Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
Note: File does not exist in v6.9.4.
   1/* Faraday FOTG210 EHCI-like driver
   2 *
   3 * Copyright (c) 2013 Faraday Technology Corporation
   4 *
   5 * Author: Yuan-Hsin Chen <yhchen@faraday-tech.com>
   6 *	   Feng-Hsin Chiang <john453@faraday-tech.com>
   7 *	   Po-Yu Chuang <ratbert.chuang@gmail.com>
   8 *
   9 * Most of code borrowed from the Linux-3.7 EHCI driver
  10 *
  11 * This program is free software; you can redistribute it and/or modify it
  12 * under the terms of the GNU General Public License as published by the
  13 * Free Software Foundation; either version 2 of the License, or (at your
  14 * option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful, but
  17 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  18 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  19 * for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software Foundation,
  23 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25#include <linux/module.h>
  26#include <linux/device.h>
  27#include <linux/dmapool.h>
  28#include <linux/kernel.h>
  29#include <linux/delay.h>
  30#include <linux/ioport.h>
  31#include <linux/sched.h>
  32#include <linux/vmalloc.h>
  33#include <linux/errno.h>
  34#include <linux/init.h>
  35#include <linux/hrtimer.h>
  36#include <linux/list.h>
  37#include <linux/interrupt.h>
  38#include <linux/usb.h>
  39#include <linux/usb/hcd.h>
  40#include <linux/moduleparam.h>
  41#include <linux/dma-mapping.h>
  42#include <linux/debugfs.h>
  43#include <linux/slab.h>
  44#include <linux/uaccess.h>
  45#include <linux/platform_device.h>
  46#include <linux/io.h>
  47
  48#include <asm/byteorder.h>
  49#include <asm/irq.h>
  50#include <asm/unaligned.h>
  51
  52#define DRIVER_AUTHOR "Yuan-Hsin Chen"
  53#define DRIVER_DESC "FOTG210 Host Controller (EHCI) Driver"
  54static const char hcd_name[] = "fotg210_hcd";
  55
  56#undef FOTG210_URB_TRACE
  57#define FOTG210_STATS
  58
  59/* magic numbers that can affect system performance */
  60#define FOTG210_TUNE_CERR	3 /* 0-3 qtd retries; 0 == don't stop */
  61#define FOTG210_TUNE_RL_HS	4 /* nak throttle; see 4.9 */
  62#define FOTG210_TUNE_RL_TT	0
  63#define FOTG210_TUNE_MULT_HS	1 /* 1-3 transactions/uframe; 4.10.3 */
  64#define FOTG210_TUNE_MULT_TT	1
  65
  66/* Some drivers think it's safe to schedule isochronous transfers more than 256
  67 * ms into the future (partly as a result of an old bug in the scheduling
  68 * code).  In an attempt to avoid trouble, we will use a minimum scheduling
  69 * length of 512 frames instead of 256.
  70 */
  71#define FOTG210_TUNE_FLS 1 /* (medium) 512-frame schedule */
  72
  73/* Initial IRQ latency:  faster than hw default */
  74static int log2_irq_thresh; /* 0 to 6 */
  75module_param(log2_irq_thresh, int, S_IRUGO);
  76MODULE_PARM_DESC(log2_irq_thresh, "log2 IRQ latency, 1-64 microframes");
  77
  78/* initial park setting:  slower than hw default */
  79static unsigned park;
  80module_param(park, uint, S_IRUGO);
  81MODULE_PARM_DESC(park, "park setting; 1-3 back-to-back async packets");
  82
  83/* for link power management(LPM) feature */
  84static unsigned int hird;
  85module_param(hird, int, S_IRUGO);
  86MODULE_PARM_DESC(hird, "host initiated resume duration, +1 for each 75us");
  87
  88#define INTR_MASK (STS_IAA | STS_FATAL | STS_PCD | STS_ERR | STS_INT)
  89
  90#include "fotg210.h"
  91
  92#define fotg210_dbg(fotg210, fmt, args...) \
  93	dev_dbg(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  94#define fotg210_err(fotg210, fmt, args...) \
  95	dev_err(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  96#define fotg210_info(fotg210, fmt, args...) \
  97	dev_info(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
  98#define fotg210_warn(fotg210, fmt, args...) \
  99	dev_warn(fotg210_to_hcd(fotg210)->self.controller, fmt, ## args)
 100
 101/* check the values in the HCSPARAMS register (host controller _Structural_
 102 * parameters) see EHCI spec, Table 2-4 for each value
 103 */
 104static void dbg_hcs_params(struct fotg210_hcd *fotg210, char *label)
 105{
 106	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
 107
 108	fotg210_dbg(fotg210, "%s hcs_params 0x%x ports=%d\n", label, params,
 109			HCS_N_PORTS(params));
 110}
 111
 112/* check the values in the HCCPARAMS register (host controller _Capability_
 113 * parameters) see EHCI Spec, Table 2-5 for each value
 114 */
 115static void dbg_hcc_params(struct fotg210_hcd *fotg210, char *label)
 116{
 117	u32 params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 118
 119	fotg210_dbg(fotg210, "%s hcc_params %04x uframes %s%s\n", label,
 120			params,
 121			HCC_PGM_FRAMELISTLEN(params) ? "256/512/1024" : "1024",
 122			HCC_CANPARK(params) ? " park" : "");
 123}
 124
 125static void __maybe_unused
 126dbg_qtd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd)
 127{
 128	fotg210_dbg(fotg210, "%s td %p n%08x %08x t%08x p0=%08x\n", label, qtd,
 129			hc32_to_cpup(fotg210, &qtd->hw_next),
 130			hc32_to_cpup(fotg210, &qtd->hw_alt_next),
 131			hc32_to_cpup(fotg210, &qtd->hw_token),
 132			hc32_to_cpup(fotg210, &qtd->hw_buf[0]));
 133	if (qtd->hw_buf[1])
 134		fotg210_dbg(fotg210, "  p1=%08x p2=%08x p3=%08x p4=%08x\n",
 135				hc32_to_cpup(fotg210, &qtd->hw_buf[1]),
 136				hc32_to_cpup(fotg210, &qtd->hw_buf[2]),
 137				hc32_to_cpup(fotg210, &qtd->hw_buf[3]),
 138				hc32_to_cpup(fotg210, &qtd->hw_buf[4]));
 139}
 140
 141static void __maybe_unused
 142dbg_qh(const char *label, struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
 143{
 144	struct fotg210_qh_hw *hw = qh->hw;
 145
 146	fotg210_dbg(fotg210, "%s qh %p n%08x info %x %x qtd %x\n", label, qh,
 147			hw->hw_next, hw->hw_info1, hw->hw_info2,
 148			hw->hw_current);
 149
 150	dbg_qtd("overlay", fotg210, (struct fotg210_qtd *) &hw->hw_qtd_next);
 151}
 152
 153static void __maybe_unused
 154dbg_itd(const char *label, struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
 155{
 156	fotg210_dbg(fotg210, "%s[%d] itd %p, next %08x, urb %p\n", label,
 157			itd->frame, itd, hc32_to_cpu(fotg210, itd->hw_next),
 158			itd->urb);
 159
 160	fotg210_dbg(fotg210,
 161			"  trans: %08x %08x %08x %08x %08x %08x %08x %08x\n",
 162			hc32_to_cpu(fotg210, itd->hw_transaction[0]),
 163			hc32_to_cpu(fotg210, itd->hw_transaction[1]),
 164			hc32_to_cpu(fotg210, itd->hw_transaction[2]),
 165			hc32_to_cpu(fotg210, itd->hw_transaction[3]),
 166			hc32_to_cpu(fotg210, itd->hw_transaction[4]),
 167			hc32_to_cpu(fotg210, itd->hw_transaction[5]),
 168			hc32_to_cpu(fotg210, itd->hw_transaction[6]),
 169			hc32_to_cpu(fotg210, itd->hw_transaction[7]));
 170
 171	fotg210_dbg(fotg210,
 172			"  buf:   %08x %08x %08x %08x %08x %08x %08x\n",
 173			hc32_to_cpu(fotg210, itd->hw_bufp[0]),
 174			hc32_to_cpu(fotg210, itd->hw_bufp[1]),
 175			hc32_to_cpu(fotg210, itd->hw_bufp[2]),
 176			hc32_to_cpu(fotg210, itd->hw_bufp[3]),
 177			hc32_to_cpu(fotg210, itd->hw_bufp[4]),
 178			hc32_to_cpu(fotg210, itd->hw_bufp[5]),
 179			hc32_to_cpu(fotg210, itd->hw_bufp[6]));
 180
 181	fotg210_dbg(fotg210, "  index: %d %d %d %d %d %d %d %d\n",
 182			itd->index[0], itd->index[1], itd->index[2],
 183			itd->index[3], itd->index[4], itd->index[5],
 184			itd->index[6], itd->index[7]);
 185}
 186
 187static int __maybe_unused
 188dbg_status_buf(char *buf, unsigned len, const char *label, u32 status)
 189{
 190	return scnprintf(buf, len, "%s%sstatus %04x%s%s%s%s%s%s%s%s%s%s",
 191			label, label[0] ? " " : "", status,
 192			(status & STS_ASS) ? " Async" : "",
 193			(status & STS_PSS) ? " Periodic" : "",
 194			(status & STS_RECL) ? " Recl" : "",
 195			(status & STS_HALT) ? " Halt" : "",
 196			(status & STS_IAA) ? " IAA" : "",
 197			(status & STS_FATAL) ? " FATAL" : "",
 198			(status & STS_FLR) ? " FLR" : "",
 199			(status & STS_PCD) ? " PCD" : "",
 200			(status & STS_ERR) ? " ERR" : "",
 201			(status & STS_INT) ? " INT" : "");
 202}
 203
 204static int __maybe_unused
 205dbg_intr_buf(char *buf, unsigned len, const char *label, u32 enable)
 206{
 207	return scnprintf(buf, len, "%s%sintrenable %02x%s%s%s%s%s%s",
 208			label, label[0] ? " " : "", enable,
 209			(enable & STS_IAA) ? " IAA" : "",
 210			(enable & STS_FATAL) ? " FATAL" : "",
 211			(enable & STS_FLR) ? " FLR" : "",
 212			(enable & STS_PCD) ? " PCD" : "",
 213			(enable & STS_ERR) ? " ERR" : "",
 214			(enable & STS_INT) ? " INT" : "");
 215}
 216
 217static const char *const fls_strings[] = { "1024", "512", "256", "??" };
 218
 219static int dbg_command_buf(char *buf, unsigned len, const char *label,
 220		u32 command)
 221{
 222	return scnprintf(buf, len,
 223			"%s%scommand %07x %s=%d ithresh=%d%s%s%s period=%s%s %s",
 224			label, label[0] ? " " : "", command,
 225			(command & CMD_PARK) ? " park" : "(park)",
 226			CMD_PARK_CNT(command),
 227			(command >> 16) & 0x3f,
 228			(command & CMD_IAAD) ? " IAAD" : "",
 229			(command & CMD_ASE) ? " Async" : "",
 230			(command & CMD_PSE) ? " Periodic" : "",
 231			fls_strings[(command >> 2) & 0x3],
 232			(command & CMD_RESET) ? " Reset" : "",
 233			(command & CMD_RUN) ? "RUN" : "HALT");
 234}
 235
 236static char *dbg_port_buf(char *buf, unsigned len, const char *label, int port,
 237		u32 status)
 238{
 239	char *sig;
 240
 241	/* signaling state */
 242	switch (status & (3 << 10)) {
 243	case 0 << 10:
 244		sig = "se0";
 245		break;
 246	case 1 << 10:
 247		sig = "k";
 248		break; /* low speed */
 249	case 2 << 10:
 250		sig = "j";
 251		break;
 252	default:
 253		sig = "?";
 254		break;
 255	}
 256
 257	scnprintf(buf, len, "%s%sport:%d status %06x %d sig=%s%s%s%s%s%s%s%s",
 258			label, label[0] ? " " : "", port, status,
 259			status >> 25, /*device address */
 260			sig,
 261			(status & PORT_RESET) ? " RESET" : "",
 262			(status & PORT_SUSPEND) ? " SUSPEND" : "",
 263			(status & PORT_RESUME) ? " RESUME" : "",
 264			(status & PORT_PEC) ? " PEC" : "",
 265			(status & PORT_PE) ? " PE" : "",
 266			(status & PORT_CSC) ? " CSC" : "",
 267			(status & PORT_CONNECT) ? " CONNECT" : "");
 268
 269	return buf;
 270}
 271
 272/* functions have the "wrong" filename when they're output... */
 273#define dbg_status(fotg210, label, status) {			\
 274	char _buf[80];						\
 275	dbg_status_buf(_buf, sizeof(_buf), label, status);	\
 276	fotg210_dbg(fotg210, "%s\n", _buf);			\
 277}
 278
 279#define dbg_cmd(fotg210, label, command) {			\
 280	char _buf[80];						\
 281	dbg_command_buf(_buf, sizeof(_buf), label, command);	\
 282	fotg210_dbg(fotg210, "%s\n", _buf);			\
 283}
 284
 285#define dbg_port(fotg210, label, port, status) {			       \
 286	char _buf[80];							       \
 287	fotg210_dbg(fotg210, "%s\n",					       \
 288			dbg_port_buf(_buf, sizeof(_buf), label, port, status));\
 289}
 290
 291/* troubleshooting help: expose state in debugfs */
 292static int debug_async_open(struct inode *, struct file *);
 293static int debug_periodic_open(struct inode *, struct file *);
 294static int debug_registers_open(struct inode *, struct file *);
 295static int debug_async_open(struct inode *, struct file *);
 296
 297static ssize_t debug_output(struct file*, char __user*, size_t, loff_t*);
 298static int debug_close(struct inode *, struct file *);
 299
 300static const struct file_operations debug_async_fops = {
 301	.owner		= THIS_MODULE,
 302	.open		= debug_async_open,
 303	.read		= debug_output,
 304	.release	= debug_close,
 305	.llseek		= default_llseek,
 306};
 307static const struct file_operations debug_periodic_fops = {
 308	.owner		= THIS_MODULE,
 309	.open		= debug_periodic_open,
 310	.read		= debug_output,
 311	.release	= debug_close,
 312	.llseek		= default_llseek,
 313};
 314static const struct file_operations debug_registers_fops = {
 315	.owner		= THIS_MODULE,
 316	.open		= debug_registers_open,
 317	.read		= debug_output,
 318	.release	= debug_close,
 319	.llseek		= default_llseek,
 320};
 321
 322static struct dentry *fotg210_debug_root;
 323
 324struct debug_buffer {
 325	ssize_t (*fill_func)(struct debug_buffer *);	/* fill method */
 326	struct usb_bus *bus;
 327	struct mutex mutex;	/* protect filling of buffer */
 328	size_t count;		/* number of characters filled into buffer */
 329	char *output_buf;
 330	size_t alloc_size;
 331};
 332
 333static inline char speed_char(u32 scratch)
 334{
 335	switch (scratch & (3 << 12)) {
 336	case QH_FULL_SPEED:
 337		return 'f';
 338
 339	case QH_LOW_SPEED:
 340		return 'l';
 341
 342	case QH_HIGH_SPEED:
 343		return 'h';
 344
 345	default:
 346		return '?';
 347	}
 348}
 349
 350static inline char token_mark(struct fotg210_hcd *fotg210, __hc32 token)
 351{
 352	__u32 v = hc32_to_cpu(fotg210, token);
 353
 354	if (v & QTD_STS_ACTIVE)
 355		return '*';
 356	if (v & QTD_STS_HALT)
 357		return '-';
 358	if (!IS_SHORT_READ(v))
 359		return ' ';
 360	/* tries to advance through hw_alt_next */
 361	return '/';
 362}
 363
 364static void qh_lines(struct fotg210_hcd *fotg210, struct fotg210_qh *qh,
 365		char **nextp, unsigned *sizep)
 366{
 367	u32 scratch;
 368	u32 hw_curr;
 369	struct fotg210_qtd *td;
 370	unsigned temp;
 371	unsigned size = *sizep;
 372	char *next = *nextp;
 373	char mark;
 374	__le32 list_end = FOTG210_LIST_END(fotg210);
 375	struct fotg210_qh_hw *hw = qh->hw;
 376
 377	if (hw->hw_qtd_next == list_end) /* NEC does this */
 378		mark = '@';
 379	else
 380		mark = token_mark(fotg210, hw->hw_token);
 381	if (mark == '/') { /* qh_alt_next controls qh advance? */
 382		if ((hw->hw_alt_next & QTD_MASK(fotg210)) ==
 383		    fotg210->async->hw->hw_alt_next)
 384			mark = '#'; /* blocked */
 385		else if (hw->hw_alt_next == list_end)
 386			mark = '.'; /* use hw_qtd_next */
 387		/* else alt_next points to some other qtd */
 388	}
 389	scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 390	hw_curr = (mark == '*') ? hc32_to_cpup(fotg210, &hw->hw_current) : 0;
 391	temp = scnprintf(next, size,
 392			"qh/%p dev%d %cs ep%d %08x %08x(%08x%c %s nak%d)",
 393			qh, scratch & 0x007f,
 394			speed_char(scratch),
 395			(scratch >> 8) & 0x000f,
 396			scratch, hc32_to_cpup(fotg210, &hw->hw_info2),
 397			hc32_to_cpup(fotg210, &hw->hw_token), mark,
 398			(cpu_to_hc32(fotg210, QTD_TOGGLE) & hw->hw_token)
 399				? "data1" : "data0",
 400			(hc32_to_cpup(fotg210, &hw->hw_alt_next) >> 1) & 0x0f);
 401	size -= temp;
 402	next += temp;
 403
 404	/* hc may be modifying the list as we read it ... */
 405	list_for_each_entry(td, &qh->qtd_list, qtd_list) {
 406		scratch = hc32_to_cpup(fotg210, &td->hw_token);
 407		mark = ' ';
 408		if (hw_curr == td->qtd_dma)
 409			mark = '*';
 410		else if (hw->hw_qtd_next == cpu_to_hc32(fotg210, td->qtd_dma))
 411			mark = '+';
 412		else if (QTD_LENGTH(scratch)) {
 413			if (td->hw_alt_next == fotg210->async->hw->hw_alt_next)
 414				mark = '#';
 415			else if (td->hw_alt_next != list_end)
 416				mark = '/';
 417		}
 418		temp = snprintf(next, size,
 419				"\n\t%p%c%s len=%d %08x urb %p",
 420				td, mark, ({ char *tmp;
 421				 switch ((scratch>>8)&0x03) {
 422				 case 0:
 423					tmp = "out";
 424					break;
 425				 case 1:
 426					tmp = "in";
 427					break;
 428				 case 2:
 429					tmp = "setup";
 430					break;
 431				 default:
 432					tmp = "?";
 433					break;
 434				 } tmp; }),
 435				(scratch >> 16) & 0x7fff,
 436				scratch,
 437				td->urb);
 438		if (size < temp)
 439			temp = size;
 440		size -= temp;
 441		next += temp;
 442		if (temp == size)
 443			goto done;
 444	}
 445
 446	temp = snprintf(next, size, "\n");
 447	if (size < temp)
 448		temp = size;
 449
 450	size -= temp;
 451	next += temp;
 452
 453done:
 454	*sizep = size;
 455	*nextp = next;
 456}
 457
 458static ssize_t fill_async_buffer(struct debug_buffer *buf)
 459{
 460	struct usb_hcd *hcd;
 461	struct fotg210_hcd *fotg210;
 462	unsigned long flags;
 463	unsigned temp, size;
 464	char *next;
 465	struct fotg210_qh *qh;
 466
 467	hcd = bus_to_hcd(buf->bus);
 468	fotg210 = hcd_to_fotg210(hcd);
 469	next = buf->output_buf;
 470	size = buf->alloc_size;
 471
 472	*next = 0;
 473
 474	/* dumps a snapshot of the async schedule.
 475	 * usually empty except for long-term bulk reads, or head.
 476	 * one QH per line, and TDs we know about
 477	 */
 478	spin_lock_irqsave(&fotg210->lock, flags);
 479	for (qh = fotg210->async->qh_next.qh; size > 0 && qh;
 480			qh = qh->qh_next.qh)
 481		qh_lines(fotg210, qh, &next, &size);
 482	if (fotg210->async_unlink && size > 0) {
 483		temp = scnprintf(next, size, "\nunlink =\n");
 484		size -= temp;
 485		next += temp;
 486
 487		for (qh = fotg210->async_unlink; size > 0 && qh;
 488				qh = qh->unlink_next)
 489			qh_lines(fotg210, qh, &next, &size);
 490	}
 491	spin_unlock_irqrestore(&fotg210->lock, flags);
 492
 493	return strlen(buf->output_buf);
 494}
 495
 496/* count tds, get ep direction */
 497static unsigned output_buf_tds_dir(char *buf, struct fotg210_hcd *fotg210,
 498		struct fotg210_qh_hw *hw, struct fotg210_qh *qh, unsigned size)
 499{
 500	u32 scratch = hc32_to_cpup(fotg210, &hw->hw_info1);
 501	struct fotg210_qtd *qtd;
 502	char *type = "";
 503	unsigned temp = 0;
 504
 505	/* count tds, get ep direction */
 506	list_for_each_entry(qtd, &qh->qtd_list, qtd_list) {
 507		temp++;
 508		switch ((hc32_to_cpu(fotg210, qtd->hw_token) >> 8) & 0x03) {
 509		case 0:
 510			type = "out";
 511			continue;
 512		case 1:
 513			type = "in";
 514			continue;
 515		}
 516	}
 517
 518	return scnprintf(buf, size, "(%c%d ep%d%s [%d/%d] q%d p%d)",
 519			speed_char(scratch), scratch & 0x007f,
 520			(scratch >> 8) & 0x000f, type, qh->usecs,
 521			qh->c_usecs, temp, (scratch >> 16) & 0x7ff);
 522}
 523
 524#define DBG_SCHED_LIMIT 64
 525static ssize_t fill_periodic_buffer(struct debug_buffer *buf)
 526{
 527	struct usb_hcd *hcd;
 528	struct fotg210_hcd *fotg210;
 529	unsigned long flags;
 530	union fotg210_shadow p, *seen;
 531	unsigned temp, size, seen_count;
 532	char *next;
 533	unsigned i;
 534	__hc32 tag;
 535
 536	seen = kmalloc_array(DBG_SCHED_LIMIT, sizeof(*seen), GFP_ATOMIC);
 537	if (!seen)
 538		return 0;
 539
 540	seen_count = 0;
 541
 542	hcd = bus_to_hcd(buf->bus);
 543	fotg210 = hcd_to_fotg210(hcd);
 544	next = buf->output_buf;
 545	size = buf->alloc_size;
 546
 547	temp = scnprintf(next, size, "size = %d\n", fotg210->periodic_size);
 548	size -= temp;
 549	next += temp;
 550
 551	/* dump a snapshot of the periodic schedule.
 552	 * iso changes, interrupt usually doesn't.
 553	 */
 554	spin_lock_irqsave(&fotg210->lock, flags);
 555	for (i = 0; i < fotg210->periodic_size; i++) {
 556		p = fotg210->pshadow[i];
 557		if (likely(!p.ptr))
 558			continue;
 559
 560		tag = Q_NEXT_TYPE(fotg210, fotg210->periodic[i]);
 561
 562		temp = scnprintf(next, size, "%4d: ", i);
 563		size -= temp;
 564		next += temp;
 565
 566		do {
 567			struct fotg210_qh_hw *hw;
 568
 569			switch (hc32_to_cpu(fotg210, tag)) {
 570			case Q_TYPE_QH:
 571				hw = p.qh->hw;
 572				temp = scnprintf(next, size, " qh%d-%04x/%p",
 573						p.qh->period,
 574						hc32_to_cpup(fotg210,
 575							&hw->hw_info2)
 576							/* uframe masks */
 577							& (QH_CMASK | QH_SMASK),
 578						p.qh);
 579				size -= temp;
 580				next += temp;
 581				/* don't repeat what follows this qh */
 582				for (temp = 0; temp < seen_count; temp++) {
 583					if (seen[temp].ptr != p.ptr)
 584						continue;
 585					if (p.qh->qh_next.ptr) {
 586						temp = scnprintf(next, size,
 587								" ...");
 588						size -= temp;
 589						next += temp;
 590					}
 591					break;
 592				}
 593				/* show more info the first time around */
 594				if (temp == seen_count) {
 595					temp = output_buf_tds_dir(next,
 596							fotg210, hw,
 597							p.qh, size);
 598
 599					if (seen_count < DBG_SCHED_LIMIT)
 600						seen[seen_count++].qh = p.qh;
 601				} else
 602					temp = 0;
 603				tag = Q_NEXT_TYPE(fotg210, hw->hw_next);
 604				p = p.qh->qh_next;
 605				break;
 606			case Q_TYPE_FSTN:
 607				temp = scnprintf(next, size,
 608						" fstn-%8x/%p",
 609						p.fstn->hw_prev, p.fstn);
 610				tag = Q_NEXT_TYPE(fotg210, p.fstn->hw_next);
 611				p = p.fstn->fstn_next;
 612				break;
 613			case Q_TYPE_ITD:
 614				temp = scnprintf(next, size,
 615						" itd/%p", p.itd);
 616				tag = Q_NEXT_TYPE(fotg210, p.itd->hw_next);
 617				p = p.itd->itd_next;
 618				break;
 619			}
 620			size -= temp;
 621			next += temp;
 622		} while (p.ptr);
 623
 624		temp = scnprintf(next, size, "\n");
 625		size -= temp;
 626		next += temp;
 627	}
 628	spin_unlock_irqrestore(&fotg210->lock, flags);
 629	kfree(seen);
 630
 631	return buf->alloc_size - size;
 632}
 633#undef DBG_SCHED_LIMIT
 634
 635static const char *rh_state_string(struct fotg210_hcd *fotg210)
 636{
 637	switch (fotg210->rh_state) {
 638	case FOTG210_RH_HALTED:
 639		return "halted";
 640	case FOTG210_RH_SUSPENDED:
 641		return "suspended";
 642	case FOTG210_RH_RUNNING:
 643		return "running";
 644	case FOTG210_RH_STOPPING:
 645		return "stopping";
 646	}
 647	return "?";
 648}
 649
 650static ssize_t fill_registers_buffer(struct debug_buffer *buf)
 651{
 652	struct usb_hcd *hcd;
 653	struct fotg210_hcd *fotg210;
 654	unsigned long flags;
 655	unsigned temp, size, i;
 656	char *next, scratch[80];
 657	static const char fmt[] = "%*s\n";
 658	static const char label[] = "";
 659
 660	hcd = bus_to_hcd(buf->bus);
 661	fotg210 = hcd_to_fotg210(hcd);
 662	next = buf->output_buf;
 663	size = buf->alloc_size;
 664
 665	spin_lock_irqsave(&fotg210->lock, flags);
 666
 667	if (!HCD_HW_ACCESSIBLE(hcd)) {
 668		size = scnprintf(next, size,
 669				"bus %s, device %s\n"
 670				"%s\n"
 671				"SUSPENDED(no register access)\n",
 672				hcd->self.controller->bus->name,
 673				dev_name(hcd->self.controller),
 674				hcd->product_desc);
 675		goto done;
 676	}
 677
 678	/* Capability Registers */
 679	i = HC_VERSION(fotg210, fotg210_readl(fotg210,
 680			&fotg210->caps->hc_capbase));
 681	temp = scnprintf(next, size,
 682			"bus %s, device %s\n"
 683			"%s\n"
 684			"EHCI %x.%02x, rh state %s\n",
 685			hcd->self.controller->bus->name,
 686			dev_name(hcd->self.controller),
 687			hcd->product_desc,
 688			i >> 8, i & 0x0ff, rh_state_string(fotg210));
 689	size -= temp;
 690	next += temp;
 691
 692	/* FIXME interpret both types of params */
 693	i = fotg210_readl(fotg210, &fotg210->caps->hcs_params);
 694	temp = scnprintf(next, size, "structural params 0x%08x\n", i);
 695	size -= temp;
 696	next += temp;
 697
 698	i = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
 699	temp = scnprintf(next, size, "capability params 0x%08x\n", i);
 700	size -= temp;
 701	next += temp;
 702
 703	/* Operational Registers */
 704	temp = dbg_status_buf(scratch, sizeof(scratch), label,
 705			fotg210_readl(fotg210, &fotg210->regs->status));
 706	temp = scnprintf(next, size, fmt, temp, scratch);
 707	size -= temp;
 708	next += temp;
 709
 710	temp = dbg_command_buf(scratch, sizeof(scratch), label,
 711			fotg210_readl(fotg210, &fotg210->regs->command));
 712	temp = scnprintf(next, size, fmt, temp, scratch);
 713	size -= temp;
 714	next += temp;
 715
 716	temp = dbg_intr_buf(scratch, sizeof(scratch), label,
 717			fotg210_readl(fotg210, &fotg210->regs->intr_enable));
 718	temp = scnprintf(next, size, fmt, temp, scratch);
 719	size -= temp;
 720	next += temp;
 721
 722	temp = scnprintf(next, size, "uframe %04x\n",
 723			fotg210_read_frame_index(fotg210));
 724	size -= temp;
 725	next += temp;
 726
 727	if (fotg210->async_unlink) {
 728		temp = scnprintf(next, size, "async unlink qh %p\n",
 729				fotg210->async_unlink);
 730		size -= temp;
 731		next += temp;
 732	}
 733
 734#ifdef FOTG210_STATS
 735	temp = scnprintf(next, size,
 736			"irq normal %ld err %ld iaa %ld(lost %ld)\n",
 737			fotg210->stats.normal, fotg210->stats.error,
 738			fotg210->stats.iaa, fotg210->stats.lost_iaa);
 739	size -= temp;
 740	next += temp;
 741
 742	temp = scnprintf(next, size, "complete %ld unlink %ld\n",
 743			fotg210->stats.complete, fotg210->stats.unlink);
 744	size -= temp;
 745	next += temp;
 746#endif
 747
 748done:
 749	spin_unlock_irqrestore(&fotg210->lock, flags);
 750
 751	return buf->alloc_size - size;
 752}
 753
 754static struct debug_buffer
 755*alloc_buffer(struct usb_bus *bus, ssize_t (*fill_func)(struct debug_buffer *))
 756{
 757	struct debug_buffer *buf;
 758
 759	buf = kzalloc(sizeof(struct debug_buffer), GFP_KERNEL);
 760
 761	if (buf) {
 762		buf->bus = bus;
 763		buf->fill_func = fill_func;
 764		mutex_init(&buf->mutex);
 765		buf->alloc_size = PAGE_SIZE;
 766	}
 767
 768	return buf;
 769}
 770
 771static int fill_buffer(struct debug_buffer *buf)
 772{
 773	int ret = 0;
 774
 775	if (!buf->output_buf)
 776		buf->output_buf = vmalloc(buf->alloc_size);
 777
 778	if (!buf->output_buf) {
 779		ret = -ENOMEM;
 780		goto out;
 781	}
 782
 783	ret = buf->fill_func(buf);
 784
 785	if (ret >= 0) {
 786		buf->count = ret;
 787		ret = 0;
 788	}
 789
 790out:
 791	return ret;
 792}
 793
 794static ssize_t debug_output(struct file *file, char __user *user_buf,
 795		size_t len, loff_t *offset)
 796{
 797	struct debug_buffer *buf = file->private_data;
 798	int ret = 0;
 799
 800	mutex_lock(&buf->mutex);
 801	if (buf->count == 0) {
 802		ret = fill_buffer(buf);
 803		if (ret != 0) {
 804			mutex_unlock(&buf->mutex);
 805			goto out;
 806		}
 807	}
 808	mutex_unlock(&buf->mutex);
 809
 810	ret = simple_read_from_buffer(user_buf, len, offset,
 811			buf->output_buf, buf->count);
 812
 813out:
 814	return ret;
 815
 816}
 817
 818static int debug_close(struct inode *inode, struct file *file)
 819{
 820	struct debug_buffer *buf = file->private_data;
 821
 822	if (buf) {
 823		vfree(buf->output_buf);
 824		kfree(buf);
 825	}
 826
 827	return 0;
 828}
 829static int debug_async_open(struct inode *inode, struct file *file)
 830{
 831	file->private_data = alloc_buffer(inode->i_private, fill_async_buffer);
 832
 833	return file->private_data ? 0 : -ENOMEM;
 834}
 835
 836static int debug_periodic_open(struct inode *inode, struct file *file)
 837{
 838	struct debug_buffer *buf;
 839
 840	buf = alloc_buffer(inode->i_private, fill_periodic_buffer);
 841	if (!buf)
 842		return -ENOMEM;
 843
 844	buf->alloc_size = (sizeof(void *) == 4 ? 6 : 8)*PAGE_SIZE;
 845	file->private_data = buf;
 846	return 0;
 847}
 848
 849static int debug_registers_open(struct inode *inode, struct file *file)
 850{
 851	file->private_data = alloc_buffer(inode->i_private,
 852			fill_registers_buffer);
 853
 854	return file->private_data ? 0 : -ENOMEM;
 855}
 856
 857static inline void create_debug_files(struct fotg210_hcd *fotg210)
 858{
 859	struct usb_bus *bus = &fotg210_to_hcd(fotg210)->self;
 860
 861	fotg210->debug_dir = debugfs_create_dir(bus->bus_name,
 862			fotg210_debug_root);
 863	if (!fotg210->debug_dir)
 864		return;
 865
 866	if (!debugfs_create_file("async", S_IRUGO, fotg210->debug_dir, bus,
 867			&debug_async_fops))
 868		goto file_error;
 869
 870	if (!debugfs_create_file("periodic", S_IRUGO, fotg210->debug_dir, bus,
 871			&debug_periodic_fops))
 872		goto file_error;
 873
 874	if (!debugfs_create_file("registers", S_IRUGO, fotg210->debug_dir, bus,
 875			&debug_registers_fops))
 876		goto file_error;
 877
 878	return;
 879
 880file_error:
 881	debugfs_remove_recursive(fotg210->debug_dir);
 882}
 883
 884static inline void remove_debug_files(struct fotg210_hcd *fotg210)
 885{
 886	debugfs_remove_recursive(fotg210->debug_dir);
 887}
 888
 889/* handshake - spin reading hc until handshake completes or fails
 890 * @ptr: address of hc register to be read
 891 * @mask: bits to look at in result of read
 892 * @done: value of those bits when handshake succeeds
 893 * @usec: timeout in microseconds
 894 *
 895 * Returns negative errno, or zero on success
 896 *
 897 * Success happens when the "mask" bits have the specified value (hardware
 898 * handshake done).  There are two failure modes:  "usec" have passed (major
 899 * hardware flakeout), or the register reads as all-ones (hardware removed).
 900 *
 901 * That last failure should_only happen in cases like physical cardbus eject
 902 * before driver shutdown. But it also seems to be caused by bugs in cardbus
 903 * bridge shutdown:  shutting down the bridge before the devices using it.
 904 */
 905static int handshake(struct fotg210_hcd *fotg210, void __iomem *ptr,
 906		u32 mask, u32 done, int usec)
 907{
 908	u32 result;
 909
 910	do {
 911		result = fotg210_readl(fotg210, ptr);
 912		if (result == ~(u32)0)		/* card removed */
 913			return -ENODEV;
 914		result &= mask;
 915		if (result == done)
 916			return 0;
 917		udelay(1);
 918		usec--;
 919	} while (usec > 0);
 920	return -ETIMEDOUT;
 921}
 922
 923/* Force HC to halt state from unknown (EHCI spec section 2.3).
 924 * Must be called with interrupts enabled and the lock not held.
 925 */
 926static int fotg210_halt(struct fotg210_hcd *fotg210)
 927{
 928	u32 temp;
 929
 930	spin_lock_irq(&fotg210->lock);
 931
 932	/* disable any irqs left enabled by previous code */
 933	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
 934
 935	/*
 936	 * This routine gets called during probe before fotg210->command
 937	 * has been initialized, so we can't rely on its value.
 938	 */
 939	fotg210->command &= ~CMD_RUN;
 940	temp = fotg210_readl(fotg210, &fotg210->regs->command);
 941	temp &= ~(CMD_RUN | CMD_IAAD);
 942	fotg210_writel(fotg210, temp, &fotg210->regs->command);
 943
 944	spin_unlock_irq(&fotg210->lock);
 945	synchronize_irq(fotg210_to_hcd(fotg210)->irq);
 946
 947	return handshake(fotg210, &fotg210->regs->status,
 948			STS_HALT, STS_HALT, 16 * 125);
 949}
 950
 951/* Reset a non-running (STS_HALT == 1) controller.
 952 * Must be called with interrupts enabled and the lock not held.
 953 */
 954static int fotg210_reset(struct fotg210_hcd *fotg210)
 955{
 956	int retval;
 957	u32 command = fotg210_readl(fotg210, &fotg210->regs->command);
 958
 959	/* If the EHCI debug controller is active, special care must be
 960	 * taken before and after a host controller reset
 961	 */
 962	if (fotg210->debug && !dbgp_reset_prep(fotg210_to_hcd(fotg210)))
 963		fotg210->debug = NULL;
 964
 965	command |= CMD_RESET;
 966	dbg_cmd(fotg210, "reset", command);
 967	fotg210_writel(fotg210, command, &fotg210->regs->command);
 968	fotg210->rh_state = FOTG210_RH_HALTED;
 969	fotg210->next_statechange = jiffies;
 970	retval = handshake(fotg210, &fotg210->regs->command,
 971			CMD_RESET, 0, 250 * 1000);
 972
 973	if (retval)
 974		return retval;
 975
 976	if (fotg210->debug)
 977		dbgp_external_startup(fotg210_to_hcd(fotg210));
 978
 979	fotg210->port_c_suspend = fotg210->suspended_ports =
 980			fotg210->resuming_ports = 0;
 981	return retval;
 982}
 983
 984/* Idle the controller (turn off the schedules).
 985 * Must be called with interrupts enabled and the lock not held.
 986 */
 987static void fotg210_quiesce(struct fotg210_hcd *fotg210)
 988{
 989	u32 temp;
 990
 991	if (fotg210->rh_state != FOTG210_RH_RUNNING)
 992		return;
 993
 994	/* wait for any schedule enables/disables to take effect */
 995	temp = (fotg210->command << 10) & (STS_ASS | STS_PSS);
 996	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, temp,
 997			16 * 125);
 998
 999	/* then disable anything that's still active */
1000	spin_lock_irq(&fotg210->lock);
1001	fotg210->command &= ~(CMD_ASE | CMD_PSE);
1002	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1003	spin_unlock_irq(&fotg210->lock);
1004
1005	/* hardware can take 16 microframes to turn off ... */
1006	handshake(fotg210, &fotg210->regs->status, STS_ASS | STS_PSS, 0,
1007			16 * 125);
1008}
1009
1010static void end_unlink_async(struct fotg210_hcd *fotg210);
1011static void unlink_empty_async(struct fotg210_hcd *fotg210);
1012static void fotg210_work(struct fotg210_hcd *fotg210);
1013static void start_unlink_intr(struct fotg210_hcd *fotg210,
1014			      struct fotg210_qh *qh);
1015static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
1016
1017/* Set a bit in the USBCMD register */
1018static void fotg210_set_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1019{
1020	fotg210->command |= bit;
1021	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1022
1023	/* unblock posted write */
1024	fotg210_readl(fotg210, &fotg210->regs->command);
1025}
1026
1027/* Clear a bit in the USBCMD register */
1028static void fotg210_clear_command_bit(struct fotg210_hcd *fotg210, u32 bit)
1029{
1030	fotg210->command &= ~bit;
1031	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
1032
1033	/* unblock posted write */
1034	fotg210_readl(fotg210, &fotg210->regs->command);
1035}
1036
1037/* EHCI timer support...  Now using hrtimers.
1038 *
1039 * Lots of different events are triggered from fotg210->hrtimer.  Whenever
1040 * the timer routine runs, it checks each possible event; events that are
1041 * currently enabled and whose expiration time has passed get handled.
1042 * The set of enabled events is stored as a collection of bitflags in
1043 * fotg210->enabled_hrtimer_events, and they are numbered in order of
1044 * increasing delay values (ranging between 1 ms and 100 ms).
1045 *
1046 * Rather than implementing a sorted list or tree of all pending events,
1047 * we keep track only of the lowest-numbered pending event, in
1048 * fotg210->next_hrtimer_event.  Whenever fotg210->hrtimer gets restarted, its
1049 * expiration time is set to the timeout value for this event.
1050 *
1051 * As a result, events might not get handled right away; the actual delay
1052 * could be anywhere up to twice the requested delay.  This doesn't
1053 * matter, because none of the events are especially time-critical.  The
1054 * ones that matter most all have a delay of 1 ms, so they will be
1055 * handled after 2 ms at most, which is okay.  In addition to this, we
1056 * allow for an expiration range of 1 ms.
1057 */
1058
1059/* Delay lengths for the hrtimer event types.
1060 * Keep this list sorted by delay length, in the same order as
1061 * the event types indexed by enum fotg210_hrtimer_event in fotg210.h.
1062 */
1063static unsigned event_delays_ns[] = {
1064	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_ASS */
1065	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_PSS */
1066	1 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_POLL_DEAD */
1067	1125 * NSEC_PER_USEC,	/* FOTG210_HRTIMER_UNLINK_INTR */
1068	2 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_FREE_ITDS */
1069	6 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1070	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IAA_WATCHDOG */
1071	10 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1072	15 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_DISABLE_ASYNC */
1073	100 * NSEC_PER_MSEC,	/* FOTG210_HRTIMER_IO_WATCHDOG */
1074};
1075
1076/* Enable a pending hrtimer event */
1077static void fotg210_enable_event(struct fotg210_hcd *fotg210, unsigned event,
1078		bool resched)
1079{
1080	ktime_t *timeout = &fotg210->hr_timeouts[event];
1081
1082	if (resched)
1083		*timeout = ktime_add(ktime_get(), event_delays_ns[event]);
1084	fotg210->enabled_hrtimer_events |= (1 << event);
1085
1086	/* Track only the lowest-numbered pending event */
1087	if (event < fotg210->next_hrtimer_event) {
1088		fotg210->next_hrtimer_event = event;
1089		hrtimer_start_range_ns(&fotg210->hrtimer, *timeout,
1090				NSEC_PER_MSEC, HRTIMER_MODE_ABS);
1091	}
1092}
1093
1094
1095/* Poll the STS_ASS status bit; see when it agrees with CMD_ASE */
1096static void fotg210_poll_ASS(struct fotg210_hcd *fotg210)
1097{
1098	unsigned actual, want;
1099
1100	/* Don't enable anything if the controller isn't running (e.g., died) */
1101	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1102		return;
1103
1104	want = (fotg210->command & CMD_ASE) ? STS_ASS : 0;
1105	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_ASS;
1106
1107	if (want != actual) {
1108
1109		/* Poll again later, but give up after about 20 ms */
1110		if (fotg210->ASS_poll_count++ < 20) {
1111			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_ASS,
1112					true);
1113			return;
1114		}
1115		fotg210_dbg(fotg210, "Waited too long for the async schedule status (%x/%x), giving up\n",
1116				want, actual);
1117	}
1118	fotg210->ASS_poll_count = 0;
1119
1120	/* The status is up-to-date; restart or stop the schedule as needed */
1121	if (want == 0) {	/* Stopped */
1122		if (fotg210->async_count > 0)
1123			fotg210_set_command_bit(fotg210, CMD_ASE);
1124
1125	} else {		/* Running */
1126		if (fotg210->async_count == 0) {
1127
1128			/* Turn off the schedule after a while */
1129			fotg210_enable_event(fotg210,
1130					FOTG210_HRTIMER_DISABLE_ASYNC,
1131					true);
1132		}
1133	}
1134}
1135
1136/* Turn off the async schedule after a brief delay */
1137static void fotg210_disable_ASE(struct fotg210_hcd *fotg210)
1138{
1139	fotg210_clear_command_bit(fotg210, CMD_ASE);
1140}
1141
1142
1143/* Poll the STS_PSS status bit; see when it agrees with CMD_PSE */
1144static void fotg210_poll_PSS(struct fotg210_hcd *fotg210)
1145{
1146	unsigned actual, want;
1147
1148	/* Don't do anything if the controller isn't running (e.g., died) */
1149	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1150		return;
1151
1152	want = (fotg210->command & CMD_PSE) ? STS_PSS : 0;
1153	actual = fotg210_readl(fotg210, &fotg210->regs->status) & STS_PSS;
1154
1155	if (want != actual) {
1156
1157		/* Poll again later, but give up after about 20 ms */
1158		if (fotg210->PSS_poll_count++ < 20) {
1159			fotg210_enable_event(fotg210, FOTG210_HRTIMER_POLL_PSS,
1160					true);
1161			return;
1162		}
1163		fotg210_dbg(fotg210, "Waited too long for the periodic schedule status (%x/%x), giving up\n",
1164				want, actual);
1165	}
1166	fotg210->PSS_poll_count = 0;
1167
1168	/* The status is up-to-date; restart or stop the schedule as needed */
1169	if (want == 0) {	/* Stopped */
1170		if (fotg210->periodic_count > 0)
1171			fotg210_set_command_bit(fotg210, CMD_PSE);
1172
1173	} else {		/* Running */
1174		if (fotg210->periodic_count == 0) {
1175
1176			/* Turn off the schedule after a while */
1177			fotg210_enable_event(fotg210,
1178					FOTG210_HRTIMER_DISABLE_PERIODIC,
1179					true);
1180		}
1181	}
1182}
1183
1184/* Turn off the periodic schedule after a brief delay */
1185static void fotg210_disable_PSE(struct fotg210_hcd *fotg210)
1186{
1187	fotg210_clear_command_bit(fotg210, CMD_PSE);
1188}
1189
1190
1191/* Poll the STS_HALT status bit; see when a dead controller stops */
1192static void fotg210_handle_controller_death(struct fotg210_hcd *fotg210)
1193{
1194	if (!(fotg210_readl(fotg210, &fotg210->regs->status) & STS_HALT)) {
1195
1196		/* Give up after a few milliseconds */
1197		if (fotg210->died_poll_count++ < 5) {
1198			/* Try again later */
1199			fotg210_enable_event(fotg210,
1200					FOTG210_HRTIMER_POLL_DEAD, true);
1201			return;
1202		}
1203		fotg210_warn(fotg210, "Waited too long for the controller to stop, giving up\n");
1204	}
1205
1206	/* Clean up the mess */
1207	fotg210->rh_state = FOTG210_RH_HALTED;
1208	fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
1209	fotg210_work(fotg210);
1210	end_unlink_async(fotg210);
1211
1212	/* Not in process context, so don't try to reset the controller */
1213}
1214
1215
1216/* Handle unlinked interrupt QHs once they are gone from the hardware */
1217static void fotg210_handle_intr_unlinks(struct fotg210_hcd *fotg210)
1218{
1219	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
1220
1221	/*
1222	 * Process all the QHs on the intr_unlink list that were added
1223	 * before the current unlink cycle began.  The list is in
1224	 * temporal order, so stop when we reach the first entry in the
1225	 * current cycle.  But if the root hub isn't running then
1226	 * process all the QHs on the list.
1227	 */
1228	fotg210->intr_unlinking = true;
1229	while (fotg210->intr_unlink) {
1230		struct fotg210_qh *qh = fotg210->intr_unlink;
1231
1232		if (!stopped && qh->unlink_cycle == fotg210->intr_unlink_cycle)
1233			break;
1234		fotg210->intr_unlink = qh->unlink_next;
1235		qh->unlink_next = NULL;
1236		end_unlink_intr(fotg210, qh);
1237	}
1238
1239	/* Handle remaining entries later */
1240	if (fotg210->intr_unlink) {
1241		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
1242				true);
1243		++fotg210->intr_unlink_cycle;
1244	}
1245	fotg210->intr_unlinking = false;
1246}
1247
1248
1249/* Start another free-iTDs/siTDs cycle */
1250static void start_free_itds(struct fotg210_hcd *fotg210)
1251{
1252	if (!(fotg210->enabled_hrtimer_events &
1253			BIT(FOTG210_HRTIMER_FREE_ITDS))) {
1254		fotg210->last_itd_to_free = list_entry(
1255				fotg210->cached_itd_list.prev,
1256				struct fotg210_itd, itd_list);
1257		fotg210_enable_event(fotg210, FOTG210_HRTIMER_FREE_ITDS, true);
1258	}
1259}
1260
1261/* Wait for controller to stop using old iTDs and siTDs */
1262static void end_free_itds(struct fotg210_hcd *fotg210)
1263{
1264	struct fotg210_itd *itd, *n;
1265
1266	if (fotg210->rh_state < FOTG210_RH_RUNNING)
1267		fotg210->last_itd_to_free = NULL;
1268
1269	list_for_each_entry_safe(itd, n, &fotg210->cached_itd_list, itd_list) {
1270		list_del(&itd->itd_list);
1271		dma_pool_free(fotg210->itd_pool, itd, itd->itd_dma);
1272		if (itd == fotg210->last_itd_to_free)
1273			break;
1274	}
1275
1276	if (!list_empty(&fotg210->cached_itd_list))
1277		start_free_itds(fotg210);
1278}
1279
1280
1281/* Handle lost (or very late) IAA interrupts */
1282static void fotg210_iaa_watchdog(struct fotg210_hcd *fotg210)
1283{
1284	if (fotg210->rh_state != FOTG210_RH_RUNNING)
1285		return;
1286
1287	/*
1288	 * Lost IAA irqs wedge things badly; seen first with a vt8235.
1289	 * So we need this watchdog, but must protect it against both
1290	 * (a) SMP races against real IAA firing and retriggering, and
1291	 * (b) clean HC shutdown, when IAA watchdog was pending.
1292	 */
1293	if (fotg210->async_iaa) {
1294		u32 cmd, status;
1295
1296		/* If we get here, IAA is *REALLY* late.  It's barely
1297		 * conceivable that the system is so busy that CMD_IAAD
1298		 * is still legitimately set, so let's be sure it's
1299		 * clear before we read STS_IAA.  (The HC should clear
1300		 * CMD_IAAD when it sets STS_IAA.)
1301		 */
1302		cmd = fotg210_readl(fotg210, &fotg210->regs->command);
1303
1304		/*
1305		 * If IAA is set here it either legitimately triggered
1306		 * after the watchdog timer expired (_way_ late, so we'll
1307		 * still count it as lost) ... or a silicon erratum:
1308		 * - VIA seems to set IAA without triggering the IRQ;
1309		 * - IAAD potentially cleared without setting IAA.
1310		 */
1311		status = fotg210_readl(fotg210, &fotg210->regs->status);
1312		if ((status & STS_IAA) || !(cmd & CMD_IAAD)) {
1313			COUNT(fotg210->stats.lost_iaa);
1314			fotg210_writel(fotg210, STS_IAA,
1315					&fotg210->regs->status);
1316		}
1317
1318		fotg210_dbg(fotg210, "IAA watchdog: status %x cmd %x\n",
1319				status, cmd);
1320		end_unlink_async(fotg210);
1321	}
1322}
1323
1324
1325/* Enable the I/O watchdog, if appropriate */
1326static void turn_on_io_watchdog(struct fotg210_hcd *fotg210)
1327{
1328	/* Not needed if the controller isn't running or it's already enabled */
1329	if (fotg210->rh_state != FOTG210_RH_RUNNING ||
1330			(fotg210->enabled_hrtimer_events &
1331			BIT(FOTG210_HRTIMER_IO_WATCHDOG)))
1332		return;
1333
1334	/*
1335	 * Isochronous transfers always need the watchdog.
1336	 * For other sorts we use it only if the flag is set.
1337	 */
1338	if (fotg210->isoc_count > 0 || (fotg210->need_io_watchdog &&
1339			fotg210->async_count + fotg210->intr_count > 0))
1340		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IO_WATCHDOG,
1341				true);
1342}
1343
1344
1345/* Handler functions for the hrtimer event types.
1346 * Keep this array in the same order as the event types indexed by
1347 * enum fotg210_hrtimer_event in fotg210.h.
1348 */
1349static void (*event_handlers[])(struct fotg210_hcd *) = {
1350	fotg210_poll_ASS,			/* FOTG210_HRTIMER_POLL_ASS */
1351	fotg210_poll_PSS,			/* FOTG210_HRTIMER_POLL_PSS */
1352	fotg210_handle_controller_death,	/* FOTG210_HRTIMER_POLL_DEAD */
1353	fotg210_handle_intr_unlinks,	/* FOTG210_HRTIMER_UNLINK_INTR */
1354	end_free_itds,			/* FOTG210_HRTIMER_FREE_ITDS */
1355	unlink_empty_async,		/* FOTG210_HRTIMER_ASYNC_UNLINKS */
1356	fotg210_iaa_watchdog,		/* FOTG210_HRTIMER_IAA_WATCHDOG */
1357	fotg210_disable_PSE,		/* FOTG210_HRTIMER_DISABLE_PERIODIC */
1358	fotg210_disable_ASE,		/* FOTG210_HRTIMER_DISABLE_ASYNC */
1359	fotg210_work,			/* FOTG210_HRTIMER_IO_WATCHDOG */
1360};
1361
1362static enum hrtimer_restart fotg210_hrtimer_func(struct hrtimer *t)
1363{
1364	struct fotg210_hcd *fotg210 =
1365			container_of(t, struct fotg210_hcd, hrtimer);
1366	ktime_t now;
1367	unsigned long events;
1368	unsigned long flags;
1369	unsigned e;
1370
1371	spin_lock_irqsave(&fotg210->lock, flags);
1372
1373	events = fotg210->enabled_hrtimer_events;
1374	fotg210->enabled_hrtimer_events = 0;
1375	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
1376
1377	/*
1378	 * Check each pending event.  If its time has expired, handle
1379	 * the event; otherwise re-enable it.
1380	 */
1381	now = ktime_get();
1382	for_each_set_bit(e, &events, FOTG210_HRTIMER_NUM_EVENTS) {
1383		if (now >= fotg210->hr_timeouts[e])
1384			event_handlers[e](fotg210);
1385		else
1386			fotg210_enable_event(fotg210, e, false);
1387	}
1388
1389	spin_unlock_irqrestore(&fotg210->lock, flags);
1390	return HRTIMER_NORESTART;
1391}
1392
1393#define fotg210_bus_suspend NULL
1394#define fotg210_bus_resume NULL
1395
1396static int check_reset_complete(struct fotg210_hcd *fotg210, int index,
1397		u32 __iomem *status_reg, int port_status)
1398{
1399	if (!(port_status & PORT_CONNECT))
1400		return port_status;
1401
1402	/* if reset finished and it's still not enabled -- handoff */
1403	if (!(port_status & PORT_PE))
1404		/* with integrated TT, there's nobody to hand it to! */
1405		fotg210_dbg(fotg210, "Failed to enable port %d on root hub TT\n",
1406				index + 1);
1407	else
1408		fotg210_dbg(fotg210, "port %d reset complete, port enabled\n",
1409				index + 1);
1410
1411	return port_status;
1412}
1413
1414
1415/* build "status change" packet (one or two bytes) from HC registers */
1416
1417static int fotg210_hub_status_data(struct usb_hcd *hcd, char *buf)
1418{
1419	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1420	u32 temp, status;
1421	u32 mask;
1422	int retval = 1;
1423	unsigned long flags;
1424
1425	/* init status to no-changes */
1426	buf[0] = 0;
1427
1428	/* Inform the core about resumes-in-progress by returning
1429	 * a non-zero value even if there are no status changes.
1430	 */
1431	status = fotg210->resuming_ports;
1432
1433	mask = PORT_CSC | PORT_PEC;
1434	/* PORT_RESUME from hardware ~= PORT_STAT_C_SUSPEND */
1435
1436	/* no hub change reports (bit 0) for now (power, ...) */
1437
1438	/* port N changes (bit N)? */
1439	spin_lock_irqsave(&fotg210->lock, flags);
1440
1441	temp = fotg210_readl(fotg210, &fotg210->regs->port_status);
1442
1443	/*
1444	 * Return status information even for ports with OWNER set.
1445	 * Otherwise hub_wq wouldn't see the disconnect event when a
1446	 * high-speed device is switched over to the companion
1447	 * controller by the user.
1448	 */
1449
1450	if ((temp & mask) != 0 || test_bit(0, &fotg210->port_c_suspend) ||
1451			(fotg210->reset_done[0] &&
1452			time_after_eq(jiffies, fotg210->reset_done[0]))) {
1453		buf[0] |= 1 << 1;
1454		status = STS_PCD;
1455	}
1456	/* FIXME autosuspend idle root hubs */
1457	spin_unlock_irqrestore(&fotg210->lock, flags);
1458	return status ? retval : 0;
1459}
1460
1461static void fotg210_hub_descriptor(struct fotg210_hcd *fotg210,
1462		struct usb_hub_descriptor *desc)
1463{
1464	int ports = HCS_N_PORTS(fotg210->hcs_params);
1465	u16 temp;
1466
1467	desc->bDescriptorType = USB_DT_HUB;
1468	desc->bPwrOn2PwrGood = 10;	/* fotg210 1.0, 2.3.9 says 20ms max */
1469	desc->bHubContrCurrent = 0;
1470
1471	desc->bNbrPorts = ports;
1472	temp = 1 + (ports / 8);
1473	desc->bDescLength = 7 + 2 * temp;
1474
1475	/* two bitmaps:  ports removable, and usb 1.0 legacy PortPwrCtrlMask */
1476	memset(&desc->u.hs.DeviceRemovable[0], 0, temp);
1477	memset(&desc->u.hs.DeviceRemovable[temp], 0xff, temp);
1478
1479	temp = HUB_CHAR_INDV_PORT_OCPM;	/* per-port overcurrent reporting */
1480	temp |= HUB_CHAR_NO_LPSM;	/* no power switching */
1481	desc->wHubCharacteristics = cpu_to_le16(temp);
1482}
1483
1484static int fotg210_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
1485		u16 wIndex, char *buf, u16 wLength)
1486{
1487	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
1488	int ports = HCS_N_PORTS(fotg210->hcs_params);
1489	u32 __iomem *status_reg = &fotg210->regs->port_status;
1490	u32 temp, temp1, status;
1491	unsigned long flags;
1492	int retval = 0;
1493	unsigned selector;
1494
1495	/*
1496	 * FIXME:  support SetPortFeatures USB_PORT_FEAT_INDICATOR.
1497	 * HCS_INDICATOR may say we can change LEDs to off/amber/green.
1498	 * (track current state ourselves) ... blink for diagnostics,
1499	 * power, "this is the one", etc.  EHCI spec supports this.
1500	 */
1501
1502	spin_lock_irqsave(&fotg210->lock, flags);
1503	switch (typeReq) {
1504	case ClearHubFeature:
1505		switch (wValue) {
1506		case C_HUB_LOCAL_POWER:
1507		case C_HUB_OVER_CURRENT:
1508			/* no hub-wide feature/status flags */
1509			break;
1510		default:
1511			goto error;
1512		}
1513		break;
1514	case ClearPortFeature:
1515		if (!wIndex || wIndex > ports)
1516			goto error;
1517		wIndex--;
1518		temp = fotg210_readl(fotg210, status_reg);
1519		temp &= ~PORT_RWC_BITS;
1520
1521		/*
1522		 * Even if OWNER is set, so the port is owned by the
1523		 * companion controller, hub_wq needs to be able to clear
1524		 * the port-change status bits (especially
1525		 * USB_PORT_STAT_C_CONNECTION).
1526		 */
1527
1528		switch (wValue) {
1529		case USB_PORT_FEAT_ENABLE:
1530			fotg210_writel(fotg210, temp & ~PORT_PE, status_reg);
1531			break;
1532		case USB_PORT_FEAT_C_ENABLE:
1533			fotg210_writel(fotg210, temp | PORT_PEC, status_reg);
1534			break;
1535		case USB_PORT_FEAT_SUSPEND:
1536			if (temp & PORT_RESET)
1537				goto error;
1538			if (!(temp & PORT_SUSPEND))
1539				break;
1540			if ((temp & PORT_PE) == 0)
1541				goto error;
1542
1543			/* resume signaling for 20 msec */
1544			fotg210_writel(fotg210, temp | PORT_RESUME, status_reg);
1545			fotg210->reset_done[wIndex] = jiffies
1546					+ msecs_to_jiffies(USB_RESUME_TIMEOUT);
1547			break;
1548		case USB_PORT_FEAT_C_SUSPEND:
1549			clear_bit(wIndex, &fotg210->port_c_suspend);
1550			break;
1551		case USB_PORT_FEAT_C_CONNECTION:
1552			fotg210_writel(fotg210, temp | PORT_CSC, status_reg);
1553			break;
1554		case USB_PORT_FEAT_C_OVER_CURRENT:
1555			fotg210_writel(fotg210, temp | OTGISR_OVC,
1556					&fotg210->regs->otgisr);
1557			break;
1558		case USB_PORT_FEAT_C_RESET:
1559			/* GetPortStatus clears reset */
1560			break;
1561		default:
1562			goto error;
1563		}
1564		fotg210_readl(fotg210, &fotg210->regs->command);
1565		break;
1566	case GetHubDescriptor:
1567		fotg210_hub_descriptor(fotg210, (struct usb_hub_descriptor *)
1568				buf);
1569		break;
1570	case GetHubStatus:
1571		/* no hub-wide feature/status flags */
1572		memset(buf, 0, 4);
1573		/*cpu_to_le32s ((u32 *) buf); */
1574		break;
1575	case GetPortStatus:
1576		if (!wIndex || wIndex > ports)
1577			goto error;
1578		wIndex--;
1579		status = 0;
1580		temp = fotg210_readl(fotg210, status_reg);
1581
1582		/* wPortChange bits */
1583		if (temp & PORT_CSC)
1584			status |= USB_PORT_STAT_C_CONNECTION << 16;
1585		if (temp & PORT_PEC)
1586			status |= USB_PORT_STAT_C_ENABLE << 16;
1587
1588		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1589		if (temp1 & OTGISR_OVC)
1590			status |= USB_PORT_STAT_C_OVERCURRENT << 16;
1591
1592		/* whoever resumes must GetPortStatus to complete it!! */
1593		if (temp & PORT_RESUME) {
1594
1595			/* Remote Wakeup received? */
1596			if (!fotg210->reset_done[wIndex]) {
1597				/* resume signaling for 20 msec */
1598				fotg210->reset_done[wIndex] = jiffies
1599						+ msecs_to_jiffies(20);
1600				/* check the port again */
1601				mod_timer(&fotg210_to_hcd(fotg210)->rh_timer,
1602						fotg210->reset_done[wIndex]);
1603			}
1604
1605			/* resume completed? */
1606			else if (time_after_eq(jiffies,
1607					fotg210->reset_done[wIndex])) {
1608				clear_bit(wIndex, &fotg210->suspended_ports);
1609				set_bit(wIndex, &fotg210->port_c_suspend);
1610				fotg210->reset_done[wIndex] = 0;
1611
1612				/* stop resume signaling */
1613				temp = fotg210_readl(fotg210, status_reg);
1614				fotg210_writel(fotg210, temp &
1615						~(PORT_RWC_BITS | PORT_RESUME),
1616						status_reg);
1617				clear_bit(wIndex, &fotg210->resuming_ports);
1618				retval = handshake(fotg210, status_reg,
1619						PORT_RESUME, 0, 2000);/* 2ms */
1620				if (retval != 0) {
1621					fotg210_err(fotg210,
1622							"port %d resume error %d\n",
1623							wIndex + 1, retval);
1624					goto error;
1625				}
1626				temp &= ~(PORT_SUSPEND|PORT_RESUME|(3<<10));
1627			}
1628		}
1629
1630		/* whoever resets must GetPortStatus to complete it!! */
1631		if ((temp & PORT_RESET) && time_after_eq(jiffies,
1632				fotg210->reset_done[wIndex])) {
1633			status |= USB_PORT_STAT_C_RESET << 16;
1634			fotg210->reset_done[wIndex] = 0;
1635			clear_bit(wIndex, &fotg210->resuming_ports);
1636
1637			/* force reset to complete */
1638			fotg210_writel(fotg210,
1639					temp & ~(PORT_RWC_BITS | PORT_RESET),
1640					status_reg);
1641			/* REVISIT:  some hardware needs 550+ usec to clear
1642			 * this bit; seems too long to spin routinely...
1643			 */
1644			retval = handshake(fotg210, status_reg,
1645					PORT_RESET, 0, 1000);
1646			if (retval != 0) {
1647				fotg210_err(fotg210, "port %d reset error %d\n",
1648						wIndex + 1, retval);
1649				goto error;
1650			}
1651
1652			/* see what we found out */
1653			temp = check_reset_complete(fotg210, wIndex, status_reg,
1654					fotg210_readl(fotg210, status_reg));
1655		}
1656
1657		if (!(temp & (PORT_RESUME|PORT_RESET))) {
1658			fotg210->reset_done[wIndex] = 0;
1659			clear_bit(wIndex, &fotg210->resuming_ports);
1660		}
1661
1662		/* transfer dedicated ports to the companion hc */
1663		if ((temp & PORT_CONNECT) &&
1664				test_bit(wIndex, &fotg210->companion_ports)) {
1665			temp &= ~PORT_RWC_BITS;
1666			fotg210_writel(fotg210, temp, status_reg);
1667			fotg210_dbg(fotg210, "port %d --> companion\n",
1668					wIndex + 1);
1669			temp = fotg210_readl(fotg210, status_reg);
1670		}
1671
1672		/*
1673		 * Even if OWNER is set, there's no harm letting hub_wq
1674		 * see the wPortStatus values (they should all be 0 except
1675		 * for PORT_POWER anyway).
1676		 */
1677
1678		if (temp & PORT_CONNECT) {
1679			status |= USB_PORT_STAT_CONNECTION;
1680			status |= fotg210_port_speed(fotg210, temp);
1681		}
1682		if (temp & PORT_PE)
1683			status |= USB_PORT_STAT_ENABLE;
1684
1685		/* maybe the port was unsuspended without our knowledge */
1686		if (temp & (PORT_SUSPEND|PORT_RESUME)) {
1687			status |= USB_PORT_STAT_SUSPEND;
1688		} else if (test_bit(wIndex, &fotg210->suspended_ports)) {
1689			clear_bit(wIndex, &fotg210->suspended_ports);
1690			clear_bit(wIndex, &fotg210->resuming_ports);
1691			fotg210->reset_done[wIndex] = 0;
1692			if (temp & PORT_PE)
1693				set_bit(wIndex, &fotg210->port_c_suspend);
1694		}
1695
1696		temp1 = fotg210_readl(fotg210, &fotg210->regs->otgisr);
1697		if (temp1 & OTGISR_OVC)
1698			status |= USB_PORT_STAT_OVERCURRENT;
1699		if (temp & PORT_RESET)
1700			status |= USB_PORT_STAT_RESET;
1701		if (test_bit(wIndex, &fotg210->port_c_suspend))
1702			status |= USB_PORT_STAT_C_SUSPEND << 16;
1703
1704		if (status & ~0xffff)	/* only if wPortChange is interesting */
1705			dbg_port(fotg210, "GetStatus", wIndex + 1, temp);
1706		put_unaligned_le32(status, buf);
1707		break;
1708	case SetHubFeature:
1709		switch (wValue) {
1710		case C_HUB_LOCAL_POWER:
1711		case C_HUB_OVER_CURRENT:
1712			/* no hub-wide feature/status flags */
1713			break;
1714		default:
1715			goto error;
1716		}
1717		break;
1718	case SetPortFeature:
1719		selector = wIndex >> 8;
1720		wIndex &= 0xff;
1721
1722		if (!wIndex || wIndex > ports)
1723			goto error;
1724		wIndex--;
1725		temp = fotg210_readl(fotg210, status_reg);
1726		temp &= ~PORT_RWC_BITS;
1727		switch (wValue) {
1728		case USB_PORT_FEAT_SUSPEND:
1729			if ((temp & PORT_PE) == 0
1730					|| (temp & PORT_RESET) != 0)
1731				goto error;
1732
1733			/* After above check the port must be connected.
1734			 * Set appropriate bit thus could put phy into low power
1735			 * mode if we have hostpc feature
1736			 */
1737			fotg210_writel(fotg210, temp | PORT_SUSPEND,
1738					status_reg);
1739			set_bit(wIndex, &fotg210->suspended_ports);
1740			break;
1741		case USB_PORT_FEAT_RESET:
1742			if (temp & PORT_RESUME)
1743				goto error;
1744			/* line status bits may report this as low speed,
1745			 * which can be fine if this root hub has a
1746			 * transaction translator built in.
1747			 */
1748			fotg210_dbg(fotg210, "port %d reset\n", wIndex + 1);
1749			temp |= PORT_RESET;
1750			temp &= ~PORT_PE;
1751
1752			/*
1753			 * caller must wait, then call GetPortStatus
1754			 * usb 2.0 spec says 50 ms resets on root
1755			 */
1756			fotg210->reset_done[wIndex] = jiffies
1757					+ msecs_to_jiffies(50);
1758			fotg210_writel(fotg210, temp, status_reg);
1759			break;
1760
1761		/* For downstream facing ports (these):  one hub port is put
1762		 * into test mode according to USB2 11.24.2.13, then the hub
1763		 * must be reset (which for root hub now means rmmod+modprobe,
1764		 * or else system reboot).  See EHCI 2.3.9 and 4.14 for info
1765		 * about the EHCI-specific stuff.
1766		 */
1767		case USB_PORT_FEAT_TEST:
1768			if (!selector || selector > 5)
1769				goto error;
1770			spin_unlock_irqrestore(&fotg210->lock, flags);
1771			fotg210_quiesce(fotg210);
1772			spin_lock_irqsave(&fotg210->lock, flags);
1773
1774			/* Put all enabled ports into suspend */
1775			temp = fotg210_readl(fotg210, status_reg) &
1776				~PORT_RWC_BITS;
1777			if (temp & PORT_PE)
1778				fotg210_writel(fotg210, temp | PORT_SUSPEND,
1779						status_reg);
1780
1781			spin_unlock_irqrestore(&fotg210->lock, flags);
1782			fotg210_halt(fotg210);
1783			spin_lock_irqsave(&fotg210->lock, flags);
1784
1785			temp = fotg210_readl(fotg210, status_reg);
1786			temp |= selector << 16;
1787			fotg210_writel(fotg210, temp, status_reg);
1788			break;
1789
1790		default:
1791			goto error;
1792		}
1793		fotg210_readl(fotg210, &fotg210->regs->command);
1794		break;
1795
1796	default:
1797error:
1798		/* "stall" on error */
1799		retval = -EPIPE;
1800	}
1801	spin_unlock_irqrestore(&fotg210->lock, flags);
1802	return retval;
1803}
1804
1805static void __maybe_unused fotg210_relinquish_port(struct usb_hcd *hcd,
1806		int portnum)
1807{
1808	return;
1809}
1810
1811static int __maybe_unused fotg210_port_handed_over(struct usb_hcd *hcd,
1812		int portnum)
1813{
1814	return 0;
1815}
1816
1817/* There's basically three types of memory:
1818 *	- data used only by the HCD ... kmalloc is fine
1819 *	- async and periodic schedules, shared by HC and HCD ... these
1820 *	  need to use dma_pool or dma_alloc_coherent
1821 *	- driver buffers, read/written by HC ... single shot DMA mapped
1822 *
1823 * There's also "register" data (e.g. PCI or SOC), which is memory mapped.
1824 * No memory seen by this driver is pageable.
1825 */
1826
1827/* Allocate the key transfer structures from the previously allocated pool */
1828static inline void fotg210_qtd_init(struct fotg210_hcd *fotg210,
1829		struct fotg210_qtd *qtd, dma_addr_t dma)
1830{
1831	memset(qtd, 0, sizeof(*qtd));
1832	qtd->qtd_dma = dma;
1833	qtd->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
1834	qtd->hw_next = FOTG210_LIST_END(fotg210);
1835	qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
1836	INIT_LIST_HEAD(&qtd->qtd_list);
1837}
1838
1839static struct fotg210_qtd *fotg210_qtd_alloc(struct fotg210_hcd *fotg210,
1840		gfp_t flags)
1841{
1842	struct fotg210_qtd *qtd;
1843	dma_addr_t dma;
1844
1845	qtd = dma_pool_alloc(fotg210->qtd_pool, flags, &dma);
1846	if (qtd != NULL)
1847		fotg210_qtd_init(fotg210, qtd, dma);
1848
1849	return qtd;
1850}
1851
1852static inline void fotg210_qtd_free(struct fotg210_hcd *fotg210,
1853		struct fotg210_qtd *qtd)
1854{
1855	dma_pool_free(fotg210->qtd_pool, qtd, qtd->qtd_dma);
1856}
1857
1858
1859static void qh_destroy(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
1860{
1861	/* clean qtds first, and know this is not linked */
1862	if (!list_empty(&qh->qtd_list) || qh->qh_next.ptr) {
1863		fotg210_dbg(fotg210, "unused qh not empty!\n");
1864		BUG();
1865	}
1866	if (qh->dummy)
1867		fotg210_qtd_free(fotg210, qh->dummy);
1868	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1869	kfree(qh);
1870}
1871
1872static struct fotg210_qh *fotg210_qh_alloc(struct fotg210_hcd *fotg210,
1873		gfp_t flags)
1874{
1875	struct fotg210_qh *qh;
1876	dma_addr_t dma;
1877
1878	qh = kzalloc(sizeof(*qh), GFP_ATOMIC);
1879	if (!qh)
1880		goto done;
1881	qh->hw = (struct fotg210_qh_hw *)
1882		dma_pool_alloc(fotg210->qh_pool, flags, &dma);
1883	if (!qh->hw)
1884		goto fail;
1885	memset(qh->hw, 0, sizeof(*qh->hw));
1886	qh->qh_dma = dma;
1887	INIT_LIST_HEAD(&qh->qtd_list);
1888
1889	/* dummy td enables safe urb queuing */
1890	qh->dummy = fotg210_qtd_alloc(fotg210, flags);
1891	if (qh->dummy == NULL) {
1892		fotg210_dbg(fotg210, "no dummy td\n");
1893		goto fail1;
1894	}
1895done:
1896	return qh;
1897fail1:
1898	dma_pool_free(fotg210->qh_pool, qh->hw, qh->qh_dma);
1899fail:
1900	kfree(qh);
1901	return NULL;
1902}
1903
1904/* The queue heads and transfer descriptors are managed from pools tied
1905 * to each of the "per device" structures.
1906 * This is the initialisation and cleanup code.
1907 */
1908
1909static void fotg210_mem_cleanup(struct fotg210_hcd *fotg210)
1910{
1911	if (fotg210->async)
1912		qh_destroy(fotg210, fotg210->async);
1913	fotg210->async = NULL;
1914
1915	if (fotg210->dummy)
1916		qh_destroy(fotg210, fotg210->dummy);
1917	fotg210->dummy = NULL;
1918
1919	/* DMA consistent memory and pools */
1920	dma_pool_destroy(fotg210->qtd_pool);
1921	fotg210->qtd_pool = NULL;
1922
1923	dma_pool_destroy(fotg210->qh_pool);
1924	fotg210->qh_pool = NULL;
1925
1926	dma_pool_destroy(fotg210->itd_pool);
1927	fotg210->itd_pool = NULL;
1928
1929	if (fotg210->periodic)
1930		dma_free_coherent(fotg210_to_hcd(fotg210)->self.controller,
1931				fotg210->periodic_size * sizeof(u32),
1932				fotg210->periodic, fotg210->periodic_dma);
1933	fotg210->periodic = NULL;
1934
1935	/* shadow periodic table */
1936	kfree(fotg210->pshadow);
1937	fotg210->pshadow = NULL;
1938}
1939
1940/* remember to add cleanup code (above) if you add anything here */
1941static int fotg210_mem_init(struct fotg210_hcd *fotg210, gfp_t flags)
1942{
1943	int i;
1944
1945	/* QTDs for control/bulk/intr transfers */
1946	fotg210->qtd_pool = dma_pool_create("fotg210_qtd",
1947			fotg210_to_hcd(fotg210)->self.controller,
1948			sizeof(struct fotg210_qtd),
1949			32 /* byte alignment (for hw parts) */,
1950			4096 /* can't cross 4K */);
1951	if (!fotg210->qtd_pool)
1952		goto fail;
1953
1954	/* QHs for control/bulk/intr transfers */
1955	fotg210->qh_pool = dma_pool_create("fotg210_qh",
1956			fotg210_to_hcd(fotg210)->self.controller,
1957			sizeof(struct fotg210_qh_hw),
1958			32 /* byte alignment (for hw parts) */,
1959			4096 /* can't cross 4K */);
1960	if (!fotg210->qh_pool)
1961		goto fail;
1962
1963	fotg210->async = fotg210_qh_alloc(fotg210, flags);
1964	if (!fotg210->async)
1965		goto fail;
1966
1967	/* ITD for high speed ISO transfers */
1968	fotg210->itd_pool = dma_pool_create("fotg210_itd",
1969			fotg210_to_hcd(fotg210)->self.controller,
1970			sizeof(struct fotg210_itd),
1971			64 /* byte alignment (for hw parts) */,
1972			4096 /* can't cross 4K */);
1973	if (!fotg210->itd_pool)
1974		goto fail;
1975
1976	/* Hardware periodic table */
1977	fotg210->periodic = (__le32 *)
1978		dma_alloc_coherent(fotg210_to_hcd(fotg210)->self.controller,
1979				fotg210->periodic_size * sizeof(__le32),
1980				&fotg210->periodic_dma, 0);
1981	if (fotg210->periodic == NULL)
1982		goto fail;
1983
1984	for (i = 0; i < fotg210->periodic_size; i++)
1985		fotg210->periodic[i] = FOTG210_LIST_END(fotg210);
1986
1987	/* software shadow of hardware table */
1988	fotg210->pshadow = kcalloc(fotg210->periodic_size, sizeof(void *),
1989			flags);
1990	if (fotg210->pshadow != NULL)
1991		return 0;
1992
1993fail:
1994	fotg210_dbg(fotg210, "couldn't init memory\n");
1995	fotg210_mem_cleanup(fotg210);
1996	return -ENOMEM;
1997}
1998/* EHCI hardware queue manipulation ... the core.  QH/QTD manipulation.
1999 *
2000 * Control, bulk, and interrupt traffic all use "qh" lists.  They list "qtd"
2001 * entries describing USB transactions, max 16-20kB/entry (with 4kB-aligned
2002 * buffers needed for the larger number).  We use one QH per endpoint, queue
2003 * multiple urbs (all three types) per endpoint.  URBs may need several qtds.
2004 *
2005 * ISO traffic uses "ISO TD" (itd) records, and (along with
2006 * interrupts) needs careful scheduling.  Performance improvements can be
2007 * an ongoing challenge.  That's in "ehci-sched.c".
2008 *
2009 * USB 1.1 devices are handled (a) by "companion" OHCI or UHCI root hubs,
2010 * or otherwise through transaction translators (TTs) in USB 2.0 hubs using
2011 * (b) special fields in qh entries or (c) split iso entries.  TTs will
2012 * buffer low/full speed data so the host collects it at high speed.
2013 */
2014
2015/* fill a qtd, returning how much of the buffer we were able to queue up */
2016static int qtd_fill(struct fotg210_hcd *fotg210, struct fotg210_qtd *qtd,
2017		dma_addr_t buf, size_t len, int token, int maxpacket)
2018{
2019	int i, count;
2020	u64 addr = buf;
2021
2022	/* one buffer entry per 4K ... first might be short or unaligned */
2023	qtd->hw_buf[0] = cpu_to_hc32(fotg210, (u32)addr);
2024	qtd->hw_buf_hi[0] = cpu_to_hc32(fotg210, (u32)(addr >> 32));
2025	count = 0x1000 - (buf & 0x0fff);	/* rest of that page */
2026	if (likely(len < count))		/* ... iff needed */
2027		count = len;
2028	else {
2029		buf +=  0x1000;
2030		buf &= ~0x0fff;
2031
2032		/* per-qtd limit: from 16K to 20K (best alignment) */
2033		for (i = 1; count < len && i < 5; i++) {
2034			addr = buf;
2035			qtd->hw_buf[i] = cpu_to_hc32(fotg210, (u32)addr);
2036			qtd->hw_buf_hi[i] = cpu_to_hc32(fotg210,
2037					(u32)(addr >> 32));
2038			buf += 0x1000;
2039			if ((count + 0x1000) < len)
2040				count += 0x1000;
2041			else
2042				count = len;
2043		}
2044
2045		/* short packets may only terminate transfers */
2046		if (count != len)
2047			count -= (count % maxpacket);
2048	}
2049	qtd->hw_token = cpu_to_hc32(fotg210, (count << 16) | token);
2050	qtd->length = count;
2051
2052	return count;
2053}
2054
2055static inline void qh_update(struct fotg210_hcd *fotg210,
2056		struct fotg210_qh *qh, struct fotg210_qtd *qtd)
2057{
2058	struct fotg210_qh_hw *hw = qh->hw;
2059
2060	/* writes to an active overlay are unsafe */
2061	BUG_ON(qh->qh_state != QH_STATE_IDLE);
2062
2063	hw->hw_qtd_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2064	hw->hw_alt_next = FOTG210_LIST_END(fotg210);
2065
2066	/* Except for control endpoints, we make hardware maintain data
2067	 * toggle (like OHCI) ... here (re)initialize the toggle in the QH,
2068	 * and set the pseudo-toggle in udev. Only usb_clear_halt() will
2069	 * ever clear it.
2070	 */
2071	if (!(hw->hw_info1 & cpu_to_hc32(fotg210, QH_TOGGLE_CTL))) {
2072		unsigned is_out, epnum;
2073
2074		is_out = qh->is_out;
2075		epnum = (hc32_to_cpup(fotg210, &hw->hw_info1) >> 8) & 0x0f;
2076		if (unlikely(!usb_gettoggle(qh->dev, epnum, is_out))) {
2077			hw->hw_token &= ~cpu_to_hc32(fotg210, QTD_TOGGLE);
2078			usb_settoggle(qh->dev, epnum, is_out, 1);
2079		}
2080	}
2081
2082	hw->hw_token &= cpu_to_hc32(fotg210, QTD_TOGGLE | QTD_STS_PING);
2083}
2084
2085/* if it weren't for a common silicon quirk (writing the dummy into the qh
2086 * overlay, so qh->hw_token wrongly becomes inactive/halted), only fault
2087 * recovery (including urb dequeue) would need software changes to a QH...
2088 */
2089static void qh_refresh(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2090{
2091	struct fotg210_qtd *qtd;
2092
2093	if (list_empty(&qh->qtd_list))
2094		qtd = qh->dummy;
2095	else {
2096		qtd = list_entry(qh->qtd_list.next,
2097				struct fotg210_qtd, qtd_list);
2098		/*
2099		 * first qtd may already be partially processed.
2100		 * If we come here during unlink, the QH overlay region
2101		 * might have reference to the just unlinked qtd. The
2102		 * qtd is updated in qh_completions(). Update the QH
2103		 * overlay here.
2104		 */
2105		if (cpu_to_hc32(fotg210, qtd->qtd_dma) == qh->hw->hw_current) {
2106			qh->hw->hw_qtd_next = qtd->hw_next;
2107			qtd = NULL;
2108		}
2109	}
2110
2111	if (qtd)
2112		qh_update(fotg210, qh, qtd);
2113}
2114
2115static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2116
2117static void fotg210_clear_tt_buffer_complete(struct usb_hcd *hcd,
2118		struct usb_host_endpoint *ep)
2119{
2120	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
2121	struct fotg210_qh *qh = ep->hcpriv;
2122	unsigned long flags;
2123
2124	spin_lock_irqsave(&fotg210->lock, flags);
2125	qh->clearing_tt = 0;
2126	if (qh->qh_state == QH_STATE_IDLE && !list_empty(&qh->qtd_list)
2127			&& fotg210->rh_state == FOTG210_RH_RUNNING)
2128		qh_link_async(fotg210, qh);
2129	spin_unlock_irqrestore(&fotg210->lock, flags);
2130}
2131
2132static void fotg210_clear_tt_buffer(struct fotg210_hcd *fotg210,
2133		struct fotg210_qh *qh, struct urb *urb, u32 token)
2134{
2135
2136	/* If an async split transaction gets an error or is unlinked,
2137	 * the TT buffer may be left in an indeterminate state.  We
2138	 * have to clear the TT buffer.
2139	 *
2140	 * Note: this routine is never called for Isochronous transfers.
2141	 */
2142	if (urb->dev->tt && !usb_pipeint(urb->pipe) && !qh->clearing_tt) {
2143		struct usb_device *tt = urb->dev->tt->hub;
2144
2145		dev_dbg(&tt->dev,
2146				"clear tt buffer port %d, a%d ep%d t%08x\n",
2147				urb->dev->ttport, urb->dev->devnum,
2148				usb_pipeendpoint(urb->pipe), token);
2149
2150		if (urb->dev->tt->hub !=
2151				fotg210_to_hcd(fotg210)->self.root_hub) {
2152			if (usb_hub_clear_tt_buffer(urb) == 0)
2153				qh->clearing_tt = 1;
2154		}
2155	}
2156}
2157
2158static int qtd_copy_status(struct fotg210_hcd *fotg210, struct urb *urb,
2159		size_t length, u32 token)
2160{
2161	int status = -EINPROGRESS;
2162
2163	/* count IN/OUT bytes, not SETUP (even short packets) */
2164	if (likely(QTD_PID(token) != 2))
2165		urb->actual_length += length - QTD_LENGTH(token);
2166
2167	/* don't modify error codes */
2168	if (unlikely(urb->unlinked))
2169		return status;
2170
2171	/* force cleanup after short read; not always an error */
2172	if (unlikely(IS_SHORT_READ(token)))
2173		status = -EREMOTEIO;
2174
2175	/* serious "can't proceed" faults reported by the hardware */
2176	if (token & QTD_STS_HALT) {
2177		if (token & QTD_STS_BABBLE) {
2178			/* FIXME "must" disable babbling device's port too */
2179			status = -EOVERFLOW;
2180		/* CERR nonzero + halt --> stall */
2181		} else if (QTD_CERR(token)) {
2182			status = -EPIPE;
2183
2184		/* In theory, more than one of the following bits can be set
2185		 * since they are sticky and the transaction is retried.
2186		 * Which to test first is rather arbitrary.
2187		 */
2188		} else if (token & QTD_STS_MMF) {
2189			/* fs/ls interrupt xfer missed the complete-split */
2190			status = -EPROTO;
2191		} else if (token & QTD_STS_DBE) {
2192			status = (QTD_PID(token) == 1) /* IN ? */
2193				? -ENOSR  /* hc couldn't read data */
2194				: -ECOMM; /* hc couldn't write data */
2195		} else if (token & QTD_STS_XACT) {
2196			/* timeout, bad CRC, wrong PID, etc */
2197			fotg210_dbg(fotg210, "devpath %s ep%d%s 3strikes\n",
2198					urb->dev->devpath,
2199					usb_pipeendpoint(urb->pipe),
2200					usb_pipein(urb->pipe) ? "in" : "out");
2201			status = -EPROTO;
2202		} else {	/* unknown */
2203			status = -EPROTO;
2204		}
2205
2206		fotg210_dbg(fotg210,
2207				"dev%d ep%d%s qtd token %08x --> status %d\n",
2208				usb_pipedevice(urb->pipe),
2209				usb_pipeendpoint(urb->pipe),
2210				usb_pipein(urb->pipe) ? "in" : "out",
2211				token, status);
2212	}
2213
2214	return status;
2215}
2216
2217static void fotg210_urb_done(struct fotg210_hcd *fotg210, struct urb *urb,
2218		int status)
2219__releases(fotg210->lock)
2220__acquires(fotg210->lock)
2221{
2222	if (likely(urb->hcpriv != NULL)) {
2223		struct fotg210_qh *qh = (struct fotg210_qh *) urb->hcpriv;
2224
2225		/* S-mask in a QH means it's an interrupt urb */
2226		if ((qh->hw->hw_info2 & cpu_to_hc32(fotg210, QH_SMASK)) != 0) {
2227
2228			/* ... update hc-wide periodic stats (for usbfs) */
2229			fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs--;
2230		}
2231	}
2232
2233	if (unlikely(urb->unlinked)) {
2234		COUNT(fotg210->stats.unlink);
2235	} else {
2236		/* report non-error and short read status as zero */
2237		if (status == -EINPROGRESS || status == -EREMOTEIO)
2238			status = 0;
2239		COUNT(fotg210->stats.complete);
2240	}
2241
2242#ifdef FOTG210_URB_TRACE
2243	fotg210_dbg(fotg210,
2244			"%s %s urb %p ep%d%s status %d len %d/%d\n",
2245			__func__, urb->dev->devpath, urb,
2246			usb_pipeendpoint(urb->pipe),
2247			usb_pipein(urb->pipe) ? "in" : "out",
2248			status,
2249			urb->actual_length, urb->transfer_buffer_length);
2250#endif
2251
2252	/* complete() can reenter this HCD */
2253	usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
2254	spin_unlock(&fotg210->lock);
2255	usb_hcd_giveback_urb(fotg210_to_hcd(fotg210), urb, status);
2256	spin_lock(&fotg210->lock);
2257}
2258
2259static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh);
2260
2261/* Process and free completed qtds for a qh, returning URBs to drivers.
2262 * Chases up to qh->hw_current.  Returns number of completions called,
2263 * indicating how much "real" work we did.
2264 */
2265static unsigned qh_completions(struct fotg210_hcd *fotg210,
2266		struct fotg210_qh *qh)
2267{
2268	struct fotg210_qtd *last, *end = qh->dummy;
2269	struct fotg210_qtd *qtd, *tmp;
2270	int last_status;
2271	int stopped;
2272	unsigned count = 0;
2273	u8 state;
2274	struct fotg210_qh_hw *hw = qh->hw;
2275
2276	if (unlikely(list_empty(&qh->qtd_list)))
2277		return count;
2278
2279	/* completions (or tasks on other cpus) must never clobber HALT
2280	 * till we've gone through and cleaned everything up, even when
2281	 * they add urbs to this qh's queue or mark them for unlinking.
2282	 *
2283	 * NOTE:  unlinking expects to be done in queue order.
2284	 *
2285	 * It's a bug for qh->qh_state to be anything other than
2286	 * QH_STATE_IDLE, unless our caller is scan_async() or
2287	 * scan_intr().
2288	 */
2289	state = qh->qh_state;
2290	qh->qh_state = QH_STATE_COMPLETING;
2291	stopped = (state == QH_STATE_IDLE);
2292
2293rescan:
2294	last = NULL;
2295	last_status = -EINPROGRESS;
2296	qh->needs_rescan = 0;
2297
2298	/* remove de-activated QTDs from front of queue.
2299	 * after faults (including short reads), cleanup this urb
2300	 * then let the queue advance.
2301	 * if queue is stopped, handles unlinks.
2302	 */
2303	list_for_each_entry_safe(qtd, tmp, &qh->qtd_list, qtd_list) {
2304		struct urb *urb;
2305		u32 token = 0;
2306
2307		urb = qtd->urb;
2308
2309		/* clean up any state from previous QTD ...*/
2310		if (last) {
2311			if (likely(last->urb != urb)) {
2312				fotg210_urb_done(fotg210, last->urb,
2313						last_status);
2314				count++;
2315				last_status = -EINPROGRESS;
2316			}
2317			fotg210_qtd_free(fotg210, last);
2318			last = NULL;
2319		}
2320
2321		/* ignore urbs submitted during completions we reported */
2322		if (qtd == end)
2323			break;
2324
2325		/* hardware copies qtd out of qh overlay */
2326		rmb();
2327		token = hc32_to_cpu(fotg210, qtd->hw_token);
2328
2329		/* always clean up qtds the hc de-activated */
2330retry_xacterr:
2331		if ((token & QTD_STS_ACTIVE) == 0) {
2332
2333			/* Report Data Buffer Error: non-fatal but useful */
2334			if (token & QTD_STS_DBE)
2335				fotg210_dbg(fotg210,
2336					"detected DataBufferErr for urb %p ep%d%s len %d, qtd %p [qh %p]\n",
2337					urb, usb_endpoint_num(&urb->ep->desc),
2338					usb_endpoint_dir_in(&urb->ep->desc)
2339						? "in" : "out",
2340					urb->transfer_buffer_length, qtd, qh);
2341
2342			/* on STALL, error, and short reads this urb must
2343			 * complete and all its qtds must be recycled.
2344			 */
2345			if ((token & QTD_STS_HALT) != 0) {
2346
2347				/* retry transaction errors until we
2348				 * reach the software xacterr limit
2349				 */
2350				if ((token & QTD_STS_XACT) &&
2351						QTD_CERR(token) == 0 &&
2352						++qh->xacterrs < QH_XACTERR_MAX &&
2353						!urb->unlinked) {
2354					fotg210_dbg(fotg210,
2355						"detected XactErr len %zu/%zu retry %d\n",
2356						qtd->length - QTD_LENGTH(token),
2357						qtd->length,
2358						qh->xacterrs);
2359
2360					/* reset the token in the qtd and the
2361					 * qh overlay (which still contains
2362					 * the qtd) so that we pick up from
2363					 * where we left off
2364					 */
2365					token &= ~QTD_STS_HALT;
2366					token |= QTD_STS_ACTIVE |
2367						 (FOTG210_TUNE_CERR << 10);
2368					qtd->hw_token = cpu_to_hc32(fotg210,
2369							token);
2370					wmb();
2371					hw->hw_token = cpu_to_hc32(fotg210,
2372							token);
2373					goto retry_xacterr;
2374				}
2375				stopped = 1;
2376
2377			/* magic dummy for some short reads; qh won't advance.
2378			 * that silicon quirk can kick in with this dummy too.
2379			 *
2380			 * other short reads won't stop the queue, including
2381			 * control transfers (status stage handles that) or
2382			 * most other single-qtd reads ... the queue stops if
2383			 * URB_SHORT_NOT_OK was set so the driver submitting
2384			 * the urbs could clean it up.
2385			 */
2386			} else if (IS_SHORT_READ(token) &&
2387					!(qtd->hw_alt_next &
2388					FOTG210_LIST_END(fotg210))) {
2389				stopped = 1;
2390			}
2391
2392		/* stop scanning when we reach qtds the hc is using */
2393		} else if (likely(!stopped
2394				&& fotg210->rh_state >= FOTG210_RH_RUNNING)) {
2395			break;
2396
2397		/* scan the whole queue for unlinks whenever it stops */
2398		} else {
2399			stopped = 1;
2400
2401			/* cancel everything if we halt, suspend, etc */
2402			if (fotg210->rh_state < FOTG210_RH_RUNNING)
2403				last_status = -ESHUTDOWN;
2404
2405			/* this qtd is active; skip it unless a previous qtd
2406			 * for its urb faulted, or its urb was canceled.
2407			 */
2408			else if (last_status == -EINPROGRESS && !urb->unlinked)
2409				continue;
2410
2411			/* qh unlinked; token in overlay may be most current */
2412			if (state == QH_STATE_IDLE &&
2413					cpu_to_hc32(fotg210, qtd->qtd_dma)
2414					== hw->hw_current) {
2415				token = hc32_to_cpu(fotg210, hw->hw_token);
2416
2417				/* An unlink may leave an incomplete
2418				 * async transaction in the TT buffer.
2419				 * We have to clear it.
2420				 */
2421				fotg210_clear_tt_buffer(fotg210, qh, urb,
2422						token);
2423			}
2424		}
2425
2426		/* unless we already know the urb's status, collect qtd status
2427		 * and update count of bytes transferred.  in common short read
2428		 * cases with only one data qtd (including control transfers),
2429		 * queue processing won't halt.  but with two or more qtds (for
2430		 * example, with a 32 KB transfer), when the first qtd gets a
2431		 * short read the second must be removed by hand.
2432		 */
2433		if (last_status == -EINPROGRESS) {
2434			last_status = qtd_copy_status(fotg210, urb,
2435					qtd->length, token);
2436			if (last_status == -EREMOTEIO &&
2437					(qtd->hw_alt_next &
2438					FOTG210_LIST_END(fotg210)))
2439				last_status = -EINPROGRESS;
2440
2441			/* As part of low/full-speed endpoint-halt processing
2442			 * we must clear the TT buffer (11.17.5).
2443			 */
2444			if (unlikely(last_status != -EINPROGRESS &&
2445					last_status != -EREMOTEIO)) {
2446				/* The TT's in some hubs malfunction when they
2447				 * receive this request following a STALL (they
2448				 * stop sending isochronous packets).  Since a
2449				 * STALL can't leave the TT buffer in a busy
2450				 * state (if you believe Figures 11-48 - 11-51
2451				 * in the USB 2.0 spec), we won't clear the TT
2452				 * buffer in this case.  Strictly speaking this
2453				 * is a violation of the spec.
2454				 */
2455				if (last_status != -EPIPE)
2456					fotg210_clear_tt_buffer(fotg210, qh,
2457							urb, token);
2458			}
2459		}
2460
2461		/* if we're removing something not at the queue head,
2462		 * patch the hardware queue pointer.
2463		 */
2464		if (stopped && qtd->qtd_list.prev != &qh->qtd_list) {
2465			last = list_entry(qtd->qtd_list.prev,
2466					struct fotg210_qtd, qtd_list);
2467			last->hw_next = qtd->hw_next;
2468		}
2469
2470		/* remove qtd; it's recycled after possible urb completion */
2471		list_del(&qtd->qtd_list);
2472		last = qtd;
2473
2474		/* reinit the xacterr counter for the next qtd */
2475		qh->xacterrs = 0;
2476	}
2477
2478	/* last urb's completion might still need calling */
2479	if (likely(last != NULL)) {
2480		fotg210_urb_done(fotg210, last->urb, last_status);
2481		count++;
2482		fotg210_qtd_free(fotg210, last);
2483	}
2484
2485	/* Do we need to rescan for URBs dequeued during a giveback? */
2486	if (unlikely(qh->needs_rescan)) {
2487		/* If the QH is already unlinked, do the rescan now. */
2488		if (state == QH_STATE_IDLE)
2489			goto rescan;
2490
2491		/* Otherwise we have to wait until the QH is fully unlinked.
2492		 * Our caller will start an unlink if qh->needs_rescan is
2493		 * set.  But if an unlink has already started, nothing needs
2494		 * to be done.
2495		 */
2496		if (state != QH_STATE_LINKED)
2497			qh->needs_rescan = 0;
2498	}
2499
2500	/* restore original state; caller must unlink or relink */
2501	qh->qh_state = state;
2502
2503	/* be sure the hardware's done with the qh before refreshing
2504	 * it after fault cleanup, or recovering from silicon wrongly
2505	 * overlaying the dummy qtd (which reduces DMA chatter).
2506	 */
2507	if (stopped != 0 || hw->hw_qtd_next == FOTG210_LIST_END(fotg210)) {
2508		switch (state) {
2509		case QH_STATE_IDLE:
2510			qh_refresh(fotg210, qh);
2511			break;
2512		case QH_STATE_LINKED:
2513			/* We won't refresh a QH that's linked (after the HC
2514			 * stopped the queue).  That avoids a race:
2515			 *  - HC reads first part of QH;
2516			 *  - CPU updates that first part and the token;
2517			 *  - HC reads rest of that QH, including token
2518			 * Result:  HC gets an inconsistent image, and then
2519			 * DMAs to/from the wrong memory (corrupting it).
2520			 *
2521			 * That should be rare for interrupt transfers,
2522			 * except maybe high bandwidth ...
2523			 */
2524
2525			/* Tell the caller to start an unlink */
2526			qh->needs_rescan = 1;
2527			break;
2528		/* otherwise, unlink already started */
2529		}
2530	}
2531
2532	return count;
2533}
2534
2535/* high bandwidth multiplier, as encoded in highspeed endpoint descriptors */
2536#define hb_mult(wMaxPacketSize) (1 + (((wMaxPacketSize) >> 11) & 0x03))
2537/* ... and packet size, for any kind of endpoint descriptor */
2538#define max_packet(wMaxPacketSize) ((wMaxPacketSize) & 0x07ff)
2539
2540/* reverse of qh_urb_transaction:  free a list of TDs.
2541 * used for cleanup after errors, before HC sees an URB's TDs.
2542 */
2543static void qtd_list_free(struct fotg210_hcd *fotg210, struct urb *urb,
2544		struct list_head *head)
2545{
2546	struct fotg210_qtd *qtd, *temp;
2547
2548	list_for_each_entry_safe(qtd, temp, head, qtd_list) {
2549		list_del(&qtd->qtd_list);
2550		fotg210_qtd_free(fotg210, qtd);
2551	}
2552}
2553
2554/* create a list of filled qtds for this URB; won't link into qh.
2555 */
2556static struct list_head *qh_urb_transaction(struct fotg210_hcd *fotg210,
2557		struct urb *urb, struct list_head *head, gfp_t flags)
2558{
2559	struct fotg210_qtd *qtd, *qtd_prev;
2560	dma_addr_t buf;
2561	int len, this_sg_len, maxpacket;
2562	int is_input;
2563	u32 token;
2564	int i;
2565	struct scatterlist *sg;
2566
2567	/*
2568	 * URBs map to sequences of QTDs:  one logical transaction
2569	 */
2570	qtd = fotg210_qtd_alloc(fotg210, flags);
2571	if (unlikely(!qtd))
2572		return NULL;
2573	list_add_tail(&qtd->qtd_list, head);
2574	qtd->urb = urb;
2575
2576	token = QTD_STS_ACTIVE;
2577	token |= (FOTG210_TUNE_CERR << 10);
2578	/* for split transactions, SplitXState initialized to zero */
2579
2580	len = urb->transfer_buffer_length;
2581	is_input = usb_pipein(urb->pipe);
2582	if (usb_pipecontrol(urb->pipe)) {
2583		/* SETUP pid */
2584		qtd_fill(fotg210, qtd, urb->setup_dma,
2585				sizeof(struct usb_ctrlrequest),
2586				token | (2 /* "setup" */ << 8), 8);
2587
2588		/* ... and always at least one more pid */
2589		token ^= QTD_TOGGLE;
2590		qtd_prev = qtd;
2591		qtd = fotg210_qtd_alloc(fotg210, flags);
2592		if (unlikely(!qtd))
2593			goto cleanup;
2594		qtd->urb = urb;
2595		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2596		list_add_tail(&qtd->qtd_list, head);
2597
2598		/* for zero length DATA stages, STATUS is always IN */
2599		if (len == 0)
2600			token |= (1 /* "in" */ << 8);
2601	}
2602
2603	/*
2604	 * data transfer stage:  buffer setup
2605	 */
2606	i = urb->num_mapped_sgs;
2607	if (len > 0 && i > 0) {
2608		sg = urb->sg;
2609		buf = sg_dma_address(sg);
2610
2611		/* urb->transfer_buffer_length may be smaller than the
2612		 * size of the scatterlist (or vice versa)
2613		 */
2614		this_sg_len = min_t(int, sg_dma_len(sg), len);
2615	} else {
2616		sg = NULL;
2617		buf = urb->transfer_dma;
2618		this_sg_len = len;
2619	}
2620
2621	if (is_input)
2622		token |= (1 /* "in" */ << 8);
2623	/* else it's already initted to "out" pid (0 << 8) */
2624
2625	maxpacket = max_packet(usb_maxpacket(urb->dev, urb->pipe, !is_input));
2626
2627	/*
2628	 * buffer gets wrapped in one or more qtds;
2629	 * last one may be "short" (including zero len)
2630	 * and may serve as a control status ack
2631	 */
2632	for (;;) {
2633		int this_qtd_len;
2634
2635		this_qtd_len = qtd_fill(fotg210, qtd, buf, this_sg_len, token,
2636				maxpacket);
2637		this_sg_len -= this_qtd_len;
2638		len -= this_qtd_len;
2639		buf += this_qtd_len;
2640
2641		/*
2642		 * short reads advance to a "magic" dummy instead of the next
2643		 * qtd ... that forces the queue to stop, for manual cleanup.
2644		 * (this will usually be overridden later.)
2645		 */
2646		if (is_input)
2647			qtd->hw_alt_next = fotg210->async->hw->hw_alt_next;
2648
2649		/* qh makes control packets use qtd toggle; maybe switch it */
2650		if ((maxpacket & (this_qtd_len + (maxpacket - 1))) == 0)
2651			token ^= QTD_TOGGLE;
2652
2653		if (likely(this_sg_len <= 0)) {
2654			if (--i <= 0 || len <= 0)
2655				break;
2656			sg = sg_next(sg);
2657			buf = sg_dma_address(sg);
2658			this_sg_len = min_t(int, sg_dma_len(sg), len);
2659		}
2660
2661		qtd_prev = qtd;
2662		qtd = fotg210_qtd_alloc(fotg210, flags);
2663		if (unlikely(!qtd))
2664			goto cleanup;
2665		qtd->urb = urb;
2666		qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2667		list_add_tail(&qtd->qtd_list, head);
2668	}
2669
2670	/*
2671	 * unless the caller requires manual cleanup after short reads,
2672	 * have the alt_next mechanism keep the queue running after the
2673	 * last data qtd (the only one, for control and most other cases).
2674	 */
2675	if (likely((urb->transfer_flags & URB_SHORT_NOT_OK) == 0 ||
2676			usb_pipecontrol(urb->pipe)))
2677		qtd->hw_alt_next = FOTG210_LIST_END(fotg210);
2678
2679	/*
2680	 * control requests may need a terminating data "status" ack;
2681	 * other OUT ones may need a terminating short packet
2682	 * (zero length).
2683	 */
2684	if (likely(urb->transfer_buffer_length != 0)) {
2685		int one_more = 0;
2686
2687		if (usb_pipecontrol(urb->pipe)) {
2688			one_more = 1;
2689			token ^= 0x0100;	/* "in" <--> "out"  */
2690			token |= QTD_TOGGLE;	/* force DATA1 */
2691		} else if (usb_pipeout(urb->pipe)
2692				&& (urb->transfer_flags & URB_ZERO_PACKET)
2693				&& !(urb->transfer_buffer_length % maxpacket)) {
2694			one_more = 1;
2695		}
2696		if (one_more) {
2697			qtd_prev = qtd;
2698			qtd = fotg210_qtd_alloc(fotg210, flags);
2699			if (unlikely(!qtd))
2700				goto cleanup;
2701			qtd->urb = urb;
2702			qtd_prev->hw_next = QTD_NEXT(fotg210, qtd->qtd_dma);
2703			list_add_tail(&qtd->qtd_list, head);
2704
2705			/* never any data in such packets */
2706			qtd_fill(fotg210, qtd, 0, 0, token, 0);
2707		}
2708	}
2709
2710	/* by default, enable interrupt on urb completion */
2711	if (likely(!(urb->transfer_flags & URB_NO_INTERRUPT)))
2712		qtd->hw_token |= cpu_to_hc32(fotg210, QTD_IOC);
2713	return head;
2714
2715cleanup:
2716	qtd_list_free(fotg210, urb, head);
2717	return NULL;
2718}
2719
2720/* Would be best to create all qh's from config descriptors,
2721 * when each interface/altsetting is established.  Unlink
2722 * any previous qh and cancel its urbs first; endpoints are
2723 * implicitly reset then (data toggle too).
2724 * That'd mean updating how usbcore talks to HCDs. (2.7?)
2725*/
2726
2727
2728/* Each QH holds a qtd list; a QH is used for everything except iso.
2729 *
2730 * For interrupt urbs, the scheduler must set the microframe scheduling
2731 * mask(s) each time the QH gets scheduled.  For highspeed, that's
2732 * just one microframe in the s-mask.  For split interrupt transactions
2733 * there are additional complications: c-mask, maybe FSTNs.
2734 */
2735static struct fotg210_qh *qh_make(struct fotg210_hcd *fotg210, struct urb *urb,
2736		gfp_t flags)
2737{
2738	struct fotg210_qh *qh = fotg210_qh_alloc(fotg210, flags);
2739	u32 info1 = 0, info2 = 0;
2740	int is_input, type;
2741	int maxp = 0;
2742	struct usb_tt *tt = urb->dev->tt;
2743	struct fotg210_qh_hw *hw;
2744
2745	if (!qh)
2746		return qh;
2747
2748	/*
2749	 * init endpoint/device data for this QH
2750	 */
2751	info1 |= usb_pipeendpoint(urb->pipe) << 8;
2752	info1 |= usb_pipedevice(urb->pipe) << 0;
2753
2754	is_input = usb_pipein(urb->pipe);
2755	type = usb_pipetype(urb->pipe);
2756	maxp = usb_maxpacket(urb->dev, urb->pipe, !is_input);
2757
2758	/* 1024 byte maxpacket is a hardware ceiling.  High bandwidth
2759	 * acts like up to 3KB, but is built from smaller packets.
2760	 */
2761	if (max_packet(maxp) > 1024) {
2762		fotg210_dbg(fotg210, "bogus qh maxpacket %d\n",
2763				max_packet(maxp));
2764		goto done;
2765	}
2766
2767	/* Compute interrupt scheduling parameters just once, and save.
2768	 * - allowing for high bandwidth, how many nsec/uframe are used?
2769	 * - split transactions need a second CSPLIT uframe; same question
2770	 * - splits also need a schedule gap (for full/low speed I/O)
2771	 * - qh has a polling interval
2772	 *
2773	 * For control/bulk requests, the HC or TT handles these.
2774	 */
2775	if (type == PIPE_INTERRUPT) {
2776		qh->usecs = NS_TO_US(usb_calc_bus_time(USB_SPEED_HIGH,
2777				is_input, 0,
2778				hb_mult(maxp) * max_packet(maxp)));
2779		qh->start = NO_FRAME;
2780
2781		if (urb->dev->speed == USB_SPEED_HIGH) {
2782			qh->c_usecs = 0;
2783			qh->gap_uf = 0;
2784
2785			qh->period = urb->interval >> 3;
2786			if (qh->period == 0 && urb->interval != 1) {
2787				/* NOTE interval 2 or 4 uframes could work.
2788				 * But interval 1 scheduling is simpler, and
2789				 * includes high bandwidth.
2790				 */
2791				urb->interval = 1;
2792			} else if (qh->period > fotg210->periodic_size) {
2793				qh->period = fotg210->periodic_size;
2794				urb->interval = qh->period << 3;
2795			}
2796		} else {
2797			int think_time;
2798
2799			/* gap is f(FS/LS transfer times) */
2800			qh->gap_uf = 1 + usb_calc_bus_time(urb->dev->speed,
2801					is_input, 0, maxp) / (125 * 1000);
2802
2803			/* FIXME this just approximates SPLIT/CSPLIT times */
2804			if (is_input) {		/* SPLIT, gap, CSPLIT+DATA */
2805				qh->c_usecs = qh->usecs + HS_USECS(0);
2806				qh->usecs = HS_USECS(1);
2807			} else {		/* SPLIT+DATA, gap, CSPLIT */
2808				qh->usecs += HS_USECS(1);
2809				qh->c_usecs = HS_USECS(0);
2810			}
2811
2812			think_time = tt ? tt->think_time : 0;
2813			qh->tt_usecs = NS_TO_US(think_time +
2814					usb_calc_bus_time(urb->dev->speed,
2815					is_input, 0, max_packet(maxp)));
2816			qh->period = urb->interval;
2817			if (qh->period > fotg210->periodic_size) {
2818				qh->period = fotg210->periodic_size;
2819				urb->interval = qh->period;
2820			}
2821		}
2822	}
2823
2824	/* support for tt scheduling, and access to toggles */
2825	qh->dev = urb->dev;
2826
2827	/* using TT? */
2828	switch (urb->dev->speed) {
2829	case USB_SPEED_LOW:
2830		info1 |= QH_LOW_SPEED;
2831		/* FALL THROUGH */
2832
2833	case USB_SPEED_FULL:
2834		/* EPS 0 means "full" */
2835		if (type != PIPE_INTERRUPT)
2836			info1 |= (FOTG210_TUNE_RL_TT << 28);
2837		if (type == PIPE_CONTROL) {
2838			info1 |= QH_CONTROL_EP;		/* for TT */
2839			info1 |= QH_TOGGLE_CTL;		/* toggle from qtd */
2840		}
2841		info1 |= maxp << 16;
2842
2843		info2 |= (FOTG210_TUNE_MULT_TT << 30);
2844
2845		/* Some Freescale processors have an erratum in which the
2846		 * port number in the queue head was 0..N-1 instead of 1..N.
2847		 */
2848		if (fotg210_has_fsl_portno_bug(fotg210))
2849			info2 |= (urb->dev->ttport-1) << 23;
2850		else
2851			info2 |= urb->dev->ttport << 23;
2852
2853		/* set the address of the TT; for TDI's integrated
2854		 * root hub tt, leave it zeroed.
2855		 */
2856		if (tt && tt->hub != fotg210_to_hcd(fotg210)->self.root_hub)
2857			info2 |= tt->hub->devnum << 16;
2858
2859		/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets c-mask } */
2860
2861		break;
2862
2863	case USB_SPEED_HIGH:		/* no TT involved */
2864		info1 |= QH_HIGH_SPEED;
2865		if (type == PIPE_CONTROL) {
2866			info1 |= (FOTG210_TUNE_RL_HS << 28);
2867			info1 |= 64 << 16;	/* usb2 fixed maxpacket */
2868			info1 |= QH_TOGGLE_CTL;	/* toggle from qtd */
2869			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2870		} else if (type == PIPE_BULK) {
2871			info1 |= (FOTG210_TUNE_RL_HS << 28);
2872			/* The USB spec says that high speed bulk endpoints
2873			 * always use 512 byte maxpacket.  But some device
2874			 * vendors decided to ignore that, and MSFT is happy
2875			 * to help them do so.  So now people expect to use
2876			 * such nonconformant devices with Linux too; sigh.
2877			 */
2878			info1 |= max_packet(maxp) << 16;
2879			info2 |= (FOTG210_TUNE_MULT_HS << 30);
2880		} else {		/* PIPE_INTERRUPT */
2881			info1 |= max_packet(maxp) << 16;
2882			info2 |= hb_mult(maxp) << 30;
2883		}
2884		break;
2885	default:
2886		fotg210_dbg(fotg210, "bogus dev %p speed %d\n", urb->dev,
2887				urb->dev->speed);
2888done:
2889		qh_destroy(fotg210, qh);
2890		return NULL;
2891	}
2892
2893	/* NOTE:  if (PIPE_INTERRUPT) { scheduler sets s-mask } */
2894
2895	/* init as live, toggle clear, advance to dummy */
2896	qh->qh_state = QH_STATE_IDLE;
2897	hw = qh->hw;
2898	hw->hw_info1 = cpu_to_hc32(fotg210, info1);
2899	hw->hw_info2 = cpu_to_hc32(fotg210, info2);
2900	qh->is_out = !is_input;
2901	usb_settoggle(urb->dev, usb_pipeendpoint(urb->pipe), !is_input, 1);
2902	qh_refresh(fotg210, qh);
2903	return qh;
2904}
2905
2906static void enable_async(struct fotg210_hcd *fotg210)
2907{
2908	if (fotg210->async_count++)
2909		return;
2910
2911	/* Stop waiting to turn off the async schedule */
2912	fotg210->enabled_hrtimer_events &= ~BIT(FOTG210_HRTIMER_DISABLE_ASYNC);
2913
2914	/* Don't start the schedule until ASS is 0 */
2915	fotg210_poll_ASS(fotg210);
2916	turn_on_io_watchdog(fotg210);
2917}
2918
2919static void disable_async(struct fotg210_hcd *fotg210)
2920{
2921	if (--fotg210->async_count)
2922		return;
2923
2924	/* The async schedule and async_unlink list are supposed to be empty */
2925	WARN_ON(fotg210->async->qh_next.qh || fotg210->async_unlink);
2926
2927	/* Don't turn off the schedule until ASS is 1 */
2928	fotg210_poll_ASS(fotg210);
2929}
2930
2931/* move qh (and its qtds) onto async queue; maybe enable queue.  */
2932
2933static void qh_link_async(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
2934{
2935	__hc32 dma = QH_NEXT(fotg210, qh->qh_dma);
2936	struct fotg210_qh *head;
2937
2938	/* Don't link a QH if there's a Clear-TT-Buffer pending */
2939	if (unlikely(qh->clearing_tt))
2940		return;
2941
2942	WARN_ON(qh->qh_state != QH_STATE_IDLE);
2943
2944	/* clear halt and/or toggle; and maybe recover from silicon quirk */
2945	qh_refresh(fotg210, qh);
2946
2947	/* splice right after start */
2948	head = fotg210->async;
2949	qh->qh_next = head->qh_next;
2950	qh->hw->hw_next = head->hw->hw_next;
2951	wmb();
2952
2953	head->qh_next.qh = qh;
2954	head->hw->hw_next = dma;
2955
2956	qh->xacterrs = 0;
2957	qh->qh_state = QH_STATE_LINKED;
2958	/* qtd completions reported later by interrupt */
2959
2960	enable_async(fotg210);
2961}
2962
2963/* For control/bulk/interrupt, return QH with these TDs appended.
2964 * Allocates and initializes the QH if necessary.
2965 * Returns null if it can't allocate a QH it needs to.
2966 * If the QH has TDs (urbs) already, that's great.
2967 */
2968static struct fotg210_qh *qh_append_tds(struct fotg210_hcd *fotg210,
2969		struct urb *urb, struct list_head *qtd_list,
2970		int epnum, void **ptr)
2971{
2972	struct fotg210_qh *qh = NULL;
2973	__hc32 qh_addr_mask = cpu_to_hc32(fotg210, 0x7f);
2974
2975	qh = (struct fotg210_qh *) *ptr;
2976	if (unlikely(qh == NULL)) {
2977		/* can't sleep here, we have fotg210->lock... */
2978		qh = qh_make(fotg210, urb, GFP_ATOMIC);
2979		*ptr = qh;
2980	}
2981	if (likely(qh != NULL)) {
2982		struct fotg210_qtd *qtd;
2983
2984		if (unlikely(list_empty(qtd_list)))
2985			qtd = NULL;
2986		else
2987			qtd = list_entry(qtd_list->next, struct fotg210_qtd,
2988					qtd_list);
2989
2990		/* control qh may need patching ... */
2991		if (unlikely(epnum == 0)) {
2992			/* usb_reset_device() briefly reverts to address 0 */
2993			if (usb_pipedevice(urb->pipe) == 0)
2994				qh->hw->hw_info1 &= ~qh_addr_mask;
2995		}
2996
2997		/* just one way to queue requests: swap with the dummy qtd.
2998		 * only hc or qh_refresh() ever modify the overlay.
2999		 */
3000		if (likely(qtd != NULL)) {
3001			struct fotg210_qtd *dummy;
3002			dma_addr_t dma;
3003			__hc32 token;
3004
3005			/* to avoid racing the HC, use the dummy td instead of
3006			 * the first td of our list (becomes new dummy).  both
3007			 * tds stay deactivated until we're done, when the
3008			 * HC is allowed to fetch the old dummy (4.10.2).
3009			 */
3010			token = qtd->hw_token;
3011			qtd->hw_token = HALT_BIT(fotg210);
3012
3013			dummy = qh->dummy;
3014
3015			dma = dummy->qtd_dma;
3016			*dummy = *qtd;
3017			dummy->qtd_dma = dma;
3018
3019			list_del(&qtd->qtd_list);
3020			list_add(&dummy->qtd_list, qtd_list);
3021			list_splice_tail(qtd_list, &qh->qtd_list);
3022
3023			fotg210_qtd_init(fotg210, qtd, qtd->qtd_dma);
3024			qh->dummy = qtd;
3025
3026			/* hc must see the new dummy at list end */
3027			dma = qtd->qtd_dma;
3028			qtd = list_entry(qh->qtd_list.prev,
3029					struct fotg210_qtd, qtd_list);
3030			qtd->hw_next = QTD_NEXT(fotg210, dma);
3031
3032			/* let the hc process these next qtds */
3033			wmb();
3034			dummy->hw_token = token;
3035
3036			urb->hcpriv = qh;
3037		}
3038	}
3039	return qh;
3040}
3041
3042static int submit_async(struct fotg210_hcd *fotg210, struct urb *urb,
3043		struct list_head *qtd_list, gfp_t mem_flags)
3044{
3045	int epnum;
3046	unsigned long flags;
3047	struct fotg210_qh *qh = NULL;
3048	int rc;
3049
3050	epnum = urb->ep->desc.bEndpointAddress;
3051
3052#ifdef FOTG210_URB_TRACE
3053	{
3054		struct fotg210_qtd *qtd;
3055
3056		qtd = list_entry(qtd_list->next, struct fotg210_qtd, qtd_list);
3057		fotg210_dbg(fotg210,
3058				"%s %s urb %p ep%d%s len %d, qtd %p [qh %p]\n",
3059				__func__, urb->dev->devpath, urb,
3060				epnum & 0x0f, (epnum & USB_DIR_IN)
3061					? "in" : "out",
3062				urb->transfer_buffer_length,
3063				qtd, urb->ep->hcpriv);
3064	}
3065#endif
3066
3067	spin_lock_irqsave(&fotg210->lock, flags);
3068	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3069		rc = -ESHUTDOWN;
3070		goto done;
3071	}
3072	rc = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3073	if (unlikely(rc))
3074		goto done;
3075
3076	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3077	if (unlikely(qh == NULL)) {
3078		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3079		rc = -ENOMEM;
3080		goto done;
3081	}
3082
3083	/* Control/bulk operations through TTs don't need scheduling,
3084	 * the HC and TT handle it when the TT has a buffer ready.
3085	 */
3086	if (likely(qh->qh_state == QH_STATE_IDLE))
3087		qh_link_async(fotg210, qh);
3088done:
3089	spin_unlock_irqrestore(&fotg210->lock, flags);
3090	if (unlikely(qh == NULL))
3091		qtd_list_free(fotg210, urb, qtd_list);
3092	return rc;
3093}
3094
3095static void single_unlink_async(struct fotg210_hcd *fotg210,
3096		struct fotg210_qh *qh)
3097{
3098	struct fotg210_qh *prev;
3099
3100	/* Add to the end of the list of QHs waiting for the next IAAD */
3101	qh->qh_state = QH_STATE_UNLINK;
3102	if (fotg210->async_unlink)
3103		fotg210->async_unlink_last->unlink_next = qh;
3104	else
3105		fotg210->async_unlink = qh;
3106	fotg210->async_unlink_last = qh;
3107
3108	/* Unlink it from the schedule */
3109	prev = fotg210->async;
3110	while (prev->qh_next.qh != qh)
3111		prev = prev->qh_next.qh;
3112
3113	prev->hw->hw_next = qh->hw->hw_next;
3114	prev->qh_next = qh->qh_next;
3115	if (fotg210->qh_scan_next == qh)
3116		fotg210->qh_scan_next = qh->qh_next.qh;
3117}
3118
3119static void start_iaa_cycle(struct fotg210_hcd *fotg210, bool nested)
3120{
3121	/*
3122	 * Do nothing if an IAA cycle is already running or
3123	 * if one will be started shortly.
3124	 */
3125	if (fotg210->async_iaa || fotg210->async_unlinking)
3126		return;
3127
3128	/* Do all the waiting QHs at once */
3129	fotg210->async_iaa = fotg210->async_unlink;
3130	fotg210->async_unlink = NULL;
3131
3132	/* If the controller isn't running, we don't have to wait for it */
3133	if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING)) {
3134		if (!nested)		/* Avoid recursion */
3135			end_unlink_async(fotg210);
3136
3137	/* Otherwise start a new IAA cycle */
3138	} else if (likely(fotg210->rh_state == FOTG210_RH_RUNNING)) {
3139		/* Make sure the unlinks are all visible to the hardware */
3140		wmb();
3141
3142		fotg210_writel(fotg210, fotg210->command | CMD_IAAD,
3143				&fotg210->regs->command);
3144		fotg210_readl(fotg210, &fotg210->regs->command);
3145		fotg210_enable_event(fotg210, FOTG210_HRTIMER_IAA_WATCHDOG,
3146				true);
3147	}
3148}
3149
3150/* the async qh for the qtds being unlinked are now gone from the HC */
3151
3152static void end_unlink_async(struct fotg210_hcd *fotg210)
3153{
3154	struct fotg210_qh *qh;
3155
3156	/* Process the idle QHs */
3157restart:
3158	fotg210->async_unlinking = true;
3159	while (fotg210->async_iaa) {
3160		qh = fotg210->async_iaa;
3161		fotg210->async_iaa = qh->unlink_next;
3162		qh->unlink_next = NULL;
3163
3164		qh->qh_state = QH_STATE_IDLE;
3165		qh->qh_next.qh = NULL;
3166
3167		qh_completions(fotg210, qh);
3168		if (!list_empty(&qh->qtd_list) &&
3169				fotg210->rh_state == FOTG210_RH_RUNNING)
3170			qh_link_async(fotg210, qh);
3171		disable_async(fotg210);
3172	}
3173	fotg210->async_unlinking = false;
3174
3175	/* Start a new IAA cycle if any QHs are waiting for it */
3176	if (fotg210->async_unlink) {
3177		start_iaa_cycle(fotg210, true);
3178		if (unlikely(fotg210->rh_state < FOTG210_RH_RUNNING))
3179			goto restart;
3180	}
3181}
3182
3183static void unlink_empty_async(struct fotg210_hcd *fotg210)
3184{
3185	struct fotg210_qh *qh, *next;
3186	bool stopped = (fotg210->rh_state < FOTG210_RH_RUNNING);
3187	bool check_unlinks_later = false;
3188
3189	/* Unlink all the async QHs that have been empty for a timer cycle */
3190	next = fotg210->async->qh_next.qh;
3191	while (next) {
3192		qh = next;
3193		next = qh->qh_next.qh;
3194
3195		if (list_empty(&qh->qtd_list) &&
3196				qh->qh_state == QH_STATE_LINKED) {
3197			if (!stopped && qh->unlink_cycle ==
3198					fotg210->async_unlink_cycle)
3199				check_unlinks_later = true;
3200			else
3201				single_unlink_async(fotg210, qh);
3202		}
3203	}
3204
3205	/* Start a new IAA cycle if any QHs are waiting for it */
3206	if (fotg210->async_unlink)
3207		start_iaa_cycle(fotg210, false);
3208
3209	/* QHs that haven't been empty for long enough will be handled later */
3210	if (check_unlinks_later) {
3211		fotg210_enable_event(fotg210, FOTG210_HRTIMER_ASYNC_UNLINKS,
3212				true);
3213		++fotg210->async_unlink_cycle;
3214	}
3215}
3216
3217/* makes sure the async qh will become idle */
3218/* caller must own fotg210->lock */
3219
3220static void start_unlink_async(struct fotg210_hcd *fotg210,
3221		struct fotg210_qh *qh)
3222{
3223	/*
3224	 * If the QH isn't linked then there's nothing we can do
3225	 * unless we were called during a giveback, in which case
3226	 * qh_completions() has to deal with it.
3227	 */
3228	if (qh->qh_state != QH_STATE_LINKED) {
3229		if (qh->qh_state == QH_STATE_COMPLETING)
3230			qh->needs_rescan = 1;
3231		return;
3232	}
3233
3234	single_unlink_async(fotg210, qh);
3235	start_iaa_cycle(fotg210, false);
3236}
3237
3238static void scan_async(struct fotg210_hcd *fotg210)
3239{
3240	struct fotg210_qh *qh;
3241	bool check_unlinks_later = false;
3242
3243	fotg210->qh_scan_next = fotg210->async->qh_next.qh;
3244	while (fotg210->qh_scan_next) {
3245		qh = fotg210->qh_scan_next;
3246		fotg210->qh_scan_next = qh->qh_next.qh;
3247rescan:
3248		/* clean any finished work for this qh */
3249		if (!list_empty(&qh->qtd_list)) {
3250			int temp;
3251
3252			/*
3253			 * Unlinks could happen here; completion reporting
3254			 * drops the lock.  That's why fotg210->qh_scan_next
3255			 * always holds the next qh to scan; if the next qh
3256			 * gets unlinked then fotg210->qh_scan_next is adjusted
3257			 * in single_unlink_async().
3258			 */
3259			temp = qh_completions(fotg210, qh);
3260			if (qh->needs_rescan) {
3261				start_unlink_async(fotg210, qh);
3262			} else if (list_empty(&qh->qtd_list)
3263					&& qh->qh_state == QH_STATE_LINKED) {
3264				qh->unlink_cycle = fotg210->async_unlink_cycle;
3265				check_unlinks_later = true;
3266			} else if (temp != 0)
3267				goto rescan;
3268		}
3269	}
3270
3271	/*
3272	 * Unlink empty entries, reducing DMA usage as well
3273	 * as HCD schedule-scanning costs.  Delay for any qh
3274	 * we just scanned, there's a not-unusual case that it
3275	 * doesn't stay idle for long.
3276	 */
3277	if (check_unlinks_later && fotg210->rh_state == FOTG210_RH_RUNNING &&
3278			!(fotg210->enabled_hrtimer_events &
3279			BIT(FOTG210_HRTIMER_ASYNC_UNLINKS))) {
3280		fotg210_enable_event(fotg210,
3281				FOTG210_HRTIMER_ASYNC_UNLINKS, true);
3282		++fotg210->async_unlink_cycle;
3283	}
3284}
3285/* EHCI scheduled transaction support:  interrupt, iso, split iso
3286 * These are called "periodic" transactions in the EHCI spec.
3287 *
3288 * Note that for interrupt transfers, the QH/QTD manipulation is shared
3289 * with the "asynchronous" transaction support (control/bulk transfers).
3290 * The only real difference is in how interrupt transfers are scheduled.
3291 *
3292 * For ISO, we make an "iso_stream" head to serve the same role as a QH.
3293 * It keeps track of every ITD (or SITD) that's linked, and holds enough
3294 * pre-calculated schedule data to make appending to the queue be quick.
3295 */
3296static int fotg210_get_frame(struct usb_hcd *hcd);
3297
3298/* periodic_next_shadow - return "next" pointer on shadow list
3299 * @periodic: host pointer to qh/itd
3300 * @tag: hardware tag for type of this record
3301 */
3302static union fotg210_shadow *periodic_next_shadow(struct fotg210_hcd *fotg210,
3303		union fotg210_shadow *periodic, __hc32 tag)
3304{
3305	switch (hc32_to_cpu(fotg210, tag)) {
3306	case Q_TYPE_QH:
3307		return &periodic->qh->qh_next;
3308	case Q_TYPE_FSTN:
3309		return &periodic->fstn->fstn_next;
3310	default:
3311		return &periodic->itd->itd_next;
3312	}
3313}
3314
3315static __hc32 *shadow_next_periodic(struct fotg210_hcd *fotg210,
3316		union fotg210_shadow *periodic, __hc32 tag)
3317{
3318	switch (hc32_to_cpu(fotg210, tag)) {
3319	/* our fotg210_shadow.qh is actually software part */
3320	case Q_TYPE_QH:
3321		return &periodic->qh->hw->hw_next;
3322	/* others are hw parts */
3323	default:
3324		return periodic->hw_next;
3325	}
3326}
3327
3328/* caller must hold fotg210->lock */
3329static void periodic_unlink(struct fotg210_hcd *fotg210, unsigned frame,
3330		void *ptr)
3331{
3332	union fotg210_shadow *prev_p = &fotg210->pshadow[frame];
3333	__hc32 *hw_p = &fotg210->periodic[frame];
3334	union fotg210_shadow here = *prev_p;
3335
3336	/* find predecessor of "ptr"; hw and shadow lists are in sync */
3337	while (here.ptr && here.ptr != ptr) {
3338		prev_p = periodic_next_shadow(fotg210, prev_p,
3339				Q_NEXT_TYPE(fotg210, *hw_p));
3340		hw_p = shadow_next_periodic(fotg210, &here,
3341				Q_NEXT_TYPE(fotg210, *hw_p));
3342		here = *prev_p;
3343	}
3344	/* an interrupt entry (at list end) could have been shared */
3345	if (!here.ptr)
3346		return;
3347
3348	/* update shadow and hardware lists ... the old "next" pointers
3349	 * from ptr may still be in use, the caller updates them.
3350	 */
3351	*prev_p = *periodic_next_shadow(fotg210, &here,
3352			Q_NEXT_TYPE(fotg210, *hw_p));
3353
3354	*hw_p = *shadow_next_periodic(fotg210, &here,
3355			Q_NEXT_TYPE(fotg210, *hw_p));
3356}
3357
3358/* how many of the uframe's 125 usecs are allocated? */
3359static unsigned short periodic_usecs(struct fotg210_hcd *fotg210,
3360		unsigned frame, unsigned uframe)
3361{
3362	__hc32 *hw_p = &fotg210->periodic[frame];
3363	union fotg210_shadow *q = &fotg210->pshadow[frame];
3364	unsigned usecs = 0;
3365	struct fotg210_qh_hw *hw;
3366
3367	while (q->ptr) {
3368		switch (hc32_to_cpu(fotg210, Q_NEXT_TYPE(fotg210, *hw_p))) {
3369		case Q_TYPE_QH:
3370			hw = q->qh->hw;
3371			/* is it in the S-mask? */
3372			if (hw->hw_info2 & cpu_to_hc32(fotg210, 1 << uframe))
3373				usecs += q->qh->usecs;
3374			/* ... or C-mask? */
3375			if (hw->hw_info2 & cpu_to_hc32(fotg210,
3376					1 << (8 + uframe)))
3377				usecs += q->qh->c_usecs;
3378			hw_p = &hw->hw_next;
3379			q = &q->qh->qh_next;
3380			break;
3381		/* case Q_TYPE_FSTN: */
3382		default:
3383			/* for "save place" FSTNs, count the relevant INTR
3384			 * bandwidth from the previous frame
3385			 */
3386			if (q->fstn->hw_prev != FOTG210_LIST_END(fotg210))
3387				fotg210_dbg(fotg210, "ignoring FSTN cost ...\n");
3388
3389			hw_p = &q->fstn->hw_next;
3390			q = &q->fstn->fstn_next;
3391			break;
3392		case Q_TYPE_ITD:
3393			if (q->itd->hw_transaction[uframe])
3394				usecs += q->itd->stream->usecs;
3395			hw_p = &q->itd->hw_next;
3396			q = &q->itd->itd_next;
3397			break;
3398		}
3399	}
3400	if (usecs > fotg210->uframe_periodic_max)
3401		fotg210_err(fotg210, "uframe %d sched overrun: %d usecs\n",
3402				frame * 8 + uframe, usecs);
3403	return usecs;
3404}
3405
3406static int same_tt(struct usb_device *dev1, struct usb_device *dev2)
3407{
3408	if (!dev1->tt || !dev2->tt)
3409		return 0;
3410	if (dev1->tt != dev2->tt)
3411		return 0;
3412	if (dev1->tt->multi)
3413		return dev1->ttport == dev2->ttport;
3414	else
3415		return 1;
3416}
3417
3418/* return true iff the device's transaction translator is available
3419 * for a periodic transfer starting at the specified frame, using
3420 * all the uframes in the mask.
3421 */
3422static int tt_no_collision(struct fotg210_hcd *fotg210, unsigned period,
3423		struct usb_device *dev, unsigned frame, u32 uf_mask)
3424{
3425	if (period == 0)	/* error */
3426		return 0;
3427
3428	/* note bandwidth wastage:  split never follows csplit
3429	 * (different dev or endpoint) until the next uframe.
3430	 * calling convention doesn't make that distinction.
3431	 */
3432	for (; frame < fotg210->periodic_size; frame += period) {
3433		union fotg210_shadow here;
3434		__hc32 type;
3435		struct fotg210_qh_hw *hw;
3436
3437		here = fotg210->pshadow[frame];
3438		type = Q_NEXT_TYPE(fotg210, fotg210->periodic[frame]);
3439		while (here.ptr) {
3440			switch (hc32_to_cpu(fotg210, type)) {
3441			case Q_TYPE_ITD:
3442				type = Q_NEXT_TYPE(fotg210, here.itd->hw_next);
3443				here = here.itd->itd_next;
3444				continue;
3445			case Q_TYPE_QH:
3446				hw = here.qh->hw;
3447				if (same_tt(dev, here.qh->dev)) {
3448					u32 mask;
3449
3450					mask = hc32_to_cpu(fotg210,
3451							hw->hw_info2);
3452					/* "knows" no gap is needed */
3453					mask |= mask >> 8;
3454					if (mask & uf_mask)
3455						break;
3456				}
3457				type = Q_NEXT_TYPE(fotg210, hw->hw_next);
3458				here = here.qh->qh_next;
3459				continue;
3460			/* case Q_TYPE_FSTN: */
3461			default:
3462				fotg210_dbg(fotg210,
3463						"periodic frame %d bogus type %d\n",
3464						frame, type);
3465			}
3466
3467			/* collision or error */
3468			return 0;
3469		}
3470	}
3471
3472	/* no collision */
3473	return 1;
3474}
3475
3476static void enable_periodic(struct fotg210_hcd *fotg210)
3477{
3478	if (fotg210->periodic_count++)
3479		return;
3480
3481	/* Stop waiting to turn off the periodic schedule */
3482	fotg210->enabled_hrtimer_events &=
3483		~BIT(FOTG210_HRTIMER_DISABLE_PERIODIC);
3484
3485	/* Don't start the schedule until PSS is 0 */
3486	fotg210_poll_PSS(fotg210);
3487	turn_on_io_watchdog(fotg210);
3488}
3489
3490static void disable_periodic(struct fotg210_hcd *fotg210)
3491{
3492	if (--fotg210->periodic_count)
3493		return;
3494
3495	/* Don't turn off the schedule until PSS is 1 */
3496	fotg210_poll_PSS(fotg210);
3497}
3498
3499/* periodic schedule slots have iso tds (normal or split) first, then a
3500 * sparse tree for active interrupt transfers.
3501 *
3502 * this just links in a qh; caller guarantees uframe masks are set right.
3503 * no FSTN support (yet; fotg210 0.96+)
3504 */
3505static void qh_link_periodic(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3506{
3507	unsigned i;
3508	unsigned period = qh->period;
3509
3510	dev_dbg(&qh->dev->dev,
3511			"link qh%d-%04x/%p start %d [%d/%d us]\n", period,
3512			hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3513			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3514			qh->c_usecs);
3515
3516	/* high bandwidth, or otherwise every microframe */
3517	if (period == 0)
3518		period = 1;
3519
3520	for (i = qh->start; i < fotg210->periodic_size; i += period) {
3521		union fotg210_shadow *prev = &fotg210->pshadow[i];
3522		__hc32 *hw_p = &fotg210->periodic[i];
3523		union fotg210_shadow here = *prev;
3524		__hc32 type = 0;
3525
3526		/* skip the iso nodes at list head */
3527		while (here.ptr) {
3528			type = Q_NEXT_TYPE(fotg210, *hw_p);
3529			if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
3530				break;
3531			prev = periodic_next_shadow(fotg210, prev, type);
3532			hw_p = shadow_next_periodic(fotg210, &here, type);
3533			here = *prev;
3534		}
3535
3536		/* sorting each branch by period (slow-->fast)
3537		 * enables sharing interior tree nodes
3538		 */
3539		while (here.ptr && qh != here.qh) {
3540			if (qh->period > here.qh->period)
3541				break;
3542			prev = &here.qh->qh_next;
3543			hw_p = &here.qh->hw->hw_next;
3544			here = *prev;
3545		}
3546		/* link in this qh, unless some earlier pass did that */
3547		if (qh != here.qh) {
3548			qh->qh_next = here;
3549			if (here.qh)
3550				qh->hw->hw_next = *hw_p;
3551			wmb();
3552			prev->qh = qh;
3553			*hw_p = QH_NEXT(fotg210, qh->qh_dma);
3554		}
3555	}
3556	qh->qh_state = QH_STATE_LINKED;
3557	qh->xacterrs = 0;
3558
3559	/* update per-qh bandwidth for usbfs */
3560	fotg210_to_hcd(fotg210)->self.bandwidth_allocated += qh->period
3561		? ((qh->usecs + qh->c_usecs) / qh->period)
3562		: (qh->usecs * 8);
3563
3564	list_add(&qh->intr_node, &fotg210->intr_qh_list);
3565
3566	/* maybe enable periodic schedule processing */
3567	++fotg210->intr_count;
3568	enable_periodic(fotg210);
3569}
3570
3571static void qh_unlink_periodic(struct fotg210_hcd *fotg210,
3572		struct fotg210_qh *qh)
3573{
3574	unsigned i;
3575	unsigned period;
3576
3577	/*
3578	 * If qh is for a low/full-speed device, simply unlinking it
3579	 * could interfere with an ongoing split transaction.  To unlink
3580	 * it safely would require setting the QH_INACTIVATE bit and
3581	 * waiting at least one frame, as described in EHCI 4.12.2.5.
3582	 *
3583	 * We won't bother with any of this.  Instead, we assume that the
3584	 * only reason for unlinking an interrupt QH while the current URB
3585	 * is still active is to dequeue all the URBs (flush the whole
3586	 * endpoint queue).
3587	 *
3588	 * If rebalancing the periodic schedule is ever implemented, this
3589	 * approach will no longer be valid.
3590	 */
3591
3592	/* high bandwidth, or otherwise part of every microframe */
3593	period = qh->period;
3594	if (!period)
3595		period = 1;
3596
3597	for (i = qh->start; i < fotg210->periodic_size; i += period)
3598		periodic_unlink(fotg210, i, qh);
3599
3600	/* update per-qh bandwidth for usbfs */
3601	fotg210_to_hcd(fotg210)->self.bandwidth_allocated -= qh->period
3602		? ((qh->usecs + qh->c_usecs) / qh->period)
3603		: (qh->usecs * 8);
3604
3605	dev_dbg(&qh->dev->dev,
3606			"unlink qh%d-%04x/%p start %d [%d/%d us]\n",
3607			qh->period, hc32_to_cpup(fotg210, &qh->hw->hw_info2) &
3608			(QH_CMASK | QH_SMASK), qh, qh->start, qh->usecs,
3609			qh->c_usecs);
3610
3611	/* qh->qh_next still "live" to HC */
3612	qh->qh_state = QH_STATE_UNLINK;
3613	qh->qh_next.ptr = NULL;
3614
3615	if (fotg210->qh_scan_next == qh)
3616		fotg210->qh_scan_next = list_entry(qh->intr_node.next,
3617				struct fotg210_qh, intr_node);
3618	list_del(&qh->intr_node);
3619}
3620
3621static void start_unlink_intr(struct fotg210_hcd *fotg210,
3622		struct fotg210_qh *qh)
3623{
3624	/* If the QH isn't linked then there's nothing we can do
3625	 * unless we were called during a giveback, in which case
3626	 * qh_completions() has to deal with it.
3627	 */
3628	if (qh->qh_state != QH_STATE_LINKED) {
3629		if (qh->qh_state == QH_STATE_COMPLETING)
3630			qh->needs_rescan = 1;
3631		return;
3632	}
3633
3634	qh_unlink_periodic(fotg210, qh);
3635
3636	/* Make sure the unlinks are visible before starting the timer */
3637	wmb();
3638
3639	/*
3640	 * The EHCI spec doesn't say how long it takes the controller to
3641	 * stop accessing an unlinked interrupt QH.  The timer delay is
3642	 * 9 uframes; presumably that will be long enough.
3643	 */
3644	qh->unlink_cycle = fotg210->intr_unlink_cycle;
3645
3646	/* New entries go at the end of the intr_unlink list */
3647	if (fotg210->intr_unlink)
3648		fotg210->intr_unlink_last->unlink_next = qh;
3649	else
3650		fotg210->intr_unlink = qh;
3651	fotg210->intr_unlink_last = qh;
3652
3653	if (fotg210->intr_unlinking)
3654		;	/* Avoid recursive calls */
3655	else if (fotg210->rh_state < FOTG210_RH_RUNNING)
3656		fotg210_handle_intr_unlinks(fotg210);
3657	else if (fotg210->intr_unlink == qh) {
3658		fotg210_enable_event(fotg210, FOTG210_HRTIMER_UNLINK_INTR,
3659				true);
3660		++fotg210->intr_unlink_cycle;
3661	}
3662}
3663
3664static void end_unlink_intr(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3665{
3666	struct fotg210_qh_hw *hw = qh->hw;
3667	int rc;
3668
3669	qh->qh_state = QH_STATE_IDLE;
3670	hw->hw_next = FOTG210_LIST_END(fotg210);
3671
3672	qh_completions(fotg210, qh);
3673
3674	/* reschedule QH iff another request is queued */
3675	if (!list_empty(&qh->qtd_list) &&
3676			fotg210->rh_state == FOTG210_RH_RUNNING) {
3677		rc = qh_schedule(fotg210, qh);
3678
3679		/* An error here likely indicates handshake failure
3680		 * or no space left in the schedule.  Neither fault
3681		 * should happen often ...
3682		 *
3683		 * FIXME kill the now-dysfunctional queued urbs
3684		 */
3685		if (rc != 0)
3686			fotg210_err(fotg210, "can't reschedule qh %p, err %d\n",
3687					qh, rc);
3688	}
3689
3690	/* maybe turn off periodic schedule */
3691	--fotg210->intr_count;
3692	disable_periodic(fotg210);
3693}
3694
3695static int check_period(struct fotg210_hcd *fotg210, unsigned frame,
3696		unsigned uframe, unsigned period, unsigned usecs)
3697{
3698	int claimed;
3699
3700	/* complete split running into next frame?
3701	 * given FSTN support, we could sometimes check...
3702	 */
3703	if (uframe >= 8)
3704		return 0;
3705
3706	/* convert "usecs we need" to "max already claimed" */
3707	usecs = fotg210->uframe_periodic_max - usecs;
3708
3709	/* we "know" 2 and 4 uframe intervals were rejected; so
3710	 * for period 0, check _every_ microframe in the schedule.
3711	 */
3712	if (unlikely(period == 0)) {
3713		do {
3714			for (uframe = 0; uframe < 7; uframe++) {
3715				claimed = periodic_usecs(fotg210, frame,
3716						uframe);
3717				if (claimed > usecs)
3718					return 0;
3719			}
3720		} while ((frame += 1) < fotg210->periodic_size);
3721
3722	/* just check the specified uframe, at that period */
3723	} else {
3724		do {
3725			claimed = periodic_usecs(fotg210, frame, uframe);
3726			if (claimed > usecs)
3727				return 0;
3728		} while ((frame += period) < fotg210->periodic_size);
3729	}
3730
3731	/* success! */
3732	return 1;
3733}
3734
3735static int check_intr_schedule(struct fotg210_hcd *fotg210, unsigned frame,
3736		unsigned uframe, const struct fotg210_qh *qh, __hc32 *c_maskp)
3737{
3738	int retval = -ENOSPC;
3739	u8 mask = 0;
3740
3741	if (qh->c_usecs && uframe >= 6)		/* FSTN territory? */
3742		goto done;
3743
3744	if (!check_period(fotg210, frame, uframe, qh->period, qh->usecs))
3745		goto done;
3746	if (!qh->c_usecs) {
3747		retval = 0;
3748		*c_maskp = 0;
3749		goto done;
3750	}
3751
3752	/* Make sure this tt's buffer is also available for CSPLITs.
3753	 * We pessimize a bit; probably the typical full speed case
3754	 * doesn't need the second CSPLIT.
3755	 *
3756	 * NOTE:  both SPLIT and CSPLIT could be checked in just
3757	 * one smart pass...
3758	 */
3759	mask = 0x03 << (uframe + qh->gap_uf);
3760	*c_maskp = cpu_to_hc32(fotg210, mask << 8);
3761
3762	mask |= 1 << uframe;
3763	if (tt_no_collision(fotg210, qh->period, qh->dev, frame, mask)) {
3764		if (!check_period(fotg210, frame, uframe + qh->gap_uf + 1,
3765				qh->period, qh->c_usecs))
3766			goto done;
3767		if (!check_period(fotg210, frame, uframe + qh->gap_uf,
3768				qh->period, qh->c_usecs))
3769			goto done;
3770		retval = 0;
3771	}
3772done:
3773	return retval;
3774}
3775
3776/* "first fit" scheduling policy used the first time through,
3777 * or when the previous schedule slot can't be re-used.
3778 */
3779static int qh_schedule(struct fotg210_hcd *fotg210, struct fotg210_qh *qh)
3780{
3781	int status;
3782	unsigned uframe;
3783	__hc32 c_mask;
3784	unsigned frame;	/* 0..(qh->period - 1), or NO_FRAME */
3785	struct fotg210_qh_hw *hw = qh->hw;
3786
3787	qh_refresh(fotg210, qh);
3788	hw->hw_next = FOTG210_LIST_END(fotg210);
3789	frame = qh->start;
3790
3791	/* reuse the previous schedule slots, if we can */
3792	if (frame < qh->period) {
3793		uframe = ffs(hc32_to_cpup(fotg210, &hw->hw_info2) & QH_SMASK);
3794		status = check_intr_schedule(fotg210, frame, --uframe,
3795				qh, &c_mask);
3796	} else {
3797		uframe = 0;
3798		c_mask = 0;
3799		status = -ENOSPC;
3800	}
3801
3802	/* else scan the schedule to find a group of slots such that all
3803	 * uframes have enough periodic bandwidth available.
3804	 */
3805	if (status) {
3806		/* "normal" case, uframing flexible except with splits */
3807		if (qh->period) {
3808			int i;
3809
3810			for (i = qh->period; status && i > 0; --i) {
3811				frame = ++fotg210->random_frame % qh->period;
3812				for (uframe = 0; uframe < 8; uframe++) {
3813					status = check_intr_schedule(fotg210,
3814							frame, uframe, qh,
3815							&c_mask);
3816					if (status == 0)
3817						break;
3818				}
3819			}
3820
3821		/* qh->period == 0 means every uframe */
3822		} else {
3823			frame = 0;
3824			status = check_intr_schedule(fotg210, 0, 0, qh,
3825					&c_mask);
3826		}
3827		if (status)
3828			goto done;
3829		qh->start = frame;
3830
3831		/* reset S-frame and (maybe) C-frame masks */
3832		hw->hw_info2 &= cpu_to_hc32(fotg210, ~(QH_CMASK | QH_SMASK));
3833		hw->hw_info2 |= qh->period
3834			? cpu_to_hc32(fotg210, 1 << uframe)
3835			: cpu_to_hc32(fotg210, QH_SMASK);
3836		hw->hw_info2 |= c_mask;
3837	} else
3838		fotg210_dbg(fotg210, "reused qh %p schedule\n", qh);
3839
3840	/* stuff into the periodic schedule */
3841	qh_link_periodic(fotg210, qh);
3842done:
3843	return status;
3844}
3845
3846static int intr_submit(struct fotg210_hcd *fotg210, struct urb *urb,
3847		struct list_head *qtd_list, gfp_t mem_flags)
3848{
3849	unsigned epnum;
3850	unsigned long flags;
3851	struct fotg210_qh *qh;
3852	int status;
3853	struct list_head empty;
3854
3855	/* get endpoint and transfer/schedule data */
3856	epnum = urb->ep->desc.bEndpointAddress;
3857
3858	spin_lock_irqsave(&fotg210->lock, flags);
3859
3860	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
3861		status = -ESHUTDOWN;
3862		goto done_not_linked;
3863	}
3864	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
3865	if (unlikely(status))
3866		goto done_not_linked;
3867
3868	/* get qh and force any scheduling errors */
3869	INIT_LIST_HEAD(&empty);
3870	qh = qh_append_tds(fotg210, urb, &empty, epnum, &urb->ep->hcpriv);
3871	if (qh == NULL) {
3872		status = -ENOMEM;
3873		goto done;
3874	}
3875	if (qh->qh_state == QH_STATE_IDLE) {
3876		status = qh_schedule(fotg210, qh);
3877		if (status)
3878			goto done;
3879	}
3880
3881	/* then queue the urb's tds to the qh */
3882	qh = qh_append_tds(fotg210, urb, qtd_list, epnum, &urb->ep->hcpriv);
3883	BUG_ON(qh == NULL);
3884
3885	/* ... update usbfs periodic stats */
3886	fotg210_to_hcd(fotg210)->self.bandwidth_int_reqs++;
3887
3888done:
3889	if (unlikely(status))
3890		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
3891done_not_linked:
3892	spin_unlock_irqrestore(&fotg210->lock, flags);
3893	if (status)
3894		qtd_list_free(fotg210, urb, qtd_list);
3895
3896	return status;
3897}
3898
3899static void scan_intr(struct fotg210_hcd *fotg210)
3900{
3901	struct fotg210_qh *qh;
3902
3903	list_for_each_entry_safe(qh, fotg210->qh_scan_next,
3904			&fotg210->intr_qh_list, intr_node) {
3905rescan:
3906		/* clean any finished work for this qh */
3907		if (!list_empty(&qh->qtd_list)) {
3908			int temp;
3909
3910			/*
3911			 * Unlinks could happen here; completion reporting
3912			 * drops the lock.  That's why fotg210->qh_scan_next
3913			 * always holds the next qh to scan; if the next qh
3914			 * gets unlinked then fotg210->qh_scan_next is adjusted
3915			 * in qh_unlink_periodic().
3916			 */
3917			temp = qh_completions(fotg210, qh);
3918			if (unlikely(qh->needs_rescan ||
3919					(list_empty(&qh->qtd_list) &&
3920					qh->qh_state == QH_STATE_LINKED)))
3921				start_unlink_intr(fotg210, qh);
3922			else if (temp != 0)
3923				goto rescan;
3924		}
3925	}
3926}
3927
3928/* fotg210_iso_stream ops work with both ITD and SITD */
3929
3930static struct fotg210_iso_stream *iso_stream_alloc(gfp_t mem_flags)
3931{
3932	struct fotg210_iso_stream *stream;
3933
3934	stream = kzalloc(sizeof(*stream), mem_flags);
3935	if (likely(stream != NULL)) {
3936		INIT_LIST_HEAD(&stream->td_list);
3937		INIT_LIST_HEAD(&stream->free_list);
3938		stream->next_uframe = -1;
3939	}
3940	return stream;
3941}
3942
3943static void iso_stream_init(struct fotg210_hcd *fotg210,
3944		struct fotg210_iso_stream *stream, struct usb_device *dev,
3945		int pipe, unsigned interval)
3946{
3947	u32 buf1;
3948	unsigned epnum, maxp;
3949	int is_input;
3950	long bandwidth;
3951	unsigned multi;
3952
3953	/*
3954	 * this might be a "high bandwidth" highspeed endpoint,
3955	 * as encoded in the ep descriptor's wMaxPacket field
3956	 */
3957	epnum = usb_pipeendpoint(pipe);
3958	is_input = usb_pipein(pipe) ? USB_DIR_IN : 0;
3959	maxp = usb_maxpacket(dev, pipe, !is_input);
3960	if (is_input)
3961		buf1 = (1 << 11);
3962	else
3963		buf1 = 0;
3964
3965	maxp = max_packet(maxp);
3966	multi = hb_mult(maxp);
3967	buf1 |= maxp;
3968	maxp *= multi;
3969
3970	stream->buf0 = cpu_to_hc32(fotg210, (epnum << 8) | dev->devnum);
3971	stream->buf1 = cpu_to_hc32(fotg210, buf1);
3972	stream->buf2 = cpu_to_hc32(fotg210, multi);
3973
3974	/* usbfs wants to report the average usecs per frame tied up
3975	 * when transfers on this endpoint are scheduled ...
3976	 */
3977	if (dev->speed == USB_SPEED_FULL) {
3978		interval <<= 3;
3979		stream->usecs = NS_TO_US(usb_calc_bus_time(dev->speed,
3980				is_input, 1, maxp));
3981		stream->usecs /= 8;
3982	} else {
3983		stream->highspeed = 1;
3984		stream->usecs = HS_USECS_ISO(maxp);
3985	}
3986	bandwidth = stream->usecs * 8;
3987	bandwidth /= interval;
3988
3989	stream->bandwidth = bandwidth;
3990	stream->udev = dev;
3991	stream->bEndpointAddress = is_input | epnum;
3992	stream->interval = interval;
3993	stream->maxp = maxp;
3994}
3995
3996static struct fotg210_iso_stream *iso_stream_find(struct fotg210_hcd *fotg210,
3997		struct urb *urb)
3998{
3999	unsigned epnum;
4000	struct fotg210_iso_stream *stream;
4001	struct usb_host_endpoint *ep;
4002	unsigned long flags;
4003
4004	epnum = usb_pipeendpoint(urb->pipe);
4005	if (usb_pipein(urb->pipe))
4006		ep = urb->dev->ep_in[epnum];
4007	else
4008		ep = urb->dev->ep_out[epnum];
4009
4010	spin_lock_irqsave(&fotg210->lock, flags);
4011	stream = ep->hcpriv;
4012
4013	if (unlikely(stream == NULL)) {
4014		stream = iso_stream_alloc(GFP_ATOMIC);
4015		if (likely(stream != NULL)) {
4016			ep->hcpriv = stream;
4017			stream->ep = ep;
4018			iso_stream_init(fotg210, stream, urb->dev, urb->pipe,
4019					urb->interval);
4020		}
4021
4022	/* if dev->ep[epnum] is a QH, hw is set */
4023	} else if (unlikely(stream->hw != NULL)) {
4024		fotg210_dbg(fotg210, "dev %s ep%d%s, not iso??\n",
4025				urb->dev->devpath, epnum,
4026				usb_pipein(urb->pipe) ? "in" : "out");
4027		stream = NULL;
4028	}
4029
4030	spin_unlock_irqrestore(&fotg210->lock, flags);
4031	return stream;
4032}
4033
4034/* fotg210_iso_sched ops can be ITD-only or SITD-only */
4035
4036static struct fotg210_iso_sched *iso_sched_alloc(unsigned packets,
4037		gfp_t mem_flags)
4038{
4039	struct fotg210_iso_sched *iso_sched;
4040	int size = sizeof(*iso_sched);
4041
4042	size += packets * sizeof(struct fotg210_iso_packet);
4043	iso_sched = kzalloc(size, mem_flags);
4044	if (likely(iso_sched != NULL))
4045		INIT_LIST_HEAD(&iso_sched->td_list);
4046
4047	return iso_sched;
4048}
4049
4050static inline void itd_sched_init(struct fotg210_hcd *fotg210,
4051		struct fotg210_iso_sched *iso_sched,
4052		struct fotg210_iso_stream *stream, struct urb *urb)
4053{
4054	unsigned i;
4055	dma_addr_t dma = urb->transfer_dma;
4056
4057	/* how many uframes are needed for these transfers */
4058	iso_sched->span = urb->number_of_packets * stream->interval;
4059
4060	/* figure out per-uframe itd fields that we'll need later
4061	 * when we fit new itds into the schedule.
4062	 */
4063	for (i = 0; i < urb->number_of_packets; i++) {
4064		struct fotg210_iso_packet *uframe = &iso_sched->packet[i];
4065		unsigned length;
4066		dma_addr_t buf;
4067		u32 trans;
4068
4069		length = urb->iso_frame_desc[i].length;
4070		buf = dma + urb->iso_frame_desc[i].offset;
4071
4072		trans = FOTG210_ISOC_ACTIVE;
4073		trans |= buf & 0x0fff;
4074		if (unlikely(((i + 1) == urb->number_of_packets))
4075				&& !(urb->transfer_flags & URB_NO_INTERRUPT))
4076			trans |= FOTG210_ITD_IOC;
4077		trans |= length << 16;
4078		uframe->transaction = cpu_to_hc32(fotg210, trans);
4079
4080		/* might need to cross a buffer page within a uframe */
4081		uframe->bufp = (buf & ~(u64)0x0fff);
4082		buf += length;
4083		if (unlikely((uframe->bufp != (buf & ~(u64)0x0fff))))
4084			uframe->cross = 1;
4085	}
4086}
4087
4088static void iso_sched_free(struct fotg210_iso_stream *stream,
4089		struct fotg210_iso_sched *iso_sched)
4090{
4091	if (!iso_sched)
4092		return;
4093	/* caller must hold fotg210->lock!*/
4094	list_splice(&iso_sched->td_list, &stream->free_list);
4095	kfree(iso_sched);
4096}
4097
4098static int itd_urb_transaction(struct fotg210_iso_stream *stream,
4099		struct fotg210_hcd *fotg210, struct urb *urb, gfp_t mem_flags)
4100{
4101	struct fotg210_itd *itd;
4102	dma_addr_t itd_dma;
4103	int i;
4104	unsigned num_itds;
4105	struct fotg210_iso_sched *sched;
4106	unsigned long flags;
4107
4108	sched = iso_sched_alloc(urb->number_of_packets, mem_flags);
4109	if (unlikely(sched == NULL))
4110		return -ENOMEM;
4111
4112	itd_sched_init(fotg210, sched, stream, urb);
4113
4114	if (urb->interval < 8)
4115		num_itds = 1 + (sched->span + 7) / 8;
4116	else
4117		num_itds = urb->number_of_packets;
4118
4119	/* allocate/init ITDs */
4120	spin_lock_irqsave(&fotg210->lock, flags);
4121	for (i = 0; i < num_itds; i++) {
4122
4123		/*
4124		 * Use iTDs from the free list, but not iTDs that may
4125		 * still be in use by the hardware.
4126		 */
4127		if (likely(!list_empty(&stream->free_list))) {
4128			itd = list_first_entry(&stream->free_list,
4129					struct fotg210_itd, itd_list);
4130			if (itd->frame == fotg210->now_frame)
4131				goto alloc_itd;
4132			list_del(&itd->itd_list);
4133			itd_dma = itd->itd_dma;
4134		} else {
4135alloc_itd:
4136			spin_unlock_irqrestore(&fotg210->lock, flags);
4137			itd = dma_pool_alloc(fotg210->itd_pool, mem_flags,
4138					&itd_dma);
4139			spin_lock_irqsave(&fotg210->lock, flags);
4140			if (!itd) {
4141				iso_sched_free(stream, sched);
4142				spin_unlock_irqrestore(&fotg210->lock, flags);
4143				return -ENOMEM;
4144			}
4145		}
4146
4147		memset(itd, 0, sizeof(*itd));
4148		itd->itd_dma = itd_dma;
4149		list_add(&itd->itd_list, &sched->td_list);
4150	}
4151	spin_unlock_irqrestore(&fotg210->lock, flags);
4152
4153	/* temporarily store schedule info in hcpriv */
4154	urb->hcpriv = sched;
4155	urb->error_count = 0;
4156	return 0;
4157}
4158
4159static inline int itd_slot_ok(struct fotg210_hcd *fotg210, u32 mod, u32 uframe,
4160		u8 usecs, u32 period)
4161{
4162	uframe %= period;
4163	do {
4164		/* can't commit more than uframe_periodic_max usec */
4165		if (periodic_usecs(fotg210, uframe >> 3, uframe & 0x7)
4166				> (fotg210->uframe_periodic_max - usecs))
4167			return 0;
4168
4169		/* we know urb->interval is 2^N uframes */
4170		uframe += period;
4171	} while (uframe < mod);
4172	return 1;
4173}
4174
4175/* This scheduler plans almost as far into the future as it has actual
4176 * periodic schedule slots.  (Affected by TUNE_FLS, which defaults to
4177 * "as small as possible" to be cache-friendlier.)  That limits the size
4178 * transfers you can stream reliably; avoid more than 64 msec per urb.
4179 * Also avoid queue depths of less than fotg210's worst irq latency (affected
4180 * by the per-urb URB_NO_INTERRUPT hint, the log2_irq_thresh module parameter,
4181 * and other factors); or more than about 230 msec total (for portability,
4182 * given FOTG210_TUNE_FLS and the slop).  Or, write a smarter scheduler!
4183 */
4184
4185#define SCHEDULE_SLOP 80 /* microframes */
4186
4187static int iso_stream_schedule(struct fotg210_hcd *fotg210, struct urb *urb,
4188		struct fotg210_iso_stream *stream)
4189{
4190	u32 now, next, start, period, span;
4191	int status;
4192	unsigned mod = fotg210->periodic_size << 3;
4193	struct fotg210_iso_sched *sched = urb->hcpriv;
4194
4195	period = urb->interval;
4196	span = sched->span;
4197
4198	if (span > mod - SCHEDULE_SLOP) {
4199		fotg210_dbg(fotg210, "iso request %p too long\n", urb);
4200		status = -EFBIG;
4201		goto fail;
4202	}
4203
4204	now = fotg210_read_frame_index(fotg210) & (mod - 1);
4205
4206	/* Typical case: reuse current schedule, stream is still active.
4207	 * Hopefully there are no gaps from the host falling behind
4208	 * (irq delays etc), but if there are we'll take the next
4209	 * slot in the schedule, implicitly assuming URB_ISO_ASAP.
4210	 */
4211	if (likely(!list_empty(&stream->td_list))) {
4212		u32 excess;
4213
4214		/* For high speed devices, allow scheduling within the
4215		 * isochronous scheduling threshold.  For full speed devices
4216		 * and Intel PCI-based controllers, don't (work around for
4217		 * Intel ICH9 bug).
4218		 */
4219		if (!stream->highspeed && fotg210->fs_i_thresh)
4220			next = now + fotg210->i_thresh;
4221		else
4222			next = now;
4223
4224		/* Fell behind (by up to twice the slop amount)?
4225		 * We decide based on the time of the last currently-scheduled
4226		 * slot, not the time of the next available slot.
4227		 */
4228		excess = (stream->next_uframe - period - next) & (mod - 1);
4229		if (excess >= mod - 2 * SCHEDULE_SLOP)
4230			start = next + excess - mod + period *
4231					DIV_ROUND_UP(mod - excess, period);
4232		else
4233			start = next + excess + period;
4234		if (start - now >= mod) {
4235			fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4236					urb, start - now - period, period,
4237					mod);
4238			status = -EFBIG;
4239			goto fail;
4240		}
4241	}
4242
4243	/* need to schedule; when's the next (u)frame we could start?
4244	 * this is bigger than fotg210->i_thresh allows; scheduling itself
4245	 * isn't free, the slop should handle reasonably slow cpus.  it
4246	 * can also help high bandwidth if the dma and irq loads don't
4247	 * jump until after the queue is primed.
4248	 */
4249	else {
4250		int done = 0;
4251
4252		start = SCHEDULE_SLOP + (now & ~0x07);
4253
4254		/* NOTE:  assumes URB_ISO_ASAP, to limit complexity/bugs */
4255
4256		/* find a uframe slot with enough bandwidth.
4257		 * Early uframes are more precious because full-speed
4258		 * iso IN transfers can't use late uframes,
4259		 * and therefore they should be allocated last.
4260		 */
4261		next = start;
4262		start += period;
4263		do {
4264			start--;
4265			/* check schedule: enough space? */
4266			if (itd_slot_ok(fotg210, mod, start,
4267					stream->usecs, period))
4268				done = 1;
4269		} while (start > next && !done);
4270
4271		/* no room in the schedule */
4272		if (!done) {
4273			fotg210_dbg(fotg210, "iso resched full %p (now %d max %d)\n",
4274					urb, now, now + mod);
4275			status = -ENOSPC;
4276			goto fail;
4277		}
4278	}
4279
4280	/* Tried to schedule too far into the future? */
4281	if (unlikely(start - now + span - period >=
4282			mod - 2 * SCHEDULE_SLOP)) {
4283		fotg210_dbg(fotg210, "request %p would overflow (%d+%d >= %d)\n",
4284				urb, start - now, span - period,
4285				mod - 2 * SCHEDULE_SLOP);
4286		status = -EFBIG;
4287		goto fail;
4288	}
4289
4290	stream->next_uframe = start & (mod - 1);
4291
4292	/* report high speed start in uframes; full speed, in frames */
4293	urb->start_frame = stream->next_uframe;
4294	if (!stream->highspeed)
4295		urb->start_frame >>= 3;
4296
4297	/* Make sure scan_isoc() sees these */
4298	if (fotg210->isoc_count == 0)
4299		fotg210->next_frame = now >> 3;
4300	return 0;
4301
4302fail:
4303	iso_sched_free(stream, sched);
4304	urb->hcpriv = NULL;
4305	return status;
4306}
4307
4308static inline void itd_init(struct fotg210_hcd *fotg210,
4309		struct fotg210_iso_stream *stream, struct fotg210_itd *itd)
4310{
4311	int i;
4312
4313	/* it's been recently zeroed */
4314	itd->hw_next = FOTG210_LIST_END(fotg210);
4315	itd->hw_bufp[0] = stream->buf0;
4316	itd->hw_bufp[1] = stream->buf1;
4317	itd->hw_bufp[2] = stream->buf2;
4318
4319	for (i = 0; i < 8; i++)
4320		itd->index[i] = -1;
4321
4322	/* All other fields are filled when scheduling */
4323}
4324
4325static inline void itd_patch(struct fotg210_hcd *fotg210,
4326		struct fotg210_itd *itd, struct fotg210_iso_sched *iso_sched,
4327		unsigned index, u16 uframe)
4328{
4329	struct fotg210_iso_packet *uf = &iso_sched->packet[index];
4330	unsigned pg = itd->pg;
4331
4332	uframe &= 0x07;
4333	itd->index[uframe] = index;
4334
4335	itd->hw_transaction[uframe] = uf->transaction;
4336	itd->hw_transaction[uframe] |= cpu_to_hc32(fotg210, pg << 12);
4337	itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, uf->bufp & ~(u32)0);
4338	itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(uf->bufp >> 32));
4339
4340	/* iso_frame_desc[].offset must be strictly increasing */
4341	if (unlikely(uf->cross)) {
4342		u64 bufp = uf->bufp + 4096;
4343
4344		itd->pg = ++pg;
4345		itd->hw_bufp[pg] |= cpu_to_hc32(fotg210, bufp & ~(u32)0);
4346		itd->hw_bufp_hi[pg] |= cpu_to_hc32(fotg210, (u32)(bufp >> 32));
4347	}
4348}
4349
4350static inline void itd_link(struct fotg210_hcd *fotg210, unsigned frame,
4351		struct fotg210_itd *itd)
4352{
4353	union fotg210_shadow *prev = &fotg210->pshadow[frame];
4354	__hc32 *hw_p = &fotg210->periodic[frame];
4355	union fotg210_shadow here = *prev;
4356	__hc32 type = 0;
4357
4358	/* skip any iso nodes which might belong to previous microframes */
4359	while (here.ptr) {
4360		type = Q_NEXT_TYPE(fotg210, *hw_p);
4361		if (type == cpu_to_hc32(fotg210, Q_TYPE_QH))
4362			break;
4363		prev = periodic_next_shadow(fotg210, prev, type);
4364		hw_p = shadow_next_periodic(fotg210, &here, type);
4365		here = *prev;
4366	}
4367
4368	itd->itd_next = here;
4369	itd->hw_next = *hw_p;
4370	prev->itd = itd;
4371	itd->frame = frame;
4372	wmb();
4373	*hw_p = cpu_to_hc32(fotg210, itd->itd_dma | Q_TYPE_ITD);
4374}
4375
4376/* fit urb's itds into the selected schedule slot; activate as needed */
4377static void itd_link_urb(struct fotg210_hcd *fotg210, struct urb *urb,
4378		unsigned mod, struct fotg210_iso_stream *stream)
4379{
4380	int packet;
4381	unsigned next_uframe, uframe, frame;
4382	struct fotg210_iso_sched *iso_sched = urb->hcpriv;
4383	struct fotg210_itd *itd;
4384
4385	next_uframe = stream->next_uframe & (mod - 1);
4386
4387	if (unlikely(list_empty(&stream->td_list))) {
4388		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4389				+= stream->bandwidth;
4390		fotg210_dbg(fotg210,
4391			"schedule devp %s ep%d%s-iso period %d start %d.%d\n",
4392			urb->dev->devpath, stream->bEndpointAddress & 0x0f,
4393			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out",
4394			urb->interval,
4395			next_uframe >> 3, next_uframe & 0x7);
4396	}
4397
4398	/* fill iTDs uframe by uframe */
4399	for (packet = 0, itd = NULL; packet < urb->number_of_packets;) {
4400		if (itd == NULL) {
4401			/* ASSERT:  we have all necessary itds */
4402
4403			/* ASSERT:  no itds for this endpoint in this uframe */
4404
4405			itd = list_entry(iso_sched->td_list.next,
4406					struct fotg210_itd, itd_list);
4407			list_move_tail(&itd->itd_list, &stream->td_list);
4408			itd->stream = stream;
4409			itd->urb = urb;
4410			itd_init(fotg210, stream, itd);
4411		}
4412
4413		uframe = next_uframe & 0x07;
4414		frame = next_uframe >> 3;
4415
4416		itd_patch(fotg210, itd, iso_sched, packet, uframe);
4417
4418		next_uframe += stream->interval;
4419		next_uframe &= mod - 1;
4420		packet++;
4421
4422		/* link completed itds into the schedule */
4423		if (((next_uframe >> 3) != frame)
4424				|| packet == urb->number_of_packets) {
4425			itd_link(fotg210, frame & (fotg210->periodic_size - 1),
4426					itd);
4427			itd = NULL;
4428		}
4429	}
4430	stream->next_uframe = next_uframe;
4431
4432	/* don't need that schedule data any more */
4433	iso_sched_free(stream, iso_sched);
4434	urb->hcpriv = NULL;
4435
4436	++fotg210->isoc_count;
4437	enable_periodic(fotg210);
4438}
4439
4440#define ISO_ERRS (FOTG210_ISOC_BUF_ERR | FOTG210_ISOC_BABBLE |\
4441		FOTG210_ISOC_XACTERR)
4442
4443/* Process and recycle a completed ITD.  Return true iff its urb completed,
4444 * and hence its completion callback probably added things to the hardware
4445 * schedule.
4446 *
4447 * Note that we carefully avoid recycling this descriptor until after any
4448 * completion callback runs, so that it won't be reused quickly.  That is,
4449 * assuming (a) no more than two urbs per frame on this endpoint, and also
4450 * (b) only this endpoint's completions submit URBs.  It seems some silicon
4451 * corrupts things if you reuse completed descriptors very quickly...
4452 */
4453static bool itd_complete(struct fotg210_hcd *fotg210, struct fotg210_itd *itd)
4454{
4455	struct urb *urb = itd->urb;
4456	struct usb_iso_packet_descriptor *desc;
4457	u32 t;
4458	unsigned uframe;
4459	int urb_index = -1;
4460	struct fotg210_iso_stream *stream = itd->stream;
4461	struct usb_device *dev;
4462	bool retval = false;
4463
4464	/* for each uframe with a packet */
4465	for (uframe = 0; uframe < 8; uframe++) {
4466		if (likely(itd->index[uframe] == -1))
4467			continue;
4468		urb_index = itd->index[uframe];
4469		desc = &urb->iso_frame_desc[urb_index];
4470
4471		t = hc32_to_cpup(fotg210, &itd->hw_transaction[uframe]);
4472		itd->hw_transaction[uframe] = 0;
4473
4474		/* report transfer status */
4475		if (unlikely(t & ISO_ERRS)) {
4476			urb->error_count++;
4477			if (t & FOTG210_ISOC_BUF_ERR)
4478				desc->status = usb_pipein(urb->pipe)
4479					? -ENOSR  /* hc couldn't read */
4480					: -ECOMM; /* hc couldn't write */
4481			else if (t & FOTG210_ISOC_BABBLE)
4482				desc->status = -EOVERFLOW;
4483			else /* (t & FOTG210_ISOC_XACTERR) */
4484				desc->status = -EPROTO;
4485
4486			/* HC need not update length with this error */
4487			if (!(t & FOTG210_ISOC_BABBLE)) {
4488				desc->actual_length =
4489					fotg210_itdlen(urb, desc, t);
4490				urb->actual_length += desc->actual_length;
4491			}
4492		} else if (likely((t & FOTG210_ISOC_ACTIVE) == 0)) {
4493			desc->status = 0;
4494			desc->actual_length = fotg210_itdlen(urb, desc, t);
4495			urb->actual_length += desc->actual_length;
4496		} else {
4497			/* URB was too late */
4498			desc->status = -EXDEV;
4499		}
4500	}
4501
4502	/* handle completion now? */
4503	if (likely((urb_index + 1) != urb->number_of_packets))
4504		goto done;
4505
4506	/* ASSERT: it's really the last itd for this urb
4507	 * list_for_each_entry (itd, &stream->td_list, itd_list)
4508	 *	BUG_ON (itd->urb == urb);
4509	 */
4510
4511	/* give urb back to the driver; completion often (re)submits */
4512	dev = urb->dev;
4513	fotg210_urb_done(fotg210, urb, 0);
4514	retval = true;
4515	urb = NULL;
4516
4517	--fotg210->isoc_count;
4518	disable_periodic(fotg210);
4519
4520	if (unlikely(list_is_singular(&stream->td_list))) {
4521		fotg210_to_hcd(fotg210)->self.bandwidth_allocated
4522				-= stream->bandwidth;
4523		fotg210_dbg(fotg210,
4524			"deschedule devp %s ep%d%s-iso\n",
4525			dev->devpath, stream->bEndpointAddress & 0x0f,
4526			(stream->bEndpointAddress & USB_DIR_IN) ? "in" : "out");
4527	}
4528
4529done:
4530	itd->urb = NULL;
4531
4532	/* Add to the end of the free list for later reuse */
4533	list_move_tail(&itd->itd_list, &stream->free_list);
4534
4535	/* Recycle the iTDs when the pipeline is empty (ep no longer in use) */
4536	if (list_empty(&stream->td_list)) {
4537		list_splice_tail_init(&stream->free_list,
4538				&fotg210->cached_itd_list);
4539		start_free_itds(fotg210);
4540	}
4541
4542	return retval;
4543}
4544
4545static int itd_submit(struct fotg210_hcd *fotg210, struct urb *urb,
4546		gfp_t mem_flags)
4547{
4548	int status = -EINVAL;
4549	unsigned long flags;
4550	struct fotg210_iso_stream *stream;
4551
4552	/* Get iso_stream head */
4553	stream = iso_stream_find(fotg210, urb);
4554	if (unlikely(stream == NULL)) {
4555		fotg210_dbg(fotg210, "can't get iso stream\n");
4556		return -ENOMEM;
4557	}
4558	if (unlikely(urb->interval != stream->interval &&
4559			fotg210_port_speed(fotg210, 0) ==
4560			USB_PORT_STAT_HIGH_SPEED)) {
4561		fotg210_dbg(fotg210, "can't change iso interval %d --> %d\n",
4562				stream->interval, urb->interval);
4563		goto done;
4564	}
4565
4566#ifdef FOTG210_URB_TRACE
4567	fotg210_dbg(fotg210,
4568			"%s %s urb %p ep%d%s len %d, %d pkts %d uframes[%p]\n",
4569			__func__, urb->dev->devpath, urb,
4570			usb_pipeendpoint(urb->pipe),
4571			usb_pipein(urb->pipe) ? "in" : "out",
4572			urb->transfer_buffer_length,
4573			urb->number_of_packets, urb->interval,
4574			stream);
4575#endif
4576
4577	/* allocate ITDs w/o locking anything */
4578	status = itd_urb_transaction(stream, fotg210, urb, mem_flags);
4579	if (unlikely(status < 0)) {
4580		fotg210_dbg(fotg210, "can't init itds\n");
4581		goto done;
4582	}
4583
4584	/* schedule ... need to lock */
4585	spin_lock_irqsave(&fotg210->lock, flags);
4586	if (unlikely(!HCD_HW_ACCESSIBLE(fotg210_to_hcd(fotg210)))) {
4587		status = -ESHUTDOWN;
4588		goto done_not_linked;
4589	}
4590	status = usb_hcd_link_urb_to_ep(fotg210_to_hcd(fotg210), urb);
4591	if (unlikely(status))
4592		goto done_not_linked;
4593	status = iso_stream_schedule(fotg210, urb, stream);
4594	if (likely(status == 0))
4595		itd_link_urb(fotg210, urb, fotg210->periodic_size << 3, stream);
4596	else
4597		usb_hcd_unlink_urb_from_ep(fotg210_to_hcd(fotg210), urb);
4598done_not_linked:
4599	spin_unlock_irqrestore(&fotg210->lock, flags);
4600done:
4601	return status;
4602}
4603
4604static inline int scan_frame_queue(struct fotg210_hcd *fotg210, unsigned frame,
4605		unsigned now_frame, bool live)
4606{
4607	unsigned uf;
4608	bool modified;
4609	union fotg210_shadow q, *q_p;
4610	__hc32 type, *hw_p;
4611
4612	/* scan each element in frame's queue for completions */
4613	q_p = &fotg210->pshadow[frame];
4614	hw_p = &fotg210->periodic[frame];
4615	q.ptr = q_p->ptr;
4616	type = Q_NEXT_TYPE(fotg210, *hw_p);
4617	modified = false;
4618
4619	while (q.ptr) {
4620		switch (hc32_to_cpu(fotg210, type)) {
4621		case Q_TYPE_ITD:
4622			/* If this ITD is still active, leave it for
4623			 * later processing ... check the next entry.
4624			 * No need to check for activity unless the
4625			 * frame is current.
4626			 */
4627			if (frame == now_frame && live) {
4628				rmb();
4629				for (uf = 0; uf < 8; uf++) {
4630					if (q.itd->hw_transaction[uf] &
4631							ITD_ACTIVE(fotg210))
4632						break;
4633				}
4634				if (uf < 8) {
4635					q_p = &q.itd->itd_next;
4636					hw_p = &q.itd->hw_next;
4637					type = Q_NEXT_TYPE(fotg210,
4638							q.itd->hw_next);
4639					q = *q_p;
4640					break;
4641				}
4642			}
4643
4644			/* Take finished ITDs out of the schedule
4645			 * and process them:  recycle, maybe report
4646			 * URB completion.  HC won't cache the
4647			 * pointer for much longer, if at all.
4648			 */
4649			*q_p = q.itd->itd_next;
4650			*hw_p = q.itd->hw_next;
4651			type = Q_NEXT_TYPE(fotg210, q.itd->hw_next);
4652			wmb();
4653			modified = itd_complete(fotg210, q.itd);
4654			q = *q_p;
4655			break;
4656		default:
4657			fotg210_dbg(fotg210, "corrupt type %d frame %d shadow %p\n",
4658					type, frame, q.ptr);
4659			/* FALL THROUGH */
4660		case Q_TYPE_QH:
4661		case Q_TYPE_FSTN:
4662			/* End of the iTDs and siTDs */
4663			q.ptr = NULL;
4664			break;
4665		}
4666
4667		/* assume completion callbacks modify the queue */
4668		if (unlikely(modified && fotg210->isoc_count > 0))
4669			return -EINVAL;
4670	}
4671	return 0;
4672}
4673
4674static void scan_isoc(struct fotg210_hcd *fotg210)
4675{
4676	unsigned uf, now_frame, frame, ret;
4677	unsigned fmask = fotg210->periodic_size - 1;
4678	bool live;
4679
4680	/*
4681	 * When running, scan from last scan point up to "now"
4682	 * else clean up by scanning everything that's left.
4683	 * Touches as few pages as possible:  cache-friendly.
4684	 */
4685	if (fotg210->rh_state >= FOTG210_RH_RUNNING) {
4686		uf = fotg210_read_frame_index(fotg210);
4687		now_frame = (uf >> 3) & fmask;
4688		live = true;
4689	} else  {
4690		now_frame = (fotg210->next_frame - 1) & fmask;
4691		live = false;
4692	}
4693	fotg210->now_frame = now_frame;
4694
4695	frame = fotg210->next_frame;
4696	for (;;) {
4697		ret = 1;
4698		while (ret != 0)
4699			ret = scan_frame_queue(fotg210, frame,
4700					now_frame, live);
4701
4702		/* Stop when we have reached the current frame */
4703		if (frame == now_frame)
4704			break;
4705		frame = (frame + 1) & fmask;
4706	}
4707	fotg210->next_frame = now_frame;
4708}
4709
4710/* Display / Set uframe_periodic_max
4711 */
4712static ssize_t show_uframe_periodic_max(struct device *dev,
4713		struct device_attribute *attr, char *buf)
4714{
4715	struct fotg210_hcd *fotg210;
4716	int n;
4717
4718	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4719	n = scnprintf(buf, PAGE_SIZE, "%d\n", fotg210->uframe_periodic_max);
4720	return n;
4721}
4722
4723
4724static ssize_t store_uframe_periodic_max(struct device *dev,
4725		struct device_attribute *attr, const char *buf, size_t count)
4726{
4727	struct fotg210_hcd *fotg210;
4728	unsigned uframe_periodic_max;
4729	unsigned frame, uframe;
4730	unsigned short allocated_max;
4731	unsigned long flags;
4732	ssize_t ret;
4733
4734	fotg210 = hcd_to_fotg210(bus_to_hcd(dev_get_drvdata(dev)));
4735	if (kstrtouint(buf, 0, &uframe_periodic_max) < 0)
4736		return -EINVAL;
4737
4738	if (uframe_periodic_max < 100 || uframe_periodic_max >= 125) {
4739		fotg210_info(fotg210, "rejecting invalid request for uframe_periodic_max=%u\n",
4740				uframe_periodic_max);
4741		return -EINVAL;
4742	}
4743
4744	ret = -EINVAL;
4745
4746	/*
4747	 * lock, so that our checking does not race with possible periodic
4748	 * bandwidth allocation through submitting new urbs.
4749	 */
4750	spin_lock_irqsave(&fotg210->lock, flags);
4751
4752	/*
4753	 * for request to decrease max periodic bandwidth, we have to check
4754	 * every microframe in the schedule to see whether the decrease is
4755	 * possible.
4756	 */
4757	if (uframe_periodic_max < fotg210->uframe_periodic_max) {
4758		allocated_max = 0;
4759
4760		for (frame = 0; frame < fotg210->periodic_size; ++frame)
4761			for (uframe = 0; uframe < 7; ++uframe)
4762				allocated_max = max(allocated_max,
4763						periodic_usecs(fotg210, frame,
4764						uframe));
4765
4766		if (allocated_max > uframe_periodic_max) {
4767			fotg210_info(fotg210,
4768					"cannot decrease uframe_periodic_max because periodic bandwidth is already allocated (%u > %u)\n",
4769					allocated_max, uframe_periodic_max);
4770			goto out_unlock;
4771		}
4772	}
4773
4774	/* increasing is always ok */
4775
4776	fotg210_info(fotg210,
4777			"setting max periodic bandwidth to %u%% (== %u usec/uframe)\n",
4778			100 * uframe_periodic_max/125, uframe_periodic_max);
4779
4780	if (uframe_periodic_max != 100)
4781		fotg210_warn(fotg210, "max periodic bandwidth set is non-standard\n");
4782
4783	fotg210->uframe_periodic_max = uframe_periodic_max;
4784	ret = count;
4785
4786out_unlock:
4787	spin_unlock_irqrestore(&fotg210->lock, flags);
4788	return ret;
4789}
4790
4791static DEVICE_ATTR(uframe_periodic_max, 0644, show_uframe_periodic_max,
4792		   store_uframe_periodic_max);
4793
4794static inline int create_sysfs_files(struct fotg210_hcd *fotg210)
4795{
4796	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4797
4798	return device_create_file(controller, &dev_attr_uframe_periodic_max);
4799}
4800
4801static inline void remove_sysfs_files(struct fotg210_hcd *fotg210)
4802{
4803	struct device *controller = fotg210_to_hcd(fotg210)->self.controller;
4804
4805	device_remove_file(controller, &dev_attr_uframe_periodic_max);
4806}
4807/* On some systems, leaving remote wakeup enabled prevents system shutdown.
4808 * The firmware seems to think that powering off is a wakeup event!
4809 * This routine turns off remote wakeup and everything else, on all ports.
4810 */
4811static void fotg210_turn_off_all_ports(struct fotg210_hcd *fotg210)
4812{
4813	u32 __iomem *status_reg = &fotg210->regs->port_status;
4814
4815	fotg210_writel(fotg210, PORT_RWC_BITS, status_reg);
4816}
4817
4818/* Halt HC, turn off all ports, and let the BIOS use the companion controllers.
4819 * Must be called with interrupts enabled and the lock not held.
4820 */
4821static void fotg210_silence_controller(struct fotg210_hcd *fotg210)
4822{
4823	fotg210_halt(fotg210);
4824
4825	spin_lock_irq(&fotg210->lock);
4826	fotg210->rh_state = FOTG210_RH_HALTED;
4827	fotg210_turn_off_all_ports(fotg210);
4828	spin_unlock_irq(&fotg210->lock);
4829}
4830
4831/* fotg210_shutdown kick in for silicon on any bus (not just pci, etc).
4832 * This forcibly disables dma and IRQs, helping kexec and other cases
4833 * where the next system software may expect clean state.
4834 */
4835static void fotg210_shutdown(struct usb_hcd *hcd)
4836{
4837	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4838
4839	spin_lock_irq(&fotg210->lock);
4840	fotg210->shutdown = true;
4841	fotg210->rh_state = FOTG210_RH_STOPPING;
4842	fotg210->enabled_hrtimer_events = 0;
4843	spin_unlock_irq(&fotg210->lock);
4844
4845	fotg210_silence_controller(fotg210);
4846
4847	hrtimer_cancel(&fotg210->hrtimer);
4848}
4849
4850/* fotg210_work is called from some interrupts, timers, and so on.
4851 * it calls driver completion functions, after dropping fotg210->lock.
4852 */
4853static void fotg210_work(struct fotg210_hcd *fotg210)
4854{
4855	/* another CPU may drop fotg210->lock during a schedule scan while
4856	 * it reports urb completions.  this flag guards against bogus
4857	 * attempts at re-entrant schedule scanning.
4858	 */
4859	if (fotg210->scanning) {
4860		fotg210->need_rescan = true;
4861		return;
4862	}
4863	fotg210->scanning = true;
4864
4865rescan:
4866	fotg210->need_rescan = false;
4867	if (fotg210->async_count)
4868		scan_async(fotg210);
4869	if (fotg210->intr_count > 0)
4870		scan_intr(fotg210);
4871	if (fotg210->isoc_count > 0)
4872		scan_isoc(fotg210);
4873	if (fotg210->need_rescan)
4874		goto rescan;
4875	fotg210->scanning = false;
4876
4877	/* the IO watchdog guards against hardware or driver bugs that
4878	 * misplace IRQs, and should let us run completely without IRQs.
4879	 * such lossage has been observed on both VT6202 and VT8235.
4880	 */
4881	turn_on_io_watchdog(fotg210);
4882}
4883
4884/* Called when the fotg210_hcd module is removed.
4885 */
4886static void fotg210_stop(struct usb_hcd *hcd)
4887{
4888	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4889
4890	fotg210_dbg(fotg210, "stop\n");
4891
4892	/* no more interrupts ... */
4893
4894	spin_lock_irq(&fotg210->lock);
4895	fotg210->enabled_hrtimer_events = 0;
4896	spin_unlock_irq(&fotg210->lock);
4897
4898	fotg210_quiesce(fotg210);
4899	fotg210_silence_controller(fotg210);
4900	fotg210_reset(fotg210);
4901
4902	hrtimer_cancel(&fotg210->hrtimer);
4903	remove_sysfs_files(fotg210);
4904	remove_debug_files(fotg210);
4905
4906	/* root hub is shut down separately (first, when possible) */
4907	spin_lock_irq(&fotg210->lock);
4908	end_free_itds(fotg210);
4909	spin_unlock_irq(&fotg210->lock);
4910	fotg210_mem_cleanup(fotg210);
4911
4912#ifdef FOTG210_STATS
4913	fotg210_dbg(fotg210, "irq normal %ld err %ld iaa %ld (lost %ld)\n",
4914			fotg210->stats.normal, fotg210->stats.error,
4915			fotg210->stats.iaa, fotg210->stats.lost_iaa);
4916	fotg210_dbg(fotg210, "complete %ld unlink %ld\n",
4917			fotg210->stats.complete, fotg210->stats.unlink);
4918#endif
4919
4920	dbg_status(fotg210, "fotg210_stop completed",
4921			fotg210_readl(fotg210, &fotg210->regs->status));
4922}
4923
4924/* one-time init, only for memory state */
4925static int hcd_fotg210_init(struct usb_hcd *hcd)
4926{
4927	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
4928	u32 temp;
4929	int retval;
4930	u32 hcc_params;
4931	struct fotg210_qh_hw *hw;
4932
4933	spin_lock_init(&fotg210->lock);
4934
4935	/*
4936	 * keep io watchdog by default, those good HCDs could turn off it later
4937	 */
4938	fotg210->need_io_watchdog = 1;
4939
4940	hrtimer_init(&fotg210->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
4941	fotg210->hrtimer.function = fotg210_hrtimer_func;
4942	fotg210->next_hrtimer_event = FOTG210_HRTIMER_NO_EVENT;
4943
4944	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
4945
4946	/*
4947	 * by default set standard 80% (== 100 usec/uframe) max periodic
4948	 * bandwidth as required by USB 2.0
4949	 */
4950	fotg210->uframe_periodic_max = 100;
4951
4952	/*
4953	 * hw default: 1K periodic list heads, one per frame.
4954	 * periodic_size can shrink by USBCMD update if hcc_params allows.
4955	 */
4956	fotg210->periodic_size = DEFAULT_I_TDPS;
4957	INIT_LIST_HEAD(&fotg210->intr_qh_list);
4958	INIT_LIST_HEAD(&fotg210->cached_itd_list);
4959
4960	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
4961		/* periodic schedule size can be smaller than default */
4962		switch (FOTG210_TUNE_FLS) {
4963		case 0:
4964			fotg210->periodic_size = 1024;
4965			break;
4966		case 1:
4967			fotg210->periodic_size = 512;
4968			break;
4969		case 2:
4970			fotg210->periodic_size = 256;
4971			break;
4972		default:
4973			BUG();
4974		}
4975	}
4976	retval = fotg210_mem_init(fotg210, GFP_KERNEL);
4977	if (retval < 0)
4978		return retval;
4979
4980	/* controllers may cache some of the periodic schedule ... */
4981	fotg210->i_thresh = 2;
4982
4983	/*
4984	 * dedicate a qh for the async ring head, since we couldn't unlink
4985	 * a 'real' qh without stopping the async schedule [4.8].  use it
4986	 * as the 'reclamation list head' too.
4987	 * its dummy is used in hw_alt_next of many tds, to prevent the qh
4988	 * from automatically advancing to the next td after short reads.
4989	 */
4990	fotg210->async->qh_next.qh = NULL;
4991	hw = fotg210->async->hw;
4992	hw->hw_next = QH_NEXT(fotg210, fotg210->async->qh_dma);
4993	hw->hw_info1 = cpu_to_hc32(fotg210, QH_HEAD);
4994	hw->hw_token = cpu_to_hc32(fotg210, QTD_STS_HALT);
4995	hw->hw_qtd_next = FOTG210_LIST_END(fotg210);
4996	fotg210->async->qh_state = QH_STATE_LINKED;
4997	hw->hw_alt_next = QTD_NEXT(fotg210, fotg210->async->dummy->qtd_dma);
4998
4999	/* clear interrupt enables, set irq latency */
5000	if (log2_irq_thresh < 0 || log2_irq_thresh > 6)
5001		log2_irq_thresh = 0;
5002	temp = 1 << (16 + log2_irq_thresh);
5003	if (HCC_CANPARK(hcc_params)) {
5004		/* HW default park == 3, on hardware that supports it (like
5005		 * NVidia and ALI silicon), maximizes throughput on the async
5006		 * schedule by avoiding QH fetches between transfers.
5007		 *
5008		 * With fast usb storage devices and NForce2, "park" seems to
5009		 * make problems:  throughput reduction (!), data errors...
5010		 */
5011		if (park) {
5012			park = min_t(unsigned, park, 3);
5013			temp |= CMD_PARK;
5014			temp |= park << 8;
5015		}
5016		fotg210_dbg(fotg210, "park %d\n", park);
5017	}
5018	if (HCC_PGM_FRAMELISTLEN(hcc_params)) {
5019		/* periodic schedule size can be smaller than default */
5020		temp &= ~(3 << 2);
5021		temp |= (FOTG210_TUNE_FLS << 2);
5022	}
5023	fotg210->command = temp;
5024
5025	/* Accept arbitrarily long scatter-gather lists */
5026	if (!(hcd->driver->flags & HCD_LOCAL_MEM))
5027		hcd->self.sg_tablesize = ~0;
5028	return 0;
5029}
5030
5031/* start HC running; it's halted, hcd_fotg210_init() has been run (once) */
5032static int fotg210_run(struct usb_hcd *hcd)
5033{
5034	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5035	u32 temp;
5036	u32 hcc_params;
5037
5038	hcd->uses_new_polling = 1;
5039
5040	/* EHCI spec section 4.1 */
5041
5042	fotg210_writel(fotg210, fotg210->periodic_dma,
5043			&fotg210->regs->frame_list);
5044	fotg210_writel(fotg210, (u32)fotg210->async->qh_dma,
5045			&fotg210->regs->async_next);
5046
5047	/*
5048	 * hcc_params controls whether fotg210->regs->segment must (!!!)
5049	 * be used; it constrains QH/ITD/SITD and QTD locations.
5050	 * pci_pool consistent memory always uses segment zero.
5051	 * streaming mappings for I/O buffers, like pci_map_single(),
5052	 * can return segments above 4GB, if the device allows.
5053	 *
5054	 * NOTE:  the dma mask is visible through dev->dma_mask, so
5055	 * drivers can pass this info along ... like NETIF_F_HIGHDMA,
5056	 * Scsi_Host.highmem_io, and so forth.  It's readonly to all
5057	 * host side drivers though.
5058	 */
5059	hcc_params = fotg210_readl(fotg210, &fotg210->caps->hcc_params);
5060
5061	/*
5062	 * Philips, Intel, and maybe others need CMD_RUN before the
5063	 * root hub will detect new devices (why?); NEC doesn't
5064	 */
5065	fotg210->command &= ~(CMD_IAAD|CMD_PSE|CMD_ASE|CMD_RESET);
5066	fotg210->command |= CMD_RUN;
5067	fotg210_writel(fotg210, fotg210->command, &fotg210->regs->command);
5068	dbg_cmd(fotg210, "init", fotg210->command);
5069
5070	/*
5071	 * Start, enabling full USB 2.0 functionality ... usb 1.1 devices
5072	 * are explicitly handed to companion controller(s), so no TT is
5073	 * involved with the root hub.  (Except where one is integrated,
5074	 * and there's no companion controller unless maybe for USB OTG.)
5075	 *
5076	 * Turning on the CF flag will transfer ownership of all ports
5077	 * from the companions to the EHCI controller.  If any of the
5078	 * companions are in the middle of a port reset at the time, it
5079	 * could cause trouble.  Write-locking ehci_cf_port_reset_rwsem
5080	 * guarantees that no resets are in progress.  After we set CF,
5081	 * a short delay lets the hardware catch up; new resets shouldn't
5082	 * be started before the port switching actions could complete.
5083	 */
5084	down_write(&ehci_cf_port_reset_rwsem);
5085	fotg210->rh_state = FOTG210_RH_RUNNING;
5086	/* unblock posted writes */
5087	fotg210_readl(fotg210, &fotg210->regs->command);
5088	usleep_range(5000, 10000);
5089	up_write(&ehci_cf_port_reset_rwsem);
5090	fotg210->last_periodic_enable = ktime_get_real();
5091
5092	temp = HC_VERSION(fotg210,
5093			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5094	fotg210_info(fotg210,
5095			"USB %x.%x started, EHCI %x.%02x\n",
5096			((fotg210->sbrn & 0xf0) >> 4), (fotg210->sbrn & 0x0f),
5097			temp >> 8, temp & 0xff);
5098
5099	fotg210_writel(fotg210, INTR_MASK,
5100			&fotg210->regs->intr_enable); /* Turn On Interrupts */
5101
5102	/* GRR this is run-once init(), being done every time the HC starts.
5103	 * So long as they're part of class devices, we can't do it init()
5104	 * since the class device isn't created that early.
5105	 */
5106	create_debug_files(fotg210);
5107	create_sysfs_files(fotg210);
5108
5109	return 0;
5110}
5111
5112static int fotg210_setup(struct usb_hcd *hcd)
5113{
5114	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5115	int retval;
5116
5117	fotg210->regs = (void __iomem *)fotg210->caps +
5118			HC_LENGTH(fotg210,
5119			fotg210_readl(fotg210, &fotg210->caps->hc_capbase));
5120	dbg_hcs_params(fotg210, "reset");
5121	dbg_hcc_params(fotg210, "reset");
5122
5123	/* cache this readonly data; minimize chip reads */
5124	fotg210->hcs_params = fotg210_readl(fotg210,
5125			&fotg210->caps->hcs_params);
5126
5127	fotg210->sbrn = HCD_USB2;
5128
5129	/* data structure init */
5130	retval = hcd_fotg210_init(hcd);
5131	if (retval)
5132		return retval;
5133
5134	retval = fotg210_halt(fotg210);
5135	if (retval)
5136		return retval;
5137
5138	fotg210_reset(fotg210);
5139
5140	return 0;
5141}
5142
5143static irqreturn_t fotg210_irq(struct usb_hcd *hcd)
5144{
5145	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5146	u32 status, masked_status, pcd_status = 0, cmd;
5147	int bh;
5148
5149	spin_lock(&fotg210->lock);
5150
5151	status = fotg210_readl(fotg210, &fotg210->regs->status);
5152
5153	/* e.g. cardbus physical eject */
5154	if (status == ~(u32) 0) {
5155		fotg210_dbg(fotg210, "device removed\n");
5156		goto dead;
5157	}
5158
5159	/*
5160	 * We don't use STS_FLR, but some controllers don't like it to
5161	 * remain on, so mask it out along with the other status bits.
5162	 */
5163	masked_status = status & (INTR_MASK | STS_FLR);
5164
5165	/* Shared IRQ? */
5166	if (!masked_status ||
5167			unlikely(fotg210->rh_state == FOTG210_RH_HALTED)) {
5168		spin_unlock(&fotg210->lock);
5169		return IRQ_NONE;
5170	}
5171
5172	/* clear (just) interrupts */
5173	fotg210_writel(fotg210, masked_status, &fotg210->regs->status);
5174	cmd = fotg210_readl(fotg210, &fotg210->regs->command);
5175	bh = 0;
5176
5177	/* unrequested/ignored: Frame List Rollover */
5178	dbg_status(fotg210, "irq", status);
5179
5180	/* INT, ERR, and IAA interrupt rates can be throttled */
5181
5182	/* normal [4.15.1.2] or error [4.15.1.1] completion */
5183	if (likely((status & (STS_INT|STS_ERR)) != 0)) {
5184		if (likely((status & STS_ERR) == 0))
5185			COUNT(fotg210->stats.normal);
5186		else
5187			COUNT(fotg210->stats.error);
5188		bh = 1;
5189	}
5190
5191	/* complete the unlinking of some qh [4.15.2.3] */
5192	if (status & STS_IAA) {
5193
5194		/* Turn off the IAA watchdog */
5195		fotg210->enabled_hrtimer_events &=
5196			~BIT(FOTG210_HRTIMER_IAA_WATCHDOG);
5197
5198		/*
5199		 * Mild optimization: Allow another IAAD to reset the
5200		 * hrtimer, if one occurs before the next expiration.
5201		 * In theory we could always cancel the hrtimer, but
5202		 * tests show that about half the time it will be reset
5203		 * for some other event anyway.
5204		 */
5205		if (fotg210->next_hrtimer_event == FOTG210_HRTIMER_IAA_WATCHDOG)
5206			++fotg210->next_hrtimer_event;
5207
5208		/* guard against (alleged) silicon errata */
5209		if (cmd & CMD_IAAD)
5210			fotg210_dbg(fotg210, "IAA with IAAD still set?\n");
5211		if (fotg210->async_iaa) {
5212			COUNT(fotg210->stats.iaa);
5213			end_unlink_async(fotg210);
5214		} else
5215			fotg210_dbg(fotg210, "IAA with nothing unlinked?\n");
5216	}
5217
5218	/* remote wakeup [4.3.1] */
5219	if (status & STS_PCD) {
5220		int pstatus;
5221		u32 __iomem *status_reg = &fotg210->regs->port_status;
5222
5223		/* kick root hub later */
5224		pcd_status = status;
5225
5226		/* resume root hub? */
5227		if (fotg210->rh_state == FOTG210_RH_SUSPENDED)
5228			usb_hcd_resume_root_hub(hcd);
5229
5230		pstatus = fotg210_readl(fotg210, status_reg);
5231
5232		if (test_bit(0, &fotg210->suspended_ports) &&
5233				((pstatus & PORT_RESUME) ||
5234				!(pstatus & PORT_SUSPEND)) &&
5235				(pstatus & PORT_PE) &&
5236				fotg210->reset_done[0] == 0) {
5237
5238			/* start 20 msec resume signaling from this port,
5239			 * and make hub_wq collect PORT_STAT_C_SUSPEND to
5240			 * stop that signaling.  Use 5 ms extra for safety,
5241			 * like usb_port_resume() does.
5242			 */
5243			fotg210->reset_done[0] = jiffies + msecs_to_jiffies(25);
5244			set_bit(0, &fotg210->resuming_ports);
5245			fotg210_dbg(fotg210, "port 1 remote wakeup\n");
5246			mod_timer(&hcd->rh_timer, fotg210->reset_done[0]);
5247		}
5248	}
5249
5250	/* PCI errors [4.15.2.4] */
5251	if (unlikely((status & STS_FATAL) != 0)) {
5252		fotg210_err(fotg210, "fatal error\n");
5253		dbg_cmd(fotg210, "fatal", cmd);
5254		dbg_status(fotg210, "fatal", status);
5255dead:
5256		usb_hc_died(hcd);
5257
5258		/* Don't let the controller do anything more */
5259		fotg210->shutdown = true;
5260		fotg210->rh_state = FOTG210_RH_STOPPING;
5261		fotg210->command &= ~(CMD_RUN | CMD_ASE | CMD_PSE);
5262		fotg210_writel(fotg210, fotg210->command,
5263				&fotg210->regs->command);
5264		fotg210_writel(fotg210, 0, &fotg210->regs->intr_enable);
5265		fotg210_handle_controller_death(fotg210);
5266
5267		/* Handle completions when the controller stops */
5268		bh = 0;
5269	}
5270
5271	if (bh)
5272		fotg210_work(fotg210);
5273	spin_unlock(&fotg210->lock);
5274	if (pcd_status)
5275		usb_hcd_poll_rh_status(hcd);
5276	return IRQ_HANDLED;
5277}
5278
5279/* non-error returns are a promise to giveback() the urb later
5280 * we drop ownership so next owner (or urb unlink) can get it
5281 *
5282 * urb + dev is in hcd.self.controller.urb_list
5283 * we're queueing TDs onto software and hardware lists
5284 *
5285 * hcd-specific init for hcpriv hasn't been done yet
5286 *
5287 * NOTE:  control, bulk, and interrupt share the same code to append TDs
5288 * to a (possibly active) QH, and the same QH scanning code.
5289 */
5290static int fotg210_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
5291		gfp_t mem_flags)
5292{
5293	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5294	struct list_head qtd_list;
5295
5296	INIT_LIST_HEAD(&qtd_list);
5297
5298	switch (usb_pipetype(urb->pipe)) {
5299	case PIPE_CONTROL:
5300		/* qh_completions() code doesn't handle all the fault cases
5301		 * in multi-TD control transfers.  Even 1KB is rare anyway.
5302		 */
5303		if (urb->transfer_buffer_length > (16 * 1024))
5304			return -EMSGSIZE;
5305		/* FALLTHROUGH */
5306	/* case PIPE_BULK: */
5307	default:
5308		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5309			return -ENOMEM;
5310		return submit_async(fotg210, urb, &qtd_list, mem_flags);
5311
5312	case PIPE_INTERRUPT:
5313		if (!qh_urb_transaction(fotg210, urb, &qtd_list, mem_flags))
5314			return -ENOMEM;
5315		return intr_submit(fotg210, urb, &qtd_list, mem_flags);
5316
5317	case PIPE_ISOCHRONOUS:
5318		return itd_submit(fotg210, urb, mem_flags);
5319	}
5320}
5321
5322/* remove from hardware lists
5323 * completions normally happen asynchronously
5324 */
5325
5326static int fotg210_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
5327{
5328	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5329	struct fotg210_qh *qh;
5330	unsigned long flags;
5331	int rc;
5332
5333	spin_lock_irqsave(&fotg210->lock, flags);
5334	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
5335	if (rc)
5336		goto done;
5337
5338	switch (usb_pipetype(urb->pipe)) {
5339	/* case PIPE_CONTROL: */
5340	/* case PIPE_BULK:*/
5341	default:
5342		qh = (struct fotg210_qh *) urb->hcpriv;
5343		if (!qh)
5344			break;
5345		switch (qh->qh_state) {
5346		case QH_STATE_LINKED:
5347		case QH_STATE_COMPLETING:
5348			start_unlink_async(fotg210, qh);
5349			break;
5350		case QH_STATE_UNLINK:
5351		case QH_STATE_UNLINK_WAIT:
5352			/* already started */
5353			break;
5354		case QH_STATE_IDLE:
5355			/* QH might be waiting for a Clear-TT-Buffer */
5356			qh_completions(fotg210, qh);
5357			break;
5358		}
5359		break;
5360
5361	case PIPE_INTERRUPT:
5362		qh = (struct fotg210_qh *) urb->hcpriv;
5363		if (!qh)
5364			break;
5365		switch (qh->qh_state) {
5366		case QH_STATE_LINKED:
5367		case QH_STATE_COMPLETING:
5368			start_unlink_intr(fotg210, qh);
5369			break;
5370		case QH_STATE_IDLE:
5371			qh_completions(fotg210, qh);
5372			break;
5373		default:
5374			fotg210_dbg(fotg210, "bogus qh %p state %d\n",
5375					qh, qh->qh_state);
5376			goto done;
5377		}
5378		break;
5379
5380	case PIPE_ISOCHRONOUS:
5381		/* itd... */
5382
5383		/* wait till next completion, do it then. */
5384		/* completion irqs can wait up to 1024 msec, */
5385		break;
5386	}
5387done:
5388	spin_unlock_irqrestore(&fotg210->lock, flags);
5389	return rc;
5390}
5391
5392/* bulk qh holds the data toggle */
5393
5394static void fotg210_endpoint_disable(struct usb_hcd *hcd,
5395		struct usb_host_endpoint *ep)
5396{
5397	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5398	unsigned long flags;
5399	struct fotg210_qh *qh, *tmp;
5400
5401	/* ASSERT:  any requests/urbs are being unlinked */
5402	/* ASSERT:  nobody can be submitting urbs for this any more */
5403
5404rescan:
5405	spin_lock_irqsave(&fotg210->lock, flags);
5406	qh = ep->hcpriv;
5407	if (!qh)
5408		goto done;
5409
5410	/* endpoints can be iso streams.  for now, we don't
5411	 * accelerate iso completions ... so spin a while.
5412	 */
5413	if (qh->hw == NULL) {
5414		struct fotg210_iso_stream *stream = ep->hcpriv;
5415
5416		if (!list_empty(&stream->td_list))
5417			goto idle_timeout;
5418
5419		/* BUG_ON(!list_empty(&stream->free_list)); */
5420		kfree(stream);
5421		goto done;
5422	}
5423
5424	if (fotg210->rh_state < FOTG210_RH_RUNNING)
5425		qh->qh_state = QH_STATE_IDLE;
5426	switch (qh->qh_state) {
5427	case QH_STATE_LINKED:
5428	case QH_STATE_COMPLETING:
5429		for (tmp = fotg210->async->qh_next.qh;
5430				tmp && tmp != qh;
5431				tmp = tmp->qh_next.qh)
5432			continue;
5433		/* periodic qh self-unlinks on empty, and a COMPLETING qh
5434		 * may already be unlinked.
5435		 */
5436		if (tmp)
5437			start_unlink_async(fotg210, qh);
5438		/* FALL THROUGH */
5439	case QH_STATE_UNLINK:		/* wait for hw to finish? */
5440	case QH_STATE_UNLINK_WAIT:
5441idle_timeout:
5442		spin_unlock_irqrestore(&fotg210->lock, flags);
5443		schedule_timeout_uninterruptible(1);
5444		goto rescan;
5445	case QH_STATE_IDLE:		/* fully unlinked */
5446		if (qh->clearing_tt)
5447			goto idle_timeout;
5448		if (list_empty(&qh->qtd_list)) {
5449			qh_destroy(fotg210, qh);
5450			break;
5451		}
5452		/* else FALL THROUGH */
5453	default:
5454		/* caller was supposed to have unlinked any requests;
5455		 * that's not our job.  just leak this memory.
5456		 */
5457		fotg210_err(fotg210, "qh %p (#%02x) state %d%s\n",
5458				qh, ep->desc.bEndpointAddress, qh->qh_state,
5459				list_empty(&qh->qtd_list) ? "" : "(has tds)");
5460		break;
5461	}
5462done:
5463	ep->hcpriv = NULL;
5464	spin_unlock_irqrestore(&fotg210->lock, flags);
5465}
5466
5467static void fotg210_endpoint_reset(struct usb_hcd *hcd,
5468		struct usb_host_endpoint *ep)
5469{
5470	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5471	struct fotg210_qh *qh;
5472	int eptype = usb_endpoint_type(&ep->desc);
5473	int epnum = usb_endpoint_num(&ep->desc);
5474	int is_out = usb_endpoint_dir_out(&ep->desc);
5475	unsigned long flags;
5476
5477	if (eptype != USB_ENDPOINT_XFER_BULK && eptype != USB_ENDPOINT_XFER_INT)
5478		return;
5479
5480	spin_lock_irqsave(&fotg210->lock, flags);
5481	qh = ep->hcpriv;
5482
5483	/* For Bulk and Interrupt endpoints we maintain the toggle state
5484	 * in the hardware; the toggle bits in udev aren't used at all.
5485	 * When an endpoint is reset by usb_clear_halt() we must reset
5486	 * the toggle bit in the QH.
5487	 */
5488	if (qh) {
5489		usb_settoggle(qh->dev, epnum, is_out, 0);
5490		if (!list_empty(&qh->qtd_list)) {
5491			WARN_ONCE(1, "clear_halt for a busy endpoint\n");
5492		} else if (qh->qh_state == QH_STATE_LINKED ||
5493				qh->qh_state == QH_STATE_COMPLETING) {
5494
5495			/* The toggle value in the QH can't be updated
5496			 * while the QH is active.  Unlink it now;
5497			 * re-linking will call qh_refresh().
5498			 */
5499			if (eptype == USB_ENDPOINT_XFER_BULK)
5500				start_unlink_async(fotg210, qh);
5501			else
5502				start_unlink_intr(fotg210, qh);
5503		}
5504	}
5505	spin_unlock_irqrestore(&fotg210->lock, flags);
5506}
5507
5508static int fotg210_get_frame(struct usb_hcd *hcd)
5509{
5510	struct fotg210_hcd *fotg210 = hcd_to_fotg210(hcd);
5511
5512	return (fotg210_read_frame_index(fotg210) >> 3) %
5513		fotg210->periodic_size;
5514}
5515
5516/* The EHCI in ChipIdea HDRC cannot be a separate module or device,
5517 * because its registers (and irq) are shared between host/gadget/otg
5518 * functions  and in order to facilitate role switching we cannot
5519 * give the fotg210 driver exclusive access to those.
5520 */
5521MODULE_DESCRIPTION(DRIVER_DESC);
5522MODULE_AUTHOR(DRIVER_AUTHOR);
5523MODULE_LICENSE("GPL");
5524
5525static const struct hc_driver fotg210_fotg210_hc_driver = {
5526	.description		= hcd_name,
5527	.product_desc		= "Faraday USB2.0 Host Controller",
5528	.hcd_priv_size		= sizeof(struct fotg210_hcd),
5529
5530	/*
5531	 * generic hardware linkage
5532	 */
5533	.irq			= fotg210_irq,
5534	.flags			= HCD_MEMORY | HCD_USB2,
5535
5536	/*
5537	 * basic lifecycle operations
5538	 */
5539	.reset			= hcd_fotg210_init,
5540	.start			= fotg210_run,
5541	.stop			= fotg210_stop,
5542	.shutdown		= fotg210_shutdown,
5543
5544	/*
5545	 * managing i/o requests and associated device resources
5546	 */
5547	.urb_enqueue		= fotg210_urb_enqueue,
5548	.urb_dequeue		= fotg210_urb_dequeue,
5549	.endpoint_disable	= fotg210_endpoint_disable,
5550	.endpoint_reset		= fotg210_endpoint_reset,
5551
5552	/*
5553	 * scheduling support
5554	 */
5555	.get_frame_number	= fotg210_get_frame,
5556
5557	/*
5558	 * root hub support
5559	 */
5560	.hub_status_data	= fotg210_hub_status_data,
5561	.hub_control		= fotg210_hub_control,
5562	.bus_suspend		= fotg210_bus_suspend,
5563	.bus_resume		= fotg210_bus_resume,
5564
5565	.relinquish_port	= fotg210_relinquish_port,
5566	.port_handed_over	= fotg210_port_handed_over,
5567
5568	.clear_tt_buffer_complete = fotg210_clear_tt_buffer_complete,
5569};
5570
5571static void fotg210_init(struct fotg210_hcd *fotg210)
5572{
5573	u32 value;
5574
5575	iowrite32(GMIR_MDEV_INT | GMIR_MOTG_INT | GMIR_INT_POLARITY,
5576			&fotg210->regs->gmir);
5577
5578	value = ioread32(&fotg210->regs->otgcsr);
5579	value &= ~OTGCSR_A_BUS_DROP;
5580	value |= OTGCSR_A_BUS_REQ;
5581	iowrite32(value, &fotg210->regs->otgcsr);
5582}
5583
5584/**
5585 * fotg210_hcd_probe - initialize faraday FOTG210 HCDs
5586 *
5587 * Allocates basic resources for this USB host controller, and
5588 * then invokes the start() method for the HCD associated with it
5589 * through the hotplug entry's driver_data.
5590 */
5591static int fotg210_hcd_probe(struct platform_device *pdev)
5592{
5593	struct device *dev = &pdev->dev;
5594	struct usb_hcd *hcd;
5595	struct resource *res;
5596	int irq;
5597	int retval = -ENODEV;
5598	struct fotg210_hcd *fotg210;
5599
5600	if (usb_disabled())
5601		return -ENODEV;
5602
5603	pdev->dev.power.power_state = PMSG_ON;
5604
5605	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
5606	if (!res) {
5607		dev_err(dev, "Found HC with no IRQ. Check %s setup!\n",
5608				dev_name(dev));
5609		return -ENODEV;
5610	}
5611
5612	irq = res->start;
5613
5614	hcd = usb_create_hcd(&fotg210_fotg210_hc_driver, dev,
5615			dev_name(dev));
5616	if (!hcd) {
5617		dev_err(dev, "failed to create hcd with err %d\n", retval);
5618		retval = -ENOMEM;
5619		goto fail_create_hcd;
5620	}
5621
5622	hcd->has_tt = 1;
5623
5624	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5625	hcd->regs = devm_ioremap_resource(&pdev->dev, res);
5626	if (IS_ERR(hcd->regs)) {
5627		retval = PTR_ERR(hcd->regs);
5628		goto failed;
5629	}
5630
5631	hcd->rsrc_start = res->start;
5632	hcd->rsrc_len = resource_size(res);
5633
5634	fotg210 = hcd_to_fotg210(hcd);
5635
5636	fotg210->caps = hcd->regs;
5637
5638	retval = fotg210_setup(hcd);
5639	if (retval)
5640		goto failed;
5641
5642	fotg210_init(fotg210);
5643
5644	retval = usb_add_hcd(hcd, irq, IRQF_SHARED);
5645	if (retval) {
5646		dev_err(dev, "failed to add hcd with err %d\n", retval);
5647		goto failed;
5648	}
5649	device_wakeup_enable(hcd->self.controller);
5650
5651	return retval;
5652
5653failed:
5654	usb_put_hcd(hcd);
5655fail_create_hcd:
5656	dev_err(dev, "init %s fail, %d\n", dev_name(dev), retval);
5657	return retval;
5658}
5659
5660/**
5661 * fotg210_hcd_remove - shutdown processing for EHCI HCDs
5662 * @dev: USB Host Controller being removed
5663 *
5664 */
5665static int fotg210_hcd_remove(struct platform_device *pdev)
5666{
5667	struct device *dev = &pdev->dev;
5668	struct usb_hcd *hcd = dev_get_drvdata(dev);
5669
5670	if (!hcd)
5671		return 0;
5672
5673	usb_remove_hcd(hcd);
5674	usb_put_hcd(hcd);
5675
5676	return 0;
5677}
5678
5679static struct platform_driver fotg210_hcd_driver = {
5680	.driver = {
5681		.name   = "fotg210-hcd",
5682	},
5683	.probe  = fotg210_hcd_probe,
5684	.remove = fotg210_hcd_remove,
5685};
5686
5687static int __init fotg210_hcd_init(void)
5688{
5689	int retval = 0;
5690
5691	if (usb_disabled())
5692		return -ENODEV;
5693
5694	pr_info("%s: " DRIVER_DESC "\n", hcd_name);
5695	set_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5696	if (test_bit(USB_UHCI_LOADED, &usb_hcds_loaded) ||
5697			test_bit(USB_OHCI_LOADED, &usb_hcds_loaded))
5698		pr_warn("Warning! fotg210_hcd should always be loaded before uhci_hcd and ohci_hcd, not after\n");
5699
5700	pr_debug("%s: block sizes: qh %Zd qtd %Zd itd %Zd\n",
5701			hcd_name, sizeof(struct fotg210_qh),
5702			sizeof(struct fotg210_qtd),
5703			sizeof(struct fotg210_itd));
5704
5705	fotg210_debug_root = debugfs_create_dir("fotg210", usb_debug_root);
5706	if (!fotg210_debug_root) {
5707		retval = -ENOENT;
5708		goto err_debug;
5709	}
5710
5711	retval = platform_driver_register(&fotg210_hcd_driver);
5712	if (retval < 0)
5713		goto clean;
5714	return retval;
5715
5716clean:
5717	debugfs_remove(fotg210_debug_root);
5718	fotg210_debug_root = NULL;
5719err_debug:
5720	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5721	return retval;
5722}
5723module_init(fotg210_hcd_init);
5724
5725static void __exit fotg210_hcd_cleanup(void)
5726{
5727	platform_driver_unregister(&fotg210_hcd_driver);
5728	debugfs_remove(fotg210_debug_root);
5729	clear_bit(USB_EHCI_LOADED, &usb_hcds_loaded);
5730}
5731module_exit(fotg210_hcd_cleanup);