Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.9.4.
   1/*
   2 * Copyright © 2008-2015 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21 * IN THE SOFTWARE.
  22 *
  23 */
  24
  25#include <linux/prefetch.h>
  26#include <linux/dma-fence-array.h>
  27
  28#include "i915_drv.h"
  29
  30static const char *i915_fence_get_driver_name(struct dma_fence *fence)
  31{
  32	return "i915";
  33}
  34
  35static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
  36{
  37	return to_request(fence)->timeline->common->name;
  38}
  39
  40static bool i915_fence_signaled(struct dma_fence *fence)
  41{
  42	return i915_gem_request_completed(to_request(fence));
  43}
  44
  45static bool i915_fence_enable_signaling(struct dma_fence *fence)
  46{
  47	if (i915_fence_signaled(fence))
  48		return false;
  49
  50	intel_engine_enable_signaling(to_request(fence));
  51	return true;
  52}
  53
  54static signed long i915_fence_wait(struct dma_fence *fence,
  55				   bool interruptible,
  56				   signed long timeout)
  57{
  58	return i915_wait_request(to_request(fence), interruptible, timeout);
  59}
  60
  61static void i915_fence_release(struct dma_fence *fence)
  62{
  63	struct drm_i915_gem_request *req = to_request(fence);
  64
  65	kmem_cache_free(req->i915->requests, req);
  66}
  67
  68const struct dma_fence_ops i915_fence_ops = {
  69	.get_driver_name = i915_fence_get_driver_name,
  70	.get_timeline_name = i915_fence_get_timeline_name,
  71	.enable_signaling = i915_fence_enable_signaling,
  72	.signaled = i915_fence_signaled,
  73	.wait = i915_fence_wait,
  74	.release = i915_fence_release,
  75};
  76
  77int i915_gem_request_add_to_client(struct drm_i915_gem_request *req,
  78				   struct drm_file *file)
  79{
  80	struct drm_i915_private *dev_private;
  81	struct drm_i915_file_private *file_priv;
  82
  83	WARN_ON(!req || !file || req->file_priv);
  84
  85	if (!req || !file)
  86		return -EINVAL;
  87
  88	if (req->file_priv)
  89		return -EINVAL;
  90
  91	dev_private = req->i915;
  92	file_priv = file->driver_priv;
  93
  94	spin_lock(&file_priv->mm.lock);
  95	req->file_priv = file_priv;
  96	list_add_tail(&req->client_list, &file_priv->mm.request_list);
  97	spin_unlock(&file_priv->mm.lock);
  98
  99	return 0;
 100}
 101
 102static inline void
 103i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
 104{
 105	struct drm_i915_file_private *file_priv = request->file_priv;
 106
 107	if (!file_priv)
 108		return;
 109
 110	spin_lock(&file_priv->mm.lock);
 111	list_del(&request->client_list);
 112	request->file_priv = NULL;
 113	spin_unlock(&file_priv->mm.lock);
 114}
 115
 116static struct i915_dependency *
 117i915_dependency_alloc(struct drm_i915_private *i915)
 118{
 119	return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
 120}
 121
 122static void
 123i915_dependency_free(struct drm_i915_private *i915,
 124		     struct i915_dependency *dep)
 125{
 126	kmem_cache_free(i915->dependencies, dep);
 127}
 128
 129static void
 130__i915_priotree_add_dependency(struct i915_priotree *pt,
 131			       struct i915_priotree *signal,
 132			       struct i915_dependency *dep,
 133			       unsigned long flags)
 134{
 135	INIT_LIST_HEAD(&dep->dfs_link);
 136	list_add(&dep->wait_link, &signal->waiters_list);
 137	list_add(&dep->signal_link, &pt->signalers_list);
 138	dep->signaler = signal;
 139	dep->flags = flags;
 140}
 141
 142static int
 143i915_priotree_add_dependency(struct drm_i915_private *i915,
 144			     struct i915_priotree *pt,
 145			     struct i915_priotree *signal)
 146{
 147	struct i915_dependency *dep;
 148
 149	dep = i915_dependency_alloc(i915);
 150	if (!dep)
 151		return -ENOMEM;
 152
 153	__i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
 154	return 0;
 155}
 156
 157static void
 158i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
 159{
 160	struct i915_dependency *dep, *next;
 161
 162	GEM_BUG_ON(!RB_EMPTY_NODE(&pt->node));
 163
 164	/* Everyone we depended upon (the fences we wait to be signaled)
 165	 * should retire before us and remove themselves from our list.
 166	 * However, retirement is run independently on each timeline and
 167	 * so we may be called out-of-order.
 168	 */
 169	list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
 170		list_del(&dep->wait_link);
 171		if (dep->flags & I915_DEPENDENCY_ALLOC)
 172			i915_dependency_free(i915, dep);
 173	}
 174
 175	/* Remove ourselves from everyone who depends upon us */
 176	list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
 177		list_del(&dep->signal_link);
 178		if (dep->flags & I915_DEPENDENCY_ALLOC)
 179			i915_dependency_free(i915, dep);
 180	}
 181}
 182
 183static void
 184i915_priotree_init(struct i915_priotree *pt)
 185{
 186	INIT_LIST_HEAD(&pt->signalers_list);
 187	INIT_LIST_HEAD(&pt->waiters_list);
 188	RB_CLEAR_NODE(&pt->node);
 189	pt->priority = INT_MIN;
 190}
 191
 192void i915_gem_retire_noop(struct i915_gem_active *active,
 193			  struct drm_i915_gem_request *request)
 194{
 195	/* Space left intentionally blank */
 196}
 197
 198static void i915_gem_request_retire(struct drm_i915_gem_request *request)
 199{
 200	struct i915_gem_active *active, *next;
 201
 202	lockdep_assert_held(&request->i915->drm.struct_mutex);
 203	GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
 204	GEM_BUG_ON(!i915_sw_fence_signaled(&request->execute));
 205	GEM_BUG_ON(!i915_gem_request_completed(request));
 206	GEM_BUG_ON(!request->i915->gt.active_requests);
 207
 208	trace_i915_gem_request_retire(request);
 209
 210	spin_lock_irq(&request->engine->timeline->lock);
 211	list_del_init(&request->link);
 212	spin_unlock_irq(&request->engine->timeline->lock);
 213
 214	/* We know the GPU must have read the request to have
 215	 * sent us the seqno + interrupt, so use the position
 216	 * of tail of the request to update the last known position
 217	 * of the GPU head.
 218	 *
 219	 * Note this requires that we are always called in request
 220	 * completion order.
 221	 */
 222	list_del(&request->ring_link);
 223	request->ring->last_retired_head = request->postfix;
 224	if (!--request->i915->gt.active_requests) {
 225		GEM_BUG_ON(!request->i915->gt.awake);
 226		mod_delayed_work(request->i915->wq,
 227				 &request->i915->gt.idle_work,
 228				 msecs_to_jiffies(100));
 229	}
 230
 231	/* Walk through the active list, calling retire on each. This allows
 232	 * objects to track their GPU activity and mark themselves as idle
 233	 * when their *last* active request is completed (updating state
 234	 * tracking lists for eviction, active references for GEM, etc).
 235	 *
 236	 * As the ->retire() may free the node, we decouple it first and
 237	 * pass along the auxiliary information (to avoid dereferencing
 238	 * the node after the callback).
 239	 */
 240	list_for_each_entry_safe(active, next, &request->active_list, link) {
 241		/* In microbenchmarks or focusing upon time inside the kernel,
 242		 * we may spend an inordinate amount of time simply handling
 243		 * the retirement of requests and processing their callbacks.
 244		 * Of which, this loop itself is particularly hot due to the
 245		 * cache misses when jumping around the list of i915_gem_active.
 246		 * So we try to keep this loop as streamlined as possible and
 247		 * also prefetch the next i915_gem_active to try and hide
 248		 * the likely cache miss.
 249		 */
 250		prefetchw(next);
 251
 252		INIT_LIST_HEAD(&active->link);
 253		RCU_INIT_POINTER(active->request, NULL);
 254
 255		active->retire(active, request);
 256	}
 257
 258	i915_gem_request_remove_from_client(request);
 259
 260	if (request->previous_context) {
 261		if (i915.enable_execlists)
 262			intel_lr_context_unpin(request->previous_context,
 263					       request->engine);
 264	}
 265
 266	i915_gem_context_put(request->ctx);
 267
 268	dma_fence_signal(&request->fence);
 269
 270	i915_priotree_fini(request->i915, &request->priotree);
 271	i915_gem_request_put(request);
 272}
 273
 274void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
 275{
 276	struct intel_engine_cs *engine = req->engine;
 277	struct drm_i915_gem_request *tmp;
 278
 279	lockdep_assert_held(&req->i915->drm.struct_mutex);
 280	if (list_empty(&req->link))
 281		return;
 282
 283	do {
 284		tmp = list_first_entry(&engine->timeline->requests,
 285				       typeof(*tmp), link);
 286
 287		i915_gem_request_retire(tmp);
 288	} while (tmp != req);
 289}
 290
 291static int i915_gem_check_wedge(struct drm_i915_private *dev_priv)
 292{
 293	struct i915_gpu_error *error = &dev_priv->gpu_error;
 294
 295	if (i915_terminally_wedged(error))
 296		return -EIO;
 297
 298	if (i915_reset_in_progress(error)) {
 299		/* Non-interruptible callers can't handle -EAGAIN, hence return
 300		 * -EIO unconditionally for these.
 301		 */
 302		if (!dev_priv->mm.interruptible)
 303			return -EIO;
 304
 305		return -EAGAIN;
 306	}
 307
 308	return 0;
 309}
 310
 311static int i915_gem_init_global_seqno(struct drm_i915_private *i915, u32 seqno)
 312{
 313	struct i915_gem_timeline *timeline = &i915->gt.global_timeline;
 314	struct intel_engine_cs *engine;
 315	enum intel_engine_id id;
 316	int ret;
 317
 318	/* Carefully retire all requests without writing to the rings */
 319	ret = i915_gem_wait_for_idle(i915,
 320				     I915_WAIT_INTERRUPTIBLE |
 321				     I915_WAIT_LOCKED);
 322	if (ret)
 323		return ret;
 324
 325	i915_gem_retire_requests(i915);
 326	GEM_BUG_ON(i915->gt.active_requests > 1);
 327
 328	/* If the seqno wraps around, we need to clear the breadcrumb rbtree */
 329	if (!i915_seqno_passed(seqno, atomic_read(&timeline->next_seqno))) {
 330		while (intel_breadcrumbs_busy(i915))
 331			cond_resched(); /* spin until threads are complete */
 332	}
 333	atomic_set(&timeline->next_seqno, seqno);
 334
 335	/* Finally reset hw state */
 336	for_each_engine(engine, i915, id)
 337		intel_engine_init_global_seqno(engine, seqno);
 338
 339	list_for_each_entry(timeline, &i915->gt.timelines, link) {
 340		for_each_engine(engine, i915, id) {
 341			struct intel_timeline *tl = &timeline->engine[id];
 342
 343			memset(tl->sync_seqno, 0, sizeof(tl->sync_seqno));
 344		}
 345	}
 346
 347	return 0;
 348}
 349
 350int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
 351{
 352	struct drm_i915_private *dev_priv = to_i915(dev);
 353
 354	lockdep_assert_held(&dev_priv->drm.struct_mutex);
 355
 356	if (seqno == 0)
 357		return -EINVAL;
 358
 359	/* HWS page needs to be set less than what we
 360	 * will inject to ring
 361	 */
 362	return i915_gem_init_global_seqno(dev_priv, seqno - 1);
 363}
 364
 365static int reserve_global_seqno(struct drm_i915_private *i915)
 366{
 367	u32 active_requests = ++i915->gt.active_requests;
 368	u32 next_seqno = atomic_read(&i915->gt.global_timeline.next_seqno);
 369	int ret;
 370
 371	/* Reservation is fine until we need to wrap around */
 372	if (likely(next_seqno + active_requests > next_seqno))
 373		return 0;
 374
 375	ret = i915_gem_init_global_seqno(i915, 0);
 376	if (ret) {
 377		i915->gt.active_requests--;
 378		return ret;
 379	}
 380
 381	return 0;
 382}
 383
 384static u32 __timeline_get_seqno(struct i915_gem_timeline *tl)
 385{
 386	/* next_seqno only incremented under a mutex */
 387	return ++tl->next_seqno.counter;
 388}
 389
 390static u32 timeline_get_seqno(struct i915_gem_timeline *tl)
 391{
 392	return atomic_inc_return(&tl->next_seqno);
 393}
 394
 395void __i915_gem_request_submit(struct drm_i915_gem_request *request)
 396{
 397	struct intel_engine_cs *engine = request->engine;
 398	struct intel_timeline *timeline;
 399	u32 seqno;
 400
 401	/* Transfer from per-context onto the global per-engine timeline */
 402	timeline = engine->timeline;
 403	GEM_BUG_ON(timeline == request->timeline);
 404	assert_spin_locked(&timeline->lock);
 405
 406	seqno = timeline_get_seqno(timeline->common);
 407	GEM_BUG_ON(!seqno);
 408	GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
 409
 410	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno, seqno));
 411	request->previous_seqno = timeline->last_submitted_seqno;
 412	timeline->last_submitted_seqno = seqno;
 413
 414	/* We may be recursing from the signal callback of another i915 fence */
 415	spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
 416	request->global_seqno = seqno;
 417	if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
 418		intel_engine_enable_signaling(request);
 419	spin_unlock(&request->lock);
 420
 421	GEM_BUG_ON(!request->global_seqno);
 422	engine->emit_breadcrumb(request,
 423				request->ring->vaddr + request->postfix);
 424
 425	spin_lock(&request->timeline->lock);
 426	list_move_tail(&request->link, &timeline->requests);
 427	spin_unlock(&request->timeline->lock);
 428
 429	i915_sw_fence_commit(&request->execute);
 430}
 431
 432void i915_gem_request_submit(struct drm_i915_gem_request *request)
 433{
 434	struct intel_engine_cs *engine = request->engine;
 435	unsigned long flags;
 436
 437	/* Will be called from irq-context when using foreign fences. */
 438	spin_lock_irqsave(&engine->timeline->lock, flags);
 439
 440	__i915_gem_request_submit(request);
 441
 442	spin_unlock_irqrestore(&engine->timeline->lock, flags);
 443}
 444
 445static int __i915_sw_fence_call
 446submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 447{
 448	struct drm_i915_gem_request *request =
 449		container_of(fence, typeof(*request), submit);
 450
 451	switch (state) {
 452	case FENCE_COMPLETE:
 453		request->engine->submit_request(request);
 454		break;
 455
 456	case FENCE_FREE:
 457		i915_gem_request_put(request);
 458		break;
 459	}
 460
 461	return NOTIFY_DONE;
 462}
 463
 464static int __i915_sw_fence_call
 465execute_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
 466{
 467	struct drm_i915_gem_request *request =
 468		container_of(fence, typeof(*request), execute);
 469
 470	switch (state) {
 471	case FENCE_COMPLETE:
 472		break;
 473
 474	case FENCE_FREE:
 475		i915_gem_request_put(request);
 476		break;
 477	}
 478
 479	return NOTIFY_DONE;
 480}
 481
 482/**
 483 * i915_gem_request_alloc - allocate a request structure
 484 *
 485 * @engine: engine that we wish to issue the request on.
 486 * @ctx: context that the request will be associated with.
 487 *       This can be NULL if the request is not directly related to
 488 *       any specific user context, in which case this function will
 489 *       choose an appropriate context to use.
 490 *
 491 * Returns a pointer to the allocated request if successful,
 492 * or an error code if not.
 493 */
 494struct drm_i915_gem_request *
 495i915_gem_request_alloc(struct intel_engine_cs *engine,
 496		       struct i915_gem_context *ctx)
 497{
 498	struct drm_i915_private *dev_priv = engine->i915;
 499	struct drm_i915_gem_request *req;
 500	int ret;
 501
 502	lockdep_assert_held(&dev_priv->drm.struct_mutex);
 503
 504	/* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
 505	 * EIO if the GPU is already wedged, or EAGAIN to drop the struct_mutex
 506	 * and restart.
 507	 */
 508	ret = i915_gem_check_wedge(dev_priv);
 509	if (ret)
 510		return ERR_PTR(ret);
 511
 512	ret = reserve_global_seqno(dev_priv);
 513	if (ret)
 514		return ERR_PTR(ret);
 515
 516	/* Move the oldest request to the slab-cache (if not in use!) */
 517	req = list_first_entry_or_null(&engine->timeline->requests,
 518				       typeof(*req), link);
 519	if (req && __i915_gem_request_completed(req))
 520		i915_gem_request_retire(req);
 521
 522	/* Beware: Dragons be flying overhead.
 523	 *
 524	 * We use RCU to look up requests in flight. The lookups may
 525	 * race with the request being allocated from the slab freelist.
 526	 * That is the request we are writing to here, may be in the process
 527	 * of being read by __i915_gem_active_get_rcu(). As such,
 528	 * we have to be very careful when overwriting the contents. During
 529	 * the RCU lookup, we change chase the request->engine pointer,
 530	 * read the request->global_seqno and increment the reference count.
 531	 *
 532	 * The reference count is incremented atomically. If it is zero,
 533	 * the lookup knows the request is unallocated and complete. Otherwise,
 534	 * it is either still in use, or has been reallocated and reset
 535	 * with dma_fence_init(). This increment is safe for release as we
 536	 * check that the request we have a reference to and matches the active
 537	 * request.
 538	 *
 539	 * Before we increment the refcount, we chase the request->engine
 540	 * pointer. We must not call kmem_cache_zalloc() or else we set
 541	 * that pointer to NULL and cause a crash during the lookup. If
 542	 * we see the request is completed (based on the value of the
 543	 * old engine and seqno), the lookup is complete and reports NULL.
 544	 * If we decide the request is not completed (new engine or seqno),
 545	 * then we grab a reference and double check that it is still the
 546	 * active request - which it won't be and restart the lookup.
 547	 *
 548	 * Do not use kmem_cache_zalloc() here!
 549	 */
 550	req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
 551	if (!req) {
 552		ret = -ENOMEM;
 553		goto err_unreserve;
 554	}
 555
 556	req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
 557	GEM_BUG_ON(req->timeline == engine->timeline);
 558
 559	spin_lock_init(&req->lock);
 560	dma_fence_init(&req->fence,
 561		       &i915_fence_ops,
 562		       &req->lock,
 563		       req->timeline->fence_context,
 564		       __timeline_get_seqno(req->timeline->common));
 565
 566	/* We bump the ref for the fence chain */
 567	i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
 568	i915_sw_fence_init(&i915_gem_request_get(req)->execute, execute_notify);
 569
 570	/* Ensure that the execute fence completes after the submit fence -
 571	 * as we complete the execute fence from within the submit fence
 572	 * callback, its completion would otherwise be visible first.
 573	 */
 574	i915_sw_fence_await_sw_fence(&req->execute, &req->submit, &req->execq);
 575
 576	i915_priotree_init(&req->priotree);
 577
 578	INIT_LIST_HEAD(&req->active_list);
 579	req->i915 = dev_priv;
 580	req->engine = engine;
 581	req->ctx = i915_gem_context_get(ctx);
 582
 583	/* No zalloc, must clear what we need by hand */
 584	req->global_seqno = 0;
 585	req->previous_context = NULL;
 586	req->file_priv = NULL;
 587	req->batch = NULL;
 588
 589	/*
 590	 * Reserve space in the ring buffer for all the commands required to
 591	 * eventually emit this request. This is to guarantee that the
 592	 * i915_add_request() call can't fail. Note that the reserve may need
 593	 * to be redone if the request is not actually submitted straight
 594	 * away, e.g. because a GPU scheduler has deferred it.
 595	 */
 596	req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
 597	GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
 598
 599	if (i915.enable_execlists)
 600		ret = intel_logical_ring_alloc_request_extras(req);
 601	else
 602		ret = intel_ring_alloc_request_extras(req);
 603	if (ret)
 604		goto err_ctx;
 605
 606	/* Record the position of the start of the request so that
 607	 * should we detect the updated seqno part-way through the
 608	 * GPU processing the request, we never over-estimate the
 609	 * position of the head.
 610	 */
 611	req->head = req->ring->tail;
 612
 613	return req;
 614
 615err_ctx:
 616	i915_gem_context_put(ctx);
 617	kmem_cache_free(dev_priv->requests, req);
 618err_unreserve:
 619	dev_priv->gt.active_requests--;
 620	return ERR_PTR(ret);
 621}
 622
 623static int
 624i915_gem_request_await_request(struct drm_i915_gem_request *to,
 625			       struct drm_i915_gem_request *from)
 626{
 627	int ret;
 628
 629	GEM_BUG_ON(to == from);
 630
 631	if (to->engine->schedule) {
 632		ret = i915_priotree_add_dependency(to->i915,
 633						   &to->priotree,
 634						   &from->priotree);
 635		if (ret < 0)
 636			return ret;
 637	}
 638
 639	if (to->timeline == from->timeline)
 640		return 0;
 641
 642	if (to->engine == from->engine) {
 643		ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
 644						       &from->submit,
 645						       GFP_KERNEL);
 646		return ret < 0 ? ret : 0;
 647	}
 648
 649	if (!from->global_seqno) {
 650		ret = i915_sw_fence_await_dma_fence(&to->submit,
 651						    &from->fence, 0,
 652						    GFP_KERNEL);
 653		return ret < 0 ? ret : 0;
 654	}
 655
 656	if (from->global_seqno <= to->timeline->sync_seqno[from->engine->id])
 657		return 0;
 658
 659	trace_i915_gem_ring_sync_to(to, from);
 660	if (!i915.semaphores) {
 661		if (!i915_spin_request(from, TASK_INTERRUPTIBLE, 2)) {
 662			ret = i915_sw_fence_await_dma_fence(&to->submit,
 663							    &from->fence, 0,
 664							    GFP_KERNEL);
 665			if (ret < 0)
 666				return ret;
 667		}
 668	} else {
 669		ret = to->engine->semaphore.sync_to(to, from);
 670		if (ret)
 671			return ret;
 672	}
 673
 674	to->timeline->sync_seqno[from->engine->id] = from->global_seqno;
 675	return 0;
 676}
 677
 678int
 679i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
 680				 struct dma_fence *fence)
 681{
 682	struct dma_fence_array *array;
 683	int ret;
 684	int i;
 685
 686	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
 687		return 0;
 688
 689	if (dma_fence_is_i915(fence))
 690		return i915_gem_request_await_request(req, to_request(fence));
 691
 692	if (!dma_fence_is_array(fence)) {
 693		ret = i915_sw_fence_await_dma_fence(&req->submit,
 694						    fence, I915_FENCE_TIMEOUT,
 695						    GFP_KERNEL);
 696		return ret < 0 ? ret : 0;
 697	}
 698
 699	/* Note that if the fence-array was created in signal-on-any mode,
 700	 * we should *not* decompose it into its individual fences. However,
 701	 * we don't currently store which mode the fence-array is operating
 702	 * in. Fortunately, the only user of signal-on-any is private to
 703	 * amdgpu and we should not see any incoming fence-array from
 704	 * sync-file being in signal-on-any mode.
 705	 */
 706
 707	array = to_dma_fence_array(fence);
 708	for (i = 0; i < array->num_fences; i++) {
 709		struct dma_fence *child = array->fences[i];
 710
 711		if (dma_fence_is_i915(child))
 712			ret = i915_gem_request_await_request(req,
 713							     to_request(child));
 714		else
 715			ret = i915_sw_fence_await_dma_fence(&req->submit,
 716							    child, I915_FENCE_TIMEOUT,
 717							    GFP_KERNEL);
 718		if (ret < 0)
 719			return ret;
 720	}
 721
 722	return 0;
 723}
 724
 725/**
 726 * i915_gem_request_await_object - set this request to (async) wait upon a bo
 727 *
 728 * @to: request we are wishing to use
 729 * @obj: object which may be in use on another ring.
 730 *
 731 * This code is meant to abstract object synchronization with the GPU.
 732 * Conceptually we serialise writes between engines inside the GPU.
 733 * We only allow one engine to write into a buffer at any time, but
 734 * multiple readers. To ensure each has a coherent view of memory, we must:
 735 *
 736 * - If there is an outstanding write request to the object, the new
 737 *   request must wait for it to complete (either CPU or in hw, requests
 738 *   on the same ring will be naturally ordered).
 739 *
 740 * - If we are a write request (pending_write_domain is set), the new
 741 *   request must wait for outstanding read requests to complete.
 742 *
 743 * Returns 0 if successful, else propagates up the lower layer error.
 744 */
 745int
 746i915_gem_request_await_object(struct drm_i915_gem_request *to,
 747			      struct drm_i915_gem_object *obj,
 748			      bool write)
 749{
 750	struct dma_fence *excl;
 751	int ret = 0;
 752
 753	if (write) {
 754		struct dma_fence **shared;
 755		unsigned int count, i;
 756
 757		ret = reservation_object_get_fences_rcu(obj->resv,
 758							&excl, &count, &shared);
 759		if (ret)
 760			return ret;
 761
 762		for (i = 0; i < count; i++) {
 763			ret = i915_gem_request_await_dma_fence(to, shared[i]);
 764			if (ret)
 765				break;
 766
 767			dma_fence_put(shared[i]);
 768		}
 769
 770		for (; i < count; i++)
 771			dma_fence_put(shared[i]);
 772		kfree(shared);
 773	} else {
 774		excl = reservation_object_get_excl_rcu(obj->resv);
 775	}
 776
 777	if (excl) {
 778		if (ret == 0)
 779			ret = i915_gem_request_await_dma_fence(to, excl);
 780
 781		dma_fence_put(excl);
 782	}
 783
 784	return ret;
 785}
 786
 787static void i915_gem_mark_busy(const struct intel_engine_cs *engine)
 788{
 789	struct drm_i915_private *dev_priv = engine->i915;
 790
 791	if (dev_priv->gt.awake)
 792		return;
 793
 794	GEM_BUG_ON(!dev_priv->gt.active_requests);
 795
 796	intel_runtime_pm_get_noresume(dev_priv);
 797	dev_priv->gt.awake = true;
 798
 799	intel_enable_gt_powersave(dev_priv);
 800	i915_update_gfx_val(dev_priv);
 801	if (INTEL_GEN(dev_priv) >= 6)
 802		gen6_rps_busy(dev_priv);
 803
 804	queue_delayed_work(dev_priv->wq,
 805			   &dev_priv->gt.retire_work,
 806			   round_jiffies_up_relative(HZ));
 807}
 808
 809/*
 810 * NB: This function is not allowed to fail. Doing so would mean the the
 811 * request is not being tracked for completion but the work itself is
 812 * going to happen on the hardware. This would be a Bad Thing(tm).
 813 */
 814void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
 815{
 816	struct intel_engine_cs *engine = request->engine;
 817	struct intel_ring *ring = request->ring;
 818	struct intel_timeline *timeline = request->timeline;
 819	struct drm_i915_gem_request *prev;
 820	int err;
 821
 822	lockdep_assert_held(&request->i915->drm.struct_mutex);
 823	trace_i915_gem_request_add(request);
 824
 825	/*
 826	 * To ensure that this call will not fail, space for its emissions
 827	 * should already have been reserved in the ring buffer. Let the ring
 828	 * know that it is time to use that space up.
 829	 */
 830	request->reserved_space = 0;
 831
 832	/*
 833	 * Emit any outstanding flushes - execbuf can fail to emit the flush
 834	 * after having emitted the batchbuffer command. Hence we need to fix
 835	 * things up similar to emitting the lazy request. The difference here
 836	 * is that the flush _must_ happen before the next request, no matter
 837	 * what.
 838	 */
 839	if (flush_caches) {
 840		err = engine->emit_flush(request, EMIT_FLUSH);
 841
 842		/* Not allowed to fail! */
 843		WARN(err, "engine->emit_flush() failed: %d!\n", err);
 844	}
 845
 846	/* Record the position of the start of the breadcrumb so that
 847	 * should we detect the updated seqno part-way through the
 848	 * GPU processing the request, we never over-estimate the
 849	 * position of the ring's HEAD.
 850	 */
 851	err = intel_ring_begin(request, engine->emit_breadcrumb_sz);
 852	GEM_BUG_ON(err);
 853	request->postfix = ring->tail;
 854	ring->tail += engine->emit_breadcrumb_sz * sizeof(u32);
 855
 856	/* Seal the request and mark it as pending execution. Note that
 857	 * we may inspect this state, without holding any locks, during
 858	 * hangcheck. Hence we apply the barrier to ensure that we do not
 859	 * see a more recent value in the hws than we are tracking.
 860	 */
 861
 862	prev = i915_gem_active_raw(&timeline->last_request,
 863				   &request->i915->drm.struct_mutex);
 864	if (prev) {
 865		i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
 866					     &request->submitq);
 867		if (engine->schedule)
 868			__i915_priotree_add_dependency(&request->priotree,
 869						       &prev->priotree,
 870						       &request->dep,
 871						       0);
 872	}
 873
 874	spin_lock_irq(&timeline->lock);
 875	list_add_tail(&request->link, &timeline->requests);
 876	spin_unlock_irq(&timeline->lock);
 877
 878	GEM_BUG_ON(i915_seqno_passed(timeline->last_submitted_seqno,
 879				     request->fence.seqno));
 880
 881	timeline->last_submitted_seqno = request->fence.seqno;
 882	i915_gem_active_set(&timeline->last_request, request);
 883
 884	list_add_tail(&request->ring_link, &ring->request_list);
 885	request->emitted_jiffies = jiffies;
 886
 887	i915_gem_mark_busy(engine);
 888
 889	/* Let the backend know a new request has arrived that may need
 890	 * to adjust the existing execution schedule due to a high priority
 891	 * request - i.e. we may want to preempt the current request in order
 892	 * to run a high priority dependency chain *before* we can execute this
 893	 * request.
 894	 *
 895	 * This is called before the request is ready to run so that we can
 896	 * decide whether to preempt the entire chain so that it is ready to
 897	 * run at the earliest possible convenience.
 898	 */
 899	if (engine->schedule)
 900		engine->schedule(request, request->ctx->priority);
 901
 902	local_bh_disable();
 903	i915_sw_fence_commit(&request->submit);
 904	local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
 905}
 906
 907static void reset_wait_queue(wait_queue_head_t *q, wait_queue_t *wait)
 908{
 909	unsigned long flags;
 910
 911	spin_lock_irqsave(&q->lock, flags);
 912	if (list_empty(&wait->task_list))
 913		__add_wait_queue(q, wait);
 914	spin_unlock_irqrestore(&q->lock, flags);
 915}
 916
 917static unsigned long local_clock_us(unsigned int *cpu)
 918{
 919	unsigned long t;
 920
 921	/* Cheaply and approximately convert from nanoseconds to microseconds.
 922	 * The result and subsequent calculations are also defined in the same
 923	 * approximate microseconds units. The principal source of timing
 924	 * error here is from the simple truncation.
 925	 *
 926	 * Note that local_clock() is only defined wrt to the current CPU;
 927	 * the comparisons are no longer valid if we switch CPUs. Instead of
 928	 * blocking preemption for the entire busywait, we can detect the CPU
 929	 * switch and use that as indicator of system load and a reason to
 930	 * stop busywaiting, see busywait_stop().
 931	 */
 932	*cpu = get_cpu();
 933	t = local_clock() >> 10;
 934	put_cpu();
 935
 936	return t;
 937}
 938
 939static bool busywait_stop(unsigned long timeout, unsigned int cpu)
 940{
 941	unsigned int this_cpu;
 942
 943	if (time_after(local_clock_us(&this_cpu), timeout))
 944		return true;
 945
 946	return this_cpu != cpu;
 947}
 948
 949bool __i915_spin_request(const struct drm_i915_gem_request *req,
 950			 int state, unsigned long timeout_us)
 951{
 952	unsigned int cpu;
 953
 954	/* When waiting for high frequency requests, e.g. during synchronous
 955	 * rendering split between the CPU and GPU, the finite amount of time
 956	 * required to set up the irq and wait upon it limits the response
 957	 * rate. By busywaiting on the request completion for a short while we
 958	 * can service the high frequency waits as quick as possible. However,
 959	 * if it is a slow request, we want to sleep as quickly as possible.
 960	 * The tradeoff between waiting and sleeping is roughly the time it
 961	 * takes to sleep on a request, on the order of a microsecond.
 962	 */
 963
 964	timeout_us += local_clock_us(&cpu);
 965	do {
 966		if (__i915_gem_request_completed(req))
 967			return true;
 968
 969		if (signal_pending_state(state, current))
 970			break;
 971
 972		if (busywait_stop(timeout_us, cpu))
 973			break;
 974
 975		cpu_relax();
 976	} while (!need_resched());
 977
 978	return false;
 979}
 980
 981static long
 982__i915_request_wait_for_execute(struct drm_i915_gem_request *request,
 983				unsigned int flags,
 984				long timeout)
 985{
 986	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
 987		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
 988	wait_queue_head_t *q = &request->i915->gpu_error.wait_queue;
 989	DEFINE_WAIT(reset);
 990	DEFINE_WAIT(wait);
 991
 992	if (flags & I915_WAIT_LOCKED)
 993		add_wait_queue(q, &reset);
 994
 995	do {
 996		prepare_to_wait(&request->execute.wait, &wait, state);
 997
 998		if (i915_sw_fence_done(&request->execute))
 999			break;
1000
1001		if (flags & I915_WAIT_LOCKED &&
1002		    i915_reset_in_progress(&request->i915->gpu_error)) {
1003			__set_current_state(TASK_RUNNING);
1004			i915_reset(request->i915);
1005			reset_wait_queue(q, &reset);
1006			continue;
1007		}
1008
1009		if (signal_pending_state(state, current)) {
1010			timeout = -ERESTARTSYS;
1011			break;
1012		}
1013
1014		if (!timeout) {
1015			timeout = -ETIME;
1016			break;
1017		}
1018
1019		timeout = io_schedule_timeout(timeout);
1020	} while (1);
1021	finish_wait(&request->execute.wait, &wait);
1022
1023	if (flags & I915_WAIT_LOCKED)
1024		remove_wait_queue(q, &reset);
1025
1026	return timeout;
1027}
1028
1029/**
1030 * i915_wait_request - wait until execution of request has finished
1031 * @req: the request to wait upon
1032 * @flags: how to wait
1033 * @timeout: how long to wait in jiffies
1034 *
1035 * i915_wait_request() waits for the request to be completed, for a
1036 * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1037 * unbounded wait).
1038 *
1039 * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1040 * in via the flags, and vice versa if the struct_mutex is not held, the caller
1041 * must not specify that the wait is locked.
1042 *
1043 * Returns the remaining time (in jiffies) if the request completed, which may
1044 * be zero or -ETIME if the request is unfinished after the timeout expires.
1045 * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1046 * pending before the request completes.
1047 */
1048long i915_wait_request(struct drm_i915_gem_request *req,
1049		       unsigned int flags,
1050		       long timeout)
1051{
1052	const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1053		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1054	DEFINE_WAIT(reset);
1055	struct intel_wait wait;
1056
1057	might_sleep();
1058#if IS_ENABLED(CONFIG_LOCKDEP)
1059	GEM_BUG_ON(debug_locks &&
1060		   !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1061		   !!(flags & I915_WAIT_LOCKED));
1062#endif
1063	GEM_BUG_ON(timeout < 0);
1064
1065	if (i915_gem_request_completed(req))
1066		return timeout;
1067
1068	if (!timeout)
1069		return -ETIME;
1070
1071	trace_i915_gem_request_wait_begin(req);
1072
1073	if (!i915_sw_fence_done(&req->execute)) {
1074		timeout = __i915_request_wait_for_execute(req, flags, timeout);
1075		if (timeout < 0)
1076			goto complete;
1077
1078		GEM_BUG_ON(!i915_sw_fence_done(&req->execute));
1079	}
1080	GEM_BUG_ON(!i915_sw_fence_done(&req->submit));
1081	GEM_BUG_ON(!req->global_seqno);
1082
1083	/* Optimistic short spin before touching IRQs */
1084	if (i915_spin_request(req, state, 5))
1085		goto complete;
1086
1087	set_current_state(state);
1088	if (flags & I915_WAIT_LOCKED)
1089		add_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1090
1091	intel_wait_init(&wait, req->global_seqno);
1092	if (intel_engine_add_wait(req->engine, &wait))
1093		/* In order to check that we haven't missed the interrupt
1094		 * as we enabled it, we need to kick ourselves to do a
1095		 * coherent check on the seqno before we sleep.
1096		 */
1097		goto wakeup;
1098
1099	for (;;) {
1100		if (signal_pending_state(state, current)) {
1101			timeout = -ERESTARTSYS;
1102			break;
1103		}
1104
1105		if (!timeout) {
1106			timeout = -ETIME;
1107			break;
1108		}
1109
1110		timeout = io_schedule_timeout(timeout);
1111
1112		if (intel_wait_complete(&wait))
1113			break;
1114
1115		set_current_state(state);
1116
1117wakeup:
1118		/* Carefully check if the request is complete, giving time
1119		 * for the seqno to be visible following the interrupt.
1120		 * We also have to check in case we are kicked by the GPU
1121		 * reset in order to drop the struct_mutex.
1122		 */
1123		if (__i915_request_irq_complete(req))
1124			break;
1125
1126		/* If the GPU is hung, and we hold the lock, reset the GPU
1127		 * and then check for completion. On a full reset, the engine's
1128		 * HW seqno will be advanced passed us and we are complete.
1129		 * If we do a partial reset, we have to wait for the GPU to
1130		 * resume and update the breadcrumb.
1131		 *
1132		 * If we don't hold the mutex, we can just wait for the worker
1133		 * to come along and update the breadcrumb (either directly
1134		 * itself, or indirectly by recovering the GPU).
1135		 */
1136		if (flags & I915_WAIT_LOCKED &&
1137		    i915_reset_in_progress(&req->i915->gpu_error)) {
1138			__set_current_state(TASK_RUNNING);
1139			i915_reset(req->i915);
1140			reset_wait_queue(&req->i915->gpu_error.wait_queue,
1141					 &reset);
1142			continue;
1143		}
1144
1145		/* Only spin if we know the GPU is processing this request */
1146		if (i915_spin_request(req, state, 2))
1147			break;
1148	}
1149
1150	intel_engine_remove_wait(req->engine, &wait);
1151	if (flags & I915_WAIT_LOCKED)
1152		remove_wait_queue(&req->i915->gpu_error.wait_queue, &reset);
1153	__set_current_state(TASK_RUNNING);
1154
1155complete:
1156	trace_i915_gem_request_wait_end(req);
1157
1158	return timeout;
1159}
1160
1161static void engine_retire_requests(struct intel_engine_cs *engine)
1162{
1163	struct drm_i915_gem_request *request, *next;
1164
1165	list_for_each_entry_safe(request, next,
1166				 &engine->timeline->requests, link) {
1167		if (!__i915_gem_request_completed(request))
1168			return;
1169
1170		i915_gem_request_retire(request);
1171	}
1172}
1173
1174void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1175{
1176	struct intel_engine_cs *engine;
1177	enum intel_engine_id id;
1178
1179	lockdep_assert_held(&dev_priv->drm.struct_mutex);
1180
1181	if (!dev_priv->gt.active_requests)
1182		return;
1183
1184	for_each_engine(engine, dev_priv, id)
1185		engine_retire_requests(engine);
1186}