Loading...
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2#ifndef _ASM_POWERPC_IO_H
3#define _ASM_POWERPC_IO_H
4#ifdef __KERNEL__
5
6/*
7 */
8
9/* Check of existence of legacy devices */
10extern int check_legacy_ioport(unsigned long base_port);
11#define I8042_DATA_REG 0x60
12#define FDC_BASE 0x3f0
13
14#if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
15extern struct pci_dev *isa_bridge_pcidev;
16/*
17 * has legacy ISA devices ?
18 */
19#define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special)
20#endif
21
22#include <linux/device.h>
23#include <linux/compiler.h>
24#include <linux/mm.h>
25#include <asm/page.h>
26#include <asm/byteorder.h>
27#include <asm/synch.h>
28#include <asm/delay.h>
29#include <asm/mmiowb.h>
30#include <asm/mmu.h>
31
32#define SIO_CONFIG_RA 0x398
33#define SIO_CONFIG_RD 0x399
34
35/* 32 bits uses slightly different variables for the various IO
36 * bases. Most of this file only uses _IO_BASE though which we
37 * define properly based on the platform
38 */
39#ifndef CONFIG_PCI
40#define _IO_BASE 0
41#define _ISA_MEM_BASE 0
42#define PCI_DRAM_OFFSET 0
43#elif defined(CONFIG_PPC32)
44#define _IO_BASE isa_io_base
45#define _ISA_MEM_BASE isa_mem_base
46#define PCI_DRAM_OFFSET pci_dram_offset
47#else
48#define _IO_BASE pci_io_base
49#define _ISA_MEM_BASE isa_mem_base
50#define PCI_DRAM_OFFSET 0
51#endif
52
53extern unsigned long isa_io_base;
54extern unsigned long pci_io_base;
55extern unsigned long pci_dram_offset;
56
57extern resource_size_t isa_mem_base;
58
59/* Boolean set by platform if PIO accesses are suppored while _IO_BASE
60 * is not set or addresses cannot be translated to MMIO. This is typically
61 * set when the platform supports "special" PIO accesses via a non memory
62 * mapped mechanism, and allows things like the early udbg UART code to
63 * function.
64 */
65extern bool isa_io_special;
66
67#ifdef CONFIG_PPC32
68#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
69#error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
70#endif
71#endif
72
73/*
74 *
75 * Low level MMIO accessors
76 *
77 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
78 * specific and thus shouldn't be used in generic code. The accessors
79 * provided here are:
80 *
81 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
82 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
83 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
84 *
85 * Those operate directly on a kernel virtual address. Note that the prototype
86 * for the out_* accessors has the arguments in opposite order from the usual
87 * linux PCI accessors. Unlike those, they take the address first and the value
88 * next.
89 *
90 * Note: I might drop the _ns suffix on the stream operations soon as it is
91 * simply normal for stream operations to not swap in the first place.
92 *
93 */
94
95/* -mprefixed can generate offsets beyond range, fall back hack */
96#ifdef CONFIG_PPC_KERNEL_PREFIXED
97#define DEF_MMIO_IN_X(name, size, insn) \
98static inline u##size name(const volatile u##size __iomem *addr) \
99{ \
100 u##size ret; \
101 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \
102 : "=r" (ret) : "r" (addr) : "memory"); \
103 return ret; \
104}
105
106#define DEF_MMIO_OUT_X(name, size, insn) \
107static inline void name(volatile u##size __iomem *addr, u##size val) \
108{ \
109 __asm__ __volatile__("sync;"#insn" %1,0,%0" \
110 : : "r" (addr), "r" (val) : "memory"); \
111 mmiowb_set_pending(); \
112}
113
114#define DEF_MMIO_IN_D(name, size, insn) \
115static inline u##size name(const volatile u##size __iomem *addr) \
116{ \
117 u##size ret; \
118 __asm__ __volatile__("sync;"#insn" %0,0(%1);twi 0,%0,0;isync"\
119 : "=r" (ret) : "b" (addr) : "memory"); \
120 return ret; \
121}
122
123#define DEF_MMIO_OUT_D(name, size, insn) \
124static inline void name(volatile u##size __iomem *addr, u##size val) \
125{ \
126 __asm__ __volatile__("sync;"#insn" %1,0(%0)" \
127 : : "b" (addr), "r" (val) : "memory"); \
128 mmiowb_set_pending(); \
129}
130#else
131#define DEF_MMIO_IN_X(name, size, insn) \
132static inline u##size name(const volatile u##size __iomem *addr) \
133{ \
134 u##size ret; \
135 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \
136 : "=r" (ret) : "Z" (*addr) : "memory"); \
137 return ret; \
138}
139
140#define DEF_MMIO_OUT_X(name, size, insn) \
141static inline void name(volatile u##size __iomem *addr, u##size val) \
142{ \
143 __asm__ __volatile__("sync;"#insn" %1,%y0" \
144 : "=Z" (*addr) : "r" (val) : "memory"); \
145 mmiowb_set_pending(); \
146}
147
148#define DEF_MMIO_IN_D(name, size, insn) \
149static inline u##size name(const volatile u##size __iomem *addr) \
150{ \
151 u##size ret; \
152 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
153 : "=r" (ret) : "m<>" (*addr) : "memory"); \
154 return ret; \
155}
156
157#define DEF_MMIO_OUT_D(name, size, insn) \
158static inline void name(volatile u##size __iomem *addr, u##size val) \
159{ \
160 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \
161 : "=m<>" (*addr) : "r" (val) : "memory"); \
162 mmiowb_set_pending(); \
163}
164#endif
165
166DEF_MMIO_IN_D(in_8, 8, lbz);
167DEF_MMIO_OUT_D(out_8, 8, stb);
168
169#ifdef __BIG_ENDIAN__
170DEF_MMIO_IN_D(in_be16, 16, lhz);
171DEF_MMIO_IN_D(in_be32, 32, lwz);
172DEF_MMIO_IN_X(in_le16, 16, lhbrx);
173DEF_MMIO_IN_X(in_le32, 32, lwbrx);
174
175DEF_MMIO_OUT_D(out_be16, 16, sth);
176DEF_MMIO_OUT_D(out_be32, 32, stw);
177DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
178DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
179#else
180DEF_MMIO_IN_X(in_be16, 16, lhbrx);
181DEF_MMIO_IN_X(in_be32, 32, lwbrx);
182DEF_MMIO_IN_D(in_le16, 16, lhz);
183DEF_MMIO_IN_D(in_le32, 32, lwz);
184
185DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
186DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
187DEF_MMIO_OUT_D(out_le16, 16, sth);
188DEF_MMIO_OUT_D(out_le32, 32, stw);
189
190#endif /* __BIG_ENDIAN */
191
192#ifdef __powerpc64__
193
194#ifdef __BIG_ENDIAN__
195DEF_MMIO_OUT_D(out_be64, 64, std);
196DEF_MMIO_IN_D(in_be64, 64, ld);
197
198/* There is no asm instructions for 64 bits reverse loads and stores */
199static inline u64 in_le64(const volatile u64 __iomem *addr)
200{
201 return swab64(in_be64(addr));
202}
203
204static inline void out_le64(volatile u64 __iomem *addr, u64 val)
205{
206 out_be64(addr, swab64(val));
207}
208#else
209DEF_MMIO_OUT_D(out_le64, 64, std);
210DEF_MMIO_IN_D(in_le64, 64, ld);
211
212/* There is no asm instructions for 64 bits reverse loads and stores */
213static inline u64 in_be64(const volatile u64 __iomem *addr)
214{
215 return swab64(in_le64(addr));
216}
217
218static inline void out_be64(volatile u64 __iomem *addr, u64 val)
219{
220 out_le64(addr, swab64(val));
221}
222
223#endif
224#endif /* __powerpc64__ */
225
226/*
227 * Low level IO stream instructions are defined out of line for now
228 */
229extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
230extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
231extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
232extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
233extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
234extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
235
236/* The _ns naming is historical and will be removed. For now, just #define
237 * the non _ns equivalent names
238 */
239#define _insw _insw_ns
240#define _insl _insl_ns
241#define _outsw _outsw_ns
242#define _outsl _outsl_ns
243
244
245/*
246 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
247 */
248
249extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
250extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
251 unsigned long n);
252extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
253 unsigned long n);
254
255/*
256 *
257 * PCI and standard ISA accessors
258 *
259 * Those are globally defined linux accessors for devices on PCI or ISA
260 * busses. They follow the Linux defined semantics. The current implementation
261 * for PowerPC is as close as possible to the x86 version of these, and thus
262 * provides fairly heavy weight barriers for the non-raw versions
263 *
264 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
265 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
266 * own implementation of some or all of the accessors.
267 */
268
269/*
270 * Include the EEH definitions when EEH is enabled only so they don't get
271 * in the way when building for 32 bits
272 */
273#ifdef CONFIG_EEH
274#include <asm/eeh.h>
275#endif
276
277/* Shortcut to the MMIO argument pointer */
278#define PCI_IO_ADDR volatile void __iomem *
279
280/* Indirect IO address tokens:
281 *
282 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
283 * on all MMIOs. (Note that this is all 64 bits only for now)
284 *
285 * To help platforms who may need to differentiate MMIO addresses in
286 * their hooks, a bitfield is reserved for use by the platform near the
287 * top of MMIO addresses (not PIO, those have to cope the hard way).
288 *
289 * The highest address in the kernel virtual space are:
290 *
291 * d0003fffffffffff # with Hash MMU
292 * c00fffffffffffff # with Radix MMU
293 *
294 * The top 4 bits are reserved as the region ID on hash, leaving us 8 bits
295 * that can be used for the field.
296 *
297 * The direct IO mapping operations will then mask off those bits
298 * before doing the actual access, though that only happen when
299 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
300 * mechanism
301 *
302 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
303 * all PIO functions call through a hook.
304 */
305
306#ifdef CONFIG_PPC_INDIRECT_MMIO
307#define PCI_IO_IND_TOKEN_SHIFT 52
308#define PCI_IO_IND_TOKEN_MASK (0xfful << PCI_IO_IND_TOKEN_SHIFT)
309#define PCI_FIX_ADDR(addr) \
310 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
311#define PCI_GET_ADDR_TOKEN(addr) \
312 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
313 PCI_IO_IND_TOKEN_SHIFT)
314#define PCI_SET_ADDR_TOKEN(addr, token) \
315do { \
316 unsigned long __a = (unsigned long)(addr); \
317 __a &= ~PCI_IO_IND_TOKEN_MASK; \
318 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
319 (addr) = (void __iomem *)__a; \
320} while(0)
321#else
322#define PCI_FIX_ADDR(addr) (addr)
323#endif
324
325
326/*
327 * Non ordered and non-swapping "raw" accessors
328 */
329
330static inline unsigned char __raw_readb(const volatile void __iomem *addr)
331{
332 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
333}
334#define __raw_readb __raw_readb
335
336static inline unsigned short __raw_readw(const volatile void __iomem *addr)
337{
338 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
339}
340#define __raw_readw __raw_readw
341
342static inline unsigned int __raw_readl(const volatile void __iomem *addr)
343{
344 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
345}
346#define __raw_readl __raw_readl
347
348static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
349{
350 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
351}
352#define __raw_writeb __raw_writeb
353
354static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
355{
356 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
357}
358#define __raw_writew __raw_writew
359
360static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
361{
362 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
363}
364#define __raw_writel __raw_writel
365
366#ifdef __powerpc64__
367static inline unsigned long __raw_readq(const volatile void __iomem *addr)
368{
369 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
370}
371#define __raw_readq __raw_readq
372
373static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
374{
375 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
376}
377#define __raw_writeq __raw_writeq
378
379static inline void __raw_writeq_be(unsigned long v, volatile void __iomem *addr)
380{
381 __raw_writeq((__force unsigned long)cpu_to_be64(v), addr);
382}
383#define __raw_writeq_be __raw_writeq_be
384
385/*
386 * Real mode versions of the above. Those instructions are only supposed
387 * to be used in hypervisor real mode as per the architecture spec.
388 */
389static inline void __raw_rm_writeb(u8 val, volatile void __iomem *paddr)
390{
391 __asm__ __volatile__(".machine push; \
392 .machine power6; \
393 stbcix %0,0,%1; \
394 .machine pop;"
395 : : "r" (val), "r" (paddr) : "memory");
396}
397
398static inline void __raw_rm_writew(u16 val, volatile void __iomem *paddr)
399{
400 __asm__ __volatile__(".machine push; \
401 .machine power6; \
402 sthcix %0,0,%1; \
403 .machine pop;"
404 : : "r" (val), "r" (paddr) : "memory");
405}
406
407static inline void __raw_rm_writel(u32 val, volatile void __iomem *paddr)
408{
409 __asm__ __volatile__(".machine push; \
410 .machine power6; \
411 stwcix %0,0,%1; \
412 .machine pop;"
413 : : "r" (val), "r" (paddr) : "memory");
414}
415
416static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
417{
418 __asm__ __volatile__(".machine push; \
419 .machine power6; \
420 stdcix %0,0,%1; \
421 .machine pop;"
422 : : "r" (val), "r" (paddr) : "memory");
423}
424
425static inline void __raw_rm_writeq_be(u64 val, volatile void __iomem *paddr)
426{
427 __raw_rm_writeq((__force u64)cpu_to_be64(val), paddr);
428}
429
430static inline u8 __raw_rm_readb(volatile void __iomem *paddr)
431{
432 u8 ret;
433 __asm__ __volatile__(".machine push; \
434 .machine power6; \
435 lbzcix %0,0, %1; \
436 .machine pop;"
437 : "=r" (ret) : "r" (paddr) : "memory");
438 return ret;
439}
440
441static inline u16 __raw_rm_readw(volatile void __iomem *paddr)
442{
443 u16 ret;
444 __asm__ __volatile__(".machine push; \
445 .machine power6; \
446 lhzcix %0,0, %1; \
447 .machine pop;"
448 : "=r" (ret) : "r" (paddr) : "memory");
449 return ret;
450}
451
452static inline u32 __raw_rm_readl(volatile void __iomem *paddr)
453{
454 u32 ret;
455 __asm__ __volatile__(".machine push; \
456 .machine power6; \
457 lwzcix %0,0, %1; \
458 .machine pop;"
459 : "=r" (ret) : "r" (paddr) : "memory");
460 return ret;
461}
462
463static inline u64 __raw_rm_readq(volatile void __iomem *paddr)
464{
465 u64 ret;
466 __asm__ __volatile__(".machine push; \
467 .machine power6; \
468 ldcix %0,0, %1; \
469 .machine pop;"
470 : "=r" (ret) : "r" (paddr) : "memory");
471 return ret;
472}
473#endif /* __powerpc64__ */
474
475/*
476 *
477 * PCI PIO and MMIO accessors.
478 *
479 *
480 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
481 * machine checks (which they occasionally do when probing non existing
482 * IO ports on some platforms, like PowerMac and 8xx).
483 * I always found it to be of dubious reliability and I am tempted to get
484 * rid of it one of these days. So if you think it's important to keep it,
485 * please voice up asap. We never had it for 64 bits and I do not intend
486 * to port it over
487 */
488
489#ifdef CONFIG_PPC32
490
491#define __do_in_asm(name, op) \
492static inline unsigned int name(unsigned int port) \
493{ \
494 unsigned int x; \
495 __asm__ __volatile__( \
496 "sync\n" \
497 "0:" op " %0,0,%1\n" \
498 "1: twi 0,%0,0\n" \
499 "2: isync\n" \
500 "3: nop\n" \
501 "4:\n" \
502 ".section .fixup,\"ax\"\n" \
503 "5: li %0,-1\n" \
504 " b 4b\n" \
505 ".previous\n" \
506 EX_TABLE(0b, 5b) \
507 EX_TABLE(1b, 5b) \
508 EX_TABLE(2b, 5b) \
509 EX_TABLE(3b, 5b) \
510 : "=&r" (x) \
511 : "r" (port + _IO_BASE) \
512 : "memory"); \
513 return x; \
514}
515
516#define __do_out_asm(name, op) \
517static inline void name(unsigned int val, unsigned int port) \
518{ \
519 __asm__ __volatile__( \
520 "sync\n" \
521 "0:" op " %0,0,%1\n" \
522 "1: sync\n" \
523 "2:\n" \
524 EX_TABLE(0b, 2b) \
525 EX_TABLE(1b, 2b) \
526 : : "r" (val), "r" (port + _IO_BASE) \
527 : "memory"); \
528}
529
530__do_in_asm(_rec_inb, "lbzx")
531__do_in_asm(_rec_inw, "lhbrx")
532__do_in_asm(_rec_inl, "lwbrx")
533__do_out_asm(_rec_outb, "stbx")
534__do_out_asm(_rec_outw, "sthbrx")
535__do_out_asm(_rec_outl, "stwbrx")
536
537#endif /* CONFIG_PPC32 */
538
539/* The "__do_*" operations below provide the actual "base" implementation
540 * for each of the defined accessors. Some of them use the out_* functions
541 * directly, some of them still use EEH, though we might change that in the
542 * future. Those macros below provide the necessary argument swapping and
543 * handling of the IO base for PIO.
544 *
545 * They are themselves used by the macros that define the actual accessors
546 * and can be used by the hooks if any.
547 *
548 * Note that PIO operations are always defined in terms of their corresonding
549 * MMIO operations. That allows platforms like iSeries who want to modify the
550 * behaviour of both to only hook on the MMIO version and get both. It's also
551 * possible to hook directly at the toplevel PIO operation if they have to
552 * be handled differently
553 */
554#define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
555#define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
556#define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
557#define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
558#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
559#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
560#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
561
562#ifdef CONFIG_EEH
563#define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
564#define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
565#define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
566#define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
567#define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
568#define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
569#define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
570#else /* CONFIG_EEH */
571#define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
572#define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
573#define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
574#define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
575#define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
576#define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
577#define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
578#endif /* !defined(CONFIG_EEH) */
579
580#ifdef CONFIG_PPC32
581#define __do_outb(val, port) _rec_outb(val, port)
582#define __do_outw(val, port) _rec_outw(val, port)
583#define __do_outl(val, port) _rec_outl(val, port)
584#define __do_inb(port) _rec_inb(port)
585#define __do_inw(port) _rec_inw(port)
586#define __do_inl(port) _rec_inl(port)
587#else /* CONFIG_PPC32 */
588#define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
589#define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
590#define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
591#define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
592#define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
593#define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
594#endif /* !CONFIG_PPC32 */
595
596#ifdef CONFIG_EEH
597#define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
598#define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
599#define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
600#else /* CONFIG_EEH */
601#define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
602#define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
603#define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
604#endif /* !CONFIG_EEH */
605#define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
606#define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
607#define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
608
609#define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
610#define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
611#define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
612#define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
613#define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
614#define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
615
616#define __do_memset_io(addr, c, n) \
617 _memset_io(PCI_FIX_ADDR(addr), c, n)
618#define __do_memcpy_toio(dst, src, n) \
619 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
620
621#ifdef CONFIG_EEH
622#define __do_memcpy_fromio(dst, src, n) \
623 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
624#else /* CONFIG_EEH */
625#define __do_memcpy_fromio(dst, src, n) \
626 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
627#endif /* !CONFIG_EEH */
628
629#ifdef CONFIG_PPC_INDIRECT_PIO
630#define DEF_PCI_HOOK_pio(x) x
631#else
632#define DEF_PCI_HOOK_pio(x) NULL
633#endif
634
635#ifdef CONFIG_PPC_INDIRECT_MMIO
636#define DEF_PCI_HOOK_mem(x) x
637#else
638#define DEF_PCI_HOOK_mem(x) NULL
639#endif
640
641/* Structure containing all the hooks */
642extern struct ppc_pci_io {
643
644#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
645#define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
646
647#include <asm/io-defs.h>
648
649#undef DEF_PCI_AC_RET
650#undef DEF_PCI_AC_NORET
651
652} ppc_pci_io;
653
654/* The inline wrappers */
655#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
656static inline ret name at \
657{ \
658 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
659 return ppc_pci_io.name al; \
660 return __do_##name al; \
661}
662
663#define DEF_PCI_AC_NORET(name, at, al, space, aa) \
664static inline void name at \
665{ \
666 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
667 ppc_pci_io.name al; \
668 else \
669 __do_##name al; \
670}
671
672#include <asm/io-defs.h>
673
674#undef DEF_PCI_AC_RET
675#undef DEF_PCI_AC_NORET
676
677/* Some drivers check for the presence of readq & writeq with
678 * a #ifdef, so we make them happy here.
679 */
680#define readb readb
681#define readw readw
682#define readl readl
683#define writeb writeb
684#define writew writew
685#define writel writel
686#define readsb readsb
687#define readsw readsw
688#define readsl readsl
689#define writesb writesb
690#define writesw writesw
691#define writesl writesl
692#define inb inb
693#define inw inw
694#define inl inl
695#define outb outb
696#define outw outw
697#define outl outl
698#define insb insb
699#define insw insw
700#define insl insl
701#define outsb outsb
702#define outsw outsw
703#define outsl outsl
704#ifdef __powerpc64__
705#define readq readq
706#define writeq writeq
707#endif
708#define memset_io memset_io
709#define memcpy_fromio memcpy_fromio
710#define memcpy_toio memcpy_toio
711
712/*
713 * We don't do relaxed operations yet, at least not with this semantic
714 */
715#define readb_relaxed(addr) readb(addr)
716#define readw_relaxed(addr) readw(addr)
717#define readl_relaxed(addr) readl(addr)
718#define readq_relaxed(addr) readq(addr)
719#define writeb_relaxed(v, addr) writeb(v, addr)
720#define writew_relaxed(v, addr) writew(v, addr)
721#define writel_relaxed(v, addr) writel(v, addr)
722#define writeq_relaxed(v, addr) writeq(v, addr)
723
724#ifndef CONFIG_GENERIC_IOMAP
725/*
726 * Here comes the implementation of the IOMAP interfaces.
727 */
728static inline unsigned int ioread16be(const void __iomem *addr)
729{
730 return readw_be(addr);
731}
732#define ioread16be ioread16be
733
734static inline unsigned int ioread32be(const void __iomem *addr)
735{
736 return readl_be(addr);
737}
738#define ioread32be ioread32be
739
740#ifdef __powerpc64__
741static inline u64 ioread64_lo_hi(const void __iomem *addr)
742{
743 return readq(addr);
744}
745#define ioread64_lo_hi ioread64_lo_hi
746
747static inline u64 ioread64_hi_lo(const void __iomem *addr)
748{
749 return readq(addr);
750}
751#define ioread64_hi_lo ioread64_hi_lo
752
753static inline u64 ioread64be(const void __iomem *addr)
754{
755 return readq_be(addr);
756}
757#define ioread64be ioread64be
758
759static inline u64 ioread64be_lo_hi(const void __iomem *addr)
760{
761 return readq_be(addr);
762}
763#define ioread64be_lo_hi ioread64be_lo_hi
764
765static inline u64 ioread64be_hi_lo(const void __iomem *addr)
766{
767 return readq_be(addr);
768}
769#define ioread64be_hi_lo ioread64be_hi_lo
770#endif /* __powerpc64__ */
771
772static inline void iowrite16be(u16 val, void __iomem *addr)
773{
774 writew_be(val, addr);
775}
776#define iowrite16be iowrite16be
777
778static inline void iowrite32be(u32 val, void __iomem *addr)
779{
780 writel_be(val, addr);
781}
782#define iowrite32be iowrite32be
783
784#ifdef __powerpc64__
785static inline void iowrite64_lo_hi(u64 val, void __iomem *addr)
786{
787 writeq(val, addr);
788}
789#define iowrite64_lo_hi iowrite64_lo_hi
790
791static inline void iowrite64_hi_lo(u64 val, void __iomem *addr)
792{
793 writeq(val, addr);
794}
795#define iowrite64_hi_lo iowrite64_hi_lo
796
797static inline void iowrite64be(u64 val, void __iomem *addr)
798{
799 writeq_be(val, addr);
800}
801#define iowrite64be iowrite64be
802
803static inline void iowrite64be_lo_hi(u64 val, void __iomem *addr)
804{
805 writeq_be(val, addr);
806}
807#define iowrite64be_lo_hi iowrite64be_lo_hi
808
809static inline void iowrite64be_hi_lo(u64 val, void __iomem *addr)
810{
811 writeq_be(val, addr);
812}
813#define iowrite64be_hi_lo iowrite64be_hi_lo
814#endif /* __powerpc64__ */
815
816struct pci_dev;
817void pci_iounmap(struct pci_dev *dev, void __iomem *addr);
818#define pci_iounmap pci_iounmap
819void __iomem *ioport_map(unsigned long port, unsigned int len);
820#define ioport_map ioport_map
821#endif
822
823static inline void iosync(void)
824{
825 __asm__ __volatile__ ("sync" : : : "memory");
826}
827
828/* Enforce in-order execution of data I/O.
829 * No distinction between read/write on PPC; use eieio for all three.
830 * Those are fairly week though. They don't provide a barrier between
831 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
832 * they only provide barriers between 2 __raw MMIO operations and
833 * possibly break write combining.
834 */
835#define iobarrier_rw() eieio()
836#define iobarrier_r() eieio()
837#define iobarrier_w() eieio()
838
839
840/*
841 * output pause versions need a delay at least for the
842 * w83c105 ide controller in a p610.
843 */
844#define inb_p(port) inb(port)
845#define outb_p(val, port) (udelay(1), outb((val), (port)))
846#define inw_p(port) inw(port)
847#define outw_p(val, port) (udelay(1), outw((val), (port)))
848#define inl_p(port) inl(port)
849#define outl_p(val, port) (udelay(1), outl((val), (port)))
850
851
852#define IO_SPACE_LIMIT ~(0UL)
853
854/**
855 * ioremap - map bus memory into CPU space
856 * @address: bus address of the memory
857 * @size: size of the resource to map
858 *
859 * ioremap performs a platform specific sequence of operations to
860 * make bus memory CPU accessible via the readb/readw/readl/writeb/
861 * writew/writel functions and the other mmio helpers. The returned
862 * address is not guaranteed to be usable directly as a virtual
863 * address.
864 *
865 * We provide a few variations of it:
866 *
867 * * ioremap is the standard one and provides non-cacheable guarded mappings
868 * and can be hooked by the platform via ppc_md
869 *
870 * * ioremap_prot allows to specify the page flags as an argument and can
871 * also be hooked by the platform via ppc_md.
872 *
873 * * ioremap_wc enables write combining
874 *
875 * * ioremap_wt enables write through
876 *
877 * * ioremap_coherent maps coherent cached memory
878 *
879 * * iounmap undoes such a mapping and can be hooked
880 *
881 * * __ioremap_caller is the same as above but takes an explicit caller
882 * reference rather than using __builtin_return_address(0)
883 *
884 */
885extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
886#define ioremap ioremap
887#define ioremap_prot ioremap_prot
888extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
889#define ioremap_wc ioremap_wc
890
891#ifdef CONFIG_PPC32
892void __iomem *ioremap_wt(phys_addr_t address, unsigned long size);
893#define ioremap_wt ioremap_wt
894#endif
895
896void __iomem *ioremap_coherent(phys_addr_t address, unsigned long size);
897#define ioremap_cache(addr, size) \
898 ioremap_prot((addr), (size), pgprot_val(PAGE_KERNEL))
899
900#define iounmap iounmap
901
902void __iomem *ioremap_phb(phys_addr_t paddr, unsigned long size);
903
904int early_ioremap_range(unsigned long ea, phys_addr_t pa,
905 unsigned long size, pgprot_t prot);
906
907extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
908 pgprot_t prot, void *caller);
909
910/*
911 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
912 * which needs some additional definitions here. They basically allow PIO
913 * space overall to be 1GB. This will work as long as we never try to use
914 * iomap to map MMIO below 1GB which should be fine on ppc64
915 */
916#define HAVE_ARCH_PIO_SIZE 1
917#define PIO_OFFSET 0x00000000UL
918#define PIO_MASK (FULL_IO_SIZE - 1)
919#define PIO_RESERVED (FULL_IO_SIZE)
920
921#define mmio_read16be(addr) readw_be(addr)
922#define mmio_read32be(addr) readl_be(addr)
923#define mmio_read64be(addr) readq_be(addr)
924#define mmio_write16be(val, addr) writew_be(val, addr)
925#define mmio_write32be(val, addr) writel_be(val, addr)
926#define mmio_write64be(val, addr) writeq_be(val, addr)
927#define mmio_insb(addr, dst, count) readsb(addr, dst, count)
928#define mmio_insw(addr, dst, count) readsw(addr, dst, count)
929#define mmio_insl(addr, dst, count) readsl(addr, dst, count)
930#define mmio_outsb(addr, src, count) writesb(addr, src, count)
931#define mmio_outsw(addr, src, count) writesw(addr, src, count)
932#define mmio_outsl(addr, src, count) writesl(addr, src, count)
933
934/**
935 * virt_to_phys - map virtual addresses to physical
936 * @address: address to remap
937 *
938 * The returned physical address is the physical (CPU) mapping for
939 * the memory address given. It is only valid to use this function on
940 * addresses directly mapped or allocated via kmalloc.
941 *
942 * This function does not give bus mappings for DMA transfers. In
943 * almost all conceivable cases a device driver should not be using
944 * this function
945 */
946static inline unsigned long virt_to_phys(const volatile void * address)
947{
948 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !virt_addr_valid(address));
949
950 return __pa((unsigned long)address);
951}
952#define virt_to_phys virt_to_phys
953
954/**
955 * phys_to_virt - map physical address to virtual
956 * @address: address to remap
957 *
958 * The returned virtual address is a current CPU mapping for
959 * the memory address given. It is only valid to use this function on
960 * addresses that have a kernel mapping
961 *
962 * This function does not handle bus mappings for DMA transfers. In
963 * almost all conceivable cases a device driver should not be using
964 * this function
965 */
966static inline void * phys_to_virt(unsigned long address)
967{
968 return (void *)__va(address);
969}
970#define phys_to_virt phys_to_virt
971
972/*
973 * Change "struct page" to physical address.
974 */
975static inline phys_addr_t page_to_phys(struct page *page)
976{
977 unsigned long pfn = page_to_pfn(page);
978
979 WARN_ON(IS_ENABLED(CONFIG_DEBUG_VIRTUAL) && !pfn_valid(pfn));
980
981 return PFN_PHYS(pfn);
982}
983
984/*
985 * 32 bits still uses virt_to_bus() for it's implementation of DMA
986 * mappings se we have to keep it defined here. We also have some old
987 * drivers (shame shame shame) that use bus_to_virt() and haven't been
988 * fixed yet so I need to define it here.
989 */
990#ifdef CONFIG_PPC32
991
992static inline unsigned long virt_to_bus(volatile void * address)
993{
994 if (address == NULL)
995 return 0;
996 return __pa(address) + PCI_DRAM_OFFSET;
997}
998#define virt_to_bus virt_to_bus
999
1000static inline void * bus_to_virt(unsigned long address)
1001{
1002 if (address == 0)
1003 return NULL;
1004 return __va(address - PCI_DRAM_OFFSET);
1005}
1006#define bus_to_virt bus_to_virt
1007
1008#endif /* CONFIG_PPC32 */
1009
1010/* access ports */
1011#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
1012#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
1013
1014#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
1015#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
1016
1017#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
1018#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
1019
1020/* Clear and set bits in one shot. These macros can be used to clear and
1021 * set multiple bits in a register using a single read-modify-write. These
1022 * macros can also be used to set a multiple-bit bit pattern using a mask,
1023 * by specifying the mask in the 'clear' parameter and the new bit pattern
1024 * in the 'set' parameter.
1025 */
1026
1027#define clrsetbits(type, addr, clear, set) \
1028 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
1029
1030#ifdef __powerpc64__
1031#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
1032#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
1033#endif
1034
1035#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
1036#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
1037
1038#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
1039#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
1040
1041#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
1042
1043#include <asm-generic/io.h>
1044
1045#endif /* __KERNEL__ */
1046
1047#endif /* _ASM_POWERPC_IO_H */
1#ifndef _ASM_POWERPC_IO_H
2#define _ASM_POWERPC_IO_H
3#ifdef __KERNEL__
4
5#define ARCH_HAS_IOREMAP_WC
6
7/*
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14/* Check of existence of legacy devices */
15extern int check_legacy_ioport(unsigned long base_port);
16#define I8042_DATA_REG 0x60
17#define FDC_BASE 0x3f0
18
19#if defined(CONFIG_PPC64) && defined(CONFIG_PCI)
20extern struct pci_dev *isa_bridge_pcidev;
21/*
22 * has legacy ISA devices ?
23 */
24#define arch_has_dev_port() (isa_bridge_pcidev != NULL || isa_io_special)
25#endif
26
27#include <linux/device.h>
28#include <linux/io.h>
29
30#include <linux/compiler.h>
31#include <asm/page.h>
32#include <asm/byteorder.h>
33#include <asm/synch.h>
34#include <asm/delay.h>
35#include <asm/mmu.h>
36#include <asm/ppc_asm.h>
37
38#include <asm-generic/iomap.h>
39
40#ifdef CONFIG_PPC64
41#include <asm/paca.h>
42#endif
43
44#define SIO_CONFIG_RA 0x398
45#define SIO_CONFIG_RD 0x399
46
47#define SLOW_DOWN_IO
48
49/* 32 bits uses slightly different variables for the various IO
50 * bases. Most of this file only uses _IO_BASE though which we
51 * define properly based on the platform
52 */
53#ifndef CONFIG_PCI
54#define _IO_BASE 0
55#define _ISA_MEM_BASE 0
56#define PCI_DRAM_OFFSET 0
57#elif defined(CONFIG_PPC32)
58#define _IO_BASE isa_io_base
59#define _ISA_MEM_BASE isa_mem_base
60#define PCI_DRAM_OFFSET pci_dram_offset
61#else
62#define _IO_BASE pci_io_base
63#define _ISA_MEM_BASE isa_mem_base
64#define PCI_DRAM_OFFSET 0
65#endif
66
67extern unsigned long isa_io_base;
68extern unsigned long pci_io_base;
69extern unsigned long pci_dram_offset;
70
71extern resource_size_t isa_mem_base;
72
73/* Boolean set by platform if PIO accesses are suppored while _IO_BASE
74 * is not set or addresses cannot be translated to MMIO. This is typically
75 * set when the platform supports "special" PIO accesses via a non memory
76 * mapped mechanism, and allows things like the early udbg UART code to
77 * function.
78 */
79extern bool isa_io_special;
80
81#ifdef CONFIG_PPC32
82#if defined(CONFIG_PPC_INDIRECT_PIO) || defined(CONFIG_PPC_INDIRECT_MMIO)
83#error CONFIG_PPC_INDIRECT_{PIO,MMIO} are not yet supported on 32 bits
84#endif
85#endif
86
87/*
88 *
89 * Low level MMIO accessors
90 *
91 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
92 * specific and thus shouldn't be used in generic code. The accessors
93 * provided here are:
94 *
95 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
96 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
97 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
98 *
99 * Those operate directly on a kernel virtual address. Note that the prototype
100 * for the out_* accessors has the arguments in opposite order from the usual
101 * linux PCI accessors. Unlike those, they take the address first and the value
102 * next.
103 *
104 * Note: I might drop the _ns suffix on the stream operations soon as it is
105 * simply normal for stream operations to not swap in the first place.
106 *
107 */
108
109#ifdef CONFIG_PPC64
110#define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0)
111#else
112#define IO_SET_SYNC_FLAG()
113#endif
114
115/* gcc 4.0 and older doesn't have 'Z' constraint */
116#if __GNUC__ < 4 || (__GNUC__ == 4 && __GNUC_MINOR__ == 0)
117#define DEF_MMIO_IN_X(name, size, insn) \
118static inline u##size name(const volatile u##size __iomem *addr) \
119{ \
120 u##size ret; \
121 __asm__ __volatile__("sync;"#insn" %0,0,%1;twi 0,%0,0;isync" \
122 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \
123 return ret; \
124}
125
126#define DEF_MMIO_OUT_X(name, size, insn) \
127static inline void name(volatile u##size __iomem *addr, u##size val) \
128{ \
129 __asm__ __volatile__("sync;"#insn" %1,0,%2" \
130 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \
131 IO_SET_SYNC_FLAG(); \
132}
133#else /* newer gcc */
134#define DEF_MMIO_IN_X(name, size, insn) \
135static inline u##size name(const volatile u##size __iomem *addr) \
136{ \
137 u##size ret; \
138 __asm__ __volatile__("sync;"#insn" %0,%y1;twi 0,%0,0;isync" \
139 : "=r" (ret) : "Z" (*addr) : "memory"); \
140 return ret; \
141}
142
143#define DEF_MMIO_OUT_X(name, size, insn) \
144static inline void name(volatile u##size __iomem *addr, u##size val) \
145{ \
146 __asm__ __volatile__("sync;"#insn" %1,%y0" \
147 : "=Z" (*addr) : "r" (val) : "memory"); \
148 IO_SET_SYNC_FLAG(); \
149}
150#endif
151
152#define DEF_MMIO_IN_D(name, size, insn) \
153static inline u##size name(const volatile u##size __iomem *addr) \
154{ \
155 u##size ret; \
156 __asm__ __volatile__("sync;"#insn"%U1%X1 %0,%1;twi 0,%0,0;isync"\
157 : "=r" (ret) : "m" (*addr) : "memory"); \
158 return ret; \
159}
160
161#define DEF_MMIO_OUT_D(name, size, insn) \
162static inline void name(volatile u##size __iomem *addr, u##size val) \
163{ \
164 __asm__ __volatile__("sync;"#insn"%U0%X0 %1,%0" \
165 : "=m" (*addr) : "r" (val) : "memory"); \
166 IO_SET_SYNC_FLAG(); \
167}
168
169DEF_MMIO_IN_D(in_8, 8, lbz);
170DEF_MMIO_OUT_D(out_8, 8, stb);
171
172#ifdef __BIG_ENDIAN__
173DEF_MMIO_IN_D(in_be16, 16, lhz);
174DEF_MMIO_IN_D(in_be32, 32, lwz);
175DEF_MMIO_IN_X(in_le16, 16, lhbrx);
176DEF_MMIO_IN_X(in_le32, 32, lwbrx);
177
178DEF_MMIO_OUT_D(out_be16, 16, sth);
179DEF_MMIO_OUT_D(out_be32, 32, stw);
180DEF_MMIO_OUT_X(out_le16, 16, sthbrx);
181DEF_MMIO_OUT_X(out_le32, 32, stwbrx);
182#else
183DEF_MMIO_IN_X(in_be16, 16, lhbrx);
184DEF_MMIO_IN_X(in_be32, 32, lwbrx);
185DEF_MMIO_IN_D(in_le16, 16, lhz);
186DEF_MMIO_IN_D(in_le32, 32, lwz);
187
188DEF_MMIO_OUT_X(out_be16, 16, sthbrx);
189DEF_MMIO_OUT_X(out_be32, 32, stwbrx);
190DEF_MMIO_OUT_D(out_le16, 16, sth);
191DEF_MMIO_OUT_D(out_le32, 32, stw);
192
193#endif /* __BIG_ENDIAN */
194
195/*
196 * Cache inhibitied accessors for use in real mode, you don't want to use these
197 * unless you know what you're doing.
198 *
199 * NB. These use the cpu byte ordering.
200 */
201DEF_MMIO_OUT_X(out_rm8, 8, stbcix);
202DEF_MMIO_OUT_X(out_rm16, 16, sthcix);
203DEF_MMIO_OUT_X(out_rm32, 32, stwcix);
204DEF_MMIO_IN_X(in_rm8, 8, lbzcix);
205DEF_MMIO_IN_X(in_rm16, 16, lhzcix);
206DEF_MMIO_IN_X(in_rm32, 32, lwzcix);
207
208#ifdef __powerpc64__
209
210DEF_MMIO_OUT_X(out_rm64, 64, stdcix);
211DEF_MMIO_IN_X(in_rm64, 64, ldcix);
212
213#ifdef __BIG_ENDIAN__
214DEF_MMIO_OUT_D(out_be64, 64, std);
215DEF_MMIO_IN_D(in_be64, 64, ld);
216
217/* There is no asm instructions for 64 bits reverse loads and stores */
218static inline u64 in_le64(const volatile u64 __iomem *addr)
219{
220 return swab64(in_be64(addr));
221}
222
223static inline void out_le64(volatile u64 __iomem *addr, u64 val)
224{
225 out_be64(addr, swab64(val));
226}
227#else
228DEF_MMIO_OUT_D(out_le64, 64, std);
229DEF_MMIO_IN_D(in_le64, 64, ld);
230
231/* There is no asm instructions for 64 bits reverse loads and stores */
232static inline u64 in_be64(const volatile u64 __iomem *addr)
233{
234 return swab64(in_le64(addr));
235}
236
237static inline void out_be64(volatile u64 __iomem *addr, u64 val)
238{
239 out_le64(addr, swab64(val));
240}
241
242#endif
243#endif /* __powerpc64__ */
244
245
246/*
247 * Simple Cache inhibited accessors
248 * Unlike the DEF_MMIO_* macros, these don't include any h/w memory
249 * barriers, callers need to manage memory barriers on their own.
250 * These can only be used in hypervisor real mode.
251 */
252
253static inline u32 _lwzcix(unsigned long addr)
254{
255 u32 ret;
256
257 __asm__ __volatile__("lwzcix %0,0, %1"
258 : "=r" (ret) : "r" (addr) : "memory");
259 return ret;
260}
261
262static inline void _stbcix(u64 addr, u8 val)
263{
264 __asm__ __volatile__("stbcix %0,0,%1"
265 : : "r" (val), "r" (addr) : "memory");
266}
267
268static inline void _stwcix(u64 addr, u32 val)
269{
270 __asm__ __volatile__("stwcix %0,0,%1"
271 : : "r" (val), "r" (addr) : "memory");
272}
273
274/*
275 * Low level IO stream instructions are defined out of line for now
276 */
277extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
278extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
279extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
280extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
281extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
282extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
283
284/* The _ns naming is historical and will be removed. For now, just #define
285 * the non _ns equivalent names
286 */
287#define _insw _insw_ns
288#define _insl _insl_ns
289#define _outsw _outsw_ns
290#define _outsl _outsl_ns
291
292
293/*
294 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
295 */
296
297extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
298extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
299 unsigned long n);
300extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
301 unsigned long n);
302
303/*
304 *
305 * PCI and standard ISA accessors
306 *
307 * Those are globally defined linux accessors for devices on PCI or ISA
308 * busses. They follow the Linux defined semantics. The current implementation
309 * for PowerPC is as close as possible to the x86 version of these, and thus
310 * provides fairly heavy weight barriers for the non-raw versions
311 *
312 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_MMIO
313 * or CONFIG_PPC_INDIRECT_PIO are set allowing the platform to provide its
314 * own implementation of some or all of the accessors.
315 */
316
317/*
318 * Include the EEH definitions when EEH is enabled only so they don't get
319 * in the way when building for 32 bits
320 */
321#ifdef CONFIG_EEH
322#include <asm/eeh.h>
323#endif
324
325/* Shortcut to the MMIO argument pointer */
326#define PCI_IO_ADDR volatile void __iomem *
327
328/* Indirect IO address tokens:
329 *
330 * When CONFIG_PPC_INDIRECT_MMIO is set, the platform can provide hooks
331 * on all MMIOs. (Note that this is all 64 bits only for now)
332 *
333 * To help platforms who may need to differentiate MMIO addresses in
334 * their hooks, a bitfield is reserved for use by the platform near the
335 * top of MMIO addresses (not PIO, those have to cope the hard way).
336 *
337 * This bit field is 12 bits and is at the top of the IO virtual
338 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
339 *
340 * The kernel virtual space is thus:
341 *
342 * 0xD000000000000000 : vmalloc
343 * 0xD000080000000000 : PCI PHB IO space
344 * 0xD000080080000000 : ioremap
345 * 0xD0000fffffffffff : end of ioremap region
346 *
347 * Since the top 4 bits are reserved as the region ID, we use thus
348 * the next 12 bits and keep 4 bits available for the future if the
349 * virtual address space is ever to be extended.
350 *
351 * The direct IO mapping operations will then mask off those bits
352 * before doing the actual access, though that only happen when
353 * CONFIG_PPC_INDIRECT_MMIO is set, thus be careful when you use that
354 * mechanism
355 *
356 * For PIO, there is a separate CONFIG_PPC_INDIRECT_PIO which makes
357 * all PIO functions call through a hook.
358 */
359
360#ifdef CONFIG_PPC_INDIRECT_MMIO
361#define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul
362#define PCI_IO_IND_TOKEN_SHIFT 48
363#define PCI_FIX_ADDR(addr) \
364 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
365#define PCI_GET_ADDR_TOKEN(addr) \
366 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
367 PCI_IO_IND_TOKEN_SHIFT)
368#define PCI_SET_ADDR_TOKEN(addr, token) \
369do { \
370 unsigned long __a = (unsigned long)(addr); \
371 __a &= ~PCI_IO_IND_TOKEN_MASK; \
372 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
373 (addr) = (void __iomem *)__a; \
374} while(0)
375#else
376#define PCI_FIX_ADDR(addr) (addr)
377#endif
378
379
380/*
381 * Non ordered and non-swapping "raw" accessors
382 */
383
384static inline unsigned char __raw_readb(const volatile void __iomem *addr)
385{
386 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
387}
388static inline unsigned short __raw_readw(const volatile void __iomem *addr)
389{
390 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
391}
392static inline unsigned int __raw_readl(const volatile void __iomem *addr)
393{
394 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
395}
396static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
397{
398 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
399}
400static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
401{
402 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
403}
404static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
405{
406 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
407}
408
409#ifdef __powerpc64__
410static inline unsigned long __raw_readq(const volatile void __iomem *addr)
411{
412 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
413}
414static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
415{
416 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
417}
418
419/*
420 * Real mode version of the above. stdcix is only supposed to be used
421 * in hypervisor real mode as per the architecture spec.
422 */
423static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
424{
425 __asm__ __volatile__("stdcix %0,0,%1"
426 : : "r" (val), "r" (paddr) : "memory");
427}
428
429#endif /* __powerpc64__ */
430
431/*
432 *
433 * PCI PIO and MMIO accessors.
434 *
435 *
436 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
437 * machine checks (which they occasionally do when probing non existing
438 * IO ports on some platforms, like PowerMac and 8xx).
439 * I always found it to be of dubious reliability and I am tempted to get
440 * rid of it one of these days. So if you think it's important to keep it,
441 * please voice up asap. We never had it for 64 bits and I do not intend
442 * to port it over
443 */
444
445#ifdef CONFIG_PPC32
446
447#define __do_in_asm(name, op) \
448static inline unsigned int name(unsigned int port) \
449{ \
450 unsigned int x; \
451 __asm__ __volatile__( \
452 "sync\n" \
453 "0:" op " %0,0,%1\n" \
454 "1: twi 0,%0,0\n" \
455 "2: isync\n" \
456 "3: nop\n" \
457 "4:\n" \
458 ".section .fixup,\"ax\"\n" \
459 "5: li %0,-1\n" \
460 " b 4b\n" \
461 ".previous\n" \
462 EX_TABLE(0b, 5b) \
463 EX_TABLE(1b, 5b) \
464 EX_TABLE(2b, 5b) \
465 EX_TABLE(3b, 5b) \
466 : "=&r" (x) \
467 : "r" (port + _IO_BASE) \
468 : "memory"); \
469 return x; \
470}
471
472#define __do_out_asm(name, op) \
473static inline void name(unsigned int val, unsigned int port) \
474{ \
475 __asm__ __volatile__( \
476 "sync\n" \
477 "0:" op " %0,0,%1\n" \
478 "1: sync\n" \
479 "2:\n" \
480 EX_TABLE(0b, 2b) \
481 EX_TABLE(1b, 2b) \
482 : : "r" (val), "r" (port + _IO_BASE) \
483 : "memory"); \
484}
485
486__do_in_asm(_rec_inb, "lbzx")
487__do_in_asm(_rec_inw, "lhbrx")
488__do_in_asm(_rec_inl, "lwbrx")
489__do_out_asm(_rec_outb, "stbx")
490__do_out_asm(_rec_outw, "sthbrx")
491__do_out_asm(_rec_outl, "stwbrx")
492
493#endif /* CONFIG_PPC32 */
494
495/* The "__do_*" operations below provide the actual "base" implementation
496 * for each of the defined accessors. Some of them use the out_* functions
497 * directly, some of them still use EEH, though we might change that in the
498 * future. Those macros below provide the necessary argument swapping and
499 * handling of the IO base for PIO.
500 *
501 * They are themselves used by the macros that define the actual accessors
502 * and can be used by the hooks if any.
503 *
504 * Note that PIO operations are always defined in terms of their corresonding
505 * MMIO operations. That allows platforms like iSeries who want to modify the
506 * behaviour of both to only hook on the MMIO version and get both. It's also
507 * possible to hook directly at the toplevel PIO operation if they have to
508 * be handled differently
509 */
510#define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
511#define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
512#define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
513#define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
514#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
515#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
516#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
517
518#ifdef CONFIG_EEH
519#define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
520#define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
521#define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
522#define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
523#define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
524#define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
525#define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
526#else /* CONFIG_EEH */
527#define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
528#define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
529#define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
530#define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
531#define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
532#define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
533#define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
534#endif /* !defined(CONFIG_EEH) */
535
536#ifdef CONFIG_PPC32
537#define __do_outb(val, port) _rec_outb(val, port)
538#define __do_outw(val, port) _rec_outw(val, port)
539#define __do_outl(val, port) _rec_outl(val, port)
540#define __do_inb(port) _rec_inb(port)
541#define __do_inw(port) _rec_inw(port)
542#define __do_inl(port) _rec_inl(port)
543#else /* CONFIG_PPC32 */
544#define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
545#define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
546#define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
547#define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
548#define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
549#define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
550#endif /* !CONFIG_PPC32 */
551
552#ifdef CONFIG_EEH
553#define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
554#define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
555#define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
556#else /* CONFIG_EEH */
557#define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
558#define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
559#define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
560#endif /* !CONFIG_EEH */
561#define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
562#define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
563#define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
564
565#define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
566#define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
567#define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
568#define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
569#define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
570#define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
571
572#define __do_memset_io(addr, c, n) \
573 _memset_io(PCI_FIX_ADDR(addr), c, n)
574#define __do_memcpy_toio(dst, src, n) \
575 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
576
577#ifdef CONFIG_EEH
578#define __do_memcpy_fromio(dst, src, n) \
579 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
580#else /* CONFIG_EEH */
581#define __do_memcpy_fromio(dst, src, n) \
582 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
583#endif /* !CONFIG_EEH */
584
585#ifdef CONFIG_PPC_INDIRECT_PIO
586#define DEF_PCI_HOOK_pio(x) x
587#else
588#define DEF_PCI_HOOK_pio(x) NULL
589#endif
590
591#ifdef CONFIG_PPC_INDIRECT_MMIO
592#define DEF_PCI_HOOK_mem(x) x
593#else
594#define DEF_PCI_HOOK_mem(x) NULL
595#endif
596
597/* Structure containing all the hooks */
598extern struct ppc_pci_io {
599
600#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
601#define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
602
603#include <asm/io-defs.h>
604
605#undef DEF_PCI_AC_RET
606#undef DEF_PCI_AC_NORET
607
608} ppc_pci_io;
609
610/* The inline wrappers */
611#define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
612static inline ret name at \
613{ \
614 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
615 return ppc_pci_io.name al; \
616 return __do_##name al; \
617}
618
619#define DEF_PCI_AC_NORET(name, at, al, space, aa) \
620static inline void name at \
621{ \
622 if (DEF_PCI_HOOK_##space(ppc_pci_io.name) != NULL) \
623 ppc_pci_io.name al; \
624 else \
625 __do_##name al; \
626}
627
628#include <asm/io-defs.h>
629
630#undef DEF_PCI_AC_RET
631#undef DEF_PCI_AC_NORET
632
633/* Some drivers check for the presence of readq & writeq with
634 * a #ifdef, so we make them happy here.
635 */
636#ifdef __powerpc64__
637#define readq readq
638#define writeq writeq
639#endif
640
641/*
642 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
643 * access
644 */
645#define xlate_dev_mem_ptr(p) __va(p)
646
647/*
648 * Convert a virtual cached pointer to an uncached pointer
649 */
650#define xlate_dev_kmem_ptr(p) p
651
652/*
653 * We don't do relaxed operations yet, at least not with this semantic
654 */
655#define readb_relaxed(addr) readb(addr)
656#define readw_relaxed(addr) readw(addr)
657#define readl_relaxed(addr) readl(addr)
658#define readq_relaxed(addr) readq(addr)
659#define writeb_relaxed(v, addr) writeb(v, addr)
660#define writew_relaxed(v, addr) writew(v, addr)
661#define writel_relaxed(v, addr) writel(v, addr)
662#define writeq_relaxed(v, addr) writeq(v, addr)
663
664#ifdef CONFIG_PPC32
665#define mmiowb()
666#else
667/*
668 * Enforce synchronisation of stores vs. spin_unlock
669 * (this does it explicitly, though our implementation of spin_unlock
670 * does it implicitely too)
671 */
672static inline void mmiowb(void)
673{
674 unsigned long tmp;
675
676 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
677 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
678 : "memory");
679}
680#endif /* !CONFIG_PPC32 */
681
682static inline void iosync(void)
683{
684 __asm__ __volatile__ ("sync" : : : "memory");
685}
686
687/* Enforce in-order execution of data I/O.
688 * No distinction between read/write on PPC; use eieio for all three.
689 * Those are fairly week though. They don't provide a barrier between
690 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
691 * they only provide barriers between 2 __raw MMIO operations and
692 * possibly break write combining.
693 */
694#define iobarrier_rw() eieio()
695#define iobarrier_r() eieio()
696#define iobarrier_w() eieio()
697
698
699/*
700 * output pause versions need a delay at least for the
701 * w83c105 ide controller in a p610.
702 */
703#define inb_p(port) inb(port)
704#define outb_p(val, port) (udelay(1), outb((val), (port)))
705#define inw_p(port) inw(port)
706#define outw_p(val, port) (udelay(1), outw((val), (port)))
707#define inl_p(port) inl(port)
708#define outl_p(val, port) (udelay(1), outl((val), (port)))
709
710
711#define IO_SPACE_LIMIT ~(0UL)
712
713
714/**
715 * ioremap - map bus memory into CPU space
716 * @address: bus address of the memory
717 * @size: size of the resource to map
718 *
719 * ioremap performs a platform specific sequence of operations to
720 * make bus memory CPU accessible via the readb/readw/readl/writeb/
721 * writew/writel functions and the other mmio helpers. The returned
722 * address is not guaranteed to be usable directly as a virtual
723 * address.
724 *
725 * We provide a few variations of it:
726 *
727 * * ioremap is the standard one and provides non-cacheable guarded mappings
728 * and can be hooked by the platform via ppc_md
729 *
730 * * ioremap_prot allows to specify the page flags as an argument and can
731 * also be hooked by the platform via ppc_md.
732 *
733 * * ioremap_nocache is identical to ioremap
734 *
735 * * ioremap_wc enables write combining
736 *
737 * * iounmap undoes such a mapping and can be hooked
738 *
739 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
740 * create hand-made mappings for use only by the PCI code and cannot
741 * currently be hooked. Must be page aligned.
742 *
743 * * __ioremap is the low level implementation used by ioremap and
744 * ioremap_prot and cannot be hooked (but can be used by a hook on one
745 * of the previous ones)
746 *
747 * * __ioremap_caller is the same as above but takes an explicit caller
748 * reference rather than using __builtin_return_address(0)
749 *
750 * * __iounmap, is the low level implementation used by iounmap and cannot
751 * be hooked (but can be used by a hook on iounmap)
752 *
753 */
754extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
755extern void __iomem *ioremap_prot(phys_addr_t address, unsigned long size,
756 unsigned long flags);
757extern void __iomem *ioremap_wc(phys_addr_t address, unsigned long size);
758#define ioremap_nocache(addr, size) ioremap((addr), (size))
759#define ioremap_uc(addr, size) ioremap((addr), (size))
760
761extern void iounmap(volatile void __iomem *addr);
762
763extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
764 unsigned long flags);
765extern void __iomem *__ioremap_caller(phys_addr_t, unsigned long size,
766 unsigned long flags, void *caller);
767
768extern void __iounmap(volatile void __iomem *addr);
769
770extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
771 unsigned long size, unsigned long flags);
772extern void __iounmap_at(void *ea, unsigned long size);
773
774/*
775 * When CONFIG_PPC_INDIRECT_PIO is set, we use the generic iomap implementation
776 * which needs some additional definitions here. They basically allow PIO
777 * space overall to be 1GB. This will work as long as we never try to use
778 * iomap to map MMIO below 1GB which should be fine on ppc64
779 */
780#define HAVE_ARCH_PIO_SIZE 1
781#define PIO_OFFSET 0x00000000UL
782#define PIO_MASK (FULL_IO_SIZE - 1)
783#define PIO_RESERVED (FULL_IO_SIZE)
784
785#define mmio_read16be(addr) readw_be(addr)
786#define mmio_read32be(addr) readl_be(addr)
787#define mmio_write16be(val, addr) writew_be(val, addr)
788#define mmio_write32be(val, addr) writel_be(val, addr)
789#define mmio_insb(addr, dst, count) readsb(addr, dst, count)
790#define mmio_insw(addr, dst, count) readsw(addr, dst, count)
791#define mmio_insl(addr, dst, count) readsl(addr, dst, count)
792#define mmio_outsb(addr, src, count) writesb(addr, src, count)
793#define mmio_outsw(addr, src, count) writesw(addr, src, count)
794#define mmio_outsl(addr, src, count) writesl(addr, src, count)
795
796/**
797 * virt_to_phys - map virtual addresses to physical
798 * @address: address to remap
799 *
800 * The returned physical address is the physical (CPU) mapping for
801 * the memory address given. It is only valid to use this function on
802 * addresses directly mapped or allocated via kmalloc.
803 *
804 * This function does not give bus mappings for DMA transfers. In
805 * almost all conceivable cases a device driver should not be using
806 * this function
807 */
808static inline unsigned long virt_to_phys(volatile void * address)
809{
810 return __pa((unsigned long)address);
811}
812
813/**
814 * phys_to_virt - map physical address to virtual
815 * @address: address to remap
816 *
817 * The returned virtual address is a current CPU mapping for
818 * the memory address given. It is only valid to use this function on
819 * addresses that have a kernel mapping
820 *
821 * This function does not handle bus mappings for DMA transfers. In
822 * almost all conceivable cases a device driver should not be using
823 * this function
824 */
825static inline void * phys_to_virt(unsigned long address)
826{
827 return (void *)__va(address);
828}
829
830/*
831 * Change "struct page" to physical address.
832 */
833#define page_to_phys(page) ((phys_addr_t)page_to_pfn(page) << PAGE_SHIFT)
834
835/*
836 * 32 bits still uses virt_to_bus() for it's implementation of DMA
837 * mappings se we have to keep it defined here. We also have some old
838 * drivers (shame shame shame) that use bus_to_virt() and haven't been
839 * fixed yet so I need to define it here.
840 */
841#ifdef CONFIG_PPC32
842
843static inline unsigned long virt_to_bus(volatile void * address)
844{
845 if (address == NULL)
846 return 0;
847 return __pa(address) + PCI_DRAM_OFFSET;
848}
849
850static inline void * bus_to_virt(unsigned long address)
851{
852 if (address == 0)
853 return NULL;
854 return __va(address - PCI_DRAM_OFFSET);
855}
856
857#define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
858
859#endif /* CONFIG_PPC32 */
860
861/* access ports */
862#define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
863#define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
864
865#define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
866#define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
867
868#define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
869#define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
870
871/* Clear and set bits in one shot. These macros can be used to clear and
872 * set multiple bits in a register using a single read-modify-write. These
873 * macros can also be used to set a multiple-bit bit pattern using a mask,
874 * by specifying the mask in the 'clear' parameter and the new bit pattern
875 * in the 'set' parameter.
876 */
877
878#define clrsetbits(type, addr, clear, set) \
879 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
880
881#ifdef __powerpc64__
882#define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
883#define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
884#endif
885
886#define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
887#define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
888
889#define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
890#define clrsetbits_le16(addr, clear, set) clrsetbits(le16, addr, clear, set)
891
892#define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
893
894#endif /* __KERNEL__ */
895
896#endif /* _ASM_POWERPC_IO_H */