Linux Audio

Check our new training course

Loading...
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * handle transition of Linux booting another kernel
  4 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
 
 
 
  5 */
  6
  7#define pr_fmt(fmt)	"kexec: " fmt
  8
  9#include <linux/mm.h>
 10#include <linux/kexec.h>
 11#include <linux/string.h>
 12#include <linux/gfp.h>
 13#include <linux/reboot.h>
 14#include <linux/numa.h>
 15#include <linux/ftrace.h>
 16#include <linux/io.h>
 17#include <linux/suspend.h>
 18#include <linux/vmalloc.h>
 19#include <linux/efi.h>
 20#include <linux/cc_platform.h>
 21
 22#include <asm/init.h>
 
 23#include <asm/tlbflush.h>
 24#include <asm/mmu_context.h>
 25#include <asm/io_apic.h>
 26#include <asm/debugreg.h>
 27#include <asm/kexec-bzimage64.h>
 28#include <asm/setup.h>
 29#include <asm/set_memory.h>
 30#include <asm/cpu.h>
 31
 32#ifdef CONFIG_ACPI
 33/*
 34 * Used while adding mapping for ACPI tables.
 35 * Can be reused when other iomem regions need be mapped
 36 */
 37struct init_pgtable_data {
 38	struct x86_mapping_info *info;
 39	pgd_t *level4p;
 40};
 41
 42static int mem_region_callback(struct resource *res, void *arg)
 43{
 44	struct init_pgtable_data *data = arg;
 45
 46	return kernel_ident_mapping_init(data->info, data->level4p,
 47					 res->start, res->end + 1);
 48}
 49
 50static int
 51map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p)
 52{
 53	struct init_pgtable_data data;
 54	unsigned long flags;
 55	int ret;
 56
 57	data.info = info;
 58	data.level4p = level4p;
 59	flags = IORESOURCE_MEM | IORESOURCE_BUSY;
 60
 61	ret = walk_iomem_res_desc(IORES_DESC_ACPI_TABLES, flags, 0, -1,
 62				  &data, mem_region_callback);
 63	if (ret && ret != -EINVAL)
 64		return ret;
 65
 66	/* ACPI tables could be located in ACPI Non-volatile Storage region */
 67	ret = walk_iomem_res_desc(IORES_DESC_ACPI_NV_STORAGE, flags, 0, -1,
 68				  &data, mem_region_callback);
 69	if (ret && ret != -EINVAL)
 70		return ret;
 71
 72	return 0;
 73}
 74#else
 75static int map_acpi_tables(struct x86_mapping_info *info, pgd_t *level4p) { return 0; }
 76#endif
 77
 78#ifdef CONFIG_KEXEC_FILE
 79const struct kexec_file_ops * const kexec_file_loaders[] = {
 80		&kexec_bzImage64_ops,
 81		NULL
 82};
 83#endif
 84
 85static int
 86map_efi_systab(struct x86_mapping_info *info, pgd_t *level4p)
 87{
 88#ifdef CONFIG_EFI
 89	unsigned long mstart, mend;
 90
 91	if (!efi_enabled(EFI_BOOT))
 92		return 0;
 93
 94	mstart = (boot_params.efi_info.efi_systab |
 95			((u64)boot_params.efi_info.efi_systab_hi<<32));
 96
 97	if (efi_enabled(EFI_64BIT))
 98		mend = mstart + sizeof(efi_system_table_64_t);
 99	else
100		mend = mstart + sizeof(efi_system_table_32_t);
101
102	if (!mstart)
103		return 0;
104
105	return kernel_ident_mapping_init(info, level4p, mstart, mend);
106#endif
107	return 0;
108}
109
110static void free_transition_pgtable(struct kimage *image)
111{
112	free_page((unsigned long)image->arch.p4d);
113	image->arch.p4d = NULL;
114	free_page((unsigned long)image->arch.pud);
115	image->arch.pud = NULL;
116	free_page((unsigned long)image->arch.pmd);
117	image->arch.pmd = NULL;
118	free_page((unsigned long)image->arch.pte);
119	image->arch.pte = NULL;
120}
121
122static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
123{
124	pgprot_t prot = PAGE_KERNEL_EXEC_NOENC;
125	unsigned long vaddr, paddr;
126	int result = -ENOMEM;
127	p4d_t *p4d;
128	pud_t *pud;
129	pmd_t *pmd;
130	pte_t *pte;
 
 
131
132	vaddr = (unsigned long)relocate_kernel;
133	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
134	pgd += pgd_index(vaddr);
135	if (!pgd_present(*pgd)) {
136		p4d = (p4d_t *)get_zeroed_page(GFP_KERNEL);
137		if (!p4d)
138			goto err;
139		image->arch.p4d = p4d;
140		set_pgd(pgd, __pgd(__pa(p4d) | _KERNPG_TABLE));
141	}
142	p4d = p4d_offset(pgd, vaddr);
143	if (!p4d_present(*p4d)) {
144		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
145		if (!pud)
146			goto err;
147		image->arch.pud = pud;
148		set_p4d(p4d, __p4d(__pa(pud) | _KERNPG_TABLE));
149	}
150	pud = pud_offset(p4d, vaddr);
151	if (!pud_present(*pud)) {
152		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
153		if (!pmd)
154			goto err;
155		image->arch.pmd = pmd;
156		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
157	}
158	pmd = pmd_offset(pud, vaddr);
159	if (!pmd_present(*pmd)) {
160		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
161		if (!pte)
162			goto err;
163		image->arch.pte = pte;
164		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
165	}
166	pte = pte_offset_kernel(pmd, vaddr);
167
168	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
169		prot = PAGE_KERNEL_EXEC;
170
171	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, prot));
172	return 0;
173err:
 
174	return result;
175}
176
177static void *alloc_pgt_page(void *data)
178{
179	struct kimage *image = (struct kimage *)data;
180	struct page *page;
181	void *p = NULL;
182
183	page = kimage_alloc_control_pages(image, 0);
184	if (page) {
185		p = page_address(page);
186		clear_page(p);
187	}
188
189	return p;
190}
191
192static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
193{
194	struct x86_mapping_info info = {
195		.alloc_pgt_page	= alloc_pgt_page,
196		.context	= image,
197		.page_flag	= __PAGE_KERNEL_LARGE_EXEC,
198		.kernpg_flag	= _KERNPG_TABLE_NOENC,
199	};
200	unsigned long mstart, mend;
201	pgd_t *level4p;
202	int result;
203	int i;
204
205	level4p = (pgd_t *)__va(start_pgtable);
206	clear_page(level4p);
207
208	if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT)) {
209		info.page_flag   |= _PAGE_ENC;
210		info.kernpg_flag |= _PAGE_ENC;
211	}
212
213	if (direct_gbpages)
214		info.direct_gbpages = true;
215
216	for (i = 0; i < nr_pfn_mapped; i++) {
217		mstart = pfn_mapped[i].start << PAGE_SHIFT;
218		mend   = pfn_mapped[i].end << PAGE_SHIFT;
219
220		result = kernel_ident_mapping_init(&info,
221						 level4p, mstart, mend);
222		if (result)
223			return result;
224	}
225
226	/*
227	 * segments's mem ranges could be outside 0 ~ max_pfn,
228	 * for example when jump back to original kernel from kexeced kernel.
229	 * or first kernel is booted with user mem map, and second kernel
230	 * could be loaded out of that range.
231	 */
232	for (i = 0; i < image->nr_segments; i++) {
233		mstart = image->segment[i].mem;
234		mend   = mstart + image->segment[i].memsz;
235
236		result = kernel_ident_mapping_init(&info,
237						 level4p, mstart, mend);
238
239		if (result)
240			return result;
241	}
242
243	/*
244	 * Prepare EFI systab and ACPI tables for kexec kernel since they are
245	 * not covered by pfn_mapped.
246	 */
247	result = map_efi_systab(&info, level4p);
248	if (result)
249		return result;
250
251	result = map_acpi_tables(&info, level4p);
252	if (result)
253		return result;
254
255	return init_transition_pgtable(image, level4p);
256}
257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258static void load_segments(void)
259{
260	__asm__ __volatile__ (
261		"\tmovl %0,%%ds\n"
262		"\tmovl %0,%%es\n"
263		"\tmovl %0,%%ss\n"
264		"\tmovl %0,%%fs\n"
265		"\tmovl %0,%%gs\n"
266		: : "a" (__KERNEL_DS) : "memory"
267		);
268}
269
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
270int machine_kexec_prepare(struct kimage *image)
271{
272	unsigned long start_pgtable;
273	int result;
274
275	/* Calculate the offsets */
276	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
277
278	/* Setup the identity mapped 64bit page table */
279	result = init_pgtable(image, start_pgtable);
280	if (result)
281		return result;
282
 
 
 
 
 
283	return 0;
284}
285
286void machine_kexec_cleanup(struct kimage *image)
287{
288	free_transition_pgtable(image);
289}
290
291/*
292 * Do not allocate memory (or fail in any way) in machine_kexec().
293 * We are past the point of no return, committed to rebooting now.
294 */
295void machine_kexec(struct kimage *image)
296{
297	unsigned long page_list[PAGES_NR];
298	void *control_page;
299	int save_ftrace_enabled;
300
301#ifdef CONFIG_KEXEC_JUMP
302	if (image->preserve_context)
303		save_processor_state();
304#endif
305
306	save_ftrace_enabled = __ftrace_enabled_save();
307
308	/* Interrupts aren't acceptable while we reboot */
309	local_irq_disable();
310	hw_breakpoint_disable();
311	cet_disable();
312
313	if (image->preserve_context) {
314#ifdef CONFIG_X86_IO_APIC
315		/*
316		 * We need to put APICs in legacy mode so that we can
317		 * get timer interrupts in second kernel. kexec/kdump
318		 * paths already have calls to restore_boot_irq_mode()
319		 * in one form or other. kexec jump path also need one.
 
320		 */
321		clear_IO_APIC();
322		restore_boot_irq_mode();
323#endif
324	}
325
326	control_page = page_address(image->control_code_page) + PAGE_SIZE;
327	__memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
328
329	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
330	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
331	page_list[PA_TABLE_PAGE] =
332	  (unsigned long)__pa(page_address(image->control_code_page));
333
334	if (image->type == KEXEC_TYPE_DEFAULT)
335		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
336						<< PAGE_SHIFT);
337
338	/*
339	 * The segment registers are funny things, they have both a
340	 * visible and an invisible part.  Whenever the visible part is
341	 * set to a specific selector, the invisible part is loaded
342	 * with from a table in memory.  At no other time is the
343	 * descriptor table in memory accessed.
344	 *
345	 * I take advantage of this here by force loading the
346	 * segments, before I zap the gdt with an invalid value.
347	 */
348	load_segments();
349	/*
350	 * The gdt & idt are now invalid.
351	 * If you want to load them you must set up your own idt & gdt.
352	 */
353	native_idt_invalidate();
354	native_gdt_invalidate();
355
356	/* now call it */
357	image->start = relocate_kernel((unsigned long)image->head,
358				       (unsigned long)page_list,
359				       image->start,
360				       image->preserve_context,
361				       cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT));
362
363#ifdef CONFIG_KEXEC_JUMP
364	if (image->preserve_context)
365		restore_processor_state();
366#endif
367
368	__ftrace_enabled_restore(save_ftrace_enabled);
369}
370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
371/* arch-dependent functionality related to kexec file-based syscall */
372
373#ifdef CONFIG_KEXEC_FILE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
374/*
375 * Apply purgatory relocations.
376 *
377 * @pi:		Purgatory to be relocated.
378 * @section:	Section relocations applying to.
379 * @relsec:	Section containing RELAs.
380 * @symtabsec:	Corresponding symtab.
381 *
382 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
383 */
384int arch_kexec_apply_relocations_add(struct purgatory_info *pi,
385				     Elf_Shdr *section, const Elf_Shdr *relsec,
386				     const Elf_Shdr *symtabsec)
387{
388	unsigned int i;
389	Elf64_Rela *rel;
390	Elf64_Sym *sym;
391	void *location;
 
392	unsigned long address, sec_base, value;
393	const char *strtab, *name, *shstrtab;
394	const Elf_Shdr *sechdrs;
395
396	/* String & section header string table */
397	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
398	strtab = (char *)pi->ehdr + sechdrs[symtabsec->sh_link].sh_offset;
399	shstrtab = (char *)pi->ehdr + sechdrs[pi->ehdr->e_shstrndx].sh_offset;
 
 
 
 
400
401	rel = (void *)pi->ehdr + relsec->sh_offset;
 
402
403	pr_debug("Applying relocate section %s to %u\n",
404		 shstrtab + relsec->sh_name, relsec->sh_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
405
406	for (i = 0; i < relsec->sh_size / sizeof(*rel); i++) {
407
408		/*
409		 * rel[i].r_offset contains byte offset from beginning
410		 * of section to the storage unit affected.
411		 *
412		 * This is location to update. This is temporary buffer
413		 * where section is currently loaded. This will finally be
414		 * loaded to a different address later, pointed to by
415		 * ->sh_addr. kexec takes care of moving it
416		 *  (kexec_load_segment()).
417		 */
418		location = pi->purgatory_buf;
419		location += section->sh_offset;
420		location += rel[i].r_offset;
421
422		/* Final address of the location */
423		address = section->sh_addr + rel[i].r_offset;
424
425		/*
426		 * rel[i].r_info contains information about symbol table index
427		 * w.r.t which relocation must be made and type of relocation
428		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
429		 * these respectively.
430		 */
431		sym = (void *)pi->ehdr + symtabsec->sh_offset;
432		sym += ELF64_R_SYM(rel[i].r_info);
433
434		if (sym->st_name)
435			name = strtab + sym->st_name;
436		else
437			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
438
439		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
440			 name, sym->st_info, sym->st_shndx, sym->st_value,
441			 sym->st_size);
442
443		if (sym->st_shndx == SHN_UNDEF) {
444			pr_err("Undefined symbol: %s\n", name);
445			return -ENOEXEC;
446		}
447
448		if (sym->st_shndx == SHN_COMMON) {
449			pr_err("symbol '%s' in common section\n", name);
450			return -ENOEXEC;
451		}
452
453		if (sym->st_shndx == SHN_ABS)
454			sec_base = 0;
455		else if (sym->st_shndx >= pi->ehdr->e_shnum) {
456			pr_err("Invalid section %d for symbol %s\n",
457			       sym->st_shndx, name);
458			return -ENOEXEC;
459		} else
460			sec_base = pi->sechdrs[sym->st_shndx].sh_addr;
461
462		value = sym->st_value;
463		value += sec_base;
464		value += rel[i].r_addend;
465
466		switch (ELF64_R_TYPE(rel[i].r_info)) {
467		case R_X86_64_NONE:
468			break;
469		case R_X86_64_64:
470			*(u64 *)location = value;
471			break;
472		case R_X86_64_32:
473			*(u32 *)location = value;
474			if (value != *(u32 *)location)
475				goto overflow;
476			break;
477		case R_X86_64_32S:
478			*(s32 *)location = value;
479			if ((s64)value != *(s32 *)location)
480				goto overflow;
481			break;
482		case R_X86_64_PC32:
483		case R_X86_64_PLT32:
484			value -= (u64)address;
485			*(u32 *)location = value;
486			break;
487		default:
488			pr_err("Unknown rela relocation: %llu\n",
489			       ELF64_R_TYPE(rel[i].r_info));
490			return -ENOEXEC;
491		}
492	}
493	return 0;
494
495overflow:
496	pr_err("Overflow in relocation type %d value 0x%lx\n",
497	       (int)ELF64_R_TYPE(rel[i].r_info), value);
498	return -ENOEXEC;
499}
500
501int arch_kimage_file_post_load_cleanup(struct kimage *image)
502{
503	vfree(image->elf_headers);
504	image->elf_headers = NULL;
505	image->elf_headers_sz = 0;
506
507	return kexec_image_post_load_cleanup_default(image);
508}
509#endif /* CONFIG_KEXEC_FILE */
510
511#ifdef CONFIG_CRASH_DUMP
512
513static int
514kexec_mark_range(unsigned long start, unsigned long end, bool protect)
515{
516	struct page *page;
517	unsigned int nr_pages;
518
519	/*
520	 * For physical range: [start, end]. We must skip the unassigned
521	 * crashk resource with zero-valued "end" member.
522	 */
523	if (!end || start > end)
524		return 0;
525
526	page = pfn_to_page(start >> PAGE_SHIFT);
527	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
528	if (protect)
529		return set_pages_ro(page, nr_pages);
530	else
531		return set_pages_rw(page, nr_pages);
532}
533
534static void kexec_mark_crashkres(bool protect)
535{
536	unsigned long control;
537
538	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
539
540	/* Don't touch the control code page used in crash_kexec().*/
541	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
542	/* Control code page is located in the 2nd page. */
543	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
544	control += KEXEC_CONTROL_PAGE_SIZE;
545	kexec_mark_range(control, crashk_res.end, protect);
546}
547
548void arch_kexec_protect_crashkres(void)
549{
550	kexec_mark_crashkres(true);
551}
552
553void arch_kexec_unprotect_crashkres(void)
554{
555	kexec_mark_crashkres(false);
556}
557#endif
558
559/*
560 * During a traditional boot under SME, SME will encrypt the kernel,
561 * so the SME kexec kernel also needs to be un-encrypted in order to
562 * replicate a normal SME boot.
563 *
564 * During a traditional boot under SEV, the kernel has already been
565 * loaded encrypted, so the SEV kexec kernel needs to be encrypted in
566 * order to replicate a normal SEV boot.
567 */
568int arch_kexec_post_alloc_pages(void *vaddr, unsigned int pages, gfp_t gfp)
569{
570	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
571		return 0;
572
573	/*
574	 * If host memory encryption is active we need to be sure that kexec
575	 * pages are not encrypted because when we boot to the new kernel the
576	 * pages won't be accessed encrypted (initially).
577	 */
578	return set_memory_decrypted((unsigned long)vaddr, pages);
579}
580
581void arch_kexec_pre_free_pages(void *vaddr, unsigned int pages)
582{
583	if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
584		return;
585
586	/*
587	 * If host memory encryption is active we need to reset the pages back
588	 * to being an encrypted mapping before freeing them.
589	 */
590	set_memory_encrypted((unsigned long)vaddr, pages);
591}
v4.10.11
 
  1/*
  2 * handle transition of Linux booting another kernel
  3 * Copyright (C) 2002-2005 Eric Biederman  <ebiederm@xmission.com>
  4 *
  5 * This source code is licensed under the GNU General Public License,
  6 * Version 2.  See the file COPYING for more details.
  7 */
  8
  9#define pr_fmt(fmt)	"kexec: " fmt
 10
 11#include <linux/mm.h>
 12#include <linux/kexec.h>
 13#include <linux/string.h>
 14#include <linux/gfp.h>
 15#include <linux/reboot.h>
 16#include <linux/numa.h>
 17#include <linux/ftrace.h>
 18#include <linux/io.h>
 19#include <linux/suspend.h>
 20#include <linux/vmalloc.h>
 
 
 21
 22#include <asm/init.h>
 23#include <asm/pgtable.h>
 24#include <asm/tlbflush.h>
 25#include <asm/mmu_context.h>
 26#include <asm/io_apic.h>
 27#include <asm/debugreg.h>
 28#include <asm/kexec-bzimage64.h>
 29#include <asm/setup.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30
 31#ifdef CONFIG_KEXEC_FILE
 32static struct kexec_file_ops *kexec_file_loaders[] = {
 33		&kexec_bzImage64_ops,
 
 34};
 35#endif
 36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37static void free_transition_pgtable(struct kimage *image)
 38{
 
 
 39	free_page((unsigned long)image->arch.pud);
 
 40	free_page((unsigned long)image->arch.pmd);
 
 41	free_page((unsigned long)image->arch.pte);
 
 42}
 43
 44static int init_transition_pgtable(struct kimage *image, pgd_t *pgd)
 45{
 
 
 
 
 46	pud_t *pud;
 47	pmd_t *pmd;
 48	pte_t *pte;
 49	unsigned long vaddr, paddr;
 50	int result = -ENOMEM;
 51
 52	vaddr = (unsigned long)relocate_kernel;
 53	paddr = __pa(page_address(image->control_code_page)+PAGE_SIZE);
 54	pgd += pgd_index(vaddr);
 55	if (!pgd_present(*pgd)) {
 
 
 
 
 
 
 
 
 56		pud = (pud_t *)get_zeroed_page(GFP_KERNEL);
 57		if (!pud)
 58			goto err;
 59		image->arch.pud = pud;
 60		set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE));
 61	}
 62	pud = pud_offset(pgd, vaddr);
 63	if (!pud_present(*pud)) {
 64		pmd = (pmd_t *)get_zeroed_page(GFP_KERNEL);
 65		if (!pmd)
 66			goto err;
 67		image->arch.pmd = pmd;
 68		set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE));
 69	}
 70	pmd = pmd_offset(pud, vaddr);
 71	if (!pmd_present(*pmd)) {
 72		pte = (pte_t *)get_zeroed_page(GFP_KERNEL);
 73		if (!pte)
 74			goto err;
 75		image->arch.pte = pte;
 76		set_pmd(pmd, __pmd(__pa(pte) | _KERNPG_TABLE));
 77	}
 78	pte = pte_offset_kernel(pmd, vaddr);
 79	set_pte(pte, pfn_pte(paddr >> PAGE_SHIFT, PAGE_KERNEL_EXEC));
 
 
 
 
 80	return 0;
 81err:
 82	free_transition_pgtable(image);
 83	return result;
 84}
 85
 86static void *alloc_pgt_page(void *data)
 87{
 88	struct kimage *image = (struct kimage *)data;
 89	struct page *page;
 90	void *p = NULL;
 91
 92	page = kimage_alloc_control_pages(image, 0);
 93	if (page) {
 94		p = page_address(page);
 95		clear_page(p);
 96	}
 97
 98	return p;
 99}
100
101static int init_pgtable(struct kimage *image, unsigned long start_pgtable)
102{
103	struct x86_mapping_info info = {
104		.alloc_pgt_page	= alloc_pgt_page,
105		.context	= image,
106		.pmd_flag	= __PAGE_KERNEL_LARGE_EXEC,
 
107	};
108	unsigned long mstart, mend;
109	pgd_t *level4p;
110	int result;
111	int i;
112
113	level4p = (pgd_t *)__va(start_pgtable);
114	clear_page(level4p);
 
 
 
 
 
 
 
 
 
115	for (i = 0; i < nr_pfn_mapped; i++) {
116		mstart = pfn_mapped[i].start << PAGE_SHIFT;
117		mend   = pfn_mapped[i].end << PAGE_SHIFT;
118
119		result = kernel_ident_mapping_init(&info,
120						 level4p, mstart, mend);
121		if (result)
122			return result;
123	}
124
125	/*
126	 * segments's mem ranges could be outside 0 ~ max_pfn,
127	 * for example when jump back to original kernel from kexeced kernel.
128	 * or first kernel is booted with user mem map, and second kernel
129	 * could be loaded out of that range.
130	 */
131	for (i = 0; i < image->nr_segments; i++) {
132		mstart = image->segment[i].mem;
133		mend   = mstart + image->segment[i].memsz;
134
135		result = kernel_ident_mapping_init(&info,
136						 level4p, mstart, mend);
137
138		if (result)
139			return result;
140	}
141
 
 
 
 
 
 
 
 
 
 
 
 
142	return init_transition_pgtable(image, level4p);
143}
144
145static void set_idt(void *newidt, u16 limit)
146{
147	struct desc_ptr curidt;
148
149	/* x86-64 supports unaliged loads & stores */
150	curidt.size    = limit;
151	curidt.address = (unsigned long)newidt;
152
153	__asm__ __volatile__ (
154		"lidtq %0\n"
155		: : "m" (curidt)
156		);
157};
158
159
160static void set_gdt(void *newgdt, u16 limit)
161{
162	struct desc_ptr curgdt;
163
164	/* x86-64 supports unaligned loads & stores */
165	curgdt.size    = limit;
166	curgdt.address = (unsigned long)newgdt;
167
168	__asm__ __volatile__ (
169		"lgdtq %0\n"
170		: : "m" (curgdt)
171		);
172};
173
174static void load_segments(void)
175{
176	__asm__ __volatile__ (
177		"\tmovl %0,%%ds\n"
178		"\tmovl %0,%%es\n"
179		"\tmovl %0,%%ss\n"
180		"\tmovl %0,%%fs\n"
181		"\tmovl %0,%%gs\n"
182		: : "a" (__KERNEL_DS) : "memory"
183		);
184}
185
186#ifdef CONFIG_KEXEC_FILE
187/* Update purgatory as needed after various image segments have been prepared */
188static int arch_update_purgatory(struct kimage *image)
189{
190	int ret = 0;
191
192	if (!image->file_mode)
193		return 0;
194
195	/* Setup copying of backup region */
196	if (image->type == KEXEC_TYPE_CRASH) {
197		ret = kexec_purgatory_get_set_symbol(image, "backup_dest",
198				&image->arch.backup_load_addr,
199				sizeof(image->arch.backup_load_addr), 0);
200		if (ret)
201			return ret;
202
203		ret = kexec_purgatory_get_set_symbol(image, "backup_src",
204				&image->arch.backup_src_start,
205				sizeof(image->arch.backup_src_start), 0);
206		if (ret)
207			return ret;
208
209		ret = kexec_purgatory_get_set_symbol(image, "backup_sz",
210				&image->arch.backup_src_sz,
211				sizeof(image->arch.backup_src_sz), 0);
212		if (ret)
213			return ret;
214	}
215
216	return ret;
217}
218#else /* !CONFIG_KEXEC_FILE */
219static inline int arch_update_purgatory(struct kimage *image)
220{
221	return 0;
222}
223#endif /* CONFIG_KEXEC_FILE */
224
225int machine_kexec_prepare(struct kimage *image)
226{
227	unsigned long start_pgtable;
228	int result;
229
230	/* Calculate the offsets */
231	start_pgtable = page_to_pfn(image->control_code_page) << PAGE_SHIFT;
232
233	/* Setup the identity mapped 64bit page table */
234	result = init_pgtable(image, start_pgtable);
235	if (result)
236		return result;
237
238	/* update purgatory as needed */
239	result = arch_update_purgatory(image);
240	if (result)
241		return result;
242
243	return 0;
244}
245
246void machine_kexec_cleanup(struct kimage *image)
247{
248	free_transition_pgtable(image);
249}
250
251/*
252 * Do not allocate memory (or fail in any way) in machine_kexec().
253 * We are past the point of no return, committed to rebooting now.
254 */
255void machine_kexec(struct kimage *image)
256{
257	unsigned long page_list[PAGES_NR];
258	void *control_page;
259	int save_ftrace_enabled;
260
261#ifdef CONFIG_KEXEC_JUMP
262	if (image->preserve_context)
263		save_processor_state();
264#endif
265
266	save_ftrace_enabled = __ftrace_enabled_save();
267
268	/* Interrupts aren't acceptable while we reboot */
269	local_irq_disable();
270	hw_breakpoint_disable();
 
271
272	if (image->preserve_context) {
273#ifdef CONFIG_X86_IO_APIC
274		/*
275		 * We need to put APICs in legacy mode so that we can
276		 * get timer interrupts in second kernel. kexec/kdump
277		 * paths already have calls to disable_IO_APIC() in
278		 * one form or other. kexec jump path also need
279		 * one.
280		 */
281		disable_IO_APIC();
 
282#endif
283	}
284
285	control_page = page_address(image->control_code_page) + PAGE_SIZE;
286	memcpy(control_page, relocate_kernel, KEXEC_CONTROL_CODE_MAX_SIZE);
287
288	page_list[PA_CONTROL_PAGE] = virt_to_phys(control_page);
289	page_list[VA_CONTROL_PAGE] = (unsigned long)control_page;
290	page_list[PA_TABLE_PAGE] =
291	  (unsigned long)__pa(page_address(image->control_code_page));
292
293	if (image->type == KEXEC_TYPE_DEFAULT)
294		page_list[PA_SWAP_PAGE] = (page_to_pfn(image->swap_page)
295						<< PAGE_SHIFT);
296
297	/*
298	 * The segment registers are funny things, they have both a
299	 * visible and an invisible part.  Whenever the visible part is
300	 * set to a specific selector, the invisible part is loaded
301	 * with from a table in memory.  At no other time is the
302	 * descriptor table in memory accessed.
303	 *
304	 * I take advantage of this here by force loading the
305	 * segments, before I zap the gdt with an invalid value.
306	 */
307	load_segments();
308	/*
309	 * The gdt & idt are now invalid.
310	 * If you want to load them you must set up your own idt & gdt.
311	 */
312	set_gdt(phys_to_virt(0), 0);
313	set_idt(phys_to_virt(0), 0);
314
315	/* now call it */
316	image->start = relocate_kernel((unsigned long)image->head,
317				       (unsigned long)page_list,
318				       image->start,
319				       image->preserve_context);
 
320
321#ifdef CONFIG_KEXEC_JUMP
322	if (image->preserve_context)
323		restore_processor_state();
324#endif
325
326	__ftrace_enabled_restore(save_ftrace_enabled);
327}
328
329void arch_crash_save_vmcoreinfo(void)
330{
331	VMCOREINFO_NUMBER(phys_base);
332	VMCOREINFO_SYMBOL(init_level4_pgt);
333
334#ifdef CONFIG_NUMA
335	VMCOREINFO_SYMBOL(node_data);
336	VMCOREINFO_LENGTH(node_data, MAX_NUMNODES);
337#endif
338	vmcoreinfo_append_str("KERNELOFFSET=%lx\n",
339			      kaslr_offset());
340	VMCOREINFO_NUMBER(KERNEL_IMAGE_SIZE);
341}
342
343/* arch-dependent functionality related to kexec file-based syscall */
344
345#ifdef CONFIG_KEXEC_FILE
346int arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
347				  unsigned long buf_len)
348{
349	int i, ret = -ENOEXEC;
350	struct kexec_file_ops *fops;
351
352	for (i = 0; i < ARRAY_SIZE(kexec_file_loaders); i++) {
353		fops = kexec_file_loaders[i];
354		if (!fops || !fops->probe)
355			continue;
356
357		ret = fops->probe(buf, buf_len);
358		if (!ret) {
359			image->fops = fops;
360			return ret;
361		}
362	}
363
364	return ret;
365}
366
367void *arch_kexec_kernel_image_load(struct kimage *image)
368{
369	vfree(image->arch.elf_headers);
370	image->arch.elf_headers = NULL;
371
372	if (!image->fops || !image->fops->load)
373		return ERR_PTR(-ENOEXEC);
374
375	return image->fops->load(image, image->kernel_buf,
376				 image->kernel_buf_len, image->initrd_buf,
377				 image->initrd_buf_len, image->cmdline_buf,
378				 image->cmdline_buf_len);
379}
380
381int arch_kimage_file_post_load_cleanup(struct kimage *image)
382{
383	if (!image->fops || !image->fops->cleanup)
384		return 0;
385
386	return image->fops->cleanup(image->image_loader_data);
387}
388
389#ifdef CONFIG_KEXEC_VERIFY_SIG
390int arch_kexec_kernel_verify_sig(struct kimage *image, void *kernel,
391				 unsigned long kernel_len)
392{
393	if (!image->fops || !image->fops->verify_sig) {
394		pr_debug("kernel loader does not support signature verification.");
395		return -EKEYREJECTED;
396	}
397
398	return image->fops->verify_sig(kernel, kernel_len);
399}
400#endif
401
402/*
403 * Apply purgatory relocations.
404 *
405 * ehdr: Pointer to elf headers
406 * sechdrs: Pointer to section headers.
407 * relsec: section index of SHT_RELA section.
 
408 *
409 * TODO: Some of the code belongs to generic code. Move that in kexec.c.
410 */
411int arch_kexec_apply_relocations_add(const Elf64_Ehdr *ehdr,
412				     Elf64_Shdr *sechdrs, unsigned int relsec)
 
413{
414	unsigned int i;
415	Elf64_Rela *rel;
416	Elf64_Sym *sym;
417	void *location;
418	Elf64_Shdr *section, *symtabsec;
419	unsigned long address, sec_base, value;
420	const char *strtab, *name, *shstrtab;
 
421
422	/*
423	 * ->sh_offset has been modified to keep the pointer to section
424	 * contents in memory
425	 */
426	rel = (void *)sechdrs[relsec].sh_offset;
427
428	/* Section to which relocations apply */
429	section = &sechdrs[sechdrs[relsec].sh_info];
430
431	pr_debug("Applying relocate section %u to %u\n", relsec,
432		 sechdrs[relsec].sh_info);
433
434	/* Associated symbol table */
435	symtabsec = &sechdrs[sechdrs[relsec].sh_link];
436
437	/* String table */
438	if (symtabsec->sh_link >= ehdr->e_shnum) {
439		/* Invalid strtab section number */
440		pr_err("Invalid string table section index %d\n",
441		       symtabsec->sh_link);
442		return -ENOEXEC;
443	}
444
445	strtab = (char *)sechdrs[symtabsec->sh_link].sh_offset;
446
447	/* section header string table */
448	shstrtab = (char *)sechdrs[ehdr->e_shstrndx].sh_offset;
449
450	for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
451
452		/*
453		 * rel[i].r_offset contains byte offset from beginning
454		 * of section to the storage unit affected.
455		 *
456		 * This is location to update (->sh_offset). This is temporary
457		 * buffer where section is currently loaded. This will finally
458		 * be loaded to a different address later, pointed to by
459		 * ->sh_addr. kexec takes care of moving it
460		 *  (kexec_load_segment()).
461		 */
462		location = (void *)(section->sh_offset + rel[i].r_offset);
 
 
463
464		/* Final address of the location */
465		address = section->sh_addr + rel[i].r_offset;
466
467		/*
468		 * rel[i].r_info contains information about symbol table index
469		 * w.r.t which relocation must be made and type of relocation
470		 * to apply. ELF64_R_SYM() and ELF64_R_TYPE() macros get
471		 * these respectively.
472		 */
473		sym = (Elf64_Sym *)symtabsec->sh_offset +
474				ELF64_R_SYM(rel[i].r_info);
475
476		if (sym->st_name)
477			name = strtab + sym->st_name;
478		else
479			name = shstrtab + sechdrs[sym->st_shndx].sh_name;
480
481		pr_debug("Symbol: %s info: %02x shndx: %02x value=%llx size: %llx\n",
482			 name, sym->st_info, sym->st_shndx, sym->st_value,
483			 sym->st_size);
484
485		if (sym->st_shndx == SHN_UNDEF) {
486			pr_err("Undefined symbol: %s\n", name);
487			return -ENOEXEC;
488		}
489
490		if (sym->st_shndx == SHN_COMMON) {
491			pr_err("symbol '%s' in common section\n", name);
492			return -ENOEXEC;
493		}
494
495		if (sym->st_shndx == SHN_ABS)
496			sec_base = 0;
497		else if (sym->st_shndx >= ehdr->e_shnum) {
498			pr_err("Invalid section %d for symbol %s\n",
499			       sym->st_shndx, name);
500			return -ENOEXEC;
501		} else
502			sec_base = sechdrs[sym->st_shndx].sh_addr;
503
504		value = sym->st_value;
505		value += sec_base;
506		value += rel[i].r_addend;
507
508		switch (ELF64_R_TYPE(rel[i].r_info)) {
509		case R_X86_64_NONE:
510			break;
511		case R_X86_64_64:
512			*(u64 *)location = value;
513			break;
514		case R_X86_64_32:
515			*(u32 *)location = value;
516			if (value != *(u32 *)location)
517				goto overflow;
518			break;
519		case R_X86_64_32S:
520			*(s32 *)location = value;
521			if ((s64)value != *(s32 *)location)
522				goto overflow;
523			break;
524		case R_X86_64_PC32:
 
525			value -= (u64)address;
526			*(u32 *)location = value;
527			break;
528		default:
529			pr_err("Unknown rela relocation: %llu\n",
530			       ELF64_R_TYPE(rel[i].r_info));
531			return -ENOEXEC;
532		}
533	}
534	return 0;
535
536overflow:
537	pr_err("Overflow in relocation type %d value 0x%lx\n",
538	       (int)ELF64_R_TYPE(rel[i].r_info), value);
539	return -ENOEXEC;
540}
 
 
 
 
 
 
 
 
 
541#endif /* CONFIG_KEXEC_FILE */
542
 
 
543static int
544kexec_mark_range(unsigned long start, unsigned long end, bool protect)
545{
546	struct page *page;
547	unsigned int nr_pages;
548
549	/*
550	 * For physical range: [start, end]. We must skip the unassigned
551	 * crashk resource with zero-valued "end" member.
552	 */
553	if (!end || start > end)
554		return 0;
555
556	page = pfn_to_page(start >> PAGE_SHIFT);
557	nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
558	if (protect)
559		return set_pages_ro(page, nr_pages);
560	else
561		return set_pages_rw(page, nr_pages);
562}
563
564static void kexec_mark_crashkres(bool protect)
565{
566	unsigned long control;
567
568	kexec_mark_range(crashk_low_res.start, crashk_low_res.end, protect);
569
570	/* Don't touch the control code page used in crash_kexec().*/
571	control = PFN_PHYS(page_to_pfn(kexec_crash_image->control_code_page));
572	/* Control code page is located in the 2nd page. */
573	kexec_mark_range(crashk_res.start, control + PAGE_SIZE - 1, protect);
574	control += KEXEC_CONTROL_PAGE_SIZE;
575	kexec_mark_range(control, crashk_res.end, protect);
576}
577
578void arch_kexec_protect_crashkres(void)
579{
580	kexec_mark_crashkres(true);
581}
582
583void arch_kexec_unprotect_crashkres(void)
584{
585	kexec_mark_crashkres(false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
586}