Linux Audio

Check our new training course

Loading...
  1// SPDX-License-Identifier: GPL-2.0
  2//
  3// Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
  4//
  5// Refer to drivers/dma/imx-sdma.c
  6
  7#include <linux/init.h>
  8#include <linux/types.h>
  9#include <linux/mm.h>
 10#include <linux/interrupt.h>
 11#include <linux/clk.h>
 12#include <linux/wait.h>
 13#include <linux/sched.h>
 14#include <linux/semaphore.h>
 15#include <linux/device.h>
 16#include <linux/dma-mapping.h>
 17#include <linux/slab.h>
 18#include <linux/platform_device.h>
 19#include <linux/dmaengine.h>
 20#include <linux/delay.h>
 21#include <linux/module.h>
 22#include <linux/stmp_device.h>
 23#include <linux/of.h>
 24#include <linux/of_dma.h>
 25#include <linux/list.h>
 26#include <linux/dma/mxs-dma.h>
 27
 28#include <asm/irq.h>
 29
 30#include "dmaengine.h"
 31
 32/*
 33 * NOTE: The term "PIO" throughout the mxs-dma implementation means
 34 * PIO mode of mxs apbh-dma and apbx-dma.  With this working mode,
 35 * dma can program the controller registers of peripheral devices.
 36 */
 37
 38#define dma_is_apbh(mxs_dma)	((mxs_dma)->type == MXS_DMA_APBH)
 39#define apbh_is_old(mxs_dma)	((mxs_dma)->dev_id == IMX23_DMA)
 40
 41#define HW_APBHX_CTRL0				0x000
 42#define BM_APBH_CTRL0_APB_BURST8_EN		(1 << 29)
 43#define BM_APBH_CTRL0_APB_BURST_EN		(1 << 28)
 44#define BP_APBH_CTRL0_RESET_CHANNEL		16
 45#define HW_APBHX_CTRL1				0x010
 46#define HW_APBHX_CTRL2				0x020
 47#define HW_APBHX_CHANNEL_CTRL			0x030
 48#define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL	16
 49/*
 50 * The offset of NXTCMDAR register is different per both dma type and version,
 51 * while stride for each channel is all the same 0x70.
 52 */
 53#define HW_APBHX_CHn_NXTCMDAR(d, n) \
 54	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
 55#define HW_APBHX_CHn_SEMA(d, n) \
 56	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
 57#define HW_APBHX_CHn_BAR(d, n) \
 58	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
 59#define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)
 60
 61/*
 62 * ccw bits definitions
 63 *
 64 * COMMAND:		0..1	(2)
 65 * CHAIN:		2	(1)
 66 * IRQ:			3	(1)
 67 * NAND_LOCK:		4	(1) - not implemented
 68 * NAND_WAIT4READY:	5	(1) - not implemented
 69 * DEC_SEM:		6	(1)
 70 * WAIT4END:		7	(1)
 71 * HALT_ON_TERMINATE:	8	(1)
 72 * TERMINATE_FLUSH:	9	(1)
 73 * RESERVED:		10..11	(2)
 74 * PIO_NUM:		12..15	(4)
 75 */
 76#define BP_CCW_COMMAND		0
 77#define BM_CCW_COMMAND		(3 << 0)
 78#define CCW_CHAIN		(1 << 2)
 79#define CCW_IRQ			(1 << 3)
 80#define CCW_WAIT4RDY		(1 << 5)
 81#define CCW_DEC_SEM		(1 << 6)
 82#define CCW_WAIT4END		(1 << 7)
 83#define CCW_HALT_ON_TERM	(1 << 8)
 84#define CCW_TERM_FLUSH		(1 << 9)
 85#define BP_CCW_PIO_NUM		12
 86#define BM_CCW_PIO_NUM		(0xf << 12)
 87
 88#define BF_CCW(value, field)	(((value) << BP_CCW_##field) & BM_CCW_##field)
 89
 90#define MXS_DMA_CMD_NO_XFER	0
 91#define MXS_DMA_CMD_WRITE	1
 92#define MXS_DMA_CMD_READ	2
 93#define MXS_DMA_CMD_DMA_SENSE	3	/* not implemented */
 94
 95struct mxs_dma_ccw {
 96	u32		next;
 97	u16		bits;
 98	u16		xfer_bytes;
 99#define MAX_XFER_BYTES	0xff00
100	u32		bufaddr;
101#define MXS_PIO_WORDS	16
102	u32		pio_words[MXS_PIO_WORDS];
103};
104
105#define CCW_BLOCK_SIZE	(4 * PAGE_SIZE)
106#define NUM_CCW	(int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))
107
108struct mxs_dma_chan {
109	struct mxs_dma_engine		*mxs_dma;
110	struct dma_chan			chan;
111	struct dma_async_tx_descriptor	desc;
112	struct tasklet_struct		tasklet;
113	unsigned int			chan_irq;
114	struct mxs_dma_ccw		*ccw;
115	dma_addr_t			ccw_phys;
116	int				desc_count;
117	enum dma_status			status;
118	unsigned int			flags;
119	bool				reset;
120#define MXS_DMA_SG_LOOP			(1 << 0)
121#define MXS_DMA_USE_SEMAPHORE		(1 << 1)
122};
123
124#define MXS_DMA_CHANNELS		16
125#define MXS_DMA_CHANNELS_MASK		0xffff
126
127enum mxs_dma_devtype {
128	MXS_DMA_APBH,
129	MXS_DMA_APBX,
130};
131
132enum mxs_dma_id {
133	IMX23_DMA,
134	IMX28_DMA,
135};
136
137struct mxs_dma_engine {
138	enum mxs_dma_id			dev_id;
139	enum mxs_dma_devtype		type;
140	void __iomem			*base;
141	struct clk			*clk;
142	struct dma_device		dma_device;
143	struct mxs_dma_chan		mxs_chans[MXS_DMA_CHANNELS];
144	struct platform_device		*pdev;
145	unsigned int			nr_channels;
146};
147
148struct mxs_dma_type {
149	enum mxs_dma_id id;
150	enum mxs_dma_devtype type;
151};
152
153static struct mxs_dma_type mxs_dma_types[] = {
154	{
155		.id = IMX23_DMA,
156		.type = MXS_DMA_APBH,
157	}, {
158		.id = IMX23_DMA,
159		.type = MXS_DMA_APBX,
160	}, {
161		.id = IMX28_DMA,
162		.type = MXS_DMA_APBH,
163	}, {
164		.id = IMX28_DMA,
165		.type = MXS_DMA_APBX,
166	}
167};
168
169static const struct of_device_id mxs_dma_dt_ids[] = {
170	{ .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_types[0], },
171	{ .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_types[1], },
172	{ .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_types[2], },
173	{ .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_types[3], },
174	{ /* sentinel */ }
175};
176MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids);
177
178static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan)
179{
180	return container_of(chan, struct mxs_dma_chan, chan);
181}
182
183static void mxs_dma_reset_chan(struct dma_chan *chan)
184{
185	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
186	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
187	int chan_id = mxs_chan->chan.chan_id;
188
189	/*
190	 * mxs dma channel resets can cause a channel stall. To recover from a
191	 * channel stall, we have to reset the whole DMA engine. To avoid this,
192	 * we use cyclic DMA with semaphores, that are enhanced in
193	 * mxs_dma_int_handler. To reset the channel, we can simply stop writing
194	 * into the semaphore counter.
195	 */
196	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
197			mxs_chan->flags & MXS_DMA_SG_LOOP) {
198		mxs_chan->reset = true;
199	} else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) {
200		writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL),
201			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
202	} else {
203		unsigned long elapsed = 0;
204		const unsigned long max_wait = 50000; /* 50ms */
205		void __iomem *reg_dbg1 = mxs_dma->base +
206				HW_APBX_CHn_DEBUG1(mxs_dma, chan_id);
207
208		/*
209		 * On i.MX28 APBX, the DMA channel can stop working if we reset
210		 * the channel while it is in READ_FLUSH (0x08) state.
211		 * We wait here until we leave the state. Then we trigger the
212		 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash
213		 * because of this.
214		 */
215		while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) {
216			udelay(100);
217			elapsed += 100;
218		}
219
220		if (elapsed >= max_wait)
221			dev_err(&mxs_chan->mxs_dma->pdev->dev,
222					"Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
223					chan_id);
224
225		writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
226			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
227	}
228
229	mxs_chan->status = DMA_COMPLETE;
230}
231
232static void mxs_dma_enable_chan(struct dma_chan *chan)
233{
234	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
235	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
236	int chan_id = mxs_chan->chan.chan_id;
237
238	/* set cmd_addr up */
239	writel(mxs_chan->ccw_phys,
240		mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id));
241
242	/* write 1 to SEMA to kick off the channel */
243	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
244			mxs_chan->flags & MXS_DMA_SG_LOOP) {
245		/* A cyclic DMA consists of at least 2 segments, so initialize
246		 * the semaphore with 2 so we have enough time to add 1 to the
247		 * semaphore if we need to */
248		writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
249	} else {
250		writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
251	}
252	mxs_chan->reset = false;
253}
254
255static void mxs_dma_disable_chan(struct dma_chan *chan)
256{
257	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
258
259	mxs_chan->status = DMA_COMPLETE;
260}
261
262static int mxs_dma_pause_chan(struct dma_chan *chan)
263{
264	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
265	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
266	int chan_id = mxs_chan->chan.chan_id;
267
268	/* freeze the channel */
269	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
270		writel(1 << chan_id,
271			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
272	else
273		writel(1 << chan_id,
274			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
275
276	mxs_chan->status = DMA_PAUSED;
277	return 0;
278}
279
280static int mxs_dma_resume_chan(struct dma_chan *chan)
281{
282	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
283	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
284	int chan_id = mxs_chan->chan.chan_id;
285
286	/* unfreeze the channel */
287	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
288		writel(1 << chan_id,
289			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR);
290	else
291		writel(1 << chan_id,
292			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR);
293
294	mxs_chan->status = DMA_IN_PROGRESS;
295	return 0;
296}
297
298static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx)
299{
300	return dma_cookie_assign(tx);
301}
302
303static void mxs_dma_tasklet(struct tasklet_struct *t)
304{
305	struct mxs_dma_chan *mxs_chan = from_tasklet(mxs_chan, t, tasklet);
306
307	dmaengine_desc_get_callback_invoke(&mxs_chan->desc, NULL);
308}
309
310static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq)
311{
312	int i;
313
314	for (i = 0; i != mxs_dma->nr_channels; ++i)
315		if (mxs_dma->mxs_chans[i].chan_irq == irq)
316			return i;
317
318	return -EINVAL;
319}
320
321static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id)
322{
323	struct mxs_dma_engine *mxs_dma = dev_id;
324	struct mxs_dma_chan *mxs_chan;
325	u32 completed;
326	u32 err;
327	int chan = mxs_dma_irq_to_chan(mxs_dma, irq);
328
329	if (chan < 0)
330		return IRQ_NONE;
331
332	/* completion status */
333	completed = readl(mxs_dma->base + HW_APBHX_CTRL1);
334	completed = (completed >> chan) & 0x1;
335
336	/* Clear interrupt */
337	writel((1 << chan),
338			mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR);
339
340	/* error status */
341	err = readl(mxs_dma->base + HW_APBHX_CTRL2);
342	err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan);
343
344	/*
345	 * error status bit is in the upper 16 bits, error irq bit in the lower
346	 * 16 bits. We transform it into a simpler error code:
347	 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
348	 */
349	err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan);
350
351	/* Clear error irq */
352	writel((1 << chan),
353			mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR);
354
355	/*
356	 * When both completion and error of termination bits set at the
357	 * same time, we do not take it as an error.  IOW, it only becomes
358	 * an error we need to handle here in case of either it's a bus
359	 * error or a termination error with no completion. 0x01 is termination
360	 * error, so we can subtract err & completed to get the real error case.
361	 */
362	err -= err & completed;
363
364	mxs_chan = &mxs_dma->mxs_chans[chan];
365
366	if (err) {
367		dev_dbg(mxs_dma->dma_device.dev,
368			"%s: error in channel %d\n", __func__,
369			chan);
370		mxs_chan->status = DMA_ERROR;
371		mxs_dma_reset_chan(&mxs_chan->chan);
372	} else if (mxs_chan->status != DMA_COMPLETE) {
373		if (mxs_chan->flags & MXS_DMA_SG_LOOP) {
374			mxs_chan->status = DMA_IN_PROGRESS;
375			if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE)
376				writel(1, mxs_dma->base +
377					HW_APBHX_CHn_SEMA(mxs_dma, chan));
378		} else {
379			mxs_chan->status = DMA_COMPLETE;
380		}
381	}
382
383	if (mxs_chan->status == DMA_COMPLETE) {
384		if (mxs_chan->reset)
385			return IRQ_HANDLED;
386		dma_cookie_complete(&mxs_chan->desc);
387	}
388
389	/* schedule tasklet on this channel */
390	tasklet_schedule(&mxs_chan->tasklet);
391
392	return IRQ_HANDLED;
393}
394
395static int mxs_dma_alloc_chan_resources(struct dma_chan *chan)
396{
397	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
398	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
399	int ret;
400
401	mxs_chan->ccw = dma_alloc_coherent(mxs_dma->dma_device.dev,
402					   CCW_BLOCK_SIZE,
403					   &mxs_chan->ccw_phys, GFP_KERNEL);
404	if (!mxs_chan->ccw) {
405		ret = -ENOMEM;
406		goto err_alloc;
407	}
408
409	ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler,
410			  0, "mxs-dma", mxs_dma);
411	if (ret)
412		goto err_irq;
413
414	ret = clk_prepare_enable(mxs_dma->clk);
415	if (ret)
416		goto err_clk;
417
418	mxs_dma_reset_chan(chan);
419
420	dma_async_tx_descriptor_init(&mxs_chan->desc, chan);
421	mxs_chan->desc.tx_submit = mxs_dma_tx_submit;
422
423	/* the descriptor is ready */
424	async_tx_ack(&mxs_chan->desc);
425
426	return 0;
427
428err_clk:
429	free_irq(mxs_chan->chan_irq, mxs_dma);
430err_irq:
431	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
432			mxs_chan->ccw, mxs_chan->ccw_phys);
433err_alloc:
434	return ret;
435}
436
437static void mxs_dma_free_chan_resources(struct dma_chan *chan)
438{
439	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
440	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
441
442	mxs_dma_disable_chan(chan);
443
444	free_irq(mxs_chan->chan_irq, mxs_dma);
445
446	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
447			mxs_chan->ccw, mxs_chan->ccw_phys);
448
449	clk_disable_unprepare(mxs_dma->clk);
450}
451
452/*
453 * How to use the flags for ->device_prep_slave_sg() :
454 *    [1] If there is only one DMA command in the DMA chain, the code should be:
455 *            ......
456 *            ->device_prep_slave_sg(DMA_CTRL_ACK);
457 *            ......
458 *    [2] If there are two DMA commands in the DMA chain, the code should be
459 *            ......
460 *            ->device_prep_slave_sg(0);
461 *            ......
462 *            ->device_prep_slave_sg(DMA_CTRL_ACK);
463 *            ......
464 *    [3] If there are more than two DMA commands in the DMA chain, the code
465 *        should be:
466 *            ......
467 *            ->device_prep_slave_sg(0);                                // First
468 *            ......
469 *            ->device_prep_slave_sg(DMA_CTRL_ACK]);
470 *            ......
471 *            ->device_prep_slave_sg(DMA_CTRL_ACK); // Last
472 *            ......
473 */
474static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
475		struct dma_chan *chan, struct scatterlist *sgl,
476		unsigned int sg_len, enum dma_transfer_direction direction,
477		unsigned long flags, void *context)
478{
479	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
480	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
481	struct mxs_dma_ccw *ccw;
482	struct scatterlist *sg;
483	u32 i, j;
484	u32 *pio;
485	int idx = 0;
486
487	if (mxs_chan->status == DMA_IN_PROGRESS)
488		idx = mxs_chan->desc_count;
489
490	if (sg_len + idx > NUM_CCW) {
491		dev_err(mxs_dma->dma_device.dev,
492				"maximum number of sg exceeded: %d > %d\n",
493				sg_len, NUM_CCW);
494		goto err_out;
495	}
496
497	mxs_chan->status = DMA_IN_PROGRESS;
498	mxs_chan->flags = 0;
499
500	/*
501	 * If the sg is prepared with append flag set, the sg
502	 * will be appended to the last prepared sg.
503	 */
504	if (idx) {
505		BUG_ON(idx < 1);
506		ccw = &mxs_chan->ccw[idx - 1];
507		ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
508		ccw->bits |= CCW_CHAIN;
509		ccw->bits &= ~CCW_IRQ;
510		ccw->bits &= ~CCW_DEC_SEM;
511	} else {
512		idx = 0;
513	}
514
515	if (direction == DMA_TRANS_NONE) {
516		ccw = &mxs_chan->ccw[idx++];
517		pio = (u32 *) sgl;
518
519		for (j = 0; j < sg_len;)
520			ccw->pio_words[j++] = *pio++;
521
522		ccw->bits = 0;
523		ccw->bits |= CCW_IRQ;
524		ccw->bits |= CCW_DEC_SEM;
525		if (flags & MXS_DMA_CTRL_WAIT4END)
526			ccw->bits |= CCW_WAIT4END;
527		ccw->bits |= CCW_HALT_ON_TERM;
528		ccw->bits |= CCW_TERM_FLUSH;
529		ccw->bits |= BF_CCW(sg_len, PIO_NUM);
530		ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND);
531		if (flags & MXS_DMA_CTRL_WAIT4RDY)
532			ccw->bits |= CCW_WAIT4RDY;
533	} else {
534		for_each_sg(sgl, sg, sg_len, i) {
535			if (sg_dma_len(sg) > MAX_XFER_BYTES) {
536				dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n",
537						sg_dma_len(sg), MAX_XFER_BYTES);
538				goto err_out;
539			}
540
541			ccw = &mxs_chan->ccw[idx++];
542
543			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
544			ccw->bufaddr = sg->dma_address;
545			ccw->xfer_bytes = sg_dma_len(sg);
546
547			ccw->bits = 0;
548			ccw->bits |= CCW_CHAIN;
549			ccw->bits |= CCW_HALT_ON_TERM;
550			ccw->bits |= CCW_TERM_FLUSH;
551			ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
552					MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ,
553					COMMAND);
554
555			if (i + 1 == sg_len) {
556				ccw->bits &= ~CCW_CHAIN;
557				ccw->bits |= CCW_IRQ;
558				ccw->bits |= CCW_DEC_SEM;
559				if (flags & MXS_DMA_CTRL_WAIT4END)
560					ccw->bits |= CCW_WAIT4END;
561			}
562		}
563	}
564	mxs_chan->desc_count = idx;
565
566	return &mxs_chan->desc;
567
568err_out:
569	mxs_chan->status = DMA_ERROR;
570	return NULL;
571}
572
573static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic(
574		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
575		size_t period_len, enum dma_transfer_direction direction,
576		unsigned long flags)
577{
578	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
579	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
580	u32 num_periods = buf_len / period_len;
581	u32 i = 0, buf = 0;
582
583	if (mxs_chan->status == DMA_IN_PROGRESS)
584		return NULL;
585
586	mxs_chan->status = DMA_IN_PROGRESS;
587	mxs_chan->flags |= MXS_DMA_SG_LOOP;
588	mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE;
589
590	if (num_periods > NUM_CCW) {
591		dev_err(mxs_dma->dma_device.dev,
592				"maximum number of sg exceeded: %d > %d\n",
593				num_periods, NUM_CCW);
594		goto err_out;
595	}
596
597	if (period_len > MAX_XFER_BYTES) {
598		dev_err(mxs_dma->dma_device.dev,
599				"maximum period size exceeded: %zu > %d\n",
600				period_len, MAX_XFER_BYTES);
601		goto err_out;
602	}
603
604	while (buf < buf_len) {
605		struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i];
606
607		if (i + 1 == num_periods)
608			ccw->next = mxs_chan->ccw_phys;
609		else
610			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1);
611
612		ccw->bufaddr = dma_addr;
613		ccw->xfer_bytes = period_len;
614
615		ccw->bits = 0;
616		ccw->bits |= CCW_CHAIN;
617		ccw->bits |= CCW_IRQ;
618		ccw->bits |= CCW_HALT_ON_TERM;
619		ccw->bits |= CCW_TERM_FLUSH;
620		ccw->bits |= CCW_DEC_SEM;
621		ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
622				MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND);
623
624		dma_addr += period_len;
625		buf += period_len;
626
627		i++;
628	}
629	mxs_chan->desc_count = i;
630
631	return &mxs_chan->desc;
632
633err_out:
634	mxs_chan->status = DMA_ERROR;
635	return NULL;
636}
637
638static int mxs_dma_terminate_all(struct dma_chan *chan)
639{
640	mxs_dma_reset_chan(chan);
641	mxs_dma_disable_chan(chan);
642
643	return 0;
644}
645
646static enum dma_status mxs_dma_tx_status(struct dma_chan *chan,
647			dma_cookie_t cookie, struct dma_tx_state *txstate)
648{
649	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
650	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
651	u32 residue = 0;
652
653	if (mxs_chan->status == DMA_IN_PROGRESS &&
654			mxs_chan->flags & MXS_DMA_SG_LOOP) {
655		struct mxs_dma_ccw *last_ccw;
656		u32 bar;
657
658		last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1];
659		residue = last_ccw->xfer_bytes + last_ccw->bufaddr;
660
661		bar = readl(mxs_dma->base +
662				HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id));
663		residue -= bar;
664	}
665
666	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
667			residue);
668
669	return mxs_chan->status;
670}
671
672static int mxs_dma_init(struct mxs_dma_engine *mxs_dma)
673{
674	int ret;
675
676	ret = clk_prepare_enable(mxs_dma->clk);
677	if (ret)
678		return ret;
679
680	ret = stmp_reset_block(mxs_dma->base);
681	if (ret)
682		goto err_out;
683
684	/* enable apbh burst */
685	if (dma_is_apbh(mxs_dma)) {
686		writel(BM_APBH_CTRL0_APB_BURST_EN,
687			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
688		writel(BM_APBH_CTRL0_APB_BURST8_EN,
689			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
690	}
691
692	/* enable irq for all the channels */
693	writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS,
694		mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET);
695
696err_out:
697	clk_disable_unprepare(mxs_dma->clk);
698	return ret;
699}
700
701struct mxs_dma_filter_param {
702	unsigned int chan_id;
703};
704
705static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param)
706{
707	struct mxs_dma_filter_param *param = fn_param;
708	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
709	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
710	int chan_irq;
711
712	if (chan->chan_id != param->chan_id)
713		return false;
714
715	chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id);
716	if (chan_irq < 0)
717		return false;
718
719	mxs_chan->chan_irq = chan_irq;
720
721	return true;
722}
723
724static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec,
725			       struct of_dma *ofdma)
726{
727	struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data;
728	dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask;
729	struct mxs_dma_filter_param param;
730
731	if (dma_spec->args_count != 1)
732		return NULL;
733
734	param.chan_id = dma_spec->args[0];
735
736	if (param.chan_id >= mxs_dma->nr_channels)
737		return NULL;
738
739	return __dma_request_channel(&mask, mxs_dma_filter_fn, &param,
740				     ofdma->of_node);
741}
742
743static int mxs_dma_probe(struct platform_device *pdev)
744{
745	struct device_node *np = pdev->dev.of_node;
746	const struct mxs_dma_type *dma_type;
747	struct mxs_dma_engine *mxs_dma;
748	int ret, i;
749
750	mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL);
751	if (!mxs_dma)
752		return -ENOMEM;
753
754	ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels);
755	if (ret) {
756		dev_err(&pdev->dev, "failed to read dma-channels\n");
757		return ret;
758	}
759
760	dma_type = (struct mxs_dma_type *)of_device_get_match_data(&pdev->dev);
761	mxs_dma->type = dma_type->type;
762	mxs_dma->dev_id = dma_type->id;
763
764	mxs_dma->base = devm_platform_ioremap_resource(pdev, 0);
765	if (IS_ERR(mxs_dma->base))
766		return PTR_ERR(mxs_dma->base);
767
768	mxs_dma->clk = devm_clk_get(&pdev->dev, NULL);
769	if (IS_ERR(mxs_dma->clk))
770		return PTR_ERR(mxs_dma->clk);
771
772	dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask);
773	dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask);
774
775	INIT_LIST_HEAD(&mxs_dma->dma_device.channels);
776
777	/* Initialize channel parameters */
778	for (i = 0; i < MXS_DMA_CHANNELS; i++) {
779		struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i];
780
781		mxs_chan->mxs_dma = mxs_dma;
782		mxs_chan->chan.device = &mxs_dma->dma_device;
783		dma_cookie_init(&mxs_chan->chan);
784
785		tasklet_setup(&mxs_chan->tasklet, mxs_dma_tasklet);
786
787
788		/* Add the channel to mxs_chan list */
789		list_add_tail(&mxs_chan->chan.device_node,
790			&mxs_dma->dma_device.channels);
791	}
792
793	ret = mxs_dma_init(mxs_dma);
794	if (ret)
795		return ret;
796
797	mxs_dma->pdev = pdev;
798	mxs_dma->dma_device.dev = &pdev->dev;
799
800	/* mxs_dma gets 65535 bytes maximum sg size */
801	dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES);
802
803	mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources;
804	mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources;
805	mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status;
806	mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg;
807	mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic;
808	mxs_dma->dma_device.device_pause = mxs_dma_pause_chan;
809	mxs_dma->dma_device.device_resume = mxs_dma_resume_chan;
810	mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all;
811	mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
812	mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
813	mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
814	mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
815	mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan;
816
817	ret = dmaenginem_async_device_register(&mxs_dma->dma_device);
818	if (ret) {
819		dev_err(mxs_dma->dma_device.dev, "unable to register\n");
820		return ret;
821	}
822
823	ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma);
824	if (ret) {
825		dev_err(mxs_dma->dma_device.dev,
826			"failed to register controller\n");
827	}
828
829	dev_info(mxs_dma->dma_device.dev, "initialized\n");
830
831	return 0;
832}
833
834static struct platform_driver mxs_dma_driver = {
835	.driver		= {
836		.name	= "mxs-dma",
837		.of_match_table = mxs_dma_dt_ids,
838	},
839	.probe = mxs_dma_probe,
840};
841
842builtin_platform_driver(mxs_dma_driver);
  1/*
  2 * Copyright 2011 Freescale Semiconductor, Inc. All Rights Reserved.
  3 *
  4 * Refer to drivers/dma/imx-sdma.c
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10
 11#include <linux/init.h>
 12#include <linux/types.h>
 13#include <linux/mm.h>
 14#include <linux/interrupt.h>
 15#include <linux/clk.h>
 16#include <linux/wait.h>
 17#include <linux/sched.h>
 18#include <linux/semaphore.h>
 19#include <linux/device.h>
 20#include <linux/dma-mapping.h>
 21#include <linux/slab.h>
 22#include <linux/platform_device.h>
 23#include <linux/dmaengine.h>
 24#include <linux/delay.h>
 25#include <linux/module.h>
 26#include <linux/stmp_device.h>
 27#include <linux/of.h>
 28#include <linux/of_device.h>
 29#include <linux/of_dma.h>
 30#include <linux/list.h>
 31
 32#include <asm/irq.h>
 33
 34#include "dmaengine.h"
 35
 36/*
 37 * NOTE: The term "PIO" throughout the mxs-dma implementation means
 38 * PIO mode of mxs apbh-dma and apbx-dma.  With this working mode,
 39 * dma can program the controller registers of peripheral devices.
 40 */
 41
 42#define dma_is_apbh(mxs_dma)	((mxs_dma)->type == MXS_DMA_APBH)
 43#define apbh_is_old(mxs_dma)	((mxs_dma)->dev_id == IMX23_DMA)
 44
 45#define HW_APBHX_CTRL0				0x000
 46#define BM_APBH_CTRL0_APB_BURST8_EN		(1 << 29)
 47#define BM_APBH_CTRL0_APB_BURST_EN		(1 << 28)
 48#define BP_APBH_CTRL0_RESET_CHANNEL		16
 49#define HW_APBHX_CTRL1				0x010
 50#define HW_APBHX_CTRL2				0x020
 51#define HW_APBHX_CHANNEL_CTRL			0x030
 52#define BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL	16
 53/*
 54 * The offset of NXTCMDAR register is different per both dma type and version,
 55 * while stride for each channel is all the same 0x70.
 56 */
 57#define HW_APBHX_CHn_NXTCMDAR(d, n) \
 58	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x050 : 0x110) + (n) * 0x70)
 59#define HW_APBHX_CHn_SEMA(d, n) \
 60	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x080 : 0x140) + (n) * 0x70)
 61#define HW_APBHX_CHn_BAR(d, n) \
 62	(((dma_is_apbh(d) && apbh_is_old(d)) ? 0x070 : 0x130) + (n) * 0x70)
 63#define HW_APBX_CHn_DEBUG1(d, n) (0x150 + (n) * 0x70)
 64
 65/*
 66 * ccw bits definitions
 67 *
 68 * COMMAND:		0..1	(2)
 69 * CHAIN:		2	(1)
 70 * IRQ:			3	(1)
 71 * NAND_LOCK:		4	(1) - not implemented
 72 * NAND_WAIT4READY:	5	(1) - not implemented
 73 * DEC_SEM:		6	(1)
 74 * WAIT4END:		7	(1)
 75 * HALT_ON_TERMINATE:	8	(1)
 76 * TERMINATE_FLUSH:	9	(1)
 77 * RESERVED:		10..11	(2)
 78 * PIO_NUM:		12..15	(4)
 79 */
 80#define BP_CCW_COMMAND		0
 81#define BM_CCW_COMMAND		(3 << 0)
 82#define CCW_CHAIN		(1 << 2)
 83#define CCW_IRQ			(1 << 3)
 84#define CCW_DEC_SEM		(1 << 6)
 85#define CCW_WAIT4END		(1 << 7)
 86#define CCW_HALT_ON_TERM	(1 << 8)
 87#define CCW_TERM_FLUSH		(1 << 9)
 88#define BP_CCW_PIO_NUM		12
 89#define BM_CCW_PIO_NUM		(0xf << 12)
 90
 91#define BF_CCW(value, field)	(((value) << BP_CCW_##field) & BM_CCW_##field)
 92
 93#define MXS_DMA_CMD_NO_XFER	0
 94#define MXS_DMA_CMD_WRITE	1
 95#define MXS_DMA_CMD_READ	2
 96#define MXS_DMA_CMD_DMA_SENSE	3	/* not implemented */
 97
 98struct mxs_dma_ccw {
 99	u32		next;
100	u16		bits;
101	u16		xfer_bytes;
102#define MAX_XFER_BYTES	0xff00
103	u32		bufaddr;
104#define MXS_PIO_WORDS	16
105	u32		pio_words[MXS_PIO_WORDS];
106};
107
108#define CCW_BLOCK_SIZE	(4 * PAGE_SIZE)
109#define NUM_CCW	(int)(CCW_BLOCK_SIZE / sizeof(struct mxs_dma_ccw))
110
111struct mxs_dma_chan {
112	struct mxs_dma_engine		*mxs_dma;
113	struct dma_chan			chan;
114	struct dma_async_tx_descriptor	desc;
115	struct tasklet_struct		tasklet;
116	unsigned int			chan_irq;
117	struct mxs_dma_ccw		*ccw;
118	dma_addr_t			ccw_phys;
119	int				desc_count;
120	enum dma_status			status;
121	unsigned int			flags;
122	bool				reset;
123#define MXS_DMA_SG_LOOP			(1 << 0)
124#define MXS_DMA_USE_SEMAPHORE		(1 << 1)
125};
126
127#define MXS_DMA_CHANNELS		16
128#define MXS_DMA_CHANNELS_MASK		0xffff
129
130enum mxs_dma_devtype {
131	MXS_DMA_APBH,
132	MXS_DMA_APBX,
133};
134
135enum mxs_dma_id {
136	IMX23_DMA,
137	IMX28_DMA,
138};
139
140struct mxs_dma_engine {
141	enum mxs_dma_id			dev_id;
142	enum mxs_dma_devtype		type;
143	void __iomem			*base;
144	struct clk			*clk;
145	struct dma_device		dma_device;
146	struct device_dma_parameters	dma_parms;
147	struct mxs_dma_chan		mxs_chans[MXS_DMA_CHANNELS];
148	struct platform_device		*pdev;
149	unsigned int			nr_channels;
150};
151
152struct mxs_dma_type {
153	enum mxs_dma_id id;
154	enum mxs_dma_devtype type;
155};
156
157static struct mxs_dma_type mxs_dma_types[] = {
158	{
159		.id = IMX23_DMA,
160		.type = MXS_DMA_APBH,
161	}, {
162		.id = IMX23_DMA,
163		.type = MXS_DMA_APBX,
164	}, {
165		.id = IMX28_DMA,
166		.type = MXS_DMA_APBH,
167	}, {
168		.id = IMX28_DMA,
169		.type = MXS_DMA_APBX,
170	}
171};
172
173static const struct platform_device_id mxs_dma_ids[] = {
174	{
175		.name = "imx23-dma-apbh",
176		.driver_data = (kernel_ulong_t) &mxs_dma_types[0],
177	}, {
178		.name = "imx23-dma-apbx",
179		.driver_data = (kernel_ulong_t) &mxs_dma_types[1],
180	}, {
181		.name = "imx28-dma-apbh",
182		.driver_data = (kernel_ulong_t) &mxs_dma_types[2],
183	}, {
184		.name = "imx28-dma-apbx",
185		.driver_data = (kernel_ulong_t) &mxs_dma_types[3],
186	}, {
187		/* end of list */
188	}
189};
190
191static const struct of_device_id mxs_dma_dt_ids[] = {
192	{ .compatible = "fsl,imx23-dma-apbh", .data = &mxs_dma_ids[0], },
193	{ .compatible = "fsl,imx23-dma-apbx", .data = &mxs_dma_ids[1], },
194	{ .compatible = "fsl,imx28-dma-apbh", .data = &mxs_dma_ids[2], },
195	{ .compatible = "fsl,imx28-dma-apbx", .data = &mxs_dma_ids[3], },
196	{ /* sentinel */ }
197};
198MODULE_DEVICE_TABLE(of, mxs_dma_dt_ids);
199
200static struct mxs_dma_chan *to_mxs_dma_chan(struct dma_chan *chan)
201{
202	return container_of(chan, struct mxs_dma_chan, chan);
203}
204
205static void mxs_dma_reset_chan(struct dma_chan *chan)
206{
207	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
208	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
209	int chan_id = mxs_chan->chan.chan_id;
210
211	/*
212	 * mxs dma channel resets can cause a channel stall. To recover from a
213	 * channel stall, we have to reset the whole DMA engine. To avoid this,
214	 * we use cyclic DMA with semaphores, that are enhanced in
215	 * mxs_dma_int_handler. To reset the channel, we can simply stop writing
216	 * into the semaphore counter.
217	 */
218	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
219			mxs_chan->flags & MXS_DMA_SG_LOOP) {
220		mxs_chan->reset = true;
221	} else if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma)) {
222		writel(1 << (chan_id + BP_APBH_CTRL0_RESET_CHANNEL),
223			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
224	} else {
225		unsigned long elapsed = 0;
226		const unsigned long max_wait = 50000; /* 50ms */
227		void __iomem *reg_dbg1 = mxs_dma->base +
228				HW_APBX_CHn_DEBUG1(mxs_dma, chan_id);
229
230		/*
231		 * On i.MX28 APBX, the DMA channel can stop working if we reset
232		 * the channel while it is in READ_FLUSH (0x08) state.
233		 * We wait here until we leave the state. Then we trigger the
234		 * reset. Waiting a maximum of 50ms, the kernel shouldn't crash
235		 * because of this.
236		 */
237		while ((readl(reg_dbg1) & 0xf) == 0x8 && elapsed < max_wait) {
238			udelay(100);
239			elapsed += 100;
240		}
241
242		if (elapsed >= max_wait)
243			dev_err(&mxs_chan->mxs_dma->pdev->dev,
244					"Failed waiting for the DMA channel %d to leave state READ_FLUSH, trying to reset channel in READ_FLUSH state now\n",
245					chan_id);
246
247		writel(1 << (chan_id + BP_APBHX_CHANNEL_CTRL_RESET_CHANNEL),
248			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
249	}
250
251	mxs_chan->status = DMA_COMPLETE;
252}
253
254static void mxs_dma_enable_chan(struct dma_chan *chan)
255{
256	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
257	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
258	int chan_id = mxs_chan->chan.chan_id;
259
260	/* set cmd_addr up */
261	writel(mxs_chan->ccw_phys,
262		mxs_dma->base + HW_APBHX_CHn_NXTCMDAR(mxs_dma, chan_id));
263
264	/* write 1 to SEMA to kick off the channel */
265	if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE &&
266			mxs_chan->flags & MXS_DMA_SG_LOOP) {
267		/* A cyclic DMA consists of at least 2 segments, so initialize
268		 * the semaphore with 2 so we have enough time to add 1 to the
269		 * semaphore if we need to */
270		writel(2, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
271	} else {
272		writel(1, mxs_dma->base + HW_APBHX_CHn_SEMA(mxs_dma, chan_id));
273	}
274	mxs_chan->reset = false;
275}
276
277static void mxs_dma_disable_chan(struct dma_chan *chan)
278{
279	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
280
281	mxs_chan->status = DMA_COMPLETE;
282}
283
284static int mxs_dma_pause_chan(struct dma_chan *chan)
285{
286	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
287	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
288	int chan_id = mxs_chan->chan.chan_id;
289
290	/* freeze the channel */
291	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
292		writel(1 << chan_id,
293			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
294	else
295		writel(1 << chan_id,
296			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_SET);
297
298	mxs_chan->status = DMA_PAUSED;
299	return 0;
300}
301
302static int mxs_dma_resume_chan(struct dma_chan *chan)
303{
304	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
305	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
306	int chan_id = mxs_chan->chan.chan_id;
307
308	/* unfreeze the channel */
309	if (dma_is_apbh(mxs_dma) && apbh_is_old(mxs_dma))
310		writel(1 << chan_id,
311			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_CLR);
312	else
313		writel(1 << chan_id,
314			mxs_dma->base + HW_APBHX_CHANNEL_CTRL + STMP_OFFSET_REG_CLR);
315
316	mxs_chan->status = DMA_IN_PROGRESS;
317	return 0;
318}
319
320static dma_cookie_t mxs_dma_tx_submit(struct dma_async_tx_descriptor *tx)
321{
322	return dma_cookie_assign(tx);
323}
324
325static void mxs_dma_tasklet(unsigned long data)
326{
327	struct mxs_dma_chan *mxs_chan = (struct mxs_dma_chan *) data;
328
329	dmaengine_desc_get_callback_invoke(&mxs_chan->desc, NULL);
330}
331
332static int mxs_dma_irq_to_chan(struct mxs_dma_engine *mxs_dma, int irq)
333{
334	int i;
335
336	for (i = 0; i != mxs_dma->nr_channels; ++i)
337		if (mxs_dma->mxs_chans[i].chan_irq == irq)
338			return i;
339
340	return -EINVAL;
341}
342
343static irqreturn_t mxs_dma_int_handler(int irq, void *dev_id)
344{
345	struct mxs_dma_engine *mxs_dma = dev_id;
346	struct mxs_dma_chan *mxs_chan;
347	u32 completed;
348	u32 err;
349	int chan = mxs_dma_irq_to_chan(mxs_dma, irq);
350
351	if (chan < 0)
352		return IRQ_NONE;
353
354	/* completion status */
355	completed = readl(mxs_dma->base + HW_APBHX_CTRL1);
356	completed = (completed >> chan) & 0x1;
357
358	/* Clear interrupt */
359	writel((1 << chan),
360			mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_CLR);
361
362	/* error status */
363	err = readl(mxs_dma->base + HW_APBHX_CTRL2);
364	err &= (1 << (MXS_DMA_CHANNELS + chan)) | (1 << chan);
365
366	/*
367	 * error status bit is in the upper 16 bits, error irq bit in the lower
368	 * 16 bits. We transform it into a simpler error code:
369	 * err: 0x00 = no error, 0x01 = TERMINATION, 0x02 = BUS_ERROR
370	 */
371	err = (err >> (MXS_DMA_CHANNELS + chan)) + (err >> chan);
372
373	/* Clear error irq */
374	writel((1 << chan),
375			mxs_dma->base + HW_APBHX_CTRL2 + STMP_OFFSET_REG_CLR);
376
377	/*
378	 * When both completion and error of termination bits set at the
379	 * same time, we do not take it as an error.  IOW, it only becomes
380	 * an error we need to handle here in case of either it's a bus
381	 * error or a termination error with no completion. 0x01 is termination
382	 * error, so we can subtract err & completed to get the real error case.
383	 */
384	err -= err & completed;
385
386	mxs_chan = &mxs_dma->mxs_chans[chan];
387
388	if (err) {
389		dev_dbg(mxs_dma->dma_device.dev,
390			"%s: error in channel %d\n", __func__,
391			chan);
392		mxs_chan->status = DMA_ERROR;
393		mxs_dma_reset_chan(&mxs_chan->chan);
394	} else if (mxs_chan->status != DMA_COMPLETE) {
395		if (mxs_chan->flags & MXS_DMA_SG_LOOP) {
396			mxs_chan->status = DMA_IN_PROGRESS;
397			if (mxs_chan->flags & MXS_DMA_USE_SEMAPHORE)
398				writel(1, mxs_dma->base +
399					HW_APBHX_CHn_SEMA(mxs_dma, chan));
400		} else {
401			mxs_chan->status = DMA_COMPLETE;
402		}
403	}
404
405	if (mxs_chan->status == DMA_COMPLETE) {
406		if (mxs_chan->reset)
407			return IRQ_HANDLED;
408		dma_cookie_complete(&mxs_chan->desc);
409	}
410
411	/* schedule tasklet on this channel */
412	tasklet_schedule(&mxs_chan->tasklet);
413
414	return IRQ_HANDLED;
415}
416
417static int mxs_dma_alloc_chan_resources(struct dma_chan *chan)
418{
419	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
420	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
421	int ret;
422
423	mxs_chan->ccw = dma_zalloc_coherent(mxs_dma->dma_device.dev,
424					    CCW_BLOCK_SIZE,
425					    &mxs_chan->ccw_phys, GFP_KERNEL);
426	if (!mxs_chan->ccw) {
427		ret = -ENOMEM;
428		goto err_alloc;
429	}
430
431	ret = request_irq(mxs_chan->chan_irq, mxs_dma_int_handler,
432			  0, "mxs-dma", mxs_dma);
433	if (ret)
434		goto err_irq;
435
436	ret = clk_prepare_enable(mxs_dma->clk);
437	if (ret)
438		goto err_clk;
439
440	mxs_dma_reset_chan(chan);
441
442	dma_async_tx_descriptor_init(&mxs_chan->desc, chan);
443	mxs_chan->desc.tx_submit = mxs_dma_tx_submit;
444
445	/* the descriptor is ready */
446	async_tx_ack(&mxs_chan->desc);
447
448	return 0;
449
450err_clk:
451	free_irq(mxs_chan->chan_irq, mxs_dma);
452err_irq:
453	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
454			mxs_chan->ccw, mxs_chan->ccw_phys);
455err_alloc:
456	return ret;
457}
458
459static void mxs_dma_free_chan_resources(struct dma_chan *chan)
460{
461	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
462	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
463
464	mxs_dma_disable_chan(chan);
465
466	free_irq(mxs_chan->chan_irq, mxs_dma);
467
468	dma_free_coherent(mxs_dma->dma_device.dev, CCW_BLOCK_SIZE,
469			mxs_chan->ccw, mxs_chan->ccw_phys);
470
471	clk_disable_unprepare(mxs_dma->clk);
472}
473
474/*
475 * How to use the flags for ->device_prep_slave_sg() :
476 *    [1] If there is only one DMA command in the DMA chain, the code should be:
477 *            ......
478 *            ->device_prep_slave_sg(DMA_CTRL_ACK);
479 *            ......
480 *    [2] If there are two DMA commands in the DMA chain, the code should be
481 *            ......
482 *            ->device_prep_slave_sg(0);
483 *            ......
484 *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
485 *            ......
486 *    [3] If there are more than two DMA commands in the DMA chain, the code
487 *        should be:
488 *            ......
489 *            ->device_prep_slave_sg(0);                                // First
490 *            ......
491 *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT [| DMA_CTRL_ACK]);
492 *            ......
493 *            ->device_prep_slave_sg(DMA_PREP_INTERRUPT | DMA_CTRL_ACK); // Last
494 *            ......
495 */
496static struct dma_async_tx_descriptor *mxs_dma_prep_slave_sg(
497		struct dma_chan *chan, struct scatterlist *sgl,
498		unsigned int sg_len, enum dma_transfer_direction direction,
499		unsigned long flags, void *context)
500{
501	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
502	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
503	struct mxs_dma_ccw *ccw;
504	struct scatterlist *sg;
505	u32 i, j;
506	u32 *pio;
507	bool append = flags & DMA_PREP_INTERRUPT;
508	int idx = append ? mxs_chan->desc_count : 0;
509
510	if (mxs_chan->status == DMA_IN_PROGRESS && !append)
511		return NULL;
512
513	if (sg_len + (append ? idx : 0) > NUM_CCW) {
514		dev_err(mxs_dma->dma_device.dev,
515				"maximum number of sg exceeded: %d > %d\n",
516				sg_len, NUM_CCW);
517		goto err_out;
518	}
519
520	mxs_chan->status = DMA_IN_PROGRESS;
521	mxs_chan->flags = 0;
522
523	/*
524	 * If the sg is prepared with append flag set, the sg
525	 * will be appended to the last prepared sg.
526	 */
527	if (append) {
528		BUG_ON(idx < 1);
529		ccw = &mxs_chan->ccw[idx - 1];
530		ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
531		ccw->bits |= CCW_CHAIN;
532		ccw->bits &= ~CCW_IRQ;
533		ccw->bits &= ~CCW_DEC_SEM;
534	} else {
535		idx = 0;
536	}
537
538	if (direction == DMA_TRANS_NONE) {
539		ccw = &mxs_chan->ccw[idx++];
540		pio = (u32 *) sgl;
541
542		for (j = 0; j < sg_len;)
543			ccw->pio_words[j++] = *pio++;
544
545		ccw->bits = 0;
546		ccw->bits |= CCW_IRQ;
547		ccw->bits |= CCW_DEC_SEM;
548		if (flags & DMA_CTRL_ACK)
549			ccw->bits |= CCW_WAIT4END;
550		ccw->bits |= CCW_HALT_ON_TERM;
551		ccw->bits |= CCW_TERM_FLUSH;
552		ccw->bits |= BF_CCW(sg_len, PIO_NUM);
553		ccw->bits |= BF_CCW(MXS_DMA_CMD_NO_XFER, COMMAND);
554	} else {
555		for_each_sg(sgl, sg, sg_len, i) {
556			if (sg_dma_len(sg) > MAX_XFER_BYTES) {
557				dev_err(mxs_dma->dma_device.dev, "maximum bytes for sg entry exceeded: %d > %d\n",
558						sg_dma_len(sg), MAX_XFER_BYTES);
559				goto err_out;
560			}
561
562			ccw = &mxs_chan->ccw[idx++];
563
564			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * idx;
565			ccw->bufaddr = sg->dma_address;
566			ccw->xfer_bytes = sg_dma_len(sg);
567
568			ccw->bits = 0;
569			ccw->bits |= CCW_CHAIN;
570			ccw->bits |= CCW_HALT_ON_TERM;
571			ccw->bits |= CCW_TERM_FLUSH;
572			ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
573					MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ,
574					COMMAND);
575
576			if (i + 1 == sg_len) {
577				ccw->bits &= ~CCW_CHAIN;
578				ccw->bits |= CCW_IRQ;
579				ccw->bits |= CCW_DEC_SEM;
580				if (flags & DMA_CTRL_ACK)
581					ccw->bits |= CCW_WAIT4END;
582			}
583		}
584	}
585	mxs_chan->desc_count = idx;
586
587	return &mxs_chan->desc;
588
589err_out:
590	mxs_chan->status = DMA_ERROR;
591	return NULL;
592}
593
594static struct dma_async_tx_descriptor *mxs_dma_prep_dma_cyclic(
595		struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len,
596		size_t period_len, enum dma_transfer_direction direction,
597		unsigned long flags)
598{
599	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
600	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
601	u32 num_periods = buf_len / period_len;
602	u32 i = 0, buf = 0;
603
604	if (mxs_chan->status == DMA_IN_PROGRESS)
605		return NULL;
606
607	mxs_chan->status = DMA_IN_PROGRESS;
608	mxs_chan->flags |= MXS_DMA_SG_LOOP;
609	mxs_chan->flags |= MXS_DMA_USE_SEMAPHORE;
610
611	if (num_periods > NUM_CCW) {
612		dev_err(mxs_dma->dma_device.dev,
613				"maximum number of sg exceeded: %d > %d\n",
614				num_periods, NUM_CCW);
615		goto err_out;
616	}
617
618	if (period_len > MAX_XFER_BYTES) {
619		dev_err(mxs_dma->dma_device.dev,
620				"maximum period size exceeded: %d > %d\n",
621				period_len, MAX_XFER_BYTES);
622		goto err_out;
623	}
624
625	while (buf < buf_len) {
626		struct mxs_dma_ccw *ccw = &mxs_chan->ccw[i];
627
628		if (i + 1 == num_periods)
629			ccw->next = mxs_chan->ccw_phys;
630		else
631			ccw->next = mxs_chan->ccw_phys + sizeof(*ccw) * (i + 1);
632
633		ccw->bufaddr = dma_addr;
634		ccw->xfer_bytes = period_len;
635
636		ccw->bits = 0;
637		ccw->bits |= CCW_CHAIN;
638		ccw->bits |= CCW_IRQ;
639		ccw->bits |= CCW_HALT_ON_TERM;
640		ccw->bits |= CCW_TERM_FLUSH;
641		ccw->bits |= CCW_DEC_SEM;
642		ccw->bits |= BF_CCW(direction == DMA_DEV_TO_MEM ?
643				MXS_DMA_CMD_WRITE : MXS_DMA_CMD_READ, COMMAND);
644
645		dma_addr += period_len;
646		buf += period_len;
647
648		i++;
649	}
650	mxs_chan->desc_count = i;
651
652	return &mxs_chan->desc;
653
654err_out:
655	mxs_chan->status = DMA_ERROR;
656	return NULL;
657}
658
659static int mxs_dma_terminate_all(struct dma_chan *chan)
660{
661	mxs_dma_reset_chan(chan);
662	mxs_dma_disable_chan(chan);
663
664	return 0;
665}
666
667static enum dma_status mxs_dma_tx_status(struct dma_chan *chan,
668			dma_cookie_t cookie, struct dma_tx_state *txstate)
669{
670	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
671	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
672	u32 residue = 0;
673
674	if (mxs_chan->status == DMA_IN_PROGRESS &&
675			mxs_chan->flags & MXS_DMA_SG_LOOP) {
676		struct mxs_dma_ccw *last_ccw;
677		u32 bar;
678
679		last_ccw = &mxs_chan->ccw[mxs_chan->desc_count - 1];
680		residue = last_ccw->xfer_bytes + last_ccw->bufaddr;
681
682		bar = readl(mxs_dma->base +
683				HW_APBHX_CHn_BAR(mxs_dma, chan->chan_id));
684		residue -= bar;
685	}
686
687	dma_set_tx_state(txstate, chan->completed_cookie, chan->cookie,
688			residue);
689
690	return mxs_chan->status;
691}
692
693static int __init mxs_dma_init(struct mxs_dma_engine *mxs_dma)
694{
695	int ret;
696
697	ret = clk_prepare_enable(mxs_dma->clk);
698	if (ret)
699		return ret;
700
701	ret = stmp_reset_block(mxs_dma->base);
702	if (ret)
703		goto err_out;
704
705	/* enable apbh burst */
706	if (dma_is_apbh(mxs_dma)) {
707		writel(BM_APBH_CTRL0_APB_BURST_EN,
708			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
709		writel(BM_APBH_CTRL0_APB_BURST8_EN,
710			mxs_dma->base + HW_APBHX_CTRL0 + STMP_OFFSET_REG_SET);
711	}
712
713	/* enable irq for all the channels */
714	writel(MXS_DMA_CHANNELS_MASK << MXS_DMA_CHANNELS,
715		mxs_dma->base + HW_APBHX_CTRL1 + STMP_OFFSET_REG_SET);
716
717err_out:
718	clk_disable_unprepare(mxs_dma->clk);
719	return ret;
720}
721
722struct mxs_dma_filter_param {
723	struct device_node *of_node;
724	unsigned int chan_id;
725};
726
727static bool mxs_dma_filter_fn(struct dma_chan *chan, void *fn_param)
728{
729	struct mxs_dma_filter_param *param = fn_param;
730	struct mxs_dma_chan *mxs_chan = to_mxs_dma_chan(chan);
731	struct mxs_dma_engine *mxs_dma = mxs_chan->mxs_dma;
732	int chan_irq;
733
734	if (mxs_dma->dma_device.dev->of_node != param->of_node)
735		return false;
736
737	if (chan->chan_id != param->chan_id)
738		return false;
739
740	chan_irq = platform_get_irq(mxs_dma->pdev, param->chan_id);
741	if (chan_irq < 0)
742		return false;
743
744	mxs_chan->chan_irq = chan_irq;
745
746	return true;
747}
748
749static struct dma_chan *mxs_dma_xlate(struct of_phandle_args *dma_spec,
750			       struct of_dma *ofdma)
751{
752	struct mxs_dma_engine *mxs_dma = ofdma->of_dma_data;
753	dma_cap_mask_t mask = mxs_dma->dma_device.cap_mask;
754	struct mxs_dma_filter_param param;
755
756	if (dma_spec->args_count != 1)
757		return NULL;
758
759	param.of_node = ofdma->of_node;
760	param.chan_id = dma_spec->args[0];
761
762	if (param.chan_id >= mxs_dma->nr_channels)
763		return NULL;
764
765	return dma_request_channel(mask, mxs_dma_filter_fn, &param);
766}
767
768static int __init mxs_dma_probe(struct platform_device *pdev)
769{
770	struct device_node *np = pdev->dev.of_node;
771	const struct platform_device_id *id_entry;
772	const struct of_device_id *of_id;
773	const struct mxs_dma_type *dma_type;
774	struct mxs_dma_engine *mxs_dma;
775	struct resource *iores;
776	int ret, i;
777
778	mxs_dma = devm_kzalloc(&pdev->dev, sizeof(*mxs_dma), GFP_KERNEL);
779	if (!mxs_dma)
780		return -ENOMEM;
781
782	ret = of_property_read_u32(np, "dma-channels", &mxs_dma->nr_channels);
783	if (ret) {
784		dev_err(&pdev->dev, "failed to read dma-channels\n");
785		return ret;
786	}
787
788	of_id = of_match_device(mxs_dma_dt_ids, &pdev->dev);
789	if (of_id)
790		id_entry = of_id->data;
791	else
792		id_entry = platform_get_device_id(pdev);
793
794	dma_type = (struct mxs_dma_type *)id_entry->driver_data;
795	mxs_dma->type = dma_type->type;
796	mxs_dma->dev_id = dma_type->id;
797
798	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
799	mxs_dma->base = devm_ioremap_resource(&pdev->dev, iores);
800	if (IS_ERR(mxs_dma->base))
801		return PTR_ERR(mxs_dma->base);
802
803	mxs_dma->clk = devm_clk_get(&pdev->dev, NULL);
804	if (IS_ERR(mxs_dma->clk))
805		return PTR_ERR(mxs_dma->clk);
806
807	dma_cap_set(DMA_SLAVE, mxs_dma->dma_device.cap_mask);
808	dma_cap_set(DMA_CYCLIC, mxs_dma->dma_device.cap_mask);
809
810	INIT_LIST_HEAD(&mxs_dma->dma_device.channels);
811
812	/* Initialize channel parameters */
813	for (i = 0; i < MXS_DMA_CHANNELS; i++) {
814		struct mxs_dma_chan *mxs_chan = &mxs_dma->mxs_chans[i];
815
816		mxs_chan->mxs_dma = mxs_dma;
817		mxs_chan->chan.device = &mxs_dma->dma_device;
818		dma_cookie_init(&mxs_chan->chan);
819
820		tasklet_init(&mxs_chan->tasklet, mxs_dma_tasklet,
821			     (unsigned long) mxs_chan);
822
823
824		/* Add the channel to mxs_chan list */
825		list_add_tail(&mxs_chan->chan.device_node,
826			&mxs_dma->dma_device.channels);
827	}
828
829	ret = mxs_dma_init(mxs_dma);
830	if (ret)
831		return ret;
832
833	mxs_dma->pdev = pdev;
834	mxs_dma->dma_device.dev = &pdev->dev;
835
836	/* mxs_dma gets 65535 bytes maximum sg size */
837	mxs_dma->dma_device.dev->dma_parms = &mxs_dma->dma_parms;
838	dma_set_max_seg_size(mxs_dma->dma_device.dev, MAX_XFER_BYTES);
839
840	mxs_dma->dma_device.device_alloc_chan_resources = mxs_dma_alloc_chan_resources;
841	mxs_dma->dma_device.device_free_chan_resources = mxs_dma_free_chan_resources;
842	mxs_dma->dma_device.device_tx_status = mxs_dma_tx_status;
843	mxs_dma->dma_device.device_prep_slave_sg = mxs_dma_prep_slave_sg;
844	mxs_dma->dma_device.device_prep_dma_cyclic = mxs_dma_prep_dma_cyclic;
845	mxs_dma->dma_device.device_pause = mxs_dma_pause_chan;
846	mxs_dma->dma_device.device_resume = mxs_dma_resume_chan;
847	mxs_dma->dma_device.device_terminate_all = mxs_dma_terminate_all;
848	mxs_dma->dma_device.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
849	mxs_dma->dma_device.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_4_BYTES);
850	mxs_dma->dma_device.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
851	mxs_dma->dma_device.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
852	mxs_dma->dma_device.device_issue_pending = mxs_dma_enable_chan;
853
854	ret = dma_async_device_register(&mxs_dma->dma_device);
855	if (ret) {
856		dev_err(mxs_dma->dma_device.dev, "unable to register\n");
857		return ret;
858	}
859
860	ret = of_dma_controller_register(np, mxs_dma_xlate, mxs_dma);
861	if (ret) {
862		dev_err(mxs_dma->dma_device.dev,
863			"failed to register controller\n");
864		dma_async_device_unregister(&mxs_dma->dma_device);
865	}
866
867	dev_info(mxs_dma->dma_device.dev, "initialized\n");
868
869	return 0;
870}
871
872static struct platform_driver mxs_dma_driver = {
873	.driver		= {
874		.name	= "mxs-dma",
875		.of_match_table = mxs_dma_dt_ids,
876	},
877	.id_table	= mxs_dma_ids,
878};
879
880static int __init mxs_dma_module_init(void)
881{
882	return platform_driver_probe(&mxs_dma_driver, mxs_dma_probe);
883}
884subsys_initcall(mxs_dma_module_init);