
1289
1290	/*
1291	 * If more than halfway to RCU CPU stall-warning time, do a
1292	 * resched_cpu() to try to loosen things up a bit.  Also check to
1293	 * see if the CPU is getting hammered with interrupts, but only
1294	 * once per grace period, just to keep the IPIs down to a dull roar.
1295	 */
1296	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
1297		resched_cpu(rdp->cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1299		    !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1300		    (rnp->ffmask & rdp->grpmask)) {
1301			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1302			rdp->rcu_iw_pending = true;
1303			rdp->rcu_iw_gpnum = rnp->gpnum;
1304			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1305		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1306	}
1307
1308	return 0;
1309}
1310
1311static void record_gp_stall_check_time(struct rcu_state *rsp)
 
 
1312{
1313	unsigned long j = jiffies;
1314	unsigned long j1;
1315
1316	rsp->gp_start = j;
1317	smp_wmb(); /* Record start time before stall time. */
1318	j1 = rcu_jiffies_till_stall_check();
1319	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1320	rsp->jiffies_resched = j + j1 / 2;
1321	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1322}
1323
1324/*
1325 * Convert a ->gp_state value to a character string.
 
 
 
 
 
 
 
 
 
 
 
 
 
1326 */
1327static const char *gp_state_getname(short gs)
 
1328{
1329	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1330		return "???";
1331	return gp_state_names[gs];
1332}
1333
1334/*
1335 * Complain about starvation of grace-period kthread.
1336 */
1337static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1338{
1339	unsigned long gpa;
1340	unsigned long j;
1341
1342	j = jiffies;
1343	gpa = READ_ONCE(rsp->gp_activity);
1344	if (j - gpa > 2 * HZ) {
1345		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1346		       rsp->name, j - gpa,
1347		       rsp->gpnum, rsp->completed,
1348		       rsp->gp_flags,
1349		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1350		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1351		       rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1352		if (rsp->gp_kthread) {
1353			pr_err("RCU grace-period kthread stack dump:\n");
1354			sched_show_task(rsp->gp_kthread);
1355			wake_up_process(rsp->gp_kthread);
1356		}
1357	}
1358}
1359
1360/*
1361 * Dump stacks of all tasks running on stalled CPUs.  First try using
1362 * NMIs, but fall back to manual remote stack tracing on architectures
1363 * that don't support NMI-based stack dumps.  The NMI-triggered stack
1364 * traces are more accurate because they are printed by the target CPU.
1365 */
1366static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1367{
1368	int cpu;
1369	unsigned long flags;
1370	struct rcu_node *rnp;
1371
1372	rcu_for_each_leaf_node(rsp, rnp) {
1373		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1374		for_each_leaf_node_possible_cpu(rnp, cpu)
1375			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1376				if (!trigger_single_cpu_backtrace(cpu))
1377					dump_cpu_task(cpu);
1378		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1379	}
1380}
1381
1382/*
1383 * If too much time has passed in the current grace period, and if
1384 * so configured, go kick the relevant kthreads.
1385 */
1386static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1387{
1388	unsigned long j;
1389
1390	if (!rcu_kick_kthreads)
1391		return;
1392	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1393	if (time_after(jiffies, j) && rsp->gp_kthread &&
1394	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1395		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1396		rcu_ftrace_dump(DUMP_ALL);
1397		wake_up_process(rsp->gp_kthread);
1398		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1399	}
1400}
1401
1402static inline void panic_on_rcu_stall(void)
1403{
1404	if (sysctl_panic_on_rcu_stall)
1405		panic("RCU Stall\n");
1406}
1407
1408static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1409{
1410	int cpu;
1411	long delta;
1412	unsigned long flags;
1413	unsigned long gpa;
1414	unsigned long j;
1415	int ndetected = 0;
1416	struct rcu_node *rnp = rcu_get_root(rsp);
1417	long totqlen = 0;
1418
1419	/* Kick and suppress, if so configured. */
1420	rcu_stall_kick_kthreads(rsp);
1421	if (rcu_cpu_stall_suppress)
1422		return;
1423
1424	/* Only let one CPU complain about others per time interval. */
1425
1426	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1427	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1428	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1429		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1430		return;
1431	}
1432	WRITE_ONCE(rsp->jiffies_stall,
1433		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1434	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1435
1436	/*
1437	 * OK, time to rat on our buddy...
1438	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1439	 * RCU CPU stall warnings.
1440	 */
1441	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1442	       rsp->name);
1443	print_cpu_stall_info_begin();
1444	rcu_for_each_leaf_node(rsp, rnp) {
1445		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1446		ndetected += rcu_print_task_stall(rnp);
1447		if (rnp->qsmask != 0) {
1448			for_each_leaf_node_possible_cpu(rnp, cpu)
1449				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1450					print_cpu_stall_info(rsp, cpu);
1451					ndetected++;
1452				}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1453		}
1454		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
 
1455	}
1456
1457	print_cpu_stall_info_end();
1458	for_each_possible_cpu(cpu)
1459		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1460							    cpu)->cblist);
1461	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1462	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1463	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1464	if (ndetected) {
1465		rcu_dump_cpu_stacks(rsp);
1466
1467		/* Complain about tasks blocking the grace period. */
1468		rcu_print_detail_task_stall(rsp);
1469	} else {
1470		if (READ_ONCE(rsp->gpnum) != gpnum ||
1471		    READ_ONCE(rsp->completed) == gpnum) {
1472			pr_err("INFO: Stall ended before state dump start\n");
1473		} else {
1474			j = jiffies;
1475			gpa = READ_ONCE(rsp->gp_activity);
1476			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1477			       rsp->name, j - gpa, j, gpa,
1478			       jiffies_till_next_fqs,
1479			       rcu_get_root(rsp)->qsmask);
1480			/* In this case, the current CPU might be at fault. */
1481			sched_show_task(current);
1482		}
1483	}
1484
1485	rcu_check_gp_kthread_starvation(rsp);
1486
1487	panic_on_rcu_stall();
1488
1489	force_quiescent_state(rsp);  /* Kick them all. */
1490}
1491
1492static void print_cpu_stall(struct rcu_state *rsp)
1493{
1494	int cpu;
1495	unsigned long flags;
1496	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1497	struct rcu_node *rnp = rcu_get_root(rsp);
1498	long totqlen = 0;
1499
1500	/* Kick and suppress, if so configured. */
1501	rcu_stall_kick_kthreads(rsp);
1502	if (rcu_cpu_stall_suppress)
1503		return;
1504
1505	/*
1506	 * OK, time to rat on ourselves...
1507	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1508	 * RCU CPU stall warnings.
1509	 */
1510	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1511	print_cpu_stall_info_begin();
1512	raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1513	print_cpu_stall_info(rsp, smp_processor_id());
1514	raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1515	print_cpu_stall_info_end();
1516	for_each_possible_cpu(cpu)
1517		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1518							    cpu)->cblist);
1519	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1520		jiffies - rsp->gp_start,
1521		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1522
1523	rcu_check_gp_kthread_starvation(rsp);
1524
1525	rcu_dump_cpu_stacks(rsp);
1526
1527	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1528	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1529		WRITE_ONCE(rsp->jiffies_stall,
1530			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1531	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1532
1533	panic_on_rcu_stall();
1534
1535	/*
1536	 * Attempt to revive the RCU machinery by forcing a context switch.
1537	 *
1538	 * A context switch would normally allow the RCU state machine to make
1539	 * progress and it could be we're stuck in kernel space without context
1540	 * switches for an entirely unreasonable amount of time.
1541	 */
1542	resched_cpu(smp_processor_id());
1543}
1544
1545static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1546{
1547	unsigned long completed;
1548	unsigned long gpnum;
1549	unsigned long gps;
1550	unsigned long j;
1551	unsigned long js;
1552	struct rcu_node *rnp;
1553
1554	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1555	    !rcu_gp_in_progress(rsp))
1556		return;
1557	rcu_stall_kick_kthreads(rsp);
1558	j = jiffies;
1559
1560	/*
1561	 * Lots of memory barriers to reject false positives.
1562	 *
1563	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1564	 * then rsp->gp_start, and finally rsp->completed.  These values
1565	 * are updated in the opposite order with memory barriers (or
1566	 * equivalent) during grace-period initialization and cleanup.
1567	 * Now, a false positive can occur if we get an new value of
1568	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1569	 * the memory barriers, the only way that this can happen is if one
1570	 * grace period ends and another starts between these two fetches.
1571	 * Detect this by comparing rsp->completed with the previous fetch
1572	 * from rsp->gpnum.
1573	 *
1574	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1575	 * and rsp->gp_start suffice to forestall false positives.
1576	 */
1577	gpnum = READ_ONCE(rsp->gpnum);
1578	smp_rmb(); /* Pick up ->gpnum first... */
1579	js = READ_ONCE(rsp->jiffies_stall);
1580	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1581	gps = READ_ONCE(rsp->gp_start);
1582	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1583	completed = READ_ONCE(rsp->completed);
1584	if (ULONG_CMP_GE(completed, gpnum) ||
1585	    ULONG_CMP_LT(j, js) ||
1586	    ULONG_CMP_GE(gps, js))
1587		return; /* No stall or GP completed since entering function. */
1588	rnp = rdp->mynode;
1589	if (rcu_gp_in_progress(rsp) &&
1590	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1591
1592		/* We haven't checked in, so go dump stack. */
1593		print_cpu_stall(rsp);
1594
1595	} else if (rcu_gp_in_progress(rsp) &&
1596		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1597
1598		/* They had a few time units to dump stack, so complain. */
1599		print_other_cpu_stall(rsp, gpnum);
1600	}
 
 
 
1601}
1602
1603/**
1604 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1605 *
1606 * Set the stall-warning timeout way off into the future, thus preventing
1607 * any RCU CPU stall-warning messages from appearing in the current set of
1608 * RCU grace periods.
1609 *
1610 * The caller must disable hard irqs.
1611 */
1612void rcu_cpu_stall_reset(void)
1613{
1614	struct rcu_state *rsp;
 
1615
1616	for_each_rcu_flavor(rsp)
1617		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
 
 
 
 
1618}
1619
1620/*
1621 * Determine the value that ->completed will have at the end of the
1622 * next subsequent grace period.  This is used to tag callbacks so that
1623 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1624 * been dyntick-idle for an extended period with callbacks under the
1625 * influence of RCU_FAST_NO_HZ.
1626 *
1627 * The caller must hold rnp->lock with interrupts disabled.
1628 */
1629static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1630				       struct rcu_node *rnp)
1631{
1632	raw_lockdep_assert_held_rcu_node(rnp);
1633
1634	/*
1635	 * If RCU is idle, we just wait for the next grace period.
1636	 * But we can only be sure that RCU is idle if we are looking
1637	 * at the root rcu_node structure -- otherwise, a new grace
1638	 * period might have started, but just not yet gotten around
1639	 * to initializing the current non-root rcu_node structure.
1640	 */
1641	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1642		return rnp->completed + 1;
1643
1644	/*
1645	 * Otherwise, wait for a possible partial grace period and
1646	 * then the subsequent full grace period.
1647	 */
1648	return rnp->completed + 2;
1649}
1650
1651/*
1652 * Trace-event helper function for rcu_start_future_gp() and
1653 * rcu_nocb_wait_gp().
1654 */
1655static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1656				unsigned long c, const char *s)
1657{
1658	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1659				      rnp->completed, c, rnp->level,
1660				      rnp->grplo, rnp->grphi, s);
1661}
1662
1663/*
1664 * Start some future grace period, as needed to handle newly arrived
1665 * callbacks.  The required future grace periods are recorded in each
1666 * rcu_node structure's ->need_future_gp field.  Returns true if there
1667 * is reason to awaken the grace-period kthread.
1668 *
1669 * The caller must hold the specified rcu_node structure's ->lock.
1670 */
1671static bool __maybe_unused
1672rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1673		    unsigned long *c_out)
1674{
1675	unsigned long c;
1676	bool ret = false;
1677	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1678
1679	raw_lockdep_assert_held_rcu_node(rnp);
1680
1681	/*
1682	 * Pick up grace-period number for new callbacks.  If this
1683	 * grace period is already marked as needed, return to the caller.
 
 
1684	 */
1685	c = rcu_cbs_completed(rdp->rsp, rnp);
1686	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1687	if (rnp->need_future_gp[c & 0x1]) {
1688		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1689		goto out;
1690	}
1691
1692	/*
1693	 * If either this rcu_node structure or the root rcu_node structure
1694	 * believe that a grace period is in progress, then we must wait
1695	 * for the one following, which is in "c".  Because our request
1696	 * will be noticed at the end of the current grace period, we don't
1697	 * need to explicitly start one.  We only do the lockless check
1698	 * of rnp_root's fields if the current rcu_node structure thinks
1699	 * there is no grace period in flight, and because we hold rnp->lock,
1700	 * the only possible change is when rnp_root's two fields are
1701	 * equal, in which case rnp_root->gpnum might be concurrently
1702	 * incremented.  But that is OK, as it will just result in our
1703	 * doing some extra useless work.
1704	 */
1705	if (rnp->gpnum != rnp->completed ||
1706	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1707		rnp->need_future_gp[c & 0x1]++;
1708		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1709		goto out;
1710	}
1711
1712	/*
1713	 * There might be no grace period in progress.  If we don't already
1714	 * hold it, acquire the root rcu_node structure's lock in order to
1715	 * start one (if needed).
1716	 */
1717	if (rnp != rnp_root)
1718		raw_spin_lock_rcu_node(rnp_root);
1719
1720	/*
1721	 * Get a new grace-period number.  If there really is no grace
1722	 * period in progress, it will be smaller than the one we obtained
1723	 * earlier.  Adjust callbacks as needed.
1724	 */
1725	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1726	if (!rcu_is_nocb_cpu(rdp->cpu))
1727		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1728
1729	/*
1730	 * If the needed for the required grace period is already
1731	 * recorded, trace and leave.
1732	 */
1733	if (rnp_root->need_future_gp[c & 0x1]) {
1734		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1735		goto unlock_out;
1736	}
1737
1738	/* Record the need for the future grace period. */
1739	rnp_root->need_future_gp[c & 0x1]++;
1740
1741	/* If a grace period is not already in progress, start one. */
1742	if (rnp_root->gpnum != rnp_root->completed) {
1743		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1744	} else {
1745		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1746		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1747	}
1748unlock_out:
1749	if (rnp != rnp_root)
1750		raw_spin_unlock_rcu_node(rnp_root);
1751out:
1752	if (c_out != NULL)
1753		*c_out = c;
1754	return ret;
1755}
1756
1757/*
1758 * Clean up any old requests for the just-ended grace period.  Also return
1759 * whether any additional grace periods have been requested.
 
 
 
 
 
 
 
 
 
 
 
1760 */
1761static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1762{
1763	int c = rnp->completed;
1764	int needmore;
1765	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1766
1767	rnp->need_future_gp[c & 0x1] = 0;
1768	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1769	trace_rcu_future_gp(rnp, rdp, c,
1770			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1771	return needmore;
1772}
1773
1774/*
1775 * Awaken the grace-period kthread for the specified flavor of RCU.
1776 * Don't do a self-awaken, and don't bother awakening when there is
1777 * nothing for the grace-period kthread to do (as in several CPUs
1778 * raced to awaken, and we lost), and finally don't try to awaken
1779 * a kthread that has not yet been created.
1780 */
1781static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1782{
1783	if (current == rsp->gp_kthread ||
1784	    !READ_ONCE(rsp->gp_flags) ||
1785	    !rsp->gp_kthread)
1786		return;
1787	swake_up(&rsp->gp_wq);
 
 
1788}
1789
1790/*
1791 * If there is room, assign a ->completed number to any callbacks on
1792 * this CPU that have not already been assigned.  Also accelerate any
1793 * callbacks that were previously assigned a ->completed number that has
1794 * since proven to be too conservative, which can happen if callbacks get
1795 * assigned a ->completed number while RCU is idle, but with reference to
1796 * a non-root rcu_node structure.  This function is idempotent, so it does
1797 * not hurt to call it repeatedly.  Returns an flag saying that we should
1798 * awaken the RCU grace-period kthread.
1799 *
1800 * The caller must hold rnp->lock with interrupts disabled.
1801 */
1802static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1803			       struct rcu_data *rdp)
1804{
 
1805	bool ret = false;
1806
 
1807	raw_lockdep_assert_held_rcu_node(rnp);
1808
1809	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1810	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1811		return false;
1812
 
 
1813	/*
1814	 * Callbacks are often registered with incomplete grace-period
1815	 * information.  Something about the fact that getting exact
1816	 * information requires acquiring a global lock...  RCU therefore
1817	 * makes a conservative estimate of the grace period number at which
1818	 * a given callback will become ready to invoke.	The following
1819	 * code checks this estimate and improves it when possible, thus
1820	 * accelerating callback invocation to an earlier grace-period
1821	 * number.
1822	 */
1823	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1824		ret = rcu_start_future_gp(rnp, rdp, NULL);
 
1825
1826	/* Trace depending on how much we were able to accelerate. */
1827	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1828		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1829	else
1830		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
 
 
 
1831	return ret;
1832}
1833
1834/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1835 * Move any callbacks whose grace period has completed to the
1836 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1837 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1838 * sublist.  This function is idempotent, so it does not hurt to
1839 * invoke it repeatedly.  As long as it is not invoked -too- often...
1840 * Returns true if the RCU grace-period kthread needs to be awakened.
1841 *
1842 * The caller must hold rnp->lock with interrupts disabled.
1843 */
1844static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1845			    struct rcu_data *rdp)
1846{
 
1847	raw_lockdep_assert_held_rcu_node(rnp);
1848
1849	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1850	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1851		return false;
1852
1853	/*
1854	 * Find all callbacks whose ->completed numbers indicate that they
1855	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1856	 */
1857	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1858
1859	/* Classify any remaining callbacks. */
1860	return rcu_accelerate_cbs(rsp, rnp, rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861}
1862
1863/*
1864 * Update CPU-local rcu_data state to record the beginnings and ends of
1865 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1866 * structure corresponding to the current CPU, and must have irqs disabled.
1867 * Returns true if the grace-period kthread needs to be awakened.
1868 */
1869static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1870			      struct rcu_data *rdp)
1871{
1872	bool ret;
1873	bool need_gp;
 
1874
1875	raw_lockdep_assert_held_rcu_node(rnp);
1876
 
 
 
1877	/* Handle the ends of any preceding grace periods first. */
1878	if (rdp->completed == rnp->completed &&
1879	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1880
1881		/* No grace period end, so just accelerate recent callbacks. */
1882		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1883
1884	} else {
1885
1886		/* Advance callbacks. */
1887		ret = rcu_advance_cbs(rsp, rnp, rdp);
1888
1889		/* Remember that we saw this grace-period completion. */
1890		rdp->completed = rnp->completed;
1891		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1892	}
1893
1894	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
 
 
1895		/*
1896		 * If the current grace period is waiting for this CPU,
1897		 * set up to detect a quiescent state, otherwise don't
1898		 * go looking for one.
1899		 */
1900		rdp->gpnum = rnp->gpnum;
1901		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1902		need_gp = !!(rnp->qsmask & rdp->grpmask);
1903		rdp->cpu_no_qs.b.norm = need_gp;
1904		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1905		rdp->core_needs_qs = need_gp;
1906		zero_cpu_stall_ticks(rdp);
1907		WRITE_ONCE(rdp->gpwrap, false);
1908		rcu_gpnum_ovf(rnp, rdp);
1909	}
 
 
 
 
 
 
 
1910	return ret;
1911}
1912
1913static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1914{
1915	unsigned long flags;
1916	bool needwake;
1917	struct rcu_node *rnp;
1918
1919	local_irq_save(flags);
1920	rnp = rdp->mynode;
1921	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1922	     rdp->completed == READ_ONCE(rnp->completed) &&
1923	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1924	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1925		local_irq_restore(flags);
1926		return;
1927	}
1928	needwake = __note_gp_changes(rsp, rnp, rdp);
1929	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
1930	if (needwake)
1931		rcu_gp_kthread_wake(rsp);
1932}
1933
1934static void rcu_gp_slow(struct rcu_state *rsp, int delay)
 
 
 
1935{
1936	if (delay > 0 &&
1937	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1938		schedule_timeout_uninterruptible(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939}
1940
1941/*
1942 * Initialize a new grace period.  Return false if no grace period required.
1943 */
1944static bool rcu_gp_init(struct rcu_state *rsp)
1945{
 
1946	unsigned long oldmask;
 
1947	struct rcu_data *rdp;
1948	struct rcu_node *rnp = rcu_get_root(rsp);
1949
1950	WRITE_ONCE(rsp->gp_activity, jiffies);
1951	raw_spin_lock_irq_rcu_node(rnp);
1952	if (!READ_ONCE(rsp->gp_flags)) {
1953		/* Spurious wakeup, tell caller to go back to sleep.  */
1954		raw_spin_unlock_irq_rcu_node(rnp);
1955		return false;
1956	}
1957	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1958
1959	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1960		/*
1961		 * Grace period already in progress, don't start another.
1962		 * Not supposed to be able to happen.
1963		 */
1964		raw_spin_unlock_irq_rcu_node(rnp);
1965		return false;
1966	}
1967
1968	/* Advance to a new grace period and initialize state. */
1969	record_gp_stall_check_time(rsp);
1970	/* Record GP times before starting GP, hence smp_store_release(). */
1971	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1972	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
 
 
1973	raw_spin_unlock_irq_rcu_node(rnp);
1974
1975	/*
1976	 * Apply per-leaf buffered online and offline operations to the
1977	 * rcu_node tree.  Note that this new grace period need not wait
1978	 * for subsequent online CPUs, and that quiescent-state forcing
1979	 * will handle subsequent offline CPUs.
1980	 */
1981	rcu_for_each_leaf_node(rsp, rnp) {
1982		rcu_gp_slow(rsp, gp_preinit_delay);
1983		raw_spin_lock_irq_rcu_node(rnp);
 
 
 
 
 
 
1984		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1985		    !rnp->wait_blkd_tasks) {
1986			/* Nothing to do on this leaf rcu_node structure. */
1987			raw_spin_unlock_irq_rcu_node(rnp);
 
 
1988			continue;
1989		}
1990
1991		/* Record old state, apply changes to ->qsmaskinit field. */
1992		oldmask = rnp->qsmaskinit;
1993		rnp->qsmaskinit = rnp->qsmaskinitnext;
1994
1995		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1996		if (!oldmask != !rnp->qsmaskinit) {
1997			if (!oldmask) /* First online CPU for this rcu_node. */
1998				rcu_init_new_rnp(rnp);
1999			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2000				rnp->wait_blkd_tasks = true;
2001			else /* Last offline CPU and can propagate. */
 
2002				rcu_cleanup_dead_rnp(rnp);
 
2003		}
2004
2005		/*
2006		 * If all waited-on tasks from prior grace period are
2007		 * done, and if all this rcu_node structure's CPUs are
2008		 * still offline, propagate up the rcu_node tree and
2009		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2010		 * rcu_node structure's CPUs has since come back online,
2011		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2012		 * checks for this, so just call it unconditionally).
2013		 */
2014		if (rnp->wait_blkd_tasks &&
2015		    (!rcu_preempt_has_tasks(rnp) ||
2016		     rnp->qsmaskinit)) {
2017			rnp->wait_blkd_tasks = false;
2018			rcu_cleanup_dead_rnp(rnp);
 
2019		}
2020
2021		raw_spin_unlock_irq_rcu_node(rnp);
 
 
2022	}
 
2023
2024	/*
2025	 * Set the quiescent-state-needed bits in all the rcu_node
2026	 * structures for all currently online CPUs in breadth-first order,
2027	 * starting from the root rcu_node structure, relying on the layout
2028	 * of the tree within the rsp->node[] array.  Note that other CPUs
2029	 * will access only the leaves of the hierarchy, thus seeing that no
2030	 * grace period is in progress, at least until the corresponding
2031	 * leaf node has been initialized.
2032	 *
2033	 * The grace period cannot complete until the initialization
2034	 * process finishes, because this kthread handles both.
2035	 */
2036	rcu_for_each_node_breadth_first(rsp, rnp) {
2037		rcu_gp_slow(rsp, gp_init_delay);
2038		raw_spin_lock_irq_rcu_node(rnp);
2039		rdp = this_cpu_ptr(rsp->rda);
 
2040		rcu_preempt_check_blocked_tasks(rnp);
2041		rnp->qsmask = rnp->qsmaskinit;
2042		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2043		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2044			WRITE_ONCE(rnp->completed, rsp->completed);
2045		if (rnp == rdp->mynode)
2046			(void)__note_gp_changes(rsp, rnp, rdp);
2047		rcu_preempt_boost_start_gp(rnp);
2048		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2049					    rnp->level, rnp->grplo,
2050					    rnp->grphi, rnp->qsmask);
2051		raw_spin_unlock_irq_rcu_node(rnp);
2052		cond_resched_rcu_qs();
2053		WRITE_ONCE(rsp->gp_activity, jiffies);
 
 
 
 
 
 
2054	}
2055
 
 
 
 
2056	return true;
2057}
2058
2059/*
2060 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2061 * time.
2062 */
2063static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2064{
2065	struct rcu_node *rnp = rcu_get_root(rsp);
2066
2067	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2068	*gfp = READ_ONCE(rsp->gp_flags);
 
 
 
 
2069	if (*gfp & RCU_GP_FLAG_FQS)
2070		return true;
2071
2072	/* The current grace period has completed. */
2073	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2074		return true;
2075
2076	return false;
2077}
2078
2079/*
2080 * Do one round of quiescent-state forcing.
2081 */
2082static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2083{
2084	struct rcu_node *rnp = rcu_get_root(rsp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2085
2086	WRITE_ONCE(rsp->gp_activity, jiffies);
2087	rsp->n_force_qs++;
2088	if (first_time) {
2089		/* Collect dyntick-idle snapshots. */
2090		force_qs_rnp(rsp, dyntick_save_progress_counter);
2091	} else {
2092		/* Handle dyntick-idle and offline CPUs. */
2093		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2094	}
2095	/* Clear flag to prevent immediate re-entry. */
2096	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2097		raw_spin_lock_irq_rcu_node(rnp);
2098		WRITE_ONCE(rsp->gp_flags,
2099			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2100		raw_spin_unlock_irq_rcu_node(rnp);
2101	}
2102}
2103
2104/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105 * Clean up after the old grace period.
2106 */
2107static void rcu_gp_cleanup(struct rcu_state *rsp)
2108{
 
 
2109	unsigned long gp_duration;
2110	bool needgp = false;
2111	int nocb = 0;
2112	struct rcu_data *rdp;
2113	struct rcu_node *rnp = rcu_get_root(rsp);
2114	struct swait_queue_head *sq;
2115
2116	WRITE_ONCE(rsp->gp_activity, jiffies);
2117	raw_spin_lock_irq_rcu_node(rnp);
2118	gp_duration = jiffies - rsp->gp_start;
2119	if (gp_duration > rsp->gp_max)
2120		rsp->gp_max = gp_duration;
 
2121
2122	/*
2123	 * We know the grace period is complete, but to everyone else
2124	 * it appears to still be ongoing.  But it is also the case
2125	 * that to everyone else it looks like there is nothing that
2126	 * they can do to advance the grace period.  It is therefore
2127	 * safe for us to drop the lock in order to mark the grace
2128	 * period as completed in all of the rcu_node structures.
2129	 */
 
2130	raw_spin_unlock_irq_rcu_node(rnp);
2131
2132	/*
2133	 * Propagate new ->completed value to rcu_node structures so
2134	 * that other CPUs don't have to wait until the start of the next
2135	 * grace period to process their callbacks.  This also avoids
2136	 * some nasty RCU grace-period initialization races by forcing
2137	 * the end of the current grace period to be completely recorded in
2138	 * all of the rcu_node structures before the beginning of the next
2139	 * grace period is recorded in any of the rcu_node structures.
2140	 */
2141	rcu_for_each_node_breadth_first(rsp, rnp) {
 
 
2142		raw_spin_lock_irq_rcu_node(rnp);
2143		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 
2144		WARN_ON_ONCE(rnp->qsmask);
2145		WRITE_ONCE(rnp->completed, rsp->gpnum);
2146		rdp = this_cpu_ptr(rsp->rda);
 
 
2147		if (rnp == rdp->mynode)
2148			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2149		/* smp_mb() provided by prior unlock-lock pair. */
2150		nocb += rcu_future_gp_cleanup(rsp, rnp);
 
 
 
 
 
 
2151		sq = rcu_nocb_gp_get(rnp);
2152		raw_spin_unlock_irq_rcu_node(rnp);
2153		rcu_nocb_gp_cleanup(sq);
2154		cond_resched_rcu_qs();
2155		WRITE_ONCE(rsp->gp_activity, jiffies);
2156		rcu_gp_slow(rsp, gp_cleanup_delay);
2157	}
2158	rnp = rcu_get_root(rsp);
2159	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2160	rcu_nocb_gp_set(rnp, nocb);
2161
2162	/* Declare grace period done. */
2163	WRITE_ONCE(rsp->completed, rsp->gpnum);
2164	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2165	rsp->gp_state = RCU_GP_IDLE;
2166	rdp = this_cpu_ptr(rsp->rda);
 
 
 
 
 
 
2167	/* Advance CBs to reduce false positives below. */
2168	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2169	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2170		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2171		trace_rcu_grace_period(rsp->name,
2172				       READ_ONCE(rsp->gpnum),
2173				       TPS("newreq"));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174	}
2175	raw_spin_unlock_irq_rcu_node(rnp);
 
 
 
 
2176}
2177
2178/*
2179 * Body of kthread that handles grace periods.
2180 */
2181static int __noreturn rcu_gp_kthread(void *arg)
2182{
2183	bool first_gp_fqs;
2184	int gf;
2185	unsigned long j;
2186	int ret;
2187	struct rcu_state *rsp = arg;
2188	struct rcu_node *rnp = rcu_get_root(rsp);
2189
2190	rcu_bind_gp_kthread();
2191	for (;;) {
2192
2193		/* Handle grace-period start. */
2194		for (;;) {
2195			trace_rcu_grace_period(rsp->name,
2196					       READ_ONCE(rsp->gpnum),
2197					       TPS("reqwait"));
2198			rsp->gp_state = RCU_GP_WAIT_GPS;
2199			swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2200						     RCU_GP_FLAG_INIT);
2201			rsp->gp_state = RCU_GP_DONE_GPS;
 
 
2202			/* Locking provides needed memory barrier. */
2203			if (rcu_gp_init(rsp))
2204				break;
2205			cond_resched_rcu_qs();
2206			WRITE_ONCE(rsp->gp_activity, jiffies);
2207			WARN_ON(signal_pending(current));
2208			trace_rcu_grace_period(rsp->name,
2209					       READ_ONCE(rsp->gpnum),
2210					       TPS("reqwaitsig"));
2211		}
2212
2213		/* Handle quiescent-state forcing. */
2214		first_gp_fqs = true;
2215		j = jiffies_till_first_fqs;
2216		if (j > HZ) {
2217			j = HZ;
2218			jiffies_till_first_fqs = HZ;
2219		}
2220		ret = 0;
2221		for (;;) {
2222			if (!ret) {
2223				rsp->jiffies_force_qs = jiffies + j;
2224				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2225					   jiffies + 3 * j);
2226			}
2227			trace_rcu_grace_period(rsp->name,
2228					       READ_ONCE(rsp->gpnum),
2229					       TPS("fqswait"));
2230			rsp->gp_state = RCU_GP_WAIT_FQS;
2231			ret = swait_event_idle_timeout(rsp->gp_wq,
2232					rcu_gp_fqs_check_wake(rsp, &gf), j);
2233			rsp->gp_state = RCU_GP_DOING_FQS;
2234			/* Locking provides needed memory barriers. */
2235			/* If grace period done, leave loop. */
2236			if (!READ_ONCE(rnp->qsmask) &&
2237			    !rcu_preempt_blocked_readers_cgp(rnp))
2238				break;
2239			/* If time for quiescent-state forcing, do it. */
2240			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2241			    (gf & RCU_GP_FLAG_FQS)) {
2242				trace_rcu_grace_period(rsp->name,
2243						       READ_ONCE(rsp->gpnum),
2244						       TPS("fqsstart"));
2245				rcu_gp_fqs(rsp, first_gp_fqs);
2246				first_gp_fqs = false;
2247				trace_rcu_grace_period(rsp->name,
2248						       READ_ONCE(rsp->gpnum),
2249						       TPS("fqsend"));
2250				cond_resched_rcu_qs();
2251				WRITE_ONCE(rsp->gp_activity, jiffies);
2252				ret = 0; /* Force full wait till next FQS. */
2253				j = jiffies_till_next_fqs;
2254				if (j > HZ) {
2255					j = HZ;
2256					jiffies_till_next_fqs = HZ;
2257				} else if (j < 1) {
2258					j = 1;
2259					jiffies_till_next_fqs = 1;
2260				}
2261			} else {
2262				/* Deal with stray signal. */
2263				cond_resched_rcu_qs();
2264				WRITE_ONCE(rsp->gp_activity, jiffies);
2265				WARN_ON(signal_pending(current));
2266				trace_rcu_grace_period(rsp->name,
2267						       READ_ONCE(rsp->gpnum),
2268						       TPS("fqswaitsig"));
2269				ret = 1; /* Keep old FQS timing. */
2270				j = jiffies;
2271				if (time_after(jiffies, rsp->jiffies_force_qs))
2272					j = 1;
2273				else
2274					j = rsp->jiffies_force_qs - j;
2275			}
2276		}
2277
2278		/* Handle grace-period end. */
2279		rsp->gp_state = RCU_GP_CLEANUP;
2280		rcu_gp_cleanup(rsp);
2281		rsp->gp_state = RCU_GP_CLEANED;
2282	}
2283}
2284
2285/*
2286 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2287 * in preparation for detecting the next grace period.  The caller must hold
2288 * the root node's ->lock and hard irqs must be disabled.
2289 *
2290 * Note that it is legal for a dying CPU (which is marked as offline) to
2291 * invoke this function.  This can happen when the dying CPU reports its
2292 * quiescent state.
2293 *
2294 * Returns true if the grace-period kthread must be awakened.
2295 */
2296static bool
2297rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2298		      struct rcu_data *rdp)
2299{
2300	raw_lockdep_assert_held_rcu_node(rnp);
2301	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2302		/*
2303		 * Either we have not yet spawned the grace-period
2304		 * task, this CPU does not need another grace period,
2305		 * or a grace period is already in progress.
2306		 * Either way, don't start a new grace period.
2307		 */
2308		return false;
2309	}
2310	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2311	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2312			       TPS("newreq"));
2313
2314	/*
2315	 * We can't do wakeups while holding the rnp->lock, as that
2316	 * could cause possible deadlocks with the rq->lock. Defer
2317	 * the wakeup to our caller.
2318	 */
2319	return true;
2320}
2321
2322/*
2323 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2324 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2325 * is invoked indirectly from rcu_advance_cbs(), which would result in
2326 * endless recursion -- or would do so if it wasn't for the self-deadlock
2327 * that is encountered beforehand.
2328 *
2329 * Returns true if the grace-period kthread needs to be awakened.
2330 */
2331static bool rcu_start_gp(struct rcu_state *rsp)
2332{
2333	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2334	struct rcu_node *rnp = rcu_get_root(rsp);
2335	bool ret = false;
2336
2337	/*
2338	 * If there is no grace period in progress right now, any
2339	 * callbacks we have up to this point will be satisfied by the
2340	 * next grace period.  Also, advancing the callbacks reduces the
2341	 * probability of false positives from cpu_needs_another_gp()
2342	 * resulting in pointless grace periods.  So, advance callbacks
2343	 * then start the grace period!
2344	 */
2345	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2346	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2347	return ret;
2348}
2349
2350/*
2351 * Report a full set of quiescent states to the specified rcu_state data
2352 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2353 * kthread if another grace period is required.  Whether we wake
2354 * the grace-period kthread or it awakens itself for the next round
2355 * of quiescent-state forcing, that kthread will clean up after the
2356 * just-completed grace period.  Note that the caller must hold rnp->lock,
2357 * which is released before return.
2358 */
2359static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2360	__releases(rcu_get_root(rsp)->lock)
2361{
2362	raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
2363	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2364	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2365	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2366	rcu_gp_kthread_wake(rsp);
2367}
2368
2369/*
2370 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2371 * Allows quiescent states for a group of CPUs to be reported at one go
2372 * to the specified rcu_node structure, though all the CPUs in the group
2373 * must be represented by the same rcu_node structure (which need not be a
2374 * leaf rcu_node structure, though it often will be).  The gps parameter
2375 * is the grace-period snapshot, which means that the quiescent states
2376 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2377 * must be held upon entry, and it is released before return.
 
 
 
 
2378 */
2379static void
2380rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2381		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2382	__releases(rnp->lock)
2383{
2384	unsigned long oldmask = 0;
2385	struct rcu_node *rnp_c;
2386
2387	raw_lockdep_assert_held_rcu_node(rnp);
2388
2389	/* Walk up the rcu_node hierarchy. */
2390	for (;;) {
2391		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2392
2393			/*
2394			 * Our bit has already been cleared, or the
2395			 * relevant grace period is already over, so done.
2396			 */
2397			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2398			return;
2399		}
2400		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2401		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2402			     rcu_preempt_blocked_readers_cgp(rnp));
2403		rnp->qsmask &= ~mask;
2404		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2405						 mask, rnp->qsmask, rnp->level,
2406						 rnp->grplo, rnp->grphi,
2407						 !!rnp->gp_tasks);
2408		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2409
2410			/* Other bits still set at this level, so done. */
2411			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2412			return;
2413		}
 
2414		mask = rnp->grpmask;
2415		if (rnp->parent == NULL) {
2416
2417			/* No more levels.  Exit loop holding root lock. */
2418
2419			break;
2420		}
2421		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2422		rnp_c = rnp;
2423		rnp = rnp->parent;
2424		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2425		oldmask = rnp_c->qsmask;
2426	}
2427
2428	/*
2429	 * Get here if we are the last CPU to pass through a quiescent
2430	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2431	 * to clean up and start the next grace period if one is needed.
2432	 */
2433	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2434}
2435
2436/*
2437 * Record a quiescent state for all tasks that were previously queued
2438 * on the specified rcu_node structure and that were blocking the current
2439 * RCU grace period.  The caller must hold the specified rnp->lock with
2440 * irqs disabled, and this lock is released upon return, but irqs remain
2441 * disabled.
2442 */
2443static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2444				      struct rcu_node *rnp, unsigned long flags)
2445	__releases(rnp->lock)
2446{
2447	unsigned long gps;
2448	unsigned long mask;
2449	struct rcu_node *rnp_p;
2450
2451	raw_lockdep_assert_held_rcu_node(rnp);
2452	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2453	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 
2454		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2455		return;  /* Still need more quiescent states! */
2456	}
2457
 
2458	rnp_p = rnp->parent;
2459	if (rnp_p == NULL) {
2460		/*
2461		 * Only one rcu_node structure in the tree, so don't
2462		 * try to report up to its nonexistent parent!
2463		 */
2464		rcu_report_qs_rsp(rsp, flags);
2465		return;
2466	}
2467
2468	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2469	gps = rnp->gpnum;
2470	mask = rnp->grpmask;
2471	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2472	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2473	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2474}
2475
2476/*
2477 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2478 * structure.  This must be called from the specified CPU.
2479 */
2480static void
2481rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2482{
2483	unsigned long flags;
2484	unsigned long mask;
2485	bool needwake;
2486	struct rcu_node *rnp;
2487
 
2488	rnp = rdp->mynode;
2489	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2490	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2491	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2492
2493		/*
2494		 * The grace period in which this quiescent state was
2495		 * recorded has ended, so don't report it upwards.
2496		 * We will instead need a new quiescent state that lies
2497		 * within the current grace period.
2498		 */
2499		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2500		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2501		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2502		return;
2503	}
2504	mask = rdp->grpmask;
 
2505	if ((rnp->qsmask & mask) == 0) {
2506		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2507	} else {
2508		rdp->core_needs_qs = false;
2509
2510		/*
2511		 * This GP can't end until cpu checks in, so all of our
2512		 * callbacks can be processed during the next GP.
 
 
2513		 */
2514		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
2515
2516		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
 
2517		/* ^^^ Released rnp->lock */
2518		if (needwake)
2519			rcu_gp_kthread_wake(rsp);
 
 
 
 
2520	}
2521}
2522
2523/*
2524 * Check to see if there is a new grace period of which this CPU
2525 * is not yet aware, and if so, set up local rcu_data state for it.
2526 * Otherwise, see if this CPU has just passed through its first
2527 * quiescent state for this grace period, and record that fact if so.
2528 */
2529static void
2530rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2531{
2532	/* Check for grace-period ends and beginnings. */
2533	note_gp_changes(rsp, rdp);
2534
2535	/*
2536	 * Does this CPU still need to do its part for current grace period?
2537	 * If no, return and let the other CPUs do their part as well.
2538	 */
2539	if (!rdp->core_needs_qs)
2540		return;
2541
2542	/*
2543	 * Was there a quiescent state since the beginning of the grace
2544	 * period? If no, then exit and wait for the next call.
2545	 */
2546	if (rdp->cpu_no_qs.b.norm)
2547		return;
2548
2549	/*
2550	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2551	 * judge of that).
2552	 */
2553	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2554}
2555
2556/*
2557 * Trace the fact that this CPU is going offline.
2558 */
2559static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2560{
2561	RCU_TRACE(unsigned long mask;)
2562	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2563	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2564
2565	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2566		return;
2567
2568	RCU_TRACE(mask = rdp->grpmask;)
2569	trace_rcu_grace_period(rsp->name,
2570			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2571			       TPS("cpuofl"));
2572}
2573
2574/*
2575 * All CPUs for the specified rcu_node structure have gone offline,
2576 * and all tasks that were preempted within an RCU read-side critical
2577 * section while running on one of those CPUs have since exited their RCU
2578 * read-side critical section.  Some other CPU is reporting this fact with
2579 * the specified rcu_node structure's ->lock held and interrupts disabled.
2580 * This function therefore goes up the tree of rcu_node structures,
2581 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2582 * the leaf rcu_node structure's ->qsmaskinit field has already been
2583 * updated
2584 *
2585 * This function does check that the specified rcu_node structure has
2586 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2587 * prematurely.  That said, invoking it after the fact will cost you
2588 * a needless lock acquisition.  So once it has done its work, don't
2589 * invoke it again.
2590 */
2591static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2592{
2593	long mask;
2594	struct rcu_node *rnp = rnp_leaf;
2595
2596	raw_lockdep_assert_held_rcu_node(rnp);
2597	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2598	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
2599		return;
2600	for (;;) {
2601		mask = rnp->grpmask;
2602		rnp = rnp->parent;
2603		if (!rnp)
2604			break;
2605		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2606		rnp->qsmaskinit &= ~mask;
2607		rnp->qsmask &= ~mask;
2608		if (rnp->qsmaskinit) {
2609			raw_spin_unlock_rcu_node(rnp);
2610			/* irqs remain disabled. */
2611			return;
2612		}
2613		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2614	}
2615}
2616
2617/*
2618 * The CPU has been completely removed, and some other CPU is reporting
2619 * this fact from process context.  Do the remainder of the cleanup.
2620 * There can only be one CPU hotplug operation at a time, so no need for
2621 * explicit locking.
2622 */
2623static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2624{
2625	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2626	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2627
2628	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2629		return;
2630
2631	/* Adjust any no-longer-needed kthreads. */
2632	rcu_boost_kthread_setaffinity(rnp, -1);
2633}
2634
2635/*
2636 * Invoke any RCU callbacks that have made it to the end of their grace
2637 * period.  Thottle as specified by rdp->blimit.
2638 */
2639static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2640{
 
 
 
 
2641	unsigned long flags;
 
 
 
 
2642	struct rcu_head *rhp;
2643	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2644	long bl, count;
2645
2646	/* If no callbacks are ready, just return. */
2647	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2648		trace_rcu_batch_start(rsp->name,
2649				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2650				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2651		trace_rcu_batch_end(rsp->name, 0,
2652				    !rcu_segcblist_empty(&rdp->cblist),
2653				    need_resched(), is_idle_task(current),
2654				    rcu_is_callbacks_kthread());
2655		return;
2656	}
2657
2658	/*
2659	 * Extract the list of ready callbacks, disabling to prevent
2660	 * races with call_rcu() from interrupt handlers.  Leave the
2661	 * callback counts, as rcu_barrier() needs to be conservative.
 
 
 
 
 
 
2662	 */
2663	local_irq_save(flags);
2664	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2665	bl = rdp->blimit;
2666	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 
 
 
 
 
 
 
 
 
 
 
 
 
2667			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2668	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2669	local_irq_restore(flags);
 
 
 
 
2670
2671	/* Invoke callbacks. */
 
2672	rhp = rcu_cblist_dequeue(&rcl);
 
2673	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
 
 
 
2674		debug_rcu_head_unqueue(rhp);
2675		if (__rcu_reclaim(rsp->name, rhp))
2676			rcu_cblist_dequeued_lazy(&rcl);
 
 
 
 
 
 
 
 
 
2677		/*
2678		 * Stop only if limit reached and CPU has something to do.
2679		 * Note: The rcl structure counts down from zero.
2680		 */
2681		if (-rcl.len >= bl &&
2682		    (need_resched() ||
2683		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2684			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2685	}
2686
2687	local_irq_save(flags);
2688	count = -rcl.len;
2689	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2690			    is_idle_task(current), rcu_is_callbacks_kthread());
2691
2692	/* Update counts and requeue any remaining callbacks. */
2693	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2694	smp_mb(); /* List handling before counting for rcu_barrier(). */
2695	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2696
2697	/* Reinstate batch limit if we have worked down the excess. */
2698	count = rcu_segcblist_n_cbs(&rdp->cblist);
2699	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2700		rdp->blimit = blimit;
2701
2702	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2703	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2704		rdp->qlen_last_fqs_check = 0;
2705		rdp->n_force_qs_snap = rsp->n_force_qs;
2706	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2707		rdp->qlen_last_fqs_check = count;
2708
2709	/*
2710	 * The following usually indicates a double call_rcu().  To track
2711	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2712	 */
2713	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
 
 
 
 
 
2714
2715	local_irq_restore(flags);
2716
2717	/* Re-invoke RCU core processing if there are callbacks remaining. */
2718	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2719		invoke_rcu_core();
2720}
2721
2722/*
2723 * Check to see if this CPU is in a non-context-switch quiescent state
2724 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2725 * Also schedule RCU core processing.
2726 *
2727 * This function must be called from hardirq context.  It is normally
2728 * invoked from the scheduling-clock interrupt.
2729 */
2730void rcu_check_callbacks(int user)
2731{
 
 
 
 
 
 
 
2732	trace_rcu_utilization(TPS("Start scheduler-tick"));
2733	increment_cpu_stall_ticks();
2734	if (user || rcu_is_cpu_rrupt_from_idle()) {
2735
2736		/*
2737		 * Get here if this CPU took its interrupt from user
2738		 * mode or from the idle loop, and if this is not a
2739		 * nested interrupt.  In this case, the CPU is in
2740		 * a quiescent state, so note it.
2741		 *
2742		 * No memory barrier is required here because both
2743		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2744		 * variables that other CPUs neither access nor modify,
2745		 * at least not while the corresponding CPU is online.
2746		 */
2747
2748		rcu_sched_qs();
2749		rcu_bh_qs();
2750
2751	} else if (!in_softirq()) {
2752
2753		/*
2754		 * Get here if this CPU did not take its interrupt from
2755		 * softirq, in other words, if it is not interrupting
2756		 * a rcu_bh read-side critical section.  This is an _bh
2757		 * critical section, so note it.
2758		 */
2759
2760		rcu_bh_qs();
2761	}
2762	rcu_preempt_check_callbacks();
2763	if (rcu_pending())
2764		invoke_rcu_core();
2765	if (user)
2766		rcu_note_voluntary_context_switch(current);
 
 
2767	trace_rcu_utilization(TPS("End scheduler-tick"));
2768}
2769
2770/*
2771 * Scan the leaf rcu_node structures, processing dyntick state for any that
2772 * have not yet encountered a quiescent state, using the function specified.
2773 * Also initiate boosting for any threads blocked on the root rcu_node.
2774 *
2775 * The caller must have suppressed start of new grace periods.
2776 */
2777static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2778{
2779	int cpu;
2780	unsigned long flags;
2781	unsigned long mask;
2782	struct rcu_node *rnp;
2783
2784	rcu_for_each_leaf_node(rsp, rnp) {
2785		cond_resched_rcu_qs();
2786		mask = 0;
 
 
 
 
2787		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
2788		if (rnp->qsmask == 0) {
2789			if (rcu_state_p == &rcu_sched_state ||
2790			    rsp != rcu_state_p ||
2791			    rcu_preempt_blocked_readers_cgp(rnp)) {
2792				/*
2793				 * No point in scanning bits because they
2794				 * are all zero.  But we might need to
2795				 * priority-boost blocked readers.
2796				 */
2797				rcu_initiate_boost(rnp, flags);
2798				/* rcu_initiate_boost() releases rnp->lock */
2799				continue;
2800			}
2801			if (rnp->parent &&
2802			    (rnp->parent->qsmask & rnp->grpmask)) {
2803				/*
2804				 * Race between grace-period
2805				 * initialization and task exiting RCU
2806				 * read-side critical section: Report.
2807				 */
2808				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2809				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2810				continue;
2811			}
2812		}
2813		for_each_leaf_node_possible_cpu(rnp, cpu) {
2814			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2815			if ((rnp->qsmask & bit) != 0) {
2816				if (f(per_cpu_ptr(rsp->rda, cpu)))
2817					mask |= bit;
 
 
 
 
2818			}
 
 
2819		}
2820		if (mask != 0) {
2821			/* Idle/offline CPUs, report (releases rnp->lock. */
2822			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2823		} else {
2824			/* Nothing to do here, so just drop the lock. */
2825			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2826		}
 
 
 
2827	}
2828}
2829
2830/*
2831 * Force quiescent states on reluctant CPUs, and also detect which
2832 * CPUs are in dyntick-idle mode.
2833 */
2834static void force_quiescent_state(struct rcu_state *rsp)
2835{
2836	unsigned long flags;
2837	bool ret;
2838	struct rcu_node *rnp;
2839	struct rcu_node *rnp_old = NULL;
2840
 
 
2841	/* Funnel through hierarchy to reduce memory contention. */
2842	rnp = __this_cpu_read(rsp->rda->mynode);
2843	for (; rnp != NULL; rnp = rnp->parent) {
2844		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2845		      !raw_spin_trylock(&rnp->fqslock);
2846		if (rnp_old != NULL)
2847			raw_spin_unlock(&rnp_old->fqslock);
2848		if (ret)
2849			return;
2850		rnp_old = rnp;
2851	}
2852	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2853
2854	/* Reached the root of the rcu_node tree, acquire lock. */
2855	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2856	raw_spin_unlock(&rnp_old->fqslock);
2857	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2858		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2859		return;  /* Someone beat us to it. */
2860	}
2861	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
 
2862	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2863	rcu_gp_kthread_wake(rsp);
 
 
 
 
 
 
 
 
 
2864}
2865
2866/*
2867 * This does the RCU core processing work for the specified rcu_state
2868 * and rcu_data structures.  This may be called only from the CPU to
2869 * whom the rdp belongs.
2870 */
2871static void
2872__rcu_process_callbacks(struct rcu_state *rsp)
2873{
2874	unsigned long flags;
2875	bool needwake;
2876	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877
 
 
 
2878	WARN_ON_ONCE(!rdp->beenonline);
2879
 
 
 
 
 
 
 
 
2880	/* Update RCU state based on any recent quiescent states. */
2881	rcu_check_quiescent_state(rsp, rdp);
2882
2883	/* Does this CPU require a not-yet-started grace period? */
2884	local_irq_save(flags);
2885	if (cpu_needs_another_gp(rsp, rdp)) {
2886		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2887		needwake = rcu_start_gp(rsp);
2888		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2889		if (needwake)
2890			rcu_gp_kthread_wake(rsp);
2891	} else {
2892		local_irq_restore(flags);
2893	}
2894
 
 
2895	/* If there are callbacks ready, invoke them. */
2896	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2897		invoke_rcu_callbacks(rsp, rdp);
 
 
 
 
 
2898
2899	/* Do any needed deferred wakeups of rcuo kthreads. */
2900	do_nocb_deferred_wakeup(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2901}
2902
2903/*
2904 * Do RCU core processing for the current CPU.
2905 */
2906static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
2907{
2908	struct rcu_state *rsp;
 
 
 
 
 
 
2909
2910	if (cpu_is_offline(smp_processor_id()))
2911		return;
2912	trace_rcu_utilization(TPS("Start RCU core"));
2913	for_each_rcu_flavor(rsp)
2914		__rcu_process_callbacks(rsp);
2915	trace_rcu_utilization(TPS("End RCU core"));
 
 
2916}
2917
2918/*
2919 * Schedule RCU callback invocation.  If the specified type of RCU
2920 * does not support RCU priority boosting, just do a direct call,
2921 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2922 * are running on the current CPU with softirqs disabled, the
2923 * rcu_cpu_kthread_task cannot disappear out from under us.
2924 */
2925static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2926{
2927	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2928		return;
2929	if (likely(!rsp->boost)) {
2930		rcu_do_batch(rsp, rdp);
2931		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2932	}
2933	invoke_rcu_callbacks_kthread();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2934}
2935
2936static void invoke_rcu_core(void)
2937{
2938	if (cpu_online(smp_processor_id()))
2939		raise_softirq(RCU_SOFTIRQ);
 
 
 
 
 
 
 
2940}
2941
2942/*
2943 * Handle any core-RCU processing required by a call_rcu() invocation.
2944 */
2945static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2946			    struct rcu_head *head, unsigned long flags)
2947{
2948	bool needwake;
2949
2950	/*
2951	 * If called from an extended quiescent state, invoke the RCU
2952	 * core in order to force a re-evaluation of RCU's idleness.
2953	 */
2954	if (!rcu_is_watching())
2955		invoke_rcu_core();
2956
2957	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2958	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2959		return;
2960
2961	/*
2962	 * Force the grace period if too many callbacks or too long waiting.
2963	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2964	 * if some other CPU has recently done so.  Also, don't bother
2965	 * invoking force_quiescent_state() if the newly enqueued callback
2966	 * is the only one waiting for a grace period to complete.
2967	 */
2968	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2969		     rdp->qlen_last_fqs_check + qhimark)) {
2970
2971		/* Are we ignoring a completed grace period? */
2972		note_gp_changes(rsp, rdp);
2973
2974		/* Start a new grace period if one not already started. */
2975		if (!rcu_gp_in_progress(rsp)) {
2976			struct rcu_node *rnp_root = rcu_get_root(rsp);
2977
2978			raw_spin_lock_rcu_node(rnp_root);
2979			needwake = rcu_start_gp(rsp);
2980			raw_spin_unlock_rcu_node(rnp_root);
2981			if (needwake)
2982				rcu_gp_kthread_wake(rsp);
2983		} else {
2984			/* Give the grace period a kick. */
2985			rdp->blimit = LONG_MAX;
2986			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2987			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2988				force_quiescent_state(rsp);
2989			rdp->n_force_qs_snap = rsp->n_force_qs;
2990			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2991		}
2992	}
2993}
2994
2995/*
2996 * RCU callback function to leak a callback.
2997 */
2998static void rcu_leak_callback(struct rcu_head *rhp)
2999{
3000}
3001
3002/*
3003 * Helper function for call_rcu() and friends.  The cpu argument will
3004 * normally be -1, indicating "currently running CPU".  It may specify
3005 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3006 * is expected to specify a CPU.
3007 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3008static void
3009__call_rcu(struct rcu_head *head, rcu_callback_t func,
3010	   struct rcu_state *rsp, int cpu, bool lazy)
3011{
 
3012	unsigned long flags;
 
3013	struct rcu_data *rdp;
3014
3015	/* Misaligned rcu_head! */
3016	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3017
3018	if (debug_rcu_head_queue(head)) {
3019		/*
3020		 * Probable double call_rcu(), so leak the callback.
3021		 * Use rcu:rcu_callback trace event to find the previous
3022		 * time callback was passed to __call_rcu().
3023		 */
3024		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3025			  head, head->func);
 
 
3026		WRITE_ONCE(head->func, rcu_leak_callback);
3027		return;
3028	}
3029	head->func = func;
3030	head->next = NULL;
 
3031	local_irq_save(flags);
3032	rdp = this_cpu_ptr(rsp->rda);
 
3033
3034	/* Add the callback to our list. */
3035	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3036		int offline;
3037
3038		if (cpu != -1)
3039			rdp = per_cpu_ptr(rsp->rda, cpu);
3040		if (likely(rdp->mynode)) {
3041			/* Post-boot, so this should be for a no-CBs CPU. */
3042			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3043			WARN_ON_ONCE(offline);
3044			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3045			local_irq_restore(flags);
3046			return;
3047		}
3048		/*
3049		 * Very early boot, before rcu_init().  Initialize if needed
3050		 * and then drop through to queue the callback.
3051		 */
3052		BUG_ON(cpu != -1);
3053		WARN_ON_ONCE(!rcu_is_watching());
 
 
3054		if (rcu_segcblist_empty(&rdp->cblist))
3055			rcu_segcblist_init(&rdp->cblist);
3056	}
3057	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3058	if (!lazy)
3059		rcu_idle_count_callbacks_posted();
3060
3061	if (__is_kfree_rcu_offset((unsigned long)func))
3062		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3063					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3064					 rcu_segcblist_n_cbs(&rdp->cblist));
3065	else
3066		trace_rcu_callback(rsp->name, head,
3067				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3068				   rcu_segcblist_n_cbs(&rdp->cblist));
3069
3070	/* Go handle any RCU core processing required. */
3071	__call_rcu_core(rsp, rdp, head, flags);
3072	local_irq_restore(flags);
3073}
3074
 
 
 
 
3075/**
3076 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 
 
 
3077 * @head: structure to be used for queueing the RCU updates.
3078 * @func: actual callback function to be invoked after the grace period
3079 *
3080 * The callback function will be invoked some time after a full grace
3081 * period elapses, in other words after all currently executing RCU
3082 * read-side critical sections have completed. call_rcu_sched() assumes
3083 * that the read-side critical sections end on enabling of preemption
3084 * or on voluntary preemption.
3085 * RCU read-side critical sections are delimited by:
3086 *
3087 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3088 * - anything that disables preemption.
3089 *
3090 *  These may be nested.
3091 *
3092 * See the description of call_rcu() for more detailed information on
3093 * memory ordering guarantees.
 
 
 
 
 
3094 */
3095void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3096{
3097	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3098}
3099EXPORT_SYMBOL_GPL(call_rcu_sched);
 
 
 
3100
3101/**
3102 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 
 
 
 
3103 * @head: structure to be used for queueing the RCU updates.
3104 * @func: actual callback function to be invoked after the grace period
3105 *
3106 * The callback function will be invoked some time after a full grace
3107 * period elapses, in other words after all currently executing RCU
3108 * read-side critical sections have completed. call_rcu_bh() assumes
3109 * that the read-side critical sections end on completion of a softirq
3110 * handler. This means that read-side critical sections in process
3111 * context must not be interrupted by softirqs. This interface is to be
3112 * used when most of the read-side critical sections are in softirq context.
3113 * RCU read-side critical sections are delimited by:
3114 *
3115 * - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context, OR
3116 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3117 *
3118 * These may be nested.
3119 *
3120 * See the description of call_rcu() for more detailed information on
3121 * memory ordering guarantees.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3122 */
3123void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3124{
3125	__call_rcu(head, func, &rcu_bh_state, -1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3126}
3127EXPORT_SYMBOL_GPL(call_rcu_bh);
3128
3129/*
3130 * Queue an RCU callback for lazy invocation after a grace period.
3131 * This will likely be later named something like "call_rcu_lazy()",
3132 * but this change will require some way of tagging the lazy RCU
3133 * callbacks in the list of pending callbacks. Until then, this
3134 * function may only be called from __kfree_rcu().
3135 */
3136void kfree_call_rcu(struct rcu_head *head,
3137		    rcu_callback_t func)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3138{
3139	__call_rcu(head, func, rcu_state_p, -1, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3140}
3141EXPORT_SYMBOL_GPL(kfree_call_rcu);
3142
3143/*
3144 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3145 * any blocking grace-period wait automatically implies a grace period
3146 * if there is only one CPU online at any point time during execution
3147 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3148 * occasionally incorrectly indicate that there are multiple CPUs online
3149 * when there was in fact only one the whole time, as this just adds
3150 * some overhead: RCU still operates correctly.
 
 
 
3151 */
3152static inline int rcu_blocking_is_gp(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3153{
3154	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155
3156	might_sleep();  /* Check for RCU read-side critical section. */
3157	preempt_disable();
3158	ret = num_online_cpus() <= 1;
3159	preempt_enable();
3160	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
3161}
3162
3163/**
3164 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3165 *
3166 * Control will return to the caller some time after a full rcu-sched
3167 * grace period has elapsed, in other words after all currently executing
3168 * rcu-sched read-side critical sections have completed.   These read-side
3169 * critical sections are delimited by rcu_read_lock_sched() and
3170 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3171 * local_irq_disable(), and so on may be used in place of
3172 * rcu_read_lock_sched().
3173 *
3174 * This means that all preempt_disable code sequences, including NMI and
3175 * non-threaded hardware-interrupt handlers, in progress on entry will
3176 * have completed before this primitive returns.  However, this does not
3177 * guarantee that softirq handlers will have completed, since in some
3178 * kernels, these handlers can run in process context, and can block.
3179 *
3180 * Note that this guarantee implies further memory-ordering guarantees.
3181 * On systems with more than one CPU, when synchronize_sched() returns,
3182 * each CPU is guaranteed to have executed a full memory barrier since the
3183 * end of its last RCU-sched read-side critical section whose beginning
3184 * preceded the call to synchronize_sched().  In addition, each CPU having
3185 * an RCU read-side critical section that extends beyond the return from
3186 * synchronize_sched() is guaranteed to have executed a full memory barrier
3187 * after the beginning of synchronize_sched() and before the beginning of
3188 * that RCU read-side critical section.  Note that these guarantees include
3189 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3190 * that are executing in the kernel.
3191 *
3192 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3193 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3194 * to have executed a full memory barrier during the execution of
3195 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3196 * again only if the system has more than one CPU).
 
 
 
3197 */
3198void synchronize_sched(void)
3199{
 
 
 
3200	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3201			 lock_is_held(&rcu_lock_map) ||
3202			 lock_is_held(&rcu_sched_lock_map),
3203			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3204	if (rcu_blocking_is_gp())
 
 
 
 
3205		return;
3206	if (rcu_gp_is_expedited())
3207		synchronize_sched_expedited();
3208	else
3209		wait_rcu_gp(call_rcu_sched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3210}
3211EXPORT_SYMBOL_GPL(synchronize_sched);
3212
3213/**
3214 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
3215 *
3216 * Control will return to the caller some time after a full rcu_bh grace
3217 * period has elapsed, in other words after all currently executing rcu_bh
3218 * read-side critical sections have completed.  RCU read-side critical
3219 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3220 * and may be nested.
3221 *
3222 * See the description of synchronize_sched() for more detailed information
3223 * on memory ordering guarantees.
 
3224 */
3225void synchronize_rcu_bh(void)
3226{
3227	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3228			 lock_is_held(&rcu_lock_map) ||
3229			 lock_is_held(&rcu_sched_lock_map),
3230			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3231	if (rcu_blocking_is_gp())
3232		return;
3233	if (rcu_gp_is_expedited())
3234		synchronize_rcu_bh_expedited();
3235	else
3236		wait_rcu_gp(call_rcu_bh);
3237}
3238EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3239
3240/**
3241 * get_state_synchronize_rcu - Snapshot current RCU state
3242 *
3243 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3244 * to determine whether or not a full grace period has elapsed in the
3245 * meantime.
3246 */
3247unsigned long get_state_synchronize_rcu(void)
3248{
3249	/*
3250	 * Any prior manipulation of RCU-protected data must happen
3251	 * before the load from ->gpnum.
3252	 */
3253	smp_mb();  /* ^^^ */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3254
3255	/*
3256	 * Make sure this load happens before the purportedly
3257	 * time-consuming work between get_state_synchronize_rcu()
3258	 * and cond_synchronize_rcu().
3259	 */
3260	return smp_load_acquire(&rcu_state_p->gpnum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3261}
3262EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3263
3264/**
3265 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3266 *
3267 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3268 *
3269 * If a full RCU grace period has elapsed since the earlier call to
3270 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3271 * synchronize_rcu() to wait for a full grace period.
3272 *
3273 * Yes, this function does not take counter wrap into account.  But
3274 * counter wrap is harmless.  If the counter wraps, we have waited for
3275 * more than 2 billion grace periods (and way more on a 64-bit system!),
3276 * so waiting for one additional grace period should be just fine.
3277 */
3278void cond_synchronize_rcu(unsigned long oldstate)
3279{
3280	unsigned long newstate;
3281
3282	/*
3283	 * Ensure that this load happens before any RCU-destructive
3284	 * actions the caller might carry out after we return.
3285	 */
3286	newstate = smp_load_acquire(&rcu_state_p->completed);
3287	if (ULONG_CMP_GE(oldstate, newstate))
3288		synchronize_rcu();
3289}
3290EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3291
3292/**
3293 * get_state_synchronize_sched - Snapshot current RCU-sched state
 
3294 *
3295 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3296 * to determine whether or not a full grace period has elapsed in the
3297 * meantime.
 
 
 
 
 
 
3298 */
3299unsigned long get_state_synchronize_sched(void)
3300{
3301	/*
3302	 * Any prior manipulation of RCU-protected data must happen
3303	 * before the load from ->gpnum.
3304	 */
3305	smp_mb();  /* ^^^ */
3306
3307	/*
3308	 * Make sure this load happens before the purportedly
3309	 * time-consuming work between get_state_synchronize_sched()
3310	 * and cond_synchronize_sched().
3311	 */
3312	return smp_load_acquire(&rcu_sched_state.gpnum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3313}
3314EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3315
3316/**
3317 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 
3318 *
3319 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320 *
3321 * If a full RCU-sched grace period has elapsed since the earlier call to
3322 * get_state_synchronize_sched(), just return.  Otherwise, invoke
3323 * synchronize_sched() to wait for a full grace period.
3324 *
3325 * Yes, this function does not take counter wrap into account.  But
3326 * counter wrap is harmless.  If the counter wraps, we have waited for
3327 * more than 2 billion grace periods (and way more on a 64-bit system!),
3328 * so waiting for one additional grace period should be just fine.
 
 
 
 
 
3329 */
3330void cond_synchronize_sched(unsigned long oldstate)
3331{
3332	unsigned long newstate;
 
 
 
3333
3334	/*
3335	 * Ensure that this load happens before any RCU-destructive
3336	 * actions the caller might carry out after we return.
3337	 */
3338	newstate = smp_load_acquire(&rcu_sched_state.completed);
3339	if (ULONG_CMP_GE(oldstate, newstate))
3340		synchronize_sched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3341}
3342EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3343
3344/*
3345 * Check to see if there is any immediate RCU-related work to be done
3346 * by the current CPU, for the specified type of RCU, returning 1 if so.
3347 * The checks are in order of increasing expense: checks that can be
3348 * carried out against CPU-local state are performed first.  However,
3349 * we must check for CPU stalls first, else we might not get a chance.
3350 */
3351static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3352{
 
 
3353	struct rcu_node *rnp = rdp->mynode;
3354
 
 
3355	/* Check for CPU stalls, if enabled. */
3356	check_cpu_stall(rsp, rdp);
3357
3358	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3359	if (rcu_nohz_full_cpu(rsp))
 
 
 
 
3360		return 0;
3361
3362	/* Is the RCU core waiting for a quiescent state from this CPU? */
3363	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
 
3364		return 1;
3365
3366	/* Does this CPU have callbacks ready to invoke? */
3367	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 
3368		return 1;
3369
3370	/* Has RCU gone idle with this CPU needing another grace period? */
3371	if (cpu_needs_another_gp(rsp, rdp))
 
 
3372		return 1;
3373
3374	/* Has another RCU grace period completed?  */
3375	if (READ_ONCE(rnp->completed) != rdp->completed) /* outside lock */
3376		return 1;
3377
3378	/* Has a new RCU grace period started? */
3379	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3380	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3381		return 1;
3382
3383	/* Does this CPU need a deferred NOCB wakeup? */
3384	if (rcu_nocb_need_deferred_wakeup(rdp))
3385		return 1;
3386
3387	/* nothing to do */
3388	return 0;
3389}
3390
3391/*
3392 * Check to see if there is any immediate RCU-related work to be done
3393 * by the current CPU, returning 1 if so.  This function is part of the
3394 * RCU implementation; it is -not- an exported member of the RCU API.
3395 */
3396static int rcu_pending(void)
3397{
3398	struct rcu_state *rsp;
3399
3400	for_each_rcu_flavor(rsp)
3401		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3402			return 1;
3403	return 0;
3404}
3405
3406/*
3407 * Return true if the specified CPU has any callback.  If all_lazy is
3408 * non-NULL, store an indication of whether all callbacks are lazy.
3409 * (If there are no callbacks, all of them are deemed to be lazy.)
 
 
 
 
 
3410 */
3411static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3412{
3413	bool al = true;
3414	bool hc = false;
3415	struct rcu_data *rdp;
3416	struct rcu_state *rsp;
3417
3418	for_each_rcu_flavor(rsp) {
3419		rdp = this_cpu_ptr(rsp->rda);
3420		if (rcu_segcblist_empty(&rdp->cblist))
3421			continue;
3422		hc = true;
3423		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3424			al = false;
3425			break;
3426		}
3427	}
3428	if (all_lazy)
3429		*all_lazy = al;
3430	return hc;
3431}
3432
3433/*
3434 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3435 * the compiler is expected to optimize this away.
3436 */
3437static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3438			       int cpu, unsigned long done)
3439{
3440	trace_rcu_barrier(rsp->name, s, cpu,
3441			  atomic_read(&rsp->barrier_cpu_count), done);
3442}
 
3443
3444/*
3445 * RCU callback function for _rcu_barrier().  If we are last, wake
3446 * up the task executing _rcu_barrier().
3447 */
3448static void rcu_barrier_callback(struct rcu_head *rhp)
3449{
3450	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3451	struct rcu_state *rsp = rdp->rsp;
3452
3453	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3454		_rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3455				   rsp->barrier_sequence);
3456		complete(&rsp->barrier_completion);
 
 
 
 
3457	} else {
3458		_rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
 
3459	}
 
 
 
 
3460}
3461
3462/*
3463 * Called with preemption disabled, and from cross-cpu IRQ context.
3464 */
3465static void rcu_barrier_func(void *type)
3466{
3467	struct rcu_state *rsp = type;
3468	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3469
3470	_rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3471	rdp->barrier_head.func = rcu_barrier_callback;
3472	debug_rcu_head_queue(&rdp->barrier_head);
3473	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3474		atomic_inc(&rsp->barrier_cpu_count);
3475	} else {
3476		debug_rcu_head_unqueue(&rdp->barrier_head);
3477		_rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3478				   rsp->barrier_sequence);
3479	}
3480}
3481
3482/*
3483 * Orchestrate the specified type of RCU barrier, waiting for all
3484 * RCU callbacks of the specified type to complete.
 
 
 
 
3485 */
3486static void _rcu_barrier(struct rcu_state *rsp)
3487{
3488	int cpu;
 
 
3489	struct rcu_data *rdp;
3490	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3491
3492	_rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3493
3494	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3495	mutex_lock(&rsp->barrier_mutex);
3496
3497	/* Did someone else do our work for us? */
3498	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3499		_rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3500				   rsp->barrier_sequence);
3501		smp_mb(); /* caller's subsequent code after above check. */
3502		mutex_unlock(&rsp->barrier_mutex);
3503		return;
3504	}
3505
3506	/* Mark the start of the barrier operation. */
3507	rcu_seq_start(&rsp->barrier_sequence);
3508	_rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
 
 
3509
3510	/*
3511	 * Initialize the count to one rather than to zero in order to
3512	 * avoid a too-soon return to zero in case of a short grace period
3513	 * (or preemption of this task).  Exclude CPU-hotplug operations
3514	 * to ensure that no offline CPU has callbacks queued.
3515	 */
3516	init_completion(&rsp->barrier_completion);
3517	atomic_set(&rsp->barrier_cpu_count, 1);
3518	get_online_cpus();
 
3519
3520	/*
3521	 * Force each CPU with callbacks to register a new callback.
3522	 * When that callback is invoked, we will know that all of the
3523	 * corresponding CPU's preceding callbacks have been invoked.
3524	 */
3525	for_each_possible_cpu(cpu) {
3526		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
 
 
 
 
 
 
 
 
3527			continue;
3528		rdp = per_cpu_ptr(rsp->rda, cpu);
3529		if (rcu_is_nocb_cpu(cpu)) {
3530			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3531				_rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3532						   rsp->barrier_sequence);
3533			} else {
3534				_rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3535						   rsp->barrier_sequence);
3536				smp_mb__before_atomic();
3537				atomic_inc(&rsp->barrier_cpu_count);
3538				__call_rcu(&rdp->barrier_head,
3539					   rcu_barrier_callback, rsp, cpu, 0);
3540			}
3541		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3542			_rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3543					   rsp->barrier_sequence);
3544			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3545		} else {
3546			_rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3547					   rsp->barrier_sequence);
3548		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3549	}
3550	put_online_cpus();
3551
3552	/*
3553	 * Now that we have an rcu_barrier_callback() callback on each
3554	 * CPU, and thus each counted, remove the initial count.
3555	 */
3556	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3557		complete(&rsp->barrier_completion);
3558
3559	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3560	wait_for_completion(&rsp->barrier_completion);
3561
3562	/* Mark the end of the barrier operation. */
3563	_rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3564	rcu_seq_end(&rsp->barrier_sequence);
 
 
 
 
 
 
3565
3566	/* Other rcu_barrier() invocations can now safely proceed. */
3567	mutex_unlock(&rsp->barrier_mutex);
3568}
 
 
 
3569
3570/**
3571 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3572 */
3573void rcu_barrier_bh(void)
3574{
3575	_rcu_barrier(&rcu_bh_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3576}
3577EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3578
3579/**
3580 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3581 */
3582void rcu_barrier_sched(void)
3583{
3584	_rcu_barrier(&rcu_sched_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3585}
3586EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3587
3588/*
3589 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3590 * first CPU in a given leaf rcu_node structure coming online.  The caller
3591 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3592 * disabled.
3593 */
3594static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3595{
3596	long mask;
 
3597	struct rcu_node *rnp = rnp_leaf;
3598
3599	raw_lockdep_assert_held_rcu_node(rnp);
 
3600	for (;;) {
3601		mask = rnp->grpmask;
3602		rnp = rnp->parent;
3603		if (rnp == NULL)
3604			return;
3605		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
 
3606		rnp->qsmaskinit |= mask;
3607		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
 
 
3608	}
3609}
3610
3611/*
3612 * Do boot-time initialization of a CPU's per-CPU RCU data.
3613 */
3614static void __init
3615rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3616{
3617	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 
3618
3619	/* Set up local state, ensuring consistent view of global state. */
3620	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3621	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3622	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
3623	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
 
 
 
 
 
 
3624	rdp->cpu = cpu;
3625	rdp->rsp = rsp;
3626	rcu_boot_init_nocb_percpu_data(rdp);
3627}
3628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3629/*
3630 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3631 * offline event can be happening at a given time.  Note also that we
3632 * can accept some slop in the rsp->completed access due to the fact
3633 * that this CPU cannot possibly have any RCU callbacks in flight yet.
 
 
 
 
3634 */
3635static void
3636rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3637{
3638	unsigned long flags;
3639	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3640	struct rcu_node *rnp = rcu_get_root(rsp);
 
3641
3642	/* Set up local state, ensuring consistent view of global state. */
3643	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3644	rdp->qlen_last_fqs_check = 0;
3645	rdp->n_force_qs_snap = rsp->n_force_qs;
3646	rdp->blimit = blimit;
3647	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3648	    !init_nocb_callback_list(rdp))
 
 
 
 
 
 
3649		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3650	rdp->dynticks->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3651	rcu_dynticks_eqs_online();
3652	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3653
3654	/*
3655	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3656	 * propagation up the rcu_node tree will happen at the beginning
3657	 * of the next grace period.
3658	 */
3659	rnp = rdp->mynode;
3660	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3661	rdp->beenonline = true;	 /* We have now been online. */
3662	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3663	rdp->completed = rnp->completed;
3664	rdp->cpu_no_qs.b.norm = true;
3665	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3666	rdp->core_needs_qs = false;
3667	rdp->rcu_iw_pending = false;
3668	rdp->rcu_iw_gpnum = rnp->gpnum - 1;
3669	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
 
3670	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
 
 
 
3671}
3672
3673/*
3674 * Invoked early in the CPU-online process, when pretty much all
3675 * services are available.  The incoming CPU is not present.
 
 
 
 
 
 
 
 
 
3676 */
3677int rcutree_prepare_cpu(unsigned int cpu)
3678{
3679	struct rcu_state *rsp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3680
3681	for_each_rcu_flavor(rsp)
3682		rcu_init_percpu_data(cpu, rsp);
3683
3684	rcu_prepare_kthreads(cpu);
3685	rcu_spawn_all_nocb_kthreads(cpu);
3686
3687	return 0;
3688}
3689
3690/*
3691 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3692 */
3693static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3694{
3695	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3696
3697	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3698}
3699
3700/*
3701 * Near the end of the CPU-online process.  Pretty much all services
3702 * enabled, and the CPU is now very much alive.
3703 */
3704int rcutree_online_cpu(unsigned int cpu)
3705{
3706	unsigned long flags;
3707	struct rcu_data *rdp;
3708	struct rcu_node *rnp;
3709	struct rcu_state *rsp;
3710
3711	for_each_rcu_flavor(rsp) {
3712		rdp = per_cpu_ptr(rsp->rda, cpu);
3713		rnp = rdp->mynode;
3714		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3715		rnp->ffmask |= rdp->grpmask;
3716		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3717	}
3718	if (IS_ENABLED(CONFIG_TREE_SRCU))
3719		srcu_online_cpu(cpu);
3720	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3721		return 0; /* Too early in boot for scheduler work. */
3722	sync_sched_exp_online_cleanup(cpu);
3723	rcutree_affinity_setting(cpu, -1);
3724	return 0;
3725}
3726
3727/*
3728 * Near the beginning of the process.  The CPU is still very much alive
3729 * with pretty much all services enabled.
3730 */
3731int rcutree_offline_cpu(unsigned int cpu)
3732{
3733	unsigned long flags;
3734	struct rcu_data *rdp;
3735	struct rcu_node *rnp;
3736	struct rcu_state *rsp;
3737
3738	for_each_rcu_flavor(rsp) {
3739		rdp = per_cpu_ptr(rsp->rda, cpu);
3740		rnp = rdp->mynode;
3741		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3742		rnp->ffmask &= ~rdp->grpmask;
3743		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3744	}
3745
3746	rcutree_affinity_setting(cpu, cpu);
3747	if (IS_ENABLED(CONFIG_TREE_SRCU))
3748		srcu_offline_cpu(cpu);
3749	return 0;
3750}
3751
3752/*
3753 * Near the end of the offline process.  We do only tracing here.
3754 */
3755int rcutree_dying_cpu(unsigned int cpu)
3756{
3757	struct rcu_state *rsp;
3758
3759	for_each_rcu_flavor(rsp)
3760		rcu_cleanup_dying_cpu(rsp);
3761	return 0;
3762}
3763
3764/*
3765 * The outgoing CPU is gone and we are running elsewhere.
3766 */
3767int rcutree_dead_cpu(unsigned int cpu)
3768{
3769	struct rcu_state *rsp;
3770
3771	for_each_rcu_flavor(rsp) {
3772		rcu_cleanup_dead_cpu(cpu, rsp);
3773		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3774	}
3775	return 0;
3776}
3777
3778/*
3779 * Mark the specified CPU as being online so that subsequent grace periods
3780 * (both expedited and normal) will wait on it.  Note that this means that
3781 * incoming CPUs are not allowed to use RCU read-side critical sections
3782 * until this function is called.  Failing to observe this restriction
3783 * will result in lockdep splats.
3784 *
3785 * Note that this function is special in that it is invoked directly
3786 * from the incoming CPU rather than from the cpuhp_step mechanism.
3787 * This is because this function must be invoked at a precise location.
 
 
 
3788 */
3789void rcu_cpu_starting(unsigned int cpu)
3790{
3791	unsigned long flags;
3792	unsigned long mask;
3793	int nbits;
3794	unsigned long oldmask;
3795	struct rcu_data *rdp;
3796	struct rcu_node *rnp;
3797	struct rcu_state *rsp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3798
3799	for_each_rcu_flavor(rsp) {
3800		rdp = per_cpu_ptr(rsp->rda, cpu);
3801		rnp = rdp->mynode;
3802		mask = rdp->grpmask;
3803		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3804		rnp->qsmaskinitnext |= mask;
3805		oldmask = rnp->expmaskinitnext;
3806		rnp->expmaskinitnext |= mask;
3807		oldmask ^= rnp->expmaskinitnext;
3808		nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3809		/* Allow lockless access for expedited grace periods. */
3810		smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3811		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3812	}
 
 
3813	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3814}
3815
3816#ifdef CONFIG_HOTPLUG_CPU
3817/*
3818 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3819 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3820 * bit masks.
 
 
 
 
 
3821 */
3822static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3823{
3824	unsigned long flags;
3825	unsigned long mask;
3826	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3827	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3828
 
 
 
 
 
 
 
 
 
 
3829	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3830	mask = rdp->grpmask;
 
3831	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3832	rnp->qsmaskinitnext &= ~mask;
 
 
 
 
 
 
 
 
3833	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
3834}
3835
 
3836/*
3837 * The outgoing function has no further need of RCU, so remove it from
3838 * the list of CPUs that RCU must track.
3839 *
3840 * Note that this function is special in that it is invoked directly
3841 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3842 * This is because this function must be invoked at a precise location.
3843 */
3844void rcu_report_dead(unsigned int cpu)
3845{
3846	struct rcu_state *rsp;
3847
3848	/* QS for any half-done expedited RCU-sched GP. */
3849	preempt_disable();
3850	rcu_report_exp_rdp(&rcu_sched_state,
3851			   this_cpu_ptr(rcu_sched_state.rda), true);
3852	preempt_enable();
3853	for_each_rcu_flavor(rsp)
3854		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3855}
3856
3857/* Migrate the dead CPU's callbacks to the current CPU. */
3858static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3859{
3860	unsigned long flags;
3861	struct rcu_data *my_rdp;
3862	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3863	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
 
3864
3865	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
 
3866		return;  /* No callbacks to migrate. */
3867
3868	local_irq_save(flags);
3869	my_rdp = this_cpu_ptr(rsp->rda);
3870	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3871		local_irq_restore(flags);
3872		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3873	}
3874	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3875	rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3876	rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3877	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3878	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3879		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3880	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3881	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3882		  !rcu_segcblist_empty(&rdp->cblist),
3883		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3884		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3885		  rcu_segcblist_first_cb(&rdp->cblist));
3886}
3887
3888/*
3889 * The outgoing CPU has just passed through the dying-idle state,
3890 * and we are being invoked from the CPU that was IPIed to continue the
3891 * offline operation.  We need to migrate the outgoing CPU's callbacks.
 
 
 
 
 
 
 
 
 
 
 
 
 
3892 */
3893void rcutree_migrate_callbacks(int cpu)
3894{
3895	struct rcu_state *rsp;
 
 
3896
3897	for_each_rcu_flavor(rsp)
3898		rcu_migrate_callbacks(cpu, rsp);
 
 
3899}
3900#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3901
3902/*
3903 * On non-huge systems, use expedited RCU grace periods to make suspend
3904 * and hibernation run faster.
3905 */
3906static int rcu_pm_notify(struct notifier_block *self,
3907			 unsigned long action, void *hcpu)
3908{
3909	switch (action) {
3910	case PM_HIBERNATION_PREPARE:
3911	case PM_SUSPEND_PREPARE:
3912		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3913			rcu_expedite_gp();
3914		break;
3915	case PM_POST_HIBERNATION:
3916	case PM_POST_SUSPEND:
3917		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3918			rcu_unexpedite_gp();
3919		break;
3920	default:
3921		break;
3922	}
3923	return NOTIFY_OK;
3924}
3925
3926/*
3927 * Spawn the kthreads that handle each RCU flavor's grace periods.
3928 */
3929static int __init rcu_spawn_gp_kthread(void)
3930{
3931	unsigned long flags;
3932	int kthread_prio_in = kthread_prio;
3933	struct rcu_node *rnp;
3934	struct rcu_state *rsp;
3935	struct sched_param sp;
3936	struct task_struct *t;
3937
3938	/* Force priority into range. */
3939	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3940		kthread_prio = 1;
3941	else if (kthread_prio < 0)
3942		kthread_prio = 0;
3943	else if (kthread_prio > 99)
3944		kthread_prio = 99;
3945	if (kthread_prio != kthread_prio_in)
3946		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3947			 kthread_prio, kthread_prio_in);
3948
3949	rcu_scheduler_fully_active = 1;
3950	for_each_rcu_flavor(rsp) {
3951		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3952		BUG_ON(IS_ERR(t));
3953		rnp = rcu_get_root(rsp);
3954		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3955		rsp->gp_kthread = t;
3956		if (kthread_prio) {
3957			sp.sched_priority = kthread_prio;
3958			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3959		}
3960		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3961		wake_up_process(t);
3962	}
3963	rcu_spawn_nocb_kthreads();
3964	rcu_spawn_boost_kthreads();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3965	return 0;
3966}
3967early_initcall(rcu_spawn_gp_kthread);
3968
3969/*
3970 * This function is invoked towards the end of the scheduler's
3971 * initialization process.  Before this is called, the idle task might
3972 * contain synchronous grace-period primitives (during which time, this idle
3973 * task is booting the system, and such primitives are no-ops).  After this
3974 * function is called, any synchronous grace-period primitives are run as
3975 * expedited, with the requesting task driving the grace period forward.
3976 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3977 * runtime RCU functionality.
3978 */
3979void rcu_scheduler_starting(void)
3980{
 
 
 
3981	WARN_ON(num_online_cpus() != 1);
3982	WARN_ON(nr_context_switches() > 0);
3983	rcu_test_sync_prims();
 
 
 
 
 
 
 
 
3984	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3985	rcu_test_sync_prims();
3986}
3987
3988/*
3989 * Helper function for rcu_init() that initializes one rcu_state structure.
3990 */
3991static void __init rcu_init_one(struct rcu_state *rsp)
3992{
3993	static const char * const buf[] = RCU_NODE_NAME_INIT;
3994	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3995	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3996	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3997
3998	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3999	int cpustride = 1;
4000	int i;
4001	int j;
4002	struct rcu_node *rnp;
4003
4004	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4005
4006	/* Silence gcc 4.8 false positive about array index out of range. */
4007	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4008		panic("rcu_init_one: rcu_num_lvls out of range");
4009
4010	/* Initialize the level-tracking arrays. */
4011
4012	for (i = 1; i < rcu_num_lvls; i++)
4013		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
 
4014	rcu_init_levelspread(levelspread, num_rcu_lvl);
4015
4016	/* Initialize the elements themselves, starting from the leaves. */
4017
4018	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4019		cpustride *= levelspread[i];
4020		rnp = rsp->level[i];
4021		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4022			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4023			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4024						   &rcu_node_class[i], buf[i]);
4025			raw_spin_lock_init(&rnp->fqslock);
4026			lockdep_set_class_and_name(&rnp->fqslock,
4027						   &rcu_fqs_class[i], fqs[i]);
4028			rnp->gpnum = rsp->gpnum;
4029			rnp->completed = rsp->completed;
 
4030			rnp->qsmask = 0;
4031			rnp->qsmaskinit = 0;
4032			rnp->grplo = j * cpustride;
4033			rnp->grphi = (j + 1) * cpustride - 1;
4034			if (rnp->grphi >= nr_cpu_ids)
4035				rnp->grphi = nr_cpu_ids - 1;
4036			if (i == 0) {
4037				rnp->grpnum = 0;
4038				rnp->grpmask = 0;
4039				rnp->parent = NULL;
4040			} else {
4041				rnp->grpnum = j % levelspread[i - 1];
4042				rnp->grpmask = 1UL << rnp->grpnum;
4043				rnp->parent = rsp->level[i - 1] +
4044					      j / levelspread[i - 1];
4045			}
4046			rnp->level = i;
4047			INIT_LIST_HEAD(&rnp->blkd_tasks);
4048			rcu_init_one_nocb(rnp);
4049			init_waitqueue_head(&rnp->exp_wq[0]);
4050			init_waitqueue_head(&rnp->exp_wq[1]);
4051			init_waitqueue_head(&rnp->exp_wq[2]);
4052			init_waitqueue_head(&rnp->exp_wq[3]);
4053			spin_lock_init(&rnp->exp_lock);
 
 
 
 
4054		}
4055	}
4056
4057	init_swait_queue_head(&rsp->gp_wq);
4058	init_swait_queue_head(&rsp->expedited_wq);
4059	rnp = rsp->level[rcu_num_lvls - 1];
4060	for_each_possible_cpu(i) {
4061		while (i > rnp->grphi)
4062			rnp++;
4063		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4064		rcu_boot_init_percpu_data(i, rsp);
4065	}
4066	list_add(&rsp->flavors, &rcu_struct_flavors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4067}
4068
4069/*
4070 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4071 * replace the definitions in tree.h because those are needed to size
4072 * the ->node array in the rcu_state structure.
4073 */
4074static void __init rcu_init_geometry(void)
4075{
4076	ulong d;
4077	int i;
 
4078	int rcu_capacity[RCU_NUM_LVLS];
 
 
 
 
 
 
 
 
 
 
 
 
 
4079
4080	/*
4081	 * Initialize any unspecified boot parameters.
4082	 * The default values of jiffies_till_first_fqs and
4083	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4084	 * value, which is a function of HZ, then adding one for each
4085	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4086	 */
4087	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4088	if (jiffies_till_first_fqs == ULONG_MAX)
4089		jiffies_till_first_fqs = d;
4090	if (jiffies_till_next_fqs == ULONG_MAX)
4091		jiffies_till_next_fqs = d;
 
4092
4093	/* If the compile-time values are accurate, just leave. */
4094	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4095	    nr_cpu_ids == NR_CPUS)
4096		return;
4097	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4098		rcu_fanout_leaf, nr_cpu_ids);
4099
4100	/*
4101	 * The boot-time rcu_fanout_leaf parameter must be at least two
4102	 * and cannot exceed the number of bits in the rcu_node masks.
4103	 * Complain and fall back to the compile-time values if this
4104	 * limit is exceeded.
4105	 */
4106	if (rcu_fanout_leaf < 2 ||
4107	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4108		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4109		WARN_ON(1);
4110		return;
4111	}
4112
4113	/*
4114	 * Compute number of nodes that can be handled an rcu_node tree
4115	 * with the given number of levels.
4116	 */
4117	rcu_capacity[0] = rcu_fanout_leaf;
4118	for (i = 1; i < RCU_NUM_LVLS; i++)
4119		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4120
4121	/*
4122	 * The tree must be able to accommodate the configured number of CPUs.
4123	 * If this limit is exceeded, fall back to the compile-time values.
4124	 */
4125	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4126		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4127		WARN_ON(1);
4128		return;
4129	}
4130
4131	/* Calculate the number of levels in the tree. */
4132	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4133	}
4134	rcu_num_lvls = i + 1;
4135
4136	/* Calculate the number of rcu_nodes at each level of the tree. */
4137	for (i = 0; i < rcu_num_lvls; i++) {
4138		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4139		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4140	}
4141
4142	/* Calculate the total number of rcu_node structures. */
4143	rcu_num_nodes = 0;
4144	for (i = 0; i < rcu_num_lvls; i++)
4145		rcu_num_nodes += num_rcu_lvl[i];
4146}
4147
4148/*
4149 * Dump out the structure of the rcu_node combining tree associated
4150 * with the rcu_state structure referenced by rsp.
4151 */
4152static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4153{
4154	int level = 0;
4155	struct rcu_node *rnp;
4156
4157	pr_info("rcu_node tree layout dump\n");
4158	pr_info(" ");
4159	rcu_for_each_node_breadth_first(rsp, rnp) {
4160		if (rnp->level != level) {
4161			pr_cont("\n");
4162			pr_info(" ");
4163			level = rnp->level;
4164		}
4165		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4166	}
4167	pr_cont("\n");
4168}
4169
4170struct workqueue_struct *rcu_gp_wq;
4171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4172void __init rcu_init(void)
4173{
4174	int cpu;
4175
4176	rcu_early_boot_tests();
4177
 
4178	rcu_bootup_announce();
 
4179	rcu_init_geometry();
4180	rcu_init_one(&rcu_bh_state);
4181	rcu_init_one(&rcu_sched_state);
4182	if (dump_tree)
4183		rcu_dump_rcu_node_tree(&rcu_sched_state);
4184	__rcu_init_preempt();
4185	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4186
4187	/*
4188	 * We don't need protection against CPU-hotplug here because
4189	 * this is called early in boot, before either interrupts
4190	 * or the scheduler are operational.
4191	 */
4192	pm_notifier(rcu_pm_notify, 0);
4193	for_each_online_cpu(cpu) {
4194		rcutree_prepare_cpu(cpu);
4195		rcu_cpu_starting(cpu);
4196		rcutree_online_cpu(cpu);
4197	}
4198
4199	/* Create workqueue for expedited GPs and for Tree SRCU. */
4200	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4201	WARN_ON(!rcu_gp_wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4202}
4203
 
4204#include "tree_exp.h"
 
4205#include "tree_plugin.h"