Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Digital Audio (PCM) abstract layer
4 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
5 * Abramo Bagnara <abramo@alsa-project.org>
6 */
7
8#include <linux/slab.h>
9#include <linux/sched/signal.h>
10#include <linux/time.h>
11#include <linux/math64.h>
12#include <linux/export.h>
13#include <sound/core.h>
14#include <sound/control.h>
15#include <sound/tlv.h>
16#include <sound/info.h>
17#include <sound/pcm.h>
18#include <sound/pcm_params.h>
19#include <sound/timer.h>
20
21#include "pcm_local.h"
22
23#ifdef CONFIG_SND_PCM_XRUN_DEBUG
24#define CREATE_TRACE_POINTS
25#include "pcm_trace.h"
26#else
27#define trace_hwptr(substream, pos, in_interrupt)
28#define trace_xrun(substream)
29#define trace_hw_ptr_error(substream, reason)
30#define trace_applptr(substream, prev, curr)
31#endif
32
33static int fill_silence_frames(struct snd_pcm_substream *substream,
34 snd_pcm_uframes_t off, snd_pcm_uframes_t frames);
35
36
37static inline void update_silence_vars(struct snd_pcm_runtime *runtime,
38 snd_pcm_uframes_t ptr,
39 snd_pcm_uframes_t new_ptr)
40{
41 snd_pcm_sframes_t delta;
42
43 delta = new_ptr - ptr;
44 if (delta == 0)
45 return;
46 if (delta < 0)
47 delta += runtime->boundary;
48 if ((snd_pcm_uframes_t)delta < runtime->silence_filled)
49 runtime->silence_filled -= delta;
50 else
51 runtime->silence_filled = 0;
52 runtime->silence_start = new_ptr;
53}
54
55/*
56 * fill ring buffer with silence
57 * runtime->silence_start: starting pointer to silence area
58 * runtime->silence_filled: size filled with silence
59 * runtime->silence_threshold: threshold from application
60 * runtime->silence_size: maximal size from application
61 *
62 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
63 */
64void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
65{
66 struct snd_pcm_runtime *runtime = substream->runtime;
67 snd_pcm_uframes_t frames, ofs, transfer;
68 int err;
69
70 if (runtime->silence_size < runtime->boundary) {
71 snd_pcm_sframes_t noise_dist;
72 snd_pcm_uframes_t appl_ptr = READ_ONCE(runtime->control->appl_ptr);
73 update_silence_vars(runtime, runtime->silence_start, appl_ptr);
74 /* initialization outside pointer updates */
75 if (new_hw_ptr == ULONG_MAX)
76 new_hw_ptr = runtime->status->hw_ptr;
77 /* get hw_avail with the boundary crossing */
78 noise_dist = appl_ptr - new_hw_ptr;
79 if (noise_dist < 0)
80 noise_dist += runtime->boundary;
81 /* total noise distance */
82 noise_dist += runtime->silence_filled;
83 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
84 return;
85 frames = runtime->silence_threshold - noise_dist;
86 if (frames > runtime->silence_size)
87 frames = runtime->silence_size;
88 } else {
89 /*
90 * This filling mode aims at free-running mode (used for example by dmix),
91 * which doesn't update the application pointer.
92 */
93 snd_pcm_uframes_t hw_ptr = runtime->status->hw_ptr;
94 if (new_hw_ptr == ULONG_MAX) {
95 /*
96 * Initialization, fill the whole unused buffer with silence.
97 *
98 * Usually, this is entered while stopped, before data is queued,
99 * so both pointers are expected to be zero.
100 */
101 snd_pcm_sframes_t avail = runtime->control->appl_ptr - hw_ptr;
102 if (avail < 0)
103 avail += runtime->boundary;
104 /*
105 * In free-running mode, appl_ptr will be zero even while running,
106 * so we end up with a huge number. There is no useful way to
107 * handle this, so we just clear the whole buffer.
108 */
109 runtime->silence_filled = avail > runtime->buffer_size ? 0 : avail;
110 runtime->silence_start = hw_ptr;
111 } else {
112 /* Silence the just played area immediately */
113 update_silence_vars(runtime, hw_ptr, new_hw_ptr);
114 }
115 /*
116 * In this mode, silence_filled actually includes the valid
117 * sample data from the user.
118 */
119 frames = runtime->buffer_size - runtime->silence_filled;
120 }
121 if (snd_BUG_ON(frames > runtime->buffer_size))
122 return;
123 if (frames == 0)
124 return;
125 ofs = (runtime->silence_start + runtime->silence_filled) % runtime->buffer_size;
126 do {
127 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
128 err = fill_silence_frames(substream, ofs, transfer);
129 snd_BUG_ON(err < 0);
130 runtime->silence_filled += transfer;
131 frames -= transfer;
132 ofs = 0;
133 } while (frames > 0);
134 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
135}
136
137#ifdef CONFIG_SND_DEBUG
138void snd_pcm_debug_name(struct snd_pcm_substream *substream,
139 char *name, size_t len)
140{
141 snprintf(name, len, "pcmC%dD%d%c:%d",
142 substream->pcm->card->number,
143 substream->pcm->device,
144 substream->stream ? 'c' : 'p',
145 substream->number);
146}
147EXPORT_SYMBOL(snd_pcm_debug_name);
148#endif
149
150#define XRUN_DEBUG_BASIC (1<<0)
151#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
152#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
153
154#ifdef CONFIG_SND_PCM_XRUN_DEBUG
155
156#define xrun_debug(substream, mask) \
157 ((substream)->pstr->xrun_debug & (mask))
158#else
159#define xrun_debug(substream, mask) 0
160#endif
161
162#define dump_stack_on_xrun(substream) do { \
163 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
164 dump_stack(); \
165 } while (0)
166
167/* call with stream lock held */
168void __snd_pcm_xrun(struct snd_pcm_substream *substream)
169{
170 struct snd_pcm_runtime *runtime = substream->runtime;
171
172 trace_xrun(substream);
173 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
174 struct timespec64 tstamp;
175
176 snd_pcm_gettime(runtime, &tstamp);
177 runtime->status->tstamp.tv_sec = tstamp.tv_sec;
178 runtime->status->tstamp.tv_nsec = tstamp.tv_nsec;
179 }
180 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
181 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
182 char name[16];
183 snd_pcm_debug_name(substream, name, sizeof(name));
184 pcm_warn(substream->pcm, "XRUN: %s\n", name);
185 dump_stack_on_xrun(substream);
186 }
187}
188
189#ifdef CONFIG_SND_PCM_XRUN_DEBUG
190#define hw_ptr_error(substream, in_interrupt, reason, fmt, args...) \
191 do { \
192 trace_hw_ptr_error(substream, reason); \
193 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
194 pr_err_ratelimited("ALSA: PCM: [%c] " reason ": " fmt, \
195 (in_interrupt) ? 'Q' : 'P', ##args); \
196 dump_stack_on_xrun(substream); \
197 } \
198 } while (0)
199
200#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
201
202#define hw_ptr_error(substream, fmt, args...) do { } while (0)
203
204#endif
205
206int snd_pcm_update_state(struct snd_pcm_substream *substream,
207 struct snd_pcm_runtime *runtime)
208{
209 snd_pcm_uframes_t avail;
210
211 avail = snd_pcm_avail(substream);
212 if (avail > runtime->avail_max)
213 runtime->avail_max = avail;
214 if (runtime->state == SNDRV_PCM_STATE_DRAINING) {
215 if (avail >= runtime->buffer_size) {
216 snd_pcm_drain_done(substream);
217 return -EPIPE;
218 }
219 } else {
220 if (avail >= runtime->stop_threshold) {
221 __snd_pcm_xrun(substream);
222 return -EPIPE;
223 }
224 }
225 if (runtime->twake) {
226 if (avail >= runtime->twake)
227 wake_up(&runtime->tsleep);
228 } else if (avail >= runtime->control->avail_min)
229 wake_up(&runtime->sleep);
230 return 0;
231}
232
233static void update_audio_tstamp(struct snd_pcm_substream *substream,
234 struct timespec64 *curr_tstamp,
235 struct timespec64 *audio_tstamp)
236{
237 struct snd_pcm_runtime *runtime = substream->runtime;
238 u64 audio_frames, audio_nsecs;
239 struct timespec64 driver_tstamp;
240
241 if (runtime->tstamp_mode != SNDRV_PCM_TSTAMP_ENABLE)
242 return;
243
244 if (!(substream->ops->get_time_info) ||
245 (runtime->audio_tstamp_report.actual_type ==
246 SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
247
248 /*
249 * provide audio timestamp derived from pointer position
250 * add delay only if requested
251 */
252
253 audio_frames = runtime->hw_ptr_wrap + runtime->status->hw_ptr;
254
255 if (runtime->audio_tstamp_config.report_delay) {
256 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
257 audio_frames -= runtime->delay;
258 else
259 audio_frames += runtime->delay;
260 }
261 audio_nsecs = div_u64(audio_frames * 1000000000LL,
262 runtime->rate);
263 *audio_tstamp = ns_to_timespec64(audio_nsecs);
264 }
265
266 if (runtime->status->audio_tstamp.tv_sec != audio_tstamp->tv_sec ||
267 runtime->status->audio_tstamp.tv_nsec != audio_tstamp->tv_nsec) {
268 runtime->status->audio_tstamp.tv_sec = audio_tstamp->tv_sec;
269 runtime->status->audio_tstamp.tv_nsec = audio_tstamp->tv_nsec;
270 runtime->status->tstamp.tv_sec = curr_tstamp->tv_sec;
271 runtime->status->tstamp.tv_nsec = curr_tstamp->tv_nsec;
272 }
273
274
275 /*
276 * re-take a driver timestamp to let apps detect if the reference tstamp
277 * read by low-level hardware was provided with a delay
278 */
279 snd_pcm_gettime(substream->runtime, &driver_tstamp);
280 runtime->driver_tstamp = driver_tstamp;
281}
282
283static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
284 unsigned int in_interrupt)
285{
286 struct snd_pcm_runtime *runtime = substream->runtime;
287 snd_pcm_uframes_t pos;
288 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
289 snd_pcm_sframes_t hdelta, delta;
290 unsigned long jdelta;
291 unsigned long curr_jiffies;
292 struct timespec64 curr_tstamp;
293 struct timespec64 audio_tstamp;
294 int crossed_boundary = 0;
295
296 old_hw_ptr = runtime->status->hw_ptr;
297
298 /*
299 * group pointer, time and jiffies reads to allow for more
300 * accurate correlations/corrections.
301 * The values are stored at the end of this routine after
302 * corrections for hw_ptr position
303 */
304 pos = substream->ops->pointer(substream);
305 curr_jiffies = jiffies;
306 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE) {
307 if ((substream->ops->get_time_info) &&
308 (runtime->audio_tstamp_config.type_requested != SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)) {
309 substream->ops->get_time_info(substream, &curr_tstamp,
310 &audio_tstamp,
311 &runtime->audio_tstamp_config,
312 &runtime->audio_tstamp_report);
313
314 /* re-test in case tstamp type is not supported in hardware and was demoted to DEFAULT */
315 if (runtime->audio_tstamp_report.actual_type == SNDRV_PCM_AUDIO_TSTAMP_TYPE_DEFAULT)
316 snd_pcm_gettime(runtime, &curr_tstamp);
317 } else
318 snd_pcm_gettime(runtime, &curr_tstamp);
319 }
320
321 if (pos == SNDRV_PCM_POS_XRUN) {
322 __snd_pcm_xrun(substream);
323 return -EPIPE;
324 }
325 if (pos >= runtime->buffer_size) {
326 if (printk_ratelimit()) {
327 char name[16];
328 snd_pcm_debug_name(substream, name, sizeof(name));
329 pcm_err(substream->pcm,
330 "invalid position: %s, pos = %ld, buffer size = %ld, period size = %ld\n",
331 name, pos, runtime->buffer_size,
332 runtime->period_size);
333 }
334 pos = 0;
335 }
336 pos -= pos % runtime->min_align;
337 trace_hwptr(substream, pos, in_interrupt);
338 hw_base = runtime->hw_ptr_base;
339 new_hw_ptr = hw_base + pos;
340 if (in_interrupt) {
341 /* we know that one period was processed */
342 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
343 delta = runtime->hw_ptr_interrupt + runtime->period_size;
344 if (delta > new_hw_ptr) {
345 /* check for double acknowledged interrupts */
346 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
347 if (hdelta > runtime->hw_ptr_buffer_jiffies/2 + 1) {
348 hw_base += runtime->buffer_size;
349 if (hw_base >= runtime->boundary) {
350 hw_base = 0;
351 crossed_boundary++;
352 }
353 new_hw_ptr = hw_base + pos;
354 goto __delta;
355 }
356 }
357 }
358 /* new_hw_ptr might be lower than old_hw_ptr in case when */
359 /* pointer crosses the end of the ring buffer */
360 if (new_hw_ptr < old_hw_ptr) {
361 hw_base += runtime->buffer_size;
362 if (hw_base >= runtime->boundary) {
363 hw_base = 0;
364 crossed_boundary++;
365 }
366 new_hw_ptr = hw_base + pos;
367 }
368 __delta:
369 delta = new_hw_ptr - old_hw_ptr;
370 if (delta < 0)
371 delta += runtime->boundary;
372
373 if (runtime->no_period_wakeup) {
374 snd_pcm_sframes_t xrun_threshold;
375 /*
376 * Without regular period interrupts, we have to check
377 * the elapsed time to detect xruns.
378 */
379 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
380 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
381 goto no_delta_check;
382 hdelta = jdelta - delta * HZ / runtime->rate;
383 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
384 while (hdelta > xrun_threshold) {
385 delta += runtime->buffer_size;
386 hw_base += runtime->buffer_size;
387 if (hw_base >= runtime->boundary) {
388 hw_base = 0;
389 crossed_boundary++;
390 }
391 new_hw_ptr = hw_base + pos;
392 hdelta -= runtime->hw_ptr_buffer_jiffies;
393 }
394 goto no_delta_check;
395 }
396
397 /* something must be really wrong */
398 if (delta >= runtime->buffer_size + runtime->period_size) {
399 hw_ptr_error(substream, in_interrupt, "Unexpected hw_ptr",
400 "(stream=%i, pos=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
401 substream->stream, (long)pos,
402 (long)new_hw_ptr, (long)old_hw_ptr);
403 return 0;
404 }
405
406 /* Do jiffies check only in xrun_debug mode */
407 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
408 goto no_jiffies_check;
409
410 /* Skip the jiffies check for hardwares with BATCH flag.
411 * Such hardware usually just increases the position at each IRQ,
412 * thus it can't give any strange position.
413 */
414 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
415 goto no_jiffies_check;
416 hdelta = delta;
417 if (hdelta < runtime->delay)
418 goto no_jiffies_check;
419 hdelta -= runtime->delay;
420 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
421 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
422 delta = jdelta /
423 (((runtime->period_size * HZ) / runtime->rate)
424 + HZ/100);
425 /* move new_hw_ptr according jiffies not pos variable */
426 new_hw_ptr = old_hw_ptr;
427 hw_base = delta;
428 /* use loop to avoid checks for delta overflows */
429 /* the delta value is small or zero in most cases */
430 while (delta > 0) {
431 new_hw_ptr += runtime->period_size;
432 if (new_hw_ptr >= runtime->boundary) {
433 new_hw_ptr -= runtime->boundary;
434 crossed_boundary--;
435 }
436 delta--;
437 }
438 /* align hw_base to buffer_size */
439 hw_ptr_error(substream, in_interrupt, "hw_ptr skipping",
440 "(pos=%ld, delta=%ld, period=%ld, jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
441 (long)pos, (long)hdelta,
442 (long)runtime->period_size, jdelta,
443 ((hdelta * HZ) / runtime->rate), hw_base,
444 (unsigned long)old_hw_ptr,
445 (unsigned long)new_hw_ptr);
446 /* reset values to proper state */
447 delta = 0;
448 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
449 }
450 no_jiffies_check:
451 if (delta > runtime->period_size + runtime->period_size / 2) {
452 hw_ptr_error(substream, in_interrupt,
453 "Lost interrupts?",
454 "(stream=%i, delta=%ld, new_hw_ptr=%ld, old_hw_ptr=%ld)\n",
455 substream->stream, (long)delta,
456 (long)new_hw_ptr,
457 (long)old_hw_ptr);
458 }
459
460 no_delta_check:
461 if (runtime->status->hw_ptr == new_hw_ptr) {
462 runtime->hw_ptr_jiffies = curr_jiffies;
463 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
464 return 0;
465 }
466
467 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
468 runtime->silence_size > 0)
469 snd_pcm_playback_silence(substream, new_hw_ptr);
470
471 if (in_interrupt) {
472 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
473 if (delta < 0)
474 delta += runtime->boundary;
475 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
476 runtime->hw_ptr_interrupt += delta;
477 if (runtime->hw_ptr_interrupt >= runtime->boundary)
478 runtime->hw_ptr_interrupt -= runtime->boundary;
479 }
480 runtime->hw_ptr_base = hw_base;
481 runtime->status->hw_ptr = new_hw_ptr;
482 runtime->hw_ptr_jiffies = curr_jiffies;
483 if (crossed_boundary) {
484 snd_BUG_ON(crossed_boundary != 1);
485 runtime->hw_ptr_wrap += runtime->boundary;
486 }
487
488 update_audio_tstamp(substream, &curr_tstamp, &audio_tstamp);
489
490 return snd_pcm_update_state(substream, runtime);
491}
492
493/* CAUTION: call it with irq disabled */
494int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
495{
496 return snd_pcm_update_hw_ptr0(substream, 0);
497}
498
499/**
500 * snd_pcm_set_ops - set the PCM operators
501 * @pcm: the pcm instance
502 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
503 * @ops: the operator table
504 *
505 * Sets the given PCM operators to the pcm instance.
506 */
507void snd_pcm_set_ops(struct snd_pcm *pcm, int direction,
508 const struct snd_pcm_ops *ops)
509{
510 struct snd_pcm_str *stream = &pcm->streams[direction];
511 struct snd_pcm_substream *substream;
512
513 for (substream = stream->substream; substream != NULL; substream = substream->next)
514 substream->ops = ops;
515}
516EXPORT_SYMBOL(snd_pcm_set_ops);
517
518/**
519 * snd_pcm_set_sync - set the PCM sync id
520 * @substream: the pcm substream
521 *
522 * Sets the PCM sync identifier for the card.
523 */
524void snd_pcm_set_sync(struct snd_pcm_substream *substream)
525{
526 struct snd_pcm_runtime *runtime = substream->runtime;
527
528 runtime->sync.id32[0] = substream->pcm->card->number;
529 runtime->sync.id32[1] = -1;
530 runtime->sync.id32[2] = -1;
531 runtime->sync.id32[3] = -1;
532}
533EXPORT_SYMBOL(snd_pcm_set_sync);
534
535/*
536 * Standard ioctl routine
537 */
538
539static inline unsigned int div32(unsigned int a, unsigned int b,
540 unsigned int *r)
541{
542 if (b == 0) {
543 *r = 0;
544 return UINT_MAX;
545 }
546 *r = a % b;
547 return a / b;
548}
549
550static inline unsigned int div_down(unsigned int a, unsigned int b)
551{
552 if (b == 0)
553 return UINT_MAX;
554 return a / b;
555}
556
557static inline unsigned int div_up(unsigned int a, unsigned int b)
558{
559 unsigned int r;
560 unsigned int q;
561 if (b == 0)
562 return UINT_MAX;
563 q = div32(a, b, &r);
564 if (r)
565 ++q;
566 return q;
567}
568
569static inline unsigned int mul(unsigned int a, unsigned int b)
570{
571 if (a == 0)
572 return 0;
573 if (div_down(UINT_MAX, a) < b)
574 return UINT_MAX;
575 return a * b;
576}
577
578static inline unsigned int muldiv32(unsigned int a, unsigned int b,
579 unsigned int c, unsigned int *r)
580{
581 u_int64_t n = (u_int64_t) a * b;
582 if (c == 0) {
583 *r = 0;
584 return UINT_MAX;
585 }
586 n = div_u64_rem(n, c, r);
587 if (n >= UINT_MAX) {
588 *r = 0;
589 return UINT_MAX;
590 }
591 return n;
592}
593
594/**
595 * snd_interval_refine - refine the interval value of configurator
596 * @i: the interval value to refine
597 * @v: the interval value to refer to
598 *
599 * Refines the interval value with the reference value.
600 * The interval is changed to the range satisfying both intervals.
601 * The interval status (min, max, integer, etc.) are evaluated.
602 *
603 * Return: Positive if the value is changed, zero if it's not changed, or a
604 * negative error code.
605 */
606int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
607{
608 int changed = 0;
609 if (snd_BUG_ON(snd_interval_empty(i)))
610 return -EINVAL;
611 if (i->min < v->min) {
612 i->min = v->min;
613 i->openmin = v->openmin;
614 changed = 1;
615 } else if (i->min == v->min && !i->openmin && v->openmin) {
616 i->openmin = 1;
617 changed = 1;
618 }
619 if (i->max > v->max) {
620 i->max = v->max;
621 i->openmax = v->openmax;
622 changed = 1;
623 } else if (i->max == v->max && !i->openmax && v->openmax) {
624 i->openmax = 1;
625 changed = 1;
626 }
627 if (!i->integer && v->integer) {
628 i->integer = 1;
629 changed = 1;
630 }
631 if (i->integer) {
632 if (i->openmin) {
633 i->min++;
634 i->openmin = 0;
635 }
636 if (i->openmax) {
637 i->max--;
638 i->openmax = 0;
639 }
640 } else if (!i->openmin && !i->openmax && i->min == i->max)
641 i->integer = 1;
642 if (snd_interval_checkempty(i)) {
643 snd_interval_none(i);
644 return -EINVAL;
645 }
646 return changed;
647}
648EXPORT_SYMBOL(snd_interval_refine);
649
650static int snd_interval_refine_first(struct snd_interval *i)
651{
652 const unsigned int last_max = i->max;
653
654 if (snd_BUG_ON(snd_interval_empty(i)))
655 return -EINVAL;
656 if (snd_interval_single(i))
657 return 0;
658 i->max = i->min;
659 if (i->openmin)
660 i->max++;
661 /* only exclude max value if also excluded before refine */
662 i->openmax = (i->openmax && i->max >= last_max);
663 return 1;
664}
665
666static int snd_interval_refine_last(struct snd_interval *i)
667{
668 const unsigned int last_min = i->min;
669
670 if (snd_BUG_ON(snd_interval_empty(i)))
671 return -EINVAL;
672 if (snd_interval_single(i))
673 return 0;
674 i->min = i->max;
675 if (i->openmax)
676 i->min--;
677 /* only exclude min value if also excluded before refine */
678 i->openmin = (i->openmin && i->min <= last_min);
679 return 1;
680}
681
682void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
683{
684 if (a->empty || b->empty) {
685 snd_interval_none(c);
686 return;
687 }
688 c->empty = 0;
689 c->min = mul(a->min, b->min);
690 c->openmin = (a->openmin || b->openmin);
691 c->max = mul(a->max, b->max);
692 c->openmax = (a->openmax || b->openmax);
693 c->integer = (a->integer && b->integer);
694}
695
696/**
697 * snd_interval_div - refine the interval value with division
698 * @a: dividend
699 * @b: divisor
700 * @c: quotient
701 *
702 * c = a / b
703 *
704 * Returns non-zero if the value is changed, zero if not changed.
705 */
706void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
707{
708 unsigned int r;
709 if (a->empty || b->empty) {
710 snd_interval_none(c);
711 return;
712 }
713 c->empty = 0;
714 c->min = div32(a->min, b->max, &r);
715 c->openmin = (r || a->openmin || b->openmax);
716 if (b->min > 0) {
717 c->max = div32(a->max, b->min, &r);
718 if (r) {
719 c->max++;
720 c->openmax = 1;
721 } else
722 c->openmax = (a->openmax || b->openmin);
723 } else {
724 c->max = UINT_MAX;
725 c->openmax = 0;
726 }
727 c->integer = 0;
728}
729
730/**
731 * snd_interval_muldivk - refine the interval value
732 * @a: dividend 1
733 * @b: dividend 2
734 * @k: divisor (as integer)
735 * @c: result
736 *
737 * c = a * b / k
738 *
739 * Returns non-zero if the value is changed, zero if not changed.
740 */
741void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
742 unsigned int k, struct snd_interval *c)
743{
744 unsigned int r;
745 if (a->empty || b->empty) {
746 snd_interval_none(c);
747 return;
748 }
749 c->empty = 0;
750 c->min = muldiv32(a->min, b->min, k, &r);
751 c->openmin = (r || a->openmin || b->openmin);
752 c->max = muldiv32(a->max, b->max, k, &r);
753 if (r) {
754 c->max++;
755 c->openmax = 1;
756 } else
757 c->openmax = (a->openmax || b->openmax);
758 c->integer = 0;
759}
760
761/**
762 * snd_interval_mulkdiv - refine the interval value
763 * @a: dividend 1
764 * @k: dividend 2 (as integer)
765 * @b: divisor
766 * @c: result
767 *
768 * c = a * k / b
769 *
770 * Returns non-zero if the value is changed, zero if not changed.
771 */
772void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
773 const struct snd_interval *b, struct snd_interval *c)
774{
775 unsigned int r;
776 if (a->empty || b->empty) {
777 snd_interval_none(c);
778 return;
779 }
780 c->empty = 0;
781 c->min = muldiv32(a->min, k, b->max, &r);
782 c->openmin = (r || a->openmin || b->openmax);
783 if (b->min > 0) {
784 c->max = muldiv32(a->max, k, b->min, &r);
785 if (r) {
786 c->max++;
787 c->openmax = 1;
788 } else
789 c->openmax = (a->openmax || b->openmin);
790 } else {
791 c->max = UINT_MAX;
792 c->openmax = 0;
793 }
794 c->integer = 0;
795}
796
797/* ---- */
798
799
800/**
801 * snd_interval_ratnum - refine the interval value
802 * @i: interval to refine
803 * @rats_count: number of ratnum_t
804 * @rats: ratnum_t array
805 * @nump: pointer to store the resultant numerator
806 * @denp: pointer to store the resultant denominator
807 *
808 * Return: Positive if the value is changed, zero if it's not changed, or a
809 * negative error code.
810 */
811int snd_interval_ratnum(struct snd_interval *i,
812 unsigned int rats_count, const struct snd_ratnum *rats,
813 unsigned int *nump, unsigned int *denp)
814{
815 unsigned int best_num, best_den;
816 int best_diff;
817 unsigned int k;
818 struct snd_interval t;
819 int err;
820 unsigned int result_num, result_den;
821 int result_diff;
822
823 best_num = best_den = best_diff = 0;
824 for (k = 0; k < rats_count; ++k) {
825 unsigned int num = rats[k].num;
826 unsigned int den;
827 unsigned int q = i->min;
828 int diff;
829 if (q == 0)
830 q = 1;
831 den = div_up(num, q);
832 if (den < rats[k].den_min)
833 continue;
834 if (den > rats[k].den_max)
835 den = rats[k].den_max;
836 else {
837 unsigned int r;
838 r = (den - rats[k].den_min) % rats[k].den_step;
839 if (r != 0)
840 den -= r;
841 }
842 diff = num - q * den;
843 if (diff < 0)
844 diff = -diff;
845 if (best_num == 0 ||
846 diff * best_den < best_diff * den) {
847 best_diff = diff;
848 best_den = den;
849 best_num = num;
850 }
851 }
852 if (best_den == 0) {
853 i->empty = 1;
854 return -EINVAL;
855 }
856 t.min = div_down(best_num, best_den);
857 t.openmin = !!(best_num % best_den);
858
859 result_num = best_num;
860 result_diff = best_diff;
861 result_den = best_den;
862 best_num = best_den = best_diff = 0;
863 for (k = 0; k < rats_count; ++k) {
864 unsigned int num = rats[k].num;
865 unsigned int den;
866 unsigned int q = i->max;
867 int diff;
868 if (q == 0) {
869 i->empty = 1;
870 return -EINVAL;
871 }
872 den = div_down(num, q);
873 if (den > rats[k].den_max)
874 continue;
875 if (den < rats[k].den_min)
876 den = rats[k].den_min;
877 else {
878 unsigned int r;
879 r = (den - rats[k].den_min) % rats[k].den_step;
880 if (r != 0)
881 den += rats[k].den_step - r;
882 }
883 diff = q * den - num;
884 if (diff < 0)
885 diff = -diff;
886 if (best_num == 0 ||
887 diff * best_den < best_diff * den) {
888 best_diff = diff;
889 best_den = den;
890 best_num = num;
891 }
892 }
893 if (best_den == 0) {
894 i->empty = 1;
895 return -EINVAL;
896 }
897 t.max = div_up(best_num, best_den);
898 t.openmax = !!(best_num % best_den);
899 t.integer = 0;
900 err = snd_interval_refine(i, &t);
901 if (err < 0)
902 return err;
903
904 if (snd_interval_single(i)) {
905 if (best_diff * result_den < result_diff * best_den) {
906 result_num = best_num;
907 result_den = best_den;
908 }
909 if (nump)
910 *nump = result_num;
911 if (denp)
912 *denp = result_den;
913 }
914 return err;
915}
916EXPORT_SYMBOL(snd_interval_ratnum);
917
918/**
919 * snd_interval_ratden - refine the interval value
920 * @i: interval to refine
921 * @rats_count: number of struct ratden
922 * @rats: struct ratden array
923 * @nump: pointer to store the resultant numerator
924 * @denp: pointer to store the resultant denominator
925 *
926 * Return: Positive if the value is changed, zero if it's not changed, or a
927 * negative error code.
928 */
929static int snd_interval_ratden(struct snd_interval *i,
930 unsigned int rats_count,
931 const struct snd_ratden *rats,
932 unsigned int *nump, unsigned int *denp)
933{
934 unsigned int best_num, best_diff, best_den;
935 unsigned int k;
936 struct snd_interval t;
937 int err;
938
939 best_num = best_den = best_diff = 0;
940 for (k = 0; k < rats_count; ++k) {
941 unsigned int num;
942 unsigned int den = rats[k].den;
943 unsigned int q = i->min;
944 int diff;
945 num = mul(q, den);
946 if (num > rats[k].num_max)
947 continue;
948 if (num < rats[k].num_min)
949 num = rats[k].num_max;
950 else {
951 unsigned int r;
952 r = (num - rats[k].num_min) % rats[k].num_step;
953 if (r != 0)
954 num += rats[k].num_step - r;
955 }
956 diff = num - q * den;
957 if (best_num == 0 ||
958 diff * best_den < best_diff * den) {
959 best_diff = diff;
960 best_den = den;
961 best_num = num;
962 }
963 }
964 if (best_den == 0) {
965 i->empty = 1;
966 return -EINVAL;
967 }
968 t.min = div_down(best_num, best_den);
969 t.openmin = !!(best_num % best_den);
970
971 best_num = best_den = best_diff = 0;
972 for (k = 0; k < rats_count; ++k) {
973 unsigned int num;
974 unsigned int den = rats[k].den;
975 unsigned int q = i->max;
976 int diff;
977 num = mul(q, den);
978 if (num < rats[k].num_min)
979 continue;
980 if (num > rats[k].num_max)
981 num = rats[k].num_max;
982 else {
983 unsigned int r;
984 r = (num - rats[k].num_min) % rats[k].num_step;
985 if (r != 0)
986 num -= r;
987 }
988 diff = q * den - num;
989 if (best_num == 0 ||
990 diff * best_den < best_diff * den) {
991 best_diff = diff;
992 best_den = den;
993 best_num = num;
994 }
995 }
996 if (best_den == 0) {
997 i->empty = 1;
998 return -EINVAL;
999 }
1000 t.max = div_up(best_num, best_den);
1001 t.openmax = !!(best_num % best_den);
1002 t.integer = 0;
1003 err = snd_interval_refine(i, &t);
1004 if (err < 0)
1005 return err;
1006
1007 if (snd_interval_single(i)) {
1008 if (nump)
1009 *nump = best_num;
1010 if (denp)
1011 *denp = best_den;
1012 }
1013 return err;
1014}
1015
1016/**
1017 * snd_interval_list - refine the interval value from the list
1018 * @i: the interval value to refine
1019 * @count: the number of elements in the list
1020 * @list: the value list
1021 * @mask: the bit-mask to evaluate
1022 *
1023 * Refines the interval value from the list.
1024 * When mask is non-zero, only the elements corresponding to bit 1 are
1025 * evaluated.
1026 *
1027 * Return: Positive if the value is changed, zero if it's not changed, or a
1028 * negative error code.
1029 */
1030int snd_interval_list(struct snd_interval *i, unsigned int count,
1031 const unsigned int *list, unsigned int mask)
1032{
1033 unsigned int k;
1034 struct snd_interval list_range;
1035
1036 if (!count) {
1037 i->empty = 1;
1038 return -EINVAL;
1039 }
1040 snd_interval_any(&list_range);
1041 list_range.min = UINT_MAX;
1042 list_range.max = 0;
1043 for (k = 0; k < count; k++) {
1044 if (mask && !(mask & (1 << k)))
1045 continue;
1046 if (!snd_interval_test(i, list[k]))
1047 continue;
1048 list_range.min = min(list_range.min, list[k]);
1049 list_range.max = max(list_range.max, list[k]);
1050 }
1051 return snd_interval_refine(i, &list_range);
1052}
1053EXPORT_SYMBOL(snd_interval_list);
1054
1055/**
1056 * snd_interval_ranges - refine the interval value from the list of ranges
1057 * @i: the interval value to refine
1058 * @count: the number of elements in the list of ranges
1059 * @ranges: the ranges list
1060 * @mask: the bit-mask to evaluate
1061 *
1062 * Refines the interval value from the list of ranges.
1063 * When mask is non-zero, only the elements corresponding to bit 1 are
1064 * evaluated.
1065 *
1066 * Return: Positive if the value is changed, zero if it's not changed, or a
1067 * negative error code.
1068 */
1069int snd_interval_ranges(struct snd_interval *i, unsigned int count,
1070 const struct snd_interval *ranges, unsigned int mask)
1071{
1072 unsigned int k;
1073 struct snd_interval range_union;
1074 struct snd_interval range;
1075
1076 if (!count) {
1077 snd_interval_none(i);
1078 return -EINVAL;
1079 }
1080 snd_interval_any(&range_union);
1081 range_union.min = UINT_MAX;
1082 range_union.max = 0;
1083 for (k = 0; k < count; k++) {
1084 if (mask && !(mask & (1 << k)))
1085 continue;
1086 snd_interval_copy(&range, &ranges[k]);
1087 if (snd_interval_refine(&range, i) < 0)
1088 continue;
1089 if (snd_interval_empty(&range))
1090 continue;
1091
1092 if (range.min < range_union.min) {
1093 range_union.min = range.min;
1094 range_union.openmin = 1;
1095 }
1096 if (range.min == range_union.min && !range.openmin)
1097 range_union.openmin = 0;
1098 if (range.max > range_union.max) {
1099 range_union.max = range.max;
1100 range_union.openmax = 1;
1101 }
1102 if (range.max == range_union.max && !range.openmax)
1103 range_union.openmax = 0;
1104 }
1105 return snd_interval_refine(i, &range_union);
1106}
1107EXPORT_SYMBOL(snd_interval_ranges);
1108
1109static int snd_interval_step(struct snd_interval *i, unsigned int step)
1110{
1111 unsigned int n;
1112 int changed = 0;
1113 n = i->min % step;
1114 if (n != 0 || i->openmin) {
1115 i->min += step - n;
1116 i->openmin = 0;
1117 changed = 1;
1118 }
1119 n = i->max % step;
1120 if (n != 0 || i->openmax) {
1121 i->max -= n;
1122 i->openmax = 0;
1123 changed = 1;
1124 }
1125 if (snd_interval_checkempty(i)) {
1126 i->empty = 1;
1127 return -EINVAL;
1128 }
1129 return changed;
1130}
1131
1132/* Info constraints helpers */
1133
1134/**
1135 * snd_pcm_hw_rule_add - add the hw-constraint rule
1136 * @runtime: the pcm runtime instance
1137 * @cond: condition bits
1138 * @var: the variable to evaluate
1139 * @func: the evaluation function
1140 * @private: the private data pointer passed to function
1141 * @dep: the dependent variables
1142 *
1143 * Return: Zero if successful, or a negative error code on failure.
1144 */
1145int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1146 int var,
1147 snd_pcm_hw_rule_func_t func, void *private,
1148 int dep, ...)
1149{
1150 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1151 struct snd_pcm_hw_rule *c;
1152 unsigned int k;
1153 va_list args;
1154 va_start(args, dep);
1155 if (constrs->rules_num >= constrs->rules_all) {
1156 struct snd_pcm_hw_rule *new;
1157 unsigned int new_rules = constrs->rules_all + 16;
1158 new = krealloc_array(constrs->rules, new_rules,
1159 sizeof(*c), GFP_KERNEL);
1160 if (!new) {
1161 va_end(args);
1162 return -ENOMEM;
1163 }
1164 constrs->rules = new;
1165 constrs->rules_all = new_rules;
1166 }
1167 c = &constrs->rules[constrs->rules_num];
1168 c->cond = cond;
1169 c->func = func;
1170 c->var = var;
1171 c->private = private;
1172 k = 0;
1173 while (1) {
1174 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1175 va_end(args);
1176 return -EINVAL;
1177 }
1178 c->deps[k++] = dep;
1179 if (dep < 0)
1180 break;
1181 dep = va_arg(args, int);
1182 }
1183 constrs->rules_num++;
1184 va_end(args);
1185 return 0;
1186}
1187EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1188
1189/**
1190 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1191 * @runtime: PCM runtime instance
1192 * @var: hw_params variable to apply the mask
1193 * @mask: the bitmap mask
1194 *
1195 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1196 *
1197 * Return: Zero if successful, or a negative error code on failure.
1198 */
1199int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1200 u_int32_t mask)
1201{
1202 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1203 struct snd_mask *maskp = constrs_mask(constrs, var);
1204 *maskp->bits &= mask;
1205 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1206 if (*maskp->bits == 0)
1207 return -EINVAL;
1208 return 0;
1209}
1210
1211/**
1212 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1213 * @runtime: PCM runtime instance
1214 * @var: hw_params variable to apply the mask
1215 * @mask: the 64bit bitmap mask
1216 *
1217 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1218 *
1219 * Return: Zero if successful, or a negative error code on failure.
1220 */
1221int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1222 u_int64_t mask)
1223{
1224 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1225 struct snd_mask *maskp = constrs_mask(constrs, var);
1226 maskp->bits[0] &= (u_int32_t)mask;
1227 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1228 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1229 if (! maskp->bits[0] && ! maskp->bits[1])
1230 return -EINVAL;
1231 return 0;
1232}
1233EXPORT_SYMBOL(snd_pcm_hw_constraint_mask64);
1234
1235/**
1236 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1237 * @runtime: PCM runtime instance
1238 * @var: hw_params variable to apply the integer constraint
1239 *
1240 * Apply the constraint of integer to an interval parameter.
1241 *
1242 * Return: Positive if the value is changed, zero if it's not changed, or a
1243 * negative error code.
1244 */
1245int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1246{
1247 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1248 return snd_interval_setinteger(constrs_interval(constrs, var));
1249}
1250EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1251
1252/**
1253 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1254 * @runtime: PCM runtime instance
1255 * @var: hw_params variable to apply the range
1256 * @min: the minimal value
1257 * @max: the maximal value
1258 *
1259 * Apply the min/max range constraint to an interval parameter.
1260 *
1261 * Return: Positive if the value is changed, zero if it's not changed, or a
1262 * negative error code.
1263 */
1264int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1265 unsigned int min, unsigned int max)
1266{
1267 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1268 struct snd_interval t;
1269 t.min = min;
1270 t.max = max;
1271 t.openmin = t.openmax = 0;
1272 t.integer = 0;
1273 return snd_interval_refine(constrs_interval(constrs, var), &t);
1274}
1275EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1276
1277static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1278 struct snd_pcm_hw_rule *rule)
1279{
1280 struct snd_pcm_hw_constraint_list *list = rule->private;
1281 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1282}
1283
1284
1285/**
1286 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1287 * @runtime: PCM runtime instance
1288 * @cond: condition bits
1289 * @var: hw_params variable to apply the list constraint
1290 * @l: list
1291 *
1292 * Apply the list of constraints to an interval parameter.
1293 *
1294 * Return: Zero if successful, or a negative error code on failure.
1295 */
1296int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1297 unsigned int cond,
1298 snd_pcm_hw_param_t var,
1299 const struct snd_pcm_hw_constraint_list *l)
1300{
1301 return snd_pcm_hw_rule_add(runtime, cond, var,
1302 snd_pcm_hw_rule_list, (void *)l,
1303 var, -1);
1304}
1305EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1306
1307static int snd_pcm_hw_rule_ranges(struct snd_pcm_hw_params *params,
1308 struct snd_pcm_hw_rule *rule)
1309{
1310 struct snd_pcm_hw_constraint_ranges *r = rule->private;
1311 return snd_interval_ranges(hw_param_interval(params, rule->var),
1312 r->count, r->ranges, r->mask);
1313}
1314
1315
1316/**
1317 * snd_pcm_hw_constraint_ranges - apply list of range constraints to a parameter
1318 * @runtime: PCM runtime instance
1319 * @cond: condition bits
1320 * @var: hw_params variable to apply the list of range constraints
1321 * @r: ranges
1322 *
1323 * Apply the list of range constraints to an interval parameter.
1324 *
1325 * Return: Zero if successful, or a negative error code on failure.
1326 */
1327int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
1328 unsigned int cond,
1329 snd_pcm_hw_param_t var,
1330 const struct snd_pcm_hw_constraint_ranges *r)
1331{
1332 return snd_pcm_hw_rule_add(runtime, cond, var,
1333 snd_pcm_hw_rule_ranges, (void *)r,
1334 var, -1);
1335}
1336EXPORT_SYMBOL(snd_pcm_hw_constraint_ranges);
1337
1338static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1339 struct snd_pcm_hw_rule *rule)
1340{
1341 const struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1342 unsigned int num = 0, den = 0;
1343 int err;
1344 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1345 r->nrats, r->rats, &num, &den);
1346 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1347 params->rate_num = num;
1348 params->rate_den = den;
1349 }
1350 return err;
1351}
1352
1353/**
1354 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1355 * @runtime: PCM runtime instance
1356 * @cond: condition bits
1357 * @var: hw_params variable to apply the ratnums constraint
1358 * @r: struct snd_ratnums constriants
1359 *
1360 * Return: Zero if successful, or a negative error code on failure.
1361 */
1362int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1363 unsigned int cond,
1364 snd_pcm_hw_param_t var,
1365 const struct snd_pcm_hw_constraint_ratnums *r)
1366{
1367 return snd_pcm_hw_rule_add(runtime, cond, var,
1368 snd_pcm_hw_rule_ratnums, (void *)r,
1369 var, -1);
1370}
1371EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1372
1373static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1374 struct snd_pcm_hw_rule *rule)
1375{
1376 const struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1377 unsigned int num = 0, den = 0;
1378 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1379 r->nrats, r->rats, &num, &den);
1380 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1381 params->rate_num = num;
1382 params->rate_den = den;
1383 }
1384 return err;
1385}
1386
1387/**
1388 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1389 * @runtime: PCM runtime instance
1390 * @cond: condition bits
1391 * @var: hw_params variable to apply the ratdens constraint
1392 * @r: struct snd_ratdens constriants
1393 *
1394 * Return: Zero if successful, or a negative error code on failure.
1395 */
1396int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1397 unsigned int cond,
1398 snd_pcm_hw_param_t var,
1399 const struct snd_pcm_hw_constraint_ratdens *r)
1400{
1401 return snd_pcm_hw_rule_add(runtime, cond, var,
1402 snd_pcm_hw_rule_ratdens, (void *)r,
1403 var, -1);
1404}
1405EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1406
1407static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1408 struct snd_pcm_hw_rule *rule)
1409{
1410 unsigned int l = (unsigned long) rule->private;
1411 int width = l & 0xffff;
1412 unsigned int msbits = l >> 16;
1413 const struct snd_interval *i =
1414 hw_param_interval_c(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1415
1416 if (!snd_interval_single(i))
1417 return 0;
1418
1419 if ((snd_interval_value(i) == width) ||
1420 (width == 0 && snd_interval_value(i) > msbits))
1421 params->msbits = min_not_zero(params->msbits, msbits);
1422
1423 return 0;
1424}
1425
1426/**
1427 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1428 * @runtime: PCM runtime instance
1429 * @cond: condition bits
1430 * @width: sample bits width
1431 * @msbits: msbits width
1432 *
1433 * This constraint will set the number of most significant bits (msbits) if a
1434 * sample format with the specified width has been select. If width is set to 0
1435 * the msbits will be set for any sample format with a width larger than the
1436 * specified msbits.
1437 *
1438 * Return: Zero if successful, or a negative error code on failure.
1439 */
1440int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1441 unsigned int cond,
1442 unsigned int width,
1443 unsigned int msbits)
1444{
1445 unsigned long l = (msbits << 16) | width;
1446 return snd_pcm_hw_rule_add(runtime, cond, -1,
1447 snd_pcm_hw_rule_msbits,
1448 (void*) l,
1449 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1450}
1451EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1452
1453static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1454 struct snd_pcm_hw_rule *rule)
1455{
1456 unsigned long step = (unsigned long) rule->private;
1457 return snd_interval_step(hw_param_interval(params, rule->var), step);
1458}
1459
1460/**
1461 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1462 * @runtime: PCM runtime instance
1463 * @cond: condition bits
1464 * @var: hw_params variable to apply the step constraint
1465 * @step: step size
1466 *
1467 * Return: Zero if successful, or a negative error code on failure.
1468 */
1469int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1470 unsigned int cond,
1471 snd_pcm_hw_param_t var,
1472 unsigned long step)
1473{
1474 return snd_pcm_hw_rule_add(runtime, cond, var,
1475 snd_pcm_hw_rule_step, (void *) step,
1476 var, -1);
1477}
1478EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1479
1480static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1481{
1482 static const unsigned int pow2_sizes[] = {
1483 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1484 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1485 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1486 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1487 };
1488 return snd_interval_list(hw_param_interval(params, rule->var),
1489 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1490}
1491
1492/**
1493 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1494 * @runtime: PCM runtime instance
1495 * @cond: condition bits
1496 * @var: hw_params variable to apply the power-of-2 constraint
1497 *
1498 * Return: Zero if successful, or a negative error code on failure.
1499 */
1500int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1501 unsigned int cond,
1502 snd_pcm_hw_param_t var)
1503{
1504 return snd_pcm_hw_rule_add(runtime, cond, var,
1505 snd_pcm_hw_rule_pow2, NULL,
1506 var, -1);
1507}
1508EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1509
1510static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1511 struct snd_pcm_hw_rule *rule)
1512{
1513 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1514 struct snd_interval *rate;
1515
1516 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1517 return snd_interval_list(rate, 1, &base_rate, 0);
1518}
1519
1520/**
1521 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1522 * @runtime: PCM runtime instance
1523 * @base_rate: the rate at which the hardware does not resample
1524 *
1525 * Return: Zero if successful, or a negative error code on failure.
1526 */
1527int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1528 unsigned int base_rate)
1529{
1530 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1531 SNDRV_PCM_HW_PARAM_RATE,
1532 snd_pcm_hw_rule_noresample_func,
1533 (void *)(uintptr_t)base_rate,
1534 SNDRV_PCM_HW_PARAM_RATE, -1);
1535}
1536EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1537
1538static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1539 snd_pcm_hw_param_t var)
1540{
1541 if (hw_is_mask(var)) {
1542 snd_mask_any(hw_param_mask(params, var));
1543 params->cmask |= 1 << var;
1544 params->rmask |= 1 << var;
1545 return;
1546 }
1547 if (hw_is_interval(var)) {
1548 snd_interval_any(hw_param_interval(params, var));
1549 params->cmask |= 1 << var;
1550 params->rmask |= 1 << var;
1551 return;
1552 }
1553 snd_BUG();
1554}
1555
1556void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1557{
1558 unsigned int k;
1559 memset(params, 0, sizeof(*params));
1560 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1561 _snd_pcm_hw_param_any(params, k);
1562 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1563 _snd_pcm_hw_param_any(params, k);
1564 params->info = ~0U;
1565}
1566EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1567
1568/**
1569 * snd_pcm_hw_param_value - return @params field @var value
1570 * @params: the hw_params instance
1571 * @var: parameter to retrieve
1572 * @dir: pointer to the direction (-1,0,1) or %NULL
1573 *
1574 * Return: The value for field @var if it's fixed in configuration space
1575 * defined by @params. -%EINVAL otherwise.
1576 */
1577int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1578 snd_pcm_hw_param_t var, int *dir)
1579{
1580 if (hw_is_mask(var)) {
1581 const struct snd_mask *mask = hw_param_mask_c(params, var);
1582 if (!snd_mask_single(mask))
1583 return -EINVAL;
1584 if (dir)
1585 *dir = 0;
1586 return snd_mask_value(mask);
1587 }
1588 if (hw_is_interval(var)) {
1589 const struct snd_interval *i = hw_param_interval_c(params, var);
1590 if (!snd_interval_single(i))
1591 return -EINVAL;
1592 if (dir)
1593 *dir = i->openmin;
1594 return snd_interval_value(i);
1595 }
1596 return -EINVAL;
1597}
1598EXPORT_SYMBOL(snd_pcm_hw_param_value);
1599
1600void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1601 snd_pcm_hw_param_t var)
1602{
1603 if (hw_is_mask(var)) {
1604 snd_mask_none(hw_param_mask(params, var));
1605 params->cmask |= 1 << var;
1606 params->rmask |= 1 << var;
1607 } else if (hw_is_interval(var)) {
1608 snd_interval_none(hw_param_interval(params, var));
1609 params->cmask |= 1 << var;
1610 params->rmask |= 1 << var;
1611 } else {
1612 snd_BUG();
1613 }
1614}
1615EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1616
1617static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1618 snd_pcm_hw_param_t var)
1619{
1620 int changed;
1621 if (hw_is_mask(var))
1622 changed = snd_mask_refine_first(hw_param_mask(params, var));
1623 else if (hw_is_interval(var))
1624 changed = snd_interval_refine_first(hw_param_interval(params, var));
1625 else
1626 return -EINVAL;
1627 if (changed > 0) {
1628 params->cmask |= 1 << var;
1629 params->rmask |= 1 << var;
1630 }
1631 return changed;
1632}
1633
1634
1635/**
1636 * snd_pcm_hw_param_first - refine config space and return minimum value
1637 * @pcm: PCM instance
1638 * @params: the hw_params instance
1639 * @var: parameter to retrieve
1640 * @dir: pointer to the direction (-1,0,1) or %NULL
1641 *
1642 * Inside configuration space defined by @params remove from @var all
1643 * values > minimum. Reduce configuration space accordingly.
1644 *
1645 * Return: The minimum, or a negative error code on failure.
1646 */
1647int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1648 struct snd_pcm_hw_params *params,
1649 snd_pcm_hw_param_t var, int *dir)
1650{
1651 int changed = _snd_pcm_hw_param_first(params, var);
1652 if (changed < 0)
1653 return changed;
1654 if (params->rmask) {
1655 int err = snd_pcm_hw_refine(pcm, params);
1656 if (err < 0)
1657 return err;
1658 }
1659 return snd_pcm_hw_param_value(params, var, dir);
1660}
1661EXPORT_SYMBOL(snd_pcm_hw_param_first);
1662
1663static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1664 snd_pcm_hw_param_t var)
1665{
1666 int changed;
1667 if (hw_is_mask(var))
1668 changed = snd_mask_refine_last(hw_param_mask(params, var));
1669 else if (hw_is_interval(var))
1670 changed = snd_interval_refine_last(hw_param_interval(params, var));
1671 else
1672 return -EINVAL;
1673 if (changed > 0) {
1674 params->cmask |= 1 << var;
1675 params->rmask |= 1 << var;
1676 }
1677 return changed;
1678}
1679
1680
1681/**
1682 * snd_pcm_hw_param_last - refine config space and return maximum value
1683 * @pcm: PCM instance
1684 * @params: the hw_params instance
1685 * @var: parameter to retrieve
1686 * @dir: pointer to the direction (-1,0,1) or %NULL
1687 *
1688 * Inside configuration space defined by @params remove from @var all
1689 * values < maximum. Reduce configuration space accordingly.
1690 *
1691 * Return: The maximum, or a negative error code on failure.
1692 */
1693int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1694 struct snd_pcm_hw_params *params,
1695 snd_pcm_hw_param_t var, int *dir)
1696{
1697 int changed = _snd_pcm_hw_param_last(params, var);
1698 if (changed < 0)
1699 return changed;
1700 if (params->rmask) {
1701 int err = snd_pcm_hw_refine(pcm, params);
1702 if (err < 0)
1703 return err;
1704 }
1705 return snd_pcm_hw_param_value(params, var, dir);
1706}
1707EXPORT_SYMBOL(snd_pcm_hw_param_last);
1708
1709/**
1710 * snd_pcm_hw_params_bits - Get the number of bits per the sample.
1711 * @p: hardware parameters
1712 *
1713 * Return: The number of bits per sample based on the format,
1714 * subformat and msbits the specified hw params has.
1715 */
1716int snd_pcm_hw_params_bits(const struct snd_pcm_hw_params *p)
1717{
1718 snd_pcm_subformat_t subformat = params_subformat(p);
1719 snd_pcm_format_t format = params_format(p);
1720
1721 switch (format) {
1722 case SNDRV_PCM_FORMAT_S32_LE:
1723 case SNDRV_PCM_FORMAT_U32_LE:
1724 case SNDRV_PCM_FORMAT_S32_BE:
1725 case SNDRV_PCM_FORMAT_U32_BE:
1726 switch (subformat) {
1727 case SNDRV_PCM_SUBFORMAT_MSBITS_20:
1728 return 20;
1729 case SNDRV_PCM_SUBFORMAT_MSBITS_24:
1730 return 24;
1731 case SNDRV_PCM_SUBFORMAT_MSBITS_MAX:
1732 case SNDRV_PCM_SUBFORMAT_STD:
1733 default:
1734 break;
1735 }
1736 fallthrough;
1737 default:
1738 return snd_pcm_format_width(format);
1739 }
1740}
1741EXPORT_SYMBOL(snd_pcm_hw_params_bits);
1742
1743static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1744 void *arg)
1745{
1746 struct snd_pcm_runtime *runtime = substream->runtime;
1747
1748 guard(pcm_stream_lock_irqsave)(substream);
1749 if (snd_pcm_running(substream) &&
1750 snd_pcm_update_hw_ptr(substream) >= 0)
1751 runtime->status->hw_ptr %= runtime->buffer_size;
1752 else {
1753 runtime->status->hw_ptr = 0;
1754 runtime->hw_ptr_wrap = 0;
1755 }
1756 return 0;
1757}
1758
1759static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1760 void *arg)
1761{
1762 struct snd_pcm_channel_info *info = arg;
1763 struct snd_pcm_runtime *runtime = substream->runtime;
1764 int width;
1765 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1766 info->offset = -1;
1767 return 0;
1768 }
1769 width = snd_pcm_format_physical_width(runtime->format);
1770 if (width < 0)
1771 return width;
1772 info->offset = 0;
1773 switch (runtime->access) {
1774 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1775 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1776 info->first = info->channel * width;
1777 info->step = runtime->channels * width;
1778 break;
1779 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1780 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1781 {
1782 size_t size = runtime->dma_bytes / runtime->channels;
1783 info->first = info->channel * size * 8;
1784 info->step = width;
1785 break;
1786 }
1787 default:
1788 snd_BUG();
1789 break;
1790 }
1791 return 0;
1792}
1793
1794static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1795 void *arg)
1796{
1797 struct snd_pcm_hw_params *params = arg;
1798 snd_pcm_format_t format;
1799 int channels;
1800 ssize_t frame_size;
1801
1802 params->fifo_size = substream->runtime->hw.fifo_size;
1803 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1804 format = params_format(params);
1805 channels = params_channels(params);
1806 frame_size = snd_pcm_format_size(format, channels);
1807 if (frame_size > 0)
1808 params->fifo_size /= frame_size;
1809 }
1810 return 0;
1811}
1812
1813/**
1814 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1815 * @substream: the pcm substream instance
1816 * @cmd: ioctl command
1817 * @arg: ioctl argument
1818 *
1819 * Processes the generic ioctl commands for PCM.
1820 * Can be passed as the ioctl callback for PCM ops.
1821 *
1822 * Return: Zero if successful, or a negative error code on failure.
1823 */
1824int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1825 unsigned int cmd, void *arg)
1826{
1827 switch (cmd) {
1828 case SNDRV_PCM_IOCTL1_RESET:
1829 return snd_pcm_lib_ioctl_reset(substream, arg);
1830 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1831 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1832 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1833 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1834 }
1835 return -ENXIO;
1836}
1837EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1838
1839/**
1840 * snd_pcm_period_elapsed_under_stream_lock() - update the status of runtime for the next period
1841 * under acquired lock of PCM substream.
1842 * @substream: the instance of pcm substream.
1843 *
1844 * This function is called when the batch of audio data frames as the same size as the period of
1845 * buffer is already processed in audio data transmission.
1846 *
1847 * The call of function updates the status of runtime with the latest position of audio data
1848 * transmission, checks overrun and underrun over buffer, awaken user processes from waiting for
1849 * available audio data frames, sampling audio timestamp, and performs stop or drain the PCM
1850 * substream according to configured threshold.
1851 *
1852 * The function is intended to use for the case that PCM driver operates audio data frames under
1853 * acquired lock of PCM substream; e.g. in callback of any operation of &snd_pcm_ops in process
1854 * context. In any interrupt context, it's preferrable to use ``snd_pcm_period_elapsed()`` instead
1855 * since lock of PCM substream should be acquired in advance.
1856 *
1857 * Developer should pay enough attention that some callbacks in &snd_pcm_ops are done by the call of
1858 * function:
1859 *
1860 * - .pointer - to retrieve current position of audio data transmission by frame count or XRUN state.
1861 * - .trigger - with SNDRV_PCM_TRIGGER_STOP at XRUN or DRAINING state.
1862 * - .get_time_info - to retrieve audio time stamp if needed.
1863 *
1864 * Even if more than one periods have elapsed since the last call, you have to call this only once.
1865 */
1866void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream)
1867{
1868 struct snd_pcm_runtime *runtime;
1869
1870 if (PCM_RUNTIME_CHECK(substream))
1871 return;
1872 runtime = substream->runtime;
1873
1874 if (!snd_pcm_running(substream) ||
1875 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1876 goto _end;
1877
1878#ifdef CONFIG_SND_PCM_TIMER
1879 if (substream->timer_running)
1880 snd_timer_interrupt(substream->timer, 1);
1881#endif
1882 _end:
1883 snd_kill_fasync(runtime->fasync, SIGIO, POLL_IN);
1884}
1885EXPORT_SYMBOL(snd_pcm_period_elapsed_under_stream_lock);
1886
1887/**
1888 * snd_pcm_period_elapsed() - update the status of runtime for the next period by acquiring lock of
1889 * PCM substream.
1890 * @substream: the instance of PCM substream.
1891 *
1892 * This function is mostly similar to ``snd_pcm_period_elapsed_under_stream_lock()`` except for
1893 * acquiring lock of PCM substream voluntarily.
1894 *
1895 * It's typically called by any type of IRQ handler when hardware IRQ occurs to notify event that
1896 * the batch of audio data frames as the same size as the period of buffer is already processed in
1897 * audio data transmission.
1898 */
1899void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1900{
1901 if (snd_BUG_ON(!substream))
1902 return;
1903
1904 guard(pcm_stream_lock_irqsave)(substream);
1905 snd_pcm_period_elapsed_under_stream_lock(substream);
1906}
1907EXPORT_SYMBOL(snd_pcm_period_elapsed);
1908
1909/*
1910 * Wait until avail_min data becomes available
1911 * Returns a negative error code if any error occurs during operation.
1912 * The available space is stored on availp. When err = 0 and avail = 0
1913 * on the capture stream, it indicates the stream is in DRAINING state.
1914 */
1915static int wait_for_avail(struct snd_pcm_substream *substream,
1916 snd_pcm_uframes_t *availp)
1917{
1918 struct snd_pcm_runtime *runtime = substream->runtime;
1919 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1920 wait_queue_entry_t wait;
1921 int err = 0;
1922 snd_pcm_uframes_t avail = 0;
1923 long wait_time, tout;
1924
1925 init_waitqueue_entry(&wait, current);
1926 set_current_state(TASK_INTERRUPTIBLE);
1927 add_wait_queue(&runtime->tsleep, &wait);
1928
1929 if (runtime->no_period_wakeup)
1930 wait_time = MAX_SCHEDULE_TIMEOUT;
1931 else {
1932 /* use wait time from substream if available */
1933 if (substream->wait_time) {
1934 wait_time = substream->wait_time;
1935 } else {
1936 wait_time = 100;
1937
1938 if (runtime->rate) {
1939 long t = runtime->buffer_size * 1100 / runtime->rate;
1940 wait_time = max(t, wait_time);
1941 }
1942 }
1943 wait_time = msecs_to_jiffies(wait_time);
1944 }
1945
1946 for (;;) {
1947 if (signal_pending(current)) {
1948 err = -ERESTARTSYS;
1949 break;
1950 }
1951
1952 /*
1953 * We need to check if space became available already
1954 * (and thus the wakeup happened already) first to close
1955 * the race of space already having become available.
1956 * This check must happen after been added to the waitqueue
1957 * and having current state be INTERRUPTIBLE.
1958 */
1959 avail = snd_pcm_avail(substream);
1960 if (avail >= runtime->twake)
1961 break;
1962 snd_pcm_stream_unlock_irq(substream);
1963
1964 tout = schedule_timeout(wait_time);
1965
1966 snd_pcm_stream_lock_irq(substream);
1967 set_current_state(TASK_INTERRUPTIBLE);
1968 switch (runtime->state) {
1969 case SNDRV_PCM_STATE_SUSPENDED:
1970 err = -ESTRPIPE;
1971 goto _endloop;
1972 case SNDRV_PCM_STATE_XRUN:
1973 err = -EPIPE;
1974 goto _endloop;
1975 case SNDRV_PCM_STATE_DRAINING:
1976 if (is_playback)
1977 err = -EPIPE;
1978 else
1979 avail = 0; /* indicate draining */
1980 goto _endloop;
1981 case SNDRV_PCM_STATE_OPEN:
1982 case SNDRV_PCM_STATE_SETUP:
1983 case SNDRV_PCM_STATE_DISCONNECTED:
1984 err = -EBADFD;
1985 goto _endloop;
1986 case SNDRV_PCM_STATE_PAUSED:
1987 continue;
1988 }
1989 if (!tout) {
1990 pcm_dbg(substream->pcm,
1991 "%s timeout (DMA or IRQ trouble?)\n",
1992 is_playback ? "playback write" : "capture read");
1993 err = -EIO;
1994 break;
1995 }
1996 }
1997 _endloop:
1998 set_current_state(TASK_RUNNING);
1999 remove_wait_queue(&runtime->tsleep, &wait);
2000 *availp = avail;
2001 return err;
2002}
2003
2004typedef int (*pcm_transfer_f)(struct snd_pcm_substream *substream,
2005 int channel, unsigned long hwoff,
2006 struct iov_iter *iter, unsigned long bytes);
2007
2008typedef int (*pcm_copy_f)(struct snd_pcm_substream *, snd_pcm_uframes_t, void *,
2009 snd_pcm_uframes_t, snd_pcm_uframes_t, pcm_transfer_f,
2010 bool);
2011
2012/* calculate the target DMA-buffer position to be written/read */
2013static void *get_dma_ptr(struct snd_pcm_runtime *runtime,
2014 int channel, unsigned long hwoff)
2015{
2016 return runtime->dma_area + hwoff +
2017 channel * (runtime->dma_bytes / runtime->channels);
2018}
2019
2020/* default copy ops for write; used for both interleaved and non- modes */
2021static int default_write_copy(struct snd_pcm_substream *substream,
2022 int channel, unsigned long hwoff,
2023 struct iov_iter *iter, unsigned long bytes)
2024{
2025 if (copy_from_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2026 bytes, iter) != bytes)
2027 return -EFAULT;
2028 return 0;
2029}
2030
2031/* fill silence instead of copy data; called as a transfer helper
2032 * from __snd_pcm_lib_write() or directly from noninterleaved_copy() when
2033 * a NULL buffer is passed
2034 */
2035static int fill_silence(struct snd_pcm_substream *substream, int channel,
2036 unsigned long hwoff, struct iov_iter *iter,
2037 unsigned long bytes)
2038{
2039 struct snd_pcm_runtime *runtime = substream->runtime;
2040
2041 if (substream->stream != SNDRV_PCM_STREAM_PLAYBACK)
2042 return 0;
2043 if (substream->ops->fill_silence)
2044 return substream->ops->fill_silence(substream, channel,
2045 hwoff, bytes);
2046
2047 snd_pcm_format_set_silence(runtime->format,
2048 get_dma_ptr(runtime, channel, hwoff),
2049 bytes_to_samples(runtime, bytes));
2050 return 0;
2051}
2052
2053/* default copy ops for read; used for both interleaved and non- modes */
2054static int default_read_copy(struct snd_pcm_substream *substream,
2055 int channel, unsigned long hwoff,
2056 struct iov_iter *iter, unsigned long bytes)
2057{
2058 if (copy_to_iter(get_dma_ptr(substream->runtime, channel, hwoff),
2059 bytes, iter) != bytes)
2060 return -EFAULT;
2061 return 0;
2062}
2063
2064/* call transfer with the filled iov_iter */
2065static int do_transfer(struct snd_pcm_substream *substream, int c,
2066 unsigned long hwoff, void *data, unsigned long bytes,
2067 pcm_transfer_f transfer, bool in_kernel)
2068{
2069 struct iov_iter iter;
2070 int err, type;
2071
2072 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
2073 type = ITER_SOURCE;
2074 else
2075 type = ITER_DEST;
2076
2077 if (in_kernel) {
2078 struct kvec kvec = { data, bytes };
2079
2080 iov_iter_kvec(&iter, type, &kvec, 1, bytes);
2081 return transfer(substream, c, hwoff, &iter, bytes);
2082 }
2083
2084 err = import_ubuf(type, (__force void __user *)data, bytes, &iter);
2085 if (err)
2086 return err;
2087 return transfer(substream, c, hwoff, &iter, bytes);
2088}
2089
2090/* call transfer function with the converted pointers and sizes;
2091 * for interleaved mode, it's one shot for all samples
2092 */
2093static int interleaved_copy(struct snd_pcm_substream *substream,
2094 snd_pcm_uframes_t hwoff, void *data,
2095 snd_pcm_uframes_t off,
2096 snd_pcm_uframes_t frames,
2097 pcm_transfer_f transfer,
2098 bool in_kernel)
2099{
2100 struct snd_pcm_runtime *runtime = substream->runtime;
2101
2102 /* convert to bytes */
2103 hwoff = frames_to_bytes(runtime, hwoff);
2104 off = frames_to_bytes(runtime, off);
2105 frames = frames_to_bytes(runtime, frames);
2106
2107 return do_transfer(substream, 0, hwoff, data + off, frames, transfer,
2108 in_kernel);
2109}
2110
2111/* call transfer function with the converted pointers and sizes for each
2112 * non-interleaved channel; when buffer is NULL, silencing instead of copying
2113 */
2114static int noninterleaved_copy(struct snd_pcm_substream *substream,
2115 snd_pcm_uframes_t hwoff, void *data,
2116 snd_pcm_uframes_t off,
2117 snd_pcm_uframes_t frames,
2118 pcm_transfer_f transfer,
2119 bool in_kernel)
2120{
2121 struct snd_pcm_runtime *runtime = substream->runtime;
2122 int channels = runtime->channels;
2123 void **bufs = data;
2124 int c, err;
2125
2126 /* convert to bytes; note that it's not frames_to_bytes() here.
2127 * in non-interleaved mode, we copy for each channel, thus
2128 * each copy is n_samples bytes x channels = whole frames.
2129 */
2130 off = samples_to_bytes(runtime, off);
2131 frames = samples_to_bytes(runtime, frames);
2132 hwoff = samples_to_bytes(runtime, hwoff);
2133 for (c = 0; c < channels; ++c, ++bufs) {
2134 if (!data || !*bufs)
2135 err = fill_silence(substream, c, hwoff, NULL, frames);
2136 else
2137 err = do_transfer(substream, c, hwoff, *bufs + off,
2138 frames, transfer, in_kernel);
2139 if (err < 0)
2140 return err;
2141 }
2142 return 0;
2143}
2144
2145/* fill silence on the given buffer position;
2146 * called from snd_pcm_playback_silence()
2147 */
2148static int fill_silence_frames(struct snd_pcm_substream *substream,
2149 snd_pcm_uframes_t off, snd_pcm_uframes_t frames)
2150{
2151 if (substream->runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
2152 substream->runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED)
2153 return interleaved_copy(substream, off, NULL, 0, frames,
2154 fill_silence, true);
2155 else
2156 return noninterleaved_copy(substream, off, NULL, 0, frames,
2157 fill_silence, true);
2158}
2159
2160/* sanity-check for read/write methods */
2161static int pcm_sanity_check(struct snd_pcm_substream *substream)
2162{
2163 struct snd_pcm_runtime *runtime;
2164 if (PCM_RUNTIME_CHECK(substream))
2165 return -ENXIO;
2166 runtime = substream->runtime;
2167 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2168 return -EINVAL;
2169 if (runtime->state == SNDRV_PCM_STATE_OPEN)
2170 return -EBADFD;
2171 return 0;
2172}
2173
2174static int pcm_accessible_state(struct snd_pcm_runtime *runtime)
2175{
2176 switch (runtime->state) {
2177 case SNDRV_PCM_STATE_PREPARED:
2178 case SNDRV_PCM_STATE_RUNNING:
2179 case SNDRV_PCM_STATE_PAUSED:
2180 return 0;
2181 case SNDRV_PCM_STATE_XRUN:
2182 return -EPIPE;
2183 case SNDRV_PCM_STATE_SUSPENDED:
2184 return -ESTRPIPE;
2185 default:
2186 return -EBADFD;
2187 }
2188}
2189
2190/* update to the given appl_ptr and call ack callback if needed;
2191 * when an error is returned, take back to the original value
2192 */
2193int pcm_lib_apply_appl_ptr(struct snd_pcm_substream *substream,
2194 snd_pcm_uframes_t appl_ptr)
2195{
2196 struct snd_pcm_runtime *runtime = substream->runtime;
2197 snd_pcm_uframes_t old_appl_ptr = runtime->control->appl_ptr;
2198 snd_pcm_sframes_t diff;
2199 int ret;
2200
2201 if (old_appl_ptr == appl_ptr)
2202 return 0;
2203
2204 if (appl_ptr >= runtime->boundary)
2205 return -EINVAL;
2206 /*
2207 * check if a rewind is requested by the application
2208 */
2209 if (substream->runtime->info & SNDRV_PCM_INFO_NO_REWINDS) {
2210 diff = appl_ptr - old_appl_ptr;
2211 if (diff >= 0) {
2212 if (diff > runtime->buffer_size)
2213 return -EINVAL;
2214 } else {
2215 if (runtime->boundary + diff > runtime->buffer_size)
2216 return -EINVAL;
2217 }
2218 }
2219
2220 runtime->control->appl_ptr = appl_ptr;
2221 if (substream->ops->ack) {
2222 ret = substream->ops->ack(substream);
2223 if (ret < 0) {
2224 runtime->control->appl_ptr = old_appl_ptr;
2225 if (ret == -EPIPE)
2226 __snd_pcm_xrun(substream);
2227 return ret;
2228 }
2229 }
2230
2231 trace_applptr(substream, old_appl_ptr, appl_ptr);
2232
2233 return 0;
2234}
2235
2236/* the common loop for read/write data */
2237snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
2238 void *data, bool interleaved,
2239 snd_pcm_uframes_t size, bool in_kernel)
2240{
2241 struct snd_pcm_runtime *runtime = substream->runtime;
2242 snd_pcm_uframes_t xfer = 0;
2243 snd_pcm_uframes_t offset = 0;
2244 snd_pcm_uframes_t avail;
2245 pcm_copy_f writer;
2246 pcm_transfer_f transfer;
2247 bool nonblock;
2248 bool is_playback;
2249 int err;
2250
2251 err = pcm_sanity_check(substream);
2252 if (err < 0)
2253 return err;
2254
2255 is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
2256 if (interleaved) {
2257 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2258 runtime->channels > 1)
2259 return -EINVAL;
2260 writer = interleaved_copy;
2261 } else {
2262 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2263 return -EINVAL;
2264 writer = noninterleaved_copy;
2265 }
2266
2267 if (!data) {
2268 if (is_playback)
2269 transfer = fill_silence;
2270 else
2271 return -EINVAL;
2272 } else {
2273 if (substream->ops->copy)
2274 transfer = substream->ops->copy;
2275 else
2276 transfer = is_playback ?
2277 default_write_copy : default_read_copy;
2278 }
2279
2280 if (size == 0)
2281 return 0;
2282
2283 nonblock = !!(substream->f_flags & O_NONBLOCK);
2284
2285 snd_pcm_stream_lock_irq(substream);
2286 err = pcm_accessible_state(runtime);
2287 if (err < 0)
2288 goto _end_unlock;
2289
2290 runtime->twake = runtime->control->avail_min ? : 1;
2291 if (runtime->state == SNDRV_PCM_STATE_RUNNING)
2292 snd_pcm_update_hw_ptr(substream);
2293
2294 /*
2295 * If size < start_threshold, wait indefinitely. Another
2296 * thread may start capture
2297 */
2298 if (!is_playback &&
2299 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2300 size >= runtime->start_threshold) {
2301 err = snd_pcm_start(substream);
2302 if (err < 0)
2303 goto _end_unlock;
2304 }
2305
2306 avail = snd_pcm_avail(substream);
2307
2308 while (size > 0) {
2309 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2310 snd_pcm_uframes_t cont;
2311 if (!avail) {
2312 if (!is_playback &&
2313 runtime->state == SNDRV_PCM_STATE_DRAINING) {
2314 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2315 goto _end_unlock;
2316 }
2317 if (nonblock) {
2318 err = -EAGAIN;
2319 goto _end_unlock;
2320 }
2321 runtime->twake = min_t(snd_pcm_uframes_t, size,
2322 runtime->control->avail_min ? : 1);
2323 err = wait_for_avail(substream, &avail);
2324 if (err < 0)
2325 goto _end_unlock;
2326 if (!avail)
2327 continue; /* draining */
2328 }
2329 frames = size > avail ? avail : size;
2330 appl_ptr = READ_ONCE(runtime->control->appl_ptr);
2331 appl_ofs = appl_ptr % runtime->buffer_size;
2332 cont = runtime->buffer_size - appl_ofs;
2333 if (frames > cont)
2334 frames = cont;
2335 if (snd_BUG_ON(!frames)) {
2336 err = -EINVAL;
2337 goto _end_unlock;
2338 }
2339 if (!atomic_inc_unless_negative(&runtime->buffer_accessing)) {
2340 err = -EBUSY;
2341 goto _end_unlock;
2342 }
2343 snd_pcm_stream_unlock_irq(substream);
2344 if (!is_playback)
2345 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_CPU);
2346 err = writer(substream, appl_ofs, data, offset, frames,
2347 transfer, in_kernel);
2348 if (is_playback)
2349 snd_pcm_dma_buffer_sync(substream, SNDRV_DMA_SYNC_DEVICE);
2350 snd_pcm_stream_lock_irq(substream);
2351 atomic_dec(&runtime->buffer_accessing);
2352 if (err < 0)
2353 goto _end_unlock;
2354 err = pcm_accessible_state(runtime);
2355 if (err < 0)
2356 goto _end_unlock;
2357 appl_ptr += frames;
2358 if (appl_ptr >= runtime->boundary)
2359 appl_ptr -= runtime->boundary;
2360 err = pcm_lib_apply_appl_ptr(substream, appl_ptr);
2361 if (err < 0)
2362 goto _end_unlock;
2363
2364 offset += frames;
2365 size -= frames;
2366 xfer += frames;
2367 avail -= frames;
2368 if (is_playback &&
2369 runtime->state == SNDRV_PCM_STATE_PREPARED &&
2370 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
2371 err = snd_pcm_start(substream);
2372 if (err < 0)
2373 goto _end_unlock;
2374 }
2375 }
2376 _end_unlock:
2377 runtime->twake = 0;
2378 if (xfer > 0 && err >= 0)
2379 snd_pcm_update_state(substream, runtime);
2380 snd_pcm_stream_unlock_irq(substream);
2381 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2382}
2383EXPORT_SYMBOL(__snd_pcm_lib_xfer);
2384
2385/*
2386 * standard channel mapping helpers
2387 */
2388
2389/* default channel maps for multi-channel playbacks, up to 8 channels */
2390const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[] = {
2391 { .channels = 1,
2392 .map = { SNDRV_CHMAP_MONO } },
2393 { .channels = 2,
2394 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2395 { .channels = 4,
2396 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2397 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2398 { .channels = 6,
2399 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2400 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2401 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE } },
2402 { .channels = 8,
2403 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2404 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2405 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2406 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2407 { }
2408};
2409EXPORT_SYMBOL_GPL(snd_pcm_std_chmaps);
2410
2411/* alternative channel maps with CLFE <-> surround swapped for 6/8 channels */
2412const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[] = {
2413 { .channels = 1,
2414 .map = { SNDRV_CHMAP_MONO } },
2415 { .channels = 2,
2416 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR } },
2417 { .channels = 4,
2418 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2419 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2420 { .channels = 6,
2421 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2422 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2423 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR } },
2424 { .channels = 8,
2425 .map = { SNDRV_CHMAP_FL, SNDRV_CHMAP_FR,
2426 SNDRV_CHMAP_FC, SNDRV_CHMAP_LFE,
2427 SNDRV_CHMAP_RL, SNDRV_CHMAP_RR,
2428 SNDRV_CHMAP_SL, SNDRV_CHMAP_SR } },
2429 { }
2430};
2431EXPORT_SYMBOL_GPL(snd_pcm_alt_chmaps);
2432
2433static bool valid_chmap_channels(const struct snd_pcm_chmap *info, int ch)
2434{
2435 if (ch > info->max_channels)
2436 return false;
2437 return !info->channel_mask || (info->channel_mask & (1U << ch));
2438}
2439
2440static int pcm_chmap_ctl_info(struct snd_kcontrol *kcontrol,
2441 struct snd_ctl_elem_info *uinfo)
2442{
2443 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2444
2445 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2446 uinfo->count = info->max_channels;
2447 uinfo->value.integer.min = 0;
2448 uinfo->value.integer.max = SNDRV_CHMAP_LAST;
2449 return 0;
2450}
2451
2452/* get callback for channel map ctl element
2453 * stores the channel position firstly matching with the current channels
2454 */
2455static int pcm_chmap_ctl_get(struct snd_kcontrol *kcontrol,
2456 struct snd_ctl_elem_value *ucontrol)
2457{
2458 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2459 unsigned int idx = snd_ctl_get_ioffidx(kcontrol, &ucontrol->id);
2460 struct snd_pcm_substream *substream;
2461 const struct snd_pcm_chmap_elem *map;
2462
2463 if (!info->chmap)
2464 return -EINVAL;
2465 substream = snd_pcm_chmap_substream(info, idx);
2466 if (!substream)
2467 return -ENODEV;
2468 memset(ucontrol->value.integer.value, 0,
2469 sizeof(long) * info->max_channels);
2470 if (!substream->runtime)
2471 return 0; /* no channels set */
2472 for (map = info->chmap; map->channels; map++) {
2473 int i;
2474 if (map->channels == substream->runtime->channels &&
2475 valid_chmap_channels(info, map->channels)) {
2476 for (i = 0; i < map->channels; i++)
2477 ucontrol->value.integer.value[i] = map->map[i];
2478 return 0;
2479 }
2480 }
2481 return -EINVAL;
2482}
2483
2484/* tlv callback for channel map ctl element
2485 * expands the pre-defined channel maps in a form of TLV
2486 */
2487static int pcm_chmap_ctl_tlv(struct snd_kcontrol *kcontrol, int op_flag,
2488 unsigned int size, unsigned int __user *tlv)
2489{
2490 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2491 const struct snd_pcm_chmap_elem *map;
2492 unsigned int __user *dst;
2493 int c, count = 0;
2494
2495 if (!info->chmap)
2496 return -EINVAL;
2497 if (size < 8)
2498 return -ENOMEM;
2499 if (put_user(SNDRV_CTL_TLVT_CONTAINER, tlv))
2500 return -EFAULT;
2501 size -= 8;
2502 dst = tlv + 2;
2503 for (map = info->chmap; map->channels; map++) {
2504 int chs_bytes = map->channels * 4;
2505 if (!valid_chmap_channels(info, map->channels))
2506 continue;
2507 if (size < 8)
2508 return -ENOMEM;
2509 if (put_user(SNDRV_CTL_TLVT_CHMAP_FIXED, dst) ||
2510 put_user(chs_bytes, dst + 1))
2511 return -EFAULT;
2512 dst += 2;
2513 size -= 8;
2514 count += 8;
2515 if (size < chs_bytes)
2516 return -ENOMEM;
2517 size -= chs_bytes;
2518 count += chs_bytes;
2519 for (c = 0; c < map->channels; c++) {
2520 if (put_user(map->map[c], dst))
2521 return -EFAULT;
2522 dst++;
2523 }
2524 }
2525 if (put_user(count, tlv + 1))
2526 return -EFAULT;
2527 return 0;
2528}
2529
2530static void pcm_chmap_ctl_private_free(struct snd_kcontrol *kcontrol)
2531{
2532 struct snd_pcm_chmap *info = snd_kcontrol_chip(kcontrol);
2533 info->pcm->streams[info->stream].chmap_kctl = NULL;
2534 kfree(info);
2535}
2536
2537/**
2538 * snd_pcm_add_chmap_ctls - create channel-mapping control elements
2539 * @pcm: the assigned PCM instance
2540 * @stream: stream direction
2541 * @chmap: channel map elements (for query)
2542 * @max_channels: the max number of channels for the stream
2543 * @private_value: the value passed to each kcontrol's private_value field
2544 * @info_ret: store struct snd_pcm_chmap instance if non-NULL
2545 *
2546 * Create channel-mapping control elements assigned to the given PCM stream(s).
2547 * Return: Zero if successful, or a negative error value.
2548 */
2549int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
2550 const struct snd_pcm_chmap_elem *chmap,
2551 int max_channels,
2552 unsigned long private_value,
2553 struct snd_pcm_chmap **info_ret)
2554{
2555 struct snd_pcm_chmap *info;
2556 struct snd_kcontrol_new knew = {
2557 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
2558 .access = SNDRV_CTL_ELEM_ACCESS_READ |
2559 SNDRV_CTL_ELEM_ACCESS_TLV_READ |
2560 SNDRV_CTL_ELEM_ACCESS_TLV_CALLBACK,
2561 .info = pcm_chmap_ctl_info,
2562 .get = pcm_chmap_ctl_get,
2563 .tlv.c = pcm_chmap_ctl_tlv,
2564 };
2565 int err;
2566
2567 if (WARN_ON(pcm->streams[stream].chmap_kctl))
2568 return -EBUSY;
2569 info = kzalloc(sizeof(*info), GFP_KERNEL);
2570 if (!info)
2571 return -ENOMEM;
2572 info->pcm = pcm;
2573 info->stream = stream;
2574 info->chmap = chmap;
2575 info->max_channels = max_channels;
2576 if (stream == SNDRV_PCM_STREAM_PLAYBACK)
2577 knew.name = "Playback Channel Map";
2578 else
2579 knew.name = "Capture Channel Map";
2580 knew.device = pcm->device;
2581 knew.count = pcm->streams[stream].substream_count;
2582 knew.private_value = private_value;
2583 info->kctl = snd_ctl_new1(&knew, info);
2584 if (!info->kctl) {
2585 kfree(info);
2586 return -ENOMEM;
2587 }
2588 info->kctl->private_free = pcm_chmap_ctl_private_free;
2589 err = snd_ctl_add(pcm->card, info->kctl);
2590 if (err < 0)
2591 return err;
2592 pcm->streams[stream].chmap_kctl = info->kctl;
2593 if (info_ret)
2594 *info_ret = info;
2595 return 0;
2596}
2597EXPORT_SYMBOL_GPL(snd_pcm_add_chmap_ctls);
1/*
2 * Digital Audio (PCM) abstract layer
3 * Copyright (c) by Jaroslav Kysela <perex@perex.cz>
4 * Abramo Bagnara <abramo@alsa-project.org>
5 *
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 *
21 */
22
23#include <linux/slab.h>
24#include <linux/time.h>
25#include <linux/math64.h>
26#include <linux/export.h>
27#include <sound/core.h>
28#include <sound/control.h>
29#include <sound/info.h>
30#include <sound/pcm.h>
31#include <sound/pcm_params.h>
32#include <sound/timer.h>
33
34/*
35 * fill ring buffer with silence
36 * runtime->silence_start: starting pointer to silence area
37 * runtime->silence_filled: size filled with silence
38 * runtime->silence_threshold: threshold from application
39 * runtime->silence_size: maximal size from application
40 *
41 * when runtime->silence_size >= runtime->boundary - fill processed area with silence immediately
42 */
43void snd_pcm_playback_silence(struct snd_pcm_substream *substream, snd_pcm_uframes_t new_hw_ptr)
44{
45 struct snd_pcm_runtime *runtime = substream->runtime;
46 snd_pcm_uframes_t frames, ofs, transfer;
47
48 if (runtime->silence_size < runtime->boundary) {
49 snd_pcm_sframes_t noise_dist, n;
50 if (runtime->silence_start != runtime->control->appl_ptr) {
51 n = runtime->control->appl_ptr - runtime->silence_start;
52 if (n < 0)
53 n += runtime->boundary;
54 if ((snd_pcm_uframes_t)n < runtime->silence_filled)
55 runtime->silence_filled -= n;
56 else
57 runtime->silence_filled = 0;
58 runtime->silence_start = runtime->control->appl_ptr;
59 }
60 if (runtime->silence_filled >= runtime->buffer_size)
61 return;
62 noise_dist = snd_pcm_playback_hw_avail(runtime) + runtime->silence_filled;
63 if (noise_dist >= (snd_pcm_sframes_t) runtime->silence_threshold)
64 return;
65 frames = runtime->silence_threshold - noise_dist;
66 if (frames > runtime->silence_size)
67 frames = runtime->silence_size;
68 } else {
69 if (new_hw_ptr == ULONG_MAX) { /* initialization */
70 snd_pcm_sframes_t avail = snd_pcm_playback_hw_avail(runtime);
71 if (avail > runtime->buffer_size)
72 avail = runtime->buffer_size;
73 runtime->silence_filled = avail > 0 ? avail : 0;
74 runtime->silence_start = (runtime->status->hw_ptr +
75 runtime->silence_filled) %
76 runtime->boundary;
77 } else {
78 ofs = runtime->status->hw_ptr;
79 frames = new_hw_ptr - ofs;
80 if ((snd_pcm_sframes_t)frames < 0)
81 frames += runtime->boundary;
82 runtime->silence_filled -= frames;
83 if ((snd_pcm_sframes_t)runtime->silence_filled < 0) {
84 runtime->silence_filled = 0;
85 runtime->silence_start = new_hw_ptr;
86 } else {
87 runtime->silence_start = ofs;
88 }
89 }
90 frames = runtime->buffer_size - runtime->silence_filled;
91 }
92 if (snd_BUG_ON(frames > runtime->buffer_size))
93 return;
94 if (frames == 0)
95 return;
96 ofs = runtime->silence_start % runtime->buffer_size;
97 while (frames > 0) {
98 transfer = ofs + frames > runtime->buffer_size ? runtime->buffer_size - ofs : frames;
99 if (runtime->access == SNDRV_PCM_ACCESS_RW_INTERLEAVED ||
100 runtime->access == SNDRV_PCM_ACCESS_MMAP_INTERLEAVED) {
101 if (substream->ops->silence) {
102 int err;
103 err = substream->ops->silence(substream, -1, ofs, transfer);
104 snd_BUG_ON(err < 0);
105 } else {
106 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, ofs);
107 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer * runtime->channels);
108 }
109 } else {
110 unsigned int c;
111 unsigned int channels = runtime->channels;
112 if (substream->ops->silence) {
113 for (c = 0; c < channels; ++c) {
114 int err;
115 err = substream->ops->silence(substream, c, ofs, transfer);
116 snd_BUG_ON(err < 0);
117 }
118 } else {
119 size_t dma_csize = runtime->dma_bytes / channels;
120 for (c = 0; c < channels; ++c) {
121 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, ofs);
122 snd_pcm_format_set_silence(runtime->format, hwbuf, transfer);
123 }
124 }
125 }
126 runtime->silence_filled += transfer;
127 frames -= transfer;
128 ofs = 0;
129 }
130}
131
132#ifdef CONFIG_SND_DEBUG
133void snd_pcm_debug_name(struct snd_pcm_substream *substream,
134 char *name, size_t len)
135{
136 snprintf(name, len, "pcmC%dD%d%c:%d",
137 substream->pcm->card->number,
138 substream->pcm->device,
139 substream->stream ? 'c' : 'p',
140 substream->number);
141}
142EXPORT_SYMBOL(snd_pcm_debug_name);
143#endif
144
145#define XRUN_DEBUG_BASIC (1<<0)
146#define XRUN_DEBUG_STACK (1<<1) /* dump also stack */
147#define XRUN_DEBUG_JIFFIESCHECK (1<<2) /* do jiffies check */
148#define XRUN_DEBUG_PERIODUPDATE (1<<3) /* full period update info */
149#define XRUN_DEBUG_HWPTRUPDATE (1<<4) /* full hwptr update info */
150#define XRUN_DEBUG_LOG (1<<5) /* show last 10 positions on err */
151#define XRUN_DEBUG_LOGONCE (1<<6) /* do above only once */
152
153#ifdef CONFIG_SND_PCM_XRUN_DEBUG
154
155#define xrun_debug(substream, mask) \
156 ((substream)->pstr->xrun_debug & (mask))
157#else
158#define xrun_debug(substream, mask) 0
159#endif
160
161#define dump_stack_on_xrun(substream) do { \
162 if (xrun_debug(substream, XRUN_DEBUG_STACK)) \
163 dump_stack(); \
164 } while (0)
165
166static void xrun(struct snd_pcm_substream *substream)
167{
168 struct snd_pcm_runtime *runtime = substream->runtime;
169
170 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
171 snd_pcm_gettime(runtime, (struct timespec *)&runtime->status->tstamp);
172 snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
173 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) {
174 char name[16];
175 snd_pcm_debug_name(substream, name, sizeof(name));
176 snd_printd(KERN_DEBUG "XRUN: %s\n", name);
177 dump_stack_on_xrun(substream);
178 }
179}
180
181#ifdef CONFIG_SND_PCM_XRUN_DEBUG
182#define hw_ptr_error(substream, fmt, args...) \
183 do { \
184 if (xrun_debug(substream, XRUN_DEBUG_BASIC)) { \
185 xrun_log_show(substream); \
186 if (printk_ratelimit()) { \
187 snd_printd("PCM: " fmt, ##args); \
188 } \
189 dump_stack_on_xrun(substream); \
190 } \
191 } while (0)
192
193#define XRUN_LOG_CNT 10
194
195struct hwptr_log_entry {
196 unsigned int in_interrupt;
197 unsigned long jiffies;
198 snd_pcm_uframes_t pos;
199 snd_pcm_uframes_t period_size;
200 snd_pcm_uframes_t buffer_size;
201 snd_pcm_uframes_t old_hw_ptr;
202 snd_pcm_uframes_t hw_ptr_base;
203};
204
205struct snd_pcm_hwptr_log {
206 unsigned int idx;
207 unsigned int hit: 1;
208 struct hwptr_log_entry entries[XRUN_LOG_CNT];
209};
210
211static void xrun_log(struct snd_pcm_substream *substream,
212 snd_pcm_uframes_t pos, int in_interrupt)
213{
214 struct snd_pcm_runtime *runtime = substream->runtime;
215 struct snd_pcm_hwptr_log *log = runtime->hwptr_log;
216 struct hwptr_log_entry *entry;
217
218 if (log == NULL) {
219 log = kzalloc(sizeof(*log), GFP_ATOMIC);
220 if (log == NULL)
221 return;
222 runtime->hwptr_log = log;
223 } else {
224 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
225 return;
226 }
227 entry = &log->entries[log->idx];
228 entry->in_interrupt = in_interrupt;
229 entry->jiffies = jiffies;
230 entry->pos = pos;
231 entry->period_size = runtime->period_size;
232 entry->buffer_size = runtime->buffer_size;
233 entry->old_hw_ptr = runtime->status->hw_ptr;
234 entry->hw_ptr_base = runtime->hw_ptr_base;
235 log->idx = (log->idx + 1) % XRUN_LOG_CNT;
236}
237
238static void xrun_log_show(struct snd_pcm_substream *substream)
239{
240 struct snd_pcm_hwptr_log *log = substream->runtime->hwptr_log;
241 struct hwptr_log_entry *entry;
242 char name[16];
243 unsigned int idx;
244 int cnt;
245
246 if (log == NULL)
247 return;
248 if (xrun_debug(substream, XRUN_DEBUG_LOGONCE) && log->hit)
249 return;
250 snd_pcm_debug_name(substream, name, sizeof(name));
251 for (cnt = 0, idx = log->idx; cnt < XRUN_LOG_CNT; cnt++) {
252 entry = &log->entries[idx];
253 if (entry->period_size == 0)
254 break;
255 snd_printd("hwptr log: %s: %sj=%lu, pos=%ld/%ld/%ld, "
256 "hwptr=%ld/%ld\n",
257 name, entry->in_interrupt ? "[Q] " : "",
258 entry->jiffies,
259 (unsigned long)entry->pos,
260 (unsigned long)entry->period_size,
261 (unsigned long)entry->buffer_size,
262 (unsigned long)entry->old_hw_ptr,
263 (unsigned long)entry->hw_ptr_base);
264 idx++;
265 idx %= XRUN_LOG_CNT;
266 }
267 log->hit = 1;
268}
269
270#else /* ! CONFIG_SND_PCM_XRUN_DEBUG */
271
272#define hw_ptr_error(substream, fmt, args...) do { } while (0)
273#define xrun_log(substream, pos, in_interrupt) do { } while (0)
274#define xrun_log_show(substream) do { } while (0)
275
276#endif
277
278int snd_pcm_update_state(struct snd_pcm_substream *substream,
279 struct snd_pcm_runtime *runtime)
280{
281 snd_pcm_uframes_t avail;
282
283 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
284 avail = snd_pcm_playback_avail(runtime);
285 else
286 avail = snd_pcm_capture_avail(runtime);
287 if (avail > runtime->avail_max)
288 runtime->avail_max = avail;
289 if (runtime->status->state == SNDRV_PCM_STATE_DRAINING) {
290 if (avail >= runtime->buffer_size) {
291 snd_pcm_drain_done(substream);
292 return -EPIPE;
293 }
294 } else {
295 if (avail >= runtime->stop_threshold) {
296 xrun(substream);
297 return -EPIPE;
298 }
299 }
300 if (runtime->twake) {
301 if (avail >= runtime->twake)
302 wake_up(&runtime->tsleep);
303 } else if (avail >= runtime->control->avail_min)
304 wake_up(&runtime->sleep);
305 return 0;
306}
307
308static int snd_pcm_update_hw_ptr0(struct snd_pcm_substream *substream,
309 unsigned int in_interrupt)
310{
311 struct snd_pcm_runtime *runtime = substream->runtime;
312 snd_pcm_uframes_t pos;
313 snd_pcm_uframes_t old_hw_ptr, new_hw_ptr, hw_base;
314 snd_pcm_sframes_t hdelta, delta;
315 unsigned long jdelta;
316 unsigned long curr_jiffies;
317 struct timespec curr_tstamp;
318
319 old_hw_ptr = runtime->status->hw_ptr;
320
321 /*
322 * group pointer, time and jiffies reads to allow for more
323 * accurate correlations/corrections.
324 * The values are stored at the end of this routine after
325 * corrections for hw_ptr position
326 */
327 pos = substream->ops->pointer(substream);
328 curr_jiffies = jiffies;
329 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
330 snd_pcm_gettime(runtime, (struct timespec *)&curr_tstamp);
331
332 if (pos == SNDRV_PCM_POS_XRUN) {
333 xrun(substream);
334 return -EPIPE;
335 }
336 if (pos >= runtime->buffer_size) {
337 if (printk_ratelimit()) {
338 char name[16];
339 snd_pcm_debug_name(substream, name, sizeof(name));
340 xrun_log_show(substream);
341 snd_printd(KERN_ERR "BUG: %s, pos = %ld, "
342 "buffer size = %ld, period size = %ld\n",
343 name, pos, runtime->buffer_size,
344 runtime->period_size);
345 }
346 pos = 0;
347 }
348 pos -= pos % runtime->min_align;
349 if (xrun_debug(substream, XRUN_DEBUG_LOG))
350 xrun_log(substream, pos, in_interrupt);
351 hw_base = runtime->hw_ptr_base;
352 new_hw_ptr = hw_base + pos;
353 if (in_interrupt) {
354 /* we know that one period was processed */
355 /* delta = "expected next hw_ptr" for in_interrupt != 0 */
356 delta = runtime->hw_ptr_interrupt + runtime->period_size;
357 if (delta > new_hw_ptr) {
358 /* check for double acknowledged interrupts */
359 hdelta = curr_jiffies - runtime->hw_ptr_jiffies;
360 if (hdelta > runtime->hw_ptr_buffer_jiffies/2) {
361 hw_base += runtime->buffer_size;
362 if (hw_base >= runtime->boundary)
363 hw_base = 0;
364 new_hw_ptr = hw_base + pos;
365 goto __delta;
366 }
367 }
368 }
369 /* new_hw_ptr might be lower than old_hw_ptr in case when */
370 /* pointer crosses the end of the ring buffer */
371 if (new_hw_ptr < old_hw_ptr) {
372 hw_base += runtime->buffer_size;
373 if (hw_base >= runtime->boundary)
374 hw_base = 0;
375 new_hw_ptr = hw_base + pos;
376 }
377 __delta:
378 delta = new_hw_ptr - old_hw_ptr;
379 if (delta < 0)
380 delta += runtime->boundary;
381 if (xrun_debug(substream, in_interrupt ?
382 XRUN_DEBUG_PERIODUPDATE : XRUN_DEBUG_HWPTRUPDATE)) {
383 char name[16];
384 snd_pcm_debug_name(substream, name, sizeof(name));
385 snd_printd("%s_update: %s: pos=%u/%u/%u, "
386 "hwptr=%ld/%ld/%ld/%ld\n",
387 in_interrupt ? "period" : "hwptr",
388 name,
389 (unsigned int)pos,
390 (unsigned int)runtime->period_size,
391 (unsigned int)runtime->buffer_size,
392 (unsigned long)delta,
393 (unsigned long)old_hw_ptr,
394 (unsigned long)new_hw_ptr,
395 (unsigned long)runtime->hw_ptr_base);
396 }
397
398 if (runtime->no_period_wakeup) {
399 snd_pcm_sframes_t xrun_threshold;
400 /*
401 * Without regular period interrupts, we have to check
402 * the elapsed time to detect xruns.
403 */
404 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
405 if (jdelta < runtime->hw_ptr_buffer_jiffies / 2)
406 goto no_delta_check;
407 hdelta = jdelta - delta * HZ / runtime->rate;
408 xrun_threshold = runtime->hw_ptr_buffer_jiffies / 2 + 1;
409 while (hdelta > xrun_threshold) {
410 delta += runtime->buffer_size;
411 hw_base += runtime->buffer_size;
412 if (hw_base >= runtime->boundary)
413 hw_base = 0;
414 new_hw_ptr = hw_base + pos;
415 hdelta -= runtime->hw_ptr_buffer_jiffies;
416 }
417 goto no_delta_check;
418 }
419
420 /* something must be really wrong */
421 if (delta >= runtime->buffer_size + runtime->period_size) {
422 hw_ptr_error(substream,
423 "Unexpected hw_pointer value %s"
424 "(stream=%i, pos=%ld, new_hw_ptr=%ld, "
425 "old_hw_ptr=%ld)\n",
426 in_interrupt ? "[Q] " : "[P]",
427 substream->stream, (long)pos,
428 (long)new_hw_ptr, (long)old_hw_ptr);
429 return 0;
430 }
431
432 /* Do jiffies check only in xrun_debug mode */
433 if (!xrun_debug(substream, XRUN_DEBUG_JIFFIESCHECK))
434 goto no_jiffies_check;
435
436 /* Skip the jiffies check for hardwares with BATCH flag.
437 * Such hardware usually just increases the position at each IRQ,
438 * thus it can't give any strange position.
439 */
440 if (runtime->hw.info & SNDRV_PCM_INFO_BATCH)
441 goto no_jiffies_check;
442 hdelta = delta;
443 if (hdelta < runtime->delay)
444 goto no_jiffies_check;
445 hdelta -= runtime->delay;
446 jdelta = curr_jiffies - runtime->hw_ptr_jiffies;
447 if (((hdelta * HZ) / runtime->rate) > jdelta + HZ/100) {
448 delta = jdelta /
449 (((runtime->period_size * HZ) / runtime->rate)
450 + HZ/100);
451 /* move new_hw_ptr according jiffies not pos variable */
452 new_hw_ptr = old_hw_ptr;
453 hw_base = delta;
454 /* use loop to avoid checks for delta overflows */
455 /* the delta value is small or zero in most cases */
456 while (delta > 0) {
457 new_hw_ptr += runtime->period_size;
458 if (new_hw_ptr >= runtime->boundary)
459 new_hw_ptr -= runtime->boundary;
460 delta--;
461 }
462 /* align hw_base to buffer_size */
463 hw_ptr_error(substream,
464 "hw_ptr skipping! %s"
465 "(pos=%ld, delta=%ld, period=%ld, "
466 "jdelta=%lu/%lu/%lu, hw_ptr=%ld/%ld)\n",
467 in_interrupt ? "[Q] " : "",
468 (long)pos, (long)hdelta,
469 (long)runtime->period_size, jdelta,
470 ((hdelta * HZ) / runtime->rate), hw_base,
471 (unsigned long)old_hw_ptr,
472 (unsigned long)new_hw_ptr);
473 /* reset values to proper state */
474 delta = 0;
475 hw_base = new_hw_ptr - (new_hw_ptr % runtime->buffer_size);
476 }
477 no_jiffies_check:
478 if (delta > runtime->period_size + runtime->period_size / 2) {
479 hw_ptr_error(substream,
480 "Lost interrupts? %s"
481 "(stream=%i, delta=%ld, new_hw_ptr=%ld, "
482 "old_hw_ptr=%ld)\n",
483 in_interrupt ? "[Q] " : "",
484 substream->stream, (long)delta,
485 (long)new_hw_ptr,
486 (long)old_hw_ptr);
487 }
488
489 no_delta_check:
490 if (runtime->status->hw_ptr == new_hw_ptr)
491 return 0;
492
493 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
494 runtime->silence_size > 0)
495 snd_pcm_playback_silence(substream, new_hw_ptr);
496
497 if (in_interrupt) {
498 delta = new_hw_ptr - runtime->hw_ptr_interrupt;
499 if (delta < 0)
500 delta += runtime->boundary;
501 delta -= (snd_pcm_uframes_t)delta % runtime->period_size;
502 runtime->hw_ptr_interrupt += delta;
503 if (runtime->hw_ptr_interrupt >= runtime->boundary)
504 runtime->hw_ptr_interrupt -= runtime->boundary;
505 }
506 runtime->hw_ptr_base = hw_base;
507 runtime->status->hw_ptr = new_hw_ptr;
508 runtime->hw_ptr_jiffies = curr_jiffies;
509 if (runtime->tstamp_mode == SNDRV_PCM_TSTAMP_ENABLE)
510 runtime->status->tstamp = curr_tstamp;
511
512 return snd_pcm_update_state(substream, runtime);
513}
514
515/* CAUTION: call it with irq disabled */
516int snd_pcm_update_hw_ptr(struct snd_pcm_substream *substream)
517{
518 return snd_pcm_update_hw_ptr0(substream, 0);
519}
520
521/**
522 * snd_pcm_set_ops - set the PCM operators
523 * @pcm: the pcm instance
524 * @direction: stream direction, SNDRV_PCM_STREAM_XXX
525 * @ops: the operator table
526 *
527 * Sets the given PCM operators to the pcm instance.
528 */
529void snd_pcm_set_ops(struct snd_pcm *pcm, int direction, struct snd_pcm_ops *ops)
530{
531 struct snd_pcm_str *stream = &pcm->streams[direction];
532 struct snd_pcm_substream *substream;
533
534 for (substream = stream->substream; substream != NULL; substream = substream->next)
535 substream->ops = ops;
536}
537
538EXPORT_SYMBOL(snd_pcm_set_ops);
539
540/**
541 * snd_pcm_sync - set the PCM sync id
542 * @substream: the pcm substream
543 *
544 * Sets the PCM sync identifier for the card.
545 */
546void snd_pcm_set_sync(struct snd_pcm_substream *substream)
547{
548 struct snd_pcm_runtime *runtime = substream->runtime;
549
550 runtime->sync.id32[0] = substream->pcm->card->number;
551 runtime->sync.id32[1] = -1;
552 runtime->sync.id32[2] = -1;
553 runtime->sync.id32[3] = -1;
554}
555
556EXPORT_SYMBOL(snd_pcm_set_sync);
557
558/*
559 * Standard ioctl routine
560 */
561
562static inline unsigned int div32(unsigned int a, unsigned int b,
563 unsigned int *r)
564{
565 if (b == 0) {
566 *r = 0;
567 return UINT_MAX;
568 }
569 *r = a % b;
570 return a / b;
571}
572
573static inline unsigned int div_down(unsigned int a, unsigned int b)
574{
575 if (b == 0)
576 return UINT_MAX;
577 return a / b;
578}
579
580static inline unsigned int div_up(unsigned int a, unsigned int b)
581{
582 unsigned int r;
583 unsigned int q;
584 if (b == 0)
585 return UINT_MAX;
586 q = div32(a, b, &r);
587 if (r)
588 ++q;
589 return q;
590}
591
592static inline unsigned int mul(unsigned int a, unsigned int b)
593{
594 if (a == 0)
595 return 0;
596 if (div_down(UINT_MAX, a) < b)
597 return UINT_MAX;
598 return a * b;
599}
600
601static inline unsigned int muldiv32(unsigned int a, unsigned int b,
602 unsigned int c, unsigned int *r)
603{
604 u_int64_t n = (u_int64_t) a * b;
605 if (c == 0) {
606 snd_BUG_ON(!n);
607 *r = 0;
608 return UINT_MAX;
609 }
610 n = div_u64_rem(n, c, r);
611 if (n >= UINT_MAX) {
612 *r = 0;
613 return UINT_MAX;
614 }
615 return n;
616}
617
618/**
619 * snd_interval_refine - refine the interval value of configurator
620 * @i: the interval value to refine
621 * @v: the interval value to refer to
622 *
623 * Refines the interval value with the reference value.
624 * The interval is changed to the range satisfying both intervals.
625 * The interval status (min, max, integer, etc.) are evaluated.
626 *
627 * Returns non-zero if the value is changed, zero if not changed.
628 */
629int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v)
630{
631 int changed = 0;
632 if (snd_BUG_ON(snd_interval_empty(i)))
633 return -EINVAL;
634 if (i->min < v->min) {
635 i->min = v->min;
636 i->openmin = v->openmin;
637 changed = 1;
638 } else if (i->min == v->min && !i->openmin && v->openmin) {
639 i->openmin = 1;
640 changed = 1;
641 }
642 if (i->max > v->max) {
643 i->max = v->max;
644 i->openmax = v->openmax;
645 changed = 1;
646 } else if (i->max == v->max && !i->openmax && v->openmax) {
647 i->openmax = 1;
648 changed = 1;
649 }
650 if (!i->integer && v->integer) {
651 i->integer = 1;
652 changed = 1;
653 }
654 if (i->integer) {
655 if (i->openmin) {
656 i->min++;
657 i->openmin = 0;
658 }
659 if (i->openmax) {
660 i->max--;
661 i->openmax = 0;
662 }
663 } else if (!i->openmin && !i->openmax && i->min == i->max)
664 i->integer = 1;
665 if (snd_interval_checkempty(i)) {
666 snd_interval_none(i);
667 return -EINVAL;
668 }
669 return changed;
670}
671
672EXPORT_SYMBOL(snd_interval_refine);
673
674static int snd_interval_refine_first(struct snd_interval *i)
675{
676 if (snd_BUG_ON(snd_interval_empty(i)))
677 return -EINVAL;
678 if (snd_interval_single(i))
679 return 0;
680 i->max = i->min;
681 i->openmax = i->openmin;
682 if (i->openmax)
683 i->max++;
684 return 1;
685}
686
687static int snd_interval_refine_last(struct snd_interval *i)
688{
689 if (snd_BUG_ON(snd_interval_empty(i)))
690 return -EINVAL;
691 if (snd_interval_single(i))
692 return 0;
693 i->min = i->max;
694 i->openmin = i->openmax;
695 if (i->openmin)
696 i->min--;
697 return 1;
698}
699
700void snd_interval_mul(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
701{
702 if (a->empty || b->empty) {
703 snd_interval_none(c);
704 return;
705 }
706 c->empty = 0;
707 c->min = mul(a->min, b->min);
708 c->openmin = (a->openmin || b->openmin);
709 c->max = mul(a->max, b->max);
710 c->openmax = (a->openmax || b->openmax);
711 c->integer = (a->integer && b->integer);
712}
713
714/**
715 * snd_interval_div - refine the interval value with division
716 * @a: dividend
717 * @b: divisor
718 * @c: quotient
719 *
720 * c = a / b
721 *
722 * Returns non-zero if the value is changed, zero if not changed.
723 */
724void snd_interval_div(const struct snd_interval *a, const struct snd_interval *b, struct snd_interval *c)
725{
726 unsigned int r;
727 if (a->empty || b->empty) {
728 snd_interval_none(c);
729 return;
730 }
731 c->empty = 0;
732 c->min = div32(a->min, b->max, &r);
733 c->openmin = (r || a->openmin || b->openmax);
734 if (b->min > 0) {
735 c->max = div32(a->max, b->min, &r);
736 if (r) {
737 c->max++;
738 c->openmax = 1;
739 } else
740 c->openmax = (a->openmax || b->openmin);
741 } else {
742 c->max = UINT_MAX;
743 c->openmax = 0;
744 }
745 c->integer = 0;
746}
747
748/**
749 * snd_interval_muldivk - refine the interval value
750 * @a: dividend 1
751 * @b: dividend 2
752 * @k: divisor (as integer)
753 * @c: result
754 *
755 * c = a * b / k
756 *
757 * Returns non-zero if the value is changed, zero if not changed.
758 */
759void snd_interval_muldivk(const struct snd_interval *a, const struct snd_interval *b,
760 unsigned int k, struct snd_interval *c)
761{
762 unsigned int r;
763 if (a->empty || b->empty) {
764 snd_interval_none(c);
765 return;
766 }
767 c->empty = 0;
768 c->min = muldiv32(a->min, b->min, k, &r);
769 c->openmin = (r || a->openmin || b->openmin);
770 c->max = muldiv32(a->max, b->max, k, &r);
771 if (r) {
772 c->max++;
773 c->openmax = 1;
774 } else
775 c->openmax = (a->openmax || b->openmax);
776 c->integer = 0;
777}
778
779/**
780 * snd_interval_mulkdiv - refine the interval value
781 * @a: dividend 1
782 * @k: dividend 2 (as integer)
783 * @b: divisor
784 * @c: result
785 *
786 * c = a * k / b
787 *
788 * Returns non-zero if the value is changed, zero if not changed.
789 */
790void snd_interval_mulkdiv(const struct snd_interval *a, unsigned int k,
791 const struct snd_interval *b, struct snd_interval *c)
792{
793 unsigned int r;
794 if (a->empty || b->empty) {
795 snd_interval_none(c);
796 return;
797 }
798 c->empty = 0;
799 c->min = muldiv32(a->min, k, b->max, &r);
800 c->openmin = (r || a->openmin || b->openmax);
801 if (b->min > 0) {
802 c->max = muldiv32(a->max, k, b->min, &r);
803 if (r) {
804 c->max++;
805 c->openmax = 1;
806 } else
807 c->openmax = (a->openmax || b->openmin);
808 } else {
809 c->max = UINT_MAX;
810 c->openmax = 0;
811 }
812 c->integer = 0;
813}
814
815/* ---- */
816
817
818/**
819 * snd_interval_ratnum - refine the interval value
820 * @i: interval to refine
821 * @rats_count: number of ratnum_t
822 * @rats: ratnum_t array
823 * @nump: pointer to store the resultant numerator
824 * @denp: pointer to store the resultant denominator
825 *
826 * Returns non-zero if the value is changed, zero if not changed.
827 */
828int snd_interval_ratnum(struct snd_interval *i,
829 unsigned int rats_count, struct snd_ratnum *rats,
830 unsigned int *nump, unsigned int *denp)
831{
832 unsigned int best_num, best_den;
833 int best_diff;
834 unsigned int k;
835 struct snd_interval t;
836 int err;
837 unsigned int result_num, result_den;
838 int result_diff;
839
840 best_num = best_den = best_diff = 0;
841 for (k = 0; k < rats_count; ++k) {
842 unsigned int num = rats[k].num;
843 unsigned int den;
844 unsigned int q = i->min;
845 int diff;
846 if (q == 0)
847 q = 1;
848 den = div_up(num, q);
849 if (den < rats[k].den_min)
850 continue;
851 if (den > rats[k].den_max)
852 den = rats[k].den_max;
853 else {
854 unsigned int r;
855 r = (den - rats[k].den_min) % rats[k].den_step;
856 if (r != 0)
857 den -= r;
858 }
859 diff = num - q * den;
860 if (diff < 0)
861 diff = -diff;
862 if (best_num == 0 ||
863 diff * best_den < best_diff * den) {
864 best_diff = diff;
865 best_den = den;
866 best_num = num;
867 }
868 }
869 if (best_den == 0) {
870 i->empty = 1;
871 return -EINVAL;
872 }
873 t.min = div_down(best_num, best_den);
874 t.openmin = !!(best_num % best_den);
875
876 result_num = best_num;
877 result_diff = best_diff;
878 result_den = best_den;
879 best_num = best_den = best_diff = 0;
880 for (k = 0; k < rats_count; ++k) {
881 unsigned int num = rats[k].num;
882 unsigned int den;
883 unsigned int q = i->max;
884 int diff;
885 if (q == 0) {
886 i->empty = 1;
887 return -EINVAL;
888 }
889 den = div_down(num, q);
890 if (den > rats[k].den_max)
891 continue;
892 if (den < rats[k].den_min)
893 den = rats[k].den_min;
894 else {
895 unsigned int r;
896 r = (den - rats[k].den_min) % rats[k].den_step;
897 if (r != 0)
898 den += rats[k].den_step - r;
899 }
900 diff = q * den - num;
901 if (diff < 0)
902 diff = -diff;
903 if (best_num == 0 ||
904 diff * best_den < best_diff * den) {
905 best_diff = diff;
906 best_den = den;
907 best_num = num;
908 }
909 }
910 if (best_den == 0) {
911 i->empty = 1;
912 return -EINVAL;
913 }
914 t.max = div_up(best_num, best_den);
915 t.openmax = !!(best_num % best_den);
916 t.integer = 0;
917 err = snd_interval_refine(i, &t);
918 if (err < 0)
919 return err;
920
921 if (snd_interval_single(i)) {
922 if (best_diff * result_den < result_diff * best_den) {
923 result_num = best_num;
924 result_den = best_den;
925 }
926 if (nump)
927 *nump = result_num;
928 if (denp)
929 *denp = result_den;
930 }
931 return err;
932}
933
934EXPORT_SYMBOL(snd_interval_ratnum);
935
936/**
937 * snd_interval_ratden - refine the interval value
938 * @i: interval to refine
939 * @rats_count: number of struct ratden
940 * @rats: struct ratden array
941 * @nump: pointer to store the resultant numerator
942 * @denp: pointer to store the resultant denominator
943 *
944 * Returns non-zero if the value is changed, zero if not changed.
945 */
946static int snd_interval_ratden(struct snd_interval *i,
947 unsigned int rats_count, struct snd_ratden *rats,
948 unsigned int *nump, unsigned int *denp)
949{
950 unsigned int best_num, best_diff, best_den;
951 unsigned int k;
952 struct snd_interval t;
953 int err;
954
955 best_num = best_den = best_diff = 0;
956 for (k = 0; k < rats_count; ++k) {
957 unsigned int num;
958 unsigned int den = rats[k].den;
959 unsigned int q = i->min;
960 int diff;
961 num = mul(q, den);
962 if (num > rats[k].num_max)
963 continue;
964 if (num < rats[k].num_min)
965 num = rats[k].num_max;
966 else {
967 unsigned int r;
968 r = (num - rats[k].num_min) % rats[k].num_step;
969 if (r != 0)
970 num += rats[k].num_step - r;
971 }
972 diff = num - q * den;
973 if (best_num == 0 ||
974 diff * best_den < best_diff * den) {
975 best_diff = diff;
976 best_den = den;
977 best_num = num;
978 }
979 }
980 if (best_den == 0) {
981 i->empty = 1;
982 return -EINVAL;
983 }
984 t.min = div_down(best_num, best_den);
985 t.openmin = !!(best_num % best_den);
986
987 best_num = best_den = best_diff = 0;
988 for (k = 0; k < rats_count; ++k) {
989 unsigned int num;
990 unsigned int den = rats[k].den;
991 unsigned int q = i->max;
992 int diff;
993 num = mul(q, den);
994 if (num < rats[k].num_min)
995 continue;
996 if (num > rats[k].num_max)
997 num = rats[k].num_max;
998 else {
999 unsigned int r;
1000 r = (num - rats[k].num_min) % rats[k].num_step;
1001 if (r != 0)
1002 num -= r;
1003 }
1004 diff = q * den - num;
1005 if (best_num == 0 ||
1006 diff * best_den < best_diff * den) {
1007 best_diff = diff;
1008 best_den = den;
1009 best_num = num;
1010 }
1011 }
1012 if (best_den == 0) {
1013 i->empty = 1;
1014 return -EINVAL;
1015 }
1016 t.max = div_up(best_num, best_den);
1017 t.openmax = !!(best_num % best_den);
1018 t.integer = 0;
1019 err = snd_interval_refine(i, &t);
1020 if (err < 0)
1021 return err;
1022
1023 if (snd_interval_single(i)) {
1024 if (nump)
1025 *nump = best_num;
1026 if (denp)
1027 *denp = best_den;
1028 }
1029 return err;
1030}
1031
1032/**
1033 * snd_interval_list - refine the interval value from the list
1034 * @i: the interval value to refine
1035 * @count: the number of elements in the list
1036 * @list: the value list
1037 * @mask: the bit-mask to evaluate
1038 *
1039 * Refines the interval value from the list.
1040 * When mask is non-zero, only the elements corresponding to bit 1 are
1041 * evaluated.
1042 *
1043 * Returns non-zero if the value is changed, zero if not changed.
1044 */
1045int snd_interval_list(struct snd_interval *i, unsigned int count,
1046 const unsigned int *list, unsigned int mask)
1047{
1048 unsigned int k;
1049 struct snd_interval list_range;
1050
1051 if (!count) {
1052 i->empty = 1;
1053 return -EINVAL;
1054 }
1055 snd_interval_any(&list_range);
1056 list_range.min = UINT_MAX;
1057 list_range.max = 0;
1058 for (k = 0; k < count; k++) {
1059 if (mask && !(mask & (1 << k)))
1060 continue;
1061 if (!snd_interval_test(i, list[k]))
1062 continue;
1063 list_range.min = min(list_range.min, list[k]);
1064 list_range.max = max(list_range.max, list[k]);
1065 }
1066 return snd_interval_refine(i, &list_range);
1067}
1068
1069EXPORT_SYMBOL(snd_interval_list);
1070
1071static int snd_interval_step(struct snd_interval *i, unsigned int min, unsigned int step)
1072{
1073 unsigned int n;
1074 int changed = 0;
1075 n = (i->min - min) % step;
1076 if (n != 0 || i->openmin) {
1077 i->min += step - n;
1078 changed = 1;
1079 }
1080 n = (i->max - min) % step;
1081 if (n != 0 || i->openmax) {
1082 i->max -= n;
1083 changed = 1;
1084 }
1085 if (snd_interval_checkempty(i)) {
1086 i->empty = 1;
1087 return -EINVAL;
1088 }
1089 return changed;
1090}
1091
1092/* Info constraints helpers */
1093
1094/**
1095 * snd_pcm_hw_rule_add - add the hw-constraint rule
1096 * @runtime: the pcm runtime instance
1097 * @cond: condition bits
1098 * @var: the variable to evaluate
1099 * @func: the evaluation function
1100 * @private: the private data pointer passed to function
1101 * @dep: the dependent variables
1102 *
1103 * Returns zero if successful, or a negative error code on failure.
1104 */
1105int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime, unsigned int cond,
1106 int var,
1107 snd_pcm_hw_rule_func_t func, void *private,
1108 int dep, ...)
1109{
1110 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1111 struct snd_pcm_hw_rule *c;
1112 unsigned int k;
1113 va_list args;
1114 va_start(args, dep);
1115 if (constrs->rules_num >= constrs->rules_all) {
1116 struct snd_pcm_hw_rule *new;
1117 unsigned int new_rules = constrs->rules_all + 16;
1118 new = kcalloc(new_rules, sizeof(*c), GFP_KERNEL);
1119 if (!new) {
1120 va_end(args);
1121 return -ENOMEM;
1122 }
1123 if (constrs->rules) {
1124 memcpy(new, constrs->rules,
1125 constrs->rules_num * sizeof(*c));
1126 kfree(constrs->rules);
1127 }
1128 constrs->rules = new;
1129 constrs->rules_all = new_rules;
1130 }
1131 c = &constrs->rules[constrs->rules_num];
1132 c->cond = cond;
1133 c->func = func;
1134 c->var = var;
1135 c->private = private;
1136 k = 0;
1137 while (1) {
1138 if (snd_BUG_ON(k >= ARRAY_SIZE(c->deps))) {
1139 va_end(args);
1140 return -EINVAL;
1141 }
1142 c->deps[k++] = dep;
1143 if (dep < 0)
1144 break;
1145 dep = va_arg(args, int);
1146 }
1147 constrs->rules_num++;
1148 va_end(args);
1149 return 0;
1150}
1151
1152EXPORT_SYMBOL(snd_pcm_hw_rule_add);
1153
1154/**
1155 * snd_pcm_hw_constraint_mask - apply the given bitmap mask constraint
1156 * @runtime: PCM runtime instance
1157 * @var: hw_params variable to apply the mask
1158 * @mask: the bitmap mask
1159 *
1160 * Apply the constraint of the given bitmap mask to a 32-bit mask parameter.
1161 */
1162int snd_pcm_hw_constraint_mask(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1163 u_int32_t mask)
1164{
1165 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1166 struct snd_mask *maskp = constrs_mask(constrs, var);
1167 *maskp->bits &= mask;
1168 memset(maskp->bits + 1, 0, (SNDRV_MASK_MAX-32) / 8); /* clear rest */
1169 if (*maskp->bits == 0)
1170 return -EINVAL;
1171 return 0;
1172}
1173
1174/**
1175 * snd_pcm_hw_constraint_mask64 - apply the given bitmap mask constraint
1176 * @runtime: PCM runtime instance
1177 * @var: hw_params variable to apply the mask
1178 * @mask: the 64bit bitmap mask
1179 *
1180 * Apply the constraint of the given bitmap mask to a 64-bit mask parameter.
1181 */
1182int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1183 u_int64_t mask)
1184{
1185 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1186 struct snd_mask *maskp = constrs_mask(constrs, var);
1187 maskp->bits[0] &= (u_int32_t)mask;
1188 maskp->bits[1] &= (u_int32_t)(mask >> 32);
1189 memset(maskp->bits + 2, 0, (SNDRV_MASK_MAX-64) / 8); /* clear rest */
1190 if (! maskp->bits[0] && ! maskp->bits[1])
1191 return -EINVAL;
1192 return 0;
1193}
1194
1195/**
1196 * snd_pcm_hw_constraint_integer - apply an integer constraint to an interval
1197 * @runtime: PCM runtime instance
1198 * @var: hw_params variable to apply the integer constraint
1199 *
1200 * Apply the constraint of integer to an interval parameter.
1201 */
1202int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var)
1203{
1204 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1205 return snd_interval_setinteger(constrs_interval(constrs, var));
1206}
1207
1208EXPORT_SYMBOL(snd_pcm_hw_constraint_integer);
1209
1210/**
1211 * snd_pcm_hw_constraint_minmax - apply a min/max range constraint to an interval
1212 * @runtime: PCM runtime instance
1213 * @var: hw_params variable to apply the range
1214 * @min: the minimal value
1215 * @max: the maximal value
1216 *
1217 * Apply the min/max range constraint to an interval parameter.
1218 */
1219int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
1220 unsigned int min, unsigned int max)
1221{
1222 struct snd_pcm_hw_constraints *constrs = &runtime->hw_constraints;
1223 struct snd_interval t;
1224 t.min = min;
1225 t.max = max;
1226 t.openmin = t.openmax = 0;
1227 t.integer = 0;
1228 return snd_interval_refine(constrs_interval(constrs, var), &t);
1229}
1230
1231EXPORT_SYMBOL(snd_pcm_hw_constraint_minmax);
1232
1233static int snd_pcm_hw_rule_list(struct snd_pcm_hw_params *params,
1234 struct snd_pcm_hw_rule *rule)
1235{
1236 struct snd_pcm_hw_constraint_list *list = rule->private;
1237 return snd_interval_list(hw_param_interval(params, rule->var), list->count, list->list, list->mask);
1238}
1239
1240
1241/**
1242 * snd_pcm_hw_constraint_list - apply a list of constraints to a parameter
1243 * @runtime: PCM runtime instance
1244 * @cond: condition bits
1245 * @var: hw_params variable to apply the list constraint
1246 * @l: list
1247 *
1248 * Apply the list of constraints to an interval parameter.
1249 */
1250int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
1251 unsigned int cond,
1252 snd_pcm_hw_param_t var,
1253 struct snd_pcm_hw_constraint_list *l)
1254{
1255 return snd_pcm_hw_rule_add(runtime, cond, var,
1256 snd_pcm_hw_rule_list, l,
1257 var, -1);
1258}
1259
1260EXPORT_SYMBOL(snd_pcm_hw_constraint_list);
1261
1262static int snd_pcm_hw_rule_ratnums(struct snd_pcm_hw_params *params,
1263 struct snd_pcm_hw_rule *rule)
1264{
1265 struct snd_pcm_hw_constraint_ratnums *r = rule->private;
1266 unsigned int num = 0, den = 0;
1267 int err;
1268 err = snd_interval_ratnum(hw_param_interval(params, rule->var),
1269 r->nrats, r->rats, &num, &den);
1270 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1271 params->rate_num = num;
1272 params->rate_den = den;
1273 }
1274 return err;
1275}
1276
1277/**
1278 * snd_pcm_hw_constraint_ratnums - apply ratnums constraint to a parameter
1279 * @runtime: PCM runtime instance
1280 * @cond: condition bits
1281 * @var: hw_params variable to apply the ratnums constraint
1282 * @r: struct snd_ratnums constriants
1283 */
1284int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
1285 unsigned int cond,
1286 snd_pcm_hw_param_t var,
1287 struct snd_pcm_hw_constraint_ratnums *r)
1288{
1289 return snd_pcm_hw_rule_add(runtime, cond, var,
1290 snd_pcm_hw_rule_ratnums, r,
1291 var, -1);
1292}
1293
1294EXPORT_SYMBOL(snd_pcm_hw_constraint_ratnums);
1295
1296static int snd_pcm_hw_rule_ratdens(struct snd_pcm_hw_params *params,
1297 struct snd_pcm_hw_rule *rule)
1298{
1299 struct snd_pcm_hw_constraint_ratdens *r = rule->private;
1300 unsigned int num = 0, den = 0;
1301 int err = snd_interval_ratden(hw_param_interval(params, rule->var),
1302 r->nrats, r->rats, &num, &den);
1303 if (err >= 0 && den && rule->var == SNDRV_PCM_HW_PARAM_RATE) {
1304 params->rate_num = num;
1305 params->rate_den = den;
1306 }
1307 return err;
1308}
1309
1310/**
1311 * snd_pcm_hw_constraint_ratdens - apply ratdens constraint to a parameter
1312 * @runtime: PCM runtime instance
1313 * @cond: condition bits
1314 * @var: hw_params variable to apply the ratdens constraint
1315 * @r: struct snd_ratdens constriants
1316 */
1317int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
1318 unsigned int cond,
1319 snd_pcm_hw_param_t var,
1320 struct snd_pcm_hw_constraint_ratdens *r)
1321{
1322 return snd_pcm_hw_rule_add(runtime, cond, var,
1323 snd_pcm_hw_rule_ratdens, r,
1324 var, -1);
1325}
1326
1327EXPORT_SYMBOL(snd_pcm_hw_constraint_ratdens);
1328
1329static int snd_pcm_hw_rule_msbits(struct snd_pcm_hw_params *params,
1330 struct snd_pcm_hw_rule *rule)
1331{
1332 unsigned int l = (unsigned long) rule->private;
1333 int width = l & 0xffff;
1334 unsigned int msbits = l >> 16;
1335 struct snd_interval *i = hw_param_interval(params, SNDRV_PCM_HW_PARAM_SAMPLE_BITS);
1336 if (snd_interval_single(i) && snd_interval_value(i) == width)
1337 params->msbits = msbits;
1338 return 0;
1339}
1340
1341/**
1342 * snd_pcm_hw_constraint_msbits - add a hw constraint msbits rule
1343 * @runtime: PCM runtime instance
1344 * @cond: condition bits
1345 * @width: sample bits width
1346 * @msbits: msbits width
1347 */
1348int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
1349 unsigned int cond,
1350 unsigned int width,
1351 unsigned int msbits)
1352{
1353 unsigned long l = (msbits << 16) | width;
1354 return snd_pcm_hw_rule_add(runtime, cond, -1,
1355 snd_pcm_hw_rule_msbits,
1356 (void*) l,
1357 SNDRV_PCM_HW_PARAM_SAMPLE_BITS, -1);
1358}
1359
1360EXPORT_SYMBOL(snd_pcm_hw_constraint_msbits);
1361
1362static int snd_pcm_hw_rule_step(struct snd_pcm_hw_params *params,
1363 struct snd_pcm_hw_rule *rule)
1364{
1365 unsigned long step = (unsigned long) rule->private;
1366 return snd_interval_step(hw_param_interval(params, rule->var), 0, step);
1367}
1368
1369/**
1370 * snd_pcm_hw_constraint_step - add a hw constraint step rule
1371 * @runtime: PCM runtime instance
1372 * @cond: condition bits
1373 * @var: hw_params variable to apply the step constraint
1374 * @step: step size
1375 */
1376int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
1377 unsigned int cond,
1378 snd_pcm_hw_param_t var,
1379 unsigned long step)
1380{
1381 return snd_pcm_hw_rule_add(runtime, cond, var,
1382 snd_pcm_hw_rule_step, (void *) step,
1383 var, -1);
1384}
1385
1386EXPORT_SYMBOL(snd_pcm_hw_constraint_step);
1387
1388static int snd_pcm_hw_rule_pow2(struct snd_pcm_hw_params *params, struct snd_pcm_hw_rule *rule)
1389{
1390 static unsigned int pow2_sizes[] = {
1391 1<<0, 1<<1, 1<<2, 1<<3, 1<<4, 1<<5, 1<<6, 1<<7,
1392 1<<8, 1<<9, 1<<10, 1<<11, 1<<12, 1<<13, 1<<14, 1<<15,
1393 1<<16, 1<<17, 1<<18, 1<<19, 1<<20, 1<<21, 1<<22, 1<<23,
1394 1<<24, 1<<25, 1<<26, 1<<27, 1<<28, 1<<29, 1<<30
1395 };
1396 return snd_interval_list(hw_param_interval(params, rule->var),
1397 ARRAY_SIZE(pow2_sizes), pow2_sizes, 0);
1398}
1399
1400/**
1401 * snd_pcm_hw_constraint_pow2 - add a hw constraint power-of-2 rule
1402 * @runtime: PCM runtime instance
1403 * @cond: condition bits
1404 * @var: hw_params variable to apply the power-of-2 constraint
1405 */
1406int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
1407 unsigned int cond,
1408 snd_pcm_hw_param_t var)
1409{
1410 return snd_pcm_hw_rule_add(runtime, cond, var,
1411 snd_pcm_hw_rule_pow2, NULL,
1412 var, -1);
1413}
1414
1415EXPORT_SYMBOL(snd_pcm_hw_constraint_pow2);
1416
1417static int snd_pcm_hw_rule_noresample_func(struct snd_pcm_hw_params *params,
1418 struct snd_pcm_hw_rule *rule)
1419{
1420 unsigned int base_rate = (unsigned int)(uintptr_t)rule->private;
1421 struct snd_interval *rate;
1422
1423 rate = hw_param_interval(params, SNDRV_PCM_HW_PARAM_RATE);
1424 return snd_interval_list(rate, 1, &base_rate, 0);
1425}
1426
1427/**
1428 * snd_pcm_hw_rule_noresample - add a rule to allow disabling hw resampling
1429 * @runtime: PCM runtime instance
1430 * @base_rate: the rate at which the hardware does not resample
1431 */
1432int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
1433 unsigned int base_rate)
1434{
1435 return snd_pcm_hw_rule_add(runtime, SNDRV_PCM_HW_PARAMS_NORESAMPLE,
1436 SNDRV_PCM_HW_PARAM_RATE,
1437 snd_pcm_hw_rule_noresample_func,
1438 (void *)(uintptr_t)base_rate,
1439 SNDRV_PCM_HW_PARAM_RATE, -1);
1440}
1441EXPORT_SYMBOL(snd_pcm_hw_rule_noresample);
1442
1443static void _snd_pcm_hw_param_any(struct snd_pcm_hw_params *params,
1444 snd_pcm_hw_param_t var)
1445{
1446 if (hw_is_mask(var)) {
1447 snd_mask_any(hw_param_mask(params, var));
1448 params->cmask |= 1 << var;
1449 params->rmask |= 1 << var;
1450 return;
1451 }
1452 if (hw_is_interval(var)) {
1453 snd_interval_any(hw_param_interval(params, var));
1454 params->cmask |= 1 << var;
1455 params->rmask |= 1 << var;
1456 return;
1457 }
1458 snd_BUG();
1459}
1460
1461void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params)
1462{
1463 unsigned int k;
1464 memset(params, 0, sizeof(*params));
1465 for (k = SNDRV_PCM_HW_PARAM_FIRST_MASK; k <= SNDRV_PCM_HW_PARAM_LAST_MASK; k++)
1466 _snd_pcm_hw_param_any(params, k);
1467 for (k = SNDRV_PCM_HW_PARAM_FIRST_INTERVAL; k <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL; k++)
1468 _snd_pcm_hw_param_any(params, k);
1469 params->info = ~0U;
1470}
1471
1472EXPORT_SYMBOL(_snd_pcm_hw_params_any);
1473
1474/**
1475 * snd_pcm_hw_param_value - return @params field @var value
1476 * @params: the hw_params instance
1477 * @var: parameter to retrieve
1478 * @dir: pointer to the direction (-1,0,1) or %NULL
1479 *
1480 * Return the value for field @var if it's fixed in configuration space
1481 * defined by @params. Return -%EINVAL otherwise.
1482 */
1483int snd_pcm_hw_param_value(const struct snd_pcm_hw_params *params,
1484 snd_pcm_hw_param_t var, int *dir)
1485{
1486 if (hw_is_mask(var)) {
1487 const struct snd_mask *mask = hw_param_mask_c(params, var);
1488 if (!snd_mask_single(mask))
1489 return -EINVAL;
1490 if (dir)
1491 *dir = 0;
1492 return snd_mask_value(mask);
1493 }
1494 if (hw_is_interval(var)) {
1495 const struct snd_interval *i = hw_param_interval_c(params, var);
1496 if (!snd_interval_single(i))
1497 return -EINVAL;
1498 if (dir)
1499 *dir = i->openmin;
1500 return snd_interval_value(i);
1501 }
1502 return -EINVAL;
1503}
1504
1505EXPORT_SYMBOL(snd_pcm_hw_param_value);
1506
1507void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params,
1508 snd_pcm_hw_param_t var)
1509{
1510 if (hw_is_mask(var)) {
1511 snd_mask_none(hw_param_mask(params, var));
1512 params->cmask |= 1 << var;
1513 params->rmask |= 1 << var;
1514 } else if (hw_is_interval(var)) {
1515 snd_interval_none(hw_param_interval(params, var));
1516 params->cmask |= 1 << var;
1517 params->rmask |= 1 << var;
1518 } else {
1519 snd_BUG();
1520 }
1521}
1522
1523EXPORT_SYMBOL(_snd_pcm_hw_param_setempty);
1524
1525static int _snd_pcm_hw_param_first(struct snd_pcm_hw_params *params,
1526 snd_pcm_hw_param_t var)
1527{
1528 int changed;
1529 if (hw_is_mask(var))
1530 changed = snd_mask_refine_first(hw_param_mask(params, var));
1531 else if (hw_is_interval(var))
1532 changed = snd_interval_refine_first(hw_param_interval(params, var));
1533 else
1534 return -EINVAL;
1535 if (changed) {
1536 params->cmask |= 1 << var;
1537 params->rmask |= 1 << var;
1538 }
1539 return changed;
1540}
1541
1542
1543/**
1544 * snd_pcm_hw_param_first - refine config space and return minimum value
1545 * @pcm: PCM instance
1546 * @params: the hw_params instance
1547 * @var: parameter to retrieve
1548 * @dir: pointer to the direction (-1,0,1) or %NULL
1549 *
1550 * Inside configuration space defined by @params remove from @var all
1551 * values > minimum. Reduce configuration space accordingly.
1552 * Return the minimum.
1553 */
1554int snd_pcm_hw_param_first(struct snd_pcm_substream *pcm,
1555 struct snd_pcm_hw_params *params,
1556 snd_pcm_hw_param_t var, int *dir)
1557{
1558 int changed = _snd_pcm_hw_param_first(params, var);
1559 if (changed < 0)
1560 return changed;
1561 if (params->rmask) {
1562 int err = snd_pcm_hw_refine(pcm, params);
1563 if (snd_BUG_ON(err < 0))
1564 return err;
1565 }
1566 return snd_pcm_hw_param_value(params, var, dir);
1567}
1568
1569EXPORT_SYMBOL(snd_pcm_hw_param_first);
1570
1571static int _snd_pcm_hw_param_last(struct snd_pcm_hw_params *params,
1572 snd_pcm_hw_param_t var)
1573{
1574 int changed;
1575 if (hw_is_mask(var))
1576 changed = snd_mask_refine_last(hw_param_mask(params, var));
1577 else if (hw_is_interval(var))
1578 changed = snd_interval_refine_last(hw_param_interval(params, var));
1579 else
1580 return -EINVAL;
1581 if (changed) {
1582 params->cmask |= 1 << var;
1583 params->rmask |= 1 << var;
1584 }
1585 return changed;
1586}
1587
1588
1589/**
1590 * snd_pcm_hw_param_last - refine config space and return maximum value
1591 * @pcm: PCM instance
1592 * @params: the hw_params instance
1593 * @var: parameter to retrieve
1594 * @dir: pointer to the direction (-1,0,1) or %NULL
1595 *
1596 * Inside configuration space defined by @params remove from @var all
1597 * values < maximum. Reduce configuration space accordingly.
1598 * Return the maximum.
1599 */
1600int snd_pcm_hw_param_last(struct snd_pcm_substream *pcm,
1601 struct snd_pcm_hw_params *params,
1602 snd_pcm_hw_param_t var, int *dir)
1603{
1604 int changed = _snd_pcm_hw_param_last(params, var);
1605 if (changed < 0)
1606 return changed;
1607 if (params->rmask) {
1608 int err = snd_pcm_hw_refine(pcm, params);
1609 if (snd_BUG_ON(err < 0))
1610 return err;
1611 }
1612 return snd_pcm_hw_param_value(params, var, dir);
1613}
1614
1615EXPORT_SYMBOL(snd_pcm_hw_param_last);
1616
1617/**
1618 * snd_pcm_hw_param_choose - choose a configuration defined by @params
1619 * @pcm: PCM instance
1620 * @params: the hw_params instance
1621 *
1622 * Choose one configuration from configuration space defined by @params.
1623 * The configuration chosen is that obtained fixing in this order:
1624 * first access, first format, first subformat, min channels,
1625 * min rate, min period time, max buffer size, min tick time
1626 */
1627int snd_pcm_hw_params_choose(struct snd_pcm_substream *pcm,
1628 struct snd_pcm_hw_params *params)
1629{
1630 static int vars[] = {
1631 SNDRV_PCM_HW_PARAM_ACCESS,
1632 SNDRV_PCM_HW_PARAM_FORMAT,
1633 SNDRV_PCM_HW_PARAM_SUBFORMAT,
1634 SNDRV_PCM_HW_PARAM_CHANNELS,
1635 SNDRV_PCM_HW_PARAM_RATE,
1636 SNDRV_PCM_HW_PARAM_PERIOD_TIME,
1637 SNDRV_PCM_HW_PARAM_BUFFER_SIZE,
1638 SNDRV_PCM_HW_PARAM_TICK_TIME,
1639 -1
1640 };
1641 int err, *v;
1642
1643 for (v = vars; *v != -1; v++) {
1644 if (*v != SNDRV_PCM_HW_PARAM_BUFFER_SIZE)
1645 err = snd_pcm_hw_param_first(pcm, params, *v, NULL);
1646 else
1647 err = snd_pcm_hw_param_last(pcm, params, *v, NULL);
1648 if (snd_BUG_ON(err < 0))
1649 return err;
1650 }
1651 return 0;
1652}
1653
1654static int snd_pcm_lib_ioctl_reset(struct snd_pcm_substream *substream,
1655 void *arg)
1656{
1657 struct snd_pcm_runtime *runtime = substream->runtime;
1658 unsigned long flags;
1659 snd_pcm_stream_lock_irqsave(substream, flags);
1660 if (snd_pcm_running(substream) &&
1661 snd_pcm_update_hw_ptr(substream) >= 0)
1662 runtime->status->hw_ptr %= runtime->buffer_size;
1663 else
1664 runtime->status->hw_ptr = 0;
1665 snd_pcm_stream_unlock_irqrestore(substream, flags);
1666 return 0;
1667}
1668
1669static int snd_pcm_lib_ioctl_channel_info(struct snd_pcm_substream *substream,
1670 void *arg)
1671{
1672 struct snd_pcm_channel_info *info = arg;
1673 struct snd_pcm_runtime *runtime = substream->runtime;
1674 int width;
1675 if (!(runtime->info & SNDRV_PCM_INFO_MMAP)) {
1676 info->offset = -1;
1677 return 0;
1678 }
1679 width = snd_pcm_format_physical_width(runtime->format);
1680 if (width < 0)
1681 return width;
1682 info->offset = 0;
1683 switch (runtime->access) {
1684 case SNDRV_PCM_ACCESS_MMAP_INTERLEAVED:
1685 case SNDRV_PCM_ACCESS_RW_INTERLEAVED:
1686 info->first = info->channel * width;
1687 info->step = runtime->channels * width;
1688 break;
1689 case SNDRV_PCM_ACCESS_MMAP_NONINTERLEAVED:
1690 case SNDRV_PCM_ACCESS_RW_NONINTERLEAVED:
1691 {
1692 size_t size = runtime->dma_bytes / runtime->channels;
1693 info->first = info->channel * size * 8;
1694 info->step = width;
1695 break;
1696 }
1697 default:
1698 snd_BUG();
1699 break;
1700 }
1701 return 0;
1702}
1703
1704static int snd_pcm_lib_ioctl_fifo_size(struct snd_pcm_substream *substream,
1705 void *arg)
1706{
1707 struct snd_pcm_hw_params *params = arg;
1708 snd_pcm_format_t format;
1709 int channels, width;
1710
1711 params->fifo_size = substream->runtime->hw.fifo_size;
1712 if (!(substream->runtime->hw.info & SNDRV_PCM_INFO_FIFO_IN_FRAMES)) {
1713 format = params_format(params);
1714 channels = params_channels(params);
1715 width = snd_pcm_format_physical_width(format);
1716 params->fifo_size /= width * channels;
1717 }
1718 return 0;
1719}
1720
1721/**
1722 * snd_pcm_lib_ioctl - a generic PCM ioctl callback
1723 * @substream: the pcm substream instance
1724 * @cmd: ioctl command
1725 * @arg: ioctl argument
1726 *
1727 * Processes the generic ioctl commands for PCM.
1728 * Can be passed as the ioctl callback for PCM ops.
1729 *
1730 * Returns zero if successful, or a negative error code on failure.
1731 */
1732int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
1733 unsigned int cmd, void *arg)
1734{
1735 switch (cmd) {
1736 case SNDRV_PCM_IOCTL1_INFO:
1737 return 0;
1738 case SNDRV_PCM_IOCTL1_RESET:
1739 return snd_pcm_lib_ioctl_reset(substream, arg);
1740 case SNDRV_PCM_IOCTL1_CHANNEL_INFO:
1741 return snd_pcm_lib_ioctl_channel_info(substream, arg);
1742 case SNDRV_PCM_IOCTL1_FIFO_SIZE:
1743 return snd_pcm_lib_ioctl_fifo_size(substream, arg);
1744 }
1745 return -ENXIO;
1746}
1747
1748EXPORT_SYMBOL(snd_pcm_lib_ioctl);
1749
1750/**
1751 * snd_pcm_period_elapsed - update the pcm status for the next period
1752 * @substream: the pcm substream instance
1753 *
1754 * This function is called from the interrupt handler when the
1755 * PCM has processed the period size. It will update the current
1756 * pointer, wake up sleepers, etc.
1757 *
1758 * Even if more than one periods have elapsed since the last call, you
1759 * have to call this only once.
1760 */
1761void snd_pcm_period_elapsed(struct snd_pcm_substream *substream)
1762{
1763 struct snd_pcm_runtime *runtime;
1764 unsigned long flags;
1765
1766 if (PCM_RUNTIME_CHECK(substream))
1767 return;
1768 runtime = substream->runtime;
1769
1770 if (runtime->transfer_ack_begin)
1771 runtime->transfer_ack_begin(substream);
1772
1773 snd_pcm_stream_lock_irqsave(substream, flags);
1774 if (!snd_pcm_running(substream) ||
1775 snd_pcm_update_hw_ptr0(substream, 1) < 0)
1776 goto _end;
1777
1778 if (substream->timer_running)
1779 snd_timer_interrupt(substream->timer, 1);
1780 _end:
1781 snd_pcm_stream_unlock_irqrestore(substream, flags);
1782 if (runtime->transfer_ack_end)
1783 runtime->transfer_ack_end(substream);
1784 kill_fasync(&runtime->fasync, SIGIO, POLL_IN);
1785}
1786
1787EXPORT_SYMBOL(snd_pcm_period_elapsed);
1788
1789/*
1790 * Wait until avail_min data becomes available
1791 * Returns a negative error code if any error occurs during operation.
1792 * The available space is stored on availp. When err = 0 and avail = 0
1793 * on the capture stream, it indicates the stream is in DRAINING state.
1794 */
1795static int wait_for_avail(struct snd_pcm_substream *substream,
1796 snd_pcm_uframes_t *availp)
1797{
1798 struct snd_pcm_runtime *runtime = substream->runtime;
1799 int is_playback = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
1800 wait_queue_t wait;
1801 int err = 0;
1802 snd_pcm_uframes_t avail = 0;
1803 long wait_time, tout;
1804
1805 init_waitqueue_entry(&wait, current);
1806 set_current_state(TASK_INTERRUPTIBLE);
1807 add_wait_queue(&runtime->tsleep, &wait);
1808
1809 if (runtime->no_period_wakeup)
1810 wait_time = MAX_SCHEDULE_TIMEOUT;
1811 else {
1812 wait_time = 10;
1813 if (runtime->rate) {
1814 long t = runtime->period_size * 2 / runtime->rate;
1815 wait_time = max(t, wait_time);
1816 }
1817 wait_time = msecs_to_jiffies(wait_time * 1000);
1818 }
1819
1820 for (;;) {
1821 if (signal_pending(current)) {
1822 err = -ERESTARTSYS;
1823 break;
1824 }
1825
1826 /*
1827 * We need to check if space became available already
1828 * (and thus the wakeup happened already) first to close
1829 * the race of space already having become available.
1830 * This check must happen after been added to the waitqueue
1831 * and having current state be INTERRUPTIBLE.
1832 */
1833 if (is_playback)
1834 avail = snd_pcm_playback_avail(runtime);
1835 else
1836 avail = snd_pcm_capture_avail(runtime);
1837 if (avail >= runtime->twake)
1838 break;
1839 snd_pcm_stream_unlock_irq(substream);
1840
1841 tout = schedule_timeout(wait_time);
1842
1843 snd_pcm_stream_lock_irq(substream);
1844 set_current_state(TASK_INTERRUPTIBLE);
1845 switch (runtime->status->state) {
1846 case SNDRV_PCM_STATE_SUSPENDED:
1847 err = -ESTRPIPE;
1848 goto _endloop;
1849 case SNDRV_PCM_STATE_XRUN:
1850 err = -EPIPE;
1851 goto _endloop;
1852 case SNDRV_PCM_STATE_DRAINING:
1853 if (is_playback)
1854 err = -EPIPE;
1855 else
1856 avail = 0; /* indicate draining */
1857 goto _endloop;
1858 case SNDRV_PCM_STATE_OPEN:
1859 case SNDRV_PCM_STATE_SETUP:
1860 case SNDRV_PCM_STATE_DISCONNECTED:
1861 err = -EBADFD;
1862 goto _endloop;
1863 }
1864 if (!tout) {
1865 snd_printd("%s write error (DMA or IRQ trouble?)\n",
1866 is_playback ? "playback" : "capture");
1867 err = -EIO;
1868 break;
1869 }
1870 }
1871 _endloop:
1872 set_current_state(TASK_RUNNING);
1873 remove_wait_queue(&runtime->tsleep, &wait);
1874 *availp = avail;
1875 return err;
1876}
1877
1878static int snd_pcm_lib_write_transfer(struct snd_pcm_substream *substream,
1879 unsigned int hwoff,
1880 unsigned long data, unsigned int off,
1881 snd_pcm_uframes_t frames)
1882{
1883 struct snd_pcm_runtime *runtime = substream->runtime;
1884 int err;
1885 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
1886 if (substream->ops->copy) {
1887 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
1888 return err;
1889 } else {
1890 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
1891 if (copy_from_user(hwbuf, buf, frames_to_bytes(runtime, frames)))
1892 return -EFAULT;
1893 }
1894 return 0;
1895}
1896
1897typedef int (*transfer_f)(struct snd_pcm_substream *substream, unsigned int hwoff,
1898 unsigned long data, unsigned int off,
1899 snd_pcm_uframes_t size);
1900
1901static snd_pcm_sframes_t snd_pcm_lib_write1(struct snd_pcm_substream *substream,
1902 unsigned long data,
1903 snd_pcm_uframes_t size,
1904 int nonblock,
1905 transfer_f transfer)
1906{
1907 struct snd_pcm_runtime *runtime = substream->runtime;
1908 snd_pcm_uframes_t xfer = 0;
1909 snd_pcm_uframes_t offset = 0;
1910 snd_pcm_uframes_t avail;
1911 int err = 0;
1912
1913 if (size == 0)
1914 return 0;
1915
1916 snd_pcm_stream_lock_irq(substream);
1917 switch (runtime->status->state) {
1918 case SNDRV_PCM_STATE_PREPARED:
1919 case SNDRV_PCM_STATE_RUNNING:
1920 case SNDRV_PCM_STATE_PAUSED:
1921 break;
1922 case SNDRV_PCM_STATE_XRUN:
1923 err = -EPIPE;
1924 goto _end_unlock;
1925 case SNDRV_PCM_STATE_SUSPENDED:
1926 err = -ESTRPIPE;
1927 goto _end_unlock;
1928 default:
1929 err = -EBADFD;
1930 goto _end_unlock;
1931 }
1932
1933 runtime->twake = runtime->control->avail_min ? : 1;
1934 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
1935 snd_pcm_update_hw_ptr(substream);
1936 avail = snd_pcm_playback_avail(runtime);
1937 while (size > 0) {
1938 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
1939 snd_pcm_uframes_t cont;
1940 if (!avail) {
1941 if (nonblock) {
1942 err = -EAGAIN;
1943 goto _end_unlock;
1944 }
1945 runtime->twake = min_t(snd_pcm_uframes_t, size,
1946 runtime->control->avail_min ? : 1);
1947 err = wait_for_avail(substream, &avail);
1948 if (err < 0)
1949 goto _end_unlock;
1950 }
1951 frames = size > avail ? avail : size;
1952 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
1953 if (frames > cont)
1954 frames = cont;
1955 if (snd_BUG_ON(!frames)) {
1956 runtime->twake = 0;
1957 snd_pcm_stream_unlock_irq(substream);
1958 return -EINVAL;
1959 }
1960 appl_ptr = runtime->control->appl_ptr;
1961 appl_ofs = appl_ptr % runtime->buffer_size;
1962 snd_pcm_stream_unlock_irq(substream);
1963 err = transfer(substream, appl_ofs, data, offset, frames);
1964 snd_pcm_stream_lock_irq(substream);
1965 if (err < 0)
1966 goto _end_unlock;
1967 switch (runtime->status->state) {
1968 case SNDRV_PCM_STATE_XRUN:
1969 err = -EPIPE;
1970 goto _end_unlock;
1971 case SNDRV_PCM_STATE_SUSPENDED:
1972 err = -ESTRPIPE;
1973 goto _end_unlock;
1974 default:
1975 break;
1976 }
1977 appl_ptr += frames;
1978 if (appl_ptr >= runtime->boundary)
1979 appl_ptr -= runtime->boundary;
1980 runtime->control->appl_ptr = appl_ptr;
1981 if (substream->ops->ack)
1982 substream->ops->ack(substream);
1983
1984 offset += frames;
1985 size -= frames;
1986 xfer += frames;
1987 avail -= frames;
1988 if (runtime->status->state == SNDRV_PCM_STATE_PREPARED &&
1989 snd_pcm_playback_hw_avail(runtime) >= (snd_pcm_sframes_t)runtime->start_threshold) {
1990 err = snd_pcm_start(substream);
1991 if (err < 0)
1992 goto _end_unlock;
1993 }
1994 }
1995 _end_unlock:
1996 runtime->twake = 0;
1997 if (xfer > 0 && err >= 0)
1998 snd_pcm_update_state(substream, runtime);
1999 snd_pcm_stream_unlock_irq(substream);
2000 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2001}
2002
2003/* sanity-check for read/write methods */
2004static int pcm_sanity_check(struct snd_pcm_substream *substream)
2005{
2006 struct snd_pcm_runtime *runtime;
2007 if (PCM_RUNTIME_CHECK(substream))
2008 return -ENXIO;
2009 runtime = substream->runtime;
2010 if (snd_BUG_ON(!substream->ops->copy && !runtime->dma_area))
2011 return -EINVAL;
2012 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2013 return -EBADFD;
2014 return 0;
2015}
2016
2017snd_pcm_sframes_t snd_pcm_lib_write(struct snd_pcm_substream *substream, const void __user *buf, snd_pcm_uframes_t size)
2018{
2019 struct snd_pcm_runtime *runtime;
2020 int nonblock;
2021 int err;
2022
2023 err = pcm_sanity_check(substream);
2024 if (err < 0)
2025 return err;
2026 runtime = substream->runtime;
2027 nonblock = !!(substream->f_flags & O_NONBLOCK);
2028
2029 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED &&
2030 runtime->channels > 1)
2031 return -EINVAL;
2032 return snd_pcm_lib_write1(substream, (unsigned long)buf, size, nonblock,
2033 snd_pcm_lib_write_transfer);
2034}
2035
2036EXPORT_SYMBOL(snd_pcm_lib_write);
2037
2038static int snd_pcm_lib_writev_transfer(struct snd_pcm_substream *substream,
2039 unsigned int hwoff,
2040 unsigned long data, unsigned int off,
2041 snd_pcm_uframes_t frames)
2042{
2043 struct snd_pcm_runtime *runtime = substream->runtime;
2044 int err;
2045 void __user **bufs = (void __user **)data;
2046 int channels = runtime->channels;
2047 int c;
2048 if (substream->ops->copy) {
2049 if (snd_BUG_ON(!substream->ops->silence))
2050 return -EINVAL;
2051 for (c = 0; c < channels; ++c, ++bufs) {
2052 if (*bufs == NULL) {
2053 if ((err = substream->ops->silence(substream, c, hwoff, frames)) < 0)
2054 return err;
2055 } else {
2056 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2057 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2058 return err;
2059 }
2060 }
2061 } else {
2062 /* default transfer behaviour */
2063 size_t dma_csize = runtime->dma_bytes / channels;
2064 for (c = 0; c < channels; ++c, ++bufs) {
2065 char *hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2066 if (*bufs == NULL) {
2067 snd_pcm_format_set_silence(runtime->format, hwbuf, frames);
2068 } else {
2069 char __user *buf = *bufs + samples_to_bytes(runtime, off);
2070 if (copy_from_user(hwbuf, buf, samples_to_bytes(runtime, frames)))
2071 return -EFAULT;
2072 }
2073 }
2074 }
2075 return 0;
2076}
2077
2078snd_pcm_sframes_t snd_pcm_lib_writev(struct snd_pcm_substream *substream,
2079 void __user **bufs,
2080 snd_pcm_uframes_t frames)
2081{
2082 struct snd_pcm_runtime *runtime;
2083 int nonblock;
2084 int err;
2085
2086 err = pcm_sanity_check(substream);
2087 if (err < 0)
2088 return err;
2089 runtime = substream->runtime;
2090 nonblock = !!(substream->f_flags & O_NONBLOCK);
2091
2092 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2093 return -EINVAL;
2094 return snd_pcm_lib_write1(substream, (unsigned long)bufs, frames,
2095 nonblock, snd_pcm_lib_writev_transfer);
2096}
2097
2098EXPORT_SYMBOL(snd_pcm_lib_writev);
2099
2100static int snd_pcm_lib_read_transfer(struct snd_pcm_substream *substream,
2101 unsigned int hwoff,
2102 unsigned long data, unsigned int off,
2103 snd_pcm_uframes_t frames)
2104{
2105 struct snd_pcm_runtime *runtime = substream->runtime;
2106 int err;
2107 char __user *buf = (char __user *) data + frames_to_bytes(runtime, off);
2108 if (substream->ops->copy) {
2109 if ((err = substream->ops->copy(substream, -1, hwoff, buf, frames)) < 0)
2110 return err;
2111 } else {
2112 char *hwbuf = runtime->dma_area + frames_to_bytes(runtime, hwoff);
2113 if (copy_to_user(buf, hwbuf, frames_to_bytes(runtime, frames)))
2114 return -EFAULT;
2115 }
2116 return 0;
2117}
2118
2119static snd_pcm_sframes_t snd_pcm_lib_read1(struct snd_pcm_substream *substream,
2120 unsigned long data,
2121 snd_pcm_uframes_t size,
2122 int nonblock,
2123 transfer_f transfer)
2124{
2125 struct snd_pcm_runtime *runtime = substream->runtime;
2126 snd_pcm_uframes_t xfer = 0;
2127 snd_pcm_uframes_t offset = 0;
2128 snd_pcm_uframes_t avail;
2129 int err = 0;
2130
2131 if (size == 0)
2132 return 0;
2133
2134 snd_pcm_stream_lock_irq(substream);
2135 switch (runtime->status->state) {
2136 case SNDRV_PCM_STATE_PREPARED:
2137 if (size >= runtime->start_threshold) {
2138 err = snd_pcm_start(substream);
2139 if (err < 0)
2140 goto _end_unlock;
2141 }
2142 break;
2143 case SNDRV_PCM_STATE_DRAINING:
2144 case SNDRV_PCM_STATE_RUNNING:
2145 case SNDRV_PCM_STATE_PAUSED:
2146 break;
2147 case SNDRV_PCM_STATE_XRUN:
2148 err = -EPIPE;
2149 goto _end_unlock;
2150 case SNDRV_PCM_STATE_SUSPENDED:
2151 err = -ESTRPIPE;
2152 goto _end_unlock;
2153 default:
2154 err = -EBADFD;
2155 goto _end_unlock;
2156 }
2157
2158 runtime->twake = runtime->control->avail_min ? : 1;
2159 if (runtime->status->state == SNDRV_PCM_STATE_RUNNING)
2160 snd_pcm_update_hw_ptr(substream);
2161 avail = snd_pcm_capture_avail(runtime);
2162 while (size > 0) {
2163 snd_pcm_uframes_t frames, appl_ptr, appl_ofs;
2164 snd_pcm_uframes_t cont;
2165 if (!avail) {
2166 if (runtime->status->state ==
2167 SNDRV_PCM_STATE_DRAINING) {
2168 snd_pcm_stop(substream, SNDRV_PCM_STATE_SETUP);
2169 goto _end_unlock;
2170 }
2171 if (nonblock) {
2172 err = -EAGAIN;
2173 goto _end_unlock;
2174 }
2175 runtime->twake = min_t(snd_pcm_uframes_t, size,
2176 runtime->control->avail_min ? : 1);
2177 err = wait_for_avail(substream, &avail);
2178 if (err < 0)
2179 goto _end_unlock;
2180 if (!avail)
2181 continue; /* draining */
2182 }
2183 frames = size > avail ? avail : size;
2184 cont = runtime->buffer_size - runtime->control->appl_ptr % runtime->buffer_size;
2185 if (frames > cont)
2186 frames = cont;
2187 if (snd_BUG_ON(!frames)) {
2188 runtime->twake = 0;
2189 snd_pcm_stream_unlock_irq(substream);
2190 return -EINVAL;
2191 }
2192 appl_ptr = runtime->control->appl_ptr;
2193 appl_ofs = appl_ptr % runtime->buffer_size;
2194 snd_pcm_stream_unlock_irq(substream);
2195 err = transfer(substream, appl_ofs, data, offset, frames);
2196 snd_pcm_stream_lock_irq(substream);
2197 if (err < 0)
2198 goto _end_unlock;
2199 switch (runtime->status->state) {
2200 case SNDRV_PCM_STATE_XRUN:
2201 err = -EPIPE;
2202 goto _end_unlock;
2203 case SNDRV_PCM_STATE_SUSPENDED:
2204 err = -ESTRPIPE;
2205 goto _end_unlock;
2206 default:
2207 break;
2208 }
2209 appl_ptr += frames;
2210 if (appl_ptr >= runtime->boundary)
2211 appl_ptr -= runtime->boundary;
2212 runtime->control->appl_ptr = appl_ptr;
2213 if (substream->ops->ack)
2214 substream->ops->ack(substream);
2215
2216 offset += frames;
2217 size -= frames;
2218 xfer += frames;
2219 avail -= frames;
2220 }
2221 _end_unlock:
2222 runtime->twake = 0;
2223 if (xfer > 0 && err >= 0)
2224 snd_pcm_update_state(substream, runtime);
2225 snd_pcm_stream_unlock_irq(substream);
2226 return xfer > 0 ? (snd_pcm_sframes_t)xfer : err;
2227}
2228
2229snd_pcm_sframes_t snd_pcm_lib_read(struct snd_pcm_substream *substream, void __user *buf, snd_pcm_uframes_t size)
2230{
2231 struct snd_pcm_runtime *runtime;
2232 int nonblock;
2233 int err;
2234
2235 err = pcm_sanity_check(substream);
2236 if (err < 0)
2237 return err;
2238 runtime = substream->runtime;
2239 nonblock = !!(substream->f_flags & O_NONBLOCK);
2240 if (runtime->access != SNDRV_PCM_ACCESS_RW_INTERLEAVED)
2241 return -EINVAL;
2242 return snd_pcm_lib_read1(substream, (unsigned long)buf, size, nonblock, snd_pcm_lib_read_transfer);
2243}
2244
2245EXPORT_SYMBOL(snd_pcm_lib_read);
2246
2247static int snd_pcm_lib_readv_transfer(struct snd_pcm_substream *substream,
2248 unsigned int hwoff,
2249 unsigned long data, unsigned int off,
2250 snd_pcm_uframes_t frames)
2251{
2252 struct snd_pcm_runtime *runtime = substream->runtime;
2253 int err;
2254 void __user **bufs = (void __user **)data;
2255 int channels = runtime->channels;
2256 int c;
2257 if (substream->ops->copy) {
2258 for (c = 0; c < channels; ++c, ++bufs) {
2259 char __user *buf;
2260 if (*bufs == NULL)
2261 continue;
2262 buf = *bufs + samples_to_bytes(runtime, off);
2263 if ((err = substream->ops->copy(substream, c, hwoff, buf, frames)) < 0)
2264 return err;
2265 }
2266 } else {
2267 snd_pcm_uframes_t dma_csize = runtime->dma_bytes / channels;
2268 for (c = 0; c < channels; ++c, ++bufs) {
2269 char *hwbuf;
2270 char __user *buf;
2271 if (*bufs == NULL)
2272 continue;
2273
2274 hwbuf = runtime->dma_area + (c * dma_csize) + samples_to_bytes(runtime, hwoff);
2275 buf = *bufs + samples_to_bytes(runtime, off);
2276 if (copy_to_user(buf, hwbuf, samples_to_bytes(runtime, frames)))
2277 return -EFAULT;
2278 }
2279 }
2280 return 0;
2281}
2282
2283snd_pcm_sframes_t snd_pcm_lib_readv(struct snd_pcm_substream *substream,
2284 void __user **bufs,
2285 snd_pcm_uframes_t frames)
2286{
2287 struct snd_pcm_runtime *runtime;
2288 int nonblock;
2289 int err;
2290
2291 err = pcm_sanity_check(substream);
2292 if (err < 0)
2293 return err;
2294 runtime = substream->runtime;
2295 if (runtime->status->state == SNDRV_PCM_STATE_OPEN)
2296 return -EBADFD;
2297
2298 nonblock = !!(substream->f_flags & O_NONBLOCK);
2299 if (runtime->access != SNDRV_PCM_ACCESS_RW_NONINTERLEAVED)
2300 return -EINVAL;
2301 return snd_pcm_lib_read1(substream, (unsigned long)bufs, frames, nonblock, snd_pcm_lib_readv_transfer);
2302}
2303
2304EXPORT_SYMBOL(snd_pcm_lib_readv);