Linux Audio

Check our new training course

Loading...
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Copyright (C) 1995  Linus Torvalds
   4 *
   5 * This file contains the setup_arch() code, which handles the architecture-dependent
   6 * parts of early kernel initialization.
 
 
 
 
 
 
 
 
 
 
 
 
   7 */
 
 
 
 
 
 
 
 
 
 
   8#include <linux/acpi.h>
 
 
 
 
 
 
   9#include <linux/console.h>
  10#include <linux/crash_dump.h>
  11#include <linux/dma-map-ops.h>
 
  12#include <linux/efi.h>
  13#include <linux/ima.h>
  14#include <linux/init_ohci1394_dma.h>
  15#include <linux/initrd.h>
  16#include <linux/iscsi_ibft.h>
  17#include <linux/memblock.h>
  18#include <linux/panic_notifier.h>
 
 
  19#include <linux/pci.h>
  20#include <linux/root_dev.h>
  21#include <linux/hugetlb.h>
  22#include <linux/tboot.h>
  23#include <linux/usb/xhci-dbgp.h>
  24#include <linux/static_call.h>
  25#include <linux/swiotlb.h>
  26#include <linux/random.h>
 
 
 
 
 
 
 
 
 
 
 
  27
  28#include <uapi/linux/mount.h>
 
 
 
  29
  30#include <xen/xen.h>
  31
 
  32#include <asm/apic.h>
 
 
 
 
  33#include <asm/efi.h>
  34#include <asm/numa.h>
 
 
 
 
 
  35#include <asm/bios_ebda.h>
 
 
  36#include <asm/bugs.h>
  37#include <asm/cacheinfo.h>
  38#include <asm/coco.h>
 
  39#include <asm/cpu.h>
  40#include <asm/efi.h>
 
 
  41#include <asm/gart.h>
 
 
 
 
  42#include <asm/hypervisor.h>
  43#include <asm/io_apic.h>
  44#include <asm/kasan.h>
  45#include <asm/kaslr.h>
  46#include <asm/mce.h>
  47#include <asm/memtype.h>
  48#include <asm/mtrr.h>
  49#include <asm/realmode.h>
  50#include <asm/olpc_ofw.h>
  51#include <asm/pci-direct.h>
 
 
 
 
 
 
  52#include <asm/prom.h>
  53#include <asm/proto.h>
  54#include <asm/thermal.h>
  55#include <asm/unwind.h>
  56#include <asm/vsyscall.h>
  57#include <linux/vmalloc.h>
  58
  59/*
  60 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
  61 * max_pfn_mapped:     highest directly mapped pfn > 4 GB
  62 *
  63 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
  64 * represented by pfn_mapped[].
  65 */
  66unsigned long max_low_pfn_mapped;
  67unsigned long max_pfn_mapped;
  68
  69#ifdef CONFIG_DMI
  70RESERVE_BRK(dmi_alloc, 65536);
  71#endif
  72
  73
  74unsigned long _brk_start = (unsigned long)__brk_base;
  75unsigned long _brk_end   = (unsigned long)__brk_base;
 
 
 
 
 
 
 
 
 
 
 
 
  76
  77struct boot_params boot_params;
  78
  79/*
  80 * These are the four main kernel memory regions, we put them into
  81 * the resource tree so that kdump tools and other debugging tools
  82 * recover it:
  83 */
  84
  85static struct resource rodata_resource = {
  86	.name	= "Kernel rodata",
  87	.start	= 0,
  88	.end	= 0,
  89	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  90};
  91
  92static struct resource data_resource = {
  93	.name	= "Kernel data",
  94	.start	= 0,
  95	.end	= 0,
  96	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
  97};
  98
  99static struct resource code_resource = {
 100	.name	= "Kernel code",
 101	.start	= 0,
 102	.end	= 0,
 103	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 104};
 105
 106static struct resource bss_resource = {
 107	.name	= "Kernel bss",
 108	.start	= 0,
 109	.end	= 0,
 110	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 111};
 112
 113
 114#ifdef CONFIG_X86_32
 115/* CPU data as detected by the assembly code in head_32.S */
 116struct cpuinfo_x86 new_cpu_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117
 118struct apm_info apm_info;
 119EXPORT_SYMBOL(apm_info);
 120
 121#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 122	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 123struct ist_info ist_info;
 124EXPORT_SYMBOL(ist_info);
 125#else
 126struct ist_info ist_info;
 127#endif
 128
 
 
 
 
 
 129#endif
 130
 131struct cpuinfo_x86 boot_cpu_data __read_mostly;
 132EXPORT_SYMBOL(boot_cpu_data);
 133
 134#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 135__visible unsigned long mmu_cr4_features __ro_after_init;
 136#else
 137__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 138#endif
 139
 140#ifdef CONFIG_IMA
 141static phys_addr_t ima_kexec_buffer_phys;
 142static size_t ima_kexec_buffer_size;
 143#endif
 144
 145/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 146int bootloader_type, bootloader_version;
 147
 148/*
 149 * Setup options
 150 */
 151struct screen_info screen_info;
 152EXPORT_SYMBOL(screen_info);
 153struct edid_info edid_info;
 154EXPORT_SYMBOL_GPL(edid_info);
 155
 156extern int root_mountflags;
 157
 158unsigned long saved_video_mode;
 159
 160#define RAMDISK_IMAGE_START_MASK	0x07FF
 161#define RAMDISK_PROMPT_FLAG		0x8000
 162#define RAMDISK_LOAD_FLAG		0x4000
 163
 164static char __initdata command_line[COMMAND_LINE_SIZE];
 165#ifdef CONFIG_CMDLINE_BOOL
 166static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 167#endif
 168
 169#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 170struct edd edd;
 171#ifdef CONFIG_EDD_MODULE
 172EXPORT_SYMBOL(edd);
 173#endif
 174/**
 175 * copy_edd() - Copy the BIOS EDD information
 176 *              from boot_params into a safe place.
 177 *
 178 */
 179static inline void __init copy_edd(void)
 180{
 181     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 182	    sizeof(edd.mbr_signature));
 183     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 184     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 185     edd.edd_info_nr = boot_params.eddbuf_entries;
 186}
 187#else
 188static inline void __init copy_edd(void)
 189{
 190}
 191#endif
 192
 193void * __init extend_brk(size_t size, size_t align)
 194{
 195	size_t mask = align - 1;
 196	void *ret;
 197
 198	BUG_ON(_brk_start == 0);
 199	BUG_ON(align & mask);
 200
 201	_brk_end = (_brk_end + mask) & ~mask;
 202	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 203
 204	ret = (void *)_brk_end;
 205	_brk_end += size;
 206
 207	memset(ret, 0, size);
 208
 209	return ret;
 210}
 211
 212#ifdef CONFIG_X86_32
 213static void __init cleanup_highmap(void)
 214{
 215}
 216#endif
 217
 218static void __init reserve_brk(void)
 219{
 220	if (_brk_end > _brk_start)
 221		memblock_reserve(__pa_symbol(_brk_start),
 222				 _brk_end - _brk_start);
 223
 224	/* Mark brk area as locked down and no longer taking any
 225	   new allocations */
 226	_brk_start = 0;
 227}
 228
 
 
 229#ifdef CONFIG_BLK_DEV_INITRD
 230
 231static u64 __init get_ramdisk_image(void)
 232{
 233	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 234
 235	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 236
 237	if (ramdisk_image == 0)
 238		ramdisk_image = phys_initrd_start;
 239
 240	return ramdisk_image;
 241}
 242static u64 __init get_ramdisk_size(void)
 243{
 244	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 245
 246	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 247
 248	if (ramdisk_size == 0)
 249		ramdisk_size = phys_initrd_size;
 250
 251	return ramdisk_size;
 252}
 253
 254static void __init relocate_initrd(void)
 255{
 256	/* Assume only end is not page aligned */
 257	u64 ramdisk_image = get_ramdisk_image();
 258	u64 ramdisk_size  = get_ramdisk_size();
 259	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 260
 261	/* We need to move the initrd down into directly mapped mem */
 262	u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
 263						      PFN_PHYS(max_pfn_mapped));
 
 264	if (!relocated_ramdisk)
 265		panic("Cannot find place for new RAMDISK of size %lld\n",
 266		      ramdisk_size);
 267
 
 
 
 268	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 269	initrd_end   = initrd_start + ramdisk_size;
 270	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 271	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 272
 273	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 274
 275	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 276		" [mem %#010llx-%#010llx]\n",
 277		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 278		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 279}
 280
 281static void __init early_reserve_initrd(void)
 282{
 283	/* Assume only end is not page aligned */
 284	u64 ramdisk_image = get_ramdisk_image();
 285	u64 ramdisk_size  = get_ramdisk_size();
 286	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 287
 288	if (!boot_params.hdr.type_of_loader ||
 289	    !ramdisk_image || !ramdisk_size)
 290		return;		/* No initrd provided by bootloader */
 291
 292	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 293}
 294
 295static void __init reserve_initrd(void)
 296{
 297	/* Assume only end is not page aligned */
 298	u64 ramdisk_image = get_ramdisk_image();
 299	u64 ramdisk_size  = get_ramdisk_size();
 300	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 
 301
 302	if (!boot_params.hdr.type_of_loader ||
 303	    !ramdisk_image || !ramdisk_size)
 304		return;		/* No initrd provided by bootloader */
 305
 306	initrd_start = 0;
 307
 
 
 
 
 
 
 308	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 309			ramdisk_end - 1);
 310
 311	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 312				PFN_DOWN(ramdisk_end))) {
 313		/* All are mapped, easy case */
 314		initrd_start = ramdisk_image + PAGE_OFFSET;
 315		initrd_end = initrd_start + ramdisk_size;
 316		return;
 317	}
 318
 319	relocate_initrd();
 320
 321	memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
 322}
 323
 324#else
 325static void __init early_reserve_initrd(void)
 326{
 327}
 328static void __init reserve_initrd(void)
 329{
 330}
 331#endif /* CONFIG_BLK_DEV_INITRD */
 332
 333static void __init add_early_ima_buffer(u64 phys_addr)
 334{
 335#ifdef CONFIG_IMA
 336	struct ima_setup_data *data;
 337
 338	data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
 339	if (!data) {
 340		pr_warn("setup: failed to memremap ima_setup_data entry\n");
 341		return;
 342	}
 343
 344	if (data->size) {
 345		memblock_reserve(data->addr, data->size);
 346		ima_kexec_buffer_phys = data->addr;
 347		ima_kexec_buffer_size = data->size;
 348	}
 349
 350	early_memunmap(data, sizeof(*data));
 351#else
 352	pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
 353#endif
 354}
 355
 356#if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
 357int __init ima_free_kexec_buffer(void)
 358{
 359	if (!ima_kexec_buffer_size)
 360		return -ENOENT;
 361
 362	memblock_free_late(ima_kexec_buffer_phys,
 363			   ima_kexec_buffer_size);
 364
 365	ima_kexec_buffer_phys = 0;
 366	ima_kexec_buffer_size = 0;
 367
 368	return 0;
 369}
 370
 371int __init ima_get_kexec_buffer(void **addr, size_t *size)
 372{
 373	if (!ima_kexec_buffer_size)
 374		return -ENOENT;
 375
 376	*addr = __va(ima_kexec_buffer_phys);
 377	*size = ima_kexec_buffer_size;
 378
 379	return 0;
 380}
 381#endif
 382
 383static void __init parse_setup_data(void)
 384{
 385	struct setup_data *data;
 386	u64 pa_data, pa_next;
 387
 388	pa_data = boot_params.hdr.setup_data;
 389	while (pa_data) {
 390		u32 data_len, data_type;
 391
 392		data = early_memremap(pa_data, sizeof(*data));
 393		data_len = data->len + sizeof(struct setup_data);
 394		data_type = data->type;
 395		pa_next = data->next;
 396		early_memunmap(data, sizeof(*data));
 397
 398		switch (data_type) {
 399		case SETUP_E820_EXT:
 400			e820__memory_setup_extended(pa_data, data_len);
 401			break;
 402		case SETUP_DTB:
 403			add_dtb(pa_data);
 404			break;
 405		case SETUP_EFI:
 406			parse_efi_setup(pa_data, data_len);
 407			break;
 408		case SETUP_IMA:
 409			add_early_ima_buffer(pa_data);
 410			break;
 411		case SETUP_RNG_SEED:
 412			data = early_memremap(pa_data, data_len);
 413			add_bootloader_randomness(data->data, data->len);
 414			/* Zero seed for forward secrecy. */
 415			memzero_explicit(data->data, data->len);
 416			/* Zero length in case we find ourselves back here by accident. */
 417			memzero_explicit(&data->len, sizeof(data->len));
 418			early_memunmap(data, data_len);
 419			break;
 420		default:
 421			break;
 422		}
 423		pa_data = pa_next;
 424	}
 425}
 426
 427static void __init memblock_x86_reserve_range_setup_data(void)
 428{
 429	struct setup_indirect *indirect;
 430	struct setup_data *data;
 431	u64 pa_data, pa_next;
 432	u32 len;
 433
 434	pa_data = boot_params.hdr.setup_data;
 
 
 
 435	while (pa_data) {
 436		data = early_memremap(pa_data, sizeof(*data));
 437		if (!data) {
 438			pr_warn("setup: failed to memremap setup_data entry\n");
 439			return;
 440		}
 
 441
 442		len = sizeof(*data);
 443		pa_next = data->next;
 
 
 
 
 
 
 
 
 444
 
 
 
 445		memblock_reserve(pa_data, sizeof(*data) + data->len);
 
 
 
 
 446
 447		if (data->type == SETUP_INDIRECT) {
 448			len += data->len;
 449			early_memunmap(data, sizeof(*data));
 450			data = early_memremap(pa_data, len);
 451			if (!data) {
 452				pr_warn("setup: failed to memremap indirect setup_data\n");
 453				return;
 454			}
 455
 456			indirect = (struct setup_indirect *)data->data;
 457
 458			if (indirect->type != SETUP_INDIRECT)
 459				memblock_reserve(indirect->addr, indirect->len);
 460		}
 461
 462		pa_data = pa_next;
 463		early_memunmap(data, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 464	}
 
 
 
 
 
 
 
 
 
 
 
 465}
 466
 467static void __init arch_reserve_crashkernel(void)
 468{
 469	unsigned long long crash_base, crash_size, low_size = 0;
 470	char *cmdline = boot_command_line;
 471	bool high = false;
 472	int ret;
 473
 474	if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
 475		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 476
 477	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
 478				&crash_size, &crash_base,
 479				&low_size, &high);
 480	if (ret)
 
 
 
 
 
 
 
 
 
 
 481		return;
 
 482
 483	if (xen_pv_domain()) {
 484		pr_info("Ignoring crashkernel for a Xen PV domain\n");
 485		return;
 486	}
 487
 488	reserve_crashkernel_generic(cmdline, crash_size, crash_base,
 489				    low_size, high);
 
 
 
 
 
 
 
 
 
 
 490}
 
 491
 492static struct resource standard_io_resources[] = {
 493	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 494		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 495	{ .name = "pic1", .start = 0x20, .end = 0x21,
 496		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 497	{ .name = "timer0", .start = 0x40, .end = 0x43,
 498		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 499	{ .name = "timer1", .start = 0x50, .end = 0x53,
 500		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 501	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 502		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 503	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 504		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 505	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 506		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 507	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 508		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 509	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 510		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 511	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 512		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 513};
 514
 515void __init reserve_standard_io_resources(void)
 516{
 517	int i;
 518
 519	/* request I/O space for devices used on all i[345]86 PCs */
 520	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 521		request_resource(&ioport_resource, &standard_io_resources[i]);
 522
 523}
 524
 
 
 
 
 
 
 
 
 
 
 525static bool __init snb_gfx_workaround_needed(void)
 526{
 527#ifdef CONFIG_PCI
 528	int i;
 529	u16 vendor, devid;
 530	static const __initconst u16 snb_ids[] = {
 531		0x0102,
 532		0x0112,
 533		0x0122,
 534		0x0106,
 535		0x0116,
 536		0x0126,
 537		0x010a,
 538	};
 539
 540	/* Assume no if something weird is going on with PCI */
 541	if (!early_pci_allowed())
 542		return false;
 543
 544	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 545	if (vendor != 0x8086)
 546		return false;
 547
 548	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 549	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 550		if (devid == snb_ids[i])
 551			return true;
 552#endif
 553
 554	return false;
 555}
 556
 557/*
 558 * Sandy Bridge graphics has trouble with certain ranges, exclude
 559 * them from allocation.
 560 */
 561static void __init trim_snb_memory(void)
 562{
 563	static const __initconst unsigned long bad_pages[] = {
 564		0x20050000,
 565		0x20110000,
 566		0x20130000,
 567		0x20138000,
 568		0x40004000,
 569	};
 570	int i;
 571
 572	if (!snb_gfx_workaround_needed())
 573		return;
 574
 575	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 576
 577	/*
 578	 * SandyBridge integrated graphics devices have a bug that prevents
 579	 * them from accessing certain memory ranges, namely anything below
 580	 * 1M and in the pages listed in bad_pages[] above.
 581	 *
 582	 * To avoid these pages being ever accessed by SNB gfx devices reserve
 583	 * bad_pages that have not already been reserved at boot time.
 584	 * All memory below the 1 MB mark is anyway reserved later during
 585	 * setup_arch(), so there is no need to reserve it here.
 586	 */
 587
 
 588	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 589		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 590			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 591			       bad_pages[i]);
 592	}
 593}
 594
 
 
 
 
 
 
 
 
 
 
 
 
 595static void __init trim_bios_range(void)
 596{
 597	/*
 598	 * A special case is the first 4Kb of memory;
 599	 * This is a BIOS owned area, not kernel ram, but generally
 600	 * not listed as such in the E820 table.
 601	 *
 602	 * This typically reserves additional memory (64KiB by default)
 603	 * since some BIOSes are known to corrupt low memory.  See the
 604	 * Kconfig help text for X86_RESERVE_LOW.
 605	 */
 606	e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
 607
 608	/*
 609	 * special case: Some BIOSes report the PC BIOS
 610	 * area (640Kb -> 1Mb) as RAM even though it is not.
 611	 * take them out.
 612	 */
 613	e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
 614
 615	e820__update_table(e820_table);
 616}
 617
 618/* called before trim_bios_range() to spare extra sanitize */
 619static void __init e820_add_kernel_range(void)
 620{
 621	u64 start = __pa_symbol(_text);
 622	u64 size = __pa_symbol(_end) - start;
 623
 624	/*
 625	 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
 626	 * attempt to fix it by adding the range. We may have a confused BIOS,
 627	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 628	 * exclude kernel range. If we really are running on top non-RAM,
 629	 * we will crash later anyways.
 630	 */
 631	if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
 632		return;
 633
 634	pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
 635	e820__range_remove(start, size, E820_TYPE_RAM, 0);
 636	e820__range_add(start, size, E820_TYPE_RAM);
 637}
 638
 639static void __init early_reserve_memory(void)
 
 
 640{
 641	/*
 642	 * Reserve the memory occupied by the kernel between _text and
 643	 * __end_of_kernel_reserve symbols. Any kernel sections after the
 644	 * __end_of_kernel_reserve symbol must be explicitly reserved with a
 645	 * separate memblock_reserve() or they will be discarded.
 646	 */
 647	memblock_reserve(__pa_symbol(_text),
 648			 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
 649
 650	/*
 651	 * The first 4Kb of memory is a BIOS owned area, but generally it is
 652	 * not listed as such in the E820 table.
 653	 *
 654	 * Reserve the first 64K of memory since some BIOSes are known to
 655	 * corrupt low memory. After the real mode trampoline is allocated the
 656	 * rest of the memory below 640k is reserved.
 657	 *
 658	 * In addition, make sure page 0 is always reserved because on
 659	 * systems with L1TF its contents can be leaked to user processes.
 660	 */
 661	memblock_reserve(0, SZ_64K);
 662
 663	early_reserve_initrd();
 664
 665	memblock_x86_reserve_range_setup_data();
 
 666
 667	reserve_bios_regions();
 668	trim_snb_memory();
 
 
 
 
 669}
 670
 
 
 
 
 
 
 
 671/*
 672 * Dump out kernel offset information on panic.
 673 */
 674static int
 675dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 676{
 677	if (kaslr_enabled()) {
 678		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 679			 kaslr_offset(),
 680			 __START_KERNEL,
 681			 __START_KERNEL_map,
 682			 MODULES_VADDR-1);
 683	} else {
 684		pr_emerg("Kernel Offset: disabled\n");
 685	}
 686
 687	return 0;
 688}
 689
 690void x86_configure_nx(void)
 691{
 692	if (boot_cpu_has(X86_FEATURE_NX))
 693		__supported_pte_mask |= _PAGE_NX;
 694	else
 695		__supported_pte_mask &= ~_PAGE_NX;
 696}
 697
 698static void __init x86_report_nx(void)
 699{
 700	if (!boot_cpu_has(X86_FEATURE_NX)) {
 701		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
 702		       "missing in CPU!\n");
 703	} else {
 704#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 705		printk(KERN_INFO "NX (Execute Disable) protection: active\n");
 706#else
 707		/* 32bit non-PAE kernel, NX cannot be used */
 708		printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
 709		       "cannot be enabled: non-PAE kernel!\n");
 710#endif
 711	}
 712}
 713
 714/*
 715 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 716 * passed the efi memmap, systab, etc., so we should use these data structures
 717 * for initialization.  Note, the efi init code path is determined by the
 718 * global efi_enabled. This allows the same kernel image to be used on existing
 719 * systems (with a traditional BIOS) as well as on EFI systems.
 720 */
 721/*
 722 * setup_arch - architecture-specific boot-time initializations
 723 *
 724 * Note: On x86_64, fixmaps are ready for use even before this is called.
 725 */
 726
 727void __init setup_arch(char **cmdline_p)
 728{
 
 
 
 
 
 
 
 
 
 
 
 729#ifdef CONFIG_X86_32
 730	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 731
 732	/*
 733	 * copy kernel address range established so far and switch
 734	 * to the proper swapper page table
 735	 */
 736	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 737			initial_page_table + KERNEL_PGD_BOUNDARY,
 738			KERNEL_PGD_PTRS);
 739
 740	load_cr3(swapper_pg_dir);
 741	/*
 742	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 743	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 744	 * will not flush anything because the CPU quirk which clears
 745	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 746	 * load_cr3() above the TLB has been flushed already. The
 747	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 748	 * so proper operation is guaranteed.
 749	 */
 750	__flush_tlb_all();
 751#else
 752	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 753	boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
 754#endif
 755
 756	/*
 757	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 758	 * reserve_top(), so do this before touching the ioremap area.
 759	 */
 760	olpc_ofw_detect();
 761
 762	idt_setup_early_traps();
 763	early_cpu_init();
 764	jump_label_init();
 765	static_call_init();
 766	early_ioremap_init();
 767
 768	setup_olpc_ofw_pgd();
 769
 770	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 771	screen_info = boot_params.screen_info;
 772	edid_info = boot_params.edid_info;
 773#ifdef CONFIG_X86_32
 774	apm_info.bios = boot_params.apm_bios_info;
 775	ist_info = boot_params.ist_info;
 776#endif
 777	saved_video_mode = boot_params.hdr.vid_mode;
 778	bootloader_type = boot_params.hdr.type_of_loader;
 779	if ((bootloader_type >> 4) == 0xe) {
 780		bootloader_type &= 0xf;
 781		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 782	}
 783	bootloader_version  = bootloader_type & 0xf;
 784	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 785
 786#ifdef CONFIG_BLK_DEV_RAM
 787	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 
 
 788#endif
 789#ifdef CONFIG_EFI
 790	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 791		     EFI32_LOADER_SIGNATURE, 4)) {
 792		set_bit(EFI_BOOT, &efi.flags);
 793	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 794		     EFI64_LOADER_SIGNATURE, 4)) {
 795		set_bit(EFI_BOOT, &efi.flags);
 796		set_bit(EFI_64BIT, &efi.flags);
 797	}
 
 
 
 798#endif
 799
 800	x86_init.oem.arch_setup();
 801
 802	/*
 803	 * Do some memory reservations *before* memory is added to memblock, so
 804	 * memblock allocations won't overwrite it.
 805	 *
 806	 * After this point, everything still needed from the boot loader or
 807	 * firmware or kernel text should be early reserved or marked not RAM in
 808	 * e820. All other memory is free game.
 809	 *
 810	 * This call needs to happen before e820__memory_setup() which calls the
 811	 * xen_memory_setup() on Xen dom0 which relies on the fact that those
 812	 * early reservations have happened already.
 813	 */
 814	early_reserve_memory();
 815
 816	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 817	e820__memory_setup();
 818	parse_setup_data();
 819
 820	copy_edd();
 821
 822	if (!boot_params.hdr.root_flags)
 823		root_mountflags &= ~MS_RDONLY;
 824	setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
 
 
 
 
 
 825
 826	code_resource.start = __pa_symbol(_text);
 827	code_resource.end = __pa_symbol(_etext)-1;
 828	rodata_resource.start = __pa_symbol(__start_rodata);
 829	rodata_resource.end = __pa_symbol(__end_rodata)-1;
 830	data_resource.start = __pa_symbol(_sdata);
 831	data_resource.end = __pa_symbol(_edata)-1;
 832	bss_resource.start = __pa_symbol(__bss_start);
 833	bss_resource.end = __pa_symbol(__bss_stop)-1;
 834
 835#ifdef CONFIG_CMDLINE_BOOL
 836#ifdef CONFIG_CMDLINE_OVERRIDE
 837	strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 838#else
 839	if (builtin_cmdline[0]) {
 840		/* append boot loader cmdline to builtin */
 841		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 842		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 843		strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 844	}
 845#endif
 846#endif
 847
 848	strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 849	*cmdline_p = command_line;
 850
 851	/*
 852	 * x86_configure_nx() is called before parse_early_param() to detect
 853	 * whether hardware doesn't support NX (so that the early EHCI debug
 854	 * console setup can safely call set_fixmap()).
 
 
 855	 */
 856	x86_configure_nx();
 857
 858	parse_early_param();
 859
 860	if (efi_enabled(EFI_BOOT))
 861		efi_memblock_x86_reserve_range();
 862
 863#ifdef CONFIG_MEMORY_HOTPLUG
 864	/*
 865	 * Memory used by the kernel cannot be hot-removed because Linux
 866	 * cannot migrate the kernel pages. When memory hotplug is
 867	 * enabled, we should prevent memblock from allocating memory
 868	 * for the kernel.
 869	 *
 870	 * ACPI SRAT records all hotpluggable memory ranges. But before
 871	 * SRAT is parsed, we don't know about it.
 872	 *
 873	 * The kernel image is loaded into memory at very early time. We
 874	 * cannot prevent this anyway. So on NUMA system, we set any
 875	 * node the kernel resides in as un-hotpluggable.
 876	 *
 877	 * Since on modern servers, one node could have double-digit
 878	 * gigabytes memory, we can assume the memory around the kernel
 879	 * image is also un-hotpluggable. So before SRAT is parsed, just
 880	 * allocate memory near the kernel image to try the best to keep
 881	 * the kernel away from hotpluggable memory.
 882	 */
 883	if (movable_node_is_enabled())
 884		memblock_set_bottom_up(true);
 885#endif
 886
 887	x86_report_nx();
 888
 889	apic_setup_apic_calls();
 
 890
 891	if (acpi_mps_check()) {
 892#ifdef CONFIG_X86_LOCAL_APIC
 893		apic_is_disabled = true;
 894#endif
 895		setup_clear_cpu_cap(X86_FEATURE_APIC);
 896	}
 897
 898	e820__reserve_setup_data();
 899	e820__finish_early_params();
 
 
 
 
 
 
 900
 901	if (efi_enabled(EFI_BOOT))
 902		efi_init();
 903
 904	reserve_ibft_region();
 905	x86_init.resources.dmi_setup();
 
 906
 907	/*
 908	 * VMware detection requires dmi to be available, so this
 909	 * needs to be done after dmi_setup(), for the boot CPU.
 910	 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
 911	 * called before cache_bp_init() for setting up MTRR state.
 912	 */
 913	init_hypervisor_platform();
 914
 915	tsc_early_init();
 916	x86_init.resources.probe_roms();
 917
 918	/* after parse_early_param, so could debug it */
 919	insert_resource(&iomem_resource, &code_resource);
 920	insert_resource(&iomem_resource, &rodata_resource);
 921	insert_resource(&iomem_resource, &data_resource);
 922	insert_resource(&iomem_resource, &bss_resource);
 923
 924	e820_add_kernel_range();
 925	trim_bios_range();
 926#ifdef CONFIG_X86_32
 927	if (ppro_with_ram_bug()) {
 928		e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
 929				  E820_TYPE_RESERVED);
 930		e820__update_table(e820_table);
 931		printk(KERN_INFO "fixed physical RAM map:\n");
 932		e820__print_table("bad_ppro");
 933	}
 934#else
 935	early_gart_iommu_check();
 936#endif
 937
 938	/*
 939	 * partially used pages are not usable - thus
 940	 * we are rounding upwards:
 941	 */
 942	max_pfn = e820__end_of_ram_pfn();
 943
 944	/* update e820 for memory not covered by WB MTRRs */
 945	cache_bp_init();
 946	if (mtrr_trim_uncached_memory(max_pfn))
 947		max_pfn = e820__end_of_ram_pfn();
 948
 949	max_possible_pfn = max_pfn;
 950
 951	/*
 952	 * Define random base addresses for memory sections after max_pfn is
 953	 * defined and before each memory section base is used.
 954	 */
 955	kernel_randomize_memory();
 956
 957#ifdef CONFIG_X86_32
 958	/* max_low_pfn get updated here */
 959	find_low_pfn_range();
 960#else
 961	check_x2apic();
 962
 963	/* How many end-of-memory variables you have, grandma! */
 964	/* need this before calling reserve_initrd */
 965	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
 966		max_low_pfn = e820__end_of_low_ram_pfn();
 967	else
 968		max_low_pfn = max_pfn;
 969
 970	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
 971#endif
 972
 973	/* Find and reserve MPTABLE area */
 974	x86_init.mpparse.find_mptable();
 
 
 
 
 975
 976	early_alloc_pgt_buf();
 977
 978	/*
 979	 * Need to conclude brk, before e820__memblock_setup()
 980	 * it could use memblock_find_in_range, could overlap with
 981	 * brk area.
 982	 */
 983	reserve_brk();
 984
 985	cleanup_highmap();
 986
 987	memblock_set_current_limit(ISA_END_ADDRESS);
 988	e820__memblock_setup();
 989
 990	/*
 991	 * Needs to run after memblock setup because it needs the physical
 992	 * memory size.
 993	 */
 994	mem_encrypt_setup_arch();
 995	cc_random_init();
 996
 997	efi_fake_memmap();
 998	efi_find_mirror();
 999	efi_esrt_init();
1000	efi_mokvar_table_init();
1001
1002	/*
1003	 * The EFI specification says that boot service code won't be
1004	 * called after ExitBootServices(). This is, in fact, a lie.
1005	 */
1006	efi_reserve_boot_services();
 
 
 
 
 
 
1007
1008	/* preallocate 4k for mptable mpc */
1009	e820__memblock_alloc_reserved_mpc_new();
1010
1011#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1012	setup_bios_corruption_check();
1013#endif
1014
1015#ifdef CONFIG_X86_32
1016	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1017			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1018#endif
1019
1020	/*
1021	 * Find free memory for the real mode trampoline and place it there. If
1022	 * there is not enough free memory under 1M, on EFI-enabled systems
1023	 * there will be additional attempt to reclaim the memory for the real
1024	 * mode trampoline at efi_free_boot_services().
1025	 *
1026	 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1027	 * are known to corrupt low memory and several hundred kilobytes are not
1028	 * worth complex detection what memory gets clobbered. Windows does the
1029	 * same thing for very similar reasons.
1030	 *
1031	 * Moreover, on machines with SandyBridge graphics or in setups that use
1032	 * crashkernel the entire 1M is reserved anyway.
1033	 *
1034	 * Note the host kernel TDX also requires the first 1MB being reserved.
1035	 */
1036	x86_platform.realmode_reserve();
1037
1038	init_mem_mapping();
1039
1040	idt_setup_early_pf();
1041
1042	/*
1043	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1044	 * with the current CR4 value.  This may not be necessary, but
1045	 * auditing all the early-boot CR4 manipulation would be needed to
1046	 * rule it out.
1047	 *
1048	 * Mask off features that don't work outside long mode (just
1049	 * PCIDE for now).
1050	 */
1051	mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1052
1053	memblock_set_current_limit(get_max_mapped());
1054
1055	/*
1056	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1057	 */
1058
1059#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1060	if (init_ohci1394_dma_early)
1061		init_ohci1394_dma_on_all_controllers();
1062#endif
1063	/* Allocate bigger log buffer */
1064	setup_log_buf(1);
1065
1066	if (efi_enabled(EFI_BOOT)) {
1067		switch (boot_params.secure_boot) {
1068		case efi_secureboot_mode_disabled:
1069			pr_info("Secure boot disabled\n");
1070			break;
1071		case efi_secureboot_mode_enabled:
1072			pr_info("Secure boot enabled\n");
1073			break;
1074		default:
1075			pr_info("Secure boot could not be determined\n");
1076			break;
1077		}
1078	}
1079
1080	reserve_initrd();
1081
1082	acpi_table_upgrade();
1083	/* Look for ACPI tables and reserve memory occupied by them. */
1084	acpi_boot_table_init();
1085
1086	vsmp_init();
1087
1088	io_delay_init();
1089
1090	early_platform_quirks();
 
 
 
1091
1092	/* Some platforms need the APIC registered for NUMA configuration */
1093	early_acpi_boot_init();
1094	x86_init.mpparse.early_parse_smp_cfg();
1095
1096	x86_flattree_get_config();
1097
1098	initmem_init();
1099	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1100
1101	if (boot_cpu_has(X86_FEATURE_GBPAGES))
1102		hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1103
1104	/*
1105	 * Reserve memory for crash kernel after SRAT is parsed so that it
1106	 * won't consume hotpluggable memory.
1107	 */
1108	arch_reserve_crashkernel();
1109
1110	memblock_find_dma_reserve();
1111
1112	if (!early_xdbc_setup_hardware())
1113		early_xdbc_register_console();
 
1114
1115	x86_init.paging.pagetable_init();
1116
1117	kasan_init();
1118
 
 
 
 
 
 
1119	/*
1120	 * Sync back kernel address range.
1121	 *
1122	 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1123	 * this call?
1124	 */
1125	sync_initial_page_table();
 
 
 
1126
1127	tboot_probe();
1128
1129	map_vsyscall();
1130
1131	x86_32_probe_apic();
1132
1133	early_quirks();
1134
1135	topology_apply_cmdline_limits_early();
1136
1137	/*
1138	 * Parse SMP configuration. Try ACPI first and then the platform
1139	 * specific parser.
1140	 */
1141	acpi_boot_init();
1142	x86_init.mpparse.parse_smp_cfg();
 
 
 
 
 
 
1143
1144	/* Last opportunity to detect and map the local APIC */
 
 
 
1145	init_apic_mappings();
1146
1147	topology_init_possible_cpus();
1148
1149	init_cpu_to_node();
1150	init_gi_nodes();
1151
1152	io_apic_init_mappings();
1153
1154	x86_init.hyper.guest_late_init();
1155
1156	e820__reserve_resources();
1157	e820__register_nosave_regions(max_pfn);
1158
1159	x86_init.resources.reserve_resources();
1160
1161	e820__setup_pci_gap();
1162
1163#ifdef CONFIG_VT
1164#if defined(CONFIG_VGA_CONSOLE)
1165	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1166		vgacon_register_screen(&screen_info);
 
 
1167#endif
1168#endif
1169	x86_init.oem.banner();
1170
1171	x86_init.timers.wallclock_init();
1172
1173	/*
1174	 * This needs to run before setup_local_APIC() which soft-disables the
1175	 * local APIC temporarily and that masks the thermal LVT interrupt,
1176	 * leading to softlockups on machines which have configured SMI
1177	 * interrupt delivery.
1178	 */
1179	therm_lvt_init();
1180
1181	mcheck_init();
1182
 
 
1183	register_refined_jiffies(CLOCK_TICK_RATE);
1184
1185#ifdef CONFIG_EFI
1186	if (efi_enabled(EFI_BOOT))
1187		efi_apply_memmap_quirks();
1188#endif
1189
1190	unwind_init();
1191}
1192
1193#ifdef CONFIG_X86_32
1194
1195static struct resource video_ram_resource = {
1196	.name	= "Video RAM area",
1197	.start	= 0xa0000,
1198	.end	= 0xbffff,
1199	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1200};
1201
1202void __init i386_reserve_resources(void)
1203{
1204	request_resource(&iomem_resource, &video_ram_resource);
1205	reserve_standard_io_resources();
1206}
1207
1208#endif /* CONFIG_X86_32 */
1209
1210static struct notifier_block kernel_offset_notifier = {
1211	.notifier_call = dump_kernel_offset
1212};
1213
1214static int __init register_kernel_offset_dumper(void)
1215{
1216	atomic_notifier_chain_register(&panic_notifier_list,
1217					&kernel_offset_notifier);
1218	return 0;
1219}
1220__initcall(register_kernel_offset_dumper);
v4.10.11
 
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   5 *
   6 *  Memory region support
   7 *	David Parsons <orc@pell.chi.il.us>, July-August 1999
   8 *
   9 *  Added E820 sanitization routine (removes overlapping memory regions);
  10 *  Brian Moyle <bmoyle@mvista.com>, February 2001
  11 *
  12 * Moved CPU detection code to cpu/${cpu}.c
  13 *    Patrick Mochel <mochel@osdl.org>, March 2002
  14 *
  15 *  Provisions for empty E820 memory regions (reported by certain BIOSes).
  16 *  Alex Achenbach <xela@slit.de>, December 2002.
  17 *
  18 */
  19
  20/*
  21 * This file handles the architecture-dependent parts of initialization
  22 */
  23
  24#include <linux/sched.h>
  25#include <linux/mm.h>
  26#include <linux/mmzone.h>
  27#include <linux/screen_info.h>
  28#include <linux/ioport.h>
  29#include <linux/acpi.h>
  30#include <linux/sfi.h>
  31#include <linux/apm_bios.h>
  32#include <linux/initrd.h>
  33#include <linux/bootmem.h>
  34#include <linux/memblock.h>
  35#include <linux/seq_file.h>
  36#include <linux/console.h>
  37#include <linux/root_dev.h>
  38#include <linux/highmem.h>
  39#include <linux/export.h>
  40#include <linux/efi.h>
  41#include <linux/init.h>
  42#include <linux/edd.h>
 
  43#include <linux/iscsi_ibft.h>
  44#include <linux/nodemask.h>
  45#include <linux/kexec.h>
  46#include <linux/dmi.h>
  47#include <linux/pfn.h>
  48#include <linux/pci.h>
  49#include <asm/pci-direct.h>
  50#include <linux/init_ohci1394_dma.h>
  51#include <linux/kvm_para.h>
  52#include <linux/dma-contiguous.h>
  53
  54#include <linux/errno.h>
  55#include <linux/kernel.h>
  56#include <linux/stddef.h>
  57#include <linux/unistd.h>
  58#include <linux/ptrace.h>
  59#include <linux/user.h>
  60#include <linux/delay.h>
  61
  62#include <linux/kallsyms.h>
  63#include <linux/cpufreq.h>
  64#include <linux/dma-mapping.h>
  65#include <linux/ctype.h>
  66#include <linux/uaccess.h>
  67
  68#include <linux/percpu.h>
  69#include <linux/crash_dump.h>
  70#include <linux/tboot.h>
  71#include <linux/jiffies.h>
  72
  73#include <video/edid.h>
  74
  75#include <asm/mtrr.h>
  76#include <asm/apic.h>
  77#include <asm/realmode.h>
  78#include <asm/e820.h>
  79#include <asm/mpspec.h>
  80#include <asm/setup.h>
  81#include <asm/efi.h>
  82#include <asm/timer.h>
  83#include <asm/i8259.h>
  84#include <asm/sections.h>
  85#include <asm/io_apic.h>
  86#include <asm/ist.h>
  87#include <asm/setup_arch.h>
  88#include <asm/bios_ebda.h>
  89#include <asm/cacheflush.h>
  90#include <asm/processor.h>
  91#include <asm/bugs.h>
  92#include <asm/kasan.h>
  93
  94#include <asm/vsyscall.h>
  95#include <asm/cpu.h>
  96#include <asm/desc.h>
  97#include <asm/dma.h>
  98#include <asm/iommu.h>
  99#include <asm/gart.h>
 100#include <asm/mmu_context.h>
 101#include <asm/proto.h>
 102
 103#include <asm/paravirt.h>
 104#include <asm/hypervisor.h>
 
 
 
 
 
 
 
 105#include <asm/olpc_ofw.h>
 106
 107#include <asm/percpu.h>
 108#include <asm/topology.h>
 109#include <asm/apicdef.h>
 110#include <asm/amd_nb.h>
 111#include <asm/mce.h>
 112#include <asm/alternative.h>
 113#include <asm/prom.h>
 114#include <asm/microcode.h>
 115#include <asm/mmu_context.h>
 116#include <asm/kaslr.h>
 
 
 117
 118/*
 119 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
 120 * max_pfn_mapped:     highest direct mapped pfn over 4GB
 121 *
 122 * The direct mapping only covers E820_RAM regions, so the ranges and gaps are
 123 * represented by pfn_mapped
 124 */
 125unsigned long max_low_pfn_mapped;
 126unsigned long max_pfn_mapped;
 127
 128#ifdef CONFIG_DMI
 129RESERVE_BRK(dmi_alloc, 65536);
 130#endif
 131
 132
 133static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
 134unsigned long _brk_end = (unsigned long)__brk_base;
 135
 136#ifdef CONFIG_X86_64
 137int default_cpu_present_to_apicid(int mps_cpu)
 138{
 139	return __default_cpu_present_to_apicid(mps_cpu);
 140}
 141
 142int default_check_phys_apicid_present(int phys_apicid)
 143{
 144	return __default_check_phys_apicid_present(phys_apicid);
 145}
 146#endif
 147
 148struct boot_params boot_params;
 149
 150/*
 151 * Machine setup..
 
 
 152 */
 
 
 
 
 
 
 
 
 153static struct resource data_resource = {
 154	.name	= "Kernel data",
 155	.start	= 0,
 156	.end	= 0,
 157	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 158};
 159
 160static struct resource code_resource = {
 161	.name	= "Kernel code",
 162	.start	= 0,
 163	.end	= 0,
 164	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 165};
 166
 167static struct resource bss_resource = {
 168	.name	= "Kernel bss",
 169	.start	= 0,
 170	.end	= 0,
 171	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
 172};
 173
 174
 175#ifdef CONFIG_X86_32
 176/* cpu data as detected by the assembly code in head.S */
 177struct cpuinfo_x86 new_cpu_data = {
 178	.wp_works_ok = -1,
 179};
 180/* common cpu data for all cpus */
 181struct cpuinfo_x86 boot_cpu_data __read_mostly = {
 182	.wp_works_ok = -1,
 183};
 184EXPORT_SYMBOL(boot_cpu_data);
 185
 186unsigned int def_to_bigsmp;
 187
 188/* for MCA, but anyone else can use it if they want */
 189unsigned int machine_id;
 190unsigned int machine_submodel_id;
 191unsigned int BIOS_revision;
 192
 193struct apm_info apm_info;
 194EXPORT_SYMBOL(apm_info);
 195
 196#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
 197	defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
 198struct ist_info ist_info;
 199EXPORT_SYMBOL(ist_info);
 200#else
 201struct ist_info ist_info;
 202#endif
 203
 204#else
 205struct cpuinfo_x86 boot_cpu_data __read_mostly = {
 206	.x86_phys_bits = MAX_PHYSMEM_BITS,
 207};
 208EXPORT_SYMBOL(boot_cpu_data);
 209#endif
 210
 
 
 211
 212#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
 213__visible unsigned long mmu_cr4_features __ro_after_init;
 214#else
 215__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
 216#endif
 217
 
 
 
 
 
 218/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
 219int bootloader_type, bootloader_version;
 220
 221/*
 222 * Setup options
 223 */
 224struct screen_info screen_info;
 225EXPORT_SYMBOL(screen_info);
 226struct edid_info edid_info;
 227EXPORT_SYMBOL_GPL(edid_info);
 228
 229extern int root_mountflags;
 230
 231unsigned long saved_video_mode;
 232
 233#define RAMDISK_IMAGE_START_MASK	0x07FF
 234#define RAMDISK_PROMPT_FLAG		0x8000
 235#define RAMDISK_LOAD_FLAG		0x4000
 236
 237static char __initdata command_line[COMMAND_LINE_SIZE];
 238#ifdef CONFIG_CMDLINE_BOOL
 239static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
 240#endif
 241
 242#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
 243struct edd edd;
 244#ifdef CONFIG_EDD_MODULE
 245EXPORT_SYMBOL(edd);
 246#endif
 247/**
 248 * copy_edd() - Copy the BIOS EDD information
 249 *              from boot_params into a safe place.
 250 *
 251 */
 252static inline void __init copy_edd(void)
 253{
 254     memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
 255	    sizeof(edd.mbr_signature));
 256     memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
 257     edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
 258     edd.edd_info_nr = boot_params.eddbuf_entries;
 259}
 260#else
 261static inline void __init copy_edd(void)
 262{
 263}
 264#endif
 265
 266void * __init extend_brk(size_t size, size_t align)
 267{
 268	size_t mask = align - 1;
 269	void *ret;
 270
 271	BUG_ON(_brk_start == 0);
 272	BUG_ON(align & mask);
 273
 274	_brk_end = (_brk_end + mask) & ~mask;
 275	BUG_ON((char *)(_brk_end + size) > __brk_limit);
 276
 277	ret = (void *)_brk_end;
 278	_brk_end += size;
 279
 280	memset(ret, 0, size);
 281
 282	return ret;
 283}
 284
 285#ifdef CONFIG_X86_32
 286static void __init cleanup_highmap(void)
 287{
 288}
 289#endif
 290
 291static void __init reserve_brk(void)
 292{
 293	if (_brk_end > _brk_start)
 294		memblock_reserve(__pa_symbol(_brk_start),
 295				 _brk_end - _brk_start);
 296
 297	/* Mark brk area as locked down and no longer taking any
 298	   new allocations */
 299	_brk_start = 0;
 300}
 301
 302u64 relocated_ramdisk;
 303
 304#ifdef CONFIG_BLK_DEV_INITRD
 305
 306static u64 __init get_ramdisk_image(void)
 307{
 308	u64 ramdisk_image = boot_params.hdr.ramdisk_image;
 309
 310	ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
 311
 
 
 
 312	return ramdisk_image;
 313}
 314static u64 __init get_ramdisk_size(void)
 315{
 316	u64 ramdisk_size = boot_params.hdr.ramdisk_size;
 317
 318	ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
 319
 
 
 
 320	return ramdisk_size;
 321}
 322
 323static void __init relocate_initrd(void)
 324{
 325	/* Assume only end is not page aligned */
 326	u64 ramdisk_image = get_ramdisk_image();
 327	u64 ramdisk_size  = get_ramdisk_size();
 328	u64 area_size     = PAGE_ALIGN(ramdisk_size);
 329
 330	/* We need to move the initrd down into directly mapped mem */
 331	relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
 332						   area_size, PAGE_SIZE);
 333
 334	if (!relocated_ramdisk)
 335		panic("Cannot find place for new RAMDISK of size %lld\n",
 336		      ramdisk_size);
 337
 338	/* Note: this includes all the mem currently occupied by
 339	   the initrd, we rely on that fact to keep the data intact. */
 340	memblock_reserve(relocated_ramdisk, area_size);
 341	initrd_start = relocated_ramdisk + PAGE_OFFSET;
 342	initrd_end   = initrd_start + ramdisk_size;
 343	printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
 344	       relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 345
 346	copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
 347
 348	printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
 349		" [mem %#010llx-%#010llx]\n",
 350		ramdisk_image, ramdisk_image + ramdisk_size - 1,
 351		relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
 352}
 353
 354static void __init early_reserve_initrd(void)
 355{
 356	/* Assume only end is not page aligned */
 357	u64 ramdisk_image = get_ramdisk_image();
 358	u64 ramdisk_size  = get_ramdisk_size();
 359	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 360
 361	if (!boot_params.hdr.type_of_loader ||
 362	    !ramdisk_image || !ramdisk_size)
 363		return;		/* No initrd provided by bootloader */
 364
 365	memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
 366}
 
 367static void __init reserve_initrd(void)
 368{
 369	/* Assume only end is not page aligned */
 370	u64 ramdisk_image = get_ramdisk_image();
 371	u64 ramdisk_size  = get_ramdisk_size();
 372	u64 ramdisk_end   = PAGE_ALIGN(ramdisk_image + ramdisk_size);
 373	u64 mapped_size;
 374
 375	if (!boot_params.hdr.type_of_loader ||
 376	    !ramdisk_image || !ramdisk_size)
 377		return;		/* No initrd provided by bootloader */
 378
 379	initrd_start = 0;
 380
 381	mapped_size = memblock_mem_size(max_pfn_mapped);
 382	if (ramdisk_size >= (mapped_size>>1))
 383		panic("initrd too large to handle, "
 384		       "disabling initrd (%lld needed, %lld available)\n",
 385		       ramdisk_size, mapped_size>>1);
 386
 387	printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
 388			ramdisk_end - 1);
 389
 390	if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
 391				PFN_DOWN(ramdisk_end))) {
 392		/* All are mapped, easy case */
 393		initrd_start = ramdisk_image + PAGE_OFFSET;
 394		initrd_end = initrd_start + ramdisk_size;
 395		return;
 396	}
 397
 398	relocate_initrd();
 399
 400	memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
 401}
 402
 403#else
 404static void __init early_reserve_initrd(void)
 405{
 406}
 407static void __init reserve_initrd(void)
 408{
 409}
 410#endif /* CONFIG_BLK_DEV_INITRD */
 411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 412static void __init parse_setup_data(void)
 413{
 414	struct setup_data *data;
 415	u64 pa_data, pa_next;
 416
 417	pa_data = boot_params.hdr.setup_data;
 418	while (pa_data) {
 419		u32 data_len, data_type;
 420
 421		data = early_memremap(pa_data, sizeof(*data));
 422		data_len = data->len + sizeof(struct setup_data);
 423		data_type = data->type;
 424		pa_next = data->next;
 425		early_memunmap(data, sizeof(*data));
 426
 427		switch (data_type) {
 428		case SETUP_E820_EXT:
 429			parse_e820_ext(pa_data, data_len);
 430			break;
 431		case SETUP_DTB:
 432			add_dtb(pa_data);
 433			break;
 434		case SETUP_EFI:
 435			parse_efi_setup(pa_data, data_len);
 436			break;
 
 
 
 
 
 
 
 
 
 
 
 
 437		default:
 438			break;
 439		}
 440		pa_data = pa_next;
 441	}
 442}
 443
 444static void __init e820_reserve_setup_data(void)
 445{
 
 446	struct setup_data *data;
 447	u64 pa_data;
 
 448
 449	pa_data = boot_params.hdr.setup_data;
 450	if (!pa_data)
 451		return;
 452
 453	while (pa_data) {
 454		data = early_memremap(pa_data, sizeof(*data));
 455		e820_update_range(pa_data, sizeof(*data)+data->len,
 456			 E820_RAM, E820_RESERVED_KERN);
 457		pa_data = data->next;
 458		early_memunmap(data, sizeof(*data));
 459	}
 460
 461	sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
 462	memcpy(e820_saved, e820, sizeof(struct e820map));
 463	printk(KERN_INFO "extended physical RAM map:\n");
 464	e820_print_map("reserve setup_data");
 465}
 466
 467static void __init memblock_x86_reserve_range_setup_data(void)
 468{
 469	struct setup_data *data;
 470	u64 pa_data;
 471
 472	pa_data = boot_params.hdr.setup_data;
 473	while (pa_data) {
 474		data = early_memremap(pa_data, sizeof(*data));
 475		memblock_reserve(pa_data, sizeof(*data) + data->len);
 476		pa_data = data->next;
 477		early_memunmap(data, sizeof(*data));
 478	}
 479}
 480
 481/*
 482 * --------- Crashkernel reservation ------------------------------
 483 */
 
 
 
 
 
 484
 485#ifdef CONFIG_KEXEC_CORE
 486
 487/* 16M alignment for crash kernel regions */
 488#define CRASH_ALIGN		(16 << 20)
 
 489
 490/*
 491 * Keep the crash kernel below this limit.  On 32 bits earlier kernels
 492 * would limit the kernel to the low 512 MiB due to mapping restrictions.
 493 * On 64bit, old kexec-tools need to under 896MiB.
 494 */
 495#ifdef CONFIG_X86_32
 496# define CRASH_ADDR_LOW_MAX	(512 << 20)
 497# define CRASH_ADDR_HIGH_MAX	(512 << 20)
 498#else
 499# define CRASH_ADDR_LOW_MAX	(896UL << 20)
 500# define CRASH_ADDR_HIGH_MAX	MAXMEM
 501#endif
 502
 503static int __init reserve_crashkernel_low(void)
 504{
 505#ifdef CONFIG_X86_64
 506	unsigned long long base, low_base = 0, low_size = 0;
 507	unsigned long total_low_mem;
 508	int ret;
 509
 510	total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
 511
 512	/* crashkernel=Y,low */
 513	ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
 514	if (ret) {
 515		/*
 516		 * two parts from lib/swiotlb.c:
 517		 * -swiotlb size: user-specified with swiotlb= or default.
 518		 *
 519		 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
 520		 * to 8M for other buffers that may need to stay low too. Also
 521		 * make sure we allocate enough extra low memory so that we
 522		 * don't run out of DMA buffers for 32-bit devices.
 523		 */
 524		low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
 525	} else {
 526		/* passed with crashkernel=0,low ? */
 527		if (!low_size)
 528			return 0;
 529	}
 530
 531	low_base = memblock_find_in_range(low_size, 1ULL << 32, low_size, CRASH_ALIGN);
 532	if (!low_base) {
 533		pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
 534		       (unsigned long)(low_size >> 20));
 535		return -ENOMEM;
 536	}
 537
 538	ret = memblock_reserve(low_base, low_size);
 539	if (ret) {
 540		pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
 541		return ret;
 542	}
 543
 544	pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
 545		(unsigned long)(low_size >> 20),
 546		(unsigned long)(low_base >> 20),
 547		(unsigned long)(total_low_mem >> 20));
 548
 549	crashk_low_res.start = low_base;
 550	crashk_low_res.end   = low_base + low_size - 1;
 551	insert_resource(&iomem_resource, &crashk_low_res);
 552#endif
 553	return 0;
 554}
 555
 556static void __init reserve_crashkernel(void)
 557{
 558	unsigned long long crash_size, crash_base, total_mem;
 
 559	bool high = false;
 560	int ret;
 561
 562	total_mem = memblock_phys_mem_size();
 563
 564	/* crashkernel=XM */
 565	ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
 566	if (ret != 0 || crash_size <= 0) {
 567		/* crashkernel=X,high */
 568		ret = parse_crashkernel_high(boot_command_line, total_mem,
 569					     &crash_size, &crash_base);
 570		if (ret != 0 || crash_size <= 0)
 571			return;
 572		high = true;
 573	}
 574
 575	/* 0 means: find the address automatically */
 576	if (crash_base <= 0) {
 577		/*
 578		 *  kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
 579		 */
 580		crash_base = memblock_find_in_range(CRASH_ALIGN,
 581						    high ? CRASH_ADDR_HIGH_MAX
 582							 : CRASH_ADDR_LOW_MAX,
 583						    crash_size, CRASH_ALIGN);
 584		if (!crash_base) {
 585			pr_info("crashkernel reservation failed - No suitable area found.\n");
 586			return;
 587		}
 588
 589	} else {
 590		unsigned long long start;
 591
 592		start = memblock_find_in_range(crash_base,
 593					       crash_base + crash_size,
 594					       crash_size, 1 << 20);
 595		if (start != crash_base) {
 596			pr_info("crashkernel reservation failed - memory is in use.\n");
 597			return;
 598		}
 599	}
 600	ret = memblock_reserve(crash_base, crash_size);
 601	if (ret) {
 602		pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
 603		return;
 604	}
 605
 606	if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
 607		memblock_free(crash_base, crash_size);
 608		return;
 609	}
 610
 611	pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
 612		(unsigned long)(crash_size >> 20),
 613		(unsigned long)(crash_base >> 20),
 614		(unsigned long)(total_mem >> 20));
 615
 616	crashk_res.start = crash_base;
 617	crashk_res.end   = crash_base + crash_size - 1;
 618	insert_resource(&iomem_resource, &crashk_res);
 619}
 620#else
 621static void __init reserve_crashkernel(void)
 622{
 623}
 624#endif
 625
 626static struct resource standard_io_resources[] = {
 627	{ .name = "dma1", .start = 0x00, .end = 0x1f,
 628		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 629	{ .name = "pic1", .start = 0x20, .end = 0x21,
 630		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 631	{ .name = "timer0", .start = 0x40, .end = 0x43,
 632		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 633	{ .name = "timer1", .start = 0x50, .end = 0x53,
 634		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 635	{ .name = "keyboard", .start = 0x60, .end = 0x60,
 636		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 637	{ .name = "keyboard", .start = 0x64, .end = 0x64,
 638		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 639	{ .name = "dma page reg", .start = 0x80, .end = 0x8f,
 640		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 641	{ .name = "pic2", .start = 0xa0, .end = 0xa1,
 642		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 643	{ .name = "dma2", .start = 0xc0, .end = 0xdf,
 644		.flags = IORESOURCE_BUSY | IORESOURCE_IO },
 645	{ .name = "fpu", .start = 0xf0, .end = 0xff,
 646		.flags = IORESOURCE_BUSY | IORESOURCE_IO }
 647};
 648
 649void __init reserve_standard_io_resources(void)
 650{
 651	int i;
 652
 653	/* request I/O space for devices used on all i[345]86 PCs */
 654	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
 655		request_resource(&ioport_resource, &standard_io_resources[i]);
 656
 657}
 658
 659static __init void reserve_ibft_region(void)
 660{
 661	unsigned long addr, size = 0;
 662
 663	addr = find_ibft_region(&size);
 664
 665	if (size)
 666		memblock_reserve(addr, size);
 667}
 668
 669static bool __init snb_gfx_workaround_needed(void)
 670{
 671#ifdef CONFIG_PCI
 672	int i;
 673	u16 vendor, devid;
 674	static const __initconst u16 snb_ids[] = {
 675		0x0102,
 676		0x0112,
 677		0x0122,
 678		0x0106,
 679		0x0116,
 680		0x0126,
 681		0x010a,
 682	};
 683
 684	/* Assume no if something weird is going on with PCI */
 685	if (!early_pci_allowed())
 686		return false;
 687
 688	vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
 689	if (vendor != 0x8086)
 690		return false;
 691
 692	devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
 693	for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
 694		if (devid == snb_ids[i])
 695			return true;
 696#endif
 697
 698	return false;
 699}
 700
 701/*
 702 * Sandy Bridge graphics has trouble with certain ranges, exclude
 703 * them from allocation.
 704 */
 705static void __init trim_snb_memory(void)
 706{
 707	static const __initconst unsigned long bad_pages[] = {
 708		0x20050000,
 709		0x20110000,
 710		0x20130000,
 711		0x20138000,
 712		0x40004000,
 713	};
 714	int i;
 715
 716	if (!snb_gfx_workaround_needed())
 717		return;
 718
 719	printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
 720
 721	/*
 722	 * Reserve all memory below the 1 MB mark that has not
 723	 * already been reserved.
 
 
 
 
 
 
 724	 */
 725	memblock_reserve(0, 1<<20);
 726	
 727	for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
 728		if (memblock_reserve(bad_pages[i], PAGE_SIZE))
 729			printk(KERN_WARNING "failed to reserve 0x%08lx\n",
 730			       bad_pages[i]);
 731	}
 732}
 733
 734/*
 735 * Here we put platform-specific memory range workarounds, i.e.
 736 * memory known to be corrupt or otherwise in need to be reserved on
 737 * specific platforms.
 738 *
 739 * If this gets used more widely it could use a real dispatch mechanism.
 740 */
 741static void __init trim_platform_memory_ranges(void)
 742{
 743	trim_snb_memory();
 744}
 745
 746static void __init trim_bios_range(void)
 747{
 748	/*
 749	 * A special case is the first 4Kb of memory;
 750	 * This is a BIOS owned area, not kernel ram, but generally
 751	 * not listed as such in the E820 table.
 752	 *
 753	 * This typically reserves additional memory (64KiB by default)
 754	 * since some BIOSes are known to corrupt low memory.  See the
 755	 * Kconfig help text for X86_RESERVE_LOW.
 756	 */
 757	e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED);
 758
 759	/*
 760	 * special case: Some BIOSen report the PC BIOS
 761	 * area (640->1Mb) as ram even though it is not.
 762	 * take them out.
 763	 */
 764	e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
 765
 766	sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
 767}
 768
 769/* called before trim_bios_range() to spare extra sanitize */
 770static void __init e820_add_kernel_range(void)
 771{
 772	u64 start = __pa_symbol(_text);
 773	u64 size = __pa_symbol(_end) - start;
 774
 775	/*
 776	 * Complain if .text .data and .bss are not marked as E820_RAM and
 777	 * attempt to fix it by adding the range. We may have a confused BIOS,
 778	 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
 779	 * exclude kernel range. If we really are running on top non-RAM,
 780	 * we will crash later anyways.
 781	 */
 782	if (e820_all_mapped(start, start + size, E820_RAM))
 783		return;
 784
 785	pr_warn(".text .data .bss are not marked as E820_RAM!\n");
 786	e820_remove_range(start, size, E820_RAM, 0);
 787	e820_add_region(start, size, E820_RAM);
 788}
 789
 790static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
 791
 792static int __init parse_reservelow(char *p)
 793{
 794	unsigned long long size;
 
 
 
 
 
 
 
 795
 796	if (!p)
 797		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 798
 799	size = memparse(p, &p);
 800
 801	if (size < 4096)
 802		size = 4096;
 803
 804	if (size > 640*1024)
 805		size = 640*1024;
 806
 807	reserve_low = size;
 808
 809	return 0;
 810}
 811
 812early_param("reservelow", parse_reservelow);
 813
 814static void __init trim_low_memory_range(void)
 815{
 816	memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
 817}
 818	
 819/*
 820 * Dump out kernel offset information on panic.
 821 */
 822static int
 823dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
 824{
 825	if (kaslr_enabled()) {
 826		pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
 827			 kaslr_offset(),
 828			 __START_KERNEL,
 829			 __START_KERNEL_map,
 830			 MODULES_VADDR-1);
 831	} else {
 832		pr_emerg("Kernel Offset: disabled\n");
 833	}
 834
 835	return 0;
 836}
 837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838/*
 839 * Determine if we were loaded by an EFI loader.  If so, then we have also been
 840 * passed the efi memmap, systab, etc., so we should use these data structures
 841 * for initialization.  Note, the efi init code path is determined by the
 842 * global efi_enabled. This allows the same kernel image to be used on existing
 843 * systems (with a traditional BIOS) as well as on EFI systems.
 844 */
 845/*
 846 * setup_arch - architecture-specific boot-time initializations
 847 *
 848 * Note: On x86_64, fixmaps are ready for use even before this is called.
 849 */
 850
 851void __init setup_arch(char **cmdline_p)
 852{
 853	memblock_reserve(__pa_symbol(_text),
 854			 (unsigned long)__bss_stop - (unsigned long)_text);
 855
 856	early_reserve_initrd();
 857
 858	/*
 859	 * At this point everything still needed from the boot loader
 860	 * or BIOS or kernel text should be early reserved or marked not
 861	 * RAM in e820. All other memory is free game.
 862	 */
 863
 864#ifdef CONFIG_X86_32
 865	memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
 866
 867	/*
 868	 * copy kernel address range established so far and switch
 869	 * to the proper swapper page table
 870	 */
 871	clone_pgd_range(swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
 872			initial_page_table + KERNEL_PGD_BOUNDARY,
 873			KERNEL_PGD_PTRS);
 874
 875	load_cr3(swapper_pg_dir);
 876	/*
 877	 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
 878	 * a cr3 based tlb flush, so the following __flush_tlb_all()
 879	 * will not flush anything because the cpu quirk which clears
 880	 * X86_FEATURE_PGE has not been invoked yet. Though due to the
 881	 * load_cr3() above the TLB has been flushed already. The
 882	 * quirk is invoked before subsequent calls to __flush_tlb_all()
 883	 * so proper operation is guaranteed.
 884	 */
 885	__flush_tlb_all();
 886#else
 887	printk(KERN_INFO "Command line: %s\n", boot_command_line);
 
 888#endif
 889
 890	/*
 891	 * If we have OLPC OFW, we might end up relocating the fixmap due to
 892	 * reserve_top(), so do this before touching the ioremap area.
 893	 */
 894	olpc_ofw_detect();
 895
 896	early_trap_init();
 897	early_cpu_init();
 
 
 898	early_ioremap_init();
 899
 900	setup_olpc_ofw_pgd();
 901
 902	ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
 903	screen_info = boot_params.screen_info;
 904	edid_info = boot_params.edid_info;
 905#ifdef CONFIG_X86_32
 906	apm_info.bios = boot_params.apm_bios_info;
 907	ist_info = boot_params.ist_info;
 908#endif
 909	saved_video_mode = boot_params.hdr.vid_mode;
 910	bootloader_type = boot_params.hdr.type_of_loader;
 911	if ((bootloader_type >> 4) == 0xe) {
 912		bootloader_type &= 0xf;
 913		bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
 914	}
 915	bootloader_version  = bootloader_type & 0xf;
 916	bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
 917
 918#ifdef CONFIG_BLK_DEV_RAM
 919	rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
 920	rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
 921	rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
 922#endif
 923#ifdef CONFIG_EFI
 924	if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 925		     EFI32_LOADER_SIGNATURE, 4)) {
 926		set_bit(EFI_BOOT, &efi.flags);
 927	} else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
 928		     EFI64_LOADER_SIGNATURE, 4)) {
 929		set_bit(EFI_BOOT, &efi.flags);
 930		set_bit(EFI_64BIT, &efi.flags);
 931	}
 932
 933	if (efi_enabled(EFI_BOOT))
 934		efi_memblock_x86_reserve_range();
 935#endif
 936
 937	x86_init.oem.arch_setup();
 938
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939	iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
 940	setup_memory_map();
 941	parse_setup_data();
 942
 943	copy_edd();
 944
 945	if (!boot_params.hdr.root_flags)
 946		root_mountflags &= ~MS_RDONLY;
 947	init_mm.start_code = (unsigned long) _text;
 948	init_mm.end_code = (unsigned long) _etext;
 949	init_mm.end_data = (unsigned long) _edata;
 950	init_mm.brk = _brk_end;
 951
 952	mpx_mm_init(&init_mm);
 953
 954	code_resource.start = __pa_symbol(_text);
 955	code_resource.end = __pa_symbol(_etext)-1;
 956	data_resource.start = __pa_symbol(_etext);
 
 
 957	data_resource.end = __pa_symbol(_edata)-1;
 958	bss_resource.start = __pa_symbol(__bss_start);
 959	bss_resource.end = __pa_symbol(__bss_stop)-1;
 960
 961#ifdef CONFIG_CMDLINE_BOOL
 962#ifdef CONFIG_CMDLINE_OVERRIDE
 963	strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 964#else
 965	if (builtin_cmdline[0]) {
 966		/* append boot loader cmdline to builtin */
 967		strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
 968		strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
 969		strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
 970	}
 971#endif
 972#endif
 973
 974	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
 975	*cmdline_p = command_line;
 976
 977	/*
 978	 * x86_configure_nx() is called before parse_early_param() to detect
 979	 * whether hardware doesn't support NX (so that the early EHCI debug
 980	 * console setup can safely call set_fixmap()). It may then be called
 981	 * again from within noexec_setup() during parsing early parameters
 982	 * to honor the respective command line option.
 983	 */
 984	x86_configure_nx();
 985
 986	parse_early_param();
 987
 
 
 
 988#ifdef CONFIG_MEMORY_HOTPLUG
 989	/*
 990	 * Memory used by the kernel cannot be hot-removed because Linux
 991	 * cannot migrate the kernel pages. When memory hotplug is
 992	 * enabled, we should prevent memblock from allocating memory
 993	 * for the kernel.
 994	 *
 995	 * ACPI SRAT records all hotpluggable memory ranges. But before
 996	 * SRAT is parsed, we don't know about it.
 997	 *
 998	 * The kernel image is loaded into memory at very early time. We
 999	 * cannot prevent this anyway. So on NUMA system, we set any
1000	 * node the kernel resides in as un-hotpluggable.
1001	 *
1002	 * Since on modern servers, one node could have double-digit
1003	 * gigabytes memory, we can assume the memory around the kernel
1004	 * image is also un-hotpluggable. So before SRAT is parsed, just
1005	 * allocate memory near the kernel image to try the best to keep
1006	 * the kernel away from hotpluggable memory.
1007	 */
1008	if (movable_node_is_enabled())
1009		memblock_set_bottom_up(true);
1010#endif
1011
1012	x86_report_nx();
1013
1014	/* after early param, so could get panic from serial */
1015	memblock_x86_reserve_range_setup_data();
1016
1017	if (acpi_mps_check()) {
1018#ifdef CONFIG_X86_LOCAL_APIC
1019		disable_apic = 1;
1020#endif
1021		setup_clear_cpu_cap(X86_FEATURE_APIC);
1022	}
1023
1024#ifdef CONFIG_PCI
1025	if (pci_early_dump_regs)
1026		early_dump_pci_devices();
1027#endif
1028
1029	/* update the e820_saved too */
1030	e820_reserve_setup_data();
1031	finish_e820_parsing();
1032
1033	if (efi_enabled(EFI_BOOT))
1034		efi_init();
1035
1036	dmi_scan_machine();
1037	dmi_memdev_walk();
1038	dmi_set_dump_stack_arch_desc();
1039
1040	/*
1041	 * VMware detection requires dmi to be available, so this
1042	 * needs to be done after dmi_scan_machine, for the BP.
 
 
1043	 */
1044	init_hypervisor_platform();
1045
 
1046	x86_init.resources.probe_roms();
1047
1048	/* after parse_early_param, so could debug it */
1049	insert_resource(&iomem_resource, &code_resource);
 
1050	insert_resource(&iomem_resource, &data_resource);
1051	insert_resource(&iomem_resource, &bss_resource);
1052
1053	e820_add_kernel_range();
1054	trim_bios_range();
1055#ifdef CONFIG_X86_32
1056	if (ppro_with_ram_bug()) {
1057		e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
1058				  E820_RESERVED);
1059		sanitize_e820_map(e820->map, ARRAY_SIZE(e820->map), &e820->nr_map);
1060		printk(KERN_INFO "fixed physical RAM map:\n");
1061		e820_print_map("bad_ppro");
1062	}
1063#else
1064	early_gart_iommu_check();
1065#endif
1066
1067	/*
1068	 * partially used pages are not usable - thus
1069	 * we are rounding upwards:
1070	 */
1071	max_pfn = e820_end_of_ram_pfn();
1072
1073	/* update e820 for memory not covered by WB MTRRs */
1074	mtrr_bp_init();
1075	if (mtrr_trim_uncached_memory(max_pfn))
1076		max_pfn = e820_end_of_ram_pfn();
1077
1078	max_possible_pfn = max_pfn;
1079
1080	/*
1081	 * Define random base addresses for memory sections after max_pfn is
1082	 * defined and before each memory section base is used.
1083	 */
1084	kernel_randomize_memory();
1085
1086#ifdef CONFIG_X86_32
1087	/* max_low_pfn get updated here */
1088	find_low_pfn_range();
1089#else
1090	check_x2apic();
1091
1092	/* How many end-of-memory variables you have, grandma! */
1093	/* need this before calling reserve_initrd */
1094	if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1095		max_low_pfn = e820_end_of_low_ram_pfn();
1096	else
1097		max_low_pfn = max_pfn;
1098
1099	high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1100#endif
1101
1102	/*
1103	 * Find and reserve possible boot-time SMP configuration:
1104	 */
1105	find_smp_config();
1106
1107	reserve_ibft_region();
1108
1109	early_alloc_pgt_buf();
1110
1111	/*
1112	 * Need to conclude brk, before memblock_x86_fill()
1113	 *  it could use memblock_find_in_range, could overlap with
1114	 *  brk area.
1115	 */
1116	reserve_brk();
1117
1118	cleanup_highmap();
1119
1120	memblock_set_current_limit(ISA_END_ADDRESS);
1121	memblock_x86_fill();
1122
1123	reserve_bios_regions();
 
 
 
 
 
 
 
 
 
 
1124
1125	if (efi_enabled(EFI_MEMMAP)) {
1126		efi_fake_memmap();
1127		efi_find_mirror();
1128		efi_esrt_init();
1129
1130		/*
1131		 * The EFI specification says that boot service code won't be
1132		 * called after ExitBootServices(). This is, in fact, a lie.
1133		 */
1134		efi_reserve_boot_services();
1135	}
1136
1137	/* preallocate 4k for mptable mpc */
1138	early_reserve_e820_mpc_new();
1139
1140#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1141	setup_bios_corruption_check();
1142#endif
1143
1144#ifdef CONFIG_X86_32
1145	printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1146			(max_pfn_mapped<<PAGE_SHIFT) - 1);
1147#endif
1148
1149	reserve_real_mode();
1150
1151	trim_platform_memory_ranges();
1152	trim_low_memory_range();
 
 
 
 
 
 
 
 
 
 
 
 
 
1153
1154	init_mem_mapping();
1155
1156	early_trap_pf_init();
1157
1158	/*
1159	 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1160	 * with the current CR4 value.  This may not be necessary, but
1161	 * auditing all the early-boot CR4 manipulation would be needed to
1162	 * rule it out.
 
 
 
1163	 */
1164	mmu_cr4_features = __read_cr4();
1165
1166	memblock_set_current_limit(get_max_mapped());
1167
1168	/*
1169	 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1170	 */
1171
1172#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1173	if (init_ohci1394_dma_early)
1174		init_ohci1394_dma_on_all_controllers();
1175#endif
1176	/* Allocate bigger log buffer */
1177	setup_log_buf(1);
1178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1179	reserve_initrd();
1180
1181	acpi_table_upgrade();
 
 
1182
1183	vsmp_init();
1184
1185	io_delay_init();
1186
1187	/*
1188	 * Parse the ACPI tables for possible boot-time SMP configuration.
1189	 */
1190	acpi_boot_table_init();
1191
 
1192	early_acpi_boot_init();
 
 
 
1193
1194	initmem_init();
1195	dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1196
 
 
 
1197	/*
1198	 * Reserve memory for crash kernel after SRAT is parsed so that it
1199	 * won't consume hotpluggable memory.
1200	 */
1201	reserve_crashkernel();
1202
1203	memblock_find_dma_reserve();
1204
1205#ifdef CONFIG_KVM_GUEST
1206	kvmclock_init();
1207#endif
1208
1209	x86_init.paging.pagetable_init();
1210
1211	kasan_init();
1212
1213#ifdef CONFIG_X86_32
1214	/* sync back kernel address range */
1215	clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1216			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1217			KERNEL_PGD_PTRS);
1218
1219	/*
1220	 * sync back low identity map too.  It is used for example
1221	 * in the 32-bit EFI stub.
 
 
1222	 */
1223	clone_pgd_range(initial_page_table,
1224			swapper_pg_dir     + KERNEL_PGD_BOUNDARY,
1225			min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1226#endif
1227
1228	tboot_probe();
1229
1230	map_vsyscall();
1231
1232	generic_apic_probe();
1233
1234	early_quirks();
1235
 
 
1236	/*
1237	 * Read APIC and some other early information from ACPI tables.
 
1238	 */
1239	acpi_boot_init();
1240	sfi_init();
1241	x86_dtb_init();
1242
1243	/*
1244	 * get boot-time SMP configuration:
1245	 */
1246	get_smp_config();
1247
1248	/*
1249	 * Systems w/o ACPI and mptables might not have it mapped the local
1250	 * APIC yet, but prefill_possible_map() might need to access it.
1251	 */
1252	init_apic_mappings();
1253
1254	prefill_possible_map();
1255
1256	init_cpu_to_node();
 
1257
1258	io_apic_init_mappings();
1259
1260	kvm_guest_init();
1261
1262	e820_reserve_resources();
1263	e820_mark_nosave_regions(max_low_pfn);
1264
1265	x86_init.resources.reserve_resources();
1266
1267	e820_setup_gap();
1268
1269#ifdef CONFIG_VT
1270#if defined(CONFIG_VGA_CONSOLE)
1271	if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1272		conswitchp = &vga_con;
1273#elif defined(CONFIG_DUMMY_CONSOLE)
1274	conswitchp = &dummy_con;
1275#endif
1276#endif
1277	x86_init.oem.banner();
1278
1279	x86_init.timers.wallclock_init();
1280
 
 
 
 
 
 
 
 
1281	mcheck_init();
1282
1283	arch_init_ideal_nops();
1284
1285	register_refined_jiffies(CLOCK_TICK_RATE);
1286
1287#ifdef CONFIG_EFI
1288	if (efi_enabled(EFI_BOOT))
1289		efi_apply_memmap_quirks();
1290#endif
 
 
1291}
1292
1293#ifdef CONFIG_X86_32
1294
1295static struct resource video_ram_resource = {
1296	.name	= "Video RAM area",
1297	.start	= 0xa0000,
1298	.end	= 0xbffff,
1299	.flags	= IORESOURCE_BUSY | IORESOURCE_MEM
1300};
1301
1302void __init i386_reserve_resources(void)
1303{
1304	request_resource(&iomem_resource, &video_ram_resource);
1305	reserve_standard_io_resources();
1306}
1307
1308#endif /* CONFIG_X86_32 */
1309
1310static struct notifier_block kernel_offset_notifier = {
1311	.notifier_call = dump_kernel_offset
1312};
1313
1314static int __init register_kernel_offset_dumper(void)
1315{
1316	atomic_notifier_chain_register(&panic_notifier_list,
1317					&kernel_offset_notifier);
1318	return 0;
1319}
1320__initcall(register_kernel_offset_dumper);
1321
1322void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1323{
1324	if (!boot_cpu_has(X86_FEATURE_OSPKE))
1325		return;
1326
1327	seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
1328}