Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 2007 - 2018 Intel Corporation. */
3
4/* e1000_82575
5 * e1000_82576
6 */
7
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10#include <linux/types.h>
11#include <linux/if_ether.h>
12#include <linux/i2c.h>
13
14#include "e1000_mac.h"
15#include "e1000_82575.h"
16#include "e1000_i210.h"
17#include "igb.h"
18
19static s32 igb_get_invariants_82575(struct e1000_hw *);
20static s32 igb_acquire_phy_82575(struct e1000_hw *);
21static void igb_release_phy_82575(struct e1000_hw *);
22static s32 igb_acquire_nvm_82575(struct e1000_hw *);
23static void igb_release_nvm_82575(struct e1000_hw *);
24static s32 igb_check_for_link_82575(struct e1000_hw *);
25static s32 igb_get_cfg_done_82575(struct e1000_hw *);
26static s32 igb_init_hw_82575(struct e1000_hw *);
27static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
28static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
29static s32 igb_reset_hw_82575(struct e1000_hw *);
30static s32 igb_reset_hw_82580(struct e1000_hw *);
31static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
32static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
33static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
34static s32 igb_setup_copper_link_82575(struct e1000_hw *);
35static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
36static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
37static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
38static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
39static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
40 u16 *);
41static s32 igb_get_phy_id_82575(struct e1000_hw *);
42static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
43static bool igb_sgmii_active_82575(struct e1000_hw *);
44static s32 igb_reset_init_script_82575(struct e1000_hw *);
45static s32 igb_read_mac_addr_82575(struct e1000_hw *);
46static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
47static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
48static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
49static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
50static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
51static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
52static const u16 e1000_82580_rxpbs_table[] = {
53 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
54
55/* Due to a hw errata, if the host tries to configure the VFTA register
56 * while performing queries from the BMC or DMA, then the VFTA in some
57 * cases won't be written.
58 */
59
60/**
61 * igb_write_vfta_i350 - Write value to VLAN filter table
62 * @hw: pointer to the HW structure
63 * @offset: register offset in VLAN filter table
64 * @value: register value written to VLAN filter table
65 *
66 * Writes value at the given offset in the register array which stores
67 * the VLAN filter table.
68 **/
69static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
70{
71 struct igb_adapter *adapter = hw->back;
72 int i;
73
74 for (i = 10; i--;)
75 array_wr32(E1000_VFTA, offset, value);
76
77 wrfl();
78 adapter->shadow_vfta[offset] = value;
79}
80
81/**
82 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
83 * @hw: pointer to the HW structure
84 *
85 * Called to determine if the I2C pins are being used for I2C or as an
86 * external MDIO interface since the two options are mutually exclusive.
87 **/
88static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
89{
90 u32 reg = 0;
91 bool ext_mdio = false;
92
93 switch (hw->mac.type) {
94 case e1000_82575:
95 case e1000_82576:
96 reg = rd32(E1000_MDIC);
97 ext_mdio = !!(reg & E1000_MDIC_DEST);
98 break;
99 case e1000_82580:
100 case e1000_i350:
101 case e1000_i354:
102 case e1000_i210:
103 case e1000_i211:
104 reg = rd32(E1000_MDICNFG);
105 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
106 break;
107 default:
108 break;
109 }
110 return ext_mdio;
111}
112
113/**
114 * igb_check_for_link_media_swap - Check which M88E1112 interface linked
115 * @hw: pointer to the HW structure
116 *
117 * Poll the M88E1112 interfaces to see which interface achieved link.
118 */
119static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
120{
121 struct e1000_phy_info *phy = &hw->phy;
122 s32 ret_val;
123 u16 data;
124 u8 port = 0;
125
126 /* Check the copper medium. */
127 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
128 if (ret_val)
129 return ret_val;
130
131 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
132 if (ret_val)
133 return ret_val;
134
135 if (data & E1000_M88E1112_STATUS_LINK)
136 port = E1000_MEDIA_PORT_COPPER;
137
138 /* Check the other medium. */
139 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
140 if (ret_val)
141 return ret_val;
142
143 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
144 if (ret_val)
145 return ret_val;
146
147
148 if (data & E1000_M88E1112_STATUS_LINK)
149 port = E1000_MEDIA_PORT_OTHER;
150
151 /* Determine if a swap needs to happen. */
152 if (port && (hw->dev_spec._82575.media_port != port)) {
153 hw->dev_spec._82575.media_port = port;
154 hw->dev_spec._82575.media_changed = true;
155 }
156
157 if (port == E1000_MEDIA_PORT_COPPER) {
158 /* reset page to 0 */
159 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
160 if (ret_val)
161 return ret_val;
162 igb_check_for_link_82575(hw);
163 } else {
164 igb_check_for_link_82575(hw);
165 /* reset page to 0 */
166 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
167 if (ret_val)
168 return ret_val;
169 }
170
171 return 0;
172}
173
174/**
175 * igb_init_phy_params_82575 - Init PHY func ptrs.
176 * @hw: pointer to the HW structure
177 **/
178static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
179{
180 struct e1000_phy_info *phy = &hw->phy;
181 s32 ret_val = 0;
182 u32 ctrl_ext;
183
184 if (hw->phy.media_type != e1000_media_type_copper) {
185 phy->type = e1000_phy_none;
186 goto out;
187 }
188
189 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
190 phy->reset_delay_us = 100;
191
192 ctrl_ext = rd32(E1000_CTRL_EXT);
193
194 if (igb_sgmii_active_82575(hw)) {
195 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
196 ctrl_ext |= E1000_CTRL_I2C_ENA;
197 } else {
198 phy->ops.reset = igb_phy_hw_reset;
199 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
200 }
201
202 wr32(E1000_CTRL_EXT, ctrl_ext);
203 igb_reset_mdicnfg_82580(hw);
204
205 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
206 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
207 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
208 } else {
209 switch (hw->mac.type) {
210 case e1000_82580:
211 case e1000_i350:
212 case e1000_i354:
213 case e1000_i210:
214 case e1000_i211:
215 phy->ops.read_reg = igb_read_phy_reg_82580;
216 phy->ops.write_reg = igb_write_phy_reg_82580;
217 break;
218 default:
219 phy->ops.read_reg = igb_read_phy_reg_igp;
220 phy->ops.write_reg = igb_write_phy_reg_igp;
221 }
222 }
223
224 /* set lan id */
225 hw->bus.func = FIELD_GET(E1000_STATUS_FUNC_MASK, rd32(E1000_STATUS));
226
227 /* Set phy->phy_addr and phy->id. */
228 ret_val = igb_get_phy_id_82575(hw);
229 if (ret_val)
230 return ret_val;
231
232 /* Verify phy id and set remaining function pointers */
233 switch (phy->id) {
234 case M88E1543_E_PHY_ID:
235 case M88E1512_E_PHY_ID:
236 case I347AT4_E_PHY_ID:
237 case M88E1112_E_PHY_ID:
238 case M88E1111_I_PHY_ID:
239 phy->type = e1000_phy_m88;
240 phy->ops.check_polarity = igb_check_polarity_m88;
241 phy->ops.get_phy_info = igb_get_phy_info_m88;
242 if (phy->id != M88E1111_I_PHY_ID)
243 phy->ops.get_cable_length =
244 igb_get_cable_length_m88_gen2;
245 else
246 phy->ops.get_cable_length = igb_get_cable_length_m88;
247 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
248 /* Check if this PHY is configured for media swap. */
249 if (phy->id == M88E1112_E_PHY_ID) {
250 u16 data;
251
252 ret_val = phy->ops.write_reg(hw,
253 E1000_M88E1112_PAGE_ADDR,
254 2);
255 if (ret_val)
256 goto out;
257
258 ret_val = phy->ops.read_reg(hw,
259 E1000_M88E1112_MAC_CTRL_1,
260 &data);
261 if (ret_val)
262 goto out;
263
264 data = FIELD_GET(E1000_M88E1112_MAC_CTRL_1_MODE_MASK,
265 data);
266 if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
267 data == E1000_M88E1112_AUTO_COPPER_BASEX)
268 hw->mac.ops.check_for_link =
269 igb_check_for_link_media_swap;
270 }
271 if (phy->id == M88E1512_E_PHY_ID) {
272 ret_val = igb_initialize_M88E1512_phy(hw);
273 if (ret_val)
274 goto out;
275 }
276 if (phy->id == M88E1543_E_PHY_ID) {
277 ret_val = igb_initialize_M88E1543_phy(hw);
278 if (ret_val)
279 goto out;
280 }
281 break;
282 case IGP03E1000_E_PHY_ID:
283 phy->type = e1000_phy_igp_3;
284 phy->ops.get_phy_info = igb_get_phy_info_igp;
285 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
286 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
287 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
288 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
289 break;
290 case I82580_I_PHY_ID:
291 case I350_I_PHY_ID:
292 phy->type = e1000_phy_82580;
293 phy->ops.force_speed_duplex =
294 igb_phy_force_speed_duplex_82580;
295 phy->ops.get_cable_length = igb_get_cable_length_82580;
296 phy->ops.get_phy_info = igb_get_phy_info_82580;
297 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
298 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
299 break;
300 case I210_I_PHY_ID:
301 phy->type = e1000_phy_i210;
302 phy->ops.check_polarity = igb_check_polarity_m88;
303 phy->ops.get_cfg_done = igb_get_cfg_done_i210;
304 phy->ops.get_phy_info = igb_get_phy_info_m88;
305 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
306 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
307 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
308 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
309 break;
310 case BCM54616_E_PHY_ID:
311 phy->type = e1000_phy_bcm54616;
312 break;
313 default:
314 ret_val = -E1000_ERR_PHY;
315 goto out;
316 }
317
318out:
319 return ret_val;
320}
321
322/**
323 * igb_init_nvm_params_82575 - Init NVM func ptrs.
324 * @hw: pointer to the HW structure
325 **/
326static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
327{
328 struct e1000_nvm_info *nvm = &hw->nvm;
329 u32 eecd = rd32(E1000_EECD);
330 u16 size;
331
332 size = FIELD_GET(E1000_EECD_SIZE_EX_MASK, eecd);
333
334 /* Added to a constant, "size" becomes the left-shift value
335 * for setting word_size.
336 */
337 size += NVM_WORD_SIZE_BASE_SHIFT;
338
339 /* Just in case size is out of range, cap it to the largest
340 * EEPROM size supported
341 */
342 if (size > 15)
343 size = 15;
344
345 nvm->word_size = BIT(size);
346 nvm->opcode_bits = 8;
347 nvm->delay_usec = 1;
348
349 switch (nvm->override) {
350 case e1000_nvm_override_spi_large:
351 nvm->page_size = 32;
352 nvm->address_bits = 16;
353 break;
354 case e1000_nvm_override_spi_small:
355 nvm->page_size = 8;
356 nvm->address_bits = 8;
357 break;
358 default:
359 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
360 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
361 16 : 8;
362 break;
363 }
364 if (nvm->word_size == BIT(15))
365 nvm->page_size = 128;
366
367 nvm->type = e1000_nvm_eeprom_spi;
368
369 /* NVM Function Pointers */
370 nvm->ops.acquire = igb_acquire_nvm_82575;
371 nvm->ops.release = igb_release_nvm_82575;
372 nvm->ops.write = igb_write_nvm_spi;
373 nvm->ops.validate = igb_validate_nvm_checksum;
374 nvm->ops.update = igb_update_nvm_checksum;
375 if (nvm->word_size < BIT(15))
376 nvm->ops.read = igb_read_nvm_eerd;
377 else
378 nvm->ops.read = igb_read_nvm_spi;
379
380 /* override generic family function pointers for specific descendants */
381 switch (hw->mac.type) {
382 case e1000_82580:
383 nvm->ops.validate = igb_validate_nvm_checksum_82580;
384 nvm->ops.update = igb_update_nvm_checksum_82580;
385 break;
386 case e1000_i354:
387 case e1000_i350:
388 nvm->ops.validate = igb_validate_nvm_checksum_i350;
389 nvm->ops.update = igb_update_nvm_checksum_i350;
390 break;
391 default:
392 break;
393 }
394
395 return 0;
396}
397
398/**
399 * igb_init_mac_params_82575 - Init MAC func ptrs.
400 * @hw: pointer to the HW structure
401 **/
402static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
403{
404 struct e1000_mac_info *mac = &hw->mac;
405 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
406
407 /* Set mta register count */
408 mac->mta_reg_count = 128;
409 /* Set uta register count */
410 mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
411 /* Set rar entry count */
412 switch (mac->type) {
413 case e1000_82576:
414 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
415 break;
416 case e1000_82580:
417 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
418 break;
419 case e1000_i350:
420 case e1000_i354:
421 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
422 break;
423 default:
424 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
425 break;
426 }
427 /* reset */
428 if (mac->type >= e1000_82580)
429 mac->ops.reset_hw = igb_reset_hw_82580;
430 else
431 mac->ops.reset_hw = igb_reset_hw_82575;
432
433 if (mac->type >= e1000_i210) {
434 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
435 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
436
437 } else {
438 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
439 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
440 }
441
442 if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
443 mac->ops.write_vfta = igb_write_vfta_i350;
444 else
445 mac->ops.write_vfta = igb_write_vfta;
446
447 /* Set if part includes ASF firmware */
448 mac->asf_firmware_present = true;
449 /* Set if manageability features are enabled. */
450 mac->arc_subsystem_valid =
451 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
452 ? true : false;
453 /* enable EEE on i350 parts and later parts */
454 if (mac->type >= e1000_i350)
455 dev_spec->eee_disable = false;
456 else
457 dev_spec->eee_disable = true;
458 /* Allow a single clear of the SW semaphore on I210 and newer */
459 if (mac->type >= e1000_i210)
460 dev_spec->clear_semaphore_once = true;
461 /* physical interface link setup */
462 mac->ops.setup_physical_interface =
463 (hw->phy.media_type == e1000_media_type_copper)
464 ? igb_setup_copper_link_82575
465 : igb_setup_serdes_link_82575;
466
467 if (mac->type == e1000_82580 || mac->type == e1000_i350) {
468 switch (hw->device_id) {
469 /* feature not supported on these id's */
470 case E1000_DEV_ID_DH89XXCC_SGMII:
471 case E1000_DEV_ID_DH89XXCC_SERDES:
472 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
473 case E1000_DEV_ID_DH89XXCC_SFP:
474 break;
475 default:
476 hw->dev_spec._82575.mas_capable = true;
477 break;
478 }
479 }
480 return 0;
481}
482
483/**
484 * igb_set_sfp_media_type_82575 - derives SFP module media type.
485 * @hw: pointer to the HW structure
486 *
487 * The media type is chosen based on SFP module.
488 * compatibility flags retrieved from SFP ID EEPROM.
489 **/
490static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
491{
492 s32 ret_val = E1000_ERR_CONFIG;
493 u32 ctrl_ext = 0;
494 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
495 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
496 u8 tranceiver_type = 0;
497 s32 timeout = 3;
498
499 /* Turn I2C interface ON and power on sfp cage */
500 ctrl_ext = rd32(E1000_CTRL_EXT);
501 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
502 wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
503
504 wrfl();
505
506 /* Read SFP module data */
507 while (timeout) {
508 ret_val = igb_read_sfp_data_byte(hw,
509 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
510 &tranceiver_type);
511 if (ret_val == 0)
512 break;
513 msleep(100);
514 timeout--;
515 }
516 if (ret_val != 0)
517 goto out;
518
519 ret_val = igb_read_sfp_data_byte(hw,
520 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
521 (u8 *)eth_flags);
522 if (ret_val != 0)
523 goto out;
524
525 /* Check if there is some SFP module plugged and powered */
526 if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
527 (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
528 dev_spec->module_plugged = true;
529 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
530 hw->phy.media_type = e1000_media_type_internal_serdes;
531 } else if (eth_flags->e100_base_fx || eth_flags->e100_base_lx) {
532 dev_spec->sgmii_active = true;
533 hw->phy.media_type = e1000_media_type_internal_serdes;
534 } else if (eth_flags->e1000_base_t) {
535 dev_spec->sgmii_active = true;
536 hw->phy.media_type = e1000_media_type_copper;
537 } else {
538 hw->phy.media_type = e1000_media_type_unknown;
539 hw_dbg("PHY module has not been recognized\n");
540 goto out;
541 }
542 } else {
543 hw->phy.media_type = e1000_media_type_unknown;
544 }
545 ret_val = 0;
546out:
547 /* Restore I2C interface setting */
548 wr32(E1000_CTRL_EXT, ctrl_ext);
549 return ret_val;
550}
551
552static s32 igb_get_invariants_82575(struct e1000_hw *hw)
553{
554 struct e1000_mac_info *mac = &hw->mac;
555 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
556 s32 ret_val;
557 u32 ctrl_ext = 0;
558 u32 link_mode = 0;
559
560 switch (hw->device_id) {
561 case E1000_DEV_ID_82575EB_COPPER:
562 case E1000_DEV_ID_82575EB_FIBER_SERDES:
563 case E1000_DEV_ID_82575GB_QUAD_COPPER:
564 mac->type = e1000_82575;
565 break;
566 case E1000_DEV_ID_82576:
567 case E1000_DEV_ID_82576_NS:
568 case E1000_DEV_ID_82576_NS_SERDES:
569 case E1000_DEV_ID_82576_FIBER:
570 case E1000_DEV_ID_82576_SERDES:
571 case E1000_DEV_ID_82576_QUAD_COPPER:
572 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
573 case E1000_DEV_ID_82576_SERDES_QUAD:
574 mac->type = e1000_82576;
575 break;
576 case E1000_DEV_ID_82580_COPPER:
577 case E1000_DEV_ID_82580_FIBER:
578 case E1000_DEV_ID_82580_QUAD_FIBER:
579 case E1000_DEV_ID_82580_SERDES:
580 case E1000_DEV_ID_82580_SGMII:
581 case E1000_DEV_ID_82580_COPPER_DUAL:
582 case E1000_DEV_ID_DH89XXCC_SGMII:
583 case E1000_DEV_ID_DH89XXCC_SERDES:
584 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
585 case E1000_DEV_ID_DH89XXCC_SFP:
586 mac->type = e1000_82580;
587 break;
588 case E1000_DEV_ID_I350_COPPER:
589 case E1000_DEV_ID_I350_FIBER:
590 case E1000_DEV_ID_I350_SERDES:
591 case E1000_DEV_ID_I350_SGMII:
592 mac->type = e1000_i350;
593 break;
594 case E1000_DEV_ID_I210_COPPER:
595 case E1000_DEV_ID_I210_FIBER:
596 case E1000_DEV_ID_I210_SERDES:
597 case E1000_DEV_ID_I210_SGMII:
598 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
599 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
600 mac->type = e1000_i210;
601 break;
602 case E1000_DEV_ID_I211_COPPER:
603 mac->type = e1000_i211;
604 break;
605 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
606 case E1000_DEV_ID_I354_SGMII:
607 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
608 mac->type = e1000_i354;
609 break;
610 default:
611 return -E1000_ERR_MAC_INIT;
612 }
613
614 /* Set media type */
615 /* The 82575 uses bits 22:23 for link mode. The mode can be changed
616 * based on the EEPROM. We cannot rely upon device ID. There
617 * is no distinguishable difference between fiber and internal
618 * SerDes mode on the 82575. There can be an external PHY attached
619 * on the SGMII interface. For this, we'll set sgmii_active to true.
620 */
621 hw->phy.media_type = e1000_media_type_copper;
622 dev_spec->sgmii_active = false;
623 dev_spec->module_plugged = false;
624
625 ctrl_ext = rd32(E1000_CTRL_EXT);
626
627 link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
628 switch (link_mode) {
629 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
630 hw->phy.media_type = e1000_media_type_internal_serdes;
631 break;
632 case E1000_CTRL_EXT_LINK_MODE_SGMII:
633 /* Get phy control interface type set (MDIO vs. I2C)*/
634 if (igb_sgmii_uses_mdio_82575(hw)) {
635 hw->phy.media_type = e1000_media_type_copper;
636 dev_spec->sgmii_active = true;
637 break;
638 }
639 fallthrough; /* for I2C based SGMII */
640 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
641 /* read media type from SFP EEPROM */
642 ret_val = igb_set_sfp_media_type_82575(hw);
643 if ((ret_val != 0) ||
644 (hw->phy.media_type == e1000_media_type_unknown)) {
645 /* If media type was not identified then return media
646 * type defined by the CTRL_EXT settings.
647 */
648 hw->phy.media_type = e1000_media_type_internal_serdes;
649
650 if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
651 hw->phy.media_type = e1000_media_type_copper;
652 dev_spec->sgmii_active = true;
653 }
654
655 break;
656 }
657
658 /* change current link mode setting */
659 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
660
661 if (dev_spec->sgmii_active)
662 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
663 else
664 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
665
666 wr32(E1000_CTRL_EXT, ctrl_ext);
667
668 break;
669 default:
670 break;
671 }
672
673 /* mac initialization and operations */
674 ret_val = igb_init_mac_params_82575(hw);
675 if (ret_val)
676 goto out;
677
678 /* NVM initialization */
679 ret_val = igb_init_nvm_params_82575(hw);
680 switch (hw->mac.type) {
681 case e1000_i210:
682 case e1000_i211:
683 ret_val = igb_init_nvm_params_i210(hw);
684 break;
685 default:
686 break;
687 }
688
689 if (ret_val)
690 goto out;
691
692 /* if part supports SR-IOV then initialize mailbox parameters */
693 switch (mac->type) {
694 case e1000_82576:
695 case e1000_i350:
696 igb_init_mbx_params_pf(hw);
697 break;
698 default:
699 break;
700 }
701
702 /* setup PHY parameters */
703 ret_val = igb_init_phy_params_82575(hw);
704
705out:
706 return ret_val;
707}
708
709/**
710 * igb_acquire_phy_82575 - Acquire rights to access PHY
711 * @hw: pointer to the HW structure
712 *
713 * Acquire access rights to the correct PHY. This is a
714 * function pointer entry point called by the api module.
715 **/
716static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
717{
718 u16 mask = E1000_SWFW_PHY0_SM;
719
720 if (hw->bus.func == E1000_FUNC_1)
721 mask = E1000_SWFW_PHY1_SM;
722 else if (hw->bus.func == E1000_FUNC_2)
723 mask = E1000_SWFW_PHY2_SM;
724 else if (hw->bus.func == E1000_FUNC_3)
725 mask = E1000_SWFW_PHY3_SM;
726
727 return hw->mac.ops.acquire_swfw_sync(hw, mask);
728}
729
730/**
731 * igb_release_phy_82575 - Release rights to access PHY
732 * @hw: pointer to the HW structure
733 *
734 * A wrapper to release access rights to the correct PHY. This is a
735 * function pointer entry point called by the api module.
736 **/
737static void igb_release_phy_82575(struct e1000_hw *hw)
738{
739 u16 mask = E1000_SWFW_PHY0_SM;
740
741 if (hw->bus.func == E1000_FUNC_1)
742 mask = E1000_SWFW_PHY1_SM;
743 else if (hw->bus.func == E1000_FUNC_2)
744 mask = E1000_SWFW_PHY2_SM;
745 else if (hw->bus.func == E1000_FUNC_3)
746 mask = E1000_SWFW_PHY3_SM;
747
748 hw->mac.ops.release_swfw_sync(hw, mask);
749}
750
751/**
752 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
753 * @hw: pointer to the HW structure
754 * @offset: register offset to be read
755 * @data: pointer to the read data
756 *
757 * Reads the PHY register at offset using the serial gigabit media independent
758 * interface and stores the retrieved information in data.
759 **/
760static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
761 u16 *data)
762{
763 s32 ret_val = -E1000_ERR_PARAM;
764
765 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
766 hw_dbg("PHY Address %u is out of range\n", offset);
767 goto out;
768 }
769
770 ret_val = hw->phy.ops.acquire(hw);
771 if (ret_val)
772 goto out;
773
774 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
775
776 hw->phy.ops.release(hw);
777
778out:
779 return ret_val;
780}
781
782/**
783 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
784 * @hw: pointer to the HW structure
785 * @offset: register offset to write to
786 * @data: data to write at register offset
787 *
788 * Writes the data to PHY register at the offset using the serial gigabit
789 * media independent interface.
790 **/
791static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
792 u16 data)
793{
794 s32 ret_val = -E1000_ERR_PARAM;
795
796
797 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
798 hw_dbg("PHY Address %d is out of range\n", offset);
799 goto out;
800 }
801
802 ret_val = hw->phy.ops.acquire(hw);
803 if (ret_val)
804 goto out;
805
806 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
807
808 hw->phy.ops.release(hw);
809
810out:
811 return ret_val;
812}
813
814/**
815 * igb_get_phy_id_82575 - Retrieve PHY addr and id
816 * @hw: pointer to the HW structure
817 *
818 * Retrieves the PHY address and ID for both PHY's which do and do not use
819 * sgmi interface.
820 **/
821static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
822{
823 struct e1000_phy_info *phy = &hw->phy;
824 s32 ret_val = 0;
825 u16 phy_id;
826 u32 ctrl_ext;
827 u32 mdic;
828
829 /* Extra read required for some PHY's on i354 */
830 if (hw->mac.type == e1000_i354)
831 igb_get_phy_id(hw);
832
833 /* For SGMII PHYs, we try the list of possible addresses until
834 * we find one that works. For non-SGMII PHYs
835 * (e.g. integrated copper PHYs), an address of 1 should
836 * work. The result of this function should mean phy->phy_addr
837 * and phy->id are set correctly.
838 */
839 if (!(igb_sgmii_active_82575(hw))) {
840 phy->addr = 1;
841 ret_val = igb_get_phy_id(hw);
842 goto out;
843 }
844
845 if (igb_sgmii_uses_mdio_82575(hw)) {
846 switch (hw->mac.type) {
847 case e1000_82575:
848 case e1000_82576:
849 mdic = rd32(E1000_MDIC);
850 mdic &= E1000_MDIC_PHY_MASK;
851 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
852 break;
853 case e1000_82580:
854 case e1000_i350:
855 case e1000_i354:
856 case e1000_i210:
857 case e1000_i211:
858 mdic = rd32(E1000_MDICNFG);
859 mdic &= E1000_MDICNFG_PHY_MASK;
860 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
861 break;
862 default:
863 ret_val = -E1000_ERR_PHY;
864 goto out;
865 }
866 ret_val = igb_get_phy_id(hw);
867 goto out;
868 }
869
870 /* Power on sgmii phy if it is disabled */
871 ctrl_ext = rd32(E1000_CTRL_EXT);
872 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
873 wrfl();
874 msleep(300);
875
876 /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
877 * Therefore, we need to test 1-7
878 */
879 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
880 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
881 if (ret_val == 0) {
882 hw_dbg("Vendor ID 0x%08X read at address %u\n",
883 phy_id, phy->addr);
884 /* At the time of this writing, The M88 part is
885 * the only supported SGMII PHY product.
886 */
887 if (phy_id == M88_VENDOR)
888 break;
889 } else {
890 hw_dbg("PHY address %u was unreadable\n", phy->addr);
891 }
892 }
893
894 /* A valid PHY type couldn't be found. */
895 if (phy->addr == 8) {
896 phy->addr = 0;
897 ret_val = -E1000_ERR_PHY;
898 goto out;
899 } else {
900 ret_val = igb_get_phy_id(hw);
901 }
902
903 /* restore previous sfp cage power state */
904 wr32(E1000_CTRL_EXT, ctrl_ext);
905
906out:
907 return ret_val;
908}
909
910/**
911 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
912 * @hw: pointer to the HW structure
913 *
914 * Resets the PHY using the serial gigabit media independent interface.
915 **/
916static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
917{
918 struct e1000_phy_info *phy = &hw->phy;
919 s32 ret_val;
920
921 /* This isn't a true "hard" reset, but is the only reset
922 * available to us at this time.
923 */
924
925 hw_dbg("Soft resetting SGMII attached PHY...\n");
926
927 /* SFP documentation requires the following to configure the SPF module
928 * to work on SGMII. No further documentation is given.
929 */
930 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
931 if (ret_val)
932 goto out;
933
934 ret_val = igb_phy_sw_reset(hw);
935 if (ret_val)
936 goto out;
937
938 if (phy->id == M88E1512_E_PHY_ID)
939 ret_val = igb_initialize_M88E1512_phy(hw);
940 if (phy->id == M88E1543_E_PHY_ID)
941 ret_val = igb_initialize_M88E1543_phy(hw);
942out:
943 return ret_val;
944}
945
946/**
947 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
948 * @hw: pointer to the HW structure
949 * @active: true to enable LPLU, false to disable
950 *
951 * Sets the LPLU D0 state according to the active flag. When
952 * activating LPLU this function also disables smart speed
953 * and vice versa. LPLU will not be activated unless the
954 * device autonegotiation advertisement meets standards of
955 * either 10 or 10/100 or 10/100/1000 at all duplexes.
956 * This is a function pointer entry point only called by
957 * PHY setup routines.
958 **/
959static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
960{
961 struct e1000_phy_info *phy = &hw->phy;
962 s32 ret_val;
963 u16 data;
964
965 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
966 if (ret_val)
967 goto out;
968
969 if (active) {
970 data |= IGP02E1000_PM_D0_LPLU;
971 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
972 data);
973 if (ret_val)
974 goto out;
975
976 /* When LPLU is enabled, we should disable SmartSpeed */
977 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
978 &data);
979 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
980 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
981 data);
982 if (ret_val)
983 goto out;
984 } else {
985 data &= ~IGP02E1000_PM_D0_LPLU;
986 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
987 data);
988 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
989 * during Dx states where the power conservation is most
990 * important. During driver activity we should enable
991 * SmartSpeed, so performance is maintained.
992 */
993 if (phy->smart_speed == e1000_smart_speed_on) {
994 ret_val = phy->ops.read_reg(hw,
995 IGP01E1000_PHY_PORT_CONFIG, &data);
996 if (ret_val)
997 goto out;
998
999 data |= IGP01E1000_PSCFR_SMART_SPEED;
1000 ret_val = phy->ops.write_reg(hw,
1001 IGP01E1000_PHY_PORT_CONFIG, data);
1002 if (ret_val)
1003 goto out;
1004 } else if (phy->smart_speed == e1000_smart_speed_off) {
1005 ret_val = phy->ops.read_reg(hw,
1006 IGP01E1000_PHY_PORT_CONFIG, &data);
1007 if (ret_val)
1008 goto out;
1009
1010 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1011 ret_val = phy->ops.write_reg(hw,
1012 IGP01E1000_PHY_PORT_CONFIG, data);
1013 if (ret_val)
1014 goto out;
1015 }
1016 }
1017
1018out:
1019 return ret_val;
1020}
1021
1022/**
1023 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1024 * @hw: pointer to the HW structure
1025 * @active: true to enable LPLU, false to disable
1026 *
1027 * Sets the LPLU D0 state according to the active flag. When
1028 * activating LPLU this function also disables smart speed
1029 * and vice versa. LPLU will not be activated unless the
1030 * device autonegotiation advertisement meets standards of
1031 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1032 * This is a function pointer entry point only called by
1033 * PHY setup routines.
1034 **/
1035static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1036{
1037 struct e1000_phy_info *phy = &hw->phy;
1038 u16 data;
1039
1040 data = rd32(E1000_82580_PHY_POWER_MGMT);
1041
1042 if (active) {
1043 data |= E1000_82580_PM_D0_LPLU;
1044
1045 /* When LPLU is enabled, we should disable SmartSpeed */
1046 data &= ~E1000_82580_PM_SPD;
1047 } else {
1048 data &= ~E1000_82580_PM_D0_LPLU;
1049
1050 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1051 * during Dx states where the power conservation is most
1052 * important. During driver activity we should enable
1053 * SmartSpeed, so performance is maintained.
1054 */
1055 if (phy->smart_speed == e1000_smart_speed_on)
1056 data |= E1000_82580_PM_SPD;
1057 else if (phy->smart_speed == e1000_smart_speed_off)
1058 data &= ~E1000_82580_PM_SPD; }
1059
1060 wr32(E1000_82580_PHY_POWER_MGMT, data);
1061 return 0;
1062}
1063
1064/**
1065 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1066 * @hw: pointer to the HW structure
1067 * @active: boolean used to enable/disable lplu
1068 *
1069 * Success returns 0, Failure returns 1
1070 *
1071 * The low power link up (lplu) state is set to the power management level D3
1072 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1073 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1074 * is used during Dx states where the power conservation is most important.
1075 * During driver activity, SmartSpeed should be enabled so performance is
1076 * maintained.
1077 **/
1078static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1079{
1080 struct e1000_phy_info *phy = &hw->phy;
1081 u16 data;
1082
1083 data = rd32(E1000_82580_PHY_POWER_MGMT);
1084
1085 if (!active) {
1086 data &= ~E1000_82580_PM_D3_LPLU;
1087 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1088 * during Dx states where the power conservation is most
1089 * important. During driver activity we should enable
1090 * SmartSpeed, so performance is maintained.
1091 */
1092 if (phy->smart_speed == e1000_smart_speed_on)
1093 data |= E1000_82580_PM_SPD;
1094 else if (phy->smart_speed == e1000_smart_speed_off)
1095 data &= ~E1000_82580_PM_SPD;
1096 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1097 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1098 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1099 data |= E1000_82580_PM_D3_LPLU;
1100 /* When LPLU is enabled, we should disable SmartSpeed */
1101 data &= ~E1000_82580_PM_SPD;
1102 }
1103
1104 wr32(E1000_82580_PHY_POWER_MGMT, data);
1105 return 0;
1106}
1107
1108/**
1109 * igb_acquire_nvm_82575 - Request for access to EEPROM
1110 * @hw: pointer to the HW structure
1111 *
1112 * Acquire the necessary semaphores for exclusive access to the EEPROM.
1113 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1114 * Return successful if access grant bit set, else clear the request for
1115 * EEPROM access and return -E1000_ERR_NVM (-1).
1116 **/
1117static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1118{
1119 s32 ret_val;
1120
1121 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1122 if (ret_val)
1123 goto out;
1124
1125 ret_val = igb_acquire_nvm(hw);
1126
1127 if (ret_val)
1128 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1129
1130out:
1131 return ret_val;
1132}
1133
1134/**
1135 * igb_release_nvm_82575 - Release exclusive access to EEPROM
1136 * @hw: pointer to the HW structure
1137 *
1138 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
1139 * then release the semaphores acquired.
1140 **/
1141static void igb_release_nvm_82575(struct e1000_hw *hw)
1142{
1143 igb_release_nvm(hw);
1144 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1145}
1146
1147/**
1148 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1149 * @hw: pointer to the HW structure
1150 * @mask: specifies which semaphore to acquire
1151 *
1152 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
1153 * will also specify which port we're acquiring the lock for.
1154 **/
1155static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1156{
1157 u32 swfw_sync;
1158 u32 swmask = mask;
1159 u32 fwmask = mask << 16;
1160 s32 ret_val = 0;
1161 s32 i = 0, timeout = 200;
1162
1163 while (i < timeout) {
1164 if (igb_get_hw_semaphore(hw)) {
1165 ret_val = -E1000_ERR_SWFW_SYNC;
1166 goto out;
1167 }
1168
1169 swfw_sync = rd32(E1000_SW_FW_SYNC);
1170 if (!(swfw_sync & (fwmask | swmask)))
1171 break;
1172
1173 /* Firmware currently using resource (fwmask)
1174 * or other software thread using resource (swmask)
1175 */
1176 igb_put_hw_semaphore(hw);
1177 mdelay(5);
1178 i++;
1179 }
1180
1181 if (i == timeout) {
1182 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1183 ret_val = -E1000_ERR_SWFW_SYNC;
1184 goto out;
1185 }
1186
1187 swfw_sync |= swmask;
1188 wr32(E1000_SW_FW_SYNC, swfw_sync);
1189
1190 igb_put_hw_semaphore(hw);
1191
1192out:
1193 return ret_val;
1194}
1195
1196/**
1197 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
1198 * @hw: pointer to the HW structure
1199 * @mask: specifies which semaphore to acquire
1200 *
1201 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
1202 * will also specify which port we're releasing the lock for.
1203 **/
1204static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1205{
1206 u32 swfw_sync;
1207
1208 while (igb_get_hw_semaphore(hw) != 0)
1209 ; /* Empty */
1210
1211 swfw_sync = rd32(E1000_SW_FW_SYNC);
1212 swfw_sync &= ~mask;
1213 wr32(E1000_SW_FW_SYNC, swfw_sync);
1214
1215 igb_put_hw_semaphore(hw);
1216}
1217
1218/**
1219 * igb_get_cfg_done_82575 - Read config done bit
1220 * @hw: pointer to the HW structure
1221 *
1222 * Read the management control register for the config done bit for
1223 * completion status. NOTE: silicon which is EEPROM-less will fail trying
1224 * to read the config done bit, so an error is *ONLY* logged and returns
1225 * 0. If we were to return with error, EEPROM-less silicon
1226 * would not be able to be reset or change link.
1227 **/
1228static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1229{
1230 s32 timeout = PHY_CFG_TIMEOUT;
1231 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1232
1233 if (hw->bus.func == 1)
1234 mask = E1000_NVM_CFG_DONE_PORT_1;
1235 else if (hw->bus.func == E1000_FUNC_2)
1236 mask = E1000_NVM_CFG_DONE_PORT_2;
1237 else if (hw->bus.func == E1000_FUNC_3)
1238 mask = E1000_NVM_CFG_DONE_PORT_3;
1239
1240 while (timeout) {
1241 if (rd32(E1000_EEMNGCTL) & mask)
1242 break;
1243 usleep_range(1000, 2000);
1244 timeout--;
1245 }
1246 if (!timeout)
1247 hw_dbg("MNG configuration cycle has not completed.\n");
1248
1249 /* If EEPROM is not marked present, init the PHY manually */
1250 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1251 (hw->phy.type == e1000_phy_igp_3))
1252 igb_phy_init_script_igp3(hw);
1253
1254 return 0;
1255}
1256
1257/**
1258 * igb_get_link_up_info_82575 - Get link speed/duplex info
1259 * @hw: pointer to the HW structure
1260 * @speed: stores the current speed
1261 * @duplex: stores the current duplex
1262 *
1263 * This is a wrapper function, if using the serial gigabit media independent
1264 * interface, use PCS to retrieve the link speed and duplex information.
1265 * Otherwise, use the generic function to get the link speed and duplex info.
1266 **/
1267static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1268 u16 *duplex)
1269{
1270 s32 ret_val;
1271
1272 if (hw->phy.media_type != e1000_media_type_copper)
1273 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1274 duplex);
1275 else
1276 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1277 duplex);
1278
1279 return ret_val;
1280}
1281
1282/**
1283 * igb_check_for_link_82575 - Check for link
1284 * @hw: pointer to the HW structure
1285 *
1286 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1287 * use the generic interface for determining link.
1288 **/
1289static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1290{
1291 s32 ret_val;
1292 u16 speed, duplex;
1293
1294 if (hw->phy.media_type != e1000_media_type_copper) {
1295 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1296 &duplex);
1297 /* Use this flag to determine if link needs to be checked or
1298 * not. If we have link clear the flag so that we do not
1299 * continue to check for link.
1300 */
1301 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1302
1303 /* Configure Flow Control now that Auto-Neg has completed.
1304 * First, we need to restore the desired flow control
1305 * settings because we may have had to re-autoneg with a
1306 * different link partner.
1307 */
1308 ret_val = igb_config_fc_after_link_up(hw);
1309 if (ret_val)
1310 hw_dbg("Error configuring flow control\n");
1311 } else {
1312 ret_val = igb_check_for_copper_link(hw);
1313 }
1314
1315 return ret_val;
1316}
1317
1318/**
1319 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1320 * @hw: pointer to the HW structure
1321 **/
1322void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1323{
1324 u32 reg;
1325
1326
1327 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1328 !igb_sgmii_active_82575(hw))
1329 return;
1330
1331 /* Enable PCS to turn on link */
1332 reg = rd32(E1000_PCS_CFG0);
1333 reg |= E1000_PCS_CFG_PCS_EN;
1334 wr32(E1000_PCS_CFG0, reg);
1335
1336 /* Power up the laser */
1337 reg = rd32(E1000_CTRL_EXT);
1338 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1339 wr32(E1000_CTRL_EXT, reg);
1340
1341 /* flush the write to verify completion */
1342 wrfl();
1343 usleep_range(1000, 2000);
1344}
1345
1346/**
1347 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1348 * @hw: pointer to the HW structure
1349 * @speed: stores the current speed
1350 * @duplex: stores the current duplex
1351 *
1352 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1353 * duplex, then store the values in the pointers provided.
1354 **/
1355static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1356 u16 *duplex)
1357{
1358 struct e1000_mac_info *mac = &hw->mac;
1359 u32 pcs, status;
1360
1361 /* Set up defaults for the return values of this function */
1362 mac->serdes_has_link = false;
1363 *speed = 0;
1364 *duplex = 0;
1365
1366 /* Read the PCS Status register for link state. For non-copper mode,
1367 * the status register is not accurate. The PCS status register is
1368 * used instead.
1369 */
1370 pcs = rd32(E1000_PCS_LSTAT);
1371
1372 /* The link up bit determines when link is up on autoneg. The sync ok
1373 * gets set once both sides sync up and agree upon link. Stable link
1374 * can be determined by checking for both link up and link sync ok
1375 */
1376 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1377 mac->serdes_has_link = true;
1378
1379 /* Detect and store PCS speed */
1380 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1381 *speed = SPEED_1000;
1382 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1383 *speed = SPEED_100;
1384 else
1385 *speed = SPEED_10;
1386
1387 /* Detect and store PCS duplex */
1388 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1389 *duplex = FULL_DUPLEX;
1390 else
1391 *duplex = HALF_DUPLEX;
1392
1393 /* Check if it is an I354 2.5Gb backplane connection. */
1394 if (mac->type == e1000_i354) {
1395 status = rd32(E1000_STATUS);
1396 if ((status & E1000_STATUS_2P5_SKU) &&
1397 !(status & E1000_STATUS_2P5_SKU_OVER)) {
1398 *speed = SPEED_2500;
1399 *duplex = FULL_DUPLEX;
1400 hw_dbg("2500 Mbs, ");
1401 hw_dbg("Full Duplex\n");
1402 }
1403 }
1404
1405 }
1406
1407 return 0;
1408}
1409
1410/**
1411 * igb_shutdown_serdes_link_82575 - Remove link during power down
1412 * @hw: pointer to the HW structure
1413 *
1414 * In the case of fiber serdes, shut down optics and PCS on driver unload
1415 * when management pass thru is not enabled.
1416 **/
1417void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1418{
1419 u32 reg;
1420
1421 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1422 igb_sgmii_active_82575(hw))
1423 return;
1424
1425 if (!igb_enable_mng_pass_thru(hw)) {
1426 /* Disable PCS to turn off link */
1427 reg = rd32(E1000_PCS_CFG0);
1428 reg &= ~E1000_PCS_CFG_PCS_EN;
1429 wr32(E1000_PCS_CFG0, reg);
1430
1431 /* shutdown the laser */
1432 reg = rd32(E1000_CTRL_EXT);
1433 reg |= E1000_CTRL_EXT_SDP3_DATA;
1434 wr32(E1000_CTRL_EXT, reg);
1435
1436 /* flush the write to verify completion */
1437 wrfl();
1438 usleep_range(1000, 2000);
1439 }
1440}
1441
1442/**
1443 * igb_reset_hw_82575 - Reset hardware
1444 * @hw: pointer to the HW structure
1445 *
1446 * This resets the hardware into a known state. This is a
1447 * function pointer entry point called by the api module.
1448 **/
1449static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1450{
1451 u32 ctrl;
1452 s32 ret_val;
1453
1454 /* Prevent the PCI-E bus from sticking if there is no TLP connection
1455 * on the last TLP read/write transaction when MAC is reset.
1456 */
1457 ret_val = igb_disable_pcie_master(hw);
1458 if (ret_val)
1459 hw_dbg("PCI-E Master disable polling has failed.\n");
1460
1461 /* set the completion timeout for interface */
1462 ret_val = igb_set_pcie_completion_timeout(hw);
1463 if (ret_val)
1464 hw_dbg("PCI-E Set completion timeout has failed.\n");
1465
1466 hw_dbg("Masking off all interrupts\n");
1467 wr32(E1000_IMC, 0xffffffff);
1468
1469 wr32(E1000_RCTL, 0);
1470 wr32(E1000_TCTL, E1000_TCTL_PSP);
1471 wrfl();
1472
1473 usleep_range(10000, 20000);
1474
1475 ctrl = rd32(E1000_CTRL);
1476
1477 hw_dbg("Issuing a global reset to MAC\n");
1478 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1479
1480 ret_val = igb_get_auto_rd_done(hw);
1481 if (ret_val) {
1482 /* When auto config read does not complete, do not
1483 * return with an error. This can happen in situations
1484 * where there is no eeprom and prevents getting link.
1485 */
1486 hw_dbg("Auto Read Done did not complete\n");
1487 }
1488
1489 /* If EEPROM is not present, run manual init scripts */
1490 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1491 igb_reset_init_script_82575(hw);
1492
1493 /* Clear any pending interrupt events. */
1494 wr32(E1000_IMC, 0xffffffff);
1495 rd32(E1000_ICR);
1496
1497 /* Install any alternate MAC address into RAR0 */
1498 ret_val = igb_check_alt_mac_addr(hw);
1499
1500 return ret_val;
1501}
1502
1503/**
1504 * igb_init_hw_82575 - Initialize hardware
1505 * @hw: pointer to the HW structure
1506 *
1507 * This inits the hardware readying it for operation.
1508 **/
1509static s32 igb_init_hw_82575(struct e1000_hw *hw)
1510{
1511 struct e1000_mac_info *mac = &hw->mac;
1512 s32 ret_val;
1513 u16 i, rar_count = mac->rar_entry_count;
1514
1515 if ((hw->mac.type >= e1000_i210) &&
1516 !(igb_get_flash_presence_i210(hw))) {
1517 ret_val = igb_pll_workaround_i210(hw);
1518 if (ret_val)
1519 return ret_val;
1520 }
1521
1522 /* Initialize identification LED */
1523 ret_val = igb_id_led_init(hw);
1524 if (ret_val) {
1525 hw_dbg("Error initializing identification LED\n");
1526 /* This is not fatal and we should not stop init due to this */
1527 }
1528
1529 /* Disabling VLAN filtering */
1530 hw_dbg("Initializing the IEEE VLAN\n");
1531 igb_clear_vfta(hw);
1532
1533 /* Setup the receive address */
1534 igb_init_rx_addrs(hw, rar_count);
1535
1536 /* Zero out the Multicast HASH table */
1537 hw_dbg("Zeroing the MTA\n");
1538 for (i = 0; i < mac->mta_reg_count; i++)
1539 array_wr32(E1000_MTA, i, 0);
1540
1541 /* Zero out the Unicast HASH table */
1542 hw_dbg("Zeroing the UTA\n");
1543 for (i = 0; i < mac->uta_reg_count; i++)
1544 array_wr32(E1000_UTA, i, 0);
1545
1546 /* Setup link and flow control */
1547 ret_val = igb_setup_link(hw);
1548
1549 /* Clear all of the statistics registers (clear on read). It is
1550 * important that we do this after we have tried to establish link
1551 * because the symbol error count will increment wildly if there
1552 * is no link.
1553 */
1554 igb_clear_hw_cntrs_82575(hw);
1555 return ret_val;
1556}
1557
1558/**
1559 * igb_setup_copper_link_82575 - Configure copper link settings
1560 * @hw: pointer to the HW structure
1561 *
1562 * Configures the link for auto-neg or forced speed and duplex. Then we check
1563 * for link, once link is established calls to configure collision distance
1564 * and flow control are called.
1565 **/
1566static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1567{
1568 u32 ctrl;
1569 s32 ret_val;
1570 u32 phpm_reg;
1571
1572 ctrl = rd32(E1000_CTRL);
1573 ctrl |= E1000_CTRL_SLU;
1574 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1575 wr32(E1000_CTRL, ctrl);
1576
1577 /* Clear Go Link Disconnect bit on supported devices */
1578 switch (hw->mac.type) {
1579 case e1000_82580:
1580 case e1000_i350:
1581 case e1000_i210:
1582 case e1000_i211:
1583 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1584 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1585 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1586 break;
1587 default:
1588 break;
1589 }
1590
1591 ret_val = igb_setup_serdes_link_82575(hw);
1592 if (ret_val)
1593 goto out;
1594
1595 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1596 /* allow time for SFP cage time to power up phy */
1597 msleep(300);
1598
1599 ret_val = hw->phy.ops.reset(hw);
1600 if (ret_val) {
1601 hw_dbg("Error resetting the PHY.\n");
1602 goto out;
1603 }
1604 }
1605 switch (hw->phy.type) {
1606 case e1000_phy_i210:
1607 case e1000_phy_m88:
1608 switch (hw->phy.id) {
1609 case I347AT4_E_PHY_ID:
1610 case M88E1112_E_PHY_ID:
1611 case M88E1543_E_PHY_ID:
1612 case M88E1512_E_PHY_ID:
1613 case I210_I_PHY_ID:
1614 ret_val = igb_copper_link_setup_m88_gen2(hw);
1615 break;
1616 default:
1617 ret_val = igb_copper_link_setup_m88(hw);
1618 break;
1619 }
1620 break;
1621 case e1000_phy_igp_3:
1622 ret_val = igb_copper_link_setup_igp(hw);
1623 break;
1624 case e1000_phy_82580:
1625 ret_val = igb_copper_link_setup_82580(hw);
1626 break;
1627 case e1000_phy_bcm54616:
1628 ret_val = 0;
1629 break;
1630 default:
1631 ret_val = -E1000_ERR_PHY;
1632 break;
1633 }
1634
1635 if (ret_val)
1636 goto out;
1637
1638 ret_val = igb_setup_copper_link(hw);
1639out:
1640 return ret_val;
1641}
1642
1643/**
1644 * igb_setup_serdes_link_82575 - Setup link for serdes
1645 * @hw: pointer to the HW structure
1646 *
1647 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1648 * used on copper connections where the serialized gigabit media independent
1649 * interface (sgmii), or serdes fiber is being used. Configures the link
1650 * for auto-negotiation or forces speed/duplex.
1651 **/
1652static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1653{
1654 u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1655 bool pcs_autoneg;
1656 s32 ret_val = 0;
1657 u16 data;
1658
1659 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1660 !igb_sgmii_active_82575(hw))
1661 return ret_val;
1662
1663
1664 /* On the 82575, SerDes loopback mode persists until it is
1665 * explicitly turned off or a power cycle is performed. A read to
1666 * the register does not indicate its status. Therefore, we ensure
1667 * loopback mode is disabled during initialization.
1668 */
1669 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1670
1671 /* power on the sfp cage if present and turn on I2C */
1672 ctrl_ext = rd32(E1000_CTRL_EXT);
1673 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1674 ctrl_ext |= E1000_CTRL_I2C_ENA;
1675 wr32(E1000_CTRL_EXT, ctrl_ext);
1676
1677 ctrl_reg = rd32(E1000_CTRL);
1678 ctrl_reg |= E1000_CTRL_SLU;
1679
1680 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1681 /* set both sw defined pins */
1682 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1683
1684 /* Set switch control to serdes energy detect */
1685 reg = rd32(E1000_CONNSW);
1686 reg |= E1000_CONNSW_ENRGSRC;
1687 wr32(E1000_CONNSW, reg);
1688 }
1689
1690 reg = rd32(E1000_PCS_LCTL);
1691
1692 /* default pcs_autoneg to the same setting as mac autoneg */
1693 pcs_autoneg = hw->mac.autoneg;
1694
1695 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1696 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1697 /* sgmii mode lets the phy handle forcing speed/duplex */
1698 pcs_autoneg = true;
1699 /* autoneg time out should be disabled for SGMII mode */
1700 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1701 break;
1702 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1703 /* disable PCS autoneg and support parallel detect only */
1704 pcs_autoneg = false;
1705 fallthrough;
1706 default:
1707 if (hw->mac.type == e1000_82575 ||
1708 hw->mac.type == e1000_82576) {
1709 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1710 if (ret_val) {
1711 hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1712 return ret_val;
1713 }
1714
1715 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1716 pcs_autoneg = false;
1717 }
1718
1719 /* non-SGMII modes only supports a speed of 1000/Full for the
1720 * link so it is best to just force the MAC and let the pcs
1721 * link either autoneg or be forced to 1000/Full
1722 */
1723 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1724 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1725
1726 /* set speed of 1000/Full if speed/duplex is forced */
1727 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1728 break;
1729 }
1730
1731 wr32(E1000_CTRL, ctrl_reg);
1732
1733 /* New SerDes mode allows for forcing speed or autonegotiating speed
1734 * at 1gb. Autoneg should be default set by most drivers. This is the
1735 * mode that will be compatible with older link partners and switches.
1736 * However, both are supported by the hardware and some drivers/tools.
1737 */
1738 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1739 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1740
1741 if (pcs_autoneg) {
1742 /* Set PCS register for autoneg */
1743 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1744 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1745
1746 /* Disable force flow control for autoneg */
1747 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1748
1749 /* Configure flow control advertisement for autoneg */
1750 anadv_reg = rd32(E1000_PCS_ANADV);
1751 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1752 switch (hw->fc.requested_mode) {
1753 case e1000_fc_full:
1754 case e1000_fc_rx_pause:
1755 anadv_reg |= E1000_TXCW_ASM_DIR;
1756 anadv_reg |= E1000_TXCW_PAUSE;
1757 break;
1758 case e1000_fc_tx_pause:
1759 anadv_reg |= E1000_TXCW_ASM_DIR;
1760 break;
1761 default:
1762 break;
1763 }
1764 wr32(E1000_PCS_ANADV, anadv_reg);
1765
1766 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1767 } else {
1768 /* Set PCS register for forced link */
1769 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1770
1771 /* Force flow control for forced link */
1772 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1773
1774 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1775 }
1776
1777 wr32(E1000_PCS_LCTL, reg);
1778
1779 if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1780 igb_force_mac_fc(hw);
1781
1782 return ret_val;
1783}
1784
1785/**
1786 * igb_sgmii_active_82575 - Return sgmii state
1787 * @hw: pointer to the HW structure
1788 *
1789 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1790 * which can be enabled for use in the embedded applications. Simply
1791 * return the current state of the sgmii interface.
1792 **/
1793static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1794{
1795 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1796 return dev_spec->sgmii_active;
1797}
1798
1799/**
1800 * igb_reset_init_script_82575 - Inits HW defaults after reset
1801 * @hw: pointer to the HW structure
1802 *
1803 * Inits recommended HW defaults after a reset when there is no EEPROM
1804 * detected. This is only for the 82575.
1805 **/
1806static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1807{
1808 if (hw->mac.type == e1000_82575) {
1809 hw_dbg("Running reset init script for 82575\n");
1810 /* SerDes configuration via SERDESCTRL */
1811 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1812 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1813 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1814 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1815
1816 /* CCM configuration via CCMCTL register */
1817 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1818 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1819
1820 /* PCIe lanes configuration */
1821 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1822 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1823 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1824 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1825
1826 /* PCIe PLL Configuration */
1827 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1828 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1829 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1830 }
1831
1832 return 0;
1833}
1834
1835/**
1836 * igb_read_mac_addr_82575 - Read device MAC address
1837 * @hw: pointer to the HW structure
1838 **/
1839static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1840{
1841 s32 ret_val = 0;
1842
1843 /* If there's an alternate MAC address place it in RAR0
1844 * so that it will override the Si installed default perm
1845 * address.
1846 */
1847 ret_val = igb_check_alt_mac_addr(hw);
1848 if (ret_val)
1849 goto out;
1850
1851 ret_val = igb_read_mac_addr(hw);
1852
1853out:
1854 return ret_val;
1855}
1856
1857/**
1858 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1859 * @hw: pointer to the HW structure
1860 *
1861 * In the case of a PHY power down to save power, or to turn off link during a
1862 * driver unload, or wake on lan is not enabled, remove the link.
1863 **/
1864void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1865{
1866 /* If the management interface is not enabled, then power down */
1867 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1868 igb_power_down_phy_copper(hw);
1869}
1870
1871/**
1872 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1873 * @hw: pointer to the HW structure
1874 *
1875 * Clears the hardware counters by reading the counter registers.
1876 **/
1877static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1878{
1879 igb_clear_hw_cntrs_base(hw);
1880
1881 rd32(E1000_PRC64);
1882 rd32(E1000_PRC127);
1883 rd32(E1000_PRC255);
1884 rd32(E1000_PRC511);
1885 rd32(E1000_PRC1023);
1886 rd32(E1000_PRC1522);
1887 rd32(E1000_PTC64);
1888 rd32(E1000_PTC127);
1889 rd32(E1000_PTC255);
1890 rd32(E1000_PTC511);
1891 rd32(E1000_PTC1023);
1892 rd32(E1000_PTC1522);
1893
1894 rd32(E1000_ALGNERRC);
1895 rd32(E1000_RXERRC);
1896 rd32(E1000_TNCRS);
1897 rd32(E1000_CEXTERR);
1898 rd32(E1000_TSCTC);
1899 rd32(E1000_TSCTFC);
1900
1901 rd32(E1000_MGTPRC);
1902 rd32(E1000_MGTPDC);
1903 rd32(E1000_MGTPTC);
1904
1905 rd32(E1000_IAC);
1906 rd32(E1000_ICRXOC);
1907
1908 rd32(E1000_ICRXPTC);
1909 rd32(E1000_ICRXATC);
1910 rd32(E1000_ICTXPTC);
1911 rd32(E1000_ICTXATC);
1912 rd32(E1000_ICTXQEC);
1913 rd32(E1000_ICTXQMTC);
1914 rd32(E1000_ICRXDMTC);
1915
1916 rd32(E1000_CBTMPC);
1917 rd32(E1000_HTDPMC);
1918 rd32(E1000_CBRMPC);
1919 rd32(E1000_RPTHC);
1920 rd32(E1000_HGPTC);
1921 rd32(E1000_HTCBDPC);
1922 rd32(E1000_HGORCL);
1923 rd32(E1000_HGORCH);
1924 rd32(E1000_HGOTCL);
1925 rd32(E1000_HGOTCH);
1926 rd32(E1000_LENERRS);
1927
1928 /* This register should not be read in copper configurations */
1929 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1930 igb_sgmii_active_82575(hw))
1931 rd32(E1000_SCVPC);
1932}
1933
1934/**
1935 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1936 * @hw: pointer to the HW structure
1937 *
1938 * After rx enable if manageability is enabled then there is likely some
1939 * bad data at the start of the fifo and possibly in the DMA fifo. This
1940 * function clears the fifos and flushes any packets that came in as rx was
1941 * being enabled.
1942 **/
1943void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1944{
1945 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1946 int i, ms_wait;
1947
1948 /* disable IPv6 options as per hardware errata */
1949 rfctl = rd32(E1000_RFCTL);
1950 rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1951 wr32(E1000_RFCTL, rfctl);
1952
1953 if (hw->mac.type != e1000_82575 ||
1954 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1955 return;
1956
1957 /* Disable all RX queues */
1958 for (i = 0; i < 4; i++) {
1959 rxdctl[i] = rd32(E1000_RXDCTL(i));
1960 wr32(E1000_RXDCTL(i),
1961 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1962 }
1963 /* Poll all queues to verify they have shut down */
1964 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1965 usleep_range(1000, 2000);
1966 rx_enabled = 0;
1967 for (i = 0; i < 4; i++)
1968 rx_enabled |= rd32(E1000_RXDCTL(i));
1969 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1970 break;
1971 }
1972
1973 if (ms_wait == 10)
1974 hw_dbg("Queue disable timed out after 10ms\n");
1975
1976 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1977 * incoming packets are rejected. Set enable and wait 2ms so that
1978 * any packet that was coming in as RCTL.EN was set is flushed
1979 */
1980 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
1981
1982 rlpml = rd32(E1000_RLPML);
1983 wr32(E1000_RLPML, 0);
1984
1985 rctl = rd32(E1000_RCTL);
1986 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
1987 temp_rctl |= E1000_RCTL_LPE;
1988
1989 wr32(E1000_RCTL, temp_rctl);
1990 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
1991 wrfl();
1992 usleep_range(2000, 3000);
1993
1994 /* Enable RX queues that were previously enabled and restore our
1995 * previous state
1996 */
1997 for (i = 0; i < 4; i++)
1998 wr32(E1000_RXDCTL(i), rxdctl[i]);
1999 wr32(E1000_RCTL, rctl);
2000 wrfl();
2001
2002 wr32(E1000_RLPML, rlpml);
2003 wr32(E1000_RFCTL, rfctl);
2004
2005 /* Flush receive errors generated by workaround */
2006 rd32(E1000_ROC);
2007 rd32(E1000_RNBC);
2008 rd32(E1000_MPC);
2009}
2010
2011/**
2012 * igb_set_pcie_completion_timeout - set pci-e completion timeout
2013 * @hw: pointer to the HW structure
2014 *
2015 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2016 * however the hardware default for these parts is 500us to 1ms which is less
2017 * than the 10ms recommended by the pci-e spec. To address this we need to
2018 * increase the value to either 10ms to 200ms for capability version 1 config,
2019 * or 16ms to 55ms for version 2.
2020 **/
2021static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2022{
2023 u32 gcr = rd32(E1000_GCR);
2024 s32 ret_val = 0;
2025 u16 pcie_devctl2;
2026
2027 /* only take action if timeout value is defaulted to 0 */
2028 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2029 goto out;
2030
2031 /* if capabilities version is type 1 we can write the
2032 * timeout of 10ms to 200ms through the GCR register
2033 */
2034 if (!(gcr & E1000_GCR_CAP_VER2)) {
2035 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2036 goto out;
2037 }
2038
2039 /* for version 2 capabilities we need to write the config space
2040 * directly in order to set the completion timeout value for
2041 * 16ms to 55ms
2042 */
2043 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2044 &pcie_devctl2);
2045 if (ret_val)
2046 goto out;
2047
2048 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2049
2050 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2051 &pcie_devctl2);
2052out:
2053 /* disable completion timeout resend */
2054 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2055
2056 wr32(E1000_GCR, gcr);
2057 return ret_val;
2058}
2059
2060/**
2061 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2062 * @hw: pointer to the hardware struct
2063 * @enable: state to enter, either enabled or disabled
2064 * @pf: Physical Function pool - do not set anti-spoofing for the PF
2065 *
2066 * enables/disables L2 switch anti-spoofing functionality.
2067 **/
2068void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2069{
2070 u32 reg_val, reg_offset;
2071
2072 switch (hw->mac.type) {
2073 case e1000_82576:
2074 reg_offset = E1000_DTXSWC;
2075 break;
2076 case e1000_i350:
2077 case e1000_i354:
2078 reg_offset = E1000_TXSWC;
2079 break;
2080 default:
2081 return;
2082 }
2083
2084 reg_val = rd32(reg_offset);
2085 if (enable) {
2086 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2087 E1000_DTXSWC_VLAN_SPOOF_MASK);
2088 /* The PF can spoof - it has to in order to
2089 * support emulation mode NICs
2090 */
2091 reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2092 } else {
2093 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2094 E1000_DTXSWC_VLAN_SPOOF_MASK);
2095 }
2096 wr32(reg_offset, reg_val);
2097}
2098
2099/**
2100 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2101 * @hw: pointer to the hardware struct
2102 * @enable: state to enter, either enabled or disabled
2103 *
2104 * enables/disables L2 switch loopback functionality.
2105 **/
2106void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2107{
2108 u32 dtxswc;
2109
2110 switch (hw->mac.type) {
2111 case e1000_82576:
2112 dtxswc = rd32(E1000_DTXSWC);
2113 if (enable)
2114 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2115 else
2116 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2117 wr32(E1000_DTXSWC, dtxswc);
2118 break;
2119 case e1000_i354:
2120 case e1000_i350:
2121 dtxswc = rd32(E1000_TXSWC);
2122 if (enable)
2123 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2124 else
2125 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2126 wr32(E1000_TXSWC, dtxswc);
2127 break;
2128 default:
2129 /* Currently no other hardware supports loopback */
2130 break;
2131 }
2132
2133}
2134
2135/**
2136 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
2137 * @hw: pointer to the hardware struct
2138 * @enable: state to enter, either enabled or disabled
2139 *
2140 * enables/disables replication of packets across multiple pools.
2141 **/
2142void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2143{
2144 u32 vt_ctl = rd32(E1000_VT_CTL);
2145
2146 if (enable)
2147 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2148 else
2149 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2150
2151 wr32(E1000_VT_CTL, vt_ctl);
2152}
2153
2154/**
2155 * igb_read_phy_reg_82580 - Read 82580 MDI control register
2156 * @hw: pointer to the HW structure
2157 * @offset: register offset to be read
2158 * @data: pointer to the read data
2159 *
2160 * Reads the MDI control register in the PHY at offset and stores the
2161 * information read to data.
2162 **/
2163s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2164{
2165 s32 ret_val;
2166
2167 ret_val = hw->phy.ops.acquire(hw);
2168 if (ret_val)
2169 goto out;
2170
2171 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2172
2173 hw->phy.ops.release(hw);
2174
2175out:
2176 return ret_val;
2177}
2178
2179/**
2180 * igb_write_phy_reg_82580 - Write 82580 MDI control register
2181 * @hw: pointer to the HW structure
2182 * @offset: register offset to write to
2183 * @data: data to write to register at offset
2184 *
2185 * Writes data to MDI control register in the PHY at offset.
2186 **/
2187s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2188{
2189 s32 ret_val;
2190
2191
2192 ret_val = hw->phy.ops.acquire(hw);
2193 if (ret_val)
2194 goto out;
2195
2196 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2197
2198 hw->phy.ops.release(hw);
2199
2200out:
2201 return ret_val;
2202}
2203
2204/**
2205 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2206 * @hw: pointer to the HW structure
2207 *
2208 * This resets the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2209 * the values found in the EEPROM. This addresses an issue in which these
2210 * bits are not restored from EEPROM after reset.
2211 **/
2212static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2213{
2214 s32 ret_val = 0;
2215 u32 mdicnfg;
2216 u16 nvm_data = 0;
2217
2218 if (hw->mac.type != e1000_82580)
2219 goto out;
2220 if (!igb_sgmii_active_82575(hw))
2221 goto out;
2222
2223 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2224 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2225 &nvm_data);
2226 if (ret_val) {
2227 hw_dbg("NVM Read Error\n");
2228 goto out;
2229 }
2230
2231 mdicnfg = rd32(E1000_MDICNFG);
2232 if (nvm_data & NVM_WORD24_EXT_MDIO)
2233 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2234 if (nvm_data & NVM_WORD24_COM_MDIO)
2235 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2236 wr32(E1000_MDICNFG, mdicnfg);
2237out:
2238 return ret_val;
2239}
2240
2241/**
2242 * igb_reset_hw_82580 - Reset hardware
2243 * @hw: pointer to the HW structure
2244 *
2245 * This resets function or entire device (all ports, etc.)
2246 * to a known state.
2247 **/
2248static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2249{
2250 s32 ret_val = 0;
2251 /* BH SW mailbox bit in SW_FW_SYNC */
2252 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2253 u32 ctrl;
2254 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2255
2256 hw->dev_spec._82575.global_device_reset = false;
2257
2258 /* due to hw errata, global device reset doesn't always
2259 * work on 82580
2260 */
2261 if (hw->mac.type == e1000_82580)
2262 global_device_reset = false;
2263
2264 /* Get current control state. */
2265 ctrl = rd32(E1000_CTRL);
2266
2267 /* Prevent the PCI-E bus from sticking if there is no TLP connection
2268 * on the last TLP read/write transaction when MAC is reset.
2269 */
2270 ret_val = igb_disable_pcie_master(hw);
2271 if (ret_val)
2272 hw_dbg("PCI-E Master disable polling has failed.\n");
2273
2274 hw_dbg("Masking off all interrupts\n");
2275 wr32(E1000_IMC, 0xffffffff);
2276 wr32(E1000_RCTL, 0);
2277 wr32(E1000_TCTL, E1000_TCTL_PSP);
2278 wrfl();
2279
2280 usleep_range(10000, 11000);
2281
2282 /* Determine whether or not a global dev reset is requested */
2283 if (global_device_reset &&
2284 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2285 global_device_reset = false;
2286
2287 if (global_device_reset &&
2288 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2289 ctrl |= E1000_CTRL_DEV_RST;
2290 else
2291 ctrl |= E1000_CTRL_RST;
2292
2293 wr32(E1000_CTRL, ctrl);
2294 wrfl();
2295
2296 /* Add delay to insure DEV_RST has time to complete */
2297 if (global_device_reset)
2298 usleep_range(5000, 6000);
2299
2300 ret_val = igb_get_auto_rd_done(hw);
2301 if (ret_val) {
2302 /* When auto config read does not complete, do not
2303 * return with an error. This can happen in situations
2304 * where there is no eeprom and prevents getting link.
2305 */
2306 hw_dbg("Auto Read Done did not complete\n");
2307 }
2308
2309 /* clear global device reset status bit */
2310 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2311
2312 /* Clear any pending interrupt events. */
2313 wr32(E1000_IMC, 0xffffffff);
2314 rd32(E1000_ICR);
2315
2316 ret_val = igb_reset_mdicnfg_82580(hw);
2317 if (ret_val)
2318 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2319
2320 /* Install any alternate MAC address into RAR0 */
2321 ret_val = igb_check_alt_mac_addr(hw);
2322
2323 /* Release semaphore */
2324 if (global_device_reset)
2325 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2326
2327 return ret_val;
2328}
2329
2330/**
2331 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2332 * @data: data received by reading RXPBS register
2333 *
2334 * The 82580 uses a table based approach for packet buffer allocation sizes.
2335 * This function converts the retrieved value into the correct table value
2336 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2337 * 0x0 36 72 144 1 2 4 8 16
2338 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2339 */
2340u16 igb_rxpbs_adjust_82580(u32 data)
2341{
2342 u16 ret_val = 0;
2343
2344 if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2345 ret_val = e1000_82580_rxpbs_table[data];
2346
2347 return ret_val;
2348}
2349
2350/**
2351 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2352 * checksum
2353 * @hw: pointer to the HW structure
2354 * @offset: offset in words of the checksum protected region
2355 *
2356 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2357 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2358 **/
2359static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2360 u16 offset)
2361{
2362 s32 ret_val = 0;
2363 u16 checksum = 0;
2364 u16 i, nvm_data;
2365
2366 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2367 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2368 if (ret_val) {
2369 hw_dbg("NVM Read Error\n");
2370 goto out;
2371 }
2372 checksum += nvm_data;
2373 }
2374
2375 if (checksum != (u16) NVM_SUM) {
2376 hw_dbg("NVM Checksum Invalid\n");
2377 ret_val = -E1000_ERR_NVM;
2378 goto out;
2379 }
2380
2381out:
2382 return ret_val;
2383}
2384
2385/**
2386 * igb_update_nvm_checksum_with_offset - Update EEPROM
2387 * checksum
2388 * @hw: pointer to the HW structure
2389 * @offset: offset in words of the checksum protected region
2390 *
2391 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2392 * up to the checksum. Then calculates the EEPROM checksum and writes the
2393 * value to the EEPROM.
2394 **/
2395static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2396{
2397 s32 ret_val;
2398 u16 checksum = 0;
2399 u16 i, nvm_data;
2400
2401 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2402 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2403 if (ret_val) {
2404 hw_dbg("NVM Read Error while updating checksum.\n");
2405 goto out;
2406 }
2407 checksum += nvm_data;
2408 }
2409 checksum = (u16) NVM_SUM - checksum;
2410 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2411 &checksum);
2412 if (ret_val)
2413 hw_dbg("NVM Write Error while updating checksum.\n");
2414
2415out:
2416 return ret_val;
2417}
2418
2419/**
2420 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2421 * @hw: pointer to the HW structure
2422 *
2423 * Calculates the EEPROM section checksum by reading/adding each word of
2424 * the EEPROM and then verifies that the sum of the EEPROM is
2425 * equal to 0xBABA.
2426 **/
2427static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2428{
2429 s32 ret_val = 0;
2430 u16 eeprom_regions_count = 1;
2431 u16 j, nvm_data;
2432 u16 nvm_offset;
2433
2434 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2435 if (ret_val) {
2436 hw_dbg("NVM Read Error\n");
2437 goto out;
2438 }
2439
2440 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2441 /* if checksums compatibility bit is set validate checksums
2442 * for all 4 ports.
2443 */
2444 eeprom_regions_count = 4;
2445 }
2446
2447 for (j = 0; j < eeprom_regions_count; j++) {
2448 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2449 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2450 nvm_offset);
2451 if (ret_val != 0)
2452 goto out;
2453 }
2454
2455out:
2456 return ret_val;
2457}
2458
2459/**
2460 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2461 * @hw: pointer to the HW structure
2462 *
2463 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2464 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2465 * checksum and writes the value to the EEPROM.
2466 **/
2467static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2468{
2469 s32 ret_val;
2470 u16 j, nvm_data;
2471 u16 nvm_offset;
2472
2473 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2474 if (ret_val) {
2475 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2476 goto out;
2477 }
2478
2479 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2480 /* set compatibility bit to validate checksums appropriately */
2481 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2482 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2483 &nvm_data);
2484 if (ret_val) {
2485 hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2486 goto out;
2487 }
2488 }
2489
2490 for (j = 0; j < 4; j++) {
2491 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2492 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2493 if (ret_val)
2494 goto out;
2495 }
2496
2497out:
2498 return ret_val;
2499}
2500
2501/**
2502 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2503 * @hw: pointer to the HW structure
2504 *
2505 * Calculates the EEPROM section checksum by reading/adding each word of
2506 * the EEPROM and then verifies that the sum of the EEPROM is
2507 * equal to 0xBABA.
2508 **/
2509static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2510{
2511 s32 ret_val = 0;
2512 u16 j;
2513 u16 nvm_offset;
2514
2515 for (j = 0; j < 4; j++) {
2516 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2517 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2518 nvm_offset);
2519 if (ret_val != 0)
2520 goto out;
2521 }
2522
2523out:
2524 return ret_val;
2525}
2526
2527/**
2528 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2529 * @hw: pointer to the HW structure
2530 *
2531 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2532 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2533 * checksum and writes the value to the EEPROM.
2534 **/
2535static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2536{
2537 s32 ret_val = 0;
2538 u16 j;
2539 u16 nvm_offset;
2540
2541 for (j = 0; j < 4; j++) {
2542 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2543 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2544 if (ret_val != 0)
2545 goto out;
2546 }
2547
2548out:
2549 return ret_val;
2550}
2551
2552/**
2553 * __igb_access_emi_reg - Read/write EMI register
2554 * @hw: pointer to the HW structure
2555 * @address: EMI address to program
2556 * @data: pointer to value to read/write from/to the EMI address
2557 * @read: boolean flag to indicate read or write
2558 **/
2559static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2560 u16 *data, bool read)
2561{
2562 s32 ret_val = 0;
2563
2564 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2565 if (ret_val)
2566 return ret_val;
2567
2568 if (read)
2569 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2570 else
2571 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2572
2573 return ret_val;
2574}
2575
2576/**
2577 * igb_read_emi_reg - Read Extended Management Interface register
2578 * @hw: pointer to the HW structure
2579 * @addr: EMI address to program
2580 * @data: value to be read from the EMI address
2581 **/
2582s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2583{
2584 return __igb_access_emi_reg(hw, addr, data, true);
2585}
2586
2587/**
2588 * igb_set_eee_i350 - Enable/disable EEE support
2589 * @hw: pointer to the HW structure
2590 * @adv1G: boolean flag enabling 1G EEE advertisement
2591 * @adv100M: boolean flag enabling 100M EEE advertisement
2592 *
2593 * Enable/disable EEE based on setting in dev_spec structure.
2594 *
2595 **/
2596s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2597{
2598 u32 ipcnfg, eeer;
2599
2600 if ((hw->mac.type < e1000_i350) ||
2601 (hw->phy.media_type != e1000_media_type_copper))
2602 goto out;
2603 ipcnfg = rd32(E1000_IPCNFG);
2604 eeer = rd32(E1000_EEER);
2605
2606 /* enable or disable per user setting */
2607 if (!(hw->dev_spec._82575.eee_disable)) {
2608 u32 eee_su = rd32(E1000_EEE_SU);
2609
2610 if (adv100M)
2611 ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2612 else
2613 ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2614
2615 if (adv1G)
2616 ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2617 else
2618 ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2619
2620 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2621 E1000_EEER_LPI_FC);
2622
2623 /* This bit should not be set in normal operation. */
2624 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2625 hw_dbg("LPI Clock Stop Bit should not be set!\n");
2626
2627 } else {
2628 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2629 E1000_IPCNFG_EEE_100M_AN);
2630 eeer &= ~(E1000_EEER_TX_LPI_EN |
2631 E1000_EEER_RX_LPI_EN |
2632 E1000_EEER_LPI_FC);
2633 }
2634 wr32(E1000_IPCNFG, ipcnfg);
2635 wr32(E1000_EEER, eeer);
2636 rd32(E1000_IPCNFG);
2637 rd32(E1000_EEER);
2638out:
2639
2640 return 0;
2641}
2642
2643/**
2644 * igb_set_eee_i354 - Enable/disable EEE support
2645 * @hw: pointer to the HW structure
2646 * @adv1G: boolean flag enabling 1G EEE advertisement
2647 * @adv100M: boolean flag enabling 100M EEE advertisement
2648 *
2649 * Enable/disable EEE legacy mode based on setting in dev_spec structure.
2650 *
2651 **/
2652s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2653{
2654 struct e1000_phy_info *phy = &hw->phy;
2655 s32 ret_val = 0;
2656 u16 phy_data;
2657
2658 if ((hw->phy.media_type != e1000_media_type_copper) ||
2659 ((phy->id != M88E1543_E_PHY_ID) &&
2660 (phy->id != M88E1512_E_PHY_ID)))
2661 goto out;
2662
2663 if (!hw->dev_spec._82575.eee_disable) {
2664 /* Switch to PHY page 18. */
2665 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2666 if (ret_val)
2667 goto out;
2668
2669 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2670 &phy_data);
2671 if (ret_val)
2672 goto out;
2673
2674 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2675 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2676 phy_data);
2677 if (ret_val)
2678 goto out;
2679
2680 /* Return the PHY to page 0. */
2681 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2682 if (ret_val)
2683 goto out;
2684
2685 /* Turn on EEE advertisement. */
2686 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2687 E1000_EEE_ADV_DEV_I354,
2688 &phy_data);
2689 if (ret_val)
2690 goto out;
2691
2692 if (adv100M)
2693 phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2694 else
2695 phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2696
2697 if (adv1G)
2698 phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2699 else
2700 phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2701
2702 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2703 E1000_EEE_ADV_DEV_I354,
2704 phy_data);
2705 } else {
2706 /* Turn off EEE advertisement. */
2707 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2708 E1000_EEE_ADV_DEV_I354,
2709 &phy_data);
2710 if (ret_val)
2711 goto out;
2712
2713 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2714 E1000_EEE_ADV_1000_SUPPORTED);
2715 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2716 E1000_EEE_ADV_DEV_I354,
2717 phy_data);
2718 }
2719
2720out:
2721 return ret_val;
2722}
2723
2724/**
2725 * igb_get_eee_status_i354 - Get EEE status
2726 * @hw: pointer to the HW structure
2727 * @status: EEE status
2728 *
2729 * Get EEE status by guessing based on whether Tx or Rx LPI indications have
2730 * been received.
2731 **/
2732s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2733{
2734 struct e1000_phy_info *phy = &hw->phy;
2735 s32 ret_val = 0;
2736 u16 phy_data;
2737
2738 /* Check if EEE is supported on this device. */
2739 if ((hw->phy.media_type != e1000_media_type_copper) ||
2740 ((phy->id != M88E1543_E_PHY_ID) &&
2741 (phy->id != M88E1512_E_PHY_ID)))
2742 goto out;
2743
2744 ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2745 E1000_PCS_STATUS_DEV_I354,
2746 &phy_data);
2747 if (ret_val)
2748 goto out;
2749
2750 *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2751 E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2752
2753out:
2754 return ret_val;
2755}
2756
2757#ifdef CONFIG_IGB_HWMON
2758static const u8 e1000_emc_temp_data[4] = {
2759 E1000_EMC_INTERNAL_DATA,
2760 E1000_EMC_DIODE1_DATA,
2761 E1000_EMC_DIODE2_DATA,
2762 E1000_EMC_DIODE3_DATA
2763};
2764static const u8 e1000_emc_therm_limit[4] = {
2765 E1000_EMC_INTERNAL_THERM_LIMIT,
2766 E1000_EMC_DIODE1_THERM_LIMIT,
2767 E1000_EMC_DIODE2_THERM_LIMIT,
2768 E1000_EMC_DIODE3_THERM_LIMIT
2769};
2770
2771/**
2772 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2773 * @hw: pointer to hardware structure
2774 *
2775 * Updates the temperatures in mac.thermal_sensor_data
2776 **/
2777static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2778{
2779 u16 ets_offset;
2780 u16 ets_cfg;
2781 u16 ets_sensor;
2782 u8 num_sensors;
2783 u8 sensor_index;
2784 u8 sensor_location;
2785 u8 i;
2786 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2787
2788 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2789 return E1000_NOT_IMPLEMENTED;
2790
2791 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2792
2793 /* Return the internal sensor only if ETS is unsupported */
2794 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2795 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2796 return 0;
2797
2798 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2799 if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg)
2800 != NVM_ETS_TYPE_EMC)
2801 return E1000_NOT_IMPLEMENTED;
2802
2803 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2804 if (num_sensors > E1000_MAX_SENSORS)
2805 num_sensors = E1000_MAX_SENSORS;
2806
2807 for (i = 1; i < num_sensors; i++) {
2808 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2809 sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor);
2810 sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor);
2811
2812 if (sensor_location != 0)
2813 hw->phy.ops.read_i2c_byte(hw,
2814 e1000_emc_temp_data[sensor_index],
2815 E1000_I2C_THERMAL_SENSOR_ADDR,
2816 &data->sensor[i].temp);
2817 }
2818 return 0;
2819}
2820
2821/**
2822 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2823 * @hw: pointer to hardware structure
2824 *
2825 * Sets the thermal sensor thresholds according to the NVM map
2826 * and save off the threshold and location values into mac.thermal_sensor_data
2827 **/
2828static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2829{
2830 u16 ets_offset;
2831 u16 ets_cfg;
2832 u16 ets_sensor;
2833 u8 low_thresh_delta;
2834 u8 num_sensors;
2835 u8 sensor_index;
2836 u8 sensor_location;
2837 u8 therm_limit;
2838 u8 i;
2839 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2840
2841 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2842 return E1000_NOT_IMPLEMENTED;
2843
2844 memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2845
2846 data->sensor[0].location = 0x1;
2847 data->sensor[0].caution_thresh =
2848 (rd32(E1000_THHIGHTC) & 0xFF);
2849 data->sensor[0].max_op_thresh =
2850 (rd32(E1000_THLOWTC) & 0xFF);
2851
2852 /* Return the internal sensor only if ETS is unsupported */
2853 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2854 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2855 return 0;
2856
2857 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2858 if (FIELD_GET(NVM_ETS_TYPE_MASK, ets_cfg)
2859 != NVM_ETS_TYPE_EMC)
2860 return E1000_NOT_IMPLEMENTED;
2861
2862 low_thresh_delta = FIELD_GET(NVM_ETS_LTHRES_DELTA_MASK, ets_cfg);
2863 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2864
2865 for (i = 1; i <= num_sensors; i++) {
2866 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2867 sensor_index = FIELD_GET(NVM_ETS_DATA_INDEX_MASK, ets_sensor);
2868 sensor_location = FIELD_GET(NVM_ETS_DATA_LOC_MASK, ets_sensor);
2869 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2870
2871 hw->phy.ops.write_i2c_byte(hw,
2872 e1000_emc_therm_limit[sensor_index],
2873 E1000_I2C_THERMAL_SENSOR_ADDR,
2874 therm_limit);
2875
2876 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2877 data->sensor[i].location = sensor_location;
2878 data->sensor[i].caution_thresh = therm_limit;
2879 data->sensor[i].max_op_thresh = therm_limit -
2880 low_thresh_delta;
2881 }
2882 }
2883 return 0;
2884}
2885
2886#endif
2887static struct e1000_mac_operations e1000_mac_ops_82575 = {
2888 .init_hw = igb_init_hw_82575,
2889 .check_for_link = igb_check_for_link_82575,
2890 .rar_set = igb_rar_set,
2891 .read_mac_addr = igb_read_mac_addr_82575,
2892 .get_speed_and_duplex = igb_get_link_up_info_82575,
2893#ifdef CONFIG_IGB_HWMON
2894 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2895 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2896#endif
2897};
2898
2899static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2900 .acquire = igb_acquire_phy_82575,
2901 .get_cfg_done = igb_get_cfg_done_82575,
2902 .release = igb_release_phy_82575,
2903 .write_i2c_byte = igb_write_i2c_byte,
2904 .read_i2c_byte = igb_read_i2c_byte,
2905};
2906
2907static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2908 .acquire = igb_acquire_nvm_82575,
2909 .read = igb_read_nvm_eerd,
2910 .release = igb_release_nvm_82575,
2911 .write = igb_write_nvm_spi,
2912};
2913
2914const struct e1000_info e1000_82575_info = {
2915 .get_invariants = igb_get_invariants_82575,
2916 .mac_ops = &e1000_mac_ops_82575,
2917 .phy_ops = &e1000_phy_ops_82575,
2918 .nvm_ops = &e1000_nvm_ops_82575,
2919};
2920
1/* Intel(R) Gigabit Ethernet Linux driver
2 * Copyright(c) 2007-2015 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, see <http://www.gnu.org/licenses/>.
15 *
16 * The full GNU General Public License is included in this distribution in
17 * the file called "COPYING".
18 *
19 * Contact Information:
20 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22 */
23
24/* e1000_82575
25 * e1000_82576
26 */
27
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
30#include <linux/types.h>
31#include <linux/if_ether.h>
32#include <linux/i2c.h>
33
34#include "e1000_mac.h"
35#include "e1000_82575.h"
36#include "e1000_i210.h"
37#include "igb.h"
38
39static s32 igb_get_invariants_82575(struct e1000_hw *);
40static s32 igb_acquire_phy_82575(struct e1000_hw *);
41static void igb_release_phy_82575(struct e1000_hw *);
42static s32 igb_acquire_nvm_82575(struct e1000_hw *);
43static void igb_release_nvm_82575(struct e1000_hw *);
44static s32 igb_check_for_link_82575(struct e1000_hw *);
45static s32 igb_get_cfg_done_82575(struct e1000_hw *);
46static s32 igb_init_hw_82575(struct e1000_hw *);
47static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *);
48static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16 *);
49static s32 igb_reset_hw_82575(struct e1000_hw *);
50static s32 igb_reset_hw_82580(struct e1000_hw *);
51static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *, bool);
52static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *, bool);
53static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *, bool);
54static s32 igb_setup_copper_link_82575(struct e1000_hw *);
55static s32 igb_setup_serdes_link_82575(struct e1000_hw *);
56static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *, u32, u16);
57static void igb_clear_hw_cntrs_82575(struct e1000_hw *);
58static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *, u16);
59static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *, u16 *,
60 u16 *);
61static s32 igb_get_phy_id_82575(struct e1000_hw *);
62static void igb_release_swfw_sync_82575(struct e1000_hw *, u16);
63static bool igb_sgmii_active_82575(struct e1000_hw *);
64static s32 igb_reset_init_script_82575(struct e1000_hw *);
65static s32 igb_read_mac_addr_82575(struct e1000_hw *);
66static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw);
67static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw);
68static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw);
69static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw);
70static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw);
71static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw);
72static const u16 e1000_82580_rxpbs_table[] = {
73 36, 72, 144, 1, 2, 4, 8, 16, 35, 70, 140 };
74
75/* Due to a hw errata, if the host tries to configure the VFTA register
76 * while performing queries from the BMC or DMA, then the VFTA in some
77 * cases won't be written.
78 */
79
80/**
81 * igb_write_vfta_i350 - Write value to VLAN filter table
82 * @hw: pointer to the HW structure
83 * @offset: register offset in VLAN filter table
84 * @value: register value written to VLAN filter table
85 *
86 * Writes value at the given offset in the register array which stores
87 * the VLAN filter table.
88 **/
89static void igb_write_vfta_i350(struct e1000_hw *hw, u32 offset, u32 value)
90{
91 struct igb_adapter *adapter = hw->back;
92 int i;
93
94 for (i = 10; i--;)
95 array_wr32(E1000_VFTA, offset, value);
96
97 wrfl();
98 adapter->shadow_vfta[offset] = value;
99}
100
101/**
102 * igb_sgmii_uses_mdio_82575 - Determine if I2C pins are for external MDIO
103 * @hw: pointer to the HW structure
104 *
105 * Called to determine if the I2C pins are being used for I2C or as an
106 * external MDIO interface since the two options are mutually exclusive.
107 **/
108static bool igb_sgmii_uses_mdio_82575(struct e1000_hw *hw)
109{
110 u32 reg = 0;
111 bool ext_mdio = false;
112
113 switch (hw->mac.type) {
114 case e1000_82575:
115 case e1000_82576:
116 reg = rd32(E1000_MDIC);
117 ext_mdio = !!(reg & E1000_MDIC_DEST);
118 break;
119 case e1000_82580:
120 case e1000_i350:
121 case e1000_i354:
122 case e1000_i210:
123 case e1000_i211:
124 reg = rd32(E1000_MDICNFG);
125 ext_mdio = !!(reg & E1000_MDICNFG_EXT_MDIO);
126 break;
127 default:
128 break;
129 }
130 return ext_mdio;
131}
132
133/**
134 * igb_check_for_link_media_swap - Check which M88E1112 interface linked
135 * @hw: pointer to the HW structure
136 *
137 * Poll the M88E1112 interfaces to see which interface achieved link.
138 */
139static s32 igb_check_for_link_media_swap(struct e1000_hw *hw)
140{
141 struct e1000_phy_info *phy = &hw->phy;
142 s32 ret_val;
143 u16 data;
144 u8 port = 0;
145
146 /* Check the copper medium. */
147 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
148 if (ret_val)
149 return ret_val;
150
151 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
152 if (ret_val)
153 return ret_val;
154
155 if (data & E1000_M88E1112_STATUS_LINK)
156 port = E1000_MEDIA_PORT_COPPER;
157
158 /* Check the other medium. */
159 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 1);
160 if (ret_val)
161 return ret_val;
162
163 ret_val = phy->ops.read_reg(hw, E1000_M88E1112_STATUS, &data);
164 if (ret_val)
165 return ret_val;
166
167
168 if (data & E1000_M88E1112_STATUS_LINK)
169 port = E1000_MEDIA_PORT_OTHER;
170
171 /* Determine if a swap needs to happen. */
172 if (port && (hw->dev_spec._82575.media_port != port)) {
173 hw->dev_spec._82575.media_port = port;
174 hw->dev_spec._82575.media_changed = true;
175 }
176
177 if (port == E1000_MEDIA_PORT_COPPER) {
178 /* reset page to 0 */
179 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
180 if (ret_val)
181 return ret_val;
182 igb_check_for_link_82575(hw);
183 } else {
184 igb_check_for_link_82575(hw);
185 /* reset page to 0 */
186 ret_val = phy->ops.write_reg(hw, E1000_M88E1112_PAGE_ADDR, 0);
187 if (ret_val)
188 return ret_val;
189 }
190
191 return 0;
192}
193
194/**
195 * igb_init_phy_params_82575 - Init PHY func ptrs.
196 * @hw: pointer to the HW structure
197 **/
198static s32 igb_init_phy_params_82575(struct e1000_hw *hw)
199{
200 struct e1000_phy_info *phy = &hw->phy;
201 s32 ret_val = 0;
202 u32 ctrl_ext;
203
204 if (hw->phy.media_type != e1000_media_type_copper) {
205 phy->type = e1000_phy_none;
206 goto out;
207 }
208
209 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
210 phy->reset_delay_us = 100;
211
212 ctrl_ext = rd32(E1000_CTRL_EXT);
213
214 if (igb_sgmii_active_82575(hw)) {
215 phy->ops.reset = igb_phy_hw_reset_sgmii_82575;
216 ctrl_ext |= E1000_CTRL_I2C_ENA;
217 } else {
218 phy->ops.reset = igb_phy_hw_reset;
219 ctrl_ext &= ~E1000_CTRL_I2C_ENA;
220 }
221
222 wr32(E1000_CTRL_EXT, ctrl_ext);
223 igb_reset_mdicnfg_82580(hw);
224
225 if (igb_sgmii_active_82575(hw) && !igb_sgmii_uses_mdio_82575(hw)) {
226 phy->ops.read_reg = igb_read_phy_reg_sgmii_82575;
227 phy->ops.write_reg = igb_write_phy_reg_sgmii_82575;
228 } else {
229 switch (hw->mac.type) {
230 case e1000_82580:
231 case e1000_i350:
232 case e1000_i354:
233 case e1000_i210:
234 case e1000_i211:
235 phy->ops.read_reg = igb_read_phy_reg_82580;
236 phy->ops.write_reg = igb_write_phy_reg_82580;
237 break;
238 default:
239 phy->ops.read_reg = igb_read_phy_reg_igp;
240 phy->ops.write_reg = igb_write_phy_reg_igp;
241 }
242 }
243
244 /* set lan id */
245 hw->bus.func = (rd32(E1000_STATUS) & E1000_STATUS_FUNC_MASK) >>
246 E1000_STATUS_FUNC_SHIFT;
247
248 /* Set phy->phy_addr and phy->id. */
249 ret_val = igb_get_phy_id_82575(hw);
250 if (ret_val)
251 return ret_val;
252
253 /* Verify phy id and set remaining function pointers */
254 switch (phy->id) {
255 case M88E1543_E_PHY_ID:
256 case M88E1512_E_PHY_ID:
257 case I347AT4_E_PHY_ID:
258 case M88E1112_E_PHY_ID:
259 case M88E1111_I_PHY_ID:
260 phy->type = e1000_phy_m88;
261 phy->ops.check_polarity = igb_check_polarity_m88;
262 phy->ops.get_phy_info = igb_get_phy_info_m88;
263 if (phy->id != M88E1111_I_PHY_ID)
264 phy->ops.get_cable_length =
265 igb_get_cable_length_m88_gen2;
266 else
267 phy->ops.get_cable_length = igb_get_cable_length_m88;
268 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
269 /* Check if this PHY is configured for media swap. */
270 if (phy->id == M88E1112_E_PHY_ID) {
271 u16 data;
272
273 ret_val = phy->ops.write_reg(hw,
274 E1000_M88E1112_PAGE_ADDR,
275 2);
276 if (ret_val)
277 goto out;
278
279 ret_val = phy->ops.read_reg(hw,
280 E1000_M88E1112_MAC_CTRL_1,
281 &data);
282 if (ret_val)
283 goto out;
284
285 data = (data & E1000_M88E1112_MAC_CTRL_1_MODE_MASK) >>
286 E1000_M88E1112_MAC_CTRL_1_MODE_SHIFT;
287 if (data == E1000_M88E1112_AUTO_COPPER_SGMII ||
288 data == E1000_M88E1112_AUTO_COPPER_BASEX)
289 hw->mac.ops.check_for_link =
290 igb_check_for_link_media_swap;
291 }
292 if (phy->id == M88E1512_E_PHY_ID) {
293 ret_val = igb_initialize_M88E1512_phy(hw);
294 if (ret_val)
295 goto out;
296 }
297 if (phy->id == M88E1543_E_PHY_ID) {
298 ret_val = igb_initialize_M88E1543_phy(hw);
299 if (ret_val)
300 goto out;
301 }
302 break;
303 case IGP03E1000_E_PHY_ID:
304 phy->type = e1000_phy_igp_3;
305 phy->ops.get_phy_info = igb_get_phy_info_igp;
306 phy->ops.get_cable_length = igb_get_cable_length_igp_2;
307 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_igp;
308 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82575;
309 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state;
310 break;
311 case I82580_I_PHY_ID:
312 case I350_I_PHY_ID:
313 phy->type = e1000_phy_82580;
314 phy->ops.force_speed_duplex =
315 igb_phy_force_speed_duplex_82580;
316 phy->ops.get_cable_length = igb_get_cable_length_82580;
317 phy->ops.get_phy_info = igb_get_phy_info_82580;
318 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
319 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
320 break;
321 case I210_I_PHY_ID:
322 phy->type = e1000_phy_i210;
323 phy->ops.check_polarity = igb_check_polarity_m88;
324 phy->ops.get_cfg_done = igb_get_cfg_done_i210;
325 phy->ops.get_phy_info = igb_get_phy_info_m88;
326 phy->ops.get_cable_length = igb_get_cable_length_m88_gen2;
327 phy->ops.set_d0_lplu_state = igb_set_d0_lplu_state_82580;
328 phy->ops.set_d3_lplu_state = igb_set_d3_lplu_state_82580;
329 phy->ops.force_speed_duplex = igb_phy_force_speed_duplex_m88;
330 break;
331 default:
332 ret_val = -E1000_ERR_PHY;
333 goto out;
334 }
335
336out:
337 return ret_val;
338}
339
340/**
341 * igb_init_nvm_params_82575 - Init NVM func ptrs.
342 * @hw: pointer to the HW structure
343 **/
344static s32 igb_init_nvm_params_82575(struct e1000_hw *hw)
345{
346 struct e1000_nvm_info *nvm = &hw->nvm;
347 u32 eecd = rd32(E1000_EECD);
348 u16 size;
349
350 size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
351 E1000_EECD_SIZE_EX_SHIFT);
352
353 /* Added to a constant, "size" becomes the left-shift value
354 * for setting word_size.
355 */
356 size += NVM_WORD_SIZE_BASE_SHIFT;
357
358 /* Just in case size is out of range, cap it to the largest
359 * EEPROM size supported
360 */
361 if (size > 15)
362 size = 15;
363
364 nvm->word_size = BIT(size);
365 nvm->opcode_bits = 8;
366 nvm->delay_usec = 1;
367
368 switch (nvm->override) {
369 case e1000_nvm_override_spi_large:
370 nvm->page_size = 32;
371 nvm->address_bits = 16;
372 break;
373 case e1000_nvm_override_spi_small:
374 nvm->page_size = 8;
375 nvm->address_bits = 8;
376 break;
377 default:
378 nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
379 nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ?
380 16 : 8;
381 break;
382 }
383 if (nvm->word_size == BIT(15))
384 nvm->page_size = 128;
385
386 nvm->type = e1000_nvm_eeprom_spi;
387
388 /* NVM Function Pointers */
389 nvm->ops.acquire = igb_acquire_nvm_82575;
390 nvm->ops.release = igb_release_nvm_82575;
391 nvm->ops.write = igb_write_nvm_spi;
392 nvm->ops.validate = igb_validate_nvm_checksum;
393 nvm->ops.update = igb_update_nvm_checksum;
394 if (nvm->word_size < BIT(15))
395 nvm->ops.read = igb_read_nvm_eerd;
396 else
397 nvm->ops.read = igb_read_nvm_spi;
398
399 /* override generic family function pointers for specific descendants */
400 switch (hw->mac.type) {
401 case e1000_82580:
402 nvm->ops.validate = igb_validate_nvm_checksum_82580;
403 nvm->ops.update = igb_update_nvm_checksum_82580;
404 break;
405 case e1000_i354:
406 case e1000_i350:
407 nvm->ops.validate = igb_validate_nvm_checksum_i350;
408 nvm->ops.update = igb_update_nvm_checksum_i350;
409 break;
410 default:
411 break;
412 }
413
414 return 0;
415}
416
417/**
418 * igb_init_mac_params_82575 - Init MAC func ptrs.
419 * @hw: pointer to the HW structure
420 **/
421static s32 igb_init_mac_params_82575(struct e1000_hw *hw)
422{
423 struct e1000_mac_info *mac = &hw->mac;
424 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
425
426 /* Set mta register count */
427 mac->mta_reg_count = 128;
428 /* Set uta register count */
429 mac->uta_reg_count = (hw->mac.type == e1000_82575) ? 0 : 128;
430 /* Set rar entry count */
431 switch (mac->type) {
432 case e1000_82576:
433 mac->rar_entry_count = E1000_RAR_ENTRIES_82576;
434 break;
435 case e1000_82580:
436 mac->rar_entry_count = E1000_RAR_ENTRIES_82580;
437 break;
438 case e1000_i350:
439 case e1000_i354:
440 mac->rar_entry_count = E1000_RAR_ENTRIES_I350;
441 break;
442 default:
443 mac->rar_entry_count = E1000_RAR_ENTRIES_82575;
444 break;
445 }
446 /* reset */
447 if (mac->type >= e1000_82580)
448 mac->ops.reset_hw = igb_reset_hw_82580;
449 else
450 mac->ops.reset_hw = igb_reset_hw_82575;
451
452 if (mac->type >= e1000_i210) {
453 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_i210;
454 mac->ops.release_swfw_sync = igb_release_swfw_sync_i210;
455
456 } else {
457 mac->ops.acquire_swfw_sync = igb_acquire_swfw_sync_82575;
458 mac->ops.release_swfw_sync = igb_release_swfw_sync_82575;
459 }
460
461 if ((hw->mac.type == e1000_i350) || (hw->mac.type == e1000_i354))
462 mac->ops.write_vfta = igb_write_vfta_i350;
463 else
464 mac->ops.write_vfta = igb_write_vfta;
465
466 /* Set if part includes ASF firmware */
467 mac->asf_firmware_present = true;
468 /* Set if manageability features are enabled. */
469 mac->arc_subsystem_valid =
470 (rd32(E1000_FWSM) & E1000_FWSM_MODE_MASK)
471 ? true : false;
472 /* enable EEE on i350 parts and later parts */
473 if (mac->type >= e1000_i350)
474 dev_spec->eee_disable = false;
475 else
476 dev_spec->eee_disable = true;
477 /* Allow a single clear of the SW semaphore on I210 and newer */
478 if (mac->type >= e1000_i210)
479 dev_spec->clear_semaphore_once = true;
480 /* physical interface link setup */
481 mac->ops.setup_physical_interface =
482 (hw->phy.media_type == e1000_media_type_copper)
483 ? igb_setup_copper_link_82575
484 : igb_setup_serdes_link_82575;
485
486 if (mac->type == e1000_82580) {
487 switch (hw->device_id) {
488 /* feature not supported on these id's */
489 case E1000_DEV_ID_DH89XXCC_SGMII:
490 case E1000_DEV_ID_DH89XXCC_SERDES:
491 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
492 case E1000_DEV_ID_DH89XXCC_SFP:
493 break;
494 default:
495 hw->dev_spec._82575.mas_capable = true;
496 break;
497 }
498 }
499 return 0;
500}
501
502/**
503 * igb_set_sfp_media_type_82575 - derives SFP module media type.
504 * @hw: pointer to the HW structure
505 *
506 * The media type is chosen based on SFP module.
507 * compatibility flags retrieved from SFP ID EEPROM.
508 **/
509static s32 igb_set_sfp_media_type_82575(struct e1000_hw *hw)
510{
511 s32 ret_val = E1000_ERR_CONFIG;
512 u32 ctrl_ext = 0;
513 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
514 struct e1000_sfp_flags *eth_flags = &dev_spec->eth_flags;
515 u8 tranceiver_type = 0;
516 s32 timeout = 3;
517
518 /* Turn I2C interface ON and power on sfp cage */
519 ctrl_ext = rd32(E1000_CTRL_EXT);
520 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
521 wr32(E1000_CTRL_EXT, ctrl_ext | E1000_CTRL_I2C_ENA);
522
523 wrfl();
524
525 /* Read SFP module data */
526 while (timeout) {
527 ret_val = igb_read_sfp_data_byte(hw,
528 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_IDENTIFIER_OFFSET),
529 &tranceiver_type);
530 if (ret_val == 0)
531 break;
532 msleep(100);
533 timeout--;
534 }
535 if (ret_val != 0)
536 goto out;
537
538 ret_val = igb_read_sfp_data_byte(hw,
539 E1000_I2CCMD_SFP_DATA_ADDR(E1000_SFF_ETH_FLAGS_OFFSET),
540 (u8 *)eth_flags);
541 if (ret_val != 0)
542 goto out;
543
544 /* Check if there is some SFP module plugged and powered */
545 if ((tranceiver_type == E1000_SFF_IDENTIFIER_SFP) ||
546 (tranceiver_type == E1000_SFF_IDENTIFIER_SFF)) {
547 dev_spec->module_plugged = true;
548 if (eth_flags->e1000_base_lx || eth_flags->e1000_base_sx) {
549 hw->phy.media_type = e1000_media_type_internal_serdes;
550 } else if (eth_flags->e100_base_fx) {
551 dev_spec->sgmii_active = true;
552 hw->phy.media_type = e1000_media_type_internal_serdes;
553 } else if (eth_flags->e1000_base_t) {
554 dev_spec->sgmii_active = true;
555 hw->phy.media_type = e1000_media_type_copper;
556 } else {
557 hw->phy.media_type = e1000_media_type_unknown;
558 hw_dbg("PHY module has not been recognized\n");
559 goto out;
560 }
561 } else {
562 hw->phy.media_type = e1000_media_type_unknown;
563 }
564 ret_val = 0;
565out:
566 /* Restore I2C interface setting */
567 wr32(E1000_CTRL_EXT, ctrl_ext);
568 return ret_val;
569}
570
571static s32 igb_get_invariants_82575(struct e1000_hw *hw)
572{
573 struct e1000_mac_info *mac = &hw->mac;
574 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
575 s32 ret_val;
576 u32 ctrl_ext = 0;
577 u32 link_mode = 0;
578
579 switch (hw->device_id) {
580 case E1000_DEV_ID_82575EB_COPPER:
581 case E1000_DEV_ID_82575EB_FIBER_SERDES:
582 case E1000_DEV_ID_82575GB_QUAD_COPPER:
583 mac->type = e1000_82575;
584 break;
585 case E1000_DEV_ID_82576:
586 case E1000_DEV_ID_82576_NS:
587 case E1000_DEV_ID_82576_NS_SERDES:
588 case E1000_DEV_ID_82576_FIBER:
589 case E1000_DEV_ID_82576_SERDES:
590 case E1000_DEV_ID_82576_QUAD_COPPER:
591 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
592 case E1000_DEV_ID_82576_SERDES_QUAD:
593 mac->type = e1000_82576;
594 break;
595 case E1000_DEV_ID_82580_COPPER:
596 case E1000_DEV_ID_82580_FIBER:
597 case E1000_DEV_ID_82580_QUAD_FIBER:
598 case E1000_DEV_ID_82580_SERDES:
599 case E1000_DEV_ID_82580_SGMII:
600 case E1000_DEV_ID_82580_COPPER_DUAL:
601 case E1000_DEV_ID_DH89XXCC_SGMII:
602 case E1000_DEV_ID_DH89XXCC_SERDES:
603 case E1000_DEV_ID_DH89XXCC_BACKPLANE:
604 case E1000_DEV_ID_DH89XXCC_SFP:
605 mac->type = e1000_82580;
606 break;
607 case E1000_DEV_ID_I350_COPPER:
608 case E1000_DEV_ID_I350_FIBER:
609 case E1000_DEV_ID_I350_SERDES:
610 case E1000_DEV_ID_I350_SGMII:
611 mac->type = e1000_i350;
612 break;
613 case E1000_DEV_ID_I210_COPPER:
614 case E1000_DEV_ID_I210_FIBER:
615 case E1000_DEV_ID_I210_SERDES:
616 case E1000_DEV_ID_I210_SGMII:
617 case E1000_DEV_ID_I210_COPPER_FLASHLESS:
618 case E1000_DEV_ID_I210_SERDES_FLASHLESS:
619 mac->type = e1000_i210;
620 break;
621 case E1000_DEV_ID_I211_COPPER:
622 mac->type = e1000_i211;
623 break;
624 case E1000_DEV_ID_I354_BACKPLANE_1GBPS:
625 case E1000_DEV_ID_I354_SGMII:
626 case E1000_DEV_ID_I354_BACKPLANE_2_5GBPS:
627 mac->type = e1000_i354;
628 break;
629 default:
630 return -E1000_ERR_MAC_INIT;
631 }
632
633 /* Set media type */
634 /* The 82575 uses bits 22:23 for link mode. The mode can be changed
635 * based on the EEPROM. We cannot rely upon device ID. There
636 * is no distinguishable difference between fiber and internal
637 * SerDes mode on the 82575. There can be an external PHY attached
638 * on the SGMII interface. For this, we'll set sgmii_active to true.
639 */
640 hw->phy.media_type = e1000_media_type_copper;
641 dev_spec->sgmii_active = false;
642 dev_spec->module_plugged = false;
643
644 ctrl_ext = rd32(E1000_CTRL_EXT);
645
646 link_mode = ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK;
647 switch (link_mode) {
648 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
649 hw->phy.media_type = e1000_media_type_internal_serdes;
650 break;
651 case E1000_CTRL_EXT_LINK_MODE_SGMII:
652 /* Get phy control interface type set (MDIO vs. I2C)*/
653 if (igb_sgmii_uses_mdio_82575(hw)) {
654 hw->phy.media_type = e1000_media_type_copper;
655 dev_spec->sgmii_active = true;
656 break;
657 }
658 /* fall through for I2C based SGMII */
659 case E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES:
660 /* read media type from SFP EEPROM */
661 ret_val = igb_set_sfp_media_type_82575(hw);
662 if ((ret_val != 0) ||
663 (hw->phy.media_type == e1000_media_type_unknown)) {
664 /* If media type was not identified then return media
665 * type defined by the CTRL_EXT settings.
666 */
667 hw->phy.media_type = e1000_media_type_internal_serdes;
668
669 if (link_mode == E1000_CTRL_EXT_LINK_MODE_SGMII) {
670 hw->phy.media_type = e1000_media_type_copper;
671 dev_spec->sgmii_active = true;
672 }
673
674 break;
675 }
676
677 /* do not change link mode for 100BaseFX */
678 if (dev_spec->eth_flags.e100_base_fx)
679 break;
680
681 /* change current link mode setting */
682 ctrl_ext &= ~E1000_CTRL_EXT_LINK_MODE_MASK;
683
684 if (hw->phy.media_type == e1000_media_type_copper)
685 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_SGMII;
686 else
687 ctrl_ext |= E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
688
689 wr32(E1000_CTRL_EXT, ctrl_ext);
690
691 break;
692 default:
693 break;
694 }
695
696 /* mac initialization and operations */
697 ret_val = igb_init_mac_params_82575(hw);
698 if (ret_val)
699 goto out;
700
701 /* NVM initialization */
702 ret_val = igb_init_nvm_params_82575(hw);
703 switch (hw->mac.type) {
704 case e1000_i210:
705 case e1000_i211:
706 ret_val = igb_init_nvm_params_i210(hw);
707 break;
708 default:
709 break;
710 }
711
712 if (ret_val)
713 goto out;
714
715 /* if part supports SR-IOV then initialize mailbox parameters */
716 switch (mac->type) {
717 case e1000_82576:
718 case e1000_i350:
719 igb_init_mbx_params_pf(hw);
720 break;
721 default:
722 break;
723 }
724
725 /* setup PHY parameters */
726 ret_val = igb_init_phy_params_82575(hw);
727
728out:
729 return ret_val;
730}
731
732/**
733 * igb_acquire_phy_82575 - Acquire rights to access PHY
734 * @hw: pointer to the HW structure
735 *
736 * Acquire access rights to the correct PHY. This is a
737 * function pointer entry point called by the api module.
738 **/
739static s32 igb_acquire_phy_82575(struct e1000_hw *hw)
740{
741 u16 mask = E1000_SWFW_PHY0_SM;
742
743 if (hw->bus.func == E1000_FUNC_1)
744 mask = E1000_SWFW_PHY1_SM;
745 else if (hw->bus.func == E1000_FUNC_2)
746 mask = E1000_SWFW_PHY2_SM;
747 else if (hw->bus.func == E1000_FUNC_3)
748 mask = E1000_SWFW_PHY3_SM;
749
750 return hw->mac.ops.acquire_swfw_sync(hw, mask);
751}
752
753/**
754 * igb_release_phy_82575 - Release rights to access PHY
755 * @hw: pointer to the HW structure
756 *
757 * A wrapper to release access rights to the correct PHY. This is a
758 * function pointer entry point called by the api module.
759 **/
760static void igb_release_phy_82575(struct e1000_hw *hw)
761{
762 u16 mask = E1000_SWFW_PHY0_SM;
763
764 if (hw->bus.func == E1000_FUNC_1)
765 mask = E1000_SWFW_PHY1_SM;
766 else if (hw->bus.func == E1000_FUNC_2)
767 mask = E1000_SWFW_PHY2_SM;
768 else if (hw->bus.func == E1000_FUNC_3)
769 mask = E1000_SWFW_PHY3_SM;
770
771 hw->mac.ops.release_swfw_sync(hw, mask);
772}
773
774/**
775 * igb_read_phy_reg_sgmii_82575 - Read PHY register using sgmii
776 * @hw: pointer to the HW structure
777 * @offset: register offset to be read
778 * @data: pointer to the read data
779 *
780 * Reads the PHY register at offset using the serial gigabit media independent
781 * interface and stores the retrieved information in data.
782 **/
783static s32 igb_read_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
784 u16 *data)
785{
786 s32 ret_val = -E1000_ERR_PARAM;
787
788 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
789 hw_dbg("PHY Address %u is out of range\n", offset);
790 goto out;
791 }
792
793 ret_val = hw->phy.ops.acquire(hw);
794 if (ret_val)
795 goto out;
796
797 ret_val = igb_read_phy_reg_i2c(hw, offset, data);
798
799 hw->phy.ops.release(hw);
800
801out:
802 return ret_val;
803}
804
805/**
806 * igb_write_phy_reg_sgmii_82575 - Write PHY register using sgmii
807 * @hw: pointer to the HW structure
808 * @offset: register offset to write to
809 * @data: data to write at register offset
810 *
811 * Writes the data to PHY register at the offset using the serial gigabit
812 * media independent interface.
813 **/
814static s32 igb_write_phy_reg_sgmii_82575(struct e1000_hw *hw, u32 offset,
815 u16 data)
816{
817 s32 ret_val = -E1000_ERR_PARAM;
818
819
820 if (offset > E1000_MAX_SGMII_PHY_REG_ADDR) {
821 hw_dbg("PHY Address %d is out of range\n", offset);
822 goto out;
823 }
824
825 ret_val = hw->phy.ops.acquire(hw);
826 if (ret_val)
827 goto out;
828
829 ret_val = igb_write_phy_reg_i2c(hw, offset, data);
830
831 hw->phy.ops.release(hw);
832
833out:
834 return ret_val;
835}
836
837/**
838 * igb_get_phy_id_82575 - Retrieve PHY addr and id
839 * @hw: pointer to the HW structure
840 *
841 * Retrieves the PHY address and ID for both PHY's which do and do not use
842 * sgmi interface.
843 **/
844static s32 igb_get_phy_id_82575(struct e1000_hw *hw)
845{
846 struct e1000_phy_info *phy = &hw->phy;
847 s32 ret_val = 0;
848 u16 phy_id;
849 u32 ctrl_ext;
850 u32 mdic;
851
852 /* Extra read required for some PHY's on i354 */
853 if (hw->mac.type == e1000_i354)
854 igb_get_phy_id(hw);
855
856 /* For SGMII PHYs, we try the list of possible addresses until
857 * we find one that works. For non-SGMII PHYs
858 * (e.g. integrated copper PHYs), an address of 1 should
859 * work. The result of this function should mean phy->phy_addr
860 * and phy->id are set correctly.
861 */
862 if (!(igb_sgmii_active_82575(hw))) {
863 phy->addr = 1;
864 ret_val = igb_get_phy_id(hw);
865 goto out;
866 }
867
868 if (igb_sgmii_uses_mdio_82575(hw)) {
869 switch (hw->mac.type) {
870 case e1000_82575:
871 case e1000_82576:
872 mdic = rd32(E1000_MDIC);
873 mdic &= E1000_MDIC_PHY_MASK;
874 phy->addr = mdic >> E1000_MDIC_PHY_SHIFT;
875 break;
876 case e1000_82580:
877 case e1000_i350:
878 case e1000_i354:
879 case e1000_i210:
880 case e1000_i211:
881 mdic = rd32(E1000_MDICNFG);
882 mdic &= E1000_MDICNFG_PHY_MASK;
883 phy->addr = mdic >> E1000_MDICNFG_PHY_SHIFT;
884 break;
885 default:
886 ret_val = -E1000_ERR_PHY;
887 goto out;
888 }
889 ret_val = igb_get_phy_id(hw);
890 goto out;
891 }
892
893 /* Power on sgmii phy if it is disabled */
894 ctrl_ext = rd32(E1000_CTRL_EXT);
895 wr32(E1000_CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_SDP3_DATA);
896 wrfl();
897 msleep(300);
898
899 /* The address field in the I2CCMD register is 3 bits and 0 is invalid.
900 * Therefore, we need to test 1-7
901 */
902 for (phy->addr = 1; phy->addr < 8; phy->addr++) {
903 ret_val = igb_read_phy_reg_sgmii_82575(hw, PHY_ID1, &phy_id);
904 if (ret_val == 0) {
905 hw_dbg("Vendor ID 0x%08X read at address %u\n",
906 phy_id, phy->addr);
907 /* At the time of this writing, The M88 part is
908 * the only supported SGMII PHY product.
909 */
910 if (phy_id == M88_VENDOR)
911 break;
912 } else {
913 hw_dbg("PHY address %u was unreadable\n", phy->addr);
914 }
915 }
916
917 /* A valid PHY type couldn't be found. */
918 if (phy->addr == 8) {
919 phy->addr = 0;
920 ret_val = -E1000_ERR_PHY;
921 goto out;
922 } else {
923 ret_val = igb_get_phy_id(hw);
924 }
925
926 /* restore previous sfp cage power state */
927 wr32(E1000_CTRL_EXT, ctrl_ext);
928
929out:
930 return ret_val;
931}
932
933/**
934 * igb_phy_hw_reset_sgmii_82575 - Performs a PHY reset
935 * @hw: pointer to the HW structure
936 *
937 * Resets the PHY using the serial gigabit media independent interface.
938 **/
939static s32 igb_phy_hw_reset_sgmii_82575(struct e1000_hw *hw)
940{
941 struct e1000_phy_info *phy = &hw->phy;
942 s32 ret_val;
943
944 /* This isn't a true "hard" reset, but is the only reset
945 * available to us at this time.
946 */
947
948 hw_dbg("Soft resetting SGMII attached PHY...\n");
949
950 /* SFP documentation requires the following to configure the SPF module
951 * to work on SGMII. No further documentation is given.
952 */
953 ret_val = hw->phy.ops.write_reg(hw, 0x1B, 0x8084);
954 if (ret_val)
955 goto out;
956
957 ret_val = igb_phy_sw_reset(hw);
958 if (ret_val)
959 goto out;
960
961 if (phy->id == M88E1512_E_PHY_ID)
962 ret_val = igb_initialize_M88E1512_phy(hw);
963 if (phy->id == M88E1543_E_PHY_ID)
964 ret_val = igb_initialize_M88E1543_phy(hw);
965out:
966 return ret_val;
967}
968
969/**
970 * igb_set_d0_lplu_state_82575 - Set Low Power Linkup D0 state
971 * @hw: pointer to the HW structure
972 * @active: true to enable LPLU, false to disable
973 *
974 * Sets the LPLU D0 state according to the active flag. When
975 * activating LPLU this function also disables smart speed
976 * and vice versa. LPLU will not be activated unless the
977 * device autonegotiation advertisement meets standards of
978 * either 10 or 10/100 or 10/100/1000 at all duplexes.
979 * This is a function pointer entry point only called by
980 * PHY setup routines.
981 **/
982static s32 igb_set_d0_lplu_state_82575(struct e1000_hw *hw, bool active)
983{
984 struct e1000_phy_info *phy = &hw->phy;
985 s32 ret_val;
986 u16 data;
987
988 ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
989 if (ret_val)
990 goto out;
991
992 if (active) {
993 data |= IGP02E1000_PM_D0_LPLU;
994 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
995 data);
996 if (ret_val)
997 goto out;
998
999 /* When LPLU is enabled, we should disable SmartSpeed */
1000 ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1001 &data);
1002 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1003 ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1004 data);
1005 if (ret_val)
1006 goto out;
1007 } else {
1008 data &= ~IGP02E1000_PM_D0_LPLU;
1009 ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1010 data);
1011 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1012 * during Dx states where the power conservation is most
1013 * important. During driver activity we should enable
1014 * SmartSpeed, so performance is maintained.
1015 */
1016 if (phy->smart_speed == e1000_smart_speed_on) {
1017 ret_val = phy->ops.read_reg(hw,
1018 IGP01E1000_PHY_PORT_CONFIG, &data);
1019 if (ret_val)
1020 goto out;
1021
1022 data |= IGP01E1000_PSCFR_SMART_SPEED;
1023 ret_val = phy->ops.write_reg(hw,
1024 IGP01E1000_PHY_PORT_CONFIG, data);
1025 if (ret_val)
1026 goto out;
1027 } else if (phy->smart_speed == e1000_smart_speed_off) {
1028 ret_val = phy->ops.read_reg(hw,
1029 IGP01E1000_PHY_PORT_CONFIG, &data);
1030 if (ret_val)
1031 goto out;
1032
1033 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1034 ret_val = phy->ops.write_reg(hw,
1035 IGP01E1000_PHY_PORT_CONFIG, data);
1036 if (ret_val)
1037 goto out;
1038 }
1039 }
1040
1041out:
1042 return ret_val;
1043}
1044
1045/**
1046 * igb_set_d0_lplu_state_82580 - Set Low Power Linkup D0 state
1047 * @hw: pointer to the HW structure
1048 * @active: true to enable LPLU, false to disable
1049 *
1050 * Sets the LPLU D0 state according to the active flag. When
1051 * activating LPLU this function also disables smart speed
1052 * and vice versa. LPLU will not be activated unless the
1053 * device autonegotiation advertisement meets standards of
1054 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1055 * This is a function pointer entry point only called by
1056 * PHY setup routines.
1057 **/
1058static s32 igb_set_d0_lplu_state_82580(struct e1000_hw *hw, bool active)
1059{
1060 struct e1000_phy_info *phy = &hw->phy;
1061 u16 data;
1062
1063 data = rd32(E1000_82580_PHY_POWER_MGMT);
1064
1065 if (active) {
1066 data |= E1000_82580_PM_D0_LPLU;
1067
1068 /* When LPLU is enabled, we should disable SmartSpeed */
1069 data &= ~E1000_82580_PM_SPD;
1070 } else {
1071 data &= ~E1000_82580_PM_D0_LPLU;
1072
1073 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1074 * during Dx states where the power conservation is most
1075 * important. During driver activity we should enable
1076 * SmartSpeed, so performance is maintained.
1077 */
1078 if (phy->smart_speed == e1000_smart_speed_on)
1079 data |= E1000_82580_PM_SPD;
1080 else if (phy->smart_speed == e1000_smart_speed_off)
1081 data &= ~E1000_82580_PM_SPD; }
1082
1083 wr32(E1000_82580_PHY_POWER_MGMT, data);
1084 return 0;
1085}
1086
1087/**
1088 * igb_set_d3_lplu_state_82580 - Sets low power link up state for D3
1089 * @hw: pointer to the HW structure
1090 * @active: boolean used to enable/disable lplu
1091 *
1092 * Success returns 0, Failure returns 1
1093 *
1094 * The low power link up (lplu) state is set to the power management level D3
1095 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1096 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1097 * is used during Dx states where the power conservation is most important.
1098 * During driver activity, SmartSpeed should be enabled so performance is
1099 * maintained.
1100 **/
1101static s32 igb_set_d3_lplu_state_82580(struct e1000_hw *hw, bool active)
1102{
1103 struct e1000_phy_info *phy = &hw->phy;
1104 u16 data;
1105
1106 data = rd32(E1000_82580_PHY_POWER_MGMT);
1107
1108 if (!active) {
1109 data &= ~E1000_82580_PM_D3_LPLU;
1110 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
1111 * during Dx states where the power conservation is most
1112 * important. During driver activity we should enable
1113 * SmartSpeed, so performance is maintained.
1114 */
1115 if (phy->smart_speed == e1000_smart_speed_on)
1116 data |= E1000_82580_PM_SPD;
1117 else if (phy->smart_speed == e1000_smart_speed_off)
1118 data &= ~E1000_82580_PM_SPD;
1119 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1120 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1121 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1122 data |= E1000_82580_PM_D3_LPLU;
1123 /* When LPLU is enabled, we should disable SmartSpeed */
1124 data &= ~E1000_82580_PM_SPD;
1125 }
1126
1127 wr32(E1000_82580_PHY_POWER_MGMT, data);
1128 return 0;
1129}
1130
1131/**
1132 * igb_acquire_nvm_82575 - Request for access to EEPROM
1133 * @hw: pointer to the HW structure
1134 *
1135 * Acquire the necessary semaphores for exclusive access to the EEPROM.
1136 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
1137 * Return successful if access grant bit set, else clear the request for
1138 * EEPROM access and return -E1000_ERR_NVM (-1).
1139 **/
1140static s32 igb_acquire_nvm_82575(struct e1000_hw *hw)
1141{
1142 s32 ret_val;
1143
1144 ret_val = hw->mac.ops.acquire_swfw_sync(hw, E1000_SWFW_EEP_SM);
1145 if (ret_val)
1146 goto out;
1147
1148 ret_val = igb_acquire_nvm(hw);
1149
1150 if (ret_val)
1151 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1152
1153out:
1154 return ret_val;
1155}
1156
1157/**
1158 * igb_release_nvm_82575 - Release exclusive access to EEPROM
1159 * @hw: pointer to the HW structure
1160 *
1161 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
1162 * then release the semaphores acquired.
1163 **/
1164static void igb_release_nvm_82575(struct e1000_hw *hw)
1165{
1166 igb_release_nvm(hw);
1167 hw->mac.ops.release_swfw_sync(hw, E1000_SWFW_EEP_SM);
1168}
1169
1170/**
1171 * igb_acquire_swfw_sync_82575 - Acquire SW/FW semaphore
1172 * @hw: pointer to the HW structure
1173 * @mask: specifies which semaphore to acquire
1174 *
1175 * Acquire the SW/FW semaphore to access the PHY or NVM. The mask
1176 * will also specify which port we're acquiring the lock for.
1177 **/
1178static s32 igb_acquire_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1179{
1180 u32 swfw_sync;
1181 u32 swmask = mask;
1182 u32 fwmask = mask << 16;
1183 s32 ret_val = 0;
1184 s32 i = 0, timeout = 200;
1185
1186 while (i < timeout) {
1187 if (igb_get_hw_semaphore(hw)) {
1188 ret_val = -E1000_ERR_SWFW_SYNC;
1189 goto out;
1190 }
1191
1192 swfw_sync = rd32(E1000_SW_FW_SYNC);
1193 if (!(swfw_sync & (fwmask | swmask)))
1194 break;
1195
1196 /* Firmware currently using resource (fwmask)
1197 * or other software thread using resource (swmask)
1198 */
1199 igb_put_hw_semaphore(hw);
1200 mdelay(5);
1201 i++;
1202 }
1203
1204 if (i == timeout) {
1205 hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
1206 ret_val = -E1000_ERR_SWFW_SYNC;
1207 goto out;
1208 }
1209
1210 swfw_sync |= swmask;
1211 wr32(E1000_SW_FW_SYNC, swfw_sync);
1212
1213 igb_put_hw_semaphore(hw);
1214
1215out:
1216 return ret_val;
1217}
1218
1219/**
1220 * igb_release_swfw_sync_82575 - Release SW/FW semaphore
1221 * @hw: pointer to the HW structure
1222 * @mask: specifies which semaphore to acquire
1223 *
1224 * Release the SW/FW semaphore used to access the PHY or NVM. The mask
1225 * will also specify which port we're releasing the lock for.
1226 **/
1227static void igb_release_swfw_sync_82575(struct e1000_hw *hw, u16 mask)
1228{
1229 u32 swfw_sync;
1230
1231 while (igb_get_hw_semaphore(hw) != 0)
1232 ; /* Empty */
1233
1234 swfw_sync = rd32(E1000_SW_FW_SYNC);
1235 swfw_sync &= ~mask;
1236 wr32(E1000_SW_FW_SYNC, swfw_sync);
1237
1238 igb_put_hw_semaphore(hw);
1239}
1240
1241/**
1242 * igb_get_cfg_done_82575 - Read config done bit
1243 * @hw: pointer to the HW structure
1244 *
1245 * Read the management control register for the config done bit for
1246 * completion status. NOTE: silicon which is EEPROM-less will fail trying
1247 * to read the config done bit, so an error is *ONLY* logged and returns
1248 * 0. If we were to return with error, EEPROM-less silicon
1249 * would not be able to be reset or change link.
1250 **/
1251static s32 igb_get_cfg_done_82575(struct e1000_hw *hw)
1252{
1253 s32 timeout = PHY_CFG_TIMEOUT;
1254 u32 mask = E1000_NVM_CFG_DONE_PORT_0;
1255
1256 if (hw->bus.func == 1)
1257 mask = E1000_NVM_CFG_DONE_PORT_1;
1258 else if (hw->bus.func == E1000_FUNC_2)
1259 mask = E1000_NVM_CFG_DONE_PORT_2;
1260 else if (hw->bus.func == E1000_FUNC_3)
1261 mask = E1000_NVM_CFG_DONE_PORT_3;
1262
1263 while (timeout) {
1264 if (rd32(E1000_EEMNGCTL) & mask)
1265 break;
1266 usleep_range(1000, 2000);
1267 timeout--;
1268 }
1269 if (!timeout)
1270 hw_dbg("MNG configuration cycle has not completed.\n");
1271
1272 /* If EEPROM is not marked present, init the PHY manually */
1273 if (((rd32(E1000_EECD) & E1000_EECD_PRES) == 0) &&
1274 (hw->phy.type == e1000_phy_igp_3))
1275 igb_phy_init_script_igp3(hw);
1276
1277 return 0;
1278}
1279
1280/**
1281 * igb_get_link_up_info_82575 - Get link speed/duplex info
1282 * @hw: pointer to the HW structure
1283 * @speed: stores the current speed
1284 * @duplex: stores the current duplex
1285 *
1286 * This is a wrapper function, if using the serial gigabit media independent
1287 * interface, use PCS to retrieve the link speed and duplex information.
1288 * Otherwise, use the generic function to get the link speed and duplex info.
1289 **/
1290static s32 igb_get_link_up_info_82575(struct e1000_hw *hw, u16 *speed,
1291 u16 *duplex)
1292{
1293 s32 ret_val;
1294
1295 if (hw->phy.media_type != e1000_media_type_copper)
1296 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, speed,
1297 duplex);
1298 else
1299 ret_val = igb_get_speed_and_duplex_copper(hw, speed,
1300 duplex);
1301
1302 return ret_val;
1303}
1304
1305/**
1306 * igb_check_for_link_82575 - Check for link
1307 * @hw: pointer to the HW structure
1308 *
1309 * If sgmii is enabled, then use the pcs register to determine link, otherwise
1310 * use the generic interface for determining link.
1311 **/
1312static s32 igb_check_for_link_82575(struct e1000_hw *hw)
1313{
1314 s32 ret_val;
1315 u16 speed, duplex;
1316
1317 if (hw->phy.media_type != e1000_media_type_copper) {
1318 ret_val = igb_get_pcs_speed_and_duplex_82575(hw, &speed,
1319 &duplex);
1320 /* Use this flag to determine if link needs to be checked or
1321 * not. If we have link clear the flag so that we do not
1322 * continue to check for link.
1323 */
1324 hw->mac.get_link_status = !hw->mac.serdes_has_link;
1325
1326 /* Configure Flow Control now that Auto-Neg has completed.
1327 * First, we need to restore the desired flow control
1328 * settings because we may have had to re-autoneg with a
1329 * different link partner.
1330 */
1331 ret_val = igb_config_fc_after_link_up(hw);
1332 if (ret_val)
1333 hw_dbg("Error configuring flow control\n");
1334 } else {
1335 ret_val = igb_check_for_copper_link(hw);
1336 }
1337
1338 return ret_val;
1339}
1340
1341/**
1342 * igb_power_up_serdes_link_82575 - Power up the serdes link after shutdown
1343 * @hw: pointer to the HW structure
1344 **/
1345void igb_power_up_serdes_link_82575(struct e1000_hw *hw)
1346{
1347 u32 reg;
1348
1349
1350 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1351 !igb_sgmii_active_82575(hw))
1352 return;
1353
1354 /* Enable PCS to turn on link */
1355 reg = rd32(E1000_PCS_CFG0);
1356 reg |= E1000_PCS_CFG_PCS_EN;
1357 wr32(E1000_PCS_CFG0, reg);
1358
1359 /* Power up the laser */
1360 reg = rd32(E1000_CTRL_EXT);
1361 reg &= ~E1000_CTRL_EXT_SDP3_DATA;
1362 wr32(E1000_CTRL_EXT, reg);
1363
1364 /* flush the write to verify completion */
1365 wrfl();
1366 usleep_range(1000, 2000);
1367}
1368
1369/**
1370 * igb_get_pcs_speed_and_duplex_82575 - Retrieve current speed/duplex
1371 * @hw: pointer to the HW structure
1372 * @speed: stores the current speed
1373 * @duplex: stores the current duplex
1374 *
1375 * Using the physical coding sub-layer (PCS), retrieve the current speed and
1376 * duplex, then store the values in the pointers provided.
1377 **/
1378static s32 igb_get_pcs_speed_and_duplex_82575(struct e1000_hw *hw, u16 *speed,
1379 u16 *duplex)
1380{
1381 struct e1000_mac_info *mac = &hw->mac;
1382 u32 pcs, status;
1383
1384 /* Set up defaults for the return values of this function */
1385 mac->serdes_has_link = false;
1386 *speed = 0;
1387 *duplex = 0;
1388
1389 /* Read the PCS Status register for link state. For non-copper mode,
1390 * the status register is not accurate. The PCS status register is
1391 * used instead.
1392 */
1393 pcs = rd32(E1000_PCS_LSTAT);
1394
1395 /* The link up bit determines when link is up on autoneg. The sync ok
1396 * gets set once both sides sync up and agree upon link. Stable link
1397 * can be determined by checking for both link up and link sync ok
1398 */
1399 if ((pcs & E1000_PCS_LSTS_LINK_OK) && (pcs & E1000_PCS_LSTS_SYNK_OK)) {
1400 mac->serdes_has_link = true;
1401
1402 /* Detect and store PCS speed */
1403 if (pcs & E1000_PCS_LSTS_SPEED_1000)
1404 *speed = SPEED_1000;
1405 else if (pcs & E1000_PCS_LSTS_SPEED_100)
1406 *speed = SPEED_100;
1407 else
1408 *speed = SPEED_10;
1409
1410 /* Detect and store PCS duplex */
1411 if (pcs & E1000_PCS_LSTS_DUPLEX_FULL)
1412 *duplex = FULL_DUPLEX;
1413 else
1414 *duplex = HALF_DUPLEX;
1415
1416 /* Check if it is an I354 2.5Gb backplane connection. */
1417 if (mac->type == e1000_i354) {
1418 status = rd32(E1000_STATUS);
1419 if ((status & E1000_STATUS_2P5_SKU) &&
1420 !(status & E1000_STATUS_2P5_SKU_OVER)) {
1421 *speed = SPEED_2500;
1422 *duplex = FULL_DUPLEX;
1423 hw_dbg("2500 Mbs, ");
1424 hw_dbg("Full Duplex\n");
1425 }
1426 }
1427
1428 }
1429
1430 return 0;
1431}
1432
1433/**
1434 * igb_shutdown_serdes_link_82575 - Remove link during power down
1435 * @hw: pointer to the HW structure
1436 *
1437 * In the case of fiber serdes, shut down optics and PCS on driver unload
1438 * when management pass thru is not enabled.
1439 **/
1440void igb_shutdown_serdes_link_82575(struct e1000_hw *hw)
1441{
1442 u32 reg;
1443
1444 if (hw->phy.media_type != e1000_media_type_internal_serdes &&
1445 igb_sgmii_active_82575(hw))
1446 return;
1447
1448 if (!igb_enable_mng_pass_thru(hw)) {
1449 /* Disable PCS to turn off link */
1450 reg = rd32(E1000_PCS_CFG0);
1451 reg &= ~E1000_PCS_CFG_PCS_EN;
1452 wr32(E1000_PCS_CFG0, reg);
1453
1454 /* shutdown the laser */
1455 reg = rd32(E1000_CTRL_EXT);
1456 reg |= E1000_CTRL_EXT_SDP3_DATA;
1457 wr32(E1000_CTRL_EXT, reg);
1458
1459 /* flush the write to verify completion */
1460 wrfl();
1461 usleep_range(1000, 2000);
1462 }
1463}
1464
1465/**
1466 * igb_reset_hw_82575 - Reset hardware
1467 * @hw: pointer to the HW structure
1468 *
1469 * This resets the hardware into a known state. This is a
1470 * function pointer entry point called by the api module.
1471 **/
1472static s32 igb_reset_hw_82575(struct e1000_hw *hw)
1473{
1474 u32 ctrl;
1475 s32 ret_val;
1476
1477 /* Prevent the PCI-E bus from sticking if there is no TLP connection
1478 * on the last TLP read/write transaction when MAC is reset.
1479 */
1480 ret_val = igb_disable_pcie_master(hw);
1481 if (ret_val)
1482 hw_dbg("PCI-E Master disable polling has failed.\n");
1483
1484 /* set the completion timeout for interface */
1485 ret_val = igb_set_pcie_completion_timeout(hw);
1486 if (ret_val)
1487 hw_dbg("PCI-E Set completion timeout has failed.\n");
1488
1489 hw_dbg("Masking off all interrupts\n");
1490 wr32(E1000_IMC, 0xffffffff);
1491
1492 wr32(E1000_RCTL, 0);
1493 wr32(E1000_TCTL, E1000_TCTL_PSP);
1494 wrfl();
1495
1496 usleep_range(10000, 20000);
1497
1498 ctrl = rd32(E1000_CTRL);
1499
1500 hw_dbg("Issuing a global reset to MAC\n");
1501 wr32(E1000_CTRL, ctrl | E1000_CTRL_RST);
1502
1503 ret_val = igb_get_auto_rd_done(hw);
1504 if (ret_val) {
1505 /* When auto config read does not complete, do not
1506 * return with an error. This can happen in situations
1507 * where there is no eeprom and prevents getting link.
1508 */
1509 hw_dbg("Auto Read Done did not complete\n");
1510 }
1511
1512 /* If EEPROM is not present, run manual init scripts */
1513 if ((rd32(E1000_EECD) & E1000_EECD_PRES) == 0)
1514 igb_reset_init_script_82575(hw);
1515
1516 /* Clear any pending interrupt events. */
1517 wr32(E1000_IMC, 0xffffffff);
1518 rd32(E1000_ICR);
1519
1520 /* Install any alternate MAC address into RAR0 */
1521 ret_val = igb_check_alt_mac_addr(hw);
1522
1523 return ret_val;
1524}
1525
1526/**
1527 * igb_init_hw_82575 - Initialize hardware
1528 * @hw: pointer to the HW structure
1529 *
1530 * This inits the hardware readying it for operation.
1531 **/
1532static s32 igb_init_hw_82575(struct e1000_hw *hw)
1533{
1534 struct e1000_mac_info *mac = &hw->mac;
1535 s32 ret_val;
1536 u16 i, rar_count = mac->rar_entry_count;
1537
1538 if ((hw->mac.type >= e1000_i210) &&
1539 !(igb_get_flash_presence_i210(hw))) {
1540 ret_val = igb_pll_workaround_i210(hw);
1541 if (ret_val)
1542 return ret_val;
1543 }
1544
1545 /* Initialize identification LED */
1546 ret_val = igb_id_led_init(hw);
1547 if (ret_val) {
1548 hw_dbg("Error initializing identification LED\n");
1549 /* This is not fatal and we should not stop init due to this */
1550 }
1551
1552 /* Disabling VLAN filtering */
1553 hw_dbg("Initializing the IEEE VLAN\n");
1554 igb_clear_vfta(hw);
1555
1556 /* Setup the receive address */
1557 igb_init_rx_addrs(hw, rar_count);
1558
1559 /* Zero out the Multicast HASH table */
1560 hw_dbg("Zeroing the MTA\n");
1561 for (i = 0; i < mac->mta_reg_count; i++)
1562 array_wr32(E1000_MTA, i, 0);
1563
1564 /* Zero out the Unicast HASH table */
1565 hw_dbg("Zeroing the UTA\n");
1566 for (i = 0; i < mac->uta_reg_count; i++)
1567 array_wr32(E1000_UTA, i, 0);
1568
1569 /* Setup link and flow control */
1570 ret_val = igb_setup_link(hw);
1571
1572 /* Clear all of the statistics registers (clear on read). It is
1573 * important that we do this after we have tried to establish link
1574 * because the symbol error count will increment wildly if there
1575 * is no link.
1576 */
1577 igb_clear_hw_cntrs_82575(hw);
1578 return ret_val;
1579}
1580
1581/**
1582 * igb_setup_copper_link_82575 - Configure copper link settings
1583 * @hw: pointer to the HW structure
1584 *
1585 * Configures the link for auto-neg or forced speed and duplex. Then we check
1586 * for link, once link is established calls to configure collision distance
1587 * and flow control are called.
1588 **/
1589static s32 igb_setup_copper_link_82575(struct e1000_hw *hw)
1590{
1591 u32 ctrl;
1592 s32 ret_val;
1593 u32 phpm_reg;
1594
1595 ctrl = rd32(E1000_CTRL);
1596 ctrl |= E1000_CTRL_SLU;
1597 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1598 wr32(E1000_CTRL, ctrl);
1599
1600 /* Clear Go Link Disconnect bit on supported devices */
1601 switch (hw->mac.type) {
1602 case e1000_82580:
1603 case e1000_i350:
1604 case e1000_i210:
1605 case e1000_i211:
1606 phpm_reg = rd32(E1000_82580_PHY_POWER_MGMT);
1607 phpm_reg &= ~E1000_82580_PM_GO_LINKD;
1608 wr32(E1000_82580_PHY_POWER_MGMT, phpm_reg);
1609 break;
1610 default:
1611 break;
1612 }
1613
1614 ret_val = igb_setup_serdes_link_82575(hw);
1615 if (ret_val)
1616 goto out;
1617
1618 if (igb_sgmii_active_82575(hw) && !hw->phy.reset_disable) {
1619 /* allow time for SFP cage time to power up phy */
1620 msleep(300);
1621
1622 ret_val = hw->phy.ops.reset(hw);
1623 if (ret_val) {
1624 hw_dbg("Error resetting the PHY.\n");
1625 goto out;
1626 }
1627 }
1628 switch (hw->phy.type) {
1629 case e1000_phy_i210:
1630 case e1000_phy_m88:
1631 switch (hw->phy.id) {
1632 case I347AT4_E_PHY_ID:
1633 case M88E1112_E_PHY_ID:
1634 case M88E1543_E_PHY_ID:
1635 case M88E1512_E_PHY_ID:
1636 case I210_I_PHY_ID:
1637 ret_val = igb_copper_link_setup_m88_gen2(hw);
1638 break;
1639 default:
1640 ret_val = igb_copper_link_setup_m88(hw);
1641 break;
1642 }
1643 break;
1644 case e1000_phy_igp_3:
1645 ret_val = igb_copper_link_setup_igp(hw);
1646 break;
1647 case e1000_phy_82580:
1648 ret_val = igb_copper_link_setup_82580(hw);
1649 break;
1650 default:
1651 ret_val = -E1000_ERR_PHY;
1652 break;
1653 }
1654
1655 if (ret_val)
1656 goto out;
1657
1658 ret_val = igb_setup_copper_link(hw);
1659out:
1660 return ret_val;
1661}
1662
1663/**
1664 * igb_setup_serdes_link_82575 - Setup link for serdes
1665 * @hw: pointer to the HW structure
1666 *
1667 * Configure the physical coding sub-layer (PCS) link. The PCS link is
1668 * used on copper connections where the serialized gigabit media independent
1669 * interface (sgmii), or serdes fiber is being used. Configures the link
1670 * for auto-negotiation or forces speed/duplex.
1671 **/
1672static s32 igb_setup_serdes_link_82575(struct e1000_hw *hw)
1673{
1674 u32 ctrl_ext, ctrl_reg, reg, anadv_reg;
1675 bool pcs_autoneg;
1676 s32 ret_val = 0;
1677 u16 data;
1678
1679 if ((hw->phy.media_type != e1000_media_type_internal_serdes) &&
1680 !igb_sgmii_active_82575(hw))
1681 return ret_val;
1682
1683
1684 /* On the 82575, SerDes loopback mode persists until it is
1685 * explicitly turned off or a power cycle is performed. A read to
1686 * the register does not indicate its status. Therefore, we ensure
1687 * loopback mode is disabled during initialization.
1688 */
1689 wr32(E1000_SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1690
1691 /* power on the sfp cage if present and turn on I2C */
1692 ctrl_ext = rd32(E1000_CTRL_EXT);
1693 ctrl_ext &= ~E1000_CTRL_EXT_SDP3_DATA;
1694 ctrl_ext |= E1000_CTRL_I2C_ENA;
1695 wr32(E1000_CTRL_EXT, ctrl_ext);
1696
1697 ctrl_reg = rd32(E1000_CTRL);
1698 ctrl_reg |= E1000_CTRL_SLU;
1699
1700 if (hw->mac.type == e1000_82575 || hw->mac.type == e1000_82576) {
1701 /* set both sw defined pins */
1702 ctrl_reg |= E1000_CTRL_SWDPIN0 | E1000_CTRL_SWDPIN1;
1703
1704 /* Set switch control to serdes energy detect */
1705 reg = rd32(E1000_CONNSW);
1706 reg |= E1000_CONNSW_ENRGSRC;
1707 wr32(E1000_CONNSW, reg);
1708 }
1709
1710 reg = rd32(E1000_PCS_LCTL);
1711
1712 /* default pcs_autoneg to the same setting as mac autoneg */
1713 pcs_autoneg = hw->mac.autoneg;
1714
1715 switch (ctrl_ext & E1000_CTRL_EXT_LINK_MODE_MASK) {
1716 case E1000_CTRL_EXT_LINK_MODE_SGMII:
1717 /* sgmii mode lets the phy handle forcing speed/duplex */
1718 pcs_autoneg = true;
1719 /* autoneg time out should be disabled for SGMII mode */
1720 reg &= ~(E1000_PCS_LCTL_AN_TIMEOUT);
1721 break;
1722 case E1000_CTRL_EXT_LINK_MODE_1000BASE_KX:
1723 /* disable PCS autoneg and support parallel detect only */
1724 pcs_autoneg = false;
1725 default:
1726 if (hw->mac.type == e1000_82575 ||
1727 hw->mac.type == e1000_82576) {
1728 ret_val = hw->nvm.ops.read(hw, NVM_COMPAT, 1, &data);
1729 if (ret_val) {
1730 hw_dbg(KERN_DEBUG "NVM Read Error\n\n");
1731 return ret_val;
1732 }
1733
1734 if (data & E1000_EEPROM_PCS_AUTONEG_DISABLE_BIT)
1735 pcs_autoneg = false;
1736 }
1737
1738 /* non-SGMII modes only supports a speed of 1000/Full for the
1739 * link so it is best to just force the MAC and let the pcs
1740 * link either autoneg or be forced to 1000/Full
1741 */
1742 ctrl_reg |= E1000_CTRL_SPD_1000 | E1000_CTRL_FRCSPD |
1743 E1000_CTRL_FD | E1000_CTRL_FRCDPX;
1744
1745 /* set speed of 1000/Full if speed/duplex is forced */
1746 reg |= E1000_PCS_LCTL_FSV_1000 | E1000_PCS_LCTL_FDV_FULL;
1747 break;
1748 }
1749
1750 wr32(E1000_CTRL, ctrl_reg);
1751
1752 /* New SerDes mode allows for forcing speed or autonegotiating speed
1753 * at 1gb. Autoneg should be default set by most drivers. This is the
1754 * mode that will be compatible with older link partners and switches.
1755 * However, both are supported by the hardware and some drivers/tools.
1756 */
1757 reg &= ~(E1000_PCS_LCTL_AN_ENABLE | E1000_PCS_LCTL_FLV_LINK_UP |
1758 E1000_PCS_LCTL_FSD | E1000_PCS_LCTL_FORCE_LINK);
1759
1760 if (pcs_autoneg) {
1761 /* Set PCS register for autoneg */
1762 reg |= E1000_PCS_LCTL_AN_ENABLE | /* Enable Autoneg */
1763 E1000_PCS_LCTL_AN_RESTART; /* Restart autoneg */
1764
1765 /* Disable force flow control for autoneg */
1766 reg &= ~E1000_PCS_LCTL_FORCE_FCTRL;
1767
1768 /* Configure flow control advertisement for autoneg */
1769 anadv_reg = rd32(E1000_PCS_ANADV);
1770 anadv_reg &= ~(E1000_TXCW_ASM_DIR | E1000_TXCW_PAUSE);
1771 switch (hw->fc.requested_mode) {
1772 case e1000_fc_full:
1773 case e1000_fc_rx_pause:
1774 anadv_reg |= E1000_TXCW_ASM_DIR;
1775 anadv_reg |= E1000_TXCW_PAUSE;
1776 break;
1777 case e1000_fc_tx_pause:
1778 anadv_reg |= E1000_TXCW_ASM_DIR;
1779 break;
1780 default:
1781 break;
1782 }
1783 wr32(E1000_PCS_ANADV, anadv_reg);
1784
1785 hw_dbg("Configuring Autoneg:PCS_LCTL=0x%08X\n", reg);
1786 } else {
1787 /* Set PCS register for forced link */
1788 reg |= E1000_PCS_LCTL_FSD; /* Force Speed */
1789
1790 /* Force flow control for forced link */
1791 reg |= E1000_PCS_LCTL_FORCE_FCTRL;
1792
1793 hw_dbg("Configuring Forced Link:PCS_LCTL=0x%08X\n", reg);
1794 }
1795
1796 wr32(E1000_PCS_LCTL, reg);
1797
1798 if (!pcs_autoneg && !igb_sgmii_active_82575(hw))
1799 igb_force_mac_fc(hw);
1800
1801 return ret_val;
1802}
1803
1804/**
1805 * igb_sgmii_active_82575 - Return sgmii state
1806 * @hw: pointer to the HW structure
1807 *
1808 * 82575 silicon has a serialized gigabit media independent interface (sgmii)
1809 * which can be enabled for use in the embedded applications. Simply
1810 * return the current state of the sgmii interface.
1811 **/
1812static bool igb_sgmii_active_82575(struct e1000_hw *hw)
1813{
1814 struct e1000_dev_spec_82575 *dev_spec = &hw->dev_spec._82575;
1815 return dev_spec->sgmii_active;
1816}
1817
1818/**
1819 * igb_reset_init_script_82575 - Inits HW defaults after reset
1820 * @hw: pointer to the HW structure
1821 *
1822 * Inits recommended HW defaults after a reset when there is no EEPROM
1823 * detected. This is only for the 82575.
1824 **/
1825static s32 igb_reset_init_script_82575(struct e1000_hw *hw)
1826{
1827 if (hw->mac.type == e1000_82575) {
1828 hw_dbg("Running reset init script for 82575\n");
1829 /* SerDes configuration via SERDESCTRL */
1830 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x00, 0x0C);
1831 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x01, 0x78);
1832 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x1B, 0x23);
1833 igb_write_8bit_ctrl_reg(hw, E1000_SCTL, 0x23, 0x15);
1834
1835 /* CCM configuration via CCMCTL register */
1836 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x14, 0x00);
1837 igb_write_8bit_ctrl_reg(hw, E1000_CCMCTL, 0x10, 0x00);
1838
1839 /* PCIe lanes configuration */
1840 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x00, 0xEC);
1841 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x61, 0xDF);
1842 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x34, 0x05);
1843 igb_write_8bit_ctrl_reg(hw, E1000_GIOCTL, 0x2F, 0x81);
1844
1845 /* PCIe PLL Configuration */
1846 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x02, 0x47);
1847 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x14, 0x00);
1848 igb_write_8bit_ctrl_reg(hw, E1000_SCCTL, 0x10, 0x00);
1849 }
1850
1851 return 0;
1852}
1853
1854/**
1855 * igb_read_mac_addr_82575 - Read device MAC address
1856 * @hw: pointer to the HW structure
1857 **/
1858static s32 igb_read_mac_addr_82575(struct e1000_hw *hw)
1859{
1860 s32 ret_val = 0;
1861
1862 /* If there's an alternate MAC address place it in RAR0
1863 * so that it will override the Si installed default perm
1864 * address.
1865 */
1866 ret_val = igb_check_alt_mac_addr(hw);
1867 if (ret_val)
1868 goto out;
1869
1870 ret_val = igb_read_mac_addr(hw);
1871
1872out:
1873 return ret_val;
1874}
1875
1876/**
1877 * igb_power_down_phy_copper_82575 - Remove link during PHY power down
1878 * @hw: pointer to the HW structure
1879 *
1880 * In the case of a PHY power down to save power, or to turn off link during a
1881 * driver unload, or wake on lan is not enabled, remove the link.
1882 **/
1883void igb_power_down_phy_copper_82575(struct e1000_hw *hw)
1884{
1885 /* If the management interface is not enabled, then power down */
1886 if (!(igb_enable_mng_pass_thru(hw) || igb_check_reset_block(hw)))
1887 igb_power_down_phy_copper(hw);
1888}
1889
1890/**
1891 * igb_clear_hw_cntrs_82575 - Clear device specific hardware counters
1892 * @hw: pointer to the HW structure
1893 *
1894 * Clears the hardware counters by reading the counter registers.
1895 **/
1896static void igb_clear_hw_cntrs_82575(struct e1000_hw *hw)
1897{
1898 igb_clear_hw_cntrs_base(hw);
1899
1900 rd32(E1000_PRC64);
1901 rd32(E1000_PRC127);
1902 rd32(E1000_PRC255);
1903 rd32(E1000_PRC511);
1904 rd32(E1000_PRC1023);
1905 rd32(E1000_PRC1522);
1906 rd32(E1000_PTC64);
1907 rd32(E1000_PTC127);
1908 rd32(E1000_PTC255);
1909 rd32(E1000_PTC511);
1910 rd32(E1000_PTC1023);
1911 rd32(E1000_PTC1522);
1912
1913 rd32(E1000_ALGNERRC);
1914 rd32(E1000_RXERRC);
1915 rd32(E1000_TNCRS);
1916 rd32(E1000_CEXTERR);
1917 rd32(E1000_TSCTC);
1918 rd32(E1000_TSCTFC);
1919
1920 rd32(E1000_MGTPRC);
1921 rd32(E1000_MGTPDC);
1922 rd32(E1000_MGTPTC);
1923
1924 rd32(E1000_IAC);
1925 rd32(E1000_ICRXOC);
1926
1927 rd32(E1000_ICRXPTC);
1928 rd32(E1000_ICRXATC);
1929 rd32(E1000_ICTXPTC);
1930 rd32(E1000_ICTXATC);
1931 rd32(E1000_ICTXQEC);
1932 rd32(E1000_ICTXQMTC);
1933 rd32(E1000_ICRXDMTC);
1934
1935 rd32(E1000_CBTMPC);
1936 rd32(E1000_HTDPMC);
1937 rd32(E1000_CBRMPC);
1938 rd32(E1000_RPTHC);
1939 rd32(E1000_HGPTC);
1940 rd32(E1000_HTCBDPC);
1941 rd32(E1000_HGORCL);
1942 rd32(E1000_HGORCH);
1943 rd32(E1000_HGOTCL);
1944 rd32(E1000_HGOTCH);
1945 rd32(E1000_LENERRS);
1946
1947 /* This register should not be read in copper configurations */
1948 if (hw->phy.media_type == e1000_media_type_internal_serdes ||
1949 igb_sgmii_active_82575(hw))
1950 rd32(E1000_SCVPC);
1951}
1952
1953/**
1954 * igb_rx_fifo_flush_82575 - Clean rx fifo after RX enable
1955 * @hw: pointer to the HW structure
1956 *
1957 * After rx enable if manageability is enabled then there is likely some
1958 * bad data at the start of the fifo and possibly in the DMA fifo. This
1959 * function clears the fifos and flushes any packets that came in as rx was
1960 * being enabled.
1961 **/
1962void igb_rx_fifo_flush_82575(struct e1000_hw *hw)
1963{
1964 u32 rctl, rlpml, rxdctl[4], rfctl, temp_rctl, rx_enabled;
1965 int i, ms_wait;
1966
1967 /* disable IPv6 options as per hardware errata */
1968 rfctl = rd32(E1000_RFCTL);
1969 rfctl |= E1000_RFCTL_IPV6_EX_DIS;
1970 wr32(E1000_RFCTL, rfctl);
1971
1972 if (hw->mac.type != e1000_82575 ||
1973 !(rd32(E1000_MANC) & E1000_MANC_RCV_TCO_EN))
1974 return;
1975
1976 /* Disable all RX queues */
1977 for (i = 0; i < 4; i++) {
1978 rxdctl[i] = rd32(E1000_RXDCTL(i));
1979 wr32(E1000_RXDCTL(i),
1980 rxdctl[i] & ~E1000_RXDCTL_QUEUE_ENABLE);
1981 }
1982 /* Poll all queues to verify they have shut down */
1983 for (ms_wait = 0; ms_wait < 10; ms_wait++) {
1984 usleep_range(1000, 2000);
1985 rx_enabled = 0;
1986 for (i = 0; i < 4; i++)
1987 rx_enabled |= rd32(E1000_RXDCTL(i));
1988 if (!(rx_enabled & E1000_RXDCTL_QUEUE_ENABLE))
1989 break;
1990 }
1991
1992 if (ms_wait == 10)
1993 hw_dbg("Queue disable timed out after 10ms\n");
1994
1995 /* Clear RLPML, RCTL.SBP, RFCTL.LEF, and set RCTL.LPE so that all
1996 * incoming packets are rejected. Set enable and wait 2ms so that
1997 * any packet that was coming in as RCTL.EN was set is flushed
1998 */
1999 wr32(E1000_RFCTL, rfctl & ~E1000_RFCTL_LEF);
2000
2001 rlpml = rd32(E1000_RLPML);
2002 wr32(E1000_RLPML, 0);
2003
2004 rctl = rd32(E1000_RCTL);
2005 temp_rctl = rctl & ~(E1000_RCTL_EN | E1000_RCTL_SBP);
2006 temp_rctl |= E1000_RCTL_LPE;
2007
2008 wr32(E1000_RCTL, temp_rctl);
2009 wr32(E1000_RCTL, temp_rctl | E1000_RCTL_EN);
2010 wrfl();
2011 usleep_range(2000, 3000);
2012
2013 /* Enable RX queues that were previously enabled and restore our
2014 * previous state
2015 */
2016 for (i = 0; i < 4; i++)
2017 wr32(E1000_RXDCTL(i), rxdctl[i]);
2018 wr32(E1000_RCTL, rctl);
2019 wrfl();
2020
2021 wr32(E1000_RLPML, rlpml);
2022 wr32(E1000_RFCTL, rfctl);
2023
2024 /* Flush receive errors generated by workaround */
2025 rd32(E1000_ROC);
2026 rd32(E1000_RNBC);
2027 rd32(E1000_MPC);
2028}
2029
2030/**
2031 * igb_set_pcie_completion_timeout - set pci-e completion timeout
2032 * @hw: pointer to the HW structure
2033 *
2034 * The defaults for 82575 and 82576 should be in the range of 50us to 50ms,
2035 * however the hardware default for these parts is 500us to 1ms which is less
2036 * than the 10ms recommended by the pci-e spec. To address this we need to
2037 * increase the value to either 10ms to 200ms for capability version 1 config,
2038 * or 16ms to 55ms for version 2.
2039 **/
2040static s32 igb_set_pcie_completion_timeout(struct e1000_hw *hw)
2041{
2042 u32 gcr = rd32(E1000_GCR);
2043 s32 ret_val = 0;
2044 u16 pcie_devctl2;
2045
2046 /* only take action if timeout value is defaulted to 0 */
2047 if (gcr & E1000_GCR_CMPL_TMOUT_MASK)
2048 goto out;
2049
2050 /* if capabilities version is type 1 we can write the
2051 * timeout of 10ms to 200ms through the GCR register
2052 */
2053 if (!(gcr & E1000_GCR_CAP_VER2)) {
2054 gcr |= E1000_GCR_CMPL_TMOUT_10ms;
2055 goto out;
2056 }
2057
2058 /* for version 2 capabilities we need to write the config space
2059 * directly in order to set the completion timeout value for
2060 * 16ms to 55ms
2061 */
2062 ret_val = igb_read_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2063 &pcie_devctl2);
2064 if (ret_val)
2065 goto out;
2066
2067 pcie_devctl2 |= PCIE_DEVICE_CONTROL2_16ms;
2068
2069 ret_val = igb_write_pcie_cap_reg(hw, PCIE_DEVICE_CONTROL2,
2070 &pcie_devctl2);
2071out:
2072 /* disable completion timeout resend */
2073 gcr &= ~E1000_GCR_CMPL_TMOUT_RESEND;
2074
2075 wr32(E1000_GCR, gcr);
2076 return ret_val;
2077}
2078
2079/**
2080 * igb_vmdq_set_anti_spoofing_pf - enable or disable anti-spoofing
2081 * @hw: pointer to the hardware struct
2082 * @enable: state to enter, either enabled or disabled
2083 * @pf: Physical Function pool - do not set anti-spoofing for the PF
2084 *
2085 * enables/disables L2 switch anti-spoofing functionality.
2086 **/
2087void igb_vmdq_set_anti_spoofing_pf(struct e1000_hw *hw, bool enable, int pf)
2088{
2089 u32 reg_val, reg_offset;
2090
2091 switch (hw->mac.type) {
2092 case e1000_82576:
2093 reg_offset = E1000_DTXSWC;
2094 break;
2095 case e1000_i350:
2096 case e1000_i354:
2097 reg_offset = E1000_TXSWC;
2098 break;
2099 default:
2100 return;
2101 }
2102
2103 reg_val = rd32(reg_offset);
2104 if (enable) {
2105 reg_val |= (E1000_DTXSWC_MAC_SPOOF_MASK |
2106 E1000_DTXSWC_VLAN_SPOOF_MASK);
2107 /* The PF can spoof - it has to in order to
2108 * support emulation mode NICs
2109 */
2110 reg_val ^= (BIT(pf) | BIT(pf + MAX_NUM_VFS));
2111 } else {
2112 reg_val &= ~(E1000_DTXSWC_MAC_SPOOF_MASK |
2113 E1000_DTXSWC_VLAN_SPOOF_MASK);
2114 }
2115 wr32(reg_offset, reg_val);
2116}
2117
2118/**
2119 * igb_vmdq_set_loopback_pf - enable or disable vmdq loopback
2120 * @hw: pointer to the hardware struct
2121 * @enable: state to enter, either enabled or disabled
2122 *
2123 * enables/disables L2 switch loopback functionality.
2124 **/
2125void igb_vmdq_set_loopback_pf(struct e1000_hw *hw, bool enable)
2126{
2127 u32 dtxswc;
2128
2129 switch (hw->mac.type) {
2130 case e1000_82576:
2131 dtxswc = rd32(E1000_DTXSWC);
2132 if (enable)
2133 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2134 else
2135 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2136 wr32(E1000_DTXSWC, dtxswc);
2137 break;
2138 case e1000_i354:
2139 case e1000_i350:
2140 dtxswc = rd32(E1000_TXSWC);
2141 if (enable)
2142 dtxswc |= E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2143 else
2144 dtxswc &= ~E1000_DTXSWC_VMDQ_LOOPBACK_EN;
2145 wr32(E1000_TXSWC, dtxswc);
2146 break;
2147 default:
2148 /* Currently no other hardware supports loopback */
2149 break;
2150 }
2151
2152}
2153
2154/**
2155 * igb_vmdq_set_replication_pf - enable or disable vmdq replication
2156 * @hw: pointer to the hardware struct
2157 * @enable: state to enter, either enabled or disabled
2158 *
2159 * enables/disables replication of packets across multiple pools.
2160 **/
2161void igb_vmdq_set_replication_pf(struct e1000_hw *hw, bool enable)
2162{
2163 u32 vt_ctl = rd32(E1000_VT_CTL);
2164
2165 if (enable)
2166 vt_ctl |= E1000_VT_CTL_VM_REPL_EN;
2167 else
2168 vt_ctl &= ~E1000_VT_CTL_VM_REPL_EN;
2169
2170 wr32(E1000_VT_CTL, vt_ctl);
2171}
2172
2173/**
2174 * igb_read_phy_reg_82580 - Read 82580 MDI control register
2175 * @hw: pointer to the HW structure
2176 * @offset: register offset to be read
2177 * @data: pointer to the read data
2178 *
2179 * Reads the MDI control register in the PHY at offset and stores the
2180 * information read to data.
2181 **/
2182s32 igb_read_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 *data)
2183{
2184 s32 ret_val;
2185
2186 ret_val = hw->phy.ops.acquire(hw);
2187 if (ret_val)
2188 goto out;
2189
2190 ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2191
2192 hw->phy.ops.release(hw);
2193
2194out:
2195 return ret_val;
2196}
2197
2198/**
2199 * igb_write_phy_reg_82580 - Write 82580 MDI control register
2200 * @hw: pointer to the HW structure
2201 * @offset: register offset to write to
2202 * @data: data to write to register at offset
2203 *
2204 * Writes data to MDI control register in the PHY at offset.
2205 **/
2206s32 igb_write_phy_reg_82580(struct e1000_hw *hw, u32 offset, u16 data)
2207{
2208 s32 ret_val;
2209
2210
2211 ret_val = hw->phy.ops.acquire(hw);
2212 if (ret_val)
2213 goto out;
2214
2215 ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2216
2217 hw->phy.ops.release(hw);
2218
2219out:
2220 return ret_val;
2221}
2222
2223/**
2224 * igb_reset_mdicnfg_82580 - Reset MDICNFG destination and com_mdio bits
2225 * @hw: pointer to the HW structure
2226 *
2227 * This resets the the MDICNFG.Destination and MDICNFG.Com_MDIO bits based on
2228 * the values found in the EEPROM. This addresses an issue in which these
2229 * bits are not restored from EEPROM after reset.
2230 **/
2231static s32 igb_reset_mdicnfg_82580(struct e1000_hw *hw)
2232{
2233 s32 ret_val = 0;
2234 u32 mdicnfg;
2235 u16 nvm_data = 0;
2236
2237 if (hw->mac.type != e1000_82580)
2238 goto out;
2239 if (!igb_sgmii_active_82575(hw))
2240 goto out;
2241
2242 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
2243 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2244 &nvm_data);
2245 if (ret_val) {
2246 hw_dbg("NVM Read Error\n");
2247 goto out;
2248 }
2249
2250 mdicnfg = rd32(E1000_MDICNFG);
2251 if (nvm_data & NVM_WORD24_EXT_MDIO)
2252 mdicnfg |= E1000_MDICNFG_EXT_MDIO;
2253 if (nvm_data & NVM_WORD24_COM_MDIO)
2254 mdicnfg |= E1000_MDICNFG_COM_MDIO;
2255 wr32(E1000_MDICNFG, mdicnfg);
2256out:
2257 return ret_val;
2258}
2259
2260/**
2261 * igb_reset_hw_82580 - Reset hardware
2262 * @hw: pointer to the HW structure
2263 *
2264 * This resets function or entire device (all ports, etc.)
2265 * to a known state.
2266 **/
2267static s32 igb_reset_hw_82580(struct e1000_hw *hw)
2268{
2269 s32 ret_val = 0;
2270 /* BH SW mailbox bit in SW_FW_SYNC */
2271 u16 swmbsw_mask = E1000_SW_SYNCH_MB;
2272 u32 ctrl;
2273 bool global_device_reset = hw->dev_spec._82575.global_device_reset;
2274
2275 hw->dev_spec._82575.global_device_reset = false;
2276
2277 /* due to hw errata, global device reset doesn't always
2278 * work on 82580
2279 */
2280 if (hw->mac.type == e1000_82580)
2281 global_device_reset = false;
2282
2283 /* Get current control state. */
2284 ctrl = rd32(E1000_CTRL);
2285
2286 /* Prevent the PCI-E bus from sticking if there is no TLP connection
2287 * on the last TLP read/write transaction when MAC is reset.
2288 */
2289 ret_val = igb_disable_pcie_master(hw);
2290 if (ret_val)
2291 hw_dbg("PCI-E Master disable polling has failed.\n");
2292
2293 hw_dbg("Masking off all interrupts\n");
2294 wr32(E1000_IMC, 0xffffffff);
2295 wr32(E1000_RCTL, 0);
2296 wr32(E1000_TCTL, E1000_TCTL_PSP);
2297 wrfl();
2298
2299 usleep_range(10000, 11000);
2300
2301 /* Determine whether or not a global dev reset is requested */
2302 if (global_device_reset &&
2303 hw->mac.ops.acquire_swfw_sync(hw, swmbsw_mask))
2304 global_device_reset = false;
2305
2306 if (global_device_reset &&
2307 !(rd32(E1000_STATUS) & E1000_STAT_DEV_RST_SET))
2308 ctrl |= E1000_CTRL_DEV_RST;
2309 else
2310 ctrl |= E1000_CTRL_RST;
2311
2312 wr32(E1000_CTRL, ctrl);
2313 wrfl();
2314
2315 /* Add delay to insure DEV_RST has time to complete */
2316 if (global_device_reset)
2317 usleep_range(5000, 6000);
2318
2319 ret_val = igb_get_auto_rd_done(hw);
2320 if (ret_val) {
2321 /* When auto config read does not complete, do not
2322 * return with an error. This can happen in situations
2323 * where there is no eeprom and prevents getting link.
2324 */
2325 hw_dbg("Auto Read Done did not complete\n");
2326 }
2327
2328 /* clear global device reset status bit */
2329 wr32(E1000_STATUS, E1000_STAT_DEV_RST_SET);
2330
2331 /* Clear any pending interrupt events. */
2332 wr32(E1000_IMC, 0xffffffff);
2333 rd32(E1000_ICR);
2334
2335 ret_val = igb_reset_mdicnfg_82580(hw);
2336 if (ret_val)
2337 hw_dbg("Could not reset MDICNFG based on EEPROM\n");
2338
2339 /* Install any alternate MAC address into RAR0 */
2340 ret_val = igb_check_alt_mac_addr(hw);
2341
2342 /* Release semaphore */
2343 if (global_device_reset)
2344 hw->mac.ops.release_swfw_sync(hw, swmbsw_mask);
2345
2346 return ret_val;
2347}
2348
2349/**
2350 * igb_rxpbs_adjust_82580 - adjust RXPBS value to reflect actual RX PBA size
2351 * @data: data received by reading RXPBS register
2352 *
2353 * The 82580 uses a table based approach for packet buffer allocation sizes.
2354 * This function converts the retrieved value into the correct table value
2355 * 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
2356 * 0x0 36 72 144 1 2 4 8 16
2357 * 0x8 35 70 140 rsv rsv rsv rsv rsv
2358 */
2359u16 igb_rxpbs_adjust_82580(u32 data)
2360{
2361 u16 ret_val = 0;
2362
2363 if (data < ARRAY_SIZE(e1000_82580_rxpbs_table))
2364 ret_val = e1000_82580_rxpbs_table[data];
2365
2366 return ret_val;
2367}
2368
2369/**
2370 * igb_validate_nvm_checksum_with_offset - Validate EEPROM
2371 * checksum
2372 * @hw: pointer to the HW structure
2373 * @offset: offset in words of the checksum protected region
2374 *
2375 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
2376 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
2377 **/
2378static s32 igb_validate_nvm_checksum_with_offset(struct e1000_hw *hw,
2379 u16 offset)
2380{
2381 s32 ret_val = 0;
2382 u16 checksum = 0;
2383 u16 i, nvm_data;
2384
2385 for (i = offset; i < ((NVM_CHECKSUM_REG + offset) + 1); i++) {
2386 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2387 if (ret_val) {
2388 hw_dbg("NVM Read Error\n");
2389 goto out;
2390 }
2391 checksum += nvm_data;
2392 }
2393
2394 if (checksum != (u16) NVM_SUM) {
2395 hw_dbg("NVM Checksum Invalid\n");
2396 ret_val = -E1000_ERR_NVM;
2397 goto out;
2398 }
2399
2400out:
2401 return ret_val;
2402}
2403
2404/**
2405 * igb_update_nvm_checksum_with_offset - Update EEPROM
2406 * checksum
2407 * @hw: pointer to the HW structure
2408 * @offset: offset in words of the checksum protected region
2409 *
2410 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
2411 * up to the checksum. Then calculates the EEPROM checksum and writes the
2412 * value to the EEPROM.
2413 **/
2414static s32 igb_update_nvm_checksum_with_offset(struct e1000_hw *hw, u16 offset)
2415{
2416 s32 ret_val;
2417 u16 checksum = 0;
2418 u16 i, nvm_data;
2419
2420 for (i = offset; i < (NVM_CHECKSUM_REG + offset); i++) {
2421 ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
2422 if (ret_val) {
2423 hw_dbg("NVM Read Error while updating checksum.\n");
2424 goto out;
2425 }
2426 checksum += nvm_data;
2427 }
2428 checksum = (u16) NVM_SUM - checksum;
2429 ret_val = hw->nvm.ops.write(hw, (NVM_CHECKSUM_REG + offset), 1,
2430 &checksum);
2431 if (ret_val)
2432 hw_dbg("NVM Write Error while updating checksum.\n");
2433
2434out:
2435 return ret_val;
2436}
2437
2438/**
2439 * igb_validate_nvm_checksum_82580 - Validate EEPROM checksum
2440 * @hw: pointer to the HW structure
2441 *
2442 * Calculates the EEPROM section checksum by reading/adding each word of
2443 * the EEPROM and then verifies that the sum of the EEPROM is
2444 * equal to 0xBABA.
2445 **/
2446static s32 igb_validate_nvm_checksum_82580(struct e1000_hw *hw)
2447{
2448 s32 ret_val = 0;
2449 u16 eeprom_regions_count = 1;
2450 u16 j, nvm_data;
2451 u16 nvm_offset;
2452
2453 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2454 if (ret_val) {
2455 hw_dbg("NVM Read Error\n");
2456 goto out;
2457 }
2458
2459 if (nvm_data & NVM_COMPATIBILITY_BIT_MASK) {
2460 /* if checksums compatibility bit is set validate checksums
2461 * for all 4 ports.
2462 */
2463 eeprom_regions_count = 4;
2464 }
2465
2466 for (j = 0; j < eeprom_regions_count; j++) {
2467 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2468 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2469 nvm_offset);
2470 if (ret_val != 0)
2471 goto out;
2472 }
2473
2474out:
2475 return ret_val;
2476}
2477
2478/**
2479 * igb_update_nvm_checksum_82580 - Update EEPROM checksum
2480 * @hw: pointer to the HW structure
2481 *
2482 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2483 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2484 * checksum and writes the value to the EEPROM.
2485 **/
2486static s32 igb_update_nvm_checksum_82580(struct e1000_hw *hw)
2487{
2488 s32 ret_val;
2489 u16 j, nvm_data;
2490 u16 nvm_offset;
2491
2492 ret_val = hw->nvm.ops.read(hw, NVM_COMPATIBILITY_REG_3, 1, &nvm_data);
2493 if (ret_val) {
2494 hw_dbg("NVM Read Error while updating checksum compatibility bit.\n");
2495 goto out;
2496 }
2497
2498 if ((nvm_data & NVM_COMPATIBILITY_BIT_MASK) == 0) {
2499 /* set compatibility bit to validate checksums appropriately */
2500 nvm_data = nvm_data | NVM_COMPATIBILITY_BIT_MASK;
2501 ret_val = hw->nvm.ops.write(hw, NVM_COMPATIBILITY_REG_3, 1,
2502 &nvm_data);
2503 if (ret_val) {
2504 hw_dbg("NVM Write Error while updating checksum compatibility bit.\n");
2505 goto out;
2506 }
2507 }
2508
2509 for (j = 0; j < 4; j++) {
2510 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2511 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2512 if (ret_val)
2513 goto out;
2514 }
2515
2516out:
2517 return ret_val;
2518}
2519
2520/**
2521 * igb_validate_nvm_checksum_i350 - Validate EEPROM checksum
2522 * @hw: pointer to the HW structure
2523 *
2524 * Calculates the EEPROM section checksum by reading/adding each word of
2525 * the EEPROM and then verifies that the sum of the EEPROM is
2526 * equal to 0xBABA.
2527 **/
2528static s32 igb_validate_nvm_checksum_i350(struct e1000_hw *hw)
2529{
2530 s32 ret_val = 0;
2531 u16 j;
2532 u16 nvm_offset;
2533
2534 for (j = 0; j < 4; j++) {
2535 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2536 ret_val = igb_validate_nvm_checksum_with_offset(hw,
2537 nvm_offset);
2538 if (ret_val != 0)
2539 goto out;
2540 }
2541
2542out:
2543 return ret_val;
2544}
2545
2546/**
2547 * igb_update_nvm_checksum_i350 - Update EEPROM checksum
2548 * @hw: pointer to the HW structure
2549 *
2550 * Updates the EEPROM section checksums for all 4 ports by reading/adding
2551 * each word of the EEPROM up to the checksum. Then calculates the EEPROM
2552 * checksum and writes the value to the EEPROM.
2553 **/
2554static s32 igb_update_nvm_checksum_i350(struct e1000_hw *hw)
2555{
2556 s32 ret_val = 0;
2557 u16 j;
2558 u16 nvm_offset;
2559
2560 for (j = 0; j < 4; j++) {
2561 nvm_offset = NVM_82580_LAN_FUNC_OFFSET(j);
2562 ret_val = igb_update_nvm_checksum_with_offset(hw, nvm_offset);
2563 if (ret_val != 0)
2564 goto out;
2565 }
2566
2567out:
2568 return ret_val;
2569}
2570
2571/**
2572 * __igb_access_emi_reg - Read/write EMI register
2573 * @hw: pointer to the HW structure
2574 * @addr: EMI address to program
2575 * @data: pointer to value to read/write from/to the EMI address
2576 * @read: boolean flag to indicate read or write
2577 **/
2578static s32 __igb_access_emi_reg(struct e1000_hw *hw, u16 address,
2579 u16 *data, bool read)
2580{
2581 s32 ret_val = 0;
2582
2583 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIADD, address);
2584 if (ret_val)
2585 return ret_val;
2586
2587 if (read)
2588 ret_val = hw->phy.ops.read_reg(hw, E1000_EMIDATA, data);
2589 else
2590 ret_val = hw->phy.ops.write_reg(hw, E1000_EMIDATA, *data);
2591
2592 return ret_val;
2593}
2594
2595/**
2596 * igb_read_emi_reg - Read Extended Management Interface register
2597 * @hw: pointer to the HW structure
2598 * @addr: EMI address to program
2599 * @data: value to be read from the EMI address
2600 **/
2601s32 igb_read_emi_reg(struct e1000_hw *hw, u16 addr, u16 *data)
2602{
2603 return __igb_access_emi_reg(hw, addr, data, true);
2604}
2605
2606/**
2607 * igb_set_eee_i350 - Enable/disable EEE support
2608 * @hw: pointer to the HW structure
2609 * @adv1G: boolean flag enabling 1G EEE advertisement
2610 * @adv100m: boolean flag enabling 100M EEE advertisement
2611 *
2612 * Enable/disable EEE based on setting in dev_spec structure.
2613 *
2614 **/
2615s32 igb_set_eee_i350(struct e1000_hw *hw, bool adv1G, bool adv100M)
2616{
2617 u32 ipcnfg, eeer;
2618
2619 if ((hw->mac.type < e1000_i350) ||
2620 (hw->phy.media_type != e1000_media_type_copper))
2621 goto out;
2622 ipcnfg = rd32(E1000_IPCNFG);
2623 eeer = rd32(E1000_EEER);
2624
2625 /* enable or disable per user setting */
2626 if (!(hw->dev_spec._82575.eee_disable)) {
2627 u32 eee_su = rd32(E1000_EEE_SU);
2628
2629 if (adv100M)
2630 ipcnfg |= E1000_IPCNFG_EEE_100M_AN;
2631 else
2632 ipcnfg &= ~E1000_IPCNFG_EEE_100M_AN;
2633
2634 if (adv1G)
2635 ipcnfg |= E1000_IPCNFG_EEE_1G_AN;
2636 else
2637 ipcnfg &= ~E1000_IPCNFG_EEE_1G_AN;
2638
2639 eeer |= (E1000_EEER_TX_LPI_EN | E1000_EEER_RX_LPI_EN |
2640 E1000_EEER_LPI_FC);
2641
2642 /* This bit should not be set in normal operation. */
2643 if (eee_su & E1000_EEE_SU_LPI_CLK_STP)
2644 hw_dbg("LPI Clock Stop Bit should not be set!\n");
2645
2646 } else {
2647 ipcnfg &= ~(E1000_IPCNFG_EEE_1G_AN |
2648 E1000_IPCNFG_EEE_100M_AN);
2649 eeer &= ~(E1000_EEER_TX_LPI_EN |
2650 E1000_EEER_RX_LPI_EN |
2651 E1000_EEER_LPI_FC);
2652 }
2653 wr32(E1000_IPCNFG, ipcnfg);
2654 wr32(E1000_EEER, eeer);
2655 rd32(E1000_IPCNFG);
2656 rd32(E1000_EEER);
2657out:
2658
2659 return 0;
2660}
2661
2662/**
2663 * igb_set_eee_i354 - Enable/disable EEE support
2664 * @hw: pointer to the HW structure
2665 * @adv1G: boolean flag enabling 1G EEE advertisement
2666 * @adv100m: boolean flag enabling 100M EEE advertisement
2667 *
2668 * Enable/disable EEE legacy mode based on setting in dev_spec structure.
2669 *
2670 **/
2671s32 igb_set_eee_i354(struct e1000_hw *hw, bool adv1G, bool adv100M)
2672{
2673 struct e1000_phy_info *phy = &hw->phy;
2674 s32 ret_val = 0;
2675 u16 phy_data;
2676
2677 if ((hw->phy.media_type != e1000_media_type_copper) ||
2678 ((phy->id != M88E1543_E_PHY_ID) &&
2679 (phy->id != M88E1512_E_PHY_ID)))
2680 goto out;
2681
2682 if (!hw->dev_spec._82575.eee_disable) {
2683 /* Switch to PHY page 18. */
2684 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 18);
2685 if (ret_val)
2686 goto out;
2687
2688 ret_val = phy->ops.read_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2689 &phy_data);
2690 if (ret_val)
2691 goto out;
2692
2693 phy_data |= E1000_M88E1543_EEE_CTRL_1_MS;
2694 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_EEE_CTRL_1,
2695 phy_data);
2696 if (ret_val)
2697 goto out;
2698
2699 /* Return the PHY to page 0. */
2700 ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2701 if (ret_val)
2702 goto out;
2703
2704 /* Turn on EEE advertisement. */
2705 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2706 E1000_EEE_ADV_DEV_I354,
2707 &phy_data);
2708 if (ret_val)
2709 goto out;
2710
2711 if (adv100M)
2712 phy_data |= E1000_EEE_ADV_100_SUPPORTED;
2713 else
2714 phy_data &= ~E1000_EEE_ADV_100_SUPPORTED;
2715
2716 if (adv1G)
2717 phy_data |= E1000_EEE_ADV_1000_SUPPORTED;
2718 else
2719 phy_data &= ~E1000_EEE_ADV_1000_SUPPORTED;
2720
2721 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2722 E1000_EEE_ADV_DEV_I354,
2723 phy_data);
2724 } else {
2725 /* Turn off EEE advertisement. */
2726 ret_val = igb_read_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2727 E1000_EEE_ADV_DEV_I354,
2728 &phy_data);
2729 if (ret_val)
2730 goto out;
2731
2732 phy_data &= ~(E1000_EEE_ADV_100_SUPPORTED |
2733 E1000_EEE_ADV_1000_SUPPORTED);
2734 ret_val = igb_write_xmdio_reg(hw, E1000_EEE_ADV_ADDR_I354,
2735 E1000_EEE_ADV_DEV_I354,
2736 phy_data);
2737 }
2738
2739out:
2740 return ret_val;
2741}
2742
2743/**
2744 * igb_get_eee_status_i354 - Get EEE status
2745 * @hw: pointer to the HW structure
2746 * @status: EEE status
2747 *
2748 * Get EEE status by guessing based on whether Tx or Rx LPI indications have
2749 * been received.
2750 **/
2751s32 igb_get_eee_status_i354(struct e1000_hw *hw, bool *status)
2752{
2753 struct e1000_phy_info *phy = &hw->phy;
2754 s32 ret_val = 0;
2755 u16 phy_data;
2756
2757 /* Check if EEE is supported on this device. */
2758 if ((hw->phy.media_type != e1000_media_type_copper) ||
2759 ((phy->id != M88E1543_E_PHY_ID) &&
2760 (phy->id != M88E1512_E_PHY_ID)))
2761 goto out;
2762
2763 ret_val = igb_read_xmdio_reg(hw, E1000_PCS_STATUS_ADDR_I354,
2764 E1000_PCS_STATUS_DEV_I354,
2765 &phy_data);
2766 if (ret_val)
2767 goto out;
2768
2769 *status = phy_data & (E1000_PCS_STATUS_TX_LPI_RCVD |
2770 E1000_PCS_STATUS_RX_LPI_RCVD) ? true : false;
2771
2772out:
2773 return ret_val;
2774}
2775
2776static const u8 e1000_emc_temp_data[4] = {
2777 E1000_EMC_INTERNAL_DATA,
2778 E1000_EMC_DIODE1_DATA,
2779 E1000_EMC_DIODE2_DATA,
2780 E1000_EMC_DIODE3_DATA
2781};
2782static const u8 e1000_emc_therm_limit[4] = {
2783 E1000_EMC_INTERNAL_THERM_LIMIT,
2784 E1000_EMC_DIODE1_THERM_LIMIT,
2785 E1000_EMC_DIODE2_THERM_LIMIT,
2786 E1000_EMC_DIODE3_THERM_LIMIT
2787};
2788
2789#ifdef CONFIG_IGB_HWMON
2790/**
2791 * igb_get_thermal_sensor_data_generic - Gathers thermal sensor data
2792 * @hw: pointer to hardware structure
2793 *
2794 * Updates the temperatures in mac.thermal_sensor_data
2795 **/
2796static s32 igb_get_thermal_sensor_data_generic(struct e1000_hw *hw)
2797{
2798 u16 ets_offset;
2799 u16 ets_cfg;
2800 u16 ets_sensor;
2801 u8 num_sensors;
2802 u8 sensor_index;
2803 u8 sensor_location;
2804 u8 i;
2805 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2806
2807 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2808 return E1000_NOT_IMPLEMENTED;
2809
2810 data->sensor[0].temp = (rd32(E1000_THMJT) & 0xFF);
2811
2812 /* Return the internal sensor only if ETS is unsupported */
2813 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2814 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2815 return 0;
2816
2817 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2818 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2819 != NVM_ETS_TYPE_EMC)
2820 return E1000_NOT_IMPLEMENTED;
2821
2822 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2823 if (num_sensors > E1000_MAX_SENSORS)
2824 num_sensors = E1000_MAX_SENSORS;
2825
2826 for (i = 1; i < num_sensors; i++) {
2827 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2828 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2829 NVM_ETS_DATA_INDEX_SHIFT);
2830 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2831 NVM_ETS_DATA_LOC_SHIFT);
2832
2833 if (sensor_location != 0)
2834 hw->phy.ops.read_i2c_byte(hw,
2835 e1000_emc_temp_data[sensor_index],
2836 E1000_I2C_THERMAL_SENSOR_ADDR,
2837 &data->sensor[i].temp);
2838 }
2839 return 0;
2840}
2841
2842/**
2843 * igb_init_thermal_sensor_thresh_generic - Sets thermal sensor thresholds
2844 * @hw: pointer to hardware structure
2845 *
2846 * Sets the thermal sensor thresholds according to the NVM map
2847 * and save off the threshold and location values into mac.thermal_sensor_data
2848 **/
2849static s32 igb_init_thermal_sensor_thresh_generic(struct e1000_hw *hw)
2850{
2851 u16 ets_offset;
2852 u16 ets_cfg;
2853 u16 ets_sensor;
2854 u8 low_thresh_delta;
2855 u8 num_sensors;
2856 u8 sensor_index;
2857 u8 sensor_location;
2858 u8 therm_limit;
2859 u8 i;
2860 struct e1000_thermal_sensor_data *data = &hw->mac.thermal_sensor_data;
2861
2862 if ((hw->mac.type != e1000_i350) || (hw->bus.func != 0))
2863 return E1000_NOT_IMPLEMENTED;
2864
2865 memset(data, 0, sizeof(struct e1000_thermal_sensor_data));
2866
2867 data->sensor[0].location = 0x1;
2868 data->sensor[0].caution_thresh =
2869 (rd32(E1000_THHIGHTC) & 0xFF);
2870 data->sensor[0].max_op_thresh =
2871 (rd32(E1000_THLOWTC) & 0xFF);
2872
2873 /* Return the internal sensor only if ETS is unsupported */
2874 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_offset);
2875 if ((ets_offset == 0x0000) || (ets_offset == 0xFFFF))
2876 return 0;
2877
2878 hw->nvm.ops.read(hw, ets_offset, 1, &ets_cfg);
2879 if (((ets_cfg & NVM_ETS_TYPE_MASK) >> NVM_ETS_TYPE_SHIFT)
2880 != NVM_ETS_TYPE_EMC)
2881 return E1000_NOT_IMPLEMENTED;
2882
2883 low_thresh_delta = ((ets_cfg & NVM_ETS_LTHRES_DELTA_MASK) >>
2884 NVM_ETS_LTHRES_DELTA_SHIFT);
2885 num_sensors = (ets_cfg & NVM_ETS_NUM_SENSORS_MASK);
2886
2887 for (i = 1; i <= num_sensors; i++) {
2888 hw->nvm.ops.read(hw, (ets_offset + i), 1, &ets_sensor);
2889 sensor_index = ((ets_sensor & NVM_ETS_DATA_INDEX_MASK) >>
2890 NVM_ETS_DATA_INDEX_SHIFT);
2891 sensor_location = ((ets_sensor & NVM_ETS_DATA_LOC_MASK) >>
2892 NVM_ETS_DATA_LOC_SHIFT);
2893 therm_limit = ets_sensor & NVM_ETS_DATA_HTHRESH_MASK;
2894
2895 hw->phy.ops.write_i2c_byte(hw,
2896 e1000_emc_therm_limit[sensor_index],
2897 E1000_I2C_THERMAL_SENSOR_ADDR,
2898 therm_limit);
2899
2900 if ((i < E1000_MAX_SENSORS) && (sensor_location != 0)) {
2901 data->sensor[i].location = sensor_location;
2902 data->sensor[i].caution_thresh = therm_limit;
2903 data->sensor[i].max_op_thresh = therm_limit -
2904 low_thresh_delta;
2905 }
2906 }
2907 return 0;
2908}
2909
2910#endif
2911static struct e1000_mac_operations e1000_mac_ops_82575 = {
2912 .init_hw = igb_init_hw_82575,
2913 .check_for_link = igb_check_for_link_82575,
2914 .rar_set = igb_rar_set,
2915 .read_mac_addr = igb_read_mac_addr_82575,
2916 .get_speed_and_duplex = igb_get_link_up_info_82575,
2917#ifdef CONFIG_IGB_HWMON
2918 .get_thermal_sensor_data = igb_get_thermal_sensor_data_generic,
2919 .init_thermal_sensor_thresh = igb_init_thermal_sensor_thresh_generic,
2920#endif
2921};
2922
2923static const struct e1000_phy_operations e1000_phy_ops_82575 = {
2924 .acquire = igb_acquire_phy_82575,
2925 .get_cfg_done = igb_get_cfg_done_82575,
2926 .release = igb_release_phy_82575,
2927 .write_i2c_byte = igb_write_i2c_byte,
2928 .read_i2c_byte = igb_read_i2c_byte,
2929};
2930
2931static struct e1000_nvm_operations e1000_nvm_ops_82575 = {
2932 .acquire = igb_acquire_nvm_82575,
2933 .read = igb_read_nvm_eerd,
2934 .release = igb_release_nvm_82575,
2935 .write = igb_write_nvm_spi,
2936};
2937
2938const struct e1000_info e1000_82575_info = {
2939 .get_invariants = igb_get_invariants_82575,
2940 .mac_ops = &e1000_mac_ops_82575,
2941 .phy_ops = &e1000_phy_ops_82575,
2942 .nvm_ops = &e1000_nvm_ops_82575,
2943};
2944