Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6#include <linux/bsearch.h>
7#include <linux/fs.h>
8#include <linux/file.h>
9#include <linux/sort.h>
10#include <linux/mount.h>
11#include <linux/xattr.h>
12#include <linux/posix_acl_xattr.h>
13#include <linux/radix-tree.h>
14#include <linux/vmalloc.h>
15#include <linux/string.h>
16#include <linux/compat.h>
17#include <linux/crc32c.h>
18#include <linux/fsverity.h>
19
20#include "send.h"
21#include "ctree.h"
22#include "backref.h"
23#include "locking.h"
24#include "disk-io.h"
25#include "btrfs_inode.h"
26#include "transaction.h"
27#include "compression.h"
28#include "print-tree.h"
29#include "accessors.h"
30#include "dir-item.h"
31#include "file-item.h"
32#include "ioctl.h"
33#include "verity.h"
34#include "lru_cache.h"
35
36/*
37 * Maximum number of references an extent can have in order for us to attempt to
38 * issue clone operations instead of write operations. This currently exists to
39 * avoid hitting limitations of the backreference walking code (taking a lot of
40 * time and using too much memory for extents with large number of references).
41 */
42#define SEND_MAX_EXTENT_REFS 1024
43
44/*
45 * A fs_path is a helper to dynamically build path names with unknown size.
46 * It reallocates the internal buffer on demand.
47 * It allows fast adding of path elements on the right side (normal path) and
48 * fast adding to the left side (reversed path). A reversed path can also be
49 * unreversed if needed.
50 */
51struct fs_path {
52 union {
53 struct {
54 char *start;
55 char *end;
56
57 char *buf;
58 unsigned short buf_len:15;
59 unsigned short reversed:1;
60 char inline_buf[];
61 };
62 /*
63 * Average path length does not exceed 200 bytes, we'll have
64 * better packing in the slab and higher chance to satisfy
65 * a allocation later during send.
66 */
67 char pad[256];
68 };
69};
70#define FS_PATH_INLINE_SIZE \
71 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
72
73
74/* reused for each extent */
75struct clone_root {
76 struct btrfs_root *root;
77 u64 ino;
78 u64 offset;
79 u64 num_bytes;
80 bool found_ref;
81};
82
83#define SEND_MAX_NAME_CACHE_SIZE 256
84
85/*
86 * Limit the root_ids array of struct backref_cache_entry to 17 elements.
87 * This makes the size of a cache entry to be exactly 192 bytes on x86_64, which
88 * can be satisfied from the kmalloc-192 slab, without wasting any space.
89 * The most common case is to have a single root for cloning, which corresponds
90 * to the send root. Having the user specify more than 16 clone roots is not
91 * common, and in such rare cases we simply don't use caching if the number of
92 * cloning roots that lead down to a leaf is more than 17.
93 */
94#define SEND_MAX_BACKREF_CACHE_ROOTS 17
95
96/*
97 * Max number of entries in the cache.
98 * With SEND_MAX_BACKREF_CACHE_ROOTS as 17, the size in bytes, excluding
99 * maple tree's internal nodes, is 24K.
100 */
101#define SEND_MAX_BACKREF_CACHE_SIZE 128
102
103/*
104 * A backref cache entry maps a leaf to a list of IDs of roots from which the
105 * leaf is accessible and we can use for clone operations.
106 * With SEND_MAX_BACKREF_CACHE_ROOTS as 12, each cache entry is 128 bytes (on
107 * x86_64).
108 */
109struct backref_cache_entry {
110 struct btrfs_lru_cache_entry entry;
111 u64 root_ids[SEND_MAX_BACKREF_CACHE_ROOTS];
112 /* Number of valid elements in the root_ids array. */
113 int num_roots;
114};
115
116/* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
117static_assert(offsetof(struct backref_cache_entry, entry) == 0);
118
119/*
120 * Max number of entries in the cache that stores directories that were already
121 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
122 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
123 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
124 */
125#define SEND_MAX_DIR_CREATED_CACHE_SIZE 64
126
127/*
128 * Max number of entries in the cache that stores directories that were already
129 * created. The cache uses raw struct btrfs_lru_cache_entry entries, so it uses
130 * at most 4096 bytes - sizeof(struct btrfs_lru_cache_entry) is 48 bytes, but
131 * the kmalloc-64 slab is used, so we get 4096 bytes (64 bytes * 64).
132 */
133#define SEND_MAX_DIR_UTIMES_CACHE_SIZE 64
134
135struct send_ctx {
136 struct file *send_filp;
137 loff_t send_off;
138 char *send_buf;
139 u32 send_size;
140 u32 send_max_size;
141 /*
142 * Whether BTRFS_SEND_A_DATA attribute was already added to current
143 * command (since protocol v2, data must be the last attribute).
144 */
145 bool put_data;
146 struct page **send_buf_pages;
147 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
148 /* Protocol version compatibility requested */
149 u32 proto;
150
151 struct btrfs_root *send_root;
152 struct btrfs_root *parent_root;
153 struct clone_root *clone_roots;
154 int clone_roots_cnt;
155
156 /* current state of the compare_tree call */
157 struct btrfs_path *left_path;
158 struct btrfs_path *right_path;
159 struct btrfs_key *cmp_key;
160
161 /*
162 * Keep track of the generation of the last transaction that was used
163 * for relocating a block group. This is periodically checked in order
164 * to detect if a relocation happened since the last check, so that we
165 * don't operate on stale extent buffers for nodes (level >= 1) or on
166 * stale disk_bytenr values of file extent items.
167 */
168 u64 last_reloc_trans;
169
170 /*
171 * infos of the currently processed inode. In case of deleted inodes,
172 * these are the values from the deleted inode.
173 */
174 u64 cur_ino;
175 u64 cur_inode_gen;
176 u64 cur_inode_size;
177 u64 cur_inode_mode;
178 u64 cur_inode_rdev;
179 u64 cur_inode_last_extent;
180 u64 cur_inode_next_write_offset;
181 bool cur_inode_new;
182 bool cur_inode_new_gen;
183 bool cur_inode_deleted;
184 bool ignore_cur_inode;
185 bool cur_inode_needs_verity;
186 void *verity_descriptor;
187
188 u64 send_progress;
189
190 struct list_head new_refs;
191 struct list_head deleted_refs;
192
193 struct btrfs_lru_cache name_cache;
194
195 /*
196 * The inode we are currently processing. It's not NULL only when we
197 * need to issue write commands for data extents from this inode.
198 */
199 struct inode *cur_inode;
200 struct file_ra_state ra;
201 u64 page_cache_clear_start;
202 bool clean_page_cache;
203
204 /*
205 * We process inodes by their increasing order, so if before an
206 * incremental send we reverse the parent/child relationship of
207 * directories such that a directory with a lower inode number was
208 * the parent of a directory with a higher inode number, and the one
209 * becoming the new parent got renamed too, we can't rename/move the
210 * directory with lower inode number when we finish processing it - we
211 * must process the directory with higher inode number first, then
212 * rename/move it and then rename/move the directory with lower inode
213 * number. Example follows.
214 *
215 * Tree state when the first send was performed:
216 *
217 * .
218 * |-- a (ino 257)
219 * |-- b (ino 258)
220 * |
221 * |
222 * |-- c (ino 259)
223 * | |-- d (ino 260)
224 * |
225 * |-- c2 (ino 261)
226 *
227 * Tree state when the second (incremental) send is performed:
228 *
229 * .
230 * |-- a (ino 257)
231 * |-- b (ino 258)
232 * |-- c2 (ino 261)
233 * |-- d2 (ino 260)
234 * |-- cc (ino 259)
235 *
236 * The sequence of steps that lead to the second state was:
237 *
238 * mv /a/b/c/d /a/b/c2/d2
239 * mv /a/b/c /a/b/c2/d2/cc
240 *
241 * "c" has lower inode number, but we can't move it (2nd mv operation)
242 * before we move "d", which has higher inode number.
243 *
244 * So we just memorize which move/rename operations must be performed
245 * later when their respective parent is processed and moved/renamed.
246 */
247
248 /* Indexed by parent directory inode number. */
249 struct rb_root pending_dir_moves;
250
251 /*
252 * Reverse index, indexed by the inode number of a directory that
253 * is waiting for the move/rename of its immediate parent before its
254 * own move/rename can be performed.
255 */
256 struct rb_root waiting_dir_moves;
257
258 /*
259 * A directory that is going to be rm'ed might have a child directory
260 * which is in the pending directory moves index above. In this case,
261 * the directory can only be removed after the move/rename of its child
262 * is performed. Example:
263 *
264 * Parent snapshot:
265 *
266 * . (ino 256)
267 * |-- a/ (ino 257)
268 * |-- b/ (ino 258)
269 * |-- c/ (ino 259)
270 * | |-- x/ (ino 260)
271 * |
272 * |-- y/ (ino 261)
273 *
274 * Send snapshot:
275 *
276 * . (ino 256)
277 * |-- a/ (ino 257)
278 * |-- b/ (ino 258)
279 * |-- YY/ (ino 261)
280 * |-- x/ (ino 260)
281 *
282 * Sequence of steps that lead to the send snapshot:
283 * rm -f /a/b/c/foo.txt
284 * mv /a/b/y /a/b/YY
285 * mv /a/b/c/x /a/b/YY
286 * rmdir /a/b/c
287 *
288 * When the child is processed, its move/rename is delayed until its
289 * parent is processed (as explained above), but all other operations
290 * like update utimes, chown, chgrp, etc, are performed and the paths
291 * that it uses for those operations must use the orphanized name of
292 * its parent (the directory we're going to rm later), so we need to
293 * memorize that name.
294 *
295 * Indexed by the inode number of the directory to be deleted.
296 */
297 struct rb_root orphan_dirs;
298
299 struct rb_root rbtree_new_refs;
300 struct rb_root rbtree_deleted_refs;
301
302 struct btrfs_lru_cache backref_cache;
303 u64 backref_cache_last_reloc_trans;
304
305 struct btrfs_lru_cache dir_created_cache;
306 struct btrfs_lru_cache dir_utimes_cache;
307};
308
309struct pending_dir_move {
310 struct rb_node node;
311 struct list_head list;
312 u64 parent_ino;
313 u64 ino;
314 u64 gen;
315 struct list_head update_refs;
316};
317
318struct waiting_dir_move {
319 struct rb_node node;
320 u64 ino;
321 /*
322 * There might be some directory that could not be removed because it
323 * was waiting for this directory inode to be moved first. Therefore
324 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
325 */
326 u64 rmdir_ino;
327 u64 rmdir_gen;
328 bool orphanized;
329};
330
331struct orphan_dir_info {
332 struct rb_node node;
333 u64 ino;
334 u64 gen;
335 u64 last_dir_index_offset;
336 u64 dir_high_seq_ino;
337};
338
339struct name_cache_entry {
340 /*
341 * The key in the entry is an inode number, and the generation matches
342 * the inode's generation.
343 */
344 struct btrfs_lru_cache_entry entry;
345 u64 parent_ino;
346 u64 parent_gen;
347 int ret;
348 int need_later_update;
349 int name_len;
350 char name[];
351};
352
353/* See the comment at lru_cache.h about struct btrfs_lru_cache_entry. */
354static_assert(offsetof(struct name_cache_entry, entry) == 0);
355
356#define ADVANCE 1
357#define ADVANCE_ONLY_NEXT -1
358
359enum btrfs_compare_tree_result {
360 BTRFS_COMPARE_TREE_NEW,
361 BTRFS_COMPARE_TREE_DELETED,
362 BTRFS_COMPARE_TREE_CHANGED,
363 BTRFS_COMPARE_TREE_SAME,
364};
365
366__cold
367static void inconsistent_snapshot_error(struct send_ctx *sctx,
368 enum btrfs_compare_tree_result result,
369 const char *what)
370{
371 const char *result_string;
372
373 switch (result) {
374 case BTRFS_COMPARE_TREE_NEW:
375 result_string = "new";
376 break;
377 case BTRFS_COMPARE_TREE_DELETED:
378 result_string = "deleted";
379 break;
380 case BTRFS_COMPARE_TREE_CHANGED:
381 result_string = "updated";
382 break;
383 case BTRFS_COMPARE_TREE_SAME:
384 ASSERT(0);
385 result_string = "unchanged";
386 break;
387 default:
388 ASSERT(0);
389 result_string = "unexpected";
390 }
391
392 btrfs_err(sctx->send_root->fs_info,
393 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
394 result_string, what, sctx->cmp_key->objectid,
395 sctx->send_root->root_key.objectid,
396 (sctx->parent_root ?
397 sctx->parent_root->root_key.objectid : 0));
398}
399
400__maybe_unused
401static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
402{
403 switch (sctx->proto) {
404 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
405 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
406 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
407 default: return false;
408 }
409}
410
411static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
412
413static struct waiting_dir_move *
414get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
415
416static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
417
418static int need_send_hole(struct send_ctx *sctx)
419{
420 return (sctx->parent_root && !sctx->cur_inode_new &&
421 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
422 S_ISREG(sctx->cur_inode_mode));
423}
424
425static void fs_path_reset(struct fs_path *p)
426{
427 if (p->reversed) {
428 p->start = p->buf + p->buf_len - 1;
429 p->end = p->start;
430 *p->start = 0;
431 } else {
432 p->start = p->buf;
433 p->end = p->start;
434 *p->start = 0;
435 }
436}
437
438static struct fs_path *fs_path_alloc(void)
439{
440 struct fs_path *p;
441
442 p = kmalloc(sizeof(*p), GFP_KERNEL);
443 if (!p)
444 return NULL;
445 p->reversed = 0;
446 p->buf = p->inline_buf;
447 p->buf_len = FS_PATH_INLINE_SIZE;
448 fs_path_reset(p);
449 return p;
450}
451
452static struct fs_path *fs_path_alloc_reversed(void)
453{
454 struct fs_path *p;
455
456 p = fs_path_alloc();
457 if (!p)
458 return NULL;
459 p->reversed = 1;
460 fs_path_reset(p);
461 return p;
462}
463
464static void fs_path_free(struct fs_path *p)
465{
466 if (!p)
467 return;
468 if (p->buf != p->inline_buf)
469 kfree(p->buf);
470 kfree(p);
471}
472
473static int fs_path_len(struct fs_path *p)
474{
475 return p->end - p->start;
476}
477
478static int fs_path_ensure_buf(struct fs_path *p, int len)
479{
480 char *tmp_buf;
481 int path_len;
482 int old_buf_len;
483
484 len++;
485
486 if (p->buf_len >= len)
487 return 0;
488
489 if (len > PATH_MAX) {
490 WARN_ON(1);
491 return -ENOMEM;
492 }
493
494 path_len = p->end - p->start;
495 old_buf_len = p->buf_len;
496
497 /*
498 * Allocate to the next largest kmalloc bucket size, to let
499 * the fast path happen most of the time.
500 */
501 len = kmalloc_size_roundup(len);
502 /*
503 * First time the inline_buf does not suffice
504 */
505 if (p->buf == p->inline_buf) {
506 tmp_buf = kmalloc(len, GFP_KERNEL);
507 if (tmp_buf)
508 memcpy(tmp_buf, p->buf, old_buf_len);
509 } else {
510 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
511 }
512 if (!tmp_buf)
513 return -ENOMEM;
514 p->buf = tmp_buf;
515 p->buf_len = len;
516
517 if (p->reversed) {
518 tmp_buf = p->buf + old_buf_len - path_len - 1;
519 p->end = p->buf + p->buf_len - 1;
520 p->start = p->end - path_len;
521 memmove(p->start, tmp_buf, path_len + 1);
522 } else {
523 p->start = p->buf;
524 p->end = p->start + path_len;
525 }
526 return 0;
527}
528
529static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
530 char **prepared)
531{
532 int ret;
533 int new_len;
534
535 new_len = p->end - p->start + name_len;
536 if (p->start != p->end)
537 new_len++;
538 ret = fs_path_ensure_buf(p, new_len);
539 if (ret < 0)
540 goto out;
541
542 if (p->reversed) {
543 if (p->start != p->end)
544 *--p->start = '/';
545 p->start -= name_len;
546 *prepared = p->start;
547 } else {
548 if (p->start != p->end)
549 *p->end++ = '/';
550 *prepared = p->end;
551 p->end += name_len;
552 *p->end = 0;
553 }
554
555out:
556 return ret;
557}
558
559static int fs_path_add(struct fs_path *p, const char *name, int name_len)
560{
561 int ret;
562 char *prepared;
563
564 ret = fs_path_prepare_for_add(p, name_len, &prepared);
565 if (ret < 0)
566 goto out;
567 memcpy(prepared, name, name_len);
568
569out:
570 return ret;
571}
572
573static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
574{
575 int ret;
576 char *prepared;
577
578 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
579 if (ret < 0)
580 goto out;
581 memcpy(prepared, p2->start, p2->end - p2->start);
582
583out:
584 return ret;
585}
586
587static int fs_path_add_from_extent_buffer(struct fs_path *p,
588 struct extent_buffer *eb,
589 unsigned long off, int len)
590{
591 int ret;
592 char *prepared;
593
594 ret = fs_path_prepare_for_add(p, len, &prepared);
595 if (ret < 0)
596 goto out;
597
598 read_extent_buffer(eb, prepared, off, len);
599
600out:
601 return ret;
602}
603
604static int fs_path_copy(struct fs_path *p, struct fs_path *from)
605{
606 p->reversed = from->reversed;
607 fs_path_reset(p);
608
609 return fs_path_add_path(p, from);
610}
611
612static void fs_path_unreverse(struct fs_path *p)
613{
614 char *tmp;
615 int len;
616
617 if (!p->reversed)
618 return;
619
620 tmp = p->start;
621 len = p->end - p->start;
622 p->start = p->buf;
623 p->end = p->start + len;
624 memmove(p->start, tmp, len + 1);
625 p->reversed = 0;
626}
627
628static struct btrfs_path *alloc_path_for_send(void)
629{
630 struct btrfs_path *path;
631
632 path = btrfs_alloc_path();
633 if (!path)
634 return NULL;
635 path->search_commit_root = 1;
636 path->skip_locking = 1;
637 path->need_commit_sem = 1;
638 return path;
639}
640
641static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
642{
643 int ret;
644 u32 pos = 0;
645
646 while (pos < len) {
647 ret = kernel_write(filp, buf + pos, len - pos, off);
648 if (ret < 0)
649 return ret;
650 if (ret == 0)
651 return -EIO;
652 pos += ret;
653 }
654
655 return 0;
656}
657
658static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
659{
660 struct btrfs_tlv_header *hdr;
661 int total_len = sizeof(*hdr) + len;
662 int left = sctx->send_max_size - sctx->send_size;
663
664 if (WARN_ON_ONCE(sctx->put_data))
665 return -EINVAL;
666
667 if (unlikely(left < total_len))
668 return -EOVERFLOW;
669
670 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
671 put_unaligned_le16(attr, &hdr->tlv_type);
672 put_unaligned_le16(len, &hdr->tlv_len);
673 memcpy(hdr + 1, data, len);
674 sctx->send_size += total_len;
675
676 return 0;
677}
678
679#define TLV_PUT_DEFINE_INT(bits) \
680 static int tlv_put_u##bits(struct send_ctx *sctx, \
681 u##bits attr, u##bits value) \
682 { \
683 __le##bits __tmp = cpu_to_le##bits(value); \
684 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
685 }
686
687TLV_PUT_DEFINE_INT(8)
688TLV_PUT_DEFINE_INT(32)
689TLV_PUT_DEFINE_INT(64)
690
691static int tlv_put_string(struct send_ctx *sctx, u16 attr,
692 const char *str, int len)
693{
694 if (len == -1)
695 len = strlen(str);
696 return tlv_put(sctx, attr, str, len);
697}
698
699static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
700 const u8 *uuid)
701{
702 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
703}
704
705static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
706 struct extent_buffer *eb,
707 struct btrfs_timespec *ts)
708{
709 struct btrfs_timespec bts;
710 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
711 return tlv_put(sctx, attr, &bts, sizeof(bts));
712}
713
714
715#define TLV_PUT(sctx, attrtype, data, attrlen) \
716 do { \
717 ret = tlv_put(sctx, attrtype, data, attrlen); \
718 if (ret < 0) \
719 goto tlv_put_failure; \
720 } while (0)
721
722#define TLV_PUT_INT(sctx, attrtype, bits, value) \
723 do { \
724 ret = tlv_put_u##bits(sctx, attrtype, value); \
725 if (ret < 0) \
726 goto tlv_put_failure; \
727 } while (0)
728
729#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
730#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
731#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
732#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
733#define TLV_PUT_STRING(sctx, attrtype, str, len) \
734 do { \
735 ret = tlv_put_string(sctx, attrtype, str, len); \
736 if (ret < 0) \
737 goto tlv_put_failure; \
738 } while (0)
739#define TLV_PUT_PATH(sctx, attrtype, p) \
740 do { \
741 ret = tlv_put_string(sctx, attrtype, p->start, \
742 p->end - p->start); \
743 if (ret < 0) \
744 goto tlv_put_failure; \
745 } while(0)
746#define TLV_PUT_UUID(sctx, attrtype, uuid) \
747 do { \
748 ret = tlv_put_uuid(sctx, attrtype, uuid); \
749 if (ret < 0) \
750 goto tlv_put_failure; \
751 } while (0)
752#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
753 do { \
754 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
755 if (ret < 0) \
756 goto tlv_put_failure; \
757 } while (0)
758
759static int send_header(struct send_ctx *sctx)
760{
761 struct btrfs_stream_header hdr;
762
763 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
764 hdr.version = cpu_to_le32(sctx->proto);
765 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
766 &sctx->send_off);
767}
768
769/*
770 * For each command/item we want to send to userspace, we call this function.
771 */
772static int begin_cmd(struct send_ctx *sctx, int cmd)
773{
774 struct btrfs_cmd_header *hdr;
775
776 if (WARN_ON(!sctx->send_buf))
777 return -EINVAL;
778
779 if (unlikely(sctx->send_size != 0)) {
780 btrfs_err(sctx->send_root->fs_info,
781 "send: command header buffer not empty cmd %d offset %llu",
782 cmd, sctx->send_off);
783 return -EINVAL;
784 }
785
786 sctx->send_size += sizeof(*hdr);
787 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
788 put_unaligned_le16(cmd, &hdr->cmd);
789
790 return 0;
791}
792
793static int send_cmd(struct send_ctx *sctx)
794{
795 int ret;
796 struct btrfs_cmd_header *hdr;
797 u32 crc;
798
799 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
800 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
801 put_unaligned_le32(0, &hdr->crc);
802
803 crc = crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
804 put_unaligned_le32(crc, &hdr->crc);
805
806 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
807 &sctx->send_off);
808
809 sctx->send_size = 0;
810 sctx->put_data = false;
811
812 return ret;
813}
814
815/*
816 * Sends a move instruction to user space
817 */
818static int send_rename(struct send_ctx *sctx,
819 struct fs_path *from, struct fs_path *to)
820{
821 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
822 int ret;
823
824 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
825
826 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
827 if (ret < 0)
828 goto out;
829
830 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
831 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
832
833 ret = send_cmd(sctx);
834
835tlv_put_failure:
836out:
837 return ret;
838}
839
840/*
841 * Sends a link instruction to user space
842 */
843static int send_link(struct send_ctx *sctx,
844 struct fs_path *path, struct fs_path *lnk)
845{
846 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
847 int ret;
848
849 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
850
851 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
852 if (ret < 0)
853 goto out;
854
855 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
856 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
857
858 ret = send_cmd(sctx);
859
860tlv_put_failure:
861out:
862 return ret;
863}
864
865/*
866 * Sends an unlink instruction to user space
867 */
868static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
869{
870 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
871 int ret;
872
873 btrfs_debug(fs_info, "send_unlink %s", path->start);
874
875 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
876 if (ret < 0)
877 goto out;
878
879 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
880
881 ret = send_cmd(sctx);
882
883tlv_put_failure:
884out:
885 return ret;
886}
887
888/*
889 * Sends a rmdir instruction to user space
890 */
891static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
892{
893 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
894 int ret;
895
896 btrfs_debug(fs_info, "send_rmdir %s", path->start);
897
898 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
899 if (ret < 0)
900 goto out;
901
902 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
903
904 ret = send_cmd(sctx);
905
906tlv_put_failure:
907out:
908 return ret;
909}
910
911struct btrfs_inode_info {
912 u64 size;
913 u64 gen;
914 u64 mode;
915 u64 uid;
916 u64 gid;
917 u64 rdev;
918 u64 fileattr;
919 u64 nlink;
920};
921
922/*
923 * Helper function to retrieve some fields from an inode item.
924 */
925static int get_inode_info(struct btrfs_root *root, u64 ino,
926 struct btrfs_inode_info *info)
927{
928 int ret;
929 struct btrfs_path *path;
930 struct btrfs_inode_item *ii;
931 struct btrfs_key key;
932
933 path = alloc_path_for_send();
934 if (!path)
935 return -ENOMEM;
936
937 key.objectid = ino;
938 key.type = BTRFS_INODE_ITEM_KEY;
939 key.offset = 0;
940 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
941 if (ret) {
942 if (ret > 0)
943 ret = -ENOENT;
944 goto out;
945 }
946
947 if (!info)
948 goto out;
949
950 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
951 struct btrfs_inode_item);
952 info->size = btrfs_inode_size(path->nodes[0], ii);
953 info->gen = btrfs_inode_generation(path->nodes[0], ii);
954 info->mode = btrfs_inode_mode(path->nodes[0], ii);
955 info->uid = btrfs_inode_uid(path->nodes[0], ii);
956 info->gid = btrfs_inode_gid(path->nodes[0], ii);
957 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
958 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
959 /*
960 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
961 * otherwise logically split to 32/32 parts.
962 */
963 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
964
965out:
966 btrfs_free_path(path);
967 return ret;
968}
969
970static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
971{
972 int ret;
973 struct btrfs_inode_info info = { 0 };
974
975 ASSERT(gen);
976
977 ret = get_inode_info(root, ino, &info);
978 *gen = info.gen;
979 return ret;
980}
981
982typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
983 struct fs_path *p,
984 void *ctx);
985
986/*
987 * Helper function to iterate the entries in ONE btrfs_inode_ref or
988 * btrfs_inode_extref.
989 * The iterate callback may return a non zero value to stop iteration. This can
990 * be a negative value for error codes or 1 to simply stop it.
991 *
992 * path must point to the INODE_REF or INODE_EXTREF when called.
993 */
994static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
995 struct btrfs_key *found_key, int resolve,
996 iterate_inode_ref_t iterate, void *ctx)
997{
998 struct extent_buffer *eb = path->nodes[0];
999 struct btrfs_inode_ref *iref;
1000 struct btrfs_inode_extref *extref;
1001 struct btrfs_path *tmp_path;
1002 struct fs_path *p;
1003 u32 cur = 0;
1004 u32 total;
1005 int slot = path->slots[0];
1006 u32 name_len;
1007 char *start;
1008 int ret = 0;
1009 int num = 0;
1010 int index;
1011 u64 dir;
1012 unsigned long name_off;
1013 unsigned long elem_size;
1014 unsigned long ptr;
1015
1016 p = fs_path_alloc_reversed();
1017 if (!p)
1018 return -ENOMEM;
1019
1020 tmp_path = alloc_path_for_send();
1021 if (!tmp_path) {
1022 fs_path_free(p);
1023 return -ENOMEM;
1024 }
1025
1026
1027 if (found_key->type == BTRFS_INODE_REF_KEY) {
1028 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
1029 struct btrfs_inode_ref);
1030 total = btrfs_item_size(eb, slot);
1031 elem_size = sizeof(*iref);
1032 } else {
1033 ptr = btrfs_item_ptr_offset(eb, slot);
1034 total = btrfs_item_size(eb, slot);
1035 elem_size = sizeof(*extref);
1036 }
1037
1038 while (cur < total) {
1039 fs_path_reset(p);
1040
1041 if (found_key->type == BTRFS_INODE_REF_KEY) {
1042 iref = (struct btrfs_inode_ref *)(ptr + cur);
1043 name_len = btrfs_inode_ref_name_len(eb, iref);
1044 name_off = (unsigned long)(iref + 1);
1045 index = btrfs_inode_ref_index(eb, iref);
1046 dir = found_key->offset;
1047 } else {
1048 extref = (struct btrfs_inode_extref *)(ptr + cur);
1049 name_len = btrfs_inode_extref_name_len(eb, extref);
1050 name_off = (unsigned long)&extref->name;
1051 index = btrfs_inode_extref_index(eb, extref);
1052 dir = btrfs_inode_extref_parent(eb, extref);
1053 }
1054
1055 if (resolve) {
1056 start = btrfs_ref_to_path(root, tmp_path, name_len,
1057 name_off, eb, dir,
1058 p->buf, p->buf_len);
1059 if (IS_ERR(start)) {
1060 ret = PTR_ERR(start);
1061 goto out;
1062 }
1063 if (start < p->buf) {
1064 /* overflow , try again with larger buffer */
1065 ret = fs_path_ensure_buf(p,
1066 p->buf_len + p->buf - start);
1067 if (ret < 0)
1068 goto out;
1069 start = btrfs_ref_to_path(root, tmp_path,
1070 name_len, name_off,
1071 eb, dir,
1072 p->buf, p->buf_len);
1073 if (IS_ERR(start)) {
1074 ret = PTR_ERR(start);
1075 goto out;
1076 }
1077 if (unlikely(start < p->buf)) {
1078 btrfs_err(root->fs_info,
1079 "send: path ref buffer underflow for key (%llu %u %llu)",
1080 found_key->objectid,
1081 found_key->type,
1082 found_key->offset);
1083 ret = -EINVAL;
1084 goto out;
1085 }
1086 }
1087 p->start = start;
1088 } else {
1089 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1090 name_len);
1091 if (ret < 0)
1092 goto out;
1093 }
1094
1095 cur += elem_size + name_len;
1096 ret = iterate(num, dir, index, p, ctx);
1097 if (ret)
1098 goto out;
1099 num++;
1100 }
1101
1102out:
1103 btrfs_free_path(tmp_path);
1104 fs_path_free(p);
1105 return ret;
1106}
1107
1108typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1109 const char *name, int name_len,
1110 const char *data, int data_len,
1111 void *ctx);
1112
1113/*
1114 * Helper function to iterate the entries in ONE btrfs_dir_item.
1115 * The iterate callback may return a non zero value to stop iteration. This can
1116 * be a negative value for error codes or 1 to simply stop it.
1117 *
1118 * path must point to the dir item when called.
1119 */
1120static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1121 iterate_dir_item_t iterate, void *ctx)
1122{
1123 int ret = 0;
1124 struct extent_buffer *eb;
1125 struct btrfs_dir_item *di;
1126 struct btrfs_key di_key;
1127 char *buf = NULL;
1128 int buf_len;
1129 u32 name_len;
1130 u32 data_len;
1131 u32 cur;
1132 u32 len;
1133 u32 total;
1134 int slot;
1135 int num;
1136
1137 /*
1138 * Start with a small buffer (1 page). If later we end up needing more
1139 * space, which can happen for xattrs on a fs with a leaf size greater
1140 * then the page size, attempt to increase the buffer. Typically xattr
1141 * values are small.
1142 */
1143 buf_len = PATH_MAX;
1144 buf = kmalloc(buf_len, GFP_KERNEL);
1145 if (!buf) {
1146 ret = -ENOMEM;
1147 goto out;
1148 }
1149
1150 eb = path->nodes[0];
1151 slot = path->slots[0];
1152 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1153 cur = 0;
1154 len = 0;
1155 total = btrfs_item_size(eb, slot);
1156
1157 num = 0;
1158 while (cur < total) {
1159 name_len = btrfs_dir_name_len(eb, di);
1160 data_len = btrfs_dir_data_len(eb, di);
1161 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1162
1163 if (btrfs_dir_ftype(eb, di) == BTRFS_FT_XATTR) {
1164 if (name_len > XATTR_NAME_MAX) {
1165 ret = -ENAMETOOLONG;
1166 goto out;
1167 }
1168 if (name_len + data_len >
1169 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1170 ret = -E2BIG;
1171 goto out;
1172 }
1173 } else {
1174 /*
1175 * Path too long
1176 */
1177 if (name_len + data_len > PATH_MAX) {
1178 ret = -ENAMETOOLONG;
1179 goto out;
1180 }
1181 }
1182
1183 if (name_len + data_len > buf_len) {
1184 buf_len = name_len + data_len;
1185 if (is_vmalloc_addr(buf)) {
1186 vfree(buf);
1187 buf = NULL;
1188 } else {
1189 char *tmp = krealloc(buf, buf_len,
1190 GFP_KERNEL | __GFP_NOWARN);
1191
1192 if (!tmp)
1193 kfree(buf);
1194 buf = tmp;
1195 }
1196 if (!buf) {
1197 buf = kvmalloc(buf_len, GFP_KERNEL);
1198 if (!buf) {
1199 ret = -ENOMEM;
1200 goto out;
1201 }
1202 }
1203 }
1204
1205 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1206 name_len + data_len);
1207
1208 len = sizeof(*di) + name_len + data_len;
1209 di = (struct btrfs_dir_item *)((char *)di + len);
1210 cur += len;
1211
1212 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1213 data_len, ctx);
1214 if (ret < 0)
1215 goto out;
1216 if (ret) {
1217 ret = 0;
1218 goto out;
1219 }
1220
1221 num++;
1222 }
1223
1224out:
1225 kvfree(buf);
1226 return ret;
1227}
1228
1229static int __copy_first_ref(int num, u64 dir, int index,
1230 struct fs_path *p, void *ctx)
1231{
1232 int ret;
1233 struct fs_path *pt = ctx;
1234
1235 ret = fs_path_copy(pt, p);
1236 if (ret < 0)
1237 return ret;
1238
1239 /* we want the first only */
1240 return 1;
1241}
1242
1243/*
1244 * Retrieve the first path of an inode. If an inode has more then one
1245 * ref/hardlink, this is ignored.
1246 */
1247static int get_inode_path(struct btrfs_root *root,
1248 u64 ino, struct fs_path *path)
1249{
1250 int ret;
1251 struct btrfs_key key, found_key;
1252 struct btrfs_path *p;
1253
1254 p = alloc_path_for_send();
1255 if (!p)
1256 return -ENOMEM;
1257
1258 fs_path_reset(path);
1259
1260 key.objectid = ino;
1261 key.type = BTRFS_INODE_REF_KEY;
1262 key.offset = 0;
1263
1264 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1265 if (ret < 0)
1266 goto out;
1267 if (ret) {
1268 ret = 1;
1269 goto out;
1270 }
1271 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1272 if (found_key.objectid != ino ||
1273 (found_key.type != BTRFS_INODE_REF_KEY &&
1274 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1275 ret = -ENOENT;
1276 goto out;
1277 }
1278
1279 ret = iterate_inode_ref(root, p, &found_key, 1,
1280 __copy_first_ref, path);
1281 if (ret < 0)
1282 goto out;
1283 ret = 0;
1284
1285out:
1286 btrfs_free_path(p);
1287 return ret;
1288}
1289
1290struct backref_ctx {
1291 struct send_ctx *sctx;
1292
1293 /* number of total found references */
1294 u64 found;
1295
1296 /*
1297 * used for clones found in send_root. clones found behind cur_objectid
1298 * and cur_offset are not considered as allowed clones.
1299 */
1300 u64 cur_objectid;
1301 u64 cur_offset;
1302
1303 /* may be truncated in case it's the last extent in a file */
1304 u64 extent_len;
1305
1306 /* The bytenr the file extent item we are processing refers to. */
1307 u64 bytenr;
1308 /* The owner (root id) of the data backref for the current extent. */
1309 u64 backref_owner;
1310 /* The offset of the data backref for the current extent. */
1311 u64 backref_offset;
1312};
1313
1314static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1315{
1316 u64 root = (u64)(uintptr_t)key;
1317 const struct clone_root *cr = elt;
1318
1319 if (root < cr->root->root_key.objectid)
1320 return -1;
1321 if (root > cr->root->root_key.objectid)
1322 return 1;
1323 return 0;
1324}
1325
1326static int __clone_root_cmp_sort(const void *e1, const void *e2)
1327{
1328 const struct clone_root *cr1 = e1;
1329 const struct clone_root *cr2 = e2;
1330
1331 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1332 return -1;
1333 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1334 return 1;
1335 return 0;
1336}
1337
1338/*
1339 * Called for every backref that is found for the current extent.
1340 * Results are collected in sctx->clone_roots->ino/offset.
1341 */
1342static int iterate_backrefs(u64 ino, u64 offset, u64 num_bytes, u64 root_id,
1343 void *ctx_)
1344{
1345 struct backref_ctx *bctx = ctx_;
1346 struct clone_root *clone_root;
1347
1348 /* First check if the root is in the list of accepted clone sources */
1349 clone_root = bsearch((void *)(uintptr_t)root_id, bctx->sctx->clone_roots,
1350 bctx->sctx->clone_roots_cnt,
1351 sizeof(struct clone_root),
1352 __clone_root_cmp_bsearch);
1353 if (!clone_root)
1354 return 0;
1355
1356 /* This is our own reference, bail out as we can't clone from it. */
1357 if (clone_root->root == bctx->sctx->send_root &&
1358 ino == bctx->cur_objectid &&
1359 offset == bctx->cur_offset)
1360 return 0;
1361
1362 /*
1363 * Make sure we don't consider clones from send_root that are
1364 * behind the current inode/offset.
1365 */
1366 if (clone_root->root == bctx->sctx->send_root) {
1367 /*
1368 * If the source inode was not yet processed we can't issue a
1369 * clone operation, as the source extent does not exist yet at
1370 * the destination of the stream.
1371 */
1372 if (ino > bctx->cur_objectid)
1373 return 0;
1374 /*
1375 * We clone from the inode currently being sent as long as the
1376 * source extent is already processed, otherwise we could try
1377 * to clone from an extent that does not exist yet at the
1378 * destination of the stream.
1379 */
1380 if (ino == bctx->cur_objectid &&
1381 offset + bctx->extent_len >
1382 bctx->sctx->cur_inode_next_write_offset)
1383 return 0;
1384 }
1385
1386 bctx->found++;
1387 clone_root->found_ref = true;
1388
1389 /*
1390 * If the given backref refers to a file extent item with a larger
1391 * number of bytes than what we found before, use the new one so that
1392 * we clone more optimally and end up doing less writes and getting
1393 * less exclusive, non-shared extents at the destination.
1394 */
1395 if (num_bytes > clone_root->num_bytes) {
1396 clone_root->ino = ino;
1397 clone_root->offset = offset;
1398 clone_root->num_bytes = num_bytes;
1399
1400 /*
1401 * Found a perfect candidate, so there's no need to continue
1402 * backref walking.
1403 */
1404 if (num_bytes >= bctx->extent_len)
1405 return BTRFS_ITERATE_EXTENT_INODES_STOP;
1406 }
1407
1408 return 0;
1409}
1410
1411static bool lookup_backref_cache(u64 leaf_bytenr, void *ctx,
1412 const u64 **root_ids_ret, int *root_count_ret)
1413{
1414 struct backref_ctx *bctx = ctx;
1415 struct send_ctx *sctx = bctx->sctx;
1416 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1417 const u64 key = leaf_bytenr >> fs_info->sectorsize_bits;
1418 struct btrfs_lru_cache_entry *raw_entry;
1419 struct backref_cache_entry *entry;
1420
1421 if (sctx->backref_cache.size == 0)
1422 return false;
1423
1424 /*
1425 * If relocation happened since we first filled the cache, then we must
1426 * empty the cache and can not use it, because even though we operate on
1427 * read-only roots, their leaves and nodes may have been reallocated and
1428 * now be used for different nodes/leaves of the same tree or some other
1429 * tree.
1430 *
1431 * We are called from iterate_extent_inodes() while either holding a
1432 * transaction handle or holding fs_info->commit_root_sem, so no need
1433 * to take any lock here.
1434 */
1435 if (fs_info->last_reloc_trans > sctx->backref_cache_last_reloc_trans) {
1436 btrfs_lru_cache_clear(&sctx->backref_cache);
1437 return false;
1438 }
1439
1440 raw_entry = btrfs_lru_cache_lookup(&sctx->backref_cache, key, 0);
1441 if (!raw_entry)
1442 return false;
1443
1444 entry = container_of(raw_entry, struct backref_cache_entry, entry);
1445 *root_ids_ret = entry->root_ids;
1446 *root_count_ret = entry->num_roots;
1447
1448 return true;
1449}
1450
1451static void store_backref_cache(u64 leaf_bytenr, const struct ulist *root_ids,
1452 void *ctx)
1453{
1454 struct backref_ctx *bctx = ctx;
1455 struct send_ctx *sctx = bctx->sctx;
1456 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1457 struct backref_cache_entry *new_entry;
1458 struct ulist_iterator uiter;
1459 struct ulist_node *node;
1460 int ret;
1461
1462 /*
1463 * We're called while holding a transaction handle or while holding
1464 * fs_info->commit_root_sem (at iterate_extent_inodes()), so must do a
1465 * NOFS allocation.
1466 */
1467 new_entry = kmalloc(sizeof(struct backref_cache_entry), GFP_NOFS);
1468 /* No worries, cache is optional. */
1469 if (!new_entry)
1470 return;
1471
1472 new_entry->entry.key = leaf_bytenr >> fs_info->sectorsize_bits;
1473 new_entry->entry.gen = 0;
1474 new_entry->num_roots = 0;
1475 ULIST_ITER_INIT(&uiter);
1476 while ((node = ulist_next(root_ids, &uiter)) != NULL) {
1477 const u64 root_id = node->val;
1478 struct clone_root *root;
1479
1480 root = bsearch((void *)(uintptr_t)root_id, sctx->clone_roots,
1481 sctx->clone_roots_cnt, sizeof(struct clone_root),
1482 __clone_root_cmp_bsearch);
1483 if (!root)
1484 continue;
1485
1486 /* Too many roots, just exit, no worries as caching is optional. */
1487 if (new_entry->num_roots >= SEND_MAX_BACKREF_CACHE_ROOTS) {
1488 kfree(new_entry);
1489 return;
1490 }
1491
1492 new_entry->root_ids[new_entry->num_roots] = root_id;
1493 new_entry->num_roots++;
1494 }
1495
1496 /*
1497 * We may have not added any roots to the new cache entry, which means
1498 * none of the roots is part of the list of roots from which we are
1499 * allowed to clone. Cache the new entry as it's still useful to avoid
1500 * backref walking to determine which roots have a path to the leaf.
1501 *
1502 * Also use GFP_NOFS because we're called while holding a transaction
1503 * handle or while holding fs_info->commit_root_sem.
1504 */
1505 ret = btrfs_lru_cache_store(&sctx->backref_cache, &new_entry->entry,
1506 GFP_NOFS);
1507 ASSERT(ret == 0 || ret == -ENOMEM);
1508 if (ret) {
1509 /* Caching is optional, no worries. */
1510 kfree(new_entry);
1511 return;
1512 }
1513
1514 /*
1515 * We are called from iterate_extent_inodes() while either holding a
1516 * transaction handle or holding fs_info->commit_root_sem, so no need
1517 * to take any lock here.
1518 */
1519 if (sctx->backref_cache.size == 1)
1520 sctx->backref_cache_last_reloc_trans = fs_info->last_reloc_trans;
1521}
1522
1523static int check_extent_item(u64 bytenr, const struct btrfs_extent_item *ei,
1524 const struct extent_buffer *leaf, void *ctx)
1525{
1526 const u64 refs = btrfs_extent_refs(leaf, ei);
1527 const struct backref_ctx *bctx = ctx;
1528 const struct send_ctx *sctx = bctx->sctx;
1529
1530 if (bytenr == bctx->bytenr) {
1531 const u64 flags = btrfs_extent_flags(leaf, ei);
1532
1533 if (WARN_ON(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
1534 return -EUCLEAN;
1535
1536 /*
1537 * If we have only one reference and only the send root as a
1538 * clone source - meaning no clone roots were given in the
1539 * struct btrfs_ioctl_send_args passed to the send ioctl - then
1540 * it's our reference and there's no point in doing backref
1541 * walking which is expensive, so exit early.
1542 */
1543 if (refs == 1 && sctx->clone_roots_cnt == 1)
1544 return -ENOENT;
1545 }
1546
1547 /*
1548 * Backreference walking (iterate_extent_inodes() below) is currently
1549 * too expensive when an extent has a large number of references, both
1550 * in time spent and used memory. So for now just fallback to write
1551 * operations instead of clone operations when an extent has more than
1552 * a certain amount of references.
1553 */
1554 if (refs > SEND_MAX_EXTENT_REFS)
1555 return -ENOENT;
1556
1557 return 0;
1558}
1559
1560static bool skip_self_data_ref(u64 root, u64 ino, u64 offset, void *ctx)
1561{
1562 const struct backref_ctx *bctx = ctx;
1563
1564 if (ino == bctx->cur_objectid &&
1565 root == bctx->backref_owner &&
1566 offset == bctx->backref_offset)
1567 return true;
1568
1569 return false;
1570}
1571
1572/*
1573 * Given an inode, offset and extent item, it finds a good clone for a clone
1574 * instruction. Returns -ENOENT when none could be found. The function makes
1575 * sure that the returned clone is usable at the point where sending is at the
1576 * moment. This means, that no clones are accepted which lie behind the current
1577 * inode+offset.
1578 *
1579 * path must point to the extent item when called.
1580 */
1581static int find_extent_clone(struct send_ctx *sctx,
1582 struct btrfs_path *path,
1583 u64 ino, u64 data_offset,
1584 u64 ino_size,
1585 struct clone_root **found)
1586{
1587 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1588 int ret;
1589 int extent_type;
1590 u64 logical;
1591 u64 disk_byte;
1592 u64 num_bytes;
1593 struct btrfs_file_extent_item *fi;
1594 struct extent_buffer *eb = path->nodes[0];
1595 struct backref_ctx backref_ctx = { 0 };
1596 struct btrfs_backref_walk_ctx backref_walk_ctx = { 0 };
1597 struct clone_root *cur_clone_root;
1598 int compressed;
1599 u32 i;
1600
1601 /*
1602 * With fallocate we can get prealloc extents beyond the inode's i_size,
1603 * so we don't do anything here because clone operations can not clone
1604 * to a range beyond i_size without increasing the i_size of the
1605 * destination inode.
1606 */
1607 if (data_offset >= ino_size)
1608 return 0;
1609
1610 fi = btrfs_item_ptr(eb, path->slots[0], struct btrfs_file_extent_item);
1611 extent_type = btrfs_file_extent_type(eb, fi);
1612 if (extent_type == BTRFS_FILE_EXTENT_INLINE)
1613 return -ENOENT;
1614
1615 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1616 if (disk_byte == 0)
1617 return -ENOENT;
1618
1619 compressed = btrfs_file_extent_compression(eb, fi);
1620 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1621 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1622
1623 /*
1624 * Setup the clone roots.
1625 */
1626 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1627 cur_clone_root = sctx->clone_roots + i;
1628 cur_clone_root->ino = (u64)-1;
1629 cur_clone_root->offset = 0;
1630 cur_clone_root->num_bytes = 0;
1631 cur_clone_root->found_ref = false;
1632 }
1633
1634 backref_ctx.sctx = sctx;
1635 backref_ctx.cur_objectid = ino;
1636 backref_ctx.cur_offset = data_offset;
1637 backref_ctx.bytenr = disk_byte;
1638 /*
1639 * Use the header owner and not the send root's id, because in case of a
1640 * snapshot we can have shared subtrees.
1641 */
1642 backref_ctx.backref_owner = btrfs_header_owner(eb);
1643 backref_ctx.backref_offset = data_offset - btrfs_file_extent_offset(eb, fi);
1644
1645 /*
1646 * The last extent of a file may be too large due to page alignment.
1647 * We need to adjust extent_len in this case so that the checks in
1648 * iterate_backrefs() work.
1649 */
1650 if (data_offset + num_bytes >= ino_size)
1651 backref_ctx.extent_len = ino_size - data_offset;
1652 else
1653 backref_ctx.extent_len = num_bytes;
1654
1655 /*
1656 * Now collect all backrefs.
1657 */
1658 backref_walk_ctx.bytenr = disk_byte;
1659 if (compressed == BTRFS_COMPRESS_NONE)
1660 backref_walk_ctx.extent_item_pos = btrfs_file_extent_offset(eb, fi);
1661 backref_walk_ctx.fs_info = fs_info;
1662 backref_walk_ctx.cache_lookup = lookup_backref_cache;
1663 backref_walk_ctx.cache_store = store_backref_cache;
1664 backref_walk_ctx.indirect_ref_iterator = iterate_backrefs;
1665 backref_walk_ctx.check_extent_item = check_extent_item;
1666 backref_walk_ctx.user_ctx = &backref_ctx;
1667
1668 /*
1669 * If have a single clone root, then it's the send root and we can tell
1670 * the backref walking code to skip our own backref and not resolve it,
1671 * since we can not use it for cloning - the source and destination
1672 * ranges can't overlap and in case the leaf is shared through a subtree
1673 * due to snapshots, we can't use those other roots since they are not
1674 * in the list of clone roots.
1675 */
1676 if (sctx->clone_roots_cnt == 1)
1677 backref_walk_ctx.skip_data_ref = skip_self_data_ref;
1678
1679 ret = iterate_extent_inodes(&backref_walk_ctx, true, iterate_backrefs,
1680 &backref_ctx);
1681 if (ret < 0)
1682 return ret;
1683
1684 down_read(&fs_info->commit_root_sem);
1685 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1686 /*
1687 * A transaction commit for a transaction in which block group
1688 * relocation was done just happened.
1689 * The disk_bytenr of the file extent item we processed is
1690 * possibly stale, referring to the extent's location before
1691 * relocation. So act as if we haven't found any clone sources
1692 * and fallback to write commands, which will read the correct
1693 * data from the new extent location. Otherwise we will fail
1694 * below because we haven't found our own back reference or we
1695 * could be getting incorrect sources in case the old extent
1696 * was already reallocated after the relocation.
1697 */
1698 up_read(&fs_info->commit_root_sem);
1699 return -ENOENT;
1700 }
1701 up_read(&fs_info->commit_root_sem);
1702
1703 btrfs_debug(fs_info,
1704 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1705 data_offset, ino, num_bytes, logical);
1706
1707 if (!backref_ctx.found) {
1708 btrfs_debug(fs_info, "no clones found");
1709 return -ENOENT;
1710 }
1711
1712 cur_clone_root = NULL;
1713 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1714 struct clone_root *clone_root = &sctx->clone_roots[i];
1715
1716 if (!clone_root->found_ref)
1717 continue;
1718
1719 /*
1720 * Choose the root from which we can clone more bytes, to
1721 * minimize write operations and therefore have more extent
1722 * sharing at the destination (the same as in the source).
1723 */
1724 if (!cur_clone_root ||
1725 clone_root->num_bytes > cur_clone_root->num_bytes) {
1726 cur_clone_root = clone_root;
1727
1728 /*
1729 * We found an optimal clone candidate (any inode from
1730 * any root is fine), so we're done.
1731 */
1732 if (clone_root->num_bytes >= backref_ctx.extent_len)
1733 break;
1734 }
1735 }
1736
1737 if (cur_clone_root) {
1738 *found = cur_clone_root;
1739 ret = 0;
1740 } else {
1741 ret = -ENOENT;
1742 }
1743
1744 return ret;
1745}
1746
1747static int read_symlink(struct btrfs_root *root,
1748 u64 ino,
1749 struct fs_path *dest)
1750{
1751 int ret;
1752 struct btrfs_path *path;
1753 struct btrfs_key key;
1754 struct btrfs_file_extent_item *ei;
1755 u8 type;
1756 u8 compression;
1757 unsigned long off;
1758 int len;
1759
1760 path = alloc_path_for_send();
1761 if (!path)
1762 return -ENOMEM;
1763
1764 key.objectid = ino;
1765 key.type = BTRFS_EXTENT_DATA_KEY;
1766 key.offset = 0;
1767 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1768 if (ret < 0)
1769 goto out;
1770 if (ret) {
1771 /*
1772 * An empty symlink inode. Can happen in rare error paths when
1773 * creating a symlink (transaction committed before the inode
1774 * eviction handler removed the symlink inode items and a crash
1775 * happened in between or the subvol was snapshoted in between).
1776 * Print an informative message to dmesg/syslog so that the user
1777 * can delete the symlink.
1778 */
1779 btrfs_err(root->fs_info,
1780 "Found empty symlink inode %llu at root %llu",
1781 ino, root->root_key.objectid);
1782 ret = -EIO;
1783 goto out;
1784 }
1785
1786 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1787 struct btrfs_file_extent_item);
1788 type = btrfs_file_extent_type(path->nodes[0], ei);
1789 if (unlikely(type != BTRFS_FILE_EXTENT_INLINE)) {
1790 ret = -EUCLEAN;
1791 btrfs_crit(root->fs_info,
1792"send: found symlink extent that is not inline, ino %llu root %llu extent type %d",
1793 ino, btrfs_root_id(root), type);
1794 goto out;
1795 }
1796 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1797 if (unlikely(compression != BTRFS_COMPRESS_NONE)) {
1798 ret = -EUCLEAN;
1799 btrfs_crit(root->fs_info,
1800"send: found symlink extent with compression, ino %llu root %llu compression type %d",
1801 ino, btrfs_root_id(root), compression);
1802 goto out;
1803 }
1804
1805 off = btrfs_file_extent_inline_start(ei);
1806 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1807
1808 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1809
1810out:
1811 btrfs_free_path(path);
1812 return ret;
1813}
1814
1815/*
1816 * Helper function to generate a file name that is unique in the root of
1817 * send_root and parent_root. This is used to generate names for orphan inodes.
1818 */
1819static int gen_unique_name(struct send_ctx *sctx,
1820 u64 ino, u64 gen,
1821 struct fs_path *dest)
1822{
1823 int ret = 0;
1824 struct btrfs_path *path;
1825 struct btrfs_dir_item *di;
1826 char tmp[64];
1827 int len;
1828 u64 idx = 0;
1829
1830 path = alloc_path_for_send();
1831 if (!path)
1832 return -ENOMEM;
1833
1834 while (1) {
1835 struct fscrypt_str tmp_name;
1836
1837 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1838 ino, gen, idx);
1839 ASSERT(len < sizeof(tmp));
1840 tmp_name.name = tmp;
1841 tmp_name.len = strlen(tmp);
1842
1843 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1844 path, BTRFS_FIRST_FREE_OBJECTID,
1845 &tmp_name, 0);
1846 btrfs_release_path(path);
1847 if (IS_ERR(di)) {
1848 ret = PTR_ERR(di);
1849 goto out;
1850 }
1851 if (di) {
1852 /* not unique, try again */
1853 idx++;
1854 continue;
1855 }
1856
1857 if (!sctx->parent_root) {
1858 /* unique */
1859 ret = 0;
1860 break;
1861 }
1862
1863 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1864 path, BTRFS_FIRST_FREE_OBJECTID,
1865 &tmp_name, 0);
1866 btrfs_release_path(path);
1867 if (IS_ERR(di)) {
1868 ret = PTR_ERR(di);
1869 goto out;
1870 }
1871 if (di) {
1872 /* not unique, try again */
1873 idx++;
1874 continue;
1875 }
1876 /* unique */
1877 break;
1878 }
1879
1880 ret = fs_path_add(dest, tmp, strlen(tmp));
1881
1882out:
1883 btrfs_free_path(path);
1884 return ret;
1885}
1886
1887enum inode_state {
1888 inode_state_no_change,
1889 inode_state_will_create,
1890 inode_state_did_create,
1891 inode_state_will_delete,
1892 inode_state_did_delete,
1893};
1894
1895static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen,
1896 u64 *send_gen, u64 *parent_gen)
1897{
1898 int ret;
1899 int left_ret;
1900 int right_ret;
1901 u64 left_gen;
1902 u64 right_gen = 0;
1903 struct btrfs_inode_info info;
1904
1905 ret = get_inode_info(sctx->send_root, ino, &info);
1906 if (ret < 0 && ret != -ENOENT)
1907 goto out;
1908 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1909 left_gen = info.gen;
1910 if (send_gen)
1911 *send_gen = ((left_ret == -ENOENT) ? 0 : info.gen);
1912
1913 if (!sctx->parent_root) {
1914 right_ret = -ENOENT;
1915 } else {
1916 ret = get_inode_info(sctx->parent_root, ino, &info);
1917 if (ret < 0 && ret != -ENOENT)
1918 goto out;
1919 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1920 right_gen = info.gen;
1921 if (parent_gen)
1922 *parent_gen = ((right_ret == -ENOENT) ? 0 : info.gen);
1923 }
1924
1925 if (!left_ret && !right_ret) {
1926 if (left_gen == gen && right_gen == gen) {
1927 ret = inode_state_no_change;
1928 } else if (left_gen == gen) {
1929 if (ino < sctx->send_progress)
1930 ret = inode_state_did_create;
1931 else
1932 ret = inode_state_will_create;
1933 } else if (right_gen == gen) {
1934 if (ino < sctx->send_progress)
1935 ret = inode_state_did_delete;
1936 else
1937 ret = inode_state_will_delete;
1938 } else {
1939 ret = -ENOENT;
1940 }
1941 } else if (!left_ret) {
1942 if (left_gen == gen) {
1943 if (ino < sctx->send_progress)
1944 ret = inode_state_did_create;
1945 else
1946 ret = inode_state_will_create;
1947 } else {
1948 ret = -ENOENT;
1949 }
1950 } else if (!right_ret) {
1951 if (right_gen == gen) {
1952 if (ino < sctx->send_progress)
1953 ret = inode_state_did_delete;
1954 else
1955 ret = inode_state_will_delete;
1956 } else {
1957 ret = -ENOENT;
1958 }
1959 } else {
1960 ret = -ENOENT;
1961 }
1962
1963out:
1964 return ret;
1965}
1966
1967static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen,
1968 u64 *send_gen, u64 *parent_gen)
1969{
1970 int ret;
1971
1972 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1973 return 1;
1974
1975 ret = get_cur_inode_state(sctx, ino, gen, send_gen, parent_gen);
1976 if (ret < 0)
1977 goto out;
1978
1979 if (ret == inode_state_no_change ||
1980 ret == inode_state_did_create ||
1981 ret == inode_state_will_delete)
1982 ret = 1;
1983 else
1984 ret = 0;
1985
1986out:
1987 return ret;
1988}
1989
1990/*
1991 * Helper function to lookup a dir item in a dir.
1992 */
1993static int lookup_dir_item_inode(struct btrfs_root *root,
1994 u64 dir, const char *name, int name_len,
1995 u64 *found_inode)
1996{
1997 int ret = 0;
1998 struct btrfs_dir_item *di;
1999 struct btrfs_key key;
2000 struct btrfs_path *path;
2001 struct fscrypt_str name_str = FSTR_INIT((char *)name, name_len);
2002
2003 path = alloc_path_for_send();
2004 if (!path)
2005 return -ENOMEM;
2006
2007 di = btrfs_lookup_dir_item(NULL, root, path, dir, &name_str, 0);
2008 if (IS_ERR_OR_NULL(di)) {
2009 ret = di ? PTR_ERR(di) : -ENOENT;
2010 goto out;
2011 }
2012 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
2013 if (key.type == BTRFS_ROOT_ITEM_KEY) {
2014 ret = -ENOENT;
2015 goto out;
2016 }
2017 *found_inode = key.objectid;
2018
2019out:
2020 btrfs_free_path(path);
2021 return ret;
2022}
2023
2024/*
2025 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
2026 * generation of the parent dir and the name of the dir entry.
2027 */
2028static int get_first_ref(struct btrfs_root *root, u64 ino,
2029 u64 *dir, u64 *dir_gen, struct fs_path *name)
2030{
2031 int ret;
2032 struct btrfs_key key;
2033 struct btrfs_key found_key;
2034 struct btrfs_path *path;
2035 int len;
2036 u64 parent_dir;
2037
2038 path = alloc_path_for_send();
2039 if (!path)
2040 return -ENOMEM;
2041
2042 key.objectid = ino;
2043 key.type = BTRFS_INODE_REF_KEY;
2044 key.offset = 0;
2045
2046 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
2047 if (ret < 0)
2048 goto out;
2049 if (!ret)
2050 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2051 path->slots[0]);
2052 if (ret || found_key.objectid != ino ||
2053 (found_key.type != BTRFS_INODE_REF_KEY &&
2054 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
2055 ret = -ENOENT;
2056 goto out;
2057 }
2058
2059 if (found_key.type == BTRFS_INODE_REF_KEY) {
2060 struct btrfs_inode_ref *iref;
2061 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2062 struct btrfs_inode_ref);
2063 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
2064 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2065 (unsigned long)(iref + 1),
2066 len);
2067 parent_dir = found_key.offset;
2068 } else {
2069 struct btrfs_inode_extref *extref;
2070 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
2071 struct btrfs_inode_extref);
2072 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
2073 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
2074 (unsigned long)&extref->name, len);
2075 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
2076 }
2077 if (ret < 0)
2078 goto out;
2079 btrfs_release_path(path);
2080
2081 if (dir_gen) {
2082 ret = get_inode_gen(root, parent_dir, dir_gen);
2083 if (ret < 0)
2084 goto out;
2085 }
2086
2087 *dir = parent_dir;
2088
2089out:
2090 btrfs_free_path(path);
2091 return ret;
2092}
2093
2094static int is_first_ref(struct btrfs_root *root,
2095 u64 ino, u64 dir,
2096 const char *name, int name_len)
2097{
2098 int ret;
2099 struct fs_path *tmp_name;
2100 u64 tmp_dir;
2101
2102 tmp_name = fs_path_alloc();
2103 if (!tmp_name)
2104 return -ENOMEM;
2105
2106 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
2107 if (ret < 0)
2108 goto out;
2109
2110 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
2111 ret = 0;
2112 goto out;
2113 }
2114
2115 ret = !memcmp(tmp_name->start, name, name_len);
2116
2117out:
2118 fs_path_free(tmp_name);
2119 return ret;
2120}
2121
2122/*
2123 * Used by process_recorded_refs to determine if a new ref would overwrite an
2124 * already existing ref. In case it detects an overwrite, it returns the
2125 * inode/gen in who_ino/who_gen.
2126 * When an overwrite is detected, process_recorded_refs does proper orphanizing
2127 * to make sure later references to the overwritten inode are possible.
2128 * Orphanizing is however only required for the first ref of an inode.
2129 * process_recorded_refs does an additional is_first_ref check to see if
2130 * orphanizing is really required.
2131 */
2132static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2133 const char *name, int name_len,
2134 u64 *who_ino, u64 *who_gen, u64 *who_mode)
2135{
2136 int ret;
2137 u64 parent_root_dir_gen;
2138 u64 other_inode = 0;
2139 struct btrfs_inode_info info;
2140
2141 if (!sctx->parent_root)
2142 return 0;
2143
2144 ret = is_inode_existent(sctx, dir, dir_gen, NULL, &parent_root_dir_gen);
2145 if (ret <= 0)
2146 return 0;
2147
2148 /*
2149 * If we have a parent root we need to verify that the parent dir was
2150 * not deleted and then re-created, if it was then we have no overwrite
2151 * and we can just unlink this entry.
2152 *
2153 * @parent_root_dir_gen was set to 0 if the inode does not exist in the
2154 * parent root.
2155 */
2156 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID &&
2157 parent_root_dir_gen != dir_gen)
2158 return 0;
2159
2160 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
2161 &other_inode);
2162 if (ret == -ENOENT)
2163 return 0;
2164 else if (ret < 0)
2165 return ret;
2166
2167 /*
2168 * Check if the overwritten ref was already processed. If yes, the ref
2169 * was already unlinked/moved, so we can safely assume that we will not
2170 * overwrite anything at this point in time.
2171 */
2172 if (other_inode > sctx->send_progress ||
2173 is_waiting_for_move(sctx, other_inode)) {
2174 ret = get_inode_info(sctx->parent_root, other_inode, &info);
2175 if (ret < 0)
2176 return ret;
2177
2178 *who_ino = other_inode;
2179 *who_gen = info.gen;
2180 *who_mode = info.mode;
2181 return 1;
2182 }
2183
2184 return 0;
2185}
2186
2187/*
2188 * Checks if the ref was overwritten by an already processed inode. This is
2189 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
2190 * thus the orphan name needs be used.
2191 * process_recorded_refs also uses it to avoid unlinking of refs that were
2192 * overwritten.
2193 */
2194static int did_overwrite_ref(struct send_ctx *sctx,
2195 u64 dir, u64 dir_gen,
2196 u64 ino, u64 ino_gen,
2197 const char *name, int name_len)
2198{
2199 int ret;
2200 u64 ow_inode;
2201 u64 ow_gen = 0;
2202 u64 send_root_dir_gen;
2203
2204 if (!sctx->parent_root)
2205 return 0;
2206
2207 ret = is_inode_existent(sctx, dir, dir_gen, &send_root_dir_gen, NULL);
2208 if (ret <= 0)
2209 return ret;
2210
2211 /*
2212 * @send_root_dir_gen was set to 0 if the inode does not exist in the
2213 * send root.
2214 */
2215 if (dir != BTRFS_FIRST_FREE_OBJECTID && send_root_dir_gen != dir_gen)
2216 return 0;
2217
2218 /* check if the ref was overwritten by another ref */
2219 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
2220 &ow_inode);
2221 if (ret == -ENOENT) {
2222 /* was never and will never be overwritten */
2223 return 0;
2224 } else if (ret < 0) {
2225 return ret;
2226 }
2227
2228 if (ow_inode == ino) {
2229 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2230 if (ret < 0)
2231 return ret;
2232
2233 /* It's the same inode, so no overwrite happened. */
2234 if (ow_gen == ino_gen)
2235 return 0;
2236 }
2237
2238 /*
2239 * We know that it is or will be overwritten. Check this now.
2240 * The current inode being processed might have been the one that caused
2241 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2242 * the current inode being processed.
2243 */
2244 if (ow_inode < sctx->send_progress)
2245 return 1;
2246
2247 if (ino != sctx->cur_ino && ow_inode == sctx->cur_ino) {
2248 if (ow_gen == 0) {
2249 ret = get_inode_gen(sctx->send_root, ow_inode, &ow_gen);
2250 if (ret < 0)
2251 return ret;
2252 }
2253 if (ow_gen == sctx->cur_inode_gen)
2254 return 1;
2255 }
2256
2257 return 0;
2258}
2259
2260/*
2261 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2262 * that got overwritten. This is used by process_recorded_refs to determine
2263 * if it has to use the path as returned by get_cur_path or the orphan name.
2264 */
2265static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2266{
2267 int ret = 0;
2268 struct fs_path *name = NULL;
2269 u64 dir;
2270 u64 dir_gen;
2271
2272 if (!sctx->parent_root)
2273 goto out;
2274
2275 name = fs_path_alloc();
2276 if (!name)
2277 return -ENOMEM;
2278
2279 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2280 if (ret < 0)
2281 goto out;
2282
2283 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2284 name->start, fs_path_len(name));
2285
2286out:
2287 fs_path_free(name);
2288 return ret;
2289}
2290
2291static inline struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2292 u64 ino, u64 gen)
2293{
2294 struct btrfs_lru_cache_entry *entry;
2295
2296 entry = btrfs_lru_cache_lookup(&sctx->name_cache, ino, gen);
2297 if (!entry)
2298 return NULL;
2299
2300 return container_of(entry, struct name_cache_entry, entry);
2301}
2302
2303/*
2304 * Used by get_cur_path for each ref up to the root.
2305 * Returns 0 if it succeeded.
2306 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2307 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2308 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2309 * Returns <0 in case of error.
2310 */
2311static int __get_cur_name_and_parent(struct send_ctx *sctx,
2312 u64 ino, u64 gen,
2313 u64 *parent_ino,
2314 u64 *parent_gen,
2315 struct fs_path *dest)
2316{
2317 int ret;
2318 int nce_ret;
2319 struct name_cache_entry *nce;
2320
2321 /*
2322 * First check if we already did a call to this function with the same
2323 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2324 * return the cached result.
2325 */
2326 nce = name_cache_search(sctx, ino, gen);
2327 if (nce) {
2328 if (ino < sctx->send_progress && nce->need_later_update) {
2329 btrfs_lru_cache_remove(&sctx->name_cache, &nce->entry);
2330 nce = NULL;
2331 } else {
2332 *parent_ino = nce->parent_ino;
2333 *parent_gen = nce->parent_gen;
2334 ret = fs_path_add(dest, nce->name, nce->name_len);
2335 if (ret < 0)
2336 goto out;
2337 ret = nce->ret;
2338 goto out;
2339 }
2340 }
2341
2342 /*
2343 * If the inode is not existent yet, add the orphan name and return 1.
2344 * This should only happen for the parent dir that we determine in
2345 * record_new_ref_if_needed().
2346 */
2347 ret = is_inode_existent(sctx, ino, gen, NULL, NULL);
2348 if (ret < 0)
2349 goto out;
2350
2351 if (!ret) {
2352 ret = gen_unique_name(sctx, ino, gen, dest);
2353 if (ret < 0)
2354 goto out;
2355 ret = 1;
2356 goto out_cache;
2357 }
2358
2359 /*
2360 * Depending on whether the inode was already processed or not, use
2361 * send_root or parent_root for ref lookup.
2362 */
2363 if (ino < sctx->send_progress)
2364 ret = get_first_ref(sctx->send_root, ino,
2365 parent_ino, parent_gen, dest);
2366 else
2367 ret = get_first_ref(sctx->parent_root, ino,
2368 parent_ino, parent_gen, dest);
2369 if (ret < 0)
2370 goto out;
2371
2372 /*
2373 * Check if the ref was overwritten by an inode's ref that was processed
2374 * earlier. If yes, treat as orphan and return 1.
2375 */
2376 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2377 dest->start, dest->end - dest->start);
2378 if (ret < 0)
2379 goto out;
2380 if (ret) {
2381 fs_path_reset(dest);
2382 ret = gen_unique_name(sctx, ino, gen, dest);
2383 if (ret < 0)
2384 goto out;
2385 ret = 1;
2386 }
2387
2388out_cache:
2389 /*
2390 * Store the result of the lookup in the name cache.
2391 */
2392 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2393 if (!nce) {
2394 ret = -ENOMEM;
2395 goto out;
2396 }
2397
2398 nce->entry.key = ino;
2399 nce->entry.gen = gen;
2400 nce->parent_ino = *parent_ino;
2401 nce->parent_gen = *parent_gen;
2402 nce->name_len = fs_path_len(dest);
2403 nce->ret = ret;
2404 strcpy(nce->name, dest->start);
2405
2406 if (ino < sctx->send_progress)
2407 nce->need_later_update = 0;
2408 else
2409 nce->need_later_update = 1;
2410
2411 nce_ret = btrfs_lru_cache_store(&sctx->name_cache, &nce->entry, GFP_KERNEL);
2412 if (nce_ret < 0) {
2413 kfree(nce);
2414 ret = nce_ret;
2415 }
2416
2417out:
2418 return ret;
2419}
2420
2421/*
2422 * Magic happens here. This function returns the first ref to an inode as it
2423 * would look like while receiving the stream at this point in time.
2424 * We walk the path up to the root. For every inode in between, we check if it
2425 * was already processed/sent. If yes, we continue with the parent as found
2426 * in send_root. If not, we continue with the parent as found in parent_root.
2427 * If we encounter an inode that was deleted at this point in time, we use the
2428 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2429 * that were not created yet and overwritten inodes/refs.
2430 *
2431 * When do we have orphan inodes:
2432 * 1. When an inode is freshly created and thus no valid refs are available yet
2433 * 2. When a directory lost all it's refs (deleted) but still has dir items
2434 * inside which were not processed yet (pending for move/delete). If anyone
2435 * tried to get the path to the dir items, it would get a path inside that
2436 * orphan directory.
2437 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2438 * of an unprocessed inode. If in that case the first ref would be
2439 * overwritten, the overwritten inode gets "orphanized". Later when we
2440 * process this overwritten inode, it is restored at a new place by moving
2441 * the orphan inode.
2442 *
2443 * sctx->send_progress tells this function at which point in time receiving
2444 * would be.
2445 */
2446static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2447 struct fs_path *dest)
2448{
2449 int ret = 0;
2450 struct fs_path *name = NULL;
2451 u64 parent_inode = 0;
2452 u64 parent_gen = 0;
2453 int stop = 0;
2454
2455 name = fs_path_alloc();
2456 if (!name) {
2457 ret = -ENOMEM;
2458 goto out;
2459 }
2460
2461 dest->reversed = 1;
2462 fs_path_reset(dest);
2463
2464 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2465 struct waiting_dir_move *wdm;
2466
2467 fs_path_reset(name);
2468
2469 if (is_waiting_for_rm(sctx, ino, gen)) {
2470 ret = gen_unique_name(sctx, ino, gen, name);
2471 if (ret < 0)
2472 goto out;
2473 ret = fs_path_add_path(dest, name);
2474 break;
2475 }
2476
2477 wdm = get_waiting_dir_move(sctx, ino);
2478 if (wdm && wdm->orphanized) {
2479 ret = gen_unique_name(sctx, ino, gen, name);
2480 stop = 1;
2481 } else if (wdm) {
2482 ret = get_first_ref(sctx->parent_root, ino,
2483 &parent_inode, &parent_gen, name);
2484 } else {
2485 ret = __get_cur_name_and_parent(sctx, ino, gen,
2486 &parent_inode,
2487 &parent_gen, name);
2488 if (ret)
2489 stop = 1;
2490 }
2491
2492 if (ret < 0)
2493 goto out;
2494
2495 ret = fs_path_add_path(dest, name);
2496 if (ret < 0)
2497 goto out;
2498
2499 ino = parent_inode;
2500 gen = parent_gen;
2501 }
2502
2503out:
2504 fs_path_free(name);
2505 if (!ret)
2506 fs_path_unreverse(dest);
2507 return ret;
2508}
2509
2510/*
2511 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2512 */
2513static int send_subvol_begin(struct send_ctx *sctx)
2514{
2515 int ret;
2516 struct btrfs_root *send_root = sctx->send_root;
2517 struct btrfs_root *parent_root = sctx->parent_root;
2518 struct btrfs_path *path;
2519 struct btrfs_key key;
2520 struct btrfs_root_ref *ref;
2521 struct extent_buffer *leaf;
2522 char *name = NULL;
2523 int namelen;
2524
2525 path = btrfs_alloc_path();
2526 if (!path)
2527 return -ENOMEM;
2528
2529 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2530 if (!name) {
2531 btrfs_free_path(path);
2532 return -ENOMEM;
2533 }
2534
2535 key.objectid = send_root->root_key.objectid;
2536 key.type = BTRFS_ROOT_BACKREF_KEY;
2537 key.offset = 0;
2538
2539 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2540 &key, path, 1, 0);
2541 if (ret < 0)
2542 goto out;
2543 if (ret) {
2544 ret = -ENOENT;
2545 goto out;
2546 }
2547
2548 leaf = path->nodes[0];
2549 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2550 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2551 key.objectid != send_root->root_key.objectid) {
2552 ret = -ENOENT;
2553 goto out;
2554 }
2555 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2556 namelen = btrfs_root_ref_name_len(leaf, ref);
2557 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2558 btrfs_release_path(path);
2559
2560 if (parent_root) {
2561 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2562 if (ret < 0)
2563 goto out;
2564 } else {
2565 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2566 if (ret < 0)
2567 goto out;
2568 }
2569
2570 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2571
2572 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2573 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2574 sctx->send_root->root_item.received_uuid);
2575 else
2576 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2577 sctx->send_root->root_item.uuid);
2578
2579 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2580 btrfs_root_ctransid(&sctx->send_root->root_item));
2581 if (parent_root) {
2582 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2583 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2584 parent_root->root_item.received_uuid);
2585 else
2586 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2587 parent_root->root_item.uuid);
2588 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2589 btrfs_root_ctransid(&sctx->parent_root->root_item));
2590 }
2591
2592 ret = send_cmd(sctx);
2593
2594tlv_put_failure:
2595out:
2596 btrfs_free_path(path);
2597 kfree(name);
2598 return ret;
2599}
2600
2601static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2602{
2603 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2604 int ret = 0;
2605 struct fs_path *p;
2606
2607 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2608
2609 p = fs_path_alloc();
2610 if (!p)
2611 return -ENOMEM;
2612
2613 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2614 if (ret < 0)
2615 goto out;
2616
2617 ret = get_cur_path(sctx, ino, gen, p);
2618 if (ret < 0)
2619 goto out;
2620 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2621 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2622
2623 ret = send_cmd(sctx);
2624
2625tlv_put_failure:
2626out:
2627 fs_path_free(p);
2628 return ret;
2629}
2630
2631static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2632{
2633 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2634 int ret = 0;
2635 struct fs_path *p;
2636
2637 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2638
2639 p = fs_path_alloc();
2640 if (!p)
2641 return -ENOMEM;
2642
2643 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2644 if (ret < 0)
2645 goto out;
2646
2647 ret = get_cur_path(sctx, ino, gen, p);
2648 if (ret < 0)
2649 goto out;
2650 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2651 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2652
2653 ret = send_cmd(sctx);
2654
2655tlv_put_failure:
2656out:
2657 fs_path_free(p);
2658 return ret;
2659}
2660
2661static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2662{
2663 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2664 int ret = 0;
2665 struct fs_path *p;
2666
2667 if (sctx->proto < 2)
2668 return 0;
2669
2670 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2671
2672 p = fs_path_alloc();
2673 if (!p)
2674 return -ENOMEM;
2675
2676 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2677 if (ret < 0)
2678 goto out;
2679
2680 ret = get_cur_path(sctx, ino, gen, p);
2681 if (ret < 0)
2682 goto out;
2683 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2684 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2685
2686 ret = send_cmd(sctx);
2687
2688tlv_put_failure:
2689out:
2690 fs_path_free(p);
2691 return ret;
2692}
2693
2694static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2695{
2696 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2697 int ret = 0;
2698 struct fs_path *p;
2699
2700 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2701 ino, uid, gid);
2702
2703 p = fs_path_alloc();
2704 if (!p)
2705 return -ENOMEM;
2706
2707 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2708 if (ret < 0)
2709 goto out;
2710
2711 ret = get_cur_path(sctx, ino, gen, p);
2712 if (ret < 0)
2713 goto out;
2714 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2715 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2716 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2717
2718 ret = send_cmd(sctx);
2719
2720tlv_put_failure:
2721out:
2722 fs_path_free(p);
2723 return ret;
2724}
2725
2726static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2727{
2728 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2729 int ret = 0;
2730 struct fs_path *p = NULL;
2731 struct btrfs_inode_item *ii;
2732 struct btrfs_path *path = NULL;
2733 struct extent_buffer *eb;
2734 struct btrfs_key key;
2735 int slot;
2736
2737 btrfs_debug(fs_info, "send_utimes %llu", ino);
2738
2739 p = fs_path_alloc();
2740 if (!p)
2741 return -ENOMEM;
2742
2743 path = alloc_path_for_send();
2744 if (!path) {
2745 ret = -ENOMEM;
2746 goto out;
2747 }
2748
2749 key.objectid = ino;
2750 key.type = BTRFS_INODE_ITEM_KEY;
2751 key.offset = 0;
2752 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2753 if (ret > 0)
2754 ret = -ENOENT;
2755 if (ret < 0)
2756 goto out;
2757
2758 eb = path->nodes[0];
2759 slot = path->slots[0];
2760 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2761
2762 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2763 if (ret < 0)
2764 goto out;
2765
2766 ret = get_cur_path(sctx, ino, gen, p);
2767 if (ret < 0)
2768 goto out;
2769 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2770 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2771 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2772 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2773 if (sctx->proto >= 2)
2774 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2775
2776 ret = send_cmd(sctx);
2777
2778tlv_put_failure:
2779out:
2780 fs_path_free(p);
2781 btrfs_free_path(path);
2782 return ret;
2783}
2784
2785/*
2786 * If the cache is full, we can't remove entries from it and do a call to
2787 * send_utimes() for each respective inode, because we might be finishing
2788 * processing an inode that is a directory and it just got renamed, and existing
2789 * entries in the cache may refer to inodes that have the directory in their
2790 * full path - in which case we would generate outdated paths (pre-rename)
2791 * for the inodes that the cache entries point to. Instead of prunning the
2792 * cache when inserting, do it after we finish processing each inode at
2793 * finish_inode_if_needed().
2794 */
2795static int cache_dir_utimes(struct send_ctx *sctx, u64 dir, u64 gen)
2796{
2797 struct btrfs_lru_cache_entry *entry;
2798 int ret;
2799
2800 entry = btrfs_lru_cache_lookup(&sctx->dir_utimes_cache, dir, gen);
2801 if (entry != NULL)
2802 return 0;
2803
2804 /* Caching is optional, don't fail if we can't allocate memory. */
2805 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2806 if (!entry)
2807 return send_utimes(sctx, dir, gen);
2808
2809 entry->key = dir;
2810 entry->gen = gen;
2811
2812 ret = btrfs_lru_cache_store(&sctx->dir_utimes_cache, entry, GFP_KERNEL);
2813 ASSERT(ret != -EEXIST);
2814 if (ret) {
2815 kfree(entry);
2816 return send_utimes(sctx, dir, gen);
2817 }
2818
2819 return 0;
2820}
2821
2822static int trim_dir_utimes_cache(struct send_ctx *sctx)
2823{
2824 while (sctx->dir_utimes_cache.size > SEND_MAX_DIR_UTIMES_CACHE_SIZE) {
2825 struct btrfs_lru_cache_entry *lru;
2826 int ret;
2827
2828 lru = btrfs_lru_cache_lru_entry(&sctx->dir_utimes_cache);
2829 ASSERT(lru != NULL);
2830
2831 ret = send_utimes(sctx, lru->key, lru->gen);
2832 if (ret)
2833 return ret;
2834
2835 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, lru);
2836 }
2837
2838 return 0;
2839}
2840
2841/*
2842 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2843 * a valid path yet because we did not process the refs yet. So, the inode
2844 * is created as orphan.
2845 */
2846static int send_create_inode(struct send_ctx *sctx, u64 ino)
2847{
2848 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2849 int ret = 0;
2850 struct fs_path *p;
2851 int cmd;
2852 struct btrfs_inode_info info;
2853 u64 gen;
2854 u64 mode;
2855 u64 rdev;
2856
2857 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2858
2859 p = fs_path_alloc();
2860 if (!p)
2861 return -ENOMEM;
2862
2863 if (ino != sctx->cur_ino) {
2864 ret = get_inode_info(sctx->send_root, ino, &info);
2865 if (ret < 0)
2866 goto out;
2867 gen = info.gen;
2868 mode = info.mode;
2869 rdev = info.rdev;
2870 } else {
2871 gen = sctx->cur_inode_gen;
2872 mode = sctx->cur_inode_mode;
2873 rdev = sctx->cur_inode_rdev;
2874 }
2875
2876 if (S_ISREG(mode)) {
2877 cmd = BTRFS_SEND_C_MKFILE;
2878 } else if (S_ISDIR(mode)) {
2879 cmd = BTRFS_SEND_C_MKDIR;
2880 } else if (S_ISLNK(mode)) {
2881 cmd = BTRFS_SEND_C_SYMLINK;
2882 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2883 cmd = BTRFS_SEND_C_MKNOD;
2884 } else if (S_ISFIFO(mode)) {
2885 cmd = BTRFS_SEND_C_MKFIFO;
2886 } else if (S_ISSOCK(mode)) {
2887 cmd = BTRFS_SEND_C_MKSOCK;
2888 } else {
2889 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2890 (int)(mode & S_IFMT));
2891 ret = -EOPNOTSUPP;
2892 goto out;
2893 }
2894
2895 ret = begin_cmd(sctx, cmd);
2896 if (ret < 0)
2897 goto out;
2898
2899 ret = gen_unique_name(sctx, ino, gen, p);
2900 if (ret < 0)
2901 goto out;
2902
2903 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2904 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2905
2906 if (S_ISLNK(mode)) {
2907 fs_path_reset(p);
2908 ret = read_symlink(sctx->send_root, ino, p);
2909 if (ret < 0)
2910 goto out;
2911 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2912 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2913 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2914 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2915 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2916 }
2917
2918 ret = send_cmd(sctx);
2919 if (ret < 0)
2920 goto out;
2921
2922
2923tlv_put_failure:
2924out:
2925 fs_path_free(p);
2926 return ret;
2927}
2928
2929static void cache_dir_created(struct send_ctx *sctx, u64 dir)
2930{
2931 struct btrfs_lru_cache_entry *entry;
2932 int ret;
2933
2934 /* Caching is optional, ignore any failures. */
2935 entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2936 if (!entry)
2937 return;
2938
2939 entry->key = dir;
2940 entry->gen = 0;
2941 ret = btrfs_lru_cache_store(&sctx->dir_created_cache, entry, GFP_KERNEL);
2942 if (ret < 0)
2943 kfree(entry);
2944}
2945
2946/*
2947 * We need some special handling for inodes that get processed before the parent
2948 * directory got created. See process_recorded_refs for details.
2949 * This function does the check if we already created the dir out of order.
2950 */
2951static int did_create_dir(struct send_ctx *sctx, u64 dir)
2952{
2953 int ret = 0;
2954 int iter_ret = 0;
2955 struct btrfs_path *path = NULL;
2956 struct btrfs_key key;
2957 struct btrfs_key found_key;
2958 struct btrfs_key di_key;
2959 struct btrfs_dir_item *di;
2960
2961 if (btrfs_lru_cache_lookup(&sctx->dir_created_cache, dir, 0))
2962 return 1;
2963
2964 path = alloc_path_for_send();
2965 if (!path)
2966 return -ENOMEM;
2967
2968 key.objectid = dir;
2969 key.type = BTRFS_DIR_INDEX_KEY;
2970 key.offset = 0;
2971
2972 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2973 struct extent_buffer *eb = path->nodes[0];
2974
2975 if (found_key.objectid != key.objectid ||
2976 found_key.type != key.type) {
2977 ret = 0;
2978 break;
2979 }
2980
2981 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2982 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2983
2984 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2985 di_key.objectid < sctx->send_progress) {
2986 ret = 1;
2987 cache_dir_created(sctx, dir);
2988 break;
2989 }
2990 }
2991 /* Catch error found during iteration */
2992 if (iter_ret < 0)
2993 ret = iter_ret;
2994
2995 btrfs_free_path(path);
2996 return ret;
2997}
2998
2999/*
3000 * Only creates the inode if it is:
3001 * 1. Not a directory
3002 * 2. Or a directory which was not created already due to out of order
3003 * directories. See did_create_dir and process_recorded_refs for details.
3004 */
3005static int send_create_inode_if_needed(struct send_ctx *sctx)
3006{
3007 int ret;
3008
3009 if (S_ISDIR(sctx->cur_inode_mode)) {
3010 ret = did_create_dir(sctx, sctx->cur_ino);
3011 if (ret < 0)
3012 return ret;
3013 else if (ret > 0)
3014 return 0;
3015 }
3016
3017 ret = send_create_inode(sctx, sctx->cur_ino);
3018
3019 if (ret == 0 && S_ISDIR(sctx->cur_inode_mode))
3020 cache_dir_created(sctx, sctx->cur_ino);
3021
3022 return ret;
3023}
3024
3025struct recorded_ref {
3026 struct list_head list;
3027 char *name;
3028 struct fs_path *full_path;
3029 u64 dir;
3030 u64 dir_gen;
3031 int name_len;
3032 struct rb_node node;
3033 struct rb_root *root;
3034};
3035
3036static struct recorded_ref *recorded_ref_alloc(void)
3037{
3038 struct recorded_ref *ref;
3039
3040 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
3041 if (!ref)
3042 return NULL;
3043 RB_CLEAR_NODE(&ref->node);
3044 INIT_LIST_HEAD(&ref->list);
3045 return ref;
3046}
3047
3048static void recorded_ref_free(struct recorded_ref *ref)
3049{
3050 if (!ref)
3051 return;
3052 if (!RB_EMPTY_NODE(&ref->node))
3053 rb_erase(&ref->node, ref->root);
3054 list_del(&ref->list);
3055 fs_path_free(ref->full_path);
3056 kfree(ref);
3057}
3058
3059static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
3060{
3061 ref->full_path = path;
3062 ref->name = (char *)kbasename(ref->full_path->start);
3063 ref->name_len = ref->full_path->end - ref->name;
3064}
3065
3066static int dup_ref(struct recorded_ref *ref, struct list_head *list)
3067{
3068 struct recorded_ref *new;
3069
3070 new = recorded_ref_alloc();
3071 if (!new)
3072 return -ENOMEM;
3073
3074 new->dir = ref->dir;
3075 new->dir_gen = ref->dir_gen;
3076 list_add_tail(&new->list, list);
3077 return 0;
3078}
3079
3080static void __free_recorded_refs(struct list_head *head)
3081{
3082 struct recorded_ref *cur;
3083
3084 while (!list_empty(head)) {
3085 cur = list_entry(head->next, struct recorded_ref, list);
3086 recorded_ref_free(cur);
3087 }
3088}
3089
3090static void free_recorded_refs(struct send_ctx *sctx)
3091{
3092 __free_recorded_refs(&sctx->new_refs);
3093 __free_recorded_refs(&sctx->deleted_refs);
3094}
3095
3096/*
3097 * Renames/moves a file/dir to its orphan name. Used when the first
3098 * ref of an unprocessed inode gets overwritten and for all non empty
3099 * directories.
3100 */
3101static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
3102 struct fs_path *path)
3103{
3104 int ret;
3105 struct fs_path *orphan;
3106
3107 orphan = fs_path_alloc();
3108 if (!orphan)
3109 return -ENOMEM;
3110
3111 ret = gen_unique_name(sctx, ino, gen, orphan);
3112 if (ret < 0)
3113 goto out;
3114
3115 ret = send_rename(sctx, path, orphan);
3116
3117out:
3118 fs_path_free(orphan);
3119 return ret;
3120}
3121
3122static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
3123 u64 dir_ino, u64 dir_gen)
3124{
3125 struct rb_node **p = &sctx->orphan_dirs.rb_node;
3126 struct rb_node *parent = NULL;
3127 struct orphan_dir_info *entry, *odi;
3128
3129 while (*p) {
3130 parent = *p;
3131 entry = rb_entry(parent, struct orphan_dir_info, node);
3132 if (dir_ino < entry->ino)
3133 p = &(*p)->rb_left;
3134 else if (dir_ino > entry->ino)
3135 p = &(*p)->rb_right;
3136 else if (dir_gen < entry->gen)
3137 p = &(*p)->rb_left;
3138 else if (dir_gen > entry->gen)
3139 p = &(*p)->rb_right;
3140 else
3141 return entry;
3142 }
3143
3144 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
3145 if (!odi)
3146 return ERR_PTR(-ENOMEM);
3147 odi->ino = dir_ino;
3148 odi->gen = dir_gen;
3149 odi->last_dir_index_offset = 0;
3150 odi->dir_high_seq_ino = 0;
3151
3152 rb_link_node(&odi->node, parent, p);
3153 rb_insert_color(&odi->node, &sctx->orphan_dirs);
3154 return odi;
3155}
3156
3157static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
3158 u64 dir_ino, u64 gen)
3159{
3160 struct rb_node *n = sctx->orphan_dirs.rb_node;
3161 struct orphan_dir_info *entry;
3162
3163 while (n) {
3164 entry = rb_entry(n, struct orphan_dir_info, node);
3165 if (dir_ino < entry->ino)
3166 n = n->rb_left;
3167 else if (dir_ino > entry->ino)
3168 n = n->rb_right;
3169 else if (gen < entry->gen)
3170 n = n->rb_left;
3171 else if (gen > entry->gen)
3172 n = n->rb_right;
3173 else
3174 return entry;
3175 }
3176 return NULL;
3177}
3178
3179static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
3180{
3181 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
3182
3183 return odi != NULL;
3184}
3185
3186static void free_orphan_dir_info(struct send_ctx *sctx,
3187 struct orphan_dir_info *odi)
3188{
3189 if (!odi)
3190 return;
3191 rb_erase(&odi->node, &sctx->orphan_dirs);
3192 kfree(odi);
3193}
3194
3195/*
3196 * Returns 1 if a directory can be removed at this point in time.
3197 * We check this by iterating all dir items and checking if the inode behind
3198 * the dir item was already processed.
3199 */
3200static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen)
3201{
3202 int ret = 0;
3203 int iter_ret = 0;
3204 struct btrfs_root *root = sctx->parent_root;
3205 struct btrfs_path *path;
3206 struct btrfs_key key;
3207 struct btrfs_key found_key;
3208 struct btrfs_key loc;
3209 struct btrfs_dir_item *di;
3210 struct orphan_dir_info *odi = NULL;
3211 u64 dir_high_seq_ino = 0;
3212 u64 last_dir_index_offset = 0;
3213
3214 /*
3215 * Don't try to rmdir the top/root subvolume dir.
3216 */
3217 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3218 return 0;
3219
3220 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3221 if (odi && sctx->cur_ino < odi->dir_high_seq_ino)
3222 return 0;
3223
3224 path = alloc_path_for_send();
3225 if (!path)
3226 return -ENOMEM;
3227
3228 if (!odi) {
3229 /*
3230 * Find the inode number associated with the last dir index
3231 * entry. This is very likely the inode with the highest number
3232 * of all inodes that have an entry in the directory. We can
3233 * then use it to avoid future calls to can_rmdir(), when
3234 * processing inodes with a lower number, from having to search
3235 * the parent root b+tree for dir index keys.
3236 */
3237 key.objectid = dir;
3238 key.type = BTRFS_DIR_INDEX_KEY;
3239 key.offset = (u64)-1;
3240
3241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3242 if (ret < 0) {
3243 goto out;
3244 } else if (ret > 0) {
3245 /* Can't happen, the root is never empty. */
3246 ASSERT(path->slots[0] > 0);
3247 if (WARN_ON(path->slots[0] == 0)) {
3248 ret = -EUCLEAN;
3249 goto out;
3250 }
3251 path->slots[0]--;
3252 }
3253
3254 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3255 if (key.objectid != dir || key.type != BTRFS_DIR_INDEX_KEY) {
3256 /* No index keys, dir can be removed. */
3257 ret = 1;
3258 goto out;
3259 }
3260
3261 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3262 struct btrfs_dir_item);
3263 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3264 dir_high_seq_ino = loc.objectid;
3265 if (sctx->cur_ino < dir_high_seq_ino) {
3266 ret = 0;
3267 goto out;
3268 }
3269
3270 btrfs_release_path(path);
3271 }
3272
3273 key.objectid = dir;
3274 key.type = BTRFS_DIR_INDEX_KEY;
3275 key.offset = (odi ? odi->last_dir_index_offset : 0);
3276
3277 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3278 struct waiting_dir_move *dm;
3279
3280 if (found_key.objectid != key.objectid ||
3281 found_key.type != key.type)
3282 break;
3283
3284 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3285 struct btrfs_dir_item);
3286 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3287
3288 dir_high_seq_ino = max(dir_high_seq_ino, loc.objectid);
3289 last_dir_index_offset = found_key.offset;
3290
3291 dm = get_waiting_dir_move(sctx, loc.objectid);
3292 if (dm) {
3293 dm->rmdir_ino = dir;
3294 dm->rmdir_gen = dir_gen;
3295 ret = 0;
3296 goto out;
3297 }
3298
3299 if (loc.objectid > sctx->cur_ino) {
3300 ret = 0;
3301 goto out;
3302 }
3303 }
3304 if (iter_ret < 0) {
3305 ret = iter_ret;
3306 goto out;
3307 }
3308 free_orphan_dir_info(sctx, odi);
3309
3310 ret = 1;
3311
3312out:
3313 btrfs_free_path(path);
3314
3315 if (ret)
3316 return ret;
3317
3318 if (!odi) {
3319 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3320 if (IS_ERR(odi))
3321 return PTR_ERR(odi);
3322
3323 odi->gen = dir_gen;
3324 }
3325
3326 odi->last_dir_index_offset = last_dir_index_offset;
3327 odi->dir_high_seq_ino = max(odi->dir_high_seq_ino, dir_high_seq_ino);
3328
3329 return 0;
3330}
3331
3332static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3333{
3334 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3335
3336 return entry != NULL;
3337}
3338
3339static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3340{
3341 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3342 struct rb_node *parent = NULL;
3343 struct waiting_dir_move *entry, *dm;
3344
3345 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3346 if (!dm)
3347 return -ENOMEM;
3348 dm->ino = ino;
3349 dm->rmdir_ino = 0;
3350 dm->rmdir_gen = 0;
3351 dm->orphanized = orphanized;
3352
3353 while (*p) {
3354 parent = *p;
3355 entry = rb_entry(parent, struct waiting_dir_move, node);
3356 if (ino < entry->ino) {
3357 p = &(*p)->rb_left;
3358 } else if (ino > entry->ino) {
3359 p = &(*p)->rb_right;
3360 } else {
3361 kfree(dm);
3362 return -EEXIST;
3363 }
3364 }
3365
3366 rb_link_node(&dm->node, parent, p);
3367 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3368 return 0;
3369}
3370
3371static struct waiting_dir_move *
3372get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3373{
3374 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3375 struct waiting_dir_move *entry;
3376
3377 while (n) {
3378 entry = rb_entry(n, struct waiting_dir_move, node);
3379 if (ino < entry->ino)
3380 n = n->rb_left;
3381 else if (ino > entry->ino)
3382 n = n->rb_right;
3383 else
3384 return entry;
3385 }
3386 return NULL;
3387}
3388
3389static void free_waiting_dir_move(struct send_ctx *sctx,
3390 struct waiting_dir_move *dm)
3391{
3392 if (!dm)
3393 return;
3394 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3395 kfree(dm);
3396}
3397
3398static int add_pending_dir_move(struct send_ctx *sctx,
3399 u64 ino,
3400 u64 ino_gen,
3401 u64 parent_ino,
3402 struct list_head *new_refs,
3403 struct list_head *deleted_refs,
3404 const bool is_orphan)
3405{
3406 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3407 struct rb_node *parent = NULL;
3408 struct pending_dir_move *entry = NULL, *pm;
3409 struct recorded_ref *cur;
3410 int exists = 0;
3411 int ret;
3412
3413 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3414 if (!pm)
3415 return -ENOMEM;
3416 pm->parent_ino = parent_ino;
3417 pm->ino = ino;
3418 pm->gen = ino_gen;
3419 INIT_LIST_HEAD(&pm->list);
3420 INIT_LIST_HEAD(&pm->update_refs);
3421 RB_CLEAR_NODE(&pm->node);
3422
3423 while (*p) {
3424 parent = *p;
3425 entry = rb_entry(parent, struct pending_dir_move, node);
3426 if (parent_ino < entry->parent_ino) {
3427 p = &(*p)->rb_left;
3428 } else if (parent_ino > entry->parent_ino) {
3429 p = &(*p)->rb_right;
3430 } else {
3431 exists = 1;
3432 break;
3433 }
3434 }
3435
3436 list_for_each_entry(cur, deleted_refs, list) {
3437 ret = dup_ref(cur, &pm->update_refs);
3438 if (ret < 0)
3439 goto out;
3440 }
3441 list_for_each_entry(cur, new_refs, list) {
3442 ret = dup_ref(cur, &pm->update_refs);
3443 if (ret < 0)
3444 goto out;
3445 }
3446
3447 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3448 if (ret)
3449 goto out;
3450
3451 if (exists) {
3452 list_add_tail(&pm->list, &entry->list);
3453 } else {
3454 rb_link_node(&pm->node, parent, p);
3455 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3456 }
3457 ret = 0;
3458out:
3459 if (ret) {
3460 __free_recorded_refs(&pm->update_refs);
3461 kfree(pm);
3462 }
3463 return ret;
3464}
3465
3466static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3467 u64 parent_ino)
3468{
3469 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3470 struct pending_dir_move *entry;
3471
3472 while (n) {
3473 entry = rb_entry(n, struct pending_dir_move, node);
3474 if (parent_ino < entry->parent_ino)
3475 n = n->rb_left;
3476 else if (parent_ino > entry->parent_ino)
3477 n = n->rb_right;
3478 else
3479 return entry;
3480 }
3481 return NULL;
3482}
3483
3484static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3485 u64 ino, u64 gen, u64 *ancestor_ino)
3486{
3487 int ret = 0;
3488 u64 parent_inode = 0;
3489 u64 parent_gen = 0;
3490 u64 start_ino = ino;
3491
3492 *ancestor_ino = 0;
3493 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3494 fs_path_reset(name);
3495
3496 if (is_waiting_for_rm(sctx, ino, gen))
3497 break;
3498 if (is_waiting_for_move(sctx, ino)) {
3499 if (*ancestor_ino == 0)
3500 *ancestor_ino = ino;
3501 ret = get_first_ref(sctx->parent_root, ino,
3502 &parent_inode, &parent_gen, name);
3503 } else {
3504 ret = __get_cur_name_and_parent(sctx, ino, gen,
3505 &parent_inode,
3506 &parent_gen, name);
3507 if (ret > 0) {
3508 ret = 0;
3509 break;
3510 }
3511 }
3512 if (ret < 0)
3513 break;
3514 if (parent_inode == start_ino) {
3515 ret = 1;
3516 if (*ancestor_ino == 0)
3517 *ancestor_ino = ino;
3518 break;
3519 }
3520 ino = parent_inode;
3521 gen = parent_gen;
3522 }
3523 return ret;
3524}
3525
3526static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3527{
3528 struct fs_path *from_path = NULL;
3529 struct fs_path *to_path = NULL;
3530 struct fs_path *name = NULL;
3531 u64 orig_progress = sctx->send_progress;
3532 struct recorded_ref *cur;
3533 u64 parent_ino, parent_gen;
3534 struct waiting_dir_move *dm = NULL;
3535 u64 rmdir_ino = 0;
3536 u64 rmdir_gen;
3537 u64 ancestor;
3538 bool is_orphan;
3539 int ret;
3540
3541 name = fs_path_alloc();
3542 from_path = fs_path_alloc();
3543 if (!name || !from_path) {
3544 ret = -ENOMEM;
3545 goto out;
3546 }
3547
3548 dm = get_waiting_dir_move(sctx, pm->ino);
3549 ASSERT(dm);
3550 rmdir_ino = dm->rmdir_ino;
3551 rmdir_gen = dm->rmdir_gen;
3552 is_orphan = dm->orphanized;
3553 free_waiting_dir_move(sctx, dm);
3554
3555 if (is_orphan) {
3556 ret = gen_unique_name(sctx, pm->ino,
3557 pm->gen, from_path);
3558 } else {
3559 ret = get_first_ref(sctx->parent_root, pm->ino,
3560 &parent_ino, &parent_gen, name);
3561 if (ret < 0)
3562 goto out;
3563 ret = get_cur_path(sctx, parent_ino, parent_gen,
3564 from_path);
3565 if (ret < 0)
3566 goto out;
3567 ret = fs_path_add_path(from_path, name);
3568 }
3569 if (ret < 0)
3570 goto out;
3571
3572 sctx->send_progress = sctx->cur_ino + 1;
3573 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3574 if (ret < 0)
3575 goto out;
3576 if (ret) {
3577 LIST_HEAD(deleted_refs);
3578 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3579 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3580 &pm->update_refs, &deleted_refs,
3581 is_orphan);
3582 if (ret < 0)
3583 goto out;
3584 if (rmdir_ino) {
3585 dm = get_waiting_dir_move(sctx, pm->ino);
3586 ASSERT(dm);
3587 dm->rmdir_ino = rmdir_ino;
3588 dm->rmdir_gen = rmdir_gen;
3589 }
3590 goto out;
3591 }
3592 fs_path_reset(name);
3593 to_path = name;
3594 name = NULL;
3595 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3596 if (ret < 0)
3597 goto out;
3598
3599 ret = send_rename(sctx, from_path, to_path);
3600 if (ret < 0)
3601 goto out;
3602
3603 if (rmdir_ino) {
3604 struct orphan_dir_info *odi;
3605 u64 gen;
3606
3607 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3608 if (!odi) {
3609 /* already deleted */
3610 goto finish;
3611 }
3612 gen = odi->gen;
3613
3614 ret = can_rmdir(sctx, rmdir_ino, gen);
3615 if (ret < 0)
3616 goto out;
3617 if (!ret)
3618 goto finish;
3619
3620 name = fs_path_alloc();
3621 if (!name) {
3622 ret = -ENOMEM;
3623 goto out;
3624 }
3625 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3626 if (ret < 0)
3627 goto out;
3628 ret = send_rmdir(sctx, name);
3629 if (ret < 0)
3630 goto out;
3631 }
3632
3633finish:
3634 ret = cache_dir_utimes(sctx, pm->ino, pm->gen);
3635 if (ret < 0)
3636 goto out;
3637
3638 /*
3639 * After rename/move, need to update the utimes of both new parent(s)
3640 * and old parent(s).
3641 */
3642 list_for_each_entry(cur, &pm->update_refs, list) {
3643 /*
3644 * The parent inode might have been deleted in the send snapshot
3645 */
3646 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3647 if (ret == -ENOENT) {
3648 ret = 0;
3649 continue;
3650 }
3651 if (ret < 0)
3652 goto out;
3653
3654 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
3655 if (ret < 0)
3656 goto out;
3657 }
3658
3659out:
3660 fs_path_free(name);
3661 fs_path_free(from_path);
3662 fs_path_free(to_path);
3663 sctx->send_progress = orig_progress;
3664
3665 return ret;
3666}
3667
3668static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3669{
3670 if (!list_empty(&m->list))
3671 list_del(&m->list);
3672 if (!RB_EMPTY_NODE(&m->node))
3673 rb_erase(&m->node, &sctx->pending_dir_moves);
3674 __free_recorded_refs(&m->update_refs);
3675 kfree(m);
3676}
3677
3678static void tail_append_pending_moves(struct send_ctx *sctx,
3679 struct pending_dir_move *moves,
3680 struct list_head *stack)
3681{
3682 if (list_empty(&moves->list)) {
3683 list_add_tail(&moves->list, stack);
3684 } else {
3685 LIST_HEAD(list);
3686 list_splice_init(&moves->list, &list);
3687 list_add_tail(&moves->list, stack);
3688 list_splice_tail(&list, stack);
3689 }
3690 if (!RB_EMPTY_NODE(&moves->node)) {
3691 rb_erase(&moves->node, &sctx->pending_dir_moves);
3692 RB_CLEAR_NODE(&moves->node);
3693 }
3694}
3695
3696static int apply_children_dir_moves(struct send_ctx *sctx)
3697{
3698 struct pending_dir_move *pm;
3699 LIST_HEAD(stack);
3700 u64 parent_ino = sctx->cur_ino;
3701 int ret = 0;
3702
3703 pm = get_pending_dir_moves(sctx, parent_ino);
3704 if (!pm)
3705 return 0;
3706
3707 tail_append_pending_moves(sctx, pm, &stack);
3708
3709 while (!list_empty(&stack)) {
3710 pm = list_first_entry(&stack, struct pending_dir_move, list);
3711 parent_ino = pm->ino;
3712 ret = apply_dir_move(sctx, pm);
3713 free_pending_move(sctx, pm);
3714 if (ret)
3715 goto out;
3716 pm = get_pending_dir_moves(sctx, parent_ino);
3717 if (pm)
3718 tail_append_pending_moves(sctx, pm, &stack);
3719 }
3720 return 0;
3721
3722out:
3723 while (!list_empty(&stack)) {
3724 pm = list_first_entry(&stack, struct pending_dir_move, list);
3725 free_pending_move(sctx, pm);
3726 }
3727 return ret;
3728}
3729
3730/*
3731 * We might need to delay a directory rename even when no ancestor directory
3732 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3733 * renamed. This happens when we rename a directory to the old name (the name
3734 * in the parent root) of some other unrelated directory that got its rename
3735 * delayed due to some ancestor with higher number that got renamed.
3736 *
3737 * Example:
3738 *
3739 * Parent snapshot:
3740 * . (ino 256)
3741 * |---- a/ (ino 257)
3742 * | |---- file (ino 260)
3743 * |
3744 * |---- b/ (ino 258)
3745 * |---- c/ (ino 259)
3746 *
3747 * Send snapshot:
3748 * . (ino 256)
3749 * |---- a/ (ino 258)
3750 * |---- x/ (ino 259)
3751 * |---- y/ (ino 257)
3752 * |----- file (ino 260)
3753 *
3754 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3755 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3756 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3757 * must issue is:
3758 *
3759 * 1 - rename 259 from 'c' to 'x'
3760 * 2 - rename 257 from 'a' to 'x/y'
3761 * 3 - rename 258 from 'b' to 'a'
3762 *
3763 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3764 * be done right away and < 0 on error.
3765 */
3766static int wait_for_dest_dir_move(struct send_ctx *sctx,
3767 struct recorded_ref *parent_ref,
3768 const bool is_orphan)
3769{
3770 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3771 struct btrfs_path *path;
3772 struct btrfs_key key;
3773 struct btrfs_key di_key;
3774 struct btrfs_dir_item *di;
3775 u64 left_gen;
3776 u64 right_gen;
3777 int ret = 0;
3778 struct waiting_dir_move *wdm;
3779
3780 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3781 return 0;
3782
3783 path = alloc_path_for_send();
3784 if (!path)
3785 return -ENOMEM;
3786
3787 key.objectid = parent_ref->dir;
3788 key.type = BTRFS_DIR_ITEM_KEY;
3789 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3790
3791 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3792 if (ret < 0) {
3793 goto out;
3794 } else if (ret > 0) {
3795 ret = 0;
3796 goto out;
3797 }
3798
3799 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3800 parent_ref->name_len);
3801 if (!di) {
3802 ret = 0;
3803 goto out;
3804 }
3805 /*
3806 * di_key.objectid has the number of the inode that has a dentry in the
3807 * parent directory with the same name that sctx->cur_ino is being
3808 * renamed to. We need to check if that inode is in the send root as
3809 * well and if it is currently marked as an inode with a pending rename,
3810 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3811 * that it happens after that other inode is renamed.
3812 */
3813 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3814 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3815 ret = 0;
3816 goto out;
3817 }
3818
3819 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3820 if (ret < 0)
3821 goto out;
3822 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3823 if (ret < 0) {
3824 if (ret == -ENOENT)
3825 ret = 0;
3826 goto out;
3827 }
3828
3829 /* Different inode, no need to delay the rename of sctx->cur_ino */
3830 if (right_gen != left_gen) {
3831 ret = 0;
3832 goto out;
3833 }
3834
3835 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3836 if (wdm && !wdm->orphanized) {
3837 ret = add_pending_dir_move(sctx,
3838 sctx->cur_ino,
3839 sctx->cur_inode_gen,
3840 di_key.objectid,
3841 &sctx->new_refs,
3842 &sctx->deleted_refs,
3843 is_orphan);
3844 if (!ret)
3845 ret = 1;
3846 }
3847out:
3848 btrfs_free_path(path);
3849 return ret;
3850}
3851
3852/*
3853 * Check if inode ino2, or any of its ancestors, is inode ino1.
3854 * Return 1 if true, 0 if false and < 0 on error.
3855 */
3856static int check_ino_in_path(struct btrfs_root *root,
3857 const u64 ino1,
3858 const u64 ino1_gen,
3859 const u64 ino2,
3860 const u64 ino2_gen,
3861 struct fs_path *fs_path)
3862{
3863 u64 ino = ino2;
3864
3865 if (ino1 == ino2)
3866 return ino1_gen == ino2_gen;
3867
3868 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3869 u64 parent;
3870 u64 parent_gen;
3871 int ret;
3872
3873 fs_path_reset(fs_path);
3874 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3875 if (ret < 0)
3876 return ret;
3877 if (parent == ino1)
3878 return parent_gen == ino1_gen;
3879 ino = parent;
3880 }
3881 return 0;
3882}
3883
3884/*
3885 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3886 * possible path (in case ino2 is not a directory and has multiple hard links).
3887 * Return 1 if true, 0 if false and < 0 on error.
3888 */
3889static int is_ancestor(struct btrfs_root *root,
3890 const u64 ino1,
3891 const u64 ino1_gen,
3892 const u64 ino2,
3893 struct fs_path *fs_path)
3894{
3895 bool free_fs_path = false;
3896 int ret = 0;
3897 int iter_ret = 0;
3898 struct btrfs_path *path = NULL;
3899 struct btrfs_key key;
3900
3901 if (!fs_path) {
3902 fs_path = fs_path_alloc();
3903 if (!fs_path)
3904 return -ENOMEM;
3905 free_fs_path = true;
3906 }
3907
3908 path = alloc_path_for_send();
3909 if (!path) {
3910 ret = -ENOMEM;
3911 goto out;
3912 }
3913
3914 key.objectid = ino2;
3915 key.type = BTRFS_INODE_REF_KEY;
3916 key.offset = 0;
3917
3918 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3919 struct extent_buffer *leaf = path->nodes[0];
3920 int slot = path->slots[0];
3921 u32 cur_offset = 0;
3922 u32 item_size;
3923
3924 if (key.objectid != ino2)
3925 break;
3926 if (key.type != BTRFS_INODE_REF_KEY &&
3927 key.type != BTRFS_INODE_EXTREF_KEY)
3928 break;
3929
3930 item_size = btrfs_item_size(leaf, slot);
3931 while (cur_offset < item_size) {
3932 u64 parent;
3933 u64 parent_gen;
3934
3935 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3936 unsigned long ptr;
3937 struct btrfs_inode_extref *extref;
3938
3939 ptr = btrfs_item_ptr_offset(leaf, slot);
3940 extref = (struct btrfs_inode_extref *)
3941 (ptr + cur_offset);
3942 parent = btrfs_inode_extref_parent(leaf,
3943 extref);
3944 cur_offset += sizeof(*extref);
3945 cur_offset += btrfs_inode_extref_name_len(leaf,
3946 extref);
3947 } else {
3948 parent = key.offset;
3949 cur_offset = item_size;
3950 }
3951
3952 ret = get_inode_gen(root, parent, &parent_gen);
3953 if (ret < 0)
3954 goto out;
3955 ret = check_ino_in_path(root, ino1, ino1_gen,
3956 parent, parent_gen, fs_path);
3957 if (ret)
3958 goto out;
3959 }
3960 }
3961 ret = 0;
3962 if (iter_ret < 0)
3963 ret = iter_ret;
3964
3965out:
3966 btrfs_free_path(path);
3967 if (free_fs_path)
3968 fs_path_free(fs_path);
3969 return ret;
3970}
3971
3972static int wait_for_parent_move(struct send_ctx *sctx,
3973 struct recorded_ref *parent_ref,
3974 const bool is_orphan)
3975{
3976 int ret = 0;
3977 u64 ino = parent_ref->dir;
3978 u64 ino_gen = parent_ref->dir_gen;
3979 u64 parent_ino_before, parent_ino_after;
3980 struct fs_path *path_before = NULL;
3981 struct fs_path *path_after = NULL;
3982 int len1, len2;
3983
3984 path_after = fs_path_alloc();
3985 path_before = fs_path_alloc();
3986 if (!path_after || !path_before) {
3987 ret = -ENOMEM;
3988 goto out;
3989 }
3990
3991 /*
3992 * Our current directory inode may not yet be renamed/moved because some
3993 * ancestor (immediate or not) has to be renamed/moved first. So find if
3994 * such ancestor exists and make sure our own rename/move happens after
3995 * that ancestor is processed to avoid path build infinite loops (done
3996 * at get_cur_path()).
3997 */
3998 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3999 u64 parent_ino_after_gen;
4000
4001 if (is_waiting_for_move(sctx, ino)) {
4002 /*
4003 * If the current inode is an ancestor of ino in the
4004 * parent root, we need to delay the rename of the
4005 * current inode, otherwise don't delayed the rename
4006 * because we can end up with a circular dependency
4007 * of renames, resulting in some directories never
4008 * getting the respective rename operations issued in
4009 * the send stream or getting into infinite path build
4010 * loops.
4011 */
4012 ret = is_ancestor(sctx->parent_root,
4013 sctx->cur_ino, sctx->cur_inode_gen,
4014 ino, path_before);
4015 if (ret)
4016 break;
4017 }
4018
4019 fs_path_reset(path_before);
4020 fs_path_reset(path_after);
4021
4022 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
4023 &parent_ino_after_gen, path_after);
4024 if (ret < 0)
4025 goto out;
4026 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
4027 NULL, path_before);
4028 if (ret < 0 && ret != -ENOENT) {
4029 goto out;
4030 } else if (ret == -ENOENT) {
4031 ret = 0;
4032 break;
4033 }
4034
4035 len1 = fs_path_len(path_before);
4036 len2 = fs_path_len(path_after);
4037 if (ino > sctx->cur_ino &&
4038 (parent_ino_before != parent_ino_after || len1 != len2 ||
4039 memcmp(path_before->start, path_after->start, len1))) {
4040 u64 parent_ino_gen;
4041
4042 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
4043 if (ret < 0)
4044 goto out;
4045 if (ino_gen == parent_ino_gen) {
4046 ret = 1;
4047 break;
4048 }
4049 }
4050 ino = parent_ino_after;
4051 ino_gen = parent_ino_after_gen;
4052 }
4053
4054out:
4055 fs_path_free(path_before);
4056 fs_path_free(path_after);
4057
4058 if (ret == 1) {
4059 ret = add_pending_dir_move(sctx,
4060 sctx->cur_ino,
4061 sctx->cur_inode_gen,
4062 ino,
4063 &sctx->new_refs,
4064 &sctx->deleted_refs,
4065 is_orphan);
4066 if (!ret)
4067 ret = 1;
4068 }
4069
4070 return ret;
4071}
4072
4073static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4074{
4075 int ret;
4076 struct fs_path *new_path;
4077
4078 /*
4079 * Our reference's name member points to its full_path member string, so
4080 * we use here a new path.
4081 */
4082 new_path = fs_path_alloc();
4083 if (!new_path)
4084 return -ENOMEM;
4085
4086 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
4087 if (ret < 0) {
4088 fs_path_free(new_path);
4089 return ret;
4090 }
4091 ret = fs_path_add(new_path, ref->name, ref->name_len);
4092 if (ret < 0) {
4093 fs_path_free(new_path);
4094 return ret;
4095 }
4096
4097 fs_path_free(ref->full_path);
4098 set_ref_path(ref, new_path);
4099
4100 return 0;
4101}
4102
4103/*
4104 * When processing the new references for an inode we may orphanize an existing
4105 * directory inode because its old name conflicts with one of the new references
4106 * of the current inode. Later, when processing another new reference of our
4107 * inode, we might need to orphanize another inode, but the path we have in the
4108 * reference reflects the pre-orphanization name of the directory we previously
4109 * orphanized. For example:
4110 *
4111 * parent snapshot looks like:
4112 *
4113 * . (ino 256)
4114 * |----- f1 (ino 257)
4115 * |----- f2 (ino 258)
4116 * |----- d1/ (ino 259)
4117 * |----- d2/ (ino 260)
4118 *
4119 * send snapshot looks like:
4120 *
4121 * . (ino 256)
4122 * |----- d1 (ino 258)
4123 * |----- f2/ (ino 259)
4124 * |----- f2_link/ (ino 260)
4125 * | |----- f1 (ino 257)
4126 * |
4127 * |----- d2 (ino 258)
4128 *
4129 * When processing inode 257 we compute the name for inode 259 as "d1", and we
4130 * cache it in the name cache. Later when we start processing inode 258, when
4131 * collecting all its new references we set a full path of "d1/d2" for its new
4132 * reference with name "d2". When we start processing the new references we
4133 * start by processing the new reference with name "d1", and this results in
4134 * orphanizing inode 259, since its old reference causes a conflict. Then we
4135 * move on the next new reference, with name "d2", and we find out we must
4136 * orphanize inode 260, as its old reference conflicts with ours - but for the
4137 * orphanization we use a source path corresponding to the path we stored in the
4138 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
4139 * receiver fail since the path component "d1/" no longer exists, it was renamed
4140 * to "o259-6-0/" when processing the previous new reference. So in this case we
4141 * must recompute the path in the new reference and use it for the new
4142 * orphanization operation.
4143 */
4144static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
4145{
4146 char *name;
4147 int ret;
4148
4149 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
4150 if (!name)
4151 return -ENOMEM;
4152
4153 fs_path_reset(ref->full_path);
4154 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
4155 if (ret < 0)
4156 goto out;
4157
4158 ret = fs_path_add(ref->full_path, name, ref->name_len);
4159 if (ret < 0)
4160 goto out;
4161
4162 /* Update the reference's base name pointer. */
4163 set_ref_path(ref, ref->full_path);
4164out:
4165 kfree(name);
4166 return ret;
4167}
4168
4169/*
4170 * This does all the move/link/unlink/rmdir magic.
4171 */
4172static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
4173{
4174 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4175 int ret = 0;
4176 struct recorded_ref *cur;
4177 struct recorded_ref *cur2;
4178 LIST_HEAD(check_dirs);
4179 struct fs_path *valid_path = NULL;
4180 u64 ow_inode = 0;
4181 u64 ow_gen;
4182 u64 ow_mode;
4183 int did_overwrite = 0;
4184 int is_orphan = 0;
4185 u64 last_dir_ino_rm = 0;
4186 bool can_rename = true;
4187 bool orphanized_dir = false;
4188 bool orphanized_ancestor = false;
4189
4190 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
4191
4192 /*
4193 * This should never happen as the root dir always has the same ref
4194 * which is always '..'
4195 */
4196 if (unlikely(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID)) {
4197 btrfs_err(fs_info,
4198 "send: unexpected inode %llu in process_recorded_refs()",
4199 sctx->cur_ino);
4200 ret = -EINVAL;
4201 goto out;
4202 }
4203
4204 valid_path = fs_path_alloc();
4205 if (!valid_path) {
4206 ret = -ENOMEM;
4207 goto out;
4208 }
4209
4210 /*
4211 * First, check if the first ref of the current inode was overwritten
4212 * before. If yes, we know that the current inode was already orphanized
4213 * and thus use the orphan name. If not, we can use get_cur_path to
4214 * get the path of the first ref as it would like while receiving at
4215 * this point in time.
4216 * New inodes are always orphan at the beginning, so force to use the
4217 * orphan name in this case.
4218 * The first ref is stored in valid_path and will be updated if it
4219 * gets moved around.
4220 */
4221 if (!sctx->cur_inode_new) {
4222 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
4223 sctx->cur_inode_gen);
4224 if (ret < 0)
4225 goto out;
4226 if (ret)
4227 did_overwrite = 1;
4228 }
4229 if (sctx->cur_inode_new || did_overwrite) {
4230 ret = gen_unique_name(sctx, sctx->cur_ino,
4231 sctx->cur_inode_gen, valid_path);
4232 if (ret < 0)
4233 goto out;
4234 is_orphan = 1;
4235 } else {
4236 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4237 valid_path);
4238 if (ret < 0)
4239 goto out;
4240 }
4241
4242 /*
4243 * Before doing any rename and link operations, do a first pass on the
4244 * new references to orphanize any unprocessed inodes that may have a
4245 * reference that conflicts with one of the new references of the current
4246 * inode. This needs to happen first because a new reference may conflict
4247 * with the old reference of a parent directory, so we must make sure
4248 * that the path used for link and rename commands don't use an
4249 * orphanized name when an ancestor was not yet orphanized.
4250 *
4251 * Example:
4252 *
4253 * Parent snapshot:
4254 *
4255 * . (ino 256)
4256 * |----- testdir/ (ino 259)
4257 * | |----- a (ino 257)
4258 * |
4259 * |----- b (ino 258)
4260 *
4261 * Send snapshot:
4262 *
4263 * . (ino 256)
4264 * |----- testdir_2/ (ino 259)
4265 * | |----- a (ino 260)
4266 * |
4267 * |----- testdir (ino 257)
4268 * |----- b (ino 257)
4269 * |----- b2 (ino 258)
4270 *
4271 * Processing the new reference for inode 257 with name "b" may happen
4272 * before processing the new reference with name "testdir". If so, we
4273 * must make sure that by the time we send a link command to create the
4274 * hard link "b", inode 259 was already orphanized, since the generated
4275 * path in "valid_path" already contains the orphanized name for 259.
4276 * We are processing inode 257, so only later when processing 259 we do
4277 * the rename operation to change its temporary (orphanized) name to
4278 * "testdir_2".
4279 */
4280 list_for_each_entry(cur, &sctx->new_refs, list) {
4281 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4282 if (ret < 0)
4283 goto out;
4284 if (ret == inode_state_will_create)
4285 continue;
4286
4287 /*
4288 * Check if this new ref would overwrite the first ref of another
4289 * unprocessed inode. If yes, orphanize the overwritten inode.
4290 * If we find an overwritten ref that is not the first ref,
4291 * simply unlink it.
4292 */
4293 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4294 cur->name, cur->name_len,
4295 &ow_inode, &ow_gen, &ow_mode);
4296 if (ret < 0)
4297 goto out;
4298 if (ret) {
4299 ret = is_first_ref(sctx->parent_root,
4300 ow_inode, cur->dir, cur->name,
4301 cur->name_len);
4302 if (ret < 0)
4303 goto out;
4304 if (ret) {
4305 struct name_cache_entry *nce;
4306 struct waiting_dir_move *wdm;
4307
4308 if (orphanized_dir) {
4309 ret = refresh_ref_path(sctx, cur);
4310 if (ret < 0)
4311 goto out;
4312 }
4313
4314 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4315 cur->full_path);
4316 if (ret < 0)
4317 goto out;
4318 if (S_ISDIR(ow_mode))
4319 orphanized_dir = true;
4320
4321 /*
4322 * If ow_inode has its rename operation delayed
4323 * make sure that its orphanized name is used in
4324 * the source path when performing its rename
4325 * operation.
4326 */
4327 wdm = get_waiting_dir_move(sctx, ow_inode);
4328 if (wdm)
4329 wdm->orphanized = true;
4330
4331 /*
4332 * Make sure we clear our orphanized inode's
4333 * name from the name cache. This is because the
4334 * inode ow_inode might be an ancestor of some
4335 * other inode that will be orphanized as well
4336 * later and has an inode number greater than
4337 * sctx->send_progress. We need to prevent
4338 * future name lookups from using the old name
4339 * and get instead the orphan name.
4340 */
4341 nce = name_cache_search(sctx, ow_inode, ow_gen);
4342 if (nce)
4343 btrfs_lru_cache_remove(&sctx->name_cache,
4344 &nce->entry);
4345
4346 /*
4347 * ow_inode might currently be an ancestor of
4348 * cur_ino, therefore compute valid_path (the
4349 * current path of cur_ino) again because it
4350 * might contain the pre-orphanization name of
4351 * ow_inode, which is no longer valid.
4352 */
4353 ret = is_ancestor(sctx->parent_root,
4354 ow_inode, ow_gen,
4355 sctx->cur_ino, NULL);
4356 if (ret > 0) {
4357 orphanized_ancestor = true;
4358 fs_path_reset(valid_path);
4359 ret = get_cur_path(sctx, sctx->cur_ino,
4360 sctx->cur_inode_gen,
4361 valid_path);
4362 }
4363 if (ret < 0)
4364 goto out;
4365 } else {
4366 /*
4367 * If we previously orphanized a directory that
4368 * collided with a new reference that we already
4369 * processed, recompute the current path because
4370 * that directory may be part of the path.
4371 */
4372 if (orphanized_dir) {
4373 ret = refresh_ref_path(sctx, cur);
4374 if (ret < 0)
4375 goto out;
4376 }
4377 ret = send_unlink(sctx, cur->full_path);
4378 if (ret < 0)
4379 goto out;
4380 }
4381 }
4382
4383 }
4384
4385 list_for_each_entry(cur, &sctx->new_refs, list) {
4386 /*
4387 * We may have refs where the parent directory does not exist
4388 * yet. This happens if the parent directories inum is higher
4389 * than the current inum. To handle this case, we create the
4390 * parent directory out of order. But we need to check if this
4391 * did already happen before due to other refs in the same dir.
4392 */
4393 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4394 if (ret < 0)
4395 goto out;
4396 if (ret == inode_state_will_create) {
4397 ret = 0;
4398 /*
4399 * First check if any of the current inodes refs did
4400 * already create the dir.
4401 */
4402 list_for_each_entry(cur2, &sctx->new_refs, list) {
4403 if (cur == cur2)
4404 break;
4405 if (cur2->dir == cur->dir) {
4406 ret = 1;
4407 break;
4408 }
4409 }
4410
4411 /*
4412 * If that did not happen, check if a previous inode
4413 * did already create the dir.
4414 */
4415 if (!ret)
4416 ret = did_create_dir(sctx, cur->dir);
4417 if (ret < 0)
4418 goto out;
4419 if (!ret) {
4420 ret = send_create_inode(sctx, cur->dir);
4421 if (ret < 0)
4422 goto out;
4423 cache_dir_created(sctx, cur->dir);
4424 }
4425 }
4426
4427 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4428 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4429 if (ret < 0)
4430 goto out;
4431 if (ret == 1) {
4432 can_rename = false;
4433 *pending_move = 1;
4434 }
4435 }
4436
4437 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4438 can_rename) {
4439 ret = wait_for_parent_move(sctx, cur, is_orphan);
4440 if (ret < 0)
4441 goto out;
4442 if (ret == 1) {
4443 can_rename = false;
4444 *pending_move = 1;
4445 }
4446 }
4447
4448 /*
4449 * link/move the ref to the new place. If we have an orphan
4450 * inode, move it and update valid_path. If not, link or move
4451 * it depending on the inode mode.
4452 */
4453 if (is_orphan && can_rename) {
4454 ret = send_rename(sctx, valid_path, cur->full_path);
4455 if (ret < 0)
4456 goto out;
4457 is_orphan = 0;
4458 ret = fs_path_copy(valid_path, cur->full_path);
4459 if (ret < 0)
4460 goto out;
4461 } else if (can_rename) {
4462 if (S_ISDIR(sctx->cur_inode_mode)) {
4463 /*
4464 * Dirs can't be linked, so move it. For moved
4465 * dirs, we always have one new and one deleted
4466 * ref. The deleted ref is ignored later.
4467 */
4468 ret = send_rename(sctx, valid_path,
4469 cur->full_path);
4470 if (!ret)
4471 ret = fs_path_copy(valid_path,
4472 cur->full_path);
4473 if (ret < 0)
4474 goto out;
4475 } else {
4476 /*
4477 * We might have previously orphanized an inode
4478 * which is an ancestor of our current inode,
4479 * so our reference's full path, which was
4480 * computed before any such orphanizations, must
4481 * be updated.
4482 */
4483 if (orphanized_dir) {
4484 ret = update_ref_path(sctx, cur);
4485 if (ret < 0)
4486 goto out;
4487 }
4488 ret = send_link(sctx, cur->full_path,
4489 valid_path);
4490 if (ret < 0)
4491 goto out;
4492 }
4493 }
4494 ret = dup_ref(cur, &check_dirs);
4495 if (ret < 0)
4496 goto out;
4497 }
4498
4499 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4500 /*
4501 * Check if we can already rmdir the directory. If not,
4502 * orphanize it. For every dir item inside that gets deleted
4503 * later, we do this check again and rmdir it then if possible.
4504 * See the use of check_dirs for more details.
4505 */
4506 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen);
4507 if (ret < 0)
4508 goto out;
4509 if (ret) {
4510 ret = send_rmdir(sctx, valid_path);
4511 if (ret < 0)
4512 goto out;
4513 } else if (!is_orphan) {
4514 ret = orphanize_inode(sctx, sctx->cur_ino,
4515 sctx->cur_inode_gen, valid_path);
4516 if (ret < 0)
4517 goto out;
4518 is_orphan = 1;
4519 }
4520
4521 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4522 ret = dup_ref(cur, &check_dirs);
4523 if (ret < 0)
4524 goto out;
4525 }
4526 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4527 !list_empty(&sctx->deleted_refs)) {
4528 /*
4529 * We have a moved dir. Add the old parent to check_dirs
4530 */
4531 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4532 list);
4533 ret = dup_ref(cur, &check_dirs);
4534 if (ret < 0)
4535 goto out;
4536 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4537 /*
4538 * We have a non dir inode. Go through all deleted refs and
4539 * unlink them if they were not already overwritten by other
4540 * inodes.
4541 */
4542 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4543 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4544 sctx->cur_ino, sctx->cur_inode_gen,
4545 cur->name, cur->name_len);
4546 if (ret < 0)
4547 goto out;
4548 if (!ret) {
4549 /*
4550 * If we orphanized any ancestor before, we need
4551 * to recompute the full path for deleted names,
4552 * since any such path was computed before we
4553 * processed any references and orphanized any
4554 * ancestor inode.
4555 */
4556 if (orphanized_ancestor) {
4557 ret = update_ref_path(sctx, cur);
4558 if (ret < 0)
4559 goto out;
4560 }
4561 ret = send_unlink(sctx, cur->full_path);
4562 if (ret < 0)
4563 goto out;
4564 }
4565 ret = dup_ref(cur, &check_dirs);
4566 if (ret < 0)
4567 goto out;
4568 }
4569 /*
4570 * If the inode is still orphan, unlink the orphan. This may
4571 * happen when a previous inode did overwrite the first ref
4572 * of this inode and no new refs were added for the current
4573 * inode. Unlinking does not mean that the inode is deleted in
4574 * all cases. There may still be links to this inode in other
4575 * places.
4576 */
4577 if (is_orphan) {
4578 ret = send_unlink(sctx, valid_path);
4579 if (ret < 0)
4580 goto out;
4581 }
4582 }
4583
4584 /*
4585 * We did collect all parent dirs where cur_inode was once located. We
4586 * now go through all these dirs and check if they are pending for
4587 * deletion and if it's finally possible to perform the rmdir now.
4588 * We also update the inode stats of the parent dirs here.
4589 */
4590 list_for_each_entry(cur, &check_dirs, list) {
4591 /*
4592 * In case we had refs into dirs that were not processed yet,
4593 * we don't need to do the utime and rmdir logic for these dirs.
4594 * The dir will be processed later.
4595 */
4596 if (cur->dir > sctx->cur_ino)
4597 continue;
4598
4599 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen, NULL, NULL);
4600 if (ret < 0)
4601 goto out;
4602
4603 if (ret == inode_state_did_create ||
4604 ret == inode_state_no_change) {
4605 ret = cache_dir_utimes(sctx, cur->dir, cur->dir_gen);
4606 if (ret < 0)
4607 goto out;
4608 } else if (ret == inode_state_did_delete &&
4609 cur->dir != last_dir_ino_rm) {
4610 ret = can_rmdir(sctx, cur->dir, cur->dir_gen);
4611 if (ret < 0)
4612 goto out;
4613 if (ret) {
4614 ret = get_cur_path(sctx, cur->dir,
4615 cur->dir_gen, valid_path);
4616 if (ret < 0)
4617 goto out;
4618 ret = send_rmdir(sctx, valid_path);
4619 if (ret < 0)
4620 goto out;
4621 last_dir_ino_rm = cur->dir;
4622 }
4623 }
4624 }
4625
4626 ret = 0;
4627
4628out:
4629 __free_recorded_refs(&check_dirs);
4630 free_recorded_refs(sctx);
4631 fs_path_free(valid_path);
4632 return ret;
4633}
4634
4635static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4636{
4637 const struct recorded_ref *data = k;
4638 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4639 int result;
4640
4641 if (data->dir > ref->dir)
4642 return 1;
4643 if (data->dir < ref->dir)
4644 return -1;
4645 if (data->dir_gen > ref->dir_gen)
4646 return 1;
4647 if (data->dir_gen < ref->dir_gen)
4648 return -1;
4649 if (data->name_len > ref->name_len)
4650 return 1;
4651 if (data->name_len < ref->name_len)
4652 return -1;
4653 result = strcmp(data->name, ref->name);
4654 if (result > 0)
4655 return 1;
4656 if (result < 0)
4657 return -1;
4658 return 0;
4659}
4660
4661static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4662{
4663 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4664
4665 return rbtree_ref_comp(entry, parent) < 0;
4666}
4667
4668static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4669 struct fs_path *name, u64 dir, u64 dir_gen,
4670 struct send_ctx *sctx)
4671{
4672 int ret = 0;
4673 struct fs_path *path = NULL;
4674 struct recorded_ref *ref = NULL;
4675
4676 path = fs_path_alloc();
4677 if (!path) {
4678 ret = -ENOMEM;
4679 goto out;
4680 }
4681
4682 ref = recorded_ref_alloc();
4683 if (!ref) {
4684 ret = -ENOMEM;
4685 goto out;
4686 }
4687
4688 ret = get_cur_path(sctx, dir, dir_gen, path);
4689 if (ret < 0)
4690 goto out;
4691 ret = fs_path_add_path(path, name);
4692 if (ret < 0)
4693 goto out;
4694
4695 ref->dir = dir;
4696 ref->dir_gen = dir_gen;
4697 set_ref_path(ref, path);
4698 list_add_tail(&ref->list, refs);
4699 rb_add(&ref->node, root, rbtree_ref_less);
4700 ref->root = root;
4701out:
4702 if (ret) {
4703 if (path && (!ref || !ref->full_path))
4704 fs_path_free(path);
4705 recorded_ref_free(ref);
4706 }
4707 return ret;
4708}
4709
4710static int record_new_ref_if_needed(int num, u64 dir, int index,
4711 struct fs_path *name, void *ctx)
4712{
4713 int ret = 0;
4714 struct send_ctx *sctx = ctx;
4715 struct rb_node *node = NULL;
4716 struct recorded_ref data;
4717 struct recorded_ref *ref;
4718 u64 dir_gen;
4719
4720 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4721 if (ret < 0)
4722 goto out;
4723
4724 data.dir = dir;
4725 data.dir_gen = dir_gen;
4726 set_ref_path(&data, name);
4727 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4728 if (node) {
4729 ref = rb_entry(node, struct recorded_ref, node);
4730 recorded_ref_free(ref);
4731 } else {
4732 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4733 &sctx->new_refs, name, dir, dir_gen,
4734 sctx);
4735 }
4736out:
4737 return ret;
4738}
4739
4740static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4741 struct fs_path *name, void *ctx)
4742{
4743 int ret = 0;
4744 struct send_ctx *sctx = ctx;
4745 struct rb_node *node = NULL;
4746 struct recorded_ref data;
4747 struct recorded_ref *ref;
4748 u64 dir_gen;
4749
4750 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4751 if (ret < 0)
4752 goto out;
4753
4754 data.dir = dir;
4755 data.dir_gen = dir_gen;
4756 set_ref_path(&data, name);
4757 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4758 if (node) {
4759 ref = rb_entry(node, struct recorded_ref, node);
4760 recorded_ref_free(ref);
4761 } else {
4762 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4763 &sctx->deleted_refs, name, dir,
4764 dir_gen, sctx);
4765 }
4766out:
4767 return ret;
4768}
4769
4770static int record_new_ref(struct send_ctx *sctx)
4771{
4772 int ret;
4773
4774 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4775 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4776 if (ret < 0)
4777 goto out;
4778 ret = 0;
4779
4780out:
4781 return ret;
4782}
4783
4784static int record_deleted_ref(struct send_ctx *sctx)
4785{
4786 int ret;
4787
4788 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4789 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4790 sctx);
4791 if (ret < 0)
4792 goto out;
4793 ret = 0;
4794
4795out:
4796 return ret;
4797}
4798
4799static int record_changed_ref(struct send_ctx *sctx)
4800{
4801 int ret = 0;
4802
4803 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4804 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4805 if (ret < 0)
4806 goto out;
4807 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4808 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4809 if (ret < 0)
4810 goto out;
4811 ret = 0;
4812
4813out:
4814 return ret;
4815}
4816
4817/*
4818 * Record and process all refs at once. Needed when an inode changes the
4819 * generation number, which means that it was deleted and recreated.
4820 */
4821static int process_all_refs(struct send_ctx *sctx,
4822 enum btrfs_compare_tree_result cmd)
4823{
4824 int ret = 0;
4825 int iter_ret = 0;
4826 struct btrfs_root *root;
4827 struct btrfs_path *path;
4828 struct btrfs_key key;
4829 struct btrfs_key found_key;
4830 iterate_inode_ref_t cb;
4831 int pending_move = 0;
4832
4833 path = alloc_path_for_send();
4834 if (!path)
4835 return -ENOMEM;
4836
4837 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4838 root = sctx->send_root;
4839 cb = record_new_ref_if_needed;
4840 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4841 root = sctx->parent_root;
4842 cb = record_deleted_ref_if_needed;
4843 } else {
4844 btrfs_err(sctx->send_root->fs_info,
4845 "Wrong command %d in process_all_refs", cmd);
4846 ret = -EINVAL;
4847 goto out;
4848 }
4849
4850 key.objectid = sctx->cmp_key->objectid;
4851 key.type = BTRFS_INODE_REF_KEY;
4852 key.offset = 0;
4853 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4854 if (found_key.objectid != key.objectid ||
4855 (found_key.type != BTRFS_INODE_REF_KEY &&
4856 found_key.type != BTRFS_INODE_EXTREF_KEY))
4857 break;
4858
4859 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4860 if (ret < 0)
4861 goto out;
4862 }
4863 /* Catch error found during iteration */
4864 if (iter_ret < 0) {
4865 ret = iter_ret;
4866 goto out;
4867 }
4868 btrfs_release_path(path);
4869
4870 /*
4871 * We don't actually care about pending_move as we are simply
4872 * re-creating this inode and will be rename'ing it into place once we
4873 * rename the parent directory.
4874 */
4875 ret = process_recorded_refs(sctx, &pending_move);
4876out:
4877 btrfs_free_path(path);
4878 return ret;
4879}
4880
4881static int send_set_xattr(struct send_ctx *sctx,
4882 struct fs_path *path,
4883 const char *name, int name_len,
4884 const char *data, int data_len)
4885{
4886 int ret = 0;
4887
4888 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4889 if (ret < 0)
4890 goto out;
4891
4892 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4893 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4894 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4895
4896 ret = send_cmd(sctx);
4897
4898tlv_put_failure:
4899out:
4900 return ret;
4901}
4902
4903static int send_remove_xattr(struct send_ctx *sctx,
4904 struct fs_path *path,
4905 const char *name, int name_len)
4906{
4907 int ret = 0;
4908
4909 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4910 if (ret < 0)
4911 goto out;
4912
4913 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4914 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4915
4916 ret = send_cmd(sctx);
4917
4918tlv_put_failure:
4919out:
4920 return ret;
4921}
4922
4923static int __process_new_xattr(int num, struct btrfs_key *di_key,
4924 const char *name, int name_len, const char *data,
4925 int data_len, void *ctx)
4926{
4927 int ret;
4928 struct send_ctx *sctx = ctx;
4929 struct fs_path *p;
4930 struct posix_acl_xattr_header dummy_acl;
4931
4932 /* Capabilities are emitted by finish_inode_if_needed */
4933 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4934 return 0;
4935
4936 p = fs_path_alloc();
4937 if (!p)
4938 return -ENOMEM;
4939
4940 /*
4941 * This hack is needed because empty acls are stored as zero byte
4942 * data in xattrs. Problem with that is, that receiving these zero byte
4943 * acls will fail later. To fix this, we send a dummy acl list that
4944 * only contains the version number and no entries.
4945 */
4946 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4947 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4948 if (data_len == 0) {
4949 dummy_acl.a_version =
4950 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4951 data = (char *)&dummy_acl;
4952 data_len = sizeof(dummy_acl);
4953 }
4954 }
4955
4956 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4957 if (ret < 0)
4958 goto out;
4959
4960 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4961
4962out:
4963 fs_path_free(p);
4964 return ret;
4965}
4966
4967static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4968 const char *name, int name_len,
4969 const char *data, int data_len, void *ctx)
4970{
4971 int ret;
4972 struct send_ctx *sctx = ctx;
4973 struct fs_path *p;
4974
4975 p = fs_path_alloc();
4976 if (!p)
4977 return -ENOMEM;
4978
4979 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4980 if (ret < 0)
4981 goto out;
4982
4983 ret = send_remove_xattr(sctx, p, name, name_len);
4984
4985out:
4986 fs_path_free(p);
4987 return ret;
4988}
4989
4990static int process_new_xattr(struct send_ctx *sctx)
4991{
4992 int ret = 0;
4993
4994 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4995 __process_new_xattr, sctx);
4996
4997 return ret;
4998}
4999
5000static int process_deleted_xattr(struct send_ctx *sctx)
5001{
5002 return iterate_dir_item(sctx->parent_root, sctx->right_path,
5003 __process_deleted_xattr, sctx);
5004}
5005
5006struct find_xattr_ctx {
5007 const char *name;
5008 int name_len;
5009 int found_idx;
5010 char *found_data;
5011 int found_data_len;
5012};
5013
5014static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
5015 int name_len, const char *data, int data_len, void *vctx)
5016{
5017 struct find_xattr_ctx *ctx = vctx;
5018
5019 if (name_len == ctx->name_len &&
5020 strncmp(name, ctx->name, name_len) == 0) {
5021 ctx->found_idx = num;
5022 ctx->found_data_len = data_len;
5023 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
5024 if (!ctx->found_data)
5025 return -ENOMEM;
5026 return 1;
5027 }
5028 return 0;
5029}
5030
5031static int find_xattr(struct btrfs_root *root,
5032 struct btrfs_path *path,
5033 struct btrfs_key *key,
5034 const char *name, int name_len,
5035 char **data, int *data_len)
5036{
5037 int ret;
5038 struct find_xattr_ctx ctx;
5039
5040 ctx.name = name;
5041 ctx.name_len = name_len;
5042 ctx.found_idx = -1;
5043 ctx.found_data = NULL;
5044 ctx.found_data_len = 0;
5045
5046 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
5047 if (ret < 0)
5048 return ret;
5049
5050 if (ctx.found_idx == -1)
5051 return -ENOENT;
5052 if (data) {
5053 *data = ctx.found_data;
5054 *data_len = ctx.found_data_len;
5055 } else {
5056 kfree(ctx.found_data);
5057 }
5058 return ctx.found_idx;
5059}
5060
5061
5062static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
5063 const char *name, int name_len,
5064 const char *data, int data_len,
5065 void *ctx)
5066{
5067 int ret;
5068 struct send_ctx *sctx = ctx;
5069 char *found_data = NULL;
5070 int found_data_len = 0;
5071
5072 ret = find_xattr(sctx->parent_root, sctx->right_path,
5073 sctx->cmp_key, name, name_len, &found_data,
5074 &found_data_len);
5075 if (ret == -ENOENT) {
5076 ret = __process_new_xattr(num, di_key, name, name_len, data,
5077 data_len, ctx);
5078 } else if (ret >= 0) {
5079 if (data_len != found_data_len ||
5080 memcmp(data, found_data, data_len)) {
5081 ret = __process_new_xattr(num, di_key, name, name_len,
5082 data, data_len, ctx);
5083 } else {
5084 ret = 0;
5085 }
5086 }
5087
5088 kfree(found_data);
5089 return ret;
5090}
5091
5092static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
5093 const char *name, int name_len,
5094 const char *data, int data_len,
5095 void *ctx)
5096{
5097 int ret;
5098 struct send_ctx *sctx = ctx;
5099
5100 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
5101 name, name_len, NULL, NULL);
5102 if (ret == -ENOENT)
5103 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
5104 data_len, ctx);
5105 else if (ret >= 0)
5106 ret = 0;
5107
5108 return ret;
5109}
5110
5111static int process_changed_xattr(struct send_ctx *sctx)
5112{
5113 int ret = 0;
5114
5115 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
5116 __process_changed_new_xattr, sctx);
5117 if (ret < 0)
5118 goto out;
5119 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
5120 __process_changed_deleted_xattr, sctx);
5121
5122out:
5123 return ret;
5124}
5125
5126static int process_all_new_xattrs(struct send_ctx *sctx)
5127{
5128 int ret = 0;
5129 int iter_ret = 0;
5130 struct btrfs_root *root;
5131 struct btrfs_path *path;
5132 struct btrfs_key key;
5133 struct btrfs_key found_key;
5134
5135 path = alloc_path_for_send();
5136 if (!path)
5137 return -ENOMEM;
5138
5139 root = sctx->send_root;
5140
5141 key.objectid = sctx->cmp_key->objectid;
5142 key.type = BTRFS_XATTR_ITEM_KEY;
5143 key.offset = 0;
5144 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
5145 if (found_key.objectid != key.objectid ||
5146 found_key.type != key.type) {
5147 ret = 0;
5148 break;
5149 }
5150
5151 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
5152 if (ret < 0)
5153 break;
5154 }
5155 /* Catch error found during iteration */
5156 if (iter_ret < 0)
5157 ret = iter_ret;
5158
5159 btrfs_free_path(path);
5160 return ret;
5161}
5162
5163static int send_verity(struct send_ctx *sctx, struct fs_path *path,
5164 struct fsverity_descriptor *desc)
5165{
5166 int ret;
5167
5168 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
5169 if (ret < 0)
5170 goto out;
5171
5172 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
5173 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
5174 le8_to_cpu(desc->hash_algorithm));
5175 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
5176 1U << le8_to_cpu(desc->log_blocksize));
5177 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
5178 le8_to_cpu(desc->salt_size));
5179 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
5180 le32_to_cpu(desc->sig_size));
5181
5182 ret = send_cmd(sctx);
5183
5184tlv_put_failure:
5185out:
5186 return ret;
5187}
5188
5189static int process_verity(struct send_ctx *sctx)
5190{
5191 int ret = 0;
5192 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5193 struct inode *inode;
5194 struct fs_path *p;
5195
5196 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
5197 if (IS_ERR(inode))
5198 return PTR_ERR(inode);
5199
5200 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
5201 if (ret < 0)
5202 goto iput;
5203
5204 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
5205 ret = -EMSGSIZE;
5206 goto iput;
5207 }
5208 if (!sctx->verity_descriptor) {
5209 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
5210 GFP_KERNEL);
5211 if (!sctx->verity_descriptor) {
5212 ret = -ENOMEM;
5213 goto iput;
5214 }
5215 }
5216
5217 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
5218 if (ret < 0)
5219 goto iput;
5220
5221 p = fs_path_alloc();
5222 if (!p) {
5223 ret = -ENOMEM;
5224 goto iput;
5225 }
5226 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5227 if (ret < 0)
5228 goto free_path;
5229
5230 ret = send_verity(sctx, p, sctx->verity_descriptor);
5231 if (ret < 0)
5232 goto free_path;
5233
5234free_path:
5235 fs_path_free(p);
5236iput:
5237 iput(inode);
5238 return ret;
5239}
5240
5241static inline u64 max_send_read_size(const struct send_ctx *sctx)
5242{
5243 return sctx->send_max_size - SZ_16K;
5244}
5245
5246static int put_data_header(struct send_ctx *sctx, u32 len)
5247{
5248 if (WARN_ON_ONCE(sctx->put_data))
5249 return -EINVAL;
5250 sctx->put_data = true;
5251 if (sctx->proto >= 2) {
5252 /*
5253 * Since v2, the data attribute header doesn't include a length,
5254 * it is implicitly to the end of the command.
5255 */
5256 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
5257 return -EOVERFLOW;
5258 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
5259 sctx->send_size += sizeof(__le16);
5260 } else {
5261 struct btrfs_tlv_header *hdr;
5262
5263 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5264 return -EOVERFLOW;
5265 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5266 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5267 put_unaligned_le16(len, &hdr->tlv_len);
5268 sctx->send_size += sizeof(*hdr);
5269 }
5270 return 0;
5271}
5272
5273static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5274{
5275 struct btrfs_root *root = sctx->send_root;
5276 struct btrfs_fs_info *fs_info = root->fs_info;
5277 struct page *page;
5278 pgoff_t index = offset >> PAGE_SHIFT;
5279 pgoff_t last_index;
5280 unsigned pg_offset = offset_in_page(offset);
5281 int ret;
5282
5283 ret = put_data_header(sctx, len);
5284 if (ret)
5285 return ret;
5286
5287 last_index = (offset + len - 1) >> PAGE_SHIFT;
5288
5289 while (index <= last_index) {
5290 unsigned cur_len = min_t(unsigned, len,
5291 PAGE_SIZE - pg_offset);
5292
5293 page = find_lock_page(sctx->cur_inode->i_mapping, index);
5294 if (!page) {
5295 page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5296 &sctx->ra, NULL, index,
5297 last_index + 1 - index);
5298
5299 page = find_or_create_page(sctx->cur_inode->i_mapping,
5300 index, GFP_KERNEL);
5301 if (!page) {
5302 ret = -ENOMEM;
5303 break;
5304 }
5305 }
5306
5307 if (PageReadahead(page))
5308 page_cache_async_readahead(sctx->cur_inode->i_mapping,
5309 &sctx->ra, NULL, page_folio(page),
5310 index, last_index + 1 - index);
5311
5312 if (!PageUptodate(page)) {
5313 btrfs_read_folio(NULL, page_folio(page));
5314 lock_page(page);
5315 if (!PageUptodate(page)) {
5316 unlock_page(page);
5317 btrfs_err(fs_info,
5318 "send: IO error at offset %llu for inode %llu root %llu",
5319 page_offset(page), sctx->cur_ino,
5320 sctx->send_root->root_key.objectid);
5321 put_page(page);
5322 ret = -EIO;
5323 break;
5324 }
5325 }
5326
5327 memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5328 pg_offset, cur_len);
5329 unlock_page(page);
5330 put_page(page);
5331 index++;
5332 pg_offset = 0;
5333 len -= cur_len;
5334 sctx->send_size += cur_len;
5335 }
5336
5337 return ret;
5338}
5339
5340/*
5341 * Read some bytes from the current inode/file and send a write command to
5342 * user space.
5343 */
5344static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5345{
5346 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5347 int ret = 0;
5348 struct fs_path *p;
5349
5350 p = fs_path_alloc();
5351 if (!p)
5352 return -ENOMEM;
5353
5354 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5355
5356 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5357 if (ret < 0)
5358 goto out;
5359
5360 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5361 if (ret < 0)
5362 goto out;
5363
5364 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5365 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5366 ret = put_file_data(sctx, offset, len);
5367 if (ret < 0)
5368 goto out;
5369
5370 ret = send_cmd(sctx);
5371
5372tlv_put_failure:
5373out:
5374 fs_path_free(p);
5375 return ret;
5376}
5377
5378/*
5379 * Send a clone command to user space.
5380 */
5381static int send_clone(struct send_ctx *sctx,
5382 u64 offset, u32 len,
5383 struct clone_root *clone_root)
5384{
5385 int ret = 0;
5386 struct fs_path *p;
5387 u64 gen;
5388
5389 btrfs_debug(sctx->send_root->fs_info,
5390 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5391 offset, len, clone_root->root->root_key.objectid,
5392 clone_root->ino, clone_root->offset);
5393
5394 p = fs_path_alloc();
5395 if (!p)
5396 return -ENOMEM;
5397
5398 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5399 if (ret < 0)
5400 goto out;
5401
5402 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5403 if (ret < 0)
5404 goto out;
5405
5406 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5407 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5408 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5409
5410 if (clone_root->root == sctx->send_root) {
5411 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5412 if (ret < 0)
5413 goto out;
5414 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5415 } else {
5416 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5417 }
5418 if (ret < 0)
5419 goto out;
5420
5421 /*
5422 * If the parent we're using has a received_uuid set then use that as
5423 * our clone source as that is what we will look for when doing a
5424 * receive.
5425 *
5426 * This covers the case that we create a snapshot off of a received
5427 * subvolume and then use that as the parent and try to receive on a
5428 * different host.
5429 */
5430 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5431 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5432 clone_root->root->root_item.received_uuid);
5433 else
5434 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5435 clone_root->root->root_item.uuid);
5436 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5437 btrfs_root_ctransid(&clone_root->root->root_item));
5438 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5439 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5440 clone_root->offset);
5441
5442 ret = send_cmd(sctx);
5443
5444tlv_put_failure:
5445out:
5446 fs_path_free(p);
5447 return ret;
5448}
5449
5450/*
5451 * Send an update extent command to user space.
5452 */
5453static int send_update_extent(struct send_ctx *sctx,
5454 u64 offset, u32 len)
5455{
5456 int ret = 0;
5457 struct fs_path *p;
5458
5459 p = fs_path_alloc();
5460 if (!p)
5461 return -ENOMEM;
5462
5463 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5464 if (ret < 0)
5465 goto out;
5466
5467 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5468 if (ret < 0)
5469 goto out;
5470
5471 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5472 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5473 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5474
5475 ret = send_cmd(sctx);
5476
5477tlv_put_failure:
5478out:
5479 fs_path_free(p);
5480 return ret;
5481}
5482
5483static int send_hole(struct send_ctx *sctx, u64 end)
5484{
5485 struct fs_path *p = NULL;
5486 u64 read_size = max_send_read_size(sctx);
5487 u64 offset = sctx->cur_inode_last_extent;
5488 int ret = 0;
5489
5490 /*
5491 * A hole that starts at EOF or beyond it. Since we do not yet support
5492 * fallocate (for extent preallocation and hole punching), sending a
5493 * write of zeroes starting at EOF or beyond would later require issuing
5494 * a truncate operation which would undo the write and achieve nothing.
5495 */
5496 if (offset >= sctx->cur_inode_size)
5497 return 0;
5498
5499 /*
5500 * Don't go beyond the inode's i_size due to prealloc extents that start
5501 * after the i_size.
5502 */
5503 end = min_t(u64, end, sctx->cur_inode_size);
5504
5505 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5506 return send_update_extent(sctx, offset, end - offset);
5507
5508 p = fs_path_alloc();
5509 if (!p)
5510 return -ENOMEM;
5511 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5512 if (ret < 0)
5513 goto tlv_put_failure;
5514 while (offset < end) {
5515 u64 len = min(end - offset, read_size);
5516
5517 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5518 if (ret < 0)
5519 break;
5520 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5521 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5522 ret = put_data_header(sctx, len);
5523 if (ret < 0)
5524 break;
5525 memset(sctx->send_buf + sctx->send_size, 0, len);
5526 sctx->send_size += len;
5527 ret = send_cmd(sctx);
5528 if (ret < 0)
5529 break;
5530 offset += len;
5531 }
5532 sctx->cur_inode_next_write_offset = offset;
5533tlv_put_failure:
5534 fs_path_free(p);
5535 return ret;
5536}
5537
5538static int send_encoded_inline_extent(struct send_ctx *sctx,
5539 struct btrfs_path *path, u64 offset,
5540 u64 len)
5541{
5542 struct btrfs_root *root = sctx->send_root;
5543 struct btrfs_fs_info *fs_info = root->fs_info;
5544 struct inode *inode;
5545 struct fs_path *fspath;
5546 struct extent_buffer *leaf = path->nodes[0];
5547 struct btrfs_key key;
5548 struct btrfs_file_extent_item *ei;
5549 u64 ram_bytes;
5550 size_t inline_size;
5551 int ret;
5552
5553 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5554 if (IS_ERR(inode))
5555 return PTR_ERR(inode);
5556
5557 fspath = fs_path_alloc();
5558 if (!fspath) {
5559 ret = -ENOMEM;
5560 goto out;
5561 }
5562
5563 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5564 if (ret < 0)
5565 goto out;
5566
5567 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5568 if (ret < 0)
5569 goto out;
5570
5571 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5572 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5573 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5574 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5575
5576 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5577 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5578 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5579 min(key.offset + ram_bytes - offset, len));
5580 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5581 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5582 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5583 btrfs_file_extent_compression(leaf, ei));
5584 if (ret < 0)
5585 goto out;
5586 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5587
5588 ret = put_data_header(sctx, inline_size);
5589 if (ret < 0)
5590 goto out;
5591 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5592 btrfs_file_extent_inline_start(ei), inline_size);
5593 sctx->send_size += inline_size;
5594
5595 ret = send_cmd(sctx);
5596
5597tlv_put_failure:
5598out:
5599 fs_path_free(fspath);
5600 iput(inode);
5601 return ret;
5602}
5603
5604static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5605 u64 offset, u64 len)
5606{
5607 struct btrfs_root *root = sctx->send_root;
5608 struct btrfs_fs_info *fs_info = root->fs_info;
5609 struct inode *inode;
5610 struct fs_path *fspath;
5611 struct extent_buffer *leaf = path->nodes[0];
5612 struct btrfs_key key;
5613 struct btrfs_file_extent_item *ei;
5614 u64 disk_bytenr, disk_num_bytes;
5615 u32 data_offset;
5616 struct btrfs_cmd_header *hdr;
5617 u32 crc;
5618 int ret;
5619
5620 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5621 if (IS_ERR(inode))
5622 return PTR_ERR(inode);
5623
5624 fspath = fs_path_alloc();
5625 if (!fspath) {
5626 ret = -ENOMEM;
5627 goto out;
5628 }
5629
5630 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5631 if (ret < 0)
5632 goto out;
5633
5634 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5635 if (ret < 0)
5636 goto out;
5637
5638 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5639 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5640 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5641 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5642
5643 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5644 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5645 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5646 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5647 len));
5648 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5649 btrfs_file_extent_ram_bytes(leaf, ei));
5650 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5651 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5652 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5653 btrfs_file_extent_compression(leaf, ei));
5654 if (ret < 0)
5655 goto out;
5656 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5657 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5658
5659 ret = put_data_header(sctx, disk_num_bytes);
5660 if (ret < 0)
5661 goto out;
5662
5663 /*
5664 * We want to do I/O directly into the send buffer, so get the next page
5665 * boundary in the send buffer. This means that there may be a gap
5666 * between the beginning of the command and the file data.
5667 */
5668 data_offset = PAGE_ALIGN(sctx->send_size);
5669 if (data_offset > sctx->send_max_size ||
5670 sctx->send_max_size - data_offset < disk_num_bytes) {
5671 ret = -EOVERFLOW;
5672 goto out;
5673 }
5674
5675 /*
5676 * Note that send_buf is a mapping of send_buf_pages, so this is really
5677 * reading into send_buf.
5678 */
5679 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5680 disk_bytenr, disk_num_bytes,
5681 sctx->send_buf_pages +
5682 (data_offset >> PAGE_SHIFT));
5683 if (ret)
5684 goto out;
5685
5686 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5687 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5688 hdr->crc = 0;
5689 crc = crc32c(0, sctx->send_buf, sctx->send_size);
5690 crc = crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5691 hdr->crc = cpu_to_le32(crc);
5692
5693 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5694 &sctx->send_off);
5695 if (!ret) {
5696 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5697 disk_num_bytes, &sctx->send_off);
5698 }
5699 sctx->send_size = 0;
5700 sctx->put_data = false;
5701
5702tlv_put_failure:
5703out:
5704 fs_path_free(fspath);
5705 iput(inode);
5706 return ret;
5707}
5708
5709static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5710 const u64 offset, const u64 len)
5711{
5712 const u64 end = offset + len;
5713 struct extent_buffer *leaf = path->nodes[0];
5714 struct btrfs_file_extent_item *ei;
5715 u64 read_size = max_send_read_size(sctx);
5716 u64 sent = 0;
5717
5718 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5719 return send_update_extent(sctx, offset, len);
5720
5721 ei = btrfs_item_ptr(leaf, path->slots[0],
5722 struct btrfs_file_extent_item);
5723 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5724 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5725 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5726 BTRFS_FILE_EXTENT_INLINE);
5727
5728 /*
5729 * Send the compressed extent unless the compressed data is
5730 * larger than the decompressed data. This can happen if we're
5731 * not sending the entire extent, either because it has been
5732 * partially overwritten/truncated or because this is a part of
5733 * the extent that we couldn't clone in clone_range().
5734 */
5735 if (is_inline &&
5736 btrfs_file_extent_inline_item_len(leaf,
5737 path->slots[0]) <= len) {
5738 return send_encoded_inline_extent(sctx, path, offset,
5739 len);
5740 } else if (!is_inline &&
5741 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5742 return send_encoded_extent(sctx, path, offset, len);
5743 }
5744 }
5745
5746 if (sctx->cur_inode == NULL) {
5747 struct btrfs_root *root = sctx->send_root;
5748
5749 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5750 if (IS_ERR(sctx->cur_inode)) {
5751 int err = PTR_ERR(sctx->cur_inode);
5752
5753 sctx->cur_inode = NULL;
5754 return err;
5755 }
5756 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5757 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5758
5759 /*
5760 * It's very likely there are no pages from this inode in the page
5761 * cache, so after reading extents and sending their data, we clean
5762 * the page cache to avoid trashing the page cache (adding pressure
5763 * to the page cache and forcing eviction of other data more useful
5764 * for applications).
5765 *
5766 * We decide if we should clean the page cache simply by checking
5767 * if the inode's mapping nrpages is 0 when we first open it, and
5768 * not by using something like filemap_range_has_page() before
5769 * reading an extent because when we ask the readahead code to
5770 * read a given file range, it may (and almost always does) read
5771 * pages from beyond that range (see the documentation for
5772 * page_cache_sync_readahead()), so it would not be reliable,
5773 * because after reading the first extent future calls to
5774 * filemap_range_has_page() would return true because the readahead
5775 * on the previous extent resulted in reading pages of the current
5776 * extent as well.
5777 */
5778 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5779 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5780 }
5781
5782 while (sent < len) {
5783 u64 size = min(len - sent, read_size);
5784 int ret;
5785
5786 ret = send_write(sctx, offset + sent, size);
5787 if (ret < 0)
5788 return ret;
5789 sent += size;
5790 }
5791
5792 if (sctx->clean_page_cache && PAGE_ALIGNED(end)) {
5793 /*
5794 * Always operate only on ranges that are a multiple of the page
5795 * size. This is not only to prevent zeroing parts of a page in
5796 * the case of subpage sector size, but also to guarantee we evict
5797 * pages, as passing a range that is smaller than page size does
5798 * not evict the respective page (only zeroes part of its content).
5799 *
5800 * Always start from the end offset of the last range cleared.
5801 * This is because the readahead code may (and very often does)
5802 * reads pages beyond the range we request for readahead. So if
5803 * we have an extent layout like this:
5804 *
5805 * [ extent A ] [ extent B ] [ extent C ]
5806 *
5807 * When we ask page_cache_sync_readahead() to read extent A, it
5808 * may also trigger reads for pages of extent B. If we are doing
5809 * an incremental send and extent B has not changed between the
5810 * parent and send snapshots, some or all of its pages may end
5811 * up being read and placed in the page cache. So when truncating
5812 * the page cache we always start from the end offset of the
5813 * previously processed extent up to the end of the current
5814 * extent.
5815 */
5816 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5817 sctx->page_cache_clear_start,
5818 end - 1);
5819 sctx->page_cache_clear_start = end;
5820 }
5821
5822 return 0;
5823}
5824
5825/*
5826 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5827 * found, call send_set_xattr function to emit it.
5828 *
5829 * Return 0 if there isn't a capability, or when the capability was emitted
5830 * successfully, or < 0 if an error occurred.
5831 */
5832static int send_capabilities(struct send_ctx *sctx)
5833{
5834 struct fs_path *fspath = NULL;
5835 struct btrfs_path *path;
5836 struct btrfs_dir_item *di;
5837 struct extent_buffer *leaf;
5838 unsigned long data_ptr;
5839 char *buf = NULL;
5840 int buf_len;
5841 int ret = 0;
5842
5843 path = alloc_path_for_send();
5844 if (!path)
5845 return -ENOMEM;
5846
5847 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5848 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5849 if (!di) {
5850 /* There is no xattr for this inode */
5851 goto out;
5852 } else if (IS_ERR(di)) {
5853 ret = PTR_ERR(di);
5854 goto out;
5855 }
5856
5857 leaf = path->nodes[0];
5858 buf_len = btrfs_dir_data_len(leaf, di);
5859
5860 fspath = fs_path_alloc();
5861 buf = kmalloc(buf_len, GFP_KERNEL);
5862 if (!fspath || !buf) {
5863 ret = -ENOMEM;
5864 goto out;
5865 }
5866
5867 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5868 if (ret < 0)
5869 goto out;
5870
5871 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5872 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5873
5874 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5875 strlen(XATTR_NAME_CAPS), buf, buf_len);
5876out:
5877 kfree(buf);
5878 fs_path_free(fspath);
5879 btrfs_free_path(path);
5880 return ret;
5881}
5882
5883static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5884 struct clone_root *clone_root, const u64 disk_byte,
5885 u64 data_offset, u64 offset, u64 len)
5886{
5887 struct btrfs_path *path;
5888 struct btrfs_key key;
5889 int ret;
5890 struct btrfs_inode_info info;
5891 u64 clone_src_i_size = 0;
5892
5893 /*
5894 * Prevent cloning from a zero offset with a length matching the sector
5895 * size because in some scenarios this will make the receiver fail.
5896 *
5897 * For example, if in the source filesystem the extent at offset 0
5898 * has a length of sectorsize and it was written using direct IO, then
5899 * it can never be an inline extent (even if compression is enabled).
5900 * Then this extent can be cloned in the original filesystem to a non
5901 * zero file offset, but it may not be possible to clone in the
5902 * destination filesystem because it can be inlined due to compression
5903 * on the destination filesystem (as the receiver's write operations are
5904 * always done using buffered IO). The same happens when the original
5905 * filesystem does not have compression enabled but the destination
5906 * filesystem has.
5907 */
5908 if (clone_root->offset == 0 &&
5909 len == sctx->send_root->fs_info->sectorsize)
5910 return send_extent_data(sctx, dst_path, offset, len);
5911
5912 path = alloc_path_for_send();
5913 if (!path)
5914 return -ENOMEM;
5915
5916 /*
5917 * There are inodes that have extents that lie behind its i_size. Don't
5918 * accept clones from these extents.
5919 */
5920 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5921 btrfs_release_path(path);
5922 if (ret < 0)
5923 goto out;
5924 clone_src_i_size = info.size;
5925
5926 /*
5927 * We can't send a clone operation for the entire range if we find
5928 * extent items in the respective range in the source file that
5929 * refer to different extents or if we find holes.
5930 * So check for that and do a mix of clone and regular write/copy
5931 * operations if needed.
5932 *
5933 * Example:
5934 *
5935 * mkfs.btrfs -f /dev/sda
5936 * mount /dev/sda /mnt
5937 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5938 * cp --reflink=always /mnt/foo /mnt/bar
5939 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5940 * btrfs subvolume snapshot -r /mnt /mnt/snap
5941 *
5942 * If when we send the snapshot and we are processing file bar (which
5943 * has a higher inode number than foo) we blindly send a clone operation
5944 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5945 * a file bar that matches the content of file foo - iow, doesn't match
5946 * the content from bar in the original filesystem.
5947 */
5948 key.objectid = clone_root->ino;
5949 key.type = BTRFS_EXTENT_DATA_KEY;
5950 key.offset = clone_root->offset;
5951 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5952 if (ret < 0)
5953 goto out;
5954 if (ret > 0 && path->slots[0] > 0) {
5955 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5956 if (key.objectid == clone_root->ino &&
5957 key.type == BTRFS_EXTENT_DATA_KEY)
5958 path->slots[0]--;
5959 }
5960
5961 while (true) {
5962 struct extent_buffer *leaf = path->nodes[0];
5963 int slot = path->slots[0];
5964 struct btrfs_file_extent_item *ei;
5965 u8 type;
5966 u64 ext_len;
5967 u64 clone_len;
5968 u64 clone_data_offset;
5969 bool crossed_src_i_size = false;
5970
5971 if (slot >= btrfs_header_nritems(leaf)) {
5972 ret = btrfs_next_leaf(clone_root->root, path);
5973 if (ret < 0)
5974 goto out;
5975 else if (ret > 0)
5976 break;
5977 continue;
5978 }
5979
5980 btrfs_item_key_to_cpu(leaf, &key, slot);
5981
5982 /*
5983 * We might have an implicit trailing hole (NO_HOLES feature
5984 * enabled). We deal with it after leaving this loop.
5985 */
5986 if (key.objectid != clone_root->ino ||
5987 key.type != BTRFS_EXTENT_DATA_KEY)
5988 break;
5989
5990 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5991 type = btrfs_file_extent_type(leaf, ei);
5992 if (type == BTRFS_FILE_EXTENT_INLINE) {
5993 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5994 ext_len = PAGE_ALIGN(ext_len);
5995 } else {
5996 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5997 }
5998
5999 if (key.offset + ext_len <= clone_root->offset)
6000 goto next;
6001
6002 if (key.offset > clone_root->offset) {
6003 /* Implicit hole, NO_HOLES feature enabled. */
6004 u64 hole_len = key.offset - clone_root->offset;
6005
6006 if (hole_len > len)
6007 hole_len = len;
6008 ret = send_extent_data(sctx, dst_path, offset,
6009 hole_len);
6010 if (ret < 0)
6011 goto out;
6012
6013 len -= hole_len;
6014 if (len == 0)
6015 break;
6016 offset += hole_len;
6017 clone_root->offset += hole_len;
6018 data_offset += hole_len;
6019 }
6020
6021 if (key.offset >= clone_root->offset + len)
6022 break;
6023
6024 if (key.offset >= clone_src_i_size)
6025 break;
6026
6027 if (key.offset + ext_len > clone_src_i_size) {
6028 ext_len = clone_src_i_size - key.offset;
6029 crossed_src_i_size = true;
6030 }
6031
6032 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
6033 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
6034 clone_root->offset = key.offset;
6035 if (clone_data_offset < data_offset &&
6036 clone_data_offset + ext_len > data_offset) {
6037 u64 extent_offset;
6038
6039 extent_offset = data_offset - clone_data_offset;
6040 ext_len -= extent_offset;
6041 clone_data_offset += extent_offset;
6042 clone_root->offset += extent_offset;
6043 }
6044 }
6045
6046 clone_len = min_t(u64, ext_len, len);
6047
6048 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
6049 clone_data_offset == data_offset) {
6050 const u64 src_end = clone_root->offset + clone_len;
6051 const u64 sectorsize = SZ_64K;
6052
6053 /*
6054 * We can't clone the last block, when its size is not
6055 * sector size aligned, into the middle of a file. If we
6056 * do so, the receiver will get a failure (-EINVAL) when
6057 * trying to clone or will silently corrupt the data in
6058 * the destination file if it's on a kernel without the
6059 * fix introduced by commit ac765f83f1397646
6060 * ("Btrfs: fix data corruption due to cloning of eof
6061 * block).
6062 *
6063 * So issue a clone of the aligned down range plus a
6064 * regular write for the eof block, if we hit that case.
6065 *
6066 * Also, we use the maximum possible sector size, 64K,
6067 * because we don't know what's the sector size of the
6068 * filesystem that receives the stream, so we have to
6069 * assume the largest possible sector size.
6070 */
6071 if (src_end == clone_src_i_size &&
6072 !IS_ALIGNED(src_end, sectorsize) &&
6073 offset + clone_len < sctx->cur_inode_size) {
6074 u64 slen;
6075
6076 slen = ALIGN_DOWN(src_end - clone_root->offset,
6077 sectorsize);
6078 if (slen > 0) {
6079 ret = send_clone(sctx, offset, slen,
6080 clone_root);
6081 if (ret < 0)
6082 goto out;
6083 }
6084 ret = send_extent_data(sctx, dst_path,
6085 offset + slen,
6086 clone_len - slen);
6087 } else {
6088 ret = send_clone(sctx, offset, clone_len,
6089 clone_root);
6090 }
6091 } else if (crossed_src_i_size && clone_len < len) {
6092 /*
6093 * If we are at i_size of the clone source inode and we
6094 * can not clone from it, terminate the loop. This is
6095 * to avoid sending two write operations, one with a
6096 * length matching clone_len and the final one after
6097 * this loop with a length of len - clone_len.
6098 *
6099 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
6100 * was passed to the send ioctl), this helps avoid
6101 * sending an encoded write for an offset that is not
6102 * sector size aligned, in case the i_size of the source
6103 * inode is not sector size aligned. That will make the
6104 * receiver fallback to decompression of the data and
6105 * writing it using regular buffered IO, therefore while
6106 * not incorrect, it's not optimal due decompression and
6107 * possible re-compression at the receiver.
6108 */
6109 break;
6110 } else {
6111 ret = send_extent_data(sctx, dst_path, offset,
6112 clone_len);
6113 }
6114
6115 if (ret < 0)
6116 goto out;
6117
6118 len -= clone_len;
6119 if (len == 0)
6120 break;
6121 offset += clone_len;
6122 clone_root->offset += clone_len;
6123
6124 /*
6125 * If we are cloning from the file we are currently processing,
6126 * and using the send root as the clone root, we must stop once
6127 * the current clone offset reaches the current eof of the file
6128 * at the receiver, otherwise we would issue an invalid clone
6129 * operation (source range going beyond eof) and cause the
6130 * receiver to fail. So if we reach the current eof, bail out
6131 * and fallback to a regular write.
6132 */
6133 if (clone_root->root == sctx->send_root &&
6134 clone_root->ino == sctx->cur_ino &&
6135 clone_root->offset >= sctx->cur_inode_next_write_offset)
6136 break;
6137
6138 data_offset += clone_len;
6139next:
6140 path->slots[0]++;
6141 }
6142
6143 if (len > 0)
6144 ret = send_extent_data(sctx, dst_path, offset, len);
6145 else
6146 ret = 0;
6147out:
6148 btrfs_free_path(path);
6149 return ret;
6150}
6151
6152static int send_write_or_clone(struct send_ctx *sctx,
6153 struct btrfs_path *path,
6154 struct btrfs_key *key,
6155 struct clone_root *clone_root)
6156{
6157 int ret = 0;
6158 u64 offset = key->offset;
6159 u64 end;
6160 u64 bs = sctx->send_root->fs_info->sectorsize;
6161
6162 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
6163 if (offset >= end)
6164 return 0;
6165
6166 if (clone_root && IS_ALIGNED(end, bs)) {
6167 struct btrfs_file_extent_item *ei;
6168 u64 disk_byte;
6169 u64 data_offset;
6170
6171 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6172 struct btrfs_file_extent_item);
6173 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
6174 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
6175 ret = clone_range(sctx, path, clone_root, disk_byte,
6176 data_offset, offset, end - offset);
6177 } else {
6178 ret = send_extent_data(sctx, path, offset, end - offset);
6179 }
6180 sctx->cur_inode_next_write_offset = end;
6181 return ret;
6182}
6183
6184static int is_extent_unchanged(struct send_ctx *sctx,
6185 struct btrfs_path *left_path,
6186 struct btrfs_key *ekey)
6187{
6188 int ret = 0;
6189 struct btrfs_key key;
6190 struct btrfs_path *path = NULL;
6191 struct extent_buffer *eb;
6192 int slot;
6193 struct btrfs_key found_key;
6194 struct btrfs_file_extent_item *ei;
6195 u64 left_disknr;
6196 u64 right_disknr;
6197 u64 left_offset;
6198 u64 right_offset;
6199 u64 left_offset_fixed;
6200 u64 left_len;
6201 u64 right_len;
6202 u64 left_gen;
6203 u64 right_gen;
6204 u8 left_type;
6205 u8 right_type;
6206
6207 path = alloc_path_for_send();
6208 if (!path)
6209 return -ENOMEM;
6210
6211 eb = left_path->nodes[0];
6212 slot = left_path->slots[0];
6213 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6214 left_type = btrfs_file_extent_type(eb, ei);
6215
6216 if (left_type != BTRFS_FILE_EXTENT_REG) {
6217 ret = 0;
6218 goto out;
6219 }
6220 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6221 left_len = btrfs_file_extent_num_bytes(eb, ei);
6222 left_offset = btrfs_file_extent_offset(eb, ei);
6223 left_gen = btrfs_file_extent_generation(eb, ei);
6224
6225 /*
6226 * Following comments will refer to these graphics. L is the left
6227 * extents which we are checking at the moment. 1-8 are the right
6228 * extents that we iterate.
6229 *
6230 * |-----L-----|
6231 * |-1-|-2a-|-3-|-4-|-5-|-6-|
6232 *
6233 * |-----L-----|
6234 * |--1--|-2b-|...(same as above)
6235 *
6236 * Alternative situation. Happens on files where extents got split.
6237 * |-----L-----|
6238 * |-----------7-----------|-6-|
6239 *
6240 * Alternative situation. Happens on files which got larger.
6241 * |-----L-----|
6242 * |-8-|
6243 * Nothing follows after 8.
6244 */
6245
6246 key.objectid = ekey->objectid;
6247 key.type = BTRFS_EXTENT_DATA_KEY;
6248 key.offset = ekey->offset;
6249 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
6250 if (ret < 0)
6251 goto out;
6252 if (ret) {
6253 ret = 0;
6254 goto out;
6255 }
6256
6257 /*
6258 * Handle special case where the right side has no extents at all.
6259 */
6260 eb = path->nodes[0];
6261 slot = path->slots[0];
6262 btrfs_item_key_to_cpu(eb, &found_key, slot);
6263 if (found_key.objectid != key.objectid ||
6264 found_key.type != key.type) {
6265 /* If we're a hole then just pretend nothing changed */
6266 ret = (left_disknr) ? 0 : 1;
6267 goto out;
6268 }
6269
6270 /*
6271 * We're now on 2a, 2b or 7.
6272 */
6273 key = found_key;
6274 while (key.offset < ekey->offset + left_len) {
6275 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6276 right_type = btrfs_file_extent_type(eb, ei);
6277 if (right_type != BTRFS_FILE_EXTENT_REG &&
6278 right_type != BTRFS_FILE_EXTENT_INLINE) {
6279 ret = 0;
6280 goto out;
6281 }
6282
6283 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6284 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6285 right_len = PAGE_ALIGN(right_len);
6286 } else {
6287 right_len = btrfs_file_extent_num_bytes(eb, ei);
6288 }
6289
6290 /*
6291 * Are we at extent 8? If yes, we know the extent is changed.
6292 * This may only happen on the first iteration.
6293 */
6294 if (found_key.offset + right_len <= ekey->offset) {
6295 /* If we're a hole just pretend nothing changed */
6296 ret = (left_disknr) ? 0 : 1;
6297 goto out;
6298 }
6299
6300 /*
6301 * We just wanted to see if when we have an inline extent, what
6302 * follows it is a regular extent (wanted to check the above
6303 * condition for inline extents too). This should normally not
6304 * happen but it's possible for example when we have an inline
6305 * compressed extent representing data with a size matching
6306 * the page size (currently the same as sector size).
6307 */
6308 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6309 ret = 0;
6310 goto out;
6311 }
6312
6313 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6314 right_offset = btrfs_file_extent_offset(eb, ei);
6315 right_gen = btrfs_file_extent_generation(eb, ei);
6316
6317 left_offset_fixed = left_offset;
6318 if (key.offset < ekey->offset) {
6319 /* Fix the right offset for 2a and 7. */
6320 right_offset += ekey->offset - key.offset;
6321 } else {
6322 /* Fix the left offset for all behind 2a and 2b */
6323 left_offset_fixed += key.offset - ekey->offset;
6324 }
6325
6326 /*
6327 * Check if we have the same extent.
6328 */
6329 if (left_disknr != right_disknr ||
6330 left_offset_fixed != right_offset ||
6331 left_gen != right_gen) {
6332 ret = 0;
6333 goto out;
6334 }
6335
6336 /*
6337 * Go to the next extent.
6338 */
6339 ret = btrfs_next_item(sctx->parent_root, path);
6340 if (ret < 0)
6341 goto out;
6342 if (!ret) {
6343 eb = path->nodes[0];
6344 slot = path->slots[0];
6345 btrfs_item_key_to_cpu(eb, &found_key, slot);
6346 }
6347 if (ret || found_key.objectid != key.objectid ||
6348 found_key.type != key.type) {
6349 key.offset += right_len;
6350 break;
6351 }
6352 if (found_key.offset != key.offset + right_len) {
6353 ret = 0;
6354 goto out;
6355 }
6356 key = found_key;
6357 }
6358
6359 /*
6360 * We're now behind the left extent (treat as unchanged) or at the end
6361 * of the right side (treat as changed).
6362 */
6363 if (key.offset >= ekey->offset + left_len)
6364 ret = 1;
6365 else
6366 ret = 0;
6367
6368
6369out:
6370 btrfs_free_path(path);
6371 return ret;
6372}
6373
6374static int get_last_extent(struct send_ctx *sctx, u64 offset)
6375{
6376 struct btrfs_path *path;
6377 struct btrfs_root *root = sctx->send_root;
6378 struct btrfs_key key;
6379 int ret;
6380
6381 path = alloc_path_for_send();
6382 if (!path)
6383 return -ENOMEM;
6384
6385 sctx->cur_inode_last_extent = 0;
6386
6387 key.objectid = sctx->cur_ino;
6388 key.type = BTRFS_EXTENT_DATA_KEY;
6389 key.offset = offset;
6390 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6391 if (ret < 0)
6392 goto out;
6393 ret = 0;
6394 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6395 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6396 goto out;
6397
6398 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6399out:
6400 btrfs_free_path(path);
6401 return ret;
6402}
6403
6404static int range_is_hole_in_parent(struct send_ctx *sctx,
6405 const u64 start,
6406 const u64 end)
6407{
6408 struct btrfs_path *path;
6409 struct btrfs_key key;
6410 struct btrfs_root *root = sctx->parent_root;
6411 u64 search_start = start;
6412 int ret;
6413
6414 path = alloc_path_for_send();
6415 if (!path)
6416 return -ENOMEM;
6417
6418 key.objectid = sctx->cur_ino;
6419 key.type = BTRFS_EXTENT_DATA_KEY;
6420 key.offset = search_start;
6421 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6422 if (ret < 0)
6423 goto out;
6424 if (ret > 0 && path->slots[0] > 0)
6425 path->slots[0]--;
6426
6427 while (search_start < end) {
6428 struct extent_buffer *leaf = path->nodes[0];
6429 int slot = path->slots[0];
6430 struct btrfs_file_extent_item *fi;
6431 u64 extent_end;
6432
6433 if (slot >= btrfs_header_nritems(leaf)) {
6434 ret = btrfs_next_leaf(root, path);
6435 if (ret < 0)
6436 goto out;
6437 else if (ret > 0)
6438 break;
6439 continue;
6440 }
6441
6442 btrfs_item_key_to_cpu(leaf, &key, slot);
6443 if (key.objectid < sctx->cur_ino ||
6444 key.type < BTRFS_EXTENT_DATA_KEY)
6445 goto next;
6446 if (key.objectid > sctx->cur_ino ||
6447 key.type > BTRFS_EXTENT_DATA_KEY ||
6448 key.offset >= end)
6449 break;
6450
6451 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6452 extent_end = btrfs_file_extent_end(path);
6453 if (extent_end <= start)
6454 goto next;
6455 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6456 search_start = extent_end;
6457 goto next;
6458 }
6459 ret = 0;
6460 goto out;
6461next:
6462 path->slots[0]++;
6463 }
6464 ret = 1;
6465out:
6466 btrfs_free_path(path);
6467 return ret;
6468}
6469
6470static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6471 struct btrfs_key *key)
6472{
6473 int ret = 0;
6474
6475 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6476 return 0;
6477
6478 /*
6479 * Get last extent's end offset (exclusive) if we haven't determined it
6480 * yet (we're processing the first file extent item that is new), or if
6481 * we're at the first slot of a leaf and the last extent's end is less
6482 * than the current extent's offset, because we might have skipped
6483 * entire leaves that contained only file extent items for our current
6484 * inode. These leaves have a generation number smaller (older) than the
6485 * one in the current leaf and the leaf our last extent came from, and
6486 * are located between these 2 leaves.
6487 */
6488 if ((sctx->cur_inode_last_extent == (u64)-1) ||
6489 (path->slots[0] == 0 && sctx->cur_inode_last_extent < key->offset)) {
6490 ret = get_last_extent(sctx, key->offset - 1);
6491 if (ret)
6492 return ret;
6493 }
6494
6495 if (sctx->cur_inode_last_extent < key->offset) {
6496 ret = range_is_hole_in_parent(sctx,
6497 sctx->cur_inode_last_extent,
6498 key->offset);
6499 if (ret < 0)
6500 return ret;
6501 else if (ret == 0)
6502 ret = send_hole(sctx, key->offset);
6503 else
6504 ret = 0;
6505 }
6506 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6507 return ret;
6508}
6509
6510static int process_extent(struct send_ctx *sctx,
6511 struct btrfs_path *path,
6512 struct btrfs_key *key)
6513{
6514 struct clone_root *found_clone = NULL;
6515 int ret = 0;
6516
6517 if (S_ISLNK(sctx->cur_inode_mode))
6518 return 0;
6519
6520 if (sctx->parent_root && !sctx->cur_inode_new) {
6521 ret = is_extent_unchanged(sctx, path, key);
6522 if (ret < 0)
6523 goto out;
6524 if (ret) {
6525 ret = 0;
6526 goto out_hole;
6527 }
6528 } else {
6529 struct btrfs_file_extent_item *ei;
6530 u8 type;
6531
6532 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6533 struct btrfs_file_extent_item);
6534 type = btrfs_file_extent_type(path->nodes[0], ei);
6535 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6536 type == BTRFS_FILE_EXTENT_REG) {
6537 /*
6538 * The send spec does not have a prealloc command yet,
6539 * so just leave a hole for prealloc'ed extents until
6540 * we have enough commands queued up to justify rev'ing
6541 * the send spec.
6542 */
6543 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6544 ret = 0;
6545 goto out;
6546 }
6547
6548 /* Have a hole, just skip it. */
6549 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6550 ret = 0;
6551 goto out;
6552 }
6553 }
6554 }
6555
6556 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6557 sctx->cur_inode_size, &found_clone);
6558 if (ret != -ENOENT && ret < 0)
6559 goto out;
6560
6561 ret = send_write_or_clone(sctx, path, key, found_clone);
6562 if (ret)
6563 goto out;
6564out_hole:
6565 ret = maybe_send_hole(sctx, path, key);
6566out:
6567 return ret;
6568}
6569
6570static int process_all_extents(struct send_ctx *sctx)
6571{
6572 int ret = 0;
6573 int iter_ret = 0;
6574 struct btrfs_root *root;
6575 struct btrfs_path *path;
6576 struct btrfs_key key;
6577 struct btrfs_key found_key;
6578
6579 root = sctx->send_root;
6580 path = alloc_path_for_send();
6581 if (!path)
6582 return -ENOMEM;
6583
6584 key.objectid = sctx->cmp_key->objectid;
6585 key.type = BTRFS_EXTENT_DATA_KEY;
6586 key.offset = 0;
6587 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6588 if (found_key.objectid != key.objectid ||
6589 found_key.type != key.type) {
6590 ret = 0;
6591 break;
6592 }
6593
6594 ret = process_extent(sctx, path, &found_key);
6595 if (ret < 0)
6596 break;
6597 }
6598 /* Catch error found during iteration */
6599 if (iter_ret < 0)
6600 ret = iter_ret;
6601
6602 btrfs_free_path(path);
6603 return ret;
6604}
6605
6606static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6607 int *pending_move,
6608 int *refs_processed)
6609{
6610 int ret = 0;
6611
6612 if (sctx->cur_ino == 0)
6613 goto out;
6614 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6615 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6616 goto out;
6617 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6618 goto out;
6619
6620 ret = process_recorded_refs(sctx, pending_move);
6621 if (ret < 0)
6622 goto out;
6623
6624 *refs_processed = 1;
6625out:
6626 return ret;
6627}
6628
6629static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6630{
6631 int ret = 0;
6632 struct btrfs_inode_info info;
6633 u64 left_mode;
6634 u64 left_uid;
6635 u64 left_gid;
6636 u64 left_fileattr;
6637 u64 right_mode;
6638 u64 right_uid;
6639 u64 right_gid;
6640 u64 right_fileattr;
6641 int need_chmod = 0;
6642 int need_chown = 0;
6643 bool need_fileattr = false;
6644 int need_truncate = 1;
6645 int pending_move = 0;
6646 int refs_processed = 0;
6647
6648 if (sctx->ignore_cur_inode)
6649 return 0;
6650
6651 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6652 &refs_processed);
6653 if (ret < 0)
6654 goto out;
6655
6656 /*
6657 * We have processed the refs and thus need to advance send_progress.
6658 * Now, calls to get_cur_xxx will take the updated refs of the current
6659 * inode into account.
6660 *
6661 * On the other hand, if our current inode is a directory and couldn't
6662 * be moved/renamed because its parent was renamed/moved too and it has
6663 * a higher inode number, we can only move/rename our current inode
6664 * after we moved/renamed its parent. Therefore in this case operate on
6665 * the old path (pre move/rename) of our current inode, and the
6666 * move/rename will be performed later.
6667 */
6668 if (refs_processed && !pending_move)
6669 sctx->send_progress = sctx->cur_ino + 1;
6670
6671 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6672 goto out;
6673 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6674 goto out;
6675 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6676 if (ret < 0)
6677 goto out;
6678 left_mode = info.mode;
6679 left_uid = info.uid;
6680 left_gid = info.gid;
6681 left_fileattr = info.fileattr;
6682
6683 if (!sctx->parent_root || sctx->cur_inode_new) {
6684 need_chown = 1;
6685 if (!S_ISLNK(sctx->cur_inode_mode))
6686 need_chmod = 1;
6687 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6688 need_truncate = 0;
6689 } else {
6690 u64 old_size;
6691
6692 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6693 if (ret < 0)
6694 goto out;
6695 old_size = info.size;
6696 right_mode = info.mode;
6697 right_uid = info.uid;
6698 right_gid = info.gid;
6699 right_fileattr = info.fileattr;
6700
6701 if (left_uid != right_uid || left_gid != right_gid)
6702 need_chown = 1;
6703 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6704 need_chmod = 1;
6705 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6706 need_fileattr = true;
6707 if ((old_size == sctx->cur_inode_size) ||
6708 (sctx->cur_inode_size > old_size &&
6709 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6710 need_truncate = 0;
6711 }
6712
6713 if (S_ISREG(sctx->cur_inode_mode)) {
6714 if (need_send_hole(sctx)) {
6715 if (sctx->cur_inode_last_extent == (u64)-1 ||
6716 sctx->cur_inode_last_extent <
6717 sctx->cur_inode_size) {
6718 ret = get_last_extent(sctx, (u64)-1);
6719 if (ret)
6720 goto out;
6721 }
6722 if (sctx->cur_inode_last_extent < sctx->cur_inode_size) {
6723 ret = range_is_hole_in_parent(sctx,
6724 sctx->cur_inode_last_extent,
6725 sctx->cur_inode_size);
6726 if (ret < 0) {
6727 goto out;
6728 } else if (ret == 0) {
6729 ret = send_hole(sctx, sctx->cur_inode_size);
6730 if (ret < 0)
6731 goto out;
6732 } else {
6733 /* Range is already a hole, skip. */
6734 ret = 0;
6735 }
6736 }
6737 }
6738 if (need_truncate) {
6739 ret = send_truncate(sctx, sctx->cur_ino,
6740 sctx->cur_inode_gen,
6741 sctx->cur_inode_size);
6742 if (ret < 0)
6743 goto out;
6744 }
6745 }
6746
6747 if (need_chown) {
6748 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6749 left_uid, left_gid);
6750 if (ret < 0)
6751 goto out;
6752 }
6753 if (need_chmod) {
6754 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6755 left_mode);
6756 if (ret < 0)
6757 goto out;
6758 }
6759 if (need_fileattr) {
6760 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6761 left_fileattr);
6762 if (ret < 0)
6763 goto out;
6764 }
6765
6766 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6767 && sctx->cur_inode_needs_verity) {
6768 ret = process_verity(sctx);
6769 if (ret < 0)
6770 goto out;
6771 }
6772
6773 ret = send_capabilities(sctx);
6774 if (ret < 0)
6775 goto out;
6776
6777 /*
6778 * If other directory inodes depended on our current directory
6779 * inode's move/rename, now do their move/rename operations.
6780 */
6781 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6782 ret = apply_children_dir_moves(sctx);
6783 if (ret)
6784 goto out;
6785 /*
6786 * Need to send that every time, no matter if it actually
6787 * changed between the two trees as we have done changes to
6788 * the inode before. If our inode is a directory and it's
6789 * waiting to be moved/renamed, we will send its utimes when
6790 * it's moved/renamed, therefore we don't need to do it here.
6791 */
6792 sctx->send_progress = sctx->cur_ino + 1;
6793
6794 /*
6795 * If the current inode is a non-empty directory, delay issuing
6796 * the utimes command for it, as it's very likely we have inodes
6797 * with an higher number inside it. We want to issue the utimes
6798 * command only after adding all dentries to it.
6799 */
6800 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_size > 0)
6801 ret = cache_dir_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6802 else
6803 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6804
6805 if (ret < 0)
6806 goto out;
6807 }
6808
6809out:
6810 if (!ret)
6811 ret = trim_dir_utimes_cache(sctx);
6812
6813 return ret;
6814}
6815
6816static void close_current_inode(struct send_ctx *sctx)
6817{
6818 u64 i_size;
6819
6820 if (sctx->cur_inode == NULL)
6821 return;
6822
6823 i_size = i_size_read(sctx->cur_inode);
6824
6825 /*
6826 * If we are doing an incremental send, we may have extents between the
6827 * last processed extent and the i_size that have not been processed
6828 * because they haven't changed but we may have read some of their pages
6829 * through readahead, see the comments at send_extent_data().
6830 */
6831 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6832 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6833 sctx->page_cache_clear_start,
6834 round_up(i_size, PAGE_SIZE) - 1);
6835
6836 iput(sctx->cur_inode);
6837 sctx->cur_inode = NULL;
6838}
6839
6840static int changed_inode(struct send_ctx *sctx,
6841 enum btrfs_compare_tree_result result)
6842{
6843 int ret = 0;
6844 struct btrfs_key *key = sctx->cmp_key;
6845 struct btrfs_inode_item *left_ii = NULL;
6846 struct btrfs_inode_item *right_ii = NULL;
6847 u64 left_gen = 0;
6848 u64 right_gen = 0;
6849
6850 close_current_inode(sctx);
6851
6852 sctx->cur_ino = key->objectid;
6853 sctx->cur_inode_new_gen = false;
6854 sctx->cur_inode_last_extent = (u64)-1;
6855 sctx->cur_inode_next_write_offset = 0;
6856 sctx->ignore_cur_inode = false;
6857
6858 /*
6859 * Set send_progress to current inode. This will tell all get_cur_xxx
6860 * functions that the current inode's refs are not updated yet. Later,
6861 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6862 */
6863 sctx->send_progress = sctx->cur_ino;
6864
6865 if (result == BTRFS_COMPARE_TREE_NEW ||
6866 result == BTRFS_COMPARE_TREE_CHANGED) {
6867 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6868 sctx->left_path->slots[0],
6869 struct btrfs_inode_item);
6870 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6871 left_ii);
6872 } else {
6873 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6874 sctx->right_path->slots[0],
6875 struct btrfs_inode_item);
6876 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6877 right_ii);
6878 }
6879 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6880 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6881 sctx->right_path->slots[0],
6882 struct btrfs_inode_item);
6883
6884 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6885 right_ii);
6886
6887 /*
6888 * The cur_ino = root dir case is special here. We can't treat
6889 * the inode as deleted+reused because it would generate a
6890 * stream that tries to delete/mkdir the root dir.
6891 */
6892 if (left_gen != right_gen &&
6893 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6894 sctx->cur_inode_new_gen = true;
6895 }
6896
6897 /*
6898 * Normally we do not find inodes with a link count of zero (orphans)
6899 * because the most common case is to create a snapshot and use it
6900 * for a send operation. However other less common use cases involve
6901 * using a subvolume and send it after turning it to RO mode just
6902 * after deleting all hard links of a file while holding an open
6903 * file descriptor against it or turning a RO snapshot into RW mode,
6904 * keep an open file descriptor against a file, delete it and then
6905 * turn the snapshot back to RO mode before using it for a send
6906 * operation. The former is what the receiver operation does.
6907 * Therefore, if we want to send these snapshots soon after they're
6908 * received, we need to handle orphan inodes as well. Moreover, orphans
6909 * can appear not only in the send snapshot but also in the parent
6910 * snapshot. Here are several cases:
6911 *
6912 * Case 1: BTRFS_COMPARE_TREE_NEW
6913 * | send snapshot | action
6914 * --------------------------------
6915 * nlink | 0 | ignore
6916 *
6917 * Case 2: BTRFS_COMPARE_TREE_DELETED
6918 * | parent snapshot | action
6919 * ----------------------------------
6920 * nlink | 0 | as usual
6921 * Note: No unlinks will be sent because there're no paths for it.
6922 *
6923 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6924 * | | parent snapshot | send snapshot | action
6925 * -----------------------------------------------------------------------
6926 * subcase 1 | nlink | 0 | 0 | ignore
6927 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6928 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6929 *
6930 */
6931 if (result == BTRFS_COMPARE_TREE_NEW) {
6932 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6933 sctx->ignore_cur_inode = true;
6934 goto out;
6935 }
6936 sctx->cur_inode_gen = left_gen;
6937 sctx->cur_inode_new = true;
6938 sctx->cur_inode_deleted = false;
6939 sctx->cur_inode_size = btrfs_inode_size(
6940 sctx->left_path->nodes[0], left_ii);
6941 sctx->cur_inode_mode = btrfs_inode_mode(
6942 sctx->left_path->nodes[0], left_ii);
6943 sctx->cur_inode_rdev = btrfs_inode_rdev(
6944 sctx->left_path->nodes[0], left_ii);
6945 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6946 ret = send_create_inode_if_needed(sctx);
6947 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6948 sctx->cur_inode_gen = right_gen;
6949 sctx->cur_inode_new = false;
6950 sctx->cur_inode_deleted = true;
6951 sctx->cur_inode_size = btrfs_inode_size(
6952 sctx->right_path->nodes[0], right_ii);
6953 sctx->cur_inode_mode = btrfs_inode_mode(
6954 sctx->right_path->nodes[0], right_ii);
6955 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6956 u32 new_nlinks, old_nlinks;
6957
6958 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6959 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6960 if (new_nlinks == 0 && old_nlinks == 0) {
6961 sctx->ignore_cur_inode = true;
6962 goto out;
6963 } else if (new_nlinks == 0 || old_nlinks == 0) {
6964 sctx->cur_inode_new_gen = 1;
6965 }
6966 /*
6967 * We need to do some special handling in case the inode was
6968 * reported as changed with a changed generation number. This
6969 * means that the original inode was deleted and new inode
6970 * reused the same inum. So we have to treat the old inode as
6971 * deleted and the new one as new.
6972 */
6973 if (sctx->cur_inode_new_gen) {
6974 /*
6975 * First, process the inode as if it was deleted.
6976 */
6977 if (old_nlinks > 0) {
6978 sctx->cur_inode_gen = right_gen;
6979 sctx->cur_inode_new = false;
6980 sctx->cur_inode_deleted = true;
6981 sctx->cur_inode_size = btrfs_inode_size(
6982 sctx->right_path->nodes[0], right_ii);
6983 sctx->cur_inode_mode = btrfs_inode_mode(
6984 sctx->right_path->nodes[0], right_ii);
6985 ret = process_all_refs(sctx,
6986 BTRFS_COMPARE_TREE_DELETED);
6987 if (ret < 0)
6988 goto out;
6989 }
6990
6991 /*
6992 * Now process the inode as if it was new.
6993 */
6994 if (new_nlinks > 0) {
6995 sctx->cur_inode_gen = left_gen;
6996 sctx->cur_inode_new = true;
6997 sctx->cur_inode_deleted = false;
6998 sctx->cur_inode_size = btrfs_inode_size(
6999 sctx->left_path->nodes[0],
7000 left_ii);
7001 sctx->cur_inode_mode = btrfs_inode_mode(
7002 sctx->left_path->nodes[0],
7003 left_ii);
7004 sctx->cur_inode_rdev = btrfs_inode_rdev(
7005 sctx->left_path->nodes[0],
7006 left_ii);
7007 ret = send_create_inode_if_needed(sctx);
7008 if (ret < 0)
7009 goto out;
7010
7011 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
7012 if (ret < 0)
7013 goto out;
7014 /*
7015 * Advance send_progress now as we did not get
7016 * into process_recorded_refs_if_needed in the
7017 * new_gen case.
7018 */
7019 sctx->send_progress = sctx->cur_ino + 1;
7020
7021 /*
7022 * Now process all extents and xattrs of the
7023 * inode as if they were all new.
7024 */
7025 ret = process_all_extents(sctx);
7026 if (ret < 0)
7027 goto out;
7028 ret = process_all_new_xattrs(sctx);
7029 if (ret < 0)
7030 goto out;
7031 }
7032 } else {
7033 sctx->cur_inode_gen = left_gen;
7034 sctx->cur_inode_new = false;
7035 sctx->cur_inode_new_gen = false;
7036 sctx->cur_inode_deleted = false;
7037 sctx->cur_inode_size = btrfs_inode_size(
7038 sctx->left_path->nodes[0], left_ii);
7039 sctx->cur_inode_mode = btrfs_inode_mode(
7040 sctx->left_path->nodes[0], left_ii);
7041 }
7042 }
7043
7044out:
7045 return ret;
7046}
7047
7048/*
7049 * We have to process new refs before deleted refs, but compare_trees gives us
7050 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
7051 * first and later process them in process_recorded_refs.
7052 * For the cur_inode_new_gen case, we skip recording completely because
7053 * changed_inode did already initiate processing of refs. The reason for this is
7054 * that in this case, compare_tree actually compares the refs of 2 different
7055 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
7056 * refs of the right tree as deleted and all refs of the left tree as new.
7057 */
7058static int changed_ref(struct send_ctx *sctx,
7059 enum btrfs_compare_tree_result result)
7060{
7061 int ret = 0;
7062
7063 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7064 inconsistent_snapshot_error(sctx, result, "reference");
7065 return -EIO;
7066 }
7067
7068 if (!sctx->cur_inode_new_gen &&
7069 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
7070 if (result == BTRFS_COMPARE_TREE_NEW)
7071 ret = record_new_ref(sctx);
7072 else if (result == BTRFS_COMPARE_TREE_DELETED)
7073 ret = record_deleted_ref(sctx);
7074 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7075 ret = record_changed_ref(sctx);
7076 }
7077
7078 return ret;
7079}
7080
7081/*
7082 * Process new/deleted/changed xattrs. We skip processing in the
7083 * cur_inode_new_gen case because changed_inode did already initiate processing
7084 * of xattrs. The reason is the same as in changed_ref
7085 */
7086static int changed_xattr(struct send_ctx *sctx,
7087 enum btrfs_compare_tree_result result)
7088{
7089 int ret = 0;
7090
7091 if (sctx->cur_ino != sctx->cmp_key->objectid) {
7092 inconsistent_snapshot_error(sctx, result, "xattr");
7093 return -EIO;
7094 }
7095
7096 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7097 if (result == BTRFS_COMPARE_TREE_NEW)
7098 ret = process_new_xattr(sctx);
7099 else if (result == BTRFS_COMPARE_TREE_DELETED)
7100 ret = process_deleted_xattr(sctx);
7101 else if (result == BTRFS_COMPARE_TREE_CHANGED)
7102 ret = process_changed_xattr(sctx);
7103 }
7104
7105 return ret;
7106}
7107
7108/*
7109 * Process new/deleted/changed extents. We skip processing in the
7110 * cur_inode_new_gen case because changed_inode did already initiate processing
7111 * of extents. The reason is the same as in changed_ref
7112 */
7113static int changed_extent(struct send_ctx *sctx,
7114 enum btrfs_compare_tree_result result)
7115{
7116 int ret = 0;
7117
7118 /*
7119 * We have found an extent item that changed without the inode item
7120 * having changed. This can happen either after relocation (where the
7121 * disk_bytenr of an extent item is replaced at
7122 * relocation.c:replace_file_extents()) or after deduplication into a
7123 * file in both the parent and send snapshots (where an extent item can
7124 * get modified or replaced with a new one). Note that deduplication
7125 * updates the inode item, but it only changes the iversion (sequence
7126 * field in the inode item) of the inode, so if a file is deduplicated
7127 * the same amount of times in both the parent and send snapshots, its
7128 * iversion becomes the same in both snapshots, whence the inode item is
7129 * the same on both snapshots.
7130 */
7131 if (sctx->cur_ino != sctx->cmp_key->objectid)
7132 return 0;
7133
7134 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7135 if (result != BTRFS_COMPARE_TREE_DELETED)
7136 ret = process_extent(sctx, sctx->left_path,
7137 sctx->cmp_key);
7138 }
7139
7140 return ret;
7141}
7142
7143static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
7144{
7145 int ret = 0;
7146
7147 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
7148 if (result == BTRFS_COMPARE_TREE_NEW)
7149 sctx->cur_inode_needs_verity = true;
7150 }
7151 return ret;
7152}
7153
7154static int dir_changed(struct send_ctx *sctx, u64 dir)
7155{
7156 u64 orig_gen, new_gen;
7157 int ret;
7158
7159 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
7160 if (ret)
7161 return ret;
7162
7163 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
7164 if (ret)
7165 return ret;
7166
7167 return (orig_gen != new_gen) ? 1 : 0;
7168}
7169
7170static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
7171 struct btrfs_key *key)
7172{
7173 struct btrfs_inode_extref *extref;
7174 struct extent_buffer *leaf;
7175 u64 dirid = 0, last_dirid = 0;
7176 unsigned long ptr;
7177 u32 item_size;
7178 u32 cur_offset = 0;
7179 int ref_name_len;
7180 int ret = 0;
7181
7182 /* Easy case, just check this one dirid */
7183 if (key->type == BTRFS_INODE_REF_KEY) {
7184 dirid = key->offset;
7185
7186 ret = dir_changed(sctx, dirid);
7187 goto out;
7188 }
7189
7190 leaf = path->nodes[0];
7191 item_size = btrfs_item_size(leaf, path->slots[0]);
7192 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
7193 while (cur_offset < item_size) {
7194 extref = (struct btrfs_inode_extref *)(ptr +
7195 cur_offset);
7196 dirid = btrfs_inode_extref_parent(leaf, extref);
7197 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
7198 cur_offset += ref_name_len + sizeof(*extref);
7199 if (dirid == last_dirid)
7200 continue;
7201 ret = dir_changed(sctx, dirid);
7202 if (ret)
7203 break;
7204 last_dirid = dirid;
7205 }
7206out:
7207 return ret;
7208}
7209
7210/*
7211 * Updates compare related fields in sctx and simply forwards to the actual
7212 * changed_xxx functions.
7213 */
7214static int changed_cb(struct btrfs_path *left_path,
7215 struct btrfs_path *right_path,
7216 struct btrfs_key *key,
7217 enum btrfs_compare_tree_result result,
7218 struct send_ctx *sctx)
7219{
7220 int ret = 0;
7221
7222 /*
7223 * We can not hold the commit root semaphore here. This is because in
7224 * the case of sending and receiving to the same filesystem, using a
7225 * pipe, could result in a deadlock:
7226 *
7227 * 1) The task running send blocks on the pipe because it's full;
7228 *
7229 * 2) The task running receive, which is the only consumer of the pipe,
7230 * is waiting for a transaction commit (for example due to a space
7231 * reservation when doing a write or triggering a transaction commit
7232 * when creating a subvolume);
7233 *
7234 * 3) The transaction is waiting to write lock the commit root semaphore,
7235 * but can not acquire it since it's being held at 1).
7236 *
7237 * Down this call chain we write to the pipe through kernel_write().
7238 * The same type of problem can also happen when sending to a file that
7239 * is stored in the same filesystem - when reserving space for a write
7240 * into the file, we can trigger a transaction commit.
7241 *
7242 * Our caller has supplied us with clones of leaves from the send and
7243 * parent roots, so we're safe here from a concurrent relocation and
7244 * further reallocation of metadata extents while we are here. Below we
7245 * also assert that the leaves are clones.
7246 */
7247 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
7248
7249 /*
7250 * We always have a send root, so left_path is never NULL. We will not
7251 * have a leaf when we have reached the end of the send root but have
7252 * not yet reached the end of the parent root.
7253 */
7254 if (left_path->nodes[0])
7255 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7256 &left_path->nodes[0]->bflags));
7257 /*
7258 * When doing a full send we don't have a parent root, so right_path is
7259 * NULL. When doing an incremental send, we may have reached the end of
7260 * the parent root already, so we don't have a leaf at right_path.
7261 */
7262 if (right_path && right_path->nodes[0])
7263 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
7264 &right_path->nodes[0]->bflags));
7265
7266 if (result == BTRFS_COMPARE_TREE_SAME) {
7267 if (key->type == BTRFS_INODE_REF_KEY ||
7268 key->type == BTRFS_INODE_EXTREF_KEY) {
7269 ret = compare_refs(sctx, left_path, key);
7270 if (!ret)
7271 return 0;
7272 if (ret < 0)
7273 return ret;
7274 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
7275 return maybe_send_hole(sctx, left_path, key);
7276 } else {
7277 return 0;
7278 }
7279 result = BTRFS_COMPARE_TREE_CHANGED;
7280 ret = 0;
7281 }
7282
7283 sctx->left_path = left_path;
7284 sctx->right_path = right_path;
7285 sctx->cmp_key = key;
7286
7287 ret = finish_inode_if_needed(sctx, 0);
7288 if (ret < 0)
7289 goto out;
7290
7291 /* Ignore non-FS objects */
7292 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7293 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7294 goto out;
7295
7296 if (key->type == BTRFS_INODE_ITEM_KEY) {
7297 ret = changed_inode(sctx, result);
7298 } else if (!sctx->ignore_cur_inode) {
7299 if (key->type == BTRFS_INODE_REF_KEY ||
7300 key->type == BTRFS_INODE_EXTREF_KEY)
7301 ret = changed_ref(sctx, result);
7302 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7303 ret = changed_xattr(sctx, result);
7304 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7305 ret = changed_extent(sctx, result);
7306 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7307 key->offset == 0)
7308 ret = changed_verity(sctx, result);
7309 }
7310
7311out:
7312 return ret;
7313}
7314
7315static int search_key_again(const struct send_ctx *sctx,
7316 struct btrfs_root *root,
7317 struct btrfs_path *path,
7318 const struct btrfs_key *key)
7319{
7320 int ret;
7321
7322 if (!path->need_commit_sem)
7323 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7324
7325 /*
7326 * Roots used for send operations are readonly and no one can add,
7327 * update or remove keys from them, so we should be able to find our
7328 * key again. The only exception is deduplication, which can operate on
7329 * readonly roots and add, update or remove keys to/from them - but at
7330 * the moment we don't allow it to run in parallel with send.
7331 */
7332 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7333 ASSERT(ret <= 0);
7334 if (ret > 0) {
7335 btrfs_print_tree(path->nodes[path->lowest_level], false);
7336 btrfs_err(root->fs_info,
7337"send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7338 key->objectid, key->type, key->offset,
7339 (root == sctx->parent_root ? "parent" : "send"),
7340 root->root_key.objectid, path->lowest_level,
7341 path->slots[path->lowest_level]);
7342 return -EUCLEAN;
7343 }
7344
7345 return ret;
7346}
7347
7348static int full_send_tree(struct send_ctx *sctx)
7349{
7350 int ret;
7351 struct btrfs_root *send_root = sctx->send_root;
7352 struct btrfs_key key;
7353 struct btrfs_fs_info *fs_info = send_root->fs_info;
7354 struct btrfs_path *path;
7355
7356 path = alloc_path_for_send();
7357 if (!path)
7358 return -ENOMEM;
7359 path->reada = READA_FORWARD_ALWAYS;
7360
7361 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7362 key.type = BTRFS_INODE_ITEM_KEY;
7363 key.offset = 0;
7364
7365 down_read(&fs_info->commit_root_sem);
7366 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7367 up_read(&fs_info->commit_root_sem);
7368
7369 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7370 if (ret < 0)
7371 goto out;
7372 if (ret)
7373 goto out_finish;
7374
7375 while (1) {
7376 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7377
7378 ret = changed_cb(path, NULL, &key,
7379 BTRFS_COMPARE_TREE_NEW, sctx);
7380 if (ret < 0)
7381 goto out;
7382
7383 down_read(&fs_info->commit_root_sem);
7384 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7385 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7386 up_read(&fs_info->commit_root_sem);
7387 /*
7388 * A transaction used for relocating a block group was
7389 * committed or is about to finish its commit. Release
7390 * our path (leaf) and restart the search, so that we
7391 * avoid operating on any file extent items that are
7392 * stale, with a disk_bytenr that reflects a pre
7393 * relocation value. This way we avoid as much as
7394 * possible to fallback to regular writes when checking
7395 * if we can clone file ranges.
7396 */
7397 btrfs_release_path(path);
7398 ret = search_key_again(sctx, send_root, path, &key);
7399 if (ret < 0)
7400 goto out;
7401 } else {
7402 up_read(&fs_info->commit_root_sem);
7403 }
7404
7405 ret = btrfs_next_item(send_root, path);
7406 if (ret < 0)
7407 goto out;
7408 if (ret) {
7409 ret = 0;
7410 break;
7411 }
7412 }
7413
7414out_finish:
7415 ret = finish_inode_if_needed(sctx, 1);
7416
7417out:
7418 btrfs_free_path(path);
7419 return ret;
7420}
7421
7422static int replace_node_with_clone(struct btrfs_path *path, int level)
7423{
7424 struct extent_buffer *clone;
7425
7426 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7427 if (!clone)
7428 return -ENOMEM;
7429
7430 free_extent_buffer(path->nodes[level]);
7431 path->nodes[level] = clone;
7432
7433 return 0;
7434}
7435
7436static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7437{
7438 struct extent_buffer *eb;
7439 struct extent_buffer *parent = path->nodes[*level];
7440 int slot = path->slots[*level];
7441 const int nritems = btrfs_header_nritems(parent);
7442 u64 reada_max;
7443 u64 reada_done = 0;
7444
7445 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7446 ASSERT(*level != 0);
7447
7448 eb = btrfs_read_node_slot(parent, slot);
7449 if (IS_ERR(eb))
7450 return PTR_ERR(eb);
7451
7452 /*
7453 * Trigger readahead for the next leaves we will process, so that it is
7454 * very likely that when we need them they are already in memory and we
7455 * will not block on disk IO. For nodes we only do readahead for one,
7456 * since the time window between processing nodes is typically larger.
7457 */
7458 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7459
7460 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7461 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7462 btrfs_readahead_node_child(parent, slot);
7463 reada_done += eb->fs_info->nodesize;
7464 }
7465 }
7466
7467 path->nodes[*level - 1] = eb;
7468 path->slots[*level - 1] = 0;
7469 (*level)--;
7470
7471 if (*level == 0)
7472 return replace_node_with_clone(path, 0);
7473
7474 return 0;
7475}
7476
7477static int tree_move_next_or_upnext(struct btrfs_path *path,
7478 int *level, int root_level)
7479{
7480 int ret = 0;
7481 int nritems;
7482 nritems = btrfs_header_nritems(path->nodes[*level]);
7483
7484 path->slots[*level]++;
7485
7486 while (path->slots[*level] >= nritems) {
7487 if (*level == root_level) {
7488 path->slots[*level] = nritems - 1;
7489 return -1;
7490 }
7491
7492 /* move upnext */
7493 path->slots[*level] = 0;
7494 free_extent_buffer(path->nodes[*level]);
7495 path->nodes[*level] = NULL;
7496 (*level)++;
7497 path->slots[*level]++;
7498
7499 nritems = btrfs_header_nritems(path->nodes[*level]);
7500 ret = 1;
7501 }
7502 return ret;
7503}
7504
7505/*
7506 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7507 * or down.
7508 */
7509static int tree_advance(struct btrfs_path *path,
7510 int *level, int root_level,
7511 int allow_down,
7512 struct btrfs_key *key,
7513 u64 reada_min_gen)
7514{
7515 int ret;
7516
7517 if (*level == 0 || !allow_down) {
7518 ret = tree_move_next_or_upnext(path, level, root_level);
7519 } else {
7520 ret = tree_move_down(path, level, reada_min_gen);
7521 }
7522
7523 /*
7524 * Even if we have reached the end of a tree, ret is -1, update the key
7525 * anyway, so that in case we need to restart due to a block group
7526 * relocation, we can assert that the last key of the root node still
7527 * exists in the tree.
7528 */
7529 if (*level == 0)
7530 btrfs_item_key_to_cpu(path->nodes[*level], key,
7531 path->slots[*level]);
7532 else
7533 btrfs_node_key_to_cpu(path->nodes[*level], key,
7534 path->slots[*level]);
7535
7536 return ret;
7537}
7538
7539static int tree_compare_item(struct btrfs_path *left_path,
7540 struct btrfs_path *right_path,
7541 char *tmp_buf)
7542{
7543 int cmp;
7544 int len1, len2;
7545 unsigned long off1, off2;
7546
7547 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7548 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7549 if (len1 != len2)
7550 return 1;
7551
7552 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7553 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7554 right_path->slots[0]);
7555
7556 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7557
7558 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7559 if (cmp)
7560 return 1;
7561 return 0;
7562}
7563
7564/*
7565 * A transaction used for relocating a block group was committed or is about to
7566 * finish its commit. Release our paths and restart the search, so that we are
7567 * not using stale extent buffers:
7568 *
7569 * 1) For levels > 0, we are only holding references of extent buffers, without
7570 * any locks on them, which does not prevent them from having been relocated
7571 * and reallocated after the last time we released the commit root semaphore.
7572 * The exception are the root nodes, for which we always have a clone, see
7573 * the comment at btrfs_compare_trees();
7574 *
7575 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7576 * we are safe from the concurrent relocation and reallocation. However they
7577 * can have file extent items with a pre relocation disk_bytenr value, so we
7578 * restart the start from the current commit roots and clone the new leaves so
7579 * that we get the post relocation disk_bytenr values. Not doing so, could
7580 * make us clone the wrong data in case there are new extents using the old
7581 * disk_bytenr that happen to be shared.
7582 */
7583static int restart_after_relocation(struct btrfs_path *left_path,
7584 struct btrfs_path *right_path,
7585 const struct btrfs_key *left_key,
7586 const struct btrfs_key *right_key,
7587 int left_level,
7588 int right_level,
7589 const struct send_ctx *sctx)
7590{
7591 int root_level;
7592 int ret;
7593
7594 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7595
7596 btrfs_release_path(left_path);
7597 btrfs_release_path(right_path);
7598
7599 /*
7600 * Since keys can not be added or removed to/from our roots because they
7601 * are readonly and we do not allow deduplication to run in parallel
7602 * (which can add, remove or change keys), the layout of the trees should
7603 * not change.
7604 */
7605 left_path->lowest_level = left_level;
7606 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7607 if (ret < 0)
7608 return ret;
7609
7610 right_path->lowest_level = right_level;
7611 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7612 if (ret < 0)
7613 return ret;
7614
7615 /*
7616 * If the lowest level nodes are leaves, clone them so that they can be
7617 * safely used by changed_cb() while not under the protection of the
7618 * commit root semaphore, even if relocation and reallocation happens in
7619 * parallel.
7620 */
7621 if (left_level == 0) {
7622 ret = replace_node_with_clone(left_path, 0);
7623 if (ret < 0)
7624 return ret;
7625 }
7626
7627 if (right_level == 0) {
7628 ret = replace_node_with_clone(right_path, 0);
7629 if (ret < 0)
7630 return ret;
7631 }
7632
7633 /*
7634 * Now clone the root nodes (unless they happen to be the leaves we have
7635 * already cloned). This is to protect against concurrent snapshotting of
7636 * the send and parent roots (see the comment at btrfs_compare_trees()).
7637 */
7638 root_level = btrfs_header_level(sctx->send_root->commit_root);
7639 if (root_level > 0) {
7640 ret = replace_node_with_clone(left_path, root_level);
7641 if (ret < 0)
7642 return ret;
7643 }
7644
7645 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7646 if (root_level > 0) {
7647 ret = replace_node_with_clone(right_path, root_level);
7648 if (ret < 0)
7649 return ret;
7650 }
7651
7652 return 0;
7653}
7654
7655/*
7656 * This function compares two trees and calls the provided callback for
7657 * every changed/new/deleted item it finds.
7658 * If shared tree blocks are encountered, whole subtrees are skipped, making
7659 * the compare pretty fast on snapshotted subvolumes.
7660 *
7661 * This currently works on commit roots only. As commit roots are read only,
7662 * we don't do any locking. The commit roots are protected with transactions.
7663 * Transactions are ended and rejoined when a commit is tried in between.
7664 *
7665 * This function checks for modifications done to the trees while comparing.
7666 * If it detects a change, it aborts immediately.
7667 */
7668static int btrfs_compare_trees(struct btrfs_root *left_root,
7669 struct btrfs_root *right_root, struct send_ctx *sctx)
7670{
7671 struct btrfs_fs_info *fs_info = left_root->fs_info;
7672 int ret;
7673 int cmp;
7674 struct btrfs_path *left_path = NULL;
7675 struct btrfs_path *right_path = NULL;
7676 struct btrfs_key left_key;
7677 struct btrfs_key right_key;
7678 char *tmp_buf = NULL;
7679 int left_root_level;
7680 int right_root_level;
7681 int left_level;
7682 int right_level;
7683 int left_end_reached = 0;
7684 int right_end_reached = 0;
7685 int advance_left = 0;
7686 int advance_right = 0;
7687 u64 left_blockptr;
7688 u64 right_blockptr;
7689 u64 left_gen;
7690 u64 right_gen;
7691 u64 reada_min_gen;
7692
7693 left_path = btrfs_alloc_path();
7694 if (!left_path) {
7695 ret = -ENOMEM;
7696 goto out;
7697 }
7698 right_path = btrfs_alloc_path();
7699 if (!right_path) {
7700 ret = -ENOMEM;
7701 goto out;
7702 }
7703
7704 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7705 if (!tmp_buf) {
7706 ret = -ENOMEM;
7707 goto out;
7708 }
7709
7710 left_path->search_commit_root = 1;
7711 left_path->skip_locking = 1;
7712 right_path->search_commit_root = 1;
7713 right_path->skip_locking = 1;
7714
7715 /*
7716 * Strategy: Go to the first items of both trees. Then do
7717 *
7718 * If both trees are at level 0
7719 * Compare keys of current items
7720 * If left < right treat left item as new, advance left tree
7721 * and repeat
7722 * If left > right treat right item as deleted, advance right tree
7723 * and repeat
7724 * If left == right do deep compare of items, treat as changed if
7725 * needed, advance both trees and repeat
7726 * If both trees are at the same level but not at level 0
7727 * Compare keys of current nodes/leafs
7728 * If left < right advance left tree and repeat
7729 * If left > right advance right tree and repeat
7730 * If left == right compare blockptrs of the next nodes/leafs
7731 * If they match advance both trees but stay at the same level
7732 * and repeat
7733 * If they don't match advance both trees while allowing to go
7734 * deeper and repeat
7735 * If tree levels are different
7736 * Advance the tree that needs it and repeat
7737 *
7738 * Advancing a tree means:
7739 * If we are at level 0, try to go to the next slot. If that's not
7740 * possible, go one level up and repeat. Stop when we found a level
7741 * where we could go to the next slot. We may at this point be on a
7742 * node or a leaf.
7743 *
7744 * If we are not at level 0 and not on shared tree blocks, go one
7745 * level deeper.
7746 *
7747 * If we are not at level 0 and on shared tree blocks, go one slot to
7748 * the right if possible or go up and right.
7749 */
7750
7751 down_read(&fs_info->commit_root_sem);
7752 left_level = btrfs_header_level(left_root->commit_root);
7753 left_root_level = left_level;
7754 /*
7755 * We clone the root node of the send and parent roots to prevent races
7756 * with snapshot creation of these roots. Snapshot creation COWs the
7757 * root node of a tree, so after the transaction is committed the old
7758 * extent can be reallocated while this send operation is still ongoing.
7759 * So we clone them, under the commit root semaphore, to be race free.
7760 */
7761 left_path->nodes[left_level] =
7762 btrfs_clone_extent_buffer(left_root->commit_root);
7763 if (!left_path->nodes[left_level]) {
7764 ret = -ENOMEM;
7765 goto out_unlock;
7766 }
7767
7768 right_level = btrfs_header_level(right_root->commit_root);
7769 right_root_level = right_level;
7770 right_path->nodes[right_level] =
7771 btrfs_clone_extent_buffer(right_root->commit_root);
7772 if (!right_path->nodes[right_level]) {
7773 ret = -ENOMEM;
7774 goto out_unlock;
7775 }
7776 /*
7777 * Our right root is the parent root, while the left root is the "send"
7778 * root. We know that all new nodes/leaves in the left root must have
7779 * a generation greater than the right root's generation, so we trigger
7780 * readahead for those nodes and leaves of the left root, as we know we
7781 * will need to read them at some point.
7782 */
7783 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7784
7785 if (left_level == 0)
7786 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7787 &left_key, left_path->slots[left_level]);
7788 else
7789 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7790 &left_key, left_path->slots[left_level]);
7791 if (right_level == 0)
7792 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7793 &right_key, right_path->slots[right_level]);
7794 else
7795 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7796 &right_key, right_path->slots[right_level]);
7797
7798 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7799
7800 while (1) {
7801 if (need_resched() ||
7802 rwsem_is_contended(&fs_info->commit_root_sem)) {
7803 up_read(&fs_info->commit_root_sem);
7804 cond_resched();
7805 down_read(&fs_info->commit_root_sem);
7806 }
7807
7808 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7809 ret = restart_after_relocation(left_path, right_path,
7810 &left_key, &right_key,
7811 left_level, right_level,
7812 sctx);
7813 if (ret < 0)
7814 goto out_unlock;
7815 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7816 }
7817
7818 if (advance_left && !left_end_reached) {
7819 ret = tree_advance(left_path, &left_level,
7820 left_root_level,
7821 advance_left != ADVANCE_ONLY_NEXT,
7822 &left_key, reada_min_gen);
7823 if (ret == -1)
7824 left_end_reached = ADVANCE;
7825 else if (ret < 0)
7826 goto out_unlock;
7827 advance_left = 0;
7828 }
7829 if (advance_right && !right_end_reached) {
7830 ret = tree_advance(right_path, &right_level,
7831 right_root_level,
7832 advance_right != ADVANCE_ONLY_NEXT,
7833 &right_key, reada_min_gen);
7834 if (ret == -1)
7835 right_end_reached = ADVANCE;
7836 else if (ret < 0)
7837 goto out_unlock;
7838 advance_right = 0;
7839 }
7840
7841 if (left_end_reached && right_end_reached) {
7842 ret = 0;
7843 goto out_unlock;
7844 } else if (left_end_reached) {
7845 if (right_level == 0) {
7846 up_read(&fs_info->commit_root_sem);
7847 ret = changed_cb(left_path, right_path,
7848 &right_key,
7849 BTRFS_COMPARE_TREE_DELETED,
7850 sctx);
7851 if (ret < 0)
7852 goto out;
7853 down_read(&fs_info->commit_root_sem);
7854 }
7855 advance_right = ADVANCE;
7856 continue;
7857 } else if (right_end_reached) {
7858 if (left_level == 0) {
7859 up_read(&fs_info->commit_root_sem);
7860 ret = changed_cb(left_path, right_path,
7861 &left_key,
7862 BTRFS_COMPARE_TREE_NEW,
7863 sctx);
7864 if (ret < 0)
7865 goto out;
7866 down_read(&fs_info->commit_root_sem);
7867 }
7868 advance_left = ADVANCE;
7869 continue;
7870 }
7871
7872 if (left_level == 0 && right_level == 0) {
7873 up_read(&fs_info->commit_root_sem);
7874 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7875 if (cmp < 0) {
7876 ret = changed_cb(left_path, right_path,
7877 &left_key,
7878 BTRFS_COMPARE_TREE_NEW,
7879 sctx);
7880 advance_left = ADVANCE;
7881 } else if (cmp > 0) {
7882 ret = changed_cb(left_path, right_path,
7883 &right_key,
7884 BTRFS_COMPARE_TREE_DELETED,
7885 sctx);
7886 advance_right = ADVANCE;
7887 } else {
7888 enum btrfs_compare_tree_result result;
7889
7890 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7891 ret = tree_compare_item(left_path, right_path,
7892 tmp_buf);
7893 if (ret)
7894 result = BTRFS_COMPARE_TREE_CHANGED;
7895 else
7896 result = BTRFS_COMPARE_TREE_SAME;
7897 ret = changed_cb(left_path, right_path,
7898 &left_key, result, sctx);
7899 advance_left = ADVANCE;
7900 advance_right = ADVANCE;
7901 }
7902
7903 if (ret < 0)
7904 goto out;
7905 down_read(&fs_info->commit_root_sem);
7906 } else if (left_level == right_level) {
7907 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7908 if (cmp < 0) {
7909 advance_left = ADVANCE;
7910 } else if (cmp > 0) {
7911 advance_right = ADVANCE;
7912 } else {
7913 left_blockptr = btrfs_node_blockptr(
7914 left_path->nodes[left_level],
7915 left_path->slots[left_level]);
7916 right_blockptr = btrfs_node_blockptr(
7917 right_path->nodes[right_level],
7918 right_path->slots[right_level]);
7919 left_gen = btrfs_node_ptr_generation(
7920 left_path->nodes[left_level],
7921 left_path->slots[left_level]);
7922 right_gen = btrfs_node_ptr_generation(
7923 right_path->nodes[right_level],
7924 right_path->slots[right_level]);
7925 if (left_blockptr == right_blockptr &&
7926 left_gen == right_gen) {
7927 /*
7928 * As we're on a shared block, don't
7929 * allow to go deeper.
7930 */
7931 advance_left = ADVANCE_ONLY_NEXT;
7932 advance_right = ADVANCE_ONLY_NEXT;
7933 } else {
7934 advance_left = ADVANCE;
7935 advance_right = ADVANCE;
7936 }
7937 }
7938 } else if (left_level < right_level) {
7939 advance_right = ADVANCE;
7940 } else {
7941 advance_left = ADVANCE;
7942 }
7943 }
7944
7945out_unlock:
7946 up_read(&fs_info->commit_root_sem);
7947out:
7948 btrfs_free_path(left_path);
7949 btrfs_free_path(right_path);
7950 kvfree(tmp_buf);
7951 return ret;
7952}
7953
7954static int send_subvol(struct send_ctx *sctx)
7955{
7956 int ret;
7957
7958 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7959 ret = send_header(sctx);
7960 if (ret < 0)
7961 goto out;
7962 }
7963
7964 ret = send_subvol_begin(sctx);
7965 if (ret < 0)
7966 goto out;
7967
7968 if (sctx->parent_root) {
7969 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7970 if (ret < 0)
7971 goto out;
7972 ret = finish_inode_if_needed(sctx, 1);
7973 if (ret < 0)
7974 goto out;
7975 } else {
7976 ret = full_send_tree(sctx);
7977 if (ret < 0)
7978 goto out;
7979 }
7980
7981out:
7982 free_recorded_refs(sctx);
7983 return ret;
7984}
7985
7986/*
7987 * If orphan cleanup did remove any orphans from a root, it means the tree
7988 * was modified and therefore the commit root is not the same as the current
7989 * root anymore. This is a problem, because send uses the commit root and
7990 * therefore can see inode items that don't exist in the current root anymore,
7991 * and for example make calls to btrfs_iget, which will do tree lookups based
7992 * on the current root and not on the commit root. Those lookups will fail,
7993 * returning a -ESTALE error, and making send fail with that error. So make
7994 * sure a send does not see any orphans we have just removed, and that it will
7995 * see the same inodes regardless of whether a transaction commit happened
7996 * before it started (meaning that the commit root will be the same as the
7997 * current root) or not.
7998 */
7999static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
8000{
8001 int i;
8002 struct btrfs_trans_handle *trans = NULL;
8003
8004again:
8005 if (sctx->parent_root &&
8006 sctx->parent_root->node != sctx->parent_root->commit_root)
8007 goto commit_trans;
8008
8009 for (i = 0; i < sctx->clone_roots_cnt; i++)
8010 if (sctx->clone_roots[i].root->node !=
8011 sctx->clone_roots[i].root->commit_root)
8012 goto commit_trans;
8013
8014 if (trans)
8015 return btrfs_end_transaction(trans);
8016
8017 return 0;
8018
8019commit_trans:
8020 /* Use any root, all fs roots will get their commit roots updated. */
8021 if (!trans) {
8022 trans = btrfs_join_transaction(sctx->send_root);
8023 if (IS_ERR(trans))
8024 return PTR_ERR(trans);
8025 goto again;
8026 }
8027
8028 return btrfs_commit_transaction(trans);
8029}
8030
8031/*
8032 * Make sure any existing dellaloc is flushed for any root used by a send
8033 * operation so that we do not miss any data and we do not race with writeback
8034 * finishing and changing a tree while send is using the tree. This could
8035 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
8036 * a send operation then uses the subvolume.
8037 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
8038 */
8039static int flush_delalloc_roots(struct send_ctx *sctx)
8040{
8041 struct btrfs_root *root = sctx->parent_root;
8042 int ret;
8043 int i;
8044
8045 if (root) {
8046 ret = btrfs_start_delalloc_snapshot(root, false);
8047 if (ret)
8048 return ret;
8049 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8050 }
8051
8052 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8053 root = sctx->clone_roots[i].root;
8054 ret = btrfs_start_delalloc_snapshot(root, false);
8055 if (ret)
8056 return ret;
8057 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
8058 }
8059
8060 return 0;
8061}
8062
8063static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
8064{
8065 spin_lock(&root->root_item_lock);
8066 root->send_in_progress--;
8067 /*
8068 * Not much left to do, we don't know why it's unbalanced and
8069 * can't blindly reset it to 0.
8070 */
8071 if (root->send_in_progress < 0)
8072 btrfs_err(root->fs_info,
8073 "send_in_progress unbalanced %d root %llu",
8074 root->send_in_progress, root->root_key.objectid);
8075 spin_unlock(&root->root_item_lock);
8076}
8077
8078static void dedupe_in_progress_warn(const struct btrfs_root *root)
8079{
8080 btrfs_warn_rl(root->fs_info,
8081"cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
8082 root->root_key.objectid, root->dedupe_in_progress);
8083}
8084
8085long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
8086{
8087 int ret = 0;
8088 struct btrfs_root *send_root = BTRFS_I(inode)->root;
8089 struct btrfs_fs_info *fs_info = send_root->fs_info;
8090 struct btrfs_root *clone_root;
8091 struct send_ctx *sctx = NULL;
8092 u32 i;
8093 u64 *clone_sources_tmp = NULL;
8094 int clone_sources_to_rollback = 0;
8095 size_t alloc_size;
8096 int sort_clone_roots = 0;
8097 struct btrfs_lru_cache_entry *entry;
8098 struct btrfs_lru_cache_entry *tmp;
8099
8100 if (!capable(CAP_SYS_ADMIN))
8101 return -EPERM;
8102
8103 /*
8104 * The subvolume must remain read-only during send, protect against
8105 * making it RW. This also protects against deletion.
8106 */
8107 spin_lock(&send_root->root_item_lock);
8108 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
8109 dedupe_in_progress_warn(send_root);
8110 spin_unlock(&send_root->root_item_lock);
8111 return -EAGAIN;
8112 }
8113 send_root->send_in_progress++;
8114 spin_unlock(&send_root->root_item_lock);
8115
8116 /*
8117 * Userspace tools do the checks and warn the user if it's
8118 * not RO.
8119 */
8120 if (!btrfs_root_readonly(send_root)) {
8121 ret = -EPERM;
8122 goto out;
8123 }
8124
8125 /*
8126 * Check that we don't overflow at later allocations, we request
8127 * clone_sources_count + 1 items, and compare to unsigned long inside
8128 * access_ok. Also set an upper limit for allocation size so this can't
8129 * easily exhaust memory. Max number of clone sources is about 200K.
8130 */
8131 if (arg->clone_sources_count > SZ_8M / sizeof(struct clone_root)) {
8132 ret = -EINVAL;
8133 goto out;
8134 }
8135
8136 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
8137 ret = -EOPNOTSUPP;
8138 goto out;
8139 }
8140
8141 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
8142 if (!sctx) {
8143 ret = -ENOMEM;
8144 goto out;
8145 }
8146
8147 INIT_LIST_HEAD(&sctx->new_refs);
8148 INIT_LIST_HEAD(&sctx->deleted_refs);
8149
8150 btrfs_lru_cache_init(&sctx->name_cache, SEND_MAX_NAME_CACHE_SIZE);
8151 btrfs_lru_cache_init(&sctx->backref_cache, SEND_MAX_BACKREF_CACHE_SIZE);
8152 btrfs_lru_cache_init(&sctx->dir_created_cache,
8153 SEND_MAX_DIR_CREATED_CACHE_SIZE);
8154 /*
8155 * This cache is periodically trimmed to a fixed size elsewhere, see
8156 * cache_dir_utimes() and trim_dir_utimes_cache().
8157 */
8158 btrfs_lru_cache_init(&sctx->dir_utimes_cache, 0);
8159
8160 sctx->pending_dir_moves = RB_ROOT;
8161 sctx->waiting_dir_moves = RB_ROOT;
8162 sctx->orphan_dirs = RB_ROOT;
8163 sctx->rbtree_new_refs = RB_ROOT;
8164 sctx->rbtree_deleted_refs = RB_ROOT;
8165
8166 sctx->flags = arg->flags;
8167
8168 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
8169 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
8170 ret = -EPROTO;
8171 goto out;
8172 }
8173 /* Zero means "use the highest version" */
8174 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
8175 } else {
8176 sctx->proto = 1;
8177 }
8178 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
8179 ret = -EINVAL;
8180 goto out;
8181 }
8182
8183 sctx->send_filp = fget(arg->send_fd);
8184 if (!sctx->send_filp || !(sctx->send_filp->f_mode & FMODE_WRITE)) {
8185 ret = -EBADF;
8186 goto out;
8187 }
8188
8189 sctx->send_root = send_root;
8190 /*
8191 * Unlikely but possible, if the subvolume is marked for deletion but
8192 * is slow to remove the directory entry, send can still be started
8193 */
8194 if (btrfs_root_dead(sctx->send_root)) {
8195 ret = -EPERM;
8196 goto out;
8197 }
8198
8199 sctx->clone_roots_cnt = arg->clone_sources_count;
8200
8201 if (sctx->proto >= 2) {
8202 u32 send_buf_num_pages;
8203
8204 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V2;
8205 sctx->send_buf = vmalloc(sctx->send_max_size);
8206 if (!sctx->send_buf) {
8207 ret = -ENOMEM;
8208 goto out;
8209 }
8210 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
8211 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
8212 sizeof(*sctx->send_buf_pages),
8213 GFP_KERNEL);
8214 if (!sctx->send_buf_pages) {
8215 ret = -ENOMEM;
8216 goto out;
8217 }
8218 for (i = 0; i < send_buf_num_pages; i++) {
8219 sctx->send_buf_pages[i] =
8220 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
8221 }
8222 } else {
8223 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
8224 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
8225 }
8226 if (!sctx->send_buf) {
8227 ret = -ENOMEM;
8228 goto out;
8229 }
8230
8231 sctx->clone_roots = kvcalloc(arg->clone_sources_count + 1,
8232 sizeof(*sctx->clone_roots),
8233 GFP_KERNEL);
8234 if (!sctx->clone_roots) {
8235 ret = -ENOMEM;
8236 goto out;
8237 }
8238
8239 alloc_size = array_size(sizeof(*arg->clone_sources),
8240 arg->clone_sources_count);
8241
8242 if (arg->clone_sources_count) {
8243 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
8244 if (!clone_sources_tmp) {
8245 ret = -ENOMEM;
8246 goto out;
8247 }
8248
8249 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
8250 alloc_size);
8251 if (ret) {
8252 ret = -EFAULT;
8253 goto out;
8254 }
8255
8256 for (i = 0; i < arg->clone_sources_count; i++) {
8257 clone_root = btrfs_get_fs_root(fs_info,
8258 clone_sources_tmp[i], true);
8259 if (IS_ERR(clone_root)) {
8260 ret = PTR_ERR(clone_root);
8261 goto out;
8262 }
8263 spin_lock(&clone_root->root_item_lock);
8264 if (!btrfs_root_readonly(clone_root) ||
8265 btrfs_root_dead(clone_root)) {
8266 spin_unlock(&clone_root->root_item_lock);
8267 btrfs_put_root(clone_root);
8268 ret = -EPERM;
8269 goto out;
8270 }
8271 if (clone_root->dedupe_in_progress) {
8272 dedupe_in_progress_warn(clone_root);
8273 spin_unlock(&clone_root->root_item_lock);
8274 btrfs_put_root(clone_root);
8275 ret = -EAGAIN;
8276 goto out;
8277 }
8278 clone_root->send_in_progress++;
8279 spin_unlock(&clone_root->root_item_lock);
8280
8281 sctx->clone_roots[i].root = clone_root;
8282 clone_sources_to_rollback = i + 1;
8283 }
8284 kvfree(clone_sources_tmp);
8285 clone_sources_tmp = NULL;
8286 }
8287
8288 if (arg->parent_root) {
8289 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
8290 true);
8291 if (IS_ERR(sctx->parent_root)) {
8292 ret = PTR_ERR(sctx->parent_root);
8293 goto out;
8294 }
8295
8296 spin_lock(&sctx->parent_root->root_item_lock);
8297 sctx->parent_root->send_in_progress++;
8298 if (!btrfs_root_readonly(sctx->parent_root) ||
8299 btrfs_root_dead(sctx->parent_root)) {
8300 spin_unlock(&sctx->parent_root->root_item_lock);
8301 ret = -EPERM;
8302 goto out;
8303 }
8304 if (sctx->parent_root->dedupe_in_progress) {
8305 dedupe_in_progress_warn(sctx->parent_root);
8306 spin_unlock(&sctx->parent_root->root_item_lock);
8307 ret = -EAGAIN;
8308 goto out;
8309 }
8310 spin_unlock(&sctx->parent_root->root_item_lock);
8311 }
8312
8313 /*
8314 * Clones from send_root are allowed, but only if the clone source
8315 * is behind the current send position. This is checked while searching
8316 * for possible clone sources.
8317 */
8318 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8319 btrfs_grab_root(sctx->send_root);
8320
8321 /* We do a bsearch later */
8322 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8323 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8324 NULL);
8325 sort_clone_roots = 1;
8326
8327 ret = flush_delalloc_roots(sctx);
8328 if (ret)
8329 goto out;
8330
8331 ret = ensure_commit_roots_uptodate(sctx);
8332 if (ret)
8333 goto out;
8334
8335 ret = send_subvol(sctx);
8336 if (ret < 0)
8337 goto out;
8338
8339 btrfs_lru_cache_for_each_entry_safe(&sctx->dir_utimes_cache, entry, tmp) {
8340 ret = send_utimes(sctx, entry->key, entry->gen);
8341 if (ret < 0)
8342 goto out;
8343 btrfs_lru_cache_remove(&sctx->dir_utimes_cache, entry);
8344 }
8345
8346 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8347 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8348 if (ret < 0)
8349 goto out;
8350 ret = send_cmd(sctx);
8351 if (ret < 0)
8352 goto out;
8353 }
8354
8355out:
8356 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8357 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8358 struct rb_node *n;
8359 struct pending_dir_move *pm;
8360
8361 n = rb_first(&sctx->pending_dir_moves);
8362 pm = rb_entry(n, struct pending_dir_move, node);
8363 while (!list_empty(&pm->list)) {
8364 struct pending_dir_move *pm2;
8365
8366 pm2 = list_first_entry(&pm->list,
8367 struct pending_dir_move, list);
8368 free_pending_move(sctx, pm2);
8369 }
8370 free_pending_move(sctx, pm);
8371 }
8372
8373 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8374 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8375 struct rb_node *n;
8376 struct waiting_dir_move *dm;
8377
8378 n = rb_first(&sctx->waiting_dir_moves);
8379 dm = rb_entry(n, struct waiting_dir_move, node);
8380 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8381 kfree(dm);
8382 }
8383
8384 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8385 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8386 struct rb_node *n;
8387 struct orphan_dir_info *odi;
8388
8389 n = rb_first(&sctx->orphan_dirs);
8390 odi = rb_entry(n, struct orphan_dir_info, node);
8391 free_orphan_dir_info(sctx, odi);
8392 }
8393
8394 if (sort_clone_roots) {
8395 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8396 btrfs_root_dec_send_in_progress(
8397 sctx->clone_roots[i].root);
8398 btrfs_put_root(sctx->clone_roots[i].root);
8399 }
8400 } else {
8401 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8402 btrfs_root_dec_send_in_progress(
8403 sctx->clone_roots[i].root);
8404 btrfs_put_root(sctx->clone_roots[i].root);
8405 }
8406
8407 btrfs_root_dec_send_in_progress(send_root);
8408 }
8409 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8410 btrfs_root_dec_send_in_progress(sctx->parent_root);
8411 btrfs_put_root(sctx->parent_root);
8412 }
8413
8414 kvfree(clone_sources_tmp);
8415
8416 if (sctx) {
8417 if (sctx->send_filp)
8418 fput(sctx->send_filp);
8419
8420 kvfree(sctx->clone_roots);
8421 kfree(sctx->send_buf_pages);
8422 kvfree(sctx->send_buf);
8423 kvfree(sctx->verity_descriptor);
8424
8425 close_current_inode(sctx);
8426
8427 btrfs_lru_cache_clear(&sctx->name_cache);
8428 btrfs_lru_cache_clear(&sctx->backref_cache);
8429 btrfs_lru_cache_clear(&sctx->dir_created_cache);
8430 btrfs_lru_cache_clear(&sctx->dir_utimes_cache);
8431
8432 kfree(sctx);
8433 }
8434
8435 return ret;
8436}
1/*
2 * Copyright (C) 2012 Alexander Block. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/bsearch.h>
20#include <linux/fs.h>
21#include <linux/file.h>
22#include <linux/sort.h>
23#include <linux/mount.h>
24#include <linux/xattr.h>
25#include <linux/posix_acl_xattr.h>
26#include <linux/radix-tree.h>
27#include <linux/vmalloc.h>
28#include <linux/string.h>
29
30#include "send.h"
31#include "backref.h"
32#include "hash.h"
33#include "locking.h"
34#include "disk-io.h"
35#include "btrfs_inode.h"
36#include "transaction.h"
37#include "compression.h"
38
39/*
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
45 */
46struct fs_path {
47 union {
48 struct {
49 char *start;
50 char *end;
51
52 char *buf;
53 unsigned short buf_len:15;
54 unsigned short reversed:1;
55 char inline_buf[];
56 };
57 /*
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
61 */
62 char pad[256];
63 };
64};
65#define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67
68
69/* reused for each extent */
70struct clone_root {
71 struct btrfs_root *root;
72 u64 ino;
73 u64 offset;
74
75 u64 found_refs;
76};
77
78#define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79#define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80
81struct send_ctx {
82 struct file *send_filp;
83 loff_t send_off;
84 char *send_buf;
85 u32 send_size;
86 u32 send_max_size;
87 u64 total_send_size;
88 u64 cmd_send_size[BTRFS_SEND_C_MAX + 1];
89 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
90
91 struct btrfs_root *send_root;
92 struct btrfs_root *parent_root;
93 struct clone_root *clone_roots;
94 int clone_roots_cnt;
95
96 /* current state of the compare_tree call */
97 struct btrfs_path *left_path;
98 struct btrfs_path *right_path;
99 struct btrfs_key *cmp_key;
100
101 /*
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
104 */
105 u64 cur_ino;
106 u64 cur_inode_gen;
107 int cur_inode_new;
108 int cur_inode_new_gen;
109 int cur_inode_deleted;
110 u64 cur_inode_size;
111 u64 cur_inode_mode;
112 u64 cur_inode_rdev;
113 u64 cur_inode_last_extent;
114
115 u64 send_progress;
116
117 struct list_head new_refs;
118 struct list_head deleted_refs;
119
120 struct radix_tree_root name_cache;
121 struct list_head name_cache_list;
122 int name_cache_size;
123
124 struct file_ra_state ra;
125
126 char *read_buf;
127
128 /*
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
138 *
139 * Tree state when the first send was performed:
140 *
141 * .
142 * |-- a (ino 257)
143 * |-- b (ino 258)
144 * |
145 * |
146 * |-- c (ino 259)
147 * | |-- d (ino 260)
148 * |
149 * |-- c2 (ino 261)
150 *
151 * Tree state when the second (incremental) send is performed:
152 *
153 * .
154 * |-- a (ino 257)
155 * |-- b (ino 258)
156 * |-- c2 (ino 261)
157 * |-- d2 (ino 260)
158 * |-- cc (ino 259)
159 *
160 * The sequence of steps that lead to the second state was:
161 *
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
164 *
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
167 *
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
170 */
171
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves;
174
175 /*
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
179 */
180 struct rb_root waiting_dir_moves;
181
182 /*
183 * A directory that is going to be rm'ed might have a child directory
184 * which is in the pending directory moves index above. In this case,
185 * the directory can only be removed after the move/rename of its child
186 * is performed. Example:
187 *
188 * Parent snapshot:
189 *
190 * . (ino 256)
191 * |-- a/ (ino 257)
192 * |-- b/ (ino 258)
193 * |-- c/ (ino 259)
194 * | |-- x/ (ino 260)
195 * |
196 * |-- y/ (ino 261)
197 *
198 * Send snapshot:
199 *
200 * . (ino 256)
201 * |-- a/ (ino 257)
202 * |-- b/ (ino 258)
203 * |-- YY/ (ino 261)
204 * |-- x/ (ino 260)
205 *
206 * Sequence of steps that lead to the send snapshot:
207 * rm -f /a/b/c/foo.txt
208 * mv /a/b/y /a/b/YY
209 * mv /a/b/c/x /a/b/YY
210 * rmdir /a/b/c
211 *
212 * When the child is processed, its move/rename is delayed until its
213 * parent is processed (as explained above), but all other operations
214 * like update utimes, chown, chgrp, etc, are performed and the paths
215 * that it uses for those operations must use the orphanized name of
216 * its parent (the directory we're going to rm later), so we need to
217 * memorize that name.
218 *
219 * Indexed by the inode number of the directory to be deleted.
220 */
221 struct rb_root orphan_dirs;
222};
223
224struct pending_dir_move {
225 struct rb_node node;
226 struct list_head list;
227 u64 parent_ino;
228 u64 ino;
229 u64 gen;
230 struct list_head update_refs;
231};
232
233struct waiting_dir_move {
234 struct rb_node node;
235 u64 ino;
236 /*
237 * There might be some directory that could not be removed because it
238 * was waiting for this directory inode to be moved first. Therefore
239 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
240 */
241 u64 rmdir_ino;
242 bool orphanized;
243};
244
245struct orphan_dir_info {
246 struct rb_node node;
247 u64 ino;
248 u64 gen;
249};
250
251struct name_cache_entry {
252 struct list_head list;
253 /*
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
259 * generations.
260 */
261 struct list_head radix_list;
262 u64 ino;
263 u64 gen;
264 u64 parent_ino;
265 u64 parent_gen;
266 int ret;
267 int need_later_update;
268 int name_len;
269 char name[];
270};
271
272static void inconsistent_snapshot_error(struct send_ctx *sctx,
273 enum btrfs_compare_tree_result result,
274 const char *what)
275{
276 const char *result_string;
277
278 switch (result) {
279 case BTRFS_COMPARE_TREE_NEW:
280 result_string = "new";
281 break;
282 case BTRFS_COMPARE_TREE_DELETED:
283 result_string = "deleted";
284 break;
285 case BTRFS_COMPARE_TREE_CHANGED:
286 result_string = "updated";
287 break;
288 case BTRFS_COMPARE_TREE_SAME:
289 ASSERT(0);
290 result_string = "unchanged";
291 break;
292 default:
293 ASSERT(0);
294 result_string = "unexpected";
295 }
296
297 btrfs_err(sctx->send_root->fs_info,
298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 result_string, what, sctx->cmp_key->objectid,
300 sctx->send_root->root_key.objectid,
301 (sctx->parent_root ?
302 sctx->parent_root->root_key.objectid : 0));
303}
304
305static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
306
307static struct waiting_dir_move *
308get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
309
310static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino);
311
312static int need_send_hole(struct send_ctx *sctx)
313{
314 return (sctx->parent_root && !sctx->cur_inode_new &&
315 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
316 S_ISREG(sctx->cur_inode_mode));
317}
318
319static void fs_path_reset(struct fs_path *p)
320{
321 if (p->reversed) {
322 p->start = p->buf + p->buf_len - 1;
323 p->end = p->start;
324 *p->start = 0;
325 } else {
326 p->start = p->buf;
327 p->end = p->start;
328 *p->start = 0;
329 }
330}
331
332static struct fs_path *fs_path_alloc(void)
333{
334 struct fs_path *p;
335
336 p = kmalloc(sizeof(*p), GFP_KERNEL);
337 if (!p)
338 return NULL;
339 p->reversed = 0;
340 p->buf = p->inline_buf;
341 p->buf_len = FS_PATH_INLINE_SIZE;
342 fs_path_reset(p);
343 return p;
344}
345
346static struct fs_path *fs_path_alloc_reversed(void)
347{
348 struct fs_path *p;
349
350 p = fs_path_alloc();
351 if (!p)
352 return NULL;
353 p->reversed = 1;
354 fs_path_reset(p);
355 return p;
356}
357
358static void fs_path_free(struct fs_path *p)
359{
360 if (!p)
361 return;
362 if (p->buf != p->inline_buf)
363 kfree(p->buf);
364 kfree(p);
365}
366
367static int fs_path_len(struct fs_path *p)
368{
369 return p->end - p->start;
370}
371
372static int fs_path_ensure_buf(struct fs_path *p, int len)
373{
374 char *tmp_buf;
375 int path_len;
376 int old_buf_len;
377
378 len++;
379
380 if (p->buf_len >= len)
381 return 0;
382
383 if (len > PATH_MAX) {
384 WARN_ON(1);
385 return -ENOMEM;
386 }
387
388 path_len = p->end - p->start;
389 old_buf_len = p->buf_len;
390
391 /*
392 * First time the inline_buf does not suffice
393 */
394 if (p->buf == p->inline_buf) {
395 tmp_buf = kmalloc(len, GFP_KERNEL);
396 if (tmp_buf)
397 memcpy(tmp_buf, p->buf, old_buf_len);
398 } else {
399 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
400 }
401 if (!tmp_buf)
402 return -ENOMEM;
403 p->buf = tmp_buf;
404 /*
405 * The real size of the buffer is bigger, this will let the fast path
406 * happen most of the time
407 */
408 p->buf_len = ksize(p->buf);
409
410 if (p->reversed) {
411 tmp_buf = p->buf + old_buf_len - path_len - 1;
412 p->end = p->buf + p->buf_len - 1;
413 p->start = p->end - path_len;
414 memmove(p->start, tmp_buf, path_len + 1);
415 } else {
416 p->start = p->buf;
417 p->end = p->start + path_len;
418 }
419 return 0;
420}
421
422static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
423 char **prepared)
424{
425 int ret;
426 int new_len;
427
428 new_len = p->end - p->start + name_len;
429 if (p->start != p->end)
430 new_len++;
431 ret = fs_path_ensure_buf(p, new_len);
432 if (ret < 0)
433 goto out;
434
435 if (p->reversed) {
436 if (p->start != p->end)
437 *--p->start = '/';
438 p->start -= name_len;
439 *prepared = p->start;
440 } else {
441 if (p->start != p->end)
442 *p->end++ = '/';
443 *prepared = p->end;
444 p->end += name_len;
445 *p->end = 0;
446 }
447
448out:
449 return ret;
450}
451
452static int fs_path_add(struct fs_path *p, const char *name, int name_len)
453{
454 int ret;
455 char *prepared;
456
457 ret = fs_path_prepare_for_add(p, name_len, &prepared);
458 if (ret < 0)
459 goto out;
460 memcpy(prepared, name, name_len);
461
462out:
463 return ret;
464}
465
466static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
467{
468 int ret;
469 char *prepared;
470
471 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
472 if (ret < 0)
473 goto out;
474 memcpy(prepared, p2->start, p2->end - p2->start);
475
476out:
477 return ret;
478}
479
480static int fs_path_add_from_extent_buffer(struct fs_path *p,
481 struct extent_buffer *eb,
482 unsigned long off, int len)
483{
484 int ret;
485 char *prepared;
486
487 ret = fs_path_prepare_for_add(p, len, &prepared);
488 if (ret < 0)
489 goto out;
490
491 read_extent_buffer(eb, prepared, off, len);
492
493out:
494 return ret;
495}
496
497static int fs_path_copy(struct fs_path *p, struct fs_path *from)
498{
499 int ret;
500
501 p->reversed = from->reversed;
502 fs_path_reset(p);
503
504 ret = fs_path_add_path(p, from);
505
506 return ret;
507}
508
509
510static void fs_path_unreverse(struct fs_path *p)
511{
512 char *tmp;
513 int len;
514
515 if (!p->reversed)
516 return;
517
518 tmp = p->start;
519 len = p->end - p->start;
520 p->start = p->buf;
521 p->end = p->start + len;
522 memmove(p->start, tmp, len + 1);
523 p->reversed = 0;
524}
525
526static struct btrfs_path *alloc_path_for_send(void)
527{
528 struct btrfs_path *path;
529
530 path = btrfs_alloc_path();
531 if (!path)
532 return NULL;
533 path->search_commit_root = 1;
534 path->skip_locking = 1;
535 path->need_commit_sem = 1;
536 return path;
537}
538
539static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
540{
541 int ret;
542 mm_segment_t old_fs;
543 u32 pos = 0;
544
545 old_fs = get_fs();
546 set_fs(KERNEL_DS);
547
548 while (pos < len) {
549 ret = vfs_write(filp, (__force const char __user *)buf + pos,
550 len - pos, off);
551 /* TODO handle that correctly */
552 /*if (ret == -ERESTARTSYS) {
553 continue;
554 }*/
555 if (ret < 0)
556 goto out;
557 if (ret == 0) {
558 ret = -EIO;
559 goto out;
560 }
561 pos += ret;
562 }
563
564 ret = 0;
565
566out:
567 set_fs(old_fs);
568 return ret;
569}
570
571static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
572{
573 struct btrfs_tlv_header *hdr;
574 int total_len = sizeof(*hdr) + len;
575 int left = sctx->send_max_size - sctx->send_size;
576
577 if (unlikely(left < total_len))
578 return -EOVERFLOW;
579
580 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
581 hdr->tlv_type = cpu_to_le16(attr);
582 hdr->tlv_len = cpu_to_le16(len);
583 memcpy(hdr + 1, data, len);
584 sctx->send_size += total_len;
585
586 return 0;
587}
588
589#define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
592 { \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
595 }
596
597TLV_PUT_DEFINE_INT(64)
598
599static int tlv_put_string(struct send_ctx *sctx, u16 attr,
600 const char *str, int len)
601{
602 if (len == -1)
603 len = strlen(str);
604 return tlv_put(sctx, attr, str, len);
605}
606
607static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
608 const u8 *uuid)
609{
610 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
611}
612
613static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
614 struct extent_buffer *eb,
615 struct btrfs_timespec *ts)
616{
617 struct btrfs_timespec bts;
618 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
619 return tlv_put(sctx, attr, &bts, sizeof(bts));
620}
621
622
623#define TLV_PUT(sctx, attrtype, attrlen, data) \
624 do { \
625 ret = tlv_put(sctx, attrtype, attrlen, data); \
626 if (ret < 0) \
627 goto tlv_put_failure; \
628 } while (0)
629
630#define TLV_PUT_INT(sctx, attrtype, bits, value) \
631 do { \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
633 if (ret < 0) \
634 goto tlv_put_failure; \
635 } while (0)
636
637#define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638#define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639#define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640#define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641#define TLV_PUT_STRING(sctx, attrtype, str, len) \
642 do { \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
644 if (ret < 0) \
645 goto tlv_put_failure; \
646 } while (0)
647#define TLV_PUT_PATH(sctx, attrtype, p) \
648 do { \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
651 if (ret < 0) \
652 goto tlv_put_failure; \
653 } while(0)
654#define TLV_PUT_UUID(sctx, attrtype, uuid) \
655 do { \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
657 if (ret < 0) \
658 goto tlv_put_failure; \
659 } while (0)
660#define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
661 do { \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
663 if (ret < 0) \
664 goto tlv_put_failure; \
665 } while (0)
666
667static int send_header(struct send_ctx *sctx)
668{
669 struct btrfs_stream_header hdr;
670
671 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
672 hdr.version = cpu_to_le32(BTRFS_SEND_STREAM_VERSION);
673
674 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
675 &sctx->send_off);
676}
677
678/*
679 * For each command/item we want to send to userspace, we call this function.
680 */
681static int begin_cmd(struct send_ctx *sctx, int cmd)
682{
683 struct btrfs_cmd_header *hdr;
684
685 if (WARN_ON(!sctx->send_buf))
686 return -EINVAL;
687
688 BUG_ON(sctx->send_size);
689
690 sctx->send_size += sizeof(*hdr);
691 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
692 hdr->cmd = cpu_to_le16(cmd);
693
694 return 0;
695}
696
697static int send_cmd(struct send_ctx *sctx)
698{
699 int ret;
700 struct btrfs_cmd_header *hdr;
701 u32 crc;
702
703 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
704 hdr->len = cpu_to_le32(sctx->send_size - sizeof(*hdr));
705 hdr->crc = 0;
706
707 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
708 hdr->crc = cpu_to_le32(crc);
709
710 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
711 &sctx->send_off);
712
713 sctx->total_send_size += sctx->send_size;
714 sctx->cmd_send_size[le16_to_cpu(hdr->cmd)] += sctx->send_size;
715 sctx->send_size = 0;
716
717 return ret;
718}
719
720/*
721 * Sends a move instruction to user space
722 */
723static int send_rename(struct send_ctx *sctx,
724 struct fs_path *from, struct fs_path *to)
725{
726 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
727 int ret;
728
729 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
730
731 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
732 if (ret < 0)
733 goto out;
734
735 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
736 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
737
738 ret = send_cmd(sctx);
739
740tlv_put_failure:
741out:
742 return ret;
743}
744
745/*
746 * Sends a link instruction to user space
747 */
748static int send_link(struct send_ctx *sctx,
749 struct fs_path *path, struct fs_path *lnk)
750{
751 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
752 int ret;
753
754 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
755
756 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
757 if (ret < 0)
758 goto out;
759
760 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
761 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
762
763 ret = send_cmd(sctx);
764
765tlv_put_failure:
766out:
767 return ret;
768}
769
770/*
771 * Sends an unlink instruction to user space
772 */
773static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
774{
775 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
776 int ret;
777
778 btrfs_debug(fs_info, "send_unlink %s", path->start);
779
780 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
781 if (ret < 0)
782 goto out;
783
784 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
785
786 ret = send_cmd(sctx);
787
788tlv_put_failure:
789out:
790 return ret;
791}
792
793/*
794 * Sends a rmdir instruction to user space
795 */
796static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
797{
798 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
799 int ret;
800
801 btrfs_debug(fs_info, "send_rmdir %s", path->start);
802
803 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
804 if (ret < 0)
805 goto out;
806
807 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
808
809 ret = send_cmd(sctx);
810
811tlv_put_failure:
812out:
813 return ret;
814}
815
816/*
817 * Helper function to retrieve some fields from an inode item.
818 */
819static int __get_inode_info(struct btrfs_root *root, struct btrfs_path *path,
820 u64 ino, u64 *size, u64 *gen, u64 *mode, u64 *uid,
821 u64 *gid, u64 *rdev)
822{
823 int ret;
824 struct btrfs_inode_item *ii;
825 struct btrfs_key key;
826
827 key.objectid = ino;
828 key.type = BTRFS_INODE_ITEM_KEY;
829 key.offset = 0;
830 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
831 if (ret) {
832 if (ret > 0)
833 ret = -ENOENT;
834 return ret;
835 }
836
837 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
838 struct btrfs_inode_item);
839 if (size)
840 *size = btrfs_inode_size(path->nodes[0], ii);
841 if (gen)
842 *gen = btrfs_inode_generation(path->nodes[0], ii);
843 if (mode)
844 *mode = btrfs_inode_mode(path->nodes[0], ii);
845 if (uid)
846 *uid = btrfs_inode_uid(path->nodes[0], ii);
847 if (gid)
848 *gid = btrfs_inode_gid(path->nodes[0], ii);
849 if (rdev)
850 *rdev = btrfs_inode_rdev(path->nodes[0], ii);
851
852 return ret;
853}
854
855static int get_inode_info(struct btrfs_root *root,
856 u64 ino, u64 *size, u64 *gen,
857 u64 *mode, u64 *uid, u64 *gid,
858 u64 *rdev)
859{
860 struct btrfs_path *path;
861 int ret;
862
863 path = alloc_path_for_send();
864 if (!path)
865 return -ENOMEM;
866 ret = __get_inode_info(root, path, ino, size, gen, mode, uid, gid,
867 rdev);
868 btrfs_free_path(path);
869 return ret;
870}
871
872typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
873 struct fs_path *p,
874 void *ctx);
875
876/*
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
881 *
882 * path must point to the INODE_REF or INODE_EXTREF when called.
883 */
884static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
885 struct btrfs_key *found_key, int resolve,
886 iterate_inode_ref_t iterate, void *ctx)
887{
888 struct extent_buffer *eb = path->nodes[0];
889 struct btrfs_item *item;
890 struct btrfs_inode_ref *iref;
891 struct btrfs_inode_extref *extref;
892 struct btrfs_path *tmp_path;
893 struct fs_path *p;
894 u32 cur = 0;
895 u32 total;
896 int slot = path->slots[0];
897 u32 name_len;
898 char *start;
899 int ret = 0;
900 int num = 0;
901 int index;
902 u64 dir;
903 unsigned long name_off;
904 unsigned long elem_size;
905 unsigned long ptr;
906
907 p = fs_path_alloc_reversed();
908 if (!p)
909 return -ENOMEM;
910
911 tmp_path = alloc_path_for_send();
912 if (!tmp_path) {
913 fs_path_free(p);
914 return -ENOMEM;
915 }
916
917
918 if (found_key->type == BTRFS_INODE_REF_KEY) {
919 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
920 struct btrfs_inode_ref);
921 item = btrfs_item_nr(slot);
922 total = btrfs_item_size(eb, item);
923 elem_size = sizeof(*iref);
924 } else {
925 ptr = btrfs_item_ptr_offset(eb, slot);
926 total = btrfs_item_size_nr(eb, slot);
927 elem_size = sizeof(*extref);
928 }
929
930 while (cur < total) {
931 fs_path_reset(p);
932
933 if (found_key->type == BTRFS_INODE_REF_KEY) {
934 iref = (struct btrfs_inode_ref *)(ptr + cur);
935 name_len = btrfs_inode_ref_name_len(eb, iref);
936 name_off = (unsigned long)(iref + 1);
937 index = btrfs_inode_ref_index(eb, iref);
938 dir = found_key->offset;
939 } else {
940 extref = (struct btrfs_inode_extref *)(ptr + cur);
941 name_len = btrfs_inode_extref_name_len(eb, extref);
942 name_off = (unsigned long)&extref->name;
943 index = btrfs_inode_extref_index(eb, extref);
944 dir = btrfs_inode_extref_parent(eb, extref);
945 }
946
947 if (resolve) {
948 start = btrfs_ref_to_path(root, tmp_path, name_len,
949 name_off, eb, dir,
950 p->buf, p->buf_len);
951 if (IS_ERR(start)) {
952 ret = PTR_ERR(start);
953 goto out;
954 }
955 if (start < p->buf) {
956 /* overflow , try again with larger buffer */
957 ret = fs_path_ensure_buf(p,
958 p->buf_len + p->buf - start);
959 if (ret < 0)
960 goto out;
961 start = btrfs_ref_to_path(root, tmp_path,
962 name_len, name_off,
963 eb, dir,
964 p->buf, p->buf_len);
965 if (IS_ERR(start)) {
966 ret = PTR_ERR(start);
967 goto out;
968 }
969 BUG_ON(start < p->buf);
970 }
971 p->start = start;
972 } else {
973 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
974 name_len);
975 if (ret < 0)
976 goto out;
977 }
978
979 cur += elem_size + name_len;
980 ret = iterate(num, dir, index, p, ctx);
981 if (ret)
982 goto out;
983 num++;
984 }
985
986out:
987 btrfs_free_path(tmp_path);
988 fs_path_free(p);
989 return ret;
990}
991
992typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
993 const char *name, int name_len,
994 const char *data, int data_len,
995 u8 type, void *ctx);
996
997/*
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1001 *
1002 * path must point to the dir item when called.
1003 */
1004static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1005 struct btrfs_key *found_key,
1006 iterate_dir_item_t iterate, void *ctx)
1007{
1008 int ret = 0;
1009 struct extent_buffer *eb;
1010 struct btrfs_item *item;
1011 struct btrfs_dir_item *di;
1012 struct btrfs_key di_key;
1013 char *buf = NULL;
1014 int buf_len;
1015 u32 name_len;
1016 u32 data_len;
1017 u32 cur;
1018 u32 len;
1019 u32 total;
1020 int slot;
1021 int num;
1022 u8 type;
1023
1024 /*
1025 * Start with a small buffer (1 page). If later we end up needing more
1026 * space, which can happen for xattrs on a fs with a leaf size greater
1027 * then the page size, attempt to increase the buffer. Typically xattr
1028 * values are small.
1029 */
1030 buf_len = PATH_MAX;
1031 buf = kmalloc(buf_len, GFP_KERNEL);
1032 if (!buf) {
1033 ret = -ENOMEM;
1034 goto out;
1035 }
1036
1037 eb = path->nodes[0];
1038 slot = path->slots[0];
1039 item = btrfs_item_nr(slot);
1040 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1041 cur = 0;
1042 len = 0;
1043 total = btrfs_item_size(eb, item);
1044
1045 num = 0;
1046 while (cur < total) {
1047 name_len = btrfs_dir_name_len(eb, di);
1048 data_len = btrfs_dir_data_len(eb, di);
1049 type = btrfs_dir_type(eb, di);
1050 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1051
1052 if (type == BTRFS_FT_XATTR) {
1053 if (name_len > XATTR_NAME_MAX) {
1054 ret = -ENAMETOOLONG;
1055 goto out;
1056 }
1057 if (name_len + data_len >
1058 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1059 ret = -E2BIG;
1060 goto out;
1061 }
1062 } else {
1063 /*
1064 * Path too long
1065 */
1066 if (name_len + data_len > PATH_MAX) {
1067 ret = -ENAMETOOLONG;
1068 goto out;
1069 }
1070 }
1071
1072 if (name_len + data_len > buf_len) {
1073 buf_len = name_len + data_len;
1074 if (is_vmalloc_addr(buf)) {
1075 vfree(buf);
1076 buf = NULL;
1077 } else {
1078 char *tmp = krealloc(buf, buf_len,
1079 GFP_KERNEL | __GFP_NOWARN);
1080
1081 if (!tmp)
1082 kfree(buf);
1083 buf = tmp;
1084 }
1085 if (!buf) {
1086 buf = vmalloc(buf_len);
1087 if (!buf) {
1088 ret = -ENOMEM;
1089 goto out;
1090 }
1091 }
1092 }
1093
1094 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1095 name_len + data_len);
1096
1097 len = sizeof(*di) + name_len + data_len;
1098 di = (struct btrfs_dir_item *)((char *)di + len);
1099 cur += len;
1100
1101 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1102 data_len, type, ctx);
1103 if (ret < 0)
1104 goto out;
1105 if (ret) {
1106 ret = 0;
1107 goto out;
1108 }
1109
1110 num++;
1111 }
1112
1113out:
1114 kvfree(buf);
1115 return ret;
1116}
1117
1118static int __copy_first_ref(int num, u64 dir, int index,
1119 struct fs_path *p, void *ctx)
1120{
1121 int ret;
1122 struct fs_path *pt = ctx;
1123
1124 ret = fs_path_copy(pt, p);
1125 if (ret < 0)
1126 return ret;
1127
1128 /* we want the first only */
1129 return 1;
1130}
1131
1132/*
1133 * Retrieve the first path of an inode. If an inode has more then one
1134 * ref/hardlink, this is ignored.
1135 */
1136static int get_inode_path(struct btrfs_root *root,
1137 u64 ino, struct fs_path *path)
1138{
1139 int ret;
1140 struct btrfs_key key, found_key;
1141 struct btrfs_path *p;
1142
1143 p = alloc_path_for_send();
1144 if (!p)
1145 return -ENOMEM;
1146
1147 fs_path_reset(path);
1148
1149 key.objectid = ino;
1150 key.type = BTRFS_INODE_REF_KEY;
1151 key.offset = 0;
1152
1153 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1154 if (ret < 0)
1155 goto out;
1156 if (ret) {
1157 ret = 1;
1158 goto out;
1159 }
1160 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1161 if (found_key.objectid != ino ||
1162 (found_key.type != BTRFS_INODE_REF_KEY &&
1163 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1164 ret = -ENOENT;
1165 goto out;
1166 }
1167
1168 ret = iterate_inode_ref(root, p, &found_key, 1,
1169 __copy_first_ref, path);
1170 if (ret < 0)
1171 goto out;
1172 ret = 0;
1173
1174out:
1175 btrfs_free_path(p);
1176 return ret;
1177}
1178
1179struct backref_ctx {
1180 struct send_ctx *sctx;
1181
1182 struct btrfs_path *path;
1183 /* number of total found references */
1184 u64 found;
1185
1186 /*
1187 * used for clones found in send_root. clones found behind cur_objectid
1188 * and cur_offset are not considered as allowed clones.
1189 */
1190 u64 cur_objectid;
1191 u64 cur_offset;
1192
1193 /* may be truncated in case it's the last extent in a file */
1194 u64 extent_len;
1195
1196 /* data offset in the file extent item */
1197 u64 data_offset;
1198
1199 /* Just to check for bugs in backref resolving */
1200 int found_itself;
1201};
1202
1203static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1204{
1205 u64 root = (u64)(uintptr_t)key;
1206 struct clone_root *cr = (struct clone_root *)elt;
1207
1208 if (root < cr->root->objectid)
1209 return -1;
1210 if (root > cr->root->objectid)
1211 return 1;
1212 return 0;
1213}
1214
1215static int __clone_root_cmp_sort(const void *e1, const void *e2)
1216{
1217 struct clone_root *cr1 = (struct clone_root *)e1;
1218 struct clone_root *cr2 = (struct clone_root *)e2;
1219
1220 if (cr1->root->objectid < cr2->root->objectid)
1221 return -1;
1222 if (cr1->root->objectid > cr2->root->objectid)
1223 return 1;
1224 return 0;
1225}
1226
1227/*
1228 * Called for every backref that is found for the current extent.
1229 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1230 */
1231static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1232{
1233 struct backref_ctx *bctx = ctx_;
1234 struct clone_root *found;
1235 int ret;
1236 u64 i_size;
1237
1238 /* First check if the root is in the list of accepted clone sources */
1239 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1240 bctx->sctx->clone_roots_cnt,
1241 sizeof(struct clone_root),
1242 __clone_root_cmp_bsearch);
1243 if (!found)
1244 return 0;
1245
1246 if (found->root == bctx->sctx->send_root &&
1247 ino == bctx->cur_objectid &&
1248 offset == bctx->cur_offset) {
1249 bctx->found_itself = 1;
1250 }
1251
1252 /*
1253 * There are inodes that have extents that lie behind its i_size. Don't
1254 * accept clones from these extents.
1255 */
1256 ret = __get_inode_info(found->root, bctx->path, ino, &i_size, NULL, NULL,
1257 NULL, NULL, NULL);
1258 btrfs_release_path(bctx->path);
1259 if (ret < 0)
1260 return ret;
1261
1262 if (offset + bctx->data_offset + bctx->extent_len > i_size)
1263 return 0;
1264
1265 /*
1266 * Make sure we don't consider clones from send_root that are
1267 * behind the current inode/offset.
1268 */
1269 if (found->root == bctx->sctx->send_root) {
1270 /*
1271 * TODO for the moment we don't accept clones from the inode
1272 * that is currently send. We may change this when
1273 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1274 * file.
1275 */
1276 if (ino >= bctx->cur_objectid)
1277 return 0;
1278#if 0
1279 if (ino > bctx->cur_objectid)
1280 return 0;
1281 if (offset + bctx->extent_len > bctx->cur_offset)
1282 return 0;
1283#endif
1284 }
1285
1286 bctx->found++;
1287 found->found_refs++;
1288 if (ino < found->ino) {
1289 found->ino = ino;
1290 found->offset = offset;
1291 } else if (found->ino == ino) {
1292 /*
1293 * same extent found more then once in the same file.
1294 */
1295 if (found->offset > offset + bctx->extent_len)
1296 found->offset = offset;
1297 }
1298
1299 return 0;
1300}
1301
1302/*
1303 * Given an inode, offset and extent item, it finds a good clone for a clone
1304 * instruction. Returns -ENOENT when none could be found. The function makes
1305 * sure that the returned clone is usable at the point where sending is at the
1306 * moment. This means, that no clones are accepted which lie behind the current
1307 * inode+offset.
1308 *
1309 * path must point to the extent item when called.
1310 */
1311static int find_extent_clone(struct send_ctx *sctx,
1312 struct btrfs_path *path,
1313 u64 ino, u64 data_offset,
1314 u64 ino_size,
1315 struct clone_root **found)
1316{
1317 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1318 int ret;
1319 int extent_type;
1320 u64 logical;
1321 u64 disk_byte;
1322 u64 num_bytes;
1323 u64 extent_item_pos;
1324 u64 flags = 0;
1325 struct btrfs_file_extent_item *fi;
1326 struct extent_buffer *eb = path->nodes[0];
1327 struct backref_ctx *backref_ctx = NULL;
1328 struct clone_root *cur_clone_root;
1329 struct btrfs_key found_key;
1330 struct btrfs_path *tmp_path;
1331 int compressed;
1332 u32 i;
1333
1334 tmp_path = alloc_path_for_send();
1335 if (!tmp_path)
1336 return -ENOMEM;
1337
1338 /* We only use this path under the commit sem */
1339 tmp_path->need_commit_sem = 0;
1340
1341 backref_ctx = kmalloc(sizeof(*backref_ctx), GFP_KERNEL);
1342 if (!backref_ctx) {
1343 ret = -ENOMEM;
1344 goto out;
1345 }
1346
1347 backref_ctx->path = tmp_path;
1348
1349 if (data_offset >= ino_size) {
1350 /*
1351 * There may be extents that lie behind the file's size.
1352 * I at least had this in combination with snapshotting while
1353 * writing large files.
1354 */
1355 ret = 0;
1356 goto out;
1357 }
1358
1359 fi = btrfs_item_ptr(eb, path->slots[0],
1360 struct btrfs_file_extent_item);
1361 extent_type = btrfs_file_extent_type(eb, fi);
1362 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1363 ret = -ENOENT;
1364 goto out;
1365 }
1366 compressed = btrfs_file_extent_compression(eb, fi);
1367
1368 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1369 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1370 if (disk_byte == 0) {
1371 ret = -ENOENT;
1372 goto out;
1373 }
1374 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1375
1376 down_read(&fs_info->commit_root_sem);
1377 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1378 &found_key, &flags);
1379 up_read(&fs_info->commit_root_sem);
1380 btrfs_release_path(tmp_path);
1381
1382 if (ret < 0)
1383 goto out;
1384 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1385 ret = -EIO;
1386 goto out;
1387 }
1388
1389 /*
1390 * Setup the clone roots.
1391 */
1392 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1393 cur_clone_root = sctx->clone_roots + i;
1394 cur_clone_root->ino = (u64)-1;
1395 cur_clone_root->offset = 0;
1396 cur_clone_root->found_refs = 0;
1397 }
1398
1399 backref_ctx->sctx = sctx;
1400 backref_ctx->found = 0;
1401 backref_ctx->cur_objectid = ino;
1402 backref_ctx->cur_offset = data_offset;
1403 backref_ctx->found_itself = 0;
1404 backref_ctx->extent_len = num_bytes;
1405 /*
1406 * For non-compressed extents iterate_extent_inodes() gives us extent
1407 * offsets that already take into account the data offset, but not for
1408 * compressed extents, since the offset is logical and not relative to
1409 * the physical extent locations. We must take this into account to
1410 * avoid sending clone offsets that go beyond the source file's size,
1411 * which would result in the clone ioctl failing with -EINVAL on the
1412 * receiving end.
1413 */
1414 if (compressed == BTRFS_COMPRESS_NONE)
1415 backref_ctx->data_offset = 0;
1416 else
1417 backref_ctx->data_offset = btrfs_file_extent_offset(eb, fi);
1418
1419 /*
1420 * The last extent of a file may be too large due to page alignment.
1421 * We need to adjust extent_len in this case so that the checks in
1422 * __iterate_backrefs work.
1423 */
1424 if (data_offset + num_bytes >= ino_size)
1425 backref_ctx->extent_len = ino_size - data_offset;
1426
1427 /*
1428 * Now collect all backrefs.
1429 */
1430 if (compressed == BTRFS_COMPRESS_NONE)
1431 extent_item_pos = logical - found_key.objectid;
1432 else
1433 extent_item_pos = 0;
1434 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1435 extent_item_pos, 1, __iterate_backrefs,
1436 backref_ctx);
1437
1438 if (ret < 0)
1439 goto out;
1440
1441 if (!backref_ctx->found_itself) {
1442 /* found a bug in backref code? */
1443 ret = -EIO;
1444 btrfs_err(fs_info,
1445 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1446 ino, data_offset, disk_byte, found_key.objectid);
1447 goto out;
1448 }
1449
1450 btrfs_debug(fs_info,
1451 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1452 data_offset, ino, num_bytes, logical);
1453
1454 if (!backref_ctx->found)
1455 btrfs_debug(fs_info, "no clones found");
1456
1457 cur_clone_root = NULL;
1458 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1459 if (sctx->clone_roots[i].found_refs) {
1460 if (!cur_clone_root)
1461 cur_clone_root = sctx->clone_roots + i;
1462 else if (sctx->clone_roots[i].root == sctx->send_root)
1463 /* prefer clones from send_root over others */
1464 cur_clone_root = sctx->clone_roots + i;
1465 }
1466
1467 }
1468
1469 if (cur_clone_root) {
1470 *found = cur_clone_root;
1471 ret = 0;
1472 } else {
1473 ret = -ENOENT;
1474 }
1475
1476out:
1477 btrfs_free_path(tmp_path);
1478 kfree(backref_ctx);
1479 return ret;
1480}
1481
1482static int read_symlink(struct btrfs_root *root,
1483 u64 ino,
1484 struct fs_path *dest)
1485{
1486 int ret;
1487 struct btrfs_path *path;
1488 struct btrfs_key key;
1489 struct btrfs_file_extent_item *ei;
1490 u8 type;
1491 u8 compression;
1492 unsigned long off;
1493 int len;
1494
1495 path = alloc_path_for_send();
1496 if (!path)
1497 return -ENOMEM;
1498
1499 key.objectid = ino;
1500 key.type = BTRFS_EXTENT_DATA_KEY;
1501 key.offset = 0;
1502 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1503 if (ret < 0)
1504 goto out;
1505 if (ret) {
1506 /*
1507 * An empty symlink inode. Can happen in rare error paths when
1508 * creating a symlink (transaction committed before the inode
1509 * eviction handler removed the symlink inode items and a crash
1510 * happened in between or the subvol was snapshoted in between).
1511 * Print an informative message to dmesg/syslog so that the user
1512 * can delete the symlink.
1513 */
1514 btrfs_err(root->fs_info,
1515 "Found empty symlink inode %llu at root %llu",
1516 ino, root->root_key.objectid);
1517 ret = -EIO;
1518 goto out;
1519 }
1520
1521 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1522 struct btrfs_file_extent_item);
1523 type = btrfs_file_extent_type(path->nodes[0], ei);
1524 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1525 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1526 BUG_ON(compression);
1527
1528 off = btrfs_file_extent_inline_start(ei);
1529 len = btrfs_file_extent_inline_len(path->nodes[0], path->slots[0], ei);
1530
1531 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1532
1533out:
1534 btrfs_free_path(path);
1535 return ret;
1536}
1537
1538/*
1539 * Helper function to generate a file name that is unique in the root of
1540 * send_root and parent_root. This is used to generate names for orphan inodes.
1541 */
1542static int gen_unique_name(struct send_ctx *sctx,
1543 u64 ino, u64 gen,
1544 struct fs_path *dest)
1545{
1546 int ret = 0;
1547 struct btrfs_path *path;
1548 struct btrfs_dir_item *di;
1549 char tmp[64];
1550 int len;
1551 u64 idx = 0;
1552
1553 path = alloc_path_for_send();
1554 if (!path)
1555 return -ENOMEM;
1556
1557 while (1) {
1558 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1559 ino, gen, idx);
1560 ASSERT(len < sizeof(tmp));
1561
1562 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1563 path, BTRFS_FIRST_FREE_OBJECTID,
1564 tmp, strlen(tmp), 0);
1565 btrfs_release_path(path);
1566 if (IS_ERR(di)) {
1567 ret = PTR_ERR(di);
1568 goto out;
1569 }
1570 if (di) {
1571 /* not unique, try again */
1572 idx++;
1573 continue;
1574 }
1575
1576 if (!sctx->parent_root) {
1577 /* unique */
1578 ret = 0;
1579 break;
1580 }
1581
1582 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1583 path, BTRFS_FIRST_FREE_OBJECTID,
1584 tmp, strlen(tmp), 0);
1585 btrfs_release_path(path);
1586 if (IS_ERR(di)) {
1587 ret = PTR_ERR(di);
1588 goto out;
1589 }
1590 if (di) {
1591 /* not unique, try again */
1592 idx++;
1593 continue;
1594 }
1595 /* unique */
1596 break;
1597 }
1598
1599 ret = fs_path_add(dest, tmp, strlen(tmp));
1600
1601out:
1602 btrfs_free_path(path);
1603 return ret;
1604}
1605
1606enum inode_state {
1607 inode_state_no_change,
1608 inode_state_will_create,
1609 inode_state_did_create,
1610 inode_state_will_delete,
1611 inode_state_did_delete,
1612};
1613
1614static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1615{
1616 int ret;
1617 int left_ret;
1618 int right_ret;
1619 u64 left_gen;
1620 u64 right_gen;
1621
1622 ret = get_inode_info(sctx->send_root, ino, NULL, &left_gen, NULL, NULL,
1623 NULL, NULL);
1624 if (ret < 0 && ret != -ENOENT)
1625 goto out;
1626 left_ret = ret;
1627
1628 if (!sctx->parent_root) {
1629 right_ret = -ENOENT;
1630 } else {
1631 ret = get_inode_info(sctx->parent_root, ino, NULL, &right_gen,
1632 NULL, NULL, NULL, NULL);
1633 if (ret < 0 && ret != -ENOENT)
1634 goto out;
1635 right_ret = ret;
1636 }
1637
1638 if (!left_ret && !right_ret) {
1639 if (left_gen == gen && right_gen == gen) {
1640 ret = inode_state_no_change;
1641 } else if (left_gen == gen) {
1642 if (ino < sctx->send_progress)
1643 ret = inode_state_did_create;
1644 else
1645 ret = inode_state_will_create;
1646 } else if (right_gen == gen) {
1647 if (ino < sctx->send_progress)
1648 ret = inode_state_did_delete;
1649 else
1650 ret = inode_state_will_delete;
1651 } else {
1652 ret = -ENOENT;
1653 }
1654 } else if (!left_ret) {
1655 if (left_gen == gen) {
1656 if (ino < sctx->send_progress)
1657 ret = inode_state_did_create;
1658 else
1659 ret = inode_state_will_create;
1660 } else {
1661 ret = -ENOENT;
1662 }
1663 } else if (!right_ret) {
1664 if (right_gen == gen) {
1665 if (ino < sctx->send_progress)
1666 ret = inode_state_did_delete;
1667 else
1668 ret = inode_state_will_delete;
1669 } else {
1670 ret = -ENOENT;
1671 }
1672 } else {
1673 ret = -ENOENT;
1674 }
1675
1676out:
1677 return ret;
1678}
1679
1680static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1681{
1682 int ret;
1683
1684 ret = get_cur_inode_state(sctx, ino, gen);
1685 if (ret < 0)
1686 goto out;
1687
1688 if (ret == inode_state_no_change ||
1689 ret == inode_state_did_create ||
1690 ret == inode_state_will_delete)
1691 ret = 1;
1692 else
1693 ret = 0;
1694
1695out:
1696 return ret;
1697}
1698
1699/*
1700 * Helper function to lookup a dir item in a dir.
1701 */
1702static int lookup_dir_item_inode(struct btrfs_root *root,
1703 u64 dir, const char *name, int name_len,
1704 u64 *found_inode,
1705 u8 *found_type)
1706{
1707 int ret = 0;
1708 struct btrfs_dir_item *di;
1709 struct btrfs_key key;
1710 struct btrfs_path *path;
1711
1712 path = alloc_path_for_send();
1713 if (!path)
1714 return -ENOMEM;
1715
1716 di = btrfs_lookup_dir_item(NULL, root, path,
1717 dir, name, name_len, 0);
1718 if (!di) {
1719 ret = -ENOENT;
1720 goto out;
1721 }
1722 if (IS_ERR(di)) {
1723 ret = PTR_ERR(di);
1724 goto out;
1725 }
1726 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1727 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1728 ret = -ENOENT;
1729 goto out;
1730 }
1731 *found_inode = key.objectid;
1732 *found_type = btrfs_dir_type(path->nodes[0], di);
1733
1734out:
1735 btrfs_free_path(path);
1736 return ret;
1737}
1738
1739/*
1740 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1741 * generation of the parent dir and the name of the dir entry.
1742 */
1743static int get_first_ref(struct btrfs_root *root, u64 ino,
1744 u64 *dir, u64 *dir_gen, struct fs_path *name)
1745{
1746 int ret;
1747 struct btrfs_key key;
1748 struct btrfs_key found_key;
1749 struct btrfs_path *path;
1750 int len;
1751 u64 parent_dir;
1752
1753 path = alloc_path_for_send();
1754 if (!path)
1755 return -ENOMEM;
1756
1757 key.objectid = ino;
1758 key.type = BTRFS_INODE_REF_KEY;
1759 key.offset = 0;
1760
1761 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1762 if (ret < 0)
1763 goto out;
1764 if (!ret)
1765 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1766 path->slots[0]);
1767 if (ret || found_key.objectid != ino ||
1768 (found_key.type != BTRFS_INODE_REF_KEY &&
1769 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1770 ret = -ENOENT;
1771 goto out;
1772 }
1773
1774 if (found_key.type == BTRFS_INODE_REF_KEY) {
1775 struct btrfs_inode_ref *iref;
1776 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1777 struct btrfs_inode_ref);
1778 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1779 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1780 (unsigned long)(iref + 1),
1781 len);
1782 parent_dir = found_key.offset;
1783 } else {
1784 struct btrfs_inode_extref *extref;
1785 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1786 struct btrfs_inode_extref);
1787 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1788 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1789 (unsigned long)&extref->name, len);
1790 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1791 }
1792 if (ret < 0)
1793 goto out;
1794 btrfs_release_path(path);
1795
1796 if (dir_gen) {
1797 ret = get_inode_info(root, parent_dir, NULL, dir_gen, NULL,
1798 NULL, NULL, NULL);
1799 if (ret < 0)
1800 goto out;
1801 }
1802
1803 *dir = parent_dir;
1804
1805out:
1806 btrfs_free_path(path);
1807 return ret;
1808}
1809
1810static int is_first_ref(struct btrfs_root *root,
1811 u64 ino, u64 dir,
1812 const char *name, int name_len)
1813{
1814 int ret;
1815 struct fs_path *tmp_name;
1816 u64 tmp_dir;
1817
1818 tmp_name = fs_path_alloc();
1819 if (!tmp_name)
1820 return -ENOMEM;
1821
1822 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1823 if (ret < 0)
1824 goto out;
1825
1826 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1827 ret = 0;
1828 goto out;
1829 }
1830
1831 ret = !memcmp(tmp_name->start, name, name_len);
1832
1833out:
1834 fs_path_free(tmp_name);
1835 return ret;
1836}
1837
1838/*
1839 * Used by process_recorded_refs to determine if a new ref would overwrite an
1840 * already existing ref. In case it detects an overwrite, it returns the
1841 * inode/gen in who_ino/who_gen.
1842 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1843 * to make sure later references to the overwritten inode are possible.
1844 * Orphanizing is however only required for the first ref of an inode.
1845 * process_recorded_refs does an additional is_first_ref check to see if
1846 * orphanizing is really required.
1847 */
1848static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1849 const char *name, int name_len,
1850 u64 *who_ino, u64 *who_gen)
1851{
1852 int ret = 0;
1853 u64 gen;
1854 u64 other_inode = 0;
1855 u8 other_type = 0;
1856
1857 if (!sctx->parent_root)
1858 goto out;
1859
1860 ret = is_inode_existent(sctx, dir, dir_gen);
1861 if (ret <= 0)
1862 goto out;
1863
1864 /*
1865 * If we have a parent root we need to verify that the parent dir was
1866 * not deleted and then re-created, if it was then we have no overwrite
1867 * and we can just unlink this entry.
1868 */
1869 if (sctx->parent_root) {
1870 ret = get_inode_info(sctx->parent_root, dir, NULL, &gen, NULL,
1871 NULL, NULL, NULL);
1872 if (ret < 0 && ret != -ENOENT)
1873 goto out;
1874 if (ret) {
1875 ret = 0;
1876 goto out;
1877 }
1878 if (gen != dir_gen)
1879 goto out;
1880 }
1881
1882 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1883 &other_inode, &other_type);
1884 if (ret < 0 && ret != -ENOENT)
1885 goto out;
1886 if (ret) {
1887 ret = 0;
1888 goto out;
1889 }
1890
1891 /*
1892 * Check if the overwritten ref was already processed. If yes, the ref
1893 * was already unlinked/moved, so we can safely assume that we will not
1894 * overwrite anything at this point in time.
1895 */
1896 if (other_inode > sctx->send_progress ||
1897 is_waiting_for_move(sctx, other_inode)) {
1898 ret = get_inode_info(sctx->parent_root, other_inode, NULL,
1899 who_gen, NULL, NULL, NULL, NULL);
1900 if (ret < 0)
1901 goto out;
1902
1903 ret = 1;
1904 *who_ino = other_inode;
1905 } else {
1906 ret = 0;
1907 }
1908
1909out:
1910 return ret;
1911}
1912
1913/*
1914 * Checks if the ref was overwritten by an already processed inode. This is
1915 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1916 * thus the orphan name needs be used.
1917 * process_recorded_refs also uses it to avoid unlinking of refs that were
1918 * overwritten.
1919 */
1920static int did_overwrite_ref(struct send_ctx *sctx,
1921 u64 dir, u64 dir_gen,
1922 u64 ino, u64 ino_gen,
1923 const char *name, int name_len)
1924{
1925 int ret = 0;
1926 u64 gen;
1927 u64 ow_inode;
1928 u8 other_type;
1929
1930 if (!sctx->parent_root)
1931 goto out;
1932
1933 ret = is_inode_existent(sctx, dir, dir_gen);
1934 if (ret <= 0)
1935 goto out;
1936
1937 /* check if the ref was overwritten by another ref */
1938 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1939 &ow_inode, &other_type);
1940 if (ret < 0 && ret != -ENOENT)
1941 goto out;
1942 if (ret) {
1943 /* was never and will never be overwritten */
1944 ret = 0;
1945 goto out;
1946 }
1947
1948 ret = get_inode_info(sctx->send_root, ow_inode, NULL, &gen, NULL, NULL,
1949 NULL, NULL);
1950 if (ret < 0)
1951 goto out;
1952
1953 if (ow_inode == ino && gen == ino_gen) {
1954 ret = 0;
1955 goto out;
1956 }
1957
1958 /*
1959 * We know that it is or will be overwritten. Check this now.
1960 * The current inode being processed might have been the one that caused
1961 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1962 * the current inode being processed.
1963 */
1964 if ((ow_inode < sctx->send_progress) ||
1965 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
1966 gen == sctx->cur_inode_gen))
1967 ret = 1;
1968 else
1969 ret = 0;
1970
1971out:
1972 return ret;
1973}
1974
1975/*
1976 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1977 * that got overwritten. This is used by process_recorded_refs to determine
1978 * if it has to use the path as returned by get_cur_path or the orphan name.
1979 */
1980static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
1981{
1982 int ret = 0;
1983 struct fs_path *name = NULL;
1984 u64 dir;
1985 u64 dir_gen;
1986
1987 if (!sctx->parent_root)
1988 goto out;
1989
1990 name = fs_path_alloc();
1991 if (!name)
1992 return -ENOMEM;
1993
1994 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
1995 if (ret < 0)
1996 goto out;
1997
1998 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
1999 name->start, fs_path_len(name));
2000
2001out:
2002 fs_path_free(name);
2003 return ret;
2004}
2005
2006/*
2007 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2008 * so we need to do some special handling in case we have clashes. This function
2009 * takes care of this with the help of name_cache_entry::radix_list.
2010 * In case of error, nce is kfreed.
2011 */
2012static int name_cache_insert(struct send_ctx *sctx,
2013 struct name_cache_entry *nce)
2014{
2015 int ret = 0;
2016 struct list_head *nce_head;
2017
2018 nce_head = radix_tree_lookup(&sctx->name_cache,
2019 (unsigned long)nce->ino);
2020 if (!nce_head) {
2021 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2022 if (!nce_head) {
2023 kfree(nce);
2024 return -ENOMEM;
2025 }
2026 INIT_LIST_HEAD(nce_head);
2027
2028 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2029 if (ret < 0) {
2030 kfree(nce_head);
2031 kfree(nce);
2032 return ret;
2033 }
2034 }
2035 list_add_tail(&nce->radix_list, nce_head);
2036 list_add_tail(&nce->list, &sctx->name_cache_list);
2037 sctx->name_cache_size++;
2038
2039 return ret;
2040}
2041
2042static void name_cache_delete(struct send_ctx *sctx,
2043 struct name_cache_entry *nce)
2044{
2045 struct list_head *nce_head;
2046
2047 nce_head = radix_tree_lookup(&sctx->name_cache,
2048 (unsigned long)nce->ino);
2049 if (!nce_head) {
2050 btrfs_err(sctx->send_root->fs_info,
2051 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2052 nce->ino, sctx->name_cache_size);
2053 }
2054
2055 list_del(&nce->radix_list);
2056 list_del(&nce->list);
2057 sctx->name_cache_size--;
2058
2059 /*
2060 * We may not get to the final release of nce_head if the lookup fails
2061 */
2062 if (nce_head && list_empty(nce_head)) {
2063 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2064 kfree(nce_head);
2065 }
2066}
2067
2068static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2069 u64 ino, u64 gen)
2070{
2071 struct list_head *nce_head;
2072 struct name_cache_entry *cur;
2073
2074 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2075 if (!nce_head)
2076 return NULL;
2077
2078 list_for_each_entry(cur, nce_head, radix_list) {
2079 if (cur->ino == ino && cur->gen == gen)
2080 return cur;
2081 }
2082 return NULL;
2083}
2084
2085/*
2086 * Removes the entry from the list and adds it back to the end. This marks the
2087 * entry as recently used so that name_cache_clean_unused does not remove it.
2088 */
2089static void name_cache_used(struct send_ctx *sctx, struct name_cache_entry *nce)
2090{
2091 list_del(&nce->list);
2092 list_add_tail(&nce->list, &sctx->name_cache_list);
2093}
2094
2095/*
2096 * Remove some entries from the beginning of name_cache_list.
2097 */
2098static void name_cache_clean_unused(struct send_ctx *sctx)
2099{
2100 struct name_cache_entry *nce;
2101
2102 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2103 return;
2104
2105 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2106 nce = list_entry(sctx->name_cache_list.next,
2107 struct name_cache_entry, list);
2108 name_cache_delete(sctx, nce);
2109 kfree(nce);
2110 }
2111}
2112
2113static void name_cache_free(struct send_ctx *sctx)
2114{
2115 struct name_cache_entry *nce;
2116
2117 while (!list_empty(&sctx->name_cache_list)) {
2118 nce = list_entry(sctx->name_cache_list.next,
2119 struct name_cache_entry, list);
2120 name_cache_delete(sctx, nce);
2121 kfree(nce);
2122 }
2123}
2124
2125/*
2126 * Used by get_cur_path for each ref up to the root.
2127 * Returns 0 if it succeeded.
2128 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2129 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2130 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2131 * Returns <0 in case of error.
2132 */
2133static int __get_cur_name_and_parent(struct send_ctx *sctx,
2134 u64 ino, u64 gen,
2135 u64 *parent_ino,
2136 u64 *parent_gen,
2137 struct fs_path *dest)
2138{
2139 int ret;
2140 int nce_ret;
2141 struct name_cache_entry *nce = NULL;
2142
2143 /*
2144 * First check if we already did a call to this function with the same
2145 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2146 * return the cached result.
2147 */
2148 nce = name_cache_search(sctx, ino, gen);
2149 if (nce) {
2150 if (ino < sctx->send_progress && nce->need_later_update) {
2151 name_cache_delete(sctx, nce);
2152 kfree(nce);
2153 nce = NULL;
2154 } else {
2155 name_cache_used(sctx, nce);
2156 *parent_ino = nce->parent_ino;
2157 *parent_gen = nce->parent_gen;
2158 ret = fs_path_add(dest, nce->name, nce->name_len);
2159 if (ret < 0)
2160 goto out;
2161 ret = nce->ret;
2162 goto out;
2163 }
2164 }
2165
2166 /*
2167 * If the inode is not existent yet, add the orphan name and return 1.
2168 * This should only happen for the parent dir that we determine in
2169 * __record_new_ref
2170 */
2171 ret = is_inode_existent(sctx, ino, gen);
2172 if (ret < 0)
2173 goto out;
2174
2175 if (!ret) {
2176 ret = gen_unique_name(sctx, ino, gen, dest);
2177 if (ret < 0)
2178 goto out;
2179 ret = 1;
2180 goto out_cache;
2181 }
2182
2183 /*
2184 * Depending on whether the inode was already processed or not, use
2185 * send_root or parent_root for ref lookup.
2186 */
2187 if (ino < sctx->send_progress)
2188 ret = get_first_ref(sctx->send_root, ino,
2189 parent_ino, parent_gen, dest);
2190 else
2191 ret = get_first_ref(sctx->parent_root, ino,
2192 parent_ino, parent_gen, dest);
2193 if (ret < 0)
2194 goto out;
2195
2196 /*
2197 * Check if the ref was overwritten by an inode's ref that was processed
2198 * earlier. If yes, treat as orphan and return 1.
2199 */
2200 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2201 dest->start, dest->end - dest->start);
2202 if (ret < 0)
2203 goto out;
2204 if (ret) {
2205 fs_path_reset(dest);
2206 ret = gen_unique_name(sctx, ino, gen, dest);
2207 if (ret < 0)
2208 goto out;
2209 ret = 1;
2210 }
2211
2212out_cache:
2213 /*
2214 * Store the result of the lookup in the name cache.
2215 */
2216 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2217 if (!nce) {
2218 ret = -ENOMEM;
2219 goto out;
2220 }
2221
2222 nce->ino = ino;
2223 nce->gen = gen;
2224 nce->parent_ino = *parent_ino;
2225 nce->parent_gen = *parent_gen;
2226 nce->name_len = fs_path_len(dest);
2227 nce->ret = ret;
2228 strcpy(nce->name, dest->start);
2229
2230 if (ino < sctx->send_progress)
2231 nce->need_later_update = 0;
2232 else
2233 nce->need_later_update = 1;
2234
2235 nce_ret = name_cache_insert(sctx, nce);
2236 if (nce_ret < 0)
2237 ret = nce_ret;
2238 name_cache_clean_unused(sctx);
2239
2240out:
2241 return ret;
2242}
2243
2244/*
2245 * Magic happens here. This function returns the first ref to an inode as it
2246 * would look like while receiving the stream at this point in time.
2247 * We walk the path up to the root. For every inode in between, we check if it
2248 * was already processed/sent. If yes, we continue with the parent as found
2249 * in send_root. If not, we continue with the parent as found in parent_root.
2250 * If we encounter an inode that was deleted at this point in time, we use the
2251 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2252 * that were not created yet and overwritten inodes/refs.
2253 *
2254 * When do we have have orphan inodes:
2255 * 1. When an inode is freshly created and thus no valid refs are available yet
2256 * 2. When a directory lost all it's refs (deleted) but still has dir items
2257 * inside which were not processed yet (pending for move/delete). If anyone
2258 * tried to get the path to the dir items, it would get a path inside that
2259 * orphan directory.
2260 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2261 * of an unprocessed inode. If in that case the first ref would be
2262 * overwritten, the overwritten inode gets "orphanized". Later when we
2263 * process this overwritten inode, it is restored at a new place by moving
2264 * the orphan inode.
2265 *
2266 * sctx->send_progress tells this function at which point in time receiving
2267 * would be.
2268 */
2269static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2270 struct fs_path *dest)
2271{
2272 int ret = 0;
2273 struct fs_path *name = NULL;
2274 u64 parent_inode = 0;
2275 u64 parent_gen = 0;
2276 int stop = 0;
2277
2278 name = fs_path_alloc();
2279 if (!name) {
2280 ret = -ENOMEM;
2281 goto out;
2282 }
2283
2284 dest->reversed = 1;
2285 fs_path_reset(dest);
2286
2287 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2288 struct waiting_dir_move *wdm;
2289
2290 fs_path_reset(name);
2291
2292 if (is_waiting_for_rm(sctx, ino)) {
2293 ret = gen_unique_name(sctx, ino, gen, name);
2294 if (ret < 0)
2295 goto out;
2296 ret = fs_path_add_path(dest, name);
2297 break;
2298 }
2299
2300 wdm = get_waiting_dir_move(sctx, ino);
2301 if (wdm && wdm->orphanized) {
2302 ret = gen_unique_name(sctx, ino, gen, name);
2303 stop = 1;
2304 } else if (wdm) {
2305 ret = get_first_ref(sctx->parent_root, ino,
2306 &parent_inode, &parent_gen, name);
2307 } else {
2308 ret = __get_cur_name_and_parent(sctx, ino, gen,
2309 &parent_inode,
2310 &parent_gen, name);
2311 if (ret)
2312 stop = 1;
2313 }
2314
2315 if (ret < 0)
2316 goto out;
2317
2318 ret = fs_path_add_path(dest, name);
2319 if (ret < 0)
2320 goto out;
2321
2322 ino = parent_inode;
2323 gen = parent_gen;
2324 }
2325
2326out:
2327 fs_path_free(name);
2328 if (!ret)
2329 fs_path_unreverse(dest);
2330 return ret;
2331}
2332
2333/*
2334 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2335 */
2336static int send_subvol_begin(struct send_ctx *sctx)
2337{
2338 int ret;
2339 struct btrfs_root *send_root = sctx->send_root;
2340 struct btrfs_root *parent_root = sctx->parent_root;
2341 struct btrfs_path *path;
2342 struct btrfs_key key;
2343 struct btrfs_root_ref *ref;
2344 struct extent_buffer *leaf;
2345 char *name = NULL;
2346 int namelen;
2347
2348 path = btrfs_alloc_path();
2349 if (!path)
2350 return -ENOMEM;
2351
2352 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2353 if (!name) {
2354 btrfs_free_path(path);
2355 return -ENOMEM;
2356 }
2357
2358 key.objectid = send_root->objectid;
2359 key.type = BTRFS_ROOT_BACKREF_KEY;
2360 key.offset = 0;
2361
2362 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2363 &key, path, 1, 0);
2364 if (ret < 0)
2365 goto out;
2366 if (ret) {
2367 ret = -ENOENT;
2368 goto out;
2369 }
2370
2371 leaf = path->nodes[0];
2372 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2374 key.objectid != send_root->objectid) {
2375 ret = -ENOENT;
2376 goto out;
2377 }
2378 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2379 namelen = btrfs_root_ref_name_len(leaf, ref);
2380 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2381 btrfs_release_path(path);
2382
2383 if (parent_root) {
2384 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2385 if (ret < 0)
2386 goto out;
2387 } else {
2388 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2389 if (ret < 0)
2390 goto out;
2391 }
2392
2393 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2394
2395 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2396 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2397 sctx->send_root->root_item.received_uuid);
2398 else
2399 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2400 sctx->send_root->root_item.uuid);
2401
2402 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2403 le64_to_cpu(sctx->send_root->root_item.ctransid));
2404 if (parent_root) {
2405 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2406 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2407 parent_root->root_item.received_uuid);
2408 else
2409 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2410 parent_root->root_item.uuid);
2411 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2412 le64_to_cpu(sctx->parent_root->root_item.ctransid));
2413 }
2414
2415 ret = send_cmd(sctx);
2416
2417tlv_put_failure:
2418out:
2419 btrfs_free_path(path);
2420 kfree(name);
2421 return ret;
2422}
2423
2424static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2425{
2426 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2427 int ret = 0;
2428 struct fs_path *p;
2429
2430 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2431
2432 p = fs_path_alloc();
2433 if (!p)
2434 return -ENOMEM;
2435
2436 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2437 if (ret < 0)
2438 goto out;
2439
2440 ret = get_cur_path(sctx, ino, gen, p);
2441 if (ret < 0)
2442 goto out;
2443 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2444 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2445
2446 ret = send_cmd(sctx);
2447
2448tlv_put_failure:
2449out:
2450 fs_path_free(p);
2451 return ret;
2452}
2453
2454static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2455{
2456 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2457 int ret = 0;
2458 struct fs_path *p;
2459
2460 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2461
2462 p = fs_path_alloc();
2463 if (!p)
2464 return -ENOMEM;
2465
2466 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2467 if (ret < 0)
2468 goto out;
2469
2470 ret = get_cur_path(sctx, ino, gen, p);
2471 if (ret < 0)
2472 goto out;
2473 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2474 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2475
2476 ret = send_cmd(sctx);
2477
2478tlv_put_failure:
2479out:
2480 fs_path_free(p);
2481 return ret;
2482}
2483
2484static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2485{
2486 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2487 int ret = 0;
2488 struct fs_path *p;
2489
2490 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2491 ino, uid, gid);
2492
2493 p = fs_path_alloc();
2494 if (!p)
2495 return -ENOMEM;
2496
2497 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2498 if (ret < 0)
2499 goto out;
2500
2501 ret = get_cur_path(sctx, ino, gen, p);
2502 if (ret < 0)
2503 goto out;
2504 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2505 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2506 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2507
2508 ret = send_cmd(sctx);
2509
2510tlv_put_failure:
2511out:
2512 fs_path_free(p);
2513 return ret;
2514}
2515
2516static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2517{
2518 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2519 int ret = 0;
2520 struct fs_path *p = NULL;
2521 struct btrfs_inode_item *ii;
2522 struct btrfs_path *path = NULL;
2523 struct extent_buffer *eb;
2524 struct btrfs_key key;
2525 int slot;
2526
2527 btrfs_debug(fs_info, "send_utimes %llu", ino);
2528
2529 p = fs_path_alloc();
2530 if (!p)
2531 return -ENOMEM;
2532
2533 path = alloc_path_for_send();
2534 if (!path) {
2535 ret = -ENOMEM;
2536 goto out;
2537 }
2538
2539 key.objectid = ino;
2540 key.type = BTRFS_INODE_ITEM_KEY;
2541 key.offset = 0;
2542 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2543 if (ret > 0)
2544 ret = -ENOENT;
2545 if (ret < 0)
2546 goto out;
2547
2548 eb = path->nodes[0];
2549 slot = path->slots[0];
2550 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2551
2552 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2553 if (ret < 0)
2554 goto out;
2555
2556 ret = get_cur_path(sctx, ino, gen, p);
2557 if (ret < 0)
2558 goto out;
2559 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2560 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2561 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2562 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2563 /* TODO Add otime support when the otime patches get into upstream */
2564
2565 ret = send_cmd(sctx);
2566
2567tlv_put_failure:
2568out:
2569 fs_path_free(p);
2570 btrfs_free_path(path);
2571 return ret;
2572}
2573
2574/*
2575 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2576 * a valid path yet because we did not process the refs yet. So, the inode
2577 * is created as orphan.
2578 */
2579static int send_create_inode(struct send_ctx *sctx, u64 ino)
2580{
2581 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2582 int ret = 0;
2583 struct fs_path *p;
2584 int cmd;
2585 u64 gen;
2586 u64 mode;
2587 u64 rdev;
2588
2589 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2590
2591 p = fs_path_alloc();
2592 if (!p)
2593 return -ENOMEM;
2594
2595 if (ino != sctx->cur_ino) {
2596 ret = get_inode_info(sctx->send_root, ino, NULL, &gen, &mode,
2597 NULL, NULL, &rdev);
2598 if (ret < 0)
2599 goto out;
2600 } else {
2601 gen = sctx->cur_inode_gen;
2602 mode = sctx->cur_inode_mode;
2603 rdev = sctx->cur_inode_rdev;
2604 }
2605
2606 if (S_ISREG(mode)) {
2607 cmd = BTRFS_SEND_C_MKFILE;
2608 } else if (S_ISDIR(mode)) {
2609 cmd = BTRFS_SEND_C_MKDIR;
2610 } else if (S_ISLNK(mode)) {
2611 cmd = BTRFS_SEND_C_SYMLINK;
2612 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2613 cmd = BTRFS_SEND_C_MKNOD;
2614 } else if (S_ISFIFO(mode)) {
2615 cmd = BTRFS_SEND_C_MKFIFO;
2616 } else if (S_ISSOCK(mode)) {
2617 cmd = BTRFS_SEND_C_MKSOCK;
2618 } else {
2619 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2620 (int)(mode & S_IFMT));
2621 ret = -ENOTSUPP;
2622 goto out;
2623 }
2624
2625 ret = begin_cmd(sctx, cmd);
2626 if (ret < 0)
2627 goto out;
2628
2629 ret = gen_unique_name(sctx, ino, gen, p);
2630 if (ret < 0)
2631 goto out;
2632
2633 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2634 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2635
2636 if (S_ISLNK(mode)) {
2637 fs_path_reset(p);
2638 ret = read_symlink(sctx->send_root, ino, p);
2639 if (ret < 0)
2640 goto out;
2641 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2642 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2643 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2644 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2645 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2646 }
2647
2648 ret = send_cmd(sctx);
2649 if (ret < 0)
2650 goto out;
2651
2652
2653tlv_put_failure:
2654out:
2655 fs_path_free(p);
2656 return ret;
2657}
2658
2659/*
2660 * We need some special handling for inodes that get processed before the parent
2661 * directory got created. See process_recorded_refs for details.
2662 * This function does the check if we already created the dir out of order.
2663 */
2664static int did_create_dir(struct send_ctx *sctx, u64 dir)
2665{
2666 int ret = 0;
2667 struct btrfs_path *path = NULL;
2668 struct btrfs_key key;
2669 struct btrfs_key found_key;
2670 struct btrfs_key di_key;
2671 struct extent_buffer *eb;
2672 struct btrfs_dir_item *di;
2673 int slot;
2674
2675 path = alloc_path_for_send();
2676 if (!path) {
2677 ret = -ENOMEM;
2678 goto out;
2679 }
2680
2681 key.objectid = dir;
2682 key.type = BTRFS_DIR_INDEX_KEY;
2683 key.offset = 0;
2684 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2685 if (ret < 0)
2686 goto out;
2687
2688 while (1) {
2689 eb = path->nodes[0];
2690 slot = path->slots[0];
2691 if (slot >= btrfs_header_nritems(eb)) {
2692 ret = btrfs_next_leaf(sctx->send_root, path);
2693 if (ret < 0) {
2694 goto out;
2695 } else if (ret > 0) {
2696 ret = 0;
2697 break;
2698 }
2699 continue;
2700 }
2701
2702 btrfs_item_key_to_cpu(eb, &found_key, slot);
2703 if (found_key.objectid != key.objectid ||
2704 found_key.type != key.type) {
2705 ret = 0;
2706 goto out;
2707 }
2708
2709 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
2710 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2711
2712 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2713 di_key.objectid < sctx->send_progress) {
2714 ret = 1;
2715 goto out;
2716 }
2717
2718 path->slots[0]++;
2719 }
2720
2721out:
2722 btrfs_free_path(path);
2723 return ret;
2724}
2725
2726/*
2727 * Only creates the inode if it is:
2728 * 1. Not a directory
2729 * 2. Or a directory which was not created already due to out of order
2730 * directories. See did_create_dir and process_recorded_refs for details.
2731 */
2732static int send_create_inode_if_needed(struct send_ctx *sctx)
2733{
2734 int ret;
2735
2736 if (S_ISDIR(sctx->cur_inode_mode)) {
2737 ret = did_create_dir(sctx, sctx->cur_ino);
2738 if (ret < 0)
2739 goto out;
2740 if (ret) {
2741 ret = 0;
2742 goto out;
2743 }
2744 }
2745
2746 ret = send_create_inode(sctx, sctx->cur_ino);
2747 if (ret < 0)
2748 goto out;
2749
2750out:
2751 return ret;
2752}
2753
2754struct recorded_ref {
2755 struct list_head list;
2756 char *dir_path;
2757 char *name;
2758 struct fs_path *full_path;
2759 u64 dir;
2760 u64 dir_gen;
2761 int dir_path_len;
2762 int name_len;
2763};
2764
2765/*
2766 * We need to process new refs before deleted refs, but compare_tree gives us
2767 * everything mixed. So we first record all refs and later process them.
2768 * This function is a helper to record one ref.
2769 */
2770static int __record_ref(struct list_head *head, u64 dir,
2771 u64 dir_gen, struct fs_path *path)
2772{
2773 struct recorded_ref *ref;
2774
2775 ref = kmalloc(sizeof(*ref), GFP_KERNEL);
2776 if (!ref)
2777 return -ENOMEM;
2778
2779 ref->dir = dir;
2780 ref->dir_gen = dir_gen;
2781 ref->full_path = path;
2782
2783 ref->name = (char *)kbasename(ref->full_path->start);
2784 ref->name_len = ref->full_path->end - ref->name;
2785 ref->dir_path = ref->full_path->start;
2786 if (ref->name == ref->full_path->start)
2787 ref->dir_path_len = 0;
2788 else
2789 ref->dir_path_len = ref->full_path->end -
2790 ref->full_path->start - 1 - ref->name_len;
2791
2792 list_add_tail(&ref->list, head);
2793 return 0;
2794}
2795
2796static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2797{
2798 struct recorded_ref *new;
2799
2800 new = kmalloc(sizeof(*ref), GFP_KERNEL);
2801 if (!new)
2802 return -ENOMEM;
2803
2804 new->dir = ref->dir;
2805 new->dir_gen = ref->dir_gen;
2806 new->full_path = NULL;
2807 INIT_LIST_HEAD(&new->list);
2808 list_add_tail(&new->list, list);
2809 return 0;
2810}
2811
2812static void __free_recorded_refs(struct list_head *head)
2813{
2814 struct recorded_ref *cur;
2815
2816 while (!list_empty(head)) {
2817 cur = list_entry(head->next, struct recorded_ref, list);
2818 fs_path_free(cur->full_path);
2819 list_del(&cur->list);
2820 kfree(cur);
2821 }
2822}
2823
2824static void free_recorded_refs(struct send_ctx *sctx)
2825{
2826 __free_recorded_refs(&sctx->new_refs);
2827 __free_recorded_refs(&sctx->deleted_refs);
2828}
2829
2830/*
2831 * Renames/moves a file/dir to its orphan name. Used when the first
2832 * ref of an unprocessed inode gets overwritten and for all non empty
2833 * directories.
2834 */
2835static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2836 struct fs_path *path)
2837{
2838 int ret;
2839 struct fs_path *orphan;
2840
2841 orphan = fs_path_alloc();
2842 if (!orphan)
2843 return -ENOMEM;
2844
2845 ret = gen_unique_name(sctx, ino, gen, orphan);
2846 if (ret < 0)
2847 goto out;
2848
2849 ret = send_rename(sctx, path, orphan);
2850
2851out:
2852 fs_path_free(orphan);
2853 return ret;
2854}
2855
2856static struct orphan_dir_info *
2857add_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2858{
2859 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2860 struct rb_node *parent = NULL;
2861 struct orphan_dir_info *entry, *odi;
2862
2863 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2864 if (!odi)
2865 return ERR_PTR(-ENOMEM);
2866 odi->ino = dir_ino;
2867 odi->gen = 0;
2868
2869 while (*p) {
2870 parent = *p;
2871 entry = rb_entry(parent, struct orphan_dir_info, node);
2872 if (dir_ino < entry->ino) {
2873 p = &(*p)->rb_left;
2874 } else if (dir_ino > entry->ino) {
2875 p = &(*p)->rb_right;
2876 } else {
2877 kfree(odi);
2878 return entry;
2879 }
2880 }
2881
2882 rb_link_node(&odi->node, parent, p);
2883 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2884 return odi;
2885}
2886
2887static struct orphan_dir_info *
2888get_orphan_dir_info(struct send_ctx *sctx, u64 dir_ino)
2889{
2890 struct rb_node *n = sctx->orphan_dirs.rb_node;
2891 struct orphan_dir_info *entry;
2892
2893 while (n) {
2894 entry = rb_entry(n, struct orphan_dir_info, node);
2895 if (dir_ino < entry->ino)
2896 n = n->rb_left;
2897 else if (dir_ino > entry->ino)
2898 n = n->rb_right;
2899 else
2900 return entry;
2901 }
2902 return NULL;
2903}
2904
2905static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino)
2906{
2907 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino);
2908
2909 return odi != NULL;
2910}
2911
2912static void free_orphan_dir_info(struct send_ctx *sctx,
2913 struct orphan_dir_info *odi)
2914{
2915 if (!odi)
2916 return;
2917 rb_erase(&odi->node, &sctx->orphan_dirs);
2918 kfree(odi);
2919}
2920
2921/*
2922 * Returns 1 if a directory can be removed at this point in time.
2923 * We check this by iterating all dir items and checking if the inode behind
2924 * the dir item was already processed.
2925 */
2926static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2927 u64 send_progress)
2928{
2929 int ret = 0;
2930 struct btrfs_root *root = sctx->parent_root;
2931 struct btrfs_path *path;
2932 struct btrfs_key key;
2933 struct btrfs_key found_key;
2934 struct btrfs_key loc;
2935 struct btrfs_dir_item *di;
2936
2937 /*
2938 * Don't try to rmdir the top/root subvolume dir.
2939 */
2940 if (dir == BTRFS_FIRST_FREE_OBJECTID)
2941 return 0;
2942
2943 path = alloc_path_for_send();
2944 if (!path)
2945 return -ENOMEM;
2946
2947 key.objectid = dir;
2948 key.type = BTRFS_DIR_INDEX_KEY;
2949 key.offset = 0;
2950 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2951 if (ret < 0)
2952 goto out;
2953
2954 while (1) {
2955 struct waiting_dir_move *dm;
2956
2957 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2958 ret = btrfs_next_leaf(root, path);
2959 if (ret < 0)
2960 goto out;
2961 else if (ret > 0)
2962 break;
2963 continue;
2964 }
2965 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2966 path->slots[0]);
2967 if (found_key.objectid != key.objectid ||
2968 found_key.type != key.type)
2969 break;
2970
2971 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
2972 struct btrfs_dir_item);
2973 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
2974
2975 dm = get_waiting_dir_move(sctx, loc.objectid);
2976 if (dm) {
2977 struct orphan_dir_info *odi;
2978
2979 odi = add_orphan_dir_info(sctx, dir);
2980 if (IS_ERR(odi)) {
2981 ret = PTR_ERR(odi);
2982 goto out;
2983 }
2984 odi->gen = dir_gen;
2985 dm->rmdir_ino = dir;
2986 ret = 0;
2987 goto out;
2988 }
2989
2990 if (loc.objectid > send_progress) {
2991 struct orphan_dir_info *odi;
2992
2993 odi = get_orphan_dir_info(sctx, dir);
2994 free_orphan_dir_info(sctx, odi);
2995 ret = 0;
2996 goto out;
2997 }
2998
2999 path->slots[0]++;
3000 }
3001
3002 ret = 1;
3003
3004out:
3005 btrfs_free_path(path);
3006 return ret;
3007}
3008
3009static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3010{
3011 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3012
3013 return entry != NULL;
3014}
3015
3016static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3017{
3018 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3019 struct rb_node *parent = NULL;
3020 struct waiting_dir_move *entry, *dm;
3021
3022 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3023 if (!dm)
3024 return -ENOMEM;
3025 dm->ino = ino;
3026 dm->rmdir_ino = 0;
3027 dm->orphanized = orphanized;
3028
3029 while (*p) {
3030 parent = *p;
3031 entry = rb_entry(parent, struct waiting_dir_move, node);
3032 if (ino < entry->ino) {
3033 p = &(*p)->rb_left;
3034 } else if (ino > entry->ino) {
3035 p = &(*p)->rb_right;
3036 } else {
3037 kfree(dm);
3038 return -EEXIST;
3039 }
3040 }
3041
3042 rb_link_node(&dm->node, parent, p);
3043 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3044 return 0;
3045}
3046
3047static struct waiting_dir_move *
3048get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3049{
3050 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3051 struct waiting_dir_move *entry;
3052
3053 while (n) {
3054 entry = rb_entry(n, struct waiting_dir_move, node);
3055 if (ino < entry->ino)
3056 n = n->rb_left;
3057 else if (ino > entry->ino)
3058 n = n->rb_right;
3059 else
3060 return entry;
3061 }
3062 return NULL;
3063}
3064
3065static void free_waiting_dir_move(struct send_ctx *sctx,
3066 struct waiting_dir_move *dm)
3067{
3068 if (!dm)
3069 return;
3070 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3071 kfree(dm);
3072}
3073
3074static int add_pending_dir_move(struct send_ctx *sctx,
3075 u64 ino,
3076 u64 ino_gen,
3077 u64 parent_ino,
3078 struct list_head *new_refs,
3079 struct list_head *deleted_refs,
3080 const bool is_orphan)
3081{
3082 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3083 struct rb_node *parent = NULL;
3084 struct pending_dir_move *entry = NULL, *pm;
3085 struct recorded_ref *cur;
3086 int exists = 0;
3087 int ret;
3088
3089 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3090 if (!pm)
3091 return -ENOMEM;
3092 pm->parent_ino = parent_ino;
3093 pm->ino = ino;
3094 pm->gen = ino_gen;
3095 INIT_LIST_HEAD(&pm->list);
3096 INIT_LIST_HEAD(&pm->update_refs);
3097 RB_CLEAR_NODE(&pm->node);
3098
3099 while (*p) {
3100 parent = *p;
3101 entry = rb_entry(parent, struct pending_dir_move, node);
3102 if (parent_ino < entry->parent_ino) {
3103 p = &(*p)->rb_left;
3104 } else if (parent_ino > entry->parent_ino) {
3105 p = &(*p)->rb_right;
3106 } else {
3107 exists = 1;
3108 break;
3109 }
3110 }
3111
3112 list_for_each_entry(cur, deleted_refs, list) {
3113 ret = dup_ref(cur, &pm->update_refs);
3114 if (ret < 0)
3115 goto out;
3116 }
3117 list_for_each_entry(cur, new_refs, list) {
3118 ret = dup_ref(cur, &pm->update_refs);
3119 if (ret < 0)
3120 goto out;
3121 }
3122
3123 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3124 if (ret)
3125 goto out;
3126
3127 if (exists) {
3128 list_add_tail(&pm->list, &entry->list);
3129 } else {
3130 rb_link_node(&pm->node, parent, p);
3131 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3132 }
3133 ret = 0;
3134out:
3135 if (ret) {
3136 __free_recorded_refs(&pm->update_refs);
3137 kfree(pm);
3138 }
3139 return ret;
3140}
3141
3142static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3143 u64 parent_ino)
3144{
3145 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3146 struct pending_dir_move *entry;
3147
3148 while (n) {
3149 entry = rb_entry(n, struct pending_dir_move, node);
3150 if (parent_ino < entry->parent_ino)
3151 n = n->rb_left;
3152 else if (parent_ino > entry->parent_ino)
3153 n = n->rb_right;
3154 else
3155 return entry;
3156 }
3157 return NULL;
3158}
3159
3160static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3161 u64 ino, u64 gen, u64 *ancestor_ino)
3162{
3163 int ret = 0;
3164 u64 parent_inode = 0;
3165 u64 parent_gen = 0;
3166 u64 start_ino = ino;
3167
3168 *ancestor_ino = 0;
3169 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3170 fs_path_reset(name);
3171
3172 if (is_waiting_for_rm(sctx, ino))
3173 break;
3174 if (is_waiting_for_move(sctx, ino)) {
3175 if (*ancestor_ino == 0)
3176 *ancestor_ino = ino;
3177 ret = get_first_ref(sctx->parent_root, ino,
3178 &parent_inode, &parent_gen, name);
3179 } else {
3180 ret = __get_cur_name_and_parent(sctx, ino, gen,
3181 &parent_inode,
3182 &parent_gen, name);
3183 if (ret > 0) {
3184 ret = 0;
3185 break;
3186 }
3187 }
3188 if (ret < 0)
3189 break;
3190 if (parent_inode == start_ino) {
3191 ret = 1;
3192 if (*ancestor_ino == 0)
3193 *ancestor_ino = ino;
3194 break;
3195 }
3196 ino = parent_inode;
3197 gen = parent_gen;
3198 }
3199 return ret;
3200}
3201
3202static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3203{
3204 struct fs_path *from_path = NULL;
3205 struct fs_path *to_path = NULL;
3206 struct fs_path *name = NULL;
3207 u64 orig_progress = sctx->send_progress;
3208 struct recorded_ref *cur;
3209 u64 parent_ino, parent_gen;
3210 struct waiting_dir_move *dm = NULL;
3211 u64 rmdir_ino = 0;
3212 u64 ancestor;
3213 bool is_orphan;
3214 int ret;
3215
3216 name = fs_path_alloc();
3217 from_path = fs_path_alloc();
3218 if (!name || !from_path) {
3219 ret = -ENOMEM;
3220 goto out;
3221 }
3222
3223 dm = get_waiting_dir_move(sctx, pm->ino);
3224 ASSERT(dm);
3225 rmdir_ino = dm->rmdir_ino;
3226 is_orphan = dm->orphanized;
3227 free_waiting_dir_move(sctx, dm);
3228
3229 if (is_orphan) {
3230 ret = gen_unique_name(sctx, pm->ino,
3231 pm->gen, from_path);
3232 } else {
3233 ret = get_first_ref(sctx->parent_root, pm->ino,
3234 &parent_ino, &parent_gen, name);
3235 if (ret < 0)
3236 goto out;
3237 ret = get_cur_path(sctx, parent_ino, parent_gen,
3238 from_path);
3239 if (ret < 0)
3240 goto out;
3241 ret = fs_path_add_path(from_path, name);
3242 }
3243 if (ret < 0)
3244 goto out;
3245
3246 sctx->send_progress = sctx->cur_ino + 1;
3247 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3248 if (ret < 0)
3249 goto out;
3250 if (ret) {
3251 LIST_HEAD(deleted_refs);
3252 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3253 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3254 &pm->update_refs, &deleted_refs,
3255 is_orphan);
3256 if (ret < 0)
3257 goto out;
3258 if (rmdir_ino) {
3259 dm = get_waiting_dir_move(sctx, pm->ino);
3260 ASSERT(dm);
3261 dm->rmdir_ino = rmdir_ino;
3262 }
3263 goto out;
3264 }
3265 fs_path_reset(name);
3266 to_path = name;
3267 name = NULL;
3268 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3269 if (ret < 0)
3270 goto out;
3271
3272 ret = send_rename(sctx, from_path, to_path);
3273 if (ret < 0)
3274 goto out;
3275
3276 if (rmdir_ino) {
3277 struct orphan_dir_info *odi;
3278
3279 odi = get_orphan_dir_info(sctx, rmdir_ino);
3280 if (!odi) {
3281 /* already deleted */
3282 goto finish;
3283 }
3284 ret = can_rmdir(sctx, rmdir_ino, odi->gen, sctx->cur_ino);
3285 if (ret < 0)
3286 goto out;
3287 if (!ret)
3288 goto finish;
3289
3290 name = fs_path_alloc();
3291 if (!name) {
3292 ret = -ENOMEM;
3293 goto out;
3294 }
3295 ret = get_cur_path(sctx, rmdir_ino, odi->gen, name);
3296 if (ret < 0)
3297 goto out;
3298 ret = send_rmdir(sctx, name);
3299 if (ret < 0)
3300 goto out;
3301 free_orphan_dir_info(sctx, odi);
3302 }
3303
3304finish:
3305 ret = send_utimes(sctx, pm->ino, pm->gen);
3306 if (ret < 0)
3307 goto out;
3308
3309 /*
3310 * After rename/move, need to update the utimes of both new parent(s)
3311 * and old parent(s).
3312 */
3313 list_for_each_entry(cur, &pm->update_refs, list) {
3314 /*
3315 * The parent inode might have been deleted in the send snapshot
3316 */
3317 ret = get_inode_info(sctx->send_root, cur->dir, NULL,
3318 NULL, NULL, NULL, NULL, NULL);
3319 if (ret == -ENOENT) {
3320 ret = 0;
3321 continue;
3322 }
3323 if (ret < 0)
3324 goto out;
3325
3326 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3327 if (ret < 0)
3328 goto out;
3329 }
3330
3331out:
3332 fs_path_free(name);
3333 fs_path_free(from_path);
3334 fs_path_free(to_path);
3335 sctx->send_progress = orig_progress;
3336
3337 return ret;
3338}
3339
3340static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3341{
3342 if (!list_empty(&m->list))
3343 list_del(&m->list);
3344 if (!RB_EMPTY_NODE(&m->node))
3345 rb_erase(&m->node, &sctx->pending_dir_moves);
3346 __free_recorded_refs(&m->update_refs);
3347 kfree(m);
3348}
3349
3350static void tail_append_pending_moves(struct pending_dir_move *moves,
3351 struct list_head *stack)
3352{
3353 if (list_empty(&moves->list)) {
3354 list_add_tail(&moves->list, stack);
3355 } else {
3356 LIST_HEAD(list);
3357 list_splice_init(&moves->list, &list);
3358 list_add_tail(&moves->list, stack);
3359 list_splice_tail(&list, stack);
3360 }
3361}
3362
3363static int apply_children_dir_moves(struct send_ctx *sctx)
3364{
3365 struct pending_dir_move *pm;
3366 struct list_head stack;
3367 u64 parent_ino = sctx->cur_ino;
3368 int ret = 0;
3369
3370 pm = get_pending_dir_moves(sctx, parent_ino);
3371 if (!pm)
3372 return 0;
3373
3374 INIT_LIST_HEAD(&stack);
3375 tail_append_pending_moves(pm, &stack);
3376
3377 while (!list_empty(&stack)) {
3378 pm = list_first_entry(&stack, struct pending_dir_move, list);
3379 parent_ino = pm->ino;
3380 ret = apply_dir_move(sctx, pm);
3381 free_pending_move(sctx, pm);
3382 if (ret)
3383 goto out;
3384 pm = get_pending_dir_moves(sctx, parent_ino);
3385 if (pm)
3386 tail_append_pending_moves(pm, &stack);
3387 }
3388 return 0;
3389
3390out:
3391 while (!list_empty(&stack)) {
3392 pm = list_first_entry(&stack, struct pending_dir_move, list);
3393 free_pending_move(sctx, pm);
3394 }
3395 return ret;
3396}
3397
3398/*
3399 * We might need to delay a directory rename even when no ancestor directory
3400 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3401 * renamed. This happens when we rename a directory to the old name (the name
3402 * in the parent root) of some other unrelated directory that got its rename
3403 * delayed due to some ancestor with higher number that got renamed.
3404 *
3405 * Example:
3406 *
3407 * Parent snapshot:
3408 * . (ino 256)
3409 * |---- a/ (ino 257)
3410 * | |---- file (ino 260)
3411 * |
3412 * |---- b/ (ino 258)
3413 * |---- c/ (ino 259)
3414 *
3415 * Send snapshot:
3416 * . (ino 256)
3417 * |---- a/ (ino 258)
3418 * |---- x/ (ino 259)
3419 * |---- y/ (ino 257)
3420 * |----- file (ino 260)
3421 *
3422 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3423 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3424 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3425 * must issue is:
3426 *
3427 * 1 - rename 259 from 'c' to 'x'
3428 * 2 - rename 257 from 'a' to 'x/y'
3429 * 3 - rename 258 from 'b' to 'a'
3430 *
3431 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3432 * be done right away and < 0 on error.
3433 */
3434static int wait_for_dest_dir_move(struct send_ctx *sctx,
3435 struct recorded_ref *parent_ref,
3436 const bool is_orphan)
3437{
3438 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3439 struct btrfs_path *path;
3440 struct btrfs_key key;
3441 struct btrfs_key di_key;
3442 struct btrfs_dir_item *di;
3443 u64 left_gen;
3444 u64 right_gen;
3445 int ret = 0;
3446 struct waiting_dir_move *wdm;
3447
3448 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3449 return 0;
3450
3451 path = alloc_path_for_send();
3452 if (!path)
3453 return -ENOMEM;
3454
3455 key.objectid = parent_ref->dir;
3456 key.type = BTRFS_DIR_ITEM_KEY;
3457 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3458
3459 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3460 if (ret < 0) {
3461 goto out;
3462 } else if (ret > 0) {
3463 ret = 0;
3464 goto out;
3465 }
3466
3467 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3468 parent_ref->name_len);
3469 if (!di) {
3470 ret = 0;
3471 goto out;
3472 }
3473 /*
3474 * di_key.objectid has the number of the inode that has a dentry in the
3475 * parent directory with the same name that sctx->cur_ino is being
3476 * renamed to. We need to check if that inode is in the send root as
3477 * well and if it is currently marked as an inode with a pending rename,
3478 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3479 * that it happens after that other inode is renamed.
3480 */
3481 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3482 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3483 ret = 0;
3484 goto out;
3485 }
3486
3487 ret = get_inode_info(sctx->parent_root, di_key.objectid, NULL,
3488 &left_gen, NULL, NULL, NULL, NULL);
3489 if (ret < 0)
3490 goto out;
3491 ret = get_inode_info(sctx->send_root, di_key.objectid, NULL,
3492 &right_gen, NULL, NULL, NULL, NULL);
3493 if (ret < 0) {
3494 if (ret == -ENOENT)
3495 ret = 0;
3496 goto out;
3497 }
3498
3499 /* Different inode, no need to delay the rename of sctx->cur_ino */
3500 if (right_gen != left_gen) {
3501 ret = 0;
3502 goto out;
3503 }
3504
3505 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3506 if (wdm && !wdm->orphanized) {
3507 ret = add_pending_dir_move(sctx,
3508 sctx->cur_ino,
3509 sctx->cur_inode_gen,
3510 di_key.objectid,
3511 &sctx->new_refs,
3512 &sctx->deleted_refs,
3513 is_orphan);
3514 if (!ret)
3515 ret = 1;
3516 }
3517out:
3518 btrfs_free_path(path);
3519 return ret;
3520}
3521
3522/*
3523 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3524 * Return 1 if true, 0 if false and < 0 on error.
3525 */
3526static int is_ancestor(struct btrfs_root *root,
3527 const u64 ino1,
3528 const u64 ino1_gen,
3529 const u64 ino2,
3530 struct fs_path *fs_path)
3531{
3532 u64 ino = ino2;
3533
3534 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3535 int ret;
3536 u64 parent;
3537 u64 parent_gen;
3538
3539 fs_path_reset(fs_path);
3540 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3541 if (ret < 0) {
3542 if (ret == -ENOENT && ino == ino2)
3543 ret = 0;
3544 return ret;
3545 }
3546 if (parent == ino1)
3547 return parent_gen == ino1_gen ? 1 : 0;
3548 ino = parent;
3549 }
3550 return 0;
3551}
3552
3553static int wait_for_parent_move(struct send_ctx *sctx,
3554 struct recorded_ref *parent_ref,
3555 const bool is_orphan)
3556{
3557 int ret = 0;
3558 u64 ino = parent_ref->dir;
3559 u64 parent_ino_before, parent_ino_after;
3560 struct fs_path *path_before = NULL;
3561 struct fs_path *path_after = NULL;
3562 int len1, len2;
3563
3564 path_after = fs_path_alloc();
3565 path_before = fs_path_alloc();
3566 if (!path_after || !path_before) {
3567 ret = -ENOMEM;
3568 goto out;
3569 }
3570
3571 /*
3572 * Our current directory inode may not yet be renamed/moved because some
3573 * ancestor (immediate or not) has to be renamed/moved first. So find if
3574 * such ancestor exists and make sure our own rename/move happens after
3575 * that ancestor is processed to avoid path build infinite loops (done
3576 * at get_cur_path()).
3577 */
3578 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3579 if (is_waiting_for_move(sctx, ino)) {
3580 /*
3581 * If the current inode is an ancestor of ino in the
3582 * parent root, we need to delay the rename of the
3583 * current inode, otherwise don't delayed the rename
3584 * because we can end up with a circular dependency
3585 * of renames, resulting in some directories never
3586 * getting the respective rename operations issued in
3587 * the send stream or getting into infinite path build
3588 * loops.
3589 */
3590 ret = is_ancestor(sctx->parent_root,
3591 sctx->cur_ino, sctx->cur_inode_gen,
3592 ino, path_before);
3593 if (ret)
3594 break;
3595 }
3596
3597 fs_path_reset(path_before);
3598 fs_path_reset(path_after);
3599
3600 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3601 NULL, path_after);
3602 if (ret < 0)
3603 goto out;
3604 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3605 NULL, path_before);
3606 if (ret < 0 && ret != -ENOENT) {
3607 goto out;
3608 } else if (ret == -ENOENT) {
3609 ret = 0;
3610 break;
3611 }
3612
3613 len1 = fs_path_len(path_before);
3614 len2 = fs_path_len(path_after);
3615 if (ino > sctx->cur_ino &&
3616 (parent_ino_before != parent_ino_after || len1 != len2 ||
3617 memcmp(path_before->start, path_after->start, len1))) {
3618 ret = 1;
3619 break;
3620 }
3621 ino = parent_ino_after;
3622 }
3623
3624out:
3625 fs_path_free(path_before);
3626 fs_path_free(path_after);
3627
3628 if (ret == 1) {
3629 ret = add_pending_dir_move(sctx,
3630 sctx->cur_ino,
3631 sctx->cur_inode_gen,
3632 ino,
3633 &sctx->new_refs,
3634 &sctx->deleted_refs,
3635 is_orphan);
3636 if (!ret)
3637 ret = 1;
3638 }
3639
3640 return ret;
3641}
3642
3643/*
3644 * This does all the move/link/unlink/rmdir magic.
3645 */
3646static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3647{
3648 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3649 int ret = 0;
3650 struct recorded_ref *cur;
3651 struct recorded_ref *cur2;
3652 struct list_head check_dirs;
3653 struct fs_path *valid_path = NULL;
3654 u64 ow_inode = 0;
3655 u64 ow_gen;
3656 int did_overwrite = 0;
3657 int is_orphan = 0;
3658 u64 last_dir_ino_rm = 0;
3659 bool can_rename = true;
3660
3661 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3662
3663 /*
3664 * This should never happen as the root dir always has the same ref
3665 * which is always '..'
3666 */
3667 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3668 INIT_LIST_HEAD(&check_dirs);
3669
3670 valid_path = fs_path_alloc();
3671 if (!valid_path) {
3672 ret = -ENOMEM;
3673 goto out;
3674 }
3675
3676 /*
3677 * First, check if the first ref of the current inode was overwritten
3678 * before. If yes, we know that the current inode was already orphanized
3679 * and thus use the orphan name. If not, we can use get_cur_path to
3680 * get the path of the first ref as it would like while receiving at
3681 * this point in time.
3682 * New inodes are always orphan at the beginning, so force to use the
3683 * orphan name in this case.
3684 * The first ref is stored in valid_path and will be updated if it
3685 * gets moved around.
3686 */
3687 if (!sctx->cur_inode_new) {
3688 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3689 sctx->cur_inode_gen);
3690 if (ret < 0)
3691 goto out;
3692 if (ret)
3693 did_overwrite = 1;
3694 }
3695 if (sctx->cur_inode_new || did_overwrite) {
3696 ret = gen_unique_name(sctx, sctx->cur_ino,
3697 sctx->cur_inode_gen, valid_path);
3698 if (ret < 0)
3699 goto out;
3700 is_orphan = 1;
3701 } else {
3702 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3703 valid_path);
3704 if (ret < 0)
3705 goto out;
3706 }
3707
3708 list_for_each_entry(cur, &sctx->new_refs, list) {
3709 /*
3710 * We may have refs where the parent directory does not exist
3711 * yet. This happens if the parent directories inum is higher
3712 * the the current inum. To handle this case, we create the
3713 * parent directory out of order. But we need to check if this
3714 * did already happen before due to other refs in the same dir.
3715 */
3716 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3717 if (ret < 0)
3718 goto out;
3719 if (ret == inode_state_will_create) {
3720 ret = 0;
3721 /*
3722 * First check if any of the current inodes refs did
3723 * already create the dir.
3724 */
3725 list_for_each_entry(cur2, &sctx->new_refs, list) {
3726 if (cur == cur2)
3727 break;
3728 if (cur2->dir == cur->dir) {
3729 ret = 1;
3730 break;
3731 }
3732 }
3733
3734 /*
3735 * If that did not happen, check if a previous inode
3736 * did already create the dir.
3737 */
3738 if (!ret)
3739 ret = did_create_dir(sctx, cur->dir);
3740 if (ret < 0)
3741 goto out;
3742 if (!ret) {
3743 ret = send_create_inode(sctx, cur->dir);
3744 if (ret < 0)
3745 goto out;
3746 }
3747 }
3748
3749 /*
3750 * Check if this new ref would overwrite the first ref of
3751 * another unprocessed inode. If yes, orphanize the
3752 * overwritten inode. If we find an overwritten ref that is
3753 * not the first ref, simply unlink it.
3754 */
3755 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3756 cur->name, cur->name_len,
3757 &ow_inode, &ow_gen);
3758 if (ret < 0)
3759 goto out;
3760 if (ret) {
3761 ret = is_first_ref(sctx->parent_root,
3762 ow_inode, cur->dir, cur->name,
3763 cur->name_len);
3764 if (ret < 0)
3765 goto out;
3766 if (ret) {
3767 struct name_cache_entry *nce;
3768 struct waiting_dir_move *wdm;
3769
3770 ret = orphanize_inode(sctx, ow_inode, ow_gen,
3771 cur->full_path);
3772 if (ret < 0)
3773 goto out;
3774
3775 /*
3776 * If ow_inode has its rename operation delayed
3777 * make sure that its orphanized name is used in
3778 * the source path when performing its rename
3779 * operation.
3780 */
3781 if (is_waiting_for_move(sctx, ow_inode)) {
3782 wdm = get_waiting_dir_move(sctx,
3783 ow_inode);
3784 ASSERT(wdm);
3785 wdm->orphanized = true;
3786 }
3787
3788 /*
3789 * Make sure we clear our orphanized inode's
3790 * name from the name cache. This is because the
3791 * inode ow_inode might be an ancestor of some
3792 * other inode that will be orphanized as well
3793 * later and has an inode number greater than
3794 * sctx->send_progress. We need to prevent
3795 * future name lookups from using the old name
3796 * and get instead the orphan name.
3797 */
3798 nce = name_cache_search(sctx, ow_inode, ow_gen);
3799 if (nce) {
3800 name_cache_delete(sctx, nce);
3801 kfree(nce);
3802 }
3803
3804 /*
3805 * ow_inode might currently be an ancestor of
3806 * cur_ino, therefore compute valid_path (the
3807 * current path of cur_ino) again because it
3808 * might contain the pre-orphanization name of
3809 * ow_inode, which is no longer valid.
3810 */
3811 fs_path_reset(valid_path);
3812 ret = get_cur_path(sctx, sctx->cur_ino,
3813 sctx->cur_inode_gen, valid_path);
3814 if (ret < 0)
3815 goto out;
3816 } else {
3817 ret = send_unlink(sctx, cur->full_path);
3818 if (ret < 0)
3819 goto out;
3820 }
3821 }
3822
3823 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
3824 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
3825 if (ret < 0)
3826 goto out;
3827 if (ret == 1) {
3828 can_rename = false;
3829 *pending_move = 1;
3830 }
3831 }
3832
3833 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
3834 can_rename) {
3835 ret = wait_for_parent_move(sctx, cur, is_orphan);
3836 if (ret < 0)
3837 goto out;
3838 if (ret == 1) {
3839 can_rename = false;
3840 *pending_move = 1;
3841 }
3842 }
3843
3844 /*
3845 * link/move the ref to the new place. If we have an orphan
3846 * inode, move it and update valid_path. If not, link or move
3847 * it depending on the inode mode.
3848 */
3849 if (is_orphan && can_rename) {
3850 ret = send_rename(sctx, valid_path, cur->full_path);
3851 if (ret < 0)
3852 goto out;
3853 is_orphan = 0;
3854 ret = fs_path_copy(valid_path, cur->full_path);
3855 if (ret < 0)
3856 goto out;
3857 } else if (can_rename) {
3858 if (S_ISDIR(sctx->cur_inode_mode)) {
3859 /*
3860 * Dirs can't be linked, so move it. For moved
3861 * dirs, we always have one new and one deleted
3862 * ref. The deleted ref is ignored later.
3863 */
3864 ret = send_rename(sctx, valid_path,
3865 cur->full_path);
3866 if (!ret)
3867 ret = fs_path_copy(valid_path,
3868 cur->full_path);
3869 if (ret < 0)
3870 goto out;
3871 } else {
3872 ret = send_link(sctx, cur->full_path,
3873 valid_path);
3874 if (ret < 0)
3875 goto out;
3876 }
3877 }
3878 ret = dup_ref(cur, &check_dirs);
3879 if (ret < 0)
3880 goto out;
3881 }
3882
3883 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
3884 /*
3885 * Check if we can already rmdir the directory. If not,
3886 * orphanize it. For every dir item inside that gets deleted
3887 * later, we do this check again and rmdir it then if possible.
3888 * See the use of check_dirs for more details.
3889 */
3890 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3891 sctx->cur_ino);
3892 if (ret < 0)
3893 goto out;
3894 if (ret) {
3895 ret = send_rmdir(sctx, valid_path);
3896 if (ret < 0)
3897 goto out;
3898 } else if (!is_orphan) {
3899 ret = orphanize_inode(sctx, sctx->cur_ino,
3900 sctx->cur_inode_gen, valid_path);
3901 if (ret < 0)
3902 goto out;
3903 is_orphan = 1;
3904 }
3905
3906 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3907 ret = dup_ref(cur, &check_dirs);
3908 if (ret < 0)
3909 goto out;
3910 }
3911 } else if (S_ISDIR(sctx->cur_inode_mode) &&
3912 !list_empty(&sctx->deleted_refs)) {
3913 /*
3914 * We have a moved dir. Add the old parent to check_dirs
3915 */
3916 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
3917 list);
3918 ret = dup_ref(cur, &check_dirs);
3919 if (ret < 0)
3920 goto out;
3921 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
3922 /*
3923 * We have a non dir inode. Go through all deleted refs and
3924 * unlink them if they were not already overwritten by other
3925 * inodes.
3926 */
3927 list_for_each_entry(cur, &sctx->deleted_refs, list) {
3928 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
3929 sctx->cur_ino, sctx->cur_inode_gen,
3930 cur->name, cur->name_len);
3931 if (ret < 0)
3932 goto out;
3933 if (!ret) {
3934 ret = send_unlink(sctx, cur->full_path);
3935 if (ret < 0)
3936 goto out;
3937 }
3938 ret = dup_ref(cur, &check_dirs);
3939 if (ret < 0)
3940 goto out;
3941 }
3942 /*
3943 * If the inode is still orphan, unlink the orphan. This may
3944 * happen when a previous inode did overwrite the first ref
3945 * of this inode and no new refs were added for the current
3946 * inode. Unlinking does not mean that the inode is deleted in
3947 * all cases. There may still be links to this inode in other
3948 * places.
3949 */
3950 if (is_orphan) {
3951 ret = send_unlink(sctx, valid_path);
3952 if (ret < 0)
3953 goto out;
3954 }
3955 }
3956
3957 /*
3958 * We did collect all parent dirs where cur_inode was once located. We
3959 * now go through all these dirs and check if they are pending for
3960 * deletion and if it's finally possible to perform the rmdir now.
3961 * We also update the inode stats of the parent dirs here.
3962 */
3963 list_for_each_entry(cur, &check_dirs, list) {
3964 /*
3965 * In case we had refs into dirs that were not processed yet,
3966 * we don't need to do the utime and rmdir logic for these dirs.
3967 * The dir will be processed later.
3968 */
3969 if (cur->dir > sctx->cur_ino)
3970 continue;
3971
3972 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
3973 if (ret < 0)
3974 goto out;
3975
3976 if (ret == inode_state_did_create ||
3977 ret == inode_state_no_change) {
3978 /* TODO delayed utimes */
3979 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3980 if (ret < 0)
3981 goto out;
3982 } else if (ret == inode_state_did_delete &&
3983 cur->dir != last_dir_ino_rm) {
3984 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
3985 sctx->cur_ino);
3986 if (ret < 0)
3987 goto out;
3988 if (ret) {
3989 ret = get_cur_path(sctx, cur->dir,
3990 cur->dir_gen, valid_path);
3991 if (ret < 0)
3992 goto out;
3993 ret = send_rmdir(sctx, valid_path);
3994 if (ret < 0)
3995 goto out;
3996 last_dir_ino_rm = cur->dir;
3997 }
3998 }
3999 }
4000
4001 ret = 0;
4002
4003out:
4004 __free_recorded_refs(&check_dirs);
4005 free_recorded_refs(sctx);
4006 fs_path_free(valid_path);
4007 return ret;
4008}
4009
4010static int record_ref(struct btrfs_root *root, int num, u64 dir, int index,
4011 struct fs_path *name, void *ctx, struct list_head *refs)
4012{
4013 int ret = 0;
4014 struct send_ctx *sctx = ctx;
4015 struct fs_path *p;
4016 u64 gen;
4017
4018 p = fs_path_alloc();
4019 if (!p)
4020 return -ENOMEM;
4021
4022 ret = get_inode_info(root, dir, NULL, &gen, NULL, NULL,
4023 NULL, NULL);
4024 if (ret < 0)
4025 goto out;
4026
4027 ret = get_cur_path(sctx, dir, gen, p);
4028 if (ret < 0)
4029 goto out;
4030 ret = fs_path_add_path(p, name);
4031 if (ret < 0)
4032 goto out;
4033
4034 ret = __record_ref(refs, dir, gen, p);
4035
4036out:
4037 if (ret)
4038 fs_path_free(p);
4039 return ret;
4040}
4041
4042static int __record_new_ref(int num, u64 dir, int index,
4043 struct fs_path *name,
4044 void *ctx)
4045{
4046 struct send_ctx *sctx = ctx;
4047 return record_ref(sctx->send_root, num, dir, index, name,
4048 ctx, &sctx->new_refs);
4049}
4050
4051
4052static int __record_deleted_ref(int num, u64 dir, int index,
4053 struct fs_path *name,
4054 void *ctx)
4055{
4056 struct send_ctx *sctx = ctx;
4057 return record_ref(sctx->parent_root, num, dir, index, name,
4058 ctx, &sctx->deleted_refs);
4059}
4060
4061static int record_new_ref(struct send_ctx *sctx)
4062{
4063 int ret;
4064
4065 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4066 sctx->cmp_key, 0, __record_new_ref, sctx);
4067 if (ret < 0)
4068 goto out;
4069 ret = 0;
4070
4071out:
4072 return ret;
4073}
4074
4075static int record_deleted_ref(struct send_ctx *sctx)
4076{
4077 int ret;
4078
4079 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4080 sctx->cmp_key, 0, __record_deleted_ref, sctx);
4081 if (ret < 0)
4082 goto out;
4083 ret = 0;
4084
4085out:
4086 return ret;
4087}
4088
4089struct find_ref_ctx {
4090 u64 dir;
4091 u64 dir_gen;
4092 struct btrfs_root *root;
4093 struct fs_path *name;
4094 int found_idx;
4095};
4096
4097static int __find_iref(int num, u64 dir, int index,
4098 struct fs_path *name,
4099 void *ctx_)
4100{
4101 struct find_ref_ctx *ctx = ctx_;
4102 u64 dir_gen;
4103 int ret;
4104
4105 if (dir == ctx->dir && fs_path_len(name) == fs_path_len(ctx->name) &&
4106 strncmp(name->start, ctx->name->start, fs_path_len(name)) == 0) {
4107 /*
4108 * To avoid doing extra lookups we'll only do this if everything
4109 * else matches.
4110 */
4111 ret = get_inode_info(ctx->root, dir, NULL, &dir_gen, NULL,
4112 NULL, NULL, NULL);
4113 if (ret)
4114 return ret;
4115 if (dir_gen != ctx->dir_gen)
4116 return 0;
4117 ctx->found_idx = num;
4118 return 1;
4119 }
4120 return 0;
4121}
4122
4123static int find_iref(struct btrfs_root *root,
4124 struct btrfs_path *path,
4125 struct btrfs_key *key,
4126 u64 dir, u64 dir_gen, struct fs_path *name)
4127{
4128 int ret;
4129 struct find_ref_ctx ctx;
4130
4131 ctx.dir = dir;
4132 ctx.name = name;
4133 ctx.dir_gen = dir_gen;
4134 ctx.found_idx = -1;
4135 ctx.root = root;
4136
4137 ret = iterate_inode_ref(root, path, key, 0, __find_iref, &ctx);
4138 if (ret < 0)
4139 return ret;
4140
4141 if (ctx.found_idx == -1)
4142 return -ENOENT;
4143
4144 return ctx.found_idx;
4145}
4146
4147static int __record_changed_new_ref(int num, u64 dir, int index,
4148 struct fs_path *name,
4149 void *ctx)
4150{
4151 u64 dir_gen;
4152 int ret;
4153 struct send_ctx *sctx = ctx;
4154
4155 ret = get_inode_info(sctx->send_root, dir, NULL, &dir_gen, NULL,
4156 NULL, NULL, NULL);
4157 if (ret)
4158 return ret;
4159
4160 ret = find_iref(sctx->parent_root, sctx->right_path,
4161 sctx->cmp_key, dir, dir_gen, name);
4162 if (ret == -ENOENT)
4163 ret = __record_new_ref(num, dir, index, name, sctx);
4164 else if (ret > 0)
4165 ret = 0;
4166
4167 return ret;
4168}
4169
4170static int __record_changed_deleted_ref(int num, u64 dir, int index,
4171 struct fs_path *name,
4172 void *ctx)
4173{
4174 u64 dir_gen;
4175 int ret;
4176 struct send_ctx *sctx = ctx;
4177
4178 ret = get_inode_info(sctx->parent_root, dir, NULL, &dir_gen, NULL,
4179 NULL, NULL, NULL);
4180 if (ret)
4181 return ret;
4182
4183 ret = find_iref(sctx->send_root, sctx->left_path, sctx->cmp_key,
4184 dir, dir_gen, name);
4185 if (ret == -ENOENT)
4186 ret = __record_deleted_ref(num, dir, index, name, sctx);
4187 else if (ret > 0)
4188 ret = 0;
4189
4190 return ret;
4191}
4192
4193static int record_changed_ref(struct send_ctx *sctx)
4194{
4195 int ret = 0;
4196
4197 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4198 sctx->cmp_key, 0, __record_changed_new_ref, sctx);
4199 if (ret < 0)
4200 goto out;
4201 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4202 sctx->cmp_key, 0, __record_changed_deleted_ref, sctx);
4203 if (ret < 0)
4204 goto out;
4205 ret = 0;
4206
4207out:
4208 return ret;
4209}
4210
4211/*
4212 * Record and process all refs at once. Needed when an inode changes the
4213 * generation number, which means that it was deleted and recreated.
4214 */
4215static int process_all_refs(struct send_ctx *sctx,
4216 enum btrfs_compare_tree_result cmd)
4217{
4218 int ret;
4219 struct btrfs_root *root;
4220 struct btrfs_path *path;
4221 struct btrfs_key key;
4222 struct btrfs_key found_key;
4223 struct extent_buffer *eb;
4224 int slot;
4225 iterate_inode_ref_t cb;
4226 int pending_move = 0;
4227
4228 path = alloc_path_for_send();
4229 if (!path)
4230 return -ENOMEM;
4231
4232 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4233 root = sctx->send_root;
4234 cb = __record_new_ref;
4235 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4236 root = sctx->parent_root;
4237 cb = __record_deleted_ref;
4238 } else {
4239 btrfs_err(sctx->send_root->fs_info,
4240 "Wrong command %d in process_all_refs", cmd);
4241 ret = -EINVAL;
4242 goto out;
4243 }
4244
4245 key.objectid = sctx->cmp_key->objectid;
4246 key.type = BTRFS_INODE_REF_KEY;
4247 key.offset = 0;
4248 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4249 if (ret < 0)
4250 goto out;
4251
4252 while (1) {
4253 eb = path->nodes[0];
4254 slot = path->slots[0];
4255 if (slot >= btrfs_header_nritems(eb)) {
4256 ret = btrfs_next_leaf(root, path);
4257 if (ret < 0)
4258 goto out;
4259 else if (ret > 0)
4260 break;
4261 continue;
4262 }
4263
4264 btrfs_item_key_to_cpu(eb, &found_key, slot);
4265
4266 if (found_key.objectid != key.objectid ||
4267 (found_key.type != BTRFS_INODE_REF_KEY &&
4268 found_key.type != BTRFS_INODE_EXTREF_KEY))
4269 break;
4270
4271 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4272 if (ret < 0)
4273 goto out;
4274
4275 path->slots[0]++;
4276 }
4277 btrfs_release_path(path);
4278
4279 /*
4280 * We don't actually care about pending_move as we are simply
4281 * re-creating this inode and will be rename'ing it into place once we
4282 * rename the parent directory.
4283 */
4284 ret = process_recorded_refs(sctx, &pending_move);
4285out:
4286 btrfs_free_path(path);
4287 return ret;
4288}
4289
4290static int send_set_xattr(struct send_ctx *sctx,
4291 struct fs_path *path,
4292 const char *name, int name_len,
4293 const char *data, int data_len)
4294{
4295 int ret = 0;
4296
4297 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4298 if (ret < 0)
4299 goto out;
4300
4301 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4302 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4303 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4304
4305 ret = send_cmd(sctx);
4306
4307tlv_put_failure:
4308out:
4309 return ret;
4310}
4311
4312static int send_remove_xattr(struct send_ctx *sctx,
4313 struct fs_path *path,
4314 const char *name, int name_len)
4315{
4316 int ret = 0;
4317
4318 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4319 if (ret < 0)
4320 goto out;
4321
4322 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4323 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4324
4325 ret = send_cmd(sctx);
4326
4327tlv_put_failure:
4328out:
4329 return ret;
4330}
4331
4332static int __process_new_xattr(int num, struct btrfs_key *di_key,
4333 const char *name, int name_len,
4334 const char *data, int data_len,
4335 u8 type, void *ctx)
4336{
4337 int ret;
4338 struct send_ctx *sctx = ctx;
4339 struct fs_path *p;
4340 struct posix_acl_xattr_header dummy_acl;
4341
4342 p = fs_path_alloc();
4343 if (!p)
4344 return -ENOMEM;
4345
4346 /*
4347 * This hack is needed because empty acls are stored as zero byte
4348 * data in xattrs. Problem with that is, that receiving these zero byte
4349 * acls will fail later. To fix this, we send a dummy acl list that
4350 * only contains the version number and no entries.
4351 */
4352 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4353 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4354 if (data_len == 0) {
4355 dummy_acl.a_version =
4356 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4357 data = (char *)&dummy_acl;
4358 data_len = sizeof(dummy_acl);
4359 }
4360 }
4361
4362 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4363 if (ret < 0)
4364 goto out;
4365
4366 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4367
4368out:
4369 fs_path_free(p);
4370 return ret;
4371}
4372
4373static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4374 const char *name, int name_len,
4375 const char *data, int data_len,
4376 u8 type, void *ctx)
4377{
4378 int ret;
4379 struct send_ctx *sctx = ctx;
4380 struct fs_path *p;
4381
4382 p = fs_path_alloc();
4383 if (!p)
4384 return -ENOMEM;
4385
4386 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4387 if (ret < 0)
4388 goto out;
4389
4390 ret = send_remove_xattr(sctx, p, name, name_len);
4391
4392out:
4393 fs_path_free(p);
4394 return ret;
4395}
4396
4397static int process_new_xattr(struct send_ctx *sctx)
4398{
4399 int ret = 0;
4400
4401 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4402 sctx->cmp_key, __process_new_xattr, sctx);
4403
4404 return ret;
4405}
4406
4407static int process_deleted_xattr(struct send_ctx *sctx)
4408{
4409 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4410 sctx->cmp_key, __process_deleted_xattr, sctx);
4411}
4412
4413struct find_xattr_ctx {
4414 const char *name;
4415 int name_len;
4416 int found_idx;
4417 char *found_data;
4418 int found_data_len;
4419};
4420
4421static int __find_xattr(int num, struct btrfs_key *di_key,
4422 const char *name, int name_len,
4423 const char *data, int data_len,
4424 u8 type, void *vctx)
4425{
4426 struct find_xattr_ctx *ctx = vctx;
4427
4428 if (name_len == ctx->name_len &&
4429 strncmp(name, ctx->name, name_len) == 0) {
4430 ctx->found_idx = num;
4431 ctx->found_data_len = data_len;
4432 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4433 if (!ctx->found_data)
4434 return -ENOMEM;
4435 return 1;
4436 }
4437 return 0;
4438}
4439
4440static int find_xattr(struct btrfs_root *root,
4441 struct btrfs_path *path,
4442 struct btrfs_key *key,
4443 const char *name, int name_len,
4444 char **data, int *data_len)
4445{
4446 int ret;
4447 struct find_xattr_ctx ctx;
4448
4449 ctx.name = name;
4450 ctx.name_len = name_len;
4451 ctx.found_idx = -1;
4452 ctx.found_data = NULL;
4453 ctx.found_data_len = 0;
4454
4455 ret = iterate_dir_item(root, path, key, __find_xattr, &ctx);
4456 if (ret < 0)
4457 return ret;
4458
4459 if (ctx.found_idx == -1)
4460 return -ENOENT;
4461 if (data) {
4462 *data = ctx.found_data;
4463 *data_len = ctx.found_data_len;
4464 } else {
4465 kfree(ctx.found_data);
4466 }
4467 return ctx.found_idx;
4468}
4469
4470
4471static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4472 const char *name, int name_len,
4473 const char *data, int data_len,
4474 u8 type, void *ctx)
4475{
4476 int ret;
4477 struct send_ctx *sctx = ctx;
4478 char *found_data = NULL;
4479 int found_data_len = 0;
4480
4481 ret = find_xattr(sctx->parent_root, sctx->right_path,
4482 sctx->cmp_key, name, name_len, &found_data,
4483 &found_data_len);
4484 if (ret == -ENOENT) {
4485 ret = __process_new_xattr(num, di_key, name, name_len, data,
4486 data_len, type, ctx);
4487 } else if (ret >= 0) {
4488 if (data_len != found_data_len ||
4489 memcmp(data, found_data, data_len)) {
4490 ret = __process_new_xattr(num, di_key, name, name_len,
4491 data, data_len, type, ctx);
4492 } else {
4493 ret = 0;
4494 }
4495 }
4496
4497 kfree(found_data);
4498 return ret;
4499}
4500
4501static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4502 const char *name, int name_len,
4503 const char *data, int data_len,
4504 u8 type, void *ctx)
4505{
4506 int ret;
4507 struct send_ctx *sctx = ctx;
4508
4509 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4510 name, name_len, NULL, NULL);
4511 if (ret == -ENOENT)
4512 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4513 data_len, type, ctx);
4514 else if (ret >= 0)
4515 ret = 0;
4516
4517 return ret;
4518}
4519
4520static int process_changed_xattr(struct send_ctx *sctx)
4521{
4522 int ret = 0;
4523
4524 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4525 sctx->cmp_key, __process_changed_new_xattr, sctx);
4526 if (ret < 0)
4527 goto out;
4528 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4529 sctx->cmp_key, __process_changed_deleted_xattr, sctx);
4530
4531out:
4532 return ret;
4533}
4534
4535static int process_all_new_xattrs(struct send_ctx *sctx)
4536{
4537 int ret;
4538 struct btrfs_root *root;
4539 struct btrfs_path *path;
4540 struct btrfs_key key;
4541 struct btrfs_key found_key;
4542 struct extent_buffer *eb;
4543 int slot;
4544
4545 path = alloc_path_for_send();
4546 if (!path)
4547 return -ENOMEM;
4548
4549 root = sctx->send_root;
4550
4551 key.objectid = sctx->cmp_key->objectid;
4552 key.type = BTRFS_XATTR_ITEM_KEY;
4553 key.offset = 0;
4554 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4555 if (ret < 0)
4556 goto out;
4557
4558 while (1) {
4559 eb = path->nodes[0];
4560 slot = path->slots[0];
4561 if (slot >= btrfs_header_nritems(eb)) {
4562 ret = btrfs_next_leaf(root, path);
4563 if (ret < 0) {
4564 goto out;
4565 } else if (ret > 0) {
4566 ret = 0;
4567 break;
4568 }
4569 continue;
4570 }
4571
4572 btrfs_item_key_to_cpu(eb, &found_key, slot);
4573 if (found_key.objectid != key.objectid ||
4574 found_key.type != key.type) {
4575 ret = 0;
4576 goto out;
4577 }
4578
4579 ret = iterate_dir_item(root, path, &found_key,
4580 __process_new_xattr, sctx);
4581 if (ret < 0)
4582 goto out;
4583
4584 path->slots[0]++;
4585 }
4586
4587out:
4588 btrfs_free_path(path);
4589 return ret;
4590}
4591
4592static ssize_t fill_read_buf(struct send_ctx *sctx, u64 offset, u32 len)
4593{
4594 struct btrfs_root *root = sctx->send_root;
4595 struct btrfs_fs_info *fs_info = root->fs_info;
4596 struct inode *inode;
4597 struct page *page;
4598 char *addr;
4599 struct btrfs_key key;
4600 pgoff_t index = offset >> PAGE_SHIFT;
4601 pgoff_t last_index;
4602 unsigned pg_offset = offset & ~PAGE_MASK;
4603 ssize_t ret = 0;
4604
4605 key.objectid = sctx->cur_ino;
4606 key.type = BTRFS_INODE_ITEM_KEY;
4607 key.offset = 0;
4608
4609 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
4610 if (IS_ERR(inode))
4611 return PTR_ERR(inode);
4612
4613 if (offset + len > i_size_read(inode)) {
4614 if (offset > i_size_read(inode))
4615 len = 0;
4616 else
4617 len = offset - i_size_read(inode);
4618 }
4619 if (len == 0)
4620 goto out;
4621
4622 last_index = (offset + len - 1) >> PAGE_SHIFT;
4623
4624 /* initial readahead */
4625 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
4626 file_ra_state_init(&sctx->ra, inode->i_mapping);
4627 btrfs_force_ra(inode->i_mapping, &sctx->ra, NULL, index,
4628 last_index - index + 1);
4629
4630 while (index <= last_index) {
4631 unsigned cur_len = min_t(unsigned, len,
4632 PAGE_SIZE - pg_offset);
4633 page = find_or_create_page(inode->i_mapping, index, GFP_KERNEL);
4634 if (!page) {
4635 ret = -ENOMEM;
4636 break;
4637 }
4638
4639 if (!PageUptodate(page)) {
4640 btrfs_readpage(NULL, page);
4641 lock_page(page);
4642 if (!PageUptodate(page)) {
4643 unlock_page(page);
4644 put_page(page);
4645 ret = -EIO;
4646 break;
4647 }
4648 }
4649
4650 addr = kmap(page);
4651 memcpy(sctx->read_buf + ret, addr + pg_offset, cur_len);
4652 kunmap(page);
4653 unlock_page(page);
4654 put_page(page);
4655 index++;
4656 pg_offset = 0;
4657 len -= cur_len;
4658 ret += cur_len;
4659 }
4660out:
4661 iput(inode);
4662 return ret;
4663}
4664
4665/*
4666 * Read some bytes from the current inode/file and send a write command to
4667 * user space.
4668 */
4669static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
4670{
4671 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4672 int ret = 0;
4673 struct fs_path *p;
4674 ssize_t num_read = 0;
4675
4676 p = fs_path_alloc();
4677 if (!p)
4678 return -ENOMEM;
4679
4680 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
4681
4682 num_read = fill_read_buf(sctx, offset, len);
4683 if (num_read <= 0) {
4684 if (num_read < 0)
4685 ret = num_read;
4686 goto out;
4687 }
4688
4689 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4690 if (ret < 0)
4691 goto out;
4692
4693 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4694 if (ret < 0)
4695 goto out;
4696
4697 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4698 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4699 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, num_read);
4700
4701 ret = send_cmd(sctx);
4702
4703tlv_put_failure:
4704out:
4705 fs_path_free(p);
4706 if (ret < 0)
4707 return ret;
4708 return num_read;
4709}
4710
4711/*
4712 * Send a clone command to user space.
4713 */
4714static int send_clone(struct send_ctx *sctx,
4715 u64 offset, u32 len,
4716 struct clone_root *clone_root)
4717{
4718 int ret = 0;
4719 struct fs_path *p;
4720 u64 gen;
4721
4722 btrfs_debug(sctx->send_root->fs_info,
4723 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4724 offset, len, clone_root->root->objectid, clone_root->ino,
4725 clone_root->offset);
4726
4727 p = fs_path_alloc();
4728 if (!p)
4729 return -ENOMEM;
4730
4731 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
4732 if (ret < 0)
4733 goto out;
4734
4735 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4736 if (ret < 0)
4737 goto out;
4738
4739 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4740 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
4741 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4742
4743 if (clone_root->root == sctx->send_root) {
4744 ret = get_inode_info(sctx->send_root, clone_root->ino, NULL,
4745 &gen, NULL, NULL, NULL, NULL);
4746 if (ret < 0)
4747 goto out;
4748 ret = get_cur_path(sctx, clone_root->ino, gen, p);
4749 } else {
4750 ret = get_inode_path(clone_root->root, clone_root->ino, p);
4751 }
4752 if (ret < 0)
4753 goto out;
4754
4755 /*
4756 * If the parent we're using has a received_uuid set then use that as
4757 * our clone source as that is what we will look for when doing a
4758 * receive.
4759 *
4760 * This covers the case that we create a snapshot off of a received
4761 * subvolume and then use that as the parent and try to receive on a
4762 * different host.
4763 */
4764 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
4765 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4766 clone_root->root->root_item.received_uuid);
4767 else
4768 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
4769 clone_root->root->root_item.uuid);
4770 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
4771 le64_to_cpu(clone_root->root->root_item.ctransid));
4772 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
4773 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
4774 clone_root->offset);
4775
4776 ret = send_cmd(sctx);
4777
4778tlv_put_failure:
4779out:
4780 fs_path_free(p);
4781 return ret;
4782}
4783
4784/*
4785 * Send an update extent command to user space.
4786 */
4787static int send_update_extent(struct send_ctx *sctx,
4788 u64 offset, u32 len)
4789{
4790 int ret = 0;
4791 struct fs_path *p;
4792
4793 p = fs_path_alloc();
4794 if (!p)
4795 return -ENOMEM;
4796
4797 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
4798 if (ret < 0)
4799 goto out;
4800
4801 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4802 if (ret < 0)
4803 goto out;
4804
4805 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4806 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4807 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
4808
4809 ret = send_cmd(sctx);
4810
4811tlv_put_failure:
4812out:
4813 fs_path_free(p);
4814 return ret;
4815}
4816
4817static int send_hole(struct send_ctx *sctx, u64 end)
4818{
4819 struct fs_path *p = NULL;
4820 u64 offset = sctx->cur_inode_last_extent;
4821 u64 len;
4822 int ret = 0;
4823
4824 p = fs_path_alloc();
4825 if (!p)
4826 return -ENOMEM;
4827 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4828 if (ret < 0)
4829 goto tlv_put_failure;
4830 memset(sctx->read_buf, 0, BTRFS_SEND_READ_SIZE);
4831 while (offset < end) {
4832 len = min_t(u64, end - offset, BTRFS_SEND_READ_SIZE);
4833
4834 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
4835 if (ret < 0)
4836 break;
4837 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
4838 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
4839 TLV_PUT(sctx, BTRFS_SEND_A_DATA, sctx->read_buf, len);
4840 ret = send_cmd(sctx);
4841 if (ret < 0)
4842 break;
4843 offset += len;
4844 }
4845tlv_put_failure:
4846 fs_path_free(p);
4847 return ret;
4848}
4849
4850static int send_extent_data(struct send_ctx *sctx,
4851 const u64 offset,
4852 const u64 len)
4853{
4854 u64 sent = 0;
4855
4856 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
4857 return send_update_extent(sctx, offset, len);
4858
4859 while (sent < len) {
4860 u64 size = len - sent;
4861 int ret;
4862
4863 if (size > BTRFS_SEND_READ_SIZE)
4864 size = BTRFS_SEND_READ_SIZE;
4865 ret = send_write(sctx, offset + sent, size);
4866 if (ret < 0)
4867 return ret;
4868 if (!ret)
4869 break;
4870 sent += ret;
4871 }
4872 return 0;
4873}
4874
4875static int clone_range(struct send_ctx *sctx,
4876 struct clone_root *clone_root,
4877 const u64 disk_byte,
4878 u64 data_offset,
4879 u64 offset,
4880 u64 len)
4881{
4882 struct btrfs_path *path;
4883 struct btrfs_key key;
4884 int ret;
4885
4886 path = alloc_path_for_send();
4887 if (!path)
4888 return -ENOMEM;
4889
4890 /*
4891 * We can't send a clone operation for the entire range if we find
4892 * extent items in the respective range in the source file that
4893 * refer to different extents or if we find holes.
4894 * So check for that and do a mix of clone and regular write/copy
4895 * operations if needed.
4896 *
4897 * Example:
4898 *
4899 * mkfs.btrfs -f /dev/sda
4900 * mount /dev/sda /mnt
4901 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
4902 * cp --reflink=always /mnt/foo /mnt/bar
4903 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
4904 * btrfs subvolume snapshot -r /mnt /mnt/snap
4905 *
4906 * If when we send the snapshot and we are processing file bar (which
4907 * has a higher inode number than foo) we blindly send a clone operation
4908 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
4909 * a file bar that matches the content of file foo - iow, doesn't match
4910 * the content from bar in the original filesystem.
4911 */
4912 key.objectid = clone_root->ino;
4913 key.type = BTRFS_EXTENT_DATA_KEY;
4914 key.offset = clone_root->offset;
4915 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
4916 if (ret < 0)
4917 goto out;
4918 if (ret > 0 && path->slots[0] > 0) {
4919 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
4920 if (key.objectid == clone_root->ino &&
4921 key.type == BTRFS_EXTENT_DATA_KEY)
4922 path->slots[0]--;
4923 }
4924
4925 while (true) {
4926 struct extent_buffer *leaf = path->nodes[0];
4927 int slot = path->slots[0];
4928 struct btrfs_file_extent_item *ei;
4929 u8 type;
4930 u64 ext_len;
4931 u64 clone_len;
4932
4933 if (slot >= btrfs_header_nritems(leaf)) {
4934 ret = btrfs_next_leaf(clone_root->root, path);
4935 if (ret < 0)
4936 goto out;
4937 else if (ret > 0)
4938 break;
4939 continue;
4940 }
4941
4942 btrfs_item_key_to_cpu(leaf, &key, slot);
4943
4944 /*
4945 * We might have an implicit trailing hole (NO_HOLES feature
4946 * enabled). We deal with it after leaving this loop.
4947 */
4948 if (key.objectid != clone_root->ino ||
4949 key.type != BTRFS_EXTENT_DATA_KEY)
4950 break;
4951
4952 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4953 type = btrfs_file_extent_type(leaf, ei);
4954 if (type == BTRFS_FILE_EXTENT_INLINE) {
4955 ext_len = btrfs_file_extent_inline_len(leaf, slot, ei);
4956 ext_len = PAGE_ALIGN(ext_len);
4957 } else {
4958 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
4959 }
4960
4961 if (key.offset + ext_len <= clone_root->offset)
4962 goto next;
4963
4964 if (key.offset > clone_root->offset) {
4965 /* Implicit hole, NO_HOLES feature enabled. */
4966 u64 hole_len = key.offset - clone_root->offset;
4967
4968 if (hole_len > len)
4969 hole_len = len;
4970 ret = send_extent_data(sctx, offset, hole_len);
4971 if (ret < 0)
4972 goto out;
4973
4974 len -= hole_len;
4975 if (len == 0)
4976 break;
4977 offset += hole_len;
4978 clone_root->offset += hole_len;
4979 data_offset += hole_len;
4980 }
4981
4982 if (key.offset >= clone_root->offset + len)
4983 break;
4984
4985 clone_len = min_t(u64, ext_len, len);
4986
4987 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
4988 btrfs_file_extent_offset(leaf, ei) == data_offset)
4989 ret = send_clone(sctx, offset, clone_len, clone_root);
4990 else
4991 ret = send_extent_data(sctx, offset, clone_len);
4992
4993 if (ret < 0)
4994 goto out;
4995
4996 len -= clone_len;
4997 if (len == 0)
4998 break;
4999 offset += clone_len;
5000 clone_root->offset += clone_len;
5001 data_offset += clone_len;
5002next:
5003 path->slots[0]++;
5004 }
5005
5006 if (len > 0)
5007 ret = send_extent_data(sctx, offset, len);
5008 else
5009 ret = 0;
5010out:
5011 btrfs_free_path(path);
5012 return ret;
5013}
5014
5015static int send_write_or_clone(struct send_ctx *sctx,
5016 struct btrfs_path *path,
5017 struct btrfs_key *key,
5018 struct clone_root *clone_root)
5019{
5020 int ret = 0;
5021 struct btrfs_file_extent_item *ei;
5022 u64 offset = key->offset;
5023 u64 len;
5024 u8 type;
5025 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5026
5027 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5028 struct btrfs_file_extent_item);
5029 type = btrfs_file_extent_type(path->nodes[0], ei);
5030 if (type == BTRFS_FILE_EXTENT_INLINE) {
5031 len = btrfs_file_extent_inline_len(path->nodes[0],
5032 path->slots[0], ei);
5033 /*
5034 * it is possible the inline item won't cover the whole page,
5035 * but there may be items after this page. Make
5036 * sure to send the whole thing
5037 */
5038 len = PAGE_ALIGN(len);
5039 } else {
5040 len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
5041 }
5042
5043 if (offset + len > sctx->cur_inode_size)
5044 len = sctx->cur_inode_size - offset;
5045 if (len == 0) {
5046 ret = 0;
5047 goto out;
5048 }
5049
5050 if (clone_root && IS_ALIGNED(offset + len, bs)) {
5051 u64 disk_byte;
5052 u64 data_offset;
5053
5054 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5055 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5056 ret = clone_range(sctx, clone_root, disk_byte, data_offset,
5057 offset, len);
5058 } else {
5059 ret = send_extent_data(sctx, offset, len);
5060 }
5061out:
5062 return ret;
5063}
5064
5065static int is_extent_unchanged(struct send_ctx *sctx,
5066 struct btrfs_path *left_path,
5067 struct btrfs_key *ekey)
5068{
5069 int ret = 0;
5070 struct btrfs_key key;
5071 struct btrfs_path *path = NULL;
5072 struct extent_buffer *eb;
5073 int slot;
5074 struct btrfs_key found_key;
5075 struct btrfs_file_extent_item *ei;
5076 u64 left_disknr;
5077 u64 right_disknr;
5078 u64 left_offset;
5079 u64 right_offset;
5080 u64 left_offset_fixed;
5081 u64 left_len;
5082 u64 right_len;
5083 u64 left_gen;
5084 u64 right_gen;
5085 u8 left_type;
5086 u8 right_type;
5087
5088 path = alloc_path_for_send();
5089 if (!path)
5090 return -ENOMEM;
5091
5092 eb = left_path->nodes[0];
5093 slot = left_path->slots[0];
5094 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5095 left_type = btrfs_file_extent_type(eb, ei);
5096
5097 if (left_type != BTRFS_FILE_EXTENT_REG) {
5098 ret = 0;
5099 goto out;
5100 }
5101 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5102 left_len = btrfs_file_extent_num_bytes(eb, ei);
5103 left_offset = btrfs_file_extent_offset(eb, ei);
5104 left_gen = btrfs_file_extent_generation(eb, ei);
5105
5106 /*
5107 * Following comments will refer to these graphics. L is the left
5108 * extents which we are checking at the moment. 1-8 are the right
5109 * extents that we iterate.
5110 *
5111 * |-----L-----|
5112 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5113 *
5114 * |-----L-----|
5115 * |--1--|-2b-|...(same as above)
5116 *
5117 * Alternative situation. Happens on files where extents got split.
5118 * |-----L-----|
5119 * |-----------7-----------|-6-|
5120 *
5121 * Alternative situation. Happens on files which got larger.
5122 * |-----L-----|
5123 * |-8-|
5124 * Nothing follows after 8.
5125 */
5126
5127 key.objectid = ekey->objectid;
5128 key.type = BTRFS_EXTENT_DATA_KEY;
5129 key.offset = ekey->offset;
5130 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5131 if (ret < 0)
5132 goto out;
5133 if (ret) {
5134 ret = 0;
5135 goto out;
5136 }
5137
5138 /*
5139 * Handle special case where the right side has no extents at all.
5140 */
5141 eb = path->nodes[0];
5142 slot = path->slots[0];
5143 btrfs_item_key_to_cpu(eb, &found_key, slot);
5144 if (found_key.objectid != key.objectid ||
5145 found_key.type != key.type) {
5146 /* If we're a hole then just pretend nothing changed */
5147 ret = (left_disknr) ? 0 : 1;
5148 goto out;
5149 }
5150
5151 /*
5152 * We're now on 2a, 2b or 7.
5153 */
5154 key = found_key;
5155 while (key.offset < ekey->offset + left_len) {
5156 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5157 right_type = btrfs_file_extent_type(eb, ei);
5158 if (right_type != BTRFS_FILE_EXTENT_REG) {
5159 ret = 0;
5160 goto out;
5161 }
5162
5163 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5164 right_len = btrfs_file_extent_num_bytes(eb, ei);
5165 right_offset = btrfs_file_extent_offset(eb, ei);
5166 right_gen = btrfs_file_extent_generation(eb, ei);
5167
5168 /*
5169 * Are we at extent 8? If yes, we know the extent is changed.
5170 * This may only happen on the first iteration.
5171 */
5172 if (found_key.offset + right_len <= ekey->offset) {
5173 /* If we're a hole just pretend nothing changed */
5174 ret = (left_disknr) ? 0 : 1;
5175 goto out;
5176 }
5177
5178 left_offset_fixed = left_offset;
5179 if (key.offset < ekey->offset) {
5180 /* Fix the right offset for 2a and 7. */
5181 right_offset += ekey->offset - key.offset;
5182 } else {
5183 /* Fix the left offset for all behind 2a and 2b */
5184 left_offset_fixed += key.offset - ekey->offset;
5185 }
5186
5187 /*
5188 * Check if we have the same extent.
5189 */
5190 if (left_disknr != right_disknr ||
5191 left_offset_fixed != right_offset ||
5192 left_gen != right_gen) {
5193 ret = 0;
5194 goto out;
5195 }
5196
5197 /*
5198 * Go to the next extent.
5199 */
5200 ret = btrfs_next_item(sctx->parent_root, path);
5201 if (ret < 0)
5202 goto out;
5203 if (!ret) {
5204 eb = path->nodes[0];
5205 slot = path->slots[0];
5206 btrfs_item_key_to_cpu(eb, &found_key, slot);
5207 }
5208 if (ret || found_key.objectid != key.objectid ||
5209 found_key.type != key.type) {
5210 key.offset += right_len;
5211 break;
5212 }
5213 if (found_key.offset != key.offset + right_len) {
5214 ret = 0;
5215 goto out;
5216 }
5217 key = found_key;
5218 }
5219
5220 /*
5221 * We're now behind the left extent (treat as unchanged) or at the end
5222 * of the right side (treat as changed).
5223 */
5224 if (key.offset >= ekey->offset + left_len)
5225 ret = 1;
5226 else
5227 ret = 0;
5228
5229
5230out:
5231 btrfs_free_path(path);
5232 return ret;
5233}
5234
5235static int get_last_extent(struct send_ctx *sctx, u64 offset)
5236{
5237 struct btrfs_path *path;
5238 struct btrfs_root *root = sctx->send_root;
5239 struct btrfs_file_extent_item *fi;
5240 struct btrfs_key key;
5241 u64 extent_end;
5242 u8 type;
5243 int ret;
5244
5245 path = alloc_path_for_send();
5246 if (!path)
5247 return -ENOMEM;
5248
5249 sctx->cur_inode_last_extent = 0;
5250
5251 key.objectid = sctx->cur_ino;
5252 key.type = BTRFS_EXTENT_DATA_KEY;
5253 key.offset = offset;
5254 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
5255 if (ret < 0)
5256 goto out;
5257 ret = 0;
5258 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
5259 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
5260 goto out;
5261
5262 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5263 struct btrfs_file_extent_item);
5264 type = btrfs_file_extent_type(path->nodes[0], fi);
5265 if (type == BTRFS_FILE_EXTENT_INLINE) {
5266 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5267 path->slots[0], fi);
5268 extent_end = ALIGN(key.offset + size,
5269 sctx->send_root->fs_info->sectorsize);
5270 } else {
5271 extent_end = key.offset +
5272 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5273 }
5274 sctx->cur_inode_last_extent = extent_end;
5275out:
5276 btrfs_free_path(path);
5277 return ret;
5278}
5279
5280static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
5281 struct btrfs_key *key)
5282{
5283 struct btrfs_file_extent_item *fi;
5284 u64 extent_end;
5285 u8 type;
5286 int ret = 0;
5287
5288 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
5289 return 0;
5290
5291 if (sctx->cur_inode_last_extent == (u64)-1) {
5292 ret = get_last_extent(sctx, key->offset - 1);
5293 if (ret)
5294 return ret;
5295 }
5296
5297 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
5298 struct btrfs_file_extent_item);
5299 type = btrfs_file_extent_type(path->nodes[0], fi);
5300 if (type == BTRFS_FILE_EXTENT_INLINE) {
5301 u64 size = btrfs_file_extent_inline_len(path->nodes[0],
5302 path->slots[0], fi);
5303 extent_end = ALIGN(key->offset + size,
5304 sctx->send_root->fs_info->sectorsize);
5305 } else {
5306 extent_end = key->offset +
5307 btrfs_file_extent_num_bytes(path->nodes[0], fi);
5308 }
5309
5310 if (path->slots[0] == 0 &&
5311 sctx->cur_inode_last_extent < key->offset) {
5312 /*
5313 * We might have skipped entire leafs that contained only
5314 * file extent items for our current inode. These leafs have
5315 * a generation number smaller (older) than the one in the
5316 * current leaf and the leaf our last extent came from, and
5317 * are located between these 2 leafs.
5318 */
5319 ret = get_last_extent(sctx, key->offset - 1);
5320 if (ret)
5321 return ret;
5322 }
5323
5324 if (sctx->cur_inode_last_extent < key->offset)
5325 ret = send_hole(sctx, key->offset);
5326 sctx->cur_inode_last_extent = extent_end;
5327 return ret;
5328}
5329
5330static int process_extent(struct send_ctx *sctx,
5331 struct btrfs_path *path,
5332 struct btrfs_key *key)
5333{
5334 struct clone_root *found_clone = NULL;
5335 int ret = 0;
5336
5337 if (S_ISLNK(sctx->cur_inode_mode))
5338 return 0;
5339
5340 if (sctx->parent_root && !sctx->cur_inode_new) {
5341 ret = is_extent_unchanged(sctx, path, key);
5342 if (ret < 0)
5343 goto out;
5344 if (ret) {
5345 ret = 0;
5346 goto out_hole;
5347 }
5348 } else {
5349 struct btrfs_file_extent_item *ei;
5350 u8 type;
5351
5352 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5353 struct btrfs_file_extent_item);
5354 type = btrfs_file_extent_type(path->nodes[0], ei);
5355 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
5356 type == BTRFS_FILE_EXTENT_REG) {
5357 /*
5358 * The send spec does not have a prealloc command yet,
5359 * so just leave a hole for prealloc'ed extents until
5360 * we have enough commands queued up to justify rev'ing
5361 * the send spec.
5362 */
5363 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
5364 ret = 0;
5365 goto out;
5366 }
5367
5368 /* Have a hole, just skip it. */
5369 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
5370 ret = 0;
5371 goto out;
5372 }
5373 }
5374 }
5375
5376 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
5377 sctx->cur_inode_size, &found_clone);
5378 if (ret != -ENOENT && ret < 0)
5379 goto out;
5380
5381 ret = send_write_or_clone(sctx, path, key, found_clone);
5382 if (ret)
5383 goto out;
5384out_hole:
5385 ret = maybe_send_hole(sctx, path, key);
5386out:
5387 return ret;
5388}
5389
5390static int process_all_extents(struct send_ctx *sctx)
5391{
5392 int ret;
5393 struct btrfs_root *root;
5394 struct btrfs_path *path;
5395 struct btrfs_key key;
5396 struct btrfs_key found_key;
5397 struct extent_buffer *eb;
5398 int slot;
5399
5400 root = sctx->send_root;
5401 path = alloc_path_for_send();
5402 if (!path)
5403 return -ENOMEM;
5404
5405 key.objectid = sctx->cmp_key->objectid;
5406 key.type = BTRFS_EXTENT_DATA_KEY;
5407 key.offset = 0;
5408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5409 if (ret < 0)
5410 goto out;
5411
5412 while (1) {
5413 eb = path->nodes[0];
5414 slot = path->slots[0];
5415
5416 if (slot >= btrfs_header_nritems(eb)) {
5417 ret = btrfs_next_leaf(root, path);
5418 if (ret < 0) {
5419 goto out;
5420 } else if (ret > 0) {
5421 ret = 0;
5422 break;
5423 }
5424 continue;
5425 }
5426
5427 btrfs_item_key_to_cpu(eb, &found_key, slot);
5428
5429 if (found_key.objectid != key.objectid ||
5430 found_key.type != key.type) {
5431 ret = 0;
5432 goto out;
5433 }
5434
5435 ret = process_extent(sctx, path, &found_key);
5436 if (ret < 0)
5437 goto out;
5438
5439 path->slots[0]++;
5440 }
5441
5442out:
5443 btrfs_free_path(path);
5444 return ret;
5445}
5446
5447static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
5448 int *pending_move,
5449 int *refs_processed)
5450{
5451 int ret = 0;
5452
5453 if (sctx->cur_ino == 0)
5454 goto out;
5455 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
5456 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
5457 goto out;
5458 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
5459 goto out;
5460
5461 ret = process_recorded_refs(sctx, pending_move);
5462 if (ret < 0)
5463 goto out;
5464
5465 *refs_processed = 1;
5466out:
5467 return ret;
5468}
5469
5470static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
5471{
5472 int ret = 0;
5473 u64 left_mode;
5474 u64 left_uid;
5475 u64 left_gid;
5476 u64 right_mode;
5477 u64 right_uid;
5478 u64 right_gid;
5479 int need_chmod = 0;
5480 int need_chown = 0;
5481 int pending_move = 0;
5482 int refs_processed = 0;
5483
5484 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
5485 &refs_processed);
5486 if (ret < 0)
5487 goto out;
5488
5489 /*
5490 * We have processed the refs and thus need to advance send_progress.
5491 * Now, calls to get_cur_xxx will take the updated refs of the current
5492 * inode into account.
5493 *
5494 * On the other hand, if our current inode is a directory and couldn't
5495 * be moved/renamed because its parent was renamed/moved too and it has
5496 * a higher inode number, we can only move/rename our current inode
5497 * after we moved/renamed its parent. Therefore in this case operate on
5498 * the old path (pre move/rename) of our current inode, and the
5499 * move/rename will be performed later.
5500 */
5501 if (refs_processed && !pending_move)
5502 sctx->send_progress = sctx->cur_ino + 1;
5503
5504 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
5505 goto out;
5506 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
5507 goto out;
5508
5509 ret = get_inode_info(sctx->send_root, sctx->cur_ino, NULL, NULL,
5510 &left_mode, &left_uid, &left_gid, NULL);
5511 if (ret < 0)
5512 goto out;
5513
5514 if (!sctx->parent_root || sctx->cur_inode_new) {
5515 need_chown = 1;
5516 if (!S_ISLNK(sctx->cur_inode_mode))
5517 need_chmod = 1;
5518 } else {
5519 ret = get_inode_info(sctx->parent_root, sctx->cur_ino,
5520 NULL, NULL, &right_mode, &right_uid,
5521 &right_gid, NULL);
5522 if (ret < 0)
5523 goto out;
5524
5525 if (left_uid != right_uid || left_gid != right_gid)
5526 need_chown = 1;
5527 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
5528 need_chmod = 1;
5529 }
5530
5531 if (S_ISREG(sctx->cur_inode_mode)) {
5532 if (need_send_hole(sctx)) {
5533 if (sctx->cur_inode_last_extent == (u64)-1 ||
5534 sctx->cur_inode_last_extent <
5535 sctx->cur_inode_size) {
5536 ret = get_last_extent(sctx, (u64)-1);
5537 if (ret)
5538 goto out;
5539 }
5540 if (sctx->cur_inode_last_extent <
5541 sctx->cur_inode_size) {
5542 ret = send_hole(sctx, sctx->cur_inode_size);
5543 if (ret)
5544 goto out;
5545 }
5546 }
5547 ret = send_truncate(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5548 sctx->cur_inode_size);
5549 if (ret < 0)
5550 goto out;
5551 }
5552
5553 if (need_chown) {
5554 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5555 left_uid, left_gid);
5556 if (ret < 0)
5557 goto out;
5558 }
5559 if (need_chmod) {
5560 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
5561 left_mode);
5562 if (ret < 0)
5563 goto out;
5564 }
5565
5566 /*
5567 * If other directory inodes depended on our current directory
5568 * inode's move/rename, now do their move/rename operations.
5569 */
5570 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
5571 ret = apply_children_dir_moves(sctx);
5572 if (ret)
5573 goto out;
5574 /*
5575 * Need to send that every time, no matter if it actually
5576 * changed between the two trees as we have done changes to
5577 * the inode before. If our inode is a directory and it's
5578 * waiting to be moved/renamed, we will send its utimes when
5579 * it's moved/renamed, therefore we don't need to do it here.
5580 */
5581 sctx->send_progress = sctx->cur_ino + 1;
5582 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
5583 if (ret < 0)
5584 goto out;
5585 }
5586
5587out:
5588 return ret;
5589}
5590
5591static int changed_inode(struct send_ctx *sctx,
5592 enum btrfs_compare_tree_result result)
5593{
5594 int ret = 0;
5595 struct btrfs_key *key = sctx->cmp_key;
5596 struct btrfs_inode_item *left_ii = NULL;
5597 struct btrfs_inode_item *right_ii = NULL;
5598 u64 left_gen = 0;
5599 u64 right_gen = 0;
5600
5601 sctx->cur_ino = key->objectid;
5602 sctx->cur_inode_new_gen = 0;
5603 sctx->cur_inode_last_extent = (u64)-1;
5604
5605 /*
5606 * Set send_progress to current inode. This will tell all get_cur_xxx
5607 * functions that the current inode's refs are not updated yet. Later,
5608 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5609 */
5610 sctx->send_progress = sctx->cur_ino;
5611
5612 if (result == BTRFS_COMPARE_TREE_NEW ||
5613 result == BTRFS_COMPARE_TREE_CHANGED) {
5614 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
5615 sctx->left_path->slots[0],
5616 struct btrfs_inode_item);
5617 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
5618 left_ii);
5619 } else {
5620 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5621 sctx->right_path->slots[0],
5622 struct btrfs_inode_item);
5623 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5624 right_ii);
5625 }
5626 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5627 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
5628 sctx->right_path->slots[0],
5629 struct btrfs_inode_item);
5630
5631 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
5632 right_ii);
5633
5634 /*
5635 * The cur_ino = root dir case is special here. We can't treat
5636 * the inode as deleted+reused because it would generate a
5637 * stream that tries to delete/mkdir the root dir.
5638 */
5639 if (left_gen != right_gen &&
5640 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5641 sctx->cur_inode_new_gen = 1;
5642 }
5643
5644 if (result == BTRFS_COMPARE_TREE_NEW) {
5645 sctx->cur_inode_gen = left_gen;
5646 sctx->cur_inode_new = 1;
5647 sctx->cur_inode_deleted = 0;
5648 sctx->cur_inode_size = btrfs_inode_size(
5649 sctx->left_path->nodes[0], left_ii);
5650 sctx->cur_inode_mode = btrfs_inode_mode(
5651 sctx->left_path->nodes[0], left_ii);
5652 sctx->cur_inode_rdev = btrfs_inode_rdev(
5653 sctx->left_path->nodes[0], left_ii);
5654 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
5655 ret = send_create_inode_if_needed(sctx);
5656 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
5657 sctx->cur_inode_gen = right_gen;
5658 sctx->cur_inode_new = 0;
5659 sctx->cur_inode_deleted = 1;
5660 sctx->cur_inode_size = btrfs_inode_size(
5661 sctx->right_path->nodes[0], right_ii);
5662 sctx->cur_inode_mode = btrfs_inode_mode(
5663 sctx->right_path->nodes[0], right_ii);
5664 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
5665 /*
5666 * We need to do some special handling in case the inode was
5667 * reported as changed with a changed generation number. This
5668 * means that the original inode was deleted and new inode
5669 * reused the same inum. So we have to treat the old inode as
5670 * deleted and the new one as new.
5671 */
5672 if (sctx->cur_inode_new_gen) {
5673 /*
5674 * First, process the inode as if it was deleted.
5675 */
5676 sctx->cur_inode_gen = right_gen;
5677 sctx->cur_inode_new = 0;
5678 sctx->cur_inode_deleted = 1;
5679 sctx->cur_inode_size = btrfs_inode_size(
5680 sctx->right_path->nodes[0], right_ii);
5681 sctx->cur_inode_mode = btrfs_inode_mode(
5682 sctx->right_path->nodes[0], right_ii);
5683 ret = process_all_refs(sctx,
5684 BTRFS_COMPARE_TREE_DELETED);
5685 if (ret < 0)
5686 goto out;
5687
5688 /*
5689 * Now process the inode as if it was new.
5690 */
5691 sctx->cur_inode_gen = left_gen;
5692 sctx->cur_inode_new = 1;
5693 sctx->cur_inode_deleted = 0;
5694 sctx->cur_inode_size = btrfs_inode_size(
5695 sctx->left_path->nodes[0], left_ii);
5696 sctx->cur_inode_mode = btrfs_inode_mode(
5697 sctx->left_path->nodes[0], left_ii);
5698 sctx->cur_inode_rdev = btrfs_inode_rdev(
5699 sctx->left_path->nodes[0], left_ii);
5700 ret = send_create_inode_if_needed(sctx);
5701 if (ret < 0)
5702 goto out;
5703
5704 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
5705 if (ret < 0)
5706 goto out;
5707 /*
5708 * Advance send_progress now as we did not get into
5709 * process_recorded_refs_if_needed in the new_gen case.
5710 */
5711 sctx->send_progress = sctx->cur_ino + 1;
5712
5713 /*
5714 * Now process all extents and xattrs of the inode as if
5715 * they were all new.
5716 */
5717 ret = process_all_extents(sctx);
5718 if (ret < 0)
5719 goto out;
5720 ret = process_all_new_xattrs(sctx);
5721 if (ret < 0)
5722 goto out;
5723 } else {
5724 sctx->cur_inode_gen = left_gen;
5725 sctx->cur_inode_new = 0;
5726 sctx->cur_inode_new_gen = 0;
5727 sctx->cur_inode_deleted = 0;
5728 sctx->cur_inode_size = btrfs_inode_size(
5729 sctx->left_path->nodes[0], left_ii);
5730 sctx->cur_inode_mode = btrfs_inode_mode(
5731 sctx->left_path->nodes[0], left_ii);
5732 }
5733 }
5734
5735out:
5736 return ret;
5737}
5738
5739/*
5740 * We have to process new refs before deleted refs, but compare_trees gives us
5741 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5742 * first and later process them in process_recorded_refs.
5743 * For the cur_inode_new_gen case, we skip recording completely because
5744 * changed_inode did already initiate processing of refs. The reason for this is
5745 * that in this case, compare_tree actually compares the refs of 2 different
5746 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5747 * refs of the right tree as deleted and all refs of the left tree as new.
5748 */
5749static int changed_ref(struct send_ctx *sctx,
5750 enum btrfs_compare_tree_result result)
5751{
5752 int ret = 0;
5753
5754 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5755 inconsistent_snapshot_error(sctx, result, "reference");
5756 return -EIO;
5757 }
5758
5759 if (!sctx->cur_inode_new_gen &&
5760 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
5761 if (result == BTRFS_COMPARE_TREE_NEW)
5762 ret = record_new_ref(sctx);
5763 else if (result == BTRFS_COMPARE_TREE_DELETED)
5764 ret = record_deleted_ref(sctx);
5765 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5766 ret = record_changed_ref(sctx);
5767 }
5768
5769 return ret;
5770}
5771
5772/*
5773 * Process new/deleted/changed xattrs. We skip processing in the
5774 * cur_inode_new_gen case because changed_inode did already initiate processing
5775 * of xattrs. The reason is the same as in changed_ref
5776 */
5777static int changed_xattr(struct send_ctx *sctx,
5778 enum btrfs_compare_tree_result result)
5779{
5780 int ret = 0;
5781
5782 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5783 inconsistent_snapshot_error(sctx, result, "xattr");
5784 return -EIO;
5785 }
5786
5787 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5788 if (result == BTRFS_COMPARE_TREE_NEW)
5789 ret = process_new_xattr(sctx);
5790 else if (result == BTRFS_COMPARE_TREE_DELETED)
5791 ret = process_deleted_xattr(sctx);
5792 else if (result == BTRFS_COMPARE_TREE_CHANGED)
5793 ret = process_changed_xattr(sctx);
5794 }
5795
5796 return ret;
5797}
5798
5799/*
5800 * Process new/deleted/changed extents. We skip processing in the
5801 * cur_inode_new_gen case because changed_inode did already initiate processing
5802 * of extents. The reason is the same as in changed_ref
5803 */
5804static int changed_extent(struct send_ctx *sctx,
5805 enum btrfs_compare_tree_result result)
5806{
5807 int ret = 0;
5808
5809 if (sctx->cur_ino != sctx->cmp_key->objectid) {
5810
5811 if (result == BTRFS_COMPARE_TREE_CHANGED) {
5812 struct extent_buffer *leaf_l;
5813 struct extent_buffer *leaf_r;
5814 struct btrfs_file_extent_item *ei_l;
5815 struct btrfs_file_extent_item *ei_r;
5816
5817 leaf_l = sctx->left_path->nodes[0];
5818 leaf_r = sctx->right_path->nodes[0];
5819 ei_l = btrfs_item_ptr(leaf_l,
5820 sctx->left_path->slots[0],
5821 struct btrfs_file_extent_item);
5822 ei_r = btrfs_item_ptr(leaf_r,
5823 sctx->right_path->slots[0],
5824 struct btrfs_file_extent_item);
5825
5826 /*
5827 * We may have found an extent item that has changed
5828 * only its disk_bytenr field and the corresponding
5829 * inode item was not updated. This case happens due to
5830 * very specific timings during relocation when a leaf
5831 * that contains file extent items is COWed while
5832 * relocation is ongoing and its in the stage where it
5833 * updates data pointers. So when this happens we can
5834 * safely ignore it since we know it's the same extent,
5835 * but just at different logical and physical locations
5836 * (when an extent is fully replaced with a new one, we
5837 * know the generation number must have changed too,
5838 * since snapshot creation implies committing the current
5839 * transaction, and the inode item must have been updated
5840 * as well).
5841 * This replacement of the disk_bytenr happens at
5842 * relocation.c:replace_file_extents() through
5843 * relocation.c:btrfs_reloc_cow_block().
5844 */
5845 if (btrfs_file_extent_generation(leaf_l, ei_l) ==
5846 btrfs_file_extent_generation(leaf_r, ei_r) &&
5847 btrfs_file_extent_ram_bytes(leaf_l, ei_l) ==
5848 btrfs_file_extent_ram_bytes(leaf_r, ei_r) &&
5849 btrfs_file_extent_compression(leaf_l, ei_l) ==
5850 btrfs_file_extent_compression(leaf_r, ei_r) &&
5851 btrfs_file_extent_encryption(leaf_l, ei_l) ==
5852 btrfs_file_extent_encryption(leaf_r, ei_r) &&
5853 btrfs_file_extent_other_encoding(leaf_l, ei_l) ==
5854 btrfs_file_extent_other_encoding(leaf_r, ei_r) &&
5855 btrfs_file_extent_type(leaf_l, ei_l) ==
5856 btrfs_file_extent_type(leaf_r, ei_r) &&
5857 btrfs_file_extent_disk_bytenr(leaf_l, ei_l) !=
5858 btrfs_file_extent_disk_bytenr(leaf_r, ei_r) &&
5859 btrfs_file_extent_disk_num_bytes(leaf_l, ei_l) ==
5860 btrfs_file_extent_disk_num_bytes(leaf_r, ei_r) &&
5861 btrfs_file_extent_offset(leaf_l, ei_l) ==
5862 btrfs_file_extent_offset(leaf_r, ei_r) &&
5863 btrfs_file_extent_num_bytes(leaf_l, ei_l) ==
5864 btrfs_file_extent_num_bytes(leaf_r, ei_r))
5865 return 0;
5866 }
5867
5868 inconsistent_snapshot_error(sctx, result, "extent");
5869 return -EIO;
5870 }
5871
5872 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
5873 if (result != BTRFS_COMPARE_TREE_DELETED)
5874 ret = process_extent(sctx, sctx->left_path,
5875 sctx->cmp_key);
5876 }
5877
5878 return ret;
5879}
5880
5881static int dir_changed(struct send_ctx *sctx, u64 dir)
5882{
5883 u64 orig_gen, new_gen;
5884 int ret;
5885
5886 ret = get_inode_info(sctx->send_root, dir, NULL, &new_gen, NULL, NULL,
5887 NULL, NULL);
5888 if (ret)
5889 return ret;
5890
5891 ret = get_inode_info(sctx->parent_root, dir, NULL, &orig_gen, NULL,
5892 NULL, NULL, NULL);
5893 if (ret)
5894 return ret;
5895
5896 return (orig_gen != new_gen) ? 1 : 0;
5897}
5898
5899static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
5900 struct btrfs_key *key)
5901{
5902 struct btrfs_inode_extref *extref;
5903 struct extent_buffer *leaf;
5904 u64 dirid = 0, last_dirid = 0;
5905 unsigned long ptr;
5906 u32 item_size;
5907 u32 cur_offset = 0;
5908 int ref_name_len;
5909 int ret = 0;
5910
5911 /* Easy case, just check this one dirid */
5912 if (key->type == BTRFS_INODE_REF_KEY) {
5913 dirid = key->offset;
5914
5915 ret = dir_changed(sctx, dirid);
5916 goto out;
5917 }
5918
5919 leaf = path->nodes[0];
5920 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
5921 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
5922 while (cur_offset < item_size) {
5923 extref = (struct btrfs_inode_extref *)(ptr +
5924 cur_offset);
5925 dirid = btrfs_inode_extref_parent(leaf, extref);
5926 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
5927 cur_offset += ref_name_len + sizeof(*extref);
5928 if (dirid == last_dirid)
5929 continue;
5930 ret = dir_changed(sctx, dirid);
5931 if (ret)
5932 break;
5933 last_dirid = dirid;
5934 }
5935out:
5936 return ret;
5937}
5938
5939/*
5940 * Updates compare related fields in sctx and simply forwards to the actual
5941 * changed_xxx functions.
5942 */
5943static int changed_cb(struct btrfs_root *left_root,
5944 struct btrfs_root *right_root,
5945 struct btrfs_path *left_path,
5946 struct btrfs_path *right_path,
5947 struct btrfs_key *key,
5948 enum btrfs_compare_tree_result result,
5949 void *ctx)
5950{
5951 int ret = 0;
5952 struct send_ctx *sctx = ctx;
5953
5954 if (result == BTRFS_COMPARE_TREE_SAME) {
5955 if (key->type == BTRFS_INODE_REF_KEY ||
5956 key->type == BTRFS_INODE_EXTREF_KEY) {
5957 ret = compare_refs(sctx, left_path, key);
5958 if (!ret)
5959 return 0;
5960 if (ret < 0)
5961 return ret;
5962 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
5963 return maybe_send_hole(sctx, left_path, key);
5964 } else {
5965 return 0;
5966 }
5967 result = BTRFS_COMPARE_TREE_CHANGED;
5968 ret = 0;
5969 }
5970
5971 sctx->left_path = left_path;
5972 sctx->right_path = right_path;
5973 sctx->cmp_key = key;
5974
5975 ret = finish_inode_if_needed(sctx, 0);
5976 if (ret < 0)
5977 goto out;
5978
5979 /* Ignore non-FS objects */
5980 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
5981 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
5982 goto out;
5983
5984 if (key->type == BTRFS_INODE_ITEM_KEY)
5985 ret = changed_inode(sctx, result);
5986 else if (key->type == BTRFS_INODE_REF_KEY ||
5987 key->type == BTRFS_INODE_EXTREF_KEY)
5988 ret = changed_ref(sctx, result);
5989 else if (key->type == BTRFS_XATTR_ITEM_KEY)
5990 ret = changed_xattr(sctx, result);
5991 else if (key->type == BTRFS_EXTENT_DATA_KEY)
5992 ret = changed_extent(sctx, result);
5993
5994out:
5995 return ret;
5996}
5997
5998static int full_send_tree(struct send_ctx *sctx)
5999{
6000 int ret;
6001 struct btrfs_root *send_root = sctx->send_root;
6002 struct btrfs_key key;
6003 struct btrfs_key found_key;
6004 struct btrfs_path *path;
6005 struct extent_buffer *eb;
6006 int slot;
6007
6008 path = alloc_path_for_send();
6009 if (!path)
6010 return -ENOMEM;
6011
6012 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
6013 key.type = BTRFS_INODE_ITEM_KEY;
6014 key.offset = 0;
6015
6016 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
6017 if (ret < 0)
6018 goto out;
6019 if (ret)
6020 goto out_finish;
6021
6022 while (1) {
6023 eb = path->nodes[0];
6024 slot = path->slots[0];
6025 btrfs_item_key_to_cpu(eb, &found_key, slot);
6026
6027 ret = changed_cb(send_root, NULL, path, NULL,
6028 &found_key, BTRFS_COMPARE_TREE_NEW, sctx);
6029 if (ret < 0)
6030 goto out;
6031
6032 key.objectid = found_key.objectid;
6033 key.type = found_key.type;
6034 key.offset = found_key.offset + 1;
6035
6036 ret = btrfs_next_item(send_root, path);
6037 if (ret < 0)
6038 goto out;
6039 if (ret) {
6040 ret = 0;
6041 break;
6042 }
6043 }
6044
6045out_finish:
6046 ret = finish_inode_if_needed(sctx, 1);
6047
6048out:
6049 btrfs_free_path(path);
6050 return ret;
6051}
6052
6053static int send_subvol(struct send_ctx *sctx)
6054{
6055 int ret;
6056
6057 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
6058 ret = send_header(sctx);
6059 if (ret < 0)
6060 goto out;
6061 }
6062
6063 ret = send_subvol_begin(sctx);
6064 if (ret < 0)
6065 goto out;
6066
6067 if (sctx->parent_root) {
6068 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root,
6069 changed_cb, sctx);
6070 if (ret < 0)
6071 goto out;
6072 ret = finish_inode_if_needed(sctx, 1);
6073 if (ret < 0)
6074 goto out;
6075 } else {
6076 ret = full_send_tree(sctx);
6077 if (ret < 0)
6078 goto out;
6079 }
6080
6081out:
6082 free_recorded_refs(sctx);
6083 return ret;
6084}
6085
6086/*
6087 * If orphan cleanup did remove any orphans from a root, it means the tree
6088 * was modified and therefore the commit root is not the same as the current
6089 * root anymore. This is a problem, because send uses the commit root and
6090 * therefore can see inode items that don't exist in the current root anymore,
6091 * and for example make calls to btrfs_iget, which will do tree lookups based
6092 * on the current root and not on the commit root. Those lookups will fail,
6093 * returning a -ESTALE error, and making send fail with that error. So make
6094 * sure a send does not see any orphans we have just removed, and that it will
6095 * see the same inodes regardless of whether a transaction commit happened
6096 * before it started (meaning that the commit root will be the same as the
6097 * current root) or not.
6098 */
6099static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
6100{
6101 int i;
6102 struct btrfs_trans_handle *trans = NULL;
6103
6104again:
6105 if (sctx->parent_root &&
6106 sctx->parent_root->node != sctx->parent_root->commit_root)
6107 goto commit_trans;
6108
6109 for (i = 0; i < sctx->clone_roots_cnt; i++)
6110 if (sctx->clone_roots[i].root->node !=
6111 sctx->clone_roots[i].root->commit_root)
6112 goto commit_trans;
6113
6114 if (trans)
6115 return btrfs_end_transaction(trans);
6116
6117 return 0;
6118
6119commit_trans:
6120 /* Use any root, all fs roots will get their commit roots updated. */
6121 if (!trans) {
6122 trans = btrfs_join_transaction(sctx->send_root);
6123 if (IS_ERR(trans))
6124 return PTR_ERR(trans);
6125 goto again;
6126 }
6127
6128 return btrfs_commit_transaction(trans);
6129}
6130
6131static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
6132{
6133 spin_lock(&root->root_item_lock);
6134 root->send_in_progress--;
6135 /*
6136 * Not much left to do, we don't know why it's unbalanced and
6137 * can't blindly reset it to 0.
6138 */
6139 if (root->send_in_progress < 0)
6140 btrfs_err(root->fs_info,
6141 "send_in_progres unbalanced %d root %llu",
6142 root->send_in_progress, root->root_key.objectid);
6143 spin_unlock(&root->root_item_lock);
6144}
6145
6146long btrfs_ioctl_send(struct file *mnt_file, void __user *arg_)
6147{
6148 int ret = 0;
6149 struct btrfs_root *send_root = BTRFS_I(file_inode(mnt_file))->root;
6150 struct btrfs_fs_info *fs_info = send_root->fs_info;
6151 struct btrfs_root *clone_root;
6152 struct btrfs_ioctl_send_args *arg = NULL;
6153 struct btrfs_key key;
6154 struct send_ctx *sctx = NULL;
6155 u32 i;
6156 u64 *clone_sources_tmp = NULL;
6157 int clone_sources_to_rollback = 0;
6158 unsigned alloc_size;
6159 int sort_clone_roots = 0;
6160 int index;
6161
6162 if (!capable(CAP_SYS_ADMIN))
6163 return -EPERM;
6164
6165 /*
6166 * The subvolume must remain read-only during send, protect against
6167 * making it RW. This also protects against deletion.
6168 */
6169 spin_lock(&send_root->root_item_lock);
6170 send_root->send_in_progress++;
6171 spin_unlock(&send_root->root_item_lock);
6172
6173 /*
6174 * This is done when we lookup the root, it should already be complete
6175 * by the time we get here.
6176 */
6177 WARN_ON(send_root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE);
6178
6179 /*
6180 * Userspace tools do the checks and warn the user if it's
6181 * not RO.
6182 */
6183 if (!btrfs_root_readonly(send_root)) {
6184 ret = -EPERM;
6185 goto out;
6186 }
6187
6188 arg = memdup_user(arg_, sizeof(*arg));
6189 if (IS_ERR(arg)) {
6190 ret = PTR_ERR(arg);
6191 arg = NULL;
6192 goto out;
6193 }
6194
6195 if (arg->clone_sources_count >
6196 ULLONG_MAX / sizeof(*arg->clone_sources)) {
6197 ret = -EINVAL;
6198 goto out;
6199 }
6200
6201 if (!access_ok(VERIFY_READ, arg->clone_sources,
6202 sizeof(*arg->clone_sources) *
6203 arg->clone_sources_count)) {
6204 ret = -EFAULT;
6205 goto out;
6206 }
6207
6208 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
6209 ret = -EINVAL;
6210 goto out;
6211 }
6212
6213 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
6214 if (!sctx) {
6215 ret = -ENOMEM;
6216 goto out;
6217 }
6218
6219 INIT_LIST_HEAD(&sctx->new_refs);
6220 INIT_LIST_HEAD(&sctx->deleted_refs);
6221 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
6222 INIT_LIST_HEAD(&sctx->name_cache_list);
6223
6224 sctx->flags = arg->flags;
6225
6226 sctx->send_filp = fget(arg->send_fd);
6227 if (!sctx->send_filp) {
6228 ret = -EBADF;
6229 goto out;
6230 }
6231
6232 sctx->send_root = send_root;
6233 /*
6234 * Unlikely but possible, if the subvolume is marked for deletion but
6235 * is slow to remove the directory entry, send can still be started
6236 */
6237 if (btrfs_root_dead(sctx->send_root)) {
6238 ret = -EPERM;
6239 goto out;
6240 }
6241
6242 sctx->clone_roots_cnt = arg->clone_sources_count;
6243
6244 sctx->send_max_size = BTRFS_SEND_BUF_SIZE;
6245 sctx->send_buf = kmalloc(sctx->send_max_size, GFP_KERNEL | __GFP_NOWARN);
6246 if (!sctx->send_buf) {
6247 sctx->send_buf = vmalloc(sctx->send_max_size);
6248 if (!sctx->send_buf) {
6249 ret = -ENOMEM;
6250 goto out;
6251 }
6252 }
6253
6254 sctx->read_buf = kmalloc(BTRFS_SEND_READ_SIZE, GFP_KERNEL | __GFP_NOWARN);
6255 if (!sctx->read_buf) {
6256 sctx->read_buf = vmalloc(BTRFS_SEND_READ_SIZE);
6257 if (!sctx->read_buf) {
6258 ret = -ENOMEM;
6259 goto out;
6260 }
6261 }
6262
6263 sctx->pending_dir_moves = RB_ROOT;
6264 sctx->waiting_dir_moves = RB_ROOT;
6265 sctx->orphan_dirs = RB_ROOT;
6266
6267 alloc_size = sizeof(struct clone_root) * (arg->clone_sources_count + 1);
6268
6269 sctx->clone_roots = kzalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6270 if (!sctx->clone_roots) {
6271 sctx->clone_roots = vzalloc(alloc_size);
6272 if (!sctx->clone_roots) {
6273 ret = -ENOMEM;
6274 goto out;
6275 }
6276 }
6277
6278 alloc_size = arg->clone_sources_count * sizeof(*arg->clone_sources);
6279
6280 if (arg->clone_sources_count) {
6281 clone_sources_tmp = kmalloc(alloc_size, GFP_KERNEL | __GFP_NOWARN);
6282 if (!clone_sources_tmp) {
6283 clone_sources_tmp = vmalloc(alloc_size);
6284 if (!clone_sources_tmp) {
6285 ret = -ENOMEM;
6286 goto out;
6287 }
6288 }
6289
6290 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
6291 alloc_size);
6292 if (ret) {
6293 ret = -EFAULT;
6294 goto out;
6295 }
6296
6297 for (i = 0; i < arg->clone_sources_count; i++) {
6298 key.objectid = clone_sources_tmp[i];
6299 key.type = BTRFS_ROOT_ITEM_KEY;
6300 key.offset = (u64)-1;
6301
6302 index = srcu_read_lock(&fs_info->subvol_srcu);
6303
6304 clone_root = btrfs_read_fs_root_no_name(fs_info, &key);
6305 if (IS_ERR(clone_root)) {
6306 srcu_read_unlock(&fs_info->subvol_srcu, index);
6307 ret = PTR_ERR(clone_root);
6308 goto out;
6309 }
6310 spin_lock(&clone_root->root_item_lock);
6311 if (!btrfs_root_readonly(clone_root) ||
6312 btrfs_root_dead(clone_root)) {
6313 spin_unlock(&clone_root->root_item_lock);
6314 srcu_read_unlock(&fs_info->subvol_srcu, index);
6315 ret = -EPERM;
6316 goto out;
6317 }
6318 clone_root->send_in_progress++;
6319 spin_unlock(&clone_root->root_item_lock);
6320 srcu_read_unlock(&fs_info->subvol_srcu, index);
6321
6322 sctx->clone_roots[i].root = clone_root;
6323 clone_sources_to_rollback = i + 1;
6324 }
6325 kvfree(clone_sources_tmp);
6326 clone_sources_tmp = NULL;
6327 }
6328
6329 if (arg->parent_root) {
6330 key.objectid = arg->parent_root;
6331 key.type = BTRFS_ROOT_ITEM_KEY;
6332 key.offset = (u64)-1;
6333
6334 index = srcu_read_lock(&fs_info->subvol_srcu);
6335
6336 sctx->parent_root = btrfs_read_fs_root_no_name(fs_info, &key);
6337 if (IS_ERR(sctx->parent_root)) {
6338 srcu_read_unlock(&fs_info->subvol_srcu, index);
6339 ret = PTR_ERR(sctx->parent_root);
6340 goto out;
6341 }
6342
6343 spin_lock(&sctx->parent_root->root_item_lock);
6344 sctx->parent_root->send_in_progress++;
6345 if (!btrfs_root_readonly(sctx->parent_root) ||
6346 btrfs_root_dead(sctx->parent_root)) {
6347 spin_unlock(&sctx->parent_root->root_item_lock);
6348 srcu_read_unlock(&fs_info->subvol_srcu, index);
6349 ret = -EPERM;
6350 goto out;
6351 }
6352 spin_unlock(&sctx->parent_root->root_item_lock);
6353
6354 srcu_read_unlock(&fs_info->subvol_srcu, index);
6355 }
6356
6357 /*
6358 * Clones from send_root are allowed, but only if the clone source
6359 * is behind the current send position. This is checked while searching
6360 * for possible clone sources.
6361 */
6362 sctx->clone_roots[sctx->clone_roots_cnt++].root = sctx->send_root;
6363
6364 /* We do a bsearch later */
6365 sort(sctx->clone_roots, sctx->clone_roots_cnt,
6366 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
6367 NULL);
6368 sort_clone_roots = 1;
6369
6370 ret = ensure_commit_roots_uptodate(sctx);
6371 if (ret)
6372 goto out;
6373
6374 current->journal_info = BTRFS_SEND_TRANS_STUB;
6375 ret = send_subvol(sctx);
6376 current->journal_info = NULL;
6377 if (ret < 0)
6378 goto out;
6379
6380 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
6381 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
6382 if (ret < 0)
6383 goto out;
6384 ret = send_cmd(sctx);
6385 if (ret < 0)
6386 goto out;
6387 }
6388
6389out:
6390 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
6391 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
6392 struct rb_node *n;
6393 struct pending_dir_move *pm;
6394
6395 n = rb_first(&sctx->pending_dir_moves);
6396 pm = rb_entry(n, struct pending_dir_move, node);
6397 while (!list_empty(&pm->list)) {
6398 struct pending_dir_move *pm2;
6399
6400 pm2 = list_first_entry(&pm->list,
6401 struct pending_dir_move, list);
6402 free_pending_move(sctx, pm2);
6403 }
6404 free_pending_move(sctx, pm);
6405 }
6406
6407 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
6408 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
6409 struct rb_node *n;
6410 struct waiting_dir_move *dm;
6411
6412 n = rb_first(&sctx->waiting_dir_moves);
6413 dm = rb_entry(n, struct waiting_dir_move, node);
6414 rb_erase(&dm->node, &sctx->waiting_dir_moves);
6415 kfree(dm);
6416 }
6417
6418 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
6419 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
6420 struct rb_node *n;
6421 struct orphan_dir_info *odi;
6422
6423 n = rb_first(&sctx->orphan_dirs);
6424 odi = rb_entry(n, struct orphan_dir_info, node);
6425 free_orphan_dir_info(sctx, odi);
6426 }
6427
6428 if (sort_clone_roots) {
6429 for (i = 0; i < sctx->clone_roots_cnt; i++)
6430 btrfs_root_dec_send_in_progress(
6431 sctx->clone_roots[i].root);
6432 } else {
6433 for (i = 0; sctx && i < clone_sources_to_rollback; i++)
6434 btrfs_root_dec_send_in_progress(
6435 sctx->clone_roots[i].root);
6436
6437 btrfs_root_dec_send_in_progress(send_root);
6438 }
6439 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root))
6440 btrfs_root_dec_send_in_progress(sctx->parent_root);
6441
6442 kfree(arg);
6443 kvfree(clone_sources_tmp);
6444
6445 if (sctx) {
6446 if (sctx->send_filp)
6447 fput(sctx->send_filp);
6448
6449 kvfree(sctx->clone_roots);
6450 kvfree(sctx->send_buf);
6451 kvfree(sctx->read_buf);
6452
6453 name_cache_free(sctx);
6454
6455 kfree(sctx);
6456 }
6457
6458 return ret;
6459}