Linux Audio

Check our new training course

Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Stereo and SAP detection for cx88
  4 *
  5 *  Copyright (c) 2009 Marton Balint <cus@fazekas.hu>
 
 
 
 
 
 
 
 
 
 
  6 */
  7
  8#include "cx88.h"
  9#include "cx88-reg.h"
 10
 11#include <linux/slab.h>
 12#include <linux/kernel.h>
 13#include <linux/module.h>
 14#include <linux/jiffies.h>
 15#include <asm/div64.h>
 16
 17#define INT_PI			((s32)(3.141592653589 * 32768.0))
 18
 19#define compat_remainder(a, b) \
 20	 ((float)(((s32)((a) * 100)) % ((s32)((b) * 100))) / 100.0)
 21
 22#define baseband_freq(carrier, srate, tone) ((s32)( \
 23	 (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
 24
 25/*
 26 * We calculate the baseband frequencies of the carrier and the pilot tones
 27 * based on the sampling rate of the audio rds fifo.
 28 */
 29
 30#define FREQ_A2_CARRIER         baseband_freq(54687.5, 2689.36, 0.0)
 31#define FREQ_A2_DUAL            baseband_freq(54687.5, 2689.36, 274.1)
 32#define FREQ_A2_STEREO          baseband_freq(54687.5, 2689.36, 117.5)
 33
 34/*
 35 * The frequencies below are from the reference driver. They probably need
 36 * further adjustments, because they are not tested at all. You may even need
 37 * to play a bit with the registers of the chip to select the proper signal
 38 * for the input of the audio rds fifo, and measure it's sampling rate to
 39 * calculate the proper baseband frequencies...
 40 */
 41
 42#define FREQ_A2M_CARRIER	((s32)(2.114516 * 32768.0))
 43#define FREQ_A2M_DUAL		((s32)(2.754916 * 32768.0))
 44#define FREQ_A2M_STEREO		((s32)(2.462326 * 32768.0))
 45
 46#define FREQ_EIAJ_CARRIER	((s32)(1.963495 * 32768.0)) /* 5pi/8  */
 47#define FREQ_EIAJ_DUAL		((s32)(2.562118 * 32768.0))
 48#define FREQ_EIAJ_STEREO	((s32)(2.601053 * 32768.0))
 49
 50#define FREQ_BTSC_DUAL		((s32)(1.963495 * 32768.0)) /* 5pi/8  */
 51#define FREQ_BTSC_DUAL_REF	((s32)(1.374446 * 32768.0)) /* 7pi/16 */
 52
 53#define FREQ_BTSC_SAP		((s32)(2.471532 * 32768.0))
 54#define FREQ_BTSC_SAP_REF	((s32)(1.730072 * 32768.0))
 55
 56/* The spectrum of the signal should be empty between these frequencies. */
 57#define FREQ_NOISE_START	((s32)(0.100000 * 32768.0))
 58#define FREQ_NOISE_END		((s32)(1.200000 * 32768.0))
 59
 60static unsigned int dsp_debug;
 61module_param(dsp_debug, int, 0644);
 62MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
 63
 64#define dprintk(level, fmt, arg...) do {				\
 65	if (dsp_debug >= level)						\
 66		printk(KERN_DEBUG pr_fmt("%s: dsp:" fmt),		\
 67			__func__, ##arg);				\
 68} while (0)
 69
 70static s32 int_cos(u32 x)
 71{
 72	u32 t2, t4, t6, t8;
 73	s32 ret;
 74	u16 period = x / INT_PI;
 75
 76	if (period % 2)
 77		return -int_cos(x - INT_PI);
 78	x = x % INT_PI;
 79	if (x > INT_PI / 2)
 80		return -int_cos(INT_PI / 2 - (x % (INT_PI / 2)));
 81	/*
 82	 * Now x is between 0 and INT_PI/2.
 83	 * To calculate cos(x) we use it's Taylor polinom.
 84	 */
 85	t2 = x * x / 32768 / 2;
 86	t4 = t2 * x / 32768 * x / 32768 / 3 / 4;
 87	t6 = t4 * x / 32768 * x / 32768 / 5 / 6;
 88	t8 = t6 * x / 32768 * x / 32768 / 7 / 8;
 89	ret = 32768 - t2 + t4 - t6 + t8;
 90	return ret;
 91}
 92
 93static u32 int_goertzel(s16 x[], u32 N, u32 freq)
 94{
 95	/*
 96	 * We use the Goertzel algorithm to determine the power of the
 97	 * given frequency in the signal
 98	 */
 99	s32 s_prev = 0;
100	s32 s_prev2 = 0;
101	s32 coeff = 2 * int_cos(freq);
102	u32 i;
103
104	u64 tmp;
105	u32 divisor;
106
107	for (i = 0; i < N; i++) {
108		s32 s = x[i] + ((s64)coeff * s_prev / 32768) - s_prev2;
109
110		s_prev2 = s_prev;
111		s_prev = s;
112	}
113
114	tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
115		      (s64)coeff * s_prev2 * s_prev / 32768;
116
117	/*
118	 * XXX: N must be low enough so that N*N fits in s32.
119	 * Else we need two divisions.
120	 */
121	divisor = N * N;
122	do_div(tmp, divisor);
123
124	return (u32)tmp;
125}
126
127static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
128{
129	u32 sum = int_goertzel(x, N, freq);
130
131	return (u32)int_sqrt(sum);
132}
133
134static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
135{
136	int i;
137	u32 sum = 0;
138	u32 freq_step;
139	int samples = 5;
140
141	if (N > 192) {
142		/* The last 192 samples are enough for noise detection */
143		x += (N - 192);
144		N = 192;
145	}
146
147	freq_step = (freq_end - freq_start) / (samples - 1);
148
149	for (i = 0; i < samples; i++) {
150		sum += int_goertzel(x, N, freq_start);
151		freq_start += freq_step;
152	}
153
154	return (u32)int_sqrt(sum / samples);
155}
156
157static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
158{
159	s32 carrier, stereo, dual, noise;
160	s32 carrier_freq, stereo_freq, dual_freq;
161	s32 ret;
162
163	switch (core->tvaudio) {
164	case WW_BG:
165	case WW_DK:
166		carrier_freq = FREQ_A2_CARRIER;
167		stereo_freq = FREQ_A2_STEREO;
168		dual_freq = FREQ_A2_DUAL;
169		break;
170	case WW_M:
171		carrier_freq = FREQ_A2M_CARRIER;
172		stereo_freq = FREQ_A2M_STEREO;
173		dual_freq = FREQ_A2M_DUAL;
174		break;
175	case WW_EIAJ:
176		carrier_freq = FREQ_EIAJ_CARRIER;
177		stereo_freq = FREQ_EIAJ_STEREO;
178		dual_freq = FREQ_EIAJ_DUAL;
179		break;
180	default:
181		pr_warn("unsupported audio mode %d for %s\n",
182			core->tvaudio, __func__);
183		return UNSET;
184	}
185
186	carrier = freq_magnitude(x, N, carrier_freq);
187	stereo  = freq_magnitude(x, N, stereo_freq);
188	dual    = freq_magnitude(x, N, dual_freq);
189	noise   = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
190
191	dprintk(1,
192		"detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, noise=%d\n",
193		carrier, stereo, dual, noise);
194
195	if (stereo > dual)
196		ret = V4L2_TUNER_SUB_STEREO;
197	else
198		ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
199
200	if (core->tvaudio == WW_EIAJ) {
201		/* EIAJ checks may need adjustments */
202		if ((carrier > max(stereo, dual) * 2) &&
203		    (carrier < max(stereo, dual) * 6) &&
204		    (carrier > 20 && carrier < 200) &&
205		    (max(stereo, dual) > min(stereo, dual))) {
206			/*
207			 * For EIAJ the carrier is always present,
208			 * so we probably don't need noise detection
209			 */
210			return ret;
211		}
212	} else {
213		if ((carrier > max(stereo, dual) * 2) &&
214		    (carrier < max(stereo, dual) * 8) &&
215		    (carrier > 20 && carrier < 200) &&
216		    (noise < 10) &&
217		    (max(stereo, dual) > min(stereo, dual) * 2)) {
218			return ret;
219		}
220	}
221	return V4L2_TUNER_SUB_MONO;
222}
223
224static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
225{
226	s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
227	s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
228	s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
229	s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
230
231	dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d\n",
232		dual_ref, dual, sap_ref, sap);
233	/* FIXME: Currently not supported */
234	return UNSET;
235}
236
237static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
238{
239	const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
240	s16 *samples;
241
242	unsigned int i;
243	unsigned int bpl = srch->fifo_size / AUD_RDS_LINES;
244	unsigned int spl = bpl / 4;
245	unsigned int sample_count = spl * (AUD_RDS_LINES - 1);
246
247	u32 current_address = cx_read(srch->ptr1_reg);
248	u32 offset = (current_address - srch->fifo_start + bpl);
249
250	dprintk(1,
251		"read RDS samples: current_address=%08x (offset=%08x), sample_count=%d, aud_intstat=%08x\n",
252		current_address,
253		current_address - srch->fifo_start, sample_count,
254		cx_read(MO_AUD_INTSTAT));
255	samples = kmalloc_array(sample_count, sizeof(*samples), GFP_KERNEL);
256	if (!samples)
257		return NULL;
258
259	*N = sample_count;
260
261	for (i = 0; i < sample_count; i++)  {
262		offset = offset % (AUD_RDS_LINES * bpl);
263		samples[i] = cx_read(srch->fifo_start + offset);
264		offset += 4;
265	}
266
267	dprintk(2, "RDS samples dump: %*ph\n", sample_count, samples);
268
269	return samples;
270}
271
272s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
273{
274	s16 *samples;
275	u32 N = 0;
276	s32 ret = UNSET;
277
278	/* If audio RDS fifo is disabled, we can't read the samples */
279	if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
280		return ret;
281	if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
282		return ret;
283
284	/* Wait at least 500 ms after an audio standard change */
285	if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
286		return ret;
287
288	samples = read_rds_samples(core, &N);
289
290	if (!samples)
291		return ret;
292
293	switch (core->tvaudio) {
294	case WW_BG:
295	case WW_DK:
296	case WW_EIAJ:
297	case WW_M:
298		ret = detect_a2_a2m_eiaj(core, samples, N);
299		break;
300	case WW_BTSC:
301		ret = detect_btsc(core, samples, N);
302		break;
303	case WW_NONE:
304	case WW_I:
305	case WW_L:
306	case WW_I2SPT:
307	case WW_FM:
308	case WW_I2SADC:
309		break;
310	}
311
312	kfree(samples);
313
314	if (ret != UNSET)
315		dprintk(1, "stereo/sap detection result:%s%s%s\n",
316			(ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
317			(ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
318			(ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
319
320	return ret;
321}
322EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);
323
v4.10.11
 
  1/*
  2 *  Stereo and SAP detection for cx88
  3 *
  4 *  Copyright (c) 2009 Marton Balint <cus@fazekas.hu>
  5 *
  6 *  This program is free software; you can redistribute it and/or modify
  7 *  it under the terms of the GNU General Public License as published by
  8 *  the Free Software Foundation; either version 2 of the License, or
  9 *  (at your option) any later version.
 10 *
 11 *  This program is distributed in the hope that it will be useful,
 12 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 *  GNU General Public License for more details.
 15 */
 16
 17#include "cx88.h"
 18#include "cx88-reg.h"
 19
 20#include <linux/slab.h>
 21#include <linux/kernel.h>
 22#include <linux/module.h>
 23#include <linux/jiffies.h>
 24#include <asm/div64.h>
 25
 26#define INT_PI			((s32)(3.141592653589 * 32768.0))
 27
 28#define compat_remainder(a, b) \
 29	 ((float)(((s32)((a) * 100)) % ((s32)((b) * 100))) / 100.0)
 30
 31#define baseband_freq(carrier, srate, tone) ((s32)( \
 32	 (compat_remainder(carrier + tone, srate)) / srate * 2 * INT_PI))
 33
 34/*
 35 * We calculate the baseband frequencies of the carrier and the pilot tones
 36 * based on the the sampling rate of the audio rds fifo.
 37 */
 38
 39#define FREQ_A2_CARRIER         baseband_freq(54687.5, 2689.36, 0.0)
 40#define FREQ_A2_DUAL            baseband_freq(54687.5, 2689.36, 274.1)
 41#define FREQ_A2_STEREO          baseband_freq(54687.5, 2689.36, 117.5)
 42
 43/*
 44 * The frequencies below are from the reference driver. They probably need
 45 * further adjustments, because they are not tested at all. You may even need
 46 * to play a bit with the registers of the chip to select the proper signal
 47 * for the input of the audio rds fifo, and measure it's sampling rate to
 48 * calculate the proper baseband frequencies...
 49 */
 50
 51#define FREQ_A2M_CARRIER	((s32)(2.114516 * 32768.0))
 52#define FREQ_A2M_DUAL		((s32)(2.754916 * 32768.0))
 53#define FREQ_A2M_STEREO		((s32)(2.462326 * 32768.0))
 54
 55#define FREQ_EIAJ_CARRIER	((s32)(1.963495 * 32768.0)) /* 5pi/8  */
 56#define FREQ_EIAJ_DUAL		((s32)(2.562118 * 32768.0))
 57#define FREQ_EIAJ_STEREO	((s32)(2.601053 * 32768.0))
 58
 59#define FREQ_BTSC_DUAL		((s32)(1.963495 * 32768.0)) /* 5pi/8  */
 60#define FREQ_BTSC_DUAL_REF	((s32)(1.374446 * 32768.0)) /* 7pi/16 */
 61
 62#define FREQ_BTSC_SAP		((s32)(2.471532 * 32768.0))
 63#define FREQ_BTSC_SAP_REF	((s32)(1.730072 * 32768.0))
 64
 65/* The spectrum of the signal should be empty between these frequencies. */
 66#define FREQ_NOISE_START	((s32)(0.100000 * 32768.0))
 67#define FREQ_NOISE_END		((s32)(1.200000 * 32768.0))
 68
 69static unsigned int dsp_debug;
 70module_param(dsp_debug, int, 0644);
 71MODULE_PARM_DESC(dsp_debug, "enable audio dsp debug messages");
 72
 73#define dprintk(level, fmt, arg...) do {				\
 74	if (dsp_debug >= level)						\
 75		printk(KERN_DEBUG pr_fmt("%s: dsp:" fmt),		\
 76			__func__, ##arg);				\
 77} while (0)
 78
 79static s32 int_cos(u32 x)
 80{
 81	u32 t2, t4, t6, t8;
 82	s32 ret;
 83	u16 period = x / INT_PI;
 84
 85	if (period % 2)
 86		return -int_cos(x - INT_PI);
 87	x = x % INT_PI;
 88	if (x > INT_PI / 2)
 89		return -int_cos(INT_PI / 2 - (x % (INT_PI / 2)));
 90	/*
 91	 * Now x is between 0 and INT_PI/2.
 92	 * To calculate cos(x) we use it's Taylor polinom.
 93	 */
 94	t2 = x * x / 32768 / 2;
 95	t4 = t2 * x / 32768 * x / 32768 / 3 / 4;
 96	t6 = t4 * x / 32768 * x / 32768 / 5 / 6;
 97	t8 = t6 * x / 32768 * x / 32768 / 7 / 8;
 98	ret = 32768 - t2 + t4 - t6 + t8;
 99	return ret;
100}
101
102static u32 int_goertzel(s16 x[], u32 N, u32 freq)
103{
104	/*
105	 * We use the Goertzel algorithm to determine the power of the
106	 * given frequency in the signal
107	 */
108	s32 s_prev = 0;
109	s32 s_prev2 = 0;
110	s32 coeff = 2 * int_cos(freq);
111	u32 i;
112
113	u64 tmp;
114	u32 divisor;
115
116	for (i = 0; i < N; i++) {
117		s32 s = x[i] + ((s64)coeff * s_prev / 32768) - s_prev2;
118
119		s_prev2 = s_prev;
120		s_prev = s;
121	}
122
123	tmp = (s64)s_prev2 * s_prev2 + (s64)s_prev * s_prev -
124		      (s64)coeff * s_prev2 * s_prev / 32768;
125
126	/*
127	 * XXX: N must be low enough so that N*N fits in s32.
128	 * Else we need two divisions.
129	 */
130	divisor = N * N;
131	do_div(tmp, divisor);
132
133	return (u32)tmp;
134}
135
136static u32 freq_magnitude(s16 x[], u32 N, u32 freq)
137{
138	u32 sum = int_goertzel(x, N, freq);
139
140	return (u32)int_sqrt(sum);
141}
142
143static u32 noise_magnitude(s16 x[], u32 N, u32 freq_start, u32 freq_end)
144{
145	int i;
146	u32 sum = 0;
147	u32 freq_step;
148	int samples = 5;
149
150	if (N > 192) {
151		/* The last 192 samples are enough for noise detection */
152		x += (N - 192);
153		N = 192;
154	}
155
156	freq_step = (freq_end - freq_start) / (samples - 1);
157
158	for (i = 0; i < samples; i++) {
159		sum += int_goertzel(x, N, freq_start);
160		freq_start += freq_step;
161	}
162
163	return (u32)int_sqrt(sum / samples);
164}
165
166static s32 detect_a2_a2m_eiaj(struct cx88_core *core, s16 x[], u32 N)
167{
168	s32 carrier, stereo, dual, noise;
169	s32 carrier_freq, stereo_freq, dual_freq;
170	s32 ret;
171
172	switch (core->tvaudio) {
173	case WW_BG:
174	case WW_DK:
175		carrier_freq = FREQ_A2_CARRIER;
176		stereo_freq = FREQ_A2_STEREO;
177		dual_freq = FREQ_A2_DUAL;
178		break;
179	case WW_M:
180		carrier_freq = FREQ_A2M_CARRIER;
181		stereo_freq = FREQ_A2M_STEREO;
182		dual_freq = FREQ_A2M_DUAL;
183		break;
184	case WW_EIAJ:
185		carrier_freq = FREQ_EIAJ_CARRIER;
186		stereo_freq = FREQ_EIAJ_STEREO;
187		dual_freq = FREQ_EIAJ_DUAL;
188		break;
189	default:
190		pr_warn("unsupported audio mode %d for %s\n",
191			core->tvaudio, __func__);
192		return UNSET;
193	}
194
195	carrier = freq_magnitude(x, N, carrier_freq);
196	stereo  = freq_magnitude(x, N, stereo_freq);
197	dual    = freq_magnitude(x, N, dual_freq);
198	noise   = noise_magnitude(x, N, FREQ_NOISE_START, FREQ_NOISE_END);
199
200	dprintk(1,
201		"detect a2/a2m/eiaj: carrier=%d, stereo=%d, dual=%d, noise=%d\n",
202		carrier, stereo, dual, noise);
203
204	if (stereo > dual)
205		ret = V4L2_TUNER_SUB_STEREO;
206	else
207		ret = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2;
208
209	if (core->tvaudio == WW_EIAJ) {
210		/* EIAJ checks may need adjustments */
211		if ((carrier > max(stereo, dual) * 2) &&
212		    (carrier < max(stereo, dual) * 6) &&
213		    (carrier > 20 && carrier < 200) &&
214		    (max(stereo, dual) > min(stereo, dual))) {
215			/*
216			 * For EIAJ the carrier is always present,
217			 * so we probably don't need noise detection
218			 */
219			return ret;
220		}
221	} else {
222		if ((carrier > max(stereo, dual) * 2) &&
223		    (carrier < max(stereo, dual) * 8) &&
224		    (carrier > 20 && carrier < 200) &&
225		    (noise < 10) &&
226		    (max(stereo, dual) > min(stereo, dual) * 2)) {
227			return ret;
228		}
229	}
230	return V4L2_TUNER_SUB_MONO;
231}
232
233static s32 detect_btsc(struct cx88_core *core, s16 x[], u32 N)
234{
235	s32 sap_ref = freq_magnitude(x, N, FREQ_BTSC_SAP_REF);
236	s32 sap = freq_magnitude(x, N, FREQ_BTSC_SAP);
237	s32 dual_ref = freq_magnitude(x, N, FREQ_BTSC_DUAL_REF);
238	s32 dual = freq_magnitude(x, N, FREQ_BTSC_DUAL);
239
240	dprintk(1, "detect btsc: dual_ref=%d, dual=%d, sap_ref=%d, sap=%d\n",
241		dual_ref, dual, sap_ref, sap);
242	/* FIXME: Currently not supported */
243	return UNSET;
244}
245
246static s16 *read_rds_samples(struct cx88_core *core, u32 *N)
247{
248	const struct sram_channel *srch = &cx88_sram_channels[SRAM_CH27];
249	s16 *samples;
250
251	unsigned int i;
252	unsigned int bpl = srch->fifo_size / AUD_RDS_LINES;
253	unsigned int spl = bpl / 4;
254	unsigned int sample_count = spl * (AUD_RDS_LINES - 1);
255
256	u32 current_address = cx_read(srch->ptr1_reg);
257	u32 offset = (current_address - srch->fifo_start + bpl);
258
259	dprintk(1,
260		"read RDS samples: current_address=%08x (offset=%08x), sample_count=%d, aud_intstat=%08x\n",
261		current_address,
262		current_address - srch->fifo_start, sample_count,
263		cx_read(MO_AUD_INTSTAT));
264	samples = kmalloc_array(sample_count, sizeof(*samples), GFP_KERNEL);
265	if (!samples)
266		return NULL;
267
268	*N = sample_count;
269
270	for (i = 0; i < sample_count; i++)  {
271		offset = offset % (AUD_RDS_LINES * bpl);
272		samples[i] = cx_read(srch->fifo_start + offset);
273		offset += 4;
274	}
275
276	dprintk(2, "RDS samples dump: %*ph\n", sample_count, samples);
277
278	return samples;
279}
280
281s32 cx88_dsp_detect_stereo_sap(struct cx88_core *core)
282{
283	s16 *samples;
284	u32 N = 0;
285	s32 ret = UNSET;
286
287	/* If audio RDS fifo is disabled, we can't read the samples */
288	if (!(cx_read(MO_AUD_DMACNTRL) & 0x04))
289		return ret;
290	if (!(cx_read(AUD_CTL) & EN_FMRADIO_EN_RDS))
291		return ret;
292
293	/* Wait at least 500 ms after an audio standard change */
294	if (time_before(jiffies, core->last_change + msecs_to_jiffies(500)))
295		return ret;
296
297	samples = read_rds_samples(core, &N);
298
299	if (!samples)
300		return ret;
301
302	switch (core->tvaudio) {
303	case WW_BG:
304	case WW_DK:
305	case WW_EIAJ:
306	case WW_M:
307		ret = detect_a2_a2m_eiaj(core, samples, N);
308		break;
309	case WW_BTSC:
310		ret = detect_btsc(core, samples, N);
311		break;
312	case WW_NONE:
313	case WW_I:
314	case WW_L:
315	case WW_I2SPT:
316	case WW_FM:
317	case WW_I2SADC:
318		break;
319	}
320
321	kfree(samples);
322
323	if (ret != UNSET)
324		dprintk(1, "stereo/sap detection result:%s%s%s\n",
325			(ret & V4L2_TUNER_SUB_MONO) ? " mono" : "",
326			(ret & V4L2_TUNER_SUB_STEREO) ? " stereo" : "",
327			(ret & V4L2_TUNER_SUB_LANG2) ? " dual" : "");
328
329	return ret;
330}
331EXPORT_SYMBOL(cx88_dsp_detect_stereo_sap);
332